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OVERVIEW 

 
The San Jose Semaphore is a piece of animated public art located atop Adobe’s building 
in San Jose, beginning operation on August 7, 2006.  It consists of four orange 
illuminated discs that rotate every 7.2 seconds, along with a soundtrack available in the 
immediate proximity on AM 1680 radio.  In addition to the esthetics of the art, the 
movements of the discs and the sounds convey an encoded message.  This report 
describes the successful decoding of that message.  More information on the San Jose 
Semaphore is available at www.sanjosesemaphore.org. 
 
 

 

Introduction 
It was a Thursday night in downtown San Jose, where we decided to meet for a beer and 
dinner along with a few other friends and co-workers.  Not much was going on at the 
place where we ate dinner, so we decided to explore the surrounding areas to see if we 
could locate a fun place to hang out.  As we crossed Almaden Boulevard, the orange 
discs of the San Jose Semaphore stood out against the night sky, presenting a display that 

The Semaphore atop Adobe's headquarters in San Jose, California. 



engaged our curiosity.  Not much progress was made on our exploration of San Jose that 
night, but two of us decided to try to solve the puzzle that the Semaphore posed. 

Scaling the Wall Next to the Elevator 
We noticed the online simulcast of the semaphore, but wasn’t sure if contained the 
encoded message, too.  The simulcast did not behave exactly like the version on the 
Adobe building, in that the actual art varied its appearance when airplanes flew over, 
while the online simulcast did not.  Bob conjectured that we would need to videotape a 
few hours of the semaphore, and perhaps even set up a webcam for long term operation. 

 
While it was easy to film the semaphore, capturing a clean audio track from AM 1680 
radio was more difficult.  Using a simple handheld radio we were not able to get a clean 
signal anywhere in the area.  Switching to a larger boom-box type of radio helped a little 
bit, but was still not good enough if we were counting on it to capture all the data.  So 
Bob purchased a Grundig G1000A radio, which reviews on the web said was an excellent 
radio for receiving weak AM radio stations. 

Fig. 1: Filming the Semaphore.  The Semaphore was easily 
visible throughout the area, although clear reception of the 

associated AM radio signal was problematic.  Since 24/7 monthly 
parking rental was available for this location, we thought we might 

leave a vehicle there with a webcam and uplink. 



 
Alas, the Grundig worked better in most locations, but still did not produce a signal we 
were satisfied with.  Unexpectedly, one of the strongest signals was received far away 
from the Adobe building, near a railing that we hypothesize had something to do with 
enhancing reception.  But the signal was still weak and faded in and out more than we 
liked.  Next step:  a GE SuperRadio, the king of long distance AM radio reception. 

 
 

Fig 2: A Succession of Radios.  Several radios were tried in an 
attempt to get a strong AM audio signal.  The GE SuperRadio on 

the right is specially designed to receive weak signals. 

Fig 3: Way out here?  
Surprisingly, AM radio reception 

was good in this location far behind 
the Adobe building, perhaps due to 

the railing or other metal objects 
acting like antennas. 



The GE radio lived up to its claim to fame.  When a block away from the semaphore, it 
managed to pull in a radio station from Boulder, Colorado instead of the semaphore.  But 
when close to the semaphore, it locked on and produced an excellent signal.  Somehow, 
we needed a way to webcast this signal from near the Adobe building.  The news rack in 
front caught our eye. 

 
This news rack is located close to the semaphore and provides excellent AM radio 
reception with the GE SuperRadio, and also has a clear view of the Semaphore.  We 
wondered:  could we install our own newspaper box containing a webcam, the 
SuperRadio, and a wireless uplink?  Wi-Fi access is available, so….. 
 
But maybe all that was unnecessary.  After all, we had the Simulcast to work from.  And 
deriving data from the Simulcast seemed like a much easier proposition.  We found 
software that could take snapshots of the simulcast at 10 frames per second, and other 
software that could process these into a form that clearly could be recognized by image 
processing software we intended to write. 
 

Fig 4: Future home of 
webcam and radio?  This 

spot in front of the semaphore 
had excellent AM radio 

reception and also a clear 
view of the semaphore.  And, 
conveniently, room for one 

more newspaper vending box 
to be added. 



 
Furthermore, we noticed that the audio track from the simulcast was clean, and consisted 
of six distinct segments.  While it would take a great deal of work, we believed we could 
automatically recognize these segments.  
 

 
Clearly, we had our work cut out for us.  While we were confident we could use software 
to automatically recognize the beeps and words of this audio, it was not something we 
would be able to do in an evening.  Fortunately Mark had a better solution. 

Fig 5: Recognizing the discs.  
It appeared to us that we 

could write image recognition 
software to determine the 

movement of the discs.  The 
images to the left show a 

screen captured image along 
with the result of minimal 

image processing. 

Fig. 6: Recognizing the 
sounds.  Each 7.2 second 
period of the soundtrack 

began with a 1.8 second beep 
with sounds of discs spinning, 
another 0.6 second beep, a 1.2 
second recording of a spoken 

letter, and a 0.9 second 
spoken number followed by 
two beeps.  The first of these 
was 0.2 seconds long and was 

followed by a 2.5 second 
period consisting of a beep 

followed by silence. 



 
“I found an XML file” was the utterance that changed all of this.  As it turns out, the 
simulcast downloaded an XML file containing the current transmission, and we could 
reliably fetch this file directly from the Simulcast web site.   
 
Now we were in business.  We would not have to plant a fake newspaper box in front of 
Adobe after all, nor would we have to face up to the resulting interrogation from 
Homeland Security after they blew up our unexplainable black box with a water cannon.  
The first of many wrong turns had come to an end. 
 

The Gang of 41 
After acquiring a few hours of data, our next task was to find any sort of pattern.  We 
noticed that disc position is expressed as the number of eight’s of a circle rotated, with 
positive numbers indicating clockwise rotation and negative numbers counterclockwise.  
The normal range was -8 to +8.  But when we plotted these values for one of the discs, 
we saw a chart shown in Figure 8. 

Fig 7: XML File.  After 
discovering that an XML file 
like this was available from 
the Simulcast web site, we 

abandoned efforts to decode 
the actual semaphore and the 

image and sounds of the 
simulcast.  Unless the data 

did not match the actual 
semaphore, the file gave us 

all we needed.  



 
Every so often the discs restricted their movement for 41 time periods.  This looked 
significant to us, so we referred to these sections as headers.  A number of attempts were 
made to find a pattern in the disc movements, but we could not decode a message.  After 
other false starts, we looked at sound3 and sound4 in each header (Figure 9).  
 

Fig 8: Finding the header.  Every so often the discs have a 
period of restricted movement, always in the range +1 to +4 

rather than the usual range -8 to +8.  This turned out to 
indicate an important structure we called a “header”. 



 
 
We noticed that most of the sound3 and sound4 data was always the same in each header, 
while other data changed in a way we did not understand.  But a small part of the header 
had the behavior of an incrementing number:  the digits changed in a pattern that repeated 
every 10 headers, and after 10 headers the next position to the left changed to its next 
pattern.  So the natural hypothesis was that this was an incrementing number, and that the 
10 patterns saw represented the digits 0 through 9.  A character-substitution formula was 
developed that mapped the data we saw into these digits and, after some work, also 
mapped the other parts of the header into readable ASCII characters.  The result is shown 
in Figure 10. 

Fig 9: An incrementing number?  Most of a header 
appeared constant, and other parts of it appeared to change in 
a way we did not understand.  But some places, indicated by 
the red bar, appeared to behave like an incrementing counter. 



 
Clearly we have successfully decoded the header, showing it contained a counter and a 
seven-letter keyword. After some work, we were also able to demonstrate that the discs 
and other sounds in the header could be automatically generated from just the keyword, 
telling us that there was no more information in the header for us to decode. 
 
So, at this point we had headers which contained seven-letter keywords, each of which 
was followed by a block of data.  But what did the keywords mean?  Were they random? 
 
Some of the keywords were unusual and not ones that would appear often in normal text.  
These allowed us to Google for the keywords and discover they were all from the book 
“Ulysses”, by James Joyce.  They appeared in the Semaphore’s transmission in the same 
order as the book, but some words in the book were skipped over.  We wondered why. 
 
It turns out that certain words in the book are eliminated from the words used as 
keywords by a set of rules. Words followed by apostrophe “s” are excluded.  Some other 
words were too, but we didn’t know why.  For a while we entertained the possibility that 
the message was encoded in the pattern of exclusions, but we could not decode anything 
from this.  Eventually we discovered that words containing the letters H, P, and X are not 
included.  These happen to be the 8th, 16th and 24th letters of the alphabet.  
Hmmm….what does it all mean? 
 

There’s Something in Here 
From our experience in generating the entire header from just the keyword, we learned 
that one step in the process was to use a function of sound3 and sound4 to produce the 
lower two bits of the discs, and then to set the upper bits to zero.  On a hunch, we tried 

Fig 10: Decoded Headers.  After noticing the counter and 
decoding the digits, we were able to apply the decoding to the 
entire header.  Each header contained a seven-letter keyword, 

the purpose of which we did not understand. 



the same function to generate the lower bits of the discs in the data block, too, and found 
it worked.  We didn’t know how to compute the upper bits, though. 
 
We shifted our attention again to sound3 and sound4.  Was there any pattern there?  We 
decided to compute the percentage of (sound3, sound4) pairs that were used versus the 
number of combinations that were possible.  We found that a large portion was used, but 
not all.  However, too many were used to give us much hope that each pair represented a 
character as in the header, since in that case we would expect to see 26 combinations plus 
a few for punctuation, or perhaps 52 plus punctuation if upper and lower case were used.  
Our analyses showed many more than that. 
 
After searching the web for words like “Ulysses cipher”, we discovered that Ulysses S. 
Grant (no relation to the book Ulysses, of course) was well known for the cryptographic 
work of his team in decoding the confederate cipher.  While reading about this, we 
learned about poly-alphabetic ciphers and the Vigenere cipher.  In that cipher, each letter 
in the keyword is used in rotation to encode the next character in the message.  In our 
case, we knew the keyword for each block and, more importantly, that it was seven letters 
long.  
 
We decided to take a large block and sort the pairs of sounds into seven bins in rotation, 
with the first pair of the block going into bin 0, the second pair into bin 1, etc.  According 
to the rotation, the eighth pair went into bin 0, and so on.  In this way, each bin would 
correspond to one letter of the keyword of a Vigenere cipher.  If there was a function that 
encoded each character according to the associated keyword letter, in rotation ala the 
Vigenere cipher, each bin should contain a small number of pairs, corresponding to the 
alphabet (26 or 52 plus punctuation).  This was not the case, however.  Dead end.   
 
Around this time, it was discovered that the last pair of sounds in the block was special, 
in that a simple function would always turn it into an alphabetic character, and 
furthermore that character was contained in the block’s keyword.  That could not be just 
random, and gave us more reason to believe that somehow each pair of (sound3, sound4) 
pairs in the block was somehow created by the use of the corresponding keyword 
character. 
 
Perhaps the discs and the minor sounds (sound1, sound2, sound5, and sound6) somehow 
came into play?  In the header they were redundant, but we didn’t know if they were or 
not for the data blocks.  We decided to do a large number of experiments to see if a 
particular set of data (such as sound1) could be used to predict another set of data (such 
as bit 2 of disc 3).  To do this, we wrote a function that checked for consistency.  For 
instance, figure 11 shows code that tries to construct a table that takes a value A and 
predicts the value of B.  However, if it finds a value A that maps into two different values 
of B, then we know that A cannot be used to predict B. 
 



After many false results, we discovered that the sign of disc 2 (which indicates either 
clockwise or counterclockwise rotation) was predicted by a combination of sound1 and 
sound2.  By manual inspection, we discovered the function and found it used the upper 
bit of sound1 and both bits of sound2: “sign = a_1 ^ ((a_1 ^ ~b_1) & (a_1 ^ 
~b_0))”.  A similar function predicted the sign of disc3 from sound5 and sound6. 
 
Further work on decoding the sound3-sound4 pairs had not lead anywhere, so we decided 
to continue work finding bits in the discs that might be significant.  We focused on bit 2 
of disc3, and found that the previous values of the discs (from the previous time period) 
along with the current sounds could be used to predict it.  After much experimentation, 
however, could not find the function.  We knew that this problem was similar to the logic 
synthesis problem found in designing microprocessors, so we decided to apply some of 
those techniques. 
 
We downloaded a classic logic optimization tool, called Espresso, to see if it could do 
better.  To use as input to the tool, our software produced a table showing the value of bit 
2 of disc3 for each combination of previous discs and current sounds.  We hoped that 
Espresso would be able to grind away on this data and present us with a simple formula, 
similar perhaps to the one we found for the sign.  With only an underpowered laptop 
available for this purpose, we had our result in 14 hours. 
 
There was indeed such an equation.  Part of it is shown in Figure 12.  It was 4,142 pages 
long.  This is not the sort of equation we would expect the semaphore designer to choose.  
Furthermore, its length indicated it probably was more like a restatement of the data seen 
so far, rather than a succinct way to compute bit 2 of disc3.  To test this hypothesis, we 
substituted a random number for bit 2 of disc3 in our data, and re-ran our process.  The 
result took 36 hours to compute this time, but produced an equation of similar size.  We 
don’t know what to make of this, but our hypothesis was that bit 2 of disc3 is either 
random, produced by a good-quality hash function, or produced by a number of 

Fig 11: Predicting Data.  We weren’t sure if the data in the discs or minor 
sounds was important, so we used a function like this to see if we could compute 

them from other data, showing they were redundant. 



exclusive-ors (which are not handled well by Espresso).  Or else it contained real data.  
We couldn’t tell, and this was another dead end of sorts. 

 
 
Numerous other ideas were investigated which led nowhere.  No new patterns could be 
found in the discs or in sounds 1, 2, 5 or 6.  Eventually we turned our focus back to the 
(sound3, sound4) pairs. 
 

Fig 12: Predicting bit 2 of disc3.  This bit is indeed predicted by the 
previous discs and the sounds, but only with an absurdly large 

equation.  To show this equation in its entirety it would require 4,142 
pages.  We doubt Ben Rubin, the designer of the semaphore, would 

have written an equation that long. 



The Final Leg 
Once we had collected over two weeks of the transmission data, it became possible to 
perform frequency analysis on the (sound3, sound4) pairs.  We made a table of the 
number of occurrences of each pair in the data block portion of the transmission.  A 
couple of things were immediately obvious. 
 
First, the sign of sound4 did not affect the frequency.  This led us to ignore the sign in 
subsequent frequency analysis.  Second, certain pairs were much more frequent than 
other pairs.  We spent a lot of time trying to discover a pattern which would explain why 
some pairs were very frequent and some pairs never occurred.  Unfortunately we were 
unsuccessful. 
 
A breakthrough happened when we decided to do frequency analysis on each data block 
independently.  Most of the data blocks were small and therefore hard to obtain any 
meaningful information from. There were however a few larger blocks with 2000 or more 
lines of data.  These blocks provided important clues. 
 
Each data block seemed to have its own 'signature'.  Certain pairs were very common in 
one block, but were completely absent in another block.  We spent time looking for 
patterns in the individual blocks, but again that was unsuccessful. 
 

sound3  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 55 0 0 5 0 1 0 15 0 0 0 0 20 0 1 0 
2 2 0 28 39 0 0 0 39 0 16 5 3 0 5 0 0 
3 53 1 2 20 0 0 0 0 0 3 10 0 4 0 0 0 
4 5 98 29 29 13 0 0 1 17 0 0 0 0 23 51 7 
5 0 0 11 21 0 0 0 13 0 9 2 0 0 0 0 0 
6 66 0 38 5 0 38 23 27 0 1 0 7 0 0 26 14 
7 0 0 11 3 0 0 14 0 9 0 15 0 0 0 0 0 
8 1 1 5 29 23 5 7 8 2 5 25 0 0 23 0 48 
9 55 0 14 2 4 0 3 0 0 17 0 7 0 0 0 0 
10 3 21 22 41 1 3 0 17 5 0 0 0 19 0 8 0 
11 0 23 9 4 0 0 0 14 0 0 0 0 19 0 0 0 
12 23 8 5 0 21 3 7 0 1 17 17 4 16 21 0 38 
13 11 0 10 0 13 0 0 0 21 0 0 0 0 22 0 19 
14 65 1 5 38 3 0 0 16 0 5 9 0 0 10 0 20 
15 58 0 16 0 0 7 11 0 0 22 0 0 0 4 2 0 

s
o
u
n
d
4 

16 21 32 26 0 5 4 1 0 23 22 22 21 30 0 7 0 
 

Fig 13:  Signature for keyword FACTION.  This table shows the number of 
occurrences of each (sound3, sound4) combination in data block following the header 

with keyword FACTION.  Different keywords have tables that may look very different.  
For example, the table for keyword BUILDER has 56 occurrences of (2, 2) compared 
with 0 for FACTION, and 0 occurrences of (1, 3) compared with 53 for FACTION. 

 
 



We had an idea that the 7-letter keywords in the header were related to the data, and 
eventually we were able to confirm it.  By comparing two data blocks whose keywords 
were similar, we noticed a high correlation of the frequency pairs in each one.  For 
example, the keywords LEONARD and SNARLED or RUTLAND and ROTUNDA 
share 6 out of 7 letters.  The frequency pattern of the pairs for these blocks are very 
similar. 
 
However, ROTUNDA and WIMBLES share 0 letters, and their frequency patterns are 
very different.  So we now knew that the letters in the keyword affected the (sound3, 
sound4) values.  By looking at blocks whose keywords differed by only a single letter, 
we tried to identify which pairs seemed to be affected by each letter of the alphabet.  
Unfortunately this was not possible since we had not captured enough large data blocks 
and the smaller data blocks didn't contain enough pairs to be meaningful. 
 
We finally made a breakthrough when we developed a new way to present the frequency 
analysis data.  We threw out the smallest data blocks, those with less than 750 entries.  
For the medium and large blocks, we normalized the frequency data to make the 
frequency of each pair independent of the total number of entries in the data block. 
 
For each (sound3, sound4) pair, we listed the letters in the keyword along with the 
normalized frequency of that pair.  When we sorted each list based on frequency, some 
interesting patterns appeared.  All the keywords which contained a certain letter would be 
at the top of the list.  Then the words which contained another letter would be next on the 
list.  For example, all the keywords at the top of the list for pair (1, 4) had the letter D in 
them.  The next keywords in that list all had the letter E.  And the keywords which 
contained both D and E were listed at the very top. 
 



                                       Normalized frequency 
     Letters in the keyword   Keyword  of pattern (1,4)   _ 
     DE G      NO    TU       TONGUED   88 
  A  DE   I    N   R T        ARDENTI   87 
  A CDE         O  R T        REDCOAT   85 
  A  DE        N     TUV      VAUNTED   84 
     DE G      N   R TU       GRUNTED   79 
  AB DE G      NO             BONDAGE   75 
    CDE   I    N   RS         DISCERN   74 
  A  DE      L N   RS         SNARLED   71 
   B DE   I  L     R  U       BUILDER   70 
    CDE   I     O  R   V      DIVORCE   69 
  A CDE      L  O  R          ORACLED   69 
  A  D    I  L     RS      Z  LIZARDS   60 
  A  D    I  LMN      U       MAUDLIN   59 
     D    I   MNO   S U       DOMINUS   58 
  AB D  G I    N        W     WINDBAG   53 
  AB  E   I  L      ST        BASTILE   25 
  A   E   I    N  Q  TU       ANTIQUE   24 
      E   I  LM O  RS         LISMORE   20 
  A   E       M    RST    Y   STREAMY   20 
  A   E    J L N      UV      JUVENAL   19 
      E   I K  N   RS   W     WINKERS   18 
   B  E G    L NO   S         BELONGS   18 
    C E   I    NO   ST        NOTICES   17 
      E   IJKL     R      Y   JERKILY   17 
   B  E   I K      RST        BRISKET   17 
  A C E      LM      TU       CALUMET   15 
   B  EF  I  L     R      Y   BRIEFLY   15 
  A   E    J  MNO   S         NOSEJAM   15 
   B  E   I  L  O Q   U       OBLIQUE   15 
  A   E G       O   S  V  Y   VOYAGES   14 
    C E   I KL N   R          CLINKER   14 
   B  E   I KL     R  U       BULKIER   10 
  ABC   G       O   ST        COSTBAG    6 
  A C  F  I    NO    T        FACTION    5 
  A          L  O QRS U       SQUALOR    2 
        G I    NO  RS U       ROUSING    0 
 

Fig 14:  Frequency Table for pattern (1, 4). The table for pattern (1, 4) shows 
that keywords with a D in them have the most occurrences of this pattern, 
followed by keywords with an E.  Keywords with both D and E have even more.  

 
 
We learned which pairs seemed to be a function of which keyword letters, but still didn't 
know what it meant.  Also, for many of the pairs it wasn't clear which letters really were 
at the top of the list.  We knew we had to come up with some sort of mapping function to 
explain the data.  Based on the progress we had made so far, we expected that mapping 
function to be fairly straight-forward and elegant. 
 
Eventually we noticed that aside from (1, 1), all of the pairs which seemed to be a 
function of the letter A were in two columns, (3, X) or (4, X).  After looking at it for a 



while we figured that each pair in these columns represented the encoding of a different 
letter of the alphabet with the letter A. 
 
We discovered an encoding which was simple and fit the data well, based on our 
knowledge of the frequency of certain letters of the alphabet in most English writing.  For 
instance, the letters E, T, and A occur most often.  The mapping we came up with for the 
letter A was: 

  (3, 2) = A 
  (3, 3) = B 
  (3, 4) = C 
   ... 
  (3, 16) = O 
  (4, 1) = P 
  (4, 2) = Q 
  ... 
  (4, 10) = Z 

 
We then tried to come up with a mapping for the letter B, but it was difficult since few of 
the keywords had the letter B.  But eventually we concluded that this was the correct 
mapping: 

  (5, 4) = A 
  (5, 6) = B 
  (5, 8) = C 
  ... 
  (5, 16) = G 
  (6, 2) = H 
  (6, 4) = I 
  ... 
  (8, 6) = Z 

 
From there we were able to come up with a simple mapping of the letters of the alphabet 
for each of the possible keyword letters.  We found that if we assumed that the letters 
were ASCII encoded our mapping was also able to handle punctuation and spaces. 
 

  L = keyword letter (ASCII code) 
  C = character to encode (ASCII code) 
  x = (L-64) * (C-32+1) - 1 
  sound3 = ((x >> 4) & 0xF) + 1 
  abs(sound4) = (x & 0xF) + 1 

 
Using this mapping, we listed the possible ASCII characters for the entries in each data 
block based on the 7 letters of the keyword for that block.  Even though we still didn't 
know which keyword letter to use on each entry, by examining the ASCII characters we 
could easily see sentences form in the data blocks. 
 



                    Possible   Possible 
          (Sound3,  decoded    encoding  decoded 
 Keyword   sound4)  chars      letters   char _ 
FACTION  4,-14: "T]H"    "FAN"     T 
FACTION  3,  9: "H@"     "AI"      H 
FACTION  8,  2: "2E^"    "FCN"     E 
FACTION  2,  4: "M3 E"   "FATN"      
FACTION  7, -9: "B&"     "CO"      B 
FACTION 16,  8: "EWC"    "TIN"     E 
FACTION  8,  8: "3G%'"   "FCTO"    G 
FACTION  5, -8: "+7I'W[" "FCTION"  I 
FACTION 11,  7: "N"      "I"       N 
FACTION 13, -1: "N"      "O"       N 
FACTION  5,-12: "VI"     "TN"      I 
FACTION  2,-10: "N9"     "FA"      N 
FACTION  3,  8: "G!"     "AT"      G 
FACTION  1,  3: "" "     "AC"        
FACTION 12, 16: "?_O_?"  "FCTON"   O 
FACTION  6,-15: "F"      "I"       F 
FACTION  1, 15: ".$ "    "ACO"       
FACTION 14, 13: "T"      "I"       T 
FACTION  4, -4: "SH5"    "ATN"     H 
FACTION  7, -6: "0AY"    "FCO"     A 
FACTION  4, -5: "T"      "A"       T 
FACTION  1,  6: " %!D"   "FACN"      
FACTION  4,  1: "P"      "A"       P 
FACTION 15, -4: "ED"     "FT"      E 
FACTION 13,-10: "R"      "N"       R 
FACTION  5,  9: "F"      "O"       F 
FACTION 11, 16: "[O"     "TI"      O 
FACTION 16,-13: "R"      "O"       R 
FACTION  9, -4: "5KL[M"  "FCTON"   M 
FACTION 13,-12: "A6"     "FT"      A 
FACTION  3,-15: "N"      "A"       N 
FACTION  7, 12: "1C>+9"  "FCTIN"   C 
FACTION  3,  6: "PE4"    "FAN"     E 

 
Fig 15:  Manual decoding. This figure shows how the manual decoding of the 
first decoded sentence was performed.  The (sound3, sound4) pairs from the 
transmission were decoded with each of the 7 letters in the keyword.  Some of the 
letters did not decode to an ASCII character and were discarded.  By looking at 
the possible decoded characters column, it is fairly easy to identify the decoded 
message as “THE BEGINNING OF THAT PERFORMANCE”. 

 
 



The first sentence we decoded was "THE BEGINNING OF THAT PERFORMANCE 
WAS CLEAR ENOUGH."  An internet search of that brought up the text of Thomas 
Pynchon's "The Crying of Lot 49".  We decoded other sentences to confirm that the 
decoded message was the text of that book.  We had finally decoded the San Jose 
Semaphore! 
 
Even though we had figured out the message, there were still a few loose ends to clean 
up. First, we still didn't know which keyword letter to use for encoding each character of 
the text.  After some investigation we found out that the keyword letters go sequentially 
through the keyword, but the direction changed often. 
 
For instance, if the keyword is FACTION, the order of the letters used to encode each 
character of the message may be: 
  FACTCTCTIONFACTIOITCAFAFNOI 
 
Further investigation showed that the direction changes whenever sound5 > sound 6.  We 
were now able to automatically decode the entire message, and it was indeed the entire 
text of "The Crying of Lot 49".  We also noticed that each data block contained one 
paragraph of the book, which explained why some blocks were very short and others 
were quite long. 

Conclusions 
Decoding the Semaphore was an interesting challenge, and fun, too.  The aesthetics of the 
art itself made it much more interesting than a standard puzzle, and we hope you get a 
chance to see the Semaphore in action in its San Jose location or in the Simulcast at 
www.sanjosesemaphore.org. 


