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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.

II. Complex analysis.

III. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and Jose Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.

viii
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses, and
has since taken over the teaching of the second round of the series; and
Daniel Levine, who gave valuable help in proof-reading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein

Rami Shakarchi

Princeton, New Jersey
August 2002
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Preface to Book I

Any effort to present an overall view of analysis must at its start deal
with the following questions: Where does one begin? What are the initial
subjects to be treated, and in what order are the relevant concepts and
basic techniques to be developed?

Our answers to these questions are guided by our view of the centrality
of Fourier analysis, both in the role it has played in the development of
the subject, and in the fact that its ideas permeate much of the present-
day analysis. For these reasons we have devoted this first volume to an
exposition of some basic facts about Fourier series, taken together with
a study of elements of Fourier transforms and finite Fourier analysis.
Starting this way allows one to see rather easily certain applications to
other sciences, together with the link to such topics as partial differential
equations and number theory. In later volumes several of these connec-
tions will be taken up from a more systematic point of view, and the ties
that exist with complex analysis, real analysis, Hilbert space theory, and
other areas will be explored further.

In the same spirit, we have been mindful not to overburden the begin-
ning student with some of the difficulties that are inherent in the subject:
a proper appreciation of the subtleties and technical complications that
arise can come only after one has mastered some of the initial ideas in-
volved. This point of view has led us to the following choice of material
in the present volume:

• Fourier series. At this early stage it is not appropriate to intro-
duce measure theory and Lebesgue integration. For this reason
our treatment of Fourier series in the first four chapters is carried
out in the context of Riemann integrable functions. Even with this
restriction, a substantial part of the theory can be developed, de-
tailing convergence and summability; also, a variety of connections
with other problems in mathematics can be illustrated.

• Fourier transform. For the same reasons, instead of undertaking
the theory in a general setting, we confine ourselves in Chapters 5
and 6 largely to the framework of test functions. Despite these lim-
itations, we can learn a number of basic and interesting facts about
Fourier analysis in Rd and its relation to other areas, including the
wave equation and the Radon transform.
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• Finite Fourier analysis. This is an introductory subject par excel-
lence, because limits and integrals are not explicitly present. Nev-
ertheless, the subject has several striking applications, including
the proof of the infinitude of primes in arithmetic progression.

Taking into account the introductory nature of this first volume, we
have kept the prerequisites to a minimum. Although we suppose some
acquaintance with the notion of the Riemann integral, we provide an
appendix that contains most of the results about integration needed in
the text.

We hope that this approach will facilitate the goal that we have set
for ourselves: to inspire the interested reader to learn more about this
fascinating subject, and to discover how Fourier analysis affects decisively
other parts of mathematics and science.

xii
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5.1 Cesàro means and summation 51
5.2 Fejér’s theorem 52
5.3 Abel means and summation 54
5.4 The Poisson kernel and Dirichlet’s problem in the

unit disc 55
6 Exercises 58
7 Problems 65

Chapter 3. Convergence of Fourier Series 69

1 Mean-square convergence of Fourier series 70
1.1 Vector spaces and inner products 70
1.2 Proof of mean-square convergence 76

2 Return to pointwise convergence 81
2.1 A local result 81
2.2 A continuous function with diverging Fourier series 83

vii

xi



Ibookroot October 20, 2007

CONTENTS

3 Exercises 87
4 Problems 95

Chapter 4. Some Applications of Fourier Series 100

1 The isoperimetric inequality 101
2 Weyl’s equidistribution theorem 105
3 A continuous but nowhere differentiable function 113
4 The heat equation on the circle 118
5 Exercises 120
6 Problems 125

Chapter 5. The Fourier Transform on R 129

1 Elementary theory of the Fourier transform 131
1.1 Integration of functions on the real line 131
1.2 Definition of the Fourier transform 134
1.3 The Schwartz space 134
1.4 The Fourier transform on S 136
1.5 The Fourier inversion 140
1.6 The Plancherel formula 142
1.7 Extension to functions of moderate decrease 144
1.8 The Weierstrass approximation theorem 144

2 Applications to some partial differential equations 145
2.1 The time-dependent heat equation on the real line 145
2.2 The steady-state heat equation in the upper half-

plane 149
3 The Poisson summation formula 153

3.1 Theta and zeta functions 155
3.2 Heat kernels 156
3.3 Poisson kernels 157

4 The Heisenberg uncertainty principle 158
5 Exercises 161
6 Problems 169

Chapter 6. The Fourier Transform on Rd 175

1 Preliminaries 176
1.1 Symmetries 176
1.2 Integration on Rd 178

2 Elementary theory of the Fourier transform 180
3 The wave equation in Rd × R 184

3.1 Solution in terms of Fourier transforms 184
3.2 The wave equation in R3 × R 189

xiv



Ibookroot October 20, 2007

CONTENTS xv

3.3 The wave equation in R2 × R: descent 194
4 Radial symmetry and Bessel functions 196
5 The Radon transform and some of its applications 198

5.1 The X-ray transform in R2 199
5.2 The Radon transform in R3 201
5.3 A note about plane waves 207

6 Exercises 207
7 Problems 212

Chapter 7. Finite Fourier Analysis 218

1 Fourier analysis on Z(N) 219
1.1 The group Z(N) 219
1.2 Fourier inversion theorem and Plancherel identity

on Z(N) 221
1.3 The fast Fourier transform 224

2 Fourier analysis on finite abelian groups 226
2.1 Abelian groups 226
2.2 Characters 230
2.3 The orthogonality relations 232
2.4 Characters as a total family 233
2.5 Fourier inversion and Plancherel formula 235

3 Exercises 236
4 Problems 239

Chapter 8. Dirichlet’s Theorem 241

1 A little elementary number theory 241
1.1 The fundamental theorem of arithmetic 241
1.2 The infinitude of primes 244

2 Dirichlet’s theorem 252
2.1 Fourier analysis, Dirichlet characters, and reduc-

tion of the theorem 254
2.2 Dirichlet L-functions 255

3 Proof of the theorem 258
3.1 Logarithms 258
3.2 L-functions 261
3.3 Non-vanishing of the L-function 265

4 Exercises 275
5 Problems 279

Appendix: Integration 281

1 Definition of the Riemann integral 281



Ibookroot October 20, 2007

x CONTENTS

1.1 Basic properties 282
1.2 Sets of measure zero and discontinuities of inte-

grable functions 286
2 Multiple integrals 289

2.1 The Riemann integral in Rd 289
2.2 Repeated integrals 291
2.3 The change of variables formula 292
2.4 Spherical coordinates 293

3 Improper integrals. Integration over Rd 294
3.1 Integration of functions of moderate decrease 294
3.2 Repeated integrals 295
3.3 Spherical coordinates 297

Notes and References 298

Bibliography 300

Symbol Glossary 303

Index 305

vi



Ibookroot October 20, 2007

1 The Genesis of Fourier
Analysis

Regarding the researches of d’Alembert and Euler could
one not add that if they knew this expansion, they
made but a very imperfect use of it. They were both
persuaded that an arbitrary and discontinuous func-
tion could never be resolved in series of this kind, and
it does not even seem that anyone had developed a
constant in cosines of multiple arcs, the first problem
which I had to solve in the theory of heat.

J. Fourier, 1808-9

In the beginning, it was the problem of the vibrating string, and the
later investigation of heat flow, that led to the development of Fourier
analysis. The laws governing these distinct physical phenomena were
expressed by two different partial differential equations, the wave and
heat equations, and these were solved in terms of Fourier series.

Here we want to start by describing in some detail the development
of these ideas. We will do this initially in the context of the problem of
the vibrating string, and we will proceed in three steps. First, we de-
scribe several physical (empirical) concepts which motivate correspond-
ing mathematical ideas of importance for our study. These are: the role
of the functions cos t, sin t, and eit suggested by simple harmonic mo-
tion; the use of separation of variables, derived from the phenomenon
of standing waves; and the related concept of linearity, connected to the
superposition of tones. Next, we derive the partial differential equation
which governs the motion of the vibrating string. Finally, we will use
what we learned about the physical nature of the problem (expressed
mathematically) to solve the equation. In the last section, we use the
same approach to study the problem of heat diffusion.

Given the introductory nature of this chapter and the subject matter
covered, our presentation cannot be based on purely mathematical rea-
soning. Rather, it proceeds by plausibility arguments and aims to provide
the motivation for the further rigorous analysis in the succeeding chap-
ters. The impatient reader who wishes to begin immediately with the
theorems of the subject may prefer to pass directly to the next chapter.
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1 The vibrating string

The problem consists of the study of the motion of a string fixed at
its end points and allowed to vibrate freely. We have in mind physical
systems such as the strings of a musical instrument. As we mentioned
above, we begin with a brief description of several observable physical
phenomena on which our study is based. These are:

• simple harmonic motion,

• standing and traveling waves,

• harmonics and superposition of tones.

Understanding the empirical facts behind these phenomena will moti-
vate our mathematical approach to vibrating strings.

Simple harmonic motion

Simple harmonic motion describes the behavior of the most basic oscil-
latory system (called the simple harmonic oscillator), and is therefore
a natural place to start the study of vibrations. Consider a mass {m}
attached to a horizontal spring, which itself is attached to a fixed wall,
and assume that the system lies on a frictionless surface.

Choose an axis whose origin coincides with the center of the mass when
it is at rest (that is, the spring is neither stretched nor compressed), as
shown in Figure 1. When the mass is displaced from its initial equilibrium

m

0y y(t)y

m

0

Figure 1. Simple harmonic oscillator

position and then released, it will undergo simple harmonic motion.
This motion can be described mathematically once we have found the
differential equation that governs the movement of the mass.

Let y(t) denote the displacement of the mass at time t. We assume that
the spring is ideal, in the sense that it satisfies Hooke’s law: the restoring
force F exerted by the spring on the mass is given by F = −ky(t). Here
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k > 0 is a given physical quantity called the spring constant. Applying
Newton’s law (force = mass × acceleration), we obtain

−ky(t) = my′′(t),

where we use the notation y′′ to denote the second derivative of y with
respect to t. With c =

√
k/m, this second order ordinary differential

equation becomes

(1) y′′(t) + c2y(t) = 0.

The general solution of equation (1) is given by

y(t) = a cos ct + b sin ct ,

where a and b are constants. Clearly, all functions of this form solve
equation (1), and Exercise 6 outlines a proof that these are the only
(twice differentiable) solutions of that differential equation.

In the above expression for y(t), the quantity c is given, but a and b
can be any real numbers. In order to determine the particular solution
of the equation, we must impose two initial conditions in view of the
two unknown constants a and b. For example, if we are given y(0) and
y′(0), the initial position and velocity of the mass, then the solution of
the physical problem is unique and given by

y(t) = y(0) cos ct +
y′(0)

c
sin ct .

One can easily verify that there exist constants A > 0 and ϕ ∈ R such
that

a cos ct + b sin ct = A cos(ct− ϕ).

Because of the physical interpretation given above, one calls A =
√

a2 + b2

the “amplitude” of the motion, c its “natural frequency,” ϕ its “phase”
(uniquely determined up to an integer multiple of 2π), and 2π/c the
“period” of the motion.

The typical graph of the function A cos(ct− ϕ), illustrated in
Figure 2, exhibits a wavelike pattern that is obtained from translating
and stretching (or shrinking) the usual graph of cos t.

We make two observations regarding our examination of simple har-
monic motion. The first is that the mathematical description of the most
elementary oscillatory system, namely simple harmonic motion, involves
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Figure 2. The graph of A cos(ct− ϕ)

the most basic trigonometric functions cos t and sin t. It will be impor-
tant in what follows to recall the connection between these functions
and complex numbers, as given in Euler’s identity eit = cos t + i sin t.
The second observation is that simple harmonic motion is determined as
a function of time by two initial conditions, one determining the position,
and the other the velocity (specified, for example, at time t = 0). This
property is shared by more general oscillatory systems, as we shall see
below.

Standing and traveling waves

As it turns out, the vibrating string can be viewed in terms of one-
dimensional wave motions. Here we want to describe two kinds of mo-
tions that lend themselves to simple graphic representations.

• First, we consider standing waves. These are wavelike motions
described by the graphs y = u(x, t) developing in time t as shown
in Figure 3.

In other words, there is an initial profile y = ϕ(x) representing the
wave at time t = 0, and an amplifying factor ψ(t), depending on t,
so that y = u(x, t) with

u(x, t) = ϕ(x)ψ(t).

The nature of standing waves suggests the mathematical idea of
“separation of variables,” to which we will return later.

• A second type of wave motion that is often observed in nature is
that of a traveling wave. Its description is particularly simple:



Ibookroot October 20, 2007

1. The vibrating string 5

u(x, 0) = ϕ(x)

u(x, t0)

x

y

Figure 3. A standing wave at different moments in time: t = 0 and
t = t0

there is an initial profile F (x) so that u(x, t) equals F (x) when
t = 0. As t evolves, this profile is displaced to the right by ct units,
where c is a positive constant, namely

u(x, t) = F (x− ct).

Graphically, the situation is depicted in Figure 4.

F (x) F (x− ct0)

Figure 4. A traveling wave at two different moments in time: t = 0 and
t = t0

Since the movement in t is at the rate c, that constant represents the
velocity of the wave. The function F (x− ct) is a one-dimensional
traveling wave moving to the right. Similarly, u(x, t) = F (x + ct)
is a one-dimensional traveling wave moving to the left.
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Harmonics and superposition of tones

The final physical observation we want to mention (without going into
any details now) is one that musicians have been aware of since time
immemorial. It is the existence of harmonics, or overtones. The pure
tones are accompanied by combinations of overtones which are primar-
ily responsible for the timbre (or tone color) of the instrument. The idea
of combination or superposition of tones is implemented mathematically
by the basic concept of linearity, as we shall see below.

We now turn our attention to our main problem, that of describing the
motion of a vibrating string. First, we derive the wave equation, that is,
the partial differential equation that governs the motion of the string.

1.1 Derivation of the wave equation

Imagine a homogeneous string placed in the (x, y)-plane, and stretched
along the x-axis between x = 0 and x = L. If it is set to vibrate, its
displacement y = u(x, t) is then a function of x and t, and the goal is to
derive the differential equation which governs this function.

For this purpose, we consider the string as being subdivided into a
large number N of masses (which we think of as individual particles)
distributed uniformly along the x-axis, so that the nth particle has its
x-coordinate at xn = nL/N . We shall therefore conceive of the vibrat-
ing string as a complex system of N particles, each oscillating in the
vertical direction only ; however, unlike the simple harmonic oscillator we
considered previously, each particle will have its oscillation linked to its
immediate neighbor by the tension of the string.

yn−1
yn

yn+1

xn−1 xn+1xn

h

Figure 5. A vibrating string as a discrete system of masses
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We then set yn(t) = u(xn, t), and note that xn+1 − xn = h, with h =
L/N . If we assume that the string has constant density ρ > 0, it is
reasonable to assign mass equal to ρh to each particle. By Newton’s law,
ρhy′′n(t) equals the force acting on the nth particle. We now make the
simple assumption that this force is due to the effect of the two nearby
particles, the ones with x-coordinates at xn−1 and xn+1 (see Figure 5).
We further assume that the force (or tension) coming from the right of
the nth particle is proportional to (yn+1 − yn)/h, where h is the distance
between xn+1 and xn; hence we can write the tension as

(τ

h

)
(yn+1 − yn),

where τ > 0 is a constant equal to the coefficient of tension of the string.
There is a similar force coming from the left, and it is

(τ

h

)
(yn−1 − yn).

Altogether, adding these forces gives us the desired relation between the
oscillators yn(t), namely

(2) ρhy′′n(t) =
τ

h
{yn+1(t) + yn−1(t)− 2yn(t)} .

On the one hand, with the notation chosen above, we see that

yn+1(t) + yn−1(t)− 2yn(t) = u(xn + h, t) + u(xn − h, t)− 2u(xn, t).

On the other hand, for any reasonable function F (x) (that is, one that
has continuous second derivatives) we have

F (x + h) + F (x− h)− 2F (x)
h2

→ F ′′(x) as h → 0.

Thus we may conclude, after dividing by h in (2) and letting h tend to
zero (that is, N goes to infinity), that

ρ
∂2u

∂t2
= τ

∂2u

∂x2
,

or

1
c2

∂2u

∂t2
=

∂2u

∂x2
, with c =

√
τ/ρ.

This relation is known as the one-dimensional wave equation, or
more simply as the wave equation. For reasons that will be apparent
later, the coefficient c > 0 is called the velocity of the motion.
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In connection with this partial differential equation, we make an im-
portant simplifying mathematical remark. This has to do with scaling,
or in the language of physics, a “change of units.” That is, we can think of
the coordinate x as x = aX where a is an appropriate positive constant.
Now, in terms of the new coordinate X, the interval 0 ≤ x ≤ L becomes
0 ≤ X ≤ L/a. Similarly, we can replace the time coordinate t by t = bT ,
where b is another positive constant. If we set U(X,T ) = u(x, t), then

∂U

∂X
= a

∂u

∂x
,

∂2U

∂X2
= a2 ∂2u

∂x2
,

and similarly for the derivatives in t. So if we choose a and b appropri-
ately, we can transform the one-dimensional wave equation into

∂2U

∂T 2
=

∂2U

∂X2
,

which has the effect of setting the velocity c equal to 1. Moreover, we have
the freedom to transform the interval 0 ≤ x ≤ L to 0 ≤ X ≤ π. (We shall
see that the choice of π is convenient in many circumstances.) All this
is accomplished by taking a = L/π and b = L/(cπ). Once we solve the
new equation, we can of course return to the original equation by making
the inverse change of variables. Hence, we do not sacrifice generality by
thinking of the wave equation as given on the interval [0, π] with velocity
c = 1.

1.2 Solution to the wave equation

Having derived the equation for the vibrating string, we now explain two
methods to solve it:

• using traveling waves,

• using the superposition of standing waves.

While the first approach is very simple and elegant, it does not directly
give full insight into the problem; the second method accomplishes that,
and moreover is of wide applicability. It was first believed that the second
method applied only in the simple cases where the initial position and
velocity of the string were themselves given as a superposition of standing
waves. However, as a consequence of Fourier’s ideas, it became clear that
the problem could be worked either way for all initial conditions.
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Traveling waves

To simplify matters as before, we assume that c = 1 and L = π, so that
the equation we wish to solve becomes

∂2u

∂t2
=

∂2u

∂x2
on 0 ≤ x ≤ π.

The crucial observation is the following: if F is any twice differentiable
function, then u(x, t) = F (x + t) and u(x, t) = F (x− t) solve the wave
equation. The verification of this is a simple exercise in differentiation.
Note that the graph of u(x, t) = F (x− t) at time t = 0 is simply the
graph of F , and that at time t = 1 it becomes the graph of F translated
to the right by 1. Therefore, we recognize that F (x− t) is a traveling
wave which travels to the right with speed 1. Similarly, u(x, t) = F (x + t)
is a wave traveling to the left with speed 1. These motions are depicted
in Figure 6.

F (x + t) F (x) F (x− t)

Figure 6. Waves traveling in both directions

Our discussion of tones and their combinations leads us to observe
that the wave equation is linear. This means that if u(x, t) and v(x, t)
are particular solutions, then so is αu(x, t) + βv(x, t), where α and β
are any constants. Therefore, we may superpose two waves traveling in
opposite directions to find that whenever F and G are twice differentiable
functions, then

u(x, t) = F (x + t) + G(x− t)

is a solution of the wave equation. In fact, we now show that all solutions
take this form.

We drop for the moment the assumption that 0 ≤ x ≤ π, and suppose
that u is a twice differentiable function which solves the wave equation
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for all real x and t. Consider the following new set of variables ξ = x + t,
η = x− t, and define v(ξ, η) = u(x, t). The change of variables formula
shows that v satisfies

∂2v

∂ξ∂η
= 0.

Integrating this relation twice gives v(ξ, η) = F (ξ) + G(η), which then
implies

u(x, t) = F (x + t) + G(x− t),

for some functions F and G.

We must now connect this result with our original problem, that is,
the physical motion of a string. There, we imposed the restrictions 0 ≤
x ≤ π, the initial shape of the string u(x, 0) = f(x), and also the fact
that the string has fixed end points, namely u(0, t) = u(π, t) = 0 for all
t. To use the simple observation above, we first extend f to all of R by
making it odd1 on [−π, π], and then periodic2 in x of period 2π, and
similarly for u(x, t), the solution of our problem. Then the extension u
solves the wave equation on all of R, and u(x, 0) = f(x) for all x ∈ R.
Therefore, u(x, t) = F (x + t) + G(x− t), and setting t = 0 we find that

F (x) + G(x) = f(x).

Since many choices of F and G will satisfy this identity, this suggests
imposing another initial condition on u (similar to the two initial condi-
tions in the case of simple harmonic motion), namely the initial velocity
of the string which we denote by g(x):

∂u

∂t
(x, 0) = g(x),

where of course g(0) = g(π) = 0. Again, we extend g to R first by mak-
ing it odd over [−π, π], and then periodic of period 2π. The two initial
conditions of position and velocity now translate into the following sys-
tem:

{
F (x) + G(x) = f(x) ,
F ′(x)−G′(x) = g(x) .

1A function f defined on a set U is odd if −x ∈ U whenever x ∈ U and f(−x) = −f(x),
and even if f(−x) = f(x).

2A function f on R is periodic of period ω if f(x + ω) = f(x) for all x.
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Differentiating the first equation and adding it to the second, we obtain

2F ′(x) = f ′(x) + g(x).

Similarly

2G′(x) = f ′(x)− g(x),

and hence there are constants C1 and C2 so that

F (x) =
1
2

[
f(x) +

∫ x

0
g(y) dy

]
+ C1

and

G(x) =
1
2

[
f(x)−

∫ x

0
g(y) dy

]
+ C2.

Since F (x) + G(x) = f(x) we conclude that C1 + C2 = 0, and therefore,
our final solution of the wave equation with the given initial conditions
takes the form

u(x, t) =
1
2

[f(x + t) + f(x− t)] +
1
2

∫ x+t

x−t
g(y) dy.

The form of this solution is known as d’Alembert’s formula. Observe
that the extensions we chose for f and g guarantee that the string always
has fixed ends, that is, u(0, t) = u(π, t) = 0 for all t.

A final remark is in order. The passage from t ≥ 0 to t ∈ R, and then
back to t ≥ 0, which was made above, exhibits the time reversal property
of the wave equation. In other words, a solution u to the wave equation
for t ≥ 0, leads to a solution u− defined for negative time t < 0 simply
by setting u−(x, t) = u(x,−t), a fact which follows from the invariance
of the wave equation under the transformation t 7→ −t. The situation is
quite different in the case of the heat equation.

Superposition of standing waves

We turn to the second method of solving the wave equation, which is
based on two fundamental conclusions from our previous physical obser-
vations. By our considerations of standing waves, we are led to look for
special solutions to the wave equation which are of the form ϕ(x)ψ(t).
This procedure, which works equally well in other contexts (in the case
of the heat equation, for instance), is called separation of variables
and constructs solutions that are called pure tones. Then by the linearity



Ibookroot October 20, 2007

12 Chapter 1. THE GENESIS OF FOURIER ANALYSIS

of the wave equation, we can expect to combine these pure tones into a
more complex combination of sound. Pushing this idea further, we can
hope ultimately to express the general solution of the wave equation in
terms of sums of these particular solutions.

Note that one side of the wave equation involves only differentiation
in x, while the other, only differentiation in t. This observation pro-
vides another reason to look for solutions of the equation in the form
u(x, t) = ϕ(x)ψ(t) (that is, to “separate variables”), the hope being to
reduce a difficult partial differential equation into a system of simpler
ordinary differential equations. In the case of the wave equation, with u
of the above form, we get

ϕ(x)ψ′′(t) = ϕ′′(x)ψ(t),

and therefore

ψ′′(t)
ψ(t)

=
ϕ′′(x)
ϕ(x)

.

The key observation here is that the left-hand side depends only on t,
and the right-hand side only on x. This can happen only if both sides
are equal to a constant, say λ. Therefore, the wave equation reduces to
the following

(3)
{

ψ′′(t)− λψ(t) = 0
ϕ′′(x)− λϕ(x) = 0.

We focus our attention on the first equation in the above system. At
this point, the reader will recognize the equation we obtained in the
study of simple harmonic motion. Note that we need to consider only
the case when λ < 0, since when λ ≥ 0 the solution ψ will not oscillate
as time varies. Therefore, we may write λ = −m2, and the solution of
the equation is then given by

ψ(t) = A cosmt + B sinmt.

Similarly, we find that the solution of the second equation in (3) is

ϕ(x) = Ã cos mx + B̃ sinmx.

Now we take into account that the string is attached at x = 0 and x = π.
This translates into ϕ(0) = ϕ(π) = 0, which in turn gives Ã = 0, and
if B̃ 6= 0, then m must be an integer. If m = 0, the solution vanishes
identically, and if m ≤ −1, we may rename the constants and reduce to
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the case m ≥ 1 since the function sin y is odd and cos y is even. Finally,
we arrive at the guess that for each m ≥ 1, the function

um(x, t) = (Am cos mt + Bm sin mt) sin mx,

which we recognize as a standing wave, is a solution to the wave equa-
tion. Note that in the above argument we divided by ϕ and ψ, which
sometimes vanish, so one must actually check by hand that the standing
wave um solves the equation. This straightforward calculation is left as
an exercise to the reader.

Before proceeding further with the analysis of the wave equation, we
pause to discuss standing waves in more detail. The terminology comes
from looking at the graph of um(x, t) for each fixed t. Suppose first that
m = 1, and take u(x, t) = cos t sinx. Then, Figure 7 (a) gives the graph
of u for different values of t.

(b)(a)

0−π 2π 0 π−2π π 2π−π−2π

Figure 7. Fundamental tone (a) and overtones (b) at different moments
in time

The case m = 1 corresponds to the fundamental tone or first har-
monic of the vibrating string.

We now take m = 2 and look at u(x, t) = cos 2t sin 2x. This corre-
sponds to the first overtone or second harmonic, and this motion is
described in Figure 7 (b). Note that u(π/2, t) = 0 for all t. Such points,
which remain motionless in time, are called nodes, while points whose
motion has maximum amplitude are named anti-nodes.

For higher values of m we get more overtones or higher harmonics.
Note that as m increases, the frequency increases, and the period 2π/m
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decreases. Therefore, the fundamental tone has a lower frequency than
the overtones.

We now return to the original problem. Recall that the wave equation
is linear in the sense that if u and v solve the equation, so does αu + βv
for any constants α and β. This allows us to construct more solutions
by taking linear combinations of the standing waves um. This technique,
called superposition, leads to our final guess for a solution of the wave
equation

(4) u(x, t) =
∞∑

m=1

(Am cos mt + Bm sin mt) sin mx.

Note that the above sum is infinite, so that questions of convergence
arise, but since most of our arguments so far are formal, we will not
worry about this point now.

Suppose the above expression gave all the solutions to the wave equa-
tion. If we then require that the initial position of the string at time
t = 0 is given by the shape of the graph of the function f on [0, π], with
of course f(0) = f(π) = 0, we would have u(x, 0) = f(x), hence

∞∑

m=1

Am sin mx = f(x).

Since the initial shape of the string can be any reasonable function f , we
must ask the following basic question:

Given a function f on [0, π] (with f(0) = f(π) = 0), can we
find coefficients Am so that

(5) f(x) =
∞∑

m=1

Am sin mx ?

This question is stated loosely, but a lot of our effort in the next two
chapters of this book will be to formulate the question precisely and
attempt to answer it. This was the basic problem that initiated the
study of Fourier analysis.

A simple observation allows us to guess a formula giving Am if the
expansion (5) were to hold. Indeed, we multiply both sides by sinnx
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and integrate between [0, π]; working formally, we obtain

∫ π

0
f(x) sin nx dx =

∫ π

0

( ∞∑

m=1

Am sinmx

)
sinnx dx

=
∞∑

m=1

Am

∫ π

0
sinmx sin nx dx = An · π

2
,

where we have used the fact that
∫ π

0
sinmx sinnx dx =

{
0 if m 6= n,
π/2 if m = n.

Therefore, the guess for An, called the nth Fourier sine coefficient of f ,
is

(6) An =
2
π

∫ π

0
f(x) sin nx dx.

We shall return to this formula, and other similar ones, later.

One can transform the question about Fourier sine series on [0, π] to
a more general question on the interval [−π, π]. If we could express f
on [0, π] in terms of a sine series, then this expansion would also hold on
[−π, π] if we extend f to this interval by making it odd. Similarly, one
can ask if an even function g(x) on [−π, π] can be expressed as a cosine
series, namely

g(x) =
∞∑

m=0

A′m cosmx.

More generally, since an arbitrary function F on [−π, π] can be expressed
as f + g, where f is odd and g is even,3 we may ask if F can be written
as

F (x) =
∞∑

m=1

Am sin mx +
∞∑

m=0

A′m cosmx,

or by applying Euler’s identity eix = cos x + i sinx, we could hope that
F takes the form

F (x) =
∞∑

m=−∞
ameimx.

3Take, for example, f(x) = [F (x)− F (−x)]/2 and g(x) = [F (x) + F (−x)]/2.
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By analogy with (6), we can use the fact that

1
2π

∫ π

−π
eimxe−inx dx =

{
0 if n 6= m
1 if n = m,

to see that one expects that

an =
1
2π

∫ π

−π
F (x)e−inx dx.

The quantity an is called the nth Fourier coefficient of F .
We can now reformulate the problem raised above:

Question: Given any reasonable function F on [−π, π], with
Fourier coefficients defined above, is it true that

(7) F (x) =
∞∑

m=−∞
ameimx ?

This formulation of the problem, in terms of complex exponentials, is
the form we shall use the most in what follows.

Joseph Fourier (1768-1830) was the first to believe that an “arbitrary”
function F could be given as a series (7). In other words, his idea was
that any function is the linear combination (possibly infinite) of the most
basic trigonometric functions sinmx and cos mx, where m ranges over
the integers.4 Although this idea was implicit in earlier work, Fourier had
the conviction that his predecessors lacked, and he used it in his study
of heat diffusion; this began the subject of “Fourier analysis.” This
discipline, which was first developed to solve certain physical problems,
has proved to have many applications in mathematics and other fields as
well, as we shall see later.

We return to the wave equation. To formulate the problem correctly,
we must impose two initial conditions, as our experience with simple
harmonic motion and traveling waves indicated. The conditions assign
the initial position and velocity of the string. That is, we require that u
satisfy the differential equation and the two conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x),

4The first proof that a general class of functions can be represented by Fourier series
was given later by Dirichlet; see Problem 6, Chapter 4.
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where f and g are pre-assigned functions. Note that this is consistent
with (4) in that this requires that f and g be expressible as

f(x) =
∞∑

m=1

Am sinmx and g(x) =
∞∑

m=1

mBm sinmx.

1.3 Example: the plucked string

We now apply our reasoning to the particular problem of the plucked
string. For simplicity we choose units so that the string is taken on the
interval [0, π], and it satisfies the wave equation with c = 1. The string is
assumed to be plucked to height h at the point p with 0 < p < π; this is
the initial position. That is, we take as our initial position the triangular
shape given by

f(x) =





xh

p
for 0 ≤ x ≤ p

h(π − x)
π − p

for p ≤ x ≤ π,

which is depicted in Figure 8.

0

h

p π

Figure 8. Initial position of a plucked string

We also choose an initial velocity g(x) identically equal to 0. Then, we
can compute the Fourier coefficients of f (Exercise 9), and assuming that
the answer to the question raised before (5) is positive, we obtain

f(x) =
∞∑

m=1

Am sinmx with Am =
2h

m2

sinmp

p(π − p)
.
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Thus

(8) u(x, t) =
∞∑

m=1

Am cos mt sinmx,

and note that this series converges absolutely. The solution can also be
expressed in terms of traveling waves. In fact

(9) u(x, t) =
f(x + t) + f(x− t)

2
.

Here f(x) is defined for all x as follows: first, f is extended to [−π, π] by
making it odd, and then f is extended to the whole real line by making
it periodic of period 2π, that is, f(x + 2πk) = f(x) for all integers k.

Observe that (8) implies (9) in view of the trigonometric identity

cos v sinu =
1
2

[sin(u + v) + sin(u− v)].

As a final remark, we should note an unsatisfactory aspect of the so-
lution to this problem, which however is in the nature of things. Since
the initial data f(x) for the plucked string is not twice continuously dif-
ferentiable, neither is the function u (given by (9)). Hence u is not truly
a solution of the wave equation: while u(x, t) does represent the position
of the plucked string, it does not satisfy the partial differential equation
we set out to solve! This state of affairs may be understood properly
only if we realize that u does solve the equation, but in an appropriate
generalized sense. A better understanding of this phenomenon requires
ideas relevant to the study of “weak solutions” and the theory of “dis-
tributions.” These topics we consider only later, in Books III and IV.

2 The heat equation

We now discuss the problem of heat diffusion by following the same
framework as for the wave equation. First, we derive the time-dependent
heat equation, and then study the steady-state heat equation in the disc,
which leads us back to the basic question (7).

2.1 Derivation of the heat equation

Consider an infinite metal plate which we model as the plane R2, and
suppose we are given an initial heat distribution at time t = 0. Let the
temperature at the point (x, y) at time t be denoted by u(x, y, t).
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Consider a small square centered at (x0, y0) with sides parallel to the
axis and of side length h, as shown in Figure 9. The amount of heat
energy in S at time t is given by

H(t) = σ

∫ ∫

S
u(x, y, t) dx dy ,

where σ > 0 is a constant called the specific heat of the material. There-
fore, the heat flow into S is

∂H

∂t
= σ

∫ ∫

S

∂u

∂t
dx dy ,

which is approximately equal to

σh2 ∂u

∂t
(x0, y0, t),

since the area of S is h2. Now we apply Newton’s law of cooling, which
states that heat flows from the higher to lower temperature at a rate
proportional to the difference, that is, the gradient.

(x0 + h/2, y0)(x0, y0)
h

h

Figure 9. Heat flow through a small square

The heat flow through the vertical side on the right is therefore

−κh
∂u

∂x
(x0 + h/2, y0, t) ,

where κ > 0 is the conductivity of the material. A similar argument for
the other sides shows that the total heat flow through the square S is
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given by

κh

[
∂u

∂x
(x0 + h/2, y0, t)− ∂u

∂x
(x0 − h/2, y0, t)

+
∂u

∂y
(x0, y0 + h/2, t)− ∂u

∂y
(x0, y0 − h/2, t)

]
.

Applying the mean value theorem and letting h tend to zero, we find
that

σ

κ

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
;

this is called the time-dependent heat equation, often abbreviated
to the heat equation.

2.2 Steady-state heat equation in the disc

After a long period of time, there is no more heat exchange, so that
the system reaches thermal equilibrium and ∂u/∂t = 0. In this case,
the time-dependent heat equation reduces to the steady-state heat
equation

(10)
∂2u

∂x2
+

∂2u

∂y2
= 0.

The operator ∂2/∂x2 + ∂2/∂y2 is of such importance in mathematics and
physics that it is often abbreviated as 4 and given a name: the Laplace
operator or Laplacian. So the steady-state heat equation is written as

4u = 0,

and solutions to this equation are called harmonic functions.

Consider the unit disc in the plane

D = {(x, y) ∈ R2 : x2 + y2 < 1},

whose boundary is the unit circle C. In polar coordinates (r, θ), with
0 ≤ r and 0 ≤ θ < 2π, we have

D = {(r, θ) : 0 ≤ r < 1} and C = {(r, θ) : r = 1}.

The problem, often called the Dirichlet problem (for the Laplacian
on the unit disc), is to solve the steady-state heat equation in the unit
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disc subject to the boundary condition u = f on C. This corresponds to
fixing a predetermined temperature distribution on the circle, waiting a
long time, and then looking at the temperature distribution inside the
disc.

u(1, θ) = f(θ)

x

y

0

4u = 0

Figure 10. The Dirichlet problem for the disc

While the method of separation of variables will turn out to be useful
for equation (10), a difficulty comes from the fact that the boundary
condition is not easily expressed in terms of rectangular coordinates.
Since this boundary condition is best described by the coordinates (r, θ),
namely u(1, θ) = f(θ), we rewrite the Laplacian in polar coordinates. An
application of the chain rule gives (Exercise 10):

4u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
.

We now multiply both sides by r2, and since 4u = 0, we get

r2 ∂2u

∂r2
+ r

∂u

∂r
= −∂2u

∂θ2
.

Separating these variables, and looking for a solution of the form
u(r, θ) = F (r)G(θ), we find

r2F ′′(r) + rF ′(r)
F (r)

= −G′′(θ)
G(θ)

.
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Since the two sides depend on different variables, they must both be
constant, say equal to λ. We therefore get the following equations:

{
G′′(θ) + λG(θ) = 0 ,
r2F ′′(r) + rF ′(r)− λF (r) = 0.

Since G must be periodic of period 2π, this implies that λ ≥ 0 and (as
we have seen before) that λ = m2 where m is an integer; hence

G(θ) = Ã cos mθ + B̃ sinmθ.

An application of Euler’s identity, eix = cos x + i sinx, allows one to
rewrite G in terms of complex exponentials,

G(θ) = Aeimθ + Be−imθ.

With λ = m2 and m 6= 0, two simple solutions of the equation in F are
F (r) = rm and F (r) = r−m (Exercise 11 gives further information about
these solutions). If m = 0, then F (r) = 1 and F (r) = log r are two solu-
tions. If m > 0, we note that r−m grows unboundedly large as r tends
to zero, so F (r)G(θ) is unbounded at the origin; the same occurs when
m = 0 and F (r) = log r. We reject these solutions as contrary to our
intuition. Therefore, we are left with the following special functions:

um(r, θ) = r|m|eimθ, m ∈ Z.

We now make the important observation that (10) is linear , and so as
in the case of the vibrating string, we may superpose the above special
solutions to obtain the presumed general solution:

u(r, θ) =
∞∑

m=−∞
amr|m|eimθ.

If this expression gave all the solutions to the steady-state heat equation,
then for a reasonable f we should have

u(1, θ) =
∞∑

m=−∞
ameimθ = f(θ).

We therefore ask again in this context: given any reasonable function f
on [0, 2π] with f(0) = f(2π), can we find coefficients am so that

f(θ) =
∞∑

m=−∞
ameimθ ?
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Historical Note: D’Alembert (in 1747) first solved the equation of the
vibrating string using the method of traveling waves. This solution was
elaborated by Euler a year later. In 1753, D. Bernoulli proposed the
solution which for all intents and purposes is the Fourier series given
by (4), but Euler was not entirely convinced of its full generality, since
this could hold only if an “arbitrary” function could be expanded in
Fourier series. D’Alembert and other mathematicians also had doubts.
This viewpoint was changed by Fourier (in 1807) in his study of the
heat equation, where his conviction and work eventually led others to a
complete proof that a general function could be represented as a Fourier
series.

3 Exercises

1. If z = x + iy is a complex number with x, y ∈ R, we define

|z| = (x2 + y2)1/2

and call this quantity the modulus or absolute value of z.

(a) What is the geometric interpretation of |z|?

(b) Show that if |z| = 0, then z = 0.

(c) Show that if λ ∈ R, then |λz| = |λ||z|, where |λ| denotes the standard
absolute value of a real number.

(d) If z1 and z2 are two complex numbers, prove that

|z1z2| = |z1||z2| and |z1 + z2| ≤ |z1|+ |z2|.

(e) Show that if z 6= 0, then |1/z| = 1/|z|.

2. If z = x + iy is a complex number with x, y ∈ R, we define the complex
conjugate of z by

z = x− iy.

(a) What is the geometric interpretation of z?

(b) Show that |z|2 = zz.

(c) Prove that if z belongs to the unit circle, then 1/z = z.
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3. A sequence of complex numbers {wn}∞n=1 is said to converge if there exists
w ∈ C such that

lim
n→∞

|wn − w| = 0,

and we say that w is a limit of the sequence.

(a) Show that a converging sequence of complex numbers has a unique limit.

The sequence {wn}∞n=1 is said to be a Cauchy sequence if for every ε > 0 there
exists a positive integer N such that

|wn − wm| < ε whenever n,m > N.

(b) Prove that a sequence of complex numbers converges if and only if it is a
Cauchy sequence. [Hint: A similar theorem exists for the convergence of a
sequence of real numbers. Why does it carry over to sequences of complex
numbers?]

A series
∑∞

n=1 zn of complex numbers is said to converge if the sequence formed
by the partial sums

SN =
N∑

n=1

zn

converges. Let {an}∞n=1 be a sequence of non-negative real numbers such that
the series

∑
n an converges.

(c) Show that if {zn}∞n=1 is a sequence of complex numbers satisfying
|zn| ≤ an for all n, then the series

∑
n zn converges. [Hint: Use the Cauchy

criterion.]

4. For z ∈ C, we define the complex exponential by

ez =
∞∑

n=0

zn

n!
.

(a) Prove that the above definition makes sense, by showing that the series
converges for every complex number z. Moreover, show that the conver-
gence is uniform5 on every bounded subset of C.

(b) If z1, z2 are two complex numbers, prove that ez1ez2 = ez1+z2 . [Hint: Use
the binomial theorem to expand (z1 + z2)n, as well as the formula for the
binomial coefficients.]

5A sequence of functions {fn(z)}∞n=1 is said to be uniformly convergent on a set S if
there exists a function f on S so that for every ε > 0 there is an integer N such that
|fn(z)− f(z)| < ε whenever n > N and z ∈ S.
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(c) Show that if z is purely imaginary, that is, z = iy with y ∈ R, then

eiy = cos y + i sin y.

This is Euler’s identity. [Hint: Use power series.]

(d) More generally,

ex+iy = ex(cos y + i sin y)

whenever x, y ∈ R, and show that

|ex+iy| = ex.

(e) Prove that ez = 1 if and only if z = 2πki for some integer k.

(f) Show that every complex number z = x + iy can be written in the form

z = reiθ ,

where r is unique and in the range 0 ≤ r < ∞, and θ ∈ R is unique up to
an integer multiple of 2π. Check that

r = |z| and θ = arctan(y/x)

whenever these formulas make sense.

(g) In particular, i = eiπ/2. What is the geometric meaning of multiplying a
complex number by i? Or by eiθ for any θ ∈ R?

(h) Given θ ∈ R, show that

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

These are also called Euler’s identities.

(i) Use the complex exponential to derive trigonometric identities such as

cos(θ + ϑ) = cos θ cosϑ− sin θ sinϑ,

and then show that

2 sin θ sinϕ = cos(θ − ϕ)− cos(θ + ϕ) ,
2 sin θ cos ϕ = sin(θ + ϕ) + sin(θ − ϕ).

This calculation connects the solution given by d’Alembert in terms of
traveling waves and the solution in terms of superposition of standing
waves.
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5. Verify that f(x) = einx is periodic with period 2π and that

1
2π

∫ π

−π

einx dx =
{

1 if n = 0,
0 if n 6= 0.

Use this fact to prove that if n,m ≥ 1 we have

1
π

∫ π

−π

cos nx cosmx dx =
{

0 if n 6= m,
1 n = m,

and similarly

1
π

∫ π

−π

sin nx sinmx dx =
{

0 if n 6= m,
1 n = m.

Finally, show that
∫ π

−π

sinnx cos mxdx = 0 for any n,m.

[Hint: Calculate einxe−imx + einxeimx and einxe−imx − einxeimx.]

6. Prove that if f is a twice continuously differentiable function on R which is
a solution of the equation

f ′′(t) + c2f(t) = 0,

then there exist constants a and b such that

f(t) = a cos ct + b sin ct.

This can be done by differentiating the two functions g(t) = f(t) cos ct− c−1f ′(t) sin ct
and h(t) = f(t) sin ct + c−1f ′(t) cos ct.

7. Show that if a and b are real, then one can write

a cos ct + b sin ct = A cos(ct− ϕ),

where A =
√

a2 + b2, and ϕ is chosen so that

cosϕ =
a√

a2 + b2
and sin ϕ =

b√
a2 + b2

.

8. Suppose F is a function on (a, b) with two continuous derivatives. Show that
whenever x and x + h belong to (a, b), one may write

F (x + h) = F (x) + hF ′(x) +
h2

2
F ′′(x) + h2ϕ(h) ,
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where ϕ(h) → 0 as h → 0.
Deduce that

F (x + h) + F (x− h)− 2F (x)
h2

→ F ′′(x) as h → 0.

[Hint: This is simply a Taylor expansion. It may be obtained by noting that

F (x + h)− F (x) =
∫ x+h

x

F ′(y) dy,

and then writing F ′(y) = F ′(x) + (y − x)F ′′(x) + (y − x)ψ(y − x), where ψ(h) →
0 as h → 0.]

9. In the case of the plucked string, use the formula for the Fourier sine coeffi-
cients to show that

Am =
2h

m2

sinmp

p(π − p)
.

For what position of p are the second, fourth, . . . harmonics missing? For what
position of p are the third, sixth, . . . harmonics missing?

10. Show that the expression of the Laplacian

4 =
∂2

∂x2
+

∂2

∂y2

is given in polar coordinates by the formula

4 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
.

Also, prove that
∣∣∣∣
∂u

∂x

∣∣∣∣
2

+
∣∣∣∣
∂u

∂y

∣∣∣∣
2

=
∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
1
r2

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

.

11. Show that if n ∈ Z the only solutions of the differential equation

r2F ′′(r) + rF ′(r)− n2F (r) = 0,

which are twice differentiable when r > 0, are given by linear combinations of
rn and r−n when n 6= 0, and 1 and log r when n = 0.
[Hint: If F solves the equation, write F (r) = g(r)rn, find the equation satisfied
by g, and conclude that rg′(r) + 2ng(r) = c where c is a constant.]
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u = f1

u = 0

u = f0

u = 0

0

1

π

4u = 0

Figure 11. Dirichlet problem in a rectangle

4 Problem

1. Consider the Dirichlet problem illustrated in Figure 11.
More precisely, we look for a solution of the steady-state heat equation

4u = 0 in the rectangle R = {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ 1} that vanishes on
the vertical sides of R, and so that

u(x, 0) = f0(x) and u(x, 1) = f1(x) ,

where f0 and f1 are initial data which fix the temperature distribution on the
horizontal sides of the rectangle.

Use separation of variables to show that if f0 and f1 have Fourier expansions

f0(x) =
∞∑

k=1

Ak sin kx and f1(x) =
∞∑

k=1

Bk sin kx,

then

u(x, y) =
∞∑

k=1

(
sinh k(1− y)

sinh k
Ak +

sinh ky

sinh k
Bk

)
sin kx.

We recall the definitions of the hyperbolic sine and cosine functions:

sinh x =
ex − e−x

2
and cosh x =

ex + e−x

2
.

Compare this result with the solution of the Dirichlet problem in the strip ob-
tained in Problem 3, Chapter 5.
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2 Basic Properties of Fourier
Series

Nearly fifty years had passed without any progress on
the question of analytic representation of an arbitrary
function, when an assertion of Fourier threw new light
on the subject. Thus a new era began for the de-
velopment of this part of Mathematics and this was
heralded in a stunning way by major developments in
mathematical Physics.

B. Riemann, 1854

In this chapter, we begin our rigorous study of Fourier series. We set
the stage by introducing the main objects in the subject, and then for-
mulate some basic problems which we have already touched upon earlier.

Our first result disposes of the question of uniqueness: Are two func-
tions with the same Fourier coefficients necessarily equal? Indeed, a
simple argument shows that if both functions are continuous, then in
fact they must agree.

Next, we take a closer look at the partial sums of a Fourier series. Using
the formula for the Fourier coefficients (which involves an integration),
we make the key observation that these sums can be written conveniently
as integrals:

1
2π

∫
DN (x− y)f(y) dy,

where {DN} is a family of functions called the Dirichlet kernels. The
above expression is the convolution of f with the function DN . Convo-
lutions will play a critical role in our analysis. In general, given a family
of functions {Kn}, we are led to investigate the limiting properties as n
tends to infinity of the convolutions

1
2π

∫
Kn(x− y)f(y) dy.

We find that if the family {Kn} satisfies the three important properties
of “good kernels,” then the convolutions above tend to f(x) as n →∞
(at least when f is continuous). In this sense, the family {Kn} is an
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“approximation to the identity.” Unfortunately, the Dirichlet kernels
DN do not belong to the category of good kernels, which indicates that
the question of convergence of Fourier series is subtle.

Instead of pursuing at this stage the problem of convergence, we con-
sider various other methods of summing the Fourier series of a function.
The first method, which involves averages of partial sums, leads to con-
volutions with good kernels, and yields an important theorem of Fejér.
From this, we deduce the fact that a continuous function on the circle
can be approximated uniformly by trigonometric polynomials. Second,
we may also sum the Fourier series in the sense of Abel and again en-
counter a family of good kernels. In this case, the results about convo-
lutions and good kernels lead to a solution of the Dirichlet problem for
the steady-state heat equation in the disc, considered at the end of the
previous chapter.

1 Examples and formulation of the problem

We commence with a brief description of the types of functions with
which we shall be concerned. Since the Fourier coefficients of f are
defined by

an =
1
L

∫ L

0
f(x)e−2πinx/L dx, for n ∈ Z,

where f is complex-valued on [0, L], it will be necessary to place some in-
tegrability conditions on f . We shall therefore assume for the remainder
of this book that all functions are at least Riemann integrable.1 Some-
times it will be illuminating to focus our attention on functions that
are more “regular,” that is, functions that possess certain continuity or
differentiability properties. Below, we list several classes of functions in
increasing order of generality. We emphasize that we will not generally
restrict our attention to real-valued functions, contrary to what the fol-
lowing pictures may suggest; we will almost always allow functions that
take values in the complex numbers C. Furthermore, we sometimes think
of our functions as being defined on the circle rather than an interval.
We elaborate upon this below.

1Limiting ourselves to Riemann integrable functions is natural at this elementary stage
of study of the subject. The more advanced notion of Lebesgue integrability will be taken
up in Book III.
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Everywhere continuous functions

These are the complex-valued functions f which are continuous at every
point of the segment [0, L]. A typical continuous function is sketched in
Figure 1 (a). We shall note later that continuous functions on the circle
satisfy the additional condition f(0) = f(L).

Piecewise continuous functions

These are bounded functions on [0, L] which have only finitely many
discontinuities. An example of such a function with simple discontinuities
is pictured in Figure 1 (b).

(a) (b)

0 x

y

L0 x

y

L

Figure 1. Functions on [0, L]: continuous and piecewise continuous

This class of functions is wide enough to illustrate many of the the-
orems in the next few chapters. However, for logical completeness we
consider also the more general class of Riemann integrable functions.
This more extended setting is natural since the formula for the Fourier
coefficients involves integration.

Riemann integrable functions

This is the most general class of functions we will be concerned with.
Such functions are bounded, but may have infinitely many discontinu-
ities. We recall the definition of integrability. A real-valued function f
defined on [0, L] is Riemann integrable (which we abbreviate as in-
tegrable2) if it is bounded, and if for every ε > 0, there is a subdivision
0 = x0 < x1 < · · · < xN−1 < xN = L of the interval [0, L], so that if U

2Starting in Book III, the term “integrable” will be used in the broader sense of
Lebesgue theory.
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and L are, respectively, the upper and lower sums of f for this subdivi-
sion, namely

U =
N∑

j=1

[ sup
xj−1≤x≤xj

f(x)](xj − xj−1)

and

L =
N∑

j=1

[ inf
xj−1≤x≤xj

f(x)](xj − xj−1) ,

then we have U − L < ε. Finally, we say that a complex-valued function
is integrable if its real and imaginary parts are integrable. It is worthwhile
to remember at this point that the sum and product of two integrable
functions are integrable.

A simple example of an integrable function on [0, 1] with infinitely
many discontinuities is given by

f(x) =





1 if 1/(n + 1) < x ≤ 1/n and n is odd,
0 if 1/(n + 1) < x ≤ 1/n and n is even,
0 if x = 0.

This example is illustrated in Figure 2. Note that f is discontinuous
when x = 1/n and at x = 0.

1
3

1
2

1
5

1
4

0

1

1

Figure 2. A Riemann integrable function

More elaborate examples of integrable functions whose discontinuities
are dense in the interval [0, 1] are described in Problem 1. In general,
while integrable functions may have infinitely many discontinuities, these
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functions are actually characterized by the fact that, in a precise sense,
their discontinuities are not too numerous: they are “negligible,” that is,
the set of points where an integrable function is discontinuous has “mea-
sure 0.” The reader will find further details about Riemann integration
in the appendix.

From now on, we shall always assume that our functions are integrable,
even if we do not state this requirement explicitly.

Functions on the circle

There is a natural connection between 2π-periodic functions on R like the
exponentials einθ, functions on an interval of length 2π, and functions on
the unit circle. This connection arises as follows.

A point on the unit circle takes the form eiθ, where θ is a real number
that is unique up to integer multiples of 2π. If F is a function on the
circle, then we may define for each real number θ

f(θ) = F (eiθ),

and observe that with this definition, the function f is periodic on R of
period 2π, that is, f(θ + 2π) = f(θ) for all θ. The integrability, continu-
ity and other smoothness properties of F are determined by those of f .
For instance, we say that F is integrable on the circle if f is integrable
on every interval of length 2π. Also, F is continuous on the circle if f
is continuous on R, which is the same as saying that f is continuous on
any interval of length 2π. Moreover, F is continuously differentiable if f
has a continuous derivative, and so forth.

Since f has period 2π, we may restrict it to any interval of length 2π,
say [0, 2π] or [−π, π], and still capture the initial function F on the circle.
We note that f must take the same value at the end-points of the interval
since they correspond to the same point on the circle. Conversely, any
function on [0, 2π] for which f(0) = f(2π) can be extended to a periodic
function on R which can then be identified as a function on the circle.
In particular, a continuous function f on the interval [0, 2π] gives rise to
a continuous function on the circle if and only if f(0) = f(2π).

In conclusion, functions on R that 2π-periodic, and functions on an
interval of length 2π that take on the same value at its end-points, are
two equivalent descriptions of the same mathematical objects, namely,
functions on the circle.

In this connection, we mention an item of notational usage. When
our functions are defined on an interval on the line, we often use x as
the independent variable; however, when we consider these as functions
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on the circle, we usually replace the variable x by θ. As the reader will
note, we are not strictly bound by this rule since this practice is mostly
a matter of convenience.

1.1 Main definitions and some examples

We now begin our study of Fourier analysis with the precise definition of
the Fourier series of a function. Here, it is important to pin down where
our function is originally defined. If f is an integrable function given on
an interval [a, b] of length L (that is, b− a = L), then the nth Fourier
coefficient of f is defined by

f̂(n) =
1
L

∫ b

a
f(x)e−2πinx/L dx, n ∈ Z.

The Fourier series of f is given formally3 by

∞∑
n=−∞

f̂(n)e2πinx/L.

We shall sometimes write an for the Fourier coefficients of f , and use the
notation

f(x) ∼
∞∑

n=−∞
ane2πinx/L

to indicate that the series on the right-hand side is the Fourier series of
f .

For instance, if f is an integrable function on the interval [−π, π], then
the nth Fourier coefficient of f is

f̂(n) = an =
1
2π

∫ π

−π
f(θ)e−inθ dθ, n ∈ Z,

and the Fourier series of f is

f(θ) ∼
∞∑

n=−∞
aneinθ.

Here we use θ as a variable since we think of it as an angle ranging from
−π to π.

3At this point, we do not say anything about the convergence of the series.
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Also, if f is defined on [0, 2π], then the formulas are the same as
above, except that we integrate from 0 to 2π in the definition of the
Fourier coefficients.

We may also consider the Fourier coefficients and Fourier series for a
function defined on the circle. By our previous discussion, we may think
of a function on the circle as a function f on R which is 2π-periodic.
We may restrict the function f to any interval of length 2π, for instance
[0, 2π] or [−π, π], and compute its Fourier coefficients. Fortunately, f is
periodic and Exercise 1 shows that the resulting integrals are independent
of the chosen interval. Thus the Fourier coefficients of a function on the
circle are well defined.

Finally, we shall sometimes consider a function g given on [0, 1]. Then

ĝ(n) = an =
∫ 1

0
g(x)e−2πinx dx and g(x) ∼

∞∑
n=−∞

ane2πinx.

Here we use x for a variable ranging from 0 to 1.
Of course, if f is initially given on [0, 2π], then g(x) = f(2πx) is defined

on [0, 1] and a change of variables shows that the nth Fourier coefficient
of f equals the nth Fourier coefficient of g.

Fourier series are part of a larger family called the trigonometric se-
ries which, by definition, are expressions of the form

∑∞
n=−∞ cne2πinx/L

where cn ∈ C. If a trigonometric series involves only finitely many non-
zero terms, that is, cn = 0 for all large |n|, it is called a trigonometric
polynomial; its degree is the largest value of |n| for which cn 6= 0.

The N th partial sum of the Fourier series of f , for N a positive
integer, is a particular example of a trigonometric polynomial. It is
given by

SN (f)(x) =
N∑

n=−N

f̂(n)e2πinx/L.

Note that by definition, the above sum is symmetric since n ranges from
−N to N , a choice that is natural because of the resulting decomposition
of the Fourier series as sine and cosine series. As a consequence, the
convergence of Fourier series will be understood (in this book) as the
“limit” as N tends to infinity of these symmetric sums.

In fact, using the partial sums of the Fourier series, we can reformulate
the basic question raised in Chapter 1 as follows:

Problem: In what sense does SN (f) converge to f as N →∞ ?
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Before proceeding further with this question, we turn to some simple
examples of Fourier series.

Example 1. Let f(θ) = θ for −π ≤ θ ≤ π. The calculation of the Fourier
coefficients requires a simple integration by parts. First, if n 6= 0, then

f̂(n) =
1
2π

∫ π

−π
θe−inθ dθ

=
1
2π

[
− θ

in
e−inθ

]π

−π

+
1

2πin

∫ π

−π
e−inθ dθ

=
(−1)n+1

in
,

and if n = 0 we clearly have

f̂(0) =
1
2π

∫ π

−π
θ dθ = 0.

Hence, the Fourier series of f is given by

f(θ) ∼
∑

n 6=0

(−1)n+1

in
einθ = 2

∞∑

n=1

(−1)n+1 sin nθ

n
.

The first sum is over all non-zero integers, and the second is obtained by
an application of Euler’s identities. It is possible to prove by elementary
means that the above series converges for every θ, but it is not obvious
that it converges to f(θ). This will be proved later (Exercises 8 and 9
deal with a similar situation).

Example 2. Define f(θ) = (π − θ)2/4 for 0 ≤ θ ≤ 2π. Then successive
integration by parts similar to that performed in the previous example
yield

f(θ) ∼ π2

12
+

∞∑

n=1

cos nθ

n2
.

Example 3. The Fourier series of the function

f(θ) =
π

sinπα
ei(π−θ)α

on [0, 2π] is

f(θ) ∼
∞∑

n=−∞

einθ

n + α
,
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whenever α is not an integer.

Example 4. The trigonometric polynomial defined for x ∈ [−π, π] by

DN (x) =
N∑

n=−N

einx

is called the N th Dirichlet kernel and is of fundamental importance in
the theory (as we shall see later). Notice that its Fourier coefficients an

have the property that an = 1 if |n| ≤ N and an = 0 otherwise. A closed
form formula for the Dirichlet kernel is

DN (x) =
sin((N + 1

2)x)
sin(x/2)

.

This can be seen by summing the geometric progressions

N∑

n=0

ωn and
−1∑

n=−N

ωn

with ω = eix. These sums are, respectively, equal to

1− ωN+1

1− ω
and

ω−N − 1
1− ω

.

Their sum is then

ω−N − ωN+1

1− ω
=

ω−N−1/2 − ωN+1/2

ω−1/2 − ω1/2
=

sin((N + 1
2)x)

sin(x/2)
,

giving the desired result.

Example 5. The function Pr(θ), called the Poisson kernel, is defined
for θ ∈ [−π, π] and 0 ≤ r < 1 by the absolutely and uniformly convergent
series

Pr(θ) =
∞∑

n=−∞
r|n|einθ.

This function arose implicitly in the solution of the steady-state heat
equation on the unit disc discussed in Chapter 1. Note that in calcu-
lating the Fourier coefficients of Pr(θ) we can interchange the order of
integration and summation since the sum converges uniformly in θ for
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each fixed r, and obtain that the nth Fourier coefficient equals r|n|. One
can also sum the series for Pr(θ) and see that

Pr(θ) =
1− r2

1− 2r cos θ + r2
.

In fact,

Pr(θ) =
∞∑

n=0

ωn +
∞∑

n=1

ωn with ω = reiθ,

where both series converge absolutely. The first sum (an infinite geomet-
ric progression) equals 1/(1− ω), and likewise, the second is ω/(1− ω).
Together, they combine to give

1− ω + (1− ω)ω
(1− ω)(1− ω)

=
1− |ω|2
|1− ω|2 =

1− r2

1− 2r cos θ + r2
,

as claimed. The Poisson kernel will reappear later in the context of Abel
summability of the Fourier series of a function.

Let us return to the problem formulated earlier. The definition of
the Fourier series of f is purely formal, and it is not obvious whether it
converges to f . In fact, the solution of this problem can be very hard,
or relatively easy, depending on the sense in which we expect the series
to converge, or on what additional restrictions we place on f .

Let us be more precise. Suppose, for the sake of this discussion, that
the function f (which is always assumed to be Riemann integrable) is
defined on [−π, π]. The first question one might ask is whether the partial
sums of the Fourier series of f converge to f pointwise. That is, do we
have

(1) lim
N→∞

SN (f)(θ) = f(θ) for every θ?

We see quite easily that in general we cannot expect this result to be
true at every θ, since we can always change an integrable function at one
point without changing its Fourier coefficients. As a result, we might
ask the same question assuming that f is continuous and periodic. For
a long time it was believed that under these additional assumptions the
answer would be “yes.” It was a surprise when Du Bois-Reymond showed
that there exists a continuous function whose Fourier series diverges at
a point. We will give such an example in the next chapter. Despite this
negative result, we might ask what happens if we add more smoothness
conditions on f : for example, we might assume that f is continuously
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differentiable, or twice continuously differentiable. We will see that then
the Fourier series of f converges to f uniformly.

We will also interpret the limit (1) by showing that the Fourier series
sums, in the sense of Cesàro or Abel, to the function f at all of its points
of continuity. This approach involves appropriate averages of the partial
sums of the Fourier series of f .

Finally, we can also define the limit (1) in the mean square sense. In
the next chapter, we will show that if f is merely integrable, then

1
2π

∫ π

−π
|SN (f)(θ)− f(θ)|2 dθ → 0 as N →∞.

It is of interest to know that the problem of pointwise convergence of
Fourier series was settled in 1966 by L. Carleson, who showed, among
other things, that if f is integrable in our sense,4 then the Fourier series
of f converges to f except possibly on a set of “measure 0.” The proof
of this theorem is difficult and beyond the scope of this book.

2 Uniqueness of Fourier series

If we were to assume that the Fourier series of functions f converge to f
in an appropriate sense, then we could infer that a function is uniquely
determined by its Fourier coefficients. This would lead to the following
statement: if f and g have the same Fourier coefficients, then f and g
are necessarily equal. By taking the difference f − g, this proposition
can be reformulated as: if f̂(n) = 0 for all n ∈ Z, then f = 0. As stated,
this assertion cannot be correct without reservation, since calculating
Fourier coefficients requires integration, and we see that, for example,
any two functions which differ at finitely many points have the same
Fourier series. However, we do have the following positive result.

Theorem 2.1 Suppose that f is an integrable function on the circle with
f̂(n) = 0 for all n ∈ Z. Then f(θ0) = 0 whenever f is continuous at the
point θ0.

Thus, in terms of what we know about the set of discontinuities of in-
tegrable functions,5 we can conclude that f vanishes for “most” values
of θ.

Proof. We suppose first that f is real-valued, and argue by con-
tradiction. Assume, without loss of generality, that f is defined on

4Carleson’s proof actually holds for the wider class of functions which are square inte-
grable in the Lebesgue sense.

5See the appendix.
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[−π, π], that θ0 = 0, and f(0) > 0. The idea now is to construct a fam-
ily of trigonometric polynomials {pk} that “peak” at 0, and so that∫

pk(θ)f(θ) dθ →∞ as k →∞. This will be our desired contradiction
since these integrals are equal to zero by assumption.

Since f is continuous at 0, we can choose 0 < δ ≤ π/2, so that f(θ) >
f(0)/2 whenever |θ| < δ. Let

p(θ) = ε + cos θ,

where ε > 0 is chosen so small that |p(θ)| < 1− ε/2, whenever δ ≤ |θ| ≤
π. Then, choose a positive η with η < δ, so that p(θ) ≥ 1 + ε/2, for
|θ| < η. Finally, let

pk(θ) = [p(θ)]k,

and select B so that |f(θ)| ≤ B for all θ. This is possible since f is
integrable, hence bounded. Figure 3 illustrates the family {pk}. By

p

p6

p15

Figure 3. The functions p, p6, and p15 when ε = 0.1

construction, each pk is a trigonometric polynomial, and since f̂(n) = 0
for all n, we must have

∫ π

−π
f(θ)pk(θ) dθ = 0 for all k.

However, we have the estimate
∣∣∣∣∣
∫

δ≤|θ|
f(θ)pk(θ) dθ

∣∣∣∣∣ ≤ 2πB(1− ε/2)k.
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Also, our choice of δ guarantees that p(θ) and f(θ) are non-negative
whenever |θ| < δ, thus

∫

η≤|θ|<δ
f(θ)pk(θ) dθ ≥ 0.

Finally,
∫

|θ|<η
f(θ)pk(θ) dθ ≥ 2η

f(0)
2

(1 + ε/2)k.

Therefore,
∫

pk(θ)f(θ) dθ →∞ as k →∞, and this concludes the proof
when f is real-valued. In general, write f(θ) = u(θ) + iv(θ), where u and
v are real-valued. If we define f(θ) = f(θ), then

u(θ) =
f(θ) + f(θ)

2
and v(θ) =

f(θ)− f(θ)
2i

,

and since f̂(n) = f̂(−n), we conclude that the Fourier coefficients of u
and v all vanish, hence f = 0 at its points of continuity. The idea

of constructing a family of functions (trigonometric polynomials in this
case) which peak at the origin, together with other nice properties, will
play an important role in this book. Such families of functions will be
taken up later in Section 4 in connection with the notion of convolution.
For now, note that the above theorem implies the following.

Corollary 2.2 If f is continuous on the circle and f̂(n) = 0 for all
n ∈ Z, then f = 0.

The next corollary shows that the problem (1) formulated earlier has a
simple positive answer under the assumption that the series of Fourier
coefficients converges absolutely.

Corollary 2.3 Suppose that f is a continuous function on the circle and
that the Fourier series of f is absolutely convergent,

∑∞
n=−∞ |f̂(n)| < ∞.

Then, the Fourier series converges uniformly to f , that is,

lim
N→∞

SN (f)(θ) = f(θ) uniformly in θ.

Proof. Recall that if a sequence of continuous functions converges
uniformly, then the limit is also continuous. Now observe that the
assumption

∑ |f̂(n)| < ∞ implies that the partial sums of the Fourier
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series of f converge absolutely and uniformly, and therefore the function
g defined by

g(θ) =
∞∑

n=−∞
f̂(n)einθ = lim

N→∞

N∑

n=−N

f̂(n)einθ

is continuous on the circle. Moreover, the Fourier coefficients of g are
precisely f̂(n) since we can interchange the infinite sum with the integral
(a consequence of the uniform convergence of the series). Therefore, the
previous corollary applied to the function f − g yields f = g, as desired.
What conditions on f would guarantee the absolute convergence of its

Fourier series? As it turns out, the smoothness of f is directly related
to the decay of the Fourier coefficients, and in general, the smoother the
function, the faster this decay. As a result, we can expect that relatively
smooth functions equal their Fourier series. This is in fact the case, as
we now show.

In order to state the result concisely we introduce the standard “O”
notation, which we will use freely in the rest of this book. For exam-
ple, the statement f̂(n) = O(1/|n|2) as |n| → ∞, means that the left-
hand side is bounded by a constant multiple of the right-hand side;
that is, there exists C > 0 with |f̂(n)| ≤ C/|n|2 for all large |n|. More
generally, f(x) = O(g(x)) as x → a means that for some constant C,
|f(x)| ≤ C|g(x)| as x approaches a. In particular, f(x) = O(1) means
that f is bounded.

Corollary 2.4 Suppose that f is a twice continuously differentiable func-
tion on the circle. Then

f̂(n) = O(1/|n|2) as |n| → ∞,

so that the Fourier series of f converges absolutely and uniformly to f .
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Proof. The estimate on the Fourier coefficients is proved by integrating
by parts twice for n 6= 0. We obtain

2πf̂(n) =
∫ 2π

0
f(θ)e−inθ dθ

=

[
f(θ) · −e−inθ

in

]2π

0

+
1
in

∫ 2π

0
f ′(θ)e−inθ dθ

=
1
in

∫ 2π

0
f ′(θ)e−inθ dθ

=
1
in

[
f ′(θ) · −e−inθ

in

]2π

0

+
1

(in)2

∫ 2π

0
f ′′(θ)e−inθ dθ

=
−1
n2

∫ 2π

0
f ′′(θ)e−inθ dθ.

The quantities in brackets vanish since f and f ′ are periodic. Therefore

2π|n|2|f̂(n)| ≤
∣∣∣∣
∫ 2π

0
f ′′(θ)e−inθ dθ

∣∣∣∣ ≤
∫ 2π

0
|f ′′(θ)| dθ ≤ C,

where the constant C is independent of n. (We can take C = 2πB where
B is a bound for f ′′.) Since

∑
1/n2 converges, the proof of the corollary

is complete.

Incidentally, we have also established the following important identity:

f̂ ′(n) = inf̂(n), for all n ∈ Z.

If n 6= 0 the proof is given above, and if n = 0 it is left as an exercise to the
reader. So if f is differentiable and f ∼ ∑

aneinθ, then f ′ ∼ ∑
anineinθ.

Also, if f is twice continuously differentiable, then f ′′ ∼ ∑
an(in)2einθ,

and so on. Further smoothness conditions on f imply even better decay
of the Fourier coefficients (Exercise 10).

There are also stronger versions of Corollary 2.4. It can be shown, for
example, that the Fourier series of f converges absolutely, assuming only
that f has one continuous derivative. Even more generally, the Fourier
series of f converges absolutely (and hence uniformly to f) if f satisfies
a Hölder condition of order α, with α > 1/2, that is,

sup
θ
|f(θ + t)− f(θ)| ≤ A|t|α for all t.

For more on these matters, see the exercises at the end of Chapter 3.
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At this point it is worthwhile to introduce a common notation: we say
that f belongs to the class Ck if f is k times continuously differentiable.
Belonging to the class Ck or satisfying a Hölder condition are two possible
ways to describe the smoothness of a function.

3 Convolutions

The notion of convolution of two functions plays a fundamental role in
Fourier analysis; it appears naturally in the context of Fourier series but
also serves more generally in the analysis of functions in other settings.

Given two 2π-periodic integrable functions f and g on R, we define
their convolution f ∗ g on [−π, π] by

(2) (f ∗ g)(x) =
1
2π

∫ π

−π
f(y)g(x− y) dy.

The above integral makes sense for each x, since the product of two
integrable functions is again integrable. Also, since the functions are
periodic, we can change variables to see that

(f ∗ g)(x) =
1
2π

∫ π

−π
f(x− y)g(y) dy.

Loosely speaking, convolutions correspond to “weighted averages.” For
instance, if g = 1 in (2), then f ∗ g is constant and equal to 1

2π

∫ π
−π f(y) dy,

which we may interpret as the average value of f on the circle. Also, the
convolution (f ∗ g)(x) plays a role similar to, and in some sense replaces,
the pointwise product f(x)g(x) of the two functions f and g.

In the context of this chapter, our interest in convolutions originates
from the fact that the partial sums of the Fourier series of f can be
expressed as follows:

SN (f)(x) =
N∑

n=−N

f̂(n)einx

=
N∑

n=−N

(
1
2π

∫ π

−π
f(y)e−iny dy

)
einx

=
1
2π

∫ π

−π
f(y)

(
N∑

n=−N

ein(x−y)

)
dy

= (f ∗DN )(x),
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where DN is the N th Dirichlet kernel (see Example 4) given by

DN (x) =
N∑

n=−N

einx.

So we observe that the problem of understanding SN (f) reduces to the
understanding of the convolution f ∗DN .

We begin by gathering some of the main properties of convolutions.

Proposition 3.1 Suppose that f , g, and h are 2π-periodic integrable
functions. Then:

(i) f ∗ (g + h) = (f ∗ g) + (f ∗ h).

(ii) (cf) ∗ g = c(f ∗ g) = f ∗ (cg) for any c ∈ C.

(iii) f ∗ g = g ∗ f .

(iv) (f ∗ g) ∗ h = f ∗ (g ∗ h).

(v) f ∗ g is continuous.

(vi) f̂ ∗ g(n) = f̂(n)ĝ(n).

The first four points describe the algebraic properties of convolutions:
linearity, commutativity, and associativity. Property (v) exhibits an im-
portant principle: the convolution of f ∗ g is “more regular” than f or g.
Here, f ∗ g is continuous while f and g are merely (Riemann) integrable.
Finally, (vi) is key in the study of Fourier series. In general, the Fourier
coefficients of the product fg are not the product of the Fourier coeffi-
cients of f and g. However, (vi) says that this relation holds if we replace
the product of the two functions f and g by their convolution f ∗ g.

Proof. Properties (i) and (ii) follow at once from the linearity of the
integral.

The other properties are easily deduced if we assume also that f and
g are continuous. In this case, we may freely interchange the order of
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integration. For instance, to establish (vi) we write

f̂ ∗ g(n) =
1
2π

∫ π

−π
(f ∗ g)(x)e−inx dx

=
1
2π

∫ π

−π

1
2π

(∫ π

−π
f(y)g(x− y) dy

)
e−inx dx

=
1
2π

∫ π

−π
f(y)e−iny

(
1
2π

∫ π

−π
g(x− y)e−in(x−y) dx

)
dy

=
1
2π

∫ π

−π
f(y)e−iny

(
1
2π

∫ π

−π
g(x)e−inx dx

)
dy

= f̂(n)ĝ(n).

To prove (iii), one first notes that if F is continuous and 2π-periodic,
then

∫ π

−π
F (y) dy =

∫ π

−π
F (x− y) dy for any x ∈ R.

The verification of this identity consists of a change of variables y 7→ −y,
followed by a translation y 7→ y − x. Then, one takes F (y) = f(y)g(x− y).

Also, (iv) follows by interchanging two integral signs, and an appro-
priate change of variables.

Finally, we show that if f and g are continuous, then f ∗ g is continu-
ous. First, we may write

(f ∗ g)(x1)− (f ∗ g)(x2) =
1
2π

∫ π

−π
f(y) [g(x1 − y)− g(x2 − y)] dy.

Since g is continuous it must be uniformly continuous on any closed
and bounded interval. But g is also periodic, so it must be uniformly
continuous on all of R; given ε > 0 there exists δ > 0 so that |g(s)−
g(t)| < ε whenever |s− t| < δ. Then, |x1 − x2| < δ implies |(x1 − y)−
(x2 − y)| < δ for any y, hence

|(f ∗ g)(x1)− (f ∗ g)(x2)| ≤ 1
2π

∣∣∣∣
∫ π

−π
f(y) [g(x1 − y)− g(x2 − y)] dy

∣∣∣∣

≤ 1
2π

∫ π

−π
|f(y)| |g(x1 − y)− g(x2 − y)| dy

≤ ε

2π

∫ π

−π
|f(y)| dy

≤ ε

2π
2π B ,
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where B is chosen so that |f(x)| ≤ B for all x. As a result, we conclude
that f ∗ g is continuous, and the proposition is proved, at least when f
and g are continuous.

In general, when f and g are merely integrable, we may use the re-
sults established so far (when f and g are continuous), together with
the following approximation lemma, whose proof may be found in the
appendix.

Lemma 3.2 Suppose f is integrable on the circle and bounded by B.
Then there exists a sequence {fk}∞k=1 of continuous functions on the
circle so that

sup
x∈[−π,π]

|fk(x)| ≤ B for all k = 1, 2, . . . ,

and ∫ π

−π
|f(x)− fk(x)| dx → 0 as k →∞.

Using this result, we may complete the proof of the proposition as
follows. Apply Lemma 3.2 to f and g to obtain sequences {fk} and {gk}
of approximating continuous functions. Then

f ∗ g − fk ∗ gk = (f − fk) ∗ g + fk ∗ (g − gk).

By the properties of the sequence {fk},

|(f − fk) ∗ g(x)| ≤ 1
2π

∫ π

−π
|f(x− y)− fk(x− y)| |g(y)| dy

≤ 1
2π

sup
y
|g(y)|

∫ π

−π
|f(y)− fk(y)| dy

→ 0 as k →∞.

Hence (f − fk) ∗ g → 0 uniformly in x. Similarly, fk ∗ (g − gk) → 0 uni-
formly, and therefore fk ∗ gk tends uniformly to f ∗ g. Since each fk ∗ gk

is continuous, it follows that f ∗ g is also continuous, and we have (v).
Next, we establish (vi). For each fixed integer n we must have

f̂k ∗ gk(n) → f̂ ∗ g(n) as k tends to infinity since fk ∗ gk converges uni-
formly to f ∗ g. However, we found earlier that f̂k(n)ĝk(n) = f̂k ∗ gk(n)
because both fk and gk are continuous. Hence

|f̂(n)− f̂k(n)|= 1
2π

∣∣∣∣
∫ π

−π
(f(x)− fk(x))e−inx dx

∣∣∣∣

≤ 1
2π

∫ π

−π
|f(x)− fk(x)| dx,
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and as a result we find that f̂k(n) → f̂(n) as k goes to infinity. Similarly
ĝk(n) → ĝ(n), and the desired property is established once we let k tend
to infinity. Finally, properties (iii) and (iv) follow from the same kind of
arguments.

4 Good kernels

In the proof of Theorem 2.1 we constructed a sequence of trigonometric
polynomials {pk} with the property that the functions pk peaked at the
origin. As a result, we could isolate the behavior of f at the origin. In
this section, we return to such families of functions, but this time in a
more general setting. First, we define the notion of good kernel, and
discuss the characteristic properties of such functions. Then, by the use
of convolutions, we show how these kernels can be used to recover a given
function.

A family of kernels {Kn(x)}∞n=1 on the circle is said to be a family of
good kernels if it satisfies the following properties:

(a) For all n ≥ 1,
1
2π

∫ π

−π
Kn(x) dx = 1.

(b) There exists M > 0 such that for all n ≥ 1,
∫ π

−π
|Kn(x)| dx ≤ M.

(c) For every δ > 0,
∫

δ≤|x|≤π
|Kn(x)| dx → 0, as n →∞.

In practice we shall encounter families where Kn(x) ≥ 0, in which
case (b) is a consequence of (a). We may interpret the kernels Kn(x)
as weight distributions on the circle: property (a) says that Kn assigns
unit mass to the whole circle [−π, π], and (c) that this mass concentrates
near the origin as n becomes large.6 Figure 4 (a) illustrates the typical
character of a family of good kernels.

The importance of good kernels is highlighted by their use in connec-
tion with convolutions.

6In the limit, a family of good kernels represents the “Dirac delta function.” This
terminology comes from physics.
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(a) (b)
y

Kn(y)

y = 0

f(x− y) f(x)

Figure 4. Good kernels

Theorem 4.1 Let {Kn}∞n=1 be a family of good kernels, and f an inte-
grable function on the circle. Then

lim
n→∞(f ∗Kn)(x) = f(x)

whenever f is continuous at x. If f is continuous everywhere, then the
above limit is uniform.

Because of this result, the family {Kn} is sometimes referred to as an
approximation to the identity.

We have previously interpreted convolutions as weighted averages. In
this context, the convolution

(f ∗Kn)(x) =
1
2π

∫ π

−π
f(x− y)Kn(y) dy

is the average of f(x− y), where the weights are given by Kn(y). How-
ever, the weight distribution Kn concentrates its mass at y = 0 as n
becomes large. Hence in the integral, the value f(x) is assigned the full
mass as n →∞. Figure 4 (b) illustrates this point.

Proof of Theorem 4.1. If ε > 0 and f is continuous at x, choose δ so
that |y| < δ implies |f(x− y)− f(x)| < ε. Then, by the first property of
good kernels, we can write

(f ∗Kn)(x)− f(x) =
1
2π

∫ π

−π
Kn(y)f(x− y) dy − f(x)

=
1
2π

∫ π

−π
Kn(y)[f(x− y)− f(x)] dy.
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Hence,

|(f ∗Kn)(x)− f(x)| =
∣∣∣∣

1
2π

∫ π

−π
Kn(y)[f(x− y)− f(x)] dy

∣∣∣∣

≤ 1
2π

∫

|y|<δ
|Kn(y)| |f(x− y)− f(x)| dy

+
1
2π

∫

δ≤|y|≤π
|Kn(y)| |f(x− y)− f(x)| dy

≤ ε

2π

∫ π

−π
|Kn(y)| dy +

2B

2π

∫

δ≤|y|≤π
|Kn(y)| dy,

where B is a bound for f . The first term is bounded by εM/2π because
of the second property of good kernels. By the third property we see
that for all large n, the second term will be less than ε. Therefore, for
some constant C > 0 and all large n we have

|(f ∗Kn)(x)− f(x)| ≤ Cε,

thereby proving the first assertion in the theorem. If f is continuous
everywhere, then it is uniformly continuous, and δ can be chosen in-
dependent of x. This provides the desired conclusion that f ∗Kn → f
uniformly.

Recall from the beginning of Section 3 that

SN (f)(x) = (f ∗DN )(x) ,

where DN (x) =
∑N

n=−N einx is the Dirichlet kernel. It is natural now for
us to ask whether DN is a good kernel, since if this were true, Theorem 4.1
would imply that the Fourier series of f converges to f(x) whenever f is
continuous at x. Unfortunately, this is not the case. Indeed, an estimate
shows that DN violates the second property; more precisely, one has (see
Problem 2)

∫ π

−π
|DN (x)| dx ≥ c log N, as N →∞.

However, we should note that the formula for DN as a sum of exponen-
tials immediately gives

1
2π

∫ π

−π
DN (x) dx = 1,

so the first property of good kernels is actually verified. The fact that the
mean value of DN is 1, while the integral of its absolute value is large,
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is a result of cancellations. Indeed, Figure 5 shows that the function
DN (x) takes on positive and negative values and oscillates very rapidly
as N gets large.

Figure 5. The Dirichlet kernel for large N

This observation suggests that the pointwise convergence of Fourier
series is intricate, and may even fail at points of continuity. This is
indeed the case, as we will see in the next chapter.

5 Cesàro and Abel summability: applications to Fourier

series

Since a Fourier series may fail to converge at individual points, we are
led to try to overcome this failure by interpreting the limit

lim
N→∞

SN (f) = f

in a different sense.

5.1 Cesàro means and summation

We begin by taking ordinary averages of the partial sums, a technique
which we now describe in more detail.
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Suppose we are given a series of complex numbers

c0 + c1 + c2 + · · · =
∞∑

k=0

ck.

We define the nth partial sum sn by

sn =
n∑

k=0

ck,

and say that the series converges to s if limn→∞ sn = s. This is the
most natural and most commonly used type of “summability.” Consider,
however, the example of the series

(3) 1− 1 + 1− 1 + · · · =
∞∑

k=0

(−1)k.

Its partial sums form the sequence {1, 0, 1, 0, . . .} which has no limit.
Because these partial sums alternate evenly between 1 and 0, one might
therefore suggest that 1/2 is the “limit” of the sequence, and hence 1/2
equals the “sum” of that particular series. We give a precise meaning to
this by defining the average of the first N partial sums by

σN =
s0 + s1 + · · ·+ sN−1

N
.

The quantity σN is called the N th Cesàro mean7 of the sequence {sk}
or the N th Cesàro sum of the series

∑∞
k=0 ck.

If σN converges to a limit σ as N tends to infinity, we say that the
series

∑
cn is Cesàro summable to σ. In the case of series of functions,

we shall understand the limit in the sense of either pointwise or uniform
convergence, depending on the situation.

The reader will have no difficulty checking that in the above exam-
ple (3), the series is Cesàro summable to 1/2. Moreover, one can show
that Cesàro summation is a more inclusive process than convergence. In
fact, if a series is convergent to s, then it is also Cesàro summable to the
same limit s (Exercise 12).

5.2 Fejér’s theorem

An interesting application of Cesàro summability appears in the context
of Fourier series.

7Note that if the series
∑∞

k=1
ck begins with the term k = 1, then it is common prac-

tice to define σN = (s1 + · · ·+ sN )/N . This change of notation has little effect on what
follows.
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We mentioned earlier that the Dirichlet kernels fail to belong to the
family of good kernels. Quite surprisingly, their averages are very well
behaved functions, in the sense that they do form a family of good ker-
nels.

To see this, we form the N th Cesàro mean of the Fourier series, which
by definition is

σN (f)(x) =
S0(f)(x) + · · ·+ SN−1(f)(x)

N
.

Since Sn(f) = f ∗Dn, we find that

σN (f)(x) = (f ∗ FN )(x),

where FN (x) is the N -th Fejér kernel given by

FN (x) =
D0(x) + · · ·+ DN−1(x)

N
.

Lemma 5.1 We have

FN (x) =
1
N

sin2(Nx/2)
sin2(x/2)

,

and the Fejér kernel is a good kernel.

The proof of the formula for FN (a simple application of trigonometric
identities) is outlined in Exercise 15. To prove the rest of the lemma, note
that FN is positive and 1

2π

∫ π
−π FN (x) dx = 1, in view of the fact that a

similar identity holds for the Dirichlet kernels Dn. However, sin2(x/2) ≥
cδ > 0, if δ ≤ |x| ≤ π, hence FN (x) ≤ 1/(Ncδ), from which it follows that

∫

δ≤|x|≤π
|FN (x)| dx → 0 as N →∞.

Applying Theorem 4.1 to this new family of good kernels yields the
following important result.

Theorem 5.2 If f is integrable on the circle, then the Fourier series of
f is Cesàro summable to f at every point of continuity of f .

Moreover, if f is continuous on the circle, then the Fourier series of
f is uniformly Cesàro summable to f .

We may now state two corollaries. The first is a result that we have
already established. The second is new, and of fundamental importance.
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Corollary 5.3 If f is integrable on the circle and f̂(n) = 0 for all n,
then f = 0 at all points of continuity of f .

The proof is immediate since all the partial sums are 0, hence all the
Cesàro means are 0.

Corollary 5.4 Continuous functions on the circle can be uniformly ap-
proximated by trigonometric polynomials.

This means that if f is continuous on [−π, π] with f(−π) = f(π) and
ε > 0, then there exists a trigonometric polynomial P such that

|f(x)− P (x)| < ε for all −π ≤ x ≤ π.

This follows immediately from the theorem since the partial sums, hence
the Cesàro means, are trigonometric polynomials. Corollary 5.4 is the
periodic analogue of the Weierstrass approximation theorem for polyno-
mials which can be found in Exercise 16.

5.3 Abel means and summation

Another method of summation was first considered by Abel and actually
predates the Cesàro method.

A series of complex numbers
∑∞

k=0 ck is said to be Abel summable
to s if for every 0 ≤ r < 1, the series

A(r) =
∞∑

k=0

ckrk

converges, and

lim
r→1

A(r) = s.

The quantities A(r) are called the Abel means of the series. One can
prove that if the series converges to s, then it is Abel summable to s.
Moreover, the method of Abel summability is even more powerful than
the Cesàro method: when the series is Cesàro summable, it is always
Abel summable to the same sum. However, if we consider the series

1− 2 + 3− 4 + 5− · · · =
∞∑

k=0

(−1)k(k + 1),

then one can show that it is Abel summable to 1/4 since

A(r) =
∞∑

k=0

(−1)k(k + 1)rk =
1

(1 + r)2
,

but this series is not Cesàro summable; see Exercise 13.
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5.4 The Poisson kernel and Dirichlet’s problem in the unit disc

To adapt Abel summability to the context of Fourier series, we define
the Abel means of the function f(θ) ∼ ∑∞

n=−∞ aneinθ by

Ar(f)(θ) =
∞∑

n=−∞
r|n|aneinθ.

Since the index n takes positive and negative values, it is natural to write
c0 = a0, and cn = aneinθ + a−ne−inθ for n > 0, so that the Abel means
of the Fourier series correspond to the definition given in the previous
section for numerical series.

We note that since f is integrable, |an| is uniformly bounded in n, so
that Ar(f) converges absolutely and uniformly for each 0 ≤ r < 1. Just
as in the case of Cesàro means, the key fact is that these Abel means can
be written as convolutions

Ar(f)(θ) = (f ∗ Pr)(θ),

where Pr(θ) is the Poisson kernel given by

(4) Pr(θ) =
∞∑

n=−∞
r|n|einθ.

In fact,

Ar(f)(θ) =
∞∑

n=−∞
r|n|aneinθ

=
∞∑

n=−∞
r|n|

(
1
2π

∫ π

−π
f(ϕ)e−inϕ dϕ

)
einθ

=
1
2π

∫ π

−π
f(ϕ)

( ∞∑
n=−∞

r|n|e−in(ϕ−θ)

)
dϕ,

where the interchange of the integral and infinite sum is justified by the
uniform convergence of the series.

Lemma 5.5 If 0 ≤ r < 1, then

Pr(θ) =
1− r2

1− 2r cos θ + r2
.
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The Poisson kernel is a good kernel,8 as r tends to 1 from below.

Proof. The identity Pr(θ) = 1−r2

1−2r cos θ+r2 has already been derived in
Section 1.1. Note that

1− 2r cos θ + r2 = (1− r)2 + 2r(1− cos θ).

Hence if 1/2 ≤ r ≤ 1 and δ ≤ |θ| ≤ π, then

1− 2r cos θ + r2 ≥ cδ > 0.

Thus Pr(θ) ≤ (1− r2)/cδ when δ ≤ |θ| ≤ π, and the third property of
good kernels is verified. Clearly Pr(θ) ≥ 0, and integrating the expres-
sion (4) term by term (which is justified by the absolute convergence of
the series) yields

1
2π

∫ π

−π
Pr(θ) dθ = 1,

thereby concluding the proof that Pr is a good kernel.

Combining this lemma with Theorem 4.1, we obtain our next result.

Theorem 5.6 The Fourier series of an integrable function on the circle
is Abel summable to f at every point of continuity. Moreover, if f is
continuous on the circle, then the Fourier series of f is uniformly Abel
summable to f .

We now return to a problem discussed in Chapter 1, where we sketched
the solution of the steady-state heat equation 4u = 0 in the unit disc
with boundary condition u = f on the circle. We expressed the Laplacian
in terms of polar coordinates, separated variables, and expected that a
solution was given by

(5) u(r, θ) =
∞∑

m=−∞
amr|m|eimθ,

where am was the mth Fourier coefficient of f . In other words, we were
led to take

u(r, θ) = Ar(f)(θ) =
1
2π

∫ π

−π
f(ϕ)Pr(θ − ϕ) dϕ.

We are now in a position to show that this is indeed the case.

8In this case, the family of kernels is indexed by a continuous parameter 0 ≤ r < 1,
rather than the discrete n considered previously. In the definition of good kernels, we
simply replace n by r and take the limit in property (c) appropriately, for example r → 1
in this case.
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Theorem 5.7 Let f be an integrable function defined on the unit circle.
Then the function u defined in the unit disc by the Poisson integral

(6) u(r, θ) = (f ∗ Pr)(θ)

has the following properties:

(i) u has two continuous derivatives in the unit disc and satisfies
4u = 0.

(ii) If θ is any point of continuity of f , then

lim
r→1

u(r, θ) = f(θ).

If f is continuous everywhere, then this limit is uniform.

(iii) If f is continuous, then u(r, θ) is the unique solution to the steady-
state heat equation in the disc which satisfies conditions (i) and (ii).

Proof. For (i), we recall that the function u is given by the series (5).
Fix ρ < 1; inside each disc of radius r < ρ < 1 centered at the origin, the
series for u can be differentiated term by term, and the differentiated se-
ries is uniformly and absolutely convergent. Thus u can be differentiated
twice (in fact infinitely many times), and since this holds for all ρ < 1,
we conclude that u is twice differentiable inside the unit disc. Moreover,
in polar coordinates,

4u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
,

so term by term differentiation shows that 4u = 0.
The proof of (ii) is a simple application of the previous theorem. To

prove (iii) we argue as follows. Suppose v solves the steady-state heat
equation in the disc and converges to f uniformly as r tends to 1 from
below. For each fixed r with 0 < r < 1, the function v(r, θ) has a Fourier
series

∞∑
n=−∞

an(r)einθ where an(r) =
1
2π

∫ π

−π
v(r, θ)e−inθ dθ.

Taking into account that v(r, θ) solves the equation

(7)
∂2v

∂r2
+

1
r

∂v

∂r
+

1
r2

∂2v

∂θ2
= 0,
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we find that

(8) a′′n(r) +
1
r
a′n(r)− n2

r2
an(r) = 0.

Indeed, we may first multiply (7) by e−inθ and integrate in θ. Then,
since v is periodic, two integrations by parts give

1
2π

∫ π

−π

∂2v

∂θ2
(r, θ)e−inθ dθ = −n2an(r).

Finally, we may interchange the order of differentiation and integra-
tion, which is permissible since v has two continuous derivatives; this
yields (8).

Therefore, we must have an(r) = Anrn + Bnr−n for some constants
An and Bn, when n 6= 0 (see Exercise 11 in Chapter 1). To evaluate the
constants, we first observe that each term an(r) is bounded because v is
bounded, therefore Bn = 0. To find An we let r → 1. Since v converges
uniformly to f as r → 1 we find that

An =
1
2π

∫ π

−π
f(θ)e−inθ dθ.

By a similar argument, this formula also holds when n = 0. Our con-
clusion is that for each 0 < r < 1, the Fourier series of v is given by the
series of u(r, θ), so by the uniqueness of Fourier series for continuous
functions, we must have u = v.

Remark. By part (iii) of the theorem, we may conclude that if u
solves 4u = 0 in the disc, and converges to 0 uniformly as r → 1, then
u must be identically 0. However, if uniform convergence is replaced by
pointwise convergence, this conclusion may fail; see Exercise 18.

6 Exercises

1. Suppose f is 2π-periodic and integrable on any finite interval. Prove that if
a, b ∈ R, then

∫ b

a

f(x) dx =
∫ b+2π

a+2π

f(x) dx =
∫ b−2π

a−2π

f(x) dx.

Also prove that

∫ π

−π

f(x + a) dx =
∫ π

−π

f(x) dx =
∫ π+a

−π+a

f(x) dx.



Ibookroot October 20, 2007

6. Exercises 59

2. In this exercise we show how the symmetries of a function imply certain
properties of its Fourier coefficients. Let f be a 2π-periodic Riemann integrable
function defined on R.

(a) Show that the Fourier series of the function f can be written as

f(θ) ∼ f̂(0) +
∑
n≥1

[f̂(n) + f̂(−n)] cos nθ + i[f̂(n)− f̂(−n)] sin nθ.

(b) Prove that if f is even, then f̂(n) = f̂(−n), and we get a cosine series.

(c) Prove that if f is odd, then f̂(n) = −f̂(−n), and we get a sine series.

(d) Suppose that f(θ + π) = f(θ) for all θ ∈ R. Show that f̂(n) = 0 for all
odd n.

(e) Show that f is real-valued if and only if f̂(n) = f̂(−n) for all n.

3. We return to the problem of the plucked string discussed in Chapter 1. Show
that the initial condition f is equal to its Fourier sine series

f(x) =
∞∑

m=1

Am sinmx with Am =
2h

m2

sinmp

p(π − p)
.

[Hint: Note that |Am| ≤ C/m2.]

4. Consider the 2π-periodic odd function defined on [0, π] by f(θ) = θ(π − θ).

(a) Draw the graph of f .

(b) Compute the Fourier coefficients of f , and show that

f(θ) =
8
π

∑
k odd ≥ 1

sin kθ

k3
.

5. On the interval [−π, π] consider the function

f(θ) =

{
0 if |θ| > δ,

1− |θ|/δ if |θ| ≤ δ.

Thus the graph of f has the shape of a triangular tent. Show that

f(θ) =
δ

2π
+ 2

∞∑
n=1

1− cos nδ

n2πδ
cos nθ.

6. Let f be the function defined on [−π, π] by f(θ) = |θ|.
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(a) Draw the graph of f .

(b) Calculate the Fourier coefficients of f , and show that

f̂(n) =





π

2
if n = 0,

−1 + (−1)n

πn2
if n 6= 0.

(c) What is the Fourier series of f in terms of sines and cosines?

(d) Taking θ = 0, prove that

∑

n odd ≥1

1
n2

=
π2

8
and

∞∑
n=1

1
n2

=
π2

6
.

See also Example 2 in Section 1.1.

7. Suppose {an}N
n=1 and {bn}N

n=1 are two finite sequences of complex numbers.
Let Bk =

∑k
n=1 bn denote the partial sums of the series

∑
bn with the convention

B0 = 0.

(a) Prove the summation by parts formula

N∑
n=M

anbn = aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn.

(b) Deduce from this formula Dirichlet’s test for convergence of a series: if the
partial sums of the series

∑
bn are bounded, and {an} is a sequence of

real numbers that decreases monotonically to 0, then
∑

anbn converges.

8. Verify that
1
2i

∑
n 6=0

einx

n
is the Fourier series of the 2π-periodic sawtooth

function illustrated in Figure 6, defined by f(0) = 0, and

f(x) =





−π

2
− x

2
if −π < x < 0,

π

2
− x

2
if 0 < x < π.

Note that this function is not continuous. Show that nevertheless, the series
converges for every x (by which we mean, as usual, that the symmetric partial
sums of the series converge). In particular, the value of the series at the origin,
namely 0, is the average of the values of f(x) as x approaches the origin from
the left and the right.
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0

π
2

−π π

−π
2

Figure 6. The sawtooth function

[Hint: Use Dirichlet’s test for convergence of a series
∑

anbn.]

9. Let f(x) = χ[a,b](x) be the characteristic function of the interval [a, b] ⊂
[−π, π], that is,

χ[a,b](x) =
{

1 if x ∈ [a, b],
0 otherwise.

(a) Show that the Fourier series of f is given by

f(x) ∼ b− a

2π
+

∑

n6=0

e−ina − e−inb

2πin
einx.

The sum extends over all positive and negative integers excluding 0.

(b) Show that if a 6= −π or b 6= π and a 6= b, then the Fourier series does not
converge absolutely for any x. [Hint: It suffices to prove that for many
values of n one has | sin nθ0| ≥ c > 0 where θ0 = (b− a)/2.]

(c) However, prove that the Fourier series converges at every point x. What
happens if a = −π and b = π?

10. Suppose f is a periodic function of period 2π which belongs to the class Ck.
Show that

f̂(n) = O(1/|n|k) as |n| → ∞.

This notation means that there exists a constant C such |f̂(n)| ≤ C/|n|k. We
could also write this as |n|kf̂(n) = O(1), where O(1) means bounded.
[Hint: Integrate by parts.]

11. Suppose that {fk}∞k=1 is a sequence of Riemann integrable functions on the
interval [0, 1] such that

∫ 1

0

|fk(x)− f(x)| dx → 0 as k →∞.
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Show that f̂k(n) → f̂(n) uniformly in n as k →∞.

12. Prove that if a series of complex numbers
∑

cn converges to s, then
∑

cn

is Cesàro summable to s.
[Hint: Assume sn → 0 as n →∞.]

13. The purpose of this exercise is to prove that Abel summability is stronger
than the standard or Cesàro methods of summation.

(a) Show that if the series
∑∞

n=1 cn of complex numbers converges to a finite
limit s, then the series is Abel summable to s. [Hint: Why is it enough to
prove the theorem when s = 0? Assuming s = 0, show that if sN = c1 +
· · ·+ cN , then

∑N
n=1 cnrn = (1− r)

∑N
n=1 snrn + sNrN+1. Let N →∞

to show that
∑

cnrn = (1− r)
∑

snrn.

Finally, prove that the right-hand side converges to 0 as r → 1.]

(b) However, show that there exist series which are Abel summable, but that
do not converge. [Hint: Try cn = (−1)n. What is the Abel limit of

∑
cn?]

(c) Argue similarly to prove that if a series
∑∞

n=1 cn is Cesàro summable to
σ, then it is Abel summable to σ. [Hint: Note that

∞∑
n=1

cnrn = (1− r)2
∞∑

n=1

nσnrn,

and assume σ = 0.]

(d) Give an example of a series that is Abel summable but not Cesàro summable.
[Hint: Try cn = (−1)n−1n. Note that if

∑
cn is Cesàro summable, then

cn/n tends to 0.]

The results above can be summarized by the following implications about
series:

convergent =⇒ Cesàro summable =⇒ Abel summable,

and the fact that none of the arrows can be reversed.

14. This exercise deals with a theorem of Tauber which says that under an
additional condition on the coefficients cn, the above arrows can be reversed.

(a) If
∑

cn is Cesàro summable to σ and cn = o(1/n) (that is, ncn → 0), then∑
cn converges to σ. [Hint: sn − σn = [(n− 1)cn + · · ·+ c2]/n.]

(b) The above statement holds if we replace Cesàro summable by Abel summable.
[Hint: Estimate the difference between

∑N
n=1 cn and

∑N
n=1 cnrn where

r = 1− 1/N .]
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15. Prove that the Fejér kernel is given by

FN (x) =
1
N

sin2(Nx/2)
sin2(x/2)

.

[Hint: Remember that NFN (x) = D0(x) + · · ·+ DN−1(x) where Dn(x) is the
Dirichlet kernel. Therefore, if ω = eix we have

NFN (x) =
N−1∑
n=0

ω−n − ωn+1

1− ω
.]

16. The Weierstrass approximation theorem states: Let f be a continuous
function on the closed and bounded interval [a, b] ⊂ R. Then, for any ε > 0,
there exists a polynomial P such that

sup
x∈[a,b]

|f(x)− P (x)| < ε.

Prove this by applying Corollary 5.4 of Fejér’s theorem and using the fact that
the exponential function eix can be approximated by polynomials uniformly on
any interval.

17. In Section 5.4 we proved that the Abel means of f converge to f at all
points of continuity, that is,

lim
r→1

Ar(f)(θ) = lim
r→1

(Pr ∗ f)(θ) = f(θ), with 0 < r < 1,

whenever f is continuous at θ. In this exercise, we will study the behavior of
Ar(f)(θ) at certain points of discontinuity.

An integrable function is said to have a jump discontinuity at θ if the two
limits

lim
h → 0
h > 0

f(θ + h) = f(θ+) and lim
h → 0
h > 0

f(θ − h) = f(θ−)

exist.

(a) Prove that if f has a jump discontinuity at θ, then

lim
r→1

Ar(f)(θ) =
f(θ+) + f(θ−)

2
, with 0 ≤ r < 1.

[Hint: Explain why 1
2π

∫ 0

−π
Pr(θ) dθ = 1

2π

∫ π

0
Pr(θ) dθ = 1

2 , then modify
the proof given in the text.]
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(b) Using a similar argument, show that if f has a jump discontinuity at θ,
the Fourier series of f at θ is Cesàro summable to f(θ+)+f(θ−)

2 .

18. If Pr(θ) denotes the Poisson kernel, show that the function

u(r, θ) =
∂Pr

∂θ
,

defined for 0 ≤ r < 1 and θ ∈ R, satisfies:

(i) 4u = 0 in the disc.

(ii) limr→1 u(r, θ) = 0 for each θ.

However, u is not identically zero.

19. Solve Laplace’s equation 4u = 0 in the semi infinite strip

S = {(x, y) : 0 < x < 1, 0 < y},

subject to the following boundary conditions




u(0, y) = 0 when 0 ≤ y,
u(1, y) = 0 when 0 ≤ y,

u(x, 0) = f(x) when 0 ≤ x ≤ 1

where f is a given function, with of course f(0) = f(1) = 0. Write

f(x) =
∞∑

n=1

an sin(nπx)

and expand the general solution in terms of the special solutions given by

un(x, y) = e−nπy sin(nπx).

Express u as an integral involving f , analogous to the Poisson integral for-
mula (6).

20. Consider the Dirichlet problem in the annulus defined by {(r, θ) : ρ < r < 1},
where 0 < ρ < 1 is the inner radius. The problem is to solve

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
= 0

subject to the boundary conditions
{

u(1, θ) = f(θ),
u(ρ, θ) = g(θ),
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where f and g are given continuous functions.
Arguing as we have previously for the Dirichlet problem in the disc, we can

hope to write

u(r, θ) =
∑

cn(r)einθ

with cn(r) = Anrn + Bnr−n, n 6= 0. Set

f(θ) ∼
∑

aneinθ and g(θ) ∼
∑

bneinθ.

We want cn(1) = an and cn(ρ) = bn. This leads to the solution

u(r, θ)=
∑

n 6=0

(
1

ρn − ρ−n

)[
((ρ/r)n − (r/ρ)n) an + (rn − r−n)bn

]
einθ

+a0 + (b0 − a0)
log r

log ρ
.

Show that as a result we have

u(r, θ)− (Pr ∗ f)(θ) → 0 as r → 1 uniformly in θ,

and

u(r, θ)− (Pρ/r ∗ g)(θ) → 0 as r → ρ uniformly in θ.

7 Problems

1. One can construct Riemann integrable functions on [0, 1] that have a dense
set of discontinuities as follows.

(a) Let f(x) = 0 when x < 0, and f(x) = 1 if x ≥ 0. Choose a countable dense
sequence {rn} in [0, 1]. Then, show that the function

F (x) =
∞∑

n=1

1
n2

f(x− rn)

is integrable and has discontinuities at all points of the sequence {rn}.
[Hint: F is monotonic and bounded.]

(b) Consider next

F (x) =
∞∑

n=1

3−ng(x− rn),

where g(x) = sin 1/x when x 6= 0, and g(0) = 0. Then F is integrable,
discontinuous at each x = rn, and fails to be monotonic in any subinterval
of [0, 1]. [Hint: Use the fact that 3−k >

∑
n>k 3−n.]
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(c) The original example of Riemann is the function

F (x) =
∞∑

n=1

(nx)
n2

,

where (x) = x for x ∈ (−1/2, 1/2] and (x) is continued to R by periodicity,
that is, (x + 1) = (x). It can be shown that F is discontinuous whenever
x = m/2n, where m,n ∈ Z with m odd and n 6= 0.

2. Let DN denote the Dirichlet kernel

DN (θ) =
N∑

k=−N

eikθ =
sin((N + 1/2)θ)

sin(θ/2)
,

and define

LN =
1
2π

∫ π

−π

|DN (θ)| dθ.

(a) Prove that

LN ≥ c log N

for some constant c > 0. [Hint: Show that |DN (θ)| ≥ c sin((N+1/2)θ)
|θ| , change

variables, and prove that

LN ≥ c

∫ Nπ

π

| sin θ|
|θ| dθ + O(1).

Write the integral as a sum
∑N−1

k=1

∫ (k+1)π

kπ
. To conclude, use the fact that∑n

k=1 1/k ≥ c log n.] A more careful estimate gives

LN =
4
π2

log N + O(1).

(b) Prove the following as a consequence: for each n ≥ 1, there exists a contin-
uous function fn such that |fn| ≤ 1 and |Sn(fn)(0)| ≥ c′ log n. [Hint: The
function gn which is equal to 1 when Dn is positive and −1 when Dn is
negative has the desired property but is not continuous. Approximate gn

in the integral norm (in the sense of Lemma 3.2) by continuous functions
hk satisfying |hk| ≤ 1.]

3.∗ Littlewood provided a refinement of Tauber’s theorem:
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(a) If
∑

cn is Abel summable to s and cn = O(1/n), then
∑

cn converges to
s.

(b) As a consequence, if
∑

cn is Cesàro summable to s and cn = O(1/n), then∑
cn converges to s.

These results may be applied to Fourier series. By Exercise 17, they imply that
if f is an integrable function that satisfies f̂(ν) = O(1/|ν|), then:

(i) If f is continuous at θ, then

SN (f)(θ) → f(θ) as N →∞.

(ii) If f has a jump discontinuity at θ, then

SN (f)(θ) → f(θ+) + f(θ−)
2

as N →∞.

(iii) If f is continuous on [−π, π], then SN (f) → f uniformly.

For the simpler assertion (b), hence a proof of (i), (ii), and (iii), see Problem 5
in Chapter 4.
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3 Convergence of Fourier Series

The sine and cosine series, by which one can repre-
sent an arbitrary function in a given interval, enjoy
among other remarkable properties that of being con-
vergent. This property did not escape the great ge-
ometer (Fourier) who began, through the introduc-
tion of the representation of functions just mentioned,
a new career for the applications of analysis; it was
stated in the Memoir which contains his first research
on heat. But no one so far, to my knowledge, gave a
general proof of it . . .

G. Dirichlet, 1829

In this chapter, we continue our study of the problem of convergence
of Fourier series. We approach the problem from two different points of
view.

The first is “global” and concerns the overall behavior of a function
f over the entire interval [0, 2π]. The result we have in mind is “mean-
square convergence”: if f is integrable on the circle, then

1
2π

∫ 2π

0
|f(θ)− SN (f)(θ)|2 dθ → 0 as N →∞.

At the heart of this result is the fundamental notion of “orthogonal-
ity”; this idea is expressed in terms of vector spaces with inner products,
and their related infinite dimensional variants, the Hilbert spaces. A
connected result is the Parseval identity which equates the mean-square
“norm” of the function with a corresponding norm of its Fourier coeffi-
cients. Orthogonality is a fundamental mathematical notion which has
many applications in analysis.

The second viewpoint is “local” and concerns the behavior of f near a
given point. The main question we consider is the problem of pointwise
convergence: does the Fourier series of f converge to the value f(θ)
for a given θ? We first show that this convergence does indeed hold
whenever f is differentiable at θ. As a corollary, we obtain the Riemann
localization principle, which states that the question of whether or not
SN (f)(θ) → f(θ) is completely determined by the behavior of f in an
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arbitrarily small interval about θ. This is a remarkable result since the
Fourier coefficients, hence the Fourier series, of f depend on the values
of f on the whole interval [0, 2π].

Even though convergence of the Fourier series holds at points where
f is differentiable, it may fail if f is merely continuous. The chapter
concludes with the presentation of a continuous function whose Fourier
series does not converge at a given point, as promised earlier.

1 Mean-square convergence of Fourier series

The aim of this section is the proof of the following theorem.

Theorem 1.1 Suppose f is integrable on the circle. Then

1
2π

∫ 2π

0
|f(θ)− SN (f)(θ)|2 dθ → 0 as N →∞.

As we remarked earlier, the key concept involved is that of orthogonal-
ity. The correct setting for orthogonality is in a vector space equipped
with an inner product.

1.1 Vector spaces and inner products

We now review the definitions of a vector space over R or C, an inner
product, and its associated norm. In addition to the familiar finite-
dimensional vector spaces Rd and Cd, we also examine two infinite-
dimensional examples which play a central role in the proof of Theo-
rem 1.1.

Preliminaries on vector spaces

A vector space V over the real numbers R is a set whose elements may be
“added” together, and “multiplied” by scalars. More precisely, we may
associate to any pair X, Y ∈ V an element in V called their sum and
denoted by X + Y . We require that this addition respects the usual laws
of arithmetic, such as commutativity X + Y = Y + X, and associativity
X + (Y + Z) = (X + Y ) + Z, etc. Also, given any X ∈ V and real num-
ber λ, we assign an element λX ∈ V called the product of X by λ. This
scalar multiplication must satisfy the standard properties, for instance
λ1(λ2X) = (λ1λ2)X and λ(X + Y ) = λX + λY . We may instead allow
scalar multiplication by numbers in C; we then say that V is a vector
space over the complex numbers.
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For example, the set Rd of d-tuples of real numbers (x1, x2, . . . , xd) is
a vector space over the reals. Addition is defined componentwise by

(x1, . . . , xd) + (y1, . . . , yd) = (x1 + y1, . . . , xd + yd),

and so is multiplication by a scalar λ ∈ R:

λ(x1, . . . , xd) = (λx1, . . . , λxd).

Similarly, the space Cd (the complex version of the previous example)
is the set of d-tuples of complex numbers (z1, z2, . . . , zd). It is a vector
space over C with addition defined componentwise by

(z1, . . . , zd) + (w1, . . . , wd) = (z1 + w1, . . . , zd + wd).

Multiplication by scalars λ ∈ C is given by

λ(z1, . . . , zd) = (λz1, . . . , λzd).

An inner product on a vector space V over R associates to any pair
X, Y of elements in V a real number which we denote by (X,Y ). In
particular, the inner product must be symmetric (X, Y ) = (Y, X) and
linear in both variables; that is,

(αX + βY,Z) = α(X, Z) + β(Y, Z)

whenever α, β ∈ R and X,Y, Z ∈ V . Also, we require that the inner prod-
uct be positive-definite, that is, (X, X) ≥ 0 for all X in V . In particular,
given an inner product (·, ·) we may define the norm of X by

‖X‖ = (X, X)1/2.

If in addition ‖X‖ = 0 implies X = 0, we say that the inner product is
strictly positive-definite.

For example, the space Rd is equipped with a (strictly positive-definite)
inner product defined by

(X, Y ) = x1y1 + · · ·+ xdyd

when X = (x1, . . . , xd) and Y = (y1, . . . , yd). Then

‖X‖ = (X, X)1/2 =
√

x2
1 + · · ·+ x2

d,
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which is the usual Euclidean distance. One also uses the notation |X|
instead of ‖X‖.

For vector spaces over the complex numbers, the inner product of two
elements is a complex number. Moreover, these inner products are called
Hermitian (instead of symmetric) since they must satisfy
(X, Y ) = (Y, X). Hence the inner product is linear in the first variable,
but conjugate-linear in the second:

(αX + βY, Z) =α(X, Z) + β(Y, Z) and

(X,αY + βZ) =α(X, Y ) + β(X, Z).

Also, we must have (X,X) ≥ 0, and the norm of X is defined by
‖X‖ = (X,X)1/2 as before. Again, the inner product is strictly positive-
definite if ‖X‖ = 0 implies X = 0.

For example, the inner product of two vectors Z = (z1, . . . , zd) and
W = (w1, . . . , wd) in Cd is defined by

(Z,W ) = z1w1 + · · ·+ zdwd.

The norm of the vector Z is then given by

‖Z‖ = (Z, Z)1/2 =
√
|z1|2 + · · ·+ |zd|2.

The presence of an inner product on a vector space allows one to define
the geometric notion of “orthogonality.” Let V be a vector space (over R
or C) with inner product (·, ·) and associated norm ‖ · ‖. Two elements
X and Y are orthogonal if (X, Y ) = 0, and we write X ⊥ Y . Three
important results can be derived from this notion of orthogonality:

(i) The Pythagorean theorem: if X and Y are orthogonal, then

‖X + Y ‖2 = ‖X‖2 + ‖Y ‖2.

(ii) The Cauchy-Schwarz inequality: for any X,Y ∈ V we have

|(X,Y )| ≤ ‖X‖ ‖Y ‖.

(iii) The triangle inequality: for any X, Y ∈ V we have

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖.
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The proofs of these facts are simple. For (i) it suffices to expand
(X + Y, X + Y ) and use the assumption that (X, Y ) = 0.

For (ii), we first dispose of the case when ‖Y ‖ = 0 by showing that
this implies (X, Y ) = 0 for all X. Indeed, for all real t we have

0 ≤ ‖X + tY ‖2 = ‖X‖2 + 2t Re(X,Y )

and Re(X,Y ) 6= 0 contradicts the inequality if we take t to be large and
positive (or negative). Similarly, by considering ‖X + itY ‖2, we find that
Im(X, Y ) = 0.

If ‖Y ‖ 6= 0, we may set c = (X, Y )/(Y, Y ); then X − cY is orthogonal
to Y , and therefore also to cY . If we write X = X − cY + cY and apply
the Pythagorean theorem, we get

‖X‖2 = ‖X − cY ‖2 + ‖cY ‖2 ≥ |c|2‖Y ‖2.

Taking square roots on both sides gives the result. Note that we have
equality in the above precisely when X = cY .

Finally, for (iii) we first note that

‖X + Y ‖2 = (X,X) + (X,Y ) + (Y,X) + (Y, Y ).

But (X, X) = ‖X‖2, (Y, Y ) = ‖Y ‖2, and by the Cauchy-Schwarz inequal-
ity

|(X, Y ) + (Y, X)| ≤ 2 ‖X‖ ‖Y ‖,

therefore

‖X + Y ‖2 ≤ ‖X‖2 + 2 ‖X‖ ‖Y ‖+ ‖Y ‖2 = (‖X‖+ ‖Y ‖)2.

Two important examples

The vector spaces Rd and Cd are finite dimensional. In the context
of Fourier series, we need to work with two infinite-dimensional vector
spaces, which we now describe.

Example 1. The vector space `2(Z) over C is the set of all (two-sided)
infinite sequences of complex numbers

(. . . , a−n, . . . , a−1, a0, a1, . . . , an, . . .)

such that
∑

n∈Z
|an|2 < ∞;
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that is, the series converges. Addition is defined componentwise, and
so is scalar multiplication. The inner product between the two vectors
A = (. . . , a−1, a0, a1, . . .) and B = (. . . , b−1, b0, b1, . . .) is defined by the
absolutely convergent series

(A,B) =
∑

n∈Z
anbn.

The norm of A is then given by

‖A‖ = (A,A)1/2 =

(∑

n∈Z
|an|2

)1/2

.

We must first check that `2(Z) is a vector space. This requires that if
A and B are two elements in `2(Z), then so is the vector A + B. To see
this, for each integer N > 0 we let AN denote the truncated element

AN = (. . . , 0, 0, a−N , . . . , a−1, a0, a1, . . . , aN , 0, 0, . . .),

where we have set an = 0 whenever |n| > N . We define the truncated
element BN similarly. Then, by the triangle inequality which holds in a
finite dimensional Euclidean space, we have

‖AN + BN‖ ≤ ‖AN‖+ ‖BN‖ ≤ ‖A‖+ ‖B‖.

Thus
∑

|n|≤N

|an + bn|2 ≤ (‖A‖+ ‖B‖)2,

and letting N tend to infinity gives
∑

n∈Z |an + bn|2 < ∞. It also fol-
lows that ‖A + B‖ ≤ ‖A‖+ ‖B‖, which is the triangle inequality. The
Cauchy-Schwarz inequality, which states that the sum

∑
n∈Z anbn con-

verges absolutely and that |(A,B)| ≤ ‖A‖ ‖B‖, can be deduced in the
same way from its finite analogue.

In the three examples Rd, Cd, and `2(Z), the vector spaces with their
inner products and norms satisfy two important properties:

(i) The inner product is strictly positive-definite, that is, ‖X‖ = 0
implies X = 0.

(ii) The vector space is complete, which by definition means that
every Cauchy sequence in the norm converges to a limit in the
vector space.
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An inner product space with these two properties is called a Hilbert
space. We see that Rd and Cd are examples of finite-dimensional Hilbert
spaces, while `2(Z) is an example of an infinite-dimensional Hilbert space
(see Exercises 1 and 2). If either of the conditions above fail, the space
is called a pre-Hilbert space.

We now give an important example of a pre-Hilbert space where both
conditions (i) and (ii) fail.

Example 2. Let R denote the set of complex-valued Riemann integrable
functions on [0, 2π] (or equivalently, integrable functions on the circle).
This is a vector space over C. Addition is defined pointwise by

(f + g)(θ) = f(θ) + g(θ).

Naturally, multiplication by a scalar λ ∈ C is given by

(λf)(θ) = λ · f(θ).

An inner product is defined on this vector space by

(1) (f, g) =
1
2π

∫ 2π

0
f(θ)g(θ) dθ.

The norm of f is then

‖f‖ =
(

1
2π

∫ 2π

0
|f(θ)|2 dθ

)1/2

.

One needs to check that the analogue of the Cauchy-Schwarz and tri-
angle inequalities hold in this example; that is, |(f, g)| ≤ ‖f‖ ‖g‖ and
‖f + g‖ ≤ ‖f‖+ ‖g‖. While these facts can be obtained as consequences
of the corresponding inequalities in the previous examples, the argument
is a little elaborate and we prefer to proceed differently.

We first observe that 2AB ≤ (A2 + B2) for any two real numbers A
and B. If we set A = λ1/2|f(θ)| and B = λ−1/2|g(θ)| with λ > 0, we get

|f(θ)g(θ)| ≤ 1
2
(λ|f(θ)|2 + λ−1|g(θ)|2).

We then integrate this in θ to obtain

|(f, g)| ≤ 1
2π

∫ 2π

0
|f(θ)| |g(θ)| dθ ≤ 1

2
(λ‖f‖2 + λ−1‖g‖2).

Then, put λ = ‖g‖/‖f‖ to get the Cauchy-Schwarz inequality. The tri-
angle inequality is then a simple consequence, as we have seen above.
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Of course, in our choice of λ we must assume that ‖f‖ 6= 0 and ‖g‖ 6= 0,
which leads us to the following observation.

In R, condition (i) for a Hilbert space fails, since ‖f‖ = 0 implies only
that f vanishes at its points of continuity. This is not a very serious
problem since in the appendix we show that an integrable function is
continuous except for a “negligible” set, so that ‖f‖ = 0 implies that f
vanishes except on a set of “measure zero.” One can get around the
difficulty that f is not identically zero by adopting the convention that
such functions are actually the zero function, since for the purpose of
integration, f behaves precisely like the zero function.

A more essential difficulty is that the space R is not complete. One
way to see this is to start with the function

f(θ) =

{
0 for θ = 0,

log(1/θ) for 0 < θ ≤ 2π.

Since f is not bounded, it does not belong to the space R. Moreover,
the sequence of truncations fn defined by

fn(θ) =

{
0 for 0 ≤ θ ≤ 1/n,

f(θ) for 1/n < θ ≤ 2π

can easily be seen to form a Cauchy sequence inR (see Exercise 5). How-
ever, this sequence cannot converge to an element in R, since that limit,
if it existed, would have to be f ; for another example, see Exercise 7.

This and more complicated examples motivate the search for the com-
pletion of R, the class of Riemann integrable functions on [0, 2π]. The
construction and identification of this completion, the Lebesgue class
L2([0, 2π]), represents an important turning point in the development of
analysis (somewhat akin to the much earlier completion of the rationals,
that is, the passage from Q to R). A further discussion of these fun-
damental ideas will be postponed until Book III, where we take up the
Lebesgue theory of integration.

We now turn to the proof of Theorem 1.1.

1.2 Proof of mean-square convergence

Consider the space R of integrable functions on the circle with inner
product

(f, g) =
1
2π

∫ 2π

0
f(θ)g(θ) dθ
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and norm ‖f‖ defined by

‖f‖2 = (f, f) =
1
2π

∫ 2π

0
|f(θ)|2 dθ.

With this notation, we must prove that ‖f − SN (f)‖ → 0 as N tends to
infinity.

For each integer n, let en(θ) = einθ, and observe that the family {en}n∈Z
is orthonormal; that is,

(en, em) =

{
1 if n = m

0 if n 6= m.

Let f be an integrable function on the circle, and let an denote its Fourier
coefficients. An important observation is that these Fourier coefficients
are represented by inner products of f with the elements in the orthonor-
mal set {en}n∈Z:

(f, en) =
1
2π

∫ 2π

0
f(θ)e−inθ dθ = an.

In particular, SN (f) =
∑
|n|≤N anen. Then the orthonormal property of

the family {en} and the fact that an = (f, en) imply that the difference
f −∑

|n|≤N anen is orthogonal to en for all |n| ≤ N . Therefore, we must
have

(2) (f −
∑

|n|≤N

anen) ⊥
∑

|n|≤N

bnen

for any complex numbers bn. We draw two conclusions from this fact.
First, we can apply the Pythagorean theorem to the decomposition

f = f −
∑

|n|≤N

anen +
∑

|n|≤N

anen,

where we now choose bn = an, to obtain

‖f‖2 = ‖f −
∑

|n|≤N

anen‖2 + ‖
∑

|n|≤N

anen‖2.

Since the orthonormal property of the family {en}n∈Z implies that

‖
∑

|n|≤N

anen‖2 =
∑

|n|≤N

|an|2,



Ibookroot October 20, 2007

78 Chapter 3. CONVERGENCE OF FOURIER SERIES

we deduce that

(3) ‖f‖2 = ‖f − SN (f)‖2 +
∑

|n|≤N

|an|2.

The second conclusion we may draw from (2) is the following simple
lemma.

Lemma 1.2 (Best approximation) If f is integrable on the circle with
Fourier coefficients an, then

‖f − SN (f)‖ ≤ ‖f −
∑

|n|≤N

cnen‖

for any complex numbers cn. Moreover, equality holds precisely when
cn = an for all |n| ≤ N .

Proof. This follows immediately by applying the Pythagorean theo-
rem to

f −
∑

|n|≤N

cnen = f − SN (f) +
∑

|n|≤N

bnen,

where bn = an − cn.

This lemma has a clear geometric interpretation. It says that the
trigonometric polynomial of degree at most N which is closest to f in
the norm ‖ · ‖ is the partial sum SN (f). This geometric property of the
partial sums is depicted in Figure 1, where the orthogonal projection of
f in the plane spanned by {e−N , . . . , e0, . . . , eN} is simply SN (f).

f − SN (f)

SN (f)

f

e0

e−N

e1
eN

Figure 1. The best approximation lemma

We can now give the proof that ‖SN (f)− f‖ → 0 using the best ap-
proximation lemma, as well as the important fact that trigonometric
polynomials are dense in the space of continuous functions on the circle.
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Suppose that f is continuous on the circle. Then, given ε > 0, there
exists (by Corollary 5.4 in Chapter 2) a trigonometric polynomial P , say
of degree M , such that

|f(θ)− P (θ)| < ε for all θ.

In particular, taking squares and integrating this inequality yields
‖f − P‖ < ε, and by the best approximation lemma we conclude that

‖f − SN (f)‖ < ε whenever N ≥ M .

This proves Theorem 1.1 when f is continuous.
If f is merely integrable, we can no longer approximate f uniformly

by trigonometric polynomials. Instead, we apply the approximation
Lemma 3.2 in Chapter 2 and choose a continuous function g on the
circle which satisfies

sup
θ∈[0,2π]

|g(θ)| ≤ sup
θ∈[0,2π]

|f(θ)| = B,

and ∫ 2π

0
|f(θ)− g(θ)| dθ < ε2.

Then we get

‖f − g‖2 =
1
2π

∫ 2π

0
|f(θ)− g(θ)|2 dθ

=
1
2π

∫ 2π

0
|f(θ)− g(θ)| |f(θ)− g(θ)| dθ

≤ 2B

2π

∫ 2π

0
|f(θ)− g(θ)| dθ

≤ Cε2.

Now we may approximate g by a trigonometric polynomial P so that
‖g − P‖ < ε. Then ‖f − P‖ < C ′ε, and we may again conclude by ap-
plying the best approximation lemma. This completes the proof that the
partial sums of the Fourier series of f converge to f in the mean square
norm ‖ · ‖.

Note that this result and the relation (3) imply that if an is the nth

Fourier coefficient of an integrable function f , then the series
∑∞

n=−∞ |an|2
converges, and in fact we have Parseval’s identity

∞∑
n=−∞

|an|2 = ‖f‖2.



Ibookroot October 20, 2007

80 Chapter 3. CONVERGENCE OF FOURIER SERIES

This identity provides an important connection between the norms in
the two vector spaces `2(Z) and R.

We now summarize the results of this section.

Theorem 1.3 Let f be an integrable function on the circle with
f ∼ ∑∞

n=−∞ aneinθ. Then we have:

(i) Mean-square convergence of the Fourier series

1
2π

∫ 2π

0
|f(θ)− SN (f)(θ)|2 dθ → 0 as N →∞.

(ii) Parseval’s identity

∞∑
n=−∞

|an|2 =
1
2π

∫ 2π

0
|f(θ)|2 dθ.

Remark 1. If {en} is any orthonormal family of functions on the
circle, and an = (f, en), then we may deduce from the relation (3) that

∞∑
n=−∞

|an|2 ≤ ‖f‖2.

This is known as Bessel’s inequality. Equality holds (as in Parseval’s
identity) precisely when the family {en} is also a “basis,” in the sense
that ‖∑

|n|≤N anen − f‖ → 0 as N →∞.

Remark 2. We may associate to every integrable function the se-
quence {an} formed by its Fourier coefficients. Parseval’s identity guar-
antees that {an} ∈ `2(Z). Since `2(Z) is a Hilbert space, the failure of R
to be complete, discussed earlier, may be understood as follows: there
exist sequences {an}n∈Z such that

∑
n∈Z |an|2 < ∞, yet no Riemann in-

tegrable function F has nth Fourier coefficient equal to an for all n. An
example is given in Exercise 6.

Since the terms of a converging series tend to 0, we deduce from Par-
seval’s identity or Bessel’s inequality the following result.

Theorem 1.4 (Riemann-Lebesgue lemma) If f is integrable on the
circle, then f̂(n) → 0 as |n| → ∞.

An equivalent reformulation of this proposition is that if f is integrable
on [0, 2π], then

∫ 2π

0
f(θ) sin(Nθ) dθ → 0 as N →∞
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and
∫ 2π

0
f(θ) cos(Nθ) dθ → 0 as N →∞.

To conclude this section, we give a more general version of the Parseval
identity which we will use in the next chapter.

Lemma 1.5 Suppose F and G are integrable on the circle with

F ∼
∑

aneinθ and G ∼
∑

bneinθ.

Then

1
2π

∫ 2π

0
F (θ)G(θ) dθ =

∞∑
n=−∞

anbn.

Recall from the discussion in Example 1 that the series
∑∞

n=−∞ anbn

converges absolutely.

Proof. The proof follows from Parseval’s identity and the fact that

(F, G) =
1
4

[‖F + G‖2 − ‖F −G‖2 + i
(‖F + iG‖2 − ‖F − iG‖2)]

which holds in every Hermitian inner product space. The verification of
this fact is left to the reader.

2 Return to pointwise convergence

The mean-square convergence theorem does not provide further insight
into the problem of pointwise convergence. Indeed, Theorem 1.1 by itself
does not guarantee that the Fourier series converges for any θ. Exercise 3
helps to explain this statement. However, if a function is differentiable
at a point θ0, then its Fourier series converges at θ0. After proving this
result, we give an example of a continuous function with diverging Fourier
series at one point. These phenomena are indicative of the intricate
nature of the problem of pointwise convergence in the theory of Fourier
series.

2.1 A local result

Theorem 2.1 Let f be an integrable function on the circle which is dif-
ferentiable at a point θ0. Then SN (f)(θ0) → f(θ0) as N tends to infinity.
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Proof. Define

F (t) =





f(θ0 − t)− f(θ0)
t

if t 6= 0 and |t| < π

−f ′(θ0) if t = 0.

First, F is bounded near 0 since f is differentiable there. Second, for
all small δ the function F is integrable on [−π,−δ] ∪ [δ, π] because f has
this property and |t| > δ there. As a consequence of Proposition 1.4 in
the appendix, the function F is integrable on all of [−π, π]. We know
that SN (f)(θ0) = (f ∗DN )(θ0), where DN is the Dirichlet kernel. Since
1
2π

∫
DN = 1, we find that

SN (f)(θ0)− f(θ0) =
1
2π

∫ π

−π
f(θ0 − t)DN (t) dt− f(θ0)

=
1
2π

∫ π

−π
[f(θ0 − t)− f(θ0)]DN (t) dt

=
1
2π

∫ π

−π
F (t)tDN (t) dt.

We recall that

tDN (t) =
t

sin(t/2)
sin((N + 1/2)t),

where the quotient t
sin(t/2) is continuous in the interval [−π, π]. Since we

can write

sin((N + 1/2)t) = sin(Nt) cos(t/2) + cos(Nt) sin(t/2),

we can apply the Riemann-Lebesgue lemma to the Riemann integrable
functions F (t)t cos(t/2)/ sin(t/2) and F (t)t to finish the proof of the the-
orem.

Observe that the conclusion of the theorem still holds if we only assume
that f satisfies a Lipschitz condition at θ0; that is,

|f(θ)− f(θ0)| ≤ M |θ − θ0|

for some M ≥ 0 and all θ. This is the same as saying that f satisfies a
Hölder condition of order α = 1.

A striking consequence of this theorem is the localization principle of
Riemann. This result states that the convergence of SN (f)(θ0) depends
only on the behavior of f near θ0. This is not clear at first, since forming
the Fourier series requires integrating f over the whole circle.
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Theorem 2.2 Suppose f and g are two integrable functions defined on
the circle, and for some θ0 there exists an open interval I containing θ0

such that

f(θ) = g(θ) for all θ ∈ I.

Then SN (f)(θ0)− SN (g)(θ0) → 0 as N tends to infinity.

Proof. The function f − g is 0 in I, so it is differentiable at θ0, and
we may apply the previous theorem to conclude the proof.

2.2 A continuous function with diverging Fourier series

We now turn our attention to an example of a continuous periodic func-
tion whose Fourier series diverges at a point. Thus, Theorem 2.1 fails
if the differentiability assumption is replaced by the weaker assumption
of continuity. Our counter-example shows that this hypothesis which
had appeared plausible, is in fact false; moreover, its construction also
illuminates an important principle of the theory.

The principle that is involved here will be referred to as “symmetry-
breaking.”1 The symmetry that we have in mind is the symmetry be-
tween the frequencies einθ and e−inθ which appear in the Fourier expan-
sion of a function. For example, the partial sum operator SN is defined
in a way that reflects this symmetry. Also, the Dirichlet, Fejèr, and
Poisson kernels are symmetric in this sense. When we break the symme-
try, that is, when we split the Fourier series

∑∞
n=−∞ aneinθ into the two

pieces
∑

n≥0 aneinθ and
∑

n<0 aneinθ, we introduce new and far-reaching
phenomena.

We give a simple example. Start with the sawtooth function f which is
odd in θ and which equals i(π − θ) when 0 < θ < π. Then, by Exercise 8
in Chapter 2, we know that

(4) f(θ) ∼
∑

n 6=0

einθ

n
.

Consider now the result of breaking the symmetry and the resulting series
n=−1∑
n=−∞

einθ

n
.

Then, unlike (4), the above is no longer the Fourier series of a Riemann
integrable function. Indeed, suppose it were the Fourier series of an

1We have borrowed this terminology from physics, where it is used in a very different
context.
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integrable function, say f̃ , where in particular f̃ is bounded. Using the
Abel means, we then have

|Ar(f̃)(0)| =
∞∑

n=1

rn

n
,

which tends to infinity as r tends to 1, because
∑

1/n diverges. This
gives the desired contradiction since

|Ar(f̃)(0)| ≤ 1
2π

∫ π

−π
|f̃(θ)|Pr(θ) dθ ≤ sup

θ
|f̃(θ)|,

where Pr(θ) denotes the Poisson kernel discussed in the previous chapter.

The sawtooth function is the object from which we will fashion our
counter-example. We proceed as follows. For each N ≥ 1 we define the
following two functions on [−π, π],

fN (θ) =
∑

1≤|n|≤N

einθ

n
and f̃N (θ) =

∑

−N≤n≤−1

einθ

n
.

We contend that:

(i) |f̃N (0)| ≥ c log N .

(ii) fN (θ) is uniformly bounded in N and θ.

The first statement is a consequence of the fact that
∑N

n=1 1/n ≥
log N , which is easily established (see also Figure 2):

N∑

n=1

1
n
≥

N−1∑

n=1

∫ n+1

n

dx

x
=

∫ N

1

dx

x
= log N.

To prove (ii), we argue in the same spirit as in the proof of Tauber’s
theorem, which says that if the series

∑
cn is Abel summable to s and

cn = o(1/n), then
∑

cn actually converges to s (see Exercise 14 in Chap-
ter 2). In fact, the proof of Tauber’s theorem is quite similar to that of
the lemma below.

Lemma 2.3 Suppose that the Abel means Ar =
∑∞

n=1 rncn of the series∑∞
n=1 cn are bounded as r tends to 1 (with r < 1). If cn = O(1/n), then

the partial sums SN =
∑N

n=1 cn are bounded.
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y = 1
x

n n + 1

1
n

Figure 2. Comparing a sum with an integral

Proof. Let r = 1− 1/N and choose M so that n|cn| ≤ M . We esti-
mate the difference

SN −Ar =
N∑

n=1

(cn − rncn)−
∞∑

n=N+1

rncn

as follows:

|SN −Ar| ≤
N∑

n=1

|cn|(1− rn) +
∞∑

n=N+1

rn|cn|

≤ M
N∑

n=1

(1− r) +
M

N

∞∑

n=N+1

rn

≤ MN(1− r) +
M

N

1
1− r

= 2M,

where we have used the simple observation that

1− rn = (1− r)(1 + r + · · ·+ rn−1) ≤ n(1− r).

So we see that if M satisfies both |Ar| ≤ M and n|cn| ≤ M , then |SN | ≤
3M .

We apply the lemma to the series

∑

n 6=0

einθ

n
,
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which is the Fourier series of the sawtooth function f used above. Here
cn = einθ/n + e−inθ/(−n) for n 6= 0, so clearly cn = O(1/|n|). Finally,
the Abel means of this series are Ar(f)(θ) = (f ∗ Pr)(θ). But f is bounded
and Pr is a good kernel, so SN (f)(θ) is uniformly bounded in N and θ,
as was to be shown.

We now come to the heart of the matter. Notice that fN and f̃N

are trigonometric polynomials of degree N (that is, they have non-zero
Fourier coefficients only when |n| ≤ N). From these, we form trigono-
metric polynomials PN and P̃N , now of degrees 3N and 2N − 1, by
displacing the frequencies of fN and f̃N by 2N units. In other words,
we define PN (θ) = ei(2N)θfN (θ) and P̃N (θ) = ei(2N)θf̃N (θ). So while fN

has non-vanishing Fourier coefficients when 0 < |n| ≤ N , now the coef-
ficients of PN are non-vanishing for N ≤ n ≤ 3N , n 6= 2N . Moreover,
while n = 0 is the center of symmetry of fN , now n = 2N is the center
of symmetry of PN . We next consider the partial sums SM .

Lemma 2.4

SM (PN ) =





PN if M ≥ 3N ,
P̃N if M = 2N ,
0 if M < N.

This is clear from what has been said above and from Figure 3.

S2N (ei(2N)θfN )(θ)

= ei(2N)θ f̃N (θ)

−N N0

2N 3N0 N

fN (θ)

ei(2N)θfN (θ) = PN (θ)

2N 3N0 N

Figure 3. Breaking symmetry in Lemma 2.4

The effect is that when M = 2N , the operator SM breaks the symme-
try of PN , but in the other cases covered in the lemma, the action of SM
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is relatively benign, since then the outcome is either PN or 0.
Finally, we need to find a convergent series of positive terms

∑
αk and

a sequence of integers {Nk} which increases rapidly enough so that:

(i) Nk+1 > 3Nk,

(ii) αk log Nk →∞ as k →∞.

We choose (for example) αk = 1/k2 and Nk = 32k

which are easily seen
to satisfy the above criteria.

Finally, we can write down our desired function. It is

f(θ) =
∞∑

k=1

αkPNk
(θ).

Due to the uniform boundedness of the PN (recall that |PN (θ)| = |fN (θ)|),
the series above converges uniformly to a continuous periodic function.
However, by our lemma we get

|S2Nm
(f)(0)| ≥ cαm log Nm + O(1) →∞ as m →∞.

3Nk+1Nk+13Nk−1Nk−1 3NkNk

2Nk

Figure 4. Symmetry broken in the middle interval (Nk, 3Nk)

Indeed, the terms that correspond to Nk with k < m or k > m con-
tribute O(1) or 0, respectively (because the PN ’s are uniformly bounded),
while the term that corresponds to Nm is in absolute value greater than
cαm log Nm because |P̃N (θ)| = |f̃N (θ)| ≥ c log N . So the partial sums of
the Fourier series of f at 0 are not bounded, and we are done since this
proves the divergence of the Fourier series of f at θ = 0. To produce a
function whose series diverges at any other preassigned θ = θ0, it suffices
to consider the function f(θ − θ0).

3 Exercises

1. Show that the first two examples of inner product spaces, namely Rd and Cd,
are complete.
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[Hint: Every Cauchy sequence in R has a limit.]

2. Prove that the vector space `2(Z) is complete.

[Hint: Suppose Ak = {ak,n}n∈Z with k = 1, 2, . . . is a Cauchy sequence. Show
that for each n, {ak,n}∞k=1 is a Cauchy sequence of complex numbers, therefore
it converges to a limit, say bn. By taking partial sums of ‖Ak −Ak′‖ and letting
k′ →∞, show that ‖Ak −B‖ → 0 as k →∞, where B = (. . . , b−1, b0, b1, . . .).
Finally, prove that B ∈ `2(Z).]

3. Construct a sequence of integrable functions {fk} on [0, 2π] such that

lim
k→∞

1
2π

∫ 2π

0

|fk(θ)|2 dθ = 0

but limk→∞ fk(θ) fails to exist for any θ.

[Hint: Choose a sequence of intervals Ik ⊂ [0, 2π] whose lengths tend to 0, and
so that each point belongs to infinitely many of them; then let fk = χIk

.]

4. Recall the vector space R of integrable functions, with its inner product and
norm

‖f‖ =
(

1
2π

∫ 2π

0

|f(x)|2 dx

)1/2

.

(a) Show that there exist non-zero integrable functions f for which ‖f‖ = 0.

(b) However, show that if f ∈ R with ‖f‖ = 0, then f(x) = 0 whenever f is
continuous at x.

(c) Conversely, show that if f ∈ R vanishes at all of its points of continuity,
then ‖f‖ = 0.

5. Let

f(θ) =

{
0 for θ = 0
log(1/θ) for 0 < θ ≤ 2π,

and define a sequence of functions in R by

fn(θ) =

{
0 for 0 ≤ θ ≤ 1/n

f(θ) for 1/n < θ ≤ 2π.

Prove that {fn}∞n=1 is a Cauchy sequence in R. However, f does not belong to
R.
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[Hint: Show that
∫ b

a
(log θ)2 dθ → 0 if 0 < a < b and b → 0, by using the fact that

the derivative of θ(log θ)2 − 2θ log θ + 2θ is equal to (log θ)2.]

6. Consider the sequence {ak}∞k=−∞ defined by

ak =
{

1/k if k ≥ 1
0 if k ≤ 0.

Note that {ak} ∈ `2(Z), but that no Riemann integrable function has kth Fourier
coefficient equal to ak for all k.

7. Show that the trigonometric series

∑
n≥2

1
log n

sinnx

converges for every x, yet it is not the Fourier series of a Riemann integrable
function.

The same is true for
∑

sin nx
nα for 0 < α < 1, but the case 1/2 < α < 1 is more

difficult. See Problem 1.

8. Exercise 6 in Chapter 2 dealt with the sums

∑

n odd ≥1

1
n2

and
∞∑

n=1

1
n2

.

Similar sums can be derived using the methods of this chapter.

(a) Let f be the function defined on [−π, π] by f(θ) = |θ|. Use Parseval’s
identity to find the sums of the following two series:

∞∑
n=0

1
(2n + 1)4

and
∞∑

n=1

1
n4

.

In fact, they are π4/96 and π4/90, respectively.

(b) Consider the 2π-periodic odd function defined on [0, π] by f(θ) = θ(π − θ).
Show that

∞∑
n=0

1
(2n + 1)6

=
π6

960
and

∞∑
n=1

1
n6

=
π6

945
.

Remark. The general expression when k is even for
∑∞

n=1 1/nk in terms of πk

is given in Problem 4. However, finding a formula for the sum
∑∞

n=1 1/n3, or
more generally

∑∞
n=1 1/nk with k odd, is a famous unresolved question.
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9. Show that for α not an integer, the Fourier series of

π

sinπα
ei(π−x)α

on [0, 2π] is given by

∞∑
n=−∞

einx

n + α
.

Apply Parseval’s formula to show that

∞∑
n=−∞

1
(n + α)2

=
π2

(sin πα)2
.

10. Consider the example of a vibrating string which we analyzed in Chapter 1.
The displacement u(x, t) of the string at time t satisfies the wave equation

1
c2

∂2u

∂t2
=

∂2u

∂x2
, c2 = τ/ρ.

The string is subject to the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x),

where we assume that f ∈ C1 and g is continuous. We define the total energy
of the string by

E(t) =
1
2
ρ

∫ L

0

(
∂u

∂t

)2

dx +
1
2
τ

∫ L

0

(
∂u

∂x

)2

dx.

The first term corresponds to the “kinetic energy” of the string (in analogy with
(1/2)mv2, the kinetic energy of a particle of mass m and velocity v), and the
second term corresponds to its “potential energy.”

Show that the total energy of the string is conserved, in the sense that E(t)
is constant. Therefore,

E(t) = E(0) =
1
2
ρ

∫ L

0

g(x)2 dx +
1
2
τ

∫ L

0

f ′(x)2 dx.

11. The inequalities of Wirtinger and Poincaré establish a relationship between
the norm of a function and that of its derivative.
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(a) If f is T -periodic, continuous, and piecewise C1 with
∫ T

0
f(t) dt = 0, show

that
∫ T

0

|f(t)|2 dt ≤ T 2

4π2

∫ T

0

|f ′(t)|2 dt,

with equality if and only if f(t) = A sin(2πt/T ) + B cos(2πt/T ).
[Hint: Apply Parseval’s identity.]

(b) If f is as above and g is just C1 and T -periodic, prove that

∣∣∣∣
∫ T

0

f(t)g(t) dt

∣∣∣∣
2

≤ T 2

4π2

∫ T

0

|f(t)|2 dt

∫ T

0

|g′(t)|2 dt.

(c) For any compact interval [a, b] and any continuously differentiable function
f with f(a) = f(b) = 0, show that

∫ b

a

|f(t)|2 dt ≤ (b− a)2

π2

∫ b

a

|f ′(t)|2 dt.

Discuss the case of equality, and prove that the constant (b− a)2/π2 can-
not be improved. [Hint: Extend f to be odd with respect to a and periodic
of period T = 2(b− a) so that its integral over an interval of length T is
0. Apply part a) to get the inequality, and conclude that equality holds if
and only if f(t) = A sin(π t−a

b−a )].

12. Prove that
∫ ∞

0

sin x

x
dx =

π

2
.

[Hint: Start with the fact that the integral of DN (θ) equals 2π, and note that
the difference (1/ sin(θ/2))− 2/θ is continuous on [−π, π]. Apply the Riemann-
Lebesgue lemma.]

13. Suppose that f is periodic and of class Ck. Show that

f̂(n) = o(1/|n|k),

that is, |n|kf̂(n) goes to 0 as |n| → ∞. This is an improvement over Exercise 10
in Chapter 2.
[Hint: Use the Riemann-Lebesgue lemma.]

14. Prove that the Fourier series of a continuously differentiable function f on
the circle is absolutely convergent.
[Hint: Use the Cauchy-Schwarz inequality and Parseval’s identity for f ′.]

15. Let f be 2π-periodic and Riemann integrable on [−π, π].
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(a) Show that

f̂(n) = − 1
2π

∫ π

−π

f(x + π/n)e−inx dx

hence

f̂(n) =
1
4π

∫ π

−π

[f(x)− f(x + π/n)]e−inx dx.

(b) Now assume that f satisfies a Hölder condition of order α, namely

|f(x + h)− f(x)| ≤ C|h|α

for some 0 < α ≤ 1, some C > 0, and all x, h. Use part a) to show that

f̂(n) = O(1/|n|α).

(c) Prove that the above result cannot be improved by showing that the func-
tion

f(x) =
∞∑

k=0

2−kαei2kx,

where 0 < α < 1, satisfies

|f(x + h)− f(x)| ≤ C|h|α,

and f̂(N) = 1/Nα whenever N = 2k.

[Hint: For (c), break up the sum as follows f(x + h)− f(x) =
∑

2k≤1/|h|+∑
2k>1/|h|. To estimate the first sum use the fact that |1− eiθ| ≤ |θ| whenever θ

is small. To estimate the second sum, use the obvious inequality |eix − eiy| ≤ 2.]

16. Let f be a 2π-periodic function which satisfies a Lipschitz condition with
constant K; that is,

|f(x)− f(y)| ≤ K|x− y| for all x, y.

This is simply the Hölder condition with α = 1, so by the previous exercise, we
see that f̂(n) = O(1/|n|). Since the harmonic series

∑
1/n diverges, we cannot

say anything (yet) about the absolute convergence of the Fourier series of f . The
outline below actually proves that the Fourier series of f converges absolutely
and uniformly.
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(a) For every positive h we define gh(x) = f(x + h)− f(x− h). Prove that

1
2π

∫ 2π

0

|gh(x)|2 dx =
∞∑

n=−∞
4| sin nh|2|f̂(n)|2,

and show that
∞∑

n=−∞
| sinnh|2|f̂(n)|2 ≤ K2h2.

(b) Let p be a positive integer. By choosing h = π/2p+1, show that

∑

2p−1<|n|≤2p

|f̂(n)|2 ≤ K2π2

22p+1
.

(c) Estimate
∑

2p−1<|n|≤2p |f̂(n)|, and conclude that the Fourier series of f

converges absolutely, hence uniformly. [Hint: Use the Cauchy-Schwarz
inequality to estimate the sum.]

(d) In fact, modify the argument slightly to prove Bernstein’s theorem: If f
satisfies a Hölder condition of order α > 1/2, then the Fourier series of f
converges absolutely.

17. If f is a bounded monotonic function on [−π, π], then

f̂(n) = O(1/|n|).

[Hint: One may assume that f is increasing, and say |f | ≤ M . First check that
the Fourier coefficients of the characteristic function of [a, b] satisfy O(1/|n|).
Now show that a sum of the form

N∑

k=1

αkχ[ak,ak+1](x)

with −π = a1 < a2 < · · · < aN < aN+1 = π and −M ≤ α1 ≤ · · · ≤ αN ≤ M has
Fourier coefficients that are O(1/|n|) uniformly in N . Summing by parts one gets
a telescopic sum

∑
(αk+1 − αk) which can be bounded by 2M . Now approximate

f by functions of the above type.]

18. Here are a few things we have learned about the decay of Fourier coefficients:

(a) if f is of class Ck, then f̂(n) = o(1/|n|k);

(b) if f is Lipschitz, then f̂(n) = O(1/|n|);
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(c) if f is monotonic, then f̂(n) = O(1/|n|);

(d) if f is satisfies a Hölder condition with exponent α where 0 < α < 1, then
f̂(n) = O(1/|n|α);

(e) if f is merely Riemann integrable, then
∑ |f̂(n)|2 < ∞ and therefore

f̂(n) = o(1).

Nevertheless, show that the Fourier coefficients of a continuous function can
tend to 0 arbitrarily slowly by proving that for every sequence of nonnegative
real numbers {εn} converging to 0, there exists a continuous function f such
that |f̂(n)| ≥ εn for infinitely many values of n.

[Hint: Choose a subsequence {εnk
} so that

∑
k εnk

< ∞.]

19. Give another proof that the sum
∑

0<|n|≤N einx/n is uniformly bounded in
N and x ∈ [−π, π] by using the fact that

1
2i

∑

0<|n|≤N

einx

n
=

N∑
n=1

sin nx

n
=

1
2

∫ x

0

(DN (t)− 1) dt,

where DN is the Dirichlet kernel. Now use the fact that
∫∞
0

sin t
t dt < ∞ which

was proved in Exercise 12.

20. Let f(x) denote the sawtooth function defined by f(x) = (π − x)/2 on the
interval (0, 2π) with f(0) = 0 and extended by periodicity to all of R. The
Fourier series of f is

f(x) ∼ 1
2i

∑

|n|6=0

einx

n
=

∞∑
n=1

sin nx

n
,

and f has a jump discontinuity at the origin with

f(0+) =
π

2
, f(0−) = −π

2
, and hence f(0+)− f(0−) = π.

Show that

max
0<x≤π/N

SN (f)(x)− π

2
=

∫ π

0

sin t

t
dt− π

2
,

which is roughly 9% of the jump π. This result is a manifestation of Gibbs’s
phenomenon which states that near a jump discontinuity, the Fourier series of a
function overshoots (or undershoots) it by approximately 9% of the jump.

[Hint: Use the expression for SN (f) given in Exercise 19.]
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4 Problems

1. For each 0 < α < 1 the series

∞∑
n=1

sinnx

nα

converges for every x but is not the Fourier series of a Riemann integrable func-
tion.

(a) If the conjugate Dirichlet kernel is defined by

D̃N (x) =
∑

|n|≤N

sign(x) einx where sign(x) =





1 if n > 0
0 if n = 0
−1 if n < 0,

then show that

D̃N (x) =
cos(x/2)− cos((N + 1/2)x)

sin(x/2)
,

and ∫ π

−π

|D̃N (x)| dx ≤ c log N.

(b) As a result, if f is Riemann integrable, then

(f ∗ D̃N )(0) = O(log N).

(c) In the present case, this leads to

N∑
n=1

1
nα

= O(log N),

which is a contradiction.

2. An important fact we have proved is that the family {einx}n∈Z is orthonormal
in R and it is also complete, in the sense that the Fourier series of f converges
to f in the norm. In this exercise, we consider another family possessing these
same properties.

On [−1, 1] define

Ln(x) =
dn

dxn
(x2 − 1)n, n = 0, 1, 2, . . ..

Then Ln is a polynomial of degree n which is called the nth Legendre poly-
nomial.
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(a) Show that if f is indefinitely differentiable on [−1, 1], then

∫ 1

−1

Ln(x)f(x) dx = (−1)n

∫ 1

−1

(x2 − 1)nf (n)(x) dx.

In particular, show that Ln is orthogonal to xm whenever m < n. Hence
{Ln}∞n=0 is an orthogonal family.

(b) Show that

‖Ln‖2 =
∫ 1

−1

|Ln(x)|2 dx =
(n!)222n+1

2n + 1
.

[Hint: First, note that ‖Ln‖2 = (−1)n(2n)!
∫ 1

−1
(x2 − 1)n dx. Write

(x2 − 1)n = (x− 1)n(x + 1)n and integrate by parts n times to calculate
this last integral.]

(c) Prove that any polynomial of degree n that is orthogonal to 1, x, x2, . . . , xn−1

is a constant multiple of Ln.

(d) Let Ln = Ln/‖Ln‖, which are the normalized Legendre polynomials. Prove
that {Ln} is the family obtained by applying the “Gram-Schmidt process”
to {1, x, . . . , xn, . . .}, and conclude that every Riemann integrable function
f on [−1, 1] has a Legendre expansion

∞∑
n=0

〈f,Ln〉Ln

which converges to f in the mean-square sense.

3. Let α be a complex number not equal to an integer.

(a) Calculate the Fourier series of the 2π-periodic function defined on [−π, π]
by f(x) = cos(αx).

(b) Prove the following formulas due to Euler:

∞∑
n=1

1
n2 − α2

=
1

2α2
− π

2α tan(απ)
.

For all u ∈ C− πZ,

cot u =
1
u

+ 2
∞∑

n=1

u

u2 − n2π2
.
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(c) Show that for all α ∈ C− Z we have

απ

sin(απ)
= 1 + 2α2

∞∑
n=1

(−1)n−1

n2 − α2
.

(d) For all 0 < α < 1, show that

∫ ∞

0

tα−1

t + 1
dt =

π

sin(απ)
.

[Hint: Split the integral as
∫ 1

0
+

∫∞
1

and change variables t = 1/u in the
second integral. Now both integrals are of the form

∫ 1

0

tγ−1

1 + t
dt, 0 < γ < 1,

which one can show is equal to
∑∞

k=0
(−1)k

k+γ . Use part (c) to conclude the
proof.]

4. In this problem, we find the formula for the sum of the series

∞∑
n=1

1
nk

where k is any even integer. These sums are expressed in terms of the Bernoulli
numbers; the related Bernoulli polynomials are discussed in the next problem.

Define the Bernoulli numbers Bn by the formula

z

ez − 1
=

∞∑
n=0

Bn

n!
zn.

(a) Show that B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, and
B5 = 0.

(b) Show that for n ≥ 1 we have

Bn = − 1
n + 1

n−1∑

k=0

(
n + 1

k

)
Bk.

(c) By writing

z

ez − 1
= 1− z

2
+

∞∑
n=2

Bn

n!
zn,
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show that Bn = 0 if n is odd and > 1. Also prove that

z cot z = 1 +
∞∑

n=1

(−1)n 22nB2n

(2n)!
z2n.

(d) The zeta function is defined by

ζ(s) =
∞∑

n=1

1
ns

, for all s > 1.

Deduce from the result in (c), and the expression for the cotangent func-
tion obtained in the previous problem, that

x cot x = 1− 2
∞∑

m=1

ζ(2m)
π2m

x2m.

(e) Conclude that

2ζ(2m) = (−1)m+1 (2π)2m

(2m)!
B2m.

5. Define the Bernoulli polynomials Bn(x) by the formula

zexz

ez − 1
=

∞∑
n=0

Bn(x)
n!

zn.

(a) The functions Bn(x) are polynomials in x and

Bn(x) =
n∑

k=0

(
n

k

)
Bkxn−k.

Show that B0(x) = 1, B1(x) = x− 1/2, B2(x) = x2 − x + 1/6, and
B3(x) = x3 − 3

2x2 + 1
2x.

(b) If n ≥ 1, then

Bn(x + 1)−Bn(x) = nxn−1,

and if n ≥ 2, then

Bn(0) = Bn(1) = Bn.

(c) Define Sm(n) = 1m + 2m + · · ·+ (n− 1)m. Show that

(m + 1)Sm(n) = Bm+1(n)−Bm+1.
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(d) Prove that the Bernoulli polynomials are the only polynomials that satisfy

(i) B0(x) = 1,

(ii) B′
n(x) = nBn−1(x) for n ≥ 1,

(iii)
∫ 1

0
Bn(x) dx = 0 for n ≥ 1, and show that from (b) one obtains

∫ x+1

x

Bn(t) dt = xn.

(e) Calculate the Fourier series of B1(x) to conclude that for 0 < x < 1 we
have

B1(x) = x− 1/2 =
−1
π

∞∑

k=1

sin(2πkx)
k

.

Integrate and conclude that

B2n(x)= (−1)n+1 2(2n)!
(2π)2n

∞∑

k=1

cos(2πkx)
k2n

,

B2n+1(x)= (−1)n+1 2(2n + 1)!
(2π)2n+1

∞∑

k=1

sin(2πkx)
k2n+1

.

Finally, show that for 0 < x < 1,

Bn(x) = − n!
(2πi)n

∑

k 6=0

e2πikx

kn
.

We observe that the Bernoulli polynomials are, up to normalization, successive
integrals of the sawtooth function.
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4 Some Applications of Fourier
Series

Fourier series and analogous expansions intervene very
naturally in the general theory of curves and surfaces.
In effect, this theory, conceived from the point of view
of analysis, deals obviously with the study of arbitrary
functions. I was thus led to use Fourier series in sev-
eral questions of geometry, and I have obtained in this
direction a number of results which will be presented
in this work. One notes that my considerations form
only a beginning of a principal series of researches,
which would without doubt give many new results.

A. Hurwitz, 1902

In the previous chapters we introduced some basic facts about Fourier
analysis, motivated by problems that arose in physics. The motion of a
string and the diffusion of heat were two instances that led naturally to
the expansion of a function in terms of a Fourier series. We propose next
to give the reader a flavor of the broader impact of Fourier analysis, and
illustrate how these ideas reach out to other areas of mathematics. In
particular, consider the following three problems:

I. Among all simple closed curves of length ` in the plane R2, which
one encloses the largest area?

II. Given an irrational number γ, what can be said about the distri-
bution of the fractional parts of the sequence of numbers nγ, for
n = 1, 2, 3, . . .?

III. Does there exist a continuous function that is nowhere differen-
tiable?

The first problem is clearly geometric in nature, and at first sight, would
seem to have little to do with Fourier series. The second question lies on
the border between number theory and the study of dynamical systems,
and gives us the simplest example of the idea of “ergodicity.” The third
problem, while analytic in nature, resisted many attempts before the
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solution was finally discovered. It is remarkable that all three questions
can be resolved quite simply and directly by the use of Fourier series.

In the last section of this chapter, we return to a problem that provided
our initial motivation. We consider the time-dependent heat equation
on the circle. Here our investigation will lead us to the important but
enigmatic heat kernel for the circle. However, the mysteries surrounding
its basic properties will not be fully understood until we can apply the
Poisson summation formula, which we will do in the next chapter.

1 The isoperimetric inequality

Let Γ denote a closed curve in the plane which does not intersect itself.
Also, let ` denote the length of Γ, and A the area of the bounded region
in R2 enclosed by Γ. The problem now is to determine for a given ` the
curve Γ which maximizes A (if any such curve exists).

Γ

small A

Γ

large A

Figure 1. The isoperimetric problem

A little experimentation and reflection suggests that the solution should
be a circle. This conclusion can be reached by the following heuristic con-
siderations. The curve can be thought of as a closed piece of string lying
flat on a table. If the region enclosed by the string is not convex (for ex-
ample), one can deform part of the string and increase the area enclosed
by it. Also, playing with some simple examples, one can convince oneself
that the “flatter” the curve is in some portion, the less efficient it is in
enclosing area. Therefore we want to maximize the “roundness” of the
curve at each point.

Although the circle is the correct guess, making the above ideas precise
is a difficult matter.

The key idea in the solution we give to the isoperimetric problem con-
sists of an application of Parseval’s identity for Fourier series. However,
before we can attempt a solution to this problem, we must define the
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notion of a simple closed curve, its length, and what we mean by the
area of the region enclosed by it.

Curves, length and area

A parametrized curve γ is a mapping

γ : [a, b] → R2.

The image of γ is a set of points in the plane which we call a curve and
denote by Γ. The curve Γ is simple if it does not intersect itself, and
closed if its two end-points coincide. In terms of the parametrization
above, these two conditions translate into γ(s1) 6= γ(s2) unless s1 = a
and s2 = b, in which case γ(a) = γ(b). We may extend γ to a periodic
function on R of period b− a, and think of γ as a function on the circle.
We also always impose some smoothness on our curves by assuming that
γ is of class C1, and that its derivative γ′ satisfies γ′(s) 6= 0. Altogether,
these conditions guarantee that Γ has a well-defined tangent at each
point, which varies continuously as the point on the curve varies. More-
over, the parametrization γ induces an orientation on Γ as the parameter
s travels from a to b.

Any C1 bijective mapping s : [c, d] → [a, b] gives rise to another
parametrization of Γ by the formula

η(t) = γ(s(t)).

Clearly, the conditions that Γ be closed and simple are independent of
the chosen parametrization. Also, we say that the two parametrizations
γ and η are equivalent if s′(t) > 0 for all t; this means that η and γ
induce the same orientation on the curve Γ. If, however, s′(t) < 0, then
η reverses the orientation.

If Γ is parametrized by γ(s) = (x(s), y(s)), then the length of the
curve Γ is defined by

` =
∫ b

a
|γ′(s)| ds =

∫ b

a

(
x′(s)2 + y′(s)2

)1/2
ds.

The length of Γ is a notion intrinsic to the curve, and does not depend
on its parametrization. To see that this is indeed the case, suppose that
γ(s(t)) = η(t). Then, the change of variables formula and the chain rule
imply that

∫ b

a
|γ′(s)| ds =

∫ d

c
|γ′(s(t))| |s′(t)| dt =

∫ d

c
|η′(t)| dt,
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as desired.
In the proof of the theorem below, we shall use a special type of

parametrization for Γ. We say that γ is a parametrization by arc-
length if |γ′(s)| = 1 for all s. This means that γ(s) travels at a constant
speed, and as a consequence, the length of Γ is precisely b− a. Therefore,
after a possible additional translation, a parametrization by arc-length
will be defined on [0, `]. Any curve admits a parametrization by arc-
length (Exercise 1).

We now turn to the isoperimetric problem.
The attempt to give a precise formulation of the area A of the region

enclosed by a simple closed curve Γ raises a number of tricky questions.
In a variety of simple situations, it is evident that the area is given by
the following familiar formula of the calculus:

A =
1
2

∣∣∣∣
∫

Γ
(x dy − y dx)

∣∣∣∣(1)

=
1
2

∣∣∣∣∣
∫ b

a
x(s)y′(s)− y(s)x′(s) ds

∣∣∣∣∣ ;

see, for example, Exercise 3. Thus in formulating our result we shall
adopt the easy expedient of taking (1) as our definition of area. This
device allows us to give a quick and neat proof of the isoperimetric in-
equality. A listing of issues this simplification leaves unresolved can be
found after the proof of the theorem.

Statement and proof of the isoperimetric inequality

Theorem 1.1 Suppose that Γ is a simple closed curve in R2 of length
`, and let A denote the area of the region enclosed by this curve. Then

A ≤ `2

4π
,

with equality if and only if Γ is a circle.

The first observation is that we can rescale the problem. This means
that we can change the units of measurement by a factor of δ > 0 as
follows. Consider the mapping of the plane R2 to itself, which sends the
point (x, y) to (δx, δy). A look at the formula defining the length of a
curve shows that if Γ is of length `, then its image under this mapping
has length δ`. So this operation magnifies or contracts lengths by a
factor of δ depending on whether δ ≥ 1 or δ ≤ 1. Similarly, we see that
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the mapping magnifies (or contracts) areas by a factor of δ2. By taking
δ = 2π/`, we see that it suffices to prove that if ` = 2π then A ≤ π, with
equality only if Γ is a circle.

Let γ : [0, 2π] → R2 with γ(s) = (x(s), y(s)) be a parametrization by
arc-length of the curve Γ, that is, x′(s)2 + y′(s)2 = 1 for all s ∈ [0, 2π].
This implies that

(2)
1
2π

∫ 2π

0
(x′(s)2 + y′(s)2) ds = 1.

Since the curve is closed, the functions x(s) and y(s) are 2π-periodic, so
we may consider their Fourier series

x(s) ∼
∑

aneins and y(s) ∼
∑

bneins.

Then, as we remarked in the later part of Section 2 of Chapter 2, we
have

x′(s) ∼
∑

anineins and y′(s) ∼
∑

bnineins.

Parseval’s identity applied to (2) gives

(3)
∞∑

n=−∞
|n|2 (|an|2 + |bn|2

)
= 1.

We now apply the bilinear form of Parseval’s identity (Lemma 1.5, Chap-
ter 3) to the integral defining A. Since x(s) and y(s) are real-valued, we
have an = a−n and bn = b−n, so we find that

A =
1
2

∣∣∣∣
∫ 2π

0
x(s)y′(s)− y(s)x′(s) ds

∣∣∣∣ = π

∣∣∣∣∣
∞∑

n=−∞
n

(
anbn − bnan

)∣∣∣∣∣ .

We observe next that

(4) |anbn − bnan| ≤ 2 |an| |bn| ≤ |an|2 + |bn|2,

and since |n| ≤ |n|2, we may use (3) to get

A ≤ π
∞∑

n=−∞
|n|2 (|an|2 + |bn|2

)

≤ π,
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as desired.
When A = π, we see from the above argument that

x(s) = a−1e
−is + a0 + a1e

is and y(s) = b−1e
−is + b0 + b1e

is

because |n| < |n|2 as soon as |n| ≥ 2. We know that x(s) and y(s) are
real-valued, so a−1 = a1 and b−1 = b1. The identity (3) implies that
2

(|a1|2 + |b1|2
)

= 1, and since we have equality in (4) we must have
|a1| = |b1| = 1/2. We write

a1 =
1
2

eiα and b1 =
1
2

eiβ .

The fact that 1 = 2|a1b1 − a1b1| implies that | sin(α− β)| = 1, hence
α− β = kπ/2 where k is an odd integer. From this we find that

x(s) = a0 + cos(α + s) and y(s) = b0 ± sin(α + s),

where the sign in y(s) depends on the parity of (k − 1)/2. In any case,
we see that Γ is a circle, for which the case of equality obviously holds,
and the proof of the theorem is complete.

The solution given above (due to Hurwitz in 1901) is indeed very ele-
gant, but clearly leaves some important issues unanswered. We list these
as follows. Suppose Γ is a simple closed curve.

(i) How is the “region enclosed by Γ” defined?

(ii) What is the geometric definition of the “area” of this region? Does
this definition accord with (1)?

(iii) Can these results be extended to the most general class of sim-
ple closed curves relevant to the problem—those curves which are
“rectifiable”—that is, those to which we can ascribe a finite length?

It turns out that the clarifications of the problems raised are connected
to a number of other significant ideas in analysis. We shall return to
these questions in succeeding books of this series.

2 Weyl’s equidistribution theorem

We now apply ideas coming from Fourier series to a problem dealing
with properties of irrational numbers. We begin with a brief discussion
of congruences, a concept needed to understand our main theorem.
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The reals modulo the integers

If x is a real number, we let [x] denote the greatest integer less than
or equal to x and call the quantity [x] the integer part of x. The
fractional part of x is then defined by 〈x〉 = x− [x]. In particular,
〈x〉 ∈ [0, 1) for every x ∈ R. For example, the integer and fractional parts
of 2.7 are 2 and 0.7, respectively, while the integer and fractional parts
of −3.4 are −4 and 0.6, respectively.

We may define a relation on R by saying that the two numbers x and
y are equivalent, or congruent, if x− y ∈ Z. We then write

x = y mod Z or x = y mod 1.

This means that we identify two real numbers if they differ by an integer.
Observe that any real number x is congruent to a unique number in
[0, 1) which is precisely 〈x〉, the fractional part of x. In effect, reducing
a real number modulo Z means looking only at its fractional part and
disregarding its integer part.

Now start with a real number γ 6= 0 and look at the sequence
γ, 2γ, 3γ, . . . . An intriguing question is to ask what happens to this
sequence if we reduce it modulo Z, that is, if we look at the sequence of
fractional parts

〈γ〉, 〈2γ〉, 〈3γ〉, . . . .

Here are some simple observations:

(i) If γ is rational, then only finitely many numbers appearing in 〈nγ〉
are distinct.

(ii) If γ is irrational, then the numbers 〈nγ〉 are all distinct.

Indeed, for part (i), note that if γ = p/q, the first q terms in the sequence
are

〈p/q〉, 〈2p/q〉, . . . , 〈(q − 1)p/q〉, 〈qp/q〉 = 0.

The sequence then begins to repeat itself, since

〈(q + 1)p/q〉 = 〈1 + p/q〉 = 〈p/q〉,

and so on. However, see Exercise 6 for a more refined result.
Also, for part (ii) assume that not all numbers are distinct. We there-

fore have 〈n1γ〉 = 〈n2γ〉 for some n1 6= n2; then n1γ − n2γ ∈ Z, hence γ
is rational, a contradiction.
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In fact, it can be shown that if γ is irrational, then 〈nγ〉 is dense in the
interval [0, 1), a result originally proved by Kronecker. In other words,
the sequence 〈nγ〉 hits every sub-interval of [0, 1) (and hence it does so
infinitely many times). We will obtain this fact as a corollary of a deeper
theorem dealing with the uniform distribution of the sequence 〈nγ〉.

A sequence of numbers ξ1, ξ2, . . . , ξn, . . . in [0, 1) is said to be equidis-
tributed if for every interval (a, b) ⊂ [0, 1),

lim
N→∞

#{1 ≤ n ≤ N : ξn ∈ (a, b)}
N

= b− a

where #A denotes the cardinality of the finite set A. This means that
for large N , the proportion of numbers ξn in (a, b) with n ≤ N is equal to
the ratio of the length of the interval (a, b) to the length of the interval
[0, 1). In other words, the sequence ξn sweeps out the whole interval
evenly, and every sub-interval gets its fair share. Clearly, the ordering of
the sequence is very important, as the next two examples illustrate.

Example 1. The sequence

0,
1
2
, 0,

1
3
,

2
3
, 0,

1
4
,

2
4
,

3
4
, 0,

1
5
,

2
5
, · · ·

appears to be equidistributed since it passes over the interval [0, 1) very
evenly. Of course this is not a proof, and the reader is invited to give
one. For a somewhat related example, see Exercise 8 with σ = 1/2.

Example 2. Let {rn}∞n=1 be any enumeration of the rationals in [0, 1).
Then the sequence defined by

ξn =
{

rn/2 if n is even,
0 if n is odd,

is not equidistributed since “half” of the sequence is at 0. Nevertheless,
this sequence is obviously dense.

We now arrive at the main theorem of this section.

Theorem 2.1 If γ is irrational, then the sequence of fractional parts
〈γ〉, 〈2γ〉, 〈3γ〉, . . . is equidistributed in [0, 1).

In particular, 〈nγ〉 is dense in [0, 1), and we get Kronecker’s theo-
rem as a corollary. In Figure 2 we illustrate the set of points 〈γ〉, 〈2γ〉,
〈3γ〉, . . . , 〈Nγ〉 for three different values of N when γ =

√
2.



Ibookroot October 20, 2007

108 Chapter 4. SOME APPLICATIONS OF FOURIER SERIES

N = 10

N = 30

N = 80

10

1

1

0

0

Figure 2. The sequence 〈γ〉, 〈2γ〉, 〈3γ〉, . . . , 〈Nγ〉 when γ =
√

2

Fix (a, b) ⊂ [0, 1) and let χ(a,b)(x) denote the characteristic function
of the interval (a, b), that is, the function equal to 1 in (a, b) and 0 in
[0, 1)− (a, b). We may extend this function to R by periodicity (pe-
riod 1), and still denote this extension by χ(a,b)(x). Then, as a conse-
quence of the definitions, we find that

#{1 ≤ n ≤ N : 〈nγ〉 ∈ (a, b)} =
N∑

n=1

χ(a,b)(nγ),

and the theorem can be reformulated as the statement that

1
N

N∑

n=1

χ(a,b)(nγ) →
∫ 1

0
χ(a,b)(x) dx, as N →∞.

This step removes the difficulty of working with fractional parts and
reduces the number theory to analysis.

The heart of the matter lies in the following result.

Lemma 2.2 If f is continuous and periodic of period 1, and γ is irra-
tional, then

1
N

N∑

n=1

f(nγ) →
∫ 1

0
f(x) dx as N →∞.

The proof of the lemma is divided into three steps.

Step 1. We first check the validity of the limit in the case when f
is one of the exponentials 1, e2πix, . . . , e2πikx, . . . . If f = 1, the limit
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surely holds. If f = e2πikx with k 6= 0, then the integral is 0. Since γ is
irrational, we have e2πikγ 6= 1, therefore

1
N

N∑

n=1

f(nγ) =
e2πikγ

N

1− e2πikNγ

1− e2πikγ
,

which goes to 0 as N →∞.

Step 2. It is clear that if f and g satisfy the lemma, then so does
Af + Bg for any A,B ∈ C. Therefore, the first step implies that the
lemma is true for all trigonometric polynomials.

Step 3. Let ε > 0. If f is any continuous periodic function of period 1,
choose a trigonometric polynomial P so that supx∈R |f(x)− P (x)| < ε/3
(this is possible by Corollary 5.4 in Chapter 2). Then, by step 1, for all
large N we have

∣∣∣∣∣
1
N

N∑

n=1

P (nγ)−
∫ 1

0
P (x) dx

∣∣∣∣∣ < ε/3.

Therefore
∣∣∣∣∣
1
N

N∑

n=1

f(nγ)−
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤
1
N

N∑

n=1

|f(nγ)− P (nγ)|+

+

∣∣∣∣∣
1
N

N∑

n=1

P (nγ)−
∫ 1

0
P (x) dx

∣∣∣∣∣ +

+
∫ 1

0
|P (x)− f(x)| dx

< ε,

and the lemma is proved.

Now we can finish the proof of the theorem. Choose two continuous
periodic functions f+

ε and f−ε of period 1 which approximate χ(a,b)(x)
on [0, 1) from above and below; both f+

ε and f−ε are bounded by 1 and
agree with χ(a,b)(x) except in intervals of total length 2ε (see Figure 3).

In particular, f−ε (x) ≤ χ(a,b)(x) ≤ f+
ε (x), and

b− a− 2ε ≤
∫ 1

0
f−ε (x) dx and

∫ 1

0
f+

ε (x) dx ≤ b− a + 2ε.

If SN = 1
N

∑N
n=1 χ(a,b)(nγ), then we get

1
N

N∑

n=1

f−ε (nγ) ≤ SN ≤ 1
N

N∑

n=1

f+
ε (nγ).
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f−ε

f+
ε

a0 b 1b + εb− εa + εa− ε

Figure 3. Approximations of χ(a,b)(x)

Therefore

b− a− 2ε ≤ lim inf
N→∞

SN and lim sup
N→∞

SN ≤ b− a + 2ε.

Since this is true for every ε > 0, the limit limN→∞ SN exists and must
equal b− a. This completes the proof of the equidistribution theorem.

This theorem has the following consequence.

Corollary 2.3 The conclusion of Lemma 2.2 holds for every function
f which is Riemann integrable in [0, 1], and periodic of period 1.

Proof. Assume f is real-valued, and consider a partition of the
interval [0, 1], say 0 = x0 < x1 < · · · < xN = 1. Next, define fU (x) =
supxj−1≤y≤xj

f(y) if x ∈ [xj−1, xj) and fL(x) = infxj−1≤y≤xj
f(y) for x ∈

(xj−1, xj). Then clearly fL ≤ f ≤ fU and

∫ 1

0
fL(x) dx ≤

∫ 1

0
f(x) dx ≤

∫ 1

0
fU (x) dx.

Moreover, by making the partition sufficiently fine we can guarantee that
for a given ε > 0,

∫ 1

0
fU (x) dx−

∫ 1

0
fL(x) dx ≤ ε.

However,

1
N

N∑

n=1

fL(nγ) →
∫ 1

0
fL(x) dx
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by the theorem, because each fL is a finite linear combination of charac-
teristic functions of intervals; similarly we have

1
N

N∑

n=1

fU (nγ) →
∫ 1

0
fU (x) dx.

From these two assertions we can conclude the proof of the corollary by
using the previous approximation argument.

There is an interesting interpretation of the lemma and its corollary,
in terms of a simple dynamical system. In this example, the underlying
space is the circle parametrized by the angle θ. We also consider a
mapping of this space to itself: here, we choose a rotation ρ of the circle
by the angle 2πγ, that is, the transformation ρ : θ 7→ θ + 2πγ.

We want next to consider how this space, with its underlying action
ρ, evolves in time. In other words, we wish to consider the iterates of ρ,
namely ρ, ρ2, ρ3, . . ., ρn where

ρn = ρ ◦ ρ ◦ · · · ◦ ρ : θ 7→ θ + 2πnγ,

and where we think of the action ρn taking place at the time t = n.
To each Riemann integrable function f on the circle, we can also asso-

ciate the corresponding effects of the rotation ρ, and obtain a sequence
of functions

f(θ), f(ρ(θ)), f(ρ2(θ)), . . . , f(ρn(θ)), . . .

with f(ρn(θ)) = f(θ + 2πnγ). In this special context, the ergodicity of
this system is then the statement that the “time average”

lim
N→∞

1
N

N∑

n=1

f(ρn(θ))

exists for each θ and equals the “space average”

1
2π

∫ 2π

0
f(θ) dθ,

whenever γ is irrational. In fact, this assertion is merely a rephrasing of
Corollary 2.3, once we make the change of variables θ = 2πx.

Returning to the problem of equidistributed sequences, we observe that
the proof of Theorem 2.1 gives the following characterization.
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Weyl’s criterion. A sequence of real numbers ξ1, ξ2 . . . in
[0, 1) is equidistributed if and only if for all integers k 6= 0 one
has

1
N

N∑

n=1

e2πikξn → 0, as N →∞.

One direction of this theorem was in effect proved above, and the con-
verse can be found in Exercise 7. In particular, we find that to understand
the equidistributive properties of a sequence ξn, it suffices to estimate
the size of the corresponding “exponential sum”

∑N
n=1 e2πikξn . For ex-

ample, it can be shown using Weyl’s criterion that the sequence 〈n2γ〉
is equidistributed whenever γ is irrational. This and other examples can
be found in Exercises 8, and 9; also Problems 2, and 3.

As a last remark, we mention a nice geometric interpretation of the
distribution properties of 〈nγ〉. Suppose that the sides of a square are
reflecting mirrors and that a ray of light leaves a point inside the square.
What kind of path will the light trace out?

P

Figure 4. Reflection of a ray of light in a square

To solve this problem, the main idea is to consider the grid of the
plane formed by successively reflecting the initial square across its sides.
With an appropriate choice of axis, the path traced by the light in the
square corresponds to the straight line P + (t, γt) in the plane. As a
result, the reader may observe that the path will be either closed and
periodic, or it will be dense in the square. The first of these situations
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will happen if and only if the slope γ of the initial direction of the light
(determined with respect to one of the sides of the square) is rational.
In the second situation, when γ is irrational, the density follows from
Kronecker’s theorem. What stronger conclusion does one get from the
equidistribution theorem?

3 A continuous but nowhere differentiable function

There are many obvious examples of continuous functions that are not
differentiable at one point, say f(x) = |x|. It is almost as easy to con-
struct a continuous function that is not differentiable at any given finite
set of points, or even at appropriate sets containing countably many
points. A more subtle problem is whether there exists a continuous
function that is nowhere differentiable. In 1861, Riemann guessed that
the function defined by

(5) R(x) =
∞∑

n=1

sin(n2x)
n2

was nowhere differentiable. He was led to consider this function because
of its close connection to the theta function which will be introduced in
Chapter 5. Riemann never gave a proof, but mentioned this example in
one of his lectures. This triggered the interest of Weierstrass who, in an
attempt to find a proof, came across the first example of a continuous but
nowhere differentiable function. Say 0 < b < 1 and a is an integer > 1.
In 1872 he proved that if ab > 1 + 3π/2, then the function

W (x) =
∞∑

n=1

bn cos(anx)

is nowhere differentiable.
But the story is not complete without a final word about Riemann’s

original function. In 1916 Hardy showed that R is not differentiable at
all irrational multiples of π, and also at certain rational multiples of π.
However, it was not until much later, in 1969, that Gerver completely
settled the problem, first by proving that the function R is actually
differentiable at all the rational multiples of π of the form πp/q with p
and q odd integers, and then by showing that R is not differentiable in
all of the remaining cases.

In this section, we prove the following theorem.
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Theorem 3.1 If 0 < α < 1, then the function

fα(x) = f(x) =
∞∑

n=0

2−nαei2nx

is continuous but nowhere differentiable.

The continuity is clear because of the absolute convergence of the se-
ries. The crucial property of f which we need is that it has many van-
ishing Fourier coefficients. A Fourier series that skips many terms, like
the one given above, or like W (x), is called a lacunary Fourier series.

The proof of the theorem is really the story of three methods of sum-
ming a Fourier series. First, there is the ordinary convergence in terms
of the partial sums SN (g) = g ∗DN . Next, there is Cesàro summabil-
ity σN (g) = g ∗ FN , with FN the Fejér kernel. A third method, clearly
connected with the second, involves the delayed means defined by

4N (g) = 2σ2N (g)− σN (g).

Hence 4N (g) = g ∗ [2F2N − FN ]. These methods can best be visualized
as in Figure 5.

Suppose g(x) ∼ ∑
aneinx. Then:

• SN arises by multiplying the term aneinx by 1 if |n| ≤ N , and 0 if
|n| > N .

• σN arises by multiplying aneinx by 1− |n|/N for |n| ≤ N and 0 for
|n| > N .

• 4N arises by multiplying aneinx by 1 if |n| ≤ N , by 2(1− |n|/(2N))
for N ≤ |n| ≤ 2N , and 0 for |n| > 2N .

For example, note that

σN (g)(x) =
S0(g)(x) + S1(g)(x) + · · ·+ SN−1(g)(x)

N

=
1
N

N−1∑

`=0

∑

|k|≤`

akeikx

=
1
N

∑

|n|≤N

(N − |n|)aneinx

=
∑

|n|≤N

(
1− |n|

N

)
aneinx.
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Partial sums

−N

1

−N

1

−N 0 N

1

−2N

N

N

2N

0

0

∆N (g)(x) = 2σ2N (g)(x)− σN (g)(x)

Delayed means

Cesàro means

σN (g)(x) =
∑
|n|≤N

(
1− |n|

N

)
aneinx

SN (g)(x) =
∑
|n|≤N aneinx

Figure 5. Three summation methods
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The proof of the other assertion is similar.

The delayed means have two important features. On the one hand,
their properties are closely related to the (good) features of the Cesàro
means. On the other hand, for series that have lacunary properties like
those of f , the delayed means are essentially equal to the partial sums.
In particular, note that for our function f = fα

(6) SN (f) = 4N ′(f),

where N ′ is the largest integer of the form 2k with N ′ ≤ N . This is clear
by examining Figure 5 and the definition of f .

We turn to the proof of the theorem proper and argue by contradiction;
that is, we assume that f ′(x0) exists for some x0.

Lemma 3.2 Let g be any continuous function that is differentiable at
x0. Then, the Cesàro means satisfy σN (g)′(x0) = O(log N), therefore

4N (g)′(x0) = O(log N).

Proof. First we have

σN (g)′(x0) =
∫ π

−π
F ′N (x0 − t)g(t) dt =

∫ π

−π
F ′N (t)g(x0 − t) dt,

where FN is the Fejér kernel. Since FN is periodic, we have
∫ π
−πF ′N (t)dt=0

and this implies that

σN (g)′(x0) =
∫ π

−π
F ′N (t)[g(x0 − t)− g(x0)] dt.

From the assumption that g is differentiable at x0 we get

|σN (g)′(x0)| ≤ C

∫ π

−π
|F ′N (t)| |t| dt.

Now observe that F ′N satisfies the two estimates

|F ′N (t)| ≤ AN2 and |F ′N (t)| ≤ A

|t|2 .

For the first inequality, recall that FN is a trigonometric polynomial
of degree N whose coefficients are bounded by 1. Therefore, F ′N is a
trigonometric polynomial of degree N whose coefficients are no bigger
than N . Hence |F ′(t)| ≤ (2N + 1)N ≤ AN2.
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For the second inequality, we recall that

FN (t) =
1
N

sin2(Nt/2)
sin2(t/2)

.

Differentiating this expression, we get two terms:

sin(Nt/2) cos(Nt/2)
sin2(t/2)

− 1
N

cos(t/2) sin2(Nt/2)
sin3(t/2)

.

If we then use the facts that | sin(Nt/2)| ≤ CN |t| and | sin(t/2)| ≥ c|t|
(for |t| ≤ π), we get the desired estimates for F ′N (t).

Using all of these estimates we find that

|σN (g)′(x0)| ≤ C

∫

|t|≥1/N
|F ′N (t)| |t| dt + C

∫

|t|≤1/N
|F ′N (t)| |t| dt

≤ CA

∫

|t|≥1/N

dt

|t| + CAN

∫

|t|≤1/N
dt

= O(log N) + O(1)
= O(log N).

The proof of the lemma is complete once we invoke the definition of
4N (g).

Lemma 3.3 If 2N = 2n, then

42N (f)−4N (f) = 2−nαei2nx.

This follows from our previous observation (6) because 42N (f) =
S2N (f) and 4N (f) = SN (f).

Now, by the first lemma we have

42N (f)′(x0)−4N (f)′(x0) = O(log N),

and the second lemma also implies

|42N (f)′(x0)−4N (f)′(x0)| = 2n(1−α) ≥ cN1−α.

This is the desired contradiction since N1−α grows faster than log N .

A few additional remarks about our function fα(x) =
∑∞

n=0 2−nαei2nx

are in order.
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This function is complex-valued as opposed to the examples R and W
above, and so the nowhere differentiability of fα does not imply the same
property for its real and imaginary parts. However, a small modification
of our proof shows that, in fact, the real part of fα,

∞∑

n=0

2−nα cos 2nx,

as well as its imaginary part, are both nowhere differentiable. To see
this, observe first that by the same proof, Lemma 3.2 has the following
generalization: if g is a continuous function which is differentiable at x0,
then

4N (g)′(x0 + h) = O(log N) whenever |h| ≤ c/N .

We then proceed with F (x) =
∑∞

n=0 2−nα cos 2nx, noting as above that
42N (F )−4N (F ) = 2−nα cos 2nx; as a result, assuming that F is differ-
entiable at x0, we get that

|2n(1−α) sin(2n(x0 + h))| = O(log N)

when 2N = 2n, and |h| ≤ c/N . To get a contradiction, we need only
choose h so that | sin(2n(x0 + h))| = 1; this is accomplished by setting
δ equal to the distance from 2nx0 to the nearest number of the form
(k + 1/2)π, k ∈ Z (so δ ≤ π/2), and taking h = ±δ/2n.

Clearly, when α > 1 the function fα is continuously differentiable since
the series can be differentiated term by term. Finally, the nowhere dif-
ferentiability we have proved for α < 1 actually extends to α = 1 by a
suitable refinement of the argument (see Problem 8 in Chapter 5). In
fact, using these more elaborate methods one can also show that the
Weierstrass function W is nowhere differentiable if ab ≥ 1.

4 The heat equation on the circle

As a final illustration, we return to the original problem of heat diffusion
considered by Fourier.

Suppose we are given an initial temperature distribution at t = 0 on a
ring and that we are asked to describe the temperature at points on the
ring at times t > 0.

The ring is modeled by the unit circle. A point on this circle is de-
scribed by its angle θ = 2πx, where the variable x lies between 0 and 1.
If u(x, t) denotes the temperature at time t of a point described by the
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angle θ, then considerations similar to the ones given in Chapter 1 show
that u satisfies the differential equation

(7)
∂u

∂t
= c

∂2u

∂x2
.

The constant c is a positive physical constant which depends on the
material of which the ring is made (see Section 2.1 in Chapter 1). After
rescaling the time variable, we may assume that c = 1. If f is our initial
data, we impose the condition

u(x, 0) = f(x).

To solve the problem, we separate variables and look for special solutions
of the form

u(x, t) = A(x)B(t).

Then inserting this expression for u into the heat equation we get

B′(t)
B(t)

=
A′′(x)
A(x)

.

Both sides are therefore constant, say equal to λ. Since A must be
periodic of period 1, we see that the only possibility is λ = −4π2n2,
where n ∈ Z. Then A is a linear combination of the exponentials e2πinx

and e−2πinx, and B(t) is a multiple of e−4π2n2t. By superposing these
solutions, we are led to

(8) u(x, t) =
∞∑

n=−∞
ane−4π2n2te2πinx,

where, setting t = 0, we see that {an} are the Fourier coefficients of f .
Note that when f is Riemann integrable, the coefficients an are

bounded, and since the factor e−4π2n2t tends to zero extremely fast, the
series defining u converges. In fact, in this case, u is twice differentiable
and solves equation (7).

The natural question with regard to the boundary condition is the
following: do we have u(x, t) → f(x) as t tends to 0, and in what sense?
A simple application of the Parseval identity shows that this limit holds
in the mean square sense (Exercise 11). For a better understanding of
the properties of our solution (8), we write it as

u(x, t) = (f ∗Ht)(x),
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where Ht is the heat kernel for the circle, given by

(9) Ht(x) =
∞∑

n=−∞
e−4π2n2te2πinx,

and where the convolution for functions with period 1 is defined by

(f ∗ g)(x) =
∫ 1

0
f(x− y)g(y) dy.

An analogy between the heat kernel and the Poisson kernel (of Chapter 2)
is given in Exercise 12. However, unlike in the case of the Poisson kernel,
there is no elementary formula for the heat kernel. Nevertheless, it turns
out that it is a good kernel (in the sense of Chapter 2). The proof is
not obvious and requires the use of the celebrated Poisson summation
formula, which will be taken up in Chapter 5. As a corollary, we will
also find that Ht is everywhere positive, a fact that is also not obvious
from its defining expression (9). We can, however, give the following
heuristic argument for the positivity of Ht. Suppose that we begin with
an initial temperature distribution f which is everywhere ≤ 0. Then it
is physically reasonable to expect u(x, t) ≤ 0 for all t since heat travels
from hot to cold. Now

u(x, t) =
∫ 1

0
f(x− y)Ht(y) dy.

If Ht is negative for some x0, then we may choose f ≤ 0 supported near
x0, and this would imply u(x0, t) > 0, which is a contradiction.

5 Exercises

1. Let γ : [a, b] → R2 be a parametrization for the closed curve Γ.

(a) Prove that γ is a parametrization by arc-length if and only if the length
of the curve from γ(a) to γ(s) is precisely s− a, that is,

∫ s

a

|γ′(t)| dt = s− a.

(b) Prove that any curve Γ admits a parametrization by arc-length. [Hint: If
η is any parametrization, let h(s) =

∫ s

a
|η′(t)| dt and consider γ = η ◦ h−1.]

2. Suppose γ : [a, b] → R2 is a parametrization for a closed curve Γ, with
γ(t) = (x(t), y(t)).
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(a) Show that

1
2

∫ b

a

(x(s)y′(s)− y(s)x′(s)) ds =
∫ b

a

x(s)y′(s) ds = −
∫ b

a

y(s)x′(s) ds.

(b) Define the reverse parametrization of γ by γ− : [a, b] → R2 with
γ−(t) = γ(b + a− t). The image of γ− is precisely Γ, except that the
points γ−(t) and γ(t) travel in opposite directions. Thus γ− “reverses”
the orientation of the curve. Prove that

∫

γ

(x dy − y dx) = −
∫

γ−
(x dy − y dx).

In particular, we may assume (after a possible change in orientation) that

A =
1
2

∫ b

a

(x(s)y′(s)− y(s)x′(s)) ds =
∫ b

a

x(s)y′(s) ds.

3. Suppose Γ is a curve in the plane, and that there exists a set of coordinates
x and y so that the x-axis divides the curve into the union of the graph of
two continuous functions y = f(x) and y = g(x) for 0 ≤ x ≤ 1, and with f(x) ≥
g(x) (see Figure 6). Let Ω denote the region between the graphs of these two
functions:

Ω = {(x, y) : 0 ≤ x ≤ 1 and g(x) ≤ y ≤ f(x)}.

0 1

y = g(x)

y = f(x)

Ω

Figure 6. Simple version of the area formula

With the familiar interpretation that the integral
∫

h(x) dx gives the area
under the graph of the function h, we see that the area of Ω is

∫ 1

0
f(x) dx−
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∫ 1

0
g(x) dx. Show that this definition coincides with the area formula A given in

the text, that is,

∫ 1

0

f(x) dx−
∫ 1

0

g(x) dx =
∣∣∣∣−

∫

Γ

y dx

∣∣∣∣ = A.

Also, note that if the orientation of the curve is chosen so that Ω “lies to the
left” of Γ, then the above formula holds without the absolute value signs.

This formula generalizes to any set that can be written as a finite union of
domains like Ω above.

4. Observe that with the definition of ` and A given in the text, the isoperimetric
inequality continues to hold (with the same proof) even when Γ is not simple.

Show that this stronger version of the isoperimetric inequality is equivalent
to Wirtinger’s inequality, which says that if f is 2π-periodic, of class C1, and
satisfies

∫ 2π

0
f(t) dt = 0, then

∫ 2π

0

|f(t)|2 dt ≤
∫ 2π

0

|f ′(t)|2 dt

with equality if and only if f(t) = A sin t + B cos t (Exercise 11, Chapter 3).
[Hint: In one direction, note that if the length of the curve is 2π and γ is an
appropriate arc-length parametrization, then

2(π −A) =
∫ 2π

0

[x′(s) + y(s)]2 ds +
∫ 2π

0

(y′(s)2 − y(s)2) ds.

A change of coordinates will guarantee
∫ 2π

0
y(s) ds = 0. For the other direction,

start with a real-valued f satisfying all the hypotheses of Wirtinger’s inequality,
and construct g, 2π-periodic and so that the term in brackets above vanishes.]

5. Prove that the sequence {γn}∞n=1, where γn is the fractional part of

(
1 +

√
5

2

)n

,

is not equidistributed in [0, 1].

[Hint: Show that Un =
(

1+
√

5
2

)n

+
(

1−√5
2

)n

is the solution of the difference
equation Ur+1 = Ur + Ur−1 with U0 = 2 and U1 = 1. The Un satisfy the same
difference equation as the Fibonacci numbers.]

6. Let θ = p/q be a rational number where p and q are relatively prime inte-
gers (that is, θ is in lowest form). We assume without loss of generality that
q > 0. Define a sequence of numbers in [0, 1) by ξn = 〈nθ〉 where 〈·〉 denotes the
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fractional part. Show that the sequence {ξ1, ξ2, . . .} is equidistributed on the
points of the form

0, 1/q, 2/q, . . . , (q − 1)/q.

In fact, prove that for any 0 ≤ a < q, one has

#{n : 1 ≤ n ≤ N, 〈nθ〉 = a/q}
N

=
1
q

+ O

(
1
N

)
.

[Hint: For each integer k ≥ 0, there exists a unique integer n with kq ≤ n < (k +
1)q and so that 〈nθ〉 = a/q. Why can one assume k = 0? Prove the existence
of n by using the fact1 that if p and q are relatively prime, there exist integers
x, y such that xp + yq = 1. Next, divide N by q with remainder, that is, write
N = `q + r where 0 ≤ ` and 0 ≤ r < q. Establish the inequalities

` ≤ #{n : 1 ≤ n ≤ N, 〈nθ〉 = a/q} ≤ ` + 1.]

7. Prove the second part of Weyl’s criterion: if a sequence of numbers ξ1, ξ2, . . .
in [0, 1) is equidistributed, then for all k ∈ Z− {0}

1
N

N∑
n=1

e2πikξn → 0 as N →∞.

[Hint: It suffices to show that 1
N

∑N
n=1 f(ξn) → ∫ 1

0
f(x) dx for all continuous f .

Prove this first when f is the characteristic function of an interval.]

8. Show that for any a 6= 0, and σ with 0 < σ < 1, the sequence 〈anσ〉 is equidis-
tributed in [0, 1).

[Hint: Prove that
∑N

n=1 e2πibnσ

= O(Nσ) + O(N1−σ) if b 6= 0.] In fact, note the
following

N∑
n=1

e2πibnσ −
∫ N

1

e2πibxσ

dx = O

(
N∑

n=1

n−1+σ

)
.

9. In contrast with the result in Exercise 8, prove that 〈a log n〉 is not equidis-
tributed for any a.
[Hint: Compare the sum

∑N
n=1 e2πib log n with the corresponding integral.]

10. Suppose that f is a periodic function on R of period 1, and {ξn} is a sequence
which is equidistributed in [0, 1). Prove that:

1The elementary results in arithmetic used in this exercise can be found at the begin-
ning of Chapter 8.
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(a) If f is continuous and satisfies
∫ 1

0
f(x) dx = 0, then

lim
N→∞

1
N

N∑
n=1

f(x + ξn) = 0 uniformly in x.

[Hint: Establish this result first for trigonometric polynomials.]

(b) If f is merely integrable on [0, 1] and satisfies
∫ 1

0
f(x) dx = 0, then

lim
N→∞

∫ 1

0

∣∣∣∣∣
1
N

N∑
n=1

f(x + ξn)

∣∣∣∣∣

2

dx = 0.

11. Show that if u(x, t) = (f ∗Ht)(x) where Ht is the heat kernel, and f is
Riemann integrable, then

∫ 1

0

|u(x, t)− f(x)|2 dx → 0 as t → 0.

12. A change of variables in (8) leads to the solution

u(θ, τ) =
∑

ane−n2τeinθ = (f ∗ hτ )(θ)

of the equation

∂u

∂τ
=

∂2u

∂θ2
with 0 ≤ θ ≤ 2π and τ > 0,

with boundary condition u(θ, 0) = f(θ) ∼ ∑
aneinθ. Here hτ (θ) =∑∞

n=−∞ e−n2τeinθ. This version of the heat kernel on [0, 2π] is the analogue
of the Poisson kernel, which can be written as Pr(θ) =

∑∞
n=−∞ e−|n|τeinθ with

r = e−τ (and so 0 < r < 1 corresponds to τ > 0).

13. The fact that the kernel Ht(x) is a good kernel, hence u(x, t) → f(x) at
each point of continuity of f , is not easy to prove. This will be shown in the
next chapter. However, one can prove directly that Ht(x) is “peaked” at x = 0
as t → 0 in the following sense:

(a) Show that
∫ 1/2

−1/2
|Ht(x)|2 dx is of the order of magnitude of t−1/2 as t → 0.

More precisely, prove that t1/2
∫ 1/2

−1/2
|Ht(x)|2 dx converges to a non-zero

limit as t → 0.

(b) Prove that
∫ 1/2

−1/2
x2|Ht(x)|2 dx = O(t1/2) as t → 0.
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[Hint: For (a) compare the sum
∑∞
−∞ e−cn2t with the integral

∫∞
−∞ e−cx2t dx

where c > 0. For (b) use x2 ≤ C(sin πx)2 for −1/2 ≤ x ≤ 1/2, and apply the
mean value theorem to e−cx2t.]

6 Problems

1.∗ This problem explores another relationship between the geometry of a curve
and Fourier series. The diameter of a closed curve Γ parametrized by
γ(t) = (x(t), y(t)) on [−π, π] is defined by

d = sup
P, Q∈Γ

|P −Q| = sup
t1, t2∈[−π,π]

|γ(t1)− γ(t2)|.

If an is the nth Fourier coefficient of γ(t) = x(t) + iy(t) and ` denotes the length
of Γ, then

(a) 2|an| ≤ d for all n 6= 0.

(b) ` ≤ πd, whenever Γ is convex.

Property (a) follows from the fact that 2an = 1
2π

∫ π

−π
[γ(t)− γ(t + π/n)]e−int dt.

The equality ` = πd is satisfied when Γ is a circle, but surprisingly, this is
not the only case. In fact, one finds that ` = πd is equivalent to 2|a1| = d. We
re-parametrize γ so that for each t in [−π, π] the tangent to the curve makes an
angle t with the y-axis. Then, if a1 = 1 we have

γ′(t) = ieit(1 + r(t)),

where r is a real-valued function which satisfies r(t) + r(t + π) = 0, and
|r(t)| ≤ 1. Figure 7 (a) shows the curve obtained by setting r(t) = cos 5t. Also,
Figure 7 (b) consists of the curve where r(t) = h(3t), with h(s) = −1 if −π ≤
s ≤ 0 and h(s) = 1 if 0 < s < π. This curve (which is only piecewise of class C1)
is known as the Reuleaux triangle and is the classical example of a convex curve
of constant width which is not a circle.

2.∗ Here we present an estimate of Weyl which leads to some interesting results.

(a) Let SN =
∑N

n=1 e2πif(n). Show that for H ≤ N , one has

|SN |2 ≤ c
N

H

H∑

h=0

∣∣∣∣∣
N−h∑
n=1

e2πi(f(n+h)−f(n))

∣∣∣∣∣ ,

for some constant c > 0 independent of N , H, and f .

(b) Use this estimate to show that the sequence 〈n2γ〉 is equidistributed in
[0, 1) whenever γ is irrational.
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(a) (b)

Figure 7. Some curves with maximal length for a given diameter

(c) More generally, show that if {ξn} is a sequence of real numbers so that
for all positive integers h the difference 〈ξn+h − ξn〉 is equidistributed in
[0, 1), then 〈ξn〉 is also equidistributed in [0, 1).

(d) Suppose that P (x) = cnxn + · · ·+ c0 is a polynomial with real coefficients,
where at least one of c1, . . . , cn is irrational. Then the sequence 〈P (n)〉 is
equidistributed in [0, 1).

[Hint: For (a), let an = e2πif(n) when 1 ≤ n ≤ N and 0 otherwise. Then write
H

∑
n an =

∑H
k=1

∑
n an+k and apply the Cauchy-Schwarz inequality. For (b),

note that (n + h)2γ − n2γ = 2nhγ + h2γ, and use the fact that for each integer
h, the sequence 〈2nhγ〉 is equidistributed. Finally, to prove (d), assume first that
P (x) = Q(x) + c1x + c0 where c1 is irrational, and estimate the exponential sum∑N

n=1 e2πikP (n). Then, argue by induction on the highest degree term which has
an irrational coefficient, and use part (c).]

3.∗ If σ > 0 is not an integer and a 6= 0, then 〈anσ〉 is equidistributed in [0, 1).
See also Exercise 8.

4. An elementary construction of a continuous but nowhere differentiable func-
tion is obtained by “piling up singularities,” as follows.

On [−1, 1] consider the function

ϕ(x) = |x|

and extend ϕ to R by requiring it to be periodic of period 2. Clearly, ϕ is
continuous on R and |ϕ(x)| ≤ 1 for all x so the function f defined by

f(x) =
∞∑

n=0

(
3
4

)n

ϕ(4nx)

is continuous on R.
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(a) Fix x0 ∈ R. For every positive integer m, let δm = ± 1
24−m where the

sign is chosen so that no integer lies in between 4mx0 and 4m(x0 + δm).
Consider the quotient

γn =
ϕ(4n(x0 + δm))− ϕ(4nx0)

δm
.

Prove that if n > m, then γn = 0, and for 0 ≤ n ≤ m one has |γn| ≤ 4n

with |γm| = 4m.

(b) From the above observations prove the estimate

∣∣∣∣
f(x0 + δm)− f(x0)

δm

∣∣∣∣ ≥
1
2
(3m + 1),

and conclude that f is not differentiable at x0.

5. Let f be a Riemann integrable function on the interval [−π, π]. We define
the generalized delayed means of the Fourier series of f by

σN,K =
SN + · · ·+ SN+K−1

K
.

Note that in particular

σ0,N = σN , σN,1 = SN and σN,N = ∆N ,

where ∆N are the specific delayed means used in Section 3.

(a) Show that

σN,K =
1
K

((N + K)σN+K −NσN ) ,

and

σN,K = SN +
∑

N+1≤|ν|≤N+K−1

(
1− |ν| −N

K

)
f̂(ν)eiνθ.

From this last expression for σN,K conclude that

|σN,K − SM | ≤
∑

N+1≤|ν|≤N+K−1

|f̂(ν)|

for all N ≤ M < N + K.
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(b) Use one of the above formulas and Fejér’s theorem to show that with
N = kn and K = n, then

σkn,n(f)(θ) → f(θ) as n →∞

whenever f is continuous at θ, and also

σkn,n(f)(θ) → f(θ+) + f(θ−)
2

as n →∞

at a jump discontinuity (refer to the preceding chapters and their exer-
cises for the appropriate definitions and results). In the case when f is
continuous on [−π, π], show that σkn,n(f) → f uniformly as n →∞.

(c) Using part (a), show that if f̂(ν) = O(1/|ν|) and kn ≤ m < (k + 1)n, we
get

|σkn,n − Sm| ≤ C

k
for some constant C > 0.

(d) Suppose that f̂(ν) = O(1/|ν|). Prove that if f is continuous at θ then

SN (f)(θ) → f(θ) as N →∞,

and if f has a jump discontinuity at θ then

SN (f)(θ) → f(θ+) + f(θ−)
2

as N →∞.

Also, show that if f is continuous on [−π, π], then SN (f) → f uniformly.

(e) The above arguments show that if
∑

cn is Cesàro summable to s and cn =
O(1/n), then

∑
cn converges to s. This is a weak version of Littlewood’s

theorem (Problem 3, Chapter 2).

6. Dirichlet’s theorem states that the Fourier series of a real continuous peri-
odic function f which has only a finite number of relative maxima and minima
converges everywhere to f (and uniformly).

Prove this theorem by showing that such a function satisfies f̂(n) = O(1/|n|).
[Hint: Argue as in Exercise 17, Chapter 3; then use conclusion (d) in Problem 5
above.]
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5 The Fourier Transform on R

The theory of Fourier series and integrals has always
had major difficulties and necessitated a large math-
ematical apparatus in dealing with questions of con-
vergence. It engendered the development of methods
of summation, although these did not lead to a com-
pletely satisfactory solution of the problem.. . . For the
Fourier transform, the introduction of distributions
(hence the space S) is inevitable either in an explicit
or hidden form.. . . As a result one may obtain all that
is desired from the point of view of the continuity and
inversion of the Fourier transform.

L. Schwartz, 1950

The theory of Fourier series applies to functions on the circle, or equiv-
alently, periodic functions on R. In this chapter, we develop an analogous
theory for functions on the entire real line which are non-periodic. The
functions we consider will be suitably “small” at infinity. There are sev-
eral ways of defining an appropriate notion of “smallness,” but it will
nevertheless be vital to assume some sort of vanishing at infinity.

On the one hand, recall that the Fourier series of a periodic function
associates a sequence of numbers, namely the Fourier coefficients, to
that function; on the other hand, given a suitable function f on R, the
analogous object associated to f will in fact be another function f̂ on R
which is called the Fourier transform of f . Since the Fourier transform
of a function on R is again a function on R, one can observe a symmetry
between a function and its Fourier transform, whose analogue is not as
apparent in the setting of Fourier series.

Roughly speaking, the Fourier transform is a continuous version of the
Fourier coefficients. Recall that the Fourier coefficients an of a function
f defined on the circle are given by

(1) an =
∫ 1

0
f(x)e−2πinx dx,
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and then in the appropriate sense we have

(2) f(x) =
∞∑

n=−∞
ane2πinx.

Here we have replaced θ by 2πx, as we have frequently done previously.
Now, consider the following analogy where we replace all of the discrete

symbols (such as integers and sums) by their continuous counterparts
(such as real numbers and integrals). In other words, given a function f
on all of R, we define its Fourier transform by changing the domain of
integration from the circle to all of R, and by replacing n ∈ Z by ξ ∈ R
in (1), that is, by setting

(3) f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx.

We push our analogy further, and consider the following continuous ver-
sion of (2): replacing the sum by an integral, and an by f̂(ξ), leads to
the Fourier inversion formula,

(4) f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

Under a suitable hypotheses on f , the identity (4) actually holds, and
much of the theory in this chapter aims at proving and exploiting this
relation. The validity of the Fourier inversion formula is also suggested
by the following simple observation. Suppose f is supported in a finite
interval contained in I = [−L/2, L/2], and we expand f in a Fourier series
on I. Then, letting L tend to infinity, we are led to (4) (see Exercise 1).

The special properties of the Fourier transform make it an important
tool in the study of partial differential equations. For instance, we shall
see how the Fourier inversion formula allows us to analyze some equations
that are modeled on the real line. In particular, following the ideas
developed on the circle, we solve the time-dependent heat equation for
an infinite rod and the steady-state heat equation in the upper half-plane.

In the last part of the chapter we discuss further topics related to the
Poisson summation formula,

∑

n∈Z
f(n) =

∑

n∈Z
f̂(n),

which gives another remarkable connection between periodic functions
(and their Fourier series) and non-periodic functions on the line (and
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their Fourier transforms). This identity allows us to prove an assertion
made in the previous chapter, namely, that the heat kernel Ht(x) satisfies
the properties of a good kernel. In addition, the Poisson summation
formula arises in many other settings, in particular in parts of number
theory, as we shall see in Book II.

We make a final comment about the approach we have chosen. In our
study of Fourier series, we found it useful to consider Riemann integrable
functions on the circle. In particular, this generality assured us that even
functions that had certain discontinuities could be treated by the theory.
In contrast, our exposition of the elementary properties of the Fourier
transform is stated in terms of the Schwartz space S of testing functions.
These are functions that are indefinitely differentiable and that, together
with their derivatives, are rapidly decreasing at infinity. The reliance on
this space of functions is a device that allows us to come quickly to the
main conclusions, formulated in a direct and transparent fashion. Once
this is carried out, we point out some easy extensions to a somewhat
wider setting. The more general theory of Fourier transforms (which
must necessarily be based on Lebesgue integration) will be treated in
Book III.

1 Elementary theory of the Fourier transform

We begin by extending the notion of integration to functions that are
defined on the whole real line.

1.1 Integration of functions on the real line

Given the notion of the integral of a function on a closed and bounded
interval, the most natural extension of this definition to continuous func-
tions over R is

∫ ∞

−∞
f(x) dx = lim

N→∞

∫ N

−N
f(x) dx.

Of course, this limit may not exist. For example, it is clear that if
f(x) = 1, or even if f(x) = 1/(1 + |x|), then the above limit is infinite.
A moment’s reflection suggests that the limit will exist if we impose on
f enough decay as |x| tends to infinity. A useful condition is as follows.

A function f defined on R is said to be of moderate decrease if f
is continuous and there exists a constant A > 0 so that

|f(x)| ≤ A

1 + x2
for all x ∈ R.
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This inequality says that f is bounded (by A for instance), and also that
it decays at infinity at least as fast as 1/x2, since A/(1 + x2) ≤ A/x2.

For example, the function f(x) = 1/(1 + |x|n) is of moderate decrease
as long as n ≥ 2. Another example is given by the function e−a|x| for
a > 0.

We shall denote by M(R) the set of functions of moderate decrease
on R. As an exercise, the reader can check that under the usual addition
of functions and multiplication by scalars, M(R) forms a vector space
over C.

We next see that whenever f belongs to M(R), then we may define

(5)
∫ ∞

−∞
f(x) dx = lim

N→∞

∫ N

−N
f(x) dx,

where the limit now exists. Indeed, for each N the integral IN =∫ N
−N f(x) dx is well defined because f is continuous. It now suffices to

show that {IN} is a Cauchy sequence, and this follows because if M > N ,
then

|IM − IN | ≤
∣∣∣∣∣
∫

N≤|x|≤M
f(x) dx

∣∣∣∣∣

≤ A

∫

N≤|x|≤M

dx

x2

≤ 2A
N

→ 0 as N →∞.

Notice we have also proved that
∫
|x|≥N f(x) dx → 0 as N →∞. At this

point, we remark that we may replace the exponent 2 in the definition
of moderate decrease by 1 + ε where ε > 0; that is,

|f(x)| ≤ A

1 + |x|1+ε
for all x ∈ R.

This definition would work just as well for the purpose of the theory
developed in this chapter. We chose ε = 1 merely as a matter of conve-
nience.

We summarize some elementary properties of integration over R in a
proposition.

Proposition 1.1 The integral of a function of moderate decrease defined
by (5) satisfies the following properties:
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(i) Linearity: if f, g ∈M(R) and a, b ∈ C, then
∫ ∞

−∞
(af(x) + bg(x)) dx = a

∫ ∞

−∞
f(x) dx + b

∫ ∞

−∞
g(x) dx.

(ii) Translation invariance: for every h ∈ R we have
∫ ∞

−∞
f(x− h) dx =

∫ ∞

−∞
f(x) dx.

(iii) Scaling under dilations: if δ > 0, then

δ

∫ ∞

−∞
f(δx) dx =

∫ ∞

−∞
f(x) dx.

(iv) Continuity: if f ∈M(R), then
∫ ∞

−∞
|f(x− h)− f(x)| dx → 0 as h → 0.

We say a few words about the proof. Property (i) is immediate. To
verify property (ii), it suffices to see that

∫ N

−N
f(x− h) dx−

∫ N

−N
f(x) dx → 0 as N →∞.

Since
∫ N
−N f(x− h) dx =

∫ N−h
−N−h f(x) dx, the above difference is majorized

by
∣∣∣∣∣
∫ −N

−N−h
f(x) dx

∣∣∣∣∣ +

∣∣∣∣∣
∫ N

N−h
f(x) dx

∣∣∣∣∣ ≤
A′

1 + N2

for large N , which tends to 0 as N tends to infinity.
The proof of property (iii) is similar once we observe that δ

∫ N
−N f(δx) dx =∫ δN

−δN f(x) dx.
To prove property (iv) it suffices to take |h| ≤ 1. For a preassigned ε > 0,

we first choose N so large that
∫

|x|≥N
|f(x)| dx ≤ ε/4 and

∫

|x|≥N
|f(x− h)| dx ≤ ε/4.

Now with N fixed, we use the fact that since f is continuous, it is uni-
formly continuous in the interval [−N − 1, N + 1]. Hence
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sup|x|≤N |f(x− h)− f(x)| → 0 as h tends to 0. So we can take h so
small that this supremum is less than ε/4N . Altogether, then,

∫ ∞

−∞
|f(x− h)− f(x)| dx ≤

∫ N

−N
|f(x− h)− f(x)| dx

+
∫

|x|≥N
|f(x− h)| dx

+
∫

|x|≥N
|f(x)| dx

≤ ε/2 + ε/4 + ε/4 = ε,

and thus conclusion (iv) follows.

1.2 Definition of the Fourier transform

If f ∈M(R), we define its Fourier transform for ξ ∈ R by

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx.

Of course, |e−2πixξ| = 1, so the integrand is of moderate decrease, and
the integral makes sense.

In fact, this last observation implies that f̂ is bounded, and moreover,
a simple argument shows that f̂ is continuous and tends to 0 as |ξ| → ∞
(Exercise 5). However, nothing in the definition above guarantees that
f̂ is of moderate decrease, or has a specific decay. In particular, it is not
clear in this context how to make sense of the integral

∫∞
−∞ f̂(ξ)e2πixξ dξ

and the resulting Fourier inversion formula. To remedy this, we introduce
a more refined space of functions considered by Schwartz which is very
useful in establishing the initial properties of the Fourier transform.

The choice of the Schwartz space is motivated by an important prin-
ciple which ties the decay of f̂ to the continuity and differentiability
properties of f (and vice versa): the faster f̂(ξ) decreases as |ξ| → ∞,
the “smoother” f must be. An example that reflects this principle is
given in Exercise 3. We also note that this relationship between f and f̂
is reminiscent of a similar one between the smoothness of a function on
the circle and the decay of its Fourier coefficients; see the discussion of
Corollary 2.4 in Chapter 2.

1.3 The Schwartz space

The Schwartz space on R consists of the set of all indefinitely differ-
entiable functions f so that f and all its derivatives f ′, f ′′, . . . , f (`), . . .,
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are rapidly decreasing, in the sense that

sup
x∈R

|x|k|f (`)(x)| < ∞ for every k, ` ≥ 0.

We denote this space by S = S(R), and again, the reader should verify
that S(R) is a vector space over C. Moreover, if f ∈ S(R), we have

f ′(x) =
df

dx
∈ S(R) and xf(x) ∈ S(R).

This expresses the important fact that the Schwartz space is closed under
differentiation and multiplication by polynomials.

A simple example of a function in S(R) is the Gaussian defined by

f(x) = e−x2
,

which plays a central role in the theory of the Fourier transform, as well
as other fields (for example, probability theory and physics). The reader
can check that the derivatives of f are of the form P (x)e−x2

where P is
a polynomial, and this immediately shows that f ∈ S(R). In fact, e−ax2

belongs to S(R) whenever a > 0. Later, we will normalize the Gaussian
by choosing a = π.

1−1

1

0

Figure 1. The Gaussian e−πx2

An important class of other examples in S(R) are the “bump func-
tions” which vanish outside bounded intervals (Exercise 4).

As a final remark, note that although e−|x| decreases rapidly at infinity,
it is not differentiable at 0 and therefore does not belong to S(R).
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1.4 The Fourier transform on S
The Fourier transform of a function f ∈ S(R) is defined by

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx.

Some simple properties of the Fourier transform are gathered in the fol-
lowing proposition. We use the notation

f(x) −→ f̂(ξ)

to mean that f̂ denotes the Fourier transform of f .

Proposition 1.2 If f ∈ S(R) then:

(i) f(x + h) −→ f̂(ξ)e2πihξ whenever h ∈ R.

(ii) f(x)e−2πixh −→ f̂(ξ + h) whenever h ∈ R.

(iii) f(δx) −→ δ−1f̂(δ−1ξ) whenever δ > 0.

(iv) f ′(x) −→ 2πiξf̂(ξ).

(v) −2πixf(x) −→ d

dξ
f̂(ξ).

In particular, except for factors of 2πi, the Fourier transform inter-
changes differentiation and multiplication by x. This is the key property
that makes the Fourier transform a central object in the theory of differ-
ential equations. We shall return to this point later.

Proof. Property (i) is an immediate consequence of the translation
invariance of the integral, and property (ii) follows from the definition.
Also, the third property of Proposition 1.1 establishes (iii).

Integrating by parts gives
∫ N

−N
f ′(x)e−2πixξ dx =

[
f(x)e−2πixξ

]N

−N
+ 2πiξ

∫ N

−N
f(x)e−2πixξ dx,

so letting N tend to infinity gives (iv).
Finally, to prove property (v), we must show that f̂ is differentiable

and find its derivative. Let ε > 0 and consider

f̂(ξ + h)− f̂(ξ)
h

− ̂(−2πixf)(ξ)=
∫ ∞

−∞
f(x)e−2πixξ

[
e−2πixh − 1

h
+ 2πix

]
dx.
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Since f(x) and xf(x) are of rapid decrease, there exists an integer N
so that

∫
|x|≥N |f(x)| dx ≤ ε and

∫
|x|≥N |x| |f(x)| dx ≤ ε. Moreover, for

|x| ≤ N , there exists h0 so that |h| < h0 implies

∣∣∣∣∣
e−2πixh − 1

h
+ 2πix

∣∣∣∣∣ ≤
ε

N
.

Hence for |h| < h0 we have

∣∣∣∣∣
f̂(ξ + h)− f̂(ξ)

h
− ̂(−2πixf)(ξ)

∣∣∣∣∣

≤
∫ N

−N

∣∣∣∣∣f(x)e−2πixξ

[
e−2πixh − 1

h
+ 2πix

]∣∣∣∣∣ dx + Cε

≤ C ′ε.

Theorem 1.3 If f ∈ S(R), then f̂ ∈ S(R).

The proof is an easy application of the fact that the Fourier transform
interchanges differentiation and multiplication. In fact, note that if f ∈
S(R), its Fourier transform f̂ is bounded; then also, for each pair of
non-negative integers ` and k, the expression

ξk

(
d

dξ

)`

f̂(ξ)

is bounded, since by the last proposition, it is the Fourier transform of

1
(2πi)k

(
d

dx

)k

[(−2πix)`f(x)].

The proof of the inversion formula

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ for f ∈ S(R),

which we give in the next section, is based on a careful study of the
function e−ax2

, which, as we have already observed, is in S(R) if a > 0.
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The Gaussians as good kernels

We begin by considering the case a = π because of the normalization:

(6)
∫ ∞

−∞
e−πx2

dx = 1.

To see why (6) is true, we use the multiplicative property of the expo-
nential to reduce the calculation to a two-dimensional integral. More
precisely, we can argue as follows:

(∫ ∞

−∞
e−πx2

dx

)2

=
∫ ∞

−∞

∫ ∞

−∞
e−π(x2+y2) dx dy

=
∫ 2π

0

∫ ∞

0
e−πr2

r dr dθ

=
∫ ∞

0
2πre−πr2

dr

=
[
−e−πr2

]∞
0

= 1,

where we have evaluated the two-dimensional integral using polar coor-
dinates.

The fundamental property of the Gaussian which is of interest to us,
and which actually follows from (6), is that e−πx2

equals its Fourier
transform! We isolate this important result in a theorem.

Theorem 1.4 If f(x) = e−πx2
, then f̂(ξ) = f(ξ).

Proof. Define

F (ξ) = f̂(ξ) =
∫ ∞

−∞
e−πx2

e−2πixξ dx,

and observe that F (0) = 1, by our previous calculation. By property (v)
in Proposition 1.2, and the fact that f ′(x) = −2πxf(x), we obtain

F ′(ξ) =
∫ ∞

−∞
f(x)(−2πix)e−2πixξ dx = i

∫ ∞

−∞
f ′(x)e−2πixξ dx.

By (iv) of the same proposition, we find that

F ′(ξ) = i(2πiξ)f̂(ξ) = −2πξF (ξ).
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If we define G(ξ) = F (ξ)eπξ2
, then from what we have seen above, it

follows that G′(ξ) = 0, hence G is constant. Since F (0) = 1, we conclude
that G is identically equal to 1, therefore F (ξ) = e−πξ2

, as was to be
shown.

The scaling properties of the Fourier transform under dilations yield
the following important transformation law, which follows from (iii) in
Proposition 1.2 (with δ replaced by δ−1/2).

Corollary 1.5 If δ > 0 and Kδ(x) = δ−1/2e−πx2/δ, then K̂δ(ξ) = e−πδξ2
.

We pause to make an important observation. As δ tends to 0, the
function Kδ peaks at the origin, while its Fourier transform K̂δ gets
flatter. So in this particular example, we see that Kδ and K̂δ cannot both
be localized (that is, concentrated) at the origin. This is an example of a
general phenomenon called the Heisenberg uncertainty principle, which
we will discuss at the end of this chapter.

We have now constructed a family of good kernels on the real line,
analogous to those on the circle considered in Chapter 2. Indeed, with

Kδ(x) = δ−1/2e−πx2/δ,

we have:

(i)
∫∞
−∞Kδ(x) dx = 1.

(ii)
∫∞
−∞ |Kδ(x)| dx ≤ M .

(iii) For every η > 0, we have
∫
|x|>η |Kδ(x)| dx → 0 as δ → 0.

To prove (i), we may change variables and use (6), or note that the
integral equals K̂δ(0), which is 1 by Corollary 1.5. Since Kδ ≥ 0, it is
clear that property (ii) is also true. Finally we can again change variables
to get

∫

|x|>η
|Kδ(x)| dx =

∫

|y|>η/δ1/2
e−πy2

dy → 0

as δ tends to 0. We have thus proved the following result.

Theorem 1.6 The collection {Kδ}δ>0 is a family of good kernels
as δ → 0.

We next apply these good kernels via the operation of convolution,
which is given as follows. If f, g ∈ S(R), their convolution is defined by

(7) (f ∗ g)(x) =
∫ ∞

−∞
f(x− t)g(t) dt.



Ibookroot October 20, 2007

140 Chapter 5. THE FOURIER TRANSFORM ON R

For a fixed value of x, the function f(x− t)g(t) is of rapid decrease in t,
hence the integral converges.

By the argument in Section 4 of Chapter 2 (with a slight modification),
we get the following corollary.

Corollary 1.7 If f ∈ S(R) , then

(f ∗Kδ)(x) → f(x) uniformly in x as δ → 0.

Proof. First, we claim that f is uniformly continuous on R. Indeed,
given ε > 0 there exists R > 0 so that |f(x)| < ε/4 whenever |x| ≥ R.
Moreover, f is continuous, hence uniformly continuous on the compact
interval [−R, R], and together with the previous observation, we can find
η > 0 so that |f(x)− f(y)| < ε whenever |x− y| < η. Now we argue as
usual. Using the first property of good kernels, we can write

(f ∗Kδ)(x)− f(x) =
∫ ∞

−∞
Kδ(t) [f(x− t)− f(x)] dt,

and since Kδ ≥ 0, we find

|(f ∗Kδ)(x)− f(x)| ≤
∫

|t|>η
+

∫

|t|≤η
Kδ(t) |f(x− t)− f(x)| dt.

The first integral is small by the third property of good kernels, and the
fact that f is bounded, while the second integral is also small since f
is uniformly continuous and

∫
Kδ = 1. This concludes the proof of the

corollary.

1.5 The Fourier inversion

The next result is an identity sometimes called the multiplication for-
mula.

Proposition 1.8 If f, g ∈ S(R), then
∫ ∞

−∞
f(x)ĝ(x) dx =

∫ ∞

−∞
f̂(y)g(y) dy.

To prove the proposition, we need to digress briefly to discuss the inter-
change of the order of integration for double integrals. Suppose F (x, y)
is a continuous function in the plane (x, y) ∈ R2. We will assume the
following decay condition on F :

|F (x, y)| ≤ A/(1 + x2)(1 + y2).
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Then, we can state that for each x the function F (x, y) is of moderate
decrease in y, and similarly for each fixed y the function F (x, y) is of
moderate decrease in x. Moreover, the function F1(x) =

∫∞
−∞ F (x, y) dy

is continuous and of moderate decrease; similarly for the function F2(y) =∫∞
−∞ F (x, y) dx. Finally

∫ ∞

−∞
F1(x) dx =

∫ ∞

−∞
F2(y) dy.

The proof of these facts may be found in the appendix.
We now apply this to F (x, y) = f(x)g(y)e−2πixy. Then F1(x) =

f(x)ĝ(x), and F2(y) = f̂(y)g(y) so
∫ ∞

−∞
f(x)ĝ(x) dx =

∫ ∞

−∞
f̂(y)g(y) dy,

which is the assertion of the proposition.
The multiplication formula and the fact that the Gaussian is its own

Fourier transform lead to a proof of the first major theorem.

Theorem 1.9 (Fourier inversion) If f ∈ S(R), then

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

Proof. We first claim that

f(0) =
∫ ∞

−∞
f̂(ξ) dξ.

Let Gδ(x) = e−πδx2
so that Ĝδ(ξ) = Kδ(ξ). By the multiplication for-

mula we get
∫ ∞

−∞
f(x)Kδ(x) dx =

∫ ∞

−∞
f̂(ξ)Gδ(ξ) dξ.

Since Kδ is a good kernel, the first integral goes to f(0) as δ tends to 0.
Since the second integral clearly converges to

∫∞
−∞ f̂(ξ) dξ as δ tends to 0,

our claim is proved. In general, let F (y) = f(y + x) so that

f(x) = F (0) =
∫ ∞

−∞
F̂ (ξ) dξ =

∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

As the name of Theorem 1.9 suggests, it provides a formula that inverts
the Fourier transform; in fact we see that the Fourier transform is its own
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inverse except for the change of x to −x. More precisely, we may define
two mappings F : S(R) → S(R) and F∗ : S(R) → S(R) by

F(f)(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx and F∗(g)(x) =

∫ ∞

−∞
g(ξ)e2πixξ dξ.

Thus F is the Fourier transform, and Theorem 1.9 guarantees that
F∗ ◦ F = I on S(R), where I is the identity mapping. Moreover, since
the definitions of F and F∗ differ only by a sign in the exponential, we
see that F(f)(y) = F∗(f)(−y), so we also have F ◦ F∗ = I. As a conse-
quence, we conclude that F∗ is the inverse of the Fourier transform on
S(R), and we get the following result.

Corollary 1.10 The Fourier transform is a bijective mapping on the
Schwartz space.

1.6 The Plancherel formula

We need a few further results about convolutions of Schwartz functions.
The key fact is that the Fourier transform interchanges convolutions with
pointwise products, a result analogous to the situation for Fourier series.

Proposition 1.11 If f, g ∈ S(R) then:

(i) f ∗ g ∈ S(R).

(ii) f ∗ g = g ∗ f .

(iii) (̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ).

Proof. To prove that f ∗ g is rapidly decreasing, observe first that for
any ` ≥ 0 we have supx |x|`|g(x− y)| ≤ A`(1 + |y|)`, because g is rapidly
decreasing (to check this assertion, consider separately the two cases
|x| ≤ 2|y| and |x| ≥ 2|y|). From this, we see that

sup
x
|x`(f ∗ g)(x)| ≤ A`

∫ ∞

−∞
|f(y)|(1 + |y|)` dy,

so that x`(f ∗ g)(x) is a bounded function for every ` ≥ 0. These esti-
mates carry over to the derivatives of f ∗ g, thereby proving that
f ∗ g ∈ S(R) because

(
d

dx

)k

(f ∗ g)(x) = (f ∗
(

d

dx

)k

g)(x) for k = 1, 2, . . ..



Ibookroot October 20, 2007

1. Elementary theory of the Fourier transform 143

This identity is proved first for k = 1 by differentiating under the inte-
gral defining f ∗ g. The interchange of differentiation and integration is
justified in this case by the rapid decrease of dg/dx. The identity then
follows for every k by iteration.

For fixed x, the change of variables x− y = u shows that

(f ∗ g)(x) =
∫ ∞

−∞
f(x− u)g(u) du = (g ∗ f)(x).

This change of variables is a composition of two changes, y 7→ −y and
y 7→ y − h (with h = x). For the first one we use the observation that∫∞
−∞ F (x) dx =

∫∞
−∞ F (−x) dx for any Schwartz function F , and for the

second, we apply (ii) of Proposition 1.1
Finally, consider F (x, y) = f(y)g(x− y)e−2πixξ. Since f and g are

rapidly decreasing, considering separately the two cases |x| ≤ 2|y| and
|x| ≥ 2|y|, we see that the discussion of the change of order of integration
after Proposition 1.8 applies to F . In this case F1(x) = (f ∗ g)(x)e−2πixξ,
and F2(y) = f(y)e−2πiyξ ĝ(ξ). Thus

∫∞
−∞ F1(x) dx =

∫∞
−∞ F2(y) dy, which

implies (iii). The proposition is therefore proved.

We now use the properties of convolutions of Schwartz functions to
prove the main result of this section. The result we have in mind is the
analogue for functions on R of Parseval’s identity for Fourier series.

The Schwartz space can be equipped with a Hermitian inner product

(f, g) =
∫ ∞

−∞
f(x)g(x) dx

whose associated norm is

‖f‖ =
(∫ ∞

−∞
|f(x)|2 dx

)1/2

.

The second major theorem in the theory states that the Fourier transform
is a unitary transformation on S(R).

Theorem 1.12 (Plancherel) If f ∈ S(R) then ‖f̂‖ = ‖f‖.

Proof. If f ∈ S(R) define f [(x) = f(−x). Then f̂ [(ξ) = f̂(ξ). Now
let h = f ∗ f [. Clearly, we have

ĥ(ξ) = |f̂(ξ)|2 and h(0) =
∫ ∞

−∞
|f(x)|2 dx.
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The theorem now follows from the inversion formula applied with x = 0,
that is,

∫ ∞

−∞
ĥ(ξ) dξ = h(0).

1.7 Extension to functions of moderate decrease

In the previous sections, we have limited our assertion of the Fourier
inversion and Plancherel formulas to the case when the function involved
belonged to the Schwartz space. It does not really involve further ideas to
extend these results to functions of moderate decrease, once we make the
additional assumption that the Fourier transform of the function under
consideration is also of moderate decrease. Indeed, the key observation,
which is easy to prove, is that the convolution f ∗ g of two functions f and
g of moderate decrease is again a function of moderate decrease (Exer-
cise 7); also f̂ ∗ g = f̂ ĝ. Moreover, the multiplication formula continues
to hold, and we deduce the Fourier inversion and Plancherel formulas
when f and f̂ are both of moderate decrease.

This generalization, although modest in scope, is nevertheless useful
in some circumstances.

1.8 The Weierstrass approximation theorem

We now digress briefly by further exploiting our good kernels to prove
the Weierstrass approximation theorem. This result was already alluded
to in Chapter 2.

Theorem 1.13 Let f be a continuous function on the closed and bounded
interval [a, b] ⊂ R. Then, for any ε > 0, there exists a polynomial P such
that

sup
x∈[a,b]

|f(x)− P (x)| < ε.

In other words, f can be uniformly approximated by polynomials.

Proof. Let [−M, M ] denote any interval that contains [a, b] in its
interior, and let g be a continuous function on R that equals 0 outside
[−M,M ] and equals f in [a, b]. For example, extend f as follows: from b
to M define g by a straight line segment going from f(b) to 0, and from
a to −M by a straight line segment from f(a) also to 0. Let B be a
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bound for g, that is, |g(x)| ≤ B for all x. Then, since {Kδ} is a family of
good kernels, and g is continuous with compact support, we may argue
as in the proof of Corollary 1.7 to see that g ∗Kδ converges uniformly
to g as δ tends to 0. In fact, we choose δ0 so that

|g(x)− (g ∗Kδ0)(x)| < ε/2 for all x ∈ R.

Now, we recall that ex is given by the power series expansion ex =∑∞
n=0 xn/n! which converges uniformly in every compact interval of R.

Therefore, there exists an integer N so that

|Kδ0(x)−R(x)| ≤ ε

4MB
for all x ∈ [−2M, 2M ]

where R(x) = δ
−1/2
0

∑N
n=0

(−πx2/δ0)
n

n! . Then, recalling that g vanishes
outside the interval [−M, M ], we have that for all x ∈ [−M, M ]

|(g ∗Kδ0)(x)− (g ∗R)(x)| =
∣∣∣∣∣
∫ M

−M
g(t) [Kδ0(x− t)−R(x− t)] dt

∣∣∣∣∣

≤
∫ M

−M
|g(t)| |Kδ0(x− t)−R(x− t)| dt

≤ 2MB sup
z∈[−2M,2M ]

|Kδ0(z)−R(z)|

< ε/2.

Therefore, the triangle inequality implies that |g(x)− (g ∗R)(x)| < ε
whenever x ∈ [−M, M ], hence |f(x)− (g ∗R)(x)| < ε when x ∈ [a, b].

Finally, note that g ∗R is a polynomial in the x variable. Indeed, by
definition we have (g ∗R)(x) =

∫ M
−M g(t)R(x− t) dt, and R(x− t) is a

polynomial in x since it can be expressed, after several expansions, as
R(x− t) =

∑
n an(t)xn where the sum is finite. This concludes the proof

of the theorem.

2 Applications to some partial differential equations

We mentioned earlier that a crucial property of the Fourier transform
is that it interchanges differentiation and multiplication by polynomials.
We now use this crucial fact together with the Fourier inversion theorem
to solve some specific partial differential equations.

2.1 The time-dependent heat equation on the real line

In Chapter 4 we considered the heat equation on the circle. Here we
study the analogous problem on the real line.
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Consider an infinite rod, which we model by the real line, and suppose
that we are given an initial temperature distribution f(x) on the rod
at time t = 0. We wish now to determine the temperature u(x, t) at
a point x at time t > 0. Considerations similar to the ones given in
Chapter 1 show that when u is appropriately normalized, it solves the
following partial differential equation:

(8)
∂u

∂t
=

∂2u

∂x2
,

called the heat equation. The initial condition we impose is
u(x, 0) = f(x).

Just as in the case of the circle, the solution is given in terms of a
convolution. Indeed, define the heat kernel of the line by

Ht(x) = Kδ(x), with δ = 4πt,

so that

Ht(x) =
1

(4πt)1/2
e−x2/4t and Ĥt(ξ) = e−4π2tξ2

.

Taking the Fourier transform of equation (8) in the x variable (for-
mally) leads to

∂û

∂t
(ξ, t) = −4π2ξ2û(ξ, t).

Fixing ξ, this is an ordinary differential equation in the variable t (with
unknown û(ξ, ·)), so there exists a constant A(ξ) so that

û(ξ, t) = A(ξ)e−4π2ξ2t.

We may also take the Fourier transform of the initial condition and obtain
û(ξ, 0) = f̂(ξ), hence A(ξ) = f̂(ξ). This leads to the following theorem.

Theorem 2.1 Given f ∈ S(R), let

u(x, t) = (f ∗ Ht)(x) for t > 0

where Ht is the heat kernel. Then:

(i) The function u is C2 when x ∈ R and t > 0, and u solves the heat
equation.
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(ii) u(x, t) → f(x) uniformly in x as t → 0. Hence if we set u(x, 0) =
f(x), then u is continuous on the closure of the upper half-plane

R2
+ = {(x, t) : x ∈ R, t ≥ 0}.

(iii)
∫∞
−∞ |u(x, t)− f(x)|2 dx → 0 as t → 0.

Proof. Because u = f ∗ Ht, taking the Fourier transform in the x-
variable gives û = f̂Ĥt, and so û(ξ, t) = f̂(ξ)e−4π2ξ2t. The Fourier inver-
sion formula gives

u(x, t) =
∫ ∞

−∞
f̂(ξ)e−4π2tξ2

e2πiξx dξ.

By differentiating under the integral sign, one verifies (i). In fact, one
observes that u is indefinitely differentiable. Note that (ii) is an imme-
diate consequence of Corollary 1.7. Finally, by Plancherel’s formula, we
have

∫ ∞

−∞
|u(x, t)− f(x)|2 dx =

∫ ∞

−∞
|û(ξ, t)− f̂(ξ)|2 dξ

=
∫ ∞

−∞
|f̂(ξ)|2 |e−4π2tξ2 − 1| dξ.

To see that this last integral goes to 0 as t → 0, we argue as follows:
since |e−4π2tξ2 − 1| ≤ 2 and f ∈ S(R), we can find N so that

∫

|ξ|≥N
|f̂(ξ)|2|e−4π2tξ2 − 1| dξ < ε,

and for all small t we have sup|ξ|≤N |f̂(ξ)|2|e−4π2tξ2 − 1| < ε/2N since f̂
is bounded. Thus

∫

|ξ|≤N
|f̂(ξ)|2 |e−4π2tξ2 − 1| dξ < ε for all small t.

This completes the proof of the theorem.

The above theorem guarantees the existence of a solution to the heat
equation with initial data f . This solution is also unique, if uniqueness
is formulated appropriately. In this regard, we note that u = f ∗ Ht,
f ∈ S(R), satisfies the following additional property.

Corollary 2.2 u(·, t) belongs to S(R) uniformly in t, in the sense that
for any T > 0

(9) sup
x ∈ R

0 < t < T

|x|k
∣∣∣∣∣

∂`

∂x`
u(x, t)

∣∣∣∣∣ < ∞ for each k, ` ≥ 0.
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Proof. This result is a consequence of the following estimate:

|u(x, t)| ≤
∫

|y|≤|x|/2
|f(x− y)|Ht(y) dy +

∫

|y|≥|x|/2
|f(x− y)|Ht(y) dy

≤ CN

(1 + |x|)N
+

C√
t
e−cx2/t.

Indeed, since f is rapidly decreasing, we have |f(x− y)| ≤ CN/(1 + |x|)N

when |y| ≤ |x|/2. Also, if |y| ≥ |x|/2 thenHt(y) ≤ Ct−1/2e−cx2/t, and we
obtain the above inequality. Consequently, we see that u(x, t) is rapidly
decreasing uniformly for 0 < t < T .

The same argument can be applied to the derivatives of u in the x
variable since we may differentiate under the integral sign and apply the
above estimate with f replaced by f ′, and so on.

This leads to the following uniqueness theorem.

Theorem 2.3 Suppose u(x, t) satisfies the following conditions:

(i) u is continuous on the closure of the upper half-plane.

(ii) u satisfies the heat equation for t > 0.

(iii) u satisfies the boundary condition u(x, 0) = 0.

(iv) u(·, t) ∈ S(R) uniformly in t, as in (9).

Then, we conclude that u = 0.

Below we use the abbreviations ∂`
xu and ∂tu to denote ∂`u/∂x` and

∂u/∂t, respectively.

Proof. We define the energy at time t of the solution u(x, t) by

E(t) =
∫

R
|u(x, t)|2 dx.

Clearly E(t) ≥ 0. Since E(0) = 0 it suffices to show that E is a de-
creasing function, and this is achieved by proving that dE/dt ≤ 0. The
assumptions on u allow us to differentiate E(t) under the integral sign

dE

dt
=

∫

R
[∂tu(x, t)u(x, t) + u(x, t)∂tu(x, t)] dx.

But u satisfies the heat equation, therefore ∂tu = ∂2
xu and ∂tu = ∂2

xu, so
that after an integration by parts, where we use the fact that u and its
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x derivatives decrease rapidly as |x| → ∞, we find

dE

dt
=

∫

R

[
∂2

xu(x, t)u(x, t) + u(x, t)∂2
xu(x, t)

]
dx

= −
∫

R
[∂xu(x, t)∂xu(x, t) + ∂xu(x, t)∂xu(x, t)] dx

= −2
∫

R
|∂xu(x, t)|2 dx

≤ 0,

as claimed. Thus E(t) = 0 for all t, hence u = 0.

Another uniqueness theorem for the heat equation, with a less restric-
tive assumption than (9), can be found in Problem 6. Examples when
uniqueness fails are given in Exercise 12 and Problem 4.

2.2 The steady-state heat equation in the upper half-plane

The equation we are now concerned with is

(10) 4u =
∂2u

∂x2
+

∂2u

∂y2
= 0

in the upper half-plane R2
+ = {(x, y) : x ∈ R, y > 0}. The boundary con-

dition we require is u(x, 0) = f(x). The operator 4 is the Laplacian and
the above partial differential equation describes the steady-state heat dis-
tribution in R2

+ subject to u = f on the boundary. The kernel that solves
this problem is called the Poisson kernel for the upper half-plane, and
is given by

Py(x) =
1
π

y

x2 + y2
where x ∈ R and y > 0.

This is the analogue of the Poisson kernel for the disc discussed in Sec-
tion 5.4 of Chapter 2.

Note that for each fixed y the kernel Py is only of moderate decrease
as a function of x, so we will use the theory of the Fourier transform
appropriate for these types of functions (see Section 1.7).

We proceed as in the case of the time-dependent heat equation, by
taking the Fourier transform of equation (10) (formally) in the x variable,
thereby obtaining

−4π2ξ2û(ξ, y) +
∂2û

∂y2
(ξ, y) = 0
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with the boundary condition û(ξ, 0) = f̂(ξ). The general solution of this
ordinary differential equation in y (with ξ fixed) takes the form

û(ξ, y) = A(ξ)e−2π|ξ|y + B(ξ)e2π|ξ|y.

If we disregard the second term because of its rapid exponential increase
we find, after setting y = 0, that

û(ξ, y) = f̂(ξ)e−2π|ξ|y.

Therefore u is given in terms of the convolution of f with a kernel whose
Fourier transform is e−2π|ξ|y. This is precisely the Poisson kernel given
above, as we prove next.

Lemma 2.4 The following two identities hold:
∫ ∞

−∞
e−2π|ξ|ye2πiξx dξ =Py(x),

∫ ∞

−∞
Py(x)e−2πixξ dx = e−2π|ξ|y.

Proof. The first formula is fairly straightforward since we can split
the integral from −∞ to 0 and 0 to ∞. Then, since y > 0 we have

∫ ∞

0
e−2πξye2πiξx dξ =

∫ ∞

0
e2πi(x+iy)ξ dξ =

[
e2πi(x+iy)ξ

2πi(x + iy)

]∞

0

=

− 1
2πi(x + iy)

,

and similarly,
∫ 0

−∞
e2πξye2πiξx dξ =

1
2πi(x− iy)

.

Therefore
∫ ∞

−∞
e−2π|ξ|ye2πiξx dξ =

1
2πi(x− iy)

− 1
2πi(x + iy)

=
y

π(x2 + y2)
.

The second formula is now a consequence of the Fourier inversion theorem
applied in the case when f and f̂ are of moderate decrease.

Lemma 2.5 The Poisson kernel is a good kernel on R as y → 0.
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Proof. Setting ξ = 0 in the second formula of the lemma shows that∫∞
−∞ Py(x) dx = 1, and clearly Py(x) ≥ 0, so it remains to check the last

property of good kernels. Given a fixed δ > 0, we may change variables
u = x/y so that

∫ ∞

δ

y

x2 + y2
dx =

∫ ∞

δ/y

du

1 + u2
= [arctanu]∞δ/y = π/2− arctan(δ/y),

and this quantity goes to 0 as y → 0. Since Py(x) is an even function,
the proof is complete.

The following theorem establishes the existence of a solution to our
problem.

Theorem 2.6 Given f ∈ S(R), let u(x, y) = (f ∗ Py)(x). Then:

(i) u(x, y) is C2 in R2
+ and 4u = 0.

(ii) u(x, y) → f(x) uniformly as y → 0.

(iii)
∫∞
−∞ |u(x, y)− f(x)|2 dx → 0 as y → 0.

(iv) If u(x, 0) = f(x), then u is continuous on the closure R2
+ of the

upper half-plane, and vanishes at infinity in the sense that

u(x, y) → 0 as |x|+ y →∞.

Proof. The proofs of parts (i), (ii), and (iii) are similar to the case of
the heat equation, and so are left to the reader. Part (iv) is a consequence
of two easy estimates whenever f is of moderate decrease. First, we have

|(f ∗ Py)(x)| ≤ C

(
1

(1 + x2)
+

y

x2 + y2

)

which is proved (as in the case of the heat equation) by splitting the
integral

∫∞
−∞ f(x− t)Py(t) dt into the part where |t| ≤ |x|/2 and the part

where |t| ≥ |x|/2. Also, we have |(f ∗ Py)(x)| ≤ C/y, since supx Py(x) ≤
c/y.

Using the first estimate when |x| ≥ |y| and the second when |x| ≤ |y|
gives the desired decrease at infinity.

We next show that the solution is essentially unique.

Theorem 2.7 Suppose u is continuous on the closure of the upper half-
plane R2

+, satisfies 4u = 0 for (x, y) ∈ R2
+, u(x, 0) = 0, and u(x, y) van-

ishes at infinity. Then u = 0.



Ibookroot October 20, 2007

152 Chapter 5. THE FOURIER TRANSFORM ON R

A simple example shows that a condition concerning the decay of u at
infinity is needed: take u(x, y) = y. Clearly u satisfies the steady-state
heat equation and vanishes on the real line, yet u is not identically zero.

The proof of the theorem relies on a basic fact about harmonic func-
tions, which are functions satisfying 4u = 0. The fact is that the value
of a harmonic function at a point equals its average value around any
circle centered at that point.

Lemma 2.8 (Mean-value property) Suppose Ω is an open set in R2

and let u be a function of class C2 with 4u = 0 in Ω. If the closure of
the disc centered at (x, y) and of radius R is contained in Ω, then

u(x, y) =
1
2π

∫ 2π

0
u(x + r cos θ, y + r sin θ) dθ

for all 0 ≤ r ≤ R.

Proof. Let U(r, θ) = u(x + r cos θ, y + r sin θ). Expressing the Lapla-
cian in polar coordinates, the equation 4u = 0 then implies

0 =
∂2U

∂θ2
+ r

∂

∂r

(
r
∂U

∂r

)
.

If we define F (r) = 1
2π

∫ 2π
0 U(r, θ) dθ, the above gives

r
∂

∂r

(
r
∂F

∂r

)
=

1
2π

∫ 2π

0
−∂2U

∂θ2
(r, θ) dθ.

The integral of ∂2U/∂θ2 over the circle vanishes since ∂U/∂θ is peri-
odic, hence r ∂

∂r

(
r ∂F

∂r

)
= 0, and consequently r∂F/∂r must be constant.

Evaluating this expression at r = 0 we find that ∂F/∂r = 0. Thus F is
constant, but since F (0) = u(x, y), we finally find that F (r) = u(x, y) for
all 0 ≤ r ≤ R, which is the mean-value property.

Finally, note that the argument above is implicit in the proof of The-
orem 5.7, Chapter 2.

To prove Theorem 2.7 we argue by contradiction. Considering sepa-
rately the real and imaginary parts of u, we may suppose that u itself
is real-valued, and is somewhere strictly positive, say u(x0, y0) > 0 for
some x0 ∈ R and y0 > 0. We shall see that this leads to a contradiction.
First, since u vanishes at infinity, we can find a large semi-disc of ra-
dius R, D+

R = {(x, y) : x2 + y2 ≤ R, y ≥ 0} outside of which u(x, y) ≤
1
2u(x0, y0). Next, since u is continuous in D+

R , it attains its maximum
M there, so there exists a point (x1, y1) ∈ D+

R with u(x1, y1) = M , while
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u(x, y) ≤ M in the semi-disc; also, since u(x, y) ≤ 1
2u(x0, y0) ≤ M/2 out-

side of the semi-disc, we have u(x, y) ≤ M throughout the entire upper
half-plane. Now the mean-value property for harmonic functions implies

u(x1, y1) =
1
2π

∫ 2π

0
u(x1 + ρ cos θ, y1 + ρ sin θ) dθ

whenever the circle of integration lies in the upper half-plane. In par-
ticular, this equation holds if 0 < ρ < y1. Since u(x1, y1) equals the
maximum value M , and u(x1 + ρ cos θ, y1 + ρ sin θ) ≤ M , it follows by
continuity that u(x1 + ρ cos θ, y1 + ρ sin θ) = M on the whole circle. For
otherwise u(x, y) ≤ M − ε, on an arc of length δ > 0 on the circle, and
this would give

1
2π

∫ 2π

0
u(x1 + ρ cos θ, y1 + ρ sin θ) dθ ≤ M − εδ

2π
< M,

contradicting the fact that u(x1, y1) = M . Now letting ρ → y1, and using
the continuity of u again, we see that this implies u(x1, 0) = M > 0,
which contradicts the fact that u(x, 0) = 0 for all x.

3 The Poisson summation formula

The definition of the Fourier transform was motivated by the desire for
a continuous version of Fourier series, applicable to functions defined
on the real line. We now show that there exists a further remarkable
connection between the analysis of functions on the circle and related
functions on R.

Given a function f ∈ S(R) on the real line, we can construct a new
function on the circle by the recipe

F1(x) =
∞∑

n=−∞
f(x + n).

Since f is rapidly decreasing, the series converges absolutely and uni-
formly on every compact subset of R, so F1 is continuous. Note that
F1(x + 1) = F1(x) because passage from n to n + 1 in the above sum
merely shifts the terms on the series defining F1(x). Hence F1 is periodic
with period 1. The function F1 is called the periodization of f .

There is another way to arrive at a “periodic version” of f , this time
by Fourier analysis. Start with the identity

f(x) =
∫ ∞

−∞
f̂(ξ)e2πiξx dξ,
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and consider its discrete analogue, where the integral is replaced by a
sum

F2(x) =
∞∑

n=−∞
f̂(n)e2πinx.

Once again, the sum converges absolutely and uniformly since f̂ belongs
to the Schwartz space, hence F2 is continuous. Moreover, F2 is also
periodic of period 1 since this is the case for each one of the exponentials
e2πinx.

The fundamental fact is that these two approaches, which produce F1

and F2, actually lead to the same function.

Theorem 3.1 (Poisson summation formula) If f ∈ S(R), then

∞∑
n=−∞

f(x + n) =
∞∑

n=−∞
f̂(n)e2πinx.

In particular, setting x = 0 we have

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̂(n).

In other words, the Fourier coefficients of the periodization of f are
given precisely by the values of the Fourier transform of f on the integers.

Proof. To check the first formula it suffices, by Theorem 2.1 in
Chapter 2, to show that both sides (which are continuous) have the
same Fourier coefficients (viewed as functions on the circle). Clearly, the
mth Fourier coefficient of the right-hand side is f̂(m). For the left-hand
side we have

∫ 1

0

( ∞∑
n=−∞

f(x + n)

)
e−2πimx dx =

∞∑
n=−∞

∫ 1

0
f(x + n)e−2πimx dx

=
∞∑

n=−∞

∫ n+1

n
f(y)e−2πimy dy

=
∫ ∞

−∞
f(y)e−2πimy dy

= f̂(m),

where the interchange of the sum and integral is permissible since f is
rapidly decreasing. This completes the proof of the theorem.
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We observe that the theorem extends to the case when we merely
assume that both f and f̂ are of moderate decrease; the proof is in fact
unchanged.

It turns out that the operation of periodization is important in a
number of questions, even when the Poisson summation formula does
not apply. We give an example by considering the elementary function
f(x) = 1/x, x 6= 0. The result is that

∑∞
n=−∞ 1/(x + n), when summed

symmetrically, gives the partial fraction decomposition of the cotangent
function. In fact this sum equals π cot πx, when x is not an integer.
Similarly with f(x) = 1/x2, we get

∑∞
n=−∞ 1/(x + n)2 = π2/(sinπx)2,

whenever x /∈ Z (see Exercise 15).

3.1 Theta and zeta functions

We define the theta function ϑ(s) for s > 0 by

ϑ(s) =
∞∑

n=−∞
e−πn2s.

The condition on s ensures the absolute convergence of the series. A
crucial fact about this special function is that it satisfies the following
functional equation.

Theorem 3.2 s−1/2ϑ(1/s) = ϑ(s) whenever s > 0.

The proof of this identity consists of a simple application of the Poisson
summation formula to the pair

f(x) = e−πsx2
and f̂(ξ) = s−1/2e−πξ2/s.

The theta function ϑ(s) also extends to complex values of s when
Re(s) > 0, and the functional equation is still valid then. The theta
function is intimately connected with an important function in number
theory, the zeta function ζ(s) defined for Re(s) > 1 by

ζ(s) =
∞∑

n=1

1
ns

.

Later we will see that this function carries essential information about
the prime numbers (see Chapter 8).

It also turns out that ζ, ϑ, and another important function Γ are
related by the following identity:

π−s/2Γ(s/2)ζ(s) =
1
2

∫ ∞

0
ts/2−1(ϑ(t)− 1) dt,
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which is valid for s > 1 (Exercises 17 and 18).

Returning to the function ϑ, define the generalization Θ(z|τ) given by

Θ(z|τ) =
∞∑

n=−∞
eiπn2τe2πinz

whenever Im(τ) > 0 and z ∈ C. Taking z = 0 and τ = is we get Θ(z|τ) =
ϑ(s).

3.2 Heat kernels

Another application related to the Poisson summation formula and the
theta function is the time-dependent heat equation on the circle. A
solution to the equation

∂u

∂t
=

∂2u

∂x2

subject to u(x, 0) = f(x), where f is periodic of period 1, was given in
the previous chapter by

u(x, t) = (f ∗Ht)(x)

where Ht(x) is the heat kernel on the circle, that is,

Ht(x) =
∞∑

n=−∞
e−4π2n2te2πinx.

Note in particular that with our definition of the generalized theta func-
tion in the previous section, we have Θ(x|4πit) = Ht(x). Also, recall that
the heat equation on R gave rise to the heat kernel

Ht(x) =
1

(4πt)1/2
e−x2/4t

where Ĥt(ξ) = e−4π2ξ2t. The fundamental relation between these two
objects is an immediate consequence of the Poisson summation formula:

Theorem 3.3 The heat kernel on the circle is the periodization of the
heat kernel on the real line:

Ht(x) =
∞∑

n=−∞
Ht(x + n).
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Although the proof that Ht is a good kernel on R was fairly straightfor-
ward, we left open the harder problem that Ht is a good kernel on the
circle. The above results allow us to resolve this matter.

Corollary 3.4 The kernel Ht(x) is a good kernel for t → 0.

Proof. We already observed that
∫
|x|≤1/2 Ht(x) dx = 1. Now note

that Ht ≥ 0, which is immediate from the above formula since Ht ≥ 0.
Finally, we claim that when |x| ≤ 1/2,

Ht(x) = Ht(x) + Et(x),

where the error satisfies |Et(x)| ≤ c1e
−c2/t with c1, c2 > 0 and 0 < t ≤ 1.

To see this, note again that the formula in the theorem gives

Ht(x) = Ht(x) +
∑

|n|≥1

Ht(x + n);

therefore, since |x| ≤ 1/2,

Et(x) =
1√
4πt

∑

|n|≥1

e−(x+n)2/4t ≤ Ct−1/2
∑

n≥1

e−cn2/t.

Note that n2/t ≥ n2 and n2/t ≥ 1/t whenever 0 < t ≤ 1, so e−cn2/t ≤
e−

c
2n2

e−
c
2

1
t . Hence

|Et(x)| ≤ Ct−1/2e−
c
2

1
t

∑

n≥1

e−
c
2n2 ≤ c1e

−c2/t.

The proof of the claim is complete, and as a result
∫
|x|≤1/2 |Et(x)| dx → 0

as t → 0. It is now clear that Ht satisfies
∫

η<|x|≤1/2
|Ht(x)| dx → 0 as t → 0,

because Ht does.

3.3 Poisson kernels

In a similar manner to the discussion above about the heat kernels, we
state the relation between the Poisson kernels for the disc and the upper
half-plane where

Pr(θ) =
1− r2

1− 2r cos θ + r2
and Py(x) =

1
π

y

y2 + x2
.
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Theorem 3.5 Pr(2πx) =
∑

n∈Z Py(x + n) where r = e−2πy.

This is again an immediate corollary of the Poisson summation formula
applied to f(x) = Py(x) and f̂(ξ) = e−2π|ξ|y. Of course, here we use the
Poisson summation formula under the assumptions that f and f̂ are of
moderate decrease.

4 The Heisenberg uncertainty principle

The mathematical thrust of the principle can be formulated in terms of a
relation between a function and its Fourier transform. The basic under-
lying law, formulated in its vaguest and most general form, states that a
function and its Fourier transform cannot both be essentially localized.
Somewhat more precisely, if the “preponderance” of the mass of a func-
tion is concentrated in an interval of length L, then the preponderance
of the mass of its Fourier transform cannot lie in an interval of length
essentially smaller than L−1. The exact statement is as follows.

Theorem 4.1 Suppose ψ is a function in S(R) which satisfies the nor-
malizing condition

∫∞
−∞ |ψ(x)|2 dx = 1. Then

(∫ ∞

−∞
x2|ψ(x)|2 dx

) (∫ ∞

−∞
ξ2|ψ̂(ξ)|2 dξ

)
≥ 1

16π2
,

and equality holds if and only if ψ(x) = Ae−Bx2
where B > 0 and |A|2 =√

2B/π.
In fact, we have

(∫ ∞

−∞
(x− x0)2|ψ(x)|2 dx

) (∫ ∞

−∞
(ξ − ξ0)2|ψ̂(ξ)|2 dξ

)
≥ 1

16π2

for every x0, ξ0 ∈ R.

Proof. The second inequality actually follows from the first by re-
placing ψ(x) by e−2πixξ0ψ(x + x0) and changing variables. To prove the
first inequality, we argue as follows. Beginning with our normalizing as-
sumption

∫ |ψ|2 = 1, and recalling that ψ and ψ′ are rapidly decreasing,
an integration by parts gives

1 =
∫ ∞

−∞
|ψ(x)|2 dx

= −
∫ ∞

−∞
x

d

dx
|ψ(x)|2 dx

= −
∫ ∞

−∞

(
xψ′(x)ψ(x) + xψ′(x)ψ(x)

)
dx.
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The last identity follows because |ψ|2 = ψψ. Therefore

1 ≤ 2
∫ ∞

−∞
|x| |ψ(x)| |ψ′(x)| dx

≤ 2
(∫ ∞

−∞
x2|ψ(x)|2 dx

)1/2 (∫ ∞

−∞
|ψ′(x)|2 dx

)1/2

,

where we have used the Cauchy-Schwarz inequality. The identity
∫ ∞

−∞
|ψ′(x)|2 dx = 4π2

∫ ∞

−∞
ξ2|ψ̂(ξ)|2 dξ,

which holds because of the properties of the Fourier transform and the
Plancherel formula, concludes the proof of the inequality in the theorem.

If equality holds, then we must also have equality where we applied the
Cauchy-Schwarz inequality, and as a result we find that ψ′(x) = βxψ(x)
for some constant β. The solutions to this equation are ψ(x) = Aeβx2/2,
where A is constant. Since we want ψ to be a Schwartz function, we must
take β = −2B < 0, and since we impose the condition

∫∞
−∞ |ψ(x)|2 dx = 1

we find that |A|2 =
√

2B/π, as was to be shown.

The precise assertion contained in Theorem 4.1 first came to light in
the study of quantum mechanics. It arose when one considered the extent
to which one could simultaneously locate the position and momentum of
a particle. Assuming we are dealing with (say) an electron that travels
along the real line, then according to the laws of physics, matters are
governed by a “state function” ψ, which we can assume to be in S(R),
and which is normalized according to the requirement that

(11)
∫ ∞

−∞
|ψ(x)|2 dx = 1.

The position of the particle is then determined not as a definite point x;
instead its probable location is given by the rules of quantum mechanics
as follows:

• The probability that the particle is located in the interval (a, b) is∫ b
a |ψ(x)|2 dx.

According to this law we can calculate the probable location of the
particle with the aid of ψ: in fact, there may be only a small probability
that the particle is located in a given interval (a′, b′), but nevertheless it
is somewhere on the real line since

∫∞
−∞ |ψ(x)|2 dx = 1.
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In addition to the probability density |ψ(x)|2dx, there is the ex-
pectation of where the particle might be. This expectation is the best
guess of the position of the particle, given its probability distribution
determined by |ψ(x)|2dx, and is the quantity defined by

(12) x =
∫ ∞

−∞
x|ψ(x)|2 dx.

Why is this our best guess? Consider the simpler (idealized) situation
where we are given that the particle can be found at only finitely many
different points, x1, x2, . . . , xN on the real axis, with pi the probability
that the particle is at xi, and p1 + p2 + · · ·+ pN = 1. Then, if we knew
nothing else, and were forced to make one choice as to the position of the
particle, we would naturally take x =

∑N
i=1 xipi, which is the appropriate

weighted average of the possible positions. The quantity (12) is clearly
the general (integral) version of this.

We next come to the notion of variance, which in our terminology is
the uncertainty attached to our expectation. Having determined that
the expected position of the particle is x (given by (12)), the resulting
uncertainty is the quantity

(13)
∫ ∞

−∞
(x− x)2|ψ(x)|2 dx.

Notice that if ψ is highly concentrated near x, it means that there is a
high probability that x is near x, and so (13) is small, because most of
the contribution to the integral takes place for values of x near x. Here
we have a small uncertainty. On the other hand, if ψ(x) is rather flat
(that is, the probability distribution |ψ(x)|2dx is not very concentrated),
then the integral (13) is rather big, because large values of (x− x)2 will
come into play, and as a result the uncertainty is relatively large.

It is also worthwhile to observe that the expectation x is that choice
for which the uncertainty

∫∞
−∞(x− x)2|ψ(x)|2 dx is the smallest. Indeed,

if we try to minimize this quantity by equating to 0 its derivative with
respect to x, we find that 2

∫∞
−∞(x− x)|ψ(x)|2 dx = 0, which gives (12).

So far, we have discussed the “expectation” and “uncertainty” related
to the position of the particle. Of equal relevance are the corresponding
notions regarding its momentum. The corresponding rule of quantum
mechanics is:

• The probability that the momentum ξ of the particle belongs to
the interval (a, b) is

∫ b
a |ψ̂(ξ)|2 dξ where ψ̂ is the Fourier transform

of ψ.
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Combining these two laws with Theorem 4.1 gives 1/16π2 as the lower
bound for the product of the uncertainty of the position and the uncer-
tainty of the momentum of a particle. So the more certain we are about
the location of the particle, the less certain we can be about its mo-
mentum, and vice versa. However, we have simplified the statement of
the two laws by rescaling to change the units of measurement. Actually,
there enters a fundamental but small physical number ~ called Planck’s
constant. When properly taken into account, the physical conclusion is

(uncertainty of position)×(uncertainty of momentum) ≥ ~/16π2.

5 Exercises

1. Corollary 2.3 in Chapter 2 leads to the following simplified version of the
Fourier inversion formula. Suppose f is a continuous function supported on an
interval [−M,M ], whose Fourier transform f̂ is of moderate decrease.

(a) Fix L with L/2 > M , and show that f(x) =
∑

an(L)e2πinx/L where

an(L) =
1
L

∫ L/2

−L/2

f(x)e−2πinx/L dx =
1
L

f̂(n/L).

Alternatively, we may write f(x) = δ
∑∞

n=−∞ f̂(nδ)e2πinδx with δ = 1/L.

(b) Prove that if F is continuous and of moderate decrease, then

∫ ∞

−∞
F (ξ) dξ = lim

δ → 0
δ > 0

δ

∞∑
n=−∞

F (δn).

(c) Conclude that f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

[Hint: For (a), note that the Fourier series of f on [−L/2, L/2] converges ab-
solutely. For (b), first approximate the integral by

∫ N

−N
F and the sum by

δ
∑
|n|≤N/δ F (nδ). Then approximate the second integral by Riemann sums.]

2. Let f and g be the functions defined by

f(x) = χ[−1,1](x) =
{

1 if |x| ≤ 1,
0 otherwise, and g(x) =

{
1− |x| if |x| ≤ 1,
0 otherwise.

Although f is not continuous, the integral defining its Fourier transform still
makes sense. Show that

f̂(ξ) =
sin 2πξ

πξ
and ĝ(ξ) =

(
sinπξ

πξ

)2

,
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with the understanding that f̂(0) = 2 and ĝ(0) = 1.

3. The following exercise illustrates the principle that the decay of f̂ is related
to the continuity properties of f .

(a) Suppose that f is a function of moderate decrease on R whose Fourier
transform f̂ is continuous and satisfies

f̂(ξ) = O

(
1

|ξ|1+α

)
as |ξ| → ∞

for some 0 < α < 1. Prove that f satisfies a Hölder condition of order α,
that is, that

|f(x + h)− f(x)| ≤ M |h|α for some M > 0 and all x, h ∈ R.

(b) Let f be a continuous function on R which vanishes for |x| ≥ 1, with
f(0) = 0, and which is equal to 1/ log(1/|x|) for all x in a neighborhood
of the origin. Prove that f̂ is not of moderate decrease. In fact, there is
no ε > 0 so that f̂(ξ) = O(1/|ξ|1+ε) as |ξ| → ∞.

[Hint: For part (a), use the Fourier inversion formula to express f(x + h)− f(x)
as an integral involving f̂ , and estimate this integral separately for ξ in the two
ranges |ξ| ≤ 1/|h| and |ξ| ≥ 1/|h|.]

4. Bump functions. Examples of compactly supported functions in S(R) are
very handy in many applications in analysis. Some examples are:

(a) Suppose a < b, and f is the function such that f(x) = 0 if x ≤ a or x ≥ b
and

f(x) = e−1/(x−a)e−1/(b−x) if a < x < b.

Show that f is indefinitely differentiable on R.

(b) Prove that there exists an indefinitely differentiable function F on R such
that F (x) = 0 if x ≤ a, F (x) = 1 if x ≥ b, and F is strictly increasing on
[a, b].

(c) Let δ > 0 be so small that a + δ < b− δ. Show that there exists an indef-
initely differentiable function g such that g is 0 if x ≤ a or x ≥ b, g is 1 on
[a + δ, b− δ], and g is strictly monotonic on [a, a + δ] and [b− δ, b].

[Hint: For (b) consider F (x) = c
∫ x

−∞ f(t) dt where c is an appropriate constant.]

5. Suppose f is continuous and of moderate decrease.

(a) Prove that f̂ is continuous and f̂(ξ) → 0 as |ξ| → ∞.
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(b) Show that if f̂(ξ) = 0 for all ξ, then f is identically 0.

[Hint: For part (a), show that f̂(ξ) = 1
2

∫∞
−∞[f(x)− f(x− 1/(2ξ))]e−2πixξ dx.

For part (b), verify that the multiplication formula
∫

f(x)ĝ(x) dx =
∫

f̂(y)g(y) dy
still holds whenever g ∈ S(R).]

6. The function e−πx2
is its own Fourier transform. Generate other functions

that (up to a constant multiple) are their own Fourier transforms. What must
the constant multiples be? To decide this, prove that F4 = I. Here F(f) = f̂
is the Fourier transform, F4 = F ◦ F ◦ F ◦ F , and I is the identity operator
(If)(x) = f(x) (see also Problem 7).

7. Prove that the convolution of two functions of moderate decrease is a function
of moderate decrease.

[Hint: Write
∫

f(x− y)g(y) dy =
∫

|y|≤|x|/2

+
∫

|y|≥|x|/2

.

In the first integral f(x− y) = O(1/(1 + x2)) while in the second integral
g(y) = O(1/(1 + x2)).]

8. Prove that f is continuous, of moderate decrease, and
∫∞
−∞f(y)e−y2

e2xydy =0
for all x ∈ R, then f = 0.

[Hint: Consider f ∗ e−x2
.]

9. If f is of moderate decrease, then

(14)
∫ R

−R

(
1− |ξ|

R

)
f̂(ξ)e2πixξ dξ = (f ∗ FR)(x),

where the Fejér kernel on the real line is defined by

FR(t) =





R

(
sinπtR

πtR

)2

if t 6= 0,

R if t = 0.

Show that {FR} is a family of good kernels as R →∞, and therefore (14) tends
uniformly to f(x) as R →∞. This is the analogue of Fejér’s theorem for Fourier
series in the context of the Fourier transform.

10. Below is an outline of a different proof of the Weierstrass approximation
theorem.
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Define the Landau kernels by

Ln(x) =





(1− x2)n

cn
if −1 ≤ x ≤ 1,

0 if |x| ≥ 1,

where cn is chosen so that
∫∞
−∞ Ln(x) dx = 1. Prove that {Ln}n≥0 is a family

of good kernels as n →∞. As a result, show that if f is a continuous func-
tion supported in [−1/2, 1/2], then (f ∗ Ln)(x) is a sequence of polynomials on
[−1/2, 1/2] which converges uniformly to f .
[Hint: First show that cn ≥ 2/(n + 1).]

11. Suppose that u is the solution to the heat equation given by u = f ∗ Ht

where f ∈ S(R). If we also set u(x, 0) = f(x), prove that u is continuous on the
closure of the upper half-plane, and vanishes at infinity, that is,

u(x, t) → 0 as |x|+ t →∞.

[Hint: To prove that u vanishes at infinity, show that (i) |u(x, t)| ≤ C/
√

t and (ii)
|u(x, t)| ≤ C/(1 + |x|2) + Ct−1/2e−cx2/t. Use (i) when |x| ≤ t, and (ii) other-
wise.]

12. Show that the function defined by

u(x, t) =
x

t
Ht(x)

satisfies the heat equation for t > 0 and limt→0 u(x, t) = 0 for every x, but u is
not continuous at the origin.
[Hint: Approach the origin with (x, t) on the parabola x2/4t = c where c is a
constant.]

13. Prove the following uniqueness theorem for harmonic functions in the strip
{(x, y) : 0 < y < 1, −∞ < x < ∞}: if u is harmonic in the strip, continuous on
its closure with u(x, 0) = u(x, 1) = 0 for all x ∈ R, and u vanishes at infinity,
then u = 0.

14. Prove that the periodization of the Fejér kernel FN on the real line (Exer-
cise 9) is equal to the Fejér kernel for periodic functions of period 1. In other
words,

∞∑
n=−∞

FN (x + n) = FN (x),

when N ≥ 1 is an integer, and where

FN (x) =
N∑

n=−N

(
1− |n|

N

)
e2πinx =

1
N

sin2(Nπx)
sin2(πx)

.
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15. This exercise provides another example of periodization.

(a) Apply the Poisson summation formula to the function g in Exercise 2 to
obtain

∞∑
n=−∞

1
(n + α)2

=
π2

(sin πα)2

whenever α is real, but not equal to an integer.

(b) Prove as a consequence that

(15)
∞∑

n=−∞

1
(n + α)

=
π

tan πα

whenever α is real but not equal to an integer. [Hint: First prove it when
0 < α < 1. To do so, integrate the formula in (b). What is the precise
meaning of the series on the left-hand side of (15)? Evaluate at α = 1/2.]

16. The Dirichlet kernel on the real line is defined by
∫ R

−R

f̂(ξ)e2πixξ dξ = (f ∗ DR)(x) so that DR(x) = χ̂[−R,R](x) =
sin(2πRx)

πx
.

Also, the modified Dirichlet kernel for periodic functions of period 1 is defined
by

D∗
N (x) =

∑

|n|≤N−1

e2πinx +
1
2
(e−2πiNx + e2πiNx).

Show that the result in Exercise 15 gives

∞∑
n=−∞

DN (x + n) = D∗
N (x),

where N ≥ 1 is an integer, and the infinite series must be summed symmetrically.
In other words, the periodization of DN is the modified Dirichlet kernel D∗

N .

17. The gamma function is defined for s > 0 by

Γ(s) =
∫ ∞

0

e−xxs−1 dx.

(a) Show that for s > 0 the above integral makes sense, that is, that the
following two limits exist:

lim
δ → 0
δ > 0

∫ 1

δ

e−xxs−1 dx and lim
A→∞

∫ A

1

e−xxs−1 dx.
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(b) Prove that Γ(s + 1) = sΓ(s) whenever s > 0, and conclude that for every
integer n ≥ 1 we have Γ(n + 1) = n!.

(c) Show that

Γ
(

1
2

)
=
√

π and Γ
(

3
2

)
=
√

π

2
.

[Hint: For (c), use
∫∞
−∞ e−πx2

dx = 1.]

18. The zeta function is defined for s > 1 by ζ(s) =
∑∞

n=1 1/ns. Verify the
identity

π−s/2Γ(s/2)ζ(s) =
1
2

∫ ∞

0

t
s
2−1(ϑ(t)− 1) dt whenever s > 1

where Γ and ϑ are the gamma and theta functions, respectively:

Γ(s) =
∫ ∞

0

e−tts−1 dt and ϑ(s) =
∞∑

n=−∞
e−πn2s.

More about the zeta function and its relation to the prime number theorem can
be found in Book II.

19. The following is a variant of the calculation of ζ(2m) =
∑∞

n=1 1/n2m found
in Problem 4, Chapter 3.

(a) Apply the Poisson summation formula to f(x) = t/(π(x2 + t2))
and f̂(ξ) = e−2πt|ξ| where t > 0 in order to get

1
π

∞∑
n=−∞

t

t2 + n2
=

∞∑
n=−∞

e−2πt|n|.

(b) Prove the following identity valid for 0 < t < 1:

1
π

∞∑
n=−∞

t

t2 + n2
=

1
πt

+
2
π

∞∑
m=1

(−1)m+1ζ(2m)t2m−1

as well as

∞∑
n=−∞

e−2πt|n| =
2

1− e−2πt
− 1.
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(c) Use the fact that

z

ez − 1
= 1− z

2
+

∞∑
m=1

B2m

(2m)!
z2m,

where Bk are the Bernoulli numbers to deduce from the above formula,

2ζ(2m) = (−1)m+1 (2π)2m

(2m)!
B2m.

20. The following results are relevant in information theory when one tries to
recover a signal from its samples.

Suppose f is of moderate decrease and that its Fourier transform f̂ is sup-
ported in I = [−1/2, 1/2]. Then, f is entirely determined by its restriction to
Z. This means that if g is another function of moderate decrease whose Fourier
transform is supported in I and f(n) = g(n) for all n ∈ Z, then f = g. More
precisely:

(a) Prove that the following reconstruction formula holds:

f(x) =
∞∑

n=−∞
f(n)K(x− n) where K(y) =

sinπy

πy
.

Note that K(y) = O(1/|y|) as |y| → ∞.

(b) If λ > 1, then

f(x) =
∞∑

n=−∞

1
λ

f
(n

λ

)
Kλ

(
x− n

λ

)
where Kλ(y) =

cos πy − cosπλy

π2(λ− 1)y2
.

Thus, if one samples f “more often,” the series in the reconstruction
formula converges faster since Kλ(y) = O(1/|y|2) as |y| → ∞. Note that
Kλ(y) → K(y) as λ → 1.

(c) Prove that
∫ ∞

−∞
|f(x)|2 dx =

∞∑
n=−∞

|f(n)|2.

[Hint: For part (a) show that if χ is the characteristic function of I, then
f̂(ξ) = χ(ξ)

∑∞
n=−∞ f(n)e−2πinξ. For (b) use the function in Figure 2 instead

of χ(ξ).]

21. Suppose that f is continuous on R. Show that f and f̂ cannot both be
compactly supported unless f = 0. This can be viewed in the same spirit as the
uncertainty principle.
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1
2− 1

2
λ
2

1

−λ
2

Figure 2. The function in Exercise 20

[Hint: Assume f is supported in [0, 1/2]. Expand f in a Fourier series in the
interval [0, 1], and note that as a result, f is a trigonometric polynomial.]

22. The heuristic assertion stated before Theorem 4.1 can be made precise as
follows. If F is a function on R, then we say that the preponderance of its mass
is contained in an interval I (centered at the origin) if

(16)
∫

I

x2|F (x)|2 dx ≥ 1
2

∫

R
x2|F (x)|2 dx.

Now suppose f ∈ S, and (16) holds with F = f and I = I1; also with F = f̂ and
I = I2. Then if Lj denotes the length of Ij , we have

L1L2 ≥ 1
2π

.

A similar conclusion holds if the intervals are not necessarily centered at the
origin.

23. The Heisenberg uncertainty principle can be formulated in terms of the
operator L = − d2

dx2 + x2, which acts on Schwartz functions by the formula

L(f) = −d2f

dx2
+ x2f.

This operator, sometimes called the Hermite operator, is the quantum ana-
logue of the harmonic oscillator. Consider the usual inner product on S given
by

(f, g) =
∫ ∞

−∞
f(x)g(x) dx whenever f, g ∈ S.
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(a) Prove that the Heisenberg uncertainty principle implies

(Lf, f) ≥ (f, f) for all f ∈ S.

This is usually denoted by L ≥ I. [Hint: Integrate by parts.]

(b) Consider the operators A and A∗ defined on S by

A(f) =
df

dx
+ xf and A∗(f) = − df

dx
+ xf.

The operators A and A∗ are sometimes called the annihilation and cre-
ation operators, respectively. Prove that for all f, g ∈ S we have

(i) (Af, g) = (f, A∗g),

(ii) (Af, Af) = (A∗Af, f) ≥ 0,

(iii) A∗A = L− I.

In particular, this again shows that L ≥ I.

(c) Now for t ∈ R, let

At(f) =
df

dx
+ txf and A∗t (f) = − df

dx
+ txf.

Use the fact that (A∗t Atf, f) ≥ 0 to give another proof of the Heisenberg
uncertainty principle which says that whenever

∫∞
−∞ |f(x)|2 dx = 1 then

(∫ ∞

−∞
x2|f(x)|2 dx

)(∫ ∞

−∞

∣∣∣∣
df

dx

∣∣∣∣
2

dx

)
≥ 1/4.

[Hint: Think of (A∗t Atf, f) as a quadratic polynomial in t.]

6 Problems

1. The equation

(17) x2 ∂2u

∂x2
+ ax

∂u

∂x
=

∂u

∂t

with u(x, 0) = f(x) for 0 < x < ∞ and t > 0 is a variant of the heat equation
which occurs in a number of applications. To solve (17), make the change of vari-
ables x = e−y so that −∞ < y < ∞. Set U(y, t) = u(e−y, t) and
F (y) = f(e−y). Then the problem reduces to the equation

∂2U

∂y2
+ (1− a)

∂U

∂y
=

∂U

∂t
,
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with U(y, 0) = F (y). This can be solved like the usual heat equation (the case
a = 1) by taking the Fourier transform in the y variable. One must then compute
the integral

∫∞
−∞ e(−4π2ξ2+(1−a)2πiξ)te2πiξv dξ. Show that the solution of the

original problem is then given by

u(x, t) =
1

(4πt)1/2

∫ ∞

0

e−(log(v/x)+(1−a)t)2/(4t)f(v)
dv

v
.

2. The Black-Scholes equation from finance theory is

(18)
∂V

∂t
+ rs

∂V

∂s
+

σ2s2

2
∂2V

∂s2
− rV = 0, 0 < t < T ,

subject to the “final” boundary condition V (s, T ) = F (s). An appropriate change
of variables reduces this to the equation in Problem 1. Alternatively, the substi-
tution V (s, t) = eax+bτU(x, τ) where x = log s, τ = σ2

2 (T − t), a = 1
2 − r

σ2 , and

b = − (
1
2 + r

σ2

)2
reduces (18) to the one-dimensional heat equation with the ini-

tial condition U(x, 0) = e−axF (ex). Thus a solution to the Black-Scholes equa-
tion is

V (s, t) =
e−r(T−t)

√
2πσ2(T − t)

∫ ∞

0

e
− (log(s/s∗)+(r−σ2/2)(T−t))2

2σ2(T−t) F (s∗) ds∗.

3. ∗ The Dirichlet problem in a strip. Consider the equation 4u = 0 in the
horizontal strip

{(x, y) : 0 < y < 1, −∞ < x < ∞}
with boundary conditions u(x, 0) = f0(x) and u(x, 1) = f1(x), where f0 and f1

are both in the Schwartz space.

(a) Show (formally) that if u is a solution to this problem, then

û(ξ, y) = A(ξ)e2πξy + B(ξ)e−2πξy.

Express A and B in terms of f̂0 and f̂1, and show that

û(ξ, y) =
sinh(2π(1− y)ξ)

sinh(2πξ)
f̂0(ξ) +

sinh(2πyξ)
sinh(2πξ)

f̂0(ξ).

(b) Prove as a result that
∫ ∞

−∞
|u(x, y)− f0(x)|2 dx → 0 as y → 0

and ∫ ∞

−∞
|u(x, y)− f1(x)|2 dx → 0 as y → 1.
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(c) If Φ(ξ) = (sinh 2πaξ)/(sinh 2πξ), with 0 ≤ a < 1, then Φ is the Fourier
transform of ϕ where

ϕ(x) =
sinπa

2
· 1
cosh πx + cos πa

.

This can be shown, for instance, by using contour integration and the
residue formula from complex analysis (see Book II, Chapter 3).

(d) Use this result to express u in terms of Poisson-like integrals involving f0

and f1 as follows:

u(x, y) =
sin πy

2

(∫ ∞

−∞

f0(x− t)
cosh πt− cos πy

dt +
∫ ∞

−∞

f1(x− t)
cosh πt + cos πy

dt

)
.

(e) Finally, one can check that the function u(x, y) defined by the above ex-
pression is harmonic in the strip, and converges uniformly to f0(x) as
y → 0, and to f1(x) as y → 1. Moreover, one sees that u(x, y) vanishes at
infinity, that is, lim|x|→∞ u(x, y) = 0, uniformly in y.

In Exercise 12, we gave an example of a function that satisfies the heat equation
in the upper half-plane, with boundary value 0, but which was not identically 0.
We observed in this case that u was in fact not continuous up to the boundary.

In Problem 4 we exhibit examples illustrating non-uniqueness, but this time with
continuity up to the boundary t = 0. These examples satisfy a growth condition

at infinity, namely |u(x, t)| ≤ Cecx2+ε

, for any ε > 0. Problems 5 and 6 show

that under the more restrictive growth condition |u(x, t)| ≤ Cecx2
, uniqueness does

hold.

4.∗ If g is a smooth function on R, define the formal power series

(19) u(x, t) =
∞∑

n=0

g(n)(t)
x2n

(2n!)
.

(a) Check formally that u solves the heat equation.

(b) For a > 0, consider the function defined by

g(t) =
{

e−t−a

if t > 0
0 if t ≤ 0.

One can show that there exists 0 < θ < 1 depending on a so that

|g(k)(t)| ≤ k!
(θt)k

e−
1
2 t−a

for t > 0.

(c) As a result, for each x and t the series (19) converges; u solves the heat
equation; u vanishes for t = 0; and u satisfies the estimate |u(x, t)| ≤
Cec|x|2a/(a−1)

for some constants C, c > 0.
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(d) Conclude that for every ε > 0 there exists a non-zero solution to the heat
equation which is continuous for x ∈ R and t ≥ 0, which satisfies u(x, 0) =
0 and |u(x, t)| ≤ Cec|x|2+ε

.

5.∗ The following “maximum principle” for solutions of the heat equation will
be used in the next problem.

Theorem. Suppose that u(x, t) is a real-valued solution of the heat equation
in the upper half-plane, which is continuous on its closure. Let R denote the
rectangle

R = {(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ t ≤ c}
and ∂′R be the part of the boundary of R which consists of the two vertical sides
and its base on the line t = 0 (see Figure 3). Then

min
(x,t)∈∂′R

u(x, t) = min
(x,t)∈R

u(x, t) and max
(x,t)∈∂′R

u(x, t) = max
(x,t)∈R

u(x, t).

ba

t

c

R

x

∂′R

Figure 3. The rectangle R and part of its boundary ∂′R

The steps leading to a proof of this result are outlined below.

(a) Show that it suffices to prove that if u ≥ 0 on ∂′R, then u ≥ 0 in R.

(b) For ε > 0, let
v(x, t) = u(x, t) + εt.

Then, v has a minimum on R, say at (x1, t1). Show that x1 = a or b,
or else t1 = 0. To do so, suppose on the contrary that a < x1 < b and
0 < t1 ≤ c, and prove that vxx(x1, t1)− vt(x1, t1) ≤ −ε. However, show
also that the left-hand side must be non-negative.

(c) Deduce from (b) that u(x, t) ≥ ε(t1 − t) for any (x, t) ∈ R and let ε → 0.

6.∗ The examples in Problem 4 are optimal in the sense of the following unique-
ness theorem due to Tychonoff.
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Theorem. Suppose u(x, t) satisfies the following conditions:

(i) u(x, t) solves the heat equation for all x ∈ R and and all t > 0.

(ii) u(x, t) is continuous for all x ∈ R and 0 ≤ t ≤ c.

(iii) u(x, 0) = 0.

(iv) |u(x, t)| ≤ Meax2
for some M , a, and all x ∈ R, 0 ≤ t < c.

Then u is identically equal to 0.

7.∗ The Hermite functions hk(x) are defined by the generating identity

∞∑

k=0

hk(x)
tk

k!
= e−(x2/2−2tx+t2).

(a) Show that an alternate definition of the Hermite functions is given by the
formula

hk(x) = (−1)kex2/2

(
d

dx

)k

e−x2
.

[Hint: Write e−(x2/2−2tx+t2) = ex2/2e−(x−t)2 and use Taylor’s formula.]
Conclude from the above expression that each hk(x) is of the form
Pk(x)e−x2/2, where Pk is a polynomial of degree k. In particular, the Her-
mite functions belong to the Schwartz space and h0(x) = e−x2/2,
h1(x) = 2xe−x2/2.

(b) Prove that the family {hk}∞k=0 is complete in the sense that if f is a
Schwartz function, and

(f, hk) =
∫ ∞

−∞
f(x)hk(x) dx = 0 for all k ≥ 0,

then f = 0. [Hint: Use Exercise 8.]

(c) Define h∗k(x) = hk((2π)1/2x). Then

ĥ∗k(ξ) = (−i)kh∗k(ξ).

Therefore, each h∗k is an eigenfunction for the Fourier transform.

(d) Show that hk is an eigenfunction for the operator defined in Exercise 23,
and in fact, prove that

Lhk = (2k + 1)hk.

In particular, we conclude that the functions hk are mutually orthogonal
for the L2 inner product on the Schwartz space.

(e) Finally, show that
∫∞
−∞[hk(x)]2 dx = π1/22kk!. [Hint: Square the generat-

ing relation.]
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8.∗ To refine the results in Chapter 4, and to prove that

fα(x) =
∞∑

n=0

2−nαe2πi2nx

is nowhere differentiable even in the case α = 1, we need to consider a variant of
the delayed means4N , which in turn will be analyzed by the Poisson summation
formula.

(a) Fix an indefinitely differentiable function Φ satisfying

Φ(ξ) =
{

1 when |ξ| ≤ 1,
0 when |ξ| ≥ 2.

By the Fourier inversion formula, there exists ϕ ∈ S so that ϕ̂(ξ) = Φ(ξ).
Let ϕN (x) = Nϕ(Nx) so that ϕ̂N (ξ) = Φ(ξ/N). Finally, set

4̃N (x) =
∞∑

n=−∞
ϕN (x + n).

Observe by the Poisson summation formula that 4̃N (x) =∑∞
n=−∞ Φ(n/N)e2πinx, thus 4̃N is a trigonometric polynomial of degree

≤ 2N , with terms whose coefficients are 1 when |n| ≤ N . Let

4̃N (f) = f ∗ 4̃N .

Note that
SN (fα) = 4̃N ′(fα)

where N ′ is the largest integer of the form 2k with N ′ ≤ N .

(b) If we set 4̃N (x) = ϕN (x) + EN (x) where

EN (x) =
∑

|n|≥1

ϕN (x + n),

then one sees that:

(i) sup|x|≤1/2 |E′
N (x)| → 0 as N →∞.

(ii) |4̃′
N (x)| ≤ cN2.

(iii) |4̃′
N (x)| ≤ c/(N |x|3), for |x| ≤ 1/2.

Moreover,
∫
|x|≤1/2

4̃′
N (x) dx = 0, and − ∫

|x|≤1/2
x4̃′

N (x) dx → 1 as N →
∞.

(c) The above estimates imply that if f ′(x0) exists, then

(f ∗ 4̃′
N )(x0 + hN ) → f ′(x0) as N →∞,

whenever |hN | ≤ C/N . Then, conclude that both the real and imaginary
parts of f1 are nowhere differentiable, as in the proof given in Section 3,
Chapter 4.
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It occurred to me that in order to improve treatment
planning one had to know the distribution of the at-
tenuation coefficient of tissues in the body. This in-
formation would be useful for diagnostic purposes and
would constitute a tomogram or series of tomograms.

It was immediately evident that the problem was
a mathematical one. If a fine beam of gamma rays
of intensity I0 is incident on the body and the emerg-
ing density is I, then the measurable quantity g equals
log(I0/I) =

∫
L

f ds, where f is the variable absorption
coefficient along the line L. Hence if f is a function of
two dimensions, and g is known for all lines intersect-
ing the body, the question is, can f be determined if
g is known?

Fourteen years would elapse before I learned that
Radon had solved this problem in 1917.

A. M. Cormack, 1979

The previous chapter introduced the theory of the Fourier transform
on R and illustrated some of its applications to partial differential equa-
tions. Here, our aim is to present an analogous theory for functions of
several variables.

After a brief review of some relevant notions in Rd, we begin with some
general facts about the Fourier transform on the Schwartz space S(Rd).
Fortunately, the main ideas and techniques have already been considered
in the one-dimensional case. In fact, with the appropriate notation, the
statements (and proofs) of the key theorems, such as the Fourier inversion
and Plancherel formulas, remain unchanged.

Next, we highlight the connection to some higher dimensional prob-
lems in mathematical physics, and in particular we investigate the wave
equation in d dimensions, with a detailed analysis in the cases d = 3
and d = 2. At this stage, we discover a rich interplay between the Fourier
transform and rotational symmetry, that arises only in Rd when d ≥ 2.

Finally, the chapter ends with a discussion of the Radon transform.
This topic is of substantial interest in its own right, but in addition has
significant relevance in its application to the use of X-ray scans as well
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as to other parts of mathematics.

1 Preliminaries

The setting in this chapter will be Rd, the vector space1 of all d-tuples of
real numbers (x1, . . . , xd) with xi ∈ R. Addition of vectors is component-
wise, and so is multiplication by real scalars. Given x = (x1, . . . , xd) ∈ Rd

we define

|x| = (x2
1 + · · ·+ x2

d)
1/2,

so that |x| is simply the length of the vector x in the usual Euclidean
norm. In fact, we equip Rd with the standard inner product defined by

x · y = x1y1 + · · ·+ xdyd,

so that |x|2 = x · x. We use the notation x · y in place of (x, y) of Chap-
ter 3.

Given a d-tuple α = (α1, . . . , αd) of non-negative integers (sometimes
called a multi-index), the monomial xα is defined by

xα = xα1
1 xα2

2 · · ·xαd

d .

Similarly, we define the differential operator (∂/∂x)α by

(
∂

∂x

)α

=
(

∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xd

)αd

=
∂|α|

∂xα1
1 · · · ∂xαd

d

,

where |α| = α1 + · · ·+ αd is the order of the multi-index α.

1.1 Symmetries

Analysis in Rd, and in particular the theory of the Fourier transform, is
shaped by three important groups of symmetries of the underlying space:

(i) Translations

(ii) Dilations

(iii) Rotations

1See Chapter 3 for a brief review of vector spaces and inner products. Here we find it
convenient to use lower case letters such as x (as opposed to X) to designate points in
Rd. Also, we use | · | instead of ‖ · ‖ to denote the Euclidean norm.
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We have seen that translations x 7→ x + h, with h ∈ Rd fixed, and dila-
tions x 7→ δx, with δ > 0, play an important role in the one-dimensional
theory. In R, the only two rotations are the identity and multiplica-
tion by −1. However, in Rd with d ≥ 2 there are more rotations, and
the understanding of the interaction between the Fourier transform and
rotations leads to fruitful insights regarding spherical symmetries.

A rotation in Rd is a linear transformation R : Rd → Rd which pre-
serves the inner product. In other words,

• R(ax + by) = aR(x) + bR(y) for all x, y ∈ Rd and a, b ∈ R.

• R(x) ·R(y) = x · y for all x, y ∈ Rd.

Equivalently, this last condition can be replaced by |R(x)| = |x| for all
x ∈ Rd, or Rt = R−1 where Rt and R−1 denote the transpose and inverse
of R, respectively.2 In particular, we have det(R) = ±1, where det(R) is
the determinant of R. If det(R) = 1 we say that R is a proper rotation;
otherwise, we say that R is an improper rotation.

Example 1. On the real line R, there are two rotations: the identity
which is proper, and multiplication by −1 which is improper.

Example 2. The rotations in the plane R2 can be described in terms of
complex numbers. We identify R2 with C by assigning the point (x, y)
to the complex number z = x + iy. Under this identification, all proper
rotations are of the form z 7→ zeiϕ for some ϕ ∈ R, and all improper rota-
tions are of the form z 7→ zeiϕ for some ϕ ∈ R (here, z = x− iy denotes
the complex conjugate of z). See Exercise 1 for the argument leading to
this result.

Example 3. Euler gave the following very simple geometric description
of rotations in R3. Given a proper rotation R, there exists a unit vector
γ so that:

(i) R fixes γ, that is, R(γ) = γ.

(ii) If P denotes the plane passing through the origin and perpendicular
to γ, then R : P → P, and the restriction of R to P is a rotation
in R2.

2Recall that the transpose of a linear operator A : Rd → Rd is the linear operator
B : Rd → Rd which satisfies A(x) · y = x ·B(y) for all x, y ∈ Rd. We write B = At. The
inverse of A (when it exists) is the linear operator C : Rd → Rd with A ◦ C = C ◦A = I
(where I is the identity), and we write C = A−1.
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Geometrically, the vector γ gives the direction of the axis of rotation. A
proof of this fact is given in Exercise 2. Finally, if R is improper, then
−R is proper (since in R3 det(−R) = − det(R)), so R is the composition
of a proper rotation and a symmetry with respect to the origin.

Example 4. Given two orthonormal bases {e1, . . . , ed} and {e′1, . . . , e′d}
in Rd, we can define a rotation R by letting R(ei) = e′i for i = 1, . . . , d.
Conversely, if R is a rotation and {e1, . . . , ed} is an orthonormal basis,
then {e′1, . . . , e′d}, where e′j = R(ej), is another orthonormal basis.

1.2 Integration on Rd

Since we shall be dealing with functions on Rd, we will need to discuss
some aspects of integration of such functions. A more detailed review of
integration on Rd is given in the appendix.

A continuous complex-valued function f on Rd is said to be rapidly
decreasing if for every multi-index α the function |xαf(x)| is bounded.
Equivalently, a continuous function is of rapid decrease if

sup
x∈Rd

|x|k |f(x)| < ∞ for every k = 0, 1, 2, . . ..

Given a function of rapid decrease, we define
∫

Rd

f(x) dx = lim
N→∞

∫

QN

f(x) dx,

where QN denotes the closed cube centered at the origin, with sides of
length N parallel to the coordinate axis, that is,

QN = {x ∈ Rd : |xi| ≤ N/2 for i = 1, . . . , d}.

The integral over QN is a multiple integral in the usual sense of Riemann
integration. That the limit exists follows from the fact that the integrals
IN =

∫
QN

f(x) dx form a Cauchy sequence as N tends to infinity.

Two observations are in order. First, we may replace the square QN

by the ball BN = {x ∈ Rd : |x| ≤ N} without changing the definition.
Second, we do not need the full force of rapid decrease to show that the
limit exists. In fact it suffices to assume that f is continuous and

sup
x∈Rd

|x|d+ε |f(x)| < ∞ for some ε > 0.
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For example, functions of moderate decrease on R correspond to ε = 1.
In keeping with this we define functions of moderate decrease on Rd

as those that are continuous and satisfy the above inequality with ε = 1.

The interaction of integration with the three important groups of sym-
metries is as follows: if f is of moderate decrease, then

(i)
∫

Rd

f(x + h) dx =
∫

Rd

f(x) dx for all h ∈ Rd,

(ii) δd

∫

Rd

f(δx) dx =
∫

Rd

f(x) dx for all δ > 0,

(iii)
∫

Rd

f(R(x)) dx =
∫

Rd

f(x) dx for every rotation R.

Polar coordinates

It will be convenient to introduce polar coordinates in Rd and find the
corresponding integration formula. We begin with two examples which
correspond to the case d = 2 and d = 3. (A more elaborate discussion
applying to all d is contained in the appendix.)

Example 1. In R2, polar coordinates are given by (r, θ) with r ≥ 0 and
0 ≤ θ < 2π. The Jacobian of the change of variables is equal to r, so that

∫

R2
f(x) dx =

∫ 2π

0

∫ ∞

0
f(r cos θ, r sin θ) r dr dθ.

Now we may write a point on the unit circle S1 as γ = (cos θ, sin θ), and
given a function g on the circle, we define its integral over S1 by

∫

S1
g(γ) dσ(γ) =

∫ 2π

0
g(cos θ, sin θ) dθ.

With this notation we then have
∫

R2
f(x) dx =

∫

S1

∫ ∞

0
f(rγ) r dr dσ(γ).

Example 2. In R3 one uses spherical coordinates given by





x1 = r sin θ cosϕ,
x2 = r sin θ sinϕ,
x3 = r cos θ,
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where 0 < r, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. The Jacobian of the change of
variables is r2 sin θ so that

∫

R3
f(x) dx =

∫ 2π

0

∫ π

0

∫ ∞

0
f(r sin θ cosϕ, r sin θ sinϕ, r cos θ)r2dr sin θ dθ dϕ.

If g is a function on the unit sphere S2 = {x ∈ R3 : |x| = 1}, and γ =
(sin θ cos ϕ, sin θ sinϕ, cos θ), we define the surface element dσ(γ) by

∫

S2
g(γ) dσ(γ) =

∫ 2π

0

∫ π

0
g(γ) sin θ dθ dϕ.

As a result,
∫

R3
f(x) dx =

∫

S2

∫ ∞

0
f(rγ) r2 dr dσ(γ).

In general, it is possible to write any point in Rd − {0} uniquely as

x = rγ

where γ lies on the unit sphere Sd−1 ⊂ Rd and r > 0. Indeed, take r = |x|
and γ = x/|x|. Thus one may proceed as in the cases d = 2 or d = 3 to
define spherical coordinates. The formula we shall use is

∫

Rd

f(x) dx =
∫

Sd−1

∫ ∞

0
f(rγ) rd−1 dr dσ(γ),

whenever f is of moderate decrease. Here dσ(γ) denotes the surface
element on the sphere Sd−1 obtained from the spherical coordinates.

2 Elementary theory of the Fourier transform

The Schwartz space S(Rd) (sometimes abbreviated as S) consists of
all indefinitely differentiable functions f on Rd such that

sup
x∈Rd

∣∣∣∣∣x
α

(
∂

∂x

)β

f(x)

∣∣∣∣∣ < ∞,

for every multi-index α and β. In other words, f and all its derivatives
are required to be rapidly decreasing.
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Example 1. An example of a function in S(Rd) is the d-dimensional
Gaussian given by e−π|x|2 . The theory in Chapter 5 already made clear
the central role played by this function in the case d = 1.

The Fourier transform of a Schwartz function f is defined by

f̂(ξ) =
∫

Rd

f(x)e−2πix·ξ dx, for ξ ∈ Rd.

Note the resemblance with the formula in one-dimension, except that we
are now integrating on Rd, and the product of x and ξ is replaced by the
inner product of the two vectors.

We now list some simple properties of the Fourier transform. In the
next proposition the arrow indicates that we have taken the Fourier trans-
form, so F (x) −→ G(ξ) means that G(ξ) = F̂ (ξ).

Proposition 2.1 Let f ∈ S(Rd).

(i) f(x + h) −→ f̂(ξ)e2πiξ·h whenever h ∈ Rd.

(ii) f(x)e−2πixh −→ f̂(ξ + h) whenever h ∈ Rd.

(iii) f(δx) −→ δ−df̂(δ−1ξ) whenever δ > 0.

(iv)
(

∂

∂x

)α

f(x) −→ (2πiξ)αf̂(ξ).

(v) (−2πix)αf(x) −→
(

∂

∂ξ

)α

f̂(ξ).

(vi) f(Rx) −→ f̂(Rξ) whenever R is a rotation.

The first five properties are proved in the same way as in the one-
dimensional case. To verify the last property, simply change variables
y = Rx in the integral. Then, recall that | det(R)| = 1, and
R−1y · ξ = y ·Rξ, because R is a rotation.

Properties (iv) and (v) in the proposition show that, up to factors of
2πi, the Fourier transform interchanges differentiation and multiplication
by monomials. This motivates the definition of the Schwartz space and
leads to the next corollary.

Corollary 2.2 The Fourier transform maps S(Rd) to itself.

At this point we disgress to observe a simple fact concerning the in-
terplay between the Fourier transform and rotations. We say that a
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function f is radial if it depends only on |x|; in other words, f is radial
if there is a function f0(u), defined for u ≥ 0, such that f(x) = f0(|x|).
We note that f is radial if and only if f(Rx) = f(x) for every rotation
R. In one direction, this is obvious since |Rx| = |x|. Conversely, suppose
that f(Rx) = f(x), for all rotations R. Now define f0 by

f0(u) =
{

f(0) if u = 0,
f(x) if |x| = u.

Note that f0 is well defined, since if x and x′ are points with |x| = |x′|
there is always a rotation R so that x′ = Rx.

Corollary 2.3 The Fourier transform of a radial function is radial.

This follows at once from property (vi) in the last proposition. Indeed,
the condition f(Rx) = f(x) for all R implies that f̂(Rξ) = f̂(ξ) for all
R, thus f̂ is radial whenever f is.

An example of a radial function in Rd is the Gaussian e−π|x|2 . Also,
we observe that when d = 1, the radial functions are precisely the even
functions, that is, those for which f(x) = f(−x).

After these preliminaries, we retrace the steps taken in the previous
chapter to obtain the Fourier inversion formula and Plancherel theorem
for Rd.

Theorem 2.4 Suppose f ∈ S(Rd). Then

f(x) =
∫

Rd

f̂(ξ)e2πix·ξ dξ.

Moreover
∫

Rd

|f̂(ξ)|2 dξ =
∫

Rd

|f(x)|2 dx.

The proof proceeds in the following stages.

Step 1. The Fourier transform of e−π|x|2 is e−π|ξ|2 . To prove this,
notice that the properties of the exponential functions imply that

e−π|x|2 = e−πx2
1 · · · e−πx2

d and e−2πix·ξ = e−2πix1·ξ1 · · · e−2πixd·ξd ,

so that the integrand in the Fourier transform is a product of d functions,
each depending on the variable xj (1 ≤ j ≤ d) only. Thus the assertion
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follows by writing the integral over Rd as a series of repeated integrals,
each taken over R. For example, when d = 2,

∫

R2
e−π|x|2e−2πix·ξ dx =

∫

R
e−πx2

2e−2πix2·ξ2

(∫

R
e−πx2

1e−2πix1·ξ1dx1

)
dx2

=
∫

R
e−πx2

2e−2πix2·ξ2e−πξ2
1 dx2

= e−πξ2
1e−πξ2

2

= e−π|ξ|2 .

As a consequence of Proposition 2.1, applied with δ1/2 instead of δ, we
find that ̂(e−πδ|x|2) = δ−d/2e−π|ξ|2/δ.

Step 2. The family Kδ(x) = δ−d/2e−π|x|2/δ is a family of good kernels
in Rd. By this we mean that

(i)
∫

Rd

Kδ(x) dx = 1,

(ii)
∫

Rd

|Kδ(x)| dx ≤ M (in fact Kδ(x) ≥ 0),

(iii) For every η > 0,
∫

|x|≥η
|Kδ(x)| dx → 0 as δ → 0.

The proofs of these assertions are almost identical to the case d = 1. As
a result

∫

Rd

Kδ(x)F (x) dx → F (0) as δ → 0

when F is a Schwartz function, or more generally when F is bounded
and continuous at the origin.

Step 3. The multiplication formula
∫

Rd

f(x)ĝ(x) dx =
∫

Rd

f̂(y)g(y) dy

holds whenever f and g are in S. The proof requires the evaluation of the
integral of f(x)g(y)e−2πix·y over (x, y) ∈ R2d = Rd × Rd as a repeated
integral, with each separate integration taken over Rd. The justification
is similar to that in the proof of Proposition 1.8 in the previous chapter.
(See the appendix.)

The Fourier inversion is then a simple consequence of the multiplica-
tion formula and the family of good kernels Kδ, as in Chapter 5. It also
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follows that the Fourier transform F is a bijective map of S(Rd) to itself,
whose inverse is

F∗(g)(x) =
∫

Rd

g(ξ)e2πix·ξ dξ.

Step 4. Next we turn to the convolution, defined by

(f ∗ g)(x) =
∫

Rd

f(y)g(x− y) dy, f, g ∈ S.

We have that f ∗ g ∈ S(Rd), f ∗ g = g ∗ f , and (̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ).
The argument is similar to that in one-dimension. The calculation of the
Fourier transform of f ∗ g involves an integration of f(y)g(x− y)e−2πix·ξ

(over R2d = Rd × Rd) expressed as a repeated integral.
Then, following the same argument in the previous chapter, we obtain

the d-dimensional Plancherel formula, thereby concluding the proof of
Theorem 2.4.

3 The wave equation in Rd × R
Our next goal is to apply what we have learned about the Fourier trans-
form to the study of the wave equation. Here, we once again simplify
matters by restricting ourselves to functions in the Schwartz class S. We
note that in any further analysis of the wave equation it is important to
allow functions that have much more general behavior, and in particular
that may be discontinuous. However, what we lose in generality by only
considering Schwartz functions, we gain in transparency. Our study in
this restricted context will allow us to explain certain basic ideas in their
simplest form.

3.1 Solution in terms of Fourier transforms

The motion of a vibrating string satisfies the equation

∂2u

∂x2
=

1
c2

∂2u

∂t2
,

which we referred to as the one-dimensional wave equation.
A natural generalization of this equation to d space variables is

(1)
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
d

=
1
c2

∂2u

∂t2
.

In fact, it is known that in the case d = 3, this equation determines the
behavior of electromagnetic waves in vacuum (with c = speed of light).
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Also, this equation describes the propagation of sound waves. Thus (1)
is called the d-dimensional wave equation.

Our first observation is that we may assume c = 1, since we can rescale
the variable t if necessary. Also, if we define the Laplacian in d dimen-
sions by

4 =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

,

then the wave equation can be rewritten as

(2) 4u =
∂2u

∂t2
.

The goal of this section is to find a solution to this equation, subject
to the initial conditions

u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x),

where f, g ∈ S(Rd). This is called the Cauchy problem for the wave
equation.

Before solving this problem, we note that while we think of the variable
t as time, we do not restrict ourselves to t > 0. As we will see, the solution
we obtain makes sense for all t ∈ R. This is a manifestation of the fact
that the wave equation can be reversed in time (unlike the heat equation).

A formula for the solution of our problem is given in the next theorem.
The heuristic argument which leads to this formula is important since, as
we have already seen, it applies to some other boundary value problems
as well.

Suppose u solves the Cauchy problem for the wave equation. The
technique employed consists of taking the Fourier transform of the equa-
tion and of the initial conditions, with respect to the space variables
x1, . . . , xd. This reduces the problem to an ordinary differential equation
in the time variable. Indeed, recalling that differentiation with respect to
xj becomes multiplication by 2πiξj , and the differentiation with respect
to t commutes with the Fourier transform in the space variables, we find
that (2) becomes

−4π2|ξ|2û(ξ, t) =
∂2û

∂t2
(ξ, t).

For each fixed ξ ∈ Rd, this is an ordinary differential equation in t whose
solution is given by

û(ξ, t) = A(ξ) cos(2π|ξ|t) + B(ξ) sin(2π|ξ|t),
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where for each ξ, A(ξ) and B(ξ) are unknown constants to be determined
by the initial conditions. In fact, taking the Fourier transform (in x) of
the initial conditions yields

û(ξ, 0) = f̂(ξ) and
∂û

∂t
(ξ, 0) = ĝ(ξ).

We may now solve for A(ξ) and B(ξ) to obtain

A(ξ) = f̂(ξ) and 2π|ξ|B(ξ) = ĝ(ξ).

Therefore, we find that

û(ξ, t) = f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)
sin(2π|ξ|t)

2π|ξ| ,

and the solution u is given by taking the inverse Fourier transform in
the ξ variables. This formal derivation then leads to a precise existence
theorem for our problem.

Theorem 3.1 A solution of the Cauchy problem for the wave equation
is

(3) u(x, t) =
∫

Rd

[
f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
e2πix·ξ dξ.

Proof. We first verify that u solves the wave equation. This is
straightforward once we note that we can differentiate in x and t un-
der the integral sign (because f and g are both Schwartz functions) and
therefore u is at least C2. On the one hand we differentiate the expo-
nential with respect to the x variables to get

4u(x, t) =
∫

Rd

[
f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
(−4π2|ξ|2)e2πix·ξ dξ,

while on the other hand we differentiate the terms in brackets with re-
spect to t twice to get

∂2u

∂t2
(x, t) =

∫

Rd

[
−4π2|ξ|2f̂(ξ) cos(2π|ξ|t)− 4π2|ξ|2ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
e2πix·ξ dξ.

This shows that u solves equation (2). Setting t = 0 we get

u(x, 0) =
∫

Rd

f̂(ξ)e2πix·ξ dξ = f(x)
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by the Fourier inversion theorem. Finally, differentiating once with re-
spect to t, setting t = 0, and using the Fourier inversion shows that

∂u

∂t
(x, 0) = g(x).

Thus u also verifies the initial conditions, and the proof of the theorem
is complete.

As the reader will note, both f̂(ξ) cos(2π|ξ|t) and ĝ(ξ) sin(2π|ξ|t)
2π|ξ| are

functions in S, assuming as we do that f and g are in S. This is be-
cause both cosu and (sinu)/u are even functions that are indefinitely
differentiable.

Having proved the existence of a solution to the Cauchy problem for the
wave equation, we raise the question of uniqueness. Are there solutions
to the problem

4u =
∂2u

∂t2
subject to u(x, 0) = f(x) and

∂u

∂t
(x, 0) = g(x),

other than the one given by the formula in the theorem? In fact the
answer is, as expected, no. The proof of this fact, which will not be
given here (but see Problem 3), can be based on a conservation of energy
argument. This is a local counterpart of a global conservation of energy
statement which we will now present.

We observed in Exercise 10, Chapter 3, that in the one-dimensional
case, the total energy of the vibrating string is conserved in time. The
analogue of this fact holds in higher dimensions as well. Define the
energy of a solution by

E(t) =
∫

Rd

∣∣∣∣
∂u

∂t

∣∣∣∣
2

+
∣∣∣∣
∂u

∂x1

∣∣∣∣
2

+ · · ·+
∣∣∣∣
∂u

∂xd

∣∣∣∣
2

dx.

Theorem 3.2 If u is the solution of the wave equation given by for-
mula (3), then E(t) is conserved, that is,

E(t) = E(0), for all t ∈ R.

The proof requires the following lemma.

Lemma 3.3 Suppose a and b are complex numbers and α is real. Then

|a cos α + b sinα|2 + | − a sin α + b cosα|2 = |a|2 + |b|2.
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This follows directly because e1 = (cos α, sinα) and e2 = (− sinα, cos α)
are a pair of orthonormal vectors, hence with Z = (a, b) ∈ C2, we have

|Z|2 = |Z · e1|2 + |Z · e2|2,

where · represents the inner product in C2.
Now by Plancherel’s theorem,

∫

Rd

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dx =
∫

Rd

∣∣∣−2π|ξ|f̂(ξ) sin(2π|ξ|t) + ĝ(ξ) cos(2π|ξ|t)
∣∣∣
2

dξ.

Similarly,

∫

Rd

d∑

j=1

∣∣∣∣
∂u

∂xj

∣∣∣∣
2

dx =
∫

Rd

∣∣∣2π|ξ|f̂(ξ) cos(2π|ξ|t) + ĝ(ξ) sin(2π|ξ|t)
∣∣∣
2

dξ.

We now apply the lemma with

a = 2π|ξ|f̂(ξ), b = ĝ(ξ) and α = 2π|ξ|t.

The result is that

E(t) =
∫

Rd

∣∣∣∣
∂u

∂t

∣∣∣∣
2

+
∣∣∣∣
∂u

∂x1

∣∣∣∣
2

+ · · ·+
∣∣∣∣
∂u

∂xd

∣∣∣∣
2

dx

=
∫

Rd

(4π2|ξ|2|f̂(ξ)|2 + |ĝ(ξ)|2) dξ,

which is clearly independent of t. Thus Theorem 3.2 is proved.

The drawback with formula (3), which does give the solution of the
wave equation, is that it is quite indirect, involving the calculation of the
Fourier transforms of f and g, and then a further inverse Fourier trans-
form. However, for every dimension d there is a more explicit formula.
This formula is very simple when d = 1 and a little less so when d = 3.
More generally, the formula is “elementary” whenever d is odd, and more
complicated when d is even (see Problems 4 and 5).

In what follows we consider the cases d = 1, d = 3, and d = 2, which
together give a picture of the general situation. Recall that in Chapter 1,
when discussing the wave equation over the interval [0, L], we found that
the solution is given by d’Alembert’s formula

(4) u(x, t) =
f(x + t) + f(x− t)

2
+

1
2

∫ x+t

x−t
g(y) dy.
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with the interpretation that both f and g are extended outside [0, L] by
making them odd in [−L,L], and periodic on the real line, with period
2L. The same formula (4) holds for the solution of the wave equation
when d = 1 and when the initial data are functions in S(R). In fact, this
follows directly from (3) if we note that

cos(2π|ξ|t) =
1
2
(e2πi|ξ|t + e−2πi|ξ|t)

and

sin(2π|ξ|t)
2π|ξ| =

1
4πi|ξ|(e

2πi|ξ|t − e−2πi|ξ|t).

Finally, we note that the two terms that appear in d’Alembert’s for-
mula (4) consist of appropriate averages. Indeed, the first term is pre-
cisely the average of f over the two points that are the boundary of the
interval [x− t, x + t]; the second term is, up to a factor of t, the mean
value of g over this interval, that is, (1/2t)

∫ x+t
x−t g(y) dy. This suggests a

generalization to higher dimensions, where we might expect to write the
solution of our problem as averages of the initial data. This is in fact the
case, and we now treat in detail the particular situation d = 3.

3.2 The wave equation in R3 × R
If S2 denotes the unit sphere in R3, we define the spherical mean of
the function f over the sphere of radius t centered at x by

(5) Mt(f)(x) =
1
4π

∫

S2
f(x− tγ) dσ(γ),

where dσ(γ) is the element of surface area for S2. Since 4π is the area
of the unit sphere, we can interpret Mt(f) as the average value of f over
the sphere centered at x of radius t.

Lemma 3.4 If f ∈ S(R3) and t is fixed, then Mt(f) ∈ S(R3). Moreover,
Mt(f) is indefinitely differentiable in t, and each t-derivative also belongs
to S(R3).

Proof. Let F (x) = Mt(f)(x). To show that F is rapidly decreasing,
start with the inequality |f(x)| ≤ AN/(1 + |x|N ) which holds for every
fixed N ≥ 0. As a simple consequence, whenever t is fixed, we have

|f(x− γt)| ≤ A′N/(1 + |x|N ) for all γ ∈ S2.
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To see this consider separately the cases when |x| ≤ 2|t|, and |x| > 2|t|.
Therefore, by integration

|F (x)| ≤ A′N/(1 + |x|N ),

and since this holds for every N , the function F is rapidly decreasing.
One next observes that F is indefinitely differentiable, and

(6)
(

∂

∂x

)α

F (x) = Mt(f (α))(x)

where f (α)(x) = (∂/∂x)αf . It suffices to prove this when (∂/∂x)α =
∂/∂xk, and then proceed by induction to get the general case. Further-
more, it is enough to take k = 1. Now

F (x1 + h, x2, x3)− F (x1, x2, x3)
h

=
1
4π

∫

S2
gh(γ) dσ(γ)

where

gh(γ) =
f(x + e1h− γt)− f(x− γt)

h
,

and e1 = (1, 0, 0). Now, it suffices to observe that gh → ∂
∂x1

f(x− γt)
as h → 0 uniformly in γ. As a result, we find that (6) holds, and by
the first argument, it follows that

(
∂
∂x

)α
F (x) is also rapidly decreasing,

hence F ∈ S. The same argument applies to each t-derivative of Mt(f).

The basic fact about integration on spheres that we shall need is the
following Fourier transform formula.

Lemma 3.5
1
4π

∫

S2
e−2πiξ·γ dσ(γ) =

sin(2π|ξ|)
2π|ξ| .

This formula, as we shall see in the following section, is connected to
the fact that the Fourier transform of a radial function is radial.

Proof. Note that the integral on the left is radial in ξ. Indeed, if R is
a rotation then

∫

S2
e−2πiR(ξ)·γ dσ(γ) =

∫

S2
e−2πiξ·R−1(γ) dσ(γ) =

∫

S2
e−2πiξ·γ dσ(γ)

because we may change variables γ → R−1(γ). (For this, see formula (4)
in the appendix.) So if |ξ| = ρ, it suffices to prove the lemma with
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ξ = (0, 0, ρ). If ρ = 0, the lemma is obvious. If ρ > 0, we choose spherical
coordinates to find that the left-hand side is equal to

1
4π

∫ 2π

0

∫ π

0
e−2πiρ cos θ sin θ dθ dϕ.

The change of variables u = − cos θ gives

1
4π

∫ 2π

0

∫ π

0
e−2πiρ cos θ sin θ dθ dϕ =

1
2

∫ π

0
e−2πiρ cos θ sin θ dθ

=
1
2

∫ 1

−1
e2πiρu du

=
1

4πiρ

[
e2πiρu

]1
−1

=
sin(2πρ)

2πρ
,

and the formula is proved.

By the defining formula (5) we may interpret Mt(f) as a convolution
of the function f with the element dσ, and since the Fourier transform
interchanges convolutions with products, we are led to believe that M̂t(f)
is the product of the corresponding Fourier transforms. Indeed, we have
the identity

(7) M̂t(f)(ξ) = f̂(ξ)
sin(2π|ξ|t)

2π|ξ|t .

To see this, write

M̂t(f)(ξ) =
∫

R3
e−2πix·ξ

(
1
4π

∫

S2
f(x− γt) dσ(γ)

)
dx,

and note that we may interchange the order of integration and make a
simple change of variables to achieve the desired identity.

As a result, we find that the solution of our problem may be expressed
by using the spherical means of the initial data.

Theorem 3.6 The solution when d = 3 of the Cauchy problem for the
wave equation

4u =
∂2u

∂t2
subject to u(x, 0) = f(x) and

∂u

∂t
(x, 0) = g(x)

is given by

u(x, t) =
∂

∂t
(tMt(f)(x)) + tMt(g)(x).
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Proof. Consider first the problem

4u =
∂2u

∂t2
subject to u(x, 0) = 0 and

∂u

∂t
(x, 0) = g(x).

Then by Theorem 3.1, we know that its solution u1 is given by

u1(x, t) =
∫

R3

[
ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
e2πix·ξ dξ

= t

∫

R3

[
ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|t

]
e2πix·ξ dξ

= tMt(g)(x),

where we have used (7) applied to g, and the Fourier inversion formula.
According to Theorem 3.1 again, the solution to the problem

4u =
∂2u

∂t2
subject to u(x, 0) = f(x) and

∂u

∂t
(x, 0) = 0

is given by

u2(x, t) =
∫

R3

[
f̂(ξ) cos(2π|ξ|t)

]
e2πix·ξ dξ

=
∂

∂t

(
t

∫

R3

[
f̂(ξ)

sin(2π|ξ|t)
2π|ξ|t

]
e2πix·ξ dξ

)

=
∂

∂t
(tMt(f)(x)).

We may now superpose these two solutions to obtain u = u1 + u2 as the
solution of our original problem.

Huygens principle

The solutions to the wave equation in one and three dimensions are given,
respectively, by

u(x, t) =
f(x + t) + f(x− t)

2
+

1
2

∫ x+t

x−t
g(y) dy

and

u(x, t) =
∂

∂t
(tMt(f)(x)) + tMt(g)(x).
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x + tx− t

(x, t)

0 x

t

x

Figure 1. Huygens principle, d = 1

We observe that in the one-dimensional problem, the value of the solution
at (x, t) depends only on the values of f and g in the interval centered
at x of length 2t, as shown in Figure 1.

If in addition g = 0, then the solution depends only on the data at the
two boundary points of this interval. In three dimensions, this boundary
dependence always holds. More precisely, the solution u(x, t) depends
only on the values of f and g in an immediate neighborhood of the sphere
centered at x and of radius t. This situation is depicted in Figure 2, where
we have drawn the cone originating at (x, t) and with its base the ball
centered at x of radius t. This cone is called the backward light cone
originating at (x, t).

x-space

(x, t)

Figure 2. Backward light cone originating at (x, t)

Alternatively, the data at a point x0 in the plane t = 0 influences the
solution only on the boundary of a cone originating at x0, called the
forward light cone and depicted in Figure 3.

This phenomenon, known as the Huygens principle, is immediate
from the formulas for u given above.

Another important aspect of the wave equation connected with these
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x0

Figure 3. The forward light cone originating at x0

considerations is that of the finite speed of propagation. (In the
case where c = 1, the speed is 1.) This means that if we have an initial
disturbance localized at x = x0, then after a finite time t, its effects will
have propagated only inside the ball centered at x0 of radius |t|. To state
this precisely, suppose the initial conditions f and g are supported in the
ball of radius δ, centered at x0 (think of δ as small). Then u(x, t) is
supported in the ball of radius |t|+ δ centered at x0. This assertion is
clear from the above discussion.

3.3 The wave equation in R2 × R: descent

It is a remarkable fact that the solution of the wave equation in three
dimensions leads to a solution of the wave equation in two dimensions.
Define the corresponding means by

M̃t(F )(x) =
1
2π

∫

|y|≤1
F (x− ty)(1− |y|2)−1/2 dy.

Theorem 3.7 A solution of the Cauchy problem for the wave equation
in two dimensions with initial data f, g ∈ S(R2) is given by

(8) u(x, t) =
∂

∂t
(tM̃t(f)(x)) + tM̃t(g)(x).

Notice the difference between this case and the case d = 3. Here, u at
(x, t) depends on f and g in the whole disc (of radius |t| centered at x),
and not just on the values of the initial data near the boundary of that
disc.

Formally, the identity in the theorem arises as follows. If we start
with an initial pair of functions f and g in S(R2), we may consider the
corresponding functions f̃ and g̃ on R3 that are merely extensions of f
and g that are constant in the x3 variable, that is,

f̃(x1, x2, x3) = f(x1, x2) and g̃(x1, x2, x3) = g(x1, x2).
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Now, if ũ is the solution (given in the previous section) of the 3-dimensional
wave equation with initial data f̃ and g̃, then one can expect that ũ is
also constant in x3 so that ũ satisfies the 2-dimensional wave equation.
A difficulty with this argument is that f̃ and g̃ are not rapidly decreasing
since they are constant in x3, so that our previous methods do not apply.
However, it is easy to modify the argument so as to obtain a proof of
Theorem 3.7.

We fix T > 0 and consider a function η(x3) that is in S(R), such that
η(x3) = 1 if |x3| ≤ 3T . The trick is to truncate f̃ and g̃ in the x3-variable,
and consider instead

f̃ [(x1, x2, x3) = f(x1, x2)η(x3) and g̃[(x1, x2, x3) = g(x1, x2)η(x3).

Now both f̃ [ and g̃[ are in S(R3), so Theorem 3.6 provides a solution
ũ[ of the wave equation with initial data f̃ [ and g̃[. It is easy to see
from the formula that ũ[(x, t) is independent of x3, whenever |x3| ≤ T
and |t| ≤ T . In particular, if we define u(x1, x2, t) = ũ[(x1, x2, 0, t), then
u satisfies the 2-dimensional wave equation when |t| ≤ T . Since T is
arbitrary, u is a solution to our problem, and it remains to see why u has
the desired form.

By definition of the spherical coordinates, we recall that the integral
of a function H over the sphere S2 is given by

1
4π

∫

S2
H(γ) dσ(γ) =

1
4π

∫ 2π

0

∫ π

0
H(sin θ cos ϕ, sin θ sinϕ, cos θ) sin θ dθ dϕ.

If H does not depend on the last variable, that is, H(x1, x2, x3) = h(x1, x2)
for some function h of two variables, then

Mt(H)(x1, x2, 0) =

1
4π

∫ 2π

0

∫ π

0
h(x1 − t sin θ cos ϕ, x2 − t sin θ sin ϕ) sin θ dθ dϕ.

To calculate this last integral, we split the θ-integral from 0 to π/2 and
then π/2 to π. By making the change of variables r = sin θ, we find, after
a final change to polar coordinates, that

Mt(H)(x1, x2, 0) =
1
2π

∫

|y|≤1
h(x− ty)(1− |y|2)−1/2 dy

= M̃t(h)(x1, x2).
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Applying this to H = f̃ [, h = f , and H = g̃[, h = g, we find that u is
given by the formula (8), and the proof of Theorem 3.7 is complete.

Remark. In the case of general d, the solution of the wave equation
shares many of the properties we have discussed in the special cases
d = 1, 2, and 3.

• At a given time t, the initial data at a point x only affects the solu-
tion u in a specific region. When d > 1 is odd, the data influences
only the points on the boundary of the forward light cone origi-
nating at x, while when d = 1 or d is even, it affects all points of
the forward light cone. Alternatively, the solution at a point (x, t)
depends only on the data at the base of the backward light cone
originating at (x, t). In fact, when d > 1 is odd, only the data in an
immediate neighborhood of the boundary of the base will influence
u(x, t).

• Waves propagate with finite speed: if the initial data is supported
in a bounded set, then the support of the solution u spreads with
velocity 1 (or more generally c, if the wave equation is not normal-
ized).

We can illustrate some of these facts by the following observation about
the different behavior of the propagation of waves in three and two dimen-
sions. Since the propagation of light is governed by the three-dimensional
wave equation, if at t = 0 a light flashes at the origin, the following hap-
pens: any observer will see the flash (after a finite amount of time) only
for an instant. In contrast, consider what happens in two dimensions. If
we drop a stone in a lake, any point on the surface will begin (after some
time) to undulate; although the amplitude of the oscillations will decrease
over time, the undulations will continue (in principle) indefinitely.

The difference in character of the formulas for the solutions of the
wave equation when d = 1 and d = 3 on the one hand, and d = 2 on
the other hand, illustrates a general principle in d-dimensional Fourier
analysis: a significant number of formulas that arise are simpler in the
case of odd dimensions, compared to the corresponding situations in even
dimensions. We will see several further examples of this below.

4 Radial symmetry and Bessel functions

We observed earlier that the Fourier transform of a radial function in
Rd is also radial. In other words, if f(x) = f0(|x|) for some f0, then
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f̂(ξ) = F0(|ξ|) for some F0. A natural problem is to determine a relation
between f0 and F0.

This problem has a simple answer in dimensions one and three. If
d = 1 the relation we seek is

(9) F0(ρ) = 2
∫ ∞

0
cos(2πρr)f0(r) dr.

If we recall that R has only two rotations, the identity and multiplication
by −1, we find that a function is radial precisely when it is even. Having
made this observation it is easy to see that if f is radial, and |ξ| = ρ,
then

F0(ρ) = f̂(|ξ|) =
∫ ∞

−∞
f(x)e−2πix|ξ| dx

=
∫ ∞

0
f0(r)(e−2πir|ξ| + e2πir|ξ|) dr

= 2
∫ ∞

0
cos(2πρr)f0(r) dr.

In the case d = 3, the relation between f0 and F0 is also quite simple
and given by the formula

(10) F0(ρ) = 2ρ−1

∫ ∞

0
sin(2πρr)f0(r)r dr.

The proof of this identity is based on the formula for the Fourier trans-
form of the surface element dσ given in Lemma 3.5:

F0(ρ) = f̂(ξ) =
∫

R3
f(x)e−2πix·ξ dx

=
∫ ∞

0
f0(r)

∫

S2
e−2πirγ·ξdσ(γ)r2 dr

=
∫ ∞

0
f0(r)

2 sin(2πρr)
ρr

r2 dr

= 2ρ−1

∫ ∞

0
sin(2πρr)f0(r)r dr.

More generally, the relation between f0 and F0 has a nice description
in terms of a family of special functions that arise naturally in problems
that exhibit radial symmetry.

The Bessel function of order n ∈ Z, denoted Jn(ρ), is defined as the
nth Fourier coefficient of the function eiρ sin θ. So

Jn(ρ) =
1
2π

∫ 2π

0
eiρ sin θe−inθ dθ,
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therefore

eiρ sin θ =
∞∑

n=−∞
Jn(ρ)einθ.

As a result of this definition, we find that when d = 2, the relation be-
tween f0 and F0 is

(11) F0(ρ) = 2π

∫ ∞

0
J0(2πrρ)f0(r)r dr.

Indeed, since f̂(ξ) is radial we take ξ = (0,−ρ) so that

f̂(ξ) =
∫

R2
f(x)e2πix·(0,ρ) dx

=
∫ 2π

0

∫ ∞

0
f0(r)e2πirρ sin θr dr dθ

= 2π

∫ ∞

0
J0(2πrρ)f0(r)r dr,

as desired.

In general, there are corresponding formulas relating f0 and F0 in Rd

in terms of Bessel functions of order d/2− 1 (see Problem 2). In even
dimensions, these are the Bessel functions we have defined above. For
odd dimensions, we need a more general definition of Bessel functions to
encompass half-integral orders. Note that the formulas for the Fourier
transform of radial functions give another illustration of the differences
between odd and even dimensions. When d = 1 or d = 3 (as well as
d > 3, d odd) the formulas are in terms of elementary functions, but this
is not the case when d is even.

5 The Radon transform and some of its applications

Invented by Johann Radon in 1917, the integral transform we discuss
next has many applications in mathematics and other sciences, includ-
ing a significant achievement in medicine. To motivate the definitions
and the central problem of reconstruction, we first present the close con-
nection between the Radon transform and the development of X-ray
scans (or CAT scans) in the theory of medical imaging. The solution of
the reconstruction problem, and the introduction of new algorithms and
faster computers, all contributed to a rapid development of computerized
tomography. In practice, X-ray scans provide a “picture” of an internal
organ, one that helps to detect and locate many types of abnormalities.
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After a brief description of X-ray scans in two dimensions, we define
the X-ray transform and formulate the basic problem of inverting this
mapping. Although this problem has an explicit solution in R2, it is
more complicated than the analogous problem in three dimensions, hence
we give a complete solution of the reconstruction problem only in R3.
Here we have another example where results are simpler in the odd-
dimensional case than in the even-dimensional situation.

5.1 The X-ray transform in R2

Consider a two-dimensional object O lying in the plane R2, which we
may think of as a planar cross section of a human organ.

First, we assume that O is homogeneous, and suppose that a very
narrow beam of X-ray photons traverses this object.

I0

I

O

Figure 4. Attenuation of an X-ray beam

If I0 and I denote the intensity of the beam before and after passing
through O, respectively, the following relation holds:

I = I0e
−dρ.

Here d is the distance traveled by the beam in the object, and ρ denotes
the attenuation coefficient (or absorption coefficient), which depends on
the density and other physical characteristics of O. If the object is not
homogeneous, but consists of two materials with attenuation coefficients
ρ1 and ρ2, then the observed decrease in the intensity of the beam is
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given by

I = I0e
−d1ρ1−d2ρ2

where d1 and d2 denote the distances traveled by the beam in each ma-
terial. In the case of an arbitrary object whose density and physical
characteristics vary from point to point, the attenuation factor is a func-
tion ρ in R2, and the above relations become

I = I0e
∫

L
ρ
.

Here L is the line in R2 traced by the beam, and
∫
L ρ denotes the line

integral of ρ over L. Since we observe I and I0, the data we gather
after sending the X-ray beam through the object along the line L is the
quantity

∫

L
ρ.

Since we may initially send the beam in any given direction, we may
calculate the above integral for every line in R2. We define the X-ray
transform (or Radon transform in R2) of ρ by

X(ρ)(L) =
∫

L
ρ.

Note that this transform assigns to each appropriate function ρ on R2

(for example, ρ ∈ S(R2)) another function X(ρ) whose domain is the set
of lines L in R2.

The unknown is ρ, and since our original interest lies precisely in the
composition of the object, the problem now becomes to reconstruct the
function ρ from the collected data, that is, its X-ray transform. We
therefore pose the following reconstruction problem: Find a formula for
ρ in terms of X(ρ).

Mathematically, the problem asks for a formula giving the inverse of
X. Does such an inverse even exist? As a first step, we pose the following
simpler uniqueness question: If X(ρ) = X(ρ′), can we conclude that ρ =
ρ′?

There is a reasonable a priori expectation that X(ρ) actually deter-
mines ρ, as one can see by counting the dimensionality (or degrees of
freedom) involved. A function ρ on R2 depends on two parameters (the
x1 and x2 coordinates, for example). Similarly, the function X(ρ), which
is a function of lines L, is also determined by two parameters (for ex-
ample, the slope of L and its x2-intercept). In this sense, ρ and X(ρ)
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convey an equivalent amount of information, so it is not unreasonable to
suppose that X(ρ) determines ρ.

While there is a satisfactory answer to the reconstruction problem,
and a positive answer to the uniqueness question in R2, we shall forego
giving them here. (However, see Exercise 13 and Problem 8.) Instead
we shall deal with the analogous but simpler situation in R3.

Let us finally remark that in fact, one can sample the X-ray trans-
form, and determine X(ρ)(L) for only finitely many lines. Therefore,
the reconstruction method implemented in practice is based not only on
the general theory, but also on sampling procedures, numerical approx-
imations, and computer algorithms. It turns out that a method used
in developing effective relevant algorithms is the fast Fourier transform,
which incidentally we take up in the next chapter.

5.2 The Radon transform in R3

The experiment described in the previous section applies in three dimen-
sions as well. If O is an object in R3 determined by a function ρ which
describes the density and physical characteristics of this object, sending
an X-ray beam through O determines the quantity

∫

L
ρ,

for every line in R3. In R2 this knowledge was enough to uniquely de-
termine ρ, but in R3 we do not need as much data. In fact, by using the
heuristic argument above of counting the number of degrees of freedom,
we see that for functions ρ in R3 the number is three, while the number
of parameters determining a line L in R3 is four (for example, two for
the intercept in the (x1, x2) plane, and two more for the direction of the
line). Thus in this sense, the problem is over-determined.

We turn instead to the natural mathematical generalization of the two-
dimensional problem. Here we wish to determine the function in R3 by
knowing its integral over all planes3 in R3. To be precise, when we speak
of a plane, we mean a plane not necessarily passing through the origin.
If P is such a plane, we define the Radon transform R(f) by

R(f)(P) =
∫

P
f.

To simplify our presentation, we shall follow our practice of assuming
that we are dealing with functions in the class S(R3). However, many

3Note that the dimensionality associated with points on R3, and that for planes in R3,
equals three in both cases.
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of the results obtained below can be shown to be valid for much larger
classes of functions.

First, we explain what we mean by the integral of f over a plane. The
description we use for planes in R3 is the following: given a unit vector
γ ∈ S2 and a number t ∈ R, we define the plane Pt,γ by

Pt,γ = {x ∈ R3 : x · γ = t}.

So we parametrize a plane by a unit vector γ orthogonal to it, and by its
“distance” t to the origin (see Figure 5). Note that Pt,γ = P−t,−γ , and
we allow t to take negative values.

γ

Pt,γ

0

Figure 5. Description of a plane in R3

Given a function f ∈ S(Rd), we need to make sense of its integral over
Pt,γ . We proceed as follows. Choose unit vectors e1, e2 so that e1, e2, γ is
an orthonormal basis for R3. Then any x ∈ Pt,γ can be written uniquely
as

x = tγ + u where u = u1e1 + u2e2 with u1, u2 ∈ R.

If f ∈ S(R3), we define

(12)
∫

Pt,γ

f =
∫

R2
f(tγ + u1e1 + u2e2) du1 du2.

To be consistent, we must check that this definition is independent of
the choice of the vectors e1, e2.
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Proposition 5.1 If f ∈ S(R3), then for each γ the definition of
∫
Pt,γ

f
is independent of the choice of e1 and e2. Moreover

∫ ∞

−∞

(∫

Pt,γ

f

)
dt =

∫

R3
f(x) dx.

Proof. If e′1, e
′
2 is another choice of basis vectors so that γ, e′1, e

′
2 is

orthonormal, consider the rotation R in R2 which takes e1 to e′1 and
e2 to e′2. Changing variables u′ = R(u) in the integral proves that our
definition (12) is independent of the choice of basis.

To prove the formula, let R denote the rotation which takes the stan-
dard basis of unit vectors4 in R3 to γ, e1, and e2. Then

∫

R3
f(x) dx =

∫

R3
f(Rx) dx

=
∫

R3
f(x1γ + x2e1 + x3e2) dx1 dx2 dx3

=
∫ ∞

−∞

(∫

Pt,γ

f

)
dt.

Remark. We digress to point out that the X-ray transform deter-
mines the Radon transform, since two-dimensional integrals can be ex-
pressed as iterated one-dimensional integrals. In other words, the knowl-
edge of the integral of a function over all lines determines the integral of
that function over any plane.

Having disposed of these preliminary matters, we turn to the study of
the original problem. The Radon transform of a function f ∈ S(R3)
is defined by

R(f)(t, γ) =
∫

Pt,γ

f.

In particular, we see that the Radon transform is a function on the
set of planes in R3. From the parametrization given for a plane, we
may equivalently think of R(f) as a function on the product R× S2 =
{(t, γ) : t ∈ R, γ ∈ S2}, where S2 denotes the unit sphere in R3. The
relevant class of functions on R× S2 consists of those that satisfy the
Schwartz condition in t uniformly in γ. In other words, we define S(R×
S2) to be the space of all continuous functions F (t, γ) that are indefinitely

4Here we are referring to the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1).
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differentiable in t, and that satisfy

sup
t∈R, γ∈S2

|t|k
∣∣∣∣∣
d`F

∂t`
(t, γ)

∣∣∣∣∣ < ∞ for all integers k, ` ≥ 0.

Our goal is to solve the following problems.

Uniqueness problem: If R(f) = R(g), then f = g.

Reconstruction problem: Express f in terms of R(f).

The solutions will be obtained by using the Fourier transform. In fact,
the key point is a very elegant and essential relation between the Radon
and Fourier transforms.

Lemma 5.2 If f ∈ S(R3), then R(f)(t, γ) ∈ S(R) for each fixed γ. More-
over,

R̂(f)(s, γ) = f̂(sγ).

To be precise, f̂ denotes the (three-dimensional) Fourier transform
of f , while R̂(f)(s, γ) denotes the one-dimensional Fourier transform of
R(f)(t, γ) as a function of t, with γ fixed.

Proof. Since f ∈ S(R3), for every positive integer N there is a con-
stant AN < ∞ so that

(1 + |t|)N (1 + |u|)N |f(tγ + u)| ≤ AN ,

if we recall that x = tγ + u, where γ is orthogonal to u. Therefore, as
soon as N ≥ 3, we find

(1 + |t|)NR(f)(t, γ) ≤ AN

∫

R2

du

(1 + |u|)N
< ∞.

A similar argument for the derivatives shows that R(f)(t, γ) ∈ S(R) for
each fixed γ.

To establish the identity, we first note that

R̂(f)(s, γ) =
∫ ∞

−∞

(∫

Pt,γ

f

)
e−2πist dt

=
∫ ∞

−∞

∫

R2
f(tγ + u1e1 + u2e2) du1 du2e

−2πist dt.
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However, since γ · u = 0 and |γ| = 1, we may write

e−2πist = e−2πisγ·(tγ+u).

As a result, we find that

R̂(f)(s, γ) =
∫ ∞

−∞

∫

R2
f(tγ + u1e1 + u2e2)e−2πisγ·(tγ+u) du1 du2 dt

=
∫ ∞

−∞

∫

R2
f(tγ + u)e−2πisγ·(tγ+u) du dt.

A final rotation from γ, e1, e2 to the standard basis in R3 proves that
R̂(f)(s, γ) = f̂(sγ), as desired.

As a consequence of this identity, we can answer the uniqueness ques-
tion for the Radon transform in R3 in the affirmative.

Corollary 5.3 If f, g ∈ S(R3) and R(f) = R(g), then f = g.

The proof of the corollary follows from an application of the lemma to
the difference f − g and use of the Fourier inversion theorem.

Our final task is to give the formula that allows us to recover f from
its Radon transform. Since R(f) is a function on the set of planes in
R3, and f is a function of the space variables x ∈ R3, to recover f we
introduce the dual Radon transform, which passes from functions defined
on planes to functions in R3.

Given a function F on R× S2, we define its dual Radon transform
by

(13) R∗(F )(x) =
∫

S2
F (x · γ, γ) dσ(γ).

Observe that a point x belongs to Pt,γ if and only if x · γ = t, so the idea
here is that given x ∈ R3, we obtain R∗(F )(x) by integrating F over the
subset of all planes passing through x, that is,

R∗(F )(x) =
∫

{Pt,γ such that x∈Pt,γ}
F,

where the integral on the right is given the precise meaning in (13).
We use the terminology “dual” because of the following observation. If
V1 = S(R3) with the usual Hermitian inner product

(f, g)1 =
∫

R3
f(x)g(x) dx,
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and V2 = S(R× S2) with the Hermitian inner product

(F,G)2 =
∫

R

∫

S2
F (t, γ)G(t, γ) dσ(γ) dt,

then

R : V1 → V2, R∗ : V2 → V1,

with

(14) (Rf, F )2 = (f,R∗F )1.

The validity of this identity is not needed in the argument below, and
its verification is left as an exercise for the reader.

We can now state the reconstruction theorem.

Theorem 5.4 If f ∈ S(R3), then

4(R∗R(f)) = −8π2f.

We recall that 4 = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

is the Laplacian.

Proof. By our previous lemma, we have

R(f)(t, γ) =
∫ ∞

−∞
f̂(sγ)e2πits ds.

Therefore

R∗R(f)(x) =
∫

S2

∫ ∞

−∞
f̂(sγ)e2πix·γs ds dσ(γ),

hence

4(R∗R(f))(x) =
∫

S2

∫ ∞

−∞
f̂(sγ)(−4π2s2)e2πix·γs ds dσ(γ)

=− 4π2

∫

S2

∫ ∞

−∞
f̂(sγ)e2πix·γss2 ds dσ(γ)

=− 4π2

∫

S2

∫ 0

−∞
f̂(sγ)e2πix·γss2 ds dσ(γ)

− 4π2

∫

S2

∫ ∞

0
f̂(sγ)e2πix·γss2 ds dσ(γ)

=− 8π2

∫

S2

∫ ∞

0
f̂(sγ)e2πix·γss2 ds dσ(γ)

=− 8π2f(x).
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In the first line, we have differentiated under the integral sign and used
the fact 4(e2πix·γs) = (−4π2s2)e2πix·γs, since |γ| = 1. The last step fol-
lows from the formula for polar coordinates in R3 and the Fourier inver-
sion theorem.

5.3 A note about plane waves

We conclude this chapter by briefly mentioning a nice connection between
the Radon transform and solutions of the wave equation. This comes
about in the following way. Recall that when d = 1, the solution of
the wave equation can be expressed as the sum of traveling waves (see
Chapter 1), and it is natural to ask if an analogue of such traveling
waves exists in higher dimensions. The answer is as follows. Let F be
a function of one variable, which we assume is sufficiently smooth (say
C2), and consider u(x, t) defined by

u(x, t) = F ((x · γ)− t),

where x ∈ Rd and γ is a unit vector in Rd. It is easy to verify directly
that u is a solution of the wave equation in Rd (with c = 1). Such a
solution is called a plane wave; indeed, notice that u is constant on
every plane perpendicular to the direction γ, and as time t increases, the
wave travels in the γ direction. (It should be remarked that plane waves
are never functions in S(Rd) when d > 1 because they are constant in
directions perpendicular to γ).5

The basic fact is that when d > 1, the solution of the wave equation
can be written as an integral (as opposed to sum, when d = 1) of plane
waves; this can in fact be done via the Radon transform of the initial
data f and g. For the relevant formulas when d = 3, see Problem 6.

6 Exercises

1. Suppose that R is a rotation in the plane R2, and let

R =
(

a b
c d

)

denote its matrix with respect to the standard basis vectors e1 = (1, 0) and
e2 = (0, 1).

(a) Write the conditions Rt = R−1 and det(R) = ±1 in terms of equations in
a, b, c, d.

5Incidentally, this observation is further indication that a fuller treatment of the wave
equation requires lifting the restriction that functions belong to S(Rd).
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(b) Show that there exists ϕ ∈ R such that a + ib = eiϕ.

(c) Conclude that if R is proper, then it can be expressed as z 7→ zeiϕ, and if
R is improper, then it takes the form z 7→ zeiϕ, where z = x− iy.

2. Suppose that R : R3 → R3 is a proper rotation.

(a) Show that p(t) = det(R− tI) is a polynomial of degree 3, and prove that
there exists γ ∈ S2 (where S2 denotes the unit sphere in R3) with

R(γ) = γ.

[Hint: Use the fact that p(0) > 0 to see that there is λ > 0 with p(λ) = 0.
Then R− λI is singular, so its kernel is non-trivial.]

(b) If P denotes the plane perpendicular to γ and passing through the origin,
show that

R : P → P,

and that this linear map is a rotation.

3. Recall the formula
∫

Rd

F (x) dx =
∫

Sd−1

∫ ∞

0

F (rγ)rd−1 dr dσ(γ).

Apply this to the special case when F (x) = g(r)f(γ), where x = rγ, to prove
that for any rotation R, one has

∫

Sd−1

f(R(γ)) dσ(γ) =
∫

Sd−1

f(γ) dσ(γ),

whenever f is a continuous function on the sphere Sd−1.

4. Let Ad and Vd denote the area and volume of the unit sphere and unit ball
in Rd, respectively.

(a) Prove the formula

Ad =
2πd/2

Γ(d/2)

so that A2 = 2π, A3 = 4π, A4 = 2π2, . . .. Here Γ(x) =
∫∞
0

e−ttx−1 dt is
the Gamma function. [Hint: Use polar coordinates and the fact that∫
Rd e−π|x|2 dx = 1.]
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(b) Show that d Vd = Ad, hence

Vd =
πd/2

Γ(d/2 + 1)
.

In particular V2 = π, V3 = 4π/3, . . ..

5. Let A be a d× d positive definite symmetric matrix with real coefficients.
Show that ∫

Rd

e−π(x,A(x)) dx = (det(A))−1/2.

This generalizes the fact that
∫
Rd e−π|x|2 dx = 1, which corresponds to the case

where A is the identity.
[Hint: Apply the spectral theorem to write A = RDR−1 where R is a rotation
and, D is diagonal with entries λ1, . . . , λd, where {λi} are the eigenvalues of A.]

6. Suppose ψ ∈ S(Rd) satisfies
∫ |ψ(x)|2 dx = 1. Show that

(∫

Rd

|x|2|ψ(x)|2 dx

)(∫

Rd

|ξ|2|ψ̂(ξ)|2 dξ

)
≥ d2

16π2
.

This is the statement of the Heisenberg uncertainty principle in d dimensions.

7. Consider the time-dependent heat equation in Rd:

(15)
∂u

∂t
=

∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
d

, where t > 0,

with boundary values u(x, 0) = f(x) ∈ S(Rd). If

H(d)
t (x) =

1
(4πt)d/2

e−|x|
2/4t =

∫

Rd

e−4π2t|ξ|2e2πix·ξ dξ

is the d-dimensional heat kernel, show that the convolution

u(x, t) = (f ∗ H(d)
t )(x)

is indefinitely differentiable when x ∈ Rd and t > 0. Moreover, u solves (15), and
is continuous up to the boundary t = 0 with u(x, 0) = f(x).

The reader may also wish to formulate the d-dimensional analogues of Theo-
rem 2.1 and 2.3 in Chapter 5.

8. In Chapter 5, we found that a solution to the steady-state heat equation in the
upper half-plane with boundary values f is given by the convolution u = f ∗ Py

where the Poisson kernel is

Py(x) =
1
π

y

x2 + y2
where x ∈ R and y > 0.
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More generally, one can calculate the d-dimensional Poisson kernel using the
Fourier transform as follows.

(a) The subordination principle allows one to write expressions involv-
ing the function e−x in terms of corresponding expressions involving the
function e−x2

. One form of this is the identity

e−β =
∫ ∞

0

e−u

√
πu

e−β2/4u du

when β ≥ 0. Prove this identity with β = 2π|x| by taking the Fourier
transform of both sides.

(b) Consider the steady-state heat equation in the upper half-space {(x, y) :
x ∈ Rd, y > 0}

d∑
j=1

∂2u

∂x2
j

+
∂2u

∂y2
= 0

with the Dirichlet boundary condition u(x, 0) = f(x). A solution to this
problem is given by the convolution u(x, y) = (f ∗ P

(d)
y )(x) where P

(d)
y (x)

is the d-dimensional Poisson kernel

P (d)
y (x) =

∫

Rd

e2πix·ξe−2π|ξ|y dξ.

Compute P
(d)
y (x) by using the subordination principle and the d-dimensional

heat kernel. (See Exercise 7.) Show that

P (d)
y (x) =

Γ((d + 1)/2)
π(d+1)/2

y

(|x|2 + y2)(d+1)/2
.

9. A spherical wave is a solution u(x, t) of the Cauchy problem for the wave
equation in Rd, which as a function of x is radial. Prove that u is a spherical
wave if and only if the initial data f, g ∈ S are both radial.

10. Let u(x, t) be a solution of the wave equation, and let E(t) denote the energy
of this wave

E(t) =
∫

Rd

∣∣∣∣
∂u

∂t
(x, t)

∣∣∣∣
2

+
d∑

j=1

∫

Rd

∣∣∣∣
∂u

∂xj
(x, t)

∣∣∣∣
2

dx.

We have seen that E(t) is constant using Plancherel’s formula. Give an alternate
proof of this fact by differentiating the integral with respect to t and showing
that

dE

dt
= 0.
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[Hint: Integrate by parts.]

11. Show that the solution of the wave equation

∂2u

∂t2
=

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

subject to u(x, 0) = f(x) and ∂u
∂t (x, 0) = g(x), where f, g ∈ S(R3), is given by

u(x, t) =
1

|S(x, t)|
∫

S(x,t)

[tg(y) + f(y) +∇f(y) · (y − x)] dσ(y),

where S(x, t) denotes the sphere of center x and radius t, and |S(x, t)| its area.
This is an alternate expression for the solution of the wave equation given in
Theorem 3.6. It is sometimes called Kirchhoff’s formula.

12. Establish the identity (14) about the dual transform given in the text. In
other words, prove that

(16)
∫

R

∫

S2

R(f)(t, γ)F (t, γ)dσ(γ) dt =
∫

R3

f(x)R∗(F )(x) dx

where f ∈ S(R3), F ∈ S(R× S2), and

R(f) =
∫

Pt,γ

f and R∗(F )(x) =
∫

S2

F (x · γ, γ) dσ(γ).

[Hint: Consider the integral

∫ ∫ ∫
f(tγ + u1e2 + u2e2)F (t, γ) dt dσ(γ) du1 du2.

Integrating first in u gives the left-hand side of (16), while integrating in u and
t and setting x = tγ + u1e2 + u2e2 gives the right-hand side.]

13. For each (t, θ) with t ∈ R and |θ| ≤ π, let L = Lt,θ denote the line in the
(x, y)-plane given by

x cos θ + y sin θ = t.

This is the line perpendicular to the direction (cos θ, sin θ) at “distance” t from
the origin (we allow negative t). For f ∈ S(R2) the X-ray transform or two-
dimensional Radon transform of f is defined by

X(f)(t, θ) =
∫

Lt,θ

f =
∫ ∞

−∞
f(t cos θ + u sin θ, t sin θ − u cos θ) du.
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Calculate the X-ray transform of the function f(x, y) = e−π(x2+y2).

14. Let X be the X-ray transform. Show that if f ∈ S and X(f) = 0, then
f = 0, by taking the Fourier transform in one variable.

15. For F ∈ S(R× S1), define the dual X-ray transform X∗(F ) by integrat-
ing F over all lines that pass through the point (x, y) (that is, those lines Lt,θ

with x cos θ + y sin θ = t):

X∗(F )(x, y) =
∫

F (x cos θ + y sin θ, θ) dθ.

Check that in this case, if f ∈ S(R2) and F ∈ S(R× S1), then
∫ ∫

X(f)(t, θ)F (t, θ) dt dθ =
∫ ∫

f(x, y)X∗(F )(x, y) dx dy.

7 Problems

1. Let Jn denote the nth order Bessel function, for n ∈ Z. Prove that

(a) Jn(ρ) is real for all real ρ.

(b) J−n(ρ) = (−1)nJn(ρ).

(c) 2J ′n(ρ) = Jn−1(ρ)− Jn+1(ρ).

(d)
(

2n
ρ

)
Jn(ρ) = Jn−1(ρ) + Jn+1(ρ).

(e) (ρ−nJn(ρ))′ = −ρ−nJn+1(ρ).

(f) (ρnJn(ρ))′ = ρnJn−1(ρ).

(g) Jn(ρ) satisfies the second order differential equation

J ′′n(ρ) + ρ−1J ′n(ρ) + (1− n2/ρ2)Jn(ρ) = 0.

(h) Show that

Jn(ρ) =
(ρ

2

)n
∞∑

m=0

(−1)m ρ2m

22mm!(n + m)!
.

(i) Show that for all integers n and all real numbers a and b we have

Jn(a + b) =
∑

`∈Z
J`(a)Jn−`(b).
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2. Another formula for Jn(ρ) that allows one to define Bessel functions for
non-integral values of n, (n > −1/2) is

Jn(ρ) =
(ρ/2)n

Γ(n + 1/2)
√

π

∫ 1

−1

eiρt(1− t2)n−(1/2) dt.

(a) Check that the above formula agrees with the definition of Jn(ρ) for in-
tegral n ≥ 0. [Hint: Verify it for n = 0 and then check that both sides
satisfy the recursion formula (e) in Problem 1.]

(b) Note that J1/2(ρ) =
√

2
π ρ−1/2 sin ρ.

(c) Prove that

lim
n→−1/2

Jn(ρ) =

√
2
π

ρ−1/2 cos ρ.

(d) Observe that the formulas we have proved in the text giving F0 in terms
of f0 (when describing the Fourier transform of a radial function) take the
form

(17) F0(ρ) = 2πρ−(d/2)+1

∫ ∞

0

J(d/2)−1(2πρr)f0(r)rd/2 dr,

for d = 1, 2, and 3, if one uses the formulas above with the understanding
that J−1/2(ρ) = limn→−1/2 Jn(ρ). It turns out that the relation between
F0 and f0 given by (17) is valid in all dimensions d.

3. We observed that the solution u(x, t) of the Cauchy problem for the wave
equation given by formula (3) depends only on the initial data on the base on
the backward light cone. It is natural to ask if this property is shared by any
solution of the wave equation. An affirmative answer would imply uniqueness of
the solution.

Let B(x0, r0) denote the closed ball in the hyperplane t = 0 centered at x0

and of radius r0. The backward light cone with base B(x0, r0) is defined by

LB(x0,r0) = {(x, t) ∈ Rd × R : |x− x0| ≤ r0 − t, 0 ≤ t ≤ r0}.

Theorem Suppose that u(x, t) is a C2 function on the closed upper half-plane
{(x, t) : x ∈ Rd, t ≥ 0} that solves the wave equation

∂2u

∂t2
= 4u.

If u(x, 0) = ∂u
∂t (x, 0) = 0 for all x ∈ B(x0, r0), then u(x, t) = 0 for all (x, t) ∈

LB(x0,r0).



Ibookroot October 20, 2007

214 Chapter 6. THE FOURIER TRANSFORM ON Rd

In words, if the initial data of the Cauchy problem for the wave equation
vanishes on a ball B, then any solution u of the problem vanishes in the backward
light cone with base B. The following steps outline a proof of the theorem.

(a) Assume that u is real. For 0 ≤ t ≤ r0 let Bt(x0, r0) = {x : |x− x0| ≤ r0 −
t}, and also define

∇u(x, t) =
(

∂u

∂x1
, . . . ,

∂u

∂xd
,
∂u

∂t

)
.

Now consider the energy integral

E(t) =
1
2

∫

Bt(x0,r0)

|∇u|2 dx

=
1
2

∫

Bt(x0,r0)

(
∂u

∂t

)2

+
d∑

j=1

(
∂u

∂xj

)2

dx.

Observe that E(t) ≥ 0 and E(0) = 0. Prove that

E′(t) =
∫

Bt(x0,r0)

∂u

∂t

∂2u

∂t2
+

d∑
j=1

∂u

∂xj

∂2u

∂xj∂t
dx− 1

2

∫

∂Bt(x0,r0)

|∇u|2 dσ(γ).

(b) Show that

∂

∂xj

[
∂u

∂xj

∂u

∂t

]
=

∂u

∂xj

∂2u

∂xj∂t
+

∂2u

∂x2
j

∂u

∂t
.

(c) Use the last identity, the divergence theorem, and the fact that u solves
the wave equation to prove that

E′(t) =
∫

∂Bt(x0,r0)

d∑
j=1

∂u

∂xj

∂u

∂t
νj dσ(γ)− 1

2

∫

∂Bt(x0,r0)

|∇u|2 dσ(γ),

where νj denotes the jth coordinate of the outward normal to Bt(x0, r0).

(d) Use the Cauchy-Schwarz inequality to conclude that

d∑
j=1

∂u

∂xj

∂u

∂t
νj ≤ 1

2
|∇u|2,

and as a result, E′(t) ≤ 0. Deduce from this that E(t) = 0 and u = 0.
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4.∗ There exist formulas for the solution of the Cauchy problem for the wave
equation

∂2u

∂t2
=

∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
d

with u(x, 0) = f(x) and
∂u

∂t
(x, 0) = g(x)

in Rd × R in terms of spherical means which generalize the formula given in the
text for d = 3. In fact, the solution for even dimensions is deduced from that for
odd dimensions, so we discuss this case first.

Suppose that d > 1 is odd and let h ∈ S(Rd). The spherical mean of h on the
ball centered at x of radius t is defined by

Mrh(x) = Mh(x, r) =
1

Ad

∫

Sd−1

h(x− rγ) dσ(γ),

where Ad denotes the area of the unit sphere Sd−1 in Rd.

(a) Show that

4xMh(x, r) =
[
∂2

r +
d− 1

r

]
Mh(x, r),

where 4x denotes the Laplacian in the space variables x, and ∂r = ∂/∂r.

(b) Show that a twice differentiable function u(x, t) satisfies the wave equation
if and only if

[
∂2

r +
d− 1

r

]
Mu(x, r, t) = ∂2

t Mu(x, r, t),

where Mu(x, r, t) denote the spherical means of the function u(x, t).

(c) If d = 2k + 1, define Tϕ(r) = (r−1∂r)k−1[r2k−1ϕ(r)], and let ũ = TMu.
Then this function solves the one-dimensional wave equation for each fixed
x:

∂2
t ũ(x, r, t) = ∂2

r ũ(x, r, t).

One can then use d’Alembert’s formula to find the solution ũ(x, r, t) of
this problem expressed in terms of the initial data.

(d) Now show that

u(x, t) = Mu(x, 0, t) = lim
r→0

ũ(x, r, t)
αr

where α = 1 · 3 · · · (d− 2).
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(e) Conclude that the solution of the Cauchy problem for the d-dimensional
wave equation, when d > 1 is odd, is

u(x, t) =
1

1 · 3 · · · (d− 2)

[
∂t(t−1∂t)(d−3)/2

(
td−2Mtf(x)

)
+

(t−1∂t)(d−3)/2
(
td−2Mtg(x)

)]
.

5.∗ The method of descent can be used to prove that the solution of the Cauchy
problem for the wave equation in the case when d is even is given by the formula

u(x, t) =
1

1 · 3 · · · (d− 2)

[
∂t(t−1∂t)(d−3)/2

(
td−2M̃tf(x)

)
+

(t−1∂t)(d−3)/2
(
td−2M̃tg(x)

)]
,

where M̃t denotes the modified spherical means defined by

M̃th(x) =
2

Ad+1

∫

Bd

f(x + ty)√
1− |y|2

dy.

6.∗ Given initial data f and g of the form

f(x) = F (x · γ) and g(x) = G(x · γ),

check that the plane wave given by

u(x, t) =
F (x · γ + t) + F (x · γ − t)

2
+

1
2

∫ x·γ+t

x·γ−t

G(s) ds

is a solution of the Cauchy problem for the d-dimensional wave equation.
In general, the solution is given as a superposition of plane waves. For the

case d = 3, this can be expressed in terms of the Radon transform as follows.
Let

R̃(f)(t, γ) = − 1
8π2

(
d

dt

)2

R(f)(t, γ).

Then u(x, t) =

1
2

∫

S2

[
R̃(f)(x · γ − t, γ) + R̃(f)(x · γ + t, γ) +

∫ x·γ+t

x·γ−t

R̃(g)(s, γ) ds

]
dσ(γ).
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7. For every real number a > 0, define the operator (−4)a by the formula

(−4)af(x) =
∫

Rd

(2π|ξ|)2af̂(ξ)e2πiξ·x dξ

whenever f ∈ S(Rd).

(a) Check that (−4)a agrees with the usual definition of the ath power of
−4 (that is, a compositions of minus the Laplacian) when a is a positive
integer.

(b) Verify that (−4)a(f) is indefinitely differentiable.

(c) Prove that if a is not an integer, then in general (−4)a(f) is not rapidly
decreasing.

(d) Let u(x, y) be the solution of the steady-state heat equation

∂2u

∂y2
+

d∑
j=1

∂2u

∂x2
j

= 0, with u(x, 0) = f(x),

given by convolving f with the Poisson kernel (see Exercise 8). Check
that

(−4)1/2f(x) = − lim
y→0

∂u

∂y
(x, y),

and more generally that

(−4)k/2f(x) = (−1)k lim
y→0

∂ku

∂yk
(x, y)

for any positive integer k.

8.∗ The reconstruction formula for the Radon transform in Rd is as follows:

(a) When d = 2,

(−4)1/2

4π
R∗(R(f)) = f,

where (−4)1/2 is defined in Problem 7.

(b) If the Radon transform and its dual are defined by analogy to the cases
d = 2 and d = 3, then for general d,

(2π)1−d

2
(−4)(d−1)/2R∗(R(f)) = f.
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7 Finite Fourier Analysis

This past year has seen the birth, or rather the re-
birth, of an exciting revolution in computing Fourier
transforms. A class of algorithms known as the fast
Fourier transform or FFT, is forcing a complete re-
assessment of many computational paths, not only in
frequency analysis, but in any fields where problems
can be reduced to Fourier transforms and/or convolu-
tions...

C. Bingham and J. W. Tukey, 1966

In the previous chapters we studied the Fourier series of functions on
the circle and the Fourier transform of functions defined on the Euclidean
space Rd. The goal here is to introduce another version of Fourier analy-
sis, now for functions defined on finite sets, and more precisely, on finite
abelian groups. This theory is particularly elegant and simple since infi-
nite sums and integrals are replaced by finite sums, and thus questions
of convergence disappear.

In turning our attention to finite Fourier analysis, we begin with the
simplest example, Z(N), where the underlying space is the (multiplica-
tive) group of N th roots of unity on the circle. This group can also be
realized in additive form, as Z/NZ, the equivalence classes of integers
modulo N . The group Z(N) arises as the natural approximation to the
circle (as N tends to infinity) since in the first picture the points of Z(N)
correspond to N points on the circle which are uniformly distributed. For
this reason, in practical applications, the group Z(N) becomes a natural
candidate for the storage of information of a function on the circle, and
for the resulting numerical computations involving Fourier series. The
situation is particularly nice when N is large and of the form N = 2n.
The computations of the Fourier coefficients now lead to the “fast Fourier
transform,” which exploits the fact that an induction in n requires only
about log N steps to go from N = 1 to N = 2n. This yields a substantial
saving in time in practical applications.

In the second part of the chapter we undertake the more general the-
ory of Fourier analysis on finite abelian groups. Here the fundamental
example is the multiplicative group Z∗(q). The Fourier inversion formula
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for Z∗(q) will be seen to be a key step in the proof of Dirichlet’s theorem
on primes in arithmetic progression, which we will take up in the next
chapter.

1 Fourier analysis on Z(N)

We turn to the group of N th roots of unity. This group arises naturally as
the simplest finite abelian group. It also gives a uniform partition of the
circle, and is therefore a good choice if one wishes to sample appropriate
functions on the circle. Moreover, this partition gets finer as N tends to
infinity, and one might expect that the discrete Fourier theory that we
discuss here tends to the continuous theory of Fourier series on the circle.
In a broad sense, this is the case, although this aspect of the problem is
not one that we develop.

1.1 The group Z(N)

Let N be a positive integer. A complex number z is an N th root of
unity if zN = 1. The set of N th roots of unity is precisely

{
1, e2πi/N , e2πi2/N , . . . , e2πi(N−1)/N

}
.

Indeed, suppose that zN = 1 with z = reiθ. Then we must have rNeiNθ =
1, and taking absolute values yields r = 1. Therefore eiNθ = 1, and this
means that Nθ = 2πk where k ∈ Z. So if ζ = e2πi/N we find that ζk

exhausts all the N th roots of unity. However, notice that ζN = 1 so if
n and m differ by an integer multiple of N , then ζn = ζm. In fact, it is
clear that

ζn = ζm if and only if n−m is divisible by N .

We denote the set of all N th roots of unity by Z(N). The fact that
this set gives a uniform partition of the circle is clear from its definition.
Note that the set Z(N) satisfies the following properties:

(i) If z, w ∈ Z(N), then zw ∈ Z(N) and zw = wz.

(ii) 1 ∈ Z(N).

(iii) If z ∈ Z(N), then z−1 = 1/z ∈ Z(N) and of course zz−1 = 1.

As a result we can conclude that Z(N) is an abelian group under complex
multiplication. The appropriate definitions are set out in detail later in
Section 2.1.
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ζ

ζ8

ζ6

ζ4

ζ3 ζ2

1

Z(N), N = 26Z(9), ζ = e2πi/9

ζ5

ζ7

Figure 1. The group of N th roots of unity when N = 9 and N = 26 =
64

There is another way to visualize the group Z(N). This consists of
choosing the integer power of ζ that determines each root of unity. We
observed above that this integer is not unique since ζn = ζm whenever n
and m differ by an integer multiple of N . Naturally, we might select the
integer which satisfies 0 ≤ n ≤ N − 1. Although this choice is perfectly
reasonable in terms of “sets,” we ask what happens when we multiply
roots of unity. Clearly, we must add the corresponding integers since
ζnζm = ζn+m but nothing guarantees that 0 ≤ n + m ≤ N − 1. In fact,
if ζnζm = ζk with 0 ≤ k ≤ N − 1, then n + m and k differ by an integer
multiple of N . So, to find the integer in [0, N − 1] corresponding to the
root of unity ζnζm, we see that after adding the integers n and m we
must reduce modulo N , that is, find the unique integer 0 ≤ k ≤ N − 1
so that (n + m)− k is an integer multiple of N .

An equivalent approach is to associate to each root of unity ω the
class of integers n so that ζn = ω. Doing so for each root of unity we
obtain a partition of the integers in N disjoint infinite classes. To add
two of these classes, choose any integer in each one of them, say n and
m, respectively, and define the sum of the classes to be the class which
contains the integer n + m.

We formalize the above notions. Two integers x and y are congru-
ent modulo N if the difference x− y is divisible by N , and we write
x ≡ y mod N . In other words, this means that x and y differ by an
integer multiple of N . It is an easy exercise to check the following three
properties:
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• x ≡ x mod N for all integers x.

• If x ≡ y mod N , then y ≡ x mod N .

• If x ≡ y mod N and y ≡ z mod N , then x ≡ z mod N .

The above defines an equivalence relation on Z. Let R(x) denote the
equivalence class, or residue class, of the integer x. Any integer of the
form x + kN with k ∈ Z is an element (or “representative”) of R(x).
In fact, there are precisely N equivalence classes, and each class has a
unique representative between 0 and N − 1. We may now add equiva-
lence classes by defining

R(x) + R(y) = R(x + y).

This definition is of course independent of the representatives x and y
because if x′ ∈ R(x) and y′ ∈ R(y), then one checks easily that x′ + y′ ∈
R(x + y). This turns the set of equivalence classes into an abelian group
called the group of integers modulo N , which is sometimes denoted
by Z/NZ. The association

R(k) ←→ e2πik/N

gives a correspondence between the two abelian groups, Z/NZ and Z(N).
Since the operations are respected, in the sense that addition of inte-
gers modulo N becomes multiplication of complex numbers, we shall
also denote the group of integers modulo N by Z(N). Observe that
0 ∈ Z/NZ corresponds to 1 on the unit circle.

Let V and W denote the vector spaces of complex-valued functions on
the group of integers modulo N and the N th roots of unity, respectively.
Then, the identification given above carries over to V and W as follows:

F (k) ←→ f(e2πik/N ),

where F is a function on the integers modulo N and f is a function on
the N th roots of unity.

From now on, we write Z(N) but think of either the group of integers
modulo N or the group of N th roots of unity.

1.2 Fourier inversion theorem and Plancherel identity on Z(N)

The first and most crucial step in developing Fourier analysis on Z(N) is
to find the functions which correspond to the exponentials en(x) = e2πinx

in the case of the circle. Some important properties of these exponentials
are:
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(i) {en}n∈Z is an orthonormal set for the inner product (1) (in Chap-
ter 3) on the space of Riemann integrable functions on the circle.

(ii) Finite linear combinations of the en’s (the trigonometric polyno-
mials) are dense in the space of continuous functions on the circle.

(iii) en(x + y) = en(x)en(y).

On Z(N), the appropriate analogues are the N functions e0, . . . , eN−1

defined by

e`(k) = ζ`k = e2πi`k/N for ` = 0, . . . , N − 1 and k = 0, . . . , N − 1,

where ζ = e2πi/N . To understand the parallel with (i) and (ii), we can
think of the complex-valued functions on Z(N) as a vector space V ,
endowed with the Hermitian inner product

(F, G) =
N−1∑

k=0

F (k)G(k)

and associated norm

‖F‖2 =
N−1∑

k=0

|F (k)|2.

Lemma 1.1 The family {e0, . . . , eN−1} is orthogonal. In fact,

(em, e`) =
{

N if m = `,
0 if m 6= `.

Proof. We have

(em, e`) =
N−1∑

k=0

ζmkζ−`k =
N−1∑

k=0

ζ(m−`)k.

If m = `, each term in the sum is equal to 1, and the sum equals N . If
m 6= `, then q = ζm−` is not equal to 1, and the usual formula

1 + q + q2 + · · ·+ qN−1 =
1− qN

1− q

shows that (em, e`) = 0, because qN = 1.

Since the N functions e0, . . . , eN−1 are orthogonal, they must be lin-
early independent, and since the vector space V is N -dimensional, we
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conclude that {e0, . . . , eN−1} is an orthogonal basis for V . Clearly, prop-
erty (iii) also holds, that is, e`(k + m) = e`(k)e`(m) for all `, and all
k,m ∈ Z(N).

By the lemma each vector e` has norm
√

N , so if we define

e∗` =
1√
N

e`,

then {e∗0, . . . , e∗N−1} is an orthonormal basis for V . Hence for any F ∈ V
we have

(1) F =
N−1∑

n=0

(F, e∗n)e∗n as well as ‖F‖2 =
N−1∑

n=0

|(F, e∗n)|2.

If we define the nth Fourier coefficient of F by

an =
1
N

N−1∑

k=0

F (k)e−2πikn/N ,

the above observations give the following fundamental theorem which is
the Z(N) version of the Fourier inversion and the Parseval-Plancherel
formulas.

Theorem 1.2 If F is a function on Z(N), then

F (k) =
N−1∑

n=0

ane2πink/N .

Moreover,

N−1∑

n=0

|an|2 =
1
N

N−1∑

k=0

|F (k)|2.

The proof follows directly from (1) once we observe that

an =
1
N

(F, en) =
1√
N

(F, e∗n).

Remark. It is possible to recover the Fourier inversion on the circle
for sufficiently smooth functions (say C2) by letting N →∞ in the finite
model Z(N) (see Exercise 3).
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1.3 The fast Fourier transform

The fast Fourier transform is a method that was developed as a means
of calculating efficiently the Fourier coefficients of a function F on Z(N).

The problem, which arises naturally in numerical analysis, is to deter-
mine an algorithm that minimizes the amount of time it takes a computer
to calculate the Fourier coefficients of a given function on Z(N). Since
this amount of time is roughly proportional to the number of operations
the computer must perform, our problem becomes that of minimizing
the number of operations necessary to obtain all the Fourier coefficients
{an} given the values of F on Z(N). By operations we mean either an
addition or a multiplication of complex numbers.

We begin with a naive approach to the problem. Fix N , and suppose
that we are given F (0), . . . , F (N − 1) and ωN = e−2πi/N . If we denote
by aN

k (F ) the kth Fourier coefficient of F on Z(N), then by definition

aN
k (F ) =

1
N

N−1∑

r=0

F (r)ωkr
N ,

and crude estimates show that the number of operations needed to cal-
culate all Fourier coefficients is ≤ 2N2 + N . Indeed, it takes at most
N − 2 multiplications to determine ω2

N , . . . , ωN−1
N , and each coefficient

aN
k requires N + 1 multiplications and N − 1 additions.

We now present the fast Fourier transform, an algorithm that im-
proves the bound O(N2) obtained above. Such an improvement is possi-
ble if, for example, we restrict ourselves to the case where the partition
of the circle is dyadic, that is, N = 2n. (See also Exercise 9.)

Theorem 1.3 Given ωN = e−2πi/N with N = 2n, it is possible to calcu-
late the Fourier coefficients of a function on Z(N) with at most

4 · 2nn = 4N log2(N) = O(N log N)

operations.

The proof of the theorem consists of using the calculations for M
division points, to obtain the Fourier coefficients for 2M division points.
Since we choose N = 2n, we obtain the desired formula as a consequence
of a recurrence which involves n = O(log N) steps.

Let #(M) denote the minimum number of operations needed to cal-
culate all the Fourier coefficients of any function on Z(M). The key to
the proof of the theorem is contained in the following recursion step.
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Lemma 1.4 If we are given ω2M = e−2πi/(2M), then

#(2M) ≤ 2#(M) + 8M.

Proof. The calculation of ω2M , . . . , ω2M
2M requires no more than 2M

operations. Note that in particular we get ωM = e−2πi/M = ω2
2M . The

main idea is that for any given function F on Z(2M), we consider two
functions F0 and F1 on Z(M) defined by

F0(r) = F (2r) and F1(r) = F (2r + 1).

We assume that it is possible to calculate the Fourier coefficients of F0

and F1 in no more than #(M) operations each. If we denote the Fourier
coefficients corresponding to the groups Z(2M) and Z(M) by a2M

k and
aM

k , respectively, then we have

a2M
k (F ) =

1
2

(
aM

k (F0) + aM
k (F1)ωk

2M

)
.

To prove this, we sum over odd and even integers in the definition of the
Fourier coefficient a2M

k (F ), and find

a2M
k (F ) =

1
2M

2M−1∑

r=0

F (r)ωkr
2M

=
1
2

(
1
M

M−1∑

`=0

F (2`)ωk(2`)
2M +

1
M

M−1∑

m=0

F (2m + 1)ωk(2m+1)
2M

)

=
1
2

(
1
M

M−1∑

`=0

F0(`)ωk`
M +

1
M

M−1∑

m=0

F1(m)ωkm
M ωk

2M

)
,

which establishes our assertion.
As a result, knowing aM

k (F0), aM
k (F1), and ωk

2M , we see that each
a2M

k (F ) can be computed using no more than three operations (one ad-
dition and two multiplications). So

#(2M) ≤ 2M + 2#(M) + 3× 2M = 2#(M) + 8M,

and the proof of the lemma is complete.

An induction on n, where N = 2n, will conclude the proof of the the-
orem. The initial step n = 1 is easy, since N = 2 and the two Fourier
coefficients are

aN
0 (F ) =

1
2

(F (1) + F (−1)) and aN
1 (F ) =

1
2

(F (1) + (−1)F (−1)) .



Ibookroot October 20, 2007

226 Chapter 7. FINITE FOURIER ANALYSIS

Calculating these Fourier coefficients requires no more than five opera-
tions, which is less than 4× 2 = 8. Suppose the theorem is true up to
N = 2n−1 so that #(N) ≤ 4 · 2n−1(n− 1). By the lemma we must have

#(2N) ≤ 2 · 4 · 2n−1(n− 1) + 8 · 2n−1 = 4 · 2nn,

which concludes the inductive step and the proof of the theorem.

2 Fourier analysis on finite abelian groups

The main goal in the rest of this chapter is to generalize the results about
Fourier series expansions obtained in the special case of Z(N).

After a brief introduction to some notions related to finite abelian
groups, we turn to the important concept of a character. In our set-
ting, we find that characters play the same role as the exponentials
e0, . . . , eN−1 on the group Z(N), and thus provide the key ingredient
in the development of the theory on arbitrary finite abelian groups. In
fact, it suffices to prove that a finite abelian group has “enough” charac-
ters, and this leads automatically to the desired Fourier theory.

2.1 Abelian groups

An abelian group (or commutative group) is a set G together with a
binary operation on pairs of elements of G, (a, b) 7→ a · b, that satisfies
the following conditions:

(i) Associativity : a · (b · c) = (a · b) · c for all a, b, c ∈ G.

(ii) Identity : There exists an element u ∈ G (often written as either 1
or 0) such that a · u = u · a = a for all a ∈ G.

(iii) Inverses: For every a ∈ G, there exists an element a−1 ∈ G such
that a · a−1 = a−1 · a = u.

(iv) Commutativity : For a, b ∈ G, we have a · b = b · a.

We leave as simple verifications the facts that the identity element and
inverses are unique.

Warning. In the definition of an abelian group, we used the “multi-
plicative” notation for the operation in G. Sometimes, one uses the “ad-
ditive” notation a + b and −a, instead of a · b and a−1. There are times
when one notation may be more appropriate than the other, and the
examples below illustrate this point. The same group may have different
interpretations, one where the multiplicative notation is more suggestive,
and another where it is natural to view the group with addition, as the
operation.
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Examples of abelian groups

• The set of real numbers R with the usual addition. The identity is
0 and the inverse of x is −x.

Also, R− {0} and R+ = {x ∈ R : x > 0} equipped, with the stan-
dard multiplication, are abelian groups. In both cases the unit is 1
and the inverse of x is 1/x.

• With the usual addition, the set of integers Z is an abelian group.
However, Z− {0} is not an abelian group with the standard mul-
tiplication, since, for example, 2 does not have a multiplicative
inverse in Z. In contrast, Q− {0} is an abelian group with the
standard multiplication.

• The unit circle S1 in the complex plane. If we view the circle as
the set of points {eiθ : θ ∈ R}, the group operation is the standard
multiplication of complex numbers. However, if we identify points
on S1 with their angle θ, then S1 becomes R modulo 2π, where the
operation is addition modulo 2π.

• Z(N) is an abelian group. Viewed as the N th roots of unity on the
circle, Z(N) is a group under multiplication of complex numbers.
However, if Z(N) is interpreted as Z/NZ, the integers modulo N ,
then it is an abelian group where the operation is addition modulo
N .

• The last example consists of Z∗(q). This group is defined as the set
of all integers modulo q that have multiplicative inverses, with the
group operation being multiplication modulo q. This important
example is discussed in more detail below.

A homomorphism between two abelian groups G and H is a map
f : G → H which satisfies the property

f(a · b) = f(a) · f(b),

where the dot on the left-hand side is the operation in G, and the dot
on the right-hand side the operation in H.

We say that two groups G and H are isomorphic, and write G ≈ H,
if there is a bijective homomorphism from G to H. Equivalently, G and
H are isomorphic if there exists another homomorphism f̃ : H → G, so
that for all a ∈ G and b ∈ H

(f̃ ◦ f)(a) = a and (f ◦ f̃)(b) = b.
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Roughly speaking, isomorphic groups describe the “same” object because
they have the same underlying group structure (which is really all that
matters); however, their particular notational representations might be
different.

Example 1. A pair of isomorphic abelian groups arose already when
we considered the group Z(N). In one representation it was given as
the multiplicative group of N th roots of unity in C. In a second repre-
sentation it was the additive group Z/NZ of residue classes of integers
modulo N . The mapping n 7→ R(n), which associates to a root of unity
z = e2πin/N = ζn the residue class in Z/NZ determined by n, provides
an isomorphism between the two different representations.

Example 2. In parallel with the previous example, we see that the circle
(with multiplication) is isomorphic to the real numbers modulo 2π (with
addition).

Example 3. The properties of the exponential and logarithm guarantee
that

exp : R→ R+ and log : R+ → R

are two homomorphisms that are inverses of each other. Thus R (with
addition) and R+ (with multiplication) are isomorphic.

In what follows, we are primarily interested in abelian groups that are
finite. In this case, we denote by |G| the number of elements in G, and
call |G| the order of the group. For example, the order of Z(N) is N .

A few additional remarks are in order:

• If G1 and G2 are two finite abelian groups, their direct product
G1 ×G2 is the group whose elements are pairs (g1, g2) with g1 ∈ G1

and g2 ∈ G2. The operation in G1 ×G2 is then defined by

(g1, g2) · (g′1, g′2) = (g1 · g′1, g2 · g′2).
Clearly, if G1 and G2 are finite abelian groups, then so is G1 ×G2.
The definition of direct product generalizes immediately to the case
of finitely many factors G1 ×G2 × · · · ×Gn.

• The structure theorem for finite abelian groups states that such a
group is isomorphic to a direct product of groups of the type Z(N);
see Problem 2. This is a nice result which gives us an overview of
the class of all finite abelian groups. However, since we shall not
use this theorem below, we omit its proof.
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We now discuss briefly the examples of abelian groups that play a
central role in the proof of Dirichlet’s theorem in the next chapter.

The group Z∗(q)

Let q be a positive integer. We see that multiplication in Z(q) can be
unambiguously defined, because if n is congruent to n′ and m is congruent
to m′ (both modulo q), then nm is congruent to n′m′ modulo q. An
integer n ∈ Z(q) is a unit if there exists an integer m ∈ Z(q) so that

nm ≡ 1 mod q.

The set of all units in Z(q) is denoted by Z∗(q), and it is clear from our
definition that Z∗(q) is an abelian group under multiplication modulo q.
Thus within the additive group Z(q) lies a set Z∗(q) that is a group under
multiplication. An alternative characterization of Z∗(q) will be given in
the next chapter, as those elements in Z(q) that are relatively prime to q.

Example 4. The group of units in Z(4) = {0, 1, 2, 3} is

Z∗(4) = {1, 3}.

This reflects the fact that odd integers are divided into two classes de-
pending on whether they are of the form 4k + 1 or 4k + 3. In fact, Z∗(4)
is isomorphic to Z(2). Indeed, we can make the following association:

Z∗(4) Z(2)
1 ←→ 0
3 ←→ 1

and then notice that multiplication in Z∗(4) corresponds to addition in
Z(2).

Example 5. The units in Z(5) are

Z∗(5) = {1, 2, 3, 4}.

Moreover, Z∗(5) is isomorphic to Z(4) with the following identification:

Z∗(5) Z(4)
1 ←→ 0
2 ←→ 1
3 ←→ 3
4 ←→ 2
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Example 6. The units in Z(8) = {0, 1, 2, 3, 4, 5, 6, 7} are given by

Z∗(8) = {1, 3, 5, 7}.

In fact, Z∗(8) is isomorphic to the direct product Z(2)× Z(2). In this
case, an isomorphism between the groups is given by the identification

Z∗(8) Z(2)× Z(2)
1 ←→ (0, 0)
3 ←→ (1, 0)
5 ←→ (0, 1)
7 ←→ (1, 1)

2.2 Characters

Let G be a finite abelian group (with the multiplicative notation) and
S1 the unit circle in the complex plane. A character on G is a complex-
valued function e : G → S1 which satisfies the following condition:

(2) e(a · b) = e(a)e(b) for all a, b ∈ G.

In other words, a character is a homomorphism from G to the circle
group. The trivial or unit character is defined by e(a) = 1 for all
a ∈ G.

Characters play an important role in the context of finite Fourier se-
ries, primarily because the multiplicative property (2) generalizes the
analogous identity for the exponential functions on the circle and the
law

e`(k + m) = e`(k)e`(m),

which held for the exponentials e0, . . . , eN−1 used in the Fourier theory
on Z(N). There we had e`(k) = ζ`k = e2πi`k/N , with 0 ≤ ` ≤ N − 1 and
k ∈ Z(N), and in fact, the functions e0, . . . , eN−1 are precisely all the
characters of the group Z(N).

If G is a finite abelian group, we denote by Ĝ the set of all characters
of G, and observe next that this set inherits the structure of an abelian
group.
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Lemma 2.1 The set Ĝ is an abelian group under multiplication defined
by

(e1 · e2)(a) = e1(a)e2(a) for all a ∈ G.

The proof of this assertion is straightforward if one observes that the
trivial character plays the role of the unit. We call Ĝ the dual group
of G.

In light of the above analogy between characters for a general abelian
group and the exponentials on Z(N), we gather several more examples
of groups and their duals. This provides further evidence of the central
role played by characters. (See Exercises 4, 5, and 6.)

Example 1. If G = Z(N), all characters of G take the form e`(k) = ζ`k =
e2πi`k/N for some 0 ≤ ` ≤ N − 1, and it is easy to check that e` 7→ ` gives
an isomorphism from Ẑ(N) to Z(N).

Example 2. The dual group of the circle1 is precisely {en}n∈Z (where
en(x) = e2πinx). Moreover, en 7→ n gives an isomorphism between Ŝ1

and the integers Z.

Example 3. Characters on R are described by

eξ(x) = e2πiξx where ξ ∈ R.

Thus eξ 7→ ξ is an isomorphism from R̂ to R.

Example 4. Since exp : R→ R+ is an isomorphism, we deduce from the
previous example that the characters on R+ are given by

eξ(x) = x2πiξ = e2πiξ log x where ξ ∈ R,

and R̂+ is isomorphic to R (or R+).

The following lemma says that a nowhere vanishing multiplicative
function is a character, a result that will be useful later.

Lemma 2.2 Let G be a finite abelian group, and e : G → C− {0} a mul-
tiplicative function, namely e(a · b) = e(a)e(b) for all a, b ∈ G. Then e is
a character.

1In addition to (2), the definition of a character on an infinite abelian group requires
continuity. When G is the circle, R, or R+, the meaning of “continuous” refers to the
standard notion of limit.
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Proof. The group G being finite, the absolute value of e(a) is bounded
above and below as a ranges over G. Since |e(bn)| = |e(b)|n, we conclude
that |e(b)| = 1 for all b ∈ G.

The next step is to verify that the characters form an orthonormal
basis of the vector space V of functions over the group G. This fact
was obtained directly in the special case G = Z(N) from the explicit
description of the characters e0, . . . , eN−1.

In the general case, we begin with the orthogonality relations; then we
prove that there are “enough” characters by showing that there are as
many as the order of the group.

2.3 The orthogonality relations

Let V denote the vector space of complex-valued functions defined on the
finite abelian group G. Note that the dimension of V is |G|, the order of
G. We define a Hermitian inner product on V by

(3) (f, g) =
1
|G|

∑

a∈G

f(a)g(a), whenever f, g ∈ V .

Here the sum is taken over the group and is therefore finite.

Theorem 2.3 The characters of G form an orthonormal family with
respect to the inner product defined above.

Since |e(a)| = 1 for any character, we find that

(e, e) =
1
|G|

∑

a∈G

e(a)e(a) =
1
|G|

∑

a∈G

|e(a)|2 = 1.

If e 6= e′ and both are characters, we must prove that (e, e′) = 0; we
isolate the key step in a lemma.

Lemma 2.4 If e is a non-trivial character of the group G, then∑
a∈G e(a) = 0.

Proof. Choose b ∈ G such that e(b) 6= 1. Then we have

e(b)
∑

a∈G

e(a) =
∑

a∈G

e(b)e(a) =
∑

a∈G

e(ab) =
∑

a∈G

e(a).

The last equality follows because as a ranges over the group, ab ranges
over G as well. Therefore

∑
a∈G e(a) = 0.
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We can now conclude the proof of the theorem. Suppose e′ is a char-
acter distinct from e. Because e(e′)−1 is non-trivial, the lemma implies
that

∑

a∈G

e(a)(e′(a))−1 = 0.

Since (e′(a))−1 = e′(a), the theorem is proved.

As a consequence of the theorem, we see that distinct characters are
linearly independent. Since the dimension of V over C is |G|, we conclude
that the order of Ĝ is finite and ≤ |G|. The main result to which we now
turn is that, in fact, |Ĝ| = |G|.

2.4 Characters as a total family

The following completes the analogy between characters and the complex
exponentials.

Theorem 2.5 The characters of a finite abelian group G form a basis
for the vector space of functions on G.

There are several proofs of this theorem. One consists of using the
structure theorem for finite abelian groups we have mentioned earlier,
which states that any such group is the direct product of cyclic groups,
that is, groups of the type Z(N). Since cyclic groups are self-dual, using
this fact we would conclude that |Ĝ| = |G|, and therefore the characters
form a basis for G. (See Problem 3.)

Here we shall prove the theorem directly without these considerations.

Suppose V is a vector space of dimension d with inner product (·, ·).
A linear transformation T : V → V is unitary if it preserves the inner
product, (Tv, Tw) = (v, w) for all v, w ∈ V . The spectral theorem from
linear algebra asserts that any unitary transformation is diagonalizable.
In other words, there exists a basis {v1, . . . , vd} (eigenvectors) of V such
that T (vi) = λivi, where λi ∈ C is the eigenvalue attached to vi.

The proof of Theorem 2.5 is based on the following extension of the
spectral theorem.

Lemma 2.6 Suppose {T1, . . . , Tk} is a commuting family of unitary trans-
formations on the finite-dimensional inner product space V ; that is,

TiTj = TjTi for all i, j.

Then T1, . . . , Tk are simultaneously diagonalizable. In other words, there
exists a basis for V which consists of eigenvectors for every
Ti, i = 1, . . . , k.
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Proof. We use induction on k. The case k = 1 is simply the spec-
tral theorem. Suppose that the lemma is true for any family of k − 1
commuting unitary transformations. The spectral theorem applied to Tk

says that V is the direct sum of its eigenspaces

V = Vλ1 ⊕ · · · ⊕ Vλs ,

where Vλi denotes the subspace of all eigenvectors with eigenvalue λi.
We claim that each one of the T1, . . . , Tk−1 maps each eigenspace Vλi to
itself. Indeed, if v ∈ Vλi

and 1 ≤ j ≤ k − 1, then

TkTj(v) = TjTk(v) = Tj(λiv) = λiTj(v)

so Tj(v) ∈ Vλi
, and the claim is proved.

Since the restrictions to Vλi of T1, . . . , Tk−1 form a family of commut-
ing unitary linear transformations, the induction hypothesis guarantees
that these are simultaneously diagonalizable on each subspace Vλi

. This
diagonalization provides us with the desired basis for each Vλi

, and thus
for V .

We can now prove Theorem 2.5. Recall that the vector space V of
complex-valued functions defined on G has dimension |G|. For each
a ∈ G we define a linear transformation Ta : V → V by

(Taf)(x) = f(a · x) for x ∈ G.

Since G is abelian it is clear that TaTb = TbTa for all a, b ∈ G, and one
checks easily that Ta is unitary for the Hermitian inner product (3) de-
fined on V . By Lemma 2.6 the family {Ta}a∈G is simultaneously di-
agonalizable. This means there is a basis {vb(x)}b∈G for V such that
each vb(x) is an eigenfunction for Ta, for every a. Let v be one of these
basis elements and 1 the unit element in G. We must have v(1) 6= 0 for
otherwise

v(a) = v(a · 1) = (Tav)(1) = λav(1) = 0,

where λa is the eigenvalue of v for Ta. Hence v = 0, and this is a contra-
diction. We claim that the function defined by w(x) = λx = v(x)/v(1)
is a character of G. Arguing as above we find that w(x) 6= 0 for every x,
and

w(a · b) =
v(a · b)
v(1)

=
λav(b)
v(1)

= λaλb
v(1)
v(1)

= λaλb = w(a)w(b).

We now invoke Lemma 2.2 to conclude the proof.
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2.5 Fourier inversion and Plancherel formula

We now put together the results obtained in the previous sections to
discuss the Fourier expansion of a function on a finite abelian group G.
Given a function f on G and character e of G, we define the Fourier
coefficient of f with respect to e, by

f̂(e) = (f, e) =
1
|G|

∑

a∈G

f(a)e(a),

and the Fourier series of f as

f ∼
∑

e∈Ĝ

f̂(e)e.

Since the characters form a basis, we know that

f =
∑

e∈Ĝ

cee

for some set of constants ce. By the orthogonality relations satisfied by
the characters, we find that

(f, e) = ce,

so f is indeed equal to its Fourier series, namely,

f =
∑

e∈Ĝ

f̂(e)e.

We summarize our results.

Theorem 2.7 Let G be a finite abelian group. The characters of G form
an orthonormal basis for the vector space V of functions on G equipped
with the inner product

(f, g) =
1
|G|

∑

a∈G

f(a)g(a).

In particular, any function f on G is equal to its Fourier series

f =
∑

e∈Ĝ

f̂(e)e.

Finally, we have the Parseval-Plancherel formula for finite abelian
groups.
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Theorem 2.8 If f is a function on G, then ‖f‖2 =
∑

e∈Ĝ

|f̂(e)|2.

Proof. Since the characters of G form an orthonormal basis for the
vector space V , and (f, e) = f̂(e), we have that

‖f‖2 = (f, f) =
∑

e∈Ĝ

(f, e)f̂(e) =
∑

e∈Ĝ

|f̂(e)|2.

The apparent difference of this statement with that of Theorem 1.2
is due to the different normalizations of the Fourier coefficients that are
used.

3 Exercises

1. Let f be a function on the circle. For each N ≥ 1 the discrete Fourier
coefficients of f are defined by

aN (n) =
1
N

N∑

k=1

f(e2πik/N )e−2πikn/N , for n ∈ Z.

We also let

a(n) =
∫ 1

0

f(e2πix)e−2πinx dx

denote the ordinary Fourier coefficients of f .

(a) Show that aN (n) = aN (n + N).

(b) Prove that if f is continuous, then aN (n) → a(n) as N →∞.

2. If f is a C1 function on the circle, prove that |aN (n)| ≤ c/|n| whenever
0 < |n| ≤ N/2.
[Hint: Write

aN (n)[1− e2πi`n/N ] =
1
N

N∑

k=1

[f(e2πik/N )− f(e2πi(k+`)/N )]e−2πikn/N ,

and choose ` so that `n/N is nearly 1/2.]

3. By a similar method, show that if f is a C2 function on the circle, then

|aN (n)| ≤ c/|n|2, whenever 0 < |n| ≤ N/2.
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As a result, prove the inversion formula for f ∈ C2,

f(e2πix) =
∞∑

n=−∞
a(n)e2πinx

from its finite version.
[Hint: For the first part, use the second symmetric difference

f(e2πi(k+`)/N ) + f(e2πi(k−`)/N )− 2f(e2πik/N ).

For the second part, if N is odd (say), write the inversion formula as

f(e2πik/N ) =
∑

|n|<N/2

aN (n)e2πikn/N .]

4. Let e be a character on G = Z(N), the additive group of integers modulo N .
Show that there exists a unique 0 ≤ ` ≤ N − 1 so that

e(k) = e`(k) = e2πi`k/N for all k ∈ Z(N).

Conversely, every function of this type is a character on Z(N). Deduce that
e` 7→ ` defines an isomorphism from Ĝ to G.
[Hint: Show that e(1) is an N th root of unity.]

5. Show that all characters on S1 are given by

en(x) = e2πinx with n ∈ Z,

and check that en 7→ n defines an isomorphism from Ŝ1 to Z.
[Hint: If F is continuous and F (x + y) = F (x)F (y), then F is differentiable. To
see this, note that if F (0) 6= 0, then for appropriate δ, c =

∫ δ

0
F (y) dy 6= 0, and

cF (x) =
∫ δ+x

x
F (y) dy. Differentiate to conclude that F (x) = eAx for some A.]

6. Prove that all characters on R take the form

eξ(x) = e2πiξx with ξ ∈ R,

and that eξ 7→ ξ defines an isomorphism from R̂ to R. The argument in Exercise 5
applies here as well.

7. Let ζ = e2πi/N . Define the N ×N matrix M = (ajk)1≤j,k≤N by ajk =
N−1/2ζjk.

(a) Show that M is unitary.
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(b) Interpret the identity (Mu,Mv) = (u, v) and the fact that M∗ = M−1 in
terms of Fourier series on Z(N).

8. Suppose that P (x) =
N∑

n=1

ane2πinx.

(a) Show by using the Parseval identities for the circle and Z(N), that

∫ 1

0

|P (x)|2 dx =
1
N

N∑
j=1

|P (j/N)|2.

(b) Prove the reconstruction formula

P (x) =
N∑

j=1

P (j/N)K(x− (j/N))

where

K(x) =
e2πix

N

1− e2πiNx

1− e2πix
=

1
N

(e2πix + e2πi2x + · · ·+ e2πiNx).

Observe that P is completely determined by the values P (j/N) for 1 ≤ j ≤ N .
Note also that K(0) = 1, and K(j/N) = 0 whenever j is not congruent to 0
modulo N .

9. To prove the following assertions, modify the argument given in the text.

(a) Show that one can compute the Fourier coefficients of a function on Z(N)
when N = 3n with at most 6N log3 N operations.

(b) Generalize this to N = αn where α is an integer > 1.

10. A group G is cyclic if there exists g ∈ G that generates all of G, that is,
if any element in G can be written as gn for some n ∈ Z. Prove that a finite
abelian group is cyclic if and only if it is isomorphic to Z(N) for some N .

11. Write down the multiplicative tables for the groups Z∗(3), Z∗(4), Z∗(5),
Z∗(6), Z∗(8), and Z∗(9). Which of these groups are cyclic?

12. Suppose that G is a finite abelian group and e : G → C is a function that
satisfies e(x · y) = e(x)e(y) for all x, y ∈ G. Prove that either e is identically 0,
or e never vanishes. In the second case, show that for each x, e(x) = e2πir for
some r ∈ Q of the form r = p/q, where q = |G|.
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13. In analogy with ordinary Fourier series, one may interpret finite Fourier
expansions using convolutions as follows. Suppose G is a finite abelian group,
1G its unit, and V the vector space of complex-valued functions on G.

(a) The convolution of two functions f and g in V is defined for each a ∈ G
by

(f ∗ g)(a) =
1
|G|

∑

b∈G

f(b)g(a · b−1).

Show that for all e ∈ Ĝ one has (̂f ∗ g)(e) = f̂(e)ĝ(e).

(b) Use Theorem 2.5 to show that if e is a character on G, then

∑

e∈Ĝ

e(c) = 0 whenever c ∈ G and c 6= 1G.

(c) As a result of (b), show that the Fourier series Sf(a) =
∑

e∈Ĝ f̂(e)e(a) of
a function f ∈ V takes the form

Sf = f ∗D,

where D is defined by

(4) D(c) =
∑

e∈Ĝ

e(c) =
{
|G| if c = 1G,
0 otherwise.

Since f ∗D = f , we recover the fact that Sf = f . Loosely speaking, D
corresponds to a “Dirac delta function”; it has unit mass

1
|G|

∑
c∈G

D(c) = 1,

and (4) says that this mass is concentrated at the unit element in G. Thus
D has the same interpretation as the “limit” of a family of good kernels.
(See Section 4, Chapter 2.)

Note. The function D reappears in the next chapter as δ1(n).

4 Problems

1. Prove that if n and m are two positive integers that are relatively prime, then

Z(nm) ≈ Z(n)× Z(m).
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[Hint: Consider the map Z(nm) → Z(n)× Z(m) given by k 7→ (k mod n, k mod
m), and use the fact that there exist integers x and y such that xn + ym = 1.]

2.∗ Every finite abelian group G is isomorphic to a direct product of cyclic
groups. Here are two more precise formulations of this theorem.

• If p1, . . . , ps are the distinct primes appearing in the factorization of the
order of G, then

G ≈ G(p1)× · · · ×G(ps),

where each G(p) is of the form G(p) = Z(pr1)× · · · × Z(pr`), with 0 ≤
r1 ≤ · · · ≤ r` (this sequence of integers depends on p of course). This
decomposition is unique.

• There exist unique integers d1, . . . , dk such that

d1|d2, d2|d3, · · · , dk−1|dk

and

G ≈ Z(d1)× · · · × Z(dk).

Deduce the second formulation from the first.

3. Let Ĝ denote the collection of distinct characters of the finite abelian group
G.

(a) Note that if G = Z(N), then Ĝ is isomorphic to G.

(b) Prove that ̂G1 ×G2 = Ĝ1 × Ĝ2.

(c) Prove using Problem 2 that if G is a finite abelian group, then Ĝ is iso-
morphic to G.

4.∗ When p is prime the group Z∗(p) is cyclic, and Z∗(p) ≈ Z(p− 1).
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8 Dirichlet’s Theorem

Dirichlet, Gustav Lejeune (Düren 1805-Göttingen 1859),
German mathematician. He was a number theorist at
heart. But, while studying in Paris, being a very like-
able person, he was befriended by Fourier and other
like-minded mathematicians, and he learned analysis
from them. Thus equipped, he was able to lay the
foundation for the application of Fourier analysis to
(analytic) theory of numbers.

S. Bochner, 1966

As a striking application of the theory of finite Fourier series, we now
prove Dirichlet’s theorem on primes in arithmetic progression. This the-
orem states that if q and ` are positive integers with no common factor,
then the progression

`, ` + q, ` + 2q, ` + 3q, . . . , ` + kq, . . .

contains infinitely many prime numbers. This change of subject matter
that we undertake illustrates the wide applicability of ideas from Fourier
analysis to various areas outside its seemingly narrower confines. In this
particular case, it is the theory of Fourier series on the finite abelian
group Z∗(q) that plays a key role in the solution of the problem.

1 A little elementary number theory

We begin by introducing the requisite background. This involves elemen-
tary ideas of divisibility of integers, and in particular properties regarding
prime numbers. Here the basic fact, called the fundamental theorem of
arithmetic, is that every integer is the product of primes in an essentially
unique way.

1.1 The fundamental theorem of arithmetic

The following theorem is a mathematical formulation of long division.
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Theorem 1.1 (Euclid’s algorithm) For any integers a and b with
b > 0, there exist unique integers q and r with 0 ≤ r < b such that

a = qb + r.

Here q denotes the quotient of a by b, and r is the remainder, which
is smaller than b.

Proof. First we prove the existence of q and r. Let S denote the set
of all non-negative integers of the form a− qb with q ∈ Z. This set is
non-empty and in fact S contains arbitrarily large positive integers since
b 6= 0. Let r denote the smallest element in S, so that

r = a− qb

for some integer q. By construction 0 ≤ r, and we claim that r < b. If
not, we may write r = b + s with 0 ≤ s < r, so b + s = a− qb, which then
implies

s = a− (q + 1)b.

Hence s ∈ S with s < r, and this contradicts the minimality of r.
So r < b, hence q and r satisfy the conditions of the theorem.

To prove uniqueness, suppose we also had a = q1b + r1 where
0 ≤ r1 < b. By subtraction we find

(q − q1)b = r1 − r.

The left-hand side has absolute value 0 or ≥ b, while the right-hand side
has absolute value < b. Hence both sides of the equation must be 0,
which gives q = q1 and r = r1.

An integer a divides b if there exists another integer c such that
ac = b; we then write a|b and say that a is a divisor of b. Note that in
particular 1 divides every integer, and a|a for all integers a. A prime
number is a positive integer greater than 1 that has no positive divisors
besides 1 and itself. The main theorem in this section says that any
positive integer can be written uniquely as the product of prime numbers.

The greatest common divisor of two positive integers a and b is the
largest integer that divides both a and b. We usually denote the greatest
common divisor by gcd(a, b). Two positive integers are relatively prime
if their greatest common divisor is 1. In other words, 1 is the only positive
divisor common to both a and b.
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Theorem 1.2 If gcd(a, b) = d, then there exist integers x and y such
that

ax + by = d.

Proof. Consider the set S of all positive integers of the form ax + by
where x, y ∈ Z, and let s be the smallest element in S. We claim that s =
d. By construction, there exist integers x and y such that

ax + by = s.

Clearly, any divisor of a and b divides s, so we must have d ≤ s. The proof
will be complete if we can show that s|a and s|b. By Euclid’s algorithm,
we can write a = qs + r with 0 ≤ r < s. Multiplying the above by q we
find qax + qby = qs, and therefore

qax + qby = a− r.

Hence r = a(1− qx) + b(−qy). Since s was minimal in S and 0 ≤ r < s,
we conclude that r = 0, therefore s divides a. A similar argument shows
that s divides b, hence s = d as desired.

In particular we record the following three consequences of the theo-
rem.

Corollary 1.3 Two positive integers a and b are relatively prime if and
only if there exist integers x and y such that ax + by = 1.

Proof. If a and b are relatively prime, two integers x and y with the
desired property exist by Theorem 1.2. Conversely, if ax + by = 1 holds
and d is positive and divides both a and b, then d divides 1, hence d = 1.

Corollary 1.4 If a and c are relatively prime and c divides ab, then c
divides b. In particular, if p is a prime that does not divide a and p
divides ab, then p divides b.

Proof. We can write 1 = ax + cy, so multiplying by b we find b =
abx + cby. Hence c|b.

Corollary 1.5 If p is prime and p divides the product a1 · · · ar, then p
divides ai for some i.

Proof. By the previous corollary, if p does not divide a1, then p
divides a2 · · · ar, so eventually p|ai.

We can now prove the main result of this section.
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Theorem 1.6 Every positive integer greater than 1 can be factored
uniquely into a product of primes.

Proof. First, we show that such a factorization is possible. We
do so by proving that the set S of positive integers > 1 which do not
have a factorization into primes is empty. Arguing by contradiction, we
assume that S 6= ∅. Let n be the smallest element of S. Since n cannot
be a prime, there exist integers a > 1 and b > 1 such that ab = n. But
then a < n and b < n, so a /∈ S as well as b /∈ S. Hence both a and b
have prime factorizations and so does their product n. This implies
n /∈ S, therefore S is empty, as desired.

We now turn our attention to the uniqueness of the factorization. Sup-
pose that n has two factorizations into primes

n = p1p2 · · · pr

= q1q2 · · · qs.

So p1 divides q1q2 · · · qs, and we can apply Corollary 1.5 to conclude that
p1|qi for some i. Since qi is prime, we must have p1 = qi. Continuing
with this argument we find that the two factorizations of n are equal up
to a permutation of the factors.

We briefly digress to give an alternate definition of the group Z∗(q)
which appeared in the previous chapter. According to our initial defini-
tion, Z∗(q) is the multiplicative group of units in Z(q): those n ∈ Z(q)
for which there exists an integer m so that

(1) nm ≡ 1 mod q.

Equivalently, Z∗(q) is the group under multiplication of all integers in
Z(q) that are relatively prime to q. Indeed, notice that if (1) is satisfied,
then automatically n and q are relatively prime. Conversely, suppose
we assume that n and q are relatively prime. Then, if we put a = n
and b = q in Corollary 1.3, we find

nx + qy = 1.

Hence nx ≡ 1 mod q, and we can take m = x to establish the equiva-
lence.

1.2 The infinitude of primes

The study of prime numbers has always been a central topic in arithmetic,
and the first fundamental problem that arose was to determine whether
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there are infinitely many primes or not. This problem was solved in
Euclid’s Elements with a simple and very elegant argument.

Theorem 1.7 There are infinitely many primes.

Proof. Suppose not, and denote by p1, . . . , pn the complete set of
primes. Define

N = p1p2 · · · pn + 1.

Since N is larger than any pi, the integer N cannot be prime. Therefore,
N is divisible by a prime that belongs to our list. But this is also an
absurdity since every prime divides the product, yet no prime divides 1.
This contradiction concludes the proof.

Euclid’s argument actually can be modified to deduce finer results
about the infinitude of primes. To see this, consider the following prob-
lem. Prime numbers (except for 2) can be divided into two classes de-
pending on whether they are of the form 4k + 1 or 4k + 3, and the above
theorem says that at least one of these classes has to be infinite. A natu-
ral question is to ask whether both classes are infinite, and if not, which
one is? In the case of primes of the form 4k + 3, the fact that the class is
infinite has a proof that is similar to Euclid’s, but with a twist. If there
are only finitely many such primes, enumerate them in increasing order
omitting 3,

p1 = 7, p2 = 11, . . . , pn,

and let

N = 4p1p2 · · · pn + 3.

Clearly, N is of the form 4k + 3 and cannot be prime since N > pn.
Since the product of two numbers of the form 4m + 1 is again of the
form 4m + 1, one of the prime divisors of N , say p, must be of the form
4k + 3. We must have p 6= 3, since 3 does not divide the product in the
definition of N . Also, p cannot be one of the other primes of the form
4k + 3, that is, p 6= pi for i = 1, . . . n, because then p divides the product
p1 · · · pn but does not divide 3.

It remains to determine if the class of primes of the form 4k + 1 is
infinite. A simple-minded modification of the above argument does not
work since the product of two numbers of the form 4m + 3 is never of the
form 4m + 3. More generally, in an attempt to prove the law of quadratic
reciprocity, Legendre formulated the following statement:
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If q and ` are relatively prime, then the sequence

` + kq, k ∈ Z

contains infinitely many primes (hence at least one prime!).

Of course, the condition that q and ` be relatively prime is necessary,
for otherwise ` + kq is never prime. In other words, this hypothesis says
that any arithmetic progression that could contain primes necessarily
contains infinitely many of them.

Legendre’s assertion was proved by Dirichlet. The key idea in his proof
is Euler’s analytical approach to prime numbers involving his product
formula, which gives a strengthened version of Theorem 1.7. This insight
of Euler led to a deep connection between the theory of primes and
analysis.

The zeta function and its Euler product

We begin with a rapid review of infinite products. If {An}∞n=1 is a se-
quence of real numbers, we define

∞∏

n=1

An = lim
N→∞

N∏

n=1

An

if the limit exists, in which case we say that the product converges. The
natural approach is to take logarithms and transform products into sums.
We gather in a lemma the properties we shall need of the function log x,
defined for positive real numbers.

Lemma 1.8 The exponential and logarithm functions satisfy the follow-
ing properties:

(i) elog x = x.

(ii) log(1 + x) = x + E(x) where |E(x)| ≤ x2 if |x| < 1/2.

(iii) If log(1 + x) = y and |x| < 1/2, then |y| ≤ 2|x|.
In terms of the O notation, property (ii) will be recorded as

log(1 + x) = x + O(x2).

Proof. Property (i) is standard. To prove property (ii) we use the
power series expansion of log(1 + x) for |x| < 1, that is,

(2) log(1 + x) =
∞∑

n=1

(−1)n+1

n
xn.
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Then we have

E(x) = log(1 + x)− x = −x2

2
+

x3

3
− x4

4
+ · · · ,

and the triangle inequality implies

|E(x)| ≤ x2

2
(
1 + |x|+ |x|2 + · · · ) .

Therefore, if |x| ≤ 1/2 we can sum the geometric series on the right-hand
side to find that

|E(x)| ≤ x2

2

(
1 +

1
2

+
1
22

+ · · ·
)

≤ x2

2

(
1

1− 1/2

)

≤ x2.

The proof of property (iii) is now immediate; if x 6= 0 and |x| ≤ 1/2, then
∣∣∣∣
log(1 + x)

x

∣∣∣∣ ≤ 1 +
∣∣∣∣
E(x)

x

∣∣∣∣
≤ 1 + |x|
≤ 2,

and if x = 0, (iii) is clearly also true.

We can now prove the main result on infinite products of real numbers.

Proposition 1.9 If An = 1 + an and
∑ |an| converges, then the prod-

uct
∏

n An converges, and this product vanishes if and only if one of
its factors An vanishes. Also, if an 6= 1 for all n, then

∏
n 1/(1− an)

converges.

Proof. If
∑ |an| converges, then for all large n we must have |an| <

1/2. Disregarding finitely many terms if necessary, we may assume that
this inequality holds for all n. Then we may write the partial products
as follows:

N∏

n=1

An =
N∏

n=1

elog(1+an) = eBN ,

where BN =
∑N

n=1 bn with bn = log(1 + an). By the lemma, we know
that |bn| ≤ 2|an|, so that BN converges to a real number, say B. Since
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the exponential function is continuous, we conclude that eBN converges
to eB as N goes to infinity, proving the first assertion of the proposition.
Observe also that if 1 + an 6= 0 for all n, the product converges to a
non-zero limit since it is expressed as eB.

Finally observe that the partial products of
∏

n 1/(1− an) are
1/

∏N
n=1(1− an), so the same argument as above proves that the product

in the denominator converges to a non-zero limit.

With these preliminaries behind us, we can now return to the heart of
the matter. For s a real number (strictly) greater than 1, we define the
zeta function by

ζ(s) =
∞∑

n=1

1
ns

.

To see that the series defining ζ converges, we use the principle that
whenever f is a decreasing function one can compare

∑
f(n) with∫

f(x) dx, as is suggested by Figure 1. Note also that a similar tech-
nique was used in Chapter 3, that time bounding a sum from below by
an integral.

y = f(x)

n− 1 n

f(n)

Figure 1. Comparing sums with integrals

Here we take f(x) = 1/xs to see that

∞∑

n=1

1
ns

≤ 1 +
∞∑

n=2

∫ n

n−1

dx

xs
= 1 +

∫ ∞

1

dx

xs
,
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and therefore,

(3) ζ(s) ≤ 1 +
1

s− 1
.

Clearly, the series defining ζ converges uniformly on each half-line
s > s0 > 1, hence ζ is continuous when s > 1. The zeta function was
already mentioned earlier in the discussion of the Poisson summation
formula and the theta function.

The key result is Euler’s product formula.

Theorem 1.10 For every s > 1, we have

ζ(s) =
∏
p

1
1− 1/ps

,

where the product is taken over all primes.

It is important to remark that this identity is an analytic expression
of the fundamental theorem of arithmetic. In fact, each factor of the
product 1/(1− p−s) can be written as a convergent geometric series

1 +
1
ps

+
1

p2s
+ · · ·+ 1

pMs
+ · · · .

So we consider

∏
pj

(
1 +

1
ps

j

+
1

p2s
j

+ · · ·+ 1
pMs

j

+ · · ·
)

,

where the product is taken over all primes, which we order in increasing
order p1 < p2 < · · · . Proceeding formally (these manipulations will be
justified below), we calculate the product as a sum of terms, each term
originating by picking out a term 1/pks

j (in the sum corresponding to
pj) with a k, which of course will depend on j, and with k = 0 for j
sufficiently large. The product obtained this way is

1
(pk1

1 pk2
2 · · · pkm

m )s
=

1
ns

,

where the integer n is written as a product of primes n = pk1
1 pk2

2 · · · pkm
m .

By the fundamental theorem of arithmetic, each integer ≥ 1 occurs in
this way uniquely, hence the product equals

∞∑

n=1

1
ns

.
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We now justify this heuristic argument.

Proof. Suppose M and N are positive integers with M > N . Observe
now that any positive integer n ≤ N can be written uniquely as a product
of primes, and that each prime must be less than or equal to N and
repeated less than M times. Therefore

N∑

n=1

1
ns

≤
∏

p≤N

(
1 +

1
ps

+
1

p2s
+ · · ·+ 1

pMs

)

≤
∏

p≤N

(
1

1− p−s

)

≤
∏
p

(
1

1− p−s

)
.

Letting N tend to infinity now yields

∞∑

n=1

1
ns

≤
∏
p

(
1

1− p−s

)
.

For the reverse inequality, we argue as follows. Again, by the fundamen-
tal theorem of arithmetic, we find that

∏

p≤N

(
1 +

1
ps

+
1

p2s
+ · · ·+ 1

pMs

)
≤

∞∑

n=1

1
ns

.

Letting M tend to infinity gives

∏

p≤N

(
1

1− p−s

)
≤

∞∑

n=1

1
ns

.

Hence

∏
p

(
1

1− p−s

)
≤

∞∑

n=1

1
ns

,

and the proof of the product formula is complete.

We now come to Euler’s version of Theorem 1.7, which inspired Dirich-
let’s approach to the general problem of primes in arithmetic progression.
The point is the following proposition.
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Proposition 1.11 The series

∑
p

1/p

diverges, when the sum is taken over all primes p.

Of course, if there were only finitely many primes the series would
converge automatically.

Proof. We take logarithms of both sides of the Euler formula. Since
log x is continuous, we may write the logarithm of the infinite product
as the sum of the logarithms. Therefore, we obtain for s > 1

−
∑

p

log(1− 1/ps) = log ζ(s).

Since log(1 + x) = x + O(|x|2) whenever |x| ≤ 1/2, we get

−
∑

p

[−1/ps + O(1/p2s)
]

= log ζ(s),

which gives
∑

p

1/ps + O(1) = log ζ(s).

The term O(1) appears because
∑

p 1/p2s ≤ ∑∞
n=1 1/n2. Now we let s

tend to 1 from above, namely s → 1+, and note that ζ(s) →∞ since∑∞
n=1 1/ns ≥ ∑M

n=1 1/ns, and therefore

lim inf
s→1+

∞∑

n=1

1/ns ≥
M∑

n=1

1/n for every M.

We conclude that
∑

p 1/ps →∞ as s → 1+, and since 1/p > 1/ps for all
s > 1, we finally have that

∑
p

1/p = ∞.

In the rest of this chapter we see how Dirichlet adapted Euler’s insight.
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2 Dirichlet’s theorem

We remind the reader of our goal:

Theorem 2.1 If q and ` are relatively prime positive integers, then there
are infinitely many primes of the form ` + kq with k ∈ Z.

Following Euler’s argument, Dirichlet proved this theorem by showing
that the series

∑

p≡` mod q

1
p

diverges, where the sum is over all primes congruent to ` modulo q. Once
q is fixed and no confusion is possible, we write p ≡ ` to denote a prime
congruent to ` modulo q. The proof consists of several steps, one of
which requires Fourier analysis on the group Z∗(q). Before proceeding
with the theorem in its complete generality, we outline the solution to
the particular problem raised earlier: are there infinitely many primes of
the form 4k + 1? This example, which consists of the special case q = 4
and ` = 1, illustrates all the important steps in the proof of Dirichlet’s
theorem.

We begin with the character on Z∗(4) defined by χ(1) = 1 and
χ(3) = −1. We extend this character to all of Z as follows:

χ(n) =





0 if n is even,
1 if n = 4k + 1,

−1 if n = 4k + 3.

Note that this function is multiplicative, that is, χ(nm) = χ(n)χ(m) on
all of Z. Let L(s, χ) =

∑∞
n=1 χ(n)/ns, so that

L(s, χ) = 1− 1
3s

+
1
5s
− 1

7s
+ · · · .

Then L(1, χ) is the convergent series given by

1− 1
3

+
1
5
− 1

7
+ · · · .

Since the terms in the series are alternating and their absolute values
decrease to zero we have L(1, χ) 6= 0. Because χ is multiplicative, the
Euler product generalizes (as we will prove later) to give

∞∑

n=1

χ(n)
ns

=
∏
p

1
1− χ(p)/ps

.
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Taking the logarithm of both sides, we find that

log L(s, χ) =
∑

p

χ(p)
ps

+ O(1).

Letting s → 1+, the observation that L(1, χ) 6= 0 shows that
∑

p χ(p)/ps

remains bounded. Hence
∑

p≡1

1
ps
−

∑

p≡3

1
ps

is bounded as s → 1+. However, we know from Proposition 1.11 that
∑

p

1
ps

is unbounded as s → 1+, so putting these two facts together, we find
that

2
∑

p≡1

1
ps

is unbounded as s → 1+. Hence
∑

p≡1 1/p diverges, and as a consequence
there are infinitely many primes of the form 4k + 1.

We digress briefly to show that in fact L(1, χ) = π/4. To see this, we
integrate the identity

1
1 + x2

= 1− x2 + x4 − x6 + · · · ,

and get
∫ y

0

dx

1 + x2
= y − y3

3
+

y5

5
− · · · , 0 < y < 1.

We then let y tend to 1. The integral can be calculated as
∫ 1

0

dx

1 + x2
= arctanu|10 =

π

4
,

so this proves that the series 1− 1/3 + 1/5− · · · is Abel summable to
π/4. Since we know the series converges, its limit is the same as its Abel
limit, hence 1− 1/3 + 1/5− · · · = π/4.

The rest of this chapter gives the full proof of Dirichlet’s theorem. We
begin with the Fourier analysis (which is actually the last step in the
example given above), and reduce the theorem to the non-vanishing of
L-functions.
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2.1 Fourier analysis, Dirichlet characters, and reduction of the
theorem

In what follows we take the abelian group G to be Z∗(q). Our formulas
below involve the order of G, which is the number of integers 0 ≤ n <
q that are relatively prime to q; this number defines the Euler phi-
function ϕ(q), and |G| = ϕ(q).

Consider the function δ` on G, which we think of as the characteristic
function of `; if n ∈ Z∗(q), then

δ`(n) =
{

1 if n ≡ ` mod q,
0 otherwise.

We can expand this function in a Fourier series as follows:

δ`(n) =
∑

e∈Ĝ

δ̂`(e)e(n),

where

δ̂`(e) =
1
|G|

∑

m∈G

δ`(m)e(m) =
1
|G| e(`).

Hence

δ`(n) =
1
|G|

∑

e∈Ĝ

e(`)e(n).

We can extend the function δ` to all of Z by setting δ`(m) = 0 whenever m
and q are not relatively prime. Similarly, the extensions of the characters
e ∈ Ĝ to all of Z which are given by the recipe

χ(m) =
{

e(m) if m and q are relatively prime
0 otherwise,

are called the Dirichlet characters modulo q. We shall denote the
extension to Z of the trivial character of G by χ0, so that χ0(m) = 1 if
m and q are relatively prime, and 0 otherwise. Note that the Dirichlet
characters modulo q are multiplicative on all of Z, in the sense that

χ(nm) = χ(n)χ(m) for all n, m ∈ Z.

Since the integer q is fixed, we may without fear of confusion, speak of
“Dirichlet characters” omitting reference to q.1

With |G| = ϕ(q), we may restate the above results as follows:

1We use the notation χ instead of e to distinguish the Dirichlet characters (defined on
Z) from the characters e (defined on Z∗(q)).
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Lemma 2.2 The Dirichlet characters are multiplicative. Moreover,

δ`(m) =
1

ϕ(q)

∑
χ

χ(`)χ(m),

where the sum is over all Dirichlet characters.

With the above lemma we have taken our first step towards a proof of
the theorem, since this lemma shows that

∑

p≡`

1
ps

=
∑

p

δ`(p)
ps

=
1

ϕ(q)

∑
χ

χ(`)
∑

p

χ(p)
ps

.

Thus it suffices to understand the behavior of
∑

p χ(p)p−s as s → 1+. In
fact, we divide the above sum in two parts depending on whether or not
χ is trivial. So we have

∑

p≡`

1
ps

=
1

ϕ(q)

∑
p

χ0(p)
ps

+
1

ϕ(q)

∑

χ 6=χ0

χ(`)
∑

p

χ(p)
ps

=
1

ϕ(q)

∑
p not dividing q

1
ps

+
1

ϕ(q)

∑

χ6=χ0

χ(`)
∑

p

χ(p)
ps

.(4)

Since there are only finitely many primes dividing q, Euler’s theorem
(Proposition 1.11) implies that the first sum on the right-hand side di-
verges when s tends to 1. These observations show that Dirichlet’s the-
orem is a consequence of the following assertion.

Theorem 2.3 If χ is a nontrivial Dirichlet character, then the sum

∑
p

χ(p)
ps

remains bounded as s → 1+.

The proof of Theorem 2.3 requires the introduction of the L-functions,
to which we now turn.

2.2 Dirichlet L-functions

We proved earlier that the zeta function ζ(s) =
∑

n 1/ns could be ex-
pressed as a product, namely

∞∑

n=1

1
ns

=
∏
p

1
(1− p−s)

.
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Dirichlet observed an analogue of this formula for the so-called L-functions
defined for s > 1 by

L(s, χ) =
∞∑

n=1

χ(n)
ns

,

where χ is a Dirichlet character.

Theorem 2.4 If s > 1, then

∞∑

n=1

χ(n)
ns

=
∏
p

1
(1− χ(p)p−s)

,

where the product is over all primes.

Assuming this theorem for now, we can follow Euler’s argument for-
mally: taking the logarithm of the product and using the fact that
log(1 + x) = x + O(x2) whenever x is small, we would get

log L(s, χ) = −
∑

p

log(1− χ(p)/ps)

= −
∑

p

[
−χ(p)

ps
+ O

(
1

p2s

)]

=
∑

p

χ(p)
ps

+ O(1).

If L(1, χ) is finite and non-zero, then log L(s, χ) is bounded as s → 1+,
and we can conclude that the sum

∑
p

χ(p)
ps

is bounded as s → 1+. We now make several observations about the
above formal argument.

First, we must prove the product formula in Theorem 2.4. Since the
Dirichlet characters χ can be complex-valued we will extend the loga-
rithm to complex numbers w of the form w = 1/(1− z) with |z| < 1.
(This will be done in terms of a power series.) Then we show that with
this definition of the logarithm, the proof of Euler’s product formula
given earlier carries over to L-functions.

Second, we must make sense of taking the logarithm of both sides of the
product formula. If the Dirichlet characters are real, this argument works
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and is precisely the one given in the example corresponding to primes
of the form 4k + 1. In general, the difficulty lies in the fact that χ(p) is
a complex number, and the complex logarithm is not single valued; in
particular, the logarithm of a product is not the sum of the logarithms.

Third, it remains to prove that whenever χ 6= χ0, then log L(s, χ) is
bounded as s → 1+. If (as we shall see) L(s, χ) is continuous at s = 1,
then it suffices to show that

L(1, χ) 6= 0.

This is the non-vanishing we mentioned earlier, which corresponds to the
alternating series being non-zero in the previous example. The fact that
L(1, χ) 6= 0 is the most difficult part of the argument.

So we will focus on three points:

1. Complex logarithms and infinite products.

2. Study of L(s, χ).

3. Proof that L(1, χ) 6= 0 if χ is non-trivial.

However, before we enter further into the details, we pause briefly to
discuss some historical facts surrounding Dirichlet’s theorem.

Historical digression

In the following list, we have gathered the names of those mathematicians
whose work dealt most closely with the series of achievements related to
Dirichlet’s theorem. To give a better perspective, we attach the years in
which they reached the age of 35:

Euler 1742
Legendre 1787
Gauss 1812
Dirichlet 1840
Riemann 1861

As we mentioned earlier, Euler’s discovery of the product formula for
the zeta function is the starting point in Dirichlet’s argument. Legendre
in effect conjectured the theorem because he needed it in his proof of the
law of quadratic reciprocity. However, this goal was first accomplished
by Gauss who, while not knowing how to establish the theorem about
primes in arithmetic progression, nevertheless found a number of different
proofs of quadratic reciprocity. Later, Riemann extended the study of
the zeta function to the complex plane and indicated how properties
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related to the non-vanishing of that function were central in the further
understanding of the distribution of prime numbers.

Dirichlet proved his theorem in 1837. It should be noted that Fourier,
who had befriended Dirichlet when the latter was a young mathematician
visiting Paris, had died several years before. Besides the great activity in
mathematics, that period was also a very fertile time in the arts, and in
particular music. The era of Beethoven had ended only ten years earlier,
and Schumann was now reaching the heights of his creativity. But the
musician whose career was closest to Dirichlet was Felix Mendelssohn
(four years his junior). It so happens that the latter began composing
his famous violin concerto the year after Dirichlet succeeded in proving
his theorem.

3 Proof of the theorem

We return to the proof of Dirichlet’s theorem and to the three difficulties
mentioned above.

3.1 Logarithms

The device to deal with the first point is to define two logarithms, one
for complex numbers of the form 1/(1− z) with |z| < 1 which we denote
by log1, and one for the function L(s, χ) which we will denote by log2.

For the first logarithm, we define

log1

(
1

1− z

)
=

∞∑

k=1

zk

k
for |z| < 1.

Note that log1 w is then defined if Re(w) > 1/2, and because of equa-
tion (2), log1 w gives an extension of the usual log x when x is a real
number > 1/2.

Proposition 3.1 The logarithm function log1 satisfies the following prop-
erties:

(i) If |z| < 1, then

elog1( 1
1−z ) =

1
1− z

.

(ii) If |z| < 1, then

log1

(
1

1− z

)
= z + E1(z),

where the error E1 satisfies |E1(z)| ≤ |z|2 if |z| < 1/2.
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(iii) If |z| < 1/2, then
∣∣∣∣log1

(
1

1− z

)∣∣∣∣ ≤ 2|z|.

Proof. To establish the first property, let z = reiθ with 0 ≤ r < 1,
and observe that it suffices to show that

(5) (1− reiθ) e
∑∞

k=1
(reiθ)k/k = 1.

To do so, we differentiate the left-hand side with respect to r, and this
gives

[
−eiθ + (1− reiθ)

( ∞∑

k=1

(reiθ)k/k

)′ ]
e
∑∞

k=1
(reiθ)k/k.

The term in brackets equals

−eiθ + (1− reiθ)eiθ

( ∞∑

k=1

(reiθ)k−1

)
= −eiθ + (1− reiθ)eiθ 1

1− reiθ
= 0.

Having found that the left-hand side of the equation (5) is constant, we
set r = 0 and get the desired result.

The proofs of the second and third properties are the same as their
real counterparts given in Lemma 1.8.

Using these results we can state a sufficient condition guaranteeing
the convergence of infinite products of complex numbers. Its proof is the
same as in the real case, except that we now use the logarithm log1.

Proposition 3.2 If
∑ |an| converges, and an 6= 1 for all n, then

∞∏

n=1

(
1

1− an

)

converges. Moreover, this product is non-zero.

Proof. For n large enough, |an| < 1/2, so we may assume without
loss of generality that this inequality holds for all n ≥ 1. Then

N∏

n=1

(
1

1− an

)
=

N∏

n=1

elog1( 1
1−an

) = e
∑N

n=1
log1( 1

1−an
).
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But we know from the previous proposition that
∣∣∣∣log1

(
1

1− z

)∣∣∣∣ ≤ 2|z|,

so the fact that the series
∑ |an| converges, immediately implies that the

limit

lim
N→∞

N∑

n=1

log1

(
1

1− an

)
= A

exists. Since the exponential function is continuous, we conclude that
the product converges to eA, which is clearly non-zero.

We may now prove the promised Dirichlet product formula

∑
n

χ(n)
ns

=
∏
p

1
(1− χ(p)p−s)

.

For simplicity of notation, let L denote the left-hand side of the above
equation. Define

SN =
∑

n≤N

χ(n)n−s and ΠN =
∏

p≤N

(
1

1− χ(p)p−s

)
.

The infinite product Π = limN→∞ΠN =
∏

p

(
1

1−χ(p)p−s

)
converges by

the previous proposition. Indeed, if we set an = χ(pn)p−s
n , where pn is

the nth prime, we note that if s > 1, then
∑ |an| < ∞.

Also, define

ΠN,M =
∏

p≤N

(
1 +

χ(p)
ps

+ · · ·+ χ(pM )
pMs

)
.

Now fix ε > 0 and choose N so large that

|SN − L| < ε and |ΠN −Π| < ε.

We can next select M large enough so that

|SN −ΠN,M | < ε and |ΠN,M −ΠN | < ε.

To see the first inequality, one uses the fundamental theorem of arith-
metic and the fact that the Dirichlet characters are multiplicative. The
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second inequality follows merely because each series
∑∞

n=1
χ(pn)
pns con-

verges.
Therefore

|L−Π| ≤ |L− SN |+ |SN −ΠN,M |+ |ΠN,M −ΠN |+ |ΠN −Π| < 4ε,

as was to be shown.

3.2 L-functions

The next step is a better understanding of the L-functions. Their behav-
ior as functions of s (especially near s = 1) depends on whether or not χ
is trivial. In the first case, L(s, χ0) is up to some simple factors just the
zeta function.

Proposition 3.3 Suppose χ0 is the trivial Dirichlet character,

χ0(n) =
{

1 if n and q are relatively prime,
0 otherwise,

and q = pa1
1 · · · paN

N is the prime factorization of q. Then

L(s, χ0) = (1− p−s
1 )(1− p−s

2 ) · · · (1− p−s
N )ζ(s).

Therefore L(s, χ0) →∞ as s → 1+.

Proof. The identity follows at once on comparing the Dirichlet and
Euler product formulas. The final statement holds because ζ(s) →∞ as
s → 1+.

The behavior of the remaining L-functions, those for which χ 6= χ0,
is more subtle. A remarkable property is that these functions are now
defined and continuous for s > 0. In fact, more is true.

Proposition 3.4 If χ is a non-trivial Dirichlet character, then the series
∞∑

n=1

χ(n)/ns

converges for s > 0, and we denote its sum by L(s, χ). Moreover:

(i) The function L(s, χ) is continuously differentiable for 0 < s < ∞.

(ii) There exists constants c, c′ > 0 so that

L(s, χ) = 1 + O(e−cs) as s →∞, and

L′(s, χ) = O(e−c′s) as s →∞.
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We first isolate the key cancellation property that non-trivial Dirichlet
characters possess, which accounts for the behavior of the L-function
described in the proposition.

Lemma 3.5 If χ is a non-trivial Dirichlet character, then

∣∣∣∣∣
k∑

n=1

χ(n)

∣∣∣∣∣ ≤ q, for any k.

Proof. First, we recall that

q∑

n=1

χ(n) = 0.

In fact, if S denotes the sum and a ∈ Z∗(q), then the multiplicative
property of the Dirichlet character χ gives

χ(a)S =
∑

χ(a)χ(n) =
∑

χ(an) =
∑

χ(n) = S.

Since χ is non-trivial, χ(a) 6= 1 for some a, hence S = 0. We now write
k = aq + b with 0 ≤ b < q, and note that

k∑

n=1

χ(n) =
aq∑

n=1

χ(n) +
∑

aq<n≤aq+b

χ(n) =
∑

aq<n≤aq+b

χ(n),

and there are no more than q terms in the last sum. The proof is complete
once we recall that |χ(n)| ≤ 1.

We can now prove the proposition. Let sk =
∑k

n=1 χ(n), and s0 = 0.
We know that L(s, χ) is defined for s > 1 by the series

∞∑

n=1

χ(n)
ns

which converges absolutely and uniformly for s > δ > 1. Moreover, the
differentiated series also converges absolutely and uniformly for s > δ >
1, which shows that L(s, χ) is continuously differentiable for s > 1. We
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sum by parts2 to extend this result to s > 0. Indeed, we have

N∑

k=1

χ(k)
ks

=
N∑

k=1

sk − sk−1

ks

=
N−1∑

k=1

sk

[
1
ks
− 1

(k + 1)s

]
+

sN

Ns

=
N−1∑

k=1

fk(s) +
sN

Ns
,

where fk(s) = sk [k−s − (k + 1)−s]. If g(x) = x−s, then g′(x) = −sx−s−1,
so applying the mean-value theorem between x = k and x = k + 1, and
the fact that |sk| ≤ q, we find that

|fk(s)| ≤ qsk−s−1.

Therefore, the series
∑

fk(s) converges absolutely and uniformly for s >
δ > 0, and this proves that L(s, χ) is continuous for s > 0. To prove that
it is also continuously differentiable, we differentiate the series term by
term, obtaining

∑
(log n)

χ(n)
ns

.

Again, we rewrite this series using summation by parts as
∑

sk

[−k−s log k + (k + 1)−s log(k + 1)
]
,

and an application of the mean-value theorem to the function g(x) =
x−s log x shows that the terms are O(k−δ/2−1), thus proving that the
differentiated series converges uniformly for s > δ > 0. Hence L(s, χ) is
continuously differentiable for s > 0.

Now, observe that for all s large,

|L(s, χ)− 1| ≤ 2q
∞∑

n=2

n−s

≤ 2−sO(1),

and we can take c = log 2, to see that L(s, χ) = 1 + O(e−cs) as s →∞.
A similar argument also shows that L′(s, χ) = O(e−c′s) as s →∞ with
in fact c′ = c, and the proof of the proposition is complete.

2For the formula of summation by parts, see Exercise 7 in Chapter 2.
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With the facts gathered so far about L(s, χ) we are in a position to
define the logarithm of the L-functions. This is done by integrating its
logarithmic derivative. In other words, if χ is a non-trivial Dirichlet
character and s > 1 we define3

log2 L(s, χ) = −
∫ ∞

s

L′(t, χ)
L(t, χ)

dt.

We know that L(t, χ) 6= 0 for every t > 1 since it is given by a product
(Proposition 3.2), and the integral is convergent because

L′(t, χ)
L(t, χ)

= O(e−ct),

which follows from the behavior at infinity of L(t, χ) and L′(t, χ) recorded
earlier.

The following links the two logarithms.

Proposition 3.6 If s > 1, then

elog2 L(s,χ) = L(s, χ).

Moreover

log2 L(s, χ) =
∑

p

log1

(
1

1− χ(p)/ps

)
.

Proof. Differentiating e− log2 L(s,χ)L(s, χ) with respect to s gives

−L′(s, χ)
L(s, χ)

e− log2 L(s,χ)L(s, χ) + e− log2 L(s,χ)L′(s, χ) = 0.

So e− log2 L(s,χ)L(s, χ) is constant, and this constant can be seen to be 1
by letting s tend to infinity. This proves the first conclusion.

To prove the equality between the logarithms, we fix s and take the ex-
ponential of both sides. The left-hand side becomes elog2 L(s,χ) = L(s, χ),
and the right-hand side becomes

e
∑

p
log1

(
1

1−χ(p)/ps

)
=

∏
p

e
log1

(
1

1−χ(p)/ps

)
=

∏
p

(
1

1− χ(p)/ps

)
= L(s, χ),

3The notation log2 used in this context should not be confused with the logarithm to
the base 2.
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by (i) in Proposition 3.1 and the Dirichlet product formula. Therefore,
for each s there exists an integer M(s) so that

log2 L(s, χ)−
∑

p

log1

(
1

1− χ(p)/ps

)
= 2πiM(s).

As the reader may verify, the left-hand side is continuous in s, and this
implies the continuity of the function M(s). But M(s) is integer-valued
so we conclude that M(s) is constant, and this constant can be seen to
be 0 by letting s go to infinity.

Putting together the work we have done so far gives rigorous meaning
to the formal argument presented earlier. Indeed, the properties of log1

show that

∑
p

log1

(
1

1− χ(p)/ps

)
=

∑
p

χ(p)
ps

+ O

(∑
p

1
p2s

)

=
∑

p

χ(p)
ps

+ O(1).

Now if L(1, χ) 6= 0 for a non-trivial Dirichlet character, then by its in-
tegral representation log2 L(s, χ) remains bounded as s → 1+. Thus
the identity between the logarithms implies that

∑
p χ(p)p−s remains

bounded as s → 1+, which is the desired result. Therefore, to finish the
proof of Dirichlet’s theorem, we need to see that L(1, χ) 6= 0 when χ is
non-trivial.

3.3 Non-vanishing of the L-function

We now turn to a proof of the following deep result:

Theorem 3.7 If χ 6= χ0, then L(1, χ) 6= 0.

There are several proofs of this fact, some involving algebraic number
theory (among them Dirichlet’s original argument), and others involving
complex analysis. Here we opt for a more elementary argument that
requires no special knowledge of either of these areas. The proof splits
in two cases, depending on whether χ is complex or real. A Dirich-
let character is said to be real if it takes on only real values (that is,
+1, −1, or 0) and complex otherwise. In other words, χ is real if and
only if χ(n) = χ(n) for all integers n.



Ibookroot October 20, 2007

266 Chapter 8. DIRICHLET’S THEOREM

Case I: complex Dirichlet characters

This is the easier of the two cases. The proof is by contradiction, and we
use two lemmas.

Lemma 3.8 If s > 1, then
∏
χ

L(s, χ) ≥ 1,

where the product is taken over all Dirichlet characters. In particular the
product is real-valued.

Proof. We have shown earlier that for s > 1

L(s, χ) = exp

(∑
p

log1

(
1

1− χ(p)p−s

))
.

Hence,

∏
χ

L(s, χ) = exp

(∑
χ

∑
p

log1

(
1

1− χ(p)p−s

))

= exp

(∑
χ

∑
p

∞∑

k=1

1
k

χ(pk)
pks

)

= exp

(∑
p

∞∑

k=1

∑
χ

1
k

χ(pk)
pks

)
.

Because of Lemma 2.2 (with ` = 1) we have
∑

χ χ(pk) = ϕ(q)δ1(pk), and
hence

∏
χ

L(s, χ) = exp

(
ϕ(q)

∑
p

∞∑

k=1

1
k

δ1(pk)
pks

)
≥ 1,

since the term in the exponential is non-negative.

Lemma 3.9 The following three properties hold:

(i) If L(1, χ) = 0, then L(1, χ) = 0.

(ii) If χ is non-trivial and L(1, χ) = 0, then

|L(s, χ)| ≤ C|s− 1| when 1 ≤ s ≤ 2.
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(iii) For the trivial Dirichlet character χ0, we have

|L(s, χ0)| ≤ C

|s− 1| when 1 < s ≤ 2.

Proof. The first statement is immediate because L(1, χ) = L(1, χ).
The second statement follows from the mean-value theorem since L(s, χ)
is continuously differentiable for s > 0 when χ is non-trivial. Finally, the
last statement follows because by Proposition 3.3

L(s, χ0) = (1− p−s
1 )(1− p−s

2 ) · · · (1− p−s
N )ζ(s),

and ζ satisfies the similar estimate (3).

We can now conclude the proof that L(1, χ) 6= 0 for χ a non-trivial
complex Dirichlet character. If not, say L(1, χ) = 0, then we also have
L(1, χ) = 0. Since χ 6= χ, there are at least two terms in the product

∏
χ

L(s, χ),

that vanish like |s− 1| as s → 1+. Since only the trivial character con-
tributes a term that grows, and this growth is no worse than O(1/|s− 1|),
we find that the product goes to 0 as s → 1+, contradicting the fact that
it is ≥ 1 by Lemma 3.8.

Case II: real Dirichlet characters

The proof that L(1, χ) 6= 0 when χ is a non-trivial real Dirichlet character
is very different from the earlier complex case. The method we shall
exploit involves summation along hyperbolas. It is a curious fact that
this method was introduced by Dirichlet himself, twelve years after the
proof of his theorem on arithmetic progressions, to establish another
famous result of his: the average order of the divisor function. However,
he made no connection between the proofs of these two theorems. We will
instead proceed by proving first Dirichlet’s divisor theorem, as a simple
example of the method of summation along hyperbolas. Then, we shall
adapt these ideas to prove the fact that L(1, χ) 6= 0. As a preliminary
matter, we need to deal with some simple sums, and their corresponding
integral analogues.

Sums vs. Integrals

Here we use the idea of comparing a sum with its corresponding integral,
which already occurred in the estimate (3) for the zeta function.
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Proposition 3.10 If N is a positive integer, then:

(i)
∑

1≤n≤N

1
n

=
∫ N

1

dx

x
+ O(1) = log N + O(1).

(ii) More precisely, there exists a real number γ, called Euler’s constant,
so that

∑

1≤n≤N

1
n

= log N + γ + O(1/N).

Proof. It suffices to establish the more refined estimate given in
part (ii). Let

γn =
1
n
−

∫ n+1

n

dx

x
.

Since 1/x is decreasing, we clearly have

0 ≤ γn ≤ 1
n
− 1

n + 1
≤ 1

n2
,

so the series
∑∞

n=1 γn converges to a limit which we denote by γ. More-
over, if we estimate

∑
f(n) by

∫
f(x) dx, where f(x) = 1/x2, we find

∞∑

n=N+1

γn ≤
∞∑

n=N+1

1
n2

≤
∫ ∞

N

dx

x2
= O(1/N).

Therefore

N∑

n=1

1
n
−

∫ N

1

dx

x
= γ −

∞∑

n=N+1

γn +
∫ N+1

N

dx

x
,

and this last integral is O(1/N) as N →∞.

Proposition 3.11 If N is a positive integer, then

∑

1≤n≤N

1
n1/2

=
∫ N

1

dx

x1/2
+ c′ + O(1/N1/2)

= 2N1/2 + c + O(1/N1/2).

The proof is essentially a repetition of the proof of the previous proposi-
tion, this time using the fact that

∣∣∣∣
1

n1/2
− 1

(n + 1)1/2

∣∣∣∣ ≤
C

n3/2
.
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This last inequality follows from the mean-value theorem applied to
f(x) = x−1/2, between x = n and x = n + 1.

Hyperbolic sums

If F is a function defined on pairs of positive integers, there are three
ways to calculate

SN =
∑ ∑

F (m,n),

where the sum is taken over all pairs of positive integers (m,n) which
satisfy mn ≤ N .

We may carry out the summation in any one of the following three
ways. (See Figure 2.)

(a) Along hyperbolas:

SN =
∑

1≤k≤N

( ∑

nm=k

F (m,n)

)

(b) Vertically:

SN =
∑

1≤m≤N


 ∑

1≤n≤N/m

F (m,n)




(c) Horizontally:

SN =
∑

1≤n≤N


 ∑

1≤m≤N/n

F (m,n)




It is a remarkable fact that one can obtain interesting conclusions from
the obvious fact that these three methods of summation give the same
sum. We apply this idea first in the study of the divisor problem.

Intermezzo: the divisor problem

For a positive integer k, let d(k) denote the number of positive divisors
of k. For example,

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
d(k) 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2
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(c)(a) (b)

Figure 2. The three methods of summation

One observes that the behavior of d(k) as k tends to infinity is rather
irregular, and in fact, it does not seem possible to approximate d(k) by
a simple analytic expression in k. However, it is natural to inquire about
the average size of d(k). In other words, one might ask, what is the
behavior of

1
N

N∑

k=1

d(k) as N →∞?

The answer was provided by Dirichlet, who made use of hyperbolic sums.
Indeed, we observe that

d(k) =
∑

nm=k, 1≤n,m

1.

Theorem 3.12 If k is a positive integer, then

1
N

N∑

k=1

d(k) = log N + O(1).

More precisely,

1
N

N∑

k=1

d(k) = log N + (2γ − 1) + O(1/N1/2),

where γ is Euler’s constant.

Proof. Let SN =
∑N

k=1 d(k). We observed that summing F = 1 along
hyperbolas gives SN . Summing vertically, we find

SN =
∑

1≤m≤N

∑

1≤n≤N/m

1.
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But
∑

1≤n≤N/m 1 = [N/m] = N/m + O(1), where [x] denote the greatest
integer ≤ x. Therefore

SN =
∑

1≤m≤N

(N/m + O(1)) = N


 ∑

1≤m≤N

1/m


 + O(N).

Hence, by part (i) of Proposition 3.10,

SN

N
= log N + O(1)

which gives the first conclusion.
For the more refined estimate we proceed as follows. Consider the

three regions I, II, and III shown in Figure 3. These are defined by

I = {1 ≤ m < N1/2, N1/2 < n ≤ N/m},
II = {1 ≤ m ≤ N1/2, 1 ≤ n ≤ N1/2},

III = {N1/2 < m ≤ N/n, 1 ≤ n < N1/2}.

N

III

N1/2

nm = NI

N m

n

II

N1/2

Figure 3. The three regions I, II, and III

If SI , SII , and SIII denote the sums taken over the regions I, II, and
III, respectively, then

SN = SI + SII + SIII

= 2(SI + SII)− SII ,
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since by symmetry SI = SIII . Now we sum vertically, and use (ii) of
Proposition 3.10 to obtain

SI + SII =
∑

1≤m≤N1/2


 ∑

1≤n≤N/m

1




=
∑

1≤m≤N1/2

[N/m]

=
∑

1≤m≤N1/2

(N/m + O(1))

= N


 ∑

1≤m≤N1/2

1/m


 + O(N1/2)

= N log N1/2 + Nγ + O(N1/2).

Finally, SII corresponds to a square so

SII =
∑

1≤m≤N1/2

∑

1≤n≤N1/2

1 = [N1/2]2 = N + O(N1/2).

Putting these estimates together and dividing by N yields the more re-
fined statement in the theorem.

Non-vanishing of the L-function

Our essential application of summation along hyperbolas is to the main
point of this section, namely that L(1, χ) 6= 0 for a non-trivial real Dirich-
let character χ.

Given such a character, let

F (m,n) =
χ(n)

(nm)1/2
,

and define

SN =
∑ ∑

F (m,n),

where the sum is over all integers m,n ≥ 1 that satisfy mn ≤ N .

Proposition 3.13 The following statements are true:

(i) SN ≥ c log N for some constant c > 0.

(ii) SN = 2N1/2L(1, χ) + O(1).
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It suffices to prove the proposition, since the assumption L(1, χ) = 0
would give an immediate contradiction.

We first sum along hyperbolas. Observe that

∑

nm=k

χ(n)
(nm)1/2

=
1

k1/2

∑

n|k
χ(n).

For conclusion (i) it will be enough to show the following lemma.

Lemma 3.14
∑

n|k
χ(n) ≥

{
0 for all k
1 if k = `2 for some ` ∈ Z.

From the lemma, we then get

SN ≥
∑

k=`2, `≤N1/2

1
k1/2

≥ c log N,

where the last inequality follows from (i) in Proposition 3.10.

The proof of the lemma is simple. If k is a power of a prime, say
k = pa, then the divisors of k are 1, p, p2, . . . , pa and

∑

n|k
χ(n) = χ(1) + χ(p) + χ(p2) + · · ·+ χ(pa)

= 1 + χ(p) + χ(p)2 + · · ·+ χ(p)a.

So this sum is equal to




a + 1 if χ(p) = 1,
1 if χ(p) = −1 and a is even,
0 if χ(p) = −1 and a is odd,
1 if χ(p) = 0, that is p|q.

In general, if k = pa1
1 · · · paN

N , then any divisor of k is of the form pb1
1 · · · pbN

N

where 0 ≤ bj ≤ aj for all j. Therefore, the multiplicative property of χ
gives

∑

n|k
χ(n) =

N∏

j=1

(
χ(1) + χ(pj) + χ(p2

j) + · · ·+ χ(paj

j )
)

,

and the proof is complete.

To prove the second statement in the proposition, we write

SN = SI + (SII + SIII),
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where the sums SI , SII , and SIII were defined earlier (see also Figure 3).
We evaluate SI by summing vertically, and SII + SIII by summing hor-
izontally. In order to carry this out we need the following simple results.

Lemma 3.15 For all integers 0 < a < b we have

(i)
b∑

n=a

χ(n)
n1/2

= O(a−1/2),

(ii)
b∑

n=a

χ(n)
n

= O(a−1).

Proof. This argument is similar to the proof of Proposition 3.4; we
use summation by parts. Let sn =

∑
1≤k≤n χ(k), and remember that

|sn| ≤ q for all n. Then

b∑
n=a

χ(n)
n1/2

=
b−1∑
n=a

sn

[
n−1/2 − (n + 1)−1/2

]
+ O(a−1/2)

= O

( ∞∑
n=a

n−3/2

)
+ O(a−1/2).

By comparing the sum
∑∞

n=a n−3/2 with the integral of f(x) = x−3/2,
we find that the former is also O(a−1/2).

A similar argument establishes (ii).

We may now finish the proof of the proposition. Summing vertically
we find

SI =
∑

m<N1/2

1
m1/2


 ∑

N1/2<n≤N/m

χ(n)/n1/2


 .

The lemma together with Proposition 3.11 shows that SI = O(1). Finally
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we sum horizontally to get

SII + SIII =
∑

1≤n≤N1/2

χ(n)
n1/2


 ∑

m≤N/n

1/m1/2




=
∑

1≤n≤N1/2

χ(n)
n1/2

{
2(N/n)1/2 + c + O((n/N)1/2)

}

= 2N1/2
∑

1≤n≤N1/2

χ(n)
n

+ c
∑

1≤n≤N1/2

χ(n)
n1/2

+ O


 1

N1/2

∑

1≤n≤N1/2

1




= A + B + C.

Now observe that the lemma, together with the definition of L(s, χ),
implies

A = 2N1/2L(1, χ) + O(N1/2N−1/2).

Moreover, part (i) of the lemma gives B = O(1), and we also clearly
have C = O(1). Thus SN = 2N1/2L(1, χ) + O(1), which is part (ii) in
Proposition 3.13.

This completes the proof that L(1, χ) 6= 0, and thus the proof of Dirich-
let’s theorem.

4 Exercises

1. Prove that there are infinitely many primes by observing that if there were
only finitely many, p1, . . . , pN , then

N∏
j=1

1
1− 1/pj

≥
∞∑

n=1

1
n

.

2. In the text we showed that there are infinitely many primes of the form 4k + 3
by a modification of Euclid’s original argument. Adapt this technique to prove
the similar result for primes of the form 3k + 2, and for those of the form 6k + 5.

3. Prove that if p and q are relatively prime, then Z∗(p)× Z∗(q) is isomorphic
to Z∗(pq).
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4. Let ϕ(n) denote the number of positive integers ≤ n that are relatively prime
to n. Use the previous exercise to show that if n and m are relatively prime,
then

ϕ(nm) = ϕ(n)ϕ(m).

One can give a formula for the Euler phi-function as follows:

(a) Calculate ϕ(p) when p is prime by counting the number of elements in
Z∗(p).

(b) Give a formula for ϕ(pk) when p is prime and k ≥ 1 by counting the
number of elements in Z∗(pk).

(c) Show that

ϕ(n) = n
∏

i

(
1− 1

pi

)
,

where pi are the primes that divide n.

5. If n is a positive integer, show that

n =
∑

d|n
ϕ(d),

where ϕ is the Euler phi-function.

[Hint: There are precisely ϕ(n/d) integers 1 ≤ m ≤ n with gcd(m,n) = d.]

6. Write down the characters of the groups Z∗(3), Z∗(4), Z∗(5), Z∗(6), and
Z∗(8).

(a) Which ones are real, or complex?

(b) Which ones are even, or odd? (A character is even if χ(−1) = 1, and odd
otherwise).

7. Recall that for |z| < 1,

log1

(
1

1− z

)
=

∑

k≥1

zk

k
.

We have seen that

elog1( 1
1−z ) =

1
1− z

.
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(a) Show that if w = 1/(1− z), then |z| < 1 if and only if Re(w) > 1/2.

(b) Show that if Re(w) > 1/2 and w = ρeiϕ with ρ > 0, |ϕ| < π, then

log1 w = log ρ + iϕ.

[Hint: If eζ = w, then the real part of ζ is uniquely determined and its
imaginary part is determined modulo 2π.]

8. Let ζ denote the zeta function defined for s > 1.

(a) Compare ζ(s) with
∫∞
1

x−s dx to show that

ζ(s) =
1

s− 1
+ O(1) as s → 1+.

(b) Prove as a consequence that

∑
p

1
ps

= log
(

1
s− 1

)
+ O(1) as s → 1+.

9. Let χ0 denote the trivial Dirichlet character mod q, and p1, . . . , pk the distinct
prime divisors of q. Recall that L(s, χ0) = (1− p−s

1 ) · · · (1− p−s
k )ζ(s), and show

as a consequence

L(s, χ0) =
ϕ(q)

q

1
s− 1

+ O(1) as s → 1+.

[Hint: Use the asymptotics for ζ in Exercise 8.]

10. Show that if ` is relatively prime to q, then

∑

p≡`

1
ps

=
1

ϕ(q)
log

(
1

s− 1

)
+ O(1) as s → 1+.

This is a quantitative version of Dirichlet’s theorem.

[Hint: Recall (4).]

11. Use the characters for Z∗(3), Z∗(4), Z∗(5), and Z∗(6) to verify directly that
L(1, χ) 6= 0 for all non-trivial Dirichlet characters modulo q when q = 3, 4, 5,
and 6.

[Hint: Consider in each case the appropriate alternating series.]
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12. Suppose χ is real and non-trivial; assuming the theorem that L(1, χ) 6= 0,
show directly that L(1, χ) > 0.

[Hint: Use the product formula for L(s, χ).]

13. Let {an}∞n=−∞ be a sequence of complex numbers such that an = am if
n = m mod q. Show that the series

∞∑
n=1

an

n

converges if and only if
∑q

n=1 an = 0.

[Hint: Sum by parts.]

14. The series

F (θ) =
∑

|n|6=0

einθ

n
, for |θ| < π,

converges for every θ and is the Fourier series of the function defined on [−π, π]
by F (0) = 0 and

F (θ) =
{

i(−π − θ) if −π ≤ θ < 0
i(π − θ) if 0 < θ ≤ π,

and extended by periodicity (period 2π) to all of R (see Exercise 8 in Chapter 2).
Show also that if θ 6= 0 mod 2π, then the series

E(θ) =
∞∑

n=1

einθ

n

converges, and that

E(θ) =
1
2

log
(

1
2− 2 cos θ

)
+

i

2
F (θ).

15. To sum the series
∑∞

n=1 an/n, with an = am if n = m mod q and
∑q

n=1 an =
0, proceed as follows.

(a) Define

A(m) =
q∑

n=1

anζ−mn where ζ = e2πi/q.
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Note that A(q) = 0. With the notation of the previous exercise, prove
that

∞∑
n=1

an

n
=

1
q

q−1∑
m=1

A(m)E(2πm/q).

[Hint: Use Fourier inversion on Z(q).]

(b) If {am} is odd, (a−m = −am) for m ∈ Z, observe that a0 = aq = 0 and
show that

A(m) =
∑

1≤n<q/2

an(ζ−mn − ζmn).

(c) Still assuming that {am} is odd, show that

∞∑
n=1

an

n
=

1
2q

q−1∑
m=1

A(m)F (2πm/q).

[Hint: Define Ã(m) =
∑q

n=1 anζmn and apply the Fourier inversion for-
mula.]

16. Use the previous exercises to show that

π

3
√

3
= 1− 1

2
+

1
4
− 1

5
+

1
7
− 1

8
+ · · · ,

which is L(1, χ) for the non-trivial (odd) Dirichlet character modulo 3.

5 Problems

1.∗ Here are other series that can be summed by the methods in Exercise 15.

(a) For the non-trivial Dirichlet character modulo 6, L(1, χ) equals

π

2
√

3
= 1− 1

5
+

1
7
− 1

11
+

1
13

+ · · · .

(b) If χ is the odd Dirichlet character modulo 8, then L(1, χ) equals

π

2
√

2
= 1 +

1
3
− 1

5
− 1

7
+

1
9

+
1
11
· · · .

(c) For an odd Dirichlet character modulo 7, L(1, χ) equals

π√
7

= 1 +
1
2
− 1

3
+

1
4
− 1

5
− 1

6
· · · .
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(d) For an even Dirichlet character modulo 8, L(1, χ) equals

log(1 +
√

2)√
2

= 1− 1
3
− 1

5
+

1
7

+
1
9
− 1

11
· · · .

(e) For an even Dirichlet character modulo 5, L(1, χ) equals

2√
5

log
(

1 +
√

5
2

)
= 1− 1

2
− 1

3
+

1
4

+
1
6
− 1

7
− 1

8
+

1
9

+
1
11
· · · .

2. Let d(k) denote the number of positive divisors of k.

(a) Show that if k = pa1
1 · · · pan

n is the prime factorization of k, then

d(k) = (a1 + 1) · · · (an + 1).

Although Theorem 3.12 shows that on “average” d(k) is of the order of log k,
prove the following on the basis of (a):

(b) d(k) = 2 for infinitely many k.

(c) For any positive integer N , there is a constant c > 0 so that d(k) ≥
c(log k)N for infinitely many k. [Hint: Let p1, . . . , pN be N distinct primes,
and consider k of the form (p1p2 · · · pN )m for m = 1, 2, . . ..]

3. Show that if p is relatively prime to q, then

∏
χ

(
1− χ(p)

ps

)
=

(
1

1− pfs

)g

,

where g = ϕ(q)/f , and f is the order of p in Z∗(q) (that is, the smallest n for
which pn ≡ 1 mod q). Here the product is taken over all Dirichlet characters
modulo q.

4. Prove as a consequence of the previous problem that

∏
χ

L(s, χ) =
∑
n≥1

an

ns
,

where an ≥ 0, and the product is over all Dirichlet characters modulo q.
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Appendix : Integration

This appendix is meant as a quick review of the definition and main
properties of the Riemann integral on R, and integration of appropriate
continuous functions on Rd. Our exposition is brief since we assume that
the reader already has some familiarity with this material.

We begin with the theory of Riemann integration on a closed and
bounded interval on the real line. Besides the standard results about
the integral, we also discuss the notion of sets of measure 0, and give
a necessary and sufficient condition on the set of discontinuities of a
function that guarantee its integrability.

We also discuss multiple and repeated integrals. In particular, we
extend the notion of integration to the entire space Rd by restricting
ourselves to functions that decay fast enough at infinity.

1 Definition of the Riemann integral

Let f be a bounded real-valued function defined on the closed interval
[a, b] ⊂ R. By a partition P of [a, b] we mean a finite sequence of num-
bers x0, x1, . . . , xN with

a = x0 < x1 < · · · < xN−1 < xN = b.

Given such a partition, we let Ij denote the interval [xj−1, xj ] and write
|Ij | for its length, namely |Ij | = xj − xj−1. We define the upper and
lower sums of f with respect to P by

U(P, f) =
N∑

j=1

[ sup
x∈Ij

f(x)] |Ij | and L(P, f) =
N∑

j=1

[ inf
x∈Ij

f(x)] |Ij |.

Note that the infimum and supremum exist because by assumption, f
is bounded. Clearly U(P, f) ≥ L(P, f), and the function f is said to be
Riemann integrable, or simply integrable, if for every ε > 0 there
exists a partition P such that

U(P, f)− L(P, f) < ε.

To define the value of the integral of f , we need to make a simple yet
important observation. A partition P ′ is said to be a refinement of the
partition P if P ′ is obtained from P by adding points. Then, adding one
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point at a time, it is easy to check that

U(P ′, f) ≤ U(P, f) and L(P ′, f) ≥ L(P, f).

From this, we see that if P1 and P2 are two partitions of [a, b],
then

U(P1, f) ≥ L(P2, f),

since it is possible to take P ′ as a common refinement of both P1 and P2

to obtain

U(P1, f) ≥ U(P ′, f) ≥ L(P ′, f) ≥ L(P2, f).

Since f is bounded we see that both

U = inf
P
U(P, f) and L = sup

P
L(P, f)

exist (where the infimum and supremum are taken over all partitions of
[a, b]), and also that U ≥ L . Moreover, if f is integrable we must have
U = L, and we define

∫ b
a f(x) dx to be this common value.

Finally, a bounded complex-valued function f = u + iv is said to be
integrable if its real and imaginary parts u and v are integrable, and we
define

∫ b

a
f(x) dx =

∫ b

a
u(x) dx + i

∫ b

a
v(x) dx.

For example, the constants are integrable functions and it is clear that
if c ∈ C, then

∫ b
a c dx = c(b− a). Also, continuous functions are inte-

grable. This is because a continuous function on a closed and bounded
interval [a, b] is uniformly continuous, that is, given ε > 0 there exists δ
such that if |x− y| < δ then |f(x)− f(y)| < ε. So if we choose n with
(b− a)/n < δ, then the partition P given by

a, a +
b− a

n
, . . . , a + k

b− a

n
, . . . , a + (n− 1)

b− a

n
, b

satisfies U(P, f)− L(P, f) ≤ ε(b− a).

1.1 Basic properties

Proposition 1.1 If f and g are integrable on [a, b], then:

(i) f + g is integrable, and
∫ b
a f(x) + g(x) dx =

∫ b
a f(x) dx +

∫ b
a g(x) dx.
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(ii) If c ∈ C, then
∫ b
a cf(x) dx = c

∫ b
a f(x) dx.

(iii) If f and g are real-valued and f(x) ≤ g(x), then
∫ b
a f(x) dx

≤ ∫ b
a g(x) dx.

(iv) If c ∈ [a, b], then
∫ b
a f(x) dx =

∫ c
a f(x) dx +

∫ b
c f(x) dx.

Proof. For property (i) we may assume that f and g are real-valued.
If P is a partition of [a, b], then

U(P, f + g) ≤ U(P, f) + U(P, g) and L(P, f + g) ≥ L(P, f) + L(P, g).

Given ε > 0, there exist partitions P1 and P2 such that U(P1, f)− L(P1, f) <
ε and U(P2, g)− L(P2, g) < ε, so that if P0 is a common refinement of
P1 and P2, we get

U(P0, f + g)− L(P0, f + g) < 2ε.

So f + g is integrable, and if we let I = infP U(P, f + g) = supP L(P, f +
g), then we see that

I ≤ U(P0, f + g) + 2ε ≤ U(P0, f) + U(P0, g) + 2ε

≤
∫ b

a
f(x) dx +

∫ b

a
g(x) dx + 4ε.

Similarly I ≥ ∫ b
a f(x) dx +

∫ b
a g(x) dx− 4ε, which proves that

∫ b
a f(x) +

g(x) dx =
∫ b
a f(x) dx +

∫ b
a g(x) dx. The second and third parts of the

proposition are just as easy to prove. For the last property, simply refine
partitions of [a, b] by adding the point c.

Another important property we need to prove is that fg is integrable
whenever f and g are integrable.

Lemma 1.2 If f is real-valued integrable on [a, b] and ϕ is a real-valued
continuous function on R, then ϕ ◦ f is also integrable on [a, b].

Proof. Let ε > 0 and remember that f is bounded, say |f | ≤ M . Since
ϕ is uniformly continuous on [−M, M ] we may choose δ > 0 so that if
s, t ∈ [−M, M ] and |s− t| < δ, then |ϕ(s)− ϕ(t)| < ε. Now choose a par-
tition P = {x0, . . . , xN} of [a, b] with U(P, f)− L(P, f) < δ2. Let Ij =
[xj−1, xj ] and distinguish two classes: we write j ∈ Λ if supx∈Ij

f(x)−
infx∈Ij

f(x) < δ so that by construction

sup
x∈Ij

ϕ ◦ f(x)− inf
x∈Ij

ϕ ◦ f(x) < ε.
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Otherwise, we write j ∈ Λ′ and note that

δ
∑

j∈Λ′
|Ij | ≤

∑

j∈Λ′
[ sup
x∈Ij

f(x)− inf
x∈Ij

f(x)] |Ij | ≤ δ2

so
∑

j∈Λ′ |Ij | < δ. Therefore, separating the cases j ∈ Λ and j ∈ Λ′ we
find that

U(P,ϕ ◦ f)− L(P, ϕ ◦ f) ≤ ε(b− a) + 2Bδ,

where B is a bound for ϕ on [−M, M ]. Since we can also choose δ < ε,
we see that the proposition is proved.

¿From the lemma we get the following facts:

• If f and g are integrable on [a, b], then the product fg is integrable
on [a, b].

This follows from the lemma with ϕ(t) = t2, and the fact that fg =
1
4

(
[f + g]2 − [f − g]2

)
.

• If f is integrable on [a, b], then the function |f | is integrable, and∣∣∣
∫ b
a f(x) dx

∣∣∣ ≤ ∫ b
a |f(x)| dx.

We can take ϕ(t) = |t| to see that |f | is integrable. Moreover, the in-
equality follows from (iii) in Proposition 1.1.

We record two results that imply integrability.

Proposition 1.3 A bounded monotonic function f on an interval [a, b]
is integrable.

Proof. We may assume without loss of generality that a = 0, b = 1,
and f is monotonically increasing. Then, for each N , we choose the
uniform partition PN given by xj = j/N for all j = 0, . . . , N . If αj =
f(xj), then we have

U(PN , f) =
1
N

N∑

j=1

αj and L(PN , f) =
1
N

N∑

j=1

αj−1.

Therefore, if |f(x)| ≤ B for all x we have

U(PN , f)− L(PN , f) =
αN − α0

N
≤ 2B

N
,

and the proposition is proved.
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Proposition 1.4 Let f be a bounded function on the compact interval
[a, b]. If c ∈ (a, b), and if for all small δ > 0 the function f is integrable
on the intervals [a, c− δ] and [c + δ, b], then f is integrable on [a, b].

Proof. Suppose |f | ≤ M and let ε > 0. Choose δ > 0 (small) so
that 4δM ≤ ε/3. Now let P1 and P2 be partitions of [a, c− δ] and [c +
δ, b] so that for each i = 1, 2 we have U(Pi, f)− L(Pi, f) < ε/3. This is
possible since f is integrable on each one of the intervals. Then by taking
as a partition P = P1 ∪ {c− δ} ∪ {c + δ} ∪ P2 we immediately see that
U(P, f)− L(P, f) < ε.

We end this section with a useful approximation lemma. Recall that
a function on the circle is the same as a 2π-periodic function on R.

Lemma 1.5 Suppose f is integrable on the circle and f is bounded by
B. Then there exists a sequence {fk}∞k=1 of continuous functions on the
circle so that

sup
x∈[−π,π]

|fk(x)| ≤ B for all k = 1, 2, . . .,

and
∫ π

−π
|f(x)− fk(x)| dx → 0 as k →∞.

Proof. Assume f is real-valued (in general apply the following argu-
ment to the real and imaginary parts separately). Given ε > 0, we may
choose a partition −π = x0 < x1 < · · · < xN = π of the interval [−π, π]
so that the upper and lower sums of f differ by at most ε. Denote by f∗

the step function defined by

f∗(x) = sup
xj−1≤y≤xj

f(y) if x ∈ [xj−1, xj) for 1 ≤ j ≤ N .

By construction we have |f∗| ≤ B, and moreover

(1)
∫ π

−π
|f∗(x)− f(x)| dx =

∫ π

−π
(f∗(x)− f(x)) dx < ε.

Now we can modify f∗ to make it continuous and periodic yet still ap-
proximate f in the sense of the lemma. For small δ > 0, let f̃(x) = f∗(x)
when the distance of x from any of the division points x0, . . . , xN is
≥ δ. In the δ-neighborhood of xj for j = 1, . . . , N − 1, define f̃(x) to be
the linear function for which f̃(xj ± δ) = f∗(xj ± δ). Near x0 = −π, f̃



Ibookroot October 20, 2007

286 Appendix: INTEGRATION

f∗

x3x1 x2

f̃

x1 x2 x3

x2 − δ x2 + δ

x0 x0

Figure 1. Portions of the functions f∗ and f̃

is linear with f̃(−π) = 0 and f̃(−π + δ) = f∗(−π + δ). Similarly, near
xN = π the function f̃ is linear with f̃(π) = 0 and f̃(π − δ) = f∗(π − δ).
In Figure 1 we illustrate the situation near x0 = −π. In the second pic-
ture the graph of f̃ is shifted slightly below to clarify the situation.

Then, since f̃(−π) = f̃(π), we may extend f̃ to a continuous and 2π-
periodic function on R. The absolute value of this extension is also
bounded by B. Moreover, f̃ differs from f∗ only in the N intervals of
length 2δ surrounding the division points. Thus

∫ π

−π
|f∗(x)− f̃(x)| dx ≤ 2BN(2δ).

If we choose δ sufficiently small, we get

(2)
∫ π

−π
|f∗(x)− f̃(x)| dx < ε.

As a result, equations (1), (2), and the triangle inequality yield
∫ π

−π
|f(x)− f̃(x)| dx < 2ε.

Denoting by fk the f̃ so constructed, when 2ε = 1/k, we see that the
sequence {fk} has the properties required by the lemma.

1.2 Sets of measure zero and discontinuities of integrable func-
tions

We observed that all continuous functions are integrable. By modifying
the argument slightly, one can show that all piecewise continuous func-
tions are also integrable. In fact, this is a consequence of Proposition 1.4
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applied finitely many times. We now turn to a more careful study of the
discontinuities of integrable functions.

We start with a definition1: a subset E of R is said to have measure 0
if for every ε > 0 there exists a countable family of open intervals {Ik}∞k=1

such that

(i) E ⊂ ⋃∞
k=1 Ik,

(ii)
∑∞

k=1 |Ik| < ε, where |Ik| denotes the length of the interval Ik.

The first condition says that the union of the intervals covers E, and the
second that this union is small. The reader will have no difficulty proving
that any finite set of points has measure 0. A more subtle argument is
needed to prove that a countable set of points has measure 0. In fact,
this result is contained in the following lemma.

Lemma 1.6 The union of countably many sets of measure 0 has mea-
sure 0.

Proof. Say E1, E2, . . . are sets of measure 0, and let E = ∪∞i=1Ei. Let
ε > 0, and for each i choose open interval Ii,1, Ii,2, . . . so that

Ei ⊂
∞⋃

k=1

Ii,k and
∞∑

k=1

|Ii,k| < ε/2i.

Now clearly we have E ⊂ ⋃∞
i,k=1 Ii,k, and

∞∑

i=1

∞∑

k=1

|Ii,k| ≤
∞∑

i=1

ε

2i
≤ ε,

as was to be shown.

An important observation is that if E has measure 0 and is com-
pact, then it is possible to find a finite number of open intervals Ik,
k = 1, . . . , N , that satisfy the two conditions (i) and (ii) above.

We can prove the characterization of Riemann integrable functions in
terms of their discontinuities.

Theorem 1.7 A bounded function f on [a, b] is integrable if and only if
its set of discontinuities has measure 0.

1A systematic study of the measure of sets arises in the theory of Lebesgue integration,
which is taken up in Book III.
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We write J = [a, b] and I(c, r) = (c− r, c + r) for the open interval
centered at c of radius r > 0. Define the oscillation of f on I(c, r) by

osc(f, c, r) = sup |f(x)− f(y)|

where the supremum is taken over all x, y ∈ J ∩ I(c, r). This quantity
exists since f is bounded. Define the oscillation of f at c by

osc(f, c) = lim
r→0

osc(f, c, r).

This limit exists because osc(f, c, r) is ≥ 0 and a decreasing function of
r. The point is that f is continuous at c if and only if osc(f, c) = 0. This
is clear from the definitions. For each ε > 0 we define a set Aε by

Aε = {c ∈ J : osc(f, c) ≥ ε}.

Having done that, we see that the set of points in J where f is discon-
tinuous is simply

⋃
ε>0 Aε. This is an important step in the proof of our

theorem.

Lemma 1.8 If ε > 0, then the set Aε is closed and therefore compact.

Proof. The argument is simple. Suppose cn ∈ Aε converges to c
and assume that c /∈ Aε. Write osc(f, c) = ε− δ where δ > 0. Select r
so that osc(f, c, r) < ε− δ/2, and choose n with |cn − c| < r/2. Then
osc(f, cn, r/2) < ε which implies osc(f, cn) < ε, a contradiction.

We are now ready to prove the first part of the theorem. Suppose
that the set D of discontinuities of f has measure 0, and let ε > 0.
Since Aε ⊂ D, we can cover Aε by a finite number of open intervals,
say I1, . . . , IN , whose total length is < ε. The complement of this union
I of intervals is compact, and around each point z in this complement we
can find an interval Fz with supx,y∈Fz

|f(x)− f(y)| ≤ ε, simply because
z /∈ Aε. We may now choose a finite subcovering of ∪z∈IcIz, which we
denote by IN+1, . . . , IN ′ . Now, taking all the end points of the intervals
I1, I2, . . . , IN ′ we obtain a partition P of [a, b] with

U(P, f)− L(P, f) ≤ 2M
N∑

j=1

|Ij |+ ε(b− a) ≤ Cε.

Hence f is integrable on [a, b], as was to be shown.
Conversely, suppose that f is integrable on [a, b], and let D be its

set of discontinuities. Since D equals ∪∞n=1A1/n, it suffices to prove
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that each A1/n has measure 0. Let ε > 0 and choose a partition P =
{x0, x1, . . . , xN} so that U(P, f)− L(P, f) < ε/n. Then, if A1/n inter-
sects Ij = (xj−1, xj) we must have supx∈Ij

f(x)− infx∈Ij
f(x) ≥ 1/n, and

this shows that
1
n

∑

{j:Ij∩A1/n 6=∅}
|Ij | ≤ U(P, f)− L(P, f) < ε/n.

So by taking intervals intersecting A1/n and making them slightly larger,
we can cover A1/n with open intervals of total length ≤ 2ε. Therefore
A1/n has measure 0, and we are done.

Note that incidentally, this gives another proof that fg is integrable
whenever f and g are.

2 Multiple integrals

We assume that the reader is familiar with the standard theory of multi-
ple integrals of functions defined on bounded sets. Here, we give a quick
review of the main definitions and results of this theory. Then, we de-
scribe the notion of “improper” multiple integration where the range of
integration is extended to all of Rd. This is relevant to our study of the
Fourier transform. In the spirit of Chapters 5 and 6, we shall define the
integral of functions that are continuous and satisfy an adequate decay
condition at infinity.

Recall that the vector space Rd consists of all d-tuples of real numbers
x = (x1, x2, . . . , xd) with xj ∈ R, where addition and multiplication by
scalars are defined componentwise.

2.1 The Riemann integral in Rd

Definitions

The notion of Riemann integration on a rectangle R ⊂ Rd is an imme-
diate generalization of the notion of Riemann integration on an interval
[a, b] ⊂ R. We restrict our attention to continuous functions; these are
always integrable.

By a closed rectangle in Rd, we mean a set of the form

R = {aj ≤ xj ≤ bj : 1 ≤ j ≤ d}
where aj , bj ∈ R for 1 ≤ j ≤ n. In other words, R is the product of the
one-dimensional intervals [aj , bj ]:

R = [a1, b1]× · · · × [ad, bd].
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If Pj is a partition of the closed interval [aj , bj ], then we call
P = (P1, . . . , Pd) a partition of R; and if Sj is a subinterval of the
partition Pj , then S = S1 × · · · × Sd is a subrectangle of the partition
P . The volume |S| of a subrectangle S is naturally given by the product
of the length of its sides |S| = |S1| × · · · × |Sd|, where |Sj | denotes the
length of the interval Sj .

We are now ready to define the notion of integral over R. Given
a bounded real-valued function f defined on R and a partition P , we
define the upper and lower sums of f with respect to P by

U(P, f) =
∑

[sup
x∈S

f(x)] |S| and L(P, f) =
∑

[ inf
x∈S

f(x)] |S|,

where the sums are taken over all subrectangles of the partition P . These
definitions are direct generalizations of the analogous notions in one di-
mension.

A partition P ′ = (P ′1, . . . , P
′
d) is a refinement of P = (P1, . . . , Pd) if

each P ′j is a refinement of Pj . Arguing with these refinements as we did
in the one-dimensional case, we see that if we define

U = inf
P

U(P, f) and L = sup
P

L(P, f),

then both U and L exist, are finite, and U ≥ L. We say that f is Rie-
mann integrable on R if for every ε > 0 there exists a partition P so
that

U(P, f)− L(P, f) < ε.

This implies that U = L, and this common value, which we shall denote
by either

∫

R
f(x1, . . . , xd) dx1 · · · dxd,

∫

R
f(x) dx, or

∫

R
f,

is by definition the integral of f over R. If f is complex-valued, say
f(x) = u(x) + iv(x), where u and v are real-valued, we naturally define

∫

R
f(x) dx =

∫

R
u(x) dx + i

∫

R
v(x) dx.

In the results that follow, we are primarily interested in continuous
functions. Clearly, if f is continuous on a closed rectangle R then f is
integrable since it is uniformly continuous on R. Also, we note that if
f is continuous on, say, a closed ball B, then we may define its integral
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over B in the following way: if g is the extension of f defined by g(x) = 0
if x /∈ B, then g is integrable on any rectangle R that contains B, and
we may set

∫

B
f(x) dx =

∫

R
g(x) dx.

2.2 Repeated integrals

The fundamental theorem of calculus allows us to compute many one
dimensional integrals, since it is possible in many instances to find an
antiderivative for the integrand. In Rd, this permits the calculation of
multiple integrals, since a d-dimensional integral actually reduces to d
one-dimensional integrals. A precise statement describing this fact is
given by the following.

Theorem 2.1 Let f be a continuous function defined on a closed rect-
angle R ⊂ Rd. Suppose R = R1 ×R2 where R1 ⊂ Rd1 and R2 ⊂ Rd2

with d = d1 + d2. If we write x = (x1, x2) with xi ∈ Rdi , then F (x1) =∫
R2

f(x1, x2) dx2 is continuous on R1, and we have

∫

R
f(x) dx =

∫

R1

(∫

R2

f(x1, x2) dx2

)
dx1.

Proof. The continuity of F follows from the uniform continuity of f
on R and the fact that

|F (x1)− F (x′1)| ≤
∫

R2

|f(x1, x2)− f(x′1, x2)| dx2.

To prove the identity, let P1 and P2 be partitions of R1 and R2, respec-
tively. If S and T are subrectangles in P1 and P2, respectively, then the
key observation is that

sup
S×T

f(x1, x2) ≥ sup
x1∈S

(
sup
x2∈T

f(x1, x2)

)

and

inf
S×T

f(x1, x2) ≤ inf
x1∈S

(
inf

x2∈T
f(x1, x2)

)
.
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Then,

U(P, f) =
∑

S,T

[ sup
S×T

f(x1, x2)] |S × T |

≥
∑

S

∑

T

sup
x1∈S

[ sup
x2∈T

f(x1, x2)] |T | × |S|

≥
∑

S

sup
x1∈S

(∫

R2

f(x1, x2) dx2

)
|S|

≥ U
(

P1,

∫

R2

f(x1, x2) dx2

)
.

Arguing similarly for the lower sums, we find that

L(P, f) ≤ L(P1,

∫

R2

f(x1, x2) dx2) ≤ U(P1,

∫

R2

f(x1, x2) dx2) ≤ U(P, f),

and the theorem follows from these inequalities.

Repeating this argument, we find as a corollary that if f is continuous
on the rectangle R ⊂ Rd given by R = [a1, b1]× · · · [ad, bd], then

∫

R
f(x) dx =

∫ b1

a1

(∫ b2

a2

· · ·
(∫ bd

ad

f(x1, . . . , xd) dxd

)
. . . dx2

)
dx1,

where the right-hand side denotes d-iterates of one-dimensional integrals.
It is also clear from the theorem that we can interchange the order of
integration in the repeated integral as desired.

2.3 The change of variables formula

A diffeomorphism of class C1, g : A → B, is a mapping that is contin-
uously differentiable, invertible, and whose inverse g−1 : B → A is also
continuously differentiable. We denote by Dg the Jacobian or derivative
of g. Then, the change of variables formula says the following.

Theorem 2.2 Suppose A and B are compact subsets of Rd and
g : A → B is a diffeomorphism of class C1. If f is continuous on B,
then ∫

g(A)
f(x) dx =

∫

A
f(g(y)) |det(Dg)(y)| dy.

The proof of this theorem consists first of an analysis of the special
situation when g is a linear transformation L. In this case, if R is a
rectangle, then

|g(R)| = | det(L)| |R|,
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which explains the term | det(Dg)|. Indeed, this term corresponds to the
new infinitesimal element of volume after the change of variables.

2.4 Spherical coordinates

An important application of the change of variables formula is to the case
of polar coordinates in R2, spherical coordinates in R3, and their general-
ization in Rd. These are particularly important when the function, or set
we are integrating over, exhibit some rotational (or spherical) symme-
tries. The cases d = 2 and d = 3 were given in Chapter 6. More generally,
the spherical coordinates system in Rd is given by x = g(r, θ1, . . . , θd−1)
where 




x1 = r sin θ1 sin θ2 · · · sin θd−2 cos θd−1,
x2 = r sin θ1 sin θ2 · · · sin θd−2 sin θd−1,
...
xd−1 = r sin θ1 sin θ2,
xd = r cos θ1,

with 0 ≤ θi ≤ π for 1 ≤ i ≤ d− 2 and 0 ≤ θd−1 ≤ 2π. The determinant
of the Jacobian of this transformation is given by

rd−1 sind−2 θ1 sind−3 θ2 · · · sin θd−2.

Any point in x ∈ Rd − {0} can be written uniquely as rγ with γ ∈ Sd−1

the unit sphere in Rd. If we define∫

Sd−1
f(γ) dσ(γ) =

∫ π

0

∫ π

0
· · ·

∫ 2π

0
f(g(r, θ)) sind−2 θ1 sind−3 θ2 · · · sin θd−2 dθd−1 · · · dθ1,

then we see that if B(0, N) denotes the ball of radius N centered at the
origin, then

(3)
∫

B(0,N)
f(x) dx =

∫

Sd−1

∫ N

0
f(rγ) rd−1 dr dσ(γ).

In fact, we define the area of the unit sphere Sd−1 ⊂ Rd as

ωd =
∫

Sd−1
dσ(γ).

An important application of spherical coordinates is to the calculation
of the integral

∫
A(R1,R2)

|x|λ dx, where A(R1, R2) denotes the annulus
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A(R1, R2) = {R1 ≤ |x| ≤ R2} and λ ∈ R. Applying polar coordinates,
we find

∫

A(R1,R2)
|x|λ dx =

∫

Sd−1

∫ R2

R1

rλ+d−1 drdσ(γ).

Therefore
∫

A(R1,R2)
|x|λ dx =

{
ωd

λ+d [Rλ+d
2 −Rλ+d

1 ] if λ 6= −d,

ωd[log(R2)− log(R1)] if λ = −d.

3 Improper integrals. Integration over Rd

Most of the theorems we just discussed extend to functions integrated
over all of Rd once we impose some decay at infinity on the functions we
integrate.

3.1 Integration of functions of moderate decrease

For each fixed N > 0 consider the closed cube in Rd centered at the origin
with sides parallel to the axis, and of side length N : QN = {|xj | ≤ N/2 :
1 ≤ j ≤ d}. Let f be a continuous function on Rd. If the limit

lim
N→∞

∫

QN

f(x) dx

exists, we denote it by
∫

Rd

f(x) dx.

We deal with a special class of functions whose integrals over Rd exist.
A continuous function f on Rd is said to be of moderate decrease if
there exists A > 0 such that

|f(x)| ≤ A

1 + |x|d+1
.

Note that if d = 1 we recover the definition given in Chapter 5. An
important example of a function of moderate decrease in R is the Poisson
kernel given by Py(x) = 1

π
y

x2+y2 .

We claim that if f is of moderate decrease, then the above limit exists.
Let IN =

∫
QN

f(x) dx. Each IN exists because f is continuous hence
integrable. For M > N , we have

|IM − IN | ≤
∫

QM−QN

|f(x)| dx.
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Now observe that the set QM −QN is contained in the annulus
A(aN, bM) = {aN ≤ |x| ≤ bM}, where a and b are constants that de-
pend only on the dimension d. This is because the cube QN is contained
in the annulus N/2 ≤ |x| ≤ N

√
d/2, so that we can take a = 1/2 and

b =
√

d/2. Therefore, using the fact that f is of moderate decrease yields

|IM − IN | ≤ A

∫

aN≤|x|≤bM
|x|−d−1 dx.

Now putting λ = −d− 1 in the calculation of the integral of the previous
section, we find that

|IM − IN | ≤ C

(
1

aN
− 1

bM

)
.

So if f is of moderate decrease, we conclude that {IN}∞N=1 is a Cauchy
sequence, and therefore

∫
Rd f(x) dx exists.

Instead of the rectangles QN , we could have chosen the balls BN cen-
tered at the origin and of radius N . Then, if f is of moderate decrease,
the reader should have no difficulties proving that limN→∞

∫
BN

f(x) dx
exists, and that this limit equals limN→∞

∫
QN

f(x) dx.

Some elementary properties of the integrals of functions of moderate
decrease are summarized in Chapter 6.

3.2 Repeated integrals

In Chapters 5 and 6 we claimed that the multiplication formula held for
functions of moderate decrease. This required an appropriate interchange
of integration. Similarly for operators defined in terms of convolutions
(with the Poisson kernel for example).

We now justify the necessary formula for iterated integrals. We only
consider the case d = 2, although the reader will have no difficulty ex-
tending this result to arbitrary dimensions.

Theorem 3.1 Suppose f is continuous on R2 and of moderate decrease.
Then

F (x1) =
∫

R
f(x1, x2) dx2

is of moderate decrease on R, and
∫

R2
f(x) dx =

∫

R

(∫

R
f(x1, x2) dx2

)
dx1.
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Proof. To see why F is of moderate decrease, note first that

|F (x1)| ≤
∫

R

Adx2

1 + (x2
1 + x2

2)3/2
≤

∫

|x2|≤|x1|
+

∫

|x2|≥|x1|
.

In the first integral, we observe that the integrand is ≤ A/(1 + |x1|3), so
∫

|x2|≤|x1|

Adx2

1 + (x2
1 + x2

2)3/2
≤ A

1 + |x1|3
∫

|x2|≤|x1|
dx2 ≤ A′

1 + |x1|2 .

For the second integral, we have
∫

|x2|≥|x1|

Adx2

1 + (x2
1 + x2

2)3/2
≤ A′′

∫

|x2|≥|x1|

dx2

1 + |x2|3 ≤
A′′′

|x1|2 ,

thus F is of moderate decrease. In fact, this argument together with
Theorem 2.1 shows that F is the uniform limit of continuous functions,
thus is also continuous.

To establish the identity we simply use an approximation and Theo-
rem 2.1 over finite rectangles. Write Sc to denote the complement of a
set S. Given ε > 0 choose N so large that

∣∣∣∣
∫

R2
f(x1, x2) dx1dx2 −

∫

IN×IN

f(x1, x2) dx1dx2

∣∣∣∣ < ε,

where IN = [−N,N ]. Now we know that

∫

IN×IN

f(x1, x2) dx1dx2 =
∫

IN

(∫

IN

f(x1, x2) dx2

)
dx1.

But this last iterated integral can be written as

=
∫

R

(∫

R
f(x1, x2) dx2

)
dx1−

∫

Ic
N

(∫

R
f(x1, x2) dx2

)
dx1

−
∫

IN

(∫

Ic
N

f(x1, x2) dx2

)
dx1.

We can now estimate
∣∣∣∣∣
∫

IN

(∫

Ic
N

f(x1, x2) dx2

)
dx1

∣∣∣∣∣ ≤ O

(
1

N2

)

+ C

∫

1≤|x1|≤N

(∫

|x2|≥N

dx2

(|x1|+ |y1|)3
)

dx1

≤ O

(
1
N

)
.
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A similar argument shows that
∣∣∣∣∣
∫

Ic
N

(∫

R
f(x1, x2) dx2

)
dx1

∣∣∣∣∣ ≤
C

N
.

Therefore, we can find N so large that
∣∣∣∣
∫

IN×IN

f(x1, x2) dx1dx2 −
∫

R

(∫

R
f(x1, x2) dx2

)
dx1

∣∣∣∣ < ε,

and we are done.

3.3 Spherical coordinates

In Rd, spherical coordinates are given by x = rγ, where r ≥ 0 and γ
belongs to the unit sphere Sd−1. If f is of moderate decrease, then
for each fixed γ ∈ Sd−1, the function of f given by f(rγ)rd−1 is also of
moderate decrease on R. Indeed, we have

∣∣∣f(rγ)rd−1
∣∣∣ ≤ A

rd−1

1 + |rγ|d+1
≤ B

1 + r2
.

As a result, by letting R →∞ in (3) we obtain the formula

∫

Rd

f(x) dx =
∫

Sd−1

∫ ∞

0
f(rγ) rd−1 dr dσ(γ).

As a consequence, if we combine the fact that
∫

Rd

f(R(x)) dx =
∫

Rd

f(x) dx,

whenever R is a rotation, with the identity (3), then we obtain that

(4)
∫

Sd−1
f(R(γ)) dσ(γ) =

∫

Sd−1
f(γ) dσ(γ) .
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Seeley [29] gives an elegant and brief introduction to Fourier series and the
Fourier transform. The authoritative text on Fourier series is Zygmund [36].
For further applications of Fourier analysis to a variety of other topics, see Dym
and McKean [8] and Körner [21]. The reader should also consult the book by
Kahane and Lemarié-Rieusset [20], which contains many historical facts and
other results related to Fourier series.

Chapter 1

The citation is taken from a letter of Fourier to an unknown correspondent
(probably Lagrange), see Herivel [15].

More facts about the early history of Fourier series can be found in Sections
I-III of Riemann’s memoir [27].

Chapter 2

The quote is a translation of an excerpt in Riemann’s paper [27].
For a proof of Littlewood’s theorem (Problem 3), as well as other related

“Tauberian theorems,” see Chapter 7 in Titchmarsh [32].

Chapter 3

The citation is a translation of a passage in Dirichlet’s memoir [6].

Chapter 4

The quote is translated from Hurwitz [17].
The problem of a ray of light reflecting inside a square is discussed in Chap-

ter 23 of Hardy and Wright [13].
The relationship between the diameter of a curve and Fourier coefficients

(Problem 1) is explored in Pfluger [26].
Many topics concerning equidistribution of sequences, including the results in

Problems 2 and 3, are taken up in Kuipers and Niederreiter [22].

Chapter 5

The citation is a free translation of a passage in Schwartz [28].
For topics in finance, see Duffie [7], and in particular Chapter 5 for the Black-

Scholes theory (Problems 1 and 2).
The results in Problems 4, 5, and 6 are worked out in John [19] and Wid-

der [34].
For Problem 7, see Chapter 2 in Wiener [35].
The original proof of the nowhere differentiability of f1 (Problem 8) is in

Hardy [12].

Chapter 6

The quote is an excerpt from Cormack’s Nobel Prize lecture [5].
More about the wave equation, as well as the results in Problems 3, 4, and 5

can be found in Chapter 5 of Folland [9].
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A discussion of the relationship between rotational symmetry, the Fourier
transform, and Bessel functions is in Chapter 4 of Stein and Weiss [31].

For more on the Radon transform, see Chapter 1 in John [18], Helgason [14],
and Ludwig [25].

Chapter 7

The citation is taken from Bingham and Tukey [2].
Proofs of the structure theorem for finite abelian groups (Problem 2) can be

found in Chapter 2 of Herstein [16], Chapter 2 in Lang [23], or Chapter 104 in
Körner [21].

For Problem 4, see Andrews [1], which contains a short proof.

Chapter 8

The citation is from Bochner [3].
For more on the divisor function, see Chapter 18 in Hardy and Wright [13].
Another “elementary” proof that L(1, χ) 6= 0 can be found in Chapter 3 of

Gelfond and Linnik [11].
An alternate proof that L(1, χ) 6= 0 based on algebraic number theory is in

Weyl [33]. Also, two other analytic variants of the proof that L(1, χ) 6= 0 can be
found in Chapter 109 in Körner [21] and Chapter 6 in Serre [30]. See also the
latter reference for Problems 3 and 4.

Appendix

Further details about the results on integration reviewed in the appendix can
be found in Folland [10] (Chapter 4), Buck [4] (Chapter 4), or Lang [24] (Chap-
ter 20).
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Symbol Glossary

The page numbers on the right indicate the first time the symbol or
notation is defined or used. As usual, Z, Q, R and C denote the integers,
the rationals, the reals, and the complex numbers respectively.

4 Laplacian 20, 185
|z|, z Absolute value and complex

conjugate
22

ez Complex exponential 24
sinhx, coshx Hyperbolic sine and hyperbolic

cosine
28

f̂(n), an Fourier coefficient 34
f(θ) ∼ ∑

aneinθ Fourier series 34
SN (f) Partial sum of a Fourier series 35
DN , DR, D̃N , D∗

N Dirichlet kernel, conjugate, and
modified

37, 95, 165

Pr, Py, P(d)
y Poisson kernels 37, 149, 210

O, o Big O and little o notation 42, 62
Ck Functions that are k times dif-

ferentiable
44

f ∗ g Convolution 44, 139, 184, 239
σN , σN (f) Cesàro mean 52, 53
FN , FR Fejér kernel 53, 163
A(r), Ar(f) Abel mean 54, 55
χ[a,b] Characteristic function 61
f(θ+), f(θ−) One-sided limits at jump dis-

continuities
63

Rd, Cd Euclidean spaces 71
X ⊥ Y Orthogonal vectors 72
`2(Z) Square summable sequences 73
R Riemann integrable functions 75
ζ(s) Zeta function 98
[x], 〈x〉 Integer and fractional parts 106
4N , σN,K , 4̃N Delayed means 114, 127, 174
Ht, Ht, H(d)

t Heat kernels 120, 146, 209
M(R) Space of functions of moderate

decrease on R
131
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f̂(ξ) Fourier transform 134, 181
S,S(R),S(Rd) Schwartz space 134, 180
R2

+, R2
+ Upper half-plane and its

closure
149

ϑ(s), Θ(z|τ) Theta functions 155, 156
Γ(s) Gamma function 165
‖x‖, |x|; (x, y), x · y Norm and inner product in

Rd
71, 176

xα, |α|, (
∂
∂x

)α
Monomial, its order, and
differential operator

176

S1, S2, Sd−1 Unit circle in R2, and unit
spheres in R3, Rd

179, 180

Mt, M̃t Spherical mean 194, 216
Jn Bessel function 197, 213
P, Pt,γ Plane 202
R, R∗ Radon and dual Radon

transforms
203, 205

Ad, Vd Area and volume of the
unit sphere in Rd

208

Z(N) Group of N th roots of
unity

219

Z/NZ Group of integers modulo
N

221

G, |G| Abelian group and its or-
der

226, 228

G ≈ H Isomorphic groups 227
G1 ×G2 Direct product of groups 228
Z∗(q) Group of units modulo q 227, 229, 244
Ĝ Dual group of G 231
a|b a divides b 242
gcd(a, b) Greatest common divisor

of a and b
242

ϕ(q) Number of integers rela-
tively prime to q

254

χ, χ0 Dirichlet character, and
trivial Dirichlet character

254

L(s, χ) Dirichlet L-function 256
log1

(
1

1−z

)
, log2 L(s, χ) Logarithms 258, 264

d(k) Number of positive divi-
sors of k

269
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Relevant items that also arise in Book I are listed in this index, preceeded
by the numeral I.

Abel
means, 54
summable, 54

abelian group, 226
absolute value, 23
absorption coefficient, 199
amplitude, 3
annihilation operator, 169
approximation to the identity,

49
attenuation coefficient, 199

Bernoulli
numbers, 97, 167
polynomials, 98

Bernstein’s theorem, 93
Bessel function, 197
Bessel’s inequality, 80
best approximation lemma, 78
Black-Scholes equation, 170
bump functions, 162

Cauchy problem (wave equa-
tion), 185

Cauchy sequence, 24
Cauchy-Schwarz inequality, 72
Cesàro

means, 52
sum, 52
summable, 52

character, 230
trivial (unit), 230

class Ck, 44

closed rectangle, 289
complete vector space, 74
complex

conjugate, 23
exponential, 24

congruent integers, 220
conjugate Dirichlet kernel, 95
convolution, 44, 139, 239
coordinates

spherical in Rd, 293
creation operator, 169
curve, 102

area enclosed, 103
closed, 102
diameter, 125
length, 102
simple, 102

d’Alembert’s formula, 11
delayed means, 114

generalized, 127
descent (method of), 194
dilations, 133, 177
direct product of groups, 228
Dirichlet characters, 254

complex, 265
real, 265

Dirichlet kernel
conjugate (on the circle), 95
modified (on the real line),

165
on the circle, 37

Dirichlet problem
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annulus, 64
rectangle, 28
strip, 170
unit disc, 20

Dirichlet product formula, 256
Dirichlet’s test, 60
Dirichlet’s theorem, 128
discontinuity

jump, 63
of a Riemann integrable

function, 286
divisibility of integers, 242
divisor, 242

greatest common, 242
divisor function, 269, 280
dual

X-ray transform, 212
group, 231
Radon transform, 205

eigenvalues and eigenvectors,
233

energy, 148, 187
of a string, 90

equidistributed sequence, 107
ergodicity, 111
Euclid’s algorithm, 241
Euler

constant γ, 268
identities, 25
phi-function, 254, 276
product formula, 249

even function, 10
expectation, 160
exponential function, 24
exponential sum, 112

fast Fourier transform, 224
Fejér kernel

on the circle, 53
on the real line, 163

Fibonacci numbers, 122

Fourier
coefficient (discrete), 236
coefficient, 16, 34

on Z(N), 223
on a finite abelian group,

235
series, 34
sine coefficient, 15

Fourier inversion
finite abelian group, 235
on Z(N), 223
on R, 141
on Rd, 182

Fourier series, 34, 235
Abel means, 55
Cesàro mean, 53
delayed means, 114
generalized delayed means,

127
lacunary, 114
partial sum, 35
uniqueness, 39

Fourier series convergence
mean square, 70
pointwise, 81, 128

Fourier series divergence, 83
Fourier transform, 134, 136, 181
fractional part, 106
function

Bessel, 197
exponential, 24
gamma, 165
moderate decrease, 131,

179, 294
radial, 182
rapidly decreasing, 135, 178
sawtooth, 60, 83
Schwartz, 135, 180
theta, 155
zeta, 98

gamma function, 165
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Gaussian, 135, 181
Gibbs’s phenomenon, 94
good kernels, 48
greatest common divisor, 242
group (abelian), 226

cyclic, 238
dual, 231
homomorphism, 227
isomorphic, 227
of integers modulo N , 221
of units, 227, 229, 244
order, 228

Hölder condition, 43
harmonic function, 20

mean value property, 152
harmonics, 13
heat equation, 20

d-dimensions, 209
on the real line, 146
steady-state, 20
time-dependent, 20

heat kernel
d-dimensions, 209
of the real line, 146, 156
of the circle, 120, 124, 156

Heisenberg uncertainty princi-
ple, 158, 168, 209

Hermite
functions, 173
operator, 168

Hermitian inner product, 72
Hilbert space, 75
homomorphism, 227
Hooke’s law, 2
Huygens’ principle, 193
hyperbolic cosine and sine func-

tions, 28
hyperbolic sums, 269

inner product, 71
Hermitian, 72

strictly positive definite, 71
integer part, 106
integrable function (Riemann),

31, 281
inverse of a linear operator, 177
isoperimetric inequality, 103,

122

jump discontinuity, 63

Kirchhoff’s formula, 211

L-function, 256
Landau kernels, 164
Laplace operator, 20
Laplacian, 20, 149, 185

polar coordinates, 27
Legendre

expansion, 96
polynomial, 95

light cone
backward, 193, 213
forward, 193

linearity, 6, 22
Lipschitz condition, 82
logarithm

log1, 258
log2, 264

mean value propery, 152
measure zero, 287
moderate decrease (function),

131
modulus, 23
monomial, 176
multi-index, 176
multiplication formula, 140, 183

natural frequency, 3
Newton’s law, 3

of cooling, 19
nowhere differentiable function,

113, 126
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odd function, 10
order of a group, 228
orthogonal elements, 72
orthogonality relations, 232
orthonormal family, 77
oscillation (of a function), 288
overtones, 6, 13

parametrization
arc-length, 103
reverse, 121

Parseval’s identity, 79
finite abelian group, 236

part
fractional, 106
integer, 106

partition
of a rectangle, 290
of an interval, 281

period, 3
periodic function, 10
periodization, 153
phase, 3
Plancherel formula

on Z(N), 223
on R, 143
on Rd, 182

Planck’s constant, 161
plucked string, 17
Poincaré’s inequality, 90
Poisson integral formula, 57
Poisson kernel

d-dimensions, 210
on the unit disc, 37, 55
on the upper half-plane, 149

Poisson kernels,comparison, 157
Poisson summation formula,

154–156, 165, 174
polar coordinates, 179
polynomials

Bernoulli, 98
Legendre, 95

pre-Hilbert space, 75
prime number, 242
primes in arithmetic progres-

sion, 245, 252, 275
probability density, 160
profile, 5
pure tones, 6
Pythagorean theorem, 72

Radon transform, 200, 203
rapid decrease, 135
refinement (partition), 281, 290
relatively prime integers, 242
repeated integrals, 295
Reuleaux triangle, 125
Riemann integrable function, 31,

281, 290
Riemann localization principle,

82
Riemann-Lebesgue lemma, 80
root of unity, 219
rotation, 177

improper, 177
proper, 177

sawtooth function, 60, 83, 84,
94, 99, 278

scaling, 8
Schwartz space, 134, 180
separation of variables, 4, 11
simple harmonic motion, 2
space variables, 185
spectral theorem, 233

commuting family, 233
speed of propagation (finite),

194
spherical

coordinates in Rd, 293
mean, 189
wave, 210

spring constant, 3
standing wave, 4
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subordination principle, 210
subrectangle, 290
summable

Abel, 54
Cesàro, 52

summation by parts, 60
superposition, 6, 14
symmetry-breaking, 83

theta function, 155
functional equation, 155

tone
fundamental, 13
pure, 11

translations, 133, 177
transpose of a linear operator,

177
traveling wave, 4
trigonometric

polynomial, 35
degree, 35

series, 35
Tychonoff’s uniqueness theo-

rem, 172

uncertainty, 160
unit, 229
unitary transformation, 143, 233

variance, 160
vector space, 70
velocity of a wave, 5
velocity of the motion, 7
vibrating string, 90

wave
standing, 4, 13
traveling, 4
velocity, 5

wave equation, 184
d-dimensional, 185
d’Alembert’s formula, 11
is linear, 9
one-dimensional, 7
time reversal, 11

Weierstrass approximation theo-
rem, 54, 63, 144, 163

Weyl
criterion, 112, 123
estimate, 125
theorem, 107

Wirtinger’s inequality, 90, 122

X-ray transform, 200

zeta function, 98, 155, 166, 248
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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.

II. Complex analysis.

III. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of

vii
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problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and Jose Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.

ii
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses, and
has since taken over the teaching of the second round of the series; and
Daniel Levine, who gave valuable help in proof-reading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein
Rami Shakarchi

Princeton, New Jersey
August 2002
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Introduction

... In effect, if one extends these functions by allowing
complex values for the arguments, then there arises
a harmony and regularity which without it would re-
main hidden.

B. Riemann, 1851

When we begin the study of complex analysis we enter a marvelous
world, full of wonderful insights. We are tempted to use the adjectives
magical, or even miraculous when describing the first theorems we learn;
and in pursuing the subject, we continue to be astonished by the elegance
and sweep of the results.

The starting point of our study is the idea of extending a function
initially given for real values of the argument to one that is defined when
the argument is complex. Thus, here the central objects are functions
from the complex plane to itself

f : C → C,

or more generally, complex-valued functions defined on open subsets of C.
At first, one might object that nothing new is gained from this extension,
since any complex number z can be written as z = x+ iy where x, y ∈ R

and z is identified with the point (x, y) in R2.
However, everything changes drastically if we make a natural, but

misleadingly simple-looking assumption on f : that it is differentiable
in the complex sense. This condition is called holomorphicity, and it
shapes most of the theory discussed in this book.

A function f : C → C is holomorphic at the point z ∈ C if the limit

lim
h→0

f(z + h) − f(z)
h

(h ∈ C)

exists. This is similar to the definition of differentiability in the case of
a real argument, except that we allow h to take complex values. The
reason this assumption is so far-reaching is that, in fact, it encompasses
a multiplicity of conditions: so to speak, one for each angle that h can
approach zero.

xv
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Although one might now be tempted to prove theorems about holo-
morphic functions in terms of real variables, the reader will soon discover
that complex analysis is a new subject, one which supplies proofs to the
theorems that are proper to its own nature. In fact, the proofs of the
main properties of holomorphic functions which we discuss in the next
chapters are generally very short and quite illuminating.

The study of complex analysis proceeds along two paths that often
intersect. In following the first way, we seek to understand the univer-
sal characteristics of holomorphic functions, without special regard for
specific examples. The second approach is the analysis of some partic-
ular functions that have proved to be of great interest in other areas of
mathematics. Of course, we cannot go too far along either path without
having traveled some way along the other. We shall start our study with
some general characteristic properties of holomorphic functions, which
are subsumed by three rather miraculous facts:

1. Contour integration: If f is holomorphic in Ω, then for appro-
priate closed paths in Ω ∫

γ

f(z)dz = 0.

2. Regularity: If f is holomorphic, then f is indefinitely differen-
tiable.

3. Analytic continuation: If f and g are holomorphic functions
in Ω which are equal in an arbitrarily small disc in Ω, then f = g
everywhere in Ω.

These three phenomena and other general properties of holomorphic
functions are treated in the beginning chapters of this book. Instead
of trying to summarize the contents of the rest of this volume, we men-
tion briefly several other highlights of the subject.

• The zeta function, which is expressed as an infinite series

ζ(s) =
∞∑

n=1

1
ns
,

and is initially defined and holomorphic in the half-plane Re(s) > 1,
where the convergence of the sum is guaranteed. This function
and its variants (the L-series) are central in the theory of prime
numbers, and have already appeared in Chapter 8 of Book I, where

i
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we proved Dirichlet’s theorem. Here we will prove that ζ extends to
a meromorphic function with a pole at s = 1. We shall see that the
behavior of ζ(s) for Re(s) = 1 (and in particular that ζ does not
vanish on that line) leads to a proof of the prime number theorem.

• The theta function

Θ(z|τ) =
∞∑

n=−∞
eπin2τe2πinz ,

which in fact is a function of the two complex variables z and τ ,
holomorphic for all z, but only for τ in the half-plane Im(τ) > 0.
On the one hand, when we fix τ , and think of Θ as a function of
z, it is closely related to the theory of elliptic (doubly-periodic)
functions. On the other hand, when z is fixed, Θ displays features
of a modular function in the upper half-plane. The function Θ(z|τ)
arose in Book I as a fundamental solution of the heat equation on
the circle. It will be used again in the study of the zeta function, as
well as in the proof of certain results in combinatorics and number
theory given in Chapters 6 and 10.

Two additional noteworthy topics that we treat are: the Fourier trans-
form with its elegant connection to complex analysis via contour integra-
tion, and the resulting applications of the Poisson summation formula;
also conformal mappings, with the mappings of polygons whose inverses
are realized by the Schwarz-Christoffel formula, and the particular case
of the rectangle, which leads to elliptic integrals and elliptic functions.
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1 Preliminaries to Complex
Analysis

The sweeping development of mathematics during the
last two centuries is due in large part to the introduc-
tion of complex numbers; paradoxically, this is based
on the seemingly absurd notion that there are num-
bers whose squares are negative.

E. Borel, 1952

This chapter is devoted to the exposition of basic preliminary material
which we use extensively throughout of this book.

We begin with a quick review of the algebraic and analytic properties
of complex numbers followed by some topological notions of sets in the
complex plane. (See also the exercises at the end of Chapter 1 in Book I.)

Then, we define precisely the key notion of holomorphicity, which is
the complex analytic version of differentiability. This allows us to discuss
the Cauchy-Riemann equations, and power series.

Finally, we define the notion of a curve and the integral of a function
along it. In particular, we shall prove an important result, which we state
loosely as follows: if a function f has a primitive, in the sense that there
exists a function F that is holomorphic and whose derivative is precisely
f , then for any closed curve γ∫

γ

f(z) dz = 0.

This is the first step towards Cauchy’s theorem, which plays a central
role in complex function theory.

1 Complex numbers and the complex plane

Many of the facts covered in this section were already used in Book I.

1.1 Basic properties

A complex number takes the form z = x+ iy where x and y are real,
and i is an imaginary number that satisfies i2 = −1. We call x and y the
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real part and the imaginary part of z, respectively, and we write

x = Re(z) and y = Im(z).

The real numbers are precisely those complex numbers with zero imagi-
nary parts. A complex number with zero real part is said to be purely
imaginary.

Throughout our presentation, the set of all complex numbers is de-
noted by C. The complex numbers can be visualized as the usual Eu-
clidean plane by the following simple identification: the complex number
z = x+ iy ∈ C is identified with the point (x, y) ∈ R2. For example, 0
corresponds to the origin and i corresponds to (0, 1). Naturally, the x
and y axis of R2 are called the real axis and imaginary axis, because
they correspond to the real and purely imaginary numbers, respectively.
(See Figure 1.)

Real axis

Im
ag

in
ar

y 
ax

is

z = x+ iy = (x, y)

x0 1

i

iy

Figure 1. The complex plane

The natural rules for adding and multiplying complex numbers can be
obtained simply by treating all numbers as if they were real, and keeping
in mind that i2 = −1. If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

and also

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + y1x2).
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If we take the two expressions above as the definitions of addition and
multiplication, it is a simple matter to verify the following desirable
properties:

• Commutativity: z1 + z2 = z2 + z1 and z1z2 = z2z1 for all z1, z2∈C.

• Associativity: (z1 + z2) + z3 = z1 + (z2 + z3); and (z1z2)z3 =
z1(z2z3) for z1, z2, z3 ∈ C.

• Distributivity: z1(z2 + z3) = z1z2 + z1z3 for all z1, z2, z3 ∈ C.

Of course, addition of complex numbers corresponds to addition of the
corresponding vectors in the plane R2. Multiplication, however, consists
of a rotation composed with a dilation, a fact that will become transpar-
ent once we have introduced the polar form of a complex number. At
present we observe that multiplication by i corresponds to a rotation by
an angle of π/2.

The notion of length, or absolute value of a complex number is identical
to the notion of Euclidean length in R2. More precisely, we define the
absolute value of a complex number z = x+ iy by

|z| = (x2 + y2)1/2,

so that |z| is precisely the distance from the origin to the point (x, y). In
particular, the triangle inequality holds:

|z + w| ≤ |z| + |w| for all z, w ∈ C.

We record here other useful inequalities. For all z ∈ C we have both
|Re(z)| ≤ |z| and |Im(z)| ≤ |z|, and for all z, w ∈ C

||z| − |w|| ≤ |z − w|.

This follows from the triangle inequality since

|z| ≤ |z − w| + |w| and |w| ≤ |z − w| + |z|.

The complex conjugate of z = x+ iy is defined by

z = x− iy,

and it is obtained by a reflection across the real axis in the plane. In
fact a complex number z is real if and only if z = z, and it is purely
imaginary if and only if z = −z.
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The reader should have no difficulty checking that

Re(z) =
z + z

2
and Im(z) =

z − z

2i
.

Also, one has

|z|2 = zz and as a consequence
1
z

=
z

|z|2 whenever z �= 0.

Any non-zero complex number z can be written in polar form

z = reiθ ,

where r > 0; also θ ∈ R is called the argument of z (defined uniquely
up to a multiple of 2π) and is often denoted by arg z, and

eiθ = cos θ + i sin θ.

Since |eiθ| = 1 we observe that r = |z|, and θ is simply the angle (with
positive counterclockwise orientation) between the positive real axis and
the half-line starting at the origin and passing through z. (See Figure 2.)

r

θ

0

z = reiθ

Figure 2. The polar form of a complex number

Finally, note that if z = reiθ and w = seiϕ, then

zw = rsei(θ+ϕ),

so multiplication by a complex number corresponds to a homothety in
R2 (that is, a rotation composed with a dilation).
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1.2 Convergence

We make a transition from the arithmetic and geometric properties of
complex numbers described above to the key notions of convergence and
limits.

A sequence {z1, z2, . . .} of complex numbers is said to converge to
w ∈ C if

lim
n→∞

|zn − w| = 0, and we write w = lim
n→∞

zn.

This notion of convergence is not new. Indeed, since absolute values in
C and Euclidean distances in R2 coincide, we see that zn converges to w
if and only if the corresponding sequence of points in the complex plane
converges to the point that corresponds to w.

As an exercise, the reader can check that the sequence {zn} converges
to w if and only if the sequence of real and imaginary parts of zn converge
to the real and imaginary parts of w, respectively.

Since it is sometimes not possible to readily identify the limit of a
sequence (for example, limN→∞

∑N
n=1 1/n3), it is convenient to have a

condition on the sequence itself which is equivalent to its convergence. A
sequence {zn} is said to be a Cauchy sequence (or simply Cauchy) if

|zn − zm| → 0 as n,m→ ∞.

In other words, given ε > 0 there exists an integer N > 0 so that
|zn − zm| < ε whenever n,m > N . An important fact of real analysis
is that R is complete: every Cauchy sequence of real numbers converges
to a real number.1 Since the sequence {zn} is Cauchy if and only if the
sequences of real and imaginary parts of zn are, we conclude that every
Cauchy sequence in C has a limit in C. We have thus the following result.

Theorem 1.1 C, the complex numbers, is complete.

We now turn our attention to some simple topological considerations
that are necessary in our study of functions. Here again, the reader will
note that no new notions are introduced, but rather previous notions are
now presented in terms of a new vocabulary.

1.3 Sets in the complex plane

If z0 ∈ C and r > 0, we define the open disc Dr(z0) of radius r cen-
tered at z0 to be the set of all complex numbers that are at absolute

1This is sometimes called the Bolzano-Weierstrass theorem.
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value strictly less than r from z0. In other words,

Dr(z0) = {z ∈ C : |z − z0| < r},

and this is precisely the usual disc in the plane of radius r centered at
z0. The closed disc Dr(z0) of radius r centered at z0 is defined by

Dr(z0) = {z ∈ C : |z − z0| ≤ r},

and the boundary of either the open or closed disc is the circle

Cr(z0) = {z ∈ C : |z − z0| = r}.

Since the unit disc (that is, the open disc centered at the origin and of
radius 1) plays an important role in later chapters, we will often denote
it by D,

D = {z ∈ C : |z| < 1}.

Given a set Ω ⊂ C, a point z0 is an interior point of Ω if there exists
r > 0 such that

Dr(z0) ⊂ Ω.

The interior of Ω consists of all its interior points. Finally, a set Ω is
open if every point in that set is an interior point of Ω. This definition
coincides precisely with the definition of an open set in R2.

A set Ω is closed if its complement Ωc = C − Ω is open. This property
can be reformulated in terms of limit points. A point z ∈ C is said to
be a limit point of the set Ω if there exists a sequence of points zn ∈ Ω
such that zn �= z and limn→∞ zn = z. The reader can now check that a
set is closed if and only if it contains all its limit points. The closure of
any set Ω is the union of Ω and its limit points, and is often denoted by
Ω.

Finally, the boundary of a set Ω is equal to its closure minus its
interior, and is often denoted by ∂Ω.

A set Ω is bounded if there exists M > 0 such that |z| < M whenever
z ∈ Ω. In other words, the set Ω is contained in some large disc. If Ω is
bounded, we define its diameter by

diam(Ω) = sup
z,w∈Ω

|z − w|.

A set Ω is said to be compact if it is closed and bounded. Arguing
as in the case of real variables, one can prove the following.
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Theorem 1.2 The set Ω ⊂ C is compact if and only if every sequence
{zn} ⊂ Ω has a subsequence that converges to a point in Ω.

An open covering of Ω is a family of open sets {Uα} (not necessarily
countable) such that

Ω ⊂
⋃
α

Uα.

In analogy with the situation in R, we have the following equivalent
formulation of compactness.

Theorem 1.3 A set Ω is compact if and only if every open covering of
Ω has a finite subcovering.

Another interesting property of compactness is that of nested sets.
We shall in fact use this result at the very beginning of our study of
complex function theory, more precisely in the proof of Goursat’s theorem
in Chapter 2.

Proposition 1.4 If Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn ⊃ · · · is a sequence of non-empty
compact sets in C with the property that

diam(Ωn) → 0 as n→ ∞,

then there exists a unique point w ∈ C such that w ∈ Ωn for all n.

Proof. Choose a point zn in each Ωn. The condition diam(Ωn) → 0
says precisely that {zn} is a Cauchy sequence, therefore this sequence
converges to a limit that we call w. Since each set Ωn is compact we
must have w ∈ Ωn for all n. Finally, w is the unique point satisfying this
property, for otherwise, if w′ satisfied the same property with w′ �= w
we would have |w − w′| > 0 and the condition diam(Ωn) → 0 would be
violated.

The last notion we need is that of connectedness. An open set Ω ⊂ C is
said to be connected if it is not possible to find two disjoint non-empty
open sets Ω1 and Ω2 such that

Ω = Ω1 ∪ Ω2.

A connected open set in C will be called a region. Similarly, a closed
set F is connected if one cannot write F = F1 ∪ F2 where F1 and F2 are
disjoint non-empty closed sets.

There is an equivalent definition of connectedness for open sets in terms
of curves, which is often useful in practice: an open set Ω is connected
if and only if any two points in Ω can be joined by a curve γ entirely
contained in Ω. See Exercise 5 for more details.
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2 Functions on the complex plane

2.1 Continuous functions

Let f be a function defined on a set Ω of complex numbers. We say that
f is continuous at the point z0 ∈ Ω if for every ε > 0 there exists δ > 0
such that whenever z ∈ Ω and |z − z0| < δ then |f(z) − f(z0)| < ε. An
equivalent definition is that for every sequence {z1, z2, . . .} ⊂ Ω such that
lim zn = z0, then lim f(zn) = f(z0).

The function f is said to be continuous on Ω if it is continuous at
every point of Ω. Sums and products of continuous functions are also
continuous.

Since the notions of convergence for complex numbers and points in
R2 are the same, the function f of the complex argument z = x+ iy is
continuous if and only if it is continuous viewed as a function of the two
real variables x and y.

By the triangle inequality, it is immediate that if f is continuous, then
the real-valued function defined by z 	→ |f(z)| is continuous. We say that
f attains a maximum at the point z0 ∈ Ω if

|f(z)| ≤ |f(z0)| for all z ∈ Ω,

with the inequality reversed for the definition of a minimum.

Theorem 2.1 A continuous function on a compact set Ω is bounded and
attains a maximum and minimum on Ω.

This is of course analogous to the situation of functions of a real vari-
able, and we shall not repeat the simple proof here.

2.2 Holomorphic functions

We now present a notion that is central to complex analysis, and in
distinction to our previous discussion we introduce a definition that is
genuinely complex in nature.

Let Ω be an open set in C and f a complex-valued function on Ω. The
function f is holomorphic at the point z0 ∈ Ω if the quotient

(1)
f(z0 + h) − f(z0)

h

converges to a limit when h→ 0. Here h ∈ C and h �= 0 with z0 + h ∈ Ω,
so that the quotient is well defined. The limit of the quotient, when it
exists, is denoted by f ′(z0), and is called the derivative of f at z0:

f ′(z0) = lim
h→0

f(z0 + h) − f(z0)
h

.
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It should be emphasized that in the above limit, h is a complex number
that may approach 0 from any direction.

The function f is said to be holomorphic on Ω if f is holomorphic
at every point of Ω. If C is a closed subset of C, we say that f is
holomorphic on C if f is holomorphic in some open set containing C.
Finally, if f is holomorphic in all of C we say that f is entire.

Sometimes the terms regular or complex differentiable are used in-
stead of holomorphic. The latter is natural in view of (1) which mimics
the usual definition of the derivative of a function of one real variable.
But despite this resemblance, a holomorphic function of one complex
variable will satisfy much stronger properties than a differentiable func-
tion of one real variable. For example, a holomorphic function will actu-
ally be infinitely many times complex differentiable, that is, the existence
of the first derivative will guarantee the existence of derivatives of any
order. This is in contrast with functions of one real variable, since there
are differentiable functions that do not have two derivatives. In fact more
is true: every holomorphic function is analytic, in the sense that it has a
power series expansion near every point (power series will be discussed
in the next section), and for this reason we also use the term analytic
as a synonym for holomorphic. Again, this is in contrast with the fact
that there are indefinitely differentiable functions of one real variable
that cannot be expanded in a power series. (See Exercise 23.)

Example 1. The function f(z) = z is holomorphic on any open set in
C, and f ′(z) = 1. In fact, any polynomial

p(z) = a0 + a1z + · · · + anz
n

is holomorphic in the entire complex plane and

p′(z) = a1 + · · · + nanz
n−1.

This follows from Proposition 2.2 below.

Example 2. The function 1/z is holomorphic on any open set in C that
does not contain the origin, and f ′(z) = −1/z2.

Example 3. The function f(z) = z is not holomorphic. Indeed, we have

f(z0 + h) − f(z0)
h

=
h

h

which has no limit as h→ 0, as one can see by first taking h real and
then h purely imaginary.



10 Chapter 1. PRELIMINARIES TO COMPLEX ANALYSIS

An important family of examples of holomorphic functions, which
we discuss later, are the power series. They contain functions such as
ez, sin z, or cos z, and in fact power series play a crucial role in the theory
of holomorphic functions, as we already mentioned in the last paragraph.
Some other examples of holomorphic functions that will make their ap-
pearance in later chapters were given in the introduction to this book.

It is clear from (1) above that a function f is holomorphic at z0 ∈ Ω
if and only if there exists a complex number a such that

(2) f(z0 + h) − f(z0) − ah = hψ(h),

where ψ is a function defined for all small h and limh→0 ψ(h) = 0. Of
course, we have a = f ′(z0). From this formulation, it is clear that f is
continuous wherever it is holomorphic. Arguing as in the case of one real
variable, using formulation (2) in the case of the chain rule (for exam-
ple), one proves easily the following desirable properties of holomorphic
functions.

Proposition 2.2 If f and g are holomorphic in Ω, then:

(i) f + g is holomorphic in Ω and (f + g)′ = f ′ + g′.

(ii) fg is holomorphic in Ω and (fg)′ = f ′g + fg′.

(iii) If g(z0) �= 0, then f/g is holomorphic at z0 and

(f/g)′ =
f ′g − fg′

g2
.

Moreover, if f : Ω → U and g : U → C are holomorphic, the chain rule
holds

(g ◦ f)′(z) = g′(f(z))f ′(z) for all z ∈ Ω.

Complex-valued functions as mappings

We now clarify the relationship between the complex and real deriva-
tives. In fact, the third example above should convince the reader that
the notion of complex differentiability differs significantly from the usual
notion of real differentiability of a function of two real variables. Indeed,
in terms of real variables, the function f(z) = z corresponds to the map
F : (x, y) 	→ (x,−y), which is differentiable in the real sense. Its deriva-
tive at a point is the linear map given by its Jacobian, the 2 × 2 matrix
of partial derivatives of the coordinate functions. In fact, F is linear and
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is therefore equal to its derivative at every point. This implies that F is
actually indefinitely differentiable. In particular the existence of the real
derivative need not guarantee that f is holomorphic.

This example leads us to associate more generally to each complex-
valued function f = u+ iv the mapping F (x, y) = (u(x, y), v(x, y)) from
R2 to R2.

Recall that a function F (x, y) = (u(x, y), v(x, y)) is said to be differ-
entiable at a point P0 = (x0, y0) if there exists a linear transformation
J : R2 → R2 such that

(3)
|F (P0 +H) − F (P0) − J(H)|

|H| → 0 as |H| → 0, H ∈ R2.

Equivalently, we can write

F (P0 +H) − F (P0) = J(H) + |H|Ψ(H) ,

with |Ψ(H)| → 0 as |H| → 0. The linear transformation J is unique and
is called the derivative of F at P0. If F is differentiable, the partial
derivatives of u and v exist, and the linear transformation J is described
in the standard basis of R2 by the Jacobian matrix of F

J = JF (x, y) =
(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
.

In the case of complex differentiation the derivative is a complex number
f ′(z0), while in the case of real derivatives, it is a matrix. There is,
however, a connection between these two notions, which is given in terms
of special relations that are satisfied by the entries of the Jacobian matrix,
that is, the partials of u and v. To find these relations, consider the limit
in (1) when h is first real, say h = h1 + ih2 with h2 = 0. Then, if we
write z = x+ iy, z0 = x0 + iy0, and f(z) = f(x, y), we find that

f ′(z0) = lim
h1→0

f(x0 + h1, y0) − f(x0, y0)
h1

=
∂f

∂x
(z0),

where ∂/∂x denotes the usual partial derivative in the x variable. (We fix
y0 and think of f as a complex-valued function of the single real variable
x.) Now taking h purely imaginary, say h = ih2, a similar argument
yields
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f ′(z0) = lim
h2→0

f(x0, y0 + h2) − f(x0, y0)
ih2

=
1
i

∂f

∂y
(z0),

where ∂/∂y is partial differentiation in the y variable. Therefore, if f is
holomorphic we have shown that

∂f

∂x
=

1
i

∂f

∂y
.

Writing f = u+ iv, we find after separating real and imaginary parts
and using 1/i = −i, that the partials of u and v exist, and they satisfy
the following non-trivial relations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

These are the Cauchy-Riemann equations, which link real and complex
analysis.

We can clarify the situation further by defining two differential oper-
ators

∂

∂z
=

1
2

(
∂

∂x
+

1
i

∂

∂y

)
and

∂

∂z
=

1
2

(
∂

∂x
− 1
i

∂

∂y

)
.

Proposition 2.3 If f is holomorphic at z0, then

∂f

∂z
(z0) = 0 and f ′(z0) =

∂f

∂z
(z0) = 2

∂u

∂z
(z0).

Also, if we write F (x, y) = f(z), then F is differentiable in the sense of
real variables, and

det JF (x0, y0) = |f ′(z0)|2.

Proof. Taking real and imaginary parts, it is easy to see that the
Cauchy-Riemann equations are equivalent to ∂f/∂z = 0. Moreover, by
our earlier observation

f ′(z0) =
1
2

(
∂f

∂x
(z0) +

1
i

∂f

∂y
(z0)
)

=
∂f

∂z
(z0),
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and the Cauchy-Riemann equations give ∂f/∂z = 2∂u/∂z. To prove
that F is differentiable it suffices to observe that if H = (h1, h2) and
h = h1 + ih2, then the Cauchy-Riemann equations imply

JF (x0, y0)(H) =
(
∂u

∂x
− i

∂u

∂y

)
(h1 + ih2) = f ′(z0)h ,

where we have identified a complex number with the pair of real and
imaginary parts. After a final application of the Cauchy-Riemann equa-
tions, the above results imply that
(4)

det JF (x0, y0) =
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
=
(
∂u

∂x

)2

+
(
∂u

∂y

)2

=
∣∣∣∣2∂u∂z

∣∣∣∣2 = |f ′(z0)|2.

So far, we have assumed that f is holomorphic and deduced relations
satisfied by its real and imaginary parts. The next theorem contains an
important converse, which completes the circle of ideas presented here.

Theorem 2.4 Suppose f = u+ iv is a complex-valued function defined
on an open set Ω. If u and v are continuously differentiable and satisfy
the Cauchy-Riemann equations on Ω, then f is holomorphic on Ω and
f ′(z) = ∂f/∂z.

Proof. Write

u(x+ h1, y + h2) − u(x, y) =
∂u

∂x
h1 +

∂u

∂y
h2 + |h|ψ1(h)

and

v(x+ h1, y + h2) − v(x, y) =
∂v

∂x
h1 +

∂v

∂y
h2 + |h|ψ2(h),

where ψj(h) → 0 (for j = 1, 2) as |h| tends to 0, and h = h1 + ih2. Using
the Cauchy-Riemann equations we find that

f(z + h) − f(z) =
(
∂u

∂x
− i

∂u

∂y

)
(h1 + ih2) + |h|ψ(h),

where ψ(h) = ψ1(h) + ψ2(h) → 0, as |h| → 0. Therefore f is holomorphic
and

f ′(z) = 2
∂u

∂z
=
∂f

∂z
.
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2.3 Power series

The prime example of a power series is the complex exponential func-
tion, which is defined for z ∈ C by

ez =
∞∑

n=0

zn

n!
.

When z is real, this definition coincides with the usual exponential func-
tion, and in fact, the series above converges absolutely for every z ∈ C.
To see this, note that ∣∣∣∣zn

n!

∣∣∣∣ = |z|n
n!

,

so |ez| can be compared to the series
∑

|z|n/n! = e|z| <∞. In fact, this
estimate shows that the series defining ez is uniformly convergent in every
disc in C.

In this section we will prove that ez is holomorphic in all of C (it is
entire), and that its derivative can be found by differentiating the series
term by term. Hence

(ez)′ =
∞∑

n=0

n
zn−1

n!
=

∞∑
m=0

zm

m!
= ez,

and therefore ez is its own derivative.
In contrast, the geometric series

∞∑
n=0

zn

converges absolutely only in the disc |z| < 1, and its sum there is the
function 1/(1 − z), which is holomorphic in the open set C − {1}. This
identity is proved exactly as when z is real: we first observe

N∑
n=0

zn =
1 − zN+1

1 − z
,

and then note that if |z| < 1 we must have limN→∞ zN+1 = 0.
In general, a power series is an expansion of the form

(5)
∞∑

n=0

anz
n ,
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where an ∈ C. To test for absolute convergence of this series, we must
investigate

∞∑
n=0

|an| |z|n ,

and we observe that if the series (5) converges absolutely for some z0,
then it will also converge for all z in the disc |z| ≤ |z0|. We now prove
that there always exists an open disc (possibly empty) on which the
power series converges absolutely.

Theorem 2.5 Given a power series
∑∞

n=0 anz
n, there exists 0 ≤ R ≤ ∞

such that:

(i) If |z| < R the series converges absolutely.

(ii) If |z| > R the series diverges.

Moreover, if we use the convention that 1/0 = ∞ and 1/∞ = 0, then R
is given by Hadamard’s formula

1/R = lim sup |an|1/n.

The number R is called the radius of convergence of the power series,
and the region |z| < R the disc of convergence. In particular, we
have R = ∞ in the case of the exponential function, and R = 1 for the
geometric series.

Proof. Let L = 1/R where R is defined by the formula in the state-
ment of the theorem, and suppose that L �= 0,∞. (These two easy cases
are left as an exercise.) If |z| < R, choose ε > 0 so small that

(L+ ε)|z| = r < 1.

By the definition L, we have |an|1/n ≤ L+ ε for all large n, therefore

|an| |z|n ≤ {(L+ ε)|z|}n = rn.

Comparison with the geometric series
∑
rn shows that

∑
anz

n con-
verges.

If |z| > R, then a similar argument proves that there exists a sequence
of terms in the series whose absolute value goes to infinity, hence the
series diverges.

Remark. On the boundary of the disc of convergence, |z| = R, the sit-
uation is more delicate as one can have either convergence or divergence.
(See Exercise 19.)
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Further examples of power series that converge in the whole complex
plane are given by the standard trigonometric functions; these are
defined by

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
, and sin z =

∞∑
n=0

(−1)n z2n+1

(2n+ 1)!
,

and they agree with the usual cosine and sine of a real argument whenever
z ∈ R. A simple calculation exhibits a connection between these two
functions and the complex exponential, namely,

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

These are called the Euler formulas for the cosine and sine functions.

Power series provide a very important class of analytic functions that
are particularly simple to manipulate.

Theorem 2.6 The power series f(z) =
∑∞

n=0 anz
n defines a holomor-

phic function in its disc of convergence. The derivative of f is also a
power series obtained by differentiating term by term the series for f ,
that is,

f ′(z) =
∞∑

n=0

nanz
n−1.

Moreover, f ′ has the same radius of convergence as f .

Proof. The assertion about the radius of convergence of f ′ follows
from Hadamard’s formula. Indeed, limn→∞ n1/n = 1, and therefore

lim sup |an|1/n = lim sup |nan|1/n,

so that
∑
anz

n and
∑
nanz

n have the same radius of convergence, and
hence so do

∑
anz

n and
∑
nanz

n−1.
To prove the first assertion, we must show that the series

g(z) =
∞∑

n=0

nanz
n−1

gives the derivative of f . For that, let R denote the radius of convergence
of f , and suppose |z0| < r < R. Write

f(z) = SN (z) +EN (z) ,
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where

SN (z) =
N∑

n=0

anz
n and EN (z) =

∞∑
n=N+1

anz
n.

Then, if h is chosen so that |z0 + h| < r we have

f(z0 + h) − f(z0)
h

− g(z0) =
(
SN (z0 + h) − SN (z0)

h
− S′

N (z0)
)

+ (S′
N (z0) − g(z0)) +

(
EN (z0 + h) −EN (z0)

h

)
.

Since an − bn = (a− b)(an−1 + an−2b+ · · · + abn−2 + bn−1), we see that∣∣∣∣EN (z0 + h) −EN (z0)
h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣(z0 + h)n − zn

0

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|nrn−1,

where we have used the fact that |z0| < r and |z0 + h| < r. The expres-
sion on the right is the tail end of a convergent series, since g converges
absolutely on |z| < R. Therefore, given ε > 0 we can find N1 so that
N > N1 implies ∣∣∣∣EN (z0 + h) −EN (z0)

h

∣∣∣∣ < ε.

Also, since limN→∞ S′
N (z0) = g(z0), we can find N2 so that N > N2

implies

|S′
N (z0) − g(z0)| < ε.

If we fix N so that both N > N1 and N > N2 hold, then we can find
δ > 0 so that |h| < δ implies∣∣∣∣SN (z0 + h) − SN (z0)

h
− S′

N (z0)
∣∣∣∣ < ε ,

simply because the derivative of a polynomial is obtained by differenti-
ating it term by term. Therefore,∣∣∣∣f(z0 + h) − f(z0)

h
− g(z0)

∣∣∣∣ < 3ε

whenever |h| < δ, thereby concluding the proof of the theorem.

Successive applications of this theorem yield the following.
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Corollary 2.7 A power series is infinitely complex differentiable in its
disc of convergence, and the higher derivatives are also power series ob-
tained by termwise differentiation.

We have so far dealt only with power series centered at the origin.
More generally, a power series centered at z0 ∈ C is an expression of the
form

f(z) =
∞∑

n=0

an(z − z0)n.

The disc of convergence of f is now centered at z0 and its radius is still
given by Hadamard’s formula. In fact, if

g(z) =
∞∑

n=0

anz
n,

then f is simply obtained by translating g, namely f(z) = g(w) where
w = z − z0. As a consequence everything about g also holds for f after
we make the appropriate translation. In particular, by the chain rule,

f ′(z) = g′(w) =
∞∑

n=0

nan(z − z0)n−1.

A function f defined on an open set Ω is said to be analytic (or have
a power series expansion) at a point z0 ∈ Ω if there exists a power
series

∑
an(z − z0)n centered at z0, with positive radius of convergence,

such that

f(z) =
∞∑

n=0

an(z − z0)n for all z in a neighborhood of z0.

If f has a power series expansion at every point in Ω, we say that f is
analytic on Ω.

By Theorem 2.6, an analytic function on Ω is also holomorphic there.
A deep theorem which we prove in the next chapter says that the converse
is true: every holomorphic function is analytic. For that reason, we use
the terms holomorphic and analytic interchangeably.

3 Integration along curves

In the definition of a curve, we distinguish between the one-dimensional
geometric object in the plane (endowed with an orientation), and its
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parametrization, which is a mapping from a closed interval to C, that is
not uniquely determined.

A parametrized curve is a function z(t) which maps a closed interval
[a, b] ⊂ R to the complex plane. We shall impose regularity conditions
on the parametrization which are always verified in the situations that
occur in this book. We say that the parametrized curve is smooth if
z′(t) exists and is continuous on [a, b], and z′(t) �= 0 for t ∈ [a, b]. At the
points t = a and t = b, the quantities z′(a) and z′(b) are interpreted as
the one-sided limits

z′(a) = lim
h → 0
h > 0

z(a+ h) − z(a)
h

and z′(b) = lim
h → 0
h < 0

z(b+ h) − z(b)
h

.

In general, these quantities are called the right-hand derivative of z(t) at
a, and the left-hand derivative of z(t) at b, respectively.

Similarly we say that the parametrized curve is piecewise-smooth if
z is continuous on [a, b] and if there exist points

a = a0 < a1 < · · · < an = b ,

where z(t) is smooth in the intervals [ak, ak+1]. In particular, the right-
hand derivative at ak may differ from the left-hand derivative at ak for
k = 1, . . . , n− 1.

Two parametrizations,

z : [a, b] → C and z̃ : [c, d] → C,

are equivalent if there exists a continuously differentiable bijection
s 	→ t(s) from [c, d] to [a, b] so that t′(s) > 0 and

z̃(s) = z(t(s)).

The condition t′(s) > 0 says precisely that the orientation is preserved:
as s travels from c to d, then t(s) travels from a to b. The family of
all parametrizations that are equivalent to z(t) determines a smooth
curve γ ⊂ C, namely the image of [a, b] under z with the orientation
given by z as t travels from a to b. We can define a curve γ− obtained
from the curve γ by reversing the orientation (so that γ and γ− consist
of the same points in the plane). As a particular parametrization for γ−

we can take z− : [a, b] → R2 defined by

z−(t) = z(b+ a− t).
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It is also clear how to define a piecewise-smooth curve. The points
z(a) and z(b) are called the end-points of the curve and are independent
on the parametrization. Since γ carries an orientation, it is natural to
say that γ begins at z(a) and ends at z(b).

A smooth or piecewise-smooth curve is closed if z(a) = z(b) for any
of its parametrizations. Finally, a smooth or piecewise-smooth curve is
simple if it is not self-intersecting, that is, z(t) �= z(s) unless s = t. Of
course, if the curve is closed to begin with, then we say that it is simple
whenever z(t) �= z(s) unless s = t, or s = a and t = b.

Figure 3. A closed piecewise-smooth curve

For brevity, we shall call any piecewise-smooth curve a curve, since
these will be the objects we shall be primarily concerned with.

A basic example consists of a circle. Consider the circle Cr(z0) centered
at z0 and of radius r, which by definition is the set

Cr(z0) = {z ∈ C : |z − z0| = r}.

The positive orientation (counterclockwise) is the one that is given by
the standard parametrization

z(t) = z0 + reit, where t ∈ [0, 2π],

while the negative orientation (clockwise) is given by

z(t) = z0 + re−it, where t ∈ [0, 2π].

In the following chapters, we shall denote by C a general positively ori-
ented circle.

An important tool in the study of holomorphic functions is integration
of functions along curves. Loosely speaking, a key theorem in complex
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analysis says that if a function is holomorphic in the interior of a closed
curve γ, then ∫

γ

f(z) dz = 0,

and we shall turn our attention to a version of this theorem (called
Cauchy’s theorem) in the next chapter. Here we content ourselves with
the necessary definitions and properties of the integral.

Given a smooth curve γ in C parametrized by z : [a, b] → C, and f a
continuous function on γ, we define the integral of f along γ by∫

γ

f(z) dz =
∫ b

a

f(z(t))z′(t) dt.

In order for this definition to be meaningful, we must show that the
right-hand integral is independent of the parametrization chosen for γ.
Say that z̃ is an equivalent parametrization as above. Then the change
of variables formula and the chain rule imply that∫ b

a

f(z(t))z′(t) dt =
∫ d

c

f(z(t(s)))z′(t(s))t′(s) ds =
∫ d

c

f(z̃(s))z̃′(s) ds.

This proves that the integral of f over γ is well defined.
If γ is piecewise smooth, then the integral of f over γ is simply the

sum of the integrals of f over the smooth parts of γ, so if z(t) is a
piecewise-smooth parametrization as before, then

∫
γ

f(z) dz =
n−1∑
k=0

∫ ak+1

ak

f(z(t))z′(t) dt.

By definition, the length of the smooth curve γ is

length(γ) =
∫ b

a

|z′(t)| dt.

Arguing as we just did, it is clear that this definition is also independent
of the parametrization. Also, if γ is only piecewise-smooth, then its
length is the sum of the lengths of its smooth parts.

Proposition 3.1 Integration of continuous functions over curves satis-
fies the following properties:
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(i) It is linear, that is, if α, β ∈ C, then∫
γ

(αf(z) + βg(z)) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz.

(ii) If γ− is γ with the reverse orientation, then∫
γ

f(z) dz = −
∫

γ−
f(z) dz.

(iii) One has the inequality∣∣∣∣∫
γ

f(z) dz
∣∣∣∣ ≤ sup

z∈γ
|f(z)| · length(γ).

Proof. The first property follows from the definition and the linearity
of the Riemann integral. The second property is left as an exercise. For
the third, note that∣∣∣∣∫

γ

f(z) dz
∣∣∣∣ ≤ sup

t∈[a,b]

|f(z(t))|
∫ b

a

|z′(t)| dt ≤ sup
z∈γ

|f(z)| · length(γ)

as was to be shown.

As we have said, Cauchy’s theorem states that for appropriate closed
curves γ in an open set Ω on which f is holomorphic, then∫

γ

f(z) dz = 0.

The existence of primitives gives a first manifestation of this phenomenon.
Suppose f is a function on the open set Ω. A primitive for f on Ω is a
function F that is holomorphic on Ω and such that F ′(z) = f(z) for all
z ∈ Ω.

Theorem 3.2 If a continuous function f has a primitive F in Ω, and
γ is a curve in Ω that begins at w1 and ends at w2, then∫

γ

f(z) dz = F (w2) − F (w1).
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Proof. If γ is smooth, the proof is a simple application of the chain
rule and the fundamental theorem of calculus. Indeed, if z(t) : [a, b] → C

is a parametrization for γ, then z(a) = w1 and z(b) = w2, and we have∫
γ

f(z) dz =
∫ b

a

f(z(t))z′(t) dt

=
∫ b

a

F ′(z(t))z′(t) dt

=
∫ b

a

d

dt
F (z(t)) dt

= F (z(b)) − F (z(a)).

If γ is only piecewise-smooth, then arguing as we just did, we obtain
a telescopic sum, and we have∫

γ

f(z) dz =
n−1∑
k=0

F (z(ak+1)) − F (z(ak))

= F (z(an)) − F (z(a0))

= F (z(b)) − F (z(a)).

Corollary 3.3 If γ is a closed curve in an open set Ω, and f is contin-
uous and has a primitive in Ω, then∫

γ

f(z) dz = 0.

This is immediate since the end-points of a closed curve coincide.
For example, the function f(z) = 1/z does not have a primitive in the

open set C − {0}, since if C is the unit circle parametrized by z(t) = eit,
0 ≤ t ≤ 2π, we have∫

C

f(z) dz =
∫ 2π

0

ieit

eit
dt = 2πi �= 0.

In subsequent chapters, we shall see that this innocent calculation, which
provides an example of a function f and closed curve γ for which

∫
γ
f(z) dz �=

0, lies at the heart of the theory.

Corollary 3.4 If f is holomorphic in a region Ω and f ′ = 0, then f is
constant.
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Proof. Fix a point w0 ∈ Ω. It suffices to show that f(w) = f(w0) for
all w ∈ Ω.

Since Ω is connected, for any w ∈ Ω, there exists a curve γ which joins
w0 to w. Since f is clearly a primitive for f ′, we have∫

γ

f ′(z) dz = f(w) − f(w0).

By assumption, f ′ = 0 so the integral on the left is 0, and we conclude
that f(w) = f(w0) as desired.

Remark on notation. When convenient, we follow the practice of using
the notation f(z) = O(g(z)) to mean that there is a constant C > 0 such
that |f(z)| ≤ C|g(z)| for z in a neighborhood of the point in question.
In addition, we say f(z) = o(g(z)) when |f(z)/g(z)| → 0. We also write
f(z) ∼ g(z) to mean that f(z)/g(z) → 1.

4 Exercises

1. Describe geometrically the sets of points z in the complex plane defined by the
following relations:

(a) |z − z1| = |z − z2| where z1, z2 ∈ C.

(b) 1/z = z.

(c) Re(z) = 3.

(d) Re(z) > c, (resp., ≥ c) where c ∈ R.

(e) Re(az + b) > 0 where a, b ∈ C.

(f) |z| = Re(z) + 1.

(g) Im(z) = c with c ∈ R.

2. Let 〈·, ·〉 denote the usual inner product in R2. In other words, if Z = (x1, y1)
and W = (x2, y2), then

〈Z,W 〉 = x1x2 + y1y2.

Similarly, we may define a Hermitian inner product (·, ·) in C by

(z, w) = zw.
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The term Hermitian is used to describe the fact that (·, ·) is not symmetric, but
rather satisfies the relation

(z, w) = (w, z) for all z, w ∈ C.

Show that

〈z, w〉 =
1

2
[(z, w) + (w, z)] = Re(z, w),

where we use the usual identification z = x+ iy ∈ C with (x, y) ∈ R2.

3. With ω = seiϕ, where s ≥ 0 and ϕ ∈ R, solve the equation zn = ω in C where
n is a natural number. How many solutions are there?

4. Show that it is impossible to define a total ordering on C. In other words, one
cannot find a relation � between complex numbers so that:

(i) For any two complex numbers z, w, one and only one of the following is true:
z � w, w � z or z = w.

(ii) For all z1, z2, z3 ∈ C the relation z1 � z2 implies z1 + z3 � z2 + z3.

(iii) Moreover, for all z1, z2, z3 ∈ C with z3 � 0, then z1 � z2 implies z1z3 � z2z3.

[Hint: First check if i � 0 is possible.]

5. A set Ω is said to be pathwise connected if any two points in Ω can be
joined by a (piecewise-smooth) curve entirely contained in Ω. The purpose of this
exercise is to prove that an open set Ω is pathwise connected if and only if Ω is
connected.

(a) Suppose first that Ω is open and pathwise connected, and that it can be
written as Ω = Ω1 ∪ Ω2 where Ω1 and Ω2 are disjoint non-empty open sets.
Choose two points w1 ∈ Ω1 and w2 ∈ Ω2 and let γ denote a curve in Ω
joining w1 to w2. Consider a parametrization z : [0, 1] → Ω of this curve
with z(0) = w1 and z(1) = w2, and let

t∗ = sup
0≤t≤1

{t : z(s) ∈ Ω1 for all 0 ≤ s < t}.

Arrive at a contradiction by considering the point z(t∗).

(b) Conversely, suppose that Ω is open and connected. Fix a point w ∈ Ω and
let Ω1 ⊂ Ω denote the set of all points that can be joined to w by a curve
contained in Ω. Also, let Ω2 ⊂ Ω denote the set of all points that cannot be
joined to w by a curve in Ω. Prove that both Ω1 and Ω2 are open, disjoint
and their union is Ω. Finally, since Ω1 is non-empty (why?) conclude that
Ω = Ω1 as desired.
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The proof actually shows that the regularity and type of curves we used to define
pathwise connectedness can be relaxed without changing the equivalence between
the two definitions when Ω is open. For instance, we may take all curves to be
continuous, or simply polygonal lines.2

6. Let Ω be an open set in C and z ∈ Ω. The connected component (or simply
the component) of Ω containing z is the set Cz of all points w in Ω that can be
joined to z by a curve entirely contained in Ω.

(a) Check first that Cz is open and connected. Then, show that w ∈ Cz defines
an equivalence relation, that is: (i) z ∈ Cz, (ii) w ∈ Cz implies z ∈ Cw, and
(iii) if w ∈ Cz and z ∈ Cζ , then w ∈ Cζ .

Thus Ω is the union of all its connected components, and two components
are either disjoint or coincide.

(b) Show that Ω can have only countably many distinct connected components.

(c) Prove that if Ω is the complement of a compact set, then Ω has only one
unbounded component.

[Hint: For (b), one would otherwise obtain an uncountable number of disjoint open
balls. Now, each ball contains a point with rational coordinates. For (c), note that
the complement of a large disc containing the compact set is connected.]

7. The family of mappings introduced here plays an important role in complex
analysis. These mappings, sometimes called Blaschke factors, will reappear in
various applications in later chapters.

(a) Let z, w be two complex numbers such that zw 
= 1. Prove that∣∣∣∣ w − z

1 − wz

∣∣∣∣ < 1 if |z| < 1 and |w| < 1,

and also that ∣∣∣∣ w − z

1 − wz

∣∣∣∣ = 1 if |z| = 1 or |w| = 1.

[Hint: Why can one assume that z is real? It then suffices to prove that

(r − w)(r −w) ≤ (1 − rw)(1 − rw)

with equality for appropriate r and |w|.]
(b) Prove that for a fixed w in the unit disc D, the mapping

F : z �→ w − z

1 − wz

satisfies the following conditions:

2A polygonal line is a piecewise-smooth curve which consists of finitely many straight
line segments.
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(i) F maps the unit disc to itself (that is, F : D → D), and is holomorphic.

(ii) F interchanges 0 and w, namely F (0) = w and F (w) = 0.

(iii) |F (z)| = 1 if |z| = 1.

(iv) F : D → D is bijective. [Hint: Calculate F ◦ F .]

8. Suppose U and V are open sets in the complex plane. Prove that if f : U → V
and g : V → C are two functions that are differentiable (in the real sense, that is,
as functions of the two real variables x and y), and h = g ◦ f , then

∂h

∂z
=
∂g

∂z

∂f

∂z
+
∂g

∂z

∂f

∂z

and

∂h

∂z
=
∂g

∂z

∂f

∂z
+
∂g

∂z

∂f

∂z
.

This is the complex version of the chain rule.

9. Show that in polar coordinates, the Cauchy-Riemann equations take the form

∂u

∂r
=

1

r

∂v

∂θ
and

1

r

∂u

∂θ
= −∂v

∂r
.

Use these equations to show that the logarithm function defined by

log z = log r + iθ where z = reiθ with −π < θ < π

is holomorphic in the region r > 0 and −π < θ < π.

10. Show that

4
∂

∂z

∂

∂z
= 4

∂

∂z

∂

∂z
=  ,

where  is the Laplacian

 =
∂2

∂x2
+

∂2

∂y2
.

11. Use Exercise 10 to prove that if f is holomorphic in the open set Ω, then the
real and imaginary parts of f are harmonic; that is, their Laplacian is zero.

12. Consider the function defined by

f(x+ iy) =
√

|x||y|, whenever x, y ∈ R.
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Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not
holomorphic at 0.

13. Suppose that f is holomorphic in an open set Ω. Prove that in any one of the
following cases:

(a) Re(f) is constant;

(b) Im(f) is constant;

(c) |f | is constant;

one can conclude that f is constant.

14. Suppose {an}N
n=1 and {bn}N

n=1 are two finite sequences of complex numbers.
Let Bk =

∑k
n=1 bn denote the partial sums of the series

∑
bn with the convention

B0 = 0. Prove the summation by parts formula

N∑
n=M

anbn = aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn.

15. Abel’s theorem. Suppose
∑∞

n=1 an converges. Prove that

lim
r→1, r<1

∞∑
n=1

rnan =

∞∑
n=1

an.

[Hint: Sum by parts.] In other words, if a series converges, then it is Abel summable
with the same limit. For the precise definition of these terms, and more information
on summability methods, we refer the reader to Book I, Chapter 2.

16. Determine the radius of convergence of the series
∑∞

n=1 anz
n when:

(a) an = (log n)2

(b) an = n!

(c) an = n2

4n+3n

(d) an = (n!)3/(3n)! [Hint: Use Stirling’s formula, which says that

n! ∼ cnn+ 1
2 e−n for some c > 0..]

(e) Find the radius of convergence of the hypergeometric series

F (α, β, γ; z) = 1 +
∞∑

n=1

α(α+ 1) · · · (α+ n− 1)β(β + 1) · · · (β + n− 1)

n!γ(γ + 1) · · · (γ + n− 1)
zn.

Here α, β ∈ C and γ 
= 0,−1,−2, . . ..
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(f) Find the radius of convergence of the Bessel function of order r:

Jr(z) =
( z

2

)r
∞∑

n=0

(−1)n

n!(n+ r)!

( z
2

)2n

,

where r is a positive integer.

17. Show that if {an}∞n=0 is a sequence of non-zero complex numbers such that

lim
n→∞

|an+1|
|an| = L,

then

lim
n→∞

|an|1/n = L.

In particular, this exercise shows that when applicable, the ratio test can be used
to calculate the radius of convergence of a power series.

18. Let f be a power series centered at the origin. Prove that f has a power series
expansion around any point in its disc of convergence.

[Hint: Write z = z0 + (z − z0) and use the binomial expansion for zn.]

19. Prove the following:

(a) The power series
∑
nzn does not converge on any point of the unit circle.

(b) The power series
∑
zn/n2 converges at every point of the unit circle.

(c) The power series
∑
zn/n converges at every point of the unit circle except

z = 1. [Hint: Sum by parts.]

20. Expand (1 − z)−m in powers of z. Here m is a fixed positive integer. Also,
show that if

(1 − z)−m =
∞∑

n=0

anz
n,

then one obtains the following asymptotic relation for the coefficients:

an ∼ 1

(m− 1)!
nm−1 as n→ ∞.

21. Show that for |z| < 1, one has

z

1 − z2
+

z2

1 − z4
+ · · · + z2n

1 − z2n+1 + · · · =
z

1 − z
,
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and

z

1 + z
+

2z2

1 + z2
+ · · · + 2kz2k

1 + z2k
+ · · · =

z

1 − z
.

Justify any change in the order of summation.

[Hint: Use the dyadic expansion of an integer and the fact that 2k+1 − 1 = 1 +
2 + 22 + · · · + 2k.]

22. Let N = {1, 2, 3, . . .} denote the set of positive integers. A subset S ⊂ N is
said to be in arithmetic progression if

S = {a, a+ d, a+ 2d, a+ 3d, . . .}

where a, d ∈ N. Here d is called the step of S.
Show that N cannot be partitioned into a finite number of subsets that are in

arithmetic progression with distinct steps (except for the trivial case a = d = 1).

[Hint: Write
∑

n∈N
zn as a sum of terms of the type za

1−zd .]

23. Consider the function f defined on R by

f(x) =

{
0 if x ≤ 0 ,

e−1/x2
if x > 0.

Prove that f is indefinitely differentiable on R, and that f (n)(0) = 0 for all n ≥ 1.
Conclude that f does not have a converging power series expansion

∑∞
n=0 anx

n

for x near the origin.

24. Let γ be a smooth curve in C parametrized by z(t) : [a, b] → C. Let γ− denote
the curve with the same image as γ but with the reverse orientation. Prove that
for any continuous function f on γ∫

γ

f(z) dz = −
∫

γ−
f(z) dz.

25. The next three calculations provide some insight into Cauchy’s theorem, which
we treat in the next chapter.

(a) Evaluate the integrals ∫
γ

zn dz

for all integers n. Here γ is any circle centered at the origin with the positive
(counterclockwise) orientation.

(b) Same question as before, but with γ any circle not containing the origin.
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(c) Show that if |a| < r < |b|, then∫
γ

1

(z − a)(z − b)
dz =

2πi

a− b
,

where γ denotes the circle centered at the origin, of radius r, with the
positive orientation.

26. Suppose f is continuous in a region Ω. Prove that any two primitives of f (if
they exist) differ by a constant.



2 Cauchy’s Theorem and Its
Applications

The solution of a large number of problems can be
reduced, in the last analysis, to the evaluation of def-
inite integrals; thus mathematicians have been much
occupied with this task... However, among many re-
sults obtained, a number were initially discovered by
the aid of a type of induction based on the passage
from real to imaginary. Often passage of this kind
led directly to remarkable results. Nevertheless this
part of the theory, as has been observed by Laplace,
is subject to various difficulties...

After having reflected on this subject and brought
together various results mentioned above, I hope to
establish the passage from the real to the imaginary
based on a direct and rigorous analysis; my researches
have thus led me to the method which is the object of
this memoir...

A. L. Cauchy, 1827

In the previous chapter, we discussed several preliminary ideas in com-
plex analysis: open sets in C, holomorphic functions, and integration
along curves. The first remarkable result of the theory exhibits a deep
connection between these notions. Loosely stated, Cauchy’s theorem
says that if f is holomorphic in an open set Ω and γ ⊂ Ω is a closed
curve whose interior is also contained in Ω then

(1)
∫

γ

f(z) dz = 0.

Many results that follow, and in particular the calculus of residues, are
related in one way or another to this fact.

A precise and general formulation of Cauchy’s theorem requires defin-
ing unambiguously the “interior” of a curve, and this is not always an
easy task. At this early stage of our study, we shall make use of the
device of limiting ourselves to regions whose boundaries are curves that
are “toy contours.” As the name suggests, these are closed curves whose
visualization is so simple that the notion of their interior will be unam-
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biguous, and the proof of Cauchy’s theorem in this setting will be quite
direct. For many applications, it will suffice to restrict ourselves to these
types of curves. At a later stage, we take up the questions related to
more general curves, their interiors, and the extended form of Cauchy’s
theorem.

Our initial version of Cauchy’s theorem begins with the observation
that it suffices that f have a primitive in Ω, by Corollary 3.3 in Chapter 1.
The existence of such a primitive for toy contours will follow from a
theorem of Goursat (which is itself a simple special case)1 that asserts
that if f is holomorphic in an open set that contains a triangle T and its
interior, then ∫

T

f(z) dz = 0.

It is noteworthy that this simple case of Cauchy’s theorem suffices to
prove some of its more complicated versions. From there, we can prove
the existence of primitives in the interior of some simple regions, and
therefore prove Cauchy’s theorem in that setting. As a first application
of this viewpoint, we evaluate several real integrals by using appropriate
toy contours.

The above ideas also lead us to a central result of this chapter, the
Cauchy integral formula; this states that if f is holomorphic in an open
set containing a circle C and its interior, then for all z inside C,

f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ.

Differentiation of this identity yields other integral formulas, and in
particular we obtain the regularity of holomorphic functions. This is
remarkable, since holomorphicity assumed only the existence of the first
derivative, and yet we obtain as a consequence the existence of derivatives
of all orders. (An analogous statement is decisively false in the case of
real variables!)

The theory developed up to that point already has a number of note-
worthy consequences:

• The property at the base of “analytic continuation,” namely that a
holomorphic function is determined by its restriction to any open
subset of its domain of definition. This is a consequence of the fact
that holomorphic functions have power series expansions.

1Goursat’s result came after Cauchy’s theorem, and its interest is the technical fact
that its proof requires only the existence of the complex derivative at each point, and not
its continuity. For the earlier proof, see Exercise 5.
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• Liouville’s theorem, which yields a quick proof of the fundamental
theorem of algebra.

• Morera’s theorem, which gives a simple integral characterization
of holomorphic functions, and shows that these functions are pre-
served under uniform limits.

1 Goursat’s theorem

Corollary 3.3 in the previous chapter says that if f has a primitive in an
open set Ω, then ∫

γ

f(z) dz = 0

for any closed curve γ in Ω. Conversely, if we can show that the above
relation holds for some types of curves γ, then a primitive will exist. Our
starting point is Goursat’s theorem, from which in effect we shall deduce
most of the other results in this chapter.

Theorem 1.1 If Ω is an open set in C, and T ⊂ Ω a triangle whose
interior is also contained in Ω, then∫

T

f(z) dz = 0

whenever f is holomorphic in Ω.

Proof. We call T (0) our original triangle (with a fixed orientation
which we choose to be positive), and let d(0) and p(0) denote the diame-
ter and perimeter of T (0), respectively. The first step in our construction
consists of bisecting each side of the triangle and connecting the mid-
points. This creates four new smaller triangles, denoted T

(1)
1 , T

(1)
2 , T

(1)
3 ,

and T
(1)
4 that are similar to the original triangle. The construction and

orientation of each triangle are illustrated in Figure 1. The orientation
is chosen to be consistent with that of the original triangle, and so after
cancellations arising from integrating over the same side in two opposite
directions, we have
(2)∫

T (0)
f(z) dz =

∫
T

(1)
1

f(z) dz +
∫

T
(1)
2

f(z) dz +
∫

T
(1)
3

f(z) dz +
∫

T
(1)
4

f(z) dz.

For some j we must have∣∣∣∣∫
T (0)

f(z) dz
∣∣∣∣ ≤ 4

∣∣∣∣∣
∫

T
(1)
j

f(z) dz

∣∣∣∣∣ ,
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T
(1)
2

T
(1)
1

T
(1)
3

T
(1)
4

T (0)

Figure 1. Bisection of T (0)

for otherwise (2) would be contradicted. We choose a triangle that
satisfies this inequality, and rename it T (1). Observe that if d(1) and
p(1) denote the diameter and perimeter of T (1), respectively, then d(1) =
(1/2)d(0) and p(1) = (1/2)p(0). We now repeat this process for the trian-
gle T (1), bisecting it into four smaller triangles. Continuing this process,
we obtain a sequence of triangles

T (0), T (1), . . . , T (n), . . .

with the properties that∣∣∣∣∫
T (0)

f(z) dz
∣∣∣∣ ≤ 4n

∣∣∣∣∫
T (n)

f(z) dz
∣∣∣∣

and

d(n) = 2−nd(0), p(n) = 2−np(0)

where d(n) and p(n) denote the diameter and perimeter of T (n), respec-
tively. We also denote by T (n) the solid closed triangle with boundary
T (n), and observe that our construction yields a sequence of nested com-
pact sets

T (0) ⊃ T (1) ⊃ · · · ⊃ T (n) ⊃ · · ·

whose diameter goes to 0. By Proposition 1.4 in Chapter 1, there exists
a unique point z0 that belongs to all the solid triangles T (n). Since f is
holomorphic at z0 we can write

f(z) = f(z0) + f ′(z0)(z − z0) + ψ(z)(z − z0) ,

where ψ(z) → 0 as z → z0. Since the constant f(z0) and the linear func-
tion f ′(z0)(z − z0) have primitives, we can integrate the above equality
using Corollary 3.3 in the previous chapter, and obtain

(3)
∫

T (n)
f(z) dz =

∫
T (n)

ψ(z)(z − z0) dz.
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Now z0 belongs to the closure of the solid triangle T (n) and z to its
boundary, so we must have |z − z0| ≤ d(n), and using (3) we get, by (iii)
in Proposition 3.1 of the previous chapter, the estimate∣∣∣∣∫

T (n)

f(z) dz
∣∣∣∣ ≤ εnd

(n)p(n),

where εn = supz∈T (n) |ψ(z)| → 0 as n→ ∞. Therefore∣∣∣∣∫
T (n)

f(z) dz
∣∣∣∣ ≤ εn4−nd(0)p(0) ,

which yields our final estimate∣∣∣∣∫
T (0)

f(z) dz
∣∣∣∣ ≤ 4n

∣∣∣∣∫
T (n)

f(z) dz
∣∣∣∣ ≤ εnd

(0)p(0).

Letting n→ ∞ concludes the proof since εn → 0.

Corollary 1.2 If f is holomorphic in an open set Ω that contains a
rectangle R and its interior, then∫

R

f(z) dz = 0.

This is immediate since we first choose an orientation as in Figure 2
and note that ∫

R

f(z) dz =
∫

T1

f(z) dz +
∫

T2

f(z) dz.

T2

T1

R

Figure 2. A rectangle as the union of two triangles
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2 Local existence of primitives and Cauchy’s theorem in

a disc

We first prove the existence of primitives in a disc as a consequence of
Goursat’s theorem.

Theorem 2.1 A holomorphic function in an open disc has a primitive
in that disc.

Proof. After a translation, we may assume without loss of generality
that the disc, say D, is centered at the origin. Given a point z ∈ D,
consider the piecewise-smooth curve that joins 0 to z first by moving in
the horizontal direction from 0 to z̃ where z̃ = Re(z), and then in the
vertical direction from z̃ to z. We choose the orientation from 0 to z,
and denote this polygonal line (which consists of at most two segments)
by γz , as shown on Figure 3.

γz

0 z̃

z

Figure 3. The polygonal line γz

Define

F (z) =
∫

γz

f(w) dw.

The choice of γz gives an unambiguous definition of the function F (z).
We contend that F is holomorphic in D and F ′(z) = f(z). To prove this,
fix z ∈ D and let h ∈ C be so small that z + h also belongs to the disc.
Now consider the difference

F (z + h) − F (z) =
∫

γz+h

f(w) dw −
∫

γz

f(w) dw.
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The function f is first integrated along γz+h with the original orientation,
and then along γz with the reverse orientation (because of the minus
sign in front of the second integral). This corresponds to (a) in Figure 4.
Since we integrate f over the line segment starting at the origin in two
opposite directions, it cancels, leaving us with the contour in (b). Then,
we complete the square and triangle as shown in (c), so that after an
application of Goursat’s theorem for triangles and rectangles we are left
with the line segment from z to z + h as given in (d).

(a) (b) (c) (d)

0

z + h

z

z + h

z

Figure 4. Relation between the polygonal lines γz and γz+h

Hence the above cancellations yield

F (z + h) − F (z) =
∫

η

f(w) dw

where η is the straight line segment from z to z + h. Since f is continuous
at z we can write

f(w) = f(z) + ψ(w)

where ψ(w) → 0 as w → z. Therefore
(4)

F (z + h) − F (z) =
∫

η

f(z) dw +
∫

η

ψ(w) dw = f(z)
∫

η

dw +
∫

η

ψ(w) dw.

On the one hand, the constant 1 has w as a primitive, so the first integral
is simply h by an application of Theorem 3.2 in Chapter 1. On the other
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hand, we have the following estimate:∣∣∣∣∫
η

ψ(w) dw
∣∣∣∣ ≤ sup

w∈η
|ψ(w)| |h|.

Since the supremum above goes to 0 as h tends to 0, we conclude from
equation (4) that

lim
h→0

F (z + h) − F (z)
h

= f(z) ,

thereby proving that F is a primitive for f on the disc.

This theorem says that locally, every holomorphic function has a prim-
itive. It is crucial to realize, however, that the theorem is true not only
for arbitrary discs, but also for other sets as well. We shall return to this
point shortly in our discussion of “toy contours.”

Theorem 2.2 (Cauchy’s theorem for a disc) If f is holomorphic in
a disc, then ∫

γ

f(z) dz = 0

for any closed curve γ in that disc.

Proof. Since f has a primitive, we can apply Corollary 3.3 of Chap-
ter 1.

Corollary 2.3 Suppose f is holomorphic in an open set containing the
circle C and its interior. Then∫

C

f(z) dz = 0.

Proof. Let D be the disc with boundary circle C. Then there exists
a slightly larger disc D′ which contains D and so that f is holomorphic
on D′. We may now apply Cauchy’s theorem in D′ to conclude that∫

C
f(z) dz = 0.

In fact, the proofs of the theorem and its corollary apply whenever we
can define without ambiguity the “interior” of a contour, and construct
appropriate polygonal paths in an open neighborhood of that contour
and its interior. In the case of the circle, whose interior is the disc, there
was no problem since the geometry of the disc made it simple to travel
horizontally and vertically inside it.
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The following definition is loosely stated, although its applications
will be clear and unambiguous. We call a toy contour any closed curve
where the notion of interior is obvious, and a construction similar to
that in Theorem 2.1 is possible in a neighborhood of the curve and its
interior. Its positive orientation is that for which the interior is to the left
as we travel along the toy contour. This is consistent with the definition
of the positive orientation of a circle. For example, circles, triangles,
and rectangles are toy contours, since in each case we can modify (and
actually copy) the argument given previously.

Another important example of a toy contour is the “keyhole” Γ (illus-
trated in Figure 5), which we shall put to use in the proof of the Cauchy
integral formula. It consists of two almost complete circles, one large

Γint

Γ

Figure 5. The keyhole contour

and one small, connected by a narrow corridor. The interior of Γ, which
we denote by Γint, is clearly that region enclosed by the curve, and can
be given precise meaning with enough work. We fix a point z0 in that
interior. If f is holomorphic in a neighborhood of Γ and its interior,
then it is holomorphic in the inside of a slightly larger keyhole, say Λ,
whose interior Λint contains Γ ∪ Γint. If z ∈ Λint, let γz denote any curve
contained inside Λint connecting z0 to z, and which consists of finitely
many horizontal or vertical segments (as in Figure 6). If ηz is any other
such curve, the rectangle version of Goursat’s theorem (Corollary 1.2)
implies that ∫

γz

f(w) dw =
∫

ηz

f(w) dw ,

and we may therefore define F unambiguously in Λint.
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Λ

z0

γz

z

Λint

Figure 6. A curve γz

Arguing as above allows us to show that F is a primitive of f in Λint

and therefore
∫
Γ
f(z) dz = 0.

The important point is that for a toy contour γ we easily have that∫
γ

f(z) dz = 0 ,

whenever f is holomorphic in an open set that contains the contour γ
and its interior.

Other examples of toy contours which we shall encounter in applica-
tions and for which Cauchy’s theorem and its corollary also hold are
given in Figure 7.

While Cauchy’s theorem for toy contours is sufficient for most applica-
tions we deal with, the question still remains as to what happens for more
general curves. We take up this matter in Appendix B, where we prove
Jordan’s theorem for piecewise-smooth curves. This theorem states that
a simple closed piecewise-smooth curve has a well defined interior that
is “simply connected.” As a consequence, we find that even in this more
general situation, Cauchy’s theorem holds.

3 Evaluation of some integrals

Here we take up the idea that originally motivated Cauchy. We shall
show by several examples how some integrals may be evaluated by the
use of his theorem. A more systematic approach, in terms of the calculus
of residues, may be found in the next chapter.
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The multiple keyhole

Semicircle

Sector Parallelogram

Rectangular keyhole

Indented semicircle

Figure 7. Examples of toy contours

Example 1. We show that if ξ ∈ R, then

(5) e−πξ2
=
∫ ∞

−∞
e−πx2

e−2πixξ dx.

This gives a new proof of the fact that e−πx2
is its own Fourier transform,

a fact we proved in Theorem 1.4 of Chapter 5 in Book I.
If ξ = 0, the formula is precisely the known integral2

1 =
∫ ∞

−∞
e−πx2

dx.

Now suppose that ξ > 0, and consider the function f(z) = e−πz2
, which

is entire, and in particular holomorphic in the interior of the toy contour
γR depicted in Figure 8.

2An alternate derivation follows from the fact that Γ(1/2) =
√
π, where Γ is the gamma

function in Chapter 6.
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R

R + iξ

−R

−R+ iξ

0

Figure 8. The contour γR in Example 1

The contour γR consists of a rectangle with vertices R,R+ iξ,−R+
iξ,−R and the positive counterclockwise orientation. By Cauchy’s the-
orem,

(6)
∫

γR

f(z) dz = 0.

The integral over the real segment is simply∫ R

−R

e−πx2
dx ,

which converges to 1 as R→ ∞. The integral on the vertical side on the
right is

I(R) =
∫ ξ

0

f(R + iy)i dy =
∫ ξ

0

e−π(R2+2iRy−y2)i dy.

This integral goes to 0 as R→ ∞ since ξ is fixed and we may estimate
it by

|I(R)| ≤ Ce−πR2
.

Similarly, the integral over the vertical segment on the left also goes to 0
as R→ ∞ for the same reasons. Finally, the integral over the horizontal
segment on top is∫ −R

R

e−π(x+iξ)2 dx = −eπξ2
∫ R

−R

e−πx2
e−2πixξ dx.

Therefore, we find in the limit as R→ ∞ that (6) gives

0 = 1 − eπξ2
∫ ∞

−∞
e−πx2

e−2πixξ dx,
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and our desired formula is established. In the case ξ < 0, we then consider
the symmetric rectangle, in the lower half-plane.

The technique of shifting the contour of integration, which was used
in the previous example, has many other applications. Note that the
original integral (5) is taken over the real line, which by an application
of Cauchy’s theorem is then shifted upwards or downwards (depending
on the sign of ξ) in the complex plane.

Example 2. Another classical example is∫ ∞

0

1 − cosx
x2

dx =
π

2
.

Here we consider the function f(z) = (1 − eiz)/z2, and we integrate over
the indented semicircle in the upper half-plane positioned on the x-axis,
as shown in Figure 9.

R

γ+
R

−R

γ+
ε

ε−ε

Figure 9. The indented semicircle of Example 2

If we denote by γ+
ε and γ+

R the semicircles of radii ε and R with negative
and positive orientations respectively, Cauchy’s theorem gives∫ −ε

−R

1 − eix

x2
dx+

∫
γ+

ε

1 − eiz

z2
dz +

∫ R

ε

1 − eix

x2
dx+

∫
γ+

R

1 − eiz

z2
dz = 0.

First we let R→ ∞ and observe that∣∣∣∣1 − eiz

z2

∣∣∣∣ ≤ 2
|z|2 ,

so the integral over γ+
R goes to zero. Therefore∫

|x|≥ε

1 − eix

x2
dx = −

∫
γ+

ε

1 − eiz

z2
dz.
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Next, note that

f(z) =
−iz
z2

+E(z)

where E(z) is bounded as z → 0, while on γ+
ε we have z = εeiθ and

dz = iεeiθdθ. Thus∫
γ+

ε

1 − eiz

z2
dz →

∫ 0

π

(−ii) dθ = −π as ε→ 0.

Taking real parts then yields∫ ∞

−∞

1 − cosx
x2

dx = π.

Since the integrand is even, the desired formula is proved.

4 Cauchy’s integral formulas

Representation formulas, and in particular integral representation formu-
las, play an important role in mathematics, since they allow us to recover
a function on a large set from its behavior on a smaller set. For example,
we saw in Book I that a solution of the steady-state heat equation in the
disc was completely determined by its boundary values on the circle via
a convolution with the Poisson kernel

(7) u(r, θ) =
1
2π

∫ 2π

0

Pr(θ − ϕ)u(1, ϕ) dϕ.

In the case of holomorphic functions, the situation is analogous, which
is not surprising since the real and imaginary parts of a holomorphic
function are harmonic.3 Here, we will prove an integral representation
formula in a manner that is independent of the theory of harmonic func-
tions. In fact, it is also possible to recover the Poisson integral formula (7)
as a consequence of the next theorem (see Exercises 11 and 12).

Theorem 4.1 Suppose f is holomorphic in an open set that contains
the closure of a disc D. If C denotes the boundary circle of this disc with
the positive orientation, then

f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ for any point z ∈ D.

3This fact is an immediate consequence of the Cauchy-Riemann equations. We refer
the reader to Exercise 11 in Chapter 1.
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Proof. Fix z ∈ D and consider the “keyhole” Γδ,ε which omits the
point z as shown in Figure 10.

Γδ,ε

z C

Figure 10. The keyhole Γδ,ε

Here δ is the width of the corridor, and ε the radius of the small circle
centered at z. Since the function F (ζ) = f(ζ)/(ζ − z) is holomorphic
away from the point ζ = z, we have

∫
Γδ,ε

F (ζ) dζ = 0

by Cauchy’s theorem for the chosen toy contour. Now we make the
corridor narrower by letting δ tend to 0, and use the continuity of F to
see that in the limit, the integrals over the two sides of the corridor cancel
out. The remaining part consists of two curves, the large boundary circle
C with the positive orientation, and a small circle Cε centered at z of
radius ε and oriented negatively, that is, clockwise. To see what happens
to the integral over the small circle we write

(8) F (ζ) =
f(ζ) − f(z)

ζ − z
+
f(z)
ζ − z

and note that since f is holomorphic the first term on the right-hand
side of (8) is bounded so that its integral over Cε goes to 0 as ε→ 0. To
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conclude the proof, it suffices to observe that∫
Cε

f(z)
ζ − z

dζ = f(z)
∫

Cε

dζ

ζ − z

= −f(z)
∫ 2π

0

εie−it

εe−it
dt

= −f(z)2πi ,

so that in the limit we find

0 =
∫

C

f(ζ)
ζ − z

dζ − 2πif(z) ,

as was to be shown.

Remarks. Our earlier discussion of toy contours provides simple ex-
tensions of the Cauchy integral formula; for instance, if f is holomorphic
in an open set that contains a (positively oriented) rectangle R and its
interior, then

f(z) =
1

2πi

∫
R

f(ζ)
ζ − z

dζ ,

whenever z belongs to the interior ofR. To establish this result, it suffices
to repeat the proof of Theorem 4.1 replacing the “circular” keyhole by a
“rectangular” keyhole.

It should also be noted that the above integral vanishes when z is
outside R, since in this case F (ζ) = f(ζ)/(ζ − z) is holomorphic inside
R. Of course, a similar result also holds for the circle or any other toy
contour.

As a corollary to the Cauchy integral formula, we arrive at a second
remarkable fact about holomorphic functions, namely their regularity.
We also obtain further integral formulas expressing the derivatives of f
inside the disc in terms of the values of f on the boundary.

Corollary 4.2 If f is holomorphic in an open set Ω, then f has infinitely
many complex derivatives in Ω. Moreover, if C ⊂ Ω is a circle whose
interior is also contained in Ω, then

f (n)(z) =
n!
2πi

∫
C

f(ζ)
(ζ − z)n+1

dζ

for all z in the interior of C.
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We recall that, as in the above theorem, we take the circle C to have
positive orientation.

Proof. The proof is by induction on n, the case n = 0 being simply
the Cauchy integral formula. Suppose that f has up to n− 1 complex
derivatives and that

f (n−1)(z) =
(n− 1)!

2πi

∫
C

f(ζ)
(ζ − z)n

dζ.

Now for h small, the difference quotient for f (n−1) takes the form

(9)
f (n−1)(z + h) − f (n−1)(z)

h
=

(n− 1)!
2πi

∫
C

f(ζ)
1
h

[
1

(ζ − z − h)n
− 1

(ζ − z)n

]
dζ.

We now recall that

An − Bn = (A−B)[An−1 +An−2B + · · · +ABn−2 +Bn−1].

With A = 1/(ζ − z − h) and B = 1/(ζ − z), we see that the term in
brackets in equation (9) is equal to

h

(ζ − z − h)(ζ − z)
[An−1 +An−2B + · · · +ABn−2 +Bn−1].

But observe that if h is small, then z + h and z stay at a finite distance
from the boundary circle C, so in the limit as h tends to 0, we find that
the quotient converges to

(n− 1)!
2πi

∫
C

f(ζ)
[

1
(ζ − z)2

][
n

(ζ − z)n−1

]
dζ =

n!
2πi

∫
C

f(ζ)
(ζ − z)n+1

dζ ,

which completes the induction argument and proves the theorem.

From now on, we call the formulas of Theorem 4.1 and Corollary 4.2
the Cauchy integral formulas.

Corollary 4.3 (Cauchy inequalities) If f is holomorphic in an open
set that contains the closure of a disc D centered at z0 and of radius R,
then

|f (n)(z0)| ≤
n!‖f‖C

Rn
,

where ‖f‖C = supz∈C |f(z)| denotes the supremum of |f | on the boundary
circle C.
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Proof. Applying the Cauchy integral formula for f (n)(z0), we obtain

|f (n)(z0)| =
∣∣∣∣ n!
2πi

∫
C

f(ζ)
(ζ − z0)n+1

dζ

∣∣∣∣
=
n!
2π

∣∣∣∣∫ 2π

0

f(z0 +Reiθ)
(Reiθ)n+1

Rieiθ dθ

∣∣∣∣
≤ n!

2π
‖f‖C

Rn
2π.

Another striking consequence of the Cauchy integral formula is its
connection with power series. In Chapter 1, we proved that a power series
is holomorphic in the interior of its disc of convergence, and promised a
proof of a converse, which is the content of the next theorem.

Theorem 4.4 Suppose f is holomorphic in an open set Ω. If D is a
disc centered at z0 and whose closure is contained in Ω, then f has a
power series expansion at z0

f(z) =
∞∑

n=0

an(z − z0)n

for all z ∈ D, and the coefficients are given by

an =
f (n)(z0)
n!

for all n ≥ 0.

Proof. Fix z ∈ D. By the Cauchy integral formula, we have

(10) f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ ,

where C denotes the boundary of the disc and z ∈ D. The idea is to
write

(11)
1

ζ − z
=

1
ζ − z0 − (z − z0)

=
1

ζ − z0

1

1 −
(

z−z0
ζ−z0

) ,
and use the geometric series expansion. Since ζ ∈ C and z ∈ D is fixed,
there exists 0 < r < 1 such that∣∣∣∣z − z0

ζ − z0

∣∣∣∣ < r,
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therefore

(12)
1

1 −
(

z−z0
ζ−z0

) =
∞∑

n=0

(
z − z0
ζ − z0

)n

,

where the series converges uniformly for ζ ∈ C. This allows us to inter-
change the infinite sum with the integral when we combine (10), (11),
and (12), thereby obtaining

f(z) =
∞∑

n=0

(
1

2πi

∫
C

f(ζ)
(ζ − z0)n+1

dζ

)
· (z − z0)n.

This proves the power series expansion; further the use of the Cauchy in-
tegral formulas for the derivatives (or simply differentiation of the series)
proves the formula for an.

Observe that since power series define indefinitely (complex) differ-
entiable functions, the theorem gives another proof that a holomorphic
function is automatically indefinitely differentiable.

Another important observation is that the power series expansion of
f centered at z0 converges in any disc, no matter how large, as long
as its closure is contained in Ω. In particular, if f is entire (that is,
holomorphic on all of C), the theorem implies that f has a power series
expansion around 0, say f(z) =

∑∞
n=0 anz

n, that converges in all of C.

Corollary 4.5 (Liouville’s theorem) If f is entire and bounded, then
f is constant.

Proof. It suffices to prove that f ′ = 0, since C is connected, and we
may then apply Corollary 3.4 in Chapter 1.

For each z0 ∈ C and all R > 0, the Cauchy inequalities yield

|f ′(z0)| ≤
B

R

where B is a bound for f . Letting R→ ∞ gives the desired result.

As an application of our work so far, we can give an elegant proof of
the fundamental theorem of algebra.

Corollary 4.6 Every non-constant polynomial P (z) = anz
n + · · · + a0

with complex coefficients has a root in C.

Proof. If P has no roots, then 1/P (z) is a bounded holomorphic
function. To see this, we can of course assume that an �= 0, and write

P (z)
zn

= an +
(an−1

z
+ · · · + a0

zn

)
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whenever z �= 0. Since each term in the parentheses goes to 0 as |z| → ∞
we conclude that there exists R > 0 so that if c = |an|/2, then

|P (z)| ≥ c|z|n whenever |z| > R.

In particular, P is bounded from below when |z| > R. Since P is contin-
uous and has no roots in the disc |z| ≤ R, it is bounded from below in
that disc as well, thereby proving our claim.

By Liouville’s theorem we then conclude that 1/P is constant. This
contradicts our assumption that P is non-constant and proves the corol-
lary.

Corollary 4.7 Every polynomial P (z) = anz
n + · · · + a0 of degree n ≥

1 has precisely n roots in C. If these roots are denoted by w1, . . . , wn,
then P can be factored as

P (z) = an(z − w1)(z − w2) · · · (z − wn).

Proof. By the previous result P has a root, say w1. Then, writing
z = (z − w1) + w1, inserting this expression for z in P , and using the
binomial formula we get

P (z) = bn(z − w1)n + · · · + b1(z − w1) + b0,

where b0, . . . , bn−1 are new coefficients, and bn = an. Since P (w1) = 0,
we find that b0 = 0, therefore

P (z) = (z − w1)
[
bn(z − w1)n−1 + · · · + b1

]
= (z − w1)Q(z),

where Q is a polynomial of degree n− 1. By induction on the degree of
the polynomial, we conclude that P (z) has n roots and can be expressed
as

P (z) = c(z − w1)(z − w2) · · · (z − wn)

for some c ∈ C. Expanding the right-hand side, we realize that the coef-
ficient of zn is c and therefore c = an as claimed.

Finally, we end this section with a discussion of analytic continuation
(the third of the “miracles” we mentioned in the introduction). It states
that the “genetic code” of a holomorphic function is determined (that
is, the function is fixed) if we know its values on appropriate arbitrarily
small subsets. Note that in the theorem below, Ω is assumed connected.
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Theorem 4.8 Suppose f is a holomorphic function in a region Ω that
vanishes on a sequence of distinct points with a limit point in Ω. Then
f is identically 0.

In other words, if the zeros of a holomorphic function f in the con-
nected open set Ω accumulate in Ω, then f = 0.

Proof. Suppose that z0 ∈ Ω is a limit point for the sequence {wk}∞k=1

and that f(wk) = 0. First, we show that f is identically zero in a small
disc containing z0. For that, we choose a disc D centered at z0 and
contained in Ω, and consider the power series expansion of f in that disc

f(z) =
∞∑

n=0

an(z − z0)n.

If f is not identically zero, there exists a smallest integer m such that
am �= 0. But then we can write

f(z) = am(z − z0)m(1 + g(z − z0)),

where g(z − z0) converges to 0 as z → z0. Taking z = wk �= z0 for a se-
quence of points converging to z0, we get a contradiction since
am(wk − z0)m �= 0 and 1 + g(wk − z0) �= 0, but f(wk) = 0.

We conclude the proof using the fact that Ω is connected. Let U
denote the interior of the set of points where f(z) = 0. Then U is open
by definition and non-empty by the argument just given. The set U is
also closed since if zn ∈ U and zn → z, then f(z) = 0 by continuity, and
f vanishes in a neighborhood of z by the argument above. Hence z ∈ U .
Now if we let V denote the complement of U in Ω, we conclude that U
and V are both open, disjoint, and

Ω = U ∪ V.

Since Ω is connected we conclude that either U or V is empty. (Here we
use one of the two equivalent definitions of connectedness discussed in
Chapter 1.) Since z0 ∈ U , we find that U = Ω and the proof is complete.

An immediate consequence of the theorem is the following.

Corollary 4.9 Suppose f and g are holomorphic in a region Ω and
f(z) = g(z) for all z in some non-empty open subset of Ω (or more gen-
erally for z in some sequence of distinct points with limit point in Ω).
Then f(z) = g(z) throughout Ω.
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Suppose we are given a pair of functions f and F analytic in regions
Ω and Ω′, respectively, with Ω ⊂ Ω′. If the two functions agree on the
smaller set Ω, we say that F is an analytic continuation of f into the
region Ω′. The corollary then guarantees that there can be only one such
analytic continuation, since F is uniquely determined by f .

5 Further applications

We gather in this section various consequences of the results proved so
far.

5.1 Morera’s theorem

A direct application of what was proved here is a converse of Cauchy’s
theorem.

Theorem 5.1 Suppose f is a continuous function in the open disc D
such that for any triangle T contained in D∫

T

f(z) dz = 0,

then f is holomorphic.

Proof. By the proof of Theorem 2.1 the function f has a primitive F
in D that satisfies F ′ = f . By the regularity theorem, we know that F
is indefinitely (and hence twice) complex differentiable, and therefore f
is holomorphic.

5.2 Sequences of holomorphic functions

Theorem 5.2 If {fn}∞n=1 is a sequence of holomorphic functions that
converges uniformly to a function f in every compact subset of Ω, then
f is holomorphic in Ω.

Proof. Let D be any disc whose closure is contained in Ω and T
any triangle in that disc. Then, since each fn is holomorphic, Goursat’s
theorem implies ∫

T

fn(z) dz = 0 for all n.

By assumption fn → f uniformly in the closure of D, so f is continuous
and ∫

T

fn(z) dz →
∫

T

f(z) dz.
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As a result, we find
∫

T
f(z) dz = 0, and by Morera’s theorem, we conclude

that f is holomorphic in D. Since this conclusion is true for every D
whose closure is contained in Ω, we find that f is holomorphic in all of
Ω.

This is a striking result that is obviously not true in the case of real
variables: the uniform limit of continuously differentiable functions need
not be differentiable. For example, we know that every continuous func-
tion on [0, 1] can be approximated uniformly by polynomials, by Weier-
strass’s theorem (see Chapter 5, Book I), yet not every continuous func-
tion is differentiable.

We can go one step further and deduce convergence theorems for the
sequence of derivatives. Recall that if f is a power series with radius
of convergence R, then f ′ can be obtained by differentiating term by
term the series for f , and moreover f ′ has radius of convergence R. (See
Theorem 2.6 in Chapter 1.) This implies in particular that if Sn are the
partial sums of f , then S′

n converges uniformly to f ′ on every compact
subset of the disc of convergence of f . The next theorem generalizes this
fact.

Theorem 5.3 Under the hypotheses of the previous theorem, the se-
quence of derivatives {f ′n}∞n=1 converges uniformly to f ′ on every com-
pact subset of Ω.

Proof. We may assume without loss of generality that the sequence of
functions in the theorem converges uniformly on all of Ω. Given δ > 0,
let Ωδ denote the subset of Ω defined by

Ωδ = {z ∈ Ω : Dδ(z) ⊂ Ω}.

In other words, Ωδ consists of all points in Ω which are at distance > δ
from its boundary. To prove the theorem, it suffices to show that {f ′n}
converges uniformly to f ′ on Ωδ for each δ. This is achieved by proving
the following inequality:

(13) sup
z∈Ωδ

|F ′(z)| ≤ 1
δ

sup
ζ∈Ω

|F (ζ)|

whenever F is holomorphic in Ω, since it can then be applied to
F = fn − f to prove the desired fact. The inequality (13) follows at
once from the Cauchy integral formula and the definition of Ωδ, since for
every z ∈ Ωδ the closure of Dδ(z) is contained in Ω and

F ′(z) =
1

2πi

∫
Cδ(z)

F (ζ)
(ζ − z)2

dζ.
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Hence,

|F ′(z)| ≤ 1
2π

∫
Cδ(z)

|F (ζ)|
|ζ − z|2 |dζ|

≤ 1
2π

sup
ζ∈Ω

|F (ζ)| 1
δ2

2πδ

=
1
δ

sup
ζ∈Ω

|F (ζ)| ,

as was to be shown.

Of course, there is nothing special about the first derivative, and in
fact under the hypotheses of the last theorem, we may conclude (arguing
as above) that for every k ≥ 0 the sequence of kth derivatives {f (k)

n }∞n=1

converges uniformly to f (k) on every compact subset of Ω.

In practice, one often uses Theorem 5.2 to construct holomorphic func-
tions (say, with a prescribed property) as a series

(14) F (z) =
∞∑

n=1

fn(z).

Indeed, if each fn is holomorphic in a given region Ω of the complex
plane, and the series converges uniformly in compact subsets of Ω, then
Theorem 5.2 guarantees that F is also holomorphic in Ω. For instance,
various special functions are often expressed in terms of a converging
series like (14). A specific example is the Riemann zeta function discussed
in Chapter 6.

We now turn to a variant of this idea, which consists of functions
defined in terms of integrals.

5.3 Holomorphic functions defined in terms of integrals

As we shall see later in this book, a number of other special functions
are defined in terms of integrals of the type

f(z) =
∫ b

a

F (z, s) ds,

or as limits of such integrals. Here, the function F is holomorphic in the
first argument, and continuous in the second. The integral is taken in
the sense of Riemann integration over the bounded interval [a, b]. The
problem then is to establish that f is holomorphic.
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In the next theorem, we impose a sufficient condition on F , often
satisfied in practice, that easily implies that f is holomorphic.

After a simple linear change of variables, we may assume that a = 0
and b = 1.

Theorem 5.4 Let F (z, s) be defined for (z, s) ∈ Ω × [0, 1] where Ω is an
open set in C. Suppose F satisfies the following properties:

(i) F (z, s) is holomorphic in z for each s.

(ii) F is continuous on Ω × [0, 1].

Then the function f defined on Ω by

f(z) =
∫ 1

0

F (z, s) ds

is holomorphic.

The second condition says that F is jointly continuous in both argu-
ments.

To prove this result, it suffices to prove that f is holomorphic in any
disc D contained in Ω, and by Morera’s theorem this could be achieved
by showing that for any triangle T contained in D we have∫

T

∫ 1

0

F (z, s) ds dz = 0.

Interchanging the order of integration, and using property (i) would then
yield the desired result. We can, however, get around the issue of justi-
fying the change in the order of integration by arguing differently. The
idea is to interpret the integral as a “uniform” limit of Riemann sums,
and then apply the results of the previous section.

Proof. For each n ≥ 1, we consider the Riemann sum

fn(z) = (1/n)
n∑

k=1

F (z, k/n).

Then fn is holomorphic in all of Ω by property (i), and we claim that
on any disc D whose closure is contained in Ω, the sequence {fn}∞n=1

converges uniformly to f . To see this, we recall that a continuous function
on a compact set is uniformly continuous, so if ε > 0 there exists δ > 0
such that

sup
z∈D

|F (z, s1) − F (z, s2)| < ε whenever |s1 − s2| < δ.
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Then, if n > 1/δ, and z ∈ D we have

|fn(z)− f(z)| =

∣∣∣∣∣
n∑

k=1

∫ k/n

(k−1)/n

F (z, k/n)− F (z, s) ds

∣∣∣∣∣
≤

n∑
k=1

∫ k/n

(k−1)/n

|F (z, k/n)− F (z, s)| ds

<

n∑
k=1

ε

n

< ε.

This proves the claim, and by Theorem 5.2 we conclude that f is holo-
morphic in D. As a consequence, f is holomorphic in Ω, as was to be
shown.

5.4 Schwarz reflection principle

In real analysis, there are various situations where one wishes to extend
a function from a given set to a larger one. Several techniques exist
that provide extensions for continuous functions, and more generally for
functions with varying degrees of smoothness. Of course, the difficulty of
the technique increases as we impose more conditions on the extension.

The situation is very different for holomorphic functions. Not only are
these functions indefinitely differentiable in their domain of definition,
but they also have additional characteristically rigid properties, which
make them difficult to mold. For example, there exist holomorphic func-
tions in a disc which are continuous on the closure of the disc, but which
cannot be continued (analytically) into any region larger than the disc.
(This phenomenon is discussed in Problem 1.) Another fact we have
seen above is that holomorphic functions must be identically zero if they
vanish on small open sets (or even, for example, a non-zero line segment).

It turns out that the theory developed in this chapter provides a simple
extension phenomenon that is very useful in applications: the Schwarz
reflection principle. The proof consists of two parts. First we define the
extension, and then check that the resulting function is still holomorphic.
We begin with this second point.

Let Ω be an open subset of C that is symmetric with respect to the
real line, that is

z ∈ Ω if and only if z ∈ Ω.
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Let Ω+ denote the part of Ω that lies in the upper half-plane and Ω−

that part that lies in the lower half-plane.

Ω+

Ω−

I
R

Ω

z

z

Figure 11. An open set symmetric across the real axis

Also, let I = Ω ∩ R so that I denotes the interior of that part of the
boundary of Ω+ and Ω− that lies on the real axis. Then we have

Ω+ ∪ I ∪ Ω− = Ω

and the only interesting case of the next theorem occurs, of course, when
I is non-empty.

Theorem 5.5 (Symmetry principle) If f+ and f− are holomorphic
functions in Ω+ and Ω− respectively, that extend continuously to I and

f+(x) = f−(x) for all x ∈ I,

then the function f defined on Ω by

f(z) =

 f+(z) if z ∈ Ω+,
f+(z) = f−(z) if z ∈ I,
f−(z) if z ∈ Ω−

is holomorphic on all of Ω.

Proof. One notes first that f is continuous throughout Ω. The only
difficulty is to prove that f is holomorphic at points of I. Suppose D is a
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disc centered at a point on I and entirely contained in Ω. We prove that
f is holomorphic in D by Morera’s theorem. Suppose T is a triangle in
D. If T does not intersect I, then∫

T

f(z) dz = 0

since f is holomorphic in the upper and lower half-discs. Suppose now
that one side or vertex of T is contained in I, and the rest of T is in,
say, the upper half-disc. If Tε is the triangle obtained from T by slightly
raising the edge or vertex which lies on I, we have

∫
Tε
f = 0 since Tε is

entirely contained in the upper half-disc (an illustration of the case when
an edge lies on I is given in Figure 12(a)). We then let ε→ 0, and by
continuity we conclude that ∫

T

f(z) dz = 0.

(a)

(b)

T
T1

T2 T3

TεT

Figure 12. (a) Raising a vertex; (b) splitting a triangle

If the interior of T intersects I, we can reduce the situation to the
previous one by writing T as the union of triangles each of which has an
edge or vertex on I as shown in Figure 12(b). By Morera’s theorem we
conclude that f is holomorphic in D, as was to be shown.

We can now state the extension principle, where we use the above
notation.
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Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holo-
morphic function in Ω+ that extends continuously to I and such that f
is real-valued on I. Then there exists a function F holomorphic in all of
Ω such that F = f on Ω+.

Proof. The idea is simply to define F (z) for z ∈ Ω− by

F (z) = f(z).

To prove that F is holomorphic in Ω− we note that if z, z0 ∈ Ω−, then
z, z0 ∈ Ω+ and hence, the power series expansion of f near z0 gives

f(z) =
∑

an(z − z0)n.

As a consequence we see that

F (z) =
∑

an(z − z0)n

and F is holomorphic in Ω−. Since f is real valued on I we have f(x) =
f(x) whenever x ∈ I and hence F extends continuously up to I. The
proof is complete once we invoke the symmetry principle.

5.5 Runge’s approximation theorem

We know by Weierstrass’s theorem that any continuous function on a
compact interval can be approximated uniformly by polynomials.4 With
this result in mind, one may inquire about similar approximations in
complex analysis. More precisely, we ask the following question: what
conditions on a compact set K ⊂ C guarantee that any function holo-
morphic in a neighborhood of this set can be approximated uniformly by
polynomials on K?

An example of this is provided by power series expansions. We recall
that if f is a holomorphic function in a disc D, then it has a power series
expansion f(z) =

∑∞
n=0 anz

n that converges uniformly on every compact
set K ⊂ D. By taking partial sums of this series, we conclude that f can
be approximated uniformly by polynomials on any compact subset of D.

In general, however, some condition on K must be imposed, as we see
by considering the function f(z) = 1/z on the unit circle K = C. Indeed,
recall that

∫
C
f(z) dz = 2πi, and if p is any polynomial, then Cauchy’s

theorem implies
∫

C
p(z) dz = 0, and this quickly leads to a contradiction.

4A proof may be found in Section 1.8, Chapter 5, of Book I.
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A restriction on K that guarantees the approximation pertains to the
topology of its complement: Kc must be connected. In fact, a slight mod-
ification of the above example when f(z) = 1/z proves that this condition
on K is also necessary; see Problem 4.

Conversely, uniform approximations exist when Kc is connected, and
this result follows from a theorem of Runge which states that for any K
a uniform approximation exists by rational functions with “singularities”
in the complement of K.5 This result is remarkable since rational func-
tions are globally defined, while f is given only in a neighborhood of K.
In particular, f could be defined independently on different components
of K, making the conclusion of the theorem even more striking.

Theorem 5.7 Any function holomorphic in a neighborhood of a compact
set K can be approximated uniformly on K by rational functions whose
singularities are in Kc.

If Kc is connected, any function holomorphic in a neighborhood of K
can be approximated uniformly on K by polynomials.

We shall see how the second part of the theorem follows from the
first: when Kc is connected, one can “push” the singularities to infinity
thereby transforming the rational functions into polynomials.

The key to the theorem lies in an integral representation formula that is
a simple consequence of the Cauchy integral formula applied to a square.

Lemma 5.8 Suppose f is holomorphic in an open set Ω, and K ⊂ Ω is
compact. Then, there exists finitely many segments γ1, . . . , γN in Ω −K
such that

(15) f(z) =
N∑

n=1

1
2πi

∫
γn

f(ζ)
ζ − z

dζ for all z ∈ K.

Proof. Let d = c · d(K,Ωc), where c is any constant < 1/
√

2, and
consider a grid formed by (solid) squares with sides parallel to the axis
and of length d.

We let Q = {Q1, . . . , QM} denote the finite collection of squares in
this grid that intersect K, with the boundary of each square given the
positive orientation. (We denote by ∂Qm the boundary of the square
Qm.) Finally, we let γ1, . . . , γN denote the sides of squares in Q that do
not belong to two adjacent squares in Q. (See Figure 13.) The choice of
d guarantees that for each n, γn ⊂ Ω, and γn does not intersect K; for if
it did, then it would belong to two adjacent squares in Q, contradicting
our choice of γn.

5These singularities are points where the function is not holomorphic, and are “poles”,
as defined in the next chapter.
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Figure 13. The union of the γn’s is in bold-face

Since for any z ∈ K that is not on the boundary of a square in Q there
exists j so that z ∈ Qj, Cauchy’s theorem implies

1
2πi

∫
∂Qm

f(ζ)
ζ − z

dζ =
{
f(z) if m = j,

0 if m �= j.

Thus, for all such z we have

f(z) =
M∑

m=1

1
2πi

∫
∂Qm

f(ζ)
ζ − z

dζ.

However, ifQm andQm′ are adjacent, the integral over their common side
is taken once in each direction, and these cancel. This establishes (15)
when z is in K and not on the boundary of a square in Q. Since γn ⊂ Kc,
continuity guarantees that this relation continues to hold for all z ∈ K,
as was to be shown.

The first part of Theorem 5.7 is therefore a consequence of the next
lemma.

Lemma 5.9 For any line segment γ entirely contained in Ω −K, there
exists a sequence of rational functions with singularities on γ that ap-
proximate the integral

∫
γ
f(ζ)/(ζ − z) dζ uniformly on K.

Proof. If γ(t) : [0, 1] → C is a parametrization for γ, then∫
γ

f(ζ)
ζ − z

dζ =
∫ 1

0

f(γ(t))
γ(t) − z

γ′(t) dt.
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Since γ does not intersect K, the integrand F (z, t) in this last integral
is jointly continuous on K × [0, 1], and since K is compact, given ε > 0,
there exists δ > 0 such that

sup
z∈K

|F (z, t1) − F (z, t2)| < ε whenever |t1 − t2| < δ.

Arguing as in the proof of Theorem 5.4, we see that the Riemann sums
of the integral

∫ 1

0
F (z, t) dt approximate it uniformly on K. Since each

of these Riemann sums is a rational function with singularities on γ, the
lemma is proved.

Finally, the process of pushing the poles to infinity is accomplished by
using the fact that Kc is connected. Since any rational function whose
only singularity is at the point z0 is a polynomial in 1/(z − z0), it suffices
to establish the next lemma to complete the proof of Theorem 5.7.

Lemma 5.10 If Kc is connected and z0 /∈ K, then the function
1/(z − z0) can be approximated uniformly on K by polynomials.

Proof. First, we choose a point z1 that is outside a large open disc D
centered at the origin and which contains K. Then

1
z − z1

= − 1
z1

1
1 − z/z1

=
∞∑

n=1

− zn

zn+1
1

,

where the series converges uniformly for z ∈ K. The partial sums of
this series are polynomials that provide a uniform approximation to
1/(z − z1) on K. In particular, this implies that any power 1/(z − z1)k

can also be approximated uniformly on K by polynomials.
It now suffices to prove that 1/(z − z0) can be approximated uniformly

on K by polynomials in 1/(z − z1). To do so, we use the fact that Kc is
connected to travel from z0 to the point z1. Let γ be a curve in Kc that
is parametrized by γ(t) on [0, 1], and such that γ(0) = z0 and γ(1) = z1.
If we let ρ = 1

2d(K, γ), then ρ > 0 since γ and K are compact. We then
choose a sequence of points {w1, . . . , w} on γ such that w0 = z0, w = z1,
and |wj − wj+1| < ρ for all 0 ≤ j < �.

We claim that if w is a point on γ, and w′ any other point with
|w − w′| < ρ, then 1/(z − w) can be approximated uniformly on K by
polynomials in 1/(z − w′). To see this, note that

1
z − w

=
1

z − w′
1

1 − w−w′
z−w′

=
∞∑

n=0

(w − w′)n

(z − w′)n+1
,
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and since the sum converges uniformly for z ∈ K, the approximation by
partial sums proves our claim.

This result allows us to travel from z0 to z1 through the finite sequence
{wj} to find that 1/(z − z0) can be approximated uniformly on K by
polynomials in 1/(z − z1). This concludes the proof of the lemma, and
also that of the theorem.

6 Exercises

1. Prove that ∫ ∞

0

sin(x2) dx =

∫ ∞

0

cos(x2) dx =

√
2π

4
.

These are the Fresnel integrals. Here,
∫∞
0

is interpreted as limR→∞
∫ R

0
.

[Hint: Integrate the function e−z2
over the path in Figure 14. Recall that∫∞

−∞ e−x2
dx =

√
π.]

R

Rei π
4

0

Figure 14. The contour in Exercise 1

2. Show that

∫ ∞

0

sin x

x
dx =

π

2
.

[Hint: The integral equals 1
2i

∫∞
−∞

eix−1
x

dx. Use the indented semicircle.]

3. Evaluate the integrals∫ ∞

0

e−ax cos bx dx and

∫ ∞

0

e−ax sin bx dx , a > 0

by integrating e−Az, A =
√
a2 + b2, over an appropriate sector with angle ω, with

cosω = a/A.
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4. Prove that for all ξ ∈ C we have e−πξ2
=

∫ ∞

−∞
e−πx2

e2πixξ dx.

5. Suppose f is continuously complex differentiable on Ω, and T ⊂ Ω is a triangle
whose interior is also contained in Ω. Apply Green’s theorem to show that∫

T

f(z) dz = 0.

This provides a proof of Goursat’s theorem under the additional assumption that
f ′ is continuous.

[Hint: Green’s theorem says that if (F,G) is a continuously differentiable vector
field, then ∫

T

F dx+Gdy =

∫
Interior of T

(
∂G

∂x
− ∂F

∂y

)
dxdy.

For appropriate F and G, one can then use the Cauchy-Riemann equations.]

6. Let Ω be an open subset of C and let T ⊂ Ω be a triangle whose interior is also
contained in Ω. Suppose that f is a function holomorphic in Ω except possibly at
a point w inside T . Prove that if f is bounded near w, then∫

T

f(z) dz = 0.

7. Suppose f : D → C is holomorphic. Show that the diameter d =
supz, w∈D |f(z) − f(w)| of the image of f satisfies

2|f ′(0)| ≤ d.

Moreover, it can be shown that equality holds precisely when f is linear, f(z) =
a0 + a1z.

Note. In connection with this result, see the relationship between the diameter of
a curve and Fourier series described in Problem 1, Chapter 4, Book I.

[Hint: 2f ′(0) = 1
2πi

∫
|ζ|=r

f(ζ)−f(−ζ)

ζ2 dζ whenever 0 < r < 1.]

8. If f is a holomorphic function on the strip −1 < y < 1, x ∈ R with

|f(z)| ≤ A(1 + |z|)η, η a fixed real number

for all z in that strip, show that for each integer n ≥ 0 there exists An ≥ 0 so that

|f (n)(x)| ≤ An(1 + |x|)η, for all x ∈ R.

[Hint: Use the Cauchy inequalities.]
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9. Let Ω be a bounded open subset of C, and ϕ : Ω → Ω a holomorphic function.
Prove that if there exists a point z0 ∈ Ω such that

ϕ(z0) = z0 and ϕ′(z0) = 1

then ϕ is linear.

[Hint: Why can one assume that z0 = 0? Write ϕ(z) = z + anz
n +O(zn+1) near

0, and prove that if ϕk = ϕ ◦ · · · ◦ ϕ (where ϕ appears k times), then ϕk(z) =
z + kanz

n +O(zn+1). Apply the Cauchy inequalities and let k → ∞ to conclude
the proof. Here we use the standard O notation, where f(z) = O(g(z)) as z → 0
means that |f(z)| ≤ C|g(z)| for some constant C as |z| → 0.]

10. Weierstrass’s theorem states that a continuous function on [0, 1] can be uni-
formly approximated by polynomials. Can every continuous function on the closed
unit disc be approximated uniformly by polynomials in the variable z?

11. Let f be a holomorphic function on the disc DR0 centered at the origin and
of radius R0.

(a) Prove that whenever 0 < R < R0 and |z| < R, then

f(z) =
1

2π

∫ 2π

0

f(Reiϕ)Re

(
Reiϕ + z

Reiϕ − z

)
dϕ.

(b) Show that

Re

(
Reiγ + r

Reiγ − r

)
=

R2 − r2

R2 − 2Rr cos γ + r2
.

[Hint: For the first part, note that if w = R2/z, then the integral of f(ζ)/(ζ − w)
around the circle of radius R centered at the origin is zero. Use this, together with
the usual Cauchy integral formula, to deduce the desired identity.]

12. Let u be a real-valued function defined on the unit disc D. Suppose that u is
twice continuously differentiable and harmonic, that is,

u(x, y) = 0

for all (x, y) ∈ D.

(a) Prove that there exists a holomorphic function f on the unit disc such that

Re(f) = u.

Also show that the imaginary part of f is uniquely defined up to an additive
(real) constant. [Hint: From the previous chapter we would have f ′(z) =
2∂u/∂z. Therefore, let g(z) = 2∂u/∂z and prove that g is holomorphic.
Why can one find F with F ′ = g? Prove that Re(F ) differs from u by a real
constant.]
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(b) Deduce from this result, and from Exercise 11, the Poisson integral repre-
sentation formula from the Cauchy integral formula: If u is harmonic in the
unit disc and continuous on its closure, then if z = reiθ one has

u(z) =
1

2π

∫ 2π

0

Pr(θ − ϕ)u(ϕ) dϕ

where Pr(γ) is the Poisson kernel for the unit disc given by

Pr(γ) =
1 − r2

1 − 2r cos γ + r2
.

13. Suppose f is an analytic function defined everywhere in C and such that for
each z0 ∈ C at least one coefficient in the expansion

f(z) =

∞∑
n=0

cn(z − z0)
n

is equal to 0. Prove that f is a polynomial.

[Hint: Use the fact that cnn! = f (n)(z0) and use a countability argument.]

14. Suppose that f is holomorphic in an open set containing the closed unit disc,
except for a pole at z0 on the unit circle. Show that if

∞∑
n=0

anz
n

denotes the power series expansion of f in the open unit disc, then

lim
n→∞

an

an+1
= z0.

15. Suppose f is a non-vanishing continuous function on D that is holomorphic in
D. Prove that if

|f(z)| = 1 whenever |z| = 1,

then f is constant.

[Hint: Extend f to all of C by f(z) = 1/f(1/z) whenever |z| > 1, and argue as in
the Schwarz reflection principle.]

7 Problems

1. Here are some examples of analytic functions on the unit disc that cannot be
extended analytically past the unit circle. The following definition is needed. Let
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f be a function defined in the unit disc D, with boundary circle C. A point w on C
is said to be regular for f if there is an open neighborhood U of w and an analytic
function g on U , so that f = g on D ∩ U . A function f defined on D cannot be
continued analytically past the unit circle if no point of C is regular for f .

(a) Let

f(z) =
∞∑

n=0

z2n

for |z| < 1.

Notice that the radius of convergence of the above series is 1. Show that
f cannot be continued analytically past the unit disc. [Hint: Suppose
θ = 2πp/2k, where p and k are positive integers. Let z = reiθ; then
|f(reiθ)| → ∞ as r → 1.]

(b) ∗ Fix 0 < α <∞. Show that the analytic function f defined by

f(z) =
∞∑

n=0

2−nαz2n

for |z| < 1

extends continuously to the unit circle, but cannot be analytically continued
past the unit circle. [Hint: There is a nowhere differentiable function lurking
in the background. See Chapter 4 in Book I.]

2.∗ Let

F (z) =
∞∑

n=1

d(n)zn for |z| < 1

where d(n) denotes the number of divisors of n. Observe that the radius of con-
vergence of this series is 1. Verify the identity

∞∑
n=1

d(n)zn =

∞∑
n=1

zn

1 − zn
.

Using this identity, show that if z = r with 0 < r < 1, then

|F (r)| ≥ c
1

1 − r
log(1/(1 − r))

as r → 1. Similarly, if θ = 2πp/q where p and q are positive integers and z = reiθ,
then

|F (reiθ)| ≥ cp/q
1

1 − r
log(1/(1 − r))

as r → 1. Conclude that F cannot be continued analytically past the unit disc.

3. Morera’s theorem states that if f is continuous in C, and
∫

T
f(z) dz = 0 for all

triangles T , then f is holomorphic in C. Naturally, we may ask if the conclusion
still holds if we replace triangles by other sets.
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(a) Suppose that f is continuous on C, and

(16)

∫
C

f(z) dz = 0

for every circle C. Prove that f is holomorphic.

(b) More generally, let Γ be any toy contour, and F the collection of all trans-
lates and dilates of Γ. Show that if f is continuous on C, and∫

γ

f(z) dz = 0 for all γ ∈ F

then f is holomorphic. In particular, Morera’s theorem holds under the
weaker assumption that

∫
T
f(z) dz = 0 for all equilateral triangles.

[Hint: As a first step, assume that f is twice real differentiable, and write f(z) =
f(z0) + a(z − z0) + b(z − z0) +O(|z − z0|2) for z near z0. Integrating this expan-
sion over small circles around z0 yields ∂f/∂z = b = 0 at z0. Alternatively, suppose
only that f is differentiable and apply Green’s theorem to conclude that the real
and imaginary parts of f satisfy the Cauchy-Riemann equations.

In general, let ϕ(w) = ϕ(x, y) (when w = x+ iy) denote a smooth function with
0 ≤ ϕ(w) ≤ 1, and

∫
R2 ϕ(w) dV (w) = 1, where dV (w) = dxdy, and

∫
denotes the

usual integral of a function of two variables in R2. For each ε > 0, let ϕε(z) =
ε−2ϕ(ε−1z), as well as

fε(z) =

∫
R2
f(z − w)ϕε(w) dV (w),

where the integral denotes the usual integral of functions of two variables, with
dV (w) the area element of R2. Then fε is smooth, satisfies condition (16), and
fε → f uniformly on any compact subset of C.]

4. Prove the converse to Runge’s theorem: ifK is a compact set whose complement
if not connected, then there exists a function f holomorphic in a neighborhood of
K which cannot be approximated uniformly by polynomial on K.

[Hint: Pick a point z0 in a bounded component of Kc, and let f(z) = 1/(z − z0).
If f can be approximated uniformly by polynomials on K, show that there exists a
polynomial p such that |(z − z0)p(z) − 1| < 1. Use the maximum modulus principle
(Chapter 3) to show that this inequality continues to hold for all z in the component
of Kc that contains z0.]

5.∗ There exists an entire function F with the following “universal” property: given
any entire function h, there is an increasing sequence {Nk}∞k=1 of positive integers,
so that

lim
n→∞

F (z +Nk) = h(z)

uniformly on every compact subset of C.
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(a) Let p1, p2, . . . denote an enumeration of the collection of polynomials whose
coefficients have rational real and imaginary parts. Show that it suffices
to find an entire function F and an increasing sequence {Mn} of positive
integers, such that

(17) |F (z) − pn(z −Mn)| < 1

n
whenever z ∈ Dn,

where Dn denotes the disc centered at Mn and of radius n. [Hint: Given
h entire, there exists a sequence {nk} such that limk→∞ pnk(z) = h(z) uni-
formly on every compact subset of C.]

(b) Construct F satisfying (17) as an infinite series

F (z) =
∞∑

n=1

un(z)

where un(z) = pn(z −Mn)e−cn(z−Mn)2 , and the quantities cn > 0 andMn >
0 are chosen appropriately with cn → 0 and Mn → ∞. [Hint: The function

e−z2
vanishes rapidly as |z| → ∞ in the sectors {| arg z| < π/4 − δ} and

{|π − arg z| < π/4 − δ}.]
In the same spirit, there exists an alternate “universal” entire function G with

the following property: given any entire function h, there is an increasing sequence
{Nk}∞k=1 of positive integers, so that

lim
k→∞

DNkG(z) = h(z)

uniformly on every compact subset of C. Here DjG denotes the jth (complex)
derivative of G.



3 Meromorphic Functions and
the Logarithm

One knows that the differential calculus, which has
contributed so much to the progress of analysis, is
founded on the consideration of differential coefficients,
that is derivatives of functions. When one attributes
an infinitesimal increase ε to the variable x, the func-
tion f(x) of this variable undergoes in general an in-
finitesimal increase of which the first term is propor-
tional to ε, and the finite coefficient of ε of this in-
crease is what is called its differential coefficient... If
considering the values of x where f(x) becomes infi-
nite, we add to one of these values designated by x1,
the infinitesimal ε, and then develop f(x1 + ε) in in-
creasing power of the same quantity, the first terms
of this development contain negative powers of ε; one
of these will be the product of 1/ε with a finite coef-
ficient, which we will call the residue of the function
f(x), relative to the particular value x1 of the variable
x. Residues of this kind present themselves naturally
in several branches of algebraic and infinitesimal anal-
ysis. Their consideration furnish methods that can be
simply used, that apply to a large number of diverse
questions, and that give new formulae that would seem
to be of interest to mathematicians...

A. L. Cauchy, 1826

There is a general principle in the theory, already implicit in Riemann’s
work, which states that analytic functions are in an essential way charac-
terized by their singularities. That is to say, globally analytic functions
are “effectively” determined by their zeros, and meromorphic functions
by their zeros and poles. While these assertions cannot be formulated
as precise general theorems, there are nevertheless significant instances
where this principle applies.

We begin this chapter by considering singularities, in particular the
different kind of point singularities (“isolated” singularities) that a holo-
morphic function can have. In order of increasing severity, these are:

• removable singularities
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• poles

• essential singularities.

The first type is harmless since a function can actually be extended
to be holomorphic at its removable singularities (hence the name). Near
the third type, the function oscillates and may grow faster than any
power, and a complete understanding of its behavior is not easy. For the
second type the analysis is more straight forward and is connected with
the calculus of residues, which arises as follows.

Recall that by Cauchy’s theorem a holomorphic function f in an open
set which contains a closed curve γ and its interior satisfies∫

γ

f(z) dz = 0.

The question that occurs is: what happens if f has a pole in the interior
of the curve? To try to answer this question consider the example f(z) =
1/z, and recall that if C is a (positively oriented) circle centered at 0,
then ∫

C

dz

z
= 2πi.

This turns out to be the key ingredient in the calculus of residues.

A new aspect appears when we consider indefinite integrals of holomor-
phic functions that have singularities. As the basic example f(z) = 1/z
shows, the resulting “function” (in this case the logarithm) may not be
single-valued, and understanding this phenomenon is of importance for
a number of subjects. Exploiting this multi-valuedness leads in effect to
the “argument principle.” We can use this principle to count the number
of zeros of a holomorphic function inside a suitable curve. As a simple
consequence of this result, we obtain a significant geometric property of
holomorphic functions: they are open mappings. From this, the maxi-
mum principle, another important feature of holomorphic functions, is
an easy step.

In order to turn to the logarithm itself, and come to grips with the
precise nature of its multi-valuedness, we introduce the notions of homo-
topy of curves and simply connected domains. It is on the latter type of
open sets that single-valued branches of the logarithm can be defined.

1 Zeros and poles

By definition, a point singularity of a function f is a complex number
z0 such that f is defined in a neighborhood of z0 but not at the point
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z0 itself. We shall also call such points isolated singularities. For
example, if the function f is defined only on the punctured plane by
f(z) = z, then the origin is a point singularity. Of course, in that case,
the function f can actually be defined at 0 by setting f(0) = 0, so that
the resulting extension is continuous and in fact entire. (Such points
are then called removable singularities.) More interesting is the case
of the function g(z) = 1/z defined in the punctured plane. It is clear
now that g cannot be defined as a continuous function, much less as
a holomorphic function, at the point 0. In fact, g(z) grows to infinity
as z approaches 0, and we shall say that the origin is a pole singularity.
Finally, the case of the function h(z) = e1/z on the punctured plane shows
that removable singularities and poles do not tell the whole story. Indeed,
the function h(z) grows indefinitely as z approaches 0 on the positive real
line, while h approaches 0 as z goes to 0 on the negative real axis. Finally
h oscillates rapidly, yet remains bounded, as z approaches the origin on
the imaginary axis.

Since singularities often appear because the denominator of a frac-
tion vanishes, we begin with a local study of the zeros of a holomorphic
function.

A complex number z0 is a zero for the holomorphic function f if
f(z0) = 0. In particular, analytic continuation shows that the zeros of
a non-trivial holomorphic function are isolated. In other words, if f is
holomorphic in Ω and f(z0) = 0 for some z0 ∈ Ω, then there exists an
open neighborhood U of z0 such that f(z) �= 0 for all z ∈ U − {z0}, unless
f is identically zero. We start with a local description of a holomorphic
function near a zero.

Theorem 1.1 Suppose that f is holomorphic in a connected open set Ω,
has a zero at a point z0 ∈ Ω, and does not vanish identically in Ω. Then
there exists a neighborhood U ⊂ Ω of z0, a non-vanishing holomorphic
function g on U , and a unique positive integer n such that

f(z) = (z − z0)ng(z) for all z ∈ U.

Proof. Since Ω is connected and f is not identically zero, we conclude
that f is not identically zero in a neighborhood of z0. In a small disc
centered at z0 the function f has a power series expansion

f(z) =
∞∑

k=0

ak(z − z0)k.

Since f is not identically zero near z0, there exists a smallest integer n
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such that an �= 0. Then, we can write

f(z) = (z − z0)n[an + an+1(z − z0) + · · · ] = (z − z0)ng(z) ,

where g is defined by the series in brackets, and hence is holomorphic,
and is nowhere vanishing for all z close to z0 (since an �= 0). To prove
the uniqueness of the integer n, suppose that we can also write

f(z) = (z − z0)ng(z) = (z − z0)mh(z)

where h(z0) �= 0. If m > n, then we may divide by (z − z0)n to see that

g(z) = (z − z0)m−nh(z)

and letting z → z0 yields g(z0) = 0, a contradiction. If m < n a similar
argument gives h(z0) = 0, which is also a contradiction. We conclude
that m = n, thus h = g, and the theorem is proved.

In the case of the above theorem, we say that f has a zero of order
n (or multiplicity n) at z0. If a zero is of order 1, we say that it is
simple. We observe that, quantitatively, the order describes the rate at
which the function vanishes.

The importance of the previous theorem comes from the fact that
we can now describe precisely the type of singularity possessed by the
function 1/f at z0.

For this purpose, it is now convenient to define a deleted neighbor-
hood of z0 to be an open disc centered at z0, minus the point z0, that
is, the set

{z : 0 < |z − z0| < r}

for some r > 0. Then, we say that a function f defined in a deleted
neighborhood of z0 has a pole at z0, if the function 1/f , defined to be
zero at z0, is holomorphic in a full neighborhood of z0.

Theorem 1.2 If f has a pole at z0 ∈ Ω, then in a neighborhood of that
point there exist a non-vanishing holomorphic function h and a unique
positive integer n such that

f(z) = (z − z0)−nh(z).

Proof. By the previous theorem we have 1/f(z) = (z − z0)ng(z),
where g is holomorphic and non-vanishing in a neighborhood of z0, so
the result follows with h(z) = 1/g(z).
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The integer n is called the order (or multiplicity) of the pole, and
describes the rate at which the function grows near z0. If the pole is of
order 1, we say that it is simple.

The next theorem should be reminiscent of power series expansion,
except that now we allow terms of negative order, to account for the
presence of a pole.

Theorem 1.3 If f has a pole of order n at z0, then

(1) f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

(z − z0)
+G(z) ,

where G is a holomorphic function in a neighborhood of z0.

Proof. The proof follows from the multiplicative statement in the
previous theorem. Indeed, the function h has a power series expansion

h(z) = A0 + A1(z − z0) + · · ·

so that

f(z) = (z − z0)−n(A0 +A1(z − z0) + · · · )

=
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

(z − z0)
+G(z).

The sum
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

(z − z0)

is called the principal part of f at the pole z0, and the coefficient a−1 is
the residue of f at that pole. We write resz0f = a−1. The importance of
the residue comes from the fact that all the other terms in the principal
part, that is, those of order strictly greater than 1, have primitives in a
deleted neighborhood of z0. Therefore, if P (z) denotes the principal part
above and C is any circle centered at z0, we get

1
2πi

∫
C

P (z) dz = a−1.

We shall return to this important point in the section on the residue
formula.

As we shall see, in many cases, the evaluation of integrals reduces to
the calculation of residues. In the case when f has a simple pole at z0,
it is clear that

resz0f = lim
z→z0

(z − z0)f(z).
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If the pole is of higher order, a similar formula holds, one that involves
differentiation as well as taking a limit.

Theorem 1.4 If f has a pole of order n at z0, then

resz0f = lim
z→z0

1
(n− 1)!

(
d

dz

)n−1

(z − z0)nf(z).

The theorem is an immediate consequence of formula (1), which implies

(z − z0)nf(z) = a−n + a−n+1(z − z0) + · · · + a−1(z − z0)n−1 +

+G(z)(z − z0)n.

2 The residue formula

We now discuss the celebrated residue formula. Our approach follows the
discussion of Cauchy’s theorem in the last chapter: we first consider the
case of the circle and its interior the disc, and then explain generalizations
to toy contours and their interiors.

Theorem 2.1 Suppose that f is holomorphic in an open set containing
a circle C and its interior, except for a pole at z0 inside C. Then∫

C

f(z) dz = 2πi resz0f.

Proof. Once again, we may choose a keyhole contour that avoids the
pole, and let the width of the corridor go to zero to see that∫

C

f(z) dz =
∫

Cε

f(z) dz

where Cε is the small circle centered at the pole z0 and of radius ε.
Now we observe that

1
2πi

∫
Cε

a−1

z − z0
dz = a−1

is an immediate consequence of the Cauchy integral formula (Theo-
rem 4.1 of the previous chapter), applied to the constant function f =
a−1. Similarly,

1
2πi

∫
Cε

a−k

(z − z0)k
dz = 0



2. The residue formula 77

when k > 1, by using the corresponding formulae for the derivatives
(Corollary 4.2 also in the previous chapter). But we know that in a
neighborhood of z0 we can write

f(z) =
a−n

(z − z0)n
+

a−n+1

(z − z0)n−1
+ · · · + a−1

z − z0
+G(z),

where G is holomorphic. By Cauchy’s theorem, we also know that∫
Cε
G(z) dz = 0, hence

∫
Cε
f(z) dz = a−1. This implies the desired re-

sult.

This theorem can be generalized to the case of finitely many poles in
the circle, as well as to the case of toy contours.

Corollary 2.2 Suppose that f is holomorphic in an open set containing
a circle C and its interior, except for poles at the points z1, . . . , zN inside
C. Then ∫

C

f(z) dz = 2πi
N∑

k=1

reszk
f.

For the proof, consider a multiple keyhole which has a loop avoiding
each one of the poles. Let the width of the corridors go to zero. In
the limit, the integral over the large circle equals a sum of integrals over
small circles to which Theorem 2.1 applies.

Corollary 2.3 Suppose that f is holomorphic in an open set containing
a toy contour γ and its interior, except for poles at the points z1, . . . , zN

inside γ. Then ∫
γ

f(z) dz = 2πi
N∑

k=1

reszk
f.

In the above, we take γ to have positive orientation.
The proof consists of choosing a keyhole appropriate for the given toy

contour, so that, as we have seen previously, we can reduce the situation
to integrating over small circles around the poles where Theorem 2.1
applies.

The identity
∫

γ
f(z) dz = 2πi

∑N
k=1 reszk

f is referred to as the residue
formula.

2.1 Examples

The calculus of residues provides a powerful technique to compute a
wide range of integrals. In the examples we give next, we evaluate three
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improper Riemann integrals of the form∫ ∞

−∞
f(x) dx.

The main idea is to extend f to the complex plane, and then choose a
family γR of toy contours so that

lim
R→∞

∫
γR

f(z) dz =
∫ ∞

−∞
f(x) dx.

By computing the residues of f at its poles, we easily obtain
∫

γR
f(z) dz.

The challenging part is to choose the contours γR, so that the above limit
holds. Often, this choice is motivated by the decay behavior of f .

Example 1. First, we prove that

(2)
∫ ∞

−∞

dx

1 + x2
= π

by using contour integration. Note that if we make the change of variables
x 	→ x/y, this yields

1
π

∫ ∞

−∞

y dx

y2 + x2
=
∫ ∞

−∞
Py(x) dx.

In other words, formula (2) says that the integral of the Poisson kernel
Py(x) is equal to 1 for each y > 0. This was proved quite easily in
Lemma 2.5 of Chapter 5 in Book I, since 1/(1 + x2) is the derivative of
arctanx. Here we provide a residue calculation that leads to another
proof of (2).

Consider the function

f(z) =
1

1 + z2
,

which is holomorphic in the complex plane except for simple poles at the
points i and −i. Also, we choose the contour γR shown in Figure 1. The
contour consists of the segment [−R,R] on the real axis and of a large
half-circle centered at the origin in the upper half-plane.
Since we may write

f(z) =
1

(z − i)(z + i)
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R−R

γR

i

0

Figure 1. The contour γR in Example 1

we see that the residue of f at i is simply 1/2i. Therefore, if R is large
enough, we have ∫

γR

f(z) dz =
2πi
2i

= π.

If we denote by C+
R the large half-circle of radius R, we see that∣∣∣∣∣
∫

C+
R

f(z) dz

∣∣∣∣∣ ≤ πR
B

R2
≤ M

R
,

where we have used the fact that |f(z)| ≤ B/|z|2 when z ∈ C+
R and R is

large. So this integral goes to 0 as R→ ∞. Therefore, in the limit we
find that ∫ ∞

−∞
f(x) dx = π,

as desired. We remark that in this example, there is nothing special
about our choice of the semicircle in the upper half-plane. One gets the
same conclusion if one uses the semicircle in the lower half-plane, with
the other pole and the appropriate residue.

Example 2. An integral that will play an important role in Chapter 6
is ∫ ∞

−∞

eax

1 + ex
dx =

π

sin πa
, 0 < a < 1.

To prove this formula, let f(z) = eaz/(1 + ez), and consider the con-
tour consisting of a rectangle in the upper half-plane with a side lying
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2πi γR

0 R−R

πi

Figure 2. The contour γR in Example 2

on the real axis, and a parallel side on the line Im(z) = 2π, as shown in
Figure 2.

The only point in the rectangle γR where the denominator of f vanishes
is z = πi. To compute the residue of f at that point, we argue as follows:
First, note

(z − πi)f(z) = eaz z − πi

1 + ez
= eaz z − πi

ez − eπi
.

We recognize on the right the inverse of a difference quotient, and in fact

lim
z→πi

ez − eπi

z − πi
= eπi = −1

since ez is its own derivative. Therefore, the function f has a simple pole
at πi with residue

resπif = −eaπi.

As a consequence, the residue formula says that

(3)
∫

γR

f = −2πieaπi.

We now investigate the integrals of f over each side of the rectangle. Let
IR denote ∫ R

−R

f(x) dx

and I the integral we wish to compute, so that IR → I as R→ ∞. Then,
it is clear that the integral of f over the top side of the rectangle (with
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the orientation from right to left) is

−e2πiaIR.

Finally, if AR = {R+ it : 0 ≤ t ≤ 2π} denotes the vertical side on the
right, then ∣∣∣∣∫

AR

f

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣ ea(R+it)

1 + eR+it

∣∣∣∣ dt ≤ Ce(a−1)R,

and since a < 1, this integral tends to 0 as R → ∞. Similarly, the integral
over the vertical segment on the left goes to 0, since it can be bounded
by Ce−aR and a > 0. Therefore, in the limit as R tends to infinity, the
identity (3) yields

I − e2πiaI = −2πieaπi ,

from which we deduce

I = −2πi
eaπi

1 − e2πia

=
2πi

eπia − e−πia

=
π

sin πa
,

and the computation is complete.

Example 3. Now we calculate another Fourier transform, namely∫ ∞

−∞

e−2πixξ

coshπx
dx =

1
coshπξ

where

cosh z =
ez + e−z

2
.

In other words, the function 1/ coshπx is its own Fourier transform, a
property also shared by e−πx2

(see Example 1, Chapter 2). To see this,
we use a rectangle γR as shown on Figure 3 whose width goes to infinity,
but whose height is fixed.

For a fixed ξ ∈ R, let

f(z) =
e−2πizξ

coshπz
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2i

−R R

γR

α

β

0

Figure 3. The contour γR in Example 3

and note that the denominator of f vanishes precisely when eπz = −e−πz,
that is, when e2πz = −1. In other words, the only poles of f inside the
rectangle are at the points α = i/2 and β = 3i/2. To find the residue of
f at α, we note that

(z − α)f(z) = e−2πizξ 2(z − α)
eπz + e−πz

= 2e−2πizξeπz (z − α)
e2πz − e2πα

.

We recognize on the right the reciprocal of the difference quotient for the
function e2πz at z = α. Therefore

lim
z→α

(z − α)f(z) = 2e−2πiαξeπα 1
2πe2πα

=
eπξ

πi
,

which shows that f has a simple pole at α with residue eπξ/(πi). Simi-
larly, we find that f has a simple pole at β with residue −e3πξ/(πi).

We dispense with the integrals of f on the vertical sides by showing
that they go to zero as R tends to infinity. Indeed, if z = R+ iy with
0 ≤ y ≤ 2, then

|e−2πizξ| ≤ e4π|ξ|,
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and

| coshπz| =
∣∣∣∣eπz + e−πz

2

∣∣∣∣
≥ 1

2

∣∣ |eπz| − |e−πz |
∣∣

≥ 1
2
(eπR − e−πR)

→ ∞ as R→ ∞,

which shows that the integral over the vertical segment on the right goes
to 0 as R→ ∞. A similar argument shows that the integral of f over
the vertical segment on the left also goes to 0 as R→ ∞. Finally, we see
that if I denotes the integral we wish to calculate, then the integral of f
over the top side of the rectangle (with the orientation from right to left)
is simply −e4πξI where we have used the fact that coshπζ is periodic
with period 2i. In the limit as R tends to infinity, the residue formula
gives

I − e4πξI = 2πi
(
eπξ

πi
− e3πξ

πi

)
= −2e2πξ(eπξ − e−πξ),

and since 1 − e4πξ = −e2πξ(e2πξ − e−2πξ), we find that

I = 2
eπξ − e−πξ

e2πξ − e−2πξ
= 2

eπξ − e−πξ

(eπξ − e−πξ)(eπξ + e−πξ)
=

2
eπξ + e−πξ

=
1

coshπξ

as claimed.
A similar argument actually establishes the following formula:∫ ∞

−∞
e−2πixξ sinπa

coshπx+ cosπa
dx =

2 sinh 2πaξ
sinh 2πξ

whenever 0 < a < 1, and where sinh z = (ez − e−z)/2. We have proved
above the particular case a = 1/2. This identity can be used to determine
an explicit formula for the Poisson kernel for the strip (see Problem 3 in
Chapter 5 of Book I), or to prove the sum of two squares theorem, as we
shall see in Chapter 10.

3 Singularities and meromorphic functions

Returning to Section 1, we see that we have described the analytical
character of a function near a pole. We now turn our attention to the
other types of isolated singularities.
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Let f be a function holomorphic in an open set Ω except possibly at
one point z0 in Ω. If we can define f at z0 in such a way that f becomes
holomorphic in all of Ω, we say that z0 is a removable singularity for f .

Theorem 3.1 (Riemann’s theorem on removable singularities)
Suppose that f is holomorphic in an open set Ω except possibly at a point
z0 in Ω. If f is bounded on Ω − {z0}, then z0 is a removable singularity.

Proof. Since the problem is local we may consider a small disc D
centered at z0 and whose closure is contained in Ω. Let C denote the
boundary circle of that disc with the usual positive orientation. We
shall prove that if z ∈ D and z �= z0, then under the assumptions of the
theorem we have

(4) f(z) =
1

2πi

∫
C

f(ζ)
ζ − z

dζ.

Since an application of Theorem 5.4 in the previous chapter proves that
the right-hand side of equation (4) defines a holomorphic function on
all of D that agrees with f(z) when z �= z0, this give us the desired
extension.

To prove formula (4) we fix z ∈ D with z �= z0 and use the familiar toy
contour illustrated in Figure 4.

z0

z

Figure 4. The multiple keyhole contour in the proof of Riemann’s the-
orem

The multiple keyhole avoids the two points z and z0. Letting the sides
of the corridors get closer to each other, and finally overlap, in the limit
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we get a cancellation:∫
C

f(ζ)
ζ − z

dζ +
∫

γε

f(ζ)
ζ − z

dζ +
∫

γ′
ε

f(ζ)
ζ − z

dζ = 0 ,

where γε and γ′ε are small circles of radius ε with negative orientation
and centered at z and z0 respectively. Copying the argument used in the
proof of the Cauchy integral formula in Section 4 of Chapter 2, we find
that ∫

γε

f(ζ)
ζ − z

dζ = −2πif(z).

For the second integral, we use the assumption that f is bounded and
that since ε is small, ζ stays away from z, and therefore∣∣∣∣∣

∫
γ′

ε

f(ζ)
ζ − z

dζ

∣∣∣∣∣ ≤ Cε.

Letting ε tend to 0 proves our contention and concludes the proof of the
extension formula (4).

Surprisingly, we may deduce from Riemann’s theorem a characteriza-
tion of poles in terms of the behavior of the function in a neighborhood
of a singularity.

Corollary 3.2 Suppose that f has an isolated singularity at the point
z0. Then z0 is a pole of f if and only if |f(z)| → ∞ as z → z0.

Proof. If z0 is a pole, then we know that 1/f has a zero at z0, and
therefore |f(z)| → ∞ as z → z0. Conversely, suppose that this condition
holds. Then 1/f is bounded near z0, and in fact 1/|f(z)| → 0 as z → z0.
Therefore, 1/f has a removable singularity at z0 and must vanish there.
This proves the converse, namely that z0 is a pole.

Isolated singularities belong to one of three categories:

• Removable singularities (f bounded near z0)

• Pole singularities (|f(z)| → ∞ as z → z0)

• Essential singularities.

By default, any singularity that is not removable or a pole is defined
to be an essential singularity. For example, the function e1/z dis-
cussed at the very beginning of Section 1 has an essential singularity at
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0. We already observed the wild behavior of this function near the ori-
gin. Contrary to the controlled behavior of a holomorphic function near
a removable singularity or a pole, it is typical for a holomorphic function
to behave erratically near an essential singularity. The next theorem
clarifies this.

Theorem 3.3 (Casorati-Weierstrass) Suppose f is holomorphic in
the punctured disc Dr(z0) − {z0} and has an essential singularity at z0.
Then, the image of Dr(z0) − {z0} under f is dense in the complex plane.

Proof. We argue by contradiction. Assume that the range of f is not
dense, so that there exists w ∈ C and δ > 0 such that

|f(z)− w| > δ for all z ∈ Dr(z0) − {z0}.

We may therefore define a new function on Dr(z0) − {z0} by

g(z) =
1

f(z) − w
,

which is holomorphic on the punctured disc and bounded by 1/δ. Hence
g has a removable singularity at z0 by Theorem 3.1. If g(z0) �= 0, then
f(z) − w is holomorphic at z0, which contradicts the assumption that z0
is an essential singularity. In the case that g(z0) = 0, then f(z) − w has
a pole at z0 also contradicting the nature of the singularity at z0. The
proof is complete.

In fact, Picard proved a much stronger result. He showed that under
the hypothesis of the above theorem, the function f takes on every com-
plex value infinitely many times with at most one exception. Although
we shall not give a proof of this remarkable result, a simpler version of
it will follow from our study of entire functions in a later chapter. See
Exercise 11 in Chapter 5.

We now turn to functions with only isolated singularities that are
poles. A function f on an open set Ω is meromorphic if there exists a
sequence of points {z0, z1, z2, . . .} that has no limit points in Ω, and such
that

(i) the function f is holomorphic in Ω − {z0, z1, z2, . . .}, and

(ii) f has poles at the points {z0, z1, z2, . . .}.

It is also useful to discuss functions that are meromorphic in the ex-
tended complex plane. If a function is holomorphic for all large values of
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z, we can describe its behavior at infinity using the tripartite distinction
we have used to classify singularities at finite values of z. Thus, if f is
holomorphic for all large values of z, we consider F (z) = f(1/z), which
is now holomorphic in a deleted neighborhood of the origin. We say that
f has a pole at infinity if F has a pole at the origin. Similarly, we
can speak of f having an essential singularity at infinity, or a re-
movable singularity (hence holomorphic) at infinity in terms of the
corresponding behavior of F at 0. A meromorphic function in the com-
plex plane that is either holomorphic at infinity or has a pole at infinity
is said to be meromorphic in the extended complex plane.

At this stage we return to the principle mentioned at the beginning of
the chapter. Here we can see it in its simplest form.

Theorem 3.4 The meromorphic functions in the extended complex plane
are the rational functions.

Proof. Suppose that f is meromorphic in the extended plane. Then
f(1/z) has either a pole or a removable singularity at 0, and in either
case it must be holomorphic in a deleted neighborhood of the origin, so
that the function f can have only finitely many poles in the plane, say
at z1, . . . , zn. The idea is to subtract from f its principal parts at all its
poles including the one at infinity. Near each pole zk ∈ C we can write

f(z) = fk(z) + gk(z) ,

where fk(z) is the principal part of f at zk and gk is holomorphic in a
(full) neighborhood of zk. In particular, fk is a polynomial in 1/(z − zk).
Similarly, we can write

f(1/z) = f̃∞(z) + g̃∞(z) ,

where g̃∞ is holomorphic in a neighborhood of the origin and f̃∞ is the
principal part of f(1/z) at 0, that is, a polynomial in 1/z. Finally, let
f∞(z) = f̃∞(1/z).

We contend that the function H = f − f∞ −
∑n

k=1 fk is entire and
bounded. Indeed, near the pole zk we subtracted the principal part of f
so that the function H has a removable singularity there. Also, H(1/z)
is bounded for z near 0 since we subtracted the principal part of the
pole at ∞. This proves our contention, and by Liouville’s theorem we
conclude that H is constant. From the definition of H, we find that f is
a rational function, as was to be shown.

Note that as a consequence, a rational function is determined up to a
multiplicative constant by prescribing the locations and multiplicities of
its zeros and poles.
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The Riemann sphere

The extended complex plane, which consists of C and the point at infinity,
has a convenient geometric interpretation, which we briefly discuss here.

Consider the Euclidean space R3 with coordinates (X,Y, Z) where the
XY -plane is identified with C. We denote by S the sphere centered at
(0, 0, 1/2) and of radius 1/2; this sphere is of unit diameter and lies on
top of the origin of the complex plane as pictured in Figure 5. Also, we
let N = (0, 0, 1) denote the north pole of the sphere.

N

w

W

S

C

0

Figure 5. The Riemann sphere S and stereographic projection

Given any point W = (X,Y, Z) on S different from the north pole, the
line joining N and W intersects the XY -plane in a single point which
we denote by w = x+ iy; w is called the stereographic projection of
W (see Figure 5). Conversely, given any point w in C, the line joining
N and w = (x, y, 0) intersects the sphere at N and another point, which
we call W . This geometric construction gives a bijective correspondence
between points on the punctured sphere S − {N} and the complex plane;
it is described analytically by the formulas

x =
X

1 − Z
and y =

Y

1 − Z
,

giving w in terms of W , and

X =
x

x2 + y2 + 1
, Y =

y

x2 + y2 + 1
, and Z =

x2 + y2

x2 + y2 + 1

giving W in terms of w. Intuitively, we have wrapped the complex plane
onto the punctured sphere S − {N}.
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As the point w goes to infinity in C (in the sense that |w| → ∞) the
corresponding point W on S comes arbitrarily close to N . This simple
observation makes N a natural candidate for the so-called “point at
infinity.” Identifying infinity with the point N on S, we see that the
extended complex plane can be visualized as the full two-dimensional
sphere S; this is the Riemann sphere. Since this construction takes
the unbounded set C into the compact set S by adding one point, the
Riemann sphere is sometimes called the one-point compactification
of C.

An important consequence of this interpretation is the following: al-
though the point at infinity required special attention when considered
separately from C, it now finds itself on equal footing with all other points
on S. In particular, a meromorphic function on the extended complex
plane can be thought of as a map from S to itself, where the image of a
pole is now a tractable point on S, namely N . For these reasons (and
others) the Riemann sphere provides good geometrical insight into the
structure of C as well as the theory of meromorphic functions.

4 The argument principle and applications

We anticipate our discussion of the logarithm (in Section 6) with a few
comments. In general, the function log f(z) is “multiple-valued” because
it cannot be defined unambiguously on the set where f(z) �= 0. However
it is to be defined, it must equal log |f(z)| + i arg f(z), where log |f(z)|
is the usual real-variable logarithm of the positive quantity |f(z)| (and
hence is defined unambiguously), while arg f(z) is some determination
of the argument (up to an additive integral multiple of 2π). Note that in
any case, the derivative of log f(z) is f ′(z)/f(z) which is single-valued,
and the integral ∫

γ

f ′(z)
f(z)

dz

can be interpreted as the change in the argument of f as z traverses
the curve γ. Moreover, assuming the curve is closed, this change of
argument is determined entirely by the zeros and poles of f inside γ. We
now formulate this fact as a precise theorem.

We begin with the observation that while the additivity formula

log(f1f2) = log f1 + log f2

fails in general (as we shall see below), the additivity can be restored
to the corresponding derivatives. This is confirmed by the following
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observation:

(f1f2)′

f1f2
=
f ′1f2 + f1f

′
2

f1f2
=
f ′1
f1

+
f ′2
f2
,

which generalizes to (∏N
k=1 fk

)′
∏N

k=1 fk

=
N∑

k=1

f ′k
fk
.

We apply this formula as follows. If f is holomorphic and has a zero
of order n at z0, we can write

f(z) = (z − z0)ng(z) ,

where g is holomorphic and nowhere vanishing in a neighborhood of z0,
and therefore

f ′(z)
f(z)

=
n

z − z0
+G(z)

where G(z) = g′(z)/g(z). The conclusion is that if f has a zero of order
n at z0, then f ′/f has a simple pole with residue n at z0. Observe
that a similar fact also holds if f has a pole of order n at z0, that is, if
f(z) = (z − z0)−nh(z). Then

f ′(z)
f(z)

=
−n
z − z0

+H(z).

Therefore, if f is meromorphic, the function f ′/f will have simple poles
at the zeros and poles of f , and the residue is simply the order of the
zero of f or the negative of the order of the pole of f . As a result, an
application of the residue formula gives the following theorem.

Theorem 4.1 (Argument principle) Suppose f is meromorphic in
an open set containing a circle C and its interior. If f has no poles
and never vanishes on C, then

1
2πi

∫
C

f ′(z)
f(z)

dz = (number of zeros of f inside C) minus

(number of poles of f inside C),

where the zeros and poles are counted with their multiplicities.

Corollary 4.2 The above theorem holds for toy contours.
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As an application of the argument principle, we shall prove three the-
orems of interest in the general theory. The first, Rouché’s theorem, is
in some sense a continuity statement. It says that a holomorphic func-
tion can be perturbed slightly without changing the number of its zeros.
Then, we prove the open mapping theorem, which states that holomor-
phic functions map open sets to open sets, an important property that
again shows the special nature of holomorphic functions. Finally, the
maximum modulus principle is reminiscent of (and in fact implies) the
same property for harmonic functions: a non-constant holomorphic func-
tion on an open set Ω cannot attain its maximum in the interior of Ω.

Theorem 4.3 (Rouché’s theorem) Suppose that f and g are holo-
morphic in an open set containing a circle C and its interior. If

|f(z)| > |g(z)| for all z ∈ C,

then f and f + g have the same number of zeros inside the circle C.

Proof. For t ∈ [0, 1] define

ft(z) = f(z) + tg(z)

so that f0 = f and f1 = f + g. Let nt denote the number of zeros of ft

inside the circle counted with multiplicities, so that in particular, nt is
an integer. The condition |f(z)| > |g(z)| for z ∈ C clearly implies that
ft has no zeros on the circle, and the argument principle implies

nt =
1

2πi

∫
C

f ′t(z)
ft(z)

dz.

To prove that nt is constant, it suffices to show that it is a continu-
ous function of t. Then we could argue that if nt were not constant,
the intermediate value theorem would guarantee the existence of some
t0 ∈ [0, 1] with nt0 not integral, contradicting the fact that nt ∈ Z for
all t.

To prove the continuity of nt, we observe that f ′t(z)/ft(z) is jointly
continuous for t ∈ [0, 1] and z ∈ C. This joint continuity follows from
the fact that it holds for both the numerator and denominator, and our
assumptions guarantee that ft(z) does not vanish on C. Hence nt is
integer-valued and continuous, and it must be constant. We conclude
that n0 = n1, which is Rouché’s theorem.

We now come to an important geometric property of holomorphic func-
tions that arises when we consider them as mappings (that is, mapping
regions in the complex plane to the complex plane).

A mapping is said to be open if it maps open sets to open sets.
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Theorem 4.4 (Open mapping theorem) If f is holomorphic and non-
constant in a region Ω, then f is open.

Proof. Let w0 belong to the image of f , say w0 = f(z0). We must
prove that all points w near w0 also belong to the image of f .

Define g(z) = f(z) − w and write

g(z) = (f(z) − w0) + (w0 − w)
= F (z) +G(z).

Now choose δ > 0 such that the disc |z − z0| ≤ δ is contained in Ω and
f(z) �= w0 on the circle |z − z0| = δ. We then select ε > 0 so that we
have |f(z)− w0| ≥ ε on the circle |z − z0| = δ. Now if |w − w0| < ε we
have |F (z)| > |G(z)| on the circle |z − z0| = δ, and by Rouché’s theorem
we conclude that g = F +G has a zero inside the circle since F has one.

The next result pertains to the size of a holomorphic function. We
shall refer to the maximum of a holomorphic function f in an open set
Ω as the maximum of its absolute value |f | in Ω.

Theorem 4.5 (Maximum modulus principle) If f is a non-constant
holomorphic function in a region Ω, then f cannot attain a maximum in
Ω.

Proof. Suppose that f did attain a maximum at z0. Since f is
holomorphic it is an open mapping, and therefore, ifD ⊂ Ω is a small disc
centered at z0, its image f(D) is open and contains f(z0). This proves
that there are points in z ∈ D such that |f(z)| > |f(z0)|, a contradiction.

Corollary 4.6 Suppose that Ω is a region with compact closure Ω. If f
is holomorphic on Ω and continuous on Ω then

sup
z∈Ω

|f(z)| ≤ sup
z∈Ω−Ω

|f(z)|.

In fact, since f(z) is continuous on the compact set Ω, then |f(z)|
attains its maximum in Ω; but this cannot be in Ω if f is non-constant.
If f is constant, the conclusion is trivial.

Remark. The hypothesis that Ω is compact (that is, bounded) is es-
sential for the conclusion. We give an example related to considerations
that we will take up in Chapter 4. Let Ω be the open first quadrant,
bounded by the positive half-line x ≥ 0 and the corresponding imagi-
nary line y ≥ 0. Consider F (z) = e−iz2

. Then F is entire and clearly
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continuous on Ω. Moreover |F (z)| = 1 on the two boundary lines z = x
and z = iy. However, F (z) is unbounded in Ω, since for example, we
have F (z) = er2

if z = r
√
i = reiπ/4.

5 Homotopies and simply connected domains

The key to the general form of Cauchy’s theorem, as well as the analysis of
multiple-valued functions, is to understand in what regions we can define
the primitive of a given holomorphic function. Note the relevance to the
study of the logarithm, which arises as a primitive of 1/z. The question is
not just a local one, but is also global in nature. Its elucidation requires
the notion of homotopy, and the resulting idea of simple-connectivity.

Let γ0 and γ1 be two curves in an open set Ω with common end-points.
So if γ0(t) and γ1(t) are two parametrizations defined on [a, b], we have

γ0(a) = γ1(a) = α and γ0(b) = γ1(b) = β.

These two curves are said to be homotopic in Ω if for each 0 ≤ s ≤ 1
there exists a curve γs ⊂ Ω, parametrized by γs(t) defined on [a, b], such
that for every s

γs(a) = α and γs(b) = β,

and for all t ∈ [a, b]

γs(t)|s=0 = γ0(t) and γs(t)|s=1 = γ1(t).

Moreover, γs(t) should be jointly continuous in s ∈ [0, 1] and t ∈ [a, b].
Loosely speaking, two curves are homotopic if one curve can be de-

formed into the other by a continuous transformation without ever leav-
ing Ω (Figure 6).

Theorem 5.1 If f is holomorphic in Ω, then∫
γ0

f(z) dz =
∫

γ1

f(z) dz

whenever the two curves γ0 and γ1 are homotopic in Ω.

Proof. The key to the proof lies in showing that if two curves are close
to each other and have the same end-points, then the integrals over these
curves are equal. Recall that by definition, the function F (s, t) = γs(t) is
continuous on [0, 1] × [a, b]. In particular, since the image of F , which we
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α

β

γs

γ1

Ω

γ0

Figure 6. Homotopy of curves

denote by K, is compact, there exists ε > 0 such that every disc of radius
3ε centered at a point in the image of F is completely contained in Ω. If
not, for every � ≥ 0, there exist points z ∈ K and w in the complement
of Ω such that |z − w| < 1/�. By compactness of K, there exists a
subsequence of {z}, say {zk

}, that converges to a point z ∈ K ⊂ Ω. By
construction, we must have wk

→ z as well, and since {w} lies in the
complement of Ω which is closed, we must have z ∈ Ωc as well. This is a
contradiction.

Having found an ε with the desired property, we may, by the uniform
continuity of F , select δ so that

sup
t∈[a,b]

|γs1(t) − γs2(t)| < ε whenever |s1 − s2| < δ.

Fix s1 and s2 with |s1 − s2| < δ. We then choose discs {D0, . . . , Dn} of
radius 2ε, and consecutive points {z0, . . . , zn+1} on γs1 and {w0, . . . , wn+1}
on γs2 such that the union of these discs covers both curves, and

zi, zi+1, wi, wi+1 ∈ Di.

The situation is illustrated in Figure 7.
Also, we choose z0 = w0 as the beginning end-point of the curves and

zn+1 = wn+1 as the common end-point. On each disc Di, let Fi denote a
primitive of f (Theorem 2.1, Chapter 2). On the intersection of Di and
Di+1, Fi and Fi+1 are two primitives of the same function, so they must
differ by a constant, say ci. Therefore

Fi+1(zi+1) − Fi(zi+1) = Fi+1(wi+1) − Fi(wi+1),



5. Homotopies and simply connected domains 95

z5 = w5

z0 = w0

w1

w2

z3

z4

D0

D1

D2

D3

D4

z1

z2

w3

w4

Figure 7. Covering two nearby curves with discs

hence

(5) Fi+1(zi+1) − Fi+1(wi+1) = Fi(zi+1) − Fi(wi+1).

This implies∫
γs1

f −
∫

γs2

f =
n∑

i=0

[Fi(zi+1) − Fi(zi)] −
n∑

i=0

[Fi(wi+1) − Fi(wi)]

=
n∑

i=0

Fi(zi+1) − Fi(wi+1) − (Fi(zi) − Fi(wi))

= Fn(zn+1) − Fn(wn+1) − (F0(z0) − F0(w0)) ,

because of the cancellations due to (5). Since γs1 and γs2 have the same
beginning and end point, we have proved that∫

γs1

f =
∫

γs2

f.

By subdividing [0, 1] into subintervals [si, si+1] of length less than δ, we
may go from γ0 to γ1 by finitely many applications of the above argument,
and the theorem is proved.
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A region Ω in the complex plane is simply connected if any two pair
of curves in Ω with the same end-points are homotopic.

Example 1. A disc D is simply connected. In fact, if γ0(t) and γ1(t)
are two curves lying in D, we can define γs(t) by

γs(t) = (1 − s)γ0(t) + sγ1(t).

Note that if 0 ≤ s ≤ 1, then for each t, the point γs(t) is on the segment
joining γ0(t) and γ1(t), and so is in D. The same argument works if D is
replaced by a rectangle, or more generally by any open convex set. (See
Exercise 21.)

Example 2. The slit plane Ω = C − {(−∞, 0]} is simply connected. For
a pair of curves γ0 and γ1 in Ω, we write γj(t) = rj(t)eiθj(t) (j = 0, 1)
with rj(t) continuous and strictly positive, and θj(t) continuous with
|θj(t)| < π. Then, we can define γs(t) as rs(t)eiθs(t) where

rs(t) = (1 − s)r0(t) + sr1(t) and θs(t) = (1 − s)θ0(t) + sθ1(t).

We then have γs(t) ∈ Ω whenever 0 ≤ s ≤ 1.

Example 3. With some effort one can show that the interior of a toy
contour is simply connected. This requires that we divide the interior into
several subregions. A general form of the argument is given in Exercise 4.

Example 4. In contrast with the previous examples, the punctured
plane C − {0} is not simply connected. Intuitively, consider two curves
with the origin between them. It is impossible to continuously pass from
one curve to the other without going over 0. A rigorous proof of this fact
requires one further result, and will be given shortly.

Theorem 5.2 Any holomorphic function in a simply connected domain
has a primitive.

Proof. Fix a point z0 in Ω and define

F (z) =
∫

γ

f(w) dw

where the integral is taken over any curve in Ω joining z0 to z. This
definition is independent of the curve chosen, since Ω is simply connected,
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and if γ̃ is another curve in Ω joining z0 and z, we would have∫
γ

f(w) dw =
∫

γ̃

f(w) dw

by Theorem 5.1. Now we can write

F (z + h) − F (z) =
∫

η

f(w) dw

where η is the line segment joining z and z + h. Arguing as in the proof
of Theorem 2.1 in Chapter 2, we find that

lim
h→0

F (z + h) − F (z)
h

= f(z).

As a result, we obtain the following version of Cauchy’s theorem.

Corollary 5.3 If f is holomorphic in the simply connected region Ω,
then ∫

γ

f(z) dz = 0

for any closed curve γ in Ω.

This is immediate from the existence of a primitive.

The fact that the punctured plane is not simply connected now follows
rigorously from the observation that the integral of 1/z over the unit
circle is 2πi, and not 0.

6 The complex logarithm

Suppose we wish to define the logarithm of a non-zero complex num-
ber. If z = reiθ, and we want the logarithm to be the inverse to the
exponential, then it is natural to set

log z = log r + iθ.

Here and below, we use the convention that log r denotes the standard1

logarithm of the positive number r. The trouble with the above defini-
tion is that θ is unique only up to an integer multiple of 2π. However,

1By the standard logarithm, we mean the natural logarithm of positive numbers that
appears in elementary calculus.
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for given z we can fix a choice of θ, and if z varies only a little, this
determines the corresponding choice of θ uniquely (assuming we require
that θ varies continuously with z). Thus “locally” we can give an unam-
biguous definition of the logarithm, but this will not work “globally.” For
example, if z starts at 1, and then winds around the origin and returns
to 1, the logarithm does not return to its original value, but rather differs
by an integer multiple of 2πi, and therefore is not “single-valued.” To
make sense of the logarithm as a single-valued function, we must restrict
the set on which we define it. This is the so-called choice of a branch
or sheet of the logarithm.

Our discussion of simply connected domains given above leads to a
natural global definition of a branch of the logarithm function.

Theorem 6.1 Suppose that Ω is simply connected with 1 ∈ Ω, and 0 /∈
Ω. Then in Ω there is a branch of the logarithm F (z) = logΩ(z) so that

(i) F is holomorphic in Ω,

(ii) eF (z) = z for all z ∈ Ω,

(iii) F (r) = log r whenever r is a real number and near 1.

In other words, each branch logΩ(z) is an extension of the standard
logarithm defined for positive numbers.

Proof. We shall construct F as a primitive of the function 1/z. Since
0 /∈ Ω, the function f(z) = 1/z is holomorphic in Ω. We define

logΩ(z) = F (z) =
∫

γ

f(w) dw ,

where γ is any curve in Ω connecting 1 to z. Since Ω is simply connected,
this definition does not depend on the path chosen. Arguing as in the
proof of Theorem 5.2, we find that F is holomorphic and F ′(z) = 1/z
for all z ∈ Ω. This proves (i). To prove (ii), it suffices to show that
ze−F (z) = 1. For that, we differentiate the left-hand side, obtaining

d

dz

(
ze−F (z)

)
= e−F (z) − zF ′(z)e−F (z) = (1 − zF ′(z))e−F (z) = 0.

Since Ω is connected we conclude, by Corollary 3.4 in Chapter 1, that
ze−F (z) is constant. Evaluating this expression at z = 1, and noting that
F (1) = 0, we find that this constant must be 1.

Finally, if r is real and close to 1 we can choose as a path from 1 to r
a line segment on the real axis so that

F (r) =
∫ r

1

dx

x
= log r,
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by the usual formula for the standard logarithm. This completes the
proof of the theorem.

For example, in the slit plane Ω = C − {(−∞, 0]} we have the princi-
pal branch of the logarithm

log z = log r + iθ

where z = reiθ with |θ| < π. (Here we drop the subscript Ω, and write
simply log z.) To prove this, we use the path of integration γ shown in
Figure 8.

0 1 r

z = reiθ

Figure 8. Path of integration for the principal branch of the logarithm

If z = reiθ with |θ| < π, the path consists of the line segment from 1
to r and the arc η from r to z. Then

log z =
∫ r

1

dx

x
+
∫

η

dw

w

= log r +
∫ θ

0

ireit

reit
dt

= log r + iθ.

An important observation is that in general

log(z1z2) �= log z1 + log z2.

For example, if z1 = e2πi/3 = z2, then for the principal branch of the
logarithm, we have

log z1 = log z2 =
2πi
3
,
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and since z1z2 = e−2πi/3 we have

−2πi
3

= log(z1z2) �= log z1 + log z2.

Finally, for the principal branch of the logarithm the following Taylor
expansion holds:

(6) log(1 + z) = z − z2

2
+
z3

3
− · · · = −

∞∑
n=1

(−1)n z
n

n
for |z| < 1.

Indeed, the derivative of both sides equals 1/(1 + z), so that they differ
by a constant. Since both sides are equal to 0 at z = 0 this constant
must be 0, and we have proved the desired Taylor expansion.

Having defined a logarithm on a simply connected domain, we can
now define the powers zα for any α ∈ C. If Ω is simply connected with
1 ∈ Ω and 0 /∈ Ω, we choose the branch of the logarithm with log 1 = 0
as above, and define

zα = eα log z.

Note that 1α = 1, and that if α = 1/n, then

(z1/n)n =
n∏

k=1

e
1
n log z = e

∑n
k=1

1
n log z = e

n
n log z = elog z = z.

We know that every non-zero complex number w can be written as
w = ez. A generalization of this fact is given in the next theorem, which
discusses the existence of log f(z) whenever f does not vanish.

Theorem 6.2 If f is a nowhere vanishing holomorphic function in a
simply connected region Ω, then there exists a holomorphic function g on
Ω such that

f(z) = eg(z).

The function g(z) in the theorem can be denoted by log f(z), and deter-
mines a “branch” of that logarithm.

Proof. Fix a point z0 in Ω, and define a function

g(z) =
∫

γ

f ′(w)
f(w)

dw + c0,
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where γ is any path in Ω connecting z0 to z, and c0 is a complex number
so that ec0 = f(z0). This definition is independent of the path γ since Ω
is simply connected. Arguing as in the proof of Theorem 2.1, Chapter 2,
we find that g is holomorphic with

g′(z) =
f ′(z)
f(z)

,

and a simple calculation gives

d

dz

(
f(z)e−g(z)

)
= 0 ,

so that f(z)e−g(z) is constant. Evaluating this expression at z0 we find
f(z0)e−c0 = 1, so that f(z) = eg(z) for all z ∈ Ω, and the proof is com-
plete.

7 Fourier series and harmonic functions

In Chapter 4 we shall describe some interesting connections between com-
plex function theory and Fourier analysis on the real line. The motivation
for this study comes in part from the simple and direct relation between
Fourier series on the circle and power series expansions of holomorphic
functions in the disc, which we now investigate.

Suppose that f is holomorphic in a disc DR(z0), so that f has a power
series expansion

f(z) =
∞∑

n=0

an(z − z0)n

that converges in that disc.

Theorem 7.1 The coefficients of the power series expansion of f are
given by

an =
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ

for all n ≥ 0 and 0 < r < R. Moreover,

0 =
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ

whenever n < 0.
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Proof. Since f (n)(z0) = ann!, the Cauchy integral formula gives

an =
1

2πi

∫
γ

f(ζ)
(ζ − z0)n+1

dζ ,

where γ is a circle of radius 0 < r < R centered at z0 and with the positive
orientation. Choosing ζ = z0 + reiθ for the parametrization of this circle,
we find that for n ≥ 0

an =
1

2πi

∫ 2π

0

f(z0 + reiθ)
(z0 + reiθ − z0)n+1

rieiθ dθ

=
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−i(n+1)θeiθ dθ

=
1

2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ.

Finally, even when n < 0, our calculation shows that we still have the
identity

1
2πrn

∫ 2π

0

f(z0 + reiθ)e−inθ dθ =
1

2πi

∫
γ

f(ζ)
(ζ − z0)n+1

dζ.

Since −n > 0, the function f(ζ)(ζ − z0)−n−1 is holomorphic in the disc,
and by Cauchy’s theorem the last integral vanishes.

The interpretation of this theorem is as follows. Consider f(z0 + reiθ)
as the restriction to the circle of a holomorphic function on the closure
of a disc centered at z0 with radius r. Then its Fourier coefficients
vanish if n < 0, while those for n ≥ 0 are equal (up to a factor of rn)
to coefficients of the power series of the holomorphic function f . The
property of the vanishing of the Fourier coefficients for n < 0 reveals
another special characteristic of holomorphic functions (and in particular
their restrictions to any circle).

Next, since a0 = f(z0), we obtain the following corollary.

Corollary 7.2 (Mean-value property) If f is holomorphic in a disc
DR(z0), then

f(z0) =
1
2π

∫ 2π

0

f(z0 + reiθ) dθ, for any 0 < r < R.

Taking the real parts of both sides, we obtain the following conse-
quence.
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Corollary 7.3 If f is holomorphic in a disc DR(z0), and u = Re(f),
then

u(z0) =
1
2π

∫ 2π

0

u(z0 + reiθ) dθ, for any 0 < r < R.

Recall that u is harmonic whenever f is holomorphic, and in fact, the
above corollary is a property enjoyed by every harmonic function in the
disc DR(z0). This follows from Exercise 12 in Chapter 2, which shows
that every harmonic function in a disc is the real part of a holomorphic
function in that disc.

8 Exercises

1. Using Euler’s formula

sin πz =
eiπz − e−iπz

2i
,

show that the complex zeros of sin πz are exactly at the integers, and that they
are each of order 1.

Calculate the residue of 1/ sin πz at z = n ∈ Z.

2. Evaluate the integral ∫ ∞

−∞

dx

1 + x4
.

Where are the poles of 1/(1 + z4)?

3. Show that ∫ ∞

−∞

cos x

x2 + a2
dx = π

e−a

a
, for a > 0.

4. Show that ∫ ∞

−∞

x sin x

x2 + a2
dx = πe−a, for all a > 0.

5. Use contour integration to show that∫ ∞

−∞

e−2πixξ

(1 + x2)2
dx =

π

2
(1 + 2π|ξ|)e−2π|ξ|

for all ξ real.
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6. Show that ∫ ∞

−∞

dx

(1 + x2)n+1
=

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
· π.

7. Prove that ∫ 2π

0

dθ

(a+ cos θ)2
=

2πa

(a2 − 1)3/2
, whenever a > 1.

8. Prove that ∫ 2π

0

dθ

a+ b cos θ
=

2π√
a2 − b2

if a > |b| and a, b ∈ R.

9. Show that ∫ 1

0

log(sin πx) dx = − log 2.

[Hint: Use the contour shown in Figure 9.]

0 1

Figure 9. Contour in Exercise 9

10. Show that if a > 0, then∫ ∞

0

log x

x2 + a2
dx =

π

2a
log a.

[Hint: Use the contour in Figure 10.]

11. Show that if |a| < 1, then∫ 2π

0

log |1 − aeiθ| dθ = 0.
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−R R−ε

ia

ε

Figure 10. Contour in Exercise 10

Then, prove that the above result remains true if we assume only that |a| ≤ 1.

12. Suppose u is not an integer. Prove that

∞∑
n=−∞

1

(u+ n)2
=

π2

(sin πu)2

by integrating

f(z) =
π cotπz

(u+ z)2

over the circle |z| = RN = N + 1/2 (N integral, N ≥ |u|), adding the residues of
f inside the circle, and letting N tend to infinity.
Note. Two other derivations of this identity, using Fourier series, were given in
Book I.

13. Suppose f(z) is holomorphic in a punctured disc Dr(z0) − {z0}. Suppose also
that

|f(z)| ≤ A|z − z0|−1+ε

for some ε > 0, and all z near z0. Show that the singularity of f at z0 is removable.

14. Prove that all entire functions that are also injective take the form
f(z) = az + b with a, b ∈ C, and a 
= 0.

[Hint: Apply the Casorati-Weierstrass theorem to f(1/z).]

15. Use the Cauchy inequalities or the maximum modulus principle to solve the
following problems:

(a) Prove that if f is an entire function that satisfies

sup
|z|=R

|f(z)| ≤ ARk +B
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for all R > 0, and for some integer k ≥ 0 and some constants A,B > 0, then
f is a polynomial of degree ≤ k.

(b) Show that if f is holomorphic in the unit disc, is bounded, and converges
uniformly to zero in the sector θ < arg z < ϕ as |z| → 1, then f = 0.

(c) Let w1, . . . , wn be points on the unit circle in the complex plane. Prove that
there exists a point z on the unit circle such that the product of the distances
from z to the points wj , 1 ≤ j ≤ n, is at least 1. Conclude that there exists
a point w on the unit circle such that the product of the distances from w
to the points wj , 1 ≤ j ≤ n, is exactly equal to 1.

(d) Show that if the real part of an entire function f is bounded, then f is
constant.

16. Suppose f and g are holomorphic in a region containing the disc |z| ≤ 1.
Suppose that f has a simple zero at z = 0 and vanishes nowhere else in |z| ≤ 1.
Let

fε(z) = f(z) + εg(z).

Show that if ε is sufficiently small, then

(a) fε(z) has a unique zero in |z| ≤ 1, and

(b) if zε is this zero, the mapping ε �→ zε is continuous.

17. Let f be non-constant and holomorphic in an open set containing the closed
unit disc.

(a) Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the
unit disc. [Hint: One must show that f(z) = w0 has a root for every w0 ∈ D.
To do this, it suffices to show that f(z) = 0 has a root (why?). Use the
maximum modulus principle to conclude.]

(b) If |f(z)| ≥ 1 whenever |z| = 1 and there exists a point z0 ∈ D such that
|f(z0)| < 1, then the image of f contains the unit disc.

18. Give another proof of the Cauchy integral formula

f(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

using homotopy of curves.

[Hint: Deform the circle C to a small circle centered at z, and note that the
quotient (f(ζ) − f(z))/(ζ − z) is bounded.]

19. Prove the maximum principle for harmonic functions, that is:
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(a) If u is a non-constant real-valued harmonic function in a region Ω, then u
cannot attain a maximum (or a minimum) in Ω.

(b) Suppose that Ω is a region with compact closure Ω. If u is harmonic in Ω
and continuous in Ω, then

sup
z∈Ω

|u(z)| ≤ sup
z∈Ω−Ω

|u(z)|.

[Hint: To prove the first part, assume that u attains a local maximum at z0. Let f
be holomorphic near z0 with u = Re(f), and show that f is not open. The second
part follows directly from the first.]

20. This exercise shows how the mean square convergence dominates the uniform
convergence of analytic functions. If U is an open subset of C we use the notation

‖f‖L2(U) =

(∫
U

|f(z)|2 dxdy
)1/2

for the mean square norm, and

‖f‖L∞(U) = sup
z∈U

|f(z)|

for the sup norm.

(a) If f is holomorphic in a neighborhood of the disc Dr(z0), show that for any
0 < s < r there exists a constant C > 0 (which depends on s and r) such
that

‖f‖L∞(Ds(z0)) ≤ C‖f‖L2(Dr(z0)) .

(b) Prove that if {fn} is a Cauchy sequence of holomorphic functions in the
mean square norm ‖ · ‖L2(U), then the sequence {fn} converges uniformly
on every compact subset of U to a holomorphic function.

[Hint: Use the mean-value property.]

21. Certain sets have geometric properties that guarantee they are simply con-
nected.

(a) An open set Ω ⊂ C is convex if for any two points in Ω, the straight line
segment between them is contained in Ω. Prove that a convex open set is
simply connected.

(b) More generally, an open set Ω ⊂ C is star-shaped if there exists a point
z0 ∈ Ω such that for any z ∈ Ω, the straight line segment between z and z0
is contained in Ω. Prove that a star-shaped open set is simply connected.
Conclude that the slit plane C − {(−∞, 0]} (and more generally any sector,
convex or not) is simply connected.
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(c) What are other examples of open sets that are simply connected?

22. Show that there is no holomorphic function f in the unit disc D that extends
continuously to ∂D such that f(z) = 1/z for z ∈ ∂D.

9 Problems

1.∗ Consider a holomorphic map on the unit disc f : D → C which satisfies
f(0) = 0. By the open mapping theorem, the image f(D) contains a small disc
centered at the origin. We then ask: does there exist r > 0 such that for all
f : D → C with f(0) = 0, we have Dr(0) ⊂ f(D)?

(a) Show that with no further restrictions on f , no such r exists. It suffices to
find a sequence of functions {fn} holomorphic in D such that 1/n /∈ f(D).
Compute f ′

n(0), and discuss.

(b) Assume in addition that f also satisfies f ′(0) = 1. Show that despite this
new assumption, there exists no r > 0 satisfying the desired condition.

[Hint: Try fε(z) = ε(ez/ε − 1).]

The Koebe-Bieberbach theorem states that if in addition to f(0) = 0 and
f ′(0) = 1 we also assume that f is injective, then such an r exists and the best
possible value is r = 1/4.

(c) As a first step, show that if h(z) = 1
z

+ c0 + c1z + c2z
2 + · · · is analytic and

injective for 0 < |z| < 1, then
∑∞

n=1 n|cn|2 ≤ 1.

[Hint: Calculate the area of the complement of h(Dρ(0) − {0}) where
0 < ρ < 1, and let ρ→ 1.]

(d) If f(z) = z + a2z
2 + · · · satisfies the hypotheses of the theorem, show that

there exists another function g satisfying the hypotheses of the theorem such
that g2(z) = f(z2).

[Hint: f(z)/z is nowhere vanishing so there exists ψ such that
ψ2(z) = f(z)/z and ψ(0) = 1. Check that g(z) = zψ(z2) is injective.]

(e) With the notation of the previous part, show that |a2| ≤ 2, and that equality
holds if and only if

f(z) =
z

(1 − eiθz)2
for some θ ∈ R.

[Hint: What is the power series expansion of 1/g(z)? Use part (c).]

(f) If h(z) = 1
z

+ c0 + c1z + c2z
2 + · · · is injective on D and avoids the values

z1 and z2, show that |z1 − z2| ≤ 4.

[Hint: Look at the second coefficient in the power series expansion of
1/(h(z) − zj).]
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(g) Complete the proof of the theorem. [Hint: If f avoids w, then 1/f avoids 0
and 1/w.]

2. Let u be a harmonic function in the unit disc that is continuous on its closure.
Deduce Poisson’s integral formula

u(z0) =
1

2π

∫ 2π

0

1 − |z0|2
|eiθ − z0|2 u(e

iθ) dθ for |z0| < 1

from the special case z0 = 0 (the mean value theorem). Show that if z0 = reiϕ,
then

1 − |z0|2
|eiθ − z0|2 =

1 − r2

1 − 2r cos(θ − ϕ) + r2
= Pr(θ − ϕ),

and we recover the expression for the Poisson kernel derived in the exercises of the
previous chapter.

[Hint: Set u0(z) = u(T (z)) where

T (z) =
z0 − z

1 − z0z
.

Prove that u0 is harmonic. Then apply the mean value theorem to u0, and make
a change of variables in the integral.]

3. If f(z) is holomorphic in the deleted neighborhood {0 < |z − z0| < r} and has
a pole of order k at z0, then we can write

f(z) =
a−k

(z − z0)k
+ · · · + a−1

(z − z0)
+ g(z)

where g is holomorphic in the disc {|z − z0| < r}. There is a generalization of this
expansion that holds even if z0 is an essential singularity. This is a special case of
the Laurent series expansion, which is valid in an even more general setting.

Let f be holomorphic in a region containing the annulus {z : r1 ≤ |z − z0| ≤ r2}
where 0 < r1 < r2. Then,

f(z) =
∞∑

n=−∞
an(z − z0)

n

where the series converges absolutely in the interior of the annulus. To prove this,
it suffices to write

f(z) =
1

2πi

∫
Cr2

f(ζ)

ζ − z
dζ − 1

2πi

∫
Cr1

f(ζ)

ζ − z
dζ

when r1 < |z − z0| < r2, and argue as in the proof of Theorem 4.4, Chapter 2.
Here Cr1 and Cr2 are the circles bounding the annulus.
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4.∗ Suppose Ω is a bounded region. Let L be a (two-way infinite) line that intersects
Ω. Assume that Ω ∩ L is an interval I . Choosing an orientation for L, we can define
Ωl and Ωr to be the subregions of Ω lying strictly to the left or right of L, with
Ω = Ωl ∪ I ∪ Ωr a disjoint union. If Ωl and Ωr are simply connected, then Ω is
simply connected.

5.∗ Let

g(z) =
1

2πi

∫ M

−M

h(x)

x− z
dx

where h is continuous and supported in [−M,M ].

(a) Prove that the function g is holomorphic in C − [−M,M ], and vanishes
at infinity, that is, lim|z|→∞ |g(z)| = 0. Moreover, the “jump” of g across
[−M,M ] is h, that is,

h(x) = lim
ε→0,ε>0

g(x+ iε) − g(x− iε).

[Hint: Express the difference g(x+ iε) − g(x− iε) in terms of a convolution
of h with the Poisson kernel.]

(b) If h satisfies a mild smoothness condition, for instance a Hölder condition
with exponent α, that is, |h(x) − h(y)| ≤ C|x− y|α for some C > 0 and all
x, y ∈ [−M,M ], then g(x+ iε) and g(x− iε) converge uniformly to functions
g+(x) and g−(x) as ε→ 0. Then, g can be characterized as the unique
holomorphic function that satisfies:

(i) g is holomorphic outside [−M,M ],

(ii) g vanishes at infinity,

(iii) g(x+ iε) and g(x− iε) converge uniformly as ε → 0 to functions g+(x)
and g−(x) with

g+(x) − g−(x) = h(x).

[Hint: If G is another function satisfying these conditions, g −G is entire.]



4 The Fourier Transform

Raymond Edward Alan Christopher Paley, Fellow of
Trinity College, Cambridge, and International Research
Fellow at the Massachusetts Institute of Technology
and at Harvard University, was killed by an avalanche
on April 7, 1933, while skiing in the vicinity of Banff,
Alberta. Although only twenty-six years of age, he
was already recognized as the ablest of the group of
young English mathematicians who have been inspired
by the genius of G. H. Hardy and J. E. Littlewood. In
a group notable for its brilliant technique, no one had
developed this technique to a higher degree than Pa-
ley. Nevertheless he should not be thought of primar-
ily as a technician, for with this ability he combined
creative power of the first order. As he himself was
wont to say, technique without “rugger tactics” will
not get one far, and these rugger tactics he practiced
to a degree that was characteristic of his forthright
and vigorous nature.

Possessed of an extraordinary capacity for mak-
ing friends and for scientific collaboration, Paley be-
lieved that the inspiration of continual interchange of
ideas stimulates each collaborator to accomplish more
than he would alone. Only the exceptional man works
well with a partner, but Paley had collaborated suc-
cessfully with many, including Littlewood, Pólya, Zyg-
mund, and Wiener.

N. Wiener, 1933

If f is a function on R that satisfies appropriate regularity and decay
conditions, then its Fourier transform is defined by

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx, ξ ∈ R

and its counterpart, the Fourier inversion formula, holds

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ, x ∈ R.

The Fourier transform (including its d-dimensional variants), plays a ba-
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sic role in analysis, as the reader of Book I is aware. Here we want to illus-
trate the intimate and fruitful connection between the one-dimensional
theory of the Fourier transform and complex analysis. The main theme
(stated somewhat imprecisely) is as follows: for a function f initially
defined on the real line, the possibility of extending it to a holomorphic
function is closely related to the very rapid (for example, exponential)
decay at infinity of its Fourier transform f̂ . We elaborate on this theme
in two stages.

First, we assume that f can be analytically continued in a horizontal
strip containing the real axis, and has “moderate decrease” at infinity,1 so
that the integral defining the Fourier transform f̂ converges. As a result,
we conclude that f̂ decreases exponentially at infinity; it also follows
directly that the Fourier inversion formula holds. Moreover one can
easily obtain from these considerations the Poisson summation formula∑

n∈Z
f(n) =

∑
n∈Z

f̂(n). Incidentally, all these theorems are elegant
consequences of contour integration.

At a second stage, we take as our starting point the validity of the
Fourier inversion formula, which holds if we assume that both f and f̂ are
of moderate decrease, without making any assumptions on the analyticity
of f . We then ask a simple but natural question: What are the conditions
on f so that its Fourier transform is supported in a bounded interval,
say [−M,M ]? This is a basic problem that, as one notices, can be stated
without any reference to notions of complex analysis. However, it can
be resolved only in terms of the holomorphic properties of the function
f . The condition, given by the Paley-Wiener theorem, is that there be
a holomorphic extension of f to C that satisfies the growth condition

|f(z)| ≤ Ae2πM |z| for some constant A > 0.

Functions satisfying this condition are said to be of exponential type.
Observe that the condition that f̂ vanishes outside a compact set can

be viewed as an extreme version of a decay property at infinity, and so
the above theorem clearly falls within the context of the theme indicated
above.

In all these matters a decisive technique will consist in shifting the
contour of integration, that is the real line, within the boundaries of
a horizontal strip. This will take advantage of the special behavior of
e−2πizξ when z has a non-zero imaginary part. Indeed, when z is real this
exponential remains bounded and oscillates, while if Im(z) �= 0, it will

1We say that a function f is of moderate decrease if f is continuous and there
exists A > 0 so that |f(x)| ≤ A/(1 + x2) for all x ∈ R. A more restrictive condition is

that f ∈ S, the Schwartz space of testing functions, which also implies that f̂ belongs to
S. See Book I for more details.
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have exponential decay or exponential increase, depending on whether
the product ξIm(z) is negative or positive.

1 The class F

The weakest decay condition imposed on functions in our study of the
Fourier transform in Book I was that of moderate decrease. There, we
proved the Fourier inversion and Poisson summation formulas under the
hypothesis that f and f̂ satisfy

|f(x)| ≤ A

1 + x2
and |f̂(ξ)| ≤ A′

1 + ξ2

for some positive constantsA,A′ and all x, ξ ∈ R. We were led to consider
this class of functions because of various examples such as the Poisson
kernel

Py(x) =
1
π

y

y2 + x2

for y > 0, which played a fundamental role in the solution of the Dirichlet
problem for the steady-state heat equation in the upper half-plane. There
we had P̂y(ξ) = e−2πy|ξ|.

In the present context, we introduce a class of functions particularly
suited to the goal we have set: proving theorems about the Fourier trans-
form using complex analysis. Moreover, this class will be large enough
to contain many of the important applications we have in mind.

For each a > 0 we denote by Fa the class of all functions f that satisfy
the following two conditions:

(i) The function f is holomorphic in the horizontal strip

Sa = {z ∈ C : |Im(z)| < a}.

(ii) There exists a constant A > 0 such that

|f(x+ iy)| ≤ A

1 + x2
for all x ∈ R and |y| < a.

In other words, Fa consists of those holomorphic functions on Sa that
are of moderate decay on each horizontal line Im(z) = y, uniformly in
−a < y < a. For example, f(z) = e−πz2

belongs to Fa for all a. Also,
the function

f(z) =
1
π

c

c2 + z2
,
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which has simple poles at z = ±ci, belongs to Fa for all 0 < a < c.
Another example is provided by f(z) = 1/ coshπz, which belongs to

Fa whenever |a| < 1/2. This function, as well as one of its fundamental
properties, was already discussed in Example 3, Section 2.1 of Chapter 3.

Note also that a simple application of the Cauchy integral formulas
shows that if f ∈ Fa, then for every n, the nth derivative of f belongs to
Fb for all b with 0 < b < a (Exercise 2).

Finally, we denote by F the class of all functions that belong to Fa for
some a.

Remark. The condition of moderate decrease can be weakened some-
what by replacing the order of decrease of A/(1 + x2) by A/(1 + |x|1+ε)
for any ε > 0. As the reader will observe, many of the results below
remain unchanged with this less restrictive condition.

2 Action of the Fourier transform on F

Here we prove three theorems, including the Fourier inversion and Pois-
son summation formulas, for functions in F. The idea behind all three
proofs is the same: contour integration. Thus the approach used will be
different from that of the corresponding results in Book I.

Theorem 2.1 If f belongs to the class Fa for some a > 0, then
|f̂(ξ)| ≤ Be−2πb|ξ| for any 0 ≤ b < a.

Proof. Recall that f̂(ξ) =
∫∞
−∞ f(x)e−2πixξ dx. The case b = 0 simply

says that f̂ is bounded, which follows at once from the integral defining
f̂ , the assumption that f is of moderate decrease, and the fact that the
exponential is bounded by 1.

Now suppose 0 < b < a and assume first that ξ > 0. The main step
consists of shifting the contour of integration, that is the real line, down
by b. More precisely, consider the contour in Figure 1 as well as the
function g(z) = f(z)e−2πizξ.

We claim that as R tends to infinity, the integrals of g over the two
vertical sides converge to zero. For example, the integral over the vertical
segment on the left can be estimated by∣∣∣∣∣

∫ −R

−R−ib

g(z) dz

∣∣∣∣∣ ≤
∫ b

0

|f(−R− it)e−2πi(−R−it)ξ | dt

≤
∫ b

0

A

R2
e−2πtξ dt

= O(1/R2).
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0
−R R

R− ib−R− ib

Figure 1. The contour in the proof of Theorem 2.1 when ξ > 0

A similar estimate for the other side proves our claim. Therefore, by
Cauchy’s theorem applied to the large rectangle, we find in the limit as
R tends to infinity that

(1) f̂(ξ) =
∫ ∞

−∞
f(x− ib)e−2πi(x−ib)ξ dx,

which leads to the estimate

|f̂(ξ)| ≤
∫ ∞

−∞

A

1 + x2
e−2πbξ dx ≤ Be−2πbξ,

where B is a suitable constant. A similar argument for ξ < 0, but this
time shifting the real line up by b, allows us to finish the proof of the
theorem.

This result says that whenever f ∈ F, then f̂ has rapid decay at infinity.
We remark that the further we can extend f (that is, the larger a), then
the larger we can choose b, hence the better the decay. We shall return
to this circle of ideas in Section 3, where we describe those f for which
f̂ has the ultimate decay condition: compact support.

Since f̂ decreases rapidly on R, the integral in the Fourier inversion
formula makes sense, and we now turn to the complex analytic proof of
this identity.

Theorem 2.2 If f ∈ F, then the Fourier inversion holds, namely

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ for all x ∈ R.
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Besides contour integration, the proof of the theorem requires a simple
identity, which we isolate.

Lemma 2.3 If A is positive and B is real, then
∫∞
0
e−(A+iB)ξ dξ =

1
A+iB .

Proof. Since A > 0 and B ∈ R, we have |e−(A+iB)ξ| = e−Aξ, and the
integral converges. By definition∫ ∞

0

e−(A+iB)ξ dξ = lim
R→∞

∫ R

0

e−(A+iB)ξ dξ.

However, ∫ R

0

e−(A+iB)ξ dξ =
[
−e

−(A+iB)ξ

A+ iB

]R

0

,

which tends to 1/(A+ iB) as R tends to infinity.

We can now prove the inversion theorem. Once again, the sign of ξ
matters, so we begin by writing∫ ∞

−∞
f̂(ξ)e2πixξ dξ =

∫ 0

−∞
f̂(ξ)e2πixξ dξ +

∫ ∞

0

f̂(ξ)e2πixξ dξ.

For the second integral we argue as follows. Say f ∈ Fa and choose
0 < b < a. Arguing as the proof of Theorem 2.1, or simply using equa-
tion (1), we get

f̂(ξ) =
∫ ∞

−∞
f(u− ib)e−2πi(u−ib)ξ du,

so that with an application of the lemma and the convergence of the
integration in ξ, we find∫ ∞

0

f̂(ξ)e2πixξ dξ =
∫ ∞

0

∫ ∞

−∞
f(u− ib)e−2πi(u−ib)ξe2πixξ du dξ

=
∫ ∞

−∞
f(u− ib)

∫ ∞

0

e−2πi(u−ib−x)ξ dξ du

=
∫ ∞

−∞
f(u− ib)

1
2πb+ 2πi(u− x)

du

=
1

2πi

∫ ∞

−∞

f(u− ib)
u− ib− x

du

=
1

2πi

∫
L1

f(ζ)
ζ − x

dζ,
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where L1 denotes the line {u− ib : u ∈ R} traversed from left to right.
(In other words, L1 is the real line shifted down by b.) For the integral
when ξ < 0, a similar calculation gives∫ 0

−∞
f̂(ξ)e2πixξ dξ = − 1

2πi

∫
L2

f(ζ)
ζ − x

dζ,

where L2 is the real line shifted up by b, with orientation from left to
right. Now given x ∈ R, consider the contour γR in Figure 2.

0

R+ ib

R− ib

x

−R+ ib

−R− ib

γR

Figure 2. The contour γR in the proof of Theorem 2.2

The function f(ζ)/(ζ − x) has a simple pole at x with residue f(x), so
the residue formula gives

f(x) =
1

2πi

∫
γR

f(ζ)
ζ − x

dζ.

Letting R tend to infinity, one checks easily that the integral over the
vertical sides goes to 0 and therefore, combining with the previous results,
we get

f(x) =
1

2πi

∫
L1

f(ζ)
ζ − x

dζ − 1
2πi

∫
L2

f(ζ)
ζ − x

dζ

=
∫ ∞

0

f̂(ξ)e2πixξ dξ +
∫ 0

−∞
f̂(ξ)e2πixξ dξ

=
∫ ∞

−∞
f̂ (ξ)e2πixξ dξ,
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and the theorem is proved.

The last of our three theorems is the Poisson summation formula.

Theorem 2.4 If f ∈ F, then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. Say f ∈ Fa and choose some b satisfying 0 < b < a. The func-
tion 1/(e2πiz − 1) has simple poles with residue 1/(2πi) at the integers.
Thus f(z)/(e2πiz − 1) has simple poles at the integers n, with residues
f(n)/2πi. We may therefore apply the residue formula to the contour
γN in Figure 3 where N is an integer.

N + 1
2 + ib

N + 1
2 − ib

−N − 1
2 + ib

−N − 1
2 − ib

−N − 1 −N N N + 110−1

γN

Figure 3. The contour γN in the proof of Theorem 2.4

This yields ∑
|n|≤N

f(n) =
∫

γN

f(z)
e2πiz − 1

dz.

Letting N tend to infinity, and recalling that f has moderate decrease,
we see that the sum converges to

∑
n∈Z

f(n), and also that the integral
over the vertical segments goes to 0. Therefore, in the limit we get

(2)
∑
n∈Z

f(n) =
∫

L1

f(z)
e2πiz − 1

dz −
∫

L2

f(z)
e2πiz − 1

dz
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where L1 and L2 are the real line shifted down and up by b, respectively.
Now we use the fact that if |w| > 1, then

1
w − 1

= w−1
∞∑

n=0

w−n

to see that on L1 (where |e2πiz| > 1) we have

1
e2πiz − 1

= e−2πiz

∞∑
n=0

e−2πinz.

Also if |w| < 1, then

1
w − 1

= −
∞∑

n=0

wn

so that on L2

1
e2πiz − 1

= −
∞∑

n=0

e2πinz.

Substituting these observations in (2) we find that

∑
n∈Z

f(n) =
∫

L1

f(z)

(
e−2πiz

∞∑
n=0

e−2πinz

)
dz +

∫
L2

f(z)

( ∞∑
n=0

e2πinz

)
dz

=
∞∑

n=0

∫
L1

f(z)e−2πi(n+1)z dz +
∞∑

n=0

∫
L2

f(z)e2πinz dz

=
∞∑

n=0

∫ ∞

−∞
f(x)e−2πi(n+1)x dx+

∞∑
n=0

∫ ∞

−∞
f(x)e2πinx dz

=
∞∑

n=0

f̂(n+ 1) +
∞∑

n=0

f̂(−n)

=
∑
n∈Z

f̂ (n),

where we have shifted L1 and L2 back to the real line according to
equation (1) and its analogue for the shift down.

The Poisson summation formula has many far-reaching consequences,
and we close this section by deriving several interesting identities that
are of importance for later applications.
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First, we recall the calculation in Example 1, Chapter 2, which showed
that the function e−πx2

was its own Fourier transform:∫ ∞

−∞
e−πx2

e−2πixξ dx = e−πξ2
.

For fixed values of t > 0 and a ∈ R, the change of variables
x 	→ t1/2(x+ a) in the above integral shows that the Fourier transform
of the function f(x) = e−πt(x+a)2 is f̂(ξ) = t−1/2e−πξ2/te2πiaξ. Applying
the Poisson summation formula to the pair f and f̂ (which belong to F)
provides the following relation:

(3)
∞∑

n=−∞
e−πt(n+a)2 =

∞∑
n=−∞

t−1/2e−πn2/te2πina.

This identity has noteworthy consequences. For instance, the special case
a = 0 is the transformation law for a version of the “theta function”:
if we define ϑ for t > 0 by the series ϑ(t) =

∑∞
n=−∞ e−πn2t, then the

relation (3) says precisely that

(4) ϑ(t) = t−1/2ϑ(1/t) for t > 0.

This equation will be used in Chapter 6 to derive the key functional
equation of the Riemann zeta function, and this leads to its analytic
continuation. Also, the general case a ∈ R will be used in Chapter 10
to establish a corresponding law for the more general Jacobi theta func-
tion Θ.

For another application of the Poisson summation formula we recall
that we proved in Example 3, Chapter 3, that the function 1/ coshπx
was also its own Fourier transform:∫ ∞

−∞

e−2πixξ

coshπx
dx =

1
coshπξ

.

This implies that if t > 0 and a ∈ R, then the Fourier transform of the
function f(x) = e−2πiax/ cosh(πx/t) is f̂(ξ) = t/ cosh(π(ξ + a)t), and the
Poisson summation formula yields

(5)
∞∑

n=−∞

e−2πian

cosh(πn/t)
=

∞∑
n=−∞

t

cosh(π(n+ a)t)
.

This formula will be used in Chapter 10 in the context of the two-squares
theorem.
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3 Paley-Wiener theorem

In this section we change our point of view somewhat: we do not sup-
pose any analyticity of f , but we do assume the validity of the Fourier
inversion formula

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ if f̂ (ξ) =

∫ ∞

−∞
f(x)e−2πixξ dx,

under the conditions |f(x)| ≤ A/(1 + x2) and |f̂(ξ)| ≤ A′/(1 + ξ2). For a
proof of the inversion formula under these conditions, we refer the reader
to Chapter 5 in Book I.

We start by pointing out a partial converse to Theorem 2.1.

Theorem 3.1 Suppose f̂ satisfies the decay condition |f̂(ξ)| ≤ Ae−2πa|ξ|

for some constants a,A > 0. Then f(x) is the restriction to R of a
function f(z) holomorphic in the strip Sb = {z ∈ C : |Im(z)| < b}, for
any 0 < b < a.

Proof. Define

fn(z) =
∫ n

−n

f̂(ξ)e2πiξz dξ,

and note that fn is entire by Theorem 5.4 in Chapter 2. Observe also
that f(z) may be defined for all z in the strip Sb by

f(z) =
∫ ∞

−∞
f̂(ξ)e2πiξz dξ ,

because the integral converges absolutely by our assumption on f̂ : it is
majorized by

A

∫ ∞

−∞
e−2πa|ξ|e2πb|ξ| dξ ,

which is finite if b < a. Moreover, for z ∈ Sb

|f(z) − fn(z)| ≤ A

∫
|ξ|≥n

e−2πa|ξ|e2πb|ξ| dξ

→ 0 as n→ ∞,

and thus the sequence {fn} converges to f uniformly in Sb, which, by
Theorem 5.2 in Chapter 2, proves the theorem.

We digress briefly to make the following observation.
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Corollary 3.2 If f̂(ξ) = O(e−2πa|ξ|) for some a > 0, and f vanishes in
a non-empty open interval, then f = 0.

Since by the theorem f is analytic in a region containing the real line, the
corollary is a consequence of Theorem 4.8 in Chapter 2. In particular,
we recover the fact proved in Exercise 21, Chapter 5 in Book I, namely
that f and f̂ cannot both have compact support unless f = 0.

The Paley-Wiener theorem goes a step further than the previous theo-
rem, and describes the nature of those functions whose Fourier transforms
are supported in a given interval [−M,M ].

Theorem 3.3 Suppose f is continuous and of moderate decrease on
R. Then, f has an extension to the complex plane that is entire with
|f(z)| ≤ Ae2πM |z| for some A > 0, if and only if f̂ is supported in the
interval [−M,M ].

One direction is simple. Suppose f̂ is supported in [−M,M ]. Then
both f and f̂ have moderate decrease, and the Fourier inversion formula
applies

f(x) =
∫ M

−M

f̂(ξ)e2πiξx dξ.

Since the range of integration is finite, we may replace x by the complex
variable z in the integral, thereby defining a complex-valued function on
C by

g(z) =
∫ M

−M

f̂ (ξ)e2πiξz dξ.

By construction g(z) = f(z) if z is real, and g is holomorphic by Theo-
rem 5.4 in Chapter 2. Finally, if z = x+ iy, we have

|g(z)| ≤
∫ M

−M

|f̂(ξ)|e−2πξy dξ

≤ Ae2πM |z|.

The converse result requires a little more work. It starts with the
observation that if f̂ were supported in [−M,M ], then the argument
above would give the stronger bound |f(z)| ≤ Ae2π|y| instead of what we
assume, that is |f(z)| ≤ Ae2π|z|. The idea is then to try to reduce to the
better situation, where this stronger bound holds. However, this is not
quite enough because we need in addition a (moderate) decay as x→ ∞
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(when y �= 0) to deal with the convergence of certain integrals at infinity.
Thus we begin by also assuming this further property of f , and then we
remove the additional assumptions, one step at a time.

Step 1. We first assume that f is holomorphic in the complex plane,
and satisfies the following condition regarding decay in x and growth
in y:

(6) |f(x+ iy)| ≤ A′ e
2πM |y|

1 + x2
.

We then prove under this stronger assumption that f̂(ξ) = 0 if |ξ| > M .
To see this, we first suppose that ξ > M and write

f̂ (ξ) =
∫ ∞

−∞
f(x)e−2πiξx dx

=
∫ ∞

−∞
f(x− iy)e−2πiξ(x−iy) dx.

Here we have shifted the real line down by an amount y > 0 using the
standard argument (equation (1)). Putting absolute values gives the
bound

|f̂(ξ)| ≤ A′
∫ ∞

−∞

e2πMy−2πξy

1 + x2
dx

≤ Ce−2πy(ξ−M).

Letting y tend to infinity, and recalling that ξ −M > 0, proves that
f̂(ξ) = 0. A similar argument, shifting the contour up by y > 0, proves
that f̂(ξ) = 0 whenever ξ < −M .

Step 2. We relax condition (6) by assuming only that f satisfies

(7) |f(x+ iy)| ≤ Ae2πM |y|.

This is still a stronger condition than in the theorem, but it is weaker
than (6). Suppose first that ξ > M , and for ε > 0 consider the following
auxiliary function

fε(z) =
f(z)

(1 + iεz)2
.

We observe that the quantity 1/(1 + iεz)2 has absolute value less than
or equal to 1 in the closed lower half-plane (including the real line) and
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converges to 1 as ε tends to 0. In particular, this shows that f̂ε(ξ) → f̂(ξ)
as ε→ 0 since we may write

|f̂ε(ξ) − f̂(ξ)| ≤
∫ ∞

−∞
|f(x)|

[
1

(1 + iεx)2
− 1
]
dx,

and recall that f has moderate decrease on R.
But for each fixed ε, we have

|fε(x+ iy)| ≤ A′′ e
2πM |y|

1 + x2
,

so by Step 1 we must have f̂ε(ξ) = 0, and hence f̂(ξ) = 0 after passing to
the limit as ε→ 0. A similar argument applies if ξ < −M , although we
must now argue in the upper half-plane, and use the factor 1/(1 − iεz)2

instead.

Step 3. To conclude the proof, it suffices to show that the conditions
in the theorem imply condition (7) in Step 2. In fact, after dividing by
an appropriate constant, it suffices to show that if |f(x)| ≤ 1 for all real
x, and |f(z)| ≤ e2πM |z| for all complex z, then

|f(x+ iy)| ≤ e2πM |y|.

This will follow from an ingenious and very useful idea of Phragmén and
Lindelöf that allows one to adapt the maximum modulus principle to
various unbounded regions. The particular result we need is as follows.

Theorem 3.4 Suppose F is a holomorphic function in the sector

S = {z : −π/4 < arg z < π/4}

that is continuous on the closure of S. Assume |F (z)| ≤ 1 on the bound-
ary of the sector, and that there are constants C, c > 0 such that
|F (z)| ≤ Cec|z| for all z in the sector. Then

|F (z)| ≤ 1 for all z ∈ S.

In other words, if F is bounded by 1 on the boundary of S and has no
more than a reasonable amount of growth, then F is actually bounded
everywhere by 1. That some restriction on the growth of F is necessary
follows from a simple observation. Consider the function F (z) = ez2

.
Then F is bounded by 1 on the boundary of S, but if x is real, F (x) is
unbounded as x→ ∞. We now give the proof of Theorem 3.4.
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Proof. The idea is to subdue the “enemy” function ez2
and turn it

to our advantage: in brief, one modifies ez2
by replacing it by ezα

with
α < 2. For simplicity we take the case α = 3/2.

If ε > 0, let

Fε(z) = F (z)e−εz3/2
.

Here we have chosen the principal branch of the logarithm to define z3/2

so that if z = reiθ (with −π < θ < π), then z3/2 = r3/2e3iθ/2. Hence Fε

is holomorphic in S and continuous up to its boundary. Also

|e−εz3/2
| = e−εr3/2 cos(3θ/2);

and since −π/4 < θ < π/4 in the sector, we get the inequalities

−π
2
< −3π

8
<

3θ
2
<

3π
8
<
π

2
,

and therefore cos(3θ/2) is strictly positive in the sector. This, together
with the fact that |F (z)| ≤ Cec|z|, shows that Fε(z) decreases rapidly in
the closed sector as |z| → ∞, and in particular Fε is bounded. We claim
that in fact |Fε(z)| ≤ 1 for all z ∈ S, where S denotes the closure of S.
To prove this, we define

M = sup
z∈S

|Fε(z)|.

Assuming F is not identically zero, let {wj} be a sequence of points
such that |Fε(wj)| →M . Since M �= 0 and Fε decays to 0 as |z| becomes
large in the sector, wj cannot escape to infinity, and we conclude that
this sequence accumulates to a point w ∈ S. By the maximum principle,
w cannot be an interior point of S, so w lies on its boundary. But on the
boundary, we have first |F (z)| ≤ 1 by assumption, and also |e−εz3/2 | ≤ 1,
so that M ≤ 1, and the claim is proved.

Finally, we may let ε tend to 0 to conclude the proof of the theorem.

Further generalizations of the Phragmén-Lindelöf theorem are included
in Exercise 9 and Problem 3.

We must now use this result to conclude the proof of the Paley-
Wiener theorem, that is, show that if |f(x)| ≤ 1 and |f(z)| ≤ e2πM |z|,
then |f(z)| ≤ e2πM |y|. First, note that the sector in the Phragmén-
Lindelöf theorem can be rotated, say to the first quadrant Q = {z =
x+ iy : x > 0, y > 0}, and the result remains the same. Then, we con-
sider

F (z) = f(z)e2πiMz,
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and note that F is bounded by 1 on the positive real and positive imag-
inary axes. Since we also have |F (z)| ≤ Cec|z| in the quadrant, we con-
clude by the Phragmén-Lindelöf theorem that |F (z)| ≤ 1 for all z in Q,
which implies |f(z)| ≤ e2πMy. A similar argument for the other quad-
rants concludes Step 3 as well as the proof of the Paley-Wiener theorem.

We conclude with another version of the idea behind the Paley-Wiener
theorem, this time characterizing the functions whose Fourier transform
vanishes for all negative ξ.

Theorem 3.5 Suppose f and f̂ have moderate decrease. Then f̂(ξ) =
0 for all ξ < 0 if and only if f can be extended to a continuous and
bounded function in the closed upper half-plane {z = x+ iy : y ≥ 0} with
f holomorphic in the interior.

Proof. First assume f̂(ξ) = 0 for ξ < 0. By the Fourier inversion
formula

f(x) =
∫ ∞

0

f̂(ξ)e2πixξ dξ ,

and we can extend f when z = x+ iy with y ≥ 0 by

f(z) =
∫ ∞

0

f̂(ξ)e2πizξ dξ .

Notice that the integral converges and that

|f(z)| ≤ A

∫ ∞

0

dξ

1 + ξ2
<∞ ,

which proves the boundedness of f . The uniform convergence of

fn(z) =
∫ n

0

f̂(ξ)e2πixξ dξ

to f(z) in the closed half-plane establishes the continuity of f there, and
its holomorphicity in the interior.

For the converse, we argue in the spirit of the proof of Theorem 3.3.
For ε and δ positive, we set

fε,δ(z) =
f(z + iδ)
(1 − iεz)2

.

Then fε,δ is holomorphic in a region containing the closed upper half-
plane. One also shows as before, using Cauchy’s theorem, that f̂ε,δ(ξ) = 0
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for all ξ < 0. Then, passing to the limit successively, one has f̂ε,0(ξ) = 0
for ξ < 0, and finally f̂ (ξ) = f̂0,0(ξ) = 0 for all ξ < 0.

Remark. The reader should note a certain analogy between the above
theorem and Theorem 7.1 in Chapter 3. Here we are dealing with a
function holomorphic in the upper half-plane, and there with a function
holomorphic in a disc. In the present case the Fourier transform vanishes
when ξ < 0, and in the earlier case, the Fourier coefficients vanish when
n < 0.

4 Exercises

1. Suppose f is continuous and of moderate decrease, and f̂(ξ) = 0 for all ξ ∈ R.
Show that f = 0 by completing the following outline:

(a) For each fixed real number t consider the two functions

A(z) =

∫ t

−∞
f(x)e−2πiz(x−t) dx and B(z) = −

∫ ∞

t

f(x)e−2πiz(x−t) dx.

Show that A(ξ) = B(ξ) for all ξ ∈ R.

(b) Prove that the function F equal to A in the closed upper half-plane, and B
in the lower half-plane, is entire and bounded, thus constant. In fact, show
that F = 0.

(c) Deduce that ∫ t

−∞
f(x) dx = 0,

for all t, and conclude that f = 0.

2. If f ∈ Fa with a > 0, then for any positive integer n one has f (n) ∈ Fb whenever
0 ≤ b < a.

[Hint: Modify the solution to Exercise 8 in Chapter 2.]

3. Show, by contour integration, that if a > 0 and ξ ∈ R then

1

π

∫ ∞

−∞

a

a2 + x2
e−2πixξ dx = e−2πa|ξ|,

and check that ∫ ∞

−∞
e−2πa|ξ|e2πiξx dξ =

1

π

a

a2 + x2
.
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4. Suppose Q is a polynomial of degree ≥ 2 with distinct roots, none lying on the
real axis. Calculate ∫ ∞

−∞

e−2πixξ

Q(x)
dx, ξ ∈ R

in terms of the roots of Q. What happens when several roots coincide?

[Hint: Consider separately the cases ξ < 0, ξ = 0, and ξ > 0. Use residues.]

5. More generally, let R(x) = P (x)/Q(x) be a rational function with (degree Q) ≥
(degreeP )+2 and Q(x) 
= 0 on the real axis.

(a) Prove that if α1, . . . , αk are the roots of R in the upper half-plane, then
there exists polynomials Pj(ξ) of degree less than the multiplicity of αj so
that ∫ ∞

−∞
R(x)e−2πixξ dx =

k∑
j=1

Pj(ξ)e
−2πiαjξ, when ξ < 0.

(b) In particular, if Q(z) has no zeros in the upper half-plane, then∫∞
−∞R(x)e−2πixξ dx = 0 for ξ < 0.

(c) Show that similar results hold in the case ξ > 0.

(d) Show that ∫ ∞

−∞
R(x)e−2πixξ dx = O(e−a|ξ|), ξ ∈ R

as |ξ| → ∞ for some a > 0. Determine the best possible a’s in terms of the
roots of R.

[Hint: For part (a), use residues. The powers of ξ appear when one differentiates
the function f(z) = R(z)e−2πizξ (as in the formula of Theorem 1.4 in the previous
chapter). For part (c) argue in the lower half-plane.]

6. Prove that

1

π

∞∑
n=−∞

a

a2 + n2
=

∞∑
n=−∞

e−2πa|n|

whenever a > 0. Hence show that the sum equals coth πa.

7. The Poisson summation formula applied to specific examples often provides
interesting identities.

(a) Let τ be fixed with Im(τ ) > 0. Apply the Poisson summation formula to

f(z) = (τ + z)−k ,
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where k is an integer ≥ 2, to obtain

∞∑
n=−∞

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1e2πimτ .

(b) Set k = 2 in the above formula to show that if Im(τ ) > 0, then

∞∑
n=−∞

1

(τ + n)2
=

π2

sin2(πτ )
.

(c) Can one conclude that the above formula holds true whenever τ is any
complex number that is not an integer?

[Hint: For (a), use residues to prove that f̂(ξ) = 0, if ξ < 0, and

f̂(ξ) =
(−2πi)k

(k − 1)!
ξk−1e2πiξτ , when ξ > 0.]

8. Suppose f̂ has compact support contained in [−M,M ] and let f(z) =
∑∞

n=0 anz
n.

Show that

an =
(2πi)n

n!

∫ M

−M

f̂(ξ)ξn dξ,

and as a result

lim sup
n→∞

(n!|an|)1/n ≤ 2πM.

In the converse direction, let f be any power series f(z) =
∑∞

n=0 anz
n with

lim supn→∞(n!|an|)1/n ≤ 2πM . Then, f is holomorphic in the complex plane,
and for every ε > 0 there exists Aε > 0 such that

|f(z)| ≤ Aεe
2π(M+ε)|z|.

9. Here are further results similar to the Phragmén-Lindelöf theorem.

(a) Let F be a holomorphic function in the right half-plane that extends continu-
ously to the boundary, that is, the imaginary axis. Suppose that |F (iy)| ≤ 1
for all y ∈ R, and

|F (z)| ≤ Cec|z|γ

for some c, C > 0 and γ < 1. Prove that |F (z)| ≤ 1 for all z in the right
half-plane.
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(b) More generally, let S be a sector whose vertex is the origin, and forming an
angle of π/β. Let F be a holomorphic function in S that is continuous on
the closure of S, so that |F (z)| ≤ 1 on the boundary of S and

|F (z)| ≤ Cec|z|α for all z ∈ S

for some c, C > 0 and 0 < α < β. Prove that |F (z)| ≤ 1 for all z ∈ S.

10. This exercise generalizes some of the properties of e−πx2
related to the fact

that it is its own Fourier transform.
Suppose f(z) is an entire function that satisfies

|f(x+ iy)| ≤ ce−ax2+by2

for some a, b, c > 0. Let

f̂(ζ) =

∫ ∞

−∞
f(x)e−2πixζ dx.

Then, f̂ is an entire function of ζ that satisfies

|f̂(ξ + iη)| ≤ c′e−a′ξ2+b′η2

for some a′, b′, c′ > 0.

[Hint: To prove f̂(ξ) = O(e−a′ξ2
), assume ξ > 0 and change the contour of inte-

gration to x− iy for some y > 0 fixed, and −∞ < x <∞. Then

f̂(ξ) = O(e−2πyξeby2
).

Finally, choose y = dξ where d is a small constant.]

11. One can give a neater formulation of the result in Exercise 10 by proving the
following fact.

Suppose f(z) is an entire function of strict order 2, that is,

f(z) = O(ec1|z|2)

for some c1 > 0. Suppose also that for x real,

f(x) = O(e−c2|x|2)

for some c2 > 0. Then

|f(x+ iy)| = O(e−ax2+by2
)

for some a, b > 0. The converse is obviously true.
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12. The principle that a function and its Fourier transform cannot both be too
small at infinity is illustrated by the following theorem of Hardy.

If f is a function on R that satisfies

f(x) = O(e−πx2
) and f̂(ξ) = O(e−πξ2

),

then f is a constant multiple of e−πx2
. As a result, if f(x) = O(e−πAx2

), and

f̂(ξ) = O(e−πBξ2
), with AB > 1 and A,B > 0, then f is identically zero.

(a) If f is even, show that f̂ extends to an even entire function. Moreover, if
g(z) = f̂(z1/2), then g satisfies

|g(x)| ≤ ce−πx and |g(z)| ≤ ceπR sin2(θ/2) ≤ ceπ|z|

when x ∈ R and z = Reiθ with R ≥ 0 and θ ∈ R.

(b) Apply the Phragmén-Lindelöf principle to the function

F (z) = g(z)eγz where γ = iπ
e−iπ/(2β)

sin π/(2β)

and the sector 0 ≤ θ ≤ π/β < π, and let β → π to deduce that eπzg(z) is
bounded in the closed upper half-plane. The same result holds in the lower
half-plane, so by Liouville’s theorem eπzg(z) is constant, as desired.

(c) If f is odd, then f̂(0) = 0, and apply the above argument to f̂(z)/z to deduce
that f = f̂ = 0. Finally, write an arbitrary f as an appropriate sum of an
even function and an odd function.

5 Problems

1. Suppose f̂(ξ) = O(e−a|ξ|p ) as |ξ| → ∞, for some p > 1. Then f is holomorphic
for all z and satisfies the growth condition

|f(z)| ≤ Aea|z|q

where 1/p + 1/q = 1.
Note that on the one hand, when p→ ∞ then q → 1, and this limiting case

can be interpreted as part of Theorem 3.3. On the other hand, when p→ 1 then
q → ∞, and this limiting case in a sense brings us back to Theorem 2.1.

[Hint: To prove the result, use the inequality −ξp + ξu ≤ uq, which is valid when
ξ and u are non-negative. To establish this inequality, examine separately the
cases ξp ≥ ξu and ξp < ξu; note also that the functions ξ = uq−1 and u = ξp−1 are
inverses of each other because (p− 1)(q − 1) = 1.]
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2. The problem is to solve the differential equation

an
dn

dtn
u(t) + an−1

dn−1

dtn−1
u(t) + · · · + a0u(t) = f(t) ,

where a0, a1, . . . , an are complex constants, and f is a given function. Here we
suppose that f has bounded support and is smooth (say of class C2).

(a) Let

f̂(z) =

∫ ∞

−∞
f(t)e−2πizt dt.

Observe that f̂ is an entire function, and using integration by parts show
that

|f̂(x+ iy)| ≤ A

1 + x2

if |y| ≤ a for any fixed a ≥ 0.

(b) Write

P (z) = an(2πiz)n + an−1(2πiz)
n−1 + · · · + a0.

Find a real number c so that P (z) does not vanish on the line

L = {z : z = x+ ic, x ∈ R}.

(c) Set

u(t) =

∫
L

e2πizt

P (z)
f̂(z) dz.

Check that

n∑
j=0

aj

(
d

dt

)j

u(t) =

∫
L

e2πiztf̂(z) dz

and ∫
L

e2πiztf̂(z) dz =

∫ ∞

−∞
e2πixtf̂(x) dx.

Conclude by the Fourier inversion theorem that

n∑
j=0

aj

(
d

dt

)j

u(t) = f(t).
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Note that the solution u depends on the choice c.

3.∗ In this problem, we investigate the behavior of certain bounded holomorphic
functions in an infinite strip. The particular result described here is sometimes
called the three-lines lemma.

(a) Suppose F (z) is holomorphic and bounded in the strip 0 < Im(z) < 1 and
continuous on its closure. If |F (z)| ≤ 1 on the boundary lines, then
|F (z)| ≤ 1 throughout the strip.

(b) For the more general F , let supx∈R |F (x)| = M0 and supx∈R |F (x+ i)| =
M1. Then,

sup
x∈R

|F (x+ iy)| ≤ M1−y
0 My

1 , if 0 ≤ y ≤ 1.

(c) As a consequence, prove that log supx∈R |F (x+ iy)| is a convex function of
y when 0 ≤ y ≤ 1.

[Hint: For part (a), apply the maximum modulus principle to Fε(z) = F (z)e−εz2
.

For part (b), consider Mz−1
0 M−z

1 F (z).]

4.∗ There is a relation between the Paley-Wiener theorem and an earlier represen-
tation due to E. Borel.

(a) A function f(z), holomorphic for all z, satisfies |f(z)| ≤ Aεe
2π(M+ε)|z| for

all ε if and only if it is representable in the form

f(z) =

∫
C

e2πizwg(w) dw

where g is holomorphic outside the circle of radius M centered at the origin,
and g vanishes at infinity. Here C is any circle centered at the origin of radius
larger thanM . In fact, if f(z) =

∑
anz

n, then g(w) =
∑∞

n=0 Anw
−n−1 with

an = An(2πi)n+1/n!.

(b) The connection with Theorem 3.3 is as follows. For these functions f (for
which in addition f and f̂ are of moderate decrease on the real axis), one can
assert that the g above is holomorphic in the larger region, which consists
of the slit plane C − [−M,M ]. Moreover, the relation between g and the
Fourier transform f̂ is

g(z) =
1

2πi

∫ M

−M

f̂(ξ)

ξ − z
dξ

so that f̂ represents the jump of g across the segment [−M,M ]; that is,

f̂(x) = lim
ε→0,ε>0

g(x+ iε) − g(x− iε).

See Problem 5 in Chapter 3.
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...but after the 15th of October I felt myself a free
man, with such longing for mathematical work, that
the last two months flew by quickly, and that only
today I found the letter of the 19th of October that I
had not answered. The result of my work, with which
I am not entirely satisfied, I want to share with you.

Firstly, in looking back at my lectures, a gap in
function theory needed to be filled. As you know, up
to now the following question had been unresolved.
Given an arbitrary sequence of complex numbers,
a1, a2, . . . , can one construct an entire (transcenden-
tal) function that vanishes at these values, with pre-
scribed multiplicities, and nowhere else?...

K. Weierstrass, 1874

In this chapter, we will study functions that are holomorphic in the
whole complex plane; these are called entire functions. Our presentation
will be organized around the following three questions:

1. Where can such functions vanish? We shall see that the obvious
necessary condition is also sufficient: if {zn} is any sequence of
complex numbers having no limit point in C, then there exists an
entire function vanishing exactly at the points of this sequence. The
construction of the desired function is inspired by Euler’s product
formula for sinπz (the prototypical case when {zn} is Z), but re-
quires an additional refinement: the Weierstrass canonical factors.

2. How do these functions grow at infinity? Here, matters are con-
trolled by an important principle: the larger a function is, the more
zeros it can have. This principle already manifests itself in the sim-
ple case of polynomials. By the fundamental theorem of algebra,
the number of zeros of a polynomial P of degree d is precisely d,
which is also the exponent in the order of (polynomial) growth of
P , namely

sup
|z|=R

|P (z)| ≈ Rd as R→ ∞.
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A precise version of this general principle is contained in Jensen’s
formula, which we prove in the first section. This formula, central
to much of the theory developed in this chapter, exhibits a deep
connection between the number of zeros of a function in a disc and
the (logarithmic) average of the function over the circle. In fact,
Jensen’s formula not only constitutes a natural starting point for
us, but also leads to the fruitful theory of value distributions, also
called Nevanlinna theory (which, however, we do not take up here).

3. To what extent are these functions determined by their zeros? It
turns out that if an entire function has a finite (exponential) order
of growth, then it can be specified by its zeros up to multiplication
by a simple factor. The precise version of this assertion is the
Hadamard factorization theorem. It may be viewed as another
instance of the general rule that was formulated in Chapter 3, that
is, that under appropriate conditions, a holomorphic function is
essentially determined by its zeros.

1 Jensen’s formula

In this section, we denote by DR and CR the open disc and circle of
radius R centered at the origin. We shall also, in the rest of this chapter,
exclude the trivial case of the function that vanishes identically.

Theorem 1.1 Let Ω be an open set that contains the closure of a disc
DR and suppose that f is holomorphic in Ω, f(0) �= 0, and f vanishes
nowhere on the circle CR. If z1, . . . , zN denote the zeros of f inside the
disc (counted with multiplicities),1 then

(1) log |f(0)| =
N∑

k=1

log
(
|zk|
R

)
+

1
2π

∫ 2π

0

log |f(Reiθ)| dθ.

The proof of the theorem consists of several steps.

Step 1. First, we observe that if f1 and f2 are two functions satisfying
the hypotheses and the conclusion of the theorem, then the product
f1f2 also satisfies the hypothesis of the theorem and formula (1). This
observation is a simple consequence of the fact that logxy = log x+ log y
whenever x and y are positive numbers, and that the set of zeros of f1f2
is the union of the sets of zeros of f1 and f2.

1That is, each zero appears in the sequence as many times as its order.
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Step 2. The function

g(z) =
f(z)

(z − z1) · · · (z − zN )

initially defined on Ω − {z1, . . . , zN}, is bounded near each zj. Therefore
each zj is a removable singularity, and hence we can write

f(z) = (z − z1) · · · (z − zN)g(z)

where g is holomorphic in Ω and nowhere vanishing in the closure of DR.
By Step 1, it suffices to prove Jensen’s formula for functions like g that
vanish nowhere, and for functions of the form z − zj .

Step 3. We first prove (1) for a function g that vanishes nowhere in the
closure of DR. More precisely, we must establish the following identity:

log |g(0)| = 1
2π

∫ 2π

0

log |g(Reiθ)| dθ.

In a slightly larger disc, we can write g(z) = eh(z) where h is holomorphic
in that disc. This is possible since discs are simply connected, and we
can define h = log g (see Theorem 6.2 in Chapter 3). Now we observe
that

|g(z)| = |eh(z)| = |eRe(h(z))+i Im(h(z))| = eRe(h(z)),

so that log |g(z)| = Re(h(z)). The mean value property (Corollary 7.3 in
Chapter 3) then immediately implies the desired formula for g.

Step 4. The last step is to prove the formula for functions of the form
f(z) = z − w, where w ∈ DR. That is, we must show that

log |w| = log
(
|w|
R

)
+

1
2π

∫ 2π

0

log |Reiθ − w| dθ.

Since log(|w|/R)=log |w|−logR and log |Reiθ− w|=logR+log |eiθ− w/R|,
it suffices to prove that∫ 2π

0

log |eiθ − a| dθ = 0, whenever |a| < 1.

This in turn is equivalent (after the change of variables θ 	→ −θ) to∫ 2π

0

log |1 − aeiθ| dθ = 0, whenever |a| < 1.
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To prove this, we use the function F (z) = 1 − az, which vanishes nowhere
in the closure of the unit disc. As a consequence, there exists a holomor-
phic function G in a disc of radius greater than 1 such that F (z) =
eG(z). Then |F | = eRe(G), and therefore log |F | = Re(G). Since F (0) = 1
we have log |F (0)| = 0, and an application of the mean value property
(Corollary 7.3 in Chapter 3) to the harmonic function log |F (z)| con-
cludes the proof of the theorem.

From Jensen’s formula we can derive an identity linking the growth of
a holomorphic function with its number of zeros inside a disc. If f is a
holomorphic function on the closure of a disc DR, we denote by n(r) (or
nf (r) when it is necessary to keep track of the function in question) the
number of zeros of f (counted with their multiplicities) inside the disc
Dr, with 0 < r < R. A simple but useful observation is that n(r) is a
non-decreasing function of r.

We claim that if f(0) �= 0, and f does not vanish on the circle CR,
then

(2)
∫ R

0

n(r)
dr

r
=

1
2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|.

This formula is immediate from Jensen’s equality and the next lemma.

Lemma 1.2 If z1, . . . , zN are the zeros of f inside the disc DR, then∫ R

0

n(r)
dr

r
=

N∑
k=1

log
∣∣∣∣Rzk

∣∣∣∣ .
Proof. First we have

N∑
k=1

log
∣∣∣∣Rzk

∣∣∣∣ = N∑
k=1

∫ R

|zk|

dr

r
.

If we define the characteristic function

ηk(r) =
{

1 if r > |zk|,
0 if r ≤ |zk|,

then
∑N

k=1 ηk(r) = n(r), and the lemma is proved using

N∑
k=1

∫ R

|zk|

dr

r
=

N∑
k=1

∫ R

0

ηk(r)
dr

r
=
∫ R

0

(
N∑

k=1

ηk(r)

)
dr

r
=
∫ R

0

n(r)
dr

r
.
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2 Functions of finite order

Let f be an entire function. If there exist a positive number ρ and
constants A,B > 0 such that

|f(z)| ≤ AeB|z|ρ for all z ∈ C,

then we say that f has an order of growth ≤ ρ. We define the order
of growth of f as

ρf = inf ρ ,

where the infimum is over all ρ > 0 such that f has an order of growth
≤ ρ.

For example, the order of growth of the function ez2
is 2.

Theorem 2.1 If f is an entire function that has an order of growth ≤ ρ,
then:

(i) n(r) ≤ Crρ for some C > 0 and all sufficiently large r.

(ii) If z1, z2, . . . denote the zeros of f , with zk �= 0, then for all s > ρ
we have

∞∑
k=1

1
|zk|s

<∞.

Proof. It suffices to prove the estimate for n(r) when f(0) �= 0. Indeed,
consider the function F (z) = f(z)/z where � is the order of the zero of
f at the origin. Then nf (r) and nF (r) differ only by a constant, and F
also has an of order of growth ≤ ρ.

If f(0) �= 0 we may use formula (2), namely∫ R

0

n(x)
dx

x
=

1
2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|.

Choosing R = 2r, this formula implies∫ 2r

r

n(x)
dx

x
≤ 1

2π

∫ 2π

0

log |f(Reiθ)| dθ − log |f(0)|.

On the one hand, since n(r) is increasing, we have∫ 2r

r

n(x)
dx

x
≥ n(r)

∫ 2r

r

dx

x
= n(r)[log 2r − log r] = n(r) log 2,
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and on the other hand, the growth condition on f gives∫ 2π

0

log |f(Reiθ)| dθ ≤
∫ 2π

0

log |AeBRρ | dθ ≤ C′rρ

for all large r. Consequently, n(r) ≤ Crρ for an appropriate C > 0 and
all sufficiently large r.

The following estimates prove the second part of the theorem:

∑
|zk|≥1

|zk|−s =
∞∑

j=0

 ∑
2j≤|zk|<2j+1

|zk|−s


≤

∞∑
j=0

2−jsn(2j+1)

≤ c

∞∑
j=0

2−js2(j+1)ρ

≤ c′
∞∑

j=0

(2ρ−s)j

<∞.

The last series converges because s > ρ.

Part (ii) of the theorem is a noteworthy fact, which we shall use in a
later part of this chapter.

We give two simple examples of the theorem; each of these shows that
the condition s > ρ cannot be improved.

Example 1. Consider f(z) = sin πz. Recall Euler’s identity, namely

f(z) =
eiπz − e−iπz

2i
,

which implies that |f(z)| ≤ eπ|z|, and f has an order of growth ≤ 1. By
taking z = ix, where x ∈ R, it is clear that the order of growth of f is
actually equal to 1. However, f vanishes to order 1 at z = n for each
n ∈ Z, and

∑
n�=0 1/|n|s <∞ precisely when s > 1.

Example 2. Consider f(z) = cos z1/2, which we define by

cos z1/2 =
∞∑

n=0

(−1)n zn

(2n)!
.
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Then f is entire, and it is easy to see that

|f(z)| ≤ e|z|
1/2
,

and the order of growth of f is 1/2. Moreover, f(z) vanishes when
zn = ((n+ 1/2)π)2, while

∑
n 1/|zn|s <∞ exactly when s > 1/2.

A natural question is whether or not, given any sequence of complex
numbers z1, z2, . . ., there exists an entire function f with zeros precisely
at the points of this sequence. A necessary condition is that z1, z2, . . . do
not accumulate, in other words we must have

lim
k→∞

|zk| = ∞ ,

otherwise f would vanish identically by Theorem 4.8 in Chapter 2. Weier-
strass proved that this condition is also sufficient by explicitly construct-
ing a function with these prescribed zeros. A first guess is of course the
product

(z − z1)(z − z2) · · · ,

which provides a solution in the special case when the sequence of zeros
is finite. In general, Weierstrass showed how to insert factors in this
product so that the convergence is guaranteed, yet no new zeros are
introduced.

Before coming to the general construction, we review infinite products
and study a basic example.

3 Infinite products

3.1 Generalities

Given a sequence {an}∞n=1 of complex numbers, we say that the product

∞∏
n=1

(1 + an)

converges if the limit

lim
N→∞

N∏
n=1

(1 + an)

of the partial products exists.
A useful necessary condition that guarantees the existence of a product

is contained in the following proposition.
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Proposition 3.1 If
∑

|an| <∞, then the product
∏∞

n=1(1 + an) con-
verges. Moreover, the product converges to 0 if and only if one of its
factors is 0.

This is simply Proposition 1.9 of Chapter 8 in Book I. We repeat the
proof here.

Proof. If
∑

|an| converges, then for all large n we must have
|an| < 1/2. Disregarding if necessary finitely many terms, we may as-
sume that this inequality holds for all n. In particular, we can define
log(1 + an) by the usual power series (see (6) in Chapter 3), and this
logarithm satisfies the property that 1 + z = elog(1+z) whenever |z| < 1.
Hence we may write the partial products as follows:

N∏
n=1

(1 + an) =
N∏

n=1

elog(1+an) = eBN ,

where BN =
∑N

n=1 bn with bn = log(1 + an). By the power series expan-
sion we see that | log(1 + z)| ≤ 2|z|, if |z| < 1/2. Hence |bn| ≤ 2|an|, so
BN converges as N → ∞ to a complex number, say B. Since the expo-
nential function is continuous, we conclude that eBN converges to eB as
N → ∞, proving the first assertion of the proposition. Observe also that
if 1 + an �= 0 for all n, then the product converges to a non-zero limit
since it is expressed as eB.

More generally, we can consider products of holomorphic functions.

Proposition 3.2 Suppose {Fn} is a sequence of holomorphic functions
on the open set Ω. If there exist constants cn > 0 such that∑

cn <∞ and |Fn(z) − 1| ≤ cn for all z ∈ Ω,

then:

(i) The product
∏∞

n=1 Fn(z) converges uniformly in Ω to a holomorphic
function F (z).

(ii) If Fn(z) does not vanish for any n, then

F ′(z)
F (z)

=
∞∑

n=1

F ′
n(z)
Fn(z)

.

Proof. To prove the first statement, note that for each z we may
argue as in the previous proposition if we write Fn(z) = 1 + an(z), with
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|an(z)| ≤ cn. Then, we observe that the estimates are actually uniform
in z because the cn’s are constants. It follows that the product converges
uniformly to a holomorphic function, which we denote by F (z).

To establish the second part of the theorem, suppose that K is a
compact subset of Ω, and let

GN(z) =
N∏

n=1

Fn(z).

We have just proved that GN → F uniformly in Ω, so by Theorem 5.3
in Chapter 2, the sequence {G′

N} converges uniformly to F ′ in K. Since
GN is uniformly bounded from below onK, we conclude that G′

N/GN →
F ′/F uniformly on K, and because K is an arbitrary compact subset of
Ω, the limit holds for every point of Ω. Moreover, as we saw in Section 4
of Chapter 3

G′
N

GN
=

N∑
n=1

F ′
n

Fn
,

so part (ii) of the proposition is also proved.

3.2 Example: the product formula for the sine function

Before proceeding with the general theory of Weierstrass products, we
consider the key example of the product formula for the sine function:

(3)
sin πz
π

= z

∞∏
n=1

(
1 − z2

n2

)
.

This identity will in turn be derived from the sum formula for the cotan-
gent function (cotπz = cosπz/ sinπz):

(4) π cotπz =
∞∑

n=−∞

1
z + n

= lim
N→∞

∑
|n|≤N

1
z + n

=
1
z

+
∞∑

n=1

2z
z2 − n2

.

The first formula holds for all complex numbers z, and the second when-
ever z is not an integer. The sum

∑∞
n=−∞ 1/(z + n) needs to be properly

understood, because the separate halves corresponding to positive and
negative values of n do not converge. Only when interpreted symmetri-
cally, as limN→∞

∑
|n|≤N 1/(z + n), does the cancellation of terms lead

to a convergent series as in (4) above.
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We prove (4) by showing that both π cotπz and the series have the
same structural properties. In fact, observe that if F (z) = π cotπz, then
F has the following three properties:

(i) F (z + 1) = F (z) whenever z is not an integer.

(ii) F (z) =
1
z

+ F0(z), where F0 is analytic near 0.

(iii) F (z) has simple poles at the integers, and no other singularities.

Then, we note that the function

∞∑
n=−∞

1
z + n

= lim
N→∞

∑
|n|≤N

1
z + n

also satisfies these same three properties. In fact, property (i) is simply
the observation that the passage from z to z + 1 merely shifts the terms
in the infinite sum. To be precise,∑

|n|≤N

1
z + 1 + n

=
1

z + 1 +N
− 1
z −N

+
∑

|n|≤N

1
z + n

.

Letting N tend to infinity proves the assertion. Properties (ii) and (iii)
are evident from the representation 1

z +
∑∞

n=1
2z

z2−n2 of the sum.
Therefore, the function defined by

∆(z) = F (z) −
∞∑

n=−∞

1
z + n

is periodic in the sense that ∆(z + 1) = ∆(z), and by (ii) the singularity
of ∆ at the origin is removable, and hence by periodicity the singularities
at all the integers are also removable; this implies that ∆ is entire.

To prove our formula, it will suffice to show that the function ∆ is
bounded in the complex plane. By the periodicity above, it is enough
to do so in the strip |Re(z)| ≤ 1/2. This is because every z′ ∈ C is of
the form z′ = z + k, where z is in the strip and k is an integer. Since ∆
is holomorphic, it is bounded in the rectangle |Im(z)| ≤ 1, and we need
only control the behavior of that function for |Im(z)| > 1. If Im(z) > 1
and z = x+ iy, then

cotπz = i
eiπz + e−iπz

eiπz − e−iπz
= i

e−2πy + e−2πix

e−2πy − e−2πix
,
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and in absolute value this quantity is bounded. Also

1
z

+
∞∑

n=1

2z
z2 − n2

=
1

x+ iy
+

∞∑
n=1

2(x+ iy)
x2 − y2 − n2 + 2ixy

;

therefore if y > 1, we have∣∣∣∣∣1z +
∞∑

n=1

2z
z2 − n2

∣∣∣∣∣ ≤ C + C

∞∑
n=1

y

y2 + n2
.

Now the sum on the right-hand side is majorized by∫ ∞

0

y

y2 + x2
dx ,

because the function y/(y2 + x2) is decreasing in x; moreover, as the
change of variables x 	→ yx shows, the integral is independent of y, and
hence bounded. By a similar argument ∆ is bounded in the strip where
Im(z) < −1, hence is bounded throughout the whole strip |Re(z)| ≤ 1/2.
Therefore ∆ is bounded in C, and by Liouville’s theorem, ∆(z) is con-
stant. The observation that ∆ is odd shows that this constant must be
0, and concludes the proof of formula (4).

To prove (3), we now let

G(z) =
sin πz
π

and P (z) = z

∞∏
n=1

(
1 − z2

n2

)
.

Proposition 3.2 and the fact that
∑

1/n2 <∞ guarantee that the prod-
uct P (z) converges, and that away from the integers we have

P ′(z)
P (z)

=
1
z

+
∞∑

n=1

2z
z2 − n2

.

Since G′(z)/G(z) = π cotπz, the cotangent formula (4) gives(
P (z)
G(z)

)′
=
P (z)
G(z)

[
P ′(z)
P (z)

− G′(z)
G(z)

]
= 0,

and so P (z) = cG(z) for some constant c. Dividing this identity by z,
and taking the limit as z → 0, we find c = 1.

Remark. Other proofs of (4) and (3) can be given by integrating
analogous identities for π2/(sinπz)2 derived in Exercise 12, Chapter 3,
and Exercise 7, Chapter 4. Still other proofs using Fourier series can be
found in the exercises of Chapters 3 and 5 of Book I.
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4 Weierstrass infinite products

We now turn to Weierstrass’s construction of an entire function with
prescribed zeros.

Theorem 4.1 Given any sequence {an} of complex numbers with
|an| → ∞ as n→ ∞, there exists an entire function f that vanishes at
all z = an and nowhere else. Any other such entire function is of the
form f(z)eg(z), where g is entire.

Recall that if a holomorphic function f vanishes at z = a, then the
multiplicity of the zero a is the integer m so that

f(z) = (z − a)mg(z),

where g is holomorphic and nowhere vanishing in a neighborhood of a.
Alternatively, m is the first non-zero power of z − a in the power series
expansion of f at a. Since, as before, we allow for repetitions in the
sequence {an}, the theorem actually guarantees the existence of entire
functions with prescribed zeros and with desired multiplicities.

To begin the proof, note first that if f1 and f2 are two entire functions
that vanish at all z = an and nowhere else, then f1/f2 has removable
singularities at all the points an. Hence f1/f2 is entire and vanishes
nowhere, so that there exists an entire function g with f1(z)/f2(z) =
eg(z), as we showed in Section 6 of Chapter 3. Therefore f1(z) = f2(z)eg(z)

and the last statement of the theorem is verified.
Hence we are left with the task of constructing a function that vanishes

at all the points of the sequence {an} and nowhere else. A naive guess,
suggested by the product formula for sin πz, is the product

∏
n (1 − z/an).

The problem is that this product converges only for suitable sequences
{an}, so we correct this by inserting exponential factors. These factors
will make the product converge without adding new zeros.

For each integer k ≥ 0 we define canonical factors by

E0(z) = 1 − z and Ek(z) = (1 − z)ez+z2/2+···+zk/k, for k ≥ 1.

The integer k is called the degree of the canonical factor.

Lemma 4.2 If |z| ≤ 1/2, then |1 −Ek(z)| ≤ c|z|k+1 for some c > 0.

Proof. If |z| ≤ 1/2, then with the logarithm defined in terms of the
power series, we have 1 − z = elog(1−z), and therefore

Ek(z) = elog(1−z)+z+z2/2+···+zk/k = ew,
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where w = −
∑∞

n=k+1 z
n/n. Observe that since |z| ≤ 1/2 we have

|w| ≤ |z|k+1

∞∑
n=k+1

|z|n−k−1/n ≤ |z|k+1

∞∑
j=0

2−j ≤ 2|z|k+1.

In particular, we have |w| ≤ 1 and this implies that

|1 −Ek(z)| = |1 − ew| ≤ c′|w| ≤ c|z|k+1.

Remark. An important technical point is that the constant c in the
statement of the lemma can be chosen to be independent of k. In fact,
an examination of the proof shows that we may take c′ = e and then
c = 2e.

Suppose that we are given a zero of order m at the origin, and that
a1, a2 . . . are all non-zero. Then we define the Weierstrass product by

f(z) = zm

∞∏
n=1

En(z/an).

We claim that this function has the required properties; that is, f is
entire with a zero of order m at the origin, zeros at each point of the
sequence {an}, and f vanishes nowhere else.

Fix R > 0, and suppose that z belongs to the disc |z| < R. We shall
prove that f has all the desired properties in this disc, and since R is
arbitrary, this will prove the theorem.

We can consider two types of factors in the formula defining f , with
the choice depending on whether |an| ≤ 2R or |an| > 2R. There are only
finitely many terms of the first kind (since |an| → ∞), and we see that
the finite product vanishes at all z = an with |an| < R. If |an| ≥ 2R, we
have |z/an| ≤ 1/2, hence the previous lemma implies

|1 −En(z/an)| ≤ c

∣∣∣∣ zan

∣∣∣∣n+1

≤ c

2n+1
.

Note that by the above remark, c does not depend on n. Therefore, the
product ∏

|an|≥2R

En(z/an)

defines a holomorphic function when |z| < R, and does not vanish in
that disc by the propositions in Section 3. This shows that the function
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f has the desired properties, and the proof of Weierstrass’s theorem is
complete.

5 Hadamard’s factorization theorem

The theorem of this section combines the results relating the growth of
a function to the number of zeros it possesses, and the above product
theorem. Weierstrass’s theorem states that a function that vanishes at
the points a1, a2, . . . takes the form

eg(z)zm

∞∏
n=1

En(z/an).

Hadamard refined this result by showing that in the case of functions
of finite order, the degree of the canonical factors can be taken to be
constant, and g is then a polynomial.

Recall that an entire function has an order of growth ≤ ρ if

|f(z)| ≤ AeB|z|ρ ,

and that the order of growth ρ0 of f is the infimum of all such ρ’s.
A basic result we proved earlier was that if f has order of growth ≤ ρ,

then

n(r) ≤ Crρ, for all large r,

and if a1, a2, . . . are the non-zero zeros of f , and s > ρ, then∑
|an|−s <∞.

Theorem 5.1 Suppose f is entire and has growth order ρ0. Let k be the
integer so that k ≤ ρ0 < k + 1. If a1, a2, . . . denote the (non-zero) zeros
of f , then

f(z) = eP (z)zm

∞∏
n=1

Ek(z/an),

where P is a polynomial of degree ≤ k, and m is the order of the zero of
f at z = 0.

Main lemmas

Here we gather a few lemmas needed in the proof of Hadamard’s theorem.
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Lemma 5.2 The canonical products satisfy

|Ek(z)| ≥ e−c|z|k+1
if |z| ≤ 1/2

and

|Ek(z)| ≥ |1 − z| e−c′|z|k if |z| ≥ 1/2.

Proof. If |z| ≤ 1/2 we can use the power series to define the logarithm
of 1 − z, so that

Ek(z) = elog(1−z)+
∑k

n=1 zn/n = e−
∑∞

n=k+1 zn/n = ew.

Since |ew| ≥ e−|w| and |w| ≤ c|z|k+1, the first part of the lemma follows.
For the second part, simply observe that if |z| ≥ 1/2, then

|Ek(z)| = |1 − z||ez+z2/2+···+zk/k|,

and that there exists c′ > 0 such that

|ez+z2/2+···+zk/k| ≥ e−|z+z2/2+···+zk/k| ≥ e−c′|z|k .

The inequality in the lemma when |z| ≥ 1/2 then follows from these
observations.

The key to the proof of Hadamard’s theorem consists of finding a lower
bound for the product of the canonical factors when z stays away from
the zeros {an}. Therefore, we shall first estimate the product from below,
in the complement of small discs centered at these points.

Lemma 5.3 For any s with ρ0 < s < k + 1, we have∣∣∣∣∣
∞∏

n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s ,

except possibly when z belongs to the union of the discs centered at an of
radius |an|−k−1, for n = 1, 2, 3, . . ..

Proof. The proof this lemma is a little subtle. First, we write

∞∏
n=1

Ek(z/an) =
∏

|an|≤2|z|
Ek(z/an)

∏
|an|>2|z|

Ek(z/an).
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For the second product the estimate asserted above holds with no re-
striction on z. Indeed, by the previous lemma∣∣∣∣∣∣

∏
|an|>2|z|

Ek(z/an)

∣∣∣∣∣∣ =
∏

|an|>2|z|
|Ek(z/an)|

≥
∏

|an|>2|z|
e−c|z/an|k+1

≥ e−c|z|k+1∑
|an|>2|z| |an|−k−1

.

But |an| > 2|z| and s < k + 1, so we must have

|an|−k−1 = |an|−s|an|s−k−1 ≤ C|an|−s|z|s−k−1.

Therefore, the fact that
∑

|an|−s converges implies that∣∣∣∣∣∣
∏

|an|>2|z|
Ek(z/an)

∣∣∣∣∣∣ ≥ e−c|z|s

for some c > 0.
To estimate the first product, we use the second part of Lemma 5.2,

and write

(5)

∣∣∣∣∣∣
∏

|an|≤2|z|
Ek(z/an)

∣∣∣∣∣∣ ≥
∏

|an|≤2|z|

∣∣∣∣1 − z

an

∣∣∣∣ ∏
|an|≤2|z|

e−c′|z/an|k .

We now note that∏
|an|≤2|z|

e−c′|z/an|k = e−c′|z|k∑ |an|≤2|z| |an|−k

,

and again, we have |an|−k = |an|−s|an|s−k ≤ C|an|−s|z|s−k, thereby prov-
ing that ∏

|an|≤2|z|
e−c′|z/an|k ≥ e−c|z|s .

It is the estimate on the first product on the right-hand side of (5)
which requires the restriction on z imposed in the statement of the
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lemma. Indeed, whenever z does not belong to a disc of radius |an|−k−1

centered at an, we must have |an − z| ≥ |an|−k−1. Therefore

∏
|an|≤2|z|

∣∣∣∣1 − z

an

∣∣∣∣ = ∏
|an|≤2|z|

∣∣∣∣an − z

an

∣∣∣∣
≥

∏
|an|≤2|z|

|an|−k−1|an|−1

=
∏

|an|≤2|z|
|an|−k−2.

Finally, the estimate for the first product follows from the fact that

(k + 2)
∑

|an|≤2|z|
log |an| ≤ (k + 2)n(2|z|) log 2|z|

≤ c|z|s log 2|z|
≤ c′|z|s′

,

for any s′ > s, and the second inequality follows because n(2|z|) ≤ c|z|s
by Theorem 2.1. Since we restricted s to satisfy s > ρ0, we can take
an initial s sufficiently close to ρ0, so that the assertion of the lemma is
established (with s being replaced by s′).

Corollary 5.4 There exists a sequence of radii, r1, r2, . . ., with
rm → ∞, such that∣∣∣∣∣

∞∏
n=1

Ek(z/an)

∣∣∣∣∣ ≥ e−c|z|s for |z| = rm.

Proof. Since
∑

|an|−k−1 <∞, there exists an integer N so that

∞∑
n=N

|an|−k−1 < 1/10.

Therefore, given any two consecutive large integers L and L+ 1, we can
find a positive number r with L ≤ r ≤ L+ 1, such that the circle of
radius r centered at the origin does not intersect the forbidden discs of
Lemma 5.3. For otherwise, the union of the intervals

In =
[
|an| −

1
|an|k+1

, |an| +
1

|an|k+1

]
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(which are of length 2|an|−k−1) would cover all the interval [L,L+ 1].
(See Figure 1.) This would imply 2

∑∞
n=N |an|−k−1 ≥ 1, which is a con-

tradiction. We can then apply the previous lemma with |z| = r to con-
clude the proof of the corollary.

I2

I3

a1

I1

a2

In

a3

an

Figure 1. The intervals In

Proof of Hadamard’s theorem

Let

E(z) = zm

∞∏
n=1

Ek(z/an).

To prove that E is entire, we repeat the argument in the proof of Theo-
rem 4.1; we take into account that by Lemma 4.2

|1 −Ek(z/an)| ≤ c

∣∣∣∣ zan

∣∣∣∣k+1

for all large n,

and that the series
∑

|an|−k−1 converges. (Recall ρ0 < s < k + 1.) More-
over, E has the zeros of f , therefore f/E is holomorphic and nowhere
vanishing. Hence

f(z)
E(z)

= eg(z)
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for some entire function g. By the fact that f has growth order ρ0, and
because of the estimate from below for E obtained in Corollary 5.4, we
have

eRe(g(z)) =
∣∣∣∣ f(z)
E(z)

∣∣∣∣ ≤ c′ec|z|s

for |z| = rm. This proves that

Re(g(z)) ≤ C|z|s, for |z| = rm.

The proof of Hadamard’s theorem is therefore complete if we can estab-
lish the following final lemma.

Lemma 5.5 Suppose g is entire and u = Re(g) satisfies

u(z) ≤ Crs whenever |z| = r

for a sequence of positive real numbers r that tends to infinity. Then g
is a polynomial of degree ≤ s.

Proof. We can expand g in a power series centered at the origin

g(z) =
∞∑

n=0

anz
n.

We have already proved in the last section of Chapter 3 (as a simple
application of Cauchy’s integral formulas) that

(6)
1
2π

∫ 2π

0

g(reiθ)e−inθ dθ =
{
anr

n if n ≥ 0
0 if n < 0.

By taking complex conjugates we find that

(7)
1
2π

∫ 2π

0

g(reiθ)e−inθ dθ = 0

whenever n > 0, and since 2u = g + g we add equations (6) and (7) to
obtain

anr
n =

1
π

∫ 2π

0

u(reiθ)e−inθ dθ, whenever n > 0.

For n = 0 we can simply take real parts of both sides of (6) to find that

2Re(a0) =
1
π

∫ 2π

0

u(reiθ) dθ.
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Now we recall the simple fact that whenever n �= 0, the integral of e−inθ

over any circle centered at the origin vanishes. Therefore

an =
1
πrn

∫ 2π

0

[u(reiθ) − Crs]e−inθ dθ when n > 0,

hence

|an| ≤
1
πrn

∫ 2π

0

[Crs − u(reiθ)] dθ ≤ 2Crs−n − 2Re(a0)r−n.

Letting r tend to infinity along the sequence given in the hypothesis of
the lemma proves that an = 0 for n > s. This completes the proof of the
lemma and of Hadamard’s theorem.

6 Exercises

1. Give another proof of Jensen’s formula in the unit disc using the functions
(called Blaschke factors)

ψα(z) =
α− z

1 − αz
.

[Hint: The function f/(ψz1 · · ·ψzN ) is nowhere vanishing.]

2. Find the order of growth of the following entire functions:

(a) p(z) where p is a polynomial.

(b) ebzn

for b 
= 0.

(c) eez

.

3. Show that if τ is fixed with Im(τ ) > 0, then the Jacobi theta function

Θ(z|τ ) =

∞∑
n=−∞

eπin2τe2πinz

is of order 2 as a function of z. Further properties of Θ will be studied in Chap-
ter 10.

[Hint: −n2t+ 2n|z| ≤ −n2t/2 when t > 0 and n ≥ 4|z|/t.]

4. Let t > 0 be given and fixed, and define F (z) by

F (z) =
∞∏

n=1

(1 − e−2πnte2πiz).

Note that the product defines an entire function of z.
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(a) Show that |F (z)| ≤ Aea|z|2 , hence F is of order 2.

(b) F vanishes exactly when z = −int+m for n ≥ 1 and n,m integers. Thus,
if zn is an enumeration of these zeros we have∑ 1

|zn|2 = ∞ but
∑ 1

|zn|2+ε
<∞.

[Hint: To prove (a), write F (z) = F1(z)F2(z) where

F1(z) =
N∏

n=1

(1 − e−2πnte2πiz) and F2(z) =
∞∏

n=N+1

(1 − e−2πnte2πiz).

Choose N ≈ c|z| with c appropriately large. Then, since( ∞∑
N+1

e−2πnt

)
e2π|z| ≤ 1 ,

one has |F2(z)| ≤ A. However,

|1 − e−2πnte2πiz| ≤ 1 + e2π|z| ≤ 2e2π|z|.

Thus |F1(z)| ≤ 2Ne2πN|z| ≤ ec′|z|2 . Note that a simple variant of the function F
arises as a factor in the triple product formula for the Jacobi theta function Θ,
taken up in Chapter 10.]

5. Show that if α > 1, then

Fα(z) =

∫ ∞

−∞
e−|t|αe2πizt dt

is an entire function of growth order α/(α− 1).

[Hint: Show that

−|t|α
2

+ 2π|z||t| ≤ c|z|α/(α−1)

by considering the two cases |t|α−1 ≤ A|z| and |t|α−1 ≥ A|z|, for an appropriate
constant A.]

6. Prove Wallis’s product formula

π

2
=

2 · 2
1 · 3 · 4 · 4

3 · 5 · · · 2m · 2m
(2m− 1) · (2m+ 1)

· · · .

[Hint: Use the product formula for sin z at z = π/2.]

7. Establish the following properties of infinite products.
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(a) Show that if
∑ |an|2 converges, then the product

∏
(1 + an) converges to a

non-zero limit if and only if
∑
an converges.

(b) Find an example of a sequence of complex numbers {an} such that
∑
an

converges but
∏

(1 + an) diverges.

(c) Also find an example such that
∏

(1 + an) converges and
∑
an diverges.

8. Prove that for every z the product below converges, and

cos(z/2) cos(z/4) cos(z/8) · · · =

∞∏
k=1

cos(z/2k) =
sin z

z
.

[Hint: Use the fact that sin 2z = 2 sin z cos z.]

9. Prove that if |z| < 1, then

(1 + z)(1 + z2)(1 + z4)(1 + z8) · · · =

∞∏
k=0

(1 + z2k

) =
1

1 − z
.

10. Find the Hadamard products for:

(a) ez − 1;

(b) cos πz.

[Hint: The answers are ez/2z
∏∞

n=1(1 + z2/4n2π2) and
∏∞

n=0(1 − 4z2/(2n+ 1)2),
respectively.]

11. Show that if f is an entire function of finite order that omits two values, then
f is constant. This result remains true for any entire function and is known as
Picard’s little theorem.

[Hint: If f misses a, then f(z) − a is of the form ep(z) where p is a polynomial.]

12. Suppose f is entire and never vanishes, and that none of the higher derivatives
of f ever vanish. Prove that if f is also of finite order, then f(z) = eaz+b for some
constants a and b.

13. Show that the equation ez − z = 0 has infinitely many solutions in C.

[Hint: Apply Hadamard’s theorem.]

14. Deduce from Hadamard’s theorem that if F is entire and of growth order ρ
that is non-integral, then F has infinitely many zeros.

15. Prove that every meromorphic function in C is the quotient of two entire
functions. Also, if {an} and {bn} are two disjoint sequences having no finite limit
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points, then there exists a meromorphic function in the whole complex plane that
vanishes exactly at {an} and has poles exactly at {bn}.

16. Suppose that

Qn(z) =

Nn∑
k=1

cnk z
k

are given polynomials for n = 1, 2, . . .. Suppose also that we are given a sequence of
complex numbers {an} without limit points. Prove that there exists a meromorphic
function f(z) whose only poles are at {an}, and so that for each n, the difference

f(z) −Qn

(
1

z − an

)
is holomorphic near an. In other words, f has a prescribed poles and principal
parts at each of these poles. This result is due to Mittag-Leffler.

17. Given two countably infinite sequences of complex numbers {ak}∞k=0 and
{bk}∞k=0, with limk→∞ |ak| = ∞, it is always possible to find an entire function F
that satisfies F (ak) = bk for all k.

(a) Given n distinct complex numbers a1, . . . , an, and another n complex num-
bers b1, . . . , bn, construct a polynomial P of degree ≤ n− 1 with

P (ai) = bi for i = 1, . . . , n.

(b) Let {ak}∞k=0 be a sequence of distinct complex numbers such that a0 = 0
and limk→∞ |ak| = ∞, and let E(z) denote a Weierstrass product associated
with {ak}. Given complex numbers {bk}∞k=0, show that there exist integers
mk ≥ 1 such that the series

F (z) =
b0

E′(z)
E(z)

z
+

∞∑
k=1

bk
E′(ak)

E(z)

z − ak

(
z

ak

)mk

defines an entire function that satisfies

F (ak) = bk for all k ≥ 0.

This is known as the Pringsheim interpolation formula.

7 Problems

1. Prove that if f is holomorphic in the unit disc, bounded and not identically
zero, and z1, z2, . . . , zn, . . . are its zeros (|zk| < 1), then∑

n

(1 − |zn|) <∞.
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[Hint: Use Jensen’s formula.]

2.∗ In this problem, we discuss Blaschke products, which are bounded analogues
in the disc of the Weierstrass products for entire functions.

(a) Show that for 0 < |α| < 1 and |z| ≤ r < 1 the inequality∣∣∣∣ α+ |α|z
(1 − αz)α

∣∣∣∣ ≤ 1 + r

1 − r

holds.

(b) Let {αn} be a sequence in the unit disc such that αn 
= 0 for all n and

∞∑
n=1

(1 − |αn|) <∞.

Note that this will be the case if {αn} are the zeros of a bounded holomorphic
function on the unit disc (see Problem 1). Show that the product

f(z) =
∞∏

n=1

αn − z

1 − αnz

|αn|
αn

converges uniformly for |z| ≤ r < 1, and defines a holomorphic function on
the unit disc having precisely the zeros αn and no other zeros. Show that
|f(z)| ≤ 1.

3.∗ Show that
∑ zn

(n!)α
is an entire function of order 1/α.

4.∗ Let F (z) =
∑∞

n=0 anz
n be an entire function of finite order. Then the growth

order of F is intimately linked with the growth of the coefficients an as n→ ∞.
In fact:

(a) Suppose |F (z)| ≤ Aea|z|ρ . Then

(8) lim sup
n→∞

|an|1/nn1/ρ <∞.

(b) Conversely, if (8) holds, then |F (z)| ≤ Aεe
aε|z|ρ+ε

, for every ε > 0.

[Hint: To prove (a), use Cauchy’s inequality

|an| ≤ A

rn
earρ

,

and the fact that the function u−neuρ

, 0 < u < ρ, attains its minimum value
en/ρ(ρ/n)n/ρ at u = n1/ρ/ρ1/ρ. Then, choose r in terms of n to achieve this mini-
mum.
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To establish (b), note that for |z| = r,

|F (z)| ≤
∑ cnrn

nn/ρ
≤
∑ cnrn

(n!)1/ρ

for some constant c, since nn ≥ n!. This yields a reduction to Problem 3.]



6 The Gamma and Zeta
Functions

It is no exaggeration to say that the gamma and zeta functions are
among the most important nonelementary functions in mathematics.
The gamma function Γ is ubiquitous in nature. It arises in a host of
calculations and is featured in a large number of identities that occur in
analysis. Part of the explanation for this probably lies in the basic struc-
tural property of the gamma function, which essentially characterizes
it: 1/Γ(s) is the (simplest) entire function1 which has zeros at exactly
s = 0,−1,−2, . . ..

The zeta function ζ (whose study, like that of the gamma function,
was initiated by Euler) plays a fundamental role in the analytic theory
of numbers. Its intimate connection with prime numbers comes about
via the identity for ζ(s):

∏
p

1
1 − p−s

=
∞∑

n=1

1
ns
,

where the product is over all primes. The behavior of ζ(s) for real s > 1,
with s tending to 1, was used by Euler to prove that

∑
p 1/p diverges,

and a similar reasoning for L-functions is at the starting point of the
proof of Dirichlet’s theorem on primes in arithmetic progression, as we
saw in Book I.

While there is no difficulty in seeing that ζ(s) is well-defined (and
analytic) when Re(s) > 1, it was Riemann who realized that the further
study of primes was bound up with the analytic (in fact, meromorphic)
continuation of ζ into the rest of the complex plane. Beyond this, we also
consider its remarkable functional equation, which reveals a symmetry
about the line Re(s) = 1/2, and whose proof is based on a corresponding
identity for the theta function. We also make a more detailed study of
the growth of ζ(s) near the line Re(s) = 1, which will be required in the
proof of the prime number theorem given in the next chapter.

1In keeping with the standard notation of the subject, we denote by s (instead of z)
the argument of the functions Γ and ζ.
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1 The gamma function

For s > 0, the gamma function is defined by

(1) Γ(s) =
∫ ∞

0

e−tts−1 dt.

The integral converges for each positive s because near t = 0 the func-
tion ts−1 is integrable, and for t large the convergence is guaranteed by
the exponential decay of the integrand. These observations allow us to
extend the domain of definition of Γ as follows.

Proposition 1.1 The gamma function extends to an analytic function
in the half-plane Re(s) > 0, and is still given there by the integral for-
mula (1).

Proof. It suffices to show that the integral defines a holomorphic
function in every strip

Sδ,M = {δ < Re(s) < M} ,

where 0 < δ < M <∞. Note that if σ denotes the real part of s, then
|e−tts−1| = e−ttσ−1, so that the integral

Γ(s) =
∫ ∞

0

e−tts−1 dt ,

which is defined by the limit limε→0

∫ 1/ε

ε
e−tts−1 dt, converges for each

s ∈ Sδ,M . For ε > 0, let

Fε(s) =
∫ 1/ε

ε

e−tts−1 dt.

By Theorem 5.4 in Chapter 2, the function Fε is holomorphic in the
strip Sδ,M . By Theorem 5.2, also of Chapter 2, it suffices to show that
Fε converges uniformly to Γ on the strip Sδ,M . To see this, we first
observe that

|Γ(s) − Fε(s)| ≤
∫ ε

0

e−ttσ−1 dt+
∫ ∞

1/ε

e−ttσ−1 dt.

The first integral converges uniformly to 0, as ε tends to 0 since it can
be easily estimated by εδ/δ whenever 0 < ε < 1. The second integral
converges uniformly to 0 as well, since∣∣∣∣∫ ∞

1/ε

e−ttσ−1 dt

∣∣∣∣ ≤ ∫ ∞

1/ε

e−ttM−1dt ≤ C

∫ ∞

1/ε

e−t/2 dt→ 0,



1. The gamma function 161

and the proof is complete.

1.1 Analytic continuation

Despite the fact that the integral defining Γ is not absolutely convergent
for other values of s, we can go further and prove that there exists a
meromorphic function defined on all of C that equals Γ in the half-plane
Re(s) > 0. In the same sense as in Chapter 2, we say that this function
is the analytic continuation2 of Γ, and we therefore continue to denote it
by Γ.

To prove the asserted analytic extension to a meromorphic function,
we need a lemma, which incidentally exhibits an important property
of Γ.

Lemma 1.2 If Re(s) > 0, then

(2) Γ(s+ 1) = sΓ(s).

As a consequence Γ(n+ 1) = n! for n = 0, 1, 2, . . ..

Proof. Integrating by parts in the finite integrals gives∫ 1/ε

ε

d

dt
(e−tts) dt = −

∫ 1/ε

ε

e−tts dt+ s

∫ 1/ε

ε

e−tts−1 dt,

and the desired formula (2) follows by letting ε tend to 0, and noting
that the left-hand side vanishes because e−tts → 0 as t tends to 0 or ∞.
Now it suffices to check that

Γ(1) =
∫ ∞

0

e−t dt =
[
−e−t

]∞
0

= 1 ,

and to apply (2) successively to find that Γ(n+ 1) = n!.

Formula (2) in the lemma is all we need to give a proof of the following
theorem.

Theorem 1.3 The function Γ(s) initially defined for Re(s) > 0 has an
analytic continuation to a meromorphic function on C whose only sin-
gularities are simple poles at the negative integers s = 0,−1, . . . . The
residue of Γ at s = −n is (−1)n/n!.

2Uniqueness of the analytic continuation is guaranteed since the complement of the
poles of a meromorphic function forms a connected set.
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Proof. It suffices to extend Γ to each half-plane Re(s) > −m, where
m ≥ 1 is an integer. For Re(s) > −1, we define

F1(s) =
Γ(s+ 1)

s
.

Since Γ(s+ 1) is holomorphic in Re(s) > −1, we see that F1 is meromor-
phic in that half-plane, with the only possible singularity a simple pole
at s = 0. The fact that Γ(1) = 1 shows that F1 does in fact have a simple
pole at s = 0 with residue 1. Moreover, if Re(s) > 0, then

F1(s) =
Γ(s+ 1)

s
= Γ(s)

by the previous lemma. So F1 extends Γ to a meromorphic function on
the half-plane Re(s) > −1. We can now continue in this fashion by defin-
ing a meromorphic Fm for Re(s) > −m that agrees with Γ on Re(s) > 0.
For Re(s) > −m, where m is an integer ≥ 1, define

Fm(s) =
Γ(s+m)

(s+m− 1)(s+m− 2) · · · s .

The function Fm is meromorphic in Re(s) > −m and has simple poles
at s = 0,−1,−2, . . . ,−m+ 1 with residues

ress=−nFm(s) =
Γ(−n+m)

(m− 1 − n)!(−1)(−2) · · · (−n)

=
(m− n− 1)!

(m− 1 − n)!(−1)(−2) · · · (−n)

=
(−1)n

n!
.

Successive applications of the lemma show that Fm(s) = Γ(s) for Re(s) >
0. By uniqueness, this also means that Fm = Fk for 1 ≤ k ≤ m on the
domain of definition of Fk. Therefore, we have obtained the desired
continuation of Γ.

Remark. We have already proved that Γ(s+ 1) = sΓ(s) whenever
Re(s) > 0. In fact, by analytic continuation, this formula remains true
whenever s �= 0,−1,−2, . . ., that is, whenever s is not a pole of Γ. This
is because both sides of the formula are holomorphic in the complement
of the poles of Γ and are equal when Re(s) > 0. Actually, one can go
further, and note that if s is a negative integer s = −n with n ≥ 1, then
both sides of the formula are infinite and moreover

ress=−nΓ(s+ 1) = −n ress=−nΓ(s).
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Finally, note that when s = 0 we have Γ(1) = lims→0 sΓ(s).

An alternate proof of Theorem 1.3, which is interesting in its own right
and whose ideas recur later, is obtained by splitting the integral for Γ(s)
defined on Re(s) > 0 as follows:

Γ(s) =
∫ 1

0

e−tts−1 dt +
∫ ∞

1

e−tts−1 dt.

The integral on the far right defines an entire function; also expanding
e−t in a power series and integrating term by term gives∫ 1

0

e−tts−1 dt =
∞∑

n=0

(−1)n

n!(n+ s)
.

Therefore

(3) Γ(s) =
∞∑

n=0

(−1)n

n!(n+ s)
+
∫ ∞

1

e−tts−1 dt for Re(s) > 0.

Finally, the series defines a meromorphic function on C with poles at
the negative integers and residue (−1)n/n! at s = −n. To prove this, we
argue as follows. For a fixed R > 0 we may split the sum in two parts

∞∑
n=0

(−1)n

n!(n+ s)
=

N∑
n=0

(−1)n

n!(n+ s)
+

∞∑
n=N+1

(−1)n

n!(n+ s)
,

where N is an integer chosen so that N > 2R. The first sum, which is
finite, defines a meromorphic function in the disc |s| < R with poles at
the desired points and the correct residues. The second sum converges
uniformly in that disc, hence defines a holomorphic function there, since
n > N > 2R and |n+ s| ≥ R imply∣∣∣∣ (−1)n

n!(n+ s)

∣∣∣∣ ≤ 1
n!R

.

Since R was arbitrary, we conclude that the series in (3) has the desired
properties.

In particular, the relation (3) now holds on all of C.

1.2 Further properties of Γ

The following identity reveals the symmetry of Γ about the line Re(s) =
1/2.
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Theorem 1.4 For all s ∈ C,

(4) Γ(s)Γ(1 − s) =
π

sinπs
.

Observe that Γ(1 − s) has simple poles at the positive integers s =
1, 2, 3, . . ., so that Γ(s)Γ(1 − s) is a meromorphic function on C with
simple poles at all the integers, a property also shared by π/ sinπs.

To prove the identity, it suffices to do so for 0 < s < 1 since it then
holds on all of C by analytic continuation.

Lemma 1.5 For 0 < a < 1,
∫ ∞

0

va−1

1 + v
dv =

π

sinπa
.

Proof. We observe first that∫ ∞

0

va−1

1 + v
dv =

∫ ∞

−∞

eax

1 + ex
dx ,

which follows by making the change of variables v = ex. However, using
contour integration, we saw in Example 2 of Section 2.1 in Chapter 3,
that the second integral equals π/ sinπa, as desired.

To establish the theorem, we first note that for 0 < s < 1 we may write

Γ(1 − s) =
∫ ∞

0

e−uu−s du = t

∫ ∞

0

e−vt(vt)−s dv ,

where for t > 0 we made the change of variables vt = u. This trick then
gives

Γ(1 − s)Γ(s) =
∫ ∞

0

e−tts−1Γ(1 − s) dt

=
∫ ∞

0

e−tts−1

(
t

∫ ∞

0

e−vt(vt)−sdv

)
dt

=
∫ ∞

0

∫ ∞

0

e−t[1+v]v−s dvdt

=
∫ ∞

0

v−s

1 + v
dv

=
π

sinπ(1 − s)

=
π

sinπs
,

and the theorem is proved.
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In particular, by putting s = 1/2, and noting that Γ(s) > 0 whenever
s > 0, we find that

Γ(1/2) =
√
π.

We continue our study of the gamma function by considering its recip-
rocal, which turns out to be an entire function with remarkably simple
properties.

Theorem 1.6 The function Γ has the following properties:

(i) 1/Γ(s) is an entire function of s with simple zeros at s=0,−1,−2,. . .
and it vanishes nowhere else.

(ii) 1/Γ(s) has growth ∣∣∣∣ 1
Γ(s)

∣∣∣∣ ≤ c1e
c2|s| log |s|.

Therefore, 1/Γ is of order 1 in the sense that for every ε > 0, there
exists a bound c(ε) so that∣∣∣∣ 1

Γ(s)

∣∣∣∣ ≤ c(ε)ec2|s|1+ε

.

Proof. By the theorem we may write

(5)
1

Γ(s)
= Γ(1 − s)

sinπs
π

,

so the simple poles of Γ(1 − s), which are at s = 1, 2, 3, . . . are cancelled
by the simple zeros of sinπs, and therefore 1/Γ is entire with simple zeros
at s = 0,−1,−2,−3, . . ..

To prove the estimate, we begin by showing that∫ ∞

1

e−ttσ dt ≤ e(σ+1) log(σ+1)

whenever σ = Re(s) is positive. Choose n so that σ ≤ n ≤ σ + 1. Then∫ ∞

1

e−ttσ dt ≤
∫ ∞

0

e−ttn dt

= n!

≤ nn

= en log n

≤ e(σ+1) log(σ+1).
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Since the relation (3) holds on all of C, we see from (5) that

1
Γ(s)

=

( ∞∑
n=0

(−1)n

n!(n+ 1 − s)

)
sinπs
π

+
(∫ ∞

1

e−tt−s dt

)
sinπs
π

.

However, from our previous observation,∣∣∣∣∫ ∞

1

e−tt−s dt

∣∣∣∣ ≤ ∫ ∞

1

e−tt|σ| dt ≤ e(|σ|+1) log(|σ|+1),

and because | sin πs| ≤ eπ|s| (by Euler’s formula for the sine function)
we find that the second term in the formula for 1/Γ(s) is dominated by
ce(|s|+1) log(|s|+1)eπ|s|, which is itself majorized by c1ec2|s| log |s|. Next, we
consider the term

∞∑
n=0

(−1)n

n!(n+ 1 − s)
sin πs
π

.

There are two cases: |Im(s)| > 1 and |Im(s)| ≤ 1. In the first case, this
expression is dominated in absolute value by ceπ|s|. If |Im(s)| ≤ 1, we
choose k to be the integer so that k − 1/2 ≤ Re(s) < k + 1/2. Then if
k ≥ 1,

∞∑
n=0

(−1)n

n!(n+ 1 − s)
sin πs
π

= (−1)k−1 sinπs
(k − 1)!(k − s)π

+

+
∑

n�=k−1

(−1)n sinπs
n!(n+ 1 − s)π

.

Both terms on the right are bounded; the first because sinπs vanishes
at s = k, and the second because the sum is majorized by c

∑
1/n!.

When k ≤ 0, then Re(s) < 1/2 by our supposition, and
∑∞

n=0
(−1)n

n!(n+1−s)

is again bounded by c
∑

1/n!. This concludes the proof of the theorem.

The fact that 1/Γ satisfies the type of growth conditions discussed in
Chapter 5 leads naturally to the product formula for the function 1/Γ,
which we treat next.

Theorem 1.7 For all s ∈ C,

1
Γ(s)

= eγss

∞∏
n=1

(
1 +

s

n

)
e−s/n.
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The real number γ, which is known as Euler’s constant, is defined
by

γ = lim
N→∞

N∑
n=1

1
n
− logN.

The existence of the limit was already proved in Proposition 3.10, Chap-
ter 8 of Book I, but we shall repeat the argument here for completeness.
Observe that

N∑
n=1

1
n
− logN =

N∑
n=1

1
n
−
∫ N

1

1
x
dx =

N−1∑
n=1

∫ n+1

n

[
1
n
− 1
x

]
dx+

1
N
,

and by the mean value theorem applied to f(x) = 1/x we have

∣∣∣∣ 1n − 1
x

∣∣∣∣ ≤ 1
n2

for all n ≤ x ≤ n+ 1.

Hence

∞∑
n=1

1
n
− logN =

N−1∑
n=1

an +
1
N

where |an| ≤ 1/n2. Therefore
∑
an converges, which proves that the

limit defining γ exists. We may now proceed with the proof of the fac-
torization of 1/Γ.

Proof. By the Hadamard factorization theorem and the fact that 1/Γ
is entire, of growth order 1, and has simple zeros at s = 0,−1,−2, . . ., we
can expand 1/Γ in a Weierstrass product of the form

1
Γ(s)

= eAs+Bs

∞∏
n=1

(
1 +

s

n

)
e−s/n.

Here A and B are two constants that are to be determined. Remembering
that sΓ(s) → 1 as s→ 0, we find that B = 0 (or some integer multiple
of 2πi, which of course gives the same result). Putting s = 1, and using
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the fact that Γ(1) = 1 yields

e−A =
∞∏

n=1

(
1 +

1
n

)
e−1/n

= lim
N→∞

N∏
n=1

(
1 +

1
n

)
e−1/n

= lim
N→∞

e
∑N

n=1[log(1+1/n)−1/n]

= lim
N→∞

e−(∑N
n=1 1/n)+log N+log(1+1/N)

= e−γ .

Therefore A = γ + 2πik for some integer k. Since Γ(s) is real whenever
s is real, we must have k = 0, and the argument is complete.

Note that the proof shows that the function 1/Γ is essentially char-
acterized (up to two normalizing constants) as the entire function that
has:

(i) simple zeros at s = 0,−1,−2, . . . and vanishes nowhere else, and

(ii) order of growth ≤ 1.

Observe that sin πs has a similar characterization (except the zeros are
now at all the integers). However, while sinπs has a stricter growth esti-
mate of the form sin πs = O

(
ec|s|), this estimate (without the logarithm

in the exponent) does not hold for 1/Γ(s) as Exercise 12 demonstrates.

2 The zeta function

The Riemann zeta function is initially defined for real s > 1 by the
convergent series

ζ(s) =
∞∑

n=1

1
ns
.

As in the case of the gamma function, ζ can be continued into the com-
plex plane. There are several proofs of this fact, and we present in the
next section the one that relies on the functional equation of ζ.

2.1 Functional equation and analytic continuation

In parallel to the gamma function, we first provide a simple extension of
ζ to a half-plane in C.
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Proposition 2.1 The series defining ζ(s) converges for Re(s) > 1, and
the function ζ is holomorphic in this half-plane.

Proof. If s = σ + it where σ and t are real, then

|n−s| = |e−s log n| = e−σ log n = n−σ .

As a consequence, if σ > 1 + δ > 1 the series defining ζ is uniformly
bounded by

∑∞
n=1 1/n1+δ, which converges. Therefore, the series

∑
1/ns

converges uniformly on every half-plane Re(s) > 1 + δ > 1, and therefore
defines a holomorphic function in Re(s) > 1.

The analytic continuation of ζ to a meromorphic function in C is more
subtle than in the case of the gamma function. The proof we present
here relates ζ to Γ and another important function.

Consider the theta function, already introduced in Chapter 4, which
is defined for real t > 0 by

ϑ(t) =
∞∑

n=−∞
e−πn2t.

An application of the Poisson summation formula (Theorem 2.4 in Chap-
ter 4) gave the functional equation satisfied by ϑ, namely

ϑ(t) = t−1/2ϑ(1/t).

The growth and decay of ϑ we shall need are

ϑ(t) ≤ Ct−1/2 as t→ 0,

and

|ϑ(t) − 1| ≤ Ce−πt for some C > 0, and all t ≥ 1.

The inequality for t tending to zero follows from the functional equation,
while the behavior as t tends to infinity follows from the fact that∑

n≥1

e−πn2t ≤
∑
n≥1

e−πnt ≤ Ce−πt

for t ≥ 1.
We are now in a position to prove an important relation among ζ, Γ

and ϑ.
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Theorem 2.2 If Re(s) > 1, then

π−s/2Γ(s/2)ζ(s) =
1
2

∫ ∞

0

u(s/2)−1[ϑ(u)− 1] du.

Proof. This and further arguments are based on the observation that

(6)
∫ ∞

0

e−πn2uu(s/2)−1 du = π−s/2Γ(s/2)n−s, if n ≥ 1.

Indeed, if we make the change of variables u = t/πn2 in the integral, the
left-hand side becomes(∫ ∞

0

e−tt(s/2)−1 dt

)
(πn2)−s/2,

which is precisely π−s/2Γ(s/2)n−s. Next, note that

ϑ(u) − 1
2

=
∞∑

n=1

e−πn2u.

The estimates for ϑ given before the statement of the theorem justify an
interchange of the infinite sum with the integral, and thus

1
2

∫ ∞

0

u(s/2)−1[ϑ(u) − 1] du =
∞∑

n=1

∫ ∞

0

u(s/2)−1e−πn2u du

= π−s/2Γ(s/2)
∞∑

n=1

n−s

= π−s/2Γ(s/2)ζ(s),

as was to be shown.

In view of this, we now consider the modification of the ζ function
called the xi function, which makes the former appear more symmetric.
It is defined for Re(s) > 1 by

(7) ξ(s) = π−s/2Γ(s/2)ζ(s).

Theorem 2.3 The function ξ is holomorphic for Re(s) > 1 and has an
analytic continuation to all of C as a meromorphic function with simple
poles at s = 0 and s = 1. Moreover,

ξ(s) = ξ(1 − s) for all s ∈ C.
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Proof. The idea of the proof is to use the functional equation for ϑ,
namely

∞∑
n=−∞

e−πn2u = u−1/2

∞∑
n=−∞

e−πn2/u, u > 0.

We then could multiply both sides by u(s/2)−1 and try to integrate in
u. Disregarding the terms corresponding to n = 0 (which produce infini-
ties in both sums), we would get the desired equality once we invoked
formula (6), and the parallel formula obtained by making the change of
variables u 	→ 1/u. The actual proof requires a little more work and goes
as follows.

Let ψ(u) = [ϑ(u) − 1]/2. The functional equation for the theta func-
tion, namely ϑ(u) = u−1/2ϑ(1/u), implies

ψ(u) = u−1/2ψ(1/u) +
1

2u1/2
− 1

2
.

Now, by Theorem 2.2 for Re(s) > 1, we have

π−s/2Γ(s/2)ζ(s) =
∫ ∞

0

u(s/2)−1ψ(u) du

=
∫ 1

0

u(s/2)−1ψ(u) du+
∫ ∞

1

u(s/2)−1ψ(u) du

=
∫ 1

0

u(s/2)−1

[
u−1/2ψ(1/u) +

1
2u1/2

− 1
2

]
du+

+
∫ ∞

1

u(s/2)−1ψ(u) du

=
1

s− 1
− 1
s

+
∫ ∞

1

(
u(−s/2)−1/2 + u(s/2)−1

)
ψ(u) du

whenever Re(s) > 1. Therefore

ξ(s) =
1

s− 1
− 1
s

+
∫ ∞

1

(
u(−s/2)−1/2 + u(s/2)−1

)
ψ(u) du.

Since the function ψ has exponential decay at infinity, the integral above
defines an entire function, and we conclude that ξ has an analytic con-
tinuation to all of C with simple poles at s = 0 and s = 1. Moreover, it is



172 Chapter 6. THE GAMMA AND ZETA FUNCTIONS

immediate that the integral remains unchanged if we replace s by 1 − s,
and the same is true for the sum of the two terms 1/(s− 1) − 1/s. We
conclude that ξ(s) = ξ(1 − s) as was to be shown.

From the identity we have proved for ξ we obtain the desired result for
the zeta function: its analytic continuation and its functional equation.

Theorem 2.4 The zeta function has a meromorphic continuation into
the entire complex plane, whose only singularity is a simple pole at s = 1.

Proof. A look at (7) provides the meromorphic continuation of ζ,
namely

ζ(s) = πs/2 ξ(s)
Γ(s/2)

.

Recall that 1/Γ(s/2) is entire with simple zeros at 0,−2,−4, . . ., so the
simple pole of ξ(s) at the origin is cancelled by the corresponding zero
of 1/Γ(s/2). As a consequence, the only singularity of ζ is a simple pole
at s = 1.

We shall now present a more elementary approach to the analytic
continuation of the zeta function, which easily leads to its extension in
the half-plane Re(s) > 0. This method will be useful in studying the
growth properties of ζ near the line Re(s) = 1 (which will be needed in
the next chapter). The idea behind it is to compare the sum

∑∞
n=1 n

−s

with the integral
∫∞
1
x−s dx.

Proposition 2.5 There is a sequence of entire functions {δn(s)}∞n=1

that satisfy the estimate |δn(s)| ≤ |s|/nσ+1, where s = σ + it, and such
that

(8)
∑

1≤n<N

1
ns

−
∫ N

1

dx

xs
=
∑

1≤n<N

δn(s),

whenever N is an integer > 1.

This proposition has the following consequence.

Corollary 2.6 For Re(s) > 0 we have

ζ(s) − 1
s− 1

= H(s),

where H(s) =
∑∞

n=1 δn(s) is holomorphic in the half-plane Re(s) > 0.
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To prove the proposition we compare
∑

1≤n < N n−s with∑
1≤n<N

∫ n+1

n
x−s dx, and set

(9) δn(s) =
∫ n+1

n

[
1
ns

− 1
xs

]
dx.

The mean-value theorem applied to f(x) = x−s yields∣∣∣∣ 1
ns

− 1
xs

∣∣∣∣ ≤ |s|
nσ+1

, whenever n ≤ x ≤ n+ 1.

Therefore |δn(s)| ≤ |s|/nσ+1, and since∫ N

1

dx

xs
=
∑

1≤n<N

∫ n+1

n

dx

xs
,

the proposition is proved.
Turning to the corollary, we assume first that Re(s) > 1. We let N

tend to infinity in formula (8) of the proposition, and observe that by the
estimate |δn(s)| ≤ |s|/nσ+1 we have the uniform convergence of the se-
ries

∑
δn(s) (in any half-plane Re(s) ≥ δ when δ > 0). Since Re(s) > 1,

the series
∑
n−s converges to ζ(s), and this proves the assertion when

Re(s) > 1. The uniform convergence also shows that
∑
δn(s) is holo-

morphic when Re(s) > 0, and thus shows that ζ(s) is extendable to that
half-plane, and that the identity continues to hold there.

Remark. The idea described above can be developed step by step to
yield the continuation of ζ into the entire complex plane, as shown in
Problems 2 and 3. Another argument giving the full analytic continua-
tion of ζ is outlined in Exercises 15 and 16.

As an application of the proposition we can show that the growth
of ζ(s) near the line Re(s) = 1 is “mild.” Recall that when Re(s) > 1,
we have |ζ(s)| ≤

∑∞
n=1 n

−σ , and so ζ(s) is bounded in any half-plane
Re(s) ≥ 1 + δ, with δ > 0. We shall see that on the line Re(s) = 1, |ζ(s)|
is majorized by |t|ε, for every ε > 0, and that the growth near the line is
not much worse. The estimates below are not optimal. In fact, they are
rather crude but suffice for what is needed later on.

Proposition 2.7 Suppose s = σ + it with σ, t ∈ R. Then for each σ0,
0 ≤ σ0 ≤ 1, and every ε > 0, there exists a constant cε so that

(i) |ζ(s)| ≤ cε|t|1−σ0+ε, if σ0 ≤ σ and |t| ≥ 1.
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(ii) |ζ′(s)| ≤ cε|t|ε, if 1 ≤ σ and |t| ≥ 1.

In particular, the proposition implies that ζ(1 + it) = O(|t|ε) as |t|
tends to infinity,3 and the same estimate also holds for ζ′. For the proof,
we use Corollary 2.6. Recall the estimate |δn(s)| ≤ |s|/nσ+1. We also
have the estimate |δn(s)| ≤ 2/nσ, which follows from the expression for
δn(s) given by (9) and the fact that |n−s| = n−σ and |x−s| ≤ n−σ if
x ≥ n. We then combine these two estimates for |δn(s)| via the observa-
tion that A = AδA1−δ , to obtain the bound

|δn(s)| ≤
(

|s|
nσ0+1

)δ ( 2
nσ0

)1−δ

≤ 2|s|δ
nσ0+δ

,

as long as δ ≥ 0. Now choose δ = 1 − σ0 + ε and apply the identity in
Corollary 2.6. Then, with σ = Re(s) ≥ σ0, we find

|ζ(s)| ≤
∣∣∣∣ 1
s− 1

∣∣∣∣+ 2|s|1−σ0+ε

∞∑
n=1

1
n1+ε

,

and conclusion (i) is proved. The second conclusion is actually a conse-
quence of the first by a slight modification of Exercise 8 in Chapter 2. For
completeness we sketch the argument. By the Cauchy integral formula,

ζ′(s) =
1

2πr

∫ 2π

0

ζ(s+ reiθ)eiθ dθ,

where the integration is taken over a circle of radius r centered at the
point s. Now choose r = ε and observe that this circle lies in the half-
plane Re(s) ≥ 1 − ε, and so (ii) follows as a consequence of (i) on replac-
ing 2ε by ε.

3 Exercises

1. Prove that

Γ(s) = lim
n→∞

nsn!

s(s+ 1) · · · (s+ n)

whenever s 
= 0,−1,−2, . . ..

[Hint: Use the product formula for 1/Γ, and the definition of the Euler constant γ.]

2. Prove that
∞∏

n=1

n(n+ a+ b)

(n+ a)(n+ b)
=

Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 1)

3The reader should recall the O notation which was introduced at the end of Chapter 1.
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whenever a and b are positive. Using the product formula for sin πs, give another
proof that Γ(s)Γ(1 − s) = π/ sin πs.

3. Show that Wallis’s product formula can be written as√
π

2
= lim

n→∞
22n(n!)2

(2n+ 1)!
(2n+ 1)1/2.

As a result, prove the following identity:

Γ(s)Γ(s+ 1/2) =
√
π21−2sΓ(2s).

4. Prove that if we take

f(z) =
1

(1 − z)α
, for |z| < 1

(defined in terms of the principal branch of the logarithm), where α is a fixed
complex number, then

f(z) =
∞∑

n=0

an(α)zn

with

an(α) ∼ 1

Γ(α)
nα−1 as n→ ∞.

5. Use the fact that Γ(s)Γ(1 − s) = π/ sin πs to prove that

|Γ(1/2 + it)| =

√
2π

eπt + e−πt
, whenever t ∈ R.

6. Show that

1 +
1

3
+

1

5
+ · · · + 1

2n− 1
− 1

2
log n→ γ

2
+ log 2,

where γ is Euler’s constant.

7. The Beta function is defined for Re(α) > 0 and Re(β) > 0 by

B(α, β) =

∫ 1

0

(1 − t)α−1tβ−1 dt.

(a) Prove that B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.
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(b) Show that B(α, β) =

∫ ∞

0

uα−1

(1 + u)α+β
du.

[Hint: For part (a), note that

Γ(α)Γ(β) =

∫ ∞

0

∫ ∞

0

tα−1sβ−1e−t−s dtds,

and make the change of variables s = ur, t = u(1 − r).]

8. The Bessel functions arise in the study of spherical symmetries and the Fourier
transform. See Chapter 6 in Book I. Prove that the following power series identity
holds for Bessel functions of real order ν > −1/2:

Jν(x) =
(x/2)ν

Γ(ν + 1/2)
√
π

∫ 1

−1

eixt(1 − t2)ν−(1/2) dt =
(x

2

)ν
∞∑

m=0

(−1)m
(

x2

4

)m

m!Γ(ν +m+ 1)

whenever x > 0. In particular, the Bessel function Jν satisfies the ordinary differ-
ential equation

d2Jν

dx2
+

1

x

dJν

dx
+

(
1 − ν2

x2

)
Jν = 0.

[Hint: Expand the exponential eixt in a power series, and express the remaining
integrals in terms of the gamma function, using Exercise 7.]

9. The hypergeometric series F (α, β, γ; z) was defined in Exercise 16 of Chapter 1.
Show that

F (α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1 − t)γ−β−1(1 − zt)−α dt.

Here α > 0, β > 0, γ > β, and |z| < 1.
Show as a result that the hypergeometric function, initially defined by a power

series convergent in the unit disc, can be continued analytically to the complex
plane slit along the half-line [1,∞).

Note that

log(1 − z) = −zF (1, 1, 2; z),

ez = limβ→∞ F (1, β, 1; z/β),

(1 − z)−α = F (α, 1, 1; z).

[Hint: To prove the integral identity, expand (1 − zt)−α as a power series.]

10. An integral of the form

F (z) =

∫ ∞

0

f(t)tz−1 dt
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is called a Mellin transform, and we shall write M(f)(z) = F (z). For example,
the gamma function is the Mellin transform of the function e−t.

(a) Prove that

M(cos)(z) =

∫ ∞

0

cos(t)tz−1 dt = Γ(z) cos
(
π
z

2

)
for 0 < Re(z) < 1,

and

M(sin)(z) =

∫ ∞

0

sin(t)tz−1 dt = Γ(z) sin
(
π
z

2

)
for 0 < Re(z) < 1.

(b) Show that the second of the above identities is valid in the larger strip
−1 < Re(z) < 1, and that as a consequence, one has∫ ∞

0

sin x

x
dx =

π

2
and

∫ ∞

0

sin x

x3/2
dx =

√
2π.

This generalizes the calculation in Exercise 2 of Chapter 2.

[Hint: For the first part, consider the integral of the function f(w) = e−wwz−1

around the contour illustrated in Figure 1. Use analytic continuation to prove the
second part.]

0 Rε

Figure 1. The contour in Exercise 10

11. Let f(z) = eaze−ez

where a > 0. Observe that in the strip {x+ iy : |y| < π}
the function f(x+ iy) is exponentially decreasing as |x| tends to infinity. Prove
that

f̂(ξ) = Γ(a+ iξ), for all ξ ∈ R.

12. This exercise gives two simple observations about 1/Γ.
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(a) Show that 1/|Γ(s)| is not O(ec|s|) for any c > 0. [Hint: If s = −k − 1/2,
where k is a positive integer, then |1/Γ(s)| ≥ k!/π.]

(b) Show that there is no entire function F (s) with F (s) = O(ec|s|) that has
simple zeros at s = 0,−1,−2, . . . ,−n, . . ., and that vanishes nowhere else.

13. Prove that

d2 log Γ(s)

ds2
=

∞∑
n=0

1

(s+ n)2

whenever s is a positive number. Show that if the left-hand side is interpreted
as (Γ′/Γ)′, then the above formula also holds for all complex numbers s with
s 
= 0,−1,−2, . . ..

14. This exercise gives an asymptotic formula for log n!. A more refined asymptotic
formula for Γ(s) as s→ ∞ (Stirling’s formula) is given in Appendix A.

(a) Show that

d

dx

∫ x+1

x

log Γ(t) dt = log x, for x > 0,

and as a result ∫ x+1

x

log Γ(t) dt = x log x− x+ c.

(b) Show as a consequence that log Γ(n) ∼ n log n as n→ ∞. In fact, prove
that log Γ(n) ∼ n log n+O(n) as n→ ∞. [Hint: Use the fact that Γ(x) is
monotonically increasing for all large x.]

15. Prove that for Re(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx.

[Hint: Write 1/(ex − 1) =
∑∞

n=1 e
−nx.]

16. Use the previous exercise to give another proof that ζ(s) is continuable in the
complex plane with only singularity a simple pole at s = 1.

[Hint: Write

ζ(s) =
1

Γ(s)

∫ 1

0

xs−1

ex − 1
dx+

1

Γ(s)

∫ ∞

1

xs−1

ex − 1
dx.
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The second integral defines an entire function, while∫ 1

0

xs−1

ex − 1
dx =

∞∑
m=0

Bm

m!(s+m− 1)
,

where Bm denotes the mth Bernoulli number defined by

x

ex − 1
=

∞∑
m=0

Bm

m!
xm.

Then B0 = 1, and since z/(ez − 1) is holomorphic for |z| < 2π, we must have
lim supm→∞ |Bm/m!|1/m = 1/2π.]

17. Let f be an indefinitely differentiable function on R that has compact support,
or more generally, let f belong to the Schwartz space.4 Consider

I(s) =
1

Γ(s)

∫ ∞

0

f(x)x−1+s dx.

(a) Observe that I(s) is holomorphic for Re(s) > 0. Prove that I has an analytic
continuation as an entire function in the complex plane.

(b) Prove that I(0) = 0, and more generally

I(−n) = (−1)nf (n+1)(0) for all n ≥ 0.

[Hint: To prove the analytic continuation, as well as the formulas in the second

part, integrate by parts to show that I(s) = (−1)k

Γ(s+k)

∫∞
0
f (k)(x)xs+k−1 dx.]

4 Problems

1. This problem provides further estimates for ζ and ζ′ near Re(s) = 1.

(a) Use Proposition 2.5 and its corollary to prove

ζ(s) =
∑

1≤n<N

n−s − Ns−1

s− 1
+
∑
n≥N

δn(s)

for every integer N ≥ 2, whenever Re(s) > 0.

(b) Show that |ζ(1 + it)| = O(log |t|), as |t| → ∞ by using the previous result
with N =greatest integer in |t|.

4The Schwartz space on R is denoted by S and consists of all indefinitely differentiable
functions f , so that f and all its derivatives decay faster than any polynomials. In other
words, supx∈R |x|m|f(�)(x)| < ∞ for all integers m, � ≥ 0. This space appeared in the
study of the Fourier transform in Book I.
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(c) The second conclusion of Proposition 2.7 can be similarly refined.

(d) Show that if t 
= 0 and t is fixed, then the partial sums of the series∑∞
n=1 1/n1+it are bounded, but the series does not converge.

2.∗ Prove that for Re(s) > 0

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx

where {x} is the fractional part of x.

3.∗ If Q(x) = {x} − 1/2, then we can write the expression in the previous problem
as

ζ(s) =
s

s− 1
− 1

2
− s

∫ ∞

1

Q(x)

xs+1
dx.

Let us construct Qk(x) recursively so that∫ 1

0

Qk(x) dx = 0,
dQk+1

dx
= Qk(x), Q0(x) = Q(x) and Qk(x+ 1) = Qk(x).

Then we can write

ζ(s) =
s

s− 1
− 1

2
− s

∫ ∞

1

(
dk

dxk
Qk(x)

)
x−s−1 dx ,

and a k-fold integration by parts gives the analytic continuation for ζ(s) when
Re(s) > −k.

4.∗ The functions Qk in the previous problem are related to the Bernoulli polyno-
mials Bk(x) by the formula

Qk(x) =
Bk+1(x)

(k + 1)!
for 0 ≤ x ≤ 1.

Also, if k is a positive integer, then

2ζ(2k) = (−1)k+1 (2π)2k

(2k)!
B2k,

where Bk = Bk(0) are the Bernoulli numbers. For the definition of Bk(x) and Bk

see Chapter 3 in Book I.



7 The Zeta Function and Prime
Number Theorem

Bernhard Riemann, whose extraordinary intuitive pow-
ers we have already mentioned, has especially reno-
vated our knowledge of the distribution of prime num-
bers, also one of the most mysterious questions in
mathematics. He has taught us to deduce results in
that line from considerations borrowed from the in-
tegral calculus: more precisely, from the study of a
certain quantity, a function of a variable s which may
assume not only real, but also imaginary values. He
proved some important properties of that function,
but enunciated two or three as important ones with-
out giving the proof. At the death of Riemann, a note
was found among his papers, saying “These properties
of ζ(s) (the function in question) are deduced from an
expression of it which, however, I did not succeed in
simplifying enough to publish it.”

We still have not the slightest idea of what the
expression could be. As to the properties he simply
enunciated, some thirty years elapsed before I was able
to prove all of them but one. The question concern-
ing that last one remains unsolved as yet, though, by
an immense labor pursued throughout this last half
century, some highly interesting discoveries in that di-
rection have been achieved. It seems more and more
probable, but still not at all certain, that the “Rie-
mann hypothesis” is true.

J. Hadamard, 1945

Euler found, through his product formula for the zeta function, a
deep connection between analytical methods and arithmetic properties
of numbers, in particular primes. An easy consequence of Euler’s for-
mula is that the sum of the reciprocals of all primes,

∑
p 1/p, diverges,

a result that quantifies the fact that there are infinitely many prime
numbers. The natural problem then becomes that of understanding
how these primes are distributed. With this in mind, we consider the
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following function:

π(x) = number of primes less than or equal to x.

The erratic growth of the function π(x) gives little hope of finding a
simple formula for it. Instead, one is led to study the asymptotic behavior
of π(x) as x becomes large. About 60 years after Euler’s discovery,
Legendre and Gauss observed after numerous calculations that it was
likely that

(1) π(x) ∼ x

log x
as x→ ∞.

(The asymptotic relation f(x) ∼ g(x) as x→ ∞ means that
f(x)/g(x) → 1 as x→ ∞.) Another 60 years later, shortly before Rie-
mann’s work, Tchebychev proved by elementary methods (and in partic-
ular, without the zeta function) the weaker result that

(2) π(x) ≈ x

log x
as x→ ∞.

Here, by definition, the symbol ≈ means that there are positive constants
A < B such that

A
x

log x
≤ π(x) ≤ B

x

log x

for all sufficiently large x.
In 1896, about 40 years after Tchebychev’s result, Hadamard and de

la Vallée Poussin gave a proof of the validity of the relation (1). Their
result is known as the prime number theorem. The original proofs of
this theorem, as well as the one we give below, use complex analysis.
We should remark that since then other proofs have been found, some
depending on complex analysis, and others more elementary in nature.

At the heart of the proof of the prime number theorem that we give
below lies the fact that ζ(s) does not vanish on the line Re(s) = 1. In
fact, it can be shown that these two propositions are equivalent.

1 Zeros of the zeta function

We have seen in Theorem 1.10, Chapter 8 in Book I, Euler’s identity,
which states that for Re(s) > 1 the zeta function can be expressed as an
infinite product

ζ(s) =
∏
p

1
1 − p−s

.
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For the sake of completeness we provide a proof of the above identity.
The key observation is that 1/(1 − p−s) can be written as a convergent
(geometric) power series

1 +
1
ps

+
1
p2s

+ · · · + 1
pMs

+ · · · ,

and taking formally the product of these series over all primes p, yields
the desired result. A precise argument goes as follows.

Suppose M and N are positive integers with M > N . Observe now
that, by the fundamental theorem of arithmetic,1 any positive integer
n ≤ N can be written uniquely as a product of primes, and that each
prime that occurs in the product must be less than or equal to N and
repeated less than M times. Therefore

N∑
n=1

1
ns

≤
∏
p≤N

(
1 +

1
ps

+
1
p2s

+ · · · + 1
pMs

)
≤
∏
p≤N

(
1

1 − p−s

)
≤
∏
p

(
1

1 − p−s

)
.

Letting N tend to infinity in the series now yields

∞∑
n=1

1
ns

≤
∏
p

(
1

1 − p−s

)
.

For the reverse inequality, we argue as follows. Again, by the fundamen-
tal theorem of arithmetic, we find that

∏
p≤N

(
1 +

1
ps

+
1
p2s

+ · · · + 1
pMs

)
≤

∞∑
n=1

1
ns
.

Letting M tend to infinity gives

∏
p≤N

(
1

1 − p−s

)
≤

∞∑
n=1

1
ns
.

1A proof of this elementary (but essential) fact is given in the first section of Chapter 8
in Book I.
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Hence ∏
p

(
1

1 − p−s

)
≤

∞∑
n=1

1
ns
,

and the proof of the product formula for ζ is complete.
From the product formula we see, by Proposition 3.1 in Chapter 5,

that ζ(s) does not vanish when Re(s) > 1.

To obtain further information about the location of the zeros of ζ, we
use the functional equation that provided the analytic continuation of ζ.
We may write the fundamental relation ξ(s) = ξ(1 − s) in the form

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s),

and therefore

ζ(s) = πs−1/2 Γ((1 − s)/2)
Γ(s/2)

ζ(1 − s).

Now observe that for Re(s) < 0 the following are true:

(i) ζ(1 − s) has no zeros because Re(1 − s) > 1.

(ii) Γ((1 − s)/2) is zero free.

(iii) 1/Γ(s/2) has zeros at s = −2,−4,−6, . . . .

Therefore, the only zeros of ζ in Re(s) < 0 are located at the negative
even integers −2,−4,−6, . . ..

This proves the following theorem.

Theorem 1.1 The only zeros of ζ outside the strip 0 ≤ Re(s) ≤ 1 are
at the negative even integers, −2,−4,−6, . . ..

The region that remains to be studied is called the critical strip,
0 ≤ Re(s) ≤ 1. A key fact in the proof of the prime number theorem is
that ζ has no zeros on the line Re(s) = 1. As a simple consequence of
this fact and the functional equation, it follows that ζ has no zeros on
the line Re(s) = 0.

In the seminal paper where Riemann introduced the analytic contin-
uation of the ζ function and proved its functional equation, he applied
these insights to the theory of prime numbers, and wrote down “ex-
plicit” formulas for determining the distribution of primes. While he did
not succeed in fully proving and exploiting his assertions, he did initiate
many important new ideas. His analysis led him to believe the truth of
what has since been called the Riemann hypothesis:
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The zeros of ζ(s) in the critical strip lie on the line
Re(s) = 1/2.

He said about this: “It would certainly be desirable to have a rigorous
demonstration of this proposition; nevertheless I have for the moment
set this aside, after several quick but unsuccessful attempts, because it
seemed unneeded for the immediate goal of my study.” Although much
of the theory and numerical results point to the validity of this hypothe-
sis, a proof or a counter-example remains to be discovered. The Riemann
hypothesis is today one of mathematics’ most famous unresolved prob-
lems.

In particular, it is for this reason that the zeros of ζ located outside the
critical strip are sometimes called the trivial zeros of the zeta function.
See also Exercise 5 for an argument proving that ζ has no zeros on the
real segment, 0 ≤ σ ≤ 1, where s = σ + it.

In the rest of this section we shall restrict ourselves to proving the
following theorem, together with related estimates on ζ, which we shall
use in the proof of the prime number theorem.

Theorem 1.2 The zeta function has no zeros on the line Re(s) = 1.

Of course, since we know that ζ has a pole at s = 1, there are no zeros
in a neighborhood of this point, but what we need is the deeper property
that

ζ(1 + it) �= 0 for all t ∈ R.

The next sequence of lemmas gathers the necessary ingredients for the
proof of Theorem 1.2.

Lemma 1.3 If Re(s) > 1, then

log ζ(s) =
∑
p,m

p−ms

m
=

∞∑
n=1

cnn
−s

for some cn ≥ 0.

Proof. Suppose first that s > 1. Taking the logarithm of the Euler
product formula, and using the power series expansion for the logarithm

log
(

1
1 − x

)
=

∞∑
m=1

xm

m
,
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which holds for 0 ≤ x < 1, we find that

log ζ(s) = log
∏
p

1
1 − p−s

=
∑

p

log
(

1
1 − p−s

)
=
∑
p,m

p−ms

m
.

Since the double sum converges absolutely, we need not specify the order
of summation. See the Note at the end of this chapter. The formula
then holds for all Re(s) > 1 by analytic continuation. Note that, by
Theorem 6.2 in Chapter 3, log ζ(s) is well defined in the simply connected
half-plane Re(s) > 1, since ζ has no zeros there. Finally, it is clear that
we have ∑

p,m

p−ms

m
=

∞∑
n=1

cnn
−s ,

where cn = 1/m if n = pm and cn = 0 otherwise.

The proof of the theorem we shall give depends on a simple trick that
is based on the following inequality.

Lemma 1.4 If θ ∈ R, then 3 + 4 cos θ + cos 2θ ≥ 0.

This follows at once from the simple observation

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2.

Corollary 1.5 If σ > 1 and t is real, then

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 0.

Proof. Let s = σ + it and note that

Re(n−s) = Re(e−(σ+it) log n) = e−σ log n cos(t logn) = n−σ cos(t logn).

Therefore,

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)|

= 3 log |ζ(σ)| + 4 log |ζ(σ + it)| + log |ζ(σ + 2it)|
= 3Re[log ζ(σ)] + 4Re[log ζ(σ + it)] + Re[log ζ(σ + 2it)]

=
∑

cnn
−σ(3 + 4 cos θn + cos 2θn) ,

where θn = t logn. The positivity now follows from Lemma 1.4, and the
fact that cn ≥ 0.
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We can now finish the proof of our theorem.

Proof of Theorem 1.2. Suppose on the contrary that ζ(1 + it0) = 0 for
some t0 �= 0. Since ζ is holomorphic at 1 + it0, it must vanish at least to
order 1 at this point, hence

|ζ(σ + it0)|4 ≤ C(σ − 1)4 as σ → 1,

for some constant C > 0. Also, we know that s = 1 is a simple pole for
ζ(s), so that

|ζ(σ)|3 ≤ C′(σ − 1)−3 as σ → 1,

for some constant C′ > 0. Finally, since ζ is holomorphic at the points
σ + 2it0, the quantity |ζ(σ + 2it0)| remains bounded as σ → 1. Putting
these facts together yields

|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| → 0 as σ → 1 ,

which contradicts Corollary 1.5, since the logarithm of real numbers be-
tween 0 and 1 is negative. This concludes the proof that ζ is zero free
on the real line Re(s) = 1.

1.1 Estimates for 1/ζ(s)

The proof of the prime number theorem relies on detailed manipulations
of the zeta function near the line Re(s) = 1; the basic object involved is
the logarithmic derivative ζ′(s)/ζ(s). For this reason, besides the non-
vanishing of ζ on the line, we need to know about the growth of ζ′

and 1/ζ. The former was dealt with in Proposition 2.7 of Chapter 6; we
now treat the latter.

The proposition that follows is actually a quantitative version of The-
orem 1.2.

Proposition 1.6 For every ε > 0, we have 1/|ζ(s)| ≤ cε|t|ε when s =
σ + it, σ ≥ 1, and |t| ≥ 1.

Proof. From our previous observations, we clearly have that

|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 1, whenever σ ≥ 1.

Using the estimate for ζ in Proposition 2.7 of Chapter 6, we find that

|ζ4(σ + it)| ≥ c|ζ−3(σ)| |t|−ε ≥ c′(σ − 1)3|t|−ε,
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for all σ ≥ 1 and |t| ≥ 1. Thus

(3) |ζ(σ + it)| ≥ c′(σ − 1)3/4|t|−ε/4, whenever σ ≥ 1 and |t| ≥ 1.

We now consider two separate cases, depending on whether the in-
equality σ − 1 ≥ A|t|−5ε holds, for some appropriate constant A (whose
value we choose later).

If this inequality does hold, then (3) immediately provides

|ζ(σ + it)| ≥ A′|t|−4ε,

and it suffices to replace 4ε by ε to conclude the proof of the desired
estimate, in this case.

If, however, σ − 1 < A|t|−5ε, then we first select σ′ > σ with σ′ − 1 =
A|t|−5ε. The triangle inequality then implies

|ζ(σ + it)| ≥ |ζ(σ′ + it)| − |ζ(σ′ + it) − ζ(σ + it)|,

and an application of the mean value theorem, together with the esti-
mates for the derivative of ζ obtained in the previous chapter, give

|ζ(σ′ + it) − ζ(σ + it)| ≤ c′′|σ′ − σ| |t|ε ≤ c′′|σ′ − 1| |t|ε.

These observations, together with an application of (3) where we set
σ = σ′, show that

|ζ(σ + it)| ≥ c′(σ′ − 1)3/4|t|−ε/4 − c′′(σ′ − 1)|t|ε.

Now choose A = (c′/(2c′′))4, and recall that σ′ − 1 = A|t|−5ε. This gives
precisely

c′(σ′ − 1)3/4|t|−ε/4 = 2c′′(σ′ − 1)|t|ε,

and therefore

|ζ(σ + it)| ≥ A′′|t|−4ε.

On replacing 4ε by ε, the desired inequality is established, and the proof
of the proposition is complete.

2 Reduction to the functions ψ and ψ1

In his study of primes, Tchebychev introduced an auxiliary function
whose behavior is to a large extent equivalent to the asymptotic distri-
bution of primes, but which is easier to manipulate than π(x). Tcheby-
chev’s ψ-function is defined by

ψ(x) =
∑

pm≤x

log p.
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The sum is taken over those integers of the form pm that are less than or
equal to x. Here p is a prime number and m is a positive integer. There
are two other formulations of ψ that we shall need. First, if we define

Λ(n) =
{

log p if n = pm for some prime p and some m ≥ 1,
0 otherwise,

then it is clear that

ψ(x) =
∑

1≤n≤x

Λ(n).

Also, it is immediate that

ψ(x) =
∑
p≤x

[
log x
log p

]
log p

where [u] denotes the greatest integer ≤ u, and the sum is taken over the
primes less than x. This formula follows from the fact that if pm ≤ x,
then m ≤ log x/ log p.

The fact that ψ(x) contains enough information about π(x) to prove
our theorem is given a precise meaning in the statement of the next
proposition. In particular, this reduces the prime number theorem to a
corresponding asymptotic statement about ψ.

Proposition 2.1 If ψ(x) ∼ x as x → ∞, then π(x) ∼ x/ logx as
x→ ∞.

Proof. The argument here is elementary. By definition, it suffices to
prove the following two inequalities:

(4) 1 ≤ lim inf
x→∞

π(x)
logx
x

and lim sup
x→∞

π(x)
logx
x

≤ 1.

To do so, first note that crude estimates give

ψ(x) =
∑
p≤x

[
log x
log p

]
log p ≤

∑
p≤x

log x
log p

log p = π(x) logx,

and dividing through by x yields

ψ(x)
x

≤ π(x) logx
x

.
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The asymptotic condition ψ(x) ∼ x implies the first inequality in (4).
The proof of the second inequality is a little trickier. Fix 0 < α < 1, and
note that

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα<p≤x

log p ≥ (π(x) − π(xα)) log xα,

and therefore

ψ(x) + απ(xα) log x ≥ απ(x) logx.

Dividing by x, noting that π(xα) ≤ xα, α < 1, and ψ(x) ∼ x, gives

1 ≥ α lim sup
x→∞

π(x)
logx
x

.

Since α < 1 was arbitrary, the proof is complete.

Remark. The converse of the proposition is also true: if π(x) ∼
x/ logx then ψ(x) ∼ x. Since we shall not need this result, we leave the
proof to the interested reader.

In fact, it will be more convenient to work with a close cousin of the
ψ function. Define the function ψ1 by

ψ1(x) =
∫ x

1

ψ(u) du.

In the previous proposition we reduced the prime number theorem to
the asymptotics of ψ(x) as x tends to infinity. Next, we show that this
follows from the asymptotics of ψ1.

Proposition 2.2 If ψ1(x) ∼ x2/2 as x→ ∞, then ψ(x) ∼ x as x→ ∞,
and therefore π(x) ∼ x/ logx as x→ ∞.

Proof. By Proposition 2.1, it suffices to prove that ψ(x) ∼ x as
x→ ∞. This will follow quite easily from the fact that if α < 1 < β,
then

1
(1 − α)x

∫ x

αx

ψ(u) du ≤ ψ(x) ≤ 1
(β − 1)x

∫ βx

x

ψ(u) du.

The proof of this double inequality is immediate and relies simply on the
fact that ψ is increasing. As a consequence, we find, for example, that

ψ(x) ≤ 1
(β − 1)x

[ψ1(βx) − ψ1(x)],
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and therefore

ψ(x)
x

≤ 1
(β − 1)

[
ψ1(βx)
(βx)2

β2 − ψ1(x)
x2

]
.

In turn this implies

lim sup
x→∞

ψ(x)
x

≤ 1
β − 1

[
1
2
β2 − 1

2

]
=

1
2
(β + 1).

Since this result is true for all β > 1, we have proved that
lim supx→∞ ψ(x)/x ≤ 1. A similar argument with α < 1, then shows
that lim infx→∞ ψ(x)/x ≥ 1, and the proof of the proposition is com-
plete.

It is now time to relate ψ1 (and therefore also ψ) and ζ. We proved in
Lemma 1.3 that for Re(s) > 1

log ζ(s) =
∑
m,p

p−ms

m
.

Differentiating this expression gives

ζ′(s)
ζ(s)

= −
∑
m,p

(log p)p−ms = −
∞∑

n=1

Λ(n)
ns

.

We record this formula for Re(s) > 1 as

(5) −ζ
′(s)
ζ(s)

=
∞∑

n=1

Λ(n)
ns

.

The asymptotic behavior ψ1(x) ∼ x2/2 will be a consequence via (5)
of the relationship between ψ1 and ζ, which is expressed by the following
noteworthy integral formula.

Proposition 2.3 For all c > 1

(6) ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds.

To make the proof of this formula clear, we isolate the necessary con-
tour integrals in a lemma.
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Lemma 2.4 If c > 0, then

1
2πi

∫ c+i∞

c−i∞

as

s(s+ 1)
ds =

{
0 if 0 < a ≤ 1,
1 − 1/a if 1 ≤ a.

Here, the integral is over the vertical line Re(s) = c.

Proof. First note that since |as| = ac, the integral converges. We
suppose first that 1 ≤ a, and write a = eβ with β = log a ≥ 0. Let

f(s) =
as

s(s+ 1)
=

esβ

s(s+ 1)
.

Then ress=0f = 1 and ress=−1f = −1/a. For T > 0, consider the path
Γ(T ) shown on Figure 1.

c

S(T )

0

C(T )

Γ(T )

Figure 1. The contour in the proof of Lemma 2.4 when a ≥ 1

The path Γ(T ) consists of the vertical segment S(T ) from c− iT to
c+ iT , and of the half-circle C(T ) centered at c of radius T , lying to the
left of the vertical segment. We equip Γ(T ) with the positive (counter-
clockwise) orientation, and note that we are dealing with a toy contour.
If we choose T so large that 0 and −1 are contained in the interior of
Γ(T ), then by the residue formula

1
2πi

∫
Γ(T )

f(s) ds = 1 − 1/a.
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Since ∫
Γ(T )

f(s) ds =
∫

S(T )

f(s) ds+
∫

C(T )

f(s) ds,

it suffices to prove that the integral over the half-circle goes to 0 as T
tends to infinity. Note that if s = σ + it ∈ C(T ), then for all large T we
have

|s(s+ 1)| ≥ (1/2)T 2,

and since σ ≤ c we also have the estimate |eβs| ≤ eβc. Therefore∣∣∣∣∫
C(T )

f(s) ds
∣∣∣∣ ≤ C

T 2
2πT → 0 as T → ∞,

and the case when a ≥ 1 is proved.
If 0 < a ≤ 1, consider an analogous contour but with the half-circle

lying to the right of the line Re(s) = c. Noting that there are no poles in
the interior of that contour, we can give an argument similar to the one
given above to show that the integral over the half-circle also goes to 0
as T tends to infinity.

We are now ready to prove Proposition 2.3. First, observe that

ψ(u) =
∞∑

n=1

Λ(n)fn(u),

where fn(u) = 1 if n ≤ u and fn(u) = 0 otherwise. Therefore,

ψ1(x) =
∫ x

0

ψ(u) du

=
∞∑

n=1

∫ x

0

Λ(n)fn(u) du

=
∑
n≤x

Λ(n)
∫ x

n

du,

and hence

ψ1(x) =
∑
n≤x

Λ(n)(x− n).
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This fact, together with equation (5) and an application of Lemma 2.4
(with a = x/n), gives

1
2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds = x

∞∑
n=1

Λ(n)
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds

= x
∑
n≤x

Λ(n)
(
1 − n

x

)
= ψ1(x),

as was to be shown.

2.1 Proof of the asymptotics for ψ1

In this section, we will show that

ψ1(x) ∼ x2/2 as x→ ∞,

and as a consequence, we will have proved the prime number theorem.

The key ingredients in the argument are:

• the formula in Proposition 2.3 connecting ψ1 to ζ, namely

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
ds

for c > 1.

• the non-vanishing of the zeta function on Re(s) = 1,

ζ(1 + it) �= 0 for all t ∈ R,

and the estimates for ζ near that line given in Proposition 2.7 of
Chapter 6 together with Proposition 1.6 of this chapter.

Let us now discuss our strategy in more detail. In the integral above
for ψ1(x) we want to change the line of integration Re(s) = c with c > 1,
to Re(s) = 1. If we could achieve that, the size of the factor xs+1 in the
integrand would then be of order x2 (which is close to what we want)
instead of xc+1, c > 1, which is much too large. However, there would
still be two issues that must be dealt with. The first is the pole of ζ(s)
at s = 1; it turns out that when it is taken into account, its contribution
is exactly the main term x2/2 of the asymptotic of ψ1(x). Second, what
remains must be shown to be essentially smaller than this term, and so
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we must further refine the crude estimate of order x2 when integrating
on the line Re(s) = 1. We carry out our plan as follows.

Fix c > 1, say c = 2, and assume x is also fixed for the moment with
x ≥ 2. Let F (s) denote the integrand

F (s) =
xs+1

s(s+ 1)

(
−ζ

′(s)
ζ(s)

)
.

First we deform the vertical line from c− i∞ to c+ i∞ to the path γ(T )
shown in Figure 2. (The segments of γ(T ) on the line Re(s) = 1 consist
of T ≤ t <∞, and −∞ < t ≤ −T .) Here T ≥ 3, and T will be chosen
appropriately large later.

Re(s) = c

s = 1 s = 1 s = 1

γ5

γ1

γ2

γ4

γ(T ) γ(T, δ)

1 − i∞ 1 − i∞c− i∞

c+ i∞ 1 + i∞ 1 + i∞

γ3

Figure 2. Three stages: the line Re(s) = c, the contours γ(T ) and
γ(T, δ)

The usual and familiar arguments using Cauchy’s theorem allow us to
see that

(7)
1

2πi

∫ c+i∞

c−i∞
F (s) ds =

1
2πi

∫
γ(T )

F (s) ds.
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Indeed, we know on the basis of Proposition 2.7 in Chapter 6 and Proposi-
tion 1.6 that |ζ′(s)/ζ(s)| ≤ A|t|η for any fixed η > 0, whenever s = σ + it,
σ ≥ 1, and |t| ≥ 1. Thus |F (s)| ≤ A′|t|−2+η in the two (infinite) rectan-
gles bounded by the line (c− i∞, c+ i∞) and γ(T ). Since F is regular in
that region, and its decrease at infinity is rapid enough, the assertion (7)
is established.

Next, we pass from the contour γ(T ) to the contour γ(T, δ). (Again,
see Figure 2.) For fixed T , we choose δ > 0 small enough so that ζ has
no zeros in the box

{s = σ + it, 1 − δ ≤ σ ≤ 1, |t| ≤ T}.

Such a choice can be made since ζ does not vanish on the line σ = 1.
Now F (s) has a simple pole at s = 1. In fact, by Corollary 2.6 in Chap-

ter 6, we know that ζ(s) = 1/(s− 1) +H(s), where H(s) is regular near
s = 1. Hence −ζ′(s)/ζ(s) = 1/(s− 1) + h(s), where h(s) is holomorphic
near s = 1, and so the residue of F (s) at s = 1 equals x2/2. As a result

1
2πi

∫
γ(T )

F (s) ds =
x2

2
+

1
2πi

∫
γ(T,δ)

xs+1

s(s+ 1)
F (s) ds.

We now decompose the contour γ(T, δ) as γ1 + γ2 + γ3 + γ4 + γ5 and
estimate each of the integrals

∫
γj
F (s) ds, j = 1, 2, 3, 4, 5, with the γj as

in Figure 2.
First we contend that there exists T so large that∣∣∣∣∫

γ1

F (s) ds
∣∣∣∣ ≤ ε

2
x2 and

∣∣∣∣∫
γ5

F (s) ds
∣∣∣∣ ≤ ε

2
x2.

To see this, we first note that for s ∈ γ1 one has

|x1+s| = x1+σ = x2.

Then, by Proposition 1.6 we have, for example, that |ζ′(s)/ζ(s)| ≤ A|t|1/2,
so ∣∣∣∣∫

γ1

F (s) ds
∣∣∣∣ ≤ Cx2

∫ ∞

T

|t|1/2

t2
dt.

Since the integral converges, we can make the right-hand side ≤ εx2/2
upon taking T sufficiently large. The argument for the integral over γ5

is the same.
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Having now fixed T , we choose δ appropriately small. On γ3, note
that

|x1+s| = x1+1−δ = x2−δ ,

from which we conclude that there exists a constant CT (dependent on
T ) such that ∣∣∣∣∫

γ3

F (s) ds
∣∣∣∣ ≤ CTx

2−δ .

Finally, on the small horizontal segment γ2 (and similarly on γ4), we can
estimate the integral as follows:∣∣∣∣∫

γ2

F (s) ds
∣∣∣∣ ≤ C′

T

∫ 1

1−δ

x1+σ dσ ≤ C′
T

x2

log x
.

We conclude that there exist constants CT and C′
T (possibly different

from the ones above) such that∣∣∣∣ψ1(x) −
x2

2

∣∣∣∣ ≤ εx2 + CTx
2−δ + C′

T

x2

log x
.

Dividing through by x2/2, we see that∣∣∣∣2ψ1(x)
x2

− 1
∣∣∣∣ ≤ 2ε+ 2CTx

−δ + 2C′
T

1
log x

,

and therefore, for all large x we have∣∣∣∣2ψ1(x)
x2

− 1
∣∣∣∣ ≤ 4ε.

This concludes the proof that

ψ1(x) ∼ x2/2 as x→ ∞ ,

and thus, we have also completed the proof of the prime number theorem.

Note on interchanging double sums

We prove the following facts about the interchange of infinite sums: if {ak�}1≤k,�<∞
is a sequence of complex numbers indexed by N × N, such that

(8)

∞∑
k=1

( ∞∑
�=1

|ak�|
)
<∞,
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then:

(i) The double sum A =
∑∞

k=1

(∑∞
�=1 ak�

)
summed in this order converges, and

we may in fact also interchange the order of summation, so that

A =

∞∑
k=1

∞∑
�=1

ak� =

∞∑
�=1

∞∑
k=1

ak�.

(ii) Given ε > 0, there is a positive integer N so that for all K,L > N we have∣∣∣A−∑K
k=1

∑L
�=1 ak�

∣∣∣ < ε.

(iii) If m �→ (k(m), �(m)) is a bijection from N to N × N, and if we write cm =
ak(m)�(m), then A =

∑∞
k=1 ck.

Statement (iii) says that any rearrangement of the sequence {ak�} can be summed
without changing the limit. This is analogous to the case of absolutely convergent
series, which can be summed in any desired order.

The condition (8) says that each sum
∑

� ak� converges absolutely, and moreover
this convergence is “uniform” in k. An analogous situation arises for sequences of
functions, where an important question is whether or not the interchange of limits

lim
x→x0

lim
n→∞

fn(x)
?
= lim

n→∞
lim

x→x0
fn(x)

holds. It is a well-known fact that if the fn’s are continuous, and their convergence
is uniform, then the above identity is true since the limit function is itself continu-
ous. To take advantage of this fact, define bk =

∑∞
�=1 |ak�| and let S = {x0, x1, . . .}

be a countable set of points with limn→∞ xn = x0. Also, define functions on S as
follows:

fk(x0) =
∑∞

�=1 ak� for k = 1, 2, . . .

fk(xn) =
∑n

�=1 ak� for k = 1, 2, . . . and n = 1, 2, . . .

g(x) =
∑∞

k=1 fk(x) for x ∈ S.

By assumption (8), each fk is continuous at x0. Moreover |fk(x)| ≤ bk and∑
bk <∞, so the series defining the function g is uniformly convergent on S,

and therefore g is also continuous at x0. As a consequence we find (i), since

∞∑
k=1

∞∑
�=1

ak� = g(x0) = lim
n→∞

g(xn) = lim
n→∞

∞∑
k=1

n∑
�=1

ak�

= lim
n→∞

n∑
�=1

∞∑
k=1

ak� =
∞∑

�=1

∞∑
k=1

ak�.

For the second statement, first observe that∣∣∣∣∣A−
K∑

k=1

L∑
�=1

ak�

∣∣∣∣∣ ≤ ∑
k≤K

∑
�>L

|ak�| +
∑
k>K

∞∑
�=1

|ak�|.



3. Exercises 199

To estimate the second term, we use the fact that
∑
bk converges, which implies∑

k>K

∑∞
�=1 |ak�| < ε/2 whenever K > K0, for some K0. For the first term above,

note that
∑

k≤K

∑
�>L |ak�| ≤

∑∞
k=1

∑
�>L |ak�|. But the argument above guar-

antees that we can interchange these last two sums; also
∑∞

�=1

∑∞
k=1 |ak�| <∞,

so that for all L > L0 we have
∑

�>L

∑∞
k=1 |ak�| < ε/2. Taking N > max(L0, K0)

completes the proof of (ii).
The proof of (iii) is a direct consequence of (ii). Indeed, given any rectangle

R(K,L) = {(k, �) ∈ N × N : 1 ≤ k ≤ K and 1 ≤ � ≤ L},

there exists M such that the image of [1,M ] under the map m �→ (k(m), �(m))
contains R(K,L).

When U denotes any open set in R2 that contains the origin, we define for R > 0
its dilate U(R) = {y ∈ R2 : y = Rx for some x ∈ U}, and we can apply (ii) to see
that

A = lim
R→∞

∑
(k,�)∈U(R)

ak�.

In other words, under condition (8) the double sum
∑

k� ak� can be evaluated by
summing over discs, squares, rectangles, ellipses, etc.

Finally, we leave the reader with the instructive task of finding a sequence of
complex numbers {ak�} such that∑

k

∑
�

ak� 
=
∑

�

∑
k

ak�.

[Hint: Consider {ak�} as the entries of an infinite matrix with 0 above the diagonal,
−1 on the diagonal, and ak� = 2�−k if k > �.]

3 Exercises

1. Suppose that {an}∞n=1 is a sequence of real numbers such that the partial sums

An = a1 + · · · + an

are bounded. Prove that the Dirichlet series

∞∑
n=1

an

ns

converges for Re(s) > 0 and defines a holomorphic function in this half-plane.

[Hint: Use summation by parts to compare the original (non-absolutely convergent)
series to the (absolutely convergent) series

∑
An(n−s − (n+ 1)−s). An estimate

for the term in parentheses is provided by the mean value theorem. To prove
that the series is analytic, show that the partial sums converge uniformly on every
compact subset of the half-plane Re(s) > 0.]
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2. The following links the multiplication of Dirichlet series with the divisibility
properties of their coefficients.

(a) Show that if {am} and {bk} are two bounded sequences of complex numbers,
then ( ∞∑

m=1

am

ms

)( ∞∑
k=1

bk
ks

)
=

∞∑
n=1

cn
ns

where cn =
∑

mk=n ambk.

The above series converge absolutely when Re(s) > 1.

(b) Prove as a consequence that one has

(ζ(s))2 =
∞∑

n=1

d(n)

ns
and ζ(s)ζ(s− a) =

∞∑
n=1

σa(n)

ns

for Re(s) > 1 and Re(s− a) > 1, respectively. Here d(n) equals the number
of divisors of n, and σa(n) is the sum of the ath powers of divisors of n. In
particular, one has σ0(n) = d(n).

3. In line with the previous exercise, we consider the Dirichlet series for 1/ζ.

(a) Prove that for Re(s) > 1

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
,

where µ(n) is the Möbius function defined by

µ(n) =


1 if n = 1 ,

(−1)k if n = p1 · · · pk, and the pj are distinct primes ,
0 otherwise .

Note that µ(nm) = µ(n)µ(m) whenever n and m are relatively prime. [Hint:
Use the Euler product formula for ζ(s).]

(b) Show that ∑
k|n

µ(k) =

{
1 if n = 1,
0 otherwise.

4. Suppose {an}∞n=1 is a sequence of complex numbers such that an = am if n ≡ m
mod q for some positive integer q. Define the Dirichlet L-series associated to
{an} by

L(s) =
∞∑

n=1

an

ns
for Re(s) > 1.
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Also, with a0 = aq, let

Q(x) =

q−1∑
m=0

aq−me
mx.

Show, as in Exercises 15 and 16 of the previous chapter, that

L(s) =
1

Γ(s)

∫ ∞

0

Q(x)xs−1

eqx − 1
dx, for Re(s) > 1.

Prove as a result that L(s) is continuable into the complex plane, with the only
possible singularity a pole at s = 1. In fact, L(s) is regular at s = 1 if and only if∑q−1

m=0 am = 0. Note the connection with the Dirichlet L(s, χ) series, taken up in
Book I, Chapter 8, and that as a consequence, L(s, χ) is regular at s = 1 if and
only if χ is a non-trivial character.

5. Consider the following function

ζ̃(s) = 1 − 1

2s
+

1

3s
− · · · =

∞∑
n=1

(−1)n+1

ns
.

(a) Prove that the series defining ζ̃(s) converges for Re(s) > 0 and defines a
holomorphic function in that half-plane.

(b) Show that for s > 1 one has ζ̃(s) = (1 − 21−s)ζ(s).

(c) Conclude, since ζ̃ is given as an alternating series, that ζ has no zeros on
the segment 0 < σ < 1. Extend this last assertion to σ = 0 by using the
functional equation.

6. Show that for every c > 0

lim
N→∞

1

2πi

∫ c+iN

c−iN

as ds

s
=


1 if a > 1,
1/2 if a = 1,
0 if 0 ≤ a < 1.

The integral is taken over the vertical segment from c− iN to c+ iN .

7. Show that the function

ξ(s) = π−s/2Γ(s/2)ζ(s)

is real when s is real, or when Re(s) = 1/2.

8. The function ζ has infinitely many zeros in the critical strip. This can be seen
as follows.
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(a) Let

F (s) = ξ(1/2 + s), where ξ(s) = π−s/2Γ(s/2)ζ(s).

Show that F (s) is an even function of s, and as a result, there exists G so
that G(s2) = F (s).

(b) Show that the function (s− 1)ζ(s) is an entire function of growth order 1,
that is

|(s − 1)ζ(s)| ≤ Aεe
aε|s|1+ε

.

As a consequence G(s) is of growth order 1/2.

(c) Deduce from the above that ζ has infinitely many zeros in the critical strip.

[Hint: To prove (a) and (b) use the functional equation for ζ(s). For (c), use a
result of Hadamard, which states that an entire function with fractional order has
infinitely many zeros (Exercise 14 in Chapter 5).]

9. Refine the estimates in Proposition 2.7 in Chapter 6 and Proposition 1.6 to
show that

(a) |ζ(1 + it)| ≤ A log |t|,
(b) |ζ′(1 + it)| ≤ A(log |t|)2,
(c) 1/|ζ(1 + it)| ≤ A(log |t|)a,

when |t| ≥ 2 (with a = 7).

10. In the theory of primes, a better approximation to π(x) (instead of x/ log x)
turns out to be Li(x) defined by

Li(x) =

∫ x

2

dt

log t
.

(a) Prove that

Li(x) =
x

log x
+O

(
x

(log x)2

)
as x→ ∞,

and that as a consequence

π(x) ∼ Li(x) as x→ ∞.

[Hint: Integrate by parts in the definition of Li(x) and observe that it suffices
to prove ∫ x

2

dt

(log t)2
= O

(
x

(log x)2

)
.

To see this, split the integral from 2 to
√
x and from

√
x to x.]
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(b) Refine the previous analysis by showing that for every integer N > 0 one
has the following asymptotic expansion

Li(x) =
x

log x
+

x

(log x)2
+ 2

x

(log x)3
· · · + (N − 1)!

x

(log x)N
+O

(
x

(log x)N+1

)
as x→ ∞.

11. Let

ϕ(x) =
∑
p≤x

log p

where the sum is taken over all primes ≤ x. Prove that the following are equivalent
as x→ ∞:

(i) ϕ(x) ∼ x,

(ii) π(x) ∼ x/ log x,

(iii) ψ(x) ∼ x,

(iv) ψ1(x) ∼ x2/2.

12. If pn denotes the nth prime, the prime number theorem implies that
pn ∼ n log n as n→ ∞.

(a) Show that π(x) ∼ x/ log x implies that

log π(x) + log log x ∼ log x.

(b) As a consequence, prove that log π(x) ∼ log x, and take x = pn to conclude
the proof.

4 Problems

1. Let F (s) =
∑∞

n=1 an/n
s, where |an| ≤M for all n.

(a) Then

lim
T→∞

1

2T

∫ T

−T

|F (σ + it)|2 dt =
∞∑

n=1

|an|2
n2σ

if σ > 1.

How is this reminiscent of the Parseval-Plancherel theorem? See e.g. Chap-
ter 3 in Book I.
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(b) Show as a consequence the uniqueness of Dirichlet series: If F (s)=
∑∞

n=1ann
−s,

where the coefficients are assumed to satisfy |an| ≤ cnk for some k, and
F (s) ≡ 0, then an = 0 for all n.

Hint: For part (a) use the fact that

1

2T

∫ T

−T

(nm)−σn−itmit dt→
{
n−2σ if n = m,
0 if n 
= m.

2.∗ One of the “explicit formulas” in the theory of primes is as follows: if ψ1 is the
integrated Tchebychev function considered in Section 2, then

ψ1(x) =
x2

2
−
∑

ρ

xρ

ρ(ρ+ 1)
−E(x)

where the sum is taken over all zeros ρ of the zeta function in the critical strip.
The error term is given by E(x) = c1x+ c0 +

∑∞
k=1 x

1−2k/(2k(2k − 1)), where
c1 = ζ′(0)/ζ(0) and c0 = ζ′(−1)/ζ(−1). Note that

∑
ρ 1/|ρ|1+ε <∞ for every

ε > 0, because (1 − s)ζ(s) has order of growth 1. (See Exercise 8.) Also, obvi-
ously E(x) = O(x) as x→ ∞.

3.∗ Using the previous problem one can show that

π(x) − Li(x) = O(xα+ε) as x→ ∞

for every ε > 0, where α is fixed and 1/2 ≤ α < 1 if and only if ζ(s) has no zeros in
the strip α < Re(s) < 1. The case α = 1/2 corresponds to the Riemann hypothesis.

4.∗ One can combine ideas from the prime number theorem with the proof of
Dirichlet’s theorem about primes in arithmetic progression (given in Book I) to
prove the following. Let q and � be relatively prime integers. We consider the
primes belonging to the arithmetic progression {qk + �}∞k=1, and let πq,�(x) denote
the number of such primes ≤ x. Then one has

πq,�(x) ∼ x

ϕ(q) log x
as x→ ∞ ,

where ϕ(q) denotes the number of positive integers less than q and relatively prime
to q.
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The results I found for polygons can be extended un-
der very general assumptions. I have undertaken this
research because it is a step towards a deeper un-
derstanding of the mapping problem, for which not
much has happened since Riemann’s inaugural disser-
tation; this, even though the theory of mappings, with
its close connection with the fundamental theorems of
Riemann’s function theory, deserves in the highest de-
gree to be developed further.

E. B. Christoffel, 1870

The problems and ideas we present in this chapter are more geomet-
ric in nature than the ones we have seen so far. In fact, here we will
be primarily interested in mapping properties of holomorphic functions.
In particular, most of our results will be “global,” as opposed to the
more “local” analytical results proved in the first three chapters. The
motivation behind much of our presentation lies in the following simple
question:

Given two open sets U and V in C, does there exist a holo-
morphic bijection between them?

By a holomorphic bijection we simply mean a function that is both
holomorphic and bijective. (It will turn out that the inverse map is then
automatically holomorphic.) A solution to this problem would permit
a transfer of questions about analytic functions from one open set with
little geometric structure to another with possibly more useful properties.
The prime example consists in taking V = D the unit disc, where many
ideas have been developed to study analytic functions.1 In fact, since
the disc seems to be the most fruitful choice for V we are led to a variant
of the above question:

Given an open subset Ω of C, what conditions on Ω guarantee
that there exists a holomorphic bijection from Ω to D?

1For the corresponding problem when V = C, the solution is trivial: only U = C is
possible. See Exercise 14 in Chapter 3.
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In some instances when a bijection exists it can be given by explicit
formulas, and we turn to this aspect of the theory first. For example, the
upper half-plane can be mapped by a holomorphic bijection to the disc,
and this is given by a fractional linear transformation. From there, one
can construct many other examples, by composing simple maps already
encountered earlier, such as rational functions, trigonometric functions,
logarithms, etc. As an application, we discuss the consequence of these
constructions to the solution of the Dirichlet problem for the Laplacian
in some particular domains.

Next, we pass from the specific examples to prove the first general
result of the chapter, namely the Schwarz lemma, with an immediate
application to the determination of all holomorphic bijections (“auto-
morphisms” of the disc to itself). These are again given by fractional
linear transformations.

Then comes the heart of the matter: the Riemann mapping theorem,
which states that Ω can be mapped to the unit disc whenever it is simply
connected and not all of C. This is a remarkable theorem, since little
is assumed about Ω, not even regularity of its boundary ∂Ω. (After
all, the boundary of the disc is smooth.) In particular, the interiors of
triangles, squares, and in fact any polygon can be mapped via a bijective
holomorphic function to the disc. A precise description of the mapping
in the case of polygons, called the Schwarz-Christoffel formula, will be
taken up in the last section of the chapter. It is interesting to note that
the mapping functions for rectangles are given by “elliptic integrals,” and
these lead to doubly-periodic functions. The latter are the subject of the
next chapter.

1 Conformal equivalence and examples

We fix some terminology that we shall use in the rest of this chapter.
A bijective holomorphic function f : U → V is called a conformal map
or biholomorphism. Given such a mapping f , we say that U and V
are conformally equivalent or simply biholomorphic. An important
fact is that the inverse of f is then automatically holomorphic.

Proposition 1.1 If f : U → V is holomorphic and injective, then
f ′(z) �= 0 for all z ∈ U . In particular, the inverse of f defined on its
range is holomorphic, and thus the inverse of a conformal map is also
holomorphic.
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Proof. We argue by contradiction, and suppose that f ′(z0) = 0 for
some z0 ∈ U . Then

f(z) − f(z0) = a(z − z0)k +G(z) for all z near z0,

with a �= 0, k ≥ 2 and G vanishing to order k + 1 at z0. For sufficiently
small w, we write

f(z)− f(z0) − w = F (z) +G(z), where F (z) = a(z − z0)k − w.

Since |G(z)| < |F (z)| on a small circle centered at z0, and F has at
least two zeros inside that circle, Rouché’s theorem implies that f(z)−
f(z0) − w has at least two zeros there. Since f ′(z) �= 0 for all z �= z0 but
sufficiently close to z0 it follows that the roots of f(z)− f(z0) − w are
distinct, hence f is not injective, a contradiction.

Now let g = f−1 denote the inverse of f on its range, which we can
assume is V . Suppose w0 ∈ V and w is close to w0. Write w = f(z) and
w0 = f(z0). If w �= w0, we have

g(w) − g(w0)
w − w0

=
1

w−w0
g(w)−g(w0)

=
1

f(z)−f(z0)
z−z0

.

Since f ′(z0) �= 0, we may let z → z0 and conclude that g is holomorphic
at w0 with g′(w0) = 1/f ′(g(w0)).

From this proposition we conclude that two open sets U and V are
conformally equivalent if and only if there exist holomorphic functions
f : U → V and g : V → U such that g(f(z)) = z and f(g(w)) = w for all
z ∈ U and w ∈ V .

We point out that the terminology adopted here is not universal. Some
authors call a holomorphic map f : U → V conformal if f ′(z) �= 0 for all
z ∈ U . This definition is clearly less restrictive than ours; for example,
f(z) = z2 on the punctured disc C − {0} satisfies f ′(z) �= 0, but is not
injective. However, the condition f ′(z) �= 0 is tantamount to f being a
local bijection (Exercise 1). There is a geometric consequence of the con-
dition f ′(z) �= 0 and it is at the root of this discrepency of terminology in
the definitions. A holomorphic map that satisfies this condition preserves
angles. Loosely speaking, if two curves γ and η intersect at z0, and α is
the oriented angle between the tangent vectors to these curves, then the
image curves f ◦ γ and f ◦ η intersect at f(z0), and their tangent vectors
form the same angle α. Problem 2 develops this idea.

We begin our study of conformal mappings by looking at a number
of specific examples. The first gives the conformal equivalence between
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the unit disc and the upper half-plane, which plays an important role in
many problems.

1.1 The disc and upper half-plane

The upper half-plane, which we denote by H, consists of those complex
numbers with positive imaginary part; that is,

H = {z ∈ C : Im(z) > 0}.

A remarkable fact, which at first seems surprising, is that the unbounded
set H is conformally equivalent to the unit disc. Moreover, an explicit
formula giving this equivalence exists. Indeed, let

F (z) =
i− z

i+ z
and G(w) = i

1 − w

1 + w
.

Theorem 1.2 The map F : H → D is a conformal map with inverse
G : D → H.

Proof. First we observe that both maps are holomorphic in their
respective domains. Then we note that any point in the upper half-
plane is closer to i than to −i, so |F (z)| < 1 and F maps H into D. To
prove that G maps into the upper half-plane, we must compute Im(G(w))
for w ∈ D. To this end we let w = u+ iv, and note that

Im(G(w)) = Re
(

1 − u− iv

1 + u+ iv

)
= Re

(
(1 − u− iv)(1 + u− iv)

(1 + u)2 + v2

)
=

1 − u2 − v2

(1 + u)2 + v2
> 0

since |w| < 1. Therefore G maps the unit disc to the upper half-plane.
Finally,

F (G(w)) =
i− i1−w

1+w

i+ i1−w
1+w

=
1 + w − 1 + w

1 + w + 1 − w
= w,

and similarly G(F (z)) = z. This proves the theorem.

An interesting aspect of these functions is their behavior on the bound-
aries of our open sets.2 Observe that F is holomorphic everywhere on C

2The boundary behavior of conformal maps is a recurrent theme that plays an impor-
tant role in this chapter.
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except at z = −i, and in particular it is continuous everywhere on the
boundary of H, namely the real line. If we take z = x real, then the
distance from x to i is the same as the distance from x to −i, there-
fore |F (x)| = 1. Thus F maps R onto the boundary of D. We get more
information by writing

F (x) =
i− x

i+ x
=

1 − x2

1 + x2
+ i

2x
1 + x2

,

and parametrizing the real line by x = tan t with t ∈ (−π/2, π/2). Since

sin 2a =
2 tana

1 + tan2 a
and cos 2a =

1 − tan2 a

1 + tan2 a
,

we have F (x) = cos 2t+ i sin 2t = ei2t. Hence the image of the real line
is the arc consisting of the circle omitting the point −1. Moreover, as x
travels from −∞ to ∞, F (x) travels along that arc starting from −1 and
first going through that part of the circle that lies in the lower half-plane.

The point −1 on the circle corresponds to the “point at infinity” of
the upper half-plane.

Remark. Mappings of the form

z 	→ az + b

cz + d
,

where a, b, c, and d are complex numbers, and where the denominator is
assumed not to be a multiple of the numerator, are usually referred to
as fractional linear transformations. Other instances occur as the
automorphisms of the disc and of the upper half-plane in Theorems 2.1
and 2.4.

1.2 Further examples

We gather here several illustrations of conformal mappings. In certain
cases we discuss the behavior of the map on the boundary of the relevant
domain. Some of the mappings are pictured in Figure 1.

Example 1. Translations and dilations provide the first simple examples.
Indeed, if h ∈ C, the translation z 	→ z + h is a conformal map from C

to itself whose inverse is w 	→ w − h. If h is real, then this translation is
also a conformal map from the upper half-plane to itself.

For any non-zero complex number c, the map f : z 	→ cz is a conformal
map from the complex plane to itself, whose inverse is simply g : w 	→
c−1w. If c has modulus 1, so that c = eiϕ for some real ϕ, then f is
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a rotation by ϕ. If c > 0 then f corresponds to a dilation. Finally, if
c < 0 the map f consists of a dilation by |c| followed by a rotation of π.

Example 2. If n is a positive integer, then the map z 	→ zn is conformal
from the sector S = {z ∈ C : 0 < arg(z) < π/n} to the upper half-plane.
The inverse of this map is simply w 	→ w1/n, defined in terms of the
principal branch of the logarithm.

More generally, if 0 < α < 2 the map f(z) = zα takes the upper half-
plane to the sector S = {w ∈ C : 0 < arg(w) < απ}. Indeed, if we choose
the branch of the logarithm obtained by deleting the positive real axis,
and z = reiθ with r > 0 and 0 < θ < π, then

f(z) = zα = |z|αeiαθ.

Therefore f maps H into S. Moreover, a simple verification shows that
the inverse of f is given by g(w) = w1/α, where the branch of the loga-
rithm is chosen so that 0 < argw < απ.

By composing the map just discussed with the translations and rota-
tions in the previous example, we may map the upper half-plane confor-
mally to any (infinite) sector in C.

Let us note the boundary behavior of f . If x travels from −∞ to 0 on
the real line, then f(x) travels from ∞eiαπ to 0 on the half-line deter-
mined by arg z = απ. As x goes from 0 to ∞ on the real line, the image
f(x) goes from 0 to ∞ on the real line as well.

Example 3. The map f(z) = (1 + z)/(1− z) takes the upper half-
disc {z = x+ iy : |z| < 1 and y > 0} conformally to the first quadrant
{w = u+ iv : u > 0 and v > 0}. Indeed, if z = x+ iy we have

f(z) =
1 − (x2 + y2)
(1 − x)2 + y2

+ i
2y

(1 − x)2 + y2
,

so f maps the half-disc in the upper half-plane into the first quadrant.
The inverse map, given by g(w) = (w − 1)/(w + 1), is clearly holomor-
phic in the first quadrant. Moreover, |w + 1| > |w − 1| for all w in the
first quadrant because the distance from w to −1 is greater than the
distance from w to 1; thus g maps into the unit disc. Finally, an easy
calculation shows that the imaginary part of g(w) is positive whenever w
is in the first quadrant. So g transforms the first quadrant into the
desired half-disc and we conclude that f is conformal because g is the
inverse of f .

To examine the action of f on the boundary, note that if z = eiθ be-
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longs to the upper half-circle, then

f(z) =
1 + eiθ

1 − eiθ
=
e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2
=

i

tan(θ/2)
.

As θ travels from 0 to π we see that f(eiθ) travels along the imaginary
axis from infinity to 0. Moreover, if z = x is real, then

f(z) =
1 + x

1 − x

is also real; and one sees from this, that f is actually a bijection from
(−1, 1) to the positive real axis, with f(x) increasing from 0 to infinity
as x travels from −1 to 1. Note also that f(0) = 1.

Example 4. The map z 	→ log z, defined as the branch of the logarithm
obtained by deleting the negative imaginary axis, takes the upper half-
plane to the strip {w = u+ iv : u ∈ R, 0 < v < π}. This is immediate
from the fact that if z = reiθ with −π/2 < θ < 3π/2, then by definition,

log z = log r + iθ.

The inverse map is then w 	→ ew.
As x travels from −∞ to 0, the point f(x) travels from ∞ + iπ to

−∞ + iπ on the line {x+ iπ : −∞ < x <∞}. When x travels from 0
to ∞ on the real line, its image f(x) then goes from −∞ to ∞ along the
reals.

Example 5. With the previous example in mind, we see that
z 	→ log z also defines a conformal map from the half-disc {z = x+ iy :
|z| < 1, y > 0} to the half-strip {w = u+ iv : u < 0, 0 < v < π}. As x
travels from 0 to 1 on the real line, then logx goes from −∞ to 0.
When x goes from 1 to −1 on the half-circle in the upper half-plane,
then the point log x travels from 0 to πi on the vertical segment of the
strip. Finally, as x goes from −1 to 0, the point log x goes from πi to
−∞ + iπ on the top half-line of the strip.

Example 6. The map f(z) = eiz takes the half-strip {z = x+ iy :
−π/2 < x < π/2, y > 0} conformally to the half-disc {w = u+ iv :
|w| < 1, u > 0}. This is immediate from the fact that if z = x+ iy,
then

eiz = e−yeix.
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If x goes from π/2 + i∞ to π/2, then f(x) goes from 0 to i, and as x
goes from π/2 to −π/2, then f(x) travels from i to −i on the half-circle.
Finally, as x goes from −π/2 to −π/2 + i∞, we see that f(x) travels
from −i back to 0.

The mapping f is closely related to the inverse of the map in Exam-
ple 5.

Example 7. The function f(z) = −1
2 (z + 1/z) is a conformal map from

the half-disc {z = x+ iy : |z| < 1, y > 0} to the upper half-plane (Exer-
cise 5).

The boundary behavior of f is as follows. If x travels from 0 to 1, then
f(x) goes from ∞ to 1 on the real axis. If z = eiθ, then f(z) = cos θ and
as x travels from 1 to −1 along the unit half-circle in the upper half-
plane, the f(x) goes from 1 to −1 on the real segment. Finally, when x
goes from −1 to 0, f(x) goes from −1 to −∞ along the real axis.

Example 8. The map f(z) = sin z takes the upper half-plane confor-
mally onto the half-strip {w = x+ iy : −π/2 < x < π/2 y > 0}. To see
this, note that if ζ = eiz, then

sin z =
eiz − e−iz

2i
=

−1
2

(
iζ +

1
iζ

)
,

and therefore f is obtained first by applying the map in Example 6, then
multiplying by i (that is, rotating by π/2), and finally applying the map
in Example 7.

As x travels from −π/2 + i∞ to −π/2, the point f(x) goes from −∞
to −1. When x is real, between −π/2 and π/2, then f(x) is also real
between −1 and 1. Finally, if x goes from π/2 to π/2 + i∞, then f(x)
travels from 1 to ∞ on the real axis.

1.3 The Dirichlet problem in a strip

The Dirichlet problem in the open set Ω consists of solving

(1)
{

�u = 0 in Ω,
u = f on ∂Ω,

where � denotes the Laplacian ∂2/∂x2 + ∂2/∂y2, and f is a given func-
tion on the boundary of Ω. In other words, we wish to find a harmonic
function in Ω with prescribed boundary values f . This problem was al-
ready considered in Book I in the cases where Ω is the unit disc or the
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f(z) = zα

f(z) = 1+z
1−z

f(z) = log z

f(z) = sin z

−π
2

0

0

iπ

0

0 1

0

0 1

0

0

iπ

π
2

1

i

0

0

f(z) = log z

f1(z) = eiz f2(z) = iz f3(z) = −1
2

(
z + 1

z

)

Figure 1. Explicit conformal maps

upper half-plane, where it arose in the solution of the steady-state heat
equation. In these specific examples, explicit solutions were obtained in
terms of convolutions with the Poisson kernels.

Our goal here is to connect the Dirichlet problem with the conformal
maps discussed so far. We begin by providing a formula for a solution to
the problem (1) in the special case where Ω is a strip. In fact, this exam-
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ple was studied in Problem 3 of Chapter 5, Book I, where the problem
was solved using the Fourier transform. Here, we recover this solution
using only conformal mappings and the known solution in the disc.

The first important fact that we use is that the composition of a har-
monic function with a holomorphic function is still harmonic.

Lemma 1.3 Let V and U be open sets in C and F : V → U a holo-
morphic function. If u : U → C is a harmonic function, then u ◦ F is
harmonic on V .

Proof. The thrust of the lemma is purely local, so we may assume
that U is an open disc. We let G be a holomorphic function in U whose
real part is u (such a G exists by Exercise 12 in Chapter 2, and is deter-
mined up to an additive constant). Let H = G ◦ F and note that u ◦ F
is the real part of H. Hence u ◦ F is harmonic because H is holomorphic.

For an alternate (computational) proof of this lemma, see Exercise 6.

With this result in hand, we may now consider the problem (1) when
Ω consists of the horizontal strip

Ω = {x+ iy : x ∈ R, 0 < y < 1},

whose boundary is the union of the two horizontal lines R and i+ R. We
express the boundary data as two functions f0 and f1 defined on R, and
ask for a solution u(x, y) in Ω of �u = 0 that satisfies

u(x, 0) = f0(x) and u(x, 1) = f1(x).

We shall assume that f0 and f1 are continuous and vanish at infinity,
that is, that lim|x|→∞ fj(x) = 0 for j = 0, 1.

The method we shall follow consists of relocating the problem from
the strip to the unit disc via a conformal map. In the disc the solution
ũ is then expressed in terms of a convolution with the Poisson kernel.
Finally, ũ is moved back to the strip using the inverse of the previous
conformal map, thereby giving our final answer to the problem.

To achieve our goal, we introduce the mappings F : D → Ω and
G : Ω → D, that are defined by

F (w) =
1
π

log
(
i
1 − w

1 + w

)
and G(z) =

i− eπz

i+ eπz
.

These two functions, which are obtained from composing mappings from
examples in the previous sections, are conformal and inverses to one
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u = f0

u = f1

z = iy

Ω

Figure 2. The Dirichlet problem in a strip

another. Tracing through the boundary behavior of F , we find that it
maps the lower half-circle to the line i+ R, and the upper half-circle to
R. More precisely, as ϕ travels from −π to 0, then F (eiϕ) goes from
i+ ∞ to i−∞, and as ϕ travels from 0 to π, then F (eiϕ) goes from −∞
to ∞ on the real line.

With the behavior of F on the circle in mind, we define

f̃1(ϕ) = f1(F (eiϕ) − i) whenever −π < ϕ < 0,

and

f̃0(ϕ) = f0(F (eiϕ)) whenever 0 < ϕ < π.

Then, since f0 and f1 vanish at infinity, the function f̃ that is equal
to f̃1 on the lower semi-circle, f̃0 on the upper semi-circle, and 0 at the
points ϕ = ±π, 0, is continuous on the whole circle. The solution to the
Dirichlet problem in the unit disc with boundary data f̃ is given by the
Poisson integral3

ũ(w) =
1
2π

∫ π

−π

Pr(θ − ϕ)f̃(ϕ) dϕ

=
1
2π

∫ 0

−π

Pr(θ − ϕ)f̃1(ϕ) dϕ+
1
2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ) dϕ,

where w = reiθ, and

Pr(θ) =
1 − r2

1 − 2r cos θ + r2

3We refer the reader to Chapter 2 in Book I for a detailed discussion of the Dirichlet
problem in the disc and the Poisson integral formula. Also, the Poisson integral formula
is deduced in Exercise 12 of Chapter 2 and Problem 2 in Chapter 3 of this book.
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is the Poisson kernel. Lemma 1.3 guarantees that the function u, defined
by

u(z) = ũ(G(z)),

is harmonic in the strip. Moreover, our construction also insures that u
has the correct boundary values.

A formula for u in terms of f0 and f1 is first obtained at the points z =
iy with 0 < y < 1. The appropriate change of variables (see Exercise 7)
shows that if reiθ = G(iy), then

1
2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ) dϕ =
sin πy

2

∫ ∞

−∞

f0(t)
coshπt− cosπy

dt.

A similar calculation also establishes

1
2π

∫ π

0

Pr(θ − ϕ)f̃1(ϕ) dϕ =
sinπy

2

∫ ∞

−∞

f1(t)
coshπt+ cosπy

dt.

Adding these last two integrals provides a formula for u(0, y). In gen-
eral, we recall from Exercise 13 in Chapter 5 of Book I, that a solution to
the Dirichlet problem in the strip vanishing at infinity is unique. Conse-
quently, a translation of the boundary condition by x results in a trans-
lation of the solution by x as well. We may therefore apply the same
argument to f0(x+ t) and f1(x+ t) (with x fixed), and a final change of
variables shows that

u(x, y) =
sin πy

2

(∫ ∞

−∞

f0(x− t)
coshπt− cosπy

dt+
∫ ∞

−∞

f1(x− t)
coshπt+ cosπy

dt

)
,

which gives a solution to the Dirichlet problem in the strip. In partic-
ular, we find that the solution is given in terms of convolutions with
the functions f0 and f1. Also, note that at the mid-point of the strip
(y = 1/2), the solution is given by integration with respect to the func-
tion 1/ coshπt; this function happens to be its own Fourier transform,
as we saw in Example 3, Chapter 3.

Remarks about the Dirichlet problem

The example above leads us to envisage the solution of the more general
Dirichlet problem for Ω (a suitable region), if we know a conformal map F
from the disc D to Ω. That is, suppose we wish to solve (1), where f is
an assigned continuous function and ∂Ω is the boundary of Ω. Assuming
we have a conformal map F from D to Ω (that extends to a continuous
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bijection of the boundary of the disc to the boundary of Ω), then f̃ =
f ◦ F is defined on the circle, and we can solve the Dirichlet problem
for the disc with boundary data f̃ . The solution is given by the Poisson
integral formula

ũ(reiθ) =
1
2π

∫ 2π

0

Pr(θ − ϕ)f̃(eiϕ) dϕ,

where Pr is the Poisson kernel. Then, one can expect that the solution
of the original problem is given by u = ũ ◦ F−1.

Success with this approach requires that we are able to resolve affir-
matively two questions:

• Does there exist a conformal map Φ = F−1 from Ω to D?

• If so, does this map extend to a continuous bijection from the
boundary of Ω to the boundary of D?

The first question, that of existence, is settled by the Riemann mapping
theorem, which we prove in the next section. It is completely general
(assuming only that Ω is a proper subset of C that is simply connected),
and necessitates no regularity of the boundary of Ω. A positive answer
to the second question requires some regularity of ∂Ω. A particular case,
when Ω is the interior of a polygon, is treated below in Section 4.3. (See
Exercise 18 and Problem 6 for more general assertions.)

It is interesting to note that in Riemann’s original approach to the
mapping problem, the chain of implications was reversed: his idea was
that the existence of the conformal map Φ from Ω to D is a consequence
of the solvability of the Dirichlet problem in Ω. He argued as follows.
Suppose we wish to find such a Φ, with the property that a given point
z0 ∈ Ω is mapped to 0. Then Φ must be of the form

Φ(z) = (z − z0)G(z),

where G is holomorphic and non-vanishing in Ω. Hence we can take

Φ(z) = (z − z0)eH(z),

for suitable H. Now if u(z) is the harmonic function given by u = Re(H),
then the fact that |Φ(z)| = 1 on ∂Ω means that u must satisfy the bound-
ary condition u(z) = log(1/|z − z0|) for z ∈ ∂Ω. So if we can find such a
solution u of the Dirichlet problem,4 we can construct H, and from this
the mapping function Φ.

4The harmonic function u(z) is also known as the Green’s function with source z0 for
the region Ω.
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However, there are several shortcomings to this method. First, one
has to verify that Φ is a bijection. In addition, to succeed, this method
requires some regularity of the boundary of Ω. Moreover, one is still
faced with the question of solving the Dirichlet problem for Ω. At this
stage Riemann proposed using the “Dirichlet principle.” But applying
this idea involves difficulties that must be overcome.5

Nevertheless, using different methods, one can prove the existence of
the mapping in the general case. This approach is carried out below in
Section 3.

2 The Schwarz lemma; automorphisms of the disc and

upper half-plane

The statement and proof of the Schwarz lemma are both simple, but the
applications of this result are far-reaching. We recall that a rotation is
a map of the form z 	→ cz with |c| = 1, namely c = eiθ, where θ ∈ R is
called the angle of rotation and is well-defined up to an integer multiple
of 2π.

Lemma 2.1 Let f : D → D be holomorphic with f(0) = 0. Then

(i) |f(z)| ≤ |z| for all z ∈ D.

(ii) If for some z0 �= 0 we have |f(z0)| = |z0|, then f is a rotation.

(iii) |f ′(0)| ≤ 1, and if equality holds, then f is a rotation.

Proof. We first expand f in a power series centered at 0 and conver-
gent in all of D

f(z) = a0 + a1z + a2z
2 + · · · .

Since f(0) = 0 we have a0 = 0, and therefore f(z)/z is holomorphic in
D (since it has a removable singularity at 0). If |z| = r < 1, then since
|f(z)| ≤ 1 we have ∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1
r
,

and by the maximum modulus principle, we can conclude that this is
true whenever |z| ≤ r. Letting r → 1 gives the first result.

For (ii), we see that f(z)/z attains its maximum in the interior of D and
must therefore be constant, say f(z) = cz. Evaluating this expression

5An implementation of Dirichlet’s principle in the present two-dimensional situation is
taken up in Book III.
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at z0 and taking absolute values, we find that |c| = 1. Therefore, there
exists θ ∈ R such that c = eiθ, and that explains why f is a rotation.

Finally, observe that if g(z) = f(z)/z, then |g(z)| ≤ 1 throughout D,
and moreover

g(0) = lim
z→0

f(z)− f(0)
z

= f ′(0).

Hence, if |f ′(0)| = 1, then |g(0)| = 1, and by the maximum principle g is
constant, which implies f(z) = cz with |c| = 1.

Our first application of this lemma is to the determination of the au-
tomorphisms of the disc.

2.1 Automorphisms of the disc

A conformal map from an open set Ω to itself is called an automor-
phism of Ω. The set of all automorphisms of Ω is denoted by Aut(Ω),
and carries the structure of a group. The group operation is composition
of maps, the identity element is the map z 	→ z, and the inverses are sim-
ply the inverse functions. It is clear that if f and g are automorphisms
of Ω, then f ◦ g is also an automorphism, and in fact, its inverse is given
by

(f ◦ g)−1 = g−1 ◦ f−1.

As mentioned above, the identity map is always an automorphism. We
can give other more interesting automorphisms of the unit disc. Obvi-
ously, any rotation by an angle θ ∈ R, that is, rθ : z 	→ eiθz, is an auto-
morphism of the unit disc whose inverse is the rotation by the angle −θ,
that is, r−θ : z 	→ e−iθz. More interesting, are the automorphisms of the
form

ψα(z) =
α− z

1 − αz
, where α ∈ C with |α| < 1.

These mappings, which where introduced in Exercise 7 of Chapter 1,
appear in a number of problems in complex analysis because of their
many useful properties. The proof that they are automorphisms of D is
quite simple. First, observe that since |α| < 1, the map ψα is holomorphic
in the unit disc. If |z| = 1 then z = eiθ and

ψα(eiθ) =
α− eiθ

eiθ(e−iθ − α)
= e−iθw

w
,

where w = α− eiθ, therefore |ψα(z)| = 1. By the maximum modulus
principle, we conclude that |ψα(z)| < 1 for all z ∈ D. Finally we make
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the following very simple observation:

(ψα ◦ ψα) (z) =
α− α−z

1−αz

1 − α α−z
1−αz

=
α− |α|2z − α+ z

1 − αz − |α|2 + αz

=
(1 − |α|2)z
1 − |α|2

= z,

from which we conclude that ψα is its own inverse! Another important
property of ψα is that it vanishes at z = α; moreover it interchanges 0
and α, namely

ψα(0) = α and ψα(α) = 0.

The next theorem says that the rotations combined with the maps ψα

exhaust all the automorphisms of the disc.

Theorem 2.2 If f is an automorphism of the disc, then there exist θ ∈
R and α ∈ D such that

f(z) = eiθ α− z

1 − αz
.

Proof. Since f is an automorphism of the disc, there exists a unique
complex number α ∈ D such that f(α) = 0. Now we consider the au-
tomorphism g defined by g = f ◦ ψα. Then g(0) = 0, and the Schwarz
lemma gives

(2) |g(z)| ≤ |z| for all z ∈ D.

Moreover, g−1(0) = 0, so applying the Schwarz lemma to g−1, we find
that

|g−1(w)| ≤ |w| for all w ∈ D.

Using this last inequality for w = g(z) for each z ∈ D gives

(3) |z| ≤ |g(z)| for all z ∈ D.

Combining (2) and (3) we find that |g(z)| = |z| for all z ∈ D, and by the
Schwarz lemma we conclude that g(z) = eiθz for some θ ∈ R. Replacing
z by ψα(z) and using the fact that (ψα ◦ ψα)(z) = z, we deduce that
f(z) = eiθψα(z), as claimed.

Setting α = 0 in the theorem yields the following result.
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Corollary 2.3 The only automorphisms of the unit disc that fix the ori-
gin are the rotations.

Note that by the use of the mappings ψα, we can see that the group of
automorphisms of the disc acts transitively, in the sense that given any
pair of points α and β in the disc, there is an automorphism ψ mapping
α to β. One such ψ is given by ψ = ψβ ◦ ψα.

The explicit formulas for the automorphisms of D give a good de-
scription of the group Aut(D). In fact, this group of automorphisms is
“almost” isomorphic to a group of 2 × 2 matrices with complex entries
often denoted by SU(1, 1). This group consists of all 2 × 2 matrices that
preserve the hermitian form on C2 × C2 defined by

〈Z,W 〉 = z1w1 − z2w2,

where Z = (z1, z2) and W = (w1, w2). For more information about this
subject, we refer the reader to Problem 4.

2.2 Automorphisms of the upper half-plane

Our knowledge of the automorphisms of D together with the conformal
map F : H → D found in Section 1.1 allow us to determine the group of
automorphisms of H which we denote by Aut(H).

Consider the map

Γ : Aut(D) → Aut(H)

given by “conjugation by F”:

Γ(ϕ) = F−1 ◦ ϕ ◦ F.

It is clear that Γ(ϕ) is an automorphism of H whenever ϕ is an auto-
morphism of D, and Γ is a bijection whose inverse is given by Γ−1(ψ) =
F ◦ ψ ◦ F−1. In fact, we prove more, namely that Γ preserves the oper-
ations on the corresponding groups of automorphisms. Indeed, suppose
that ϕ1, ϕ2 ∈ Aut(D). Since F ◦ F−1 is the identity on D we find that

Γ(ϕ1 ◦ ϕ2) = F−1 ◦ ϕ1 ◦ ϕ2 ◦ F
= F−1 ◦ ϕ1 ◦ F ◦ F−1 ◦ ϕ2 ◦ F
= Γ(ϕ1) ◦ Γ(ϕ2).

The conclusion is that the two groups Aut(D) and Aut(H) are the same,
since Γ defines an isomorphism between them. We are still left with the
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task of giving a description of elements of Aut(H). A series of calcula-
tions, which consist of pulling back the automorphisms of the disc to the
upper half-plane via F , can be used to verify that Aut(H) consists of all
maps

z 	→ az + b

cz + d
,

where a, b, c, and d are real numbers with ad− bc = 1. Again, a matrix
group is lurking in the background. Let SL2(R) denote the group of all
2 × 2 matrices with real entries and determinant 1, namely

SL2(R) =
{
M =

(
a b
c d

)
: a, b, c, d ∈ R and det(M ) = ad− bc=1

}
.

This group is called the special linear group.
Given a matrix M ∈ SL2(R) we define the mapping fM by

fM(z) =
az + b

cz + d
.

Theorem 2.4 Every automorphism of H takes the form fM for some
M ∈ SL2(R). Conversely, every map of this form is an automorphism of
H.

The proof consists of a sequence of steps. For brevity, we denote the
group SL2(R) by G.

Step 1. If M ∈ G, then fM maps H to itself. This is clear from the
observation that

(4) Im(fM(z)) =
(ad− bc)Im(z)

|cz + d|2 =
Im(z)

|cz + d|2 > 0 whenever z ∈ H.

Step 2. If M and M ′ are two matrices in G, then fM ◦ fM ′ = fMM ′ .
This follows from a straightforward calculation, which we omit. As a
consequence, we can prove the first half of the theorem. Each fM is an
automorphism because it has a holomorphic inverse (fM)−1, which is
simply fM−1 . Indeed, if I is the identity matrix, then

(fM ◦ fM−1)(z) = fMM−1(z) = fI(z) = z.

Step 3. Given any two points z and w in H, there exists M ∈ G such
that fM (z) = w, and therefore G acts transitively on H. To prove this,
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it suffices to show that we can map any z ∈ H to i. Setting d = 0 in
equation (4) above gives

Im(fM (z)) =
Im(z)
|cz|2

and we may choose a real number c so that Im(fM (z)) = 1. Next we
choose the matrix

M1 =
(

0 −c−1

c 0

)
so that fM1(z) has imaginary part equal to 1. Then we translate by a
matrix of the form

M2 =
(

1 b
0 1

)
with b ∈ R,

to bring fM1(z) to i. Finally, the map fM with M = M2M1 takes z to i.
Step 4. If θ is real, then the matrix

Mθ =
(

cos θ − sin θ
sin θ cos θ

)
belongs to G, and if F : H → D denotes the standard conformal map, then
F ◦ fMθ

◦ F−1 corresponds to the rotation of angle −2θ in the disc. This
follows from the fact that F ◦ fMθ

= e−2iθF (z), which is easily verified.
Step 5. We can now complete the proof of the theorem. We suppose

f is an automorphism of H with f(β) = i, and consider a matrix N ∈ G
such that fN (i) = β. Then g = f ◦ fN satisfies g(i) = i, and therefore
F ◦ g ◦ F−1 is an automorphism of the disc that fixes the origin. So
F ◦ g ◦ F−1 is a rotation, and by Step 4 there exists θ ∈ R such that

F ◦ g ◦ F−1 = F ◦ fMθ
◦ F−1.

Hence g = fMθ
, and we conclude that f = fMθN−1 which is of the desired

form.

A final observation is that the group Aut(H) is not quite isomorphic
with SL2(R). The reason for this is because the two matrices M and −M
give rise to the same function fM = f−M . Therefore, if we identify the
two matrices M and −M , then we obtain a new group PSL2(R) called
the projective special linear group; this group is isomorphic with
Aut(H).
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3 The Riemann mapping theorem

3.1 Necessary conditions and statement of the theorem

We now come to the promised cornerstone of this chapter. The basic
problem is to determine conditions on an open set Ω that guarantee the
existence of a conformal map F : Ω → D.

A series of simple observations allow us to find necessary conditions
on Ω. First, if Ω = C there can be no conformal map F : Ω → D, since
by Liouville’s theorem F would have to be a constant. Therefore, a
necessary condition is to assume that Ω �= C. Since D is connected, we
must also impose the requirement that Ω be connected. There is still
one more condition that is forced upon us: since D is simply connected,
the same must be true of Ω (see Exercise 3). It is remarkable that
these conditions on Ω are also sufficient to guarantee the existence of a
biholomorpism from Ω to D.

For brevity, we shall call a subset Ω of C proper if it is non-empty
and not the whole of C.

Theorem 3.1 (Riemann mapping theorem) Suppose Ω is proper and
simply connected. If z0 ∈ Ω, then there exists a unique conformal map
F : Ω → D such that

F (z0) = 0 and F ′(z0) > 0.

Corollary 3.2 Any two proper simply connected open subsets in C are
conformally equivalent.

Clearly, the corollary follows from the theorem, since we can use as
an intermediate step the unit disc. Also, the uniqueness statement in
the theorem is straightforward, since if F and G are conformal maps
from Ω to D that satisfy these two conditions, then H = F ◦G−1 is an
automorphism of the disc that fixes the origin. Therefore H(z) = eiθz,
and since H ′(0) > 0, we must have eiθ = 1, from which we conclude that
F = G.

The rest of this section is devoted to the proof of the existence of the
conformal map F . The idea of the proof is as follows. We consider all
injective holomorphic maps f : Ω → D with f(z0) = 0. From these we
wish to choose an f so that its image fills out all of D, and this can be
achieved by making f ′(z0) as large as possible. In doing this, we shall
need to be able to extract f as a limit from a given sequence of functions.
We turn to this point first.
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3.2 Montel’s theorem

Let Ω be an open subset of C. A family F of holomorphic functions on
Ω is said to be normal if every sequence in F has a subsequence that
converges uniformly on every compact subset of Ω (the limit need not be
in F).

The proof that a family of functions is normal is, in practice, the con-
sequence of two related properties, uniform boundedness and equiconti-
nuity. These we shall now define.

The family F is said to be uniformly bounded on compact subsets
of Ω if for each compact set K ⊂ Ω there exists B > 0, such that

|f(z)| ≤ B for all z ∈ K and f ∈ F .

Also, the family F is equicontinuous on a compact set K if for every
ε > 0 there exists δ > 0 such that whenever z, w ∈ K and |z − w| < δ,
then

|f(z) − f(w)| < ε for all f ∈ F .

Equicontinuity is a strong condition, which requires uniform continuity,
uniformly in the family. For instance, any family of differentiable func-
tions on [0, 1] whose derivatives are uniformly bounded is equicontinuous.
This follows directly from the mean value theorem. On the other hand,
note that the family {fn} on [0, 1] given by fn(x) = xn is not equicon-
tinuous since for any fixed 0 < x0 < 1 we have |fn(1) − fn(x0)| → 1 as n
tends to infinity.

The theorem that follows puts together these new concepts and is an
important ingredient in the proof of the Riemann mapping theorem.

Theorem 3.3 Suppose F is a family of holomorphic functions on Ω that
is uniformly bounded on compact subsets of Ω. Then:

(i) F is equicontinuous on every compact subset of Ω.

(ii) F is a normal family.

The theorem really consists of two separate parts. The first part says
that F is equicontinuous under the assumption that F is a family of
holomorphic functions that is uniformly bounded on compact subsets of
Ω. The proof follows from an application of the Cauchy integral formula
and hence relies on the fact that F consists of holomorphic functions.
This conclusion is in sharp contrast with the real situation as illustrated
by the family of functions given by fn(x) = sin(nx) on (0, 1), which is
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uniformly bounded. However, this family is not equicontinuous and has
no convergent subsequence on any compact subinterval of (0, 1).

The second part of the theorem is not complex-analytic in nature.
Indeed, the fact that F is a normal family follows from assuming only
that F is uniformly bounded and equicontinuous on compact subsets of
Ω. This result is sometimes known as the Arzela-Ascoli theorem and its
proof consists primarily of a diagonalization argument.

We are required to prove convergence on arbitrary compact subsets of
Ω, therefore it is useful to introduce the following notion. A sequence
{K}∞=1 of compact subsets of Ω is called an exhaustion if

(a) K is contained in the interior of K+1 for all � = 1, 2, . . ..

(b) Any compact setK ⊂ Ω is contained inK for some �. In particular

Ω =
∞⋃

=1

K.

Lemma 3.4 Any open set Ω in the complex plane has an exhaustion.

Proof. If Ω is bounded, we let K denote the set of all points in Ω
at distance ≥ 1/� from the boundary of Ω. If Ω is not bounded, let K

denote the same set as above except that we also require |z| ≤ � for all
z ∈ K.

We may now begin the proof of Montel’s theorem. Let K be a compact
subset of Ω and choose r > 0 so small that D3r(z) is contained in Ω for
all z ∈ K. It suffices to choose r so that 3r is less than the distance
from K to the boundary of Ω. Let z, w ∈ K with |z − w| < r, and let
γ denote the boundary circle of the disc D2r(w). Then, by Cauchy’s
integral formula, we have

f(z) − f(w) =
1

2πi

∫
γ

f(ζ)
[

1
ζ − z

− 1
ζ − w

]
dζ.

Observe that ∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ = |z − w|
|ζ − z| |ζ − w| ≤

|z − w|
r2

since ζ ∈ γ and |z − w| < r. Therefore

|f(z) − f(w)| ≤ 1
2π

2πr
r2

B|z − w|,
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where B denotes the uniform bound for the family F in the compact
set consisting of all points in Ω at a distance ≤ 2r from K. Therefore
|f(z) − f(w)| < C|z − w|, and this estimate is true for all z, w ∈ K with
|z − w| < r and f ∈ F ; thus this family is equicontinuous, as was to be
shown.

To prove the second part of the theorem, we argue as follows. Let
{fn}∞n=1 be a sequence in F and K a compact subset of Ω. Choose a
sequence of points {wj}∞j=1 that is dense in Ω. Since {fn} is uniformly
bounded, there exists a subsequence {fn,1} = {f1,1, f2,1, f3,1, . . .} of {fn}
such that fn,1(w1) converges.

From {fn,1} we can extract a subsequence {fn,2} = {f1,2, f2,2, f3,2, . . .}
so that fn,2(w2) converges. We may continue this process, and extract a
subsequence {fn,j} of {fn,j−1} such that fn,j(wj) converges.

Finally, let gn = fn,n and consider the diagonal subsequence {gn}. By
construction, gn(wj) converges for each j, and we claim that equiconti-
nuity implies that gn converges uniformly on K. Given ε > 0, choose δ
as in the definition of equicontinuity, and note that for some J , the set
K is contained in the union of the discs Dδ(w1), . . . , Dδ(wJ ). Pick N so
large that if n,m > N , then

|gm(wj) − gn(wj)| < ε for all j = 1, . . . , J.

So if z ∈ K, then z ∈ Dδ(wj) for some 1 ≤ j ≤ J . Therefore,

|gn(z)− gm(z)| ≤ |gn(z)− gn(wj)| + |gn(wj) − gm(wj)|+

+ |gm(wj) − gm(z)| < 3ε

whenever n,m > N . Hence {gn} converges uniformly on K.
Finally, we need one more diagonalization argument to obtain a sub-

sequence that converges uniformly on every compact subset of Ω. Let
K1 ⊂ K2 ⊂ · · · ⊂ K ⊂ · · · be an exhaustion of Ω, and suppose {gn,1} is
a subsequence of the original sequence {fn} that converges uniformly on
K1. Extract from {gn,1} a subsequence {gn,2} that converges uniformly
on K2, and so on. Then, {gn,n} is a subsequence of {fn} that converges
uniformly on every K and since the K exhaust Ω, the sequence {gn,n}
converges uniformly on any compact subset of Ω, as was to be shown.

We need one further result before we can give the proof of the Riemann
mapping theorem.

Proposition 3.5 If Ω is a connected open subset of C and {fn} a se-
quence of injective holomorphic functions on Ω that converges uniformly
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on every compact subset of Ω to a holomorphic function f , then f is
either injective or constant.

Proof. We argue by contradiction and suppose that f is not injective,
so there exist distinct complex numbers z1 and z2 in Ω such that f(z1) =
f(z2). Define a new sequence by gn(z) = fn(z)− fn(z1), so that gn has
no other zero besides z1, and the sequence {gn} converges uniformly on
compact subsets of Ω to g(z) = f(z) − f(z1). If g is not identically zero,
then z2 is an isolated zero for g (because Ω is connected); therefore

1 =
1

2πi

∫
γ

g′(ζ)
g(ζ)

dζ,

where γ is a small circle centered at z2 chosen so that g does not vanish
on γ or at any point of its interior besides z2. Therefore, 1/gn converges
uniformly to 1/g on γ, and since g′n → g′ uniformly on γ we have

1
2πi

∫
γ

g′n(ζ)
gn(ζ)

dζ → 1
2πi

∫
γ

g′(ζ)
g(ζ)

dζ.

But this is a contradiction since gn has no zeros inside γ, and hence

1
2πi

∫
γ

g′n(ζ)
gn(ζ)

dζ = 0 for all n .

3.3 Proof of the Riemann mapping theorem

Once we have established the technical results above, the rest of the
proof of the Riemann mapping theorem is very elegant. It consists of
three steps, which we isolate.

Step 1. Suppose that Ω is a simply connected proper open subset of
C. We claim that Ω is conformally equivalent to an open subset of the
unit disc that contains the origin. Indeed, choose a complex number α
that does not belong to Ω, (recall that Ω is proper), and observe that
z − α never vanishes on the simply connected set Ω. Therefore, we can
define a holomorphic function

f(z) = log(z − α)

with the desired properties of the logarithm. As a consequence one has,
ef(z) = z − α, which proves in particular that f is injective. Pick a point
w ∈ Ω, and observe that

f(z) �= f(w) + 2πi for all z ∈ Ω
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for otherwise, we exponentiate this relation to find that z = w, hence
f(z) = f(w), a contradiction. In fact, we claim that f(z) stays strictly
away from f(w) + 2πi, in the sense that there exists a disc centered at
f(w) + 2πi that contains no points of the image f(Ω). Otherwise, there
exists a sequence {zn} in Ω such that f(zn) → f(w) + 2πi. We exponen-
tiate this relation, and, since the exponential function is continuous, we
must have zn → w. But this implies f(zn) → f(w), which is a contra-
diction. Finally, consider the map

F (z) =
1

f(z) − (f(w) + 2πi)
.

Since f is injective, so is F , hence F : Ω → F (Ω) is a conformal map.
Moreover, by our analysis, F (Ω) is bounded. We may therefore translate
and rescale the function F in order to obtain a conformal map from Ω
to an open subset of D that contains the origin.

Step 2. By the first step, we may assume that Ω is an open subset of D

with 0 ∈ Ω. Consider the family F of all injective holomorphic functions
on Ω that map into the unit disc and fix the origin:

F = {f : Ω → D holomorphic, injective and f(0) = 0}.

First, note that F is non-empty since it contains the identity. Also,
this family is uniformly bounded by construction, since all functions are
required to map into the unit disc.

Now, we turn to the question of finding a function f ∈ F that max-
imizes |f ′(0)|. First, observe that the quantities |f ′(0)| are uniformly
bounded as f ranges in F . This follows from the Cauchy inequality
(Corollary 4.3 in Chapter 2) for f ′ applied to a small disc centered at
the origin.

Next, we let

s = sup
f∈F

|f ′(0)|,

and we choose a sequence {fn} ⊂ F such that |f ′n(0)| → s as n→ ∞. By
Montel’s theorem (Theorem 3.3), this sequence has a subsequence that
converges uniformly on compact sets to a holomorphic function f on Ω.
Since s ≥ 1 (because z 	→ z belongs to F), f is non-constant, hence injec-
tive, by Proposition 3.5. Also, by continuity we have
|f(z)| ≤ 1 for all z ∈ Ω and from the maximum modulus principle we
see that |f(z)| < 1. Since we clearly have f(0) = 0, we conclude that
f ∈ F with |f ′(0)| = s.
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Step 3. In this last step, we demonstrate that f is a conformal map
from Ω to D. Since f is already injective, it suffices to prove that f is
also surjective. If this were not true, we could construct a function in F
with derivative at 0 greater than s. Indeed, suppose there exists α ∈ D

such that f(z) �= α, and consider the automorphism ψα of the disc that
interchanges 0 and α, namely

ψα(z) =
α− z

1 − αz
.

Since Ω is simply connected, so is U = (ψα ◦ f)(Ω), and moreover, U
does not contain the origin. It is therefore possible to define a square
root function on U by

g(w) = e
1
2 log w.

Next, consider the function

F = ψg(α) ◦ g ◦ ψα ◦ f.

We claim that F ∈ F . Clearly F is holomorphic and it maps 0 to 0.
Also F maps into the unit disc since this is true of each of the functions
in the composition. Finally, F is injective. This is clearly true for the
automorphisms ψα and ψg(α); it is also true for the square root g and
the function f , since the latter is injective by assumption. If h denotes
the square function h(w) = w2, then we must have

f = ψ−1
α ◦ h ◦ ψ−1

g(α) ◦ F = Φ ◦ F.

But Φ maps D into D with Φ(0) = 0, and is not injective because F is
and h is not. By the last part of the Schwarz lemma, we conclude that
|Φ′(0)| < 1. The proof is complete once we observe that

f ′(0) = Φ′(0)F ′(0),

and thus

|f ′(0)| < |F ′(0)|,

contradicting the maximality of |f ′(0)| in F .
Finally, we multiply f by a complex number of absolute value 1 so

that f ′(0) > 0, which ends the proof.

For a variant of this proof, see Problem 7.
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Remark. It is worthwhile to point out that the only places where
the hypothesis of simple-connectivity entered in the proof were in the
uses of the logarithm and the square root. Thus it would have suf-
ficed to have assumed (in addition to the hypothesis that Ω is proper)
that Ω is holomorphically simply connected in the sense that for
any holomorphic function f in Ω and any closed curve γ in Ω, we have∫

γ
f(z) dz = 0. Further discussion of this point, and various equivalent

properties of simple-connectivity, are given in Appendix B.

4 Conformal mappings onto polygons

The Riemann mapping theorem guarantees the existence of a conformal
map from any proper, simply connected open set to the disc, or equiv-
alently to the upper half-plane, but this theorem gives little insight as
to the exact form of this map. In Section 1 we gave various explicit
formulas in the case of regions that have symmetries, but it is of course
unreasonable to ask for an explicit formula in the general case. There
is, however, another class of open sets for which there are nice formulas,
namely the polygons. Our aim in this last section is to give a proof of
the Schwarz-Christoffel formula, which describes the nature of conformal
maps from the disc (or upper half-plane) to polygons.

4.1 Some examples

We begin by studying some motivating examples. The first two corre-
spond to easy (but infinite and degenerate) cases.

Example 1. First, we investigate the conformal map from the upper
half-plane to the sector {z : 0 < arg z < απ}, with 0 < α < 2, given in
Section 1 by f(z) = zα. Anticipating the Schwarz-Christoffel formula
below, we write

zα = f(z) =
∫ z

0

f ′(ζ) dζ = α

∫ z

0

ζ−β dζ

with α+ β = 1, and where the integral is taken along any path in the
upper half-plane. In fact, by continuity and Cauchy’s theorem, we may
take the path of integration to lie in the closure of the upper half-plane.
Although the behavior of f follows immediately from the original defi-
nition, we study it in terms of the integral expression above, since this
provides insight for the general case treated later.

Note first that ζ−β is integrable near 0 since β < 1, therefore f(0) = 0.
Observe that when z is real and positive (z = x), then f ′(x) = αxα−1 is
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positive; also it is not finitely integrable at ∞. Therefore, as x travels
from 0 to ∞, we see that f(x) increases from 0 to ∞, thus f maps [0,∞)
to [0,∞). On the other hand, when z = x is negative, then

f ′(z) = α|x|α−1eiπ(α−1) = −α|x|α−1eiπα ,

so f maps the segment (−∞, 0] to (eiπα∞, 0]. The situation is illustrated
in Figure 3 where the infinite segment A is mapped to A′ and the segment
B is mapped to B′, with the direction of travel indicated in Figure 3.

B′

A′

0A B0

Figure 3. The conformal map zα

Example 2. Next, we consider for z ∈ H,

f(z) =
∫ z

0

dζ

(1 − ζ2)1/2
,

where the integral is taken from 0 to z along any path in the closed
upper half-plane. We choose the branch for (1 − ζ2)1/2 that makes it
holomorphic in the upper half-plane and positive when −1 < ζ < 1. As
a result

(1 − ζ2)−1/2 = i(ζ2 − 1)−1/2 when ζ > 1.

We observe that f maps the real line to the boundary of the half-strip
pictured in Figure 4.

In fact, since f(±1) = ±π/2, and f ′(x) > 0 if −1 < x < 1, we see that
f maps the segment B to B′. Moreover

f(x) =
π

2
+
∫ x

1

f ′(x) dx when x > 1, and
∫ ∞

1

dx

(x2 − 1)1/2
= ∞.

Thus, as x travels along the segment C, the image traverses the infinite
segment C′. Similarly segment A is mapped to A′.

Note the connection of this example with Example 8 in Section 1.2. In
fact, one can show that the function f(z) is the inverse to the function
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A′

B′

C′

π
2

−π
2

CA B

−1 1

Figure 4. Mapping of the boundary in Example 2

sin z, and hence f takes H conformally to the interior of the half-strip
bounded by the segments A′, B′, and C′.

Example 3. Here we take

f(z) =
∫ z

0

dζ

[(1 − ζ2)(1 − k2ζ2)]1/2
, z ∈ H,

where k is a fixed real number with 0 < k < 1 (the branch of
[(1 − ζ2) (1 − k2ζ2)]1/2 in the upper half-plane is chosen to be the one
that is positive when ζ is real and −1 < ζ < 1). Integrals of this kind
are called elliptic integrals, because variants of these arise in the cal-
culation of the arc-length of an ellipse. We shall observe that f maps the
real axis onto the rectangle shown in Figure 5(b), where K and K′ are
determined by

K =
∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
, K′ =

∫ 1/k

1

dx

[(x2 − 1)(1 − k2x2)]1/2
.

We divide the real axis into four “segments,” with division points
−1/k, −1, 1, and 1/k (see Figure 5(a)). The segments are [−1/k,−1],
[−1, 1], [1, 1/k], and [1/k,−1/k], the last consisting of the union of the
two half-segments [1/k,∞) and (−∞,−1/k]. It is clear from the defini-
tions that f(±1) = ±K, and since f ′(x) > 0, when −1 < x < 1, it follows
that f maps the segment [−1, 1] to [−K,K]. Moreover, since

f(z) = K +
∫ x

1

dζ

[(1 − ζ2)(1 − k2ζ2)]1/2
if 1 < x < 1/k,
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(b)(a)
−1 1/k

A C ED

−1/k

B

1
K

K + iK ′

D′

C′

−K + iK ′ A′

B′

E′

−K

Figure 5. Mapping of the boundary in Example 3

we see that f maps the segment [1, 1/k] to [K,K + iK′], where K′ was
defined above. Similarly, f maps [−1/k,−1] to [−K + iK′,−K]. Next,
when x > 1/k we have

f ′(x) = − 1
[(x2 − 1)(k2x2 − 1)]1/2

,

and therefore,

f(x) = K + iK′ −
∫ x

1/k

dx

[(x2 − 1)(k2x2 − 1)]1/2
.

However,∫ ∞

1/k

dx

[(x2 − 1)(k2x2 − 1)]1/2
=
∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
,

as can be seen by making the change of variables x = 1/ku in the in-
tegral on the left. Thus f maps the segment [1/k,∞) to the segment
[K + iK′, iK′). Similarly f maps (−∞,−1/k] to [−K + iK′, iK′). Al-
together, then, f maps the real axis to the above rectangle, with the
point at infinity corresponding to the mid-point of the upper side of the
rectangle.

The results obtained so far lead naturally to two problems.
The first, which we pursue next, consists of a generalization of the

above examples. More precisely we define the Schwarz-Christoffel inte-
gral and prove that it maps the real line to a polygonal line.

Second, we note that in the examples above little was inferred about
the behavior of f in H itself. In particular, we have not shown that f
maps H conformally to the interior of the corresponding polygon. Af-
ter a careful study of the boundary behavior of conformal maps, we
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prove a theorem that guarantees that the conformal map from the upper
half-plane to a simply connected region bounded by a polygonal line is
essentially given by a Schwarz-Christoffel integral.

4.2 The Schwarz-Christoffel integral

With the examples of the previous section in mind, we define the general
Schwarz-Christoffel integral by

(5) S(z) =
∫ z

0

dζ

(ζ −A1)β1 · · · (ζ −An)βn
.

Here A1 < A2 < · · · < An are n distinct points on the real axis arranged
in increasing order. The exponents βk will be assumed to satisfy the
conditions βk < 1 for each k and 1 <

∑n
k=1 βk.6

The integrand in (5) is defined as follows: (z −Ak)βk is that branch
(defined in the complex plane slit along the infinite ray {Ak + iy : y ≤ 0})
which is positive when z = x is real and x > Ak. As a result

(z −Ak)βk =

{
(x−Ak)βk if x is real and x > Ak,
|x−Ak|βkeiπβk if x is real and x < Ak.

The complex plane slit along the union of the rays ∪n
k=1{Ak + iy : y ≤ 0}

is simply connected (see Exercise 19), so the integral that defines S(z) is
holomorphic in this open set. Since the requirement βk < 1 implies that
the singularities (ζ −Ak)−βk are integrable near Ak, the function S is
continuous up to the real line, including the points Ak, with k = 1, . . . , n.
Finally, this continuity condition implies that the integral can be taken
along any path in the complex plane that avoids the union of the open
slits ∪n

k=1{Ak + iy : y < 0}.
Now ∣∣∣∣∣

n∏
k=1

(ζ −Ak)−βk

∣∣∣∣∣ ≤ c|ζ|−
∑

βk

for |ζ| large, so the assumption
∑
βk > 1 guarantees the convergence of

the integral (5) at infinity. This fact and Cauchy’s theorem imply that
limr→∞ S(reiθ) exists and is independent of the angle θ, 0 ≤ θ ≤ π. We
call this limit a∞, and we let ak = S(Ak) for k = 1, . . . , n.

6Note that the case
∑
βk ≤ 1, which occurs in Examples 1 and 2 above is excluded.

However, a modification of the proposition that follows can be made to take these cases
into account; but then S(z) is no longer bounded in the upper half-plane.
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Proposition 4.1 Suppose S(z) is given by (5).

(i) If
∑n

k=1 βk = 2, and p denotes the polygon whose vertices are given
(in order) by a1, . . . , an, then S maps the real axis onto p − {a∞}.
The point a∞ lies on the segment [an, a1] and is the image of the
point at infinity. Moreover, the (interior) angle at the vertex ak is
αkπ where αk = 1 − βk.

(ii) There is a similar conclusion when 1 <
∑n

k=1 βk < 2, except now
the image of the extended line is the polygon of n+ 1 sides with
vertices a1, a2, . . . , an, a∞. The angle at the vertex a∞ is α∞π
with α∞ = 1 − β∞, where β∞ = 2 −

∑n
k=1 βk.

Figure 6 illustrates the proposition. The idea of the proof is already
captured in Example 1 above.

ak

an

∑
βk = 2

Ak

R

ak

ana1 a∞

p

p

1 <
∑
βk < 2

AnA1

a1

a∞

Figure 6. Action of the integral S(z)

Proof. We assume that
∑n

k=1 βk = 2. If Ak < x < Ak+1 when
1 ≤ k ≤ n− 1, then

S′(x) =
∏
j≤k

(x− Aj)−βj

∏
j>k

(x−Aj)−βj .
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Hence

argS′(x) = arg

(∏
j>k

(x− Aj)−βj

)
= arg

∏
j>k

e−iπβj = −π
∑
j>k

βj ,

which of course is constant when x traverses the interval (Ak, Ak+1).
Since

S(x) = S(Ak) +
∫ x

Ak

S′(y) dy,

we see that as x varies from Ak to Ak+1, S(x) varies from S(Ak) =
ak to S(Ak+1) = ak+1 along the straight line segment7 [ak, ak+1], and
this makes an angle of −π

∑
j>k βj with the real axis. Similarly, when

An < x then S′(x) is positive, while if x < A1, the argument of S′(x)
is −π

∑n
k=1 βk = −2π, and so S′(x) is again positive. Thus as x varies

on [An,+∞), S(x) varies along a straight line (parallel to the x-axis)
between an and a∞; similarly S(x) varies along a straight line (parallel
to that axis) between a∞ and a1 as x varies in (−∞, A1]. Moreover, the
union of [an, a∞) and (a∞, a1] is the segment [an, a1] with the point a∞
removed.

Now the increase of the angle of [ak+1, ak] over that of [ak−1, ak] is
πβk, which means that the angle at the vertex ak is παk. The proof
when 1 <

∑n
k=1 βk < 2 is similar, and is left to the reader.

As elegant as this proposition is, it does not settle the problem of
finding a conformal map from the half-plane to a given region P that is
bounded by a polygon. There are two reasons for this.

1. It is not true for general n and generic choices of A1, . . . , An, that
the polygon (which is the image of the real axis under S) is simple,
that is, it does not cross itself. Nor is it true in general that the
mapping S is conformal on the upper half-plane.

2. Neither does the proposition show that starting with a simply con-
nected region P (whose boundary is a polygonal line p) the mapping
S is, for certain choices of A1, . . . , An and simple modifications, a
conformal map from H to P . That however is the case, and is the
result whose proof we now turn to.

7We denote the closed straight line segment between two complex numbers z and w
by [z,w], that is, [z,w] = {(1 − t)z + tw : t ∈ [0, 1]}. If we restrict 0 < t < 1, then (z,w)
denotes the open line segment between z and w. Similarly for the half-open segments
[z,w) and (z,w] obtained by restricting 0 ≤ t < 1 and 0 < t ≤ 1, respectively.
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4.3 Boundary behavior

In what follows we shall consider a polygonal region P , namely a
bounded, simply connected open set whose boundary is a polygonal line
p. In this context, we always assume that the polygonal line is closed,
and we sometimes refer to p as a polygon.

To study conformal maps from the half-plane H to P , we consider first
the conformal maps from the disc D to P , and their boundary behavior.

Theorem 4.2 If F : D → P is a conformal map, then F extends to a
continuous bijection from the closure D of the disc to the closure P of
the polygonal region. In particular, F gives rise to a bijection from the
boundary of the disc to the boundary polygon p.

The main point consists in showing that if z0 belongs to the unit circle,
then limz→z0 F (z) exists. To prove this, we need a preliminary result,
which uses the fact that if f : U → f(U ) is conformal, then

Area(f(U )) =
∫ ∫

U

|f ′(z)|2 dx dy.

This assertion follows from the definition, Area(f(U )) =
∫∫

f(U)
dx dy,

and the fact that the determinant of the Jacobian in the change of vari-
ables w = f(z) is simply |f ′(z)|2, an observation we made in equation (4),
Section 2.2, Chapter 1.

Lemma 4.3 For each 0 < r < 1/2, let Cr denote the circle centered at
z0 of radius r. Suppose that for all sufficiently small r we are given
two points zr and z′r in the unit disc that also lie on Cr. If we let
ρ(r) = |f(zr) − f(z′r)|, then there exists a sequence {rn} of radii that
tends to zero, and such that limn→∞ ρ(rn) = 0.

Proof. If not, there exist 0 < c and 0 < R < 1/2 such that c ≤ ρ(r)
for all 0 < r ≤ R. Observe that

f(zr) − f(z′r) =
∫

α

f ′(ζ) dζ,

where the integral is taken over the arc α on Cr that joins zr and z′r in
D. If we parametrize this arc by z0 + reiθ with θ1(r) ≤ θ ≤ θ2(r), then

ρ(r) ≤
∫ θ2(r)

θ1(r)

|f ′(z)|r dθ.
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We now apply the Cauchy-Schwarz inequality to see that

ρ(r) ≤
(∫ θ2(r)

θ1(r)

|f ′(z)|2r dθ
)1/2(∫ θ2(r)

θ1(r)

r dθ

)1/2

.

Squaring both sides and dividing by r yields

ρ(r)2

r
≤ 2π

∫ θ2(r)

θ1(r)

|f ′(z)|2r dθ.

We may now integrate both sides from 0 to R, and since c ≤ ρ(r) on that
region we obtain

c2
∫ R

0

dr

r
≤ 2π

∫ R

0

∫ θ2(r)

θ1(r)

|f ′(z)|2r dθdr ≤ 2π
∫ ∫

D

|f ′(z)|2 dxdy.

Now the left-hand side is infinite because 1/r is not integrable near the
origin, and the right-hand side is bounded because the area of the polyg-
onal region is bounded, so this yields the desired contradiction and con-
cludes the proof of the lemma.

Lemma 4.4 Let z0 be a point on the unit circle. Then F (z) tends to a
limit as z approaches z0 within the unit disc.

Proof. If not, there are two sequences {z1, z2, . . .} and {z′1, z′2, . . .}
in the unit disc that converge to z0 and are so that F (zn) and F (z′n)
converge to two distinct points ζ and ζ′ in the closure of P . Since F
is conformal, the points ζ and ζ′ must lie on the boundary p of P . We
may therefore choose two disjoint discs D and D′ centered at ζ and ζ′,
respectively, that are at a distance d > 0 from each other. For all large
n, F (zn) ∈ D and F (z′n) ∈ D′. Therefore, there exist two continuous
curves8 Λ and Λ′ in D ∩ P and D′ ∩ P , respectively, with F (zn) ∈ Λ and
F (z′n) ∈ Λ′ for all large n, and with the end-points of Λ and Λ′ equal to
ζ and ζ′, respectively.

Define λ = F−1(Λ) and λ′ = F−1(Λ′). Then λ and λ′ are two continu-
ous curves in D. Moreover, both λ and λ′ contain infinitely many points
in each sequence {zn} and {z′n}. Recall that these sequences converge to
z0. By continuity, the circle Cr centered at z0 and of radius r will inter-
sect λ and λ′ for all small r, say at some points zr ∈ λ and z′r ∈ λ′. This

8By a continuous curve, we mean the image of a continuous (not necessarily piecewise-
smooth) function from a closed interval [a, b] to C.
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Figure 7. Illustration for the proof of Lemma 4.4

contradicts the previous lemma, because |F (zr) − F (z′r)| > d. Therefore
F (z) converges to a limit on p as z approaches z0 from within the unit
disc, and the proof is complete.

Lemma 4.5 The conformal map F extends to a continuous function
from the closure of the disc to the closure of the polygon.

Proof. By the previous lemma, the limit

lim
z→z0

F (z)

exists, and we define F (z0) to be the value of this limit. There re-
mains to prove that F is continuous on the closure of the unit disc.
Given ε, there exists δ such that whenever z ∈ D and |z − z0| < δ, then
|F (z) − F (z0)| < ε. Now if z belongs to the boundary of D and
|z − z0| < δ, then we may choose w such that |F (z) − F (w)| < ε and
|w − z0| < δ. Therefore

|F (z) − F (z0)| ≤ |F (z) − F (w)| + |F (w) − F (z0)| < 2ε,

and the lemma is established.

We may now complete the proof of the theorem. We have shown that
F extends to a continuous function from D to P . The previous argument
can be applied to the inverse G of F . Indeed, the key geometric property
of the unit disc that we used was that if z0 belongs to the boundary of
D, and C is any small circle centered at z0, then C ∩ D consists of an
arc. Clearly, this property also holds at every boundary point of the
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polygonal region P . Therefore, G also extends to a continuous function
from P to D. It suffices to now prove that the extensions of F and G
are inverses of each other. If z ∈ ∂D and {zk} is a sequence in the disc
that converges to z, then G(F (zk)) = zk, so after taking the limit and
using the fact that F is continuous, we conclude that G(F (z)) = z for all
z ∈ D. Similarly, F (G(w)) = w for all w ∈ P , and the theorem is proved.

The circle of ideas used in this proof can be used to prove more general
theorems on the boundary continuity of conformal maps. See Exercise 18
and Problem 6 below.

4.4 The mapping formula

Suppose P is a polygonal region bounded by a polygon p whose vertices
are ordered consecutively a1, a2, . . . , an, and with n ≥ 3. We denote by
παk the interior angle at ak, and define the exterior angle πβk by αk +
βk = 1. A simple geometric argument provides

∑n
k=1 βk = 2.

We shall consider conformal mappings of the half-plane H to P , and
make use of the results of the previous section regarding conformal maps
from the disc D to P . The standard correspondences w = (i− z)/(i+ z),
z = i(1 − w)/(1 + w) allows us to go back and forth between z ∈ H and
w ∈ D. Notice that the boundary point w = −1 of the circle corresponds
to the point at infinity on the line, and so the conformal map of H to
D extends to a continuous bijection of the boundary of H, which for the
purpose of this discussion includes the point at infinity.

Let F be a conformal map from H to P . (Its existence is guaranteed by
the Riemann mapping theorem and the previous discussion.) We assume
first that none of the vertices of p correspond to the point at infinity.
Therefore, there are real numbers A1, A2, . . . , An so that F (Ak) = ak for
all k. Since F is continuous and injective, and the vertices are numbered
consecutively, we may conclude that the Ak’s are in either increasing
or decreasing order. After relabeling the vertices ak and the points Ak,
we may assume that A1 < A2 < · · · < An. These points divide the real
line into n− 1 segments [Ak, Ak+1], 1 ≤ k ≤ n− 1, and the segment that
consists of the join of the two half-segments (−∞, A1] ∪ [An,∞). These
are mapped bijectively onto the corresponding sides of the polygon, that
is, the segments [ak, ak+1], 1 ≤ k ≤ n− 1, and [an, a1] (see Figure 8).

Theorem 4.6 There exist complex numbers c1 and c2 so that the con-
formal map F of H to P is given by

F (z) = c1S(z) + c2

where S is the Schwarz-Christoffel integral introduced in Section 4.2.
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Figure 8. The mapping F

Proof. We first consider z in the upper half-plane lying above the
two adjacent segments [Ak−1, Ak] and [Ak, Ak+1], where 1 < k < n. We
note that F maps these two segments to two segments that intersect at
ak = F (Ak) at an angle παk.

By choosing a branch of the logarithm we can in turn define

hk(z) = (F (z) − ak)1/αk

for all z in the half-strip in the upper half-plane bounded by the lines
Re(z) = Ak−1 and Re(z) = Ak+1. Since F continues to the boundary of
H, the map hk is actually continuous up to the segment (Ak−1, Ak+1)
on the real line. By construction hk will map the segment [Ak−1, Ak+1]
to a (straight) segment Lk in the complex plane, with Ak mapped to
0. We may therefore apply the Schwarz reflection principle to see that
hk is analytically continuable to a holomorphic function in the two-way
infinite strip Ak−1 < Re(z) < Ak+1 (see Figure 9). We claim that h′k
never vanishes in that strip. First, if z belongs to the open upper half-
strip, then

F ′(z)
F (z) − F (Ak)

= αk
h′k(z)
hk(z)

,

and since F is conformal, we have F ′(z) �= 0 so h′k(z) �= 0 (Proposi-
tion 1.1). By reflection, this also holds in the lower half-strip, and it
remains to investigate points on the segment (Ak−1, Ak+1). If Ak−1 <
x < Ak+1, we note that the image under hk of a small half-disc centered
at x and contained in H lies on one side of the straight line segment



4. Conformal mappings onto polygons 243

AkAk−1 Ak+1

Figure 9. Schwarz reflection

Lk. Since hk is injective up to Lk (because F is) the symmetry in the
Schwarz reflection principle guarantees that hk is injective in the whole
disc centered at x, whence h′k(x) �= 0, whence h′k(z) �= 0 for all z in the
strip Ak−1 < Re(z) < Ak+1.

Now because F ′ = αkh
−βk

k h′k and F ′′ = −βkαkh
−βk−1
k (h′k)2 +

αkh
−βk

k h′′k , the fact that h′k(z) �= 0 implies that

F ′′(z)
F ′(z)

=
−βk

z −Ak
+Ek(z),

where Ek is holomorphic in the strip Ak−1 < Re(z) < Ak+1. A similar
result holds for k = 1 and k = n, namely

F ′′(z)
F ′(z)

= − β1

z −A1
+ E1,

where E1 is holomorphic in the strip −∞ < Re(z) < A2, and

F ′′(z)
F ′(z)

= − βn

z − An
+ En,

where En is holomorphic in the strip An−1 < Re(z) <∞. Finally, an-
other application of the reflection principle shows that F is continuable
in the exterior of a disc |z| ≤ R, for large R (say R > max1≤k≤n |Ak|). In-
deed, we may continue F across the union of the segments
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(−∞, A1) ∪ (An,∞) since their image under F is a straight line seg-
ment and Schwarz reflection applies. The fact that F maps the upper
half-plane to a bounded region shows that the analytic continuation of F
outside a large disc is also bounded, and hence holomorphic at infinity.
Thus F ′′/F ′ is holomorphic at infinity and we claim that it goes to 0 as
|z| → ∞. Indeed, we may expand F at z = ∞ as

F (z) = c0 +
c1
z

+
c2
z2

+ · · · .

This after differentiation shows that F ′′/F ′ decays like 1/z as |z| becomes
large, and proves our claim.

Altogether then, because the various strips overlap and cover the entire
complex plane,

F ′′(z)
F ′(z)

+
n∑

k=1

βk

z −Ak

is holomorphic in the entire plane and vanishes at infinity; thus, by Li-
ouville’s theorem it is zero. Hence

F ′′(z)
F ′(z)

= −
n∑

k=1

βk

z −Ak
.

From this we contend that F ′(z) = c(z −A1)−β1 · · · (z −An)−βn . In-
deed, denoting this product by Q(z), we have

Q′(z)
Q(z)

= −
n∑

k=1

βk

z − Ak
.

Therefore
d

dz

(
F ′(z)
Q(z)

)
= 0,

which proves the contention. A final integration yields the theorem.

We may now withdraw the hypothesis we made at the beginning that
F did not map the point at infinity to a vertex of P , and obtain a formula
for that case as well.

Theorem 4.7 If F is a conformal map from the upper half-plane to the
polygonal region P and maps the points A1, . . . , An−1,∞ to the vertices
of p, then there exist constants C1 and C2 such that

F (z) = C1

∫ z

0

dζ

(ζ −A1)β1 · · · (ζ −An−1)βn−1
+ C2.
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In other words, the formula is obtained by deleting the last term in
the Schwarz-Christoffel integral (5).

Proof. After a preliminary translation, we may assume that Aj �= 0
for j = 1, . . . , n− 1. Choose a point A∗

n > 0 on the real line, and consider
the fractional linear map defined by

Φ(z) = A∗
n − 1

z
.

Then Φ is an automorphism of the upper half-plane. Let A∗
k = Φ(Ak)

for k = 1, . . . , n− 1, and note that A∗
n = Φ(∞). Then

(F ◦ Φ−1)(A∗
k) = ak for all k = 1, 2, . . . , n.

We can now apply the Schwarz-Christoffel formula just proved to find
that

(F ◦ Φ−1)(z′) = C1

∫ z′

0

dζ

(ζ −A∗
1)β1 · · · (ζ − A∗

n)βn
+ C2.

The change of variables ζ = Φ(w) satisfies dζ = dw/w2, and since we can
write 2 = β1 + · · · + βn, we obtain

(F ◦ Φ−1)(z′) = C1

∫ Φ−1(z′)

0

dw
(w(A∗

n−A∗
1)−1)β1 ···(w(A∗

n−A∗
n−1)−1)βn−1

+ C′
2

= C′
1

∫ Φ−1(z′)

0

dw
(w−1/(A∗

n−A∗
1))β1 ···(w−1/(A∗

n−A∗
n−1))βn−1

+ C′
2.

Finally, we note that 1/(A∗
n −A∗

k) = Ak and set Φ−1(z′) = z in the above
equation to conclude that

F (z) = C′
1

∫ z

0

dw

(w −A1)β1 · · · (w −An−1)βn−1
+ C′

2,

as was to be shown.

4.5 Return to elliptic integrals

We consider again the elliptic integral

I(z) =
∫ z

0

dζ

[(1 − ζ2)(1 − k2ζ2)]1/2
with 0 < k < 1,
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which arose in Example 3 of Section 4.1. We saw that it mapped the real
axis to the rectangle R with vertices −K, K, K + iK′, and −K + iK′.
We will now see that this mapping is a conformal mapping of H to the
interior of R.

According to Theorem 4.6 there is a conformal map F to the rectangle,
that maps four points on the real axis to the vertices of R. By preceding
this map with a suitable automorphism of H we may assume that F
maps −1, 0, 1 to −K, 0, K, respectively. Indeed, by using a preliminary
automorphism, we may assume that −K, 0, K are the images of points
A1, 0, A2 with A1 < 0 < A2; then we can further take A1 = −1 and
A2 = 1. See Exercise 15.

Next, let � be chosen with 0 < � < 1, so that 1/� is the point on the
real line mapped by F to the vertex K + iK′, which is the vertex next in
order after −K and K. We claim that F (−1/�) is the vertex −K + iK′.
Indeed, if F ∗(z) = −F (−z), then by the symmetry of R, F ∗ is also a
conformal map of H to R; moreover F ∗(0) = 0, and F ∗(±1) = ±K. Thus
F−1 ◦ F ∗ is an automorphism of H that fixes the points −1, 0, and 1.
Hence F−1 ◦ F ∗ is the identity (see Exercise 15), and F = F ∗, from which
it follows that

F (−1/�) = −F (1/�) = −K + iK′.

Therefore, by Theorem 4.6

F (z) = c1

∫ z

0

dζ

[(1 − ζ2)(1 − �2ζ2)]1/2
+ c2.

Setting z = 0 gives c2 = 0, and letting z = 1, z = 1/�, yields

K(k) = c1K(�) and K′(k) = c1K
′(�),

where

K(k) =
∫ 1

0

dx

[(1 − x2)(1 − k2x2)]1/2
,

K′(k) =
∫ 1/k

1

dx

[(x2 − 1)(1 − k2x2)]1/2
.

Now K(k) is clearly strictly increasing as k varies in (0, 1). Moreover, a
change of variables (Exercise 24) establishes the identity

K′(k) = K(k̃) where k̃2 = 1 − k2 and k̃ > 0,
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and this shows that K′(k) is strictly decreasing. Hence K(k)/K′(k)
is strictly increasing. Since K(k)/K′(k) = K(�)/K′(�), we must have
k = �, and finally c1 = 1. This shows that I(z) = F (z), and hence I is
conformal, as was to be proved.

A final observation is of significance. A basic insight into elliptic in-
tegrals is obtained by passing to their inverse functions. We therefore
consider z 	→ sn(z), the inverse map of z 	→ I(z).9 It transforms the
closed rectangle into the closed upper half-plane. Now consider the se-
ries of rectangles R = R0, R1, R2, . . . gotten by reflecting successively
along the lower sides (Figure 10).

K − iK ′

K + iK ′

K

K − 2iK ′

R0

R1

R2

Figure 10. Reflections of R = R0

With sn(z) defined in R0, we can by the reflection principle extend
it to R1 by setting sn(z) = sn(z) whenever z ∈ R1 (note that then z ∈
R0). Next we can extend sn(z) to R2 by setting sn(z) = sn(−iK′ + z) if
z ∈ R2 and noting that if z ∈ R2, then −iK′ + z ∈ R1. Combining these
reflections and continuing this way we see that we can extend sn(z) in
the entire strip −K < Re(z) < K, so that sn(z) = sn(z + 2iK′).

Similarly, by reflecting in a series of horizontal rectangles, and combin-
ing these with the previous reflections, we see that sn(z) can be continued
to the complex plane and also satisfies sn(z) = sn(z + 4K). Thus sn(z)
is doubly periodic (with periods 4K and 2iK′). A further examination

9The notation sn(z) in somewhat different form is due to Jacobi, and was adopted
because of the analogy with sin z.
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shows that the only singularities sn(z) are poles. Functions of this type,
called “elliptic functions,” are the subject of the next chapter.

5 Exercises

1. A holomorphic mapping f : U → V is a local bijection on U if for every z ∈ U
there exists an open disc D ⊂ U centered at z, so that f : D → f(D) is a bijection.

Prove that a holomorphic map f : U → V is a local bijection on U if and only
if f ′(z) 
= 0 for all z ∈ U .

[Hint: Use Rouché’s theorem as in the proof of Proposition 1.1.]

2. Supppose F (z) is holomorphic near z = z0 and F (z0) = F ′(z0) = 0, while
F ′′(z0) 
= 0. Show that there are two curves Γ1 and Γ2 that pass through z0,
are orthogonal at z0, and so that F restricted to Γ1 is real and has a minimum at
z0, while F restricted to Γ2 is also real but has a maximum at z0.

[Hint: Write F (z) = (g(z))2 for z near z0, and consider the mapping z �→ g(z) and
its inverse.]

3. Suppose U and V are conformally equivalent. Prove that if U is simply con-
nected, then so is V . Note that this conclusion remains valid if we merely assume
that there exists a continuous bijection between U and V .

4. Does there exist a holomorphic surjection from the unit disc to C?

[Hint: Move the upper half-plane “down” and then square it to get C.]

5. Prove that f(z) = − 1
2
(z + 1/z) is a conformal map from the half-disc

{z = x+ iy : |z| < 1, y > 0} to the upper half-plane.

[Hint: The equation f(z) = w reduces to the quadratic equation z2 + 2wz + 1 = 0,
which has two distinct roots in C whenever w 
= ±1. This is certainly the case if
w ∈ H.]

6. Give another proof of Lemma 1.3 by showing directly that the Laplacian of
u ◦ F is zero.

[Hint: The real and imaginary parts of F satisfy the Cauchy-Riemann equations.]

7. Provide all the details in the proof of the formula for the solution of the Dirichlet
problem in a strip discussed in Section 1.3. Recall that it suffices to compute the
solution at the points z = iy with 0 < y < 1.

(a) Show that if reiθ = G(iy), then

reiθ = i
cos πy

1 + sin πy
.

This leads to two separate cases: either 0 < y ≤ 1/2 and θ = π/2, or 1/2 ≤
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y < 1 and θ = −π/2. In either case, show that

r2 =
1 − sin πy

1 + sin πy
and Pr(θ − ϕ) =

sin πy

1 − cos πy sinϕ
.

(b) In the integral 1
2π

∫ π

0
Pr(θ − ϕ)f̃0(ϕ) dϕ make the change of variables t =

F (eiϕ). Observe that

eiϕ =
i− eπt

i+ eπt
,

and then take the imaginary part and differentiate both sides to establish
the two identities

sinϕ =
1

cosh πt
and

dϕ

dt
=

π

cosh πt
.

Hence deduce that

1

2π

∫ π

0

Pr(θ − ϕ)f̃0(ϕ) dϕ =
1

2π

∫ π

0

sin πy

1 − cos πy sinϕ
f̃0(ϕ) dϕ

=
sin πy

2

∫ ∞

−∞

f0(t)

cosh πt− cosπy
dt.

(c) Use a similar argument to prove the formula for the integral
1
2π

∫ 0

−π
Pr(θ − ϕ)f̃1(ϕ) dϕ.

8. Find a harmonic function u in the open first quadrant that extends continuously
up to the boundary except at the points 0 and 1, and that takes on the following
boundary values: u(x, y) = 1 on the half-lines {y = 0, x > 1} and {x = 0, y > 0},
and u(x, y) = 0 on the segment {0 < x < 1, y = 0}.
[Hint: Find conformal maps F1, F2, . . . , F5 indicated in Figure 11. Note that
1
π

arg(z) is harmonic on the upper half-plane, equals 0 on the positive real axis,
and 1 on the negative real axis.]

9. Prove that the function u defined by

u(x, y) = Re

(
i+ z

i− z

)
and u(0, 1) = 0

is harmonic in the unit disc and vanishes on its boundary. Note that u is not
bounded in D.

10. Let F : H → C be a holomorphic function that satisfies

|F (z)| ≤ 1 and F (i) = 0.
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u = 1u = 0u = 1

F1

u = 0u = 1u = 0u = 1 u = 1

u = 0

−π
2

π
2

u = 1

u = 0

u = 1

F2

F3

F4

u = 1

iπ

1−1

0

0 1 0

u = 1

10 u = 0

F5

u = 1

u = 1

Figure 11. Successive conformal maps in Exercise 8

Prove that

|F (z)| ≤
∣∣∣∣ z − i

z + i

∣∣∣∣ for all z ∈ H.

11. Show that if f : D(0, R) → C is holomorphic, with |f(z)| ≤M for someM > 0,
then ∣∣∣∣∣ f(z) − f(0)

M2 − f(0)f(z)

∣∣∣∣∣ ≤ |z|
MR

.

[Hint: Use the Schwarz lemma.]

12. A complex number w ∈ D is a fixed point for the map f : D → D if f(w) = w.

(a) Prove that if f : D → D is analytic and has two distinct fixed points, then f
is the identity, that is, f(z) = z for all z ∈ D.
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(b) Must every holomorphic function f : D → D have a fixed point? [Hint: Con-
sider the upper half-plane.]

13. The pseudo-hyperbolic distance between two points z, w ∈ D is defined by

ρ(z,w) =

∣∣∣∣ z − w

1 − wz

∣∣∣∣ .
(a) Prove that if f : D → D is holomorphic, then

ρ(f(z), f(w)) ≤ ρ(z,w) for all z, w ∈ D.

Moreover, prove that if f is an automorphism of D then f preserves the
pseudo-hyperbolic distance

ρ(f(z), f(w)) = ρ(z,w) for all z, w ∈ D.

[Hint: Consider the automorphism ψα(z) = (z − α)/(1 − αz) and apply the
Schwarz lemma to ψf(w) ◦ f ◦ ψ−1

w .]

(b) Prove that

|f ′(z)|
1 − |f(z)|2 ≤ 1

1 − |z|2 for all z ∈ D.

This result is called the Schwarz-Pick lemma. See Problem 3 for an impor-
tant application of this lemma.

14. Prove that all conformal mappings from the upper half-plane H to the unit
disc D take the form

eiθ z − β

z − β
, θ ∈ R and β ∈ H.

15. Here are two properties enjoyed by automorphisms of the upper half-plane.

(a) Suppose Φ is an automorphism of H that fixes three distinct points on the
real axis. Then Φ is the identity.

(b) Suppose (x1, x2, x3) and (y1, y2, y3) are two pairs of three distinct points on
the real axis with

x1 < x2 < x3 and y1 < y2 < y3.

Prove that there exists (a unique) automorphism Φ of H so that Φ(xj) = yj ,
j = 1, 2, 3. The same conclusion holds if y3 < y1 < y2 or y2 < y3 < y1.
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16. Let

f(z) =
i− z

i+ z
and f−1(w) = i

1 − w

1 + w
.

(a) Given θ ∈ R, find real numbers a, b, c, d such that ad− bc = 1, and so that
for any z ∈ H

az + b

cz + d
= f−1

(
eiθf(z)

)
.

(b) Given α ∈ D find real numbers a, b, c, d so that ad− bc = 1, and so that for
any z ∈ H

az + b

cz + d
= f−1 (ψα(f(z))) ,

with ψα defined in Section 2.1.

(c) Prove that if g is an automorphism of the unit disc, then there exist real
numbers a, b, c, d such that ad− bc = 1 and so that for any z ∈ H

az + b

cz + d
= f−1 ◦ g ◦ f(z).

[Hint: Use parts (a) and (b).]

17. If ψα(z) = (α− z)/(1 − αz) for |α| < 1, prove that

1

π

∫ ∫
D

|ψ′
α|2 dxdy = 1 and

1

π

∫ ∫
D

|ψ′
α| dxdy =

1 − |α|2
|α|2 log

1

1 − |α|2 ,

where in the case α = 0 the expression on the right is understood as the limit as
|α| → 0.

[Hint: The first integral can be evaluated without a calculation. For the second,
use polar coordinates, and for each fixed r use contour integration to evaluate the
integral in θ.]

18. Suppose that Ω is a simply connected domain that is bounded by a piecewise-
smooth closed curve γ (in the terminology of Chapter 1). Then any conformal
map F of D to Ω extends to a continuous bijection of D to Ω. The proof is simply
a generalization of the argument used in Theorem 4.2.

19. Prove that the complex plane slit along the union of the rays
∪n

k=1{Ak + iy : y ≤ 0} is simply connected.

[Hint: Given a curve, first “raise” it so that it is completely contained in the upper
half-plane.]

20. Other examples of elliptic integrals providing conformal maps from the upper
half-plane to rectangles are given below.
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(a) The function ∫ z

0

dζ√
ζ(ζ − 1)(ζ − λ)

, with λ ∈ R and λ 
= 1

maps the upper half-plane conformally to a rectangle, one of whose vertices
is the image of the point at infinity.

(b) In the case λ = −1, the image of∫ z

0

dζ√
ζ(ζ2 − 1)

is a square whose side lengths are Γ2(1/4)

2
√

2π
.

21. We consider conformal mappings to triangles.

(a) Show that ∫ z

0

z−β1(1 − z)−β2 dz,

with 0 < β1 < 1, 0 < β2 < 1, and 1 < β1 + β2 < 2, maps H to a triangle
whose vertices are the images of 0, 1, and ∞, and with angles α1π, α2π,
and α3π, where αj + βj = 1 and β1 + β2 + β3 = 2.

(b) What happens when β1 + β2 = 1?

(c) What happens when 0 < β1 + β2 < 1?

(d) In (a), the length of the side of the triangle opposite angle αjπ is
sin(αjπ)

π
Γ(α1)Γ(α2)Γ(α3).

22. If P is a simply connected region bounded by a polygon with vertices a1, . . . , an

and angles α1π, . . . , αnπ, and F is a conformal map of the disc D to P , then there
exist complex numbers B1, . . . , Bn on the unit circle, and constants c1 and c2 so
that

F (z) = c1

∫ z

1

dζ

(ζ −B1)β1 · · · (ζ −Bn)βn
+ c2.

[Hint: This follows from the standard correspondence between H and D and an
argument similar to that used in the proof of Theorem 4.7.]

23. If

F (z) =

∫ z

1

dζ

(1 − ζn)2/n
,
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then F maps the unit disc conformally onto the interior of a regular polygon with
n sides and perimeter

2
n−2

n

∫ π

0

(sin θ)−2/n dθ.

24. The elliptic integrals K and K′ defined for 0 < k < 1 by

K(k) =

∫ 1

0

dx

((1 − x2)(1 − k2x2))1/2
and K′(k) =

∫ 1/k

1

dx

((x2 − 1)(1 − k2x2))1/2

satisfy various interesting identities. For instance:

(a) Show that if k̃2 = 1 − k2 and 0 < k̃ < 1, then

K′(k) = K(k̃).

[Hint: Change variables x = (1 − k̃2y2)−1/2 in the integral defining K′(k).]

(b) Prove that if k̃2 = 1 − k2, and 0 < k̃ < 1, then

K(k) =
2

1 + k̃
K

(
1 − k̃

1 + k̃

)
.

[Hint: Change variables x = 2t/(1 + k̃ + (1 − k̃)t2).]

(c) Show that for 0 < k < 1 one has

K(k) =
π

2
F (1/2, 1/2, 1; k2),

where F the hypergeometric series. [Hint: This follows from the integral
representation for F given in Exercise 9, Chapter 6.]

6 Problems

1. Let f be a complex-valued C1 function defined in the neighborhood of a point
z0. There are several notions closely related to conformality at z0. We say that
f is isogonal at z0 if whenever γ(t) and η(t) are two smooth curves with γ(0) =
η(0) = z0, that make an angle θ there (|θ| < π), then f(γ(t)) and f(η(t)) make an
angle of θ′ at t = 0 with |θ′| = |θ| for all θ. Also, f is said to be isotropic if it
magnifies lengths by some factor for all directions emanating from z0, that is, if
the limit

lim
r→0

|f(z0 + reiθ) − f(z0)|
r

exists, is non-zero, and independent of θ.
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Then f is isogonal at z0 if and only if it is isotropic at z0; moreover, f is isogonal
at z0 if and only if either f ′(z0) exists and is non-zero, or the same holds for f
replaced by f .

2. The angle between two non-zero complex numbers z and w (taken in that order)
is simply the oriented angle, in (−π, π], that is formed between the two vectors in
R2 corresponding to the points z and w. This oriented angle, say α, is uniquely
determined by the two quantities

(z, w)

|z| |w| and
(z,−iw)

|z| |w|

which are simply the cosine and sine of α, respectively. Here, the notation (·, ·)
corresponds to the usual Euclidian inner product in R2, which in terms of complex
numbers takes the form (z, w) = Re(zw).

In particular, we may now consider two smooth curves γ : [a, b] → C and η :
[a, b] → C, that intersect at z0, say γ(t0) = η(t0) = z0, for some t0 ∈ (a, b). If the
quantities γ′(t0) and η′(t0) are non-zero, then they represent the tangents to the
curves γ and η at the point z0, and we say that the two curves intersect at z0 at
the angle formed by the two vectors γ′(t0) and η′(t0).

A holomorphic function f defined near z0 is said to preserve angles at z0 if
for any two smooth curves γ and η intersecting at z0, the angle formed between
the curves γ and η at z0 equals the angle formed between the curves f ◦ γ and
f ◦ η at f(z0). (See Figure 12 for an illustration.) In particular, we assume that
the tangents to the curves γ, η, f ◦ γ, and f ◦ η at the point z0 and f(z0) are all
non-zero.

η

γ

z0 f(z0)

f ◦ η f ◦ γ

Figure 12. Preservation of angles at z0

(a) Prove that if f : Ω → C is holomorphic, and f ′(z0) 
= 0, then f preserves
angles at z0. [Hint: Observe that

(f ′(z0)γ
′(t0), f

′(z0)η
′(t0)) = |f ′(z0)|2(γ′(t0), η

′(t0)).]

(b) Conversely, prove the following: suppose f : Ω → C is a complex-valued
function, that is real-differentiable at z0 ∈ Ω, and Jf (z0) 
= 0. If f preserves
angles at z0, then f is holomorphic at z0 with f ′(z0) 
= 0.
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3.∗ The Schwarz-Pick lemma (see Exercise 13) is the infinitesimal version of an
important observation in complex analysis and geometry.

For complex numbers w ∈ C and z ∈ D we define the hyperbolic length of w
at z by

‖w‖z =
|w|

1 − |z|2 ,

where |w| and |z| denote the usual absolute values. This length is sometimes
referred to as the Poincaré metric, and as a Riemann metric it is written as

ds2 =
|dz|2

(1 − |z|2)2 .

The idea is to think of w as a vector lying in the tangent space at z. Observe that
for a fixed w, its hyperbolic length grows to infinity as z approaches the boundary
of the disc. We pass from the infinitesimal hyperbolic length of tangent vectors to
the global hyperbolic distance between two points by integration.

(a) Given two complex numbers z1 and z2 in the disc, we define the hyperbolic
distance between them by

d(z1, z2) = inf
γ

∫ 1

0

‖γ′(t)‖γ(t) dt,

where the infimum is taken over all smooth curves γ : [0, 1] → D joining z1
and z2. Use the Schwarz-Pick lemma to prove that if f : D → D is holomor-
phic, then

d(f(z1), f(z2)) ≤ d(z1, z2) for any z1, z2 ∈ D.

In other words, holomorphic functions are distance-decreasing in the hyper-
bolic metric.

(b) Prove that automorphisms of the unit disc preserve the hyperbolic distance,
namely

d(ϕ(z1), ϕ(z2)) = d(z1, z2), for any z1, z2 ∈ D

and any automorphism ϕ. Conversely, if ϕ : D → D preserves the hyperbolic
distance, then either ϕ or ϕ is an automorphism of D.

(c) Given two points z1, z2 ∈ D, show that there exists an automorphism ϕ such
that ϕ(z1) = 0 and ϕ(z2) = s for some s on the segment [0, 1) on the real
line.

(d) Prove that the hyperbolic distance between 0 and s ∈ [0, 1) is

d(0, s) =
1

2
log

1 + s

1 − s
.
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(e) Find a formula for the hyperbolic distance between any two points in the
unit disc.

4.∗ Consider the group of matrices of the form

M =

(
a b
c d

)
,

that satisfy the following conditions:

(i) a, b, c, and d ∈ C,

(ii) the determinant of M is equal to 1,

(iii) the matrix M preserves the following hermitian form on C2 × C2:

〈Z,W 〉 = z1w1 − z2w2,

where Z = (z1, z2) and W = (w1, w2). In other words, for all Z,W ∈ C2

〈MZ,MW 〉 = 〈Z,W 〉.

This group of matrices is denoted by SU(1, 1).

(a) Prove that all matrices in SU(1, 1) are of the form(
a b

b a

)
,

where |a|2 − |b|2 = 1. To do so, consider the matrix

J =

(
1 0
0 −1

)
,

and observe that 〈Z,W 〉 = tWJZ, where tW denotes the conjugate trans-
pose of W .

(b) To every matrix in SU(1, 1) we can associate a fractional linear transforma-
tion

az + b

cz + d
.

Prove that the group SU(1, 1)/{±1} is isomorphic to the group of automor-
phisms of the disc. [Hint: Use the following association.]

e2iθ z − α

1 − αz
−→

 eiθ√
1−|α|2

− αeiθ√
1−|α|2

− αe−iθ√
1−|α|2

e−iθ√
1−|α|2

 .
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5. The following result is relevant to Problem 4 in Chapter 10 which treats modular
functions.

(a) Suppose that F : H → C is holomorphic and bounded. Also, suppose that
F (z) vanishes when z = irn, n = 1, 2, 3, . . ., where {rn} is a bounded se-
quence of positive numbers. Prove that if

∑∞
n=1 rn = ∞, then F = 0.

(b) If
∑
rn <∞, it is possible to construct a bounded function on the upper

half-plane with zeros precisely at the points irn.

For related results in the unit disc, see Problems 1 and 2 in Chapter 5.]

6.∗ The results of Exercise 18 extend to the case when γ is assumed merely to be
closed, simple, and continuous. The proof, however, requires further ideas.

7.∗ Applying ideas of Carathéodory, Koebe gave a proof of the Riemann mapping
theorem by constructing (more explicitly) a sequence of functions that converges
to the desired conformal map.

Starting with a Koebe domain, that is, a simply connected domain K0 ⊂ D that
is not all of D, and which contains the origin, the strategy is to find an injective
function f0 such that f0(K0) = K1 is a Koebe domain “larger” than K0. Then, one
iterates this process, finally obtaining functions Fn = fn ◦ · · · ◦ f0 : K0 → D such
that Fn(K0) = Kn+1 and limFn = F is a conformal map from K0 to D.

The inner radius of a region K ⊂ D that contains the origin is defined by
rK = sup{ρ ≥ 0 : D(0, ρ) ⊂ K}. Also, a holomorphic injection f : K → D is said to
be an expansion if f(0) = 0 and |f(z)| > |z| for all z ∈ K − {0}.

(a) Prove that if f is an expansion, then rf(K) ≥ rK and |f ′(0)| > 1. [Hint:
Write f(z) = zg(z) and use the maximum principle to prove that |f ′(0)| =
|g(0)| > 1.]

Suppose we begin with a Koebe domain K0 and a sequence of expansions
{f0, f1, . . . , fn, . . .}, so that Kn+1 = fn(Kn) are also Koebe domains. We then
define holomorphic maps Fn : K0 → D by Fn = fn ◦ · · · ◦ f0.

(b) Prove that for each n, the function Fn is an expansion. Moreover,
F ′

n(0) =
∏n

k=0 f
′
k(0), and conclude that limn→∞ |f ′

n(0)| = 1. [Hint: Prove
that the sequence {|F ′

n(0)|} has a limit by showing that it is bounded above
and monotone increasing. Use the Schwarz lemma.]

(c) Show that if the sequence is osculating, that is, rKn → 1 as n→ ∞, then
{Fn} converges uniformly on compact subsets of K0 to a conformal map
F : K0 → D. [Hint: If rF (K0) ≥ 1 then F is surjective.]

To construct the desired osculating sequence we shall use the automorphisms
ψα = (α− z)/(1 − αz).

(d) Given a Koebe domain K, choose a point α ∈ D on the boundary of K such
that |α| = rK, and also choose β ∈ D such that β2 = α. Let S denote the
square root of ψα on K such that S(0) = 0. Why is such a function well
defined? Prove that the function f : K → D defined by f(z) = ψβ ◦ S ◦ ψα
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is an expansion. Moreover, show that |f ′(0)| = (1 + rK)/2
√
rK. [Hint: To

prove that |f(z)| > |z| on K− {0} apply the Schwarz lemma to the inverse
function, namely ψα ◦ g ◦ ψβ where g(z) = z2.]

(e) Use part (d) to construct the desired sequence.

8.∗ Let f be an injective holomorphic function in the unit disc, with f(0) = 0 and
f ′(0) = 1. If we write f(z) = z + a2z

2 + a3z
3 · · · , then Problem 1 in Chapter 3

shows that |a2| ≤ 2. Bieberbach conjectured that in fact |an| ≤ n for all n ≥ 2;
this was proved by deBranges. This problem outlines an argument to prove the
conjecture under the additional assumption that the coefficients an are real.

(a) Let z = reiθ with 0 < r < 1, and show that if v(r, θ) denotes the imaginary
part of f(reiθ), then

anr
n =

2

π

∫ π

0

v(r, θ) sinnθ dθ.

(b) Show that for 0 ≤ θ ≤ π and n = 1, 2, . . . we have | sinnθ| ≤ n sin θ.

(c) Use the fact that an ∈ R to show that f(D) is symmetric with respect to
the real axis, and use this fact to show that f maps the upper half-disc into
either the upper or lower part of f(D).

(d) Show that for r small,

v(r, θ) = r sin θ[1 +O(r)],

and use the previous part to conclude that v(r, θ) sin θ ≥ 0 for all 0 < r < 1
and 0 ≤ θ ≤ π.

(e) Prove that |anr
n| ≤ nr, and let r → 1 to conclude that |an| ≤ n.

(f) Check that the function f(z) = z/(1 − z)2 satisfies all the hypotheses and
that |an| = n for all n.

9.∗ Gauss found a connection between elliptic integrals and the familiar operations
of forming arithmetic and geometric means.

We start with any pair (a, b) of numbers that satisfy a ≥ b > 0, and form the
arithmetic and geometric means of a and b, that is,

a1 =
a+ b

2
and b1 = (ab)1/2.

We then repeat these operations with a and b replaced by a1 and b1. Iterating
this process provides two sequences {an} and {bn} where an+1 and bn+1 are the
arithmetic and geometric means of an and bn, respectively.
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(a) Prove that the two sequences {an} and {bn} have a common limit. This
limit, which we denote by M(a, b), is called the arithmetic-geometric
mean of a and b. [Hint: Show that a ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ bn ≥ · · · ≥
b1 ≥ b and an − bn ≤ (a− b)/2n.]

(b) Gauss’s identity states that

1

M(a, b)
=

2

π

∫ π/2

0

dθ

(a2 cos2 θ + b2 sin2 θ)1/2
.

To prove this relation, show that if I(a, b) denotes the integral on the right-
hand side, then it suffices to establish the invariance of I , namely

(6) I(a, b) = I

(
a+ b

2
, (ab)1/2

)
.

Then, observe that the connection with elliptic integrals takes the form

I(a, b) =
1

a
K(k) =

1

a

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

where k2 = 1 − b2/a2,

and that the relation (6) is a consequence of the identity in (b) of Exercise 24.



9 An Introduction to Elliptic
Functions

The form that Jacobi had given to the theory of elliptic
functions was far from perfection; its flaws are obvious.
At the base we find three fundamental functions sn,
cn and dn. These functions do not have the same
periods...

In Weierstrass’ system, instead of three funda-
mental functions, there is only one, ℘(u), and it is the
simplest of all having the same periods. It has only
one double infinity; and finally its definition is so that
it does not change when one replaces one system of
periods by another equivalent system.

H. Poincaré, 1899

The theory of elliptic functions, which is of interest in several parts of
mathematics, initially grew out of the study of elliptic integrals. These
can be described generally as integrals of the form

∫
R(x,

√
P (x)) dx,

where R is a rational function and P a polynomial of degree three or
four.1 These integrals arose in computing the arc-length of an ellipse, or
of a lemniscate, and in a variety of other problems. Their early study was
centered on their special transformation properties and on the discovery
of an inherent double-periodicity. We have seen an example of this latter
phenomenon in the mapping function of the half-plane to a rectangle
taken up in Section 4.5 of the previous chapter.

It was Jacobi who transformed the subject by initiating the systematic
study of doubly-periodic functions (called elliptic functions). In this the-
ory, the theta functions he introduced played a decisive role. Weierstrass
after him developed another approach, which in its initial steps is simpler
and more elegant. It is based on his ℘ function, and in this chapter we
shall sketch the beginnings of that theory. We will go as far as to glimpse
a possible connection with number theory, by considering the Eisenstein
series and their expression involving divisor functions. A number of more
direct links with combinatorics and number theory arise from the theta

1The case when P is a quadratic polynomial is essentially that of “circular functions”,
and can be reduced to the trigonometric functions sinx, cos x, etc.
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functions, which we will take up in the next chapter. The remarkable
facts we shall see there attest to the great interest of these functions in
mathematics. As such they ought to soften the harsh opinion expressed
above about the imperfection of Jacobi’s theory.

1 Elliptic functions

We are interested in meromorphic functions f on C that have two periods;
that is, there are two non-zero complex numbers ω1 and ω2 such that

f(z + ω1) = f(z) and f(z + ω2) = f(z),

for all z ∈ C. A function with two periods is said to be doubly periodic.
The case when ω1 and ω2 are linearly dependent over R, that is

ω2/ω1 ∈ R, is uninteresting. Indeed, Exercise 1 shows that in this case f
is either periodic with a simple period (if the quotient ω2/ω1 is rational)
or f is constant (if ω2/ω1 is irrational). Therefore, we make the following
assumption: the periods ω1 and ω2 are linearly independent over R.

We now describe a normalization that we shall use extensively in this
chapter. Let τ = ω2/ω1. Since τ and 1/τ have imaginary parts of oppo-
site signs, and since τ is not real, we may assume (after possibly inter-
changing the roles of ω1 and ω2) that Im(τ) > 0. Observe now that the
function f has periods ω1 and ω2 if and only if the function F (z) = f(ω1z)
has periods 1 and τ , and moreover, the function f is meromorphic if and
only if F is meromorphic. Also the properties of f are immediately
deducible from those of F . We may therefore assume, without loss of
generality, that f is a meromorphic function on C with periods 1 and τ
where Im(τ) > 0.

Successive applications of the periodicity conditions yield

(1) f(z + n+mτ) = f(z) for all integers n,m and all z ∈ C,

and it is therefore natural to consider the lattice in C defined by

Λ = {n+mτ : n,m ∈ Z}.

We say that 1 and τ generate Λ (see Figure 1).
Equation (1) says that f is constant under translations by elements

of Λ. Associated to the lattice Λ is the fundamental parallelogram
defined by

P0 = {z ∈ C : z = a+ bτ where 0 ≤ a < 1 and 0 ≤ b < 1}.
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0

τ

1

Figure 1. The lattice Λ generated by 1 and τ

The importance of the fundamental parallelogram comes from the fact
that f is completely determined by its behavior on P0. To see this, we
need a definition: two complex numbers z and w are congruent modulo
Λ if

z = w + n+mτ for some n,m ∈ Z,

and we write z ∼ w. In other words, z and w differ by a point in the
lattice, z − w ∈ Λ. By (1) we conclude that f(z) = f(w) whenever z ∼ w.
If we can show that any point in z ∈ C is congruent to a unique point in
P0 then we will have proved that f is completely determined by its values
in the fundamental parallelogram. Suppose z = x+ iy is given, and write
z = a+ bτ where a, b ∈ R. This is possible since 1 and τ form a basis over
the reals of the two-dimensional vector space C. Then choose n and m to
be the greatest integers ≤ a and ≤ b, respectively. If we let w = z − n−
mτ , then by definition z ∼ w, and moreover w = (a− n) + (b−m)τ . By
construction, it is clear that w ∈ P0. To prove uniqueness, suppose that
w and w′ are two points in P0 that are congruent. If we write w = a+ bτ
and w′ = a′ + b′τ , then w − w′ = (a− a′) + (b− b′)τ ∈ Λ, and therefore
both a− a′ and b− b′ are integers. But since 0 ≤ a, a′ < 1, we have
−1 < a− a′ < 1, which then implies a− a′ = 0. Similarly b− b′ = 0, and
we conclude that w = w′.

More generally, a period parallelogram P is any translate of the
fundamental parallelogram, P = P0 + h with h ∈ C (see Figure 2).

Since we can apply the lemma to z − h, we conclude that every point
in C is congruent to a unique point in a given period parallelogram.
Therefore, f is uniquely determined by its behavior on any period par-
allelogram.
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h+ 1

h+ τ

P0 + h

h

Figure 2. A period parallelogram

Finally, note that Λ and P0 give rise to a covering (or tiling) of the
complex plane

(2) C =
⋃

n,m∈Z

(n+mτ + P0),

and moreover, this union is disjoint. This is immediate from the facts
we just collected and the definition of P0. We summarize what we have
seen so far.

Proposition 1.1 Suppose f is a meromorphic function with two periods
1 and τ which generate the lattice Λ. Then:

(i) Every point in C is congruent to a unique point in the fundamental
parallelogram.

(ii) Every point in C is congruent to a unique point in any given period
parallelogram.

(iii) The lattice Λ provides a disjoint covering of the complex plane, in
the sense of (2).

(iv) The function f is completely determined by its values in any period
parallelogram.

1.1 Liouville’s theorems

We can now see why we assumed from the beginning that f is meromor-
phic rather than just holomorphic.

Theorem 1.2 An entire doubly periodic function is constant.

Proof. The function is completely determined by its values on P0

and since the closure of P0 is compact, we conclude that the function is
bounded on C, hence constant by Liouville’s theorem in Chapter 2.
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A non-constant doubly periodic meromorphic function is called an el-
liptic function. Since a meromorphic function can have only finitely
many zeros and poles in any large disc, we see that an elliptic function
will have only finitely many zeros and poles in any given period parallel-
ogram, and in particular, this is true in the fundamental parallelogram.
Of course, nothing excludes f from having a pole or zero on the boundary
of P0.

As usual, we count poles and zeros with multiplicities. Keeping this
in mind we can prove the following theorem.

Theorem 1.3 The total number of poles of an elliptic function in P0 is
always ≥ 2.

In other words, f cannot have only one simple pole. It must have at
least two poles, and this does not exclude the case of a single pole of
multiplicity ≥ 2.

Proof. Suppose first that f has no poles on the boundary ∂P0 of the
fundamental parallelogram. By the residue theorem we have∫

∂P0

f(z) dz = 2πi
∑

resf,

and we contend that the integral is 0. To see this, we simply use the
periodicity of f . Note that∫

∂P0

f(z) dz =
∫ 1

0

f(z) dz +
∫ 1+τ

1

f(z) dz +
∫ τ

1+τ

f(z) dz +
∫ 0

τ

f(z) dz,

and the integrals over opposite sides cancel out. For instance∫ 1

0

f(z) dz +
∫ τ

1+τ

f(z) dz =
∫ 1

0

f(z) dz +
∫ 0

1

f(s+ τ) ds

=
∫ 1

0

f(z) dz +
∫ 0

1

f(s) ds

=
∫ 1

0

f(z) dz −
∫ 1

0

f(z) dz

= 0,

and similarly for the other pair of sides. Hence
∫

∂P0
f = 0 and

∑
resf =

0. Therefore f must have at least two poles in P0.
If f has a pole on ∂P0 choose a small h ∈ C so that if P = h+ P0,

then f has no poles on ∂P . Arguing as before, we find that f must have
at least two poles in P , and therefore the same conclusion holds for P0.
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The total number of poles (counted according to their multiplicities)
of an elliptic function is called its order. The next theorem says that
elliptic functions have as many zeros as they have poles, if the zeros are
counted with their multiplicities.

Theorem 1.4 Every elliptic function of order m has m zeros in P0.

Proof. Assuming first that f has no zeros or poles on the boundary
of P0, we know by the argument principle in Chapter 3 that∫

∂P0

f ′(z)
f(z)

dz = 2πi(Nz −Np)

where Nz and Np denote the number of zeros and poles of f in P0,
respectively. By periodicity, we can argue as in the proof of the previous
theorem to find that

∫
∂P0

f ′/f = 0, and therefore Nz = Np.
In the case when a pole or zero of f lies on ∂P0 it suffices to apply the

argument to a translate of P .

As a consequence, if f is elliptic then the equation f(z) = c has as
many solutions as the order of f for every c ∈ C, simply because f − c
is elliptic and has as many poles as f .

Despite the rather simple nature of the theorems above, there remains
the question of showing that elliptic functions exist. We now turn to a
constructive solution of this problem.

1.2 The Weierstrass ℘ function

An elliptic function of order two

This section is devoted to the basic example of an elliptic function. As
we have seen above, any elliptic function must have at least two poles;
we shall in fact construct one whose only singularity will be a double
pole at the points of the lattice generated by the periods.

Before looking at the case of doubly-periodic functions, let us first
consider briefly functions with only a single period. If one wished to
construct a function with period 1 and poles at all the integers, a simple
choice would be the sum

F (z) =
∞∑

n=−∞

1
z + n

.

Note that the sum remains unchanged if we replace z by z + 1, and the
poles are at the integers. However, the series defining F is not absolutely
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convergent, and to remedy this problem, we sum symmetrically, that is,
we define

F (z) = lim
N→∞

∑
|n|≤N

1
z + n

=
1
z

+
∞∑

n=1

[
1

z + n
+

1
z − n

]
.

On the far right-hand side, we have paired up the terms corresponding
to n and −n, a trick which makes the quantity in brackets O(1/n2),
and hence the last sum is absolutely convergent. As a consequence, F
is meromorphic with poles precisely at the integers. In fact, we proved
earlier in Chapter 5 that F (z) = π cotπz.

There is a second way to deal with the series
∑∞

−∞ 1/(z + n), which
is to write it as

1
z

+
∑
n�=0

[
1

z + n
− 1
n

]
,

where the sum is taken over all non-zero integers. Notice that 1/(z + n) −
1/n = O(1/n2), which makes this series absolutely convergent. More-
over, since

1
z + n

+
1

z − n
=
(

1
z + n

− 1
n

)
+
(

1
z − n

− 1
−n

)
,

we get the same sum as before.
In analogy to this, the idea is to mimic the above to produce our first

example of an elliptic function. We would like to write it as∑
ω∈Λ

1
(z + ω)2

,

but again this series does not converge absolutely. There are several
approaches to try to make sense of this series (see Problem 1), but the
simplest is to follow the second way we dealt with the cotangent series.

To overcome the non-absolute convergence of the series, let Λ∗ de-
note the lattice minus the origin, that is, Λ∗ = Λ − {(0, 0)}, and consider
instead the following series:

1
z2

+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1
ω2

]
,

where we have subtracted the factor 1/ω2 to make the sum converge.
The term in brackets is now

1
(z + ω)2

− 1
ω2

=
−z2 − 2zω
(z + ω)2ω2

= O

(
1
ω3

)
as |ω| → ∞,



268 Chapter 9. AN INTRODUCTION TO ELLIPTIC FUNCTIONS

and the new series will define a meromorphic function with the desired
poles once we have proved the following lemma.

Lemma 1.5 The two series∑
(n,m)�=(0,0)

1
(|n| + |m|)r

and
∑

n+mτ∈Λ∗

1
|n+mτ |r

converge if r > 2.

Recall that according to the Note at the end of Chapter 7, the question
whether a double series converges absolutely is independent of the order
of summation. In the present case, we shall first sum in m and then in n.

For the first series, the usual integral comparison can be applied.2 For
each n �= 0 ∑

m∈Z

1
(|n| + |m|)r

=
1

|n|r + 2
∑
m≥1

1
(|n| + |m|)r

=
1

|n|r + 2
∑

k≥|n|+1

1
kr

≤ 1
|n|r + 2

∫ ∞

|n|

dx

xr

≤ 1
|n|r + C

1
|n|r−1

.

Therefore, r > 2 implies∑
(n,m)�=(0,0)

1
(|n| + |m|)r

=
∑
|m|�=0

1
|m|r +

∑
|n|�=0

∑
m∈Z

1
(|n| + |m|)r

≤
∑
|m|�=0

1
|m|r +

∑
|n|�=0

(
1

|n|r + C
1

|n|r−1

)
<∞.

To prove that the second series also converges, it suffices to show that
there is a constant c such that

|n| + |m| ≤ c|n+ τm| for all n,m ∈ Z.

2We simply use 1/kr ≤ 1/xr when k − 1 ≤ x ≤ k; see also the first figure in Chapter 8,
Book I.
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We use the notation x � y if there exists a positive constant a such that
x ≤ ay. We also write x ≈ y if both x � y and y � x hold. Note that for
any two positive numbers A and B, one has

(A2 +B2)1/2 ≈ A+ B.

On the one hand A ≤ (A2 +B2)1/2 and B ≤ (A2 +B2)1/2, so that
A+B ≤ 2(A2 +B2)1/2. On the other hand, it suffices to square both
sides to see that (A2 + B2)1/2 ≤ A+B.

The proof that the second series in Lemma 1.5 converges is now a
consequence of the following observation:

|n| + |m| ≈ |n+mτ | whenever τ ∈ H.

Indeed, if τ = s+ it with s, t ∈ R and t > 0, then

|n+mτ | = [(n+ms)2 + (mt)2]1/2 ≈ |n+ms| + |mt| ≈ |n+ms| + |m|,

by the previous observation. Then, |n+ms| + |m| ≈ |n| + |m|, by con-
sidering separately the cases when |n| ≤ 2 |m| |s| and |n| ≥ 2 |m| |s|.

Remark. The proof above shows that when r > 2 the series∑
|n+mτ |−r converges uniformly in every half-plane Im(τ) ≥ δ > 0.
In contrast, when r = 2 this series fails to converge (Exercise 3).

With this technical point behind us, we may now return to the defini-
tion of the Weierstrass ℘ function, which is given by the series

℘(z) =
1
z2

+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1
ω2

]
=

1
z2

+
∑

(n,m)�=(0,0)

[
1

(z + n+mτ)2
− 1

(n+mτ)2

]
.

We claim that ℘ is a meromorphic function with double poles at the
lattice points. To see this, suppose that |z| < R, and write

℘(z) =
1
z2

+
∑

|ω|≤2R

[
1

(z + ω)2
− 1
ω2

]
+
∑

|ω|>2R

[
1

(z + ω)2
− 1
ω2

]
.

The term in the second sum is O(1/|ω|3) uniformly for |z| < R, so by
Lemma 1.5 this second sum defines a holomorphic function in |z| < R.
Finally, note that the first sum exhibits double poles at the lattice points
in the disc |z| < R.
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Observe that because of the insertion of the terms −1/ω2, it is no
longer obvious whether ℘ is doubly periodic. Nevertheless this is true,
and ℘ has all the properties of an elliptic function of order 2. We gather
this result in a theorem.

Theorem 1.6 The function ℘ is an elliptic function that has periods 1
and τ , and double poles at the lattice points.

Proof. It remains only to prove that ℘ is periodic with the correct
periods. To do so, note that the derivative is given by differentiating the
series for ℘ termwise so

℘′(z) = −2
∑

n,m∈Z

1
(z + n+mτ)3

.

This accomplishes two things for us. First, the differentiated series con-
verges absolutely whenever z is not a lattice point, by the case r = 3 of
Lemma 1.5. Second, the differentiation also eliminates the subtraction
term 1/ω2; therefore the series for ℘′ is clearly periodic with periods 1
and τ , since it remains unchanged after replacing z by z + 1 or z + τ .

Hence, there are two constants a and b such that

℘(z + 1) = ℘(z) + a and ℘(z + τ) = ℘(z) + b.

It is clear from the definition, however, that ℘ is even, that is, ℘(z) =
℘(−z), since the sum over ω ∈ Λ can be replaced by the sum over −ω ∈
Λ. Therefore ℘(−1/2) = ℘(1/2) and ℘(−τ/2) = ℘(τ/2), and setting z =
−1/2 and z = −τ/2, respectively, in the two expressions above proves
that a = b = 0.

A direct proof of the periodicity of ℘ can be given without differenti-
ation; see Exercise 4.

Properties of ℘

Several remarks are in order. First, we have already observed that ℘ is
even, and therefore ℘′ is odd. Since ℘′ is also periodic with periods 1
and τ , we find that

℘′(1/2) = ℘′(τ/2) = ℘′
(

1 + τ

2

)
= 0.

Indeed, one has, for example,

℘′(1/2) = −℘′(−1/2) = −℘′(−1/2 + 1) = −℘′(1/2).
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Since ℘′ is elliptic and has order 3, the three points 1/2, τ/2, and
(1 + τ)/2 (which are called the half-periods) are the only roots of ℘′ in
the fundamental parallelogram, and they have multiplicity 1. Therefore,
if we define

℘(1/2) = e1, ℘(τ/2) = e2, and ℘

(
1 + τ

2

)
= e3,

we conclude that the equation ℘(z) = e1 has a double root at 1/2. Since
℘ has order 2, there are no other solutions to the equation ℘(z) = e1 in
the fundamental parallelogram. Similarly the equations ℘(z) = e2 and
℘(z) = e3 have only double roots at τ/2 and (1 + τ)/2, respectively. In
particular, the three numbers e1, e2, and e3 are distinct, for otherwise
℘ would have at least four roots in the fundamental parallelogram, con-
tradicting the fact that ℘ has order 2. From these observations we can
prove the following theorem.

Theorem 1.7 The function (℘′)2 is the cubic polynomial in ℘

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3).

Proof. The only roots of F (z) = (℘(z) − e1)(℘(z)− e2)(℘(z) − e3) in
the fundamental parallelogram have multiplicity 2 and are at the points
1/2, τ/2, and (1 + τ)/2. Also, (℘′)2 has double roots at these points.
Moreover, F has poles of order 6 at the lattice points, and so does (℘′)2

(because ℘′ has poles of order 3 there). Consequently (℘′)2/F is holo-
morphic and still doubly-periodic, hence this quotient is constant. To
find the value of this constant we note that for z near 0, one has

℘(z) =
1
z2

+ · · · and ℘′(z) =
−2
z3

+ · · · ,

where the dots indicate terms of higher order. Therefore the constant
is 4, and the theorem is proved.

We next demonstrate the universality of ℘ by showing that every el-
liptic function is a simple combination of ℘ and ℘′.

Theorem 1.8 Every elliptic function f with periods 1 and τ is a rational
function of ℘ and ℘′.

The theorem will be an easy consequence of the following version of it.

Lemma 1.9 Every even elliptic function F with periods 1 and τ is a
rational funcion of ℘.
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Proof. If F has a zero or pole at the origin it must be of even order,
since F is an even function. As a consequence, there exists an integer m
so that F℘m has no zero or pole at the lattice points. We may therefore
assume that F itself has no zero or pole on Λ.

Our immediate goal is to use ℘ to construct a doubly-periodic function
G with precisely the same zeros and poles as F . To achieve this, we recall
that ℘(z) − ℘(a) has a single zero of order 2 if a is a half-period, and two
distinct zeros at a and −a otherwise. We must therefore carefully count
the zeros and poles of F .

If a is a zero of F , then so is −a, since F is even. Moreover, a is
congruent to −a if and only if it is a half-period, in which case the zero
is of even order. Therefore, if the points a1,−a1, . . . , am,−am counted
with multiplicities3 describe all the zeros of F , then

[℘(z) − ℘(a1)] · · · [℘(z) − ℘(am)]

has precisely the same roots as F . A similar argument, where
b1,−b1, . . . , bm,−bm (with multiplicities) describe all the poles of F , then
shows that

G(z) =
[℘(z) − ℘(a1)] · · · [℘(z) − ℘(am)]
[℘(z) − ℘(b1)] · · · [℘(z) − ℘(bm)]

is periodic and has the same zeros and poles as F . Therefore, F/G is
holomorphic and doubly-periodic, hence constant. This concludes the
proof of the lemma.

To prove the theorem, we first recall that ℘ is even while ℘′ odd. We
then write f as a sum of an even and an odd function,

f(z) = feven(z) + fodd(z),

where in fact

feven(z) =
f(z) + f(−z)

2
and fodd(z) =

f(z)− f(−z)
2

.

Then, since fodd/℘
′ is even, it is clear from the lemma applied to feven

and fodd/℘
′ that f is a rational function of ℘ and ℘′.

3If aj is not a half-period, then aj and −aj have the multiplicity of F at these points.
If aj is a half-period, then aj and −aj are congruent and each has multiplicity half of the
multiplicity of F at this point.
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2 The modular character of elliptic functions and Eisen-

stein series

We shall now study the modular character of elliptic functions, that is,
their dependence on τ .

Recall the normalization we made at the beginning of the chapter. We
started with two periods ω1 and ω2 linearly that are independent over R,
and we defined τ = ω2/ω1. We could then assume that Im(τ) > 0, and
also that the two periods are 1 and τ . Next, we considered the lattice
generated by 1 and τ and constructed the function ℘, which is elliptic of
order 2 with periods 1 and τ . Since the construction of ℘ depends on τ ,
we could write ℘τ instead. This leads us to change our point of view and
think of ℘τ (z) primarily as a function of τ . This approach yields many
interesting new insights.

Our considerations are guided by the following observations. First,
since 1 and τ generate the periods of ℘τ (z), and 1 and τ + 1 generate
the same periods, we can expect a close relationship between ℘τ (z) and
℘τ+1(z). In fact, it is easy to see that they are identical. Second, since
τ = ω2/ω1, by the normalization imposed at the beginning of Section 1,
we see that −1/τ = −ω1/ω2 (with Im(−1/τ) > 0). This corresponds
essentially to an interchange of the two periods ω1 and ω2, and thus we
can also expect an intimate connection between ℘τ and ℘−1/τ . In fact,
it is easy to verify that ℘−1/τ (z) = τ2℘τ (τz).

So we are led to consider the group of transformations of the upper half-
plane Im(τ) > 0, generated by the two transformations τ 	→ τ + 1 and
τ 	→ −1/τ . This group is called the modular group. On the basis of
what we said, it can be expected that all quantities intrinsically attached
to ℘τ (z) reflect the above transformations. We see this clearly when we
consider the Eisenstein series.

2.1 Eisenstein series

The Eisenstein series of order k is defined by

Ek(τ) =
∑

(n,m)�=(0,0)

1
(n+mτ)k

,

whenever k is an integer ≥ 3 and τ is a complex number with Im(τ) > 0.
If Λ is the lattice generated by 1 and τ , and if we write ω = n+mτ ,
then another expression for the Eisenstein series is

∑
ω∈Λ∗ 1/ωk.

Theorem 2.1 Eisenstein series have the following properties:
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(i) The series Ek(τ) converges if k ≥ 3, and is holomorphic in the
upper half-plane.

(ii) Ek(τ) = 0 if k is odd.

(iii) Ek(τ) satisfies the following transformation relations:

Ek(τ + 1) = Ek(τ) and Ek(τ) = τ−kEk(−1/τ).

The last property is sometimes referred to as the modular character
of the Eisenstein series. We shall return to these and other modular
identities in the next chapter.

Proof. By Lemma 1.5 and the remark after it, the series Ek(τ)
converges absolutely and uniformly in every half-plane Im(τ) ≥ δ > 0,
whenever k ≥ 3; hence Ek(τ) is holomorphic in the upper half-plane
Im(τ) > 0.

By symmetry, replacing n and m by −n and −m, we see that whenever
k is odd the Eisenstein series is identically zero.

Finally, the fact that Ek(τ) is periodic of period 1 is clear from the fact
that n+m(τ + 1) = n+m+mτ , and that we can rearrange the sum by
replacing n+m by n. Also, we have

(n+m(−1/τ))k = τ−k(nτ −m)k,

and again we can rearrange the sum, this time replacing (−m,n) by
(n,m). Conclusion (iii) then follows.

Remark. Because of the second property, some authors define the
Eisenstein series of order k to be

∑
(n,m)�=(0,0) 1/(n+mτ)2k, possibly

also with a constant factor in front.

The connection of the Ek with the Weierstrass ℘ function arises when
we investigate the series expansion of ℘ near 0.

Theorem 2.2 For z near 0, we have

℘(z) =
1
z2

+ 3E4z
2 + 5E6z

4 + · · ·

=
1
z2

+
∞∑

k=1

(2k + 1)E2k+2z
2k.

Proof. From the definition of ℘, if we note that we may replace ω by
−ω without changing the sum, we have

℘(z) =
1
z2

+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1
ω2

]
=

1
z2

+
∑

ω∈Λ∗

[
1

(z − ω)2
− 1
ω2

]
,
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where ω = n+mτ . The identity

1
(1 − w)2

=
∞∑

=0

(�+ 1)w, for |w| < 1,

which follows from differentiating the geometric series, implies that for
all small z

1
(z − ω)2

=
1
ω2

∞∑
=0

(�+ 1)
( z
ω

)

=
1
ω2

+
1
ω2

∞∑
=1

(�+ 1)
( z
ω

)

.

Therefore

℘(z) =
1
z2

+
∑

ω∈Λ∗

∞∑
=1

(�+ 1)
z

ω+2

=
1
z2

+
∞∑

=1

(�+ 1)

(∑
ω∈Λ∗

1
ω+2

)
z

=
1
z2

+
∞∑

=1

(�+ 1)E+2z


=
1
z2

+
∞∑

k=1

(2k + 1)E2k+2z
2k,

where we have used the fact that E+2 = 0 whenever � is odd.

From this theorem, we obtain the following three expansions for z
near 0:

℘′(z)=
−2
z3

+ 6E4z + 20E6z
3 + · · · ,

(℘′(z))2 =
4
z6

− 24E4

z2
− 80E6 + · · · ,

(℘(z))3 =
1
z6

+
9E4

z2
+ 15E6 + · · · .

From these, one sees that the difference (℘′(z))2 − 4(℘(z))3 + 60E4℘(z) +
140E6 is holomorphic near 0, and in fact equal to 0 at the origin. Since
this difference is also doubly periodic, we conclude by Theorem 1.2 that it
is constant, and hence identically 0. This proves the following corollary.

Corollary 2.3 If g2 = 60E4 and g3 = 140E6, then

(℘′)2 = 4℘3 − g2℘− g3.
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Note that this identity is another version of Theorem 1.7, and it al-
lows one to express the symmetric functions of the ej ’s in terms of the
Eisenstein series.

2.2 Eisenstein series and divisor functions

We will describe now the link between Eisenstein series and some number-
theoretic quantities. This relation comes about if we consider the Fourier
coefficients in the Fourier expansion of the periodic function Ek(τ). Equiv-
alently, we can write E(z) = Ek(τ) with z = e2πiτ , and investigate the
Laurent expansion of E as a function of z.

We begin with a lemma.

Lemma 2.4 If k ≥ 2 and Im(τ) > 0, then

∞∑
n=−∞

1
(n+ τ)k

=
(−2πi)k

(k − 1)!

∞∑
=1

�k−1e2πiτ.

Proof. This identity follows from applying the Poisson summation
formula to f(z) = 1/(z + τ)k; see Exercise 7 in Chapter 4.

An alternate proof consists of noting that it first suffices to establish
the formula for k = 2, since the other cases are then obtained by differ-
entiating term by term. To prove this special case, we differentiate the
formula for the cotangent derived in Chapter 5

∞∑
n=−∞

1
n+ τ

= π cotπτ.

This yields

∞∑
n=−∞

1
(n+ τ)2

=
π2

sin2(πτ)
.

Now use Euler’s formula for the sine and the fact that

∞∑
r=1

rwr =
w

(1 − w)2
with w = e2πiτ

to obtain the desired result.

As a consequence of this lemma, we can draw a connection between
the Eisenstein series, the zeta function, and the divisor functions. The
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divisor function σ(r) that arises here is defined as the sum of the �th

powers of the divisors of r, that is,

σ(r) =
∑
d|r

d.

Theorem 2.5 If k ≥ 4 is even, and Im(τ) > 0, then

Ek(τ) = 2ζ(k) +
2(−1)k/2(2π)k

(k − 1)!

∞∑
r=1

σk−1(r)e2πiτr.

Proof. First observe that σk−1(r) ≤ rrk−1 = rk. If Im(τ) = t, then
whenever t ≥ t0 we have |e2πirτ | ≤ e−2πrt0 , and we see that the series in
the theorem is absolutely convergent in any half-plane t ≥ t0, by compar-
ison with

∑∞
r=1 r

ke−2πrt0 . To establish the formula, we use the definition
of Ek, that of ζ, the fact that k is even, and the previous lemma (with τ
replaced by mτ) to get successively

Ek(τ) =
∑

(n,m)�=(0,0)

1
(n+mτ)k

=
∑
n�=0

1
nk

+
∑
m �=0

∞∑
n=−∞

1
(n+mτ)k

= 2ζ(k) +
∑
m �=0

∞∑
n=−∞

1
(n+mτ)k

= 2ζ(k) + 2
∑
m>0

∞∑
n=−∞

1
(n+mτ)k

= 2ζ(k) + 2
∑
m>0

(−2πi)k

(k − 1)!

∞∑
=1

�k−1e2πimτ

= 2ζ(k) +
2(−1)k/2(2π)k

(k − 1)!

∑
m>0

∞∑
=1

�k−1e2πiτm

= 2ζ(k) +
2(−1)k/2(2π)k

(k − 1)!

∞∑
r=1

σk−1(r)e2πiτr.

This proves the desired formula.

Finally, we turn to the forbidden case k = 2. The series we have in
mind

∑
(n,m)�=(0,0) 1/(n+mτ)2 no longer converges absolutely, but we
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seek to give it a meaning anyway. We define

F (τ) =
∑
m

(∑
n

1
(n+mτ)2

)

summed in the indicated order with (n,m) �= (0, 0). The argument given
in the above theorem proves that the double sum converges, and in fact
has the expected expression.

Corollary 2.6 The double sum defining F converges in the indicated
order. We have

F (τ) = 2ζ(2) − 8π2
∞∑

r=1

σ(r)e2πirτ ,

where σ(r) =
∑

d|r d is the sum of the divisors of r.

It can be seen that F (−1/τ)τ−2 does not equal F (τ), and this is the
same as saying that the double series for F gives a different value (F̃ ,
the reverse of F ) when we sum first in m and then in n. It turns out
that nevertheless the forbidden Eisenstein series F (τ) can be used in
a crucial way in the proof of the celebrated theorem about representing
an integer as the sum of four squares. We turn to these matters in the
next chapter.

3 Exercises

1. Suppose that a meromorphic function f has two periods ω1 and ω2, with
ω2/ω1 ∈ R.

(a) Suppose ω2/ω1 is rational, say equal to p/q, where p and q are relatively
prime integers. Prove that as a result the periodicity assumption is equiva-
lent to the assumption that f is periodic with the simple period ω0 = 1

q
ω1.

[Hint: Since p and q are relatively prime, there exist integers m and n such
that mq + np = 1 (Corollary 1.3, Chapter 8, Book I).]

(b) If ω2/ω1 is irrational, then f is constant. To prove this, use the fact that
{m− nτ} is dense in R whenever τ is irrational and m,n range over the
integers.

2. Suppose that a1, . . . , ar and b1, . . . , br are the zeros and poles, respectively, in
the fundamental parallelogram of an elliptic function f . Show that

a1 + · · · + ar − b1 − · · · − br = nω1 +mω2
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for some integers n and m.

[Hint: If the boundary of the parallelogram contains no zeros or poles, simply inte-
grate zf ′(z)/f(z) over that boundary, and observe that the integral of f ′(z)/f(z)
over a side is an integer multiple of 2πi. If there are zeros or poles on the side
of the parallelogram, translate it by a small amount to reduce the problem to the
first case.]

3. In contrast with the result in Lemma 1.5, prove that the series

∑
n+mτ∈Λ∗

1

|n+mτ |2 where τ ∈ H

does not converge. In fact, show that∑
1≤n2+m2≤R2

1/(n2 +m2) = 2π logR+O(1) as R → ∞.

4. By rearranging the series

1

z2
+
∑

ω∈Λ∗

[
1

(z + ω)2
− 1

ω2

]
,

show directly, without differentiation, that ℘(z + ω) = ℘(z) whenever ω ∈ Λ.

[Hint: For R sufficiently large, note that ℘(z) = ℘R(z) +O(1/R), where
℘R(z) = z−2 +

∑
0<|ω|<R((z + ω)−2 − ω−2). Next, observe that both

℘R(z + 1) − ℘R(z) and ℘R(z + τ ) − ℘R(z) areO(
∑

R−c<|ω|<R+c |ω|−2) = O(1/R).]

5. Let σ(z) be the canonical product

σ(z) = z

∞∏
j=1

E2(z/τj),

where τj is an enumeration of the periods {n+mτ} with (n,m) 
= (0, 0), and

E2(z) = (1 − z)ez+z2/2.

(a) Show that σ(z) is an entire function of order 2 that has simple zeros at all
the periods n+mτ , and vanishes nowhere else.

(b) Show that

σ′(z)
σ(z)

=
1

z
+

∑
(n,m) 	=(0,0)

[
1

z − n−mτ
+

1

n+mτ
+

z

(n+mτ )2

]
,

and that this series converges whenever z is not a lattice point.
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(c) Let L(z) = −σ′(z)/σ(z). Then

L′(z) =
(σ′(z))2 − σ(z)σ′′(z)

(σ(z))2
= ℘(z).

6. Prove that ℘′′ is a quadratic polynomial in ℘.

7. Setting τ = 1/2 in the expression

∞∑
m=−∞

1

(m+ τ )2
=

π2

sin2(πτ )
,

deduce that

∑
m≥1, m odd

1

m2
=
π2

8
and

∑
m≥1

1

m2
=
π2

6
= ζ(2).

Similarly, using
∑

1/(m+ τ )4 deduce that

∑
m≥1, m odd

1

m4
=
π4

96
and

∑
m≥1

1

m4
=
π4

90
= ζ(4).

These results were already obtained using Fourier series in the exercises at the
end of Chapters 2 and 3 in Book I.

8. Let

E4(τ ) =
∑

(n,m) 	=(0,0)

1

(n+mτ )4

be the Eisenstein series of order 4.

(a) Show that E4(τ ) → π4/45 as Im(τ ) → ∞.

(b) More precisely,∣∣∣∣E4(τ ) − π4

45

∣∣∣∣ ≤ ce−2πt if τ = x+ it and t ≥ 1.

(c) Deduce that∣∣∣∣E4(τ ) − τ−4 π
4

45

∣∣∣∣ ≤ ct−4e−2π/t if τ = it and 0 < t ≤ 1.
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4 Problems

1. Besides the approach in Section 1.2, there are several alternate ways of deal-
ing with the sum

∑
1/(z + ω)2, where ω = n+mτ . For example, one may sum

either (a) circularly, (b) first in n then in m, (c) or first in m then in n.

(a) Prove that if z /∈ Λ, then

lim
R→∞

∑
n2+m2≤R2

1

(z + n+mτ )2
= S1(z)

exists and S1(z) = ℘(z) + c1.

(b) Similarly,

∑
m

(∑
n

1

(z + n+mτ )2

)
= S2(z)

exists and S2(z) = ℘(z) + c2, where c2 = F (τ ), and F is the forbidden Eisen-
stein series.

(c) Also

∑
n

(∑
m

1

(z + n+mτ )2

)
= S3(z)

exists with S3(z) = ℘(z) + c3, and c3 = F̃ (τ ), the reverse of F .

[Hint: To prove (a), it suffices to show that limR→∞,
∑

1≤n2+m2≤R2

1/(n+mτ )2 = c1

exists. This is proved by a comparision with
∫
1≤x2+y2≤R2

dx
(x+yτ)2

= I(R). It can

be shown that I(R) = 0, which follows because (x+ yτ )−2 = −(∂/∂x)(x+ yτ )−1.]

2. Show that

℘(z) = c+ π2
∞∑

m=−∞

1

sin2((z +mτ )π)

where c is an appropriate constant. In fact, by part (b) of the previous problem
c = −F (τ ).

3.∗ Suppose Ω is a simply connected domain that excludes the three roots of the
polynomial 4z3 − g2z − g3. For ω0 ∈ Ω and ω0 fixed, define the function I on Ω by

I(ω) =

∫ ω

ω0

dz√
4z3 − g2z − g3

ω ∈ Ω.

Then the function I has an inverse given by ℘(z + α) for some constant α; that is,

I(℘(z + α)) = z
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for appropriate α.

[Hint: Prove that (I(℘(z + α)))′ = ±1, and use the fact that ℘ is even.]

4.∗ Suppose τ is purely imaginary, say τ = it with t > 0. Consider the division
of the complex plane into congruent rectangles obtained by considering the lines
x = n/2, y = tm/2 as n and m range over the integers. (An example is the rect-
angle whose vertices are 0, 1/2, 1/2 + τ/2, and τ/2.)

(a) Show that ℘ is real-valued on all these lines, and hence on the boundaries
of all these rectangles.

(b) Prove that ℘ maps the interior of each rectangle conformally to the upper
(or lower) half-plane.



10 Applications of Theta
Functions

The problem of the representation of an integer n as
the sum of a given number k of integral squares is one
of the most celebrated in the theory of numbers. Its
history may be traced back to Diophantus, but begins
effectively with Girard’s (or Fermat’s) theorem that a
prime 4m + 1 is the sum of two squares. Almost every
arithmetician of note since Fermat has contributed to
the solution of the problem, and it has its puzzles for
us still.

G. H. Hardy, 1940

This chapter is devoted to a closer look at the theory of theta functions
and some of its applications to combinatorics and number theory.

The theta function is given by the series

Θ(z|τ) =
∞∑

n=−∞
eπin2τe2πinz,

which converges for all z ∈ C, and τ in the upper half-plane.
A remarkable feature of the theta function is its dual nature. When

viewed as a function of z, we see it in the arena of elliptic functions, since
Θ is periodic with period 1 and “quasi-period” τ . When considered as
a function of τ , Θ reveals its modular nature and close connection with
the partition function and the problem of representation of integers as
sums of squares.

The two main tools allowing us to exploit these links are the triple-
product for Θ and its transformation law. Once we have proved these
theorems, we give a brief introduction to the connection with partitions,
and then pass to proofs of the celebrated theorems about representation
of integers as sums of two or four squares.
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1 Product formula for the Jacobi theta function

In its most elaborate form, Jacobi’s theta function is defined for z ∈ C

and τ ∈ H by

(1) Θ(z|τ) =
∞∑

n=−∞
eπin2τe2πinz.

Two significant special cases (or variants) are θ(τ) and ϑ(t), which are
defined by

θ(τ)=
∞∑

n=−∞
eπin2τ , τ ∈ H,

ϑ(t)=
∞∑

n=−∞
e−πn2t, t > 0.

In fact, the relation between these various functions is given by
θ(τ) = Θ(0|τ) and ϑ(t) = θ(it), with of course, t > 0.

We have already encountered these functions several times. For exam-
ple, in the study of the heat diffusion equation for the circle, in Chapter 4
of Book I, we found that the heat kernel was given by

Ht(x) =
∞∑

n=−∞
e−4π2n2te2πinx,

and therefore Ht(x) = Θ(x|4πit).
Another instance was the occurence of ϑ in the study of the zeta func-

tion. In fact, we proved in Chapter 6 that the functional equation of ϑ
implied that of ζ, which then led to the analytic continuation of the zeta
function.

We begin our closer look at Θ as a function of z, with τ fixed, by
recording its basic structural properties, which to a large extent charac-
terize it.

Proposition 1.1 The function Θ satisfies the following properties:

(i) Θ is entire in z ∈ C and holomorphic in τ ∈ H.

(ii) Θ(z + 1|τ) = Θ(z|τ).

(iii) Θ(z + τ |τ) = Θ(z|τ)e−πiτe−2πiz.

(iv) Θ(z|τ) = 0 whenever z = 1/2 + τ/2 + n+mτ and n,m ∈ Z.
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Proof. Suppose that Im(τ) = t ≥ t0 > 0 and z = x+ iy belongs to a
bounded set in C, say |z| ≤M . Then, the series defining Θ is absolutely
and uniformly convergent, since

∞∑
n=−∞

|eπin2τe2πinz| ≤ C
∑
n≥0

e−πn2t0e2πnM <∞.

Therefore, for each fixed τ ∈ H the function Θ(·|τ) is entire, and for each
fixed z ∈ C the function Θ(z|·) is holomorphic in the upper half-plane.

Since the exponential e2πinz is periodic of period 1, property (ii) is
immediate from the definition of Θ.

To show the third property we may complete the squares in the ex-
pression for Θ(z + τ |τ). In detail, we have

Θ(z + τ |τ) =
∞∑

n=−∞
eπin2τe2πin(z+τ)

=
∞∑

n=−∞
eπi(n2+2n)τe2πinz

=
∞∑

n=−∞
eπi(n+1)2τe−πiτe2πinz

=
∞∑

n=−∞
eπi(n+1)2τe−πiτe2πi(n+1)ze−2πiz

= Θ(z|τ)e−πiτe−2πiz.

Thus we see that Θ(z|τ), as a function of z, is periodic with period 1 and
“quasi-periodic” with period τ .

To establish the last property it suffices, by what was just shown, to
prove that Θ(1/2 + τ/2|τ) = 0. Again, we use the interplay between n
and n2 to get

Θ(1/2 + τ/2|τ) =
∞∑

n=−∞
eπin2τe2πin(1/2+τ/2)

=
∞∑

n=−∞
(−1)neπi(n2+n)τ .

To see that this last sum is identically zero, it suffices to match n ≥ 0
with −n− 1, and to observe that they have opposite parity, and that
(−n− 1)2 + (−n− 1) = n2 + n. This completes the proof of the propo-
sition.
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We consider next a product Π(z|τ) that enjoys the same structural
properties as Θ(z|τ) as a function of z. This product is defined for z ∈ C

and τ ∈ H by

Π(z|τ) =
∞∏

n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz),

where we have used the notation that is standard in the subject, namely
q = eπiτ . The function Π(z|τ) is sometimes referred to as the triple-
product.

Proposition 1.2 The function Π(z|τ) satisfies the following properties:

(i) Π(z, τ) is entire in z ∈ C and holomorphic for τ ∈ H.

(ii) Π(z + 1|τ) = Π(z|τ).

(iii) Π(z + τ |τ) = Π(z|τ)e−πiτe−2πiz.

(iv) Π(z|τ) = 0 whenever z = 1/2 + τ/2 + n+mτ and n,m ∈ Z. More-
over, these points are simple zeros of Π(·|τ), and Π(·|τ) has no
other zeros.

Proof. If Im(τ) = t ≥ t0 > 0 and z = x+ iy, then |q| ≤ e−πt0 < 1 and

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz) = 1 +O
(
|q|2n−1e2π|z|) .

Since the series
∑

|q|2n−1 converges, the results for infinite products in
Chapter 5 guarantee that Π(z|τ) defines an entire function of z with
τ ∈ H fixed, and a holomorphic function for τ ∈ H with z ∈ C fixed.

Also, it is clear from the definition that Π(z|τ) is periodic of period 1
in the z variable.

To prove the third property, we first observe that since q2 = e2πiτ we
have

Π(z + τ |τ) =
∞∏

n=1

(1 − q2n)(1 + q2n−1e2πi(z+τ))(1 + q2n−1e−2πi(z+τ))

=
∞∏

n=1

(1 − q2n)(1 + q2n+1e2πiz)(1 + q2n−3e−2πiz).

Comparing this last product with Π(z|τ), and isolating the factors that
are either missing or extra leads to

Π(z + τ |τ) = Π(z|τ)
(

1 + q−1e−2πiz

1 + qe2πiz

)
.
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Hence (iii) follows because (1 + x)/(1 + x−1) = x, whenever x �= −1.
Finally, to find the zeros of Π(z|τ) we recall that a product that con-

verges vanishes only if at least one of its factors is zero. Clearly, the factor
(1 − qn) never vanishes since |q| < 1. The second factor
(1 + q2n−1e2πiz) vanishes when q2n−1e2πiz = −1 = eπi. Since q = eπiτ ,
we then have1

(2n− 1)τ + 2z = 1 (mod 2).

Hence,

z = 1/2 + τ/2 − nτ (mod 1),

and this takes care of the zeros of the type 1/2 + τ/2 − nτ +m with
n ≥ 1 and m ∈ Z. Similarly, the third factor vanishes if

(2n− 1)τ − 2z = 1 (mod 2)

which implies that

z = −1/2 − τ/2 + nτ (mod 1)

= 1/2 + τ/2 + n′τ (mod 1),

where n′ ≥ 0. This exhausts the zeros of Π(·|τ). Finally, these zeros are
simple, since the function ew − 1 vanishes at the origin to order 1 (a fact
obvious from a power series expansion or a simple differentiation).

The importance of the product Π comes from the following theorem,
called the product formula for the theta function. The fact that Θ(z|τ)
and Π(z|τ) satisfy similar properties hints at a close connection between
the two. This is indeed the case.

Theorem 1.3 (Product formula) For all z ∈ C and τ ∈ H we have
the identity Θ(z|τ) = Π(z|τ).

Proof. Fix τ ∈ H. We claim first that there exists a constant c(τ)
such that

(2) Θ(z|τ) = c(τ)Π(z|τ).

In fact, consider the quotient F (z) = Θ(z|τ)/Π(z|τ), and note that by the
previous two propositions, the function F is entire and doubly periodic
with periods 1 and τ . This implies that F is constant as claimed.

1We use the standard short-hand, a = b (mod c), to mean that a− b is an integral
multiple of c.
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We must now prove that c(τ) = 1 for all τ , and the main point is to
establish that c(τ) = c(4τ). If we put z = 1/2 in (2), so that e2iπz =
e−2iπz = −1, we obtain

∞∑
n=−∞

(−1)nqn2
= c(τ)

∞∏
n=1

(1 − q2n)(1 − q2n−1)(1 − q2n−1)

= c(τ)
∞∏

n=1

[
(1 − q2n−1)(1 − q2n)

]
(1 − q2n−1)

= c(τ)
∞∏

n=1

(1 − qn)(1 − q2n−1).

Hence

(3) c(τ) =

∑∞
n=−∞(−1)nqn2∏∞

n=1(1 − qn)(1 − q2n−1)
.

Next, we put z = 1/4 in (2), so that e2iπz = i. On the one hand, we have

Θ(1/4|τ) =
∞∑

n=−∞
qn2

in,

and due to the fact that 1/i = −i, only the terms corresponding to n =
even = 2m are not cancelled; thus

Θ(1/4|τ) =
∞∑

m=−∞
q4m2

(−1)m.

On the other hand,

Π(1/4|τ) =
∞∏

m=1

(1 − q2m)(1 + iq2m−1)(1 − iq2m−1)

=
∞∏

m=1

(1 − q2m)(1 + q4m−2)

=
∞∏

n=1

(1 − q4n)(1 − q8n−4),

where the last line is obtained by considering separately the two cases
2m = 4n− 4 and 2m = 4n− 2 in the first factor. Hence

(4) c(τ) =

∑∞
n=−∞(−1)nq4n2∏∞

n=1(1 − q4n)(1 − q8n−4)
,
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and combining (3) and (4) establishes our claim that c(τ) = c(4τ). Suc-
cessive applications of this identity give c(τ) = c(4kτ), and since q4

k

=
eiπ4kτ → 0 as k → ∞, we conclude from (2) that c(τ) = 1. This proves
the theorem.

The product formula for the function Θ specializes to its variant θ(τ) =
Θ(0|τ), and this provides a proof that θ is non-vanishing in the upper
half-plane.

Corollary 1.4 If Im(τ) > 0 and q = eπiτ , then

θ(τ) =
∞∏

n=1

(1 − q2n)(1 + q2n−1)2.

Thus θ(τ) �= 0 for τ ∈ H.

The next corollary shows that the properties of the function Θ now
yield the construction of an elliptic function (which is in fact closely
related to the Weierstrass ℘ function).

Corollary 1.5 For each fixed τ ∈ H, the quotient

(log Θ(z|τ))′′ =
Θ(z|τ)Θ′′(z|τ) − (Θ′(z|τ))2

Θ(z|τ)2

is an elliptic function of order 2 with periods 1 and τ , and with a double
pole at z = 1/2 + τ/2.

In the above, the primes ′ denote differentiation with respect to the z
variable.

Proof. Let F (z) = (log Θ(z|τ))′ = Θ(z|τ)′/Θ(z|τ). Differentiating
the identities (ii) and (iii) of Proposition 1.1 gives F (z + 1) = F (z),
F (z + τ) = F (z) − 2πi, and differentiating again shows that F ′(z) is dou-
bly periodic. Since Θ(z|τ) vanishes only at z = 1/2 + τ/2 in the funda-
mental parallelogram, the function F (z) has only a single pole, and thus
F ′(z) has only a double pole there.

The precise connection between (log Θ(z|τ))′′ and ℘τ (z) is stated in
Exercise 1.

For an analogy between Θ and the Weierstrass σ function, see Exer-
cise 5 of the previous chapter.

1.1 Further transformation laws

We now come to the study of the transformation relations in the τ -
variable, that is, to the modular character of Θ.
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Recall that in the previous chapter, the modular character of the
Weierstrass ℘ function and Eisenstein series Ek was reflected by the
two transformations

τ 	→ τ + 1 and τ 	→ −1/τ,

which preserve the upper half-plane. In what follows, we shall denote
these two transformations by T1 and S, respectively.

When looking at the Θ function, however, it will be natural to consider
instead the transformations

T2 : τ 	→ τ + 2 and S : τ 	→ −1/τ,

since Θ(z|τ + 2) = Θ(z|τ), but Θ(z|τ + 1) �= Θ(z|τ).
Our first task is to study the transformation of Θ(z|τ) under the map-

ping τ 	→ −1/τ .

Theorem 1.6 If τ ∈ H, then

(5) Θ(z| − 1/τ) =
√
τ

i
eπiτz2

Θ(zτ |τ) for all z ∈ C.

Here
√
τ/i denotes the branch of the square root defined on the upper

half-plane, that is positive when τ = it, t > 0.

Proof. It suffices to prove this formula for z = x real and τ = it
with t > 0, since for each fixed x ∈ R, the two sides of equation (5) are
holomorphic functions in the upper half-plane which then agree on the
positive imaginary axis, and hence must be equal everywhere. Also, for
a fixed τ ∈ H the two sides define holomorphic functions in z that agree
on the real axis, and hence must be equal everywhere.

With x real and τ = it the formula becomes
∞∑

n=−∞
e−πn2/te2πinx = t1/2e−πtx2

∞∑
n=−∞

e−πn2te−2πnxt.

Replacing x by a, we find that we must prove

∞∑
n=−∞

e−πt(n+a)2 =
∞∑

n=−∞
t−1/2e−πn2/te2πina.

However, this is precisely equation (3) in Chapter 4, which was derived
from the Poisson summation formula.

In particular, by setting z = 0 in the theorem, we find the following.
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Corollary 1.7 If Im(τ) > 0, then θ(−1/τ) =
√
τ/i θ(τ).

Note that if τ = it, then θ(τ) = ϑ(t), and the above relation is precisely
the functional equation for ϑ which appeared in Chapter 4.

The transformation law θ(−1/τ) = (τ/i)1/2θ(τ) gives us very precise
information about the behavior when τ → 0. The next corollary will be
used later, when we need to analyze the behavior of θ(τ) as τ → 1.

Corollary 1.8 If τ ∈ H, then

θ(1 − 1/τ) =

√
τ

i

∞∑
n=−∞

eπi(n+1/2)2τ

=
√
τ

i

(
2eπiτ/4 + · · ·

)
.

The second identity means that θ(1 − 1/τ) ∼
√
τ/i2eiπτ/4 as

Im(τ) → ∞.

Proof. First, we note that n and n2 have the same parity, so

θ(1 + τ) =
∞∑

n=−∞
(−1)neiπn2τ = Θ(1/2|τ),

hence θ(1 − 1/τ) = Θ(1/2| − 1/τ). Next, we use Theorem 1.6 with z =
1/2, and the result is

θ(1 − 1/τ) =
√
τ

i
eπiτ/4Θ(τ/2|τ)

=
√
τ

i
eπiτ/4

∞∑
n=−∞

eπin2τeπinτ

=
√
τ

i

∞∑
n=−∞

eπi(n+1/2)2τ .

The terms corresponding to n = 0 and n = −1 contribute 2eπiτ/4, which
has absolute value 2e−πt/4 where τ = σ + it. Finally, the sum of the
other terms n �= 0,−1 is of order

O

( ∞∑
k=1

e−(k+1/2)2πt

)
= O

(
e−9πt/4

)
.
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Our final corollary of the transformation law pertains to the Dedekind
eta function, which is defined for Im(τ) > 0 by

η(τ) = e
πiτ
12

∞∏
n=1

(1 − e2πinτ).

The functional equation for η given below will be relevant to our discus-
sion of the four-square theorem, and in the theory of partitions.

Proposition 1.9 If Im(τ) > 0, then η(−1/τ) =
√
τ/i η(τ).

This identity is deduced by differentiating the relation in Theorem 1.6
and evaluating it at z0 = 1/2 + τ/2. The details are as follows.

Proof. From the product formula for the theta function, we may write
with q = eπiτ ,

Θ(z|τ) = (1 + qe−2πiz)
∞∏

n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n+1e−2πiz),

and since the first factor vanishes at z0 = 1/2 + τ/2, we see that

Θ′(z0|τ) = 2πiH(τ), where H(τ) =
∏∞

n=1(1 − e2πinτ )3.

Next, we observe that with −1/τ replaced by τ in (5), we obtain

Θ(z|τ) =
√
i/τe−πiz2/τΘ(−z/τ | − 1/τ).

If we differentiate this expression and then evaluate it at the point z0 =
1/2 + τ/2, we find

2πiH(τ) =
√
i/τe−

πi
4τ e−

πi
2 e−

πiτ
4

(
−2πi
τ

)
H(−1/τ).

Hence

e
πiτ
4 H(τ) =

(
i

τ

)3/2

e−
πi
4τ H(−1/τ).

We note that when τ = it, with t > 0, the function η(τ) is positive, and
thus taking the cube root of the above gives η(τ) =

√
i/τ η(−1/τ); there-

fore this identity holds for all τ ∈ H by analytic continuation.

A connection between the function η and the theory of elliptic func-
tions is given in Problem 5.
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2 Generating functions

Given a sequence {Fn}∞n=0, which may arise either combinatorially, re-
cursively, or in terms of some number-theoretic law, an important tool
in its study is the passage to its generating function, defined by

F (x) =
∞∑

n=0

Fnx
n.

Often times, the defining properties of the sequence {Fn} imply interest-
ing algebraic or analytic properties of the function F (x), and exploiting
these can eventually lead us back to new insights about the sequence
{Fn}. A very simple-minded example is given by the Fibonacci sequence.
(See Exercise 2). Here we want to study less elementary examples of this
idea, related to the Θ function.

We shall first discuss very briefly the theory of partitions.
The partition function is defined as follows: if n is a positive integer,

we let p(n) denote the numbers of ways n can be written as a sum of
positive integers. For instance, p(1) = 1, and p(2) = 2 since 2 = 2 + 0 =
1 + 1. Also, p(3) = 3 since 3 = 3 + 0 = 2 + 1 = 1 + 1 + 1. We set p(0) =
1 and collect some further values of p(n) in the following table.

n 0 1 2 3 4 5 6 7 8 · · · 12
p(n) 1 1 2 3 5 7 11 15 22 · · · 77

The first theorem is Euler’s identity for the generating function of the
partition sequence {p(n)}, which is reminiscent of the product formula
for the zeta function.

Theorem 2.1 If |x| < 1, then
∞∑

n=0

p(n)xn =
∞∏

k=1

1
1 − xk

.

Formally, we can write each fraction as

1
1 − xk

=
∞∑

m=0

xkm,

and multiply these out together to obtain p(n) as the coefficient of xn.
Indeed, when we group together equal integers in a partition of n, this
partition can be written as

n = m1k1 + · · · +mrkr,
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where k1, . . . , kr are distinct positive integers. This partition corresponds
to the term

(xk1)m1 · · · (xkr)mr

that arises in the product.
The justification of this formal argument proceeds as in the proof of

the product formula for the zeta function (Section 1, Chapter 7); this is
based on the convergence of the product

∏
1/(1 − xk). This convergence

in turn follows from the fact that for each fixed |x| < 1 one has

1
1 − xk

= 1 +O(xk).

A similar argument shows that the product
∏

1/(1 − x2n−1) is equal to
the generating function for po(n), the number of partitions of n into odd
parts. Also,

∏
(1 + xn) is the generating function for pu(n), the number

of partitions of n into unequal parts. Remarkably, po(n) = pu(n) for all
n, and this translates into the identity

∞∏
n=1

(
1

1 − x2n−1

)
=

∞∏
n=1

(1 + xn).

To prove this note that (1 + xn)(1 − xn) = 1 − x2n, and therefore

∞∏
n=1

(1 + xn)
∞∏

n=1

(1 − xn) =
∞∏

n=1

(1 − x2n).

Moreover, taking into account the parity of integers, we have
∞∏

n=1

(1 − x2n)
∞∏

n=1

(1 − x2n−1) =
∞∏

n=1

(1 − xn),

which combined with the above proves the desired identity.

The proposition that follows is deeper, and in fact involves the Θ func-
tion directly. Let pe,u(n) denote the number of partitions of n into an
even number of unequal parts, and po,u(n) the number of partitions of n
into an odd number of unequal parts. Then, Euler proved that, unless n is
a pentagonal number, one has pe,u(n) = po,u(n). By definition, pentag-
onal numbers2 are integers n of the form k(3k + 1)/2, with k ∈ Z. For

2The traditional definition is as follows. Integers of the form n = k(k − 1)/2, k ∈ Z,
are “triangular numbers”; those of the form n = k2 are “squares”; and those of the form
k(3k + 1)/2 are “pentagonal numbers.” In general, numbers of the form (k/2)((� − 2)k +
�− 4) are associated with an �-sided polygon.
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example, the first few pentagonal numbers are 1, 2, 5, 7, 12, 15, 22, 26, . . ..
In fact, if n is pentagonal, then

pe,u(n) − po,u(n) = (−1)k, if n = k(3k + 1)/2.

To prove this result, we first observe that

∞∏
n=1

(1 − xn) =
∞∑

n=1

[pe,u(n) − po,u(n)]xn.

This follows since multiplying the terms in the product, we obtain terms
of the form (−1)rxn1+···+nr where the integers n1, . . . , nr are distinct.
Hence in the coefficient of xn, each partition n1 + · · · + nr of n into an
even number of unequal parts contributes for +1 (r is even), and each
partition into an odd number of unequal parts contributes −1 (r is odd).
This gives precisely the coefficient pe,u(n) − po,u(n).

With the above identity, we see that Euler’s theorem is a consequence
of the following proposition.

Proposition 2.2
∞∏

n=1

(1 − xn) =
∞∑

k=−∞
(−1)kx

k(3k+1)
2 .

Proof. If we set x = e2πiu, then we can write

∞∏
n=1

(1 − xn) =
∞∏

n=1

(1 − e2πinu)

in terms of the triple product

∞∏
n=1

(1 − q2n)(1 + q2n−1e2πiz)(1 + q2n−1e−2πiz)

by letting q = e3πiu and z = 1/2 + u/2. This is because

∞∏
n=1

(1 − e2πi3nu)(1 − e2πi(3n−1)u)(1 − e2πi(3n−2)u) =
∞∏

n=1

(1 − e2πinu).

By Theorem 1.3 the product equals

∞∑
n=−∞

e3πin2u(−1)ne2πinu/2 =
∞∑

n=−∞
(−1)neπin(3n+1)u
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=
∞∑

n=−∞
(−1)nxn(3n+1)/2,

which was to be proved.

We make a final comment about the partition function p(n). The
nature of its growth as n→ ∞ can be analyzed in terms of the behavior
of 1/

∏∞
n=1(1 − x)n as |x| → 1. In fact, by elementary considerations, we

can get a rough order of growth of p(n) from the growth of the generating
function as x→ 1; see Exercises 5 and 6. A more refined analysis requires
the transformation properties of the generating function which goes back
to the corresponding Proposition 1.9 about η. This leads to a very good
asymptotic formula for p(n). It may be found in Appendix A.

3 The theorems about sums of squares

The ancient Greeks were fascinated by triples of integers (a, b, c) that
occurred as sides of right triangles. These are the “Pythagorean triples,”
which satisfy a2 + b2 = c2. According to Diophantus of Alexandria
(ca. 250 AD), if c is an integer of the above kind, and a and b have
no common factors (a case to which one may easily reduce), then c is the
sum of two squares, that is, c = m2 + n2 with m,n ∈ Z; and conversely,
any such c arises as the hypotenuse of a triangle whose sides are given by
a Pythagorean triple (a, b, c). (See Exercise 8.) Therefore, it is natural
to ask the following question: which integers can be written as the sum
of two squares? It is easy to see that no number of the form 4k + 3 can
be so written, but to determine which integers can be expressed in this
way is not obvious.

Let us pose the question in a more quantitative form. We define r2(n)
to be the number of ways n can be written as the sum of two squares,
counting obvious repetitions; that is, r2(n) is the number of pairs (x, y),
x, y ∈ Z, so that

n = x2 + y2.

For example, r2(3) = 0, but r2(5) = 8 because 5 = (±2)2 + (±1)2, and
also 5 = (±1)2 + (±2)2. Hence, our first problem can be posed as follows:

Sum of two squares: Which integers can be written as a
sum of two squares? More precisely, can one determine an
expression for r2(n)?

Next, since not every positive integer can be expressed as the sum of
two squares, we may ask if three squares, or possibly four squares suffice.
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However, the fact is that there are infinitely many integers that cannot
be written as the sum of three squares, since it is easy to check that no
integer of the form 8k + 7 can be so written. So we turn to the question
of four squares and define, in analogy with r2(n), the function r4(n) to be
the number of ways of expressing n as a sum of four squares. Therefore,
a second problem that arises is:

Sum of four squares: Can every positive integer be written
as a sum of four squares? More precisely, determine a formula
for r4(n).

It turns out that the problems of two squares and four squares, which
go back to the third century, were not resolved until about 1500 years
later, and their full solution was first given by the use of Jacobi’s theory
of theta functions!

3.1 The two-squares theorem

The problem of representing an integer as the sum of two squares, while
obviously additive in nature, has a nice multiplicative aspect: if n and
m are two integers that can be written as the sum of two squares, then
so can their product nm. Indeed, suppose n = a2 + b2, m = c2 + d2, and
consider the complex number

x+ iy = (a+ ib)(c+ id).

Clearly, x and y are integers since a, b, c, d ∈ Z, and by taking absolute
values on both sides we see that

x2 + y2 = (a2 + b2)(c2 + d2),

and it follows that nm = x2 + y2.
For these reasons the divisibility properties of n play a crucial role in

determining r2(n). To state the basic result we define two new divisor
functions: we let d1(n) denote the number of divisors of n of the form
4k + 1, and d3(n) the number of divisors of n of the form 4k + 3. The
main result of this section provides a complete answer to the two-squares
problem:

Theorem 3.1 If n ≥ 1, then r2(n) = 4(d1(n) − d3(n)).

A direct consequence of the above formula for r2(n) may be stated as
follows. If n = pa1

1 · · · par
r is the prime factorization of n where p1, . . . , pr

are distinct, then:
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The positive integer n can be represented as the sum of two
squares if and only if every prime pj of the form 4k + 3 that
occurs in the factorization of n has an even exponent aj.

The proof of this deduction is outlined in Exercise 9.

To prove the theorem, we first establish a crucial relationship that
identifies the generating function of the sequence {r2(n)}∞n=1 with the
square of the θ function, namely

(6) θ(τ)2 =
∞∑

n=0

r2(n)qn,

whenever q = eπiτ with τ ∈ H. The proof of this identity relies simply on
the definition of r2 and θ. Indeed, if we first recall that θ(τ) =

∑∞
−∞ qn2

,
then we obtain

θ(τ)2 =

( ∞∑
n1=−∞

qn2
1

)( ∞∑
n2=−∞

qn2
2

)
=

∑
(n1,n2)∈Z×Z

qn2
1+n2

2

=
∞∑

n=0

r2(n)qn,

since r2(n) counts the number of pairs (n1, n2) with n2
1 + n2

2 = n.

Proposition 3.2 The identity r2(n) = 4(d1(n) − d3(n)), n ≥ 1, is equiv-
alent to the identities

(7) θ(τ)2 = 2
∞∑

n=−∞

1
qn + q−n

= 1 + 4
∞∑

n=1

qn

1 + q2n
,

whenever q = eπiτ and τ ∈ H.

Proof. We note first that both series converge absolutely since |q| < 1,
and the first equals the second, because 1/(qn + q−n) = q|n|/(1 + q2|n|).

Since (1 + q2n)−1 = (1 − q2n)/(1 − q4n), the right-hand side of (7) equals

1 + 4
∞∑

n=1

(
qn

1 − q4n
− q3n

1 − q4n

)
.
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However, since 1/(1 − q4n) =
∑∞

m=0 q
4nm, we have

∞∑
n=1

qn

1 − q4n
=

∞∑
n=1

∞∑
m=0

qn(4m+1) =
∞∑

k=1

d1(k)qk,

because d1(k) counts the number of divisors of k that are of the form
4m+ 1. Observe that the series

∑
d1(k)qk converges since d1(k) ≤ k.

A similar argument shows that

∞∑
n=1

q3n

1 − q4n
=

∞∑
k=1

d3(k)qk,

and the proof of the proposition is complete.

In effect, we see that the identity (6) links the original problem in
arithmetic with the problem in complex analysis of establishing the re-
lation (7).

We shall now find it convenient to use C(τ) to denote3

(8) C(τ) = 2
∞∑

n=−∞

1
qn + q−n

=
∞∑

n=−∞

1
cos(nπτ)

,

where q = eπiτ and τ ∈ H. Our work then becomes to prove the identity
θ(τ)2 = C(τ).

What is truly remarkable are the different yet parallel ways that the
functions θ and C arise. The genesis of the function θ may be thought
to be the heat diffusion equation on the real line; the corresponding
heat kernel is given in terms of the Gaussian e−πx2

which is its own
Fourier transform; and finally the transformation rule for θ results from
the Poisson summation formula.

The parallel with C is that it arises from another differential equation:
the steady-state heat equation in a strip; there, the corresponding kernel
is 1/ coshπx (Section 1.3, Chapter 8), which again is its own Fourier
transform (Example 3, Chapter 3). The transformation rule for C results,
once again, from the Poisson summation formula.

To prove the identity θ2 = C we will first show that these two functions
satisfy the same structural properties. For θ2 we had the transformation
law θ(τ)2 = (i/τ)θ(−1/τ)2 (Corollary 1.7).

3We denote the function by C because we are summing a series of cosines.
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An identical transformation law holds for C(τ)! Indeed, if we set a = 0
in the relation (5) of Chapter 4 we obtain

∞∑
n=−∞

1
cosh(πnt)

=
1
t

∞∑
n=−∞

1
cosh(πn/t)

.

This is precisely the identity

C(τ) = (i/τ) C(−1/τ)

for τ = it, t > 0, which therefore also holds for all τ ∈ H by analytic
continuation.

It is also obvious from their definitions that both θ(τ)2 and C(τ) tend
to 1 as Im(τ) → ∞. The last property we want to examine is the behavior
of both functions at the “cusp” τ = 1.4

For θ2 we shall invoke Corollary 1.8 to see that θ(1 − 1/τ)2 ∼ 4(τ/i)eπiτ/2

as Im(τ) → ∞.
For C we can do the same, again using the Poisson summation formula.

In fact, if we set a = 1/2 in equation (5), Chapter 4, we find

∞∑
n=−∞

(−1)n

cosh(πn/t)
= t

∞∑
n=−∞

1
cosh(π(n+ 1/2)t)

.

Therefore, by analytic continuation we deduce that

C(1 − 1/τ) =
(τ
i

) ∞∑
n=−∞

1
cos(π(n+ 1/2)τ)

.

The main terms of this sum are those for n = −1 and n = 0. This easily
gives

C(1 − 1/τ) = 4
(τ
i

)
eπiτ/2 +O

(
|τ |e−3πt/2

)
, as t→ ∞,

and where τ = σ + it. We summarize our conclusions in a proposition.

Proposition 3.3 The function C(τ) =
∑

1/ cos(πnτ), defined in the up-
per half-plane, satisfies

(i) C(τ + 2) = C(τ).

(ii) C(τ) = (i/τ)C(−1/τ).

4Why we refer to the point τ = 1 as a cusp, and the reason for its importance, will
become clear later on.
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(iii) C(τ) → 1 as Im(τ) → ∞.

(iv) C(1 − 1/τ) ∼ 4(τ/i)eπiτ/2 as Im(τ) → ∞.

Moreover, θ(τ)2 satisfies the same properties.

With this proposition, we prove the identity of θ(τ)2 = C(τ) with the
aid of the following theorem, in which we shall ultimately set f = C/θ2.

Theorem 3.4 Suppose f is a holomorphic function in the upper half-
plane that satisfies:

(i) f(τ + 2) = f(τ),

(ii) f(−1/τ) = f(τ),

(iii) f(τ) is bounded,

then f is constant.

For the proof of this theorem, we introduce the following subset of the
closed upper half-plane, which is defined by

F = {τ ∈ H : |Re(τ)| ≤ 1 and |τ | ≥ 1},

and illustrated in Figure 1.

F

−1 10

Figure 1. The domain F

The points corresponding to τ = ±1 are called cusps. They are equiv-
alent under the mapping τ 	→ τ + 2.
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Lemma 3.5 Every point in the upper half-plane can be mapped into F
using repeatedly one or another of the following fractional linear trans-
formations or their inverses:

T2 : τ 	→ τ + 2, S : τ 	→ −1/τ.

For this reason, F is called the fundamental domain5 for the group of
transformations generated by T2 and S.

In fact, we let G denote the group generated by T2 and S. Since T2

and S are fractional linear transformations, we may represent an element
g ∈ G by a matrix

g =
(
a b
c d

)
,

with the understanding that

g(τ) =
aτ + b

cτ + d
.

Since the matrices representing T2 and S have integer coefficients and
determinant 1, the same is true for all matrices of elements in G. In
particular, if τ ∈ H, then

(9) Im(g(τ)) =
Im(τ)

|cτ + d|2 .

Proof of Lemma 3.5. Let τ ∈ H. If g ∈ G withg(τ)=(aτ + b)/(cτ + d),
then c and d are integers, and by (9) we may choose a g0 ∈ G such that
Im(g0(τ)) is maximal. Since the translations T2 and their inverses do
not change imaginary parts, we may apply finitely many of them to see
that there exists g1 ∈ G with |Re(g1(τ))| ≤ 1 and Im(g1(τ)) is maximal.
It now suffices to prove that |g1(τ)| ≥ 1 to conclude that g1(τ) ∈ F . If
this were not true, that is, |g1(τ)| < 1, then Im(Sg1(τ)) would be greater
than Im(g1(τ)) since

Im(Sg1(τ)) = Im(−1/g1(τ)) = − Im(g1(τ))
|g1(τ)|2

> Im(g1(τ)),

and this contradicts the maximality of Im(g1(τ)).

We can now prove the theorem. Suppose f is not constant, and let
g(z) = f(τ) where z = eπiτ . The function g is well defined for z in the

5Strictly speaking, the notion of a fundamental domain requires that every point have
a unique representative in the domain. In the present case, ambiguity arises only for
points that are on the boundary of F .
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punctured unit disc, since f is periodic of period 2, and moreover, g is
bounded near the origin by assumption (iii) of the theorem. Hence 0 is
a removable singularity for g, and limz→0 g(z) = limIm(τ)→∞ f(τ) exists.
So by the maximum modulus principle,

lim
Im(τ)→∞

|f(τ)| < sup
τ∈F

|f(τ)|.

Now we must investigate the behavior of f at the points τ = ±1. Since
f(τ + 2) = f(τ), it suffices to consider the point τ = 1. We claim that

lim
Im(τ)→∞

f(1 − 1/τ)

exists and moreover

lim
Im(τ)→∞

|f(1 − 1/τ)| < sup
τ∈F

|f(τ)|.

The argument is essentially the same as the one above, except that we
first need to interchange τ = 1 with the point at infinity. In other words,
we wish to investigate the behavior of F (τ) = f(1 − 1/τ) for τ near ∞.
The important step is to prove that F is periodic. To this end, we
consider the fractional linear transformation associated to the matrix

Un =
(

1 − n n
−n 1 + n

)
,

that is,

τ 	→ (1 − n)τ + n

−nτ + (1 + n)
,

which maps 1 to 1. Now let µ(τ) = 1/(1 − τ) which maps 1 to ∞, and
whose inverse µ−1(τ) = 1 − 1/τ takes ∞ to 1. Then

Un = µ−1Tnµ,

where Tn is the translation Tn(τ) = τ + n. As a consequence,

UnUm = Un+m,

and

U−1 =
(

2 −1
1 0

)
= T2S.



304 Chapter 10. APPLICATIONS OF THETA FUNCTIONS

Thus any Un can be obtained by finitely many applications of T2, S, or
their inverses. Since f is invariant under T2 and S, it is also invariant
under Um. So we find that

f(µ−1Tnµ(τ)) = f(τ).

Therefore, if we let F (τ) = f(µ−1(τ)) = f(1 − 1/τ), we find that F is
periodic of period 1, that is,

F (Tnτ) = F (τ) for every integer n.

Now, by the previous argument, if we set h(z) = F (τ) with z = e2πiτ , we
see that h has a removable singularity at z = 0, and the desired inequality
follows by the maximum principle.

We conclude from this analysis that f attains its maximum in the inte-
rior of the upper half-plane, and this contradicts the maximum principle.

The proof of the two-squares theorem is now only one step away.
We consider the function f(τ) = C(τ)/θ(τ)2. Since we know by the

product formula that θ(τ) does not vanish in the upper half-plane (Corol-
lary 1.4), we find that f is holomorphic in H. Moreover, by Propo-
sition 3.3, f is invariant under the transformations T2 and S, that is,
f(τ + 2) = f(τ) and f(−1/τ) = f(τ). Finally, in the fundamental do-
main F , the function f(τ) is bounded, and in fact tends to 1 as Im(τ)
tends to infinity, or as τ tends to the cusps ±1. This is because of proper-
ties (iii) and (iv) in Proposition 3.3, which are verified by both C and θ2.
Thus f is bounded in H. The result is that f is a constant, which must
be 1, proving that θ(τ)2 = C(τ), and with it the two-squares theorem.

3.2 The four-squares theorem

Statement of the theorem

In the rest of this chapter, we shall consider the case of four squares.
More precisely, we will prove that every positive integer is the sum of
four squares, and moreover we will determine a formula for r4(n) that
describes the number of ways this can be done.

We need to introduce another divisor function, which we denote by
σ∗

1(n), and which equals the sum of divisors of n that are not divisible
by 4. The main theorem we shall prove is the following.

Theorem 3.6 Every positive integer is the sum of four squares, and
moreover

r4(n) = 8σ∗
1(n) for all n ≥ 1.



3. The theorems about sums of squares 305

As before, we relate the sequence {r4(n)} via its generating function
to an appropriate power of the function θ, which in this case is its fourth
power. The result is that

θ(τ)4 =
∞∑

n=0

r4(n)qn

whenever q = eπiτ with τ ∈ H.

The next step is to find the modular function whose equality with
θ(τ)4 expresses the identity r4(n) = 8σ∗

1(n). Unfortunately, here there
is nothing as simple as the function C(τ) that arose in the two-squares
theorem; instead we shall need to construct a rather subtle variant of the
Eisenstein series considered in the previous chapter. In fact, we define

E∗
2 (τ) =

∑
m

∑
n

1(
mτ
2

+ n
)2 −

∑
m

∑
n

1(
mτ + n

2

)2
for τ ∈ H. The indicated order of summation is critical, since the above
series do not converge absolutely. The following reduces the four-squares
theorem to the modular properties of E∗

2 .

Proposition 3.7 The assertion r4(n) = 8σ∗
1(n) is equivalent to the iden-

tity

θ(τ)4 =
−1
π2
E∗

2 (τ), where τ ∈ H.

Proof. It suffices to prove that if q = eπiτ , then

−1
π2
E∗

2 (τ) = 1 +
∞∑

k=1

8σ∗
1(k)q

k.

First, recall the forbidden Eisenstein series that we considered in the
last section of the previous chapter, and which is defined by

F (τ) =
∑
m

[∑
n

1
(mτ + n)2

]
,

where the term n = m = 0 is omitted. Since the sum above is not abso-
lutely convergent, the order of summation, first in n and then in m, is
crucial. With this in mind, the definitions of E∗

2 and F give immediately

(10) E∗
2 (τ) = F

(τ
2

)
− 4F (2τ).
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In Corollary 2.6 (and Exercise 7) of the last chapter, we proved that

F (τ) =
π2

3
− 8π2

∞∑
k=1

σ1(k)e2πikτ ,

where σ1(k) is the sum of the divisors of k.
Now observe that

σ∗
1(n) =

{
σ1(n) if n is not divisible by 4,
σ1(n) − 4σ1(n/4) if n is divisible by 4.

Indeed, if n is not divisible by 4, then no divisors of n are divisible by
4. If n = 4ñ, and d is a divisor of n that is divisible by 4, say d = 4d̃,
then d̃ divides ñ. This gives the second formula. Therefore, from this
observation and (10) we find that

E∗
2 (τ) = −π2 − 8π2

∞∑
k=1

σ∗
1(k)eπikτ ,

and the proof of the proposition is complete.

We have therefore reduced Theorem 3.6 to the identity θ4 = −π−2E∗
2 ,

and the key to establish this relation is that E∗
2 satisfies the same modular

properties as θ(τ)4.

Proposition 3.8 The function E∗
2 (τ) defined in the upper half-plane has

the following properties:

(i) E∗
2 (τ + 2) = E∗

2 (τ).

(ii) E∗
2 (τ) = −τ−2E∗

2 (−1/τ).

(iii) E∗
2 (τ) → −π2 as Im(τ) → ∞.

(iv) |E∗
2 (1 − 1/τ)| = O(|τ2eπiτ |) as Im(τ) → ∞.

Moreover −π2θ4 has the same properties.

The periodicity (i) of E∗
2 is immediate from the definition. The proofs

of the other properties of E∗
2 are a little more involved.

Consider the forbidden Eisenstein series F and its reverse F̃ , which is
obtained from reversing the order of summation:

F (τ) =
∑
m

∑
n

1
(mτ + n)2

and F̃ (τ) =
∑

n

∑
m

1
(mτ + n)2

.

In both cases, the term n = m = 0 is omitted.
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Lemma 3.9 The functions F and F̃ satisfy:

(a) F (−1/τ) = τ2F̃ (τ),

(b) F (τ) − F̃ (τ) = 2πi/τ ,

(c) F (−1/τ) = τ2F (τ) − 2πiτ .

Proof. Property (a) follows directly from the definitions of F and F̃ ,
and the identity

(n+m(−1/τ))2 = τ−2(−m+ nτ)2.

To prove property (b), we invoke the functional equation for the Dedekind
eta function which was established earlier:

η(−1/τ) =
√
τ/i η(τ),

where η(τ) = q1/12
∏∞

n=1(1 − q2n), and q = eπiτ .
First, we take the logarithmic derivative of η with respect to the vari-

able τ to find (by Proposition 3.2 in Chapter 5)

(η′/η)(τ) =
πi

12
− 2πi

∞∑
n=1

nq2n

1 − q2n
.

However, if σ1(k) denotes the sum of the divisors of k, then one sees that

∞∑
n=1

nq2n

1 − q2n
=

∞∑
n=1

∞∑
=0

nq2nq2n

=
∞∑

n=1

∞∑
m=1

nq2nm

=
∞∑

k=1

σ1(k)q2k.

If we recall that F (τ) = π2/3 − 8π2
∑∞

k=1 σ1(k)q2k, we find

(η′/η)(τ) =
i

4π
F (τ).

By the chain rule, the logarithmic derivative of η(−1/τ) is τ−2(η′/η)(−1/τ),
and using property (a), we see that the logarithmic derivative of η(−1/τ)
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equals (i/4π)F̃ (τ). Therefore, taking the logarithmic derivative of the
functional equation for η we find

i

4π
F̃ (τ) =

1
2τ

+
i

4π
F (τ),

and this gives F̃ (τ) = −2πi/τ + F (τ), as desired.
Finally, (c) is a consequence of (a) and (b).

To prove the transformation formula (ii) for E∗
2 under τ 	→ −1/τ , we

begin with

E∗
2 (τ) = F (τ/2) − 4F (2τ).

Then

E∗
2 (−1/τ) = F (−1/(2τ))− 4F (−2/τ)

= [4τ2F (2τ) − 4πiτ ] − 4[(τ/2)2F (τ/2)− πiτ ]

= 4τ2F (2τ) − 4(τ2/4)F (τ/2)
= −τ2(F (τ/2)− 4F (2τ))

= −τ2E∗
2 (τ),

as desired. To prove the third property recall that

F (τ) =
π2

3
− 8π2

∞∑
k=1

σ1(k)e2πikτ ,

where the sum goes to 0 as Im(τ) → ∞. Then, if we use the fact that

E∗
2 (τ) = F (τ/2) − 4F (2τ),

we conclude that E∗
2 (τ) → −π2 as Im(τ) → ∞.

To prove the final property, we begin by showing that

(11) E∗
2 (1 − 1/τ) = τ2

[
F

(
τ − 1

2

)
− F (τ/2)

]
.

From the transformation formulas for F we have

F (1/2 − 1/2τ) = F

(
τ − 1
2τ

)
=
(

2τ
τ − 1

)2

F

(
2τ

1 − τ

)
− 2πi

2τ
1 − τ

,
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and

F

(
2τ

1 − τ

)
= F (−2 + 2/(1 − τ))

= F (2/(1 − τ))

=
(

1 − τ

2

)2

F

(
τ − 1

2

)
− 2πi

(
τ − 1

2

)
.

Hence,

F (1/2 − 1/2τ) = τ2F

(
τ − 1

2

)
− 2πi2τ

1 − τ
− 2πi

(2τ)2

(τ − 1)2

(
τ − 1

2

)
.

But F (2 − 2/τ) = F (−2/τ) = (τ2/4)F (τ/2)− 2πiτ/2, and hence

E∗
2 (1 − 1/τ) = F (1/2 − 1/2τ)− 4F (2 − 2/τ)

= τ2

[
F

(
τ − 1

2

)
− F (τ/2)

]
− 2πi

(
2τ

1 − τ
+

2τ2

τ − 1

)
+ 4πiτ

= τ2

[
F

(
τ − 1

2

)
− F (τ/2)

]
.

This proves (11). Then, the last property follows from it and the fact
that

F (τ) =
π2

3
− 8π2

∞∑
k=1

σ1(k)e2πikτ .

Thus Proposition 3.8 is proved.

We can now conclude the proof of the four-squares theorem by consid-
ering the quotient f(τ) = E∗

2 (τ)/θ(τ)4, and applying Theorem 3.4, as in
the two-squares theorem. Recall θ(τ)4 → 1 and θ(1 − 1/τ)4 ∼ 16τ2eπiτ ,
as Im(τ) → ∞. The result is that f(τ) is a constant, which equals −π2 by
Proposition 3.8. This completes the proof of the four-squares theorem.

4 Exercises

1. Prove that

(Θ′(z|τ ))2 − Θ(z|τ )Θ′′(z|τ )
Θ(z|τ )2 = ℘τ (z − 1/2 − τ/2) + cτ ,

where cτ can be expressed in terms of the first two derivatives of Θ(z|τ ), with
respect to z, at z = 1/2 + τ/2. Compare this formula with the result in Exercise 5
in the previous chapter.
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2. Consider the Fibonacci numbers {Fn}∞n=0, defined by the two initial values
F0 = 0, F1 = 1 and the recursion relation

Fn = Fn−1 + Fn−2 for n ≥ 2.

(a) Consider the generating function F (x) =
∑∞

n=0 Fnx
n associated to {Fn},

and prove that

F (x) = x2F (x) + xF (x) + x

for all x in a neighborhood of 0.

(b) Show that the polynomial q(x) = 1 − x− x2 can be factored as

q(x) = (1 − αx)(1 − βx),

where α and β are the roots of the polynomial p(x) = x2 − x− 1.

(c) Expand the expression for F in partial fractions and obtain

F (x) =
x

1 − x− x2
=

x

(1 − αx)(1 − βx)
=

A

1 − αx
+

B

1 − βx
,

where A = 1/(α− β) and B = 1/(β − α).

(d) Conclude that Fn = Aαn +Bβn for n ≥ 0. The two roots of p are actually

α =
1 +

√
5

2
and β =

1 −√
5

2
,

so that A = 1/
√

5 and B = −1/
√

5.

The number 1/α = (
√

5 − 1)/2, which is known as the golden mean, satisfies
the following property: given a line segment [AC] of unit length (Figure 2), there
exists a unique point B on this segment so that the following proportion holds

AC

AB
=
AB

BC
.

If � = AB, this reduces to the equation �2 + �− 1 = 0, whose only positive solu-
tion is the golden mean. This ratio arises also in the construction of the regular
pentagon. It has played a role in architecture and art, going back to the time of
ancient Greece.

3. More generally, consider the difference equation given by the initial values u0

and u1, and the recurrence relation un = aun−1 + bun−2 for n ≥ 2. Define the
generating function associated to {un}∞n=0 by U(x) =

∑∞
n=0 unx

n. The recurrence
relation implies that U(x)(1 − ax− bx2) = u0 + (u1 − au0)x in a neighborhood of



4. Exercises 311

1

BA C

�

Figure 2. Appearance of the golden mean

the origin. If α and β denote the roots of the polynomial p(x) = x2 − ax− b, then
we may write

U(x) =
u0 + (u1 − au0)x

(1 − αx)(1 − βx)
=

A

1 − αx
+

B

(1 − βx)
= A

∞∑
n=0

αnxn +B
∞∑

n=0

βnxn,

where it is an easy matter to solve for A and B. Finally, this gives un = Aαn +
Bβn. Note that this approach yields a solution to our problem if the roots of p
are distinct, namely α 
= β. A variant of the formula holds if α = β.

4. Using the generating formula for p(n), prove the recurrence formula

p(n) = p(n− 1) + p(n− 2) − p(n− 5) − p(n− 7) − · · ·

=
∑
k 	=0

(−1)k+1p

(
n− k(3k + 1)

2

)
,

where the right-hand side is the finite sum taken over those k ∈ Z, k 
= 0, with
k(3k + 1)/2 ≤ n. Use this formula to calculate p(5), p(6), p(7), p(8), p(9), and
p(10); check that p(10) = 42.

The next two exercises give elementary results related to the asymptotics of the
partition function. More refined statements can be found in Appendix A.

5. Let

F (x) =

∞∑
n=0

p(n)xn =

∞∏
n=1

1

1 − xn

be the generating function for the partitions. Show that

logF (x) ∼ π2

6(1 − x)
as x→ 1, with 0 < x < 1.

[Hint: Use logF (x) =
∑

log(1/(1 − xn)) and log(1/(1 − xn)) =
∑

(1/m)xnm, so

logF (x) =
∑ 1

m

xm

1 − xm
.

Use also mxm−1(1 − x) < 1 − xm < m(1 − x).]
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6. Show as a consequence of Exercise 5 that

ec1n1/2 ≤ p(n) ≤ ec2n1/2

for two positive constants c1 and c2.

[Hint: F (e−y) =
∑
p(n)e−ny ≤ Cec/y as y → 0. So p(n)e−ny ≤ cec/y. Take y =

1/n1/2 to get p(n) ≤ c′ec′n1/2
. In the opposite direction

m∑
n=0

p(n)e−ny ≥ C(ec/y −
∞∑

n=m+1

ecn1/2
e−ny),

and it suffices to take y = Am−1/2 where A is a large constant, and use the fact
that the sequence p(n) is increasing.]

7. Use the product formula for Θ to prove:

(a) The “triangular number” identity

∞∏
n=0

(1 + xn)(1 − x2n+2) =

∞∑
n=−∞

xn(n+1)/2,

which holds for |x| < 1.

(b) The “septagonal number” identity

∞∏
n=0

(1 − x5n+1)(1 − x5n+4)(1 − x5n+5) =
∞∑

n=−∞
(−1)nxn(5n+3)/2,

which holds for |x| < 1.

8. Consider Pythagorean triples (a, b, c) with a2 + b2 = c2, and with a, b, c ∈ Z.
Suppose moreover that a and b have no common factors.

(a) Show that either a or b must be odd, and the other even.

(b) Show in this case (assuming a is odd and b even) that there are integers
m,n so that a = m2 − n2, b = 2mn, and c = m2 + n2. [Hint: Note that
b2 = (c− a)(c+ a), and prove that (c− a)/2 and (c+ a)/2 are relatively
prime integers.]

(c) Conversely, show that whenever c is a sum of two-squares, then there exist
integers a and b such that a2 + b2 = c2.

9. Use the formula for r2(n) to prove the following:

(a) If n = p, where p is a prime of the form 4k + 1, then r2(n) = 8. This implies
that n can be written in a unique way as n = n2

1 + n2
2, except for the signs

and reordering of n1 and n2.

(b) If n = qa, where q is prime of the form 4k + 3 and a is a positive integer,
then r2(n) > 0 if and only if a is even.
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(c) In general, n can be represented as the sum of two squares if and only if all
the primes of the form 4k + 3 that arise in the prime decomposition of n
occur with even exponents.

10. Observe the following irregularities of the functions r2(n) and r4(n) as n
becomes large:

(a) r2(n) = 0 for infinitely many n, while lim supn→∞ r2(n) = ∞.

(b) r4(n) = 24 for infinitely many n while lim supn→∞ r4(n)/n = ∞.

[Hint: For (a) consider n = 5k; for (b) consider alternatively n = 2k, and n = qk

where q is odd and large.]

11. Recall from Problem 2 in Chapter 2, that

∞∑
n=1

d(n)zn =
∞∑

n=1

zn

1 − zn
, |z| < 1

where d(n) denotes the number of divisors of n.
More generally, show that

∞∑
n=1

σ�(n)zn =

∞∑
n=1

n�zn

1 − zn
, |z| < 1

where σ�(n) is the sum of the �th powers of divisors of n.

12. Here we give another identity involving θ4, which is equivalent to the four-
squares theorem.

(a) Show that for |q| < 1

∞∑
n=1

nqn

1 − qn
=

∞∑
n=1

qn

(1 − qn)2
.

[Hint: The left-hand side is
∑
σ1(n)qn. Use x/(1 − x)2 =

∑∞
n=1 nx

n.]

(b) Show as a result that

∞∑
n=1

nqn

1 − qn
−

∞∑
n=1

4nq4n

1 − q4n
=

∞∑
n=1

qn

(1 − qn)2
− 4

∞∑
n=1

q4n

(1 − q4n)2
=
∑

σ∗
1(n)qn

where σ∗
1(n) is the sum of the divisors of d that are not divisible by 4.

(c) Show that the four-squares theorem is equivalent to the identity

θ(τ )4 = 1 + 8

∞∑
n=1

qn

(1 + (−1)nqn)2
, q = eπiτ .



314 Chapter 10. APPLICATIONS OF THETA FUNCTIONS

5 Problems

1.∗ Suppose n is of the form n = 4a(8k + 7), where a and k are positive integers.
Show that n cannot be written as the sum of three-squares. The converse, that
every n that is not of that form can be written as the sum of three-squares, is a
difficult theorem of Legendre and Gauss.

2. Let SL2(Z) denote the set of 2 × 2 matrices with integer entries and determinant
1, that is,

SL2(Z) =

{
g =

(
a b
c d

)
: a, b, c, d ∈ Z and ad− bc = 1

}
.

This group acts on the upper half-plane by the fractional linear transformation
g(τ ) = (aτ + b)/(cτ + d). Together with this action comes the so-called funda-
mental domain F1 in the complex plane defined by

F1 = {τ ∈ C : |τ | ≥ 1, |Re(τ )| ≤ 1/2 and |Im(τ )| ≥ 0}.
It is illustrated in Figure 3.

F1

−1 10

Figure 3. The fundamental domain F1

Consider the two elements in SL2(Z) defined by S(τ ) = −1/τ and T1(τ ) = τ + 1.
These correspond (for example) to the matrices(

0 −1
1 0

)
and

(
1 1
0 1

)
,

respectively. Let g be the subgroup of SL2(Z) generated by S and T1.

(a) Show that for every τ ∈ H there exists g ∈ g such that g(τ ) ∈ F1.

(b) We say that two points τ and τ ′ are congruent if there exists g ∈ SL2(Z) such
that g(τ ) = w. Prove that if τ, w ∈ F1 are congruent, then either Re(τ ) =
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±1/2 and τ ′ = τ ∓ 1 or |τ | = 1 and τ ′ = −1/τ . [Hint: Say τ ′ = g(τ ). Why
can one assume that Im(τ ′) ≥ Im(τ ), and therefore |cτ + d| ≤ 1? Now con-
sider separately the possibilities c = −1, c = 0, or c = 1.]

(c) Prove that S and T1 generate the modular group in the sense that every
fractional linear transformation corresponding to g ∈ SL2(Z) is a composi-
tion of finitely many S’s and T1’s, and their inverses. Strictly speaking, the
matrices associated to S and T1 generate the projective special linear group
PSL2(Z), which equals SL2(Z) modulo ±I . [Hint: Observe that 2i is in the
interior of F1. Now map g(2i) back into F1 by using part (a). Use part (b)
to conclude.]

3. In this problem, consider the group G of matrices

(
a b
c d

)
with integer

entries, determinant 1, and such that a and d have the same parity, b and c have
the same parity, and c and d have opposite parity. This group also acts on the
upper half-plane by fractional linear transformations. To the group G corresponds
the fundamental domain F defined by |τ | ≥ 1, |Re(τ )| ≤ 1, and Im(τ ) ≥ 0 (see
Figure 1). Also, let

S(τ ) = −1/τ ↔
(

0 −1
1 0

)
and T2(τ ) = τ + 2 ↔

(
1 2
0 1

)
.

Prove that every fractional linear transformation corresponding to g ∈ G is a
composition of finitely many S, T2 and their inverses, in analogy with the previous
problem.

4. Let G denote the group of matrices given in the previous problem. Here we
give an alternate proof of Theorem 3.4, that states that a function in H which is
holomorphic, bounded, and invariant under G must be constant.

(a) Suppose that f : H → C is holomorphic, bounded, and that there exists a
sequence of complex numbers τk = xk + iyk such that

f(τk) = 0,
∞∑

k=1

yk = ∞, 0 < yk ≤ 1, and |xk| ≤ 1.

Then f = 0. [Hint: When xk = 0 see Problem 5 in Chapter 8.]

(b) Given two relatively prime integers c and d with different parity, show that

there exist integers a and b such that

(
a b
c d

)
∈ G. [Hint: All the so-

lutions of xc+ dy = 1 take the form x0 + dt and y0 − ct where x0, y0 is a
particular solution and t ∈ Z.]

(c) Prove that
∑

1/(c2 + d2) = ∞ where the sum is taken over all c and d
that are relatively prime and of opposite parity. [Hint: Suppose not, and
prove that

∑
(a,b)=1 1/(a2 + b2) <∞ where the sum is over all relatively

prime integers a and b. To do so, note that if a and b are both odd and
relatively prime, then the two numbers c and d defined by c = (a+ b)/2
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and d = (a− b)/2 are relatively prime and of opposite parity. Moreover,
c2 + d2 ≤ A(a2 + b2) for some universal constant A. Therefore∑

n	=0

1

n2

∑
(a,b)=1

1

a2 + b2
<∞,

hence
∑

1/(k2 + �2) <∞, where the sum is over all integers k and � such
that k, � 
= 0. Why is this a contradiction?]

(d) Prove that if F : H → C is holomorphic, bounded, and invariant under
G, then F is constant. [Hint: Replace F (τ ) by F (τ ) − F (i) so that we
can assume F (i) = 0 and prove F = 0. For each relatively prime c and
d with opposite parity, choose g ∈ G so that g(i) = xc,d + i/(c2 + d2) with
|xc,d| ≤ 1.]

5.∗ In Chapter 9 we proved that the Weierstrass ℘ function satisfies the cubic
equation

(℘′)2 = 4℘3 − g2℘− g3,

where g2 = 60E4, g3 = 140E6, with Ek is the Eisenstein series of order k. The
discriminant of the cubic y2 = 4x3 − g2x− g3 is defined by  = g3

2 − 27g2
3 . Prove

that
(τ ) = (2π)12η24(τ ) for all τ ∈ H.

[Hint:  and η24 satisfy the same transformation laws under τ �→ τ + 1 and τ �→
−1/τ . Because of the fundamental domain described in Problem 2, it suffices then
to investigate the behavior at the only cusp, which is at infinity.]

6.∗ Here we will deduce the formula for r8(n), which counts the number of repre-
sentations of n as a sum of eight squares. The method is parallel to that of r4(n),
but the details are less delicate.

Theorem: r8(n) = 16σ∗
3 (n).

Here σ∗
3(n) = σ3(n) =

∑
d|n d

3, when n is odd. Also, when n is even

σ∗
3(n) =

∑
d|n

(−1)dd3 = σe
3(n) − σo

3(n),

where σe
3(n) =

∑
d|n, d even d

3 and σo
3(n) =

∑
d|n, d odd d

3.
Consider the appropriate Eisenstein series

E∗
4(τ ) =

∑ 1

(n+mτ )4
,

where the sum is over integers n and m with opposite parity. Recall the standard
Eisenstein series

E4(τ ) =
∑

(n,m) 	=(0,0)

1

(n+mτ )4
.

Notice that the series defining E∗
4 is absolutely convergent, in distinction to E∗

2(τ ),
which arose when considering r4(n). This makes some of the considerations below
quite a bit simpler.
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(a) Prove that r8(n) = 16σ∗
3(n) is equivalent to the identity θ(τ )8 = 48π−4E∗

4 (τ ).

[Hint: Use the fact that E4(τ ) = 2ζ(4) + (2π)4

3

∑∞
k=1 σ3(k)e

2πikτ and ζ(4) =
π4/90.]

(b) Note that E∗
4 (τ ) = E4(τ ) − 2−4E4((τ − 1)/2).

(c) E∗
4 (τ + 2) = E∗

4 (τ ).

(d) E∗
4 (τ ) = τ−4E∗

4 (−1/τ ).

(e) (48/π4)E∗
4(τ ) → 1 as τ → ∞.

(f) |E∗
4 (1 − 1/τ )| ≈ |τ |4|e2πiτ |, as Im(τ ) → ∞. [Hint: Verify that E∗

4 (1 − 1/τ ) =
τ 4(E4(τ ) − E4(2τ )).]

Since θ(τ )8 satisfies properties similar to (c), (d), (e) and (f) above, it follows that
the invariant function 48π−4E∗

4 (τ )/θ(τ )8 is bounded and hence a constant, which
must be 1. This gives the desired result.
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On the numerical computation of the definite integral∫
w

cos π
2
(w3 −m.w), between the limits 0 and 1

0
.

The simplicity of the form of this differential
coefficient induces me to suppose that the integral
may possibly be expressible by some of the integrals
whose values have been tabulated. After many at-
tempts however, I have not succeeded in reducing it
to any known integral: and I have therefore computed
its value by actual summation to a considerable extent
and by series for the remainder.

G. B. Airy, 1838

In a number of problems in analysis the solution is given by a function
whose explicit calculation is not tractable. Often a useful substitute (and
the only recourse) is to study the asymptotic behavior of this function
near the point of interest. Here we shall investigate several related types
of asymptotics, where the ideas of complex analysis are of crucial help.
These typically center about the behavior for large values of the variable
s of an integral of the form

(1) I(s) =
∫ b

a

e−sΦ(x) dx.

We organize our presentation by formulating three guiding principles.

(i) Deformation of contour. The function Φ is in general complex-
valued, therefore, for large s the integrand in (1) may oscillate
rapidly, so that the resulting cancellations mask the true behavior
of I(s). When Φ is holomorphic (which is often the case) one can
hope to change the contour of integration so that as far as possible,
on the new contour Φ is essentially real-valued. If this is possible,
one can then hope to read off the behavior of I(s) in a rather direct
manner. This idea will be illustrated first in the context of Bessel
functions.

(ii) Laplace’s method. In the case when Φ is real-valued on the
contour and s is positive, the maximum contribution to I(s) comes



1. Bessel functions 319

from the integration near a minimum of Φ, and this leads to a
satisfactory expansion in terms of the quadratic behavior of Φ near
its minimum. We apply these ideas to present the asymptotics of
the gamma function (Stirling’s formula), and also those of the Airy
function.

(iii) Generating functions. If {Fn} is a number-theoretic or combina-
torial sequence, we have already seen in several examples that one
can exploit analytic properties of the generating function, F (u) =∑
Fnu

n, to obtain interesting conclusions regarding {Fn}. In fact
the asymptotic behavior of Fn, as n→ ∞, can also be analyzed
this way, via the formula

Fn =
∫

γ

F (e2πiz)e−2πinz dz.

Here γ is an appropriate segment of unit length in the upper half-
plane. This formula can then be studied as a variant of the in-
tegral (1). We shall show how these ideas apply in an important
particular case to obtain an asymptotic formula for p(n), the num-
ber of partitions of n.

1 Bessel functions

Bessel functions appear naturally in many problems that exhibit rota-
tional symmetries. For instance, the Fourier transform of a spherical
function in Rd is neatly expressed in terms of a Bessel function of order
(d/2) − 1. See Chapter 6 in Book I.

The Bessel functions can be defined by a number of alternative formu-
las. We take the one that is valid for all order ν > −1/2, given by

(2) Jν(s) =
(s/2)ν

Γ(ν + 1/2)Γ(1/2)

∫ 1

−1

eisx(1 − x2)ν−1/2 dx.

If we also write J−1/2(s) for limν→−1/2 Jν(s), we see that it equals√
2

πs cos s; observe in addition that J1/2(s) =
√

2
πs sin s. However, Jν(s)

has an expression in terms of elementary functions only when ν is half-
integral, and understanding this function in general requires further anal-
ysis. Its behavior for large s is suggested by the two examples above.

Theorem 1.1 Jν(s) =

√
2
πs

cos
(
s− πν

2
− π

4

)
+ O

(
s−3/2

)
as s→ ∞.
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In view of the formula for Jν(s) it suffices to investigate

(3) I(s) =
∫ 1

−1

eisx(1 − x2)ν−1/2 dx,

and to this end we consider the analytic function f(z) = eisz(1 − z2)ν−1/2

in the complex plane slit along the rays (−∞,−1) ∪ (1,∞); for
(1 − z2)ν−1/2 we choose that branch that is positive when z = x ∈ (−1, 1).
With s > 0 fixed, we apply Cauchy’s theorem to see that

I(s) = −I−(s) − I+(s),

where the integrals I(s), I−(s), and I+(s) are taken over the lines shown
in Figure 1. This is established by using the fact that

∫
γε,R

f(z) dz = 0
where γε,R is the second contour of Figure 1, and letting ε→ 0 and
R→ ∞.

−1 1
I

0 1−1

−1 + iR 1 + iR

1 + iε−1 + iε

I+I−

Figure 1. Contours of integration of I(s), I−(s), I+(s), and the contour
γε,R

On the contour for I+(s) we have z = 1 + iy, so

(4) I+(s) = ieis

∫ ∞

0

e−sy(1 − (1 + iy)2)ν−1/2 dy.

There is a similar expression for I−(s).
What has the passage from I(s) to −(I−(s) + I+(s)) gained us? Ob-

serve that for large positive s, the exponential eisx in (3) oscillates
rapidly, so the estimation of that integral is not obvious at first glance.
However, in (4) the corresponding exponential is e−sy, and it decreases
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rapidly as s→ ∞, except when y = 0. Thus in this case one sees im-
mediately that the main contribution to the integral comes from the
integration near y = 0, and this allows one readily to approximate this
integral. This idea is made precise in the following observation.

Proposition 1.2 Suppose a and m are fixed, with a > 0 and m > −1.
Then as s→ ∞

(5)
∫ a

0

e−sxxm dx = s−m−1Γ(m+ 1) + O(e−cs),

for some positive c.

Proof. The fact that m > −1 guarantees that
∫ a

0
e−sxxm dx =

limε→0

∫ a

ε
e−sxxm dx exists. Then, we write∫ a

0

e−sxxm dx =
∫ ∞

0

e−sxxm dx−
∫ ∞

a

e−sxxm dx.

The first integral on the right-hand side can be seen to equal
s−m−1Γ(m+ 1), if we make the change of variables x 	→ x/s. For the
second integral we note that

(6)
∫ ∞

a

e−sxxm dx = e−cs

∫ ∞

a

e−s(x−c)xm dx = O(e−cs),

as long as c < a, and so the proposition is proved.

We return to the integral (4) and observe that

(1 − (1 + iy)2)ν−1/2 = (−2iy)ν−1/2 +O(yν+1/2), for 0 ≤ y ≤ 1,

while

(1 − (1 + iy)2)ν−1/2 = O(yν−1/2 + y2ν−1), for 1 ≤ y.

So, applying the proposition with a = 1 and m = ν ∓ 1/2, as well as (6),
gives

I+(s) = i(−2i)ν−1/2eiss−ν−1/2Γ(ν + 1/2) +O(s−ν−3/2).

Similarly,

I−(s) = i(2i)ν−1/2eiss−ν−1/2Γ(ν + 1/2) +O(s−ν−3/2).
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If we recall that

Jν(s) =
(s/2)ν

Γ(ν + 1/2)Γ(1/2)
[−I−(s) − I+(s)],

and the fact that Γ(1/2) =
√
π, we see that we have obtained the proof

of the theorem.

For later purposes it is interesting to point out that under certain
restricted circumstances, the gist of the conclusion in Proposition 1.2
extends to the complex half-plane Re(s) ≥ 0.

Proposition 1.3 Suppose a and m are fixed, with a > 0 and
−1 < m < 0. Then as |s| → ∞ with Re(s) ≥ 0,∫ a

0

e−sxxm dx = s−m−1Γ(m + 1) +O(1/|s|).

(Here s−m−1 is the branch of that function that is positive for s > 0).

Proof. We begin by showing that when Re(s) ≥ 0, s �= 0,∫ ∞

0

e−sxxm dx = lim
N→∞

∫ N

0

e−sxxm dx

exists and equals s−m−1Γ(m + 1). If N is large, we first write∫ N

0

e−sxxm dx =
∫ a

0

e−sxxm dx+
∫ N

a

e−sxxm dx.

Since m > −1, the first integral on the right-hand side defines an analytic
function everywhere. For the second integral, we note that −1

s
d
dx (e−sx) =

e−sx, so an integration by parts gives

(7)
∫ N

a

e−sxxm dx =
m

s

∫ N

a

e−sxxm−1 dx−
[
e−sx

s
xm

]N

a

.

This identity, together with the convergence of the integral
∫∞

a
xm−1dx,

shows that
∫∞

a
e−sxxm dx defines an analytic function on Re(s) > 0 that

is continuous on Re(s) ≥ 0, s �= 0. Thus
∫∞
0
e−sxxm dx is analytic on the

half-plane Re(s) > 0 and continuous on Re(s) ≥ 0, s �= 0. Since it equals
s−m−1Γ(m+ 1) when s is positive, we deduce that

∫∞
0
e−sxxm dx =

s−m−1Γ(m+ 1) when Re(s) ≥ 0, s �= 0.
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However, we now have∫ a

0

e−sxxm dx =
∫ ∞

0

e−sxxm dx−
∫ ∞

a

e−sxxm dx.

It is clear from (7), and from the fact that m < 0, that if we let N → ∞,
then

∫∞
a
e−sxxm−1 dx = O(1/|s|). The proposition if therefore proved.

Note. If one wants to obtain a better error term in Proposition 1.3,
or for that matter extend the range of m, then one needs to mitigate the
effect of the contribution of the end-point x = a. This can be done by
introducing suitable smooth cut-offs. See Problem 1.

2 Laplace’s method; Stirling’s formula

We have already mentioned that when Φ is real-valued, the main contri-
bution to

∫ b

a
e−sΦ(x) dx as s→ ∞ comes from the point where Φ takes its

minimum value. A situation where this minimum is attained at one of
the end-points, a or b, was considered in Proposition 1.2. We now turn
to the important case when the minimum is achieved in the interior of
[a, b].

Consider ∫ b

a

e−sΦ(x)ψ(x) dx

where the phase Φ is real-valued, and both it and the amplitude ψ
are assumed for simplicity to be indefinitely differentiable. Our hypoth-
esis regarding the minimum of Φ is that there is an x0 ∈ (a, b) so that
Φ′(x0) = 0, but Φ′′(x0) > 0 throughout [a, b] (Figure 2 illustrates the
situation.)

Proposition 2.1 Under the above assumptions, with s > 0 and s→ ∞,

(8)
∫ b

a

e−sΦ(x)ψ(x) dx = e−sΦ(x0)

[
A

s1/2
+O

(
1
s

)]
,

where

A =
√

2π
ψ(x0)

(Φ′′(x0))1/2
.

Proof. By replacing Φ(x) by Φ(x) − Φ(x0) we may assume that
Φ(x0) = 0. Since Φ′(x0) = 0, we note that

Φ(x)
(x− x0)2

=
Φ′′(x0)

2
ϕ(x),
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Φ(x)

a bx0

Figure 2. The function Φ, with its minimum at x0

where ϕ is smooth, and ϕ(x) = 1 +O(x− x0) as x→ x0. We can there-
fore make the smooth change of variables x 	→ y = (x− x0)(ϕ(x))1/2 in
a small neighborhood of x = x0, and observe that dy/dx|x0 = 1, and
thus dx/dy = 1 +O(y) as y → 0. Moreover, we have ψ(x) = ψ̃(y) with
ψ̃(y) = ψ(x0) +O(y) as y → 0. Hence if [a′, b′] is a sufficiently small in-
terval containing x0 in its interior, by making the indicated change of
variables we obtain
(9)∫ b′

a′
e−sΦ(x)ψ(x) dx = ψ(x0)

∫ β

α

e−s
Φ′′(x0)

2 y2
dy + O

(∫ β

α

e−s
Φ′′(x0)

2 y2 |y|dy
)
,

where α < 0 < β. We now make the further change of variables y2 = X,
dy = 1

2X
−1/2 dX, and we see by (5) that the first integral on the right-

hand side in (9) is

∫ a0

0

e−s
Φ′′(x0)

2 XX−1/2 dX +O(e−δs) = s−1/2

(
2π

Φ′′(x0)

)1/2

+O(e−δs),

for some δ > 0. By the same argument, the second integral is O(1/s).
What remains are the integrals of e−sΦ(x)ψ(x) over [a, a′] and [b′, b]; but
these integrals decay exponentially as s→ ∞, since Φ(x) ≥ c > 0 in these
two sub-intervals. Altogether, this establishes (8) and the proposition.

It is important to realize that the asymptotic relation (8) extends to
all complex s with Re(s) ≥ 0. The proof, however, requires a somewhat
different argument: here we must take into account the oscillations of
e−sΦ(x) when |s| is large but Re(s) is small, and this is achieved by a
simple integration by parts.
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Proposition 2.2 With the same assumptions on Φ and ψ, the rela-
tion (8) continues to hold if |s| → ∞ with Re(s) ≥ 0.

Proof. We proceed as before to the equation (9), and obtain the
appropriate asymptotic for the first term, by virtue of Proposition 1.3,
with m = −1/2. To deal with the rest we start with an observation. If Ψ
and ψ are given on an interval [a, b], are indefinitely differentiable, and
Ψ(x) ≥ 0, while |Ψ′(x)| ≥ c > 0, then if Re(s) ≥ 0,

(10)
∫ b

a

e−sΨ(x)ψ(x) dx = O

(
1
|s|

)
as |s| → ∞.

Indeed, the integral equals

−1
s

∫ b

a

d

dx

(
e−sΨ(x)

) ψ(x)
Ψ′(x)

dx,

which by integration by parts gives

1
s

∫ b

a

e−sΨ(x) d

dx

(
ψ(x)
Ψ′(x)

)
dx− 1

s

[
e−sΨ(x) ψ(x)

Ψ′(x)

]b

a

.

The assertion (10) follows immediately since |e−sΨ(x)| ≤ 1, when
Re(s) ≥ 0. This allows us to deal with the integrals of e−sΦ(x)ψ(x) in
the complementary intervals [a, a′] and [b′, b], because in each, |Φ′(x)| ≥
c > 0, since Φ′(x0) = 0 and Φ′′(x) ≥ c1 > 0.

Finally, for the second term on the right-hand side of (9) we observe
that it is actually of the form∫ β

α

e−s
Φ′′(x0)

2 y2
yη(y) dy,

where η(y) is differentiable. Then we can again estimate this term by
integration by parts, once we write it as

− 1
sΦ′′(x0)

∫ β

α

d

dy

(
e−s

Φ′′(x0)
2 y2

)
η(y) dy,

obtaining the bound O(1/|s|).

The special case of Proposition 2.2 when s is purely imaginary, s = it,
t→ ±∞, is often treated separately; the argument in this situation is
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usually referred to as the method of stationary phase. The points x0

for which Φ′(x0) = 0 are called the critical points.

Our first application will be to the asymptotic behavior of the gamma
function Γ, given by Stirling’s formula. This formula will be valid in any
sector of the complex plane that omits the negative real axis. For any
δ > 0 we set Sδ = {s : | arg s| ≤ π − δ}, and denote by log s the principal
branch of the logarithm that is given in the plane slit along the negative
real axis.

Theorem 2.3 If |s| → ∞ with s ∈ Sδ, then

(11) Γ(s) = es log se−s

√
2π

s1/2

(
1 + O

(
1

|s|1/2

))
.

Remark. With a little extra effort one can improve the error term to
O(1/|s|), and in fact obtain a complete asymptotic expansion in pow-
ers of 1/s; see Problem 2. Also, we note that (11) implies Γ(s) ∼√

2πss−1/2e−s, which is how Stirling’s formula is often stated.

To prove the theorem we first establish (11) in the right half-plane. We
shall show that the formula holds whenever Re(s) > 0, and in addition
that the error term is uniform on the closed half-plane, once we omit a
neighborhood of the origin (say |s| < 1). To see this, start with s > 0,
and write

Γ(s) =
∫ ∞

0

e−xxs dx

x
=
∫ ∞

0

e−x+s log x dx

x
.

Upon making the change of variables x 	→ sx, the above equals∫ ∞

0

e−sx+s log sx dx

x
= es log se−s

∫ ∞

0

e−sΦ(x) dx

x
,

where Φ(x) = x− 1 − log x. By analytic continuation this identity con-
tinues to hold, and we have when Re(s) > 0,

Γ(s) = es log se−sI(s)

with

I(s) =
∫ ∞

0

e−sΦ(x) dx

x
.

It now suffices to see that

(12) I(s) =
√

2π
s1/2

+O

(
1
|s|

)
for Re(s) > 0.
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Observe first that Φ(1) = Φ′(1) = 0, Φ′′(x) = 1/x2 > 0 whenever
0 < x <∞, and Φ′′(1) = 1. Thus Φ is convex, attains its minimum at
x = 1, and is positive.

We apply the complex version of the Laplace method, Proposition 2.2,
in this situation. Here the critical point is x0 = 1 and ψ(x) = 1/x.
We choose for convenience the interval [a, b] to be [1/2, 2]. Then for∫ b

a
e−sΦ(x)ψ(x) dx we get the asymptotic (12). It remains to bound the

error terms, those corresponding to integration over [0, 1/2], and [2,∞).
Here the device of integration by parts, which has served us so well, can
be applied again. Indeed, since Φ′(x) = 1 − 1/x, we have∫ 1/2

ε

e−sΦ(x) dx

x
= −1

s

∫ 1/2

ε

d

dx

(
e−sΦ(x)

) dx

Φ′(x)x

= −1
s

[
e−sΦ(x)

x− 1

]1/2

ε

− 1
s

∫ 1/2

ε

e−sΦ(x) dx

(x− 1)2
.

Noting that Φ(ε) → +∞ as ε→ 0, and |e−sΦ(x)| ≤ 1, we find in the limit
that ∫ 1/2

0

e−sΦ(x) dx

x
=

2
s
e−sΦ(1/2) − 1

s

∫ 1/2

0

e−sΦ(x) dx

(x− 1)2
.

Thus the left-hand side is O(1/|s|) in the half-plane Re(s) ≥ 0.
The integral

∫∞
2
e−sΦ(x) dx

x is treated analogously, once we note that∫∞
2

(x− 1)−2 dx converges.
Since these estimates are uniform, (12) and thus (11) are proved for

Re(s) ≥ 0, |s| → ∞.

To pass from Re(s) ≥ 0 to Re(s) ≤ 0, s ∈ Sδ, we record the following
fact about the principal branch of log s: whenever Re(s) ≥ 0, s = σ + it,
t �= 0, then

log(−s) =
{

log s− iπ if t > 0,
log s+ iπ if t < 0.

Hence if G(s) = es log se−s, Re(s) ≥ 0, t �= 0, then

(13) G(−s)−1 =
{
es log se−se−siπ if t > 0,
es log se−sesiπ if t < 0.

Next,

(14) Γ(s)Γ(−s) =
π

−s sinπs
,
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which follows from the fact that Γ(s)Γ(1 − s) = π/ sinπs, and
Γ(1 − s) = −sΓ(−s) (see Theorem 1.4 and Lemma 1.2 in Chapter 6).
The combination of (13) and (14), together with the fact that for large
s,
(
1 + O(1/|s|1/2)

)−1
= 1 + O(1/|s|1/2), allows us then to extend (11)

to the whole sector Sδ , thereby completing the proof of the theorem.

3 The Airy function

The Airy function appeared first in optics, and more precisely, in the
analysis of the intensity of light near a caustic; it was an important early
instance in the study of asymptotics of integrals, and it continues to arise
in a number of other problems. The Airy function Ai is defined by

(15) Ai(s) =
1
2π

∫ ∞

−∞
ei(x3/3+sx) dx, with s ∈ R.

Let us first see that because of the rapid oscillations of the integrand as
|x| → ∞, the integral converges and represents a continuous function of
s. In fact, note that

1
i(x2 + s)

d

dx

(
ei(x3/3+sx)

)
= ei(x3/3+sx),

so if a ≥ 2|s|1/2, we can write the integral
∫ R

a
ei(x3/3+sx) dx as

(16)
∫ R

a

1
i(x2 + s)

d

dx

(
ei(x3/3+sx)

)
dx.

We may now integrate by parts and let R→ ∞, to see that the integral
converges uniformly, and that as a result

∫∞
a
ei(x3/3+sx) dx is also con-

tinuous for |s| ≤ a2/4. The same argument works for the integral from
−∞ to −a and our assertion regarding Ai(s) is established.

A better insight into Ai(s) is given by deforming the contour of inte-
gration in (15). A choice of an optimal contour will appear below, but
for now let us notice that as soon as we replace the x-axis of integration
in (15) by the parallel line Lδ = {x+ iδ, x ∈ R}, δ > 0, matters improve
dramatically.

In fact, we may apply the Cauchy theorem to f(z) = ei(z3/3+sz) over
the rectangle γR shown in Figure 3.

One observes that f(z) = O(e−δx2
) on Lδ, while f(z) = O(e−yR2

) on
the vertical sides of the rectangle. Thus since

∫ δ

0
e−yR2

dy → 0 as
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−R R

z = x+ iδ

Lδ

Figure 3. The line Lδ and the contour γR

R→ ∞, we see that

Ai(s) =
1
2π

∫
Lδ

ei(z3/3+sz) dz.

Now the majorization f(z) = O(e−δx2
) continues to hold for each com-

plex s, and hence because of the (rapid) convergence of the integral, Ai(s)
extends to an entire function of s.

We note next that Ai(s) satisfies the differential equation

(17) Ai′′(s) = sAi(s).

This simple and natural equation helps to explain the ubiquity of the
Airy function. To prove (17) observe that

Ai′′(s) − sAi(s) =
1
2π

∫
Lδ

(−z2 − s)ei(z3/3+sz) dz.

But −(z2 + s)ei(z3/3+sz) = i d
dz (ei(z3/3+sz)), so

Ai′′(s) − sAi(s) =
i

2π

∫
Lδ

d

dz
(f(z)) dz = 0,

since f(z) = ei(z3/3+sz) vanishes as |z| → ∞ along Lδ .

We now turn to our main problem, the asymptotics of Ai(s) for large
(real) values of s. The differential equation (17) shows us that we may
expect different behaviors of the Airy function when |s| is large, depend-
ing on whether s is positive or negative. To see this, we compare the
equation with a simple analogue

(18) y′′(s) = Ay(s),
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where A is a large constant, with A positive when considering s positive
and A negative in the other case. The solutions of (18) are of course e

√
As

and e−
√

As, the first growing rapidly, and the second decreasing rapidly
as s→ ∞, if A > 0. A glance at the integration by parts following (16)
shows that Ai(s) remains bounded when s→ ∞. So the comparison
with e

√
As must be dismissed, and we might reasonably guess that Ai(s)

is rapidly decreasing in this case. When s < 0 we take A < 0 in (18). The
exponentials e

√
As and e−

√
As are now oscillating, and we can therefore

presume that Ai(s) should have an oscillatory character as s→ −∞.

Theorem 3.1 Suppose u > 0. Then as u→ ∞,

(i) Ai(−u) = π−1/2u−1/4 cos(2
3u

3/2 − π
4 )(1 +O(1/u3/4)).

(ii) Ai(u) =
1

2π1/2
u−1/4e−

2
3 u3/2

(1 +O(1/u3/4)).

To consider the first case, we make the change of variables x 	→ u1/2x
in the defining integral with s = −u. This gives

Ai(−u) = u1/2I−(u3/2),

where

(19) I−(t) =
1
2π

∫ ∞

−∞
eit(x3/3−x) dx.

Now write

I−(s) =
1
2π

∫ ∞

−∞
e−sΦ(x) dx,

where Φ(x) = Φ−(x) = x3/3 − x, and we shall apply Proposition 2.2,
which in this case, since s is purely imaginary, is the method of stationary
phase. Note that Φ′(x) = x2 − 1, so there are two critical points, x0 =
±1; observe that Φ′′(x) = 2x; also Φ(±1) = ∓2/3.

We break up the range of integration in (19) into two intervals [−2, 0]
and [0, 2] each containing one critical point, and two complementary
integrals, (−∞,−2] and [2,∞).

Now we apply Proposition 2.2 to the interval [0, 2] with s = −it, x0 = 1
ψ = 1/2π, Φ(1) = −2/3, Φ′′(1) = 2, and get a contribution of

1
2
√
π
e−i 2

3 t

(
1

(−it)1/2
+O

(
1
|t|

))
,
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in view of (8). Similarly the integral over [−2, 0] contributes

1
2
√
π
ei 2

3 t

(
1

(it)1/2
+O

(
1
|t|

))
.

Finally, consider the complementary integrals. The first is∫ −2

−∞
eitΦ(x) dx = lim

N→∞

∫ −2

−N

eitΦ(x) dx = lim
N→∞

1
it

∫ −2

−N

d

dx

(
eitΦ(x)

) dx

Φ′(x)
,

where Φ′(x) = x2 − 1. So an integration by parts shows that this is
O(1/|t|). The integral over [2,∞) is treated similarly. Adding these four
contributions, and inserting them in the identity Ai(−u) = u1/2I−(u3/2),
proves conclusion (i) of the theorem.6

To deal with the conclusion (ii) of the theorem, we make the change
of variables x 	→ u1/2x in the integral (15), with s = u. This gives us, for
u > 0,

Ai(u) = u1/2I+(u3/2),

where

(20) I+(s) =
1
2π

∫ ∞

−∞
e−sF (x) dx

and F (x) = −i(x3/3 + x). Now when s→ ∞, the integrand in (20) again
oscillates rapidly, but here in distinction to the previous case, there is no
critical point on the real axis, since the derivative of x3/3 + x does not
vanish. A repeated integration by parts argument (such as we have used
before) shows that actually the integral I+(s) has fast decay as s→ ∞.
But what is the exact nature and order of this decrease? To answer this
question, we would have to take into account the precise cancellations
inherent in (20), and doing this by the above method does not seem
feasible.

A better way is to follow the guiding principle used in the asymptotics
of the Bessel function, and to deform the line of integration in (20) to a
contour on which the imaginary part of F (z) vanishes; having done this,
one might then hope to apply Laplace’s method, Proposition 2.1, to find
the true asymptotic behavior of I+(s), as s→ ∞.

We describe the idea in the more general situation in which we assume
only that F (z) is holomorphic. To follow the approach suggested, we
seek a contour Γ so that:

6An alternative derivation of this conclusion can be given as a consequence of the
relation of the Airy function with the Bessel functions. See Problem 3 below.
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(a) Im(F ) = 0 on Γ.

(b) Re(F ) has a minimum on Γ at some point z0, and this function
is non-degenerate in the sense that the second derivative of Re(F )
along Γ is strictly positive at z0.

Conditions (a) and (b) imply of course that F ′(z0) = 0. If as above,
F ′′(z0) �= 0, then there are two curves Γ1 and Γ2 passing through z0
which are orthogonal, so that F |Γi

is real for i = 1, 2, with Re(F ) re-
stricted to Γ1 having a minimum at z0; and Re(F ) restricted to Γ2 hav-
ing a maximum at z0 (see Exercise 2 in Chapter 8). We therefore try to
deform our original contour of integration to Γ = Γ1. This approach is
usually referred to as the method of steepest descent, because at z0
the function −Re(F (z)) has a saddle point, and starting at this point and
following the path of Γ1, one has the greatest decrease of this function.

Let us return to our special case, F (z) = −i(z3/3 + z). We note that{
Re(F ) = x2y − y3/3 + y,
Im(F ) = −x3/3 + xy2 − x.

We observe also that F ′(z) = −i(z2 + 1), so we have two non-real critical
points z0 = ±i at which F ′(z0) = 0. If we choose z0 = i, then the two
curves passing through this point where Im(F ) = 0 are

Γ1 = {(x, y) : y2 = x2/3 + 1} and Γ2 = {(x, y) : x = 0}.

On Γ2, the function Re(F ) clearly has a maximum at the point z0 = i,
and so we reject this curve. We choose Γ = Γ1, which is a branch of a hy-
perbola, and which can be written as y = (x2/3 + 1)1/2; it is asymptotic
to the rays z = reiπ/6, and z = rei5π/6 at infinity. See Figure 4.

z = reiπ/6
z = reiπ/6 i

0

Γ

Figure 4. The curve of steepest descent
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Next, we see that

(21)
1
2π

∫ ∞

−∞
e−sF (x) dx =

1
2π

∫
Γ

e−sF (z) dz.

This identity is justified by applying the Cauchy theorem to e−sF (z)

on the contour ΓR that consists of four arc segments: the parts of the
real axis and Γ that lie inside the circle of radius R, and the two arcs
of this circle joining the axis with Γ. Since in this region e−sF (z) =
O(e−cyx2

) as x→ ±∞, the contributions of the two arcs of the circle are
O(
∫ π

0
e−cR2 sin θ dθ) = O(1/R), and letting R→ ∞ establishes (21).

We now observe that on Γ

Φ(x) = Re(F ) = y(x2 − y2/3 + 1) = (
8
9
x2 +

2
3
)(x2/3 + 1)1/2,

since y2 = x2/3 + 1 there. Also, on Γ we have that dz = dx+ idy =
dx+ i(x/3)(x2/3 + 1)−1/2dx. Thus,

(22)
1
2π

∫
Γ

e−sF (z) dz =
1
2π

∫ ∞

−∞
e−sΦ(x) dx,

in view of the fact that Φ(x) is even, while x(x2/3 + 1)−1/2 is odd.
We note next that since (1 + u)1/2 = 1 + u/2 +O(u2) as u→ 0,

Φ(x) = (
8
9
x2 +

2
3
) +

2
3

1
2
x2

3
+O(x4) = x2 +

2
3

+O(x4),

and so Φ′′(0) = 2. We now apply Proposition 2.1 to estimate the main
part of the right-hand side of (22), by

1
2π

∫ c

−c

e−sΦ(x) dx,

where c is a small positive constant. Since Φ(0) = 2/3, Φ′′(0) = 2, and
ψ(0) = 1/2π, we obtain that this term contributes

e−
2
3 s

[
1

2π1/2

1
s1/2

+O

(
1
s

)]
.

The term
∫∞

c
e−sΦ(x) dx is dominated by e−2s/3

∫∞
c
e−c1sx2

dx, which is
O(e−2s/3e−δs) for some δ > 0, as soon as c > 0. A similar estimate holds
for
∫ −c

−∞ e−sΦ(x) dx. Altogether, then,

I+(s) = e−
2
3 s

[
1

2π1/2

1
s1/2

+O

(
1
s

)]
as s→ ∞,

and this gives the desired asymptotic (ii) for the Airy function.
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4 The partition function

Our last illustration of the techniques developed in this appendix is in
their application to the partition function p(n), which was discussed in
Chapter 10. We derive for it the main term of the remarkable asymptotic
formula of Hardy-Ramanujan.

Theorem 4.1 If p denotes the partition function, then

(i) p(n) ∼ 1
4
√

3n
eKn1/2

as n→ ∞, where K = π
√

2
3 .

(ii) A much more precise assertion is that

p(n) =
1

2π
√

2
d

dn

(
eK(n− 1

24 )1/2

(n− 1
24)1/2

)
+O(e

K
2 n1/2

).

Note. Observe that (n− 1
24)1/2 − n1/2 = O(n−1/2), by the mean-

value theorem; hence eK(n− 1
24 )1/2

= eKn1/2
(1 + O(n−1/2)), thus

eK(n− 1
24 )1/2 ∼ eKn1/2

, as n→ ∞. Of course, clearly (n− 1
24 )1/2 ∼ n1/2,

and in particular (ii) implies (i).

We shall discuss first, in a more general setting, how we might derive
the asymptotic behavior of a sequence {Fn} from the analytic properties
of its generating function F (w) =

∑∞
n=0 Fnw

n. Assuming for the sake of
simplicity that

∑
Fnw

n has the unit disc as its disc of convergence, we
can set forth the following heuristic principle: the asymptotic behavior
of Fn is determined by the location and nature of the “singularities” of
F on the unit circle, and the contribution to the asymptotic formula
due to each singularity corresponds in magnitude to the “order” of that
singularity.

A very simple example in which this principle is unambiguous and can
be verified occurs when F is meromorphic in a larger disc, but has only
one singularity on the circle, a pole of order r at the point w = 1. Then
there is a polynomial P of degree r − 1 so that Fn = P (n) + O(e−εn) as
n→ ∞, for some ε > 0. In fact,

∑∞
n=0 P (n)wn is a good approximation

to F (w) near w = 1; it is the principal part of the pole of F . (See also
Problem 4.)

For the partition function the analysis is not as simple as this ex-
ample, but the principle stated above is still applicable when properly
interpreted. To this task we now turn.

We recall the formula
∞∑

n=0

p(n)wn =
∞∏

n=1

1
1 − wn

,
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established in Theorem 2.1, Chapter 10. This identity implies that the
generating function is holomorphic in the unit disc. In what follows, it
will be convenient to pass from the unit disc to the upper half-plane by
writing w = e2πiz, z = x+ iy, and taking y > 0. We therefore have

∞∑
n=0

p(n)e2πinz = f(z),

with

f(z) =
∞∏

n=1

1
1 − e2πinz

,

and

(23) p(n) =
∫

γ

f(z)e−2πinz dz.

Here γ is the segment in the upper half-plane joining −1/2 + iδ to
1/2 + iδ, with δ > 0; the height δ will be fixed later in terms of n.

To proceed further, we look first at where the main contribution to
the integral (23) might be, in terms of the relative size of f(x+ iy), as
y → 0. Notice that f is largest near z = 0. This is because
|f(x+ iy)| ≤ f(iy), and moreover f(iy) increases as y decreases, in view
of the fact that the coefficients p(n) are positive. Alternatively, we ob-
serve that each factor 1 − e2πinz, appearing in the product for f , vanishes
as z → 0, but the same is true for any other point (mod 1) on the real
axis. Thus in analogy with the simple example considered above, we seek
an elementary function f1, which has much the same behavior as f at
z = 0, and try to replace f by f1 in (23).

It is here that we are very fortunate, because the generating function
is just a variant of the Dedekind eta function,

η(z) = eiπz/12

∞∏
n=1

(1 − e2πinz).

From this, it is obvious that

f(z) = e
iπz
12 (η(z))−1.

(Incidentally, the fraction 1/12 arising above will explain the occurrence
of the fraction 1/24 in the asymptotic formula for p(n).)



336 Appendix A: ASYMPTOTICS

Since η satisfies the functional equation η(−1/z) =
√
z/i η(z) (see

Proposition 1.9 in Chapter 10), it follows that

(24) f(z) =
√
z/i e

iπ
12z e

iπz
12 f(−1/z).

Notice also that if z is appropriately restricted and z → 0, then
Im(−1/z) → ∞, from which it follows that f(−1/z) → 1 rapidly, because

(25) f(z) = 1 +O(e−2πy), z = x+ iy, y ≥ 1.

Thus it is natural to choose f1(z) =
√
z/i e

iπ
12z e

iπz
12 as the function which

approximates well the generating function f(z) (at z = 0), and write
(because of (24))

p(n) = p1(n) +E(n),

with 
p1(n) =

∫
γ

√
z/i e

iπ
12z e

iπz
12 e−2πinz dz,

E(n) =
∫

γ

√
z/i e

iπ
12z e

iπz
12 e−2πinz(f(−1/z)− 1) dz.

We first take care of the error term E(n), and in doing so we specify
γ by choosing its height in terms of n. In estimating E(n) we replace its
integrand by its absolute value and note that if z ∈ γ, then

(26)
∣∣∣√z/i e

iπ
12z e

iπz
12 e−2πinz

∣∣∣ ≤ ce2πnδe
π
12

δ
δ2+x2 ,

since z = x+ iy, and Re(i/z) = δ/(δ2 + x2).
On the other hand, we can make two estimates for f(−1/z)− 1. The

first arises from (25) by replacing z by −1/z, and gives

(27) |f(−1/z)− 1| ≤ ce
−2π δ

δ2+x2 if δ
δ2+x2 ≥ 1.

For the second, we observe that |f(z)| ≤ f(iy) ≤ Ce
π

12y , when y ≤ 1,
because of the functional equation (24), and hence

(28) |f(−1/z)− 1| ≤ O
(
e

π
12

δ2+x2
δ

)
= O

(
e

π
48δ

)
if δ

δ2+x2 ≤ 1, since |x| ≤ 1/2.
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Therefore in the integral defining E(n) we use (26) and (27) when
δ

δ2+x2 ≥ 1, and (26) and (28) when δ
δ2+x2 ≤ 1. The first leads to a con-

tribution of O(e2πnδ), since 2π > π/12. The second gives a contribution
of O(e2πnδe

π
48δ ). Hence E(n) = O(e2πnδe

π
48δ ), and we choose δ so as to

minimize the right-hand side, that is, 2πnδ = π
48δ ; this means we take

δ = 1
4
√

6 n1/2 , and we get

E(n) = O
(
e

4π
4
√

6
n1/2
)

= O
(
e

K
2 n1/2

)
,

which is the desired size of the error term.

We turn to the main term p1(n). To simplify later calculations we
“improve” the contour γ by adding to it two small end-segments; these
are the segment joining −1/2 to −1/2 + iδ and that joining 1/2 + iδ to
1/2. We call this new contour γ′ (see Figure 5).

γ

γ′

−1/2 1/2

1/2−1/2

Figure 5. γ and the improved contour γ′

Notice that since
√
z/i e

iπ
12z is O(1) on the two added segments (for

the integral defining p1(n)), the modification contributes O(e2πnδ) =

O(e
2π
4
√

6
n1/2

) = O(e
K
4 n1/2

), which is even smaller than the allowed error,
and therefore can be incorporated in E(n). So without introducing fur-
ther notation we will rewrite p1(n) replacing the contour γ by γ′ in the
integration defining p1, namely

(29) p1(n) =
∫

γ′

√
z/i e

iπ
12z e

iπz
12 e−2πinz dz.
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Next we simplify the triad of exponentials appearing in (29) by making
a change of variables z 	→ µz so that their combination takes the form

eAi( 1
z−z).

This can be achieved under the two conditions A = 2πµ(n− 1
24 ) and

A = π
12µ , which means that

A =
π√
6

(n− 1
24

)1/2 and µ =
1

2
√

6
(n− 1

24
)−1/2.

Making the indicated change of variables we now have

(30) p1(n) = µ3/2

∫
Γ

e−sF (z)
√
z/i dz,

with F (z) = i(z − 1/z), s = π√
6

(n− 1
24 )1/2. The curve Γ (see Figure 6).

is now the union of three segments [−an,−an + iδ′], [−an + iδ′, an + iδ′],
and [an + iδ′, an]; we can write Γ = µ−1γ′.

−an an

−an + iδ′ an + iδ′
Γ

Figure 6. The curve Γ

Here an = 1
2µ

−1 =
√

6 (n− 1
24)1/2 ≈ n1/2, while δ′ = δµ−1 =

2
√

6
4
√

6n1/2 (n− 1
24)1/2 ∼ 1/2, as n→ ∞.

We apply the method of steepest descent to the integral (30). In doing
this, we note that F (z) = i(z − 1/z) has one (complex) critical point
z = i, in the upper half-plane. Moreover, the two curves passing through
i on which F is real are: the imaginary axis, on which F has a maximum
at z = i, which we reject, and the unit circle, on which F has a minimum
at z = i. Thus using Cauchy’s theorem we replace the integration on Γ
by the integration over our final curve Γ∗, which consists of the segment
[−an,−1], [1, an], together with the upper semicircle joining −1 to 1.
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Γ∗

Γ

i

Figure 7. The final curve Γ∗

We therefore have

p1(n) = µ3/2

∫
Γ∗
e−sF (z)

√
z/i dz.

The contributions on the segments [−an,−1] and [1, an] are relatively
very small, because on the real axis the exponential has absolute value
1, and hence the integrand is bounded by sup|z|≤an

|z|1/2, and this leads

to two terms which are O(a3/2
n µ3/2) = O(1).

Finally, we come to the principal part, which is the integration over the
semicircle, taken with the orientation on the figure. Here we write z =
eiθ, dz = ieiθ dθ. Since i(z − 1/z) = −2 sin θ, this gives a contribution

−µ3/2

∫ π

0

e2s sin θei3θ/2
√
i dθ = µ3/2

∫ π/2

−π/2

e2s cos θ(cos(3θ/2) + i sin(3θ/2))dθ.

In applying Proposition 2.1, Laplace’s method, we take Φ(θ) = − cos θ,
θ0 = 0, so Φ(θ0) = −1, Φ′′(θ0) = 1 and we choose ψ(θ) = cos(3θ/2) +
i sin(3θ/2), so that ψ(θ0) = 1. Therefore, the above contributes

µ3/2e2s

√
2π

(2s)1/2

(
1 +O(s−1/2)

)
.

Now since s = π√
6

(n− 1
24 )1/2, 2π√

6
= π
√

2
3 = K, and µ =

√
6

12 (n− 1
24 )−1/2,

we obtain

p(n) =
1

4n
√

3
eK n1/2 (

1 +O
(
n−1/4

))
,
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and the first conclusion of the theorem is established.

To obtain the more exact conclusion (ii), we retrace our steps and use
an additional device, which allows us to evaluate rather precisely the key
integral. With p1(n) defined by (29), which is an integral taken over
γ′ = γ′n, we write

p1(n) =
d

dn
q(n) + e(n),

where

q(n) =
1
2π

∫
γ′

(z/i)−1/2e
iπ
12z e

iπz
12 e−2πinz dz,

and e(n) is the term due to the variation of the contour γ′ = γ′n, when
forming the derivative in n. By Cauchy’s theorem this is easily seen to
be dominated by O(e2πnδ), which we have seen is O(e

K
4 n1/2

), and can be
subsumed in the error term. To analyze q(n), we proceed as before, first
making the change of variables z 	→ µz, and then replacing the resulting
contour Γ by Γ∗. As a consequence, we have

(31) q(n) =
µ1/2

2π

∫
Γ∗
e−sF (z)(z/i)−1/2 dz,

with F (z) = i(z − 1/z), s = π√
6

(n− 1
24 )1/2, and µ = 1

2
√

6
(n− 1

24 )−1/2.
Now the two segments [−an,−1] and [1, an] of the contour Γ∗ make

harmless contributions to d
dnq(n), since F is purely imaginary on the real

axis. Indeed, they yield terms which are O(a1/2
n µ1/2) = O(1).

The main part of (31) is the term arising from the integration on the
semicircle. Thus setting z = eiθ, dz = ieiθ dθ, and i(z − 1/z) = −2 sin θ,
it equals

−µ
1/2

2π

∫ π

0

e2s sin θeiθ/2i3/2 dθ =
µ1/2

2π

∫ π/2

−π/2

e2s cos θ(cos(θ/2) + i sin(θ/2))dθ

=
µ1/2

2π

∫ π/2

−π/2

e2s cos θ cos(θ/2)dθ,

where we have used the fact that the integral
∫ π/2

−π/2
e2s cos θ sin(θ/2) dθ

vanishes since the integrand is odd.
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Now cos θ = 1 − 2(sin θ/2)2, so setting x = sin(θ/2) we see that the
above integral becomes

µ1/2e2s

π

∫ √
2

2

−
√

2
2

e−4sx2
dx.

However∫ √
2

2

−
√

2
2

e−4sx2
dx =

∫ ∞

−∞
e−4sx2

dx+O

(∫ ∞
√

2
2

e−4sx2
dx

)

=
√
π

2s1/2
+O(e−2s),

and also

d

ds

(∫ √
2

2

−
√

2
2

e−4sx2
dx

)
=

d

ds

( √
π

2s1/2

)
+O(e−2s).

Gathering all the error terms together, we find

p(n) =
d

dn

(
µ1/2 e

2s

π

√
π

2s1/2

)
+O(e

K
2 n1/2

).

Since s = π√
6
(n− 1

24)1/2, µ =
√

6
12 (n− 1

24 )−1/2, and K = π
√

2
3 , this is

p(n) =
1

2π
√

2
d

dn

(
eK(n− 1

24 )1/2

(n− 1
24)1/2

)
+O(e

K
2 n1/2

),

and the theorem is proved.

5 Problems

1. Let η be an indefinitely differentiable function supported in a finite interval, so
that η(x) = 1 for x near 0. Then, if m > −1 and N > 0,∫ ∞

0

e−sxxmη(x) dx = s−m−1Γ(m+ 1) +O(s−N )

for Re(s) ≥ 0, |s| → ∞.

(a) Consider first the case −1 < m ≤ 0. It suffices to see that∫ ∞

0

e−sxxm(1 − η(x)) dx = O(s−N ),

and this can be done by repeated integration by parts since

e−sx = (−1)Ns−N
(

d
dx

)N
(e−sx).
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(b) To extend this to all m, find an integer k so that k − 1 < m ≤ k, write

∫ [(
d

dx

)k

(xm)

]
e−sxη(x) dx = ck,ms

−m+k−1 +O(s−N ),

and integrate by parts k times.

2. The following is a more precise version of Stirling’s formula. There are real
constant a1 = 1/12, a2, . . ., an, . . ., so that for every N > 0

Γ(s) = es log se−s

√
2π

s1/2

(
1 +

N∑
j=1

ajs
−j +O(s−N )

)
when s ∈ Sδ.

This can be proved by using the results of Problem 1 in place of Proposition 1.3.

3. The Bessel functions and Airy function have the following power series expan-
sions:

Jν(x)=
(x

2

)ν
∞∑

m=0

(−1)m
(

x2

4

)m

m!Γ(ν +m+ 1)
,

Ai(−x)=
1

π

∞∑
n=0

xn

n!
sin(2π(n+ 1)/3)3n/3−2/3Γ(n/3 + 1/3).

(a) From this, verify that when x > 0,

Ai(−x) =
x1/2

3

(
J1/3

(
2

3
x3/2

)
+ J−1/3

(
2

3
x3/2

))
.

(b) The function Ai(x) extends to an entire function of order 3/2.

[Hint: For (b), use (a), or alternatively, apply Problem 4 in Chapter 5 to the power
series for Ai. Compare also with Problem 1, Chapter 4.]

4. Suppose F (z) =
∑∞

n=0 Fnw
n is meromorphic in a region containing the closed

unit disc, and the only poles of F are on the unit circle at the points α1, . . . , αk,
and their orders are r1, . . . , rk respectively. Then for some ε > 0

Fn =

k∑
j=1

Pj(n) +O(e−εn) as n→ ∞.

Here

Pj(n) =
1

(rj − 1)!

(
d

dw

)rj−1 [
(w − αj)

rjw−n−1F (w)
]
w=αj

.
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Note that each Pj is of the form Pj(n) = Aj(α
−1
j n)rj−1 +O(nrj−2).

To prove this, use the residue formula (Theorem 1.4, Chapter 3).

5.∗ The one shortcoming in our derivation of the asymptotic formula for p(n) arose

from the fact that while f1(z) =
√
z/i e

iπ
12z e

iπz
12 is a good approximation to the

generating function f(z) near z = 0, this fails near other points on the real axis,
since f1 is regular there, but f is not.

However, using the transformation law (24) and the identity f(z + 1) = f(z),
one can derive the following generalization of (24): whenever p/q is a rational
number in lowest form (so p and q are relatively prime) then

f

(
z − p

q

)
= ωp/q

√
zq

i
e

iπ
12zq2 e−

iπz
12 f

(
− 1

zq2
− p′

q

)
,

where pp′ = 1 mod q. Here ωp/q is an appropriate 24th root of unity. This formula
leads to an analogous fp/q, approximating f at z = p/q.

From this one can obtain for each p/q a contribution of the form

cp/q
1

2π
√

2

d

dn

(
e

K
q

(n− 1
24 )1/2

(n− 1
24

)1/2

)

to the asymptotic formula for p(n). When suitably modified, the resulting series,
summed over all proper fractions p/q in [0, 1), actually converges and gives an
exact formula for p(n).



Appendix B: Simple Connectivity
and Jordan Curve Theorem

Jordan was one of the precursors of the theory of func-
tions of a real variable. He introduced in this part of
analysis the capital notion of functions of bounded
variation. Not less celebrated is his study of curves,
universally called Jordan curves, which curves sepa-
rate the plane in two distinct regions. We also owe
him important propositions regarding the measure of
sets that have led the way to numerous modern re-
searches.

E. Picard, 1922

The notion of simple connectivity is at the source of many basic and
fundamental results in complex analysis. To clarify the meaning of this
important concept, we have gathered in this appendix some further in-
sights into the properties of simply connected sets. Closely tied to the
idea of simple connectivity is the notion of the “interior” of a simple
closed curve. The theorem of Jordan states that this interior is well-
defined and is simply connected. We prove here the special case of this
theorem for curves which are piecewise-smooth.

Recall the definition in Chapter 3, according to which a region Ω is
simply connected if any two curves in Ω with the same end-points are
homotopic. From this definition we deduced an important version of
Cauchy’s theorem which states that if Ω is simply connected and γ ⊂ Ω
is any closed curve, then

(1)
∫

γ

f(ζ) dζ = 0

whenever f is holomorphic in Ω. Here, we shall prove that a converse
also holds, therefore:

(I) A region Ω is simply connected if and only if it is holomorphi-
cally simply connected; that is, whenever γ ⊂ Ω is closed and f
holomorphic in Ω then (1) holds.

Besides this fundamental equivalence, which is analytic in nature, there
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are also topological conditions that can be used to describe simple con-
nectivity. In fact, the definition in terms of homotopies suggests that a
simply connected set has no “holes.” In other words, one cannot find a
closed curve in Ω that loops around points that do not belong to Ω. In the
first part of this appendix we shall also turn these intuitive statements
into tangible theorems:

(II) We show that a bounded region Ω is simply connected if and only
if its complement is connected.

(III) We define the winding number of a curve around a point, and prove
that Ω is simply connected if and only if no curve in Ω winds around
points in the complement of Ω.

In the second part of this appendix we return to the problem of curves
and their interior. The main question is the following: given a closed
curve Γ that does not intersect itself (it is simple), can we make sense
of the “region enclosed by Γ”? In other words, what is the “interior” of
Γ? Naturally, we may expect the interior to be open, bounded, simply
connected, and have Γ as its boundary. To solve this problem, at least
when the curve is piecewise-smooth, we prove a theorem that guarantees
the existence of a unique set which satisfies all the desired properties.
This is a special case of the Jordan curve theorem, which is valid in the
general case when the simple curve is assumed to be merely continuous.
In particular, our result leads to a generalization of Cauchy’s theorem in
Chapter 2 which we formulated for toy contours.

We continue to follow the convention set in Chapter 1 by using the term
“curve” synonymously with “piecewise-smooth curve,” unless stated oth-
erwise.

1 Equivalent formulations of simple connectivity

We first dispose of (I).

Theorem 1.1 A region Ω is holomorphically simply connected if and
only if Ω is simply connected.

Proof. One direction is simply the version of Cauchy’s theorem in
Corollary 5.3, Chapter 3. Conversely, suppose that Ω is holomorphically
simply connected. If Ω = C, then it is clearly simply connected. If Ω
is not all of C, recall that the Riemann mapping theorem still applies
(see the remark following its proof in Chapter 8), hence Ω is conformally
equivalent to the unit disc. Since the unit disc is simply connected, the
same must be true of Ω.
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Next, we turn to (II) and (III), which, as we mentioned, are both
precise formulations of the fact that a simply connected region cannot
have “holes.”

Theorem 1.2 If Ω is a bounded region in C, then Ω is simply connected
if and only if the complement of Ω is connected.

Note that we assume that Ω is bounded. If this is not the case, then the
theorem as stated does not hold, for example an infinite strip is simply
connected yet its complement consists of two components. However, if
the complement is taken with respect to the extended complex plane,
that is, the Riemann sphere, then the conclusion of the theorem holds
regardless of whether Ω is bounded or not.

Proof. We begin with the proof that if Ωc is connected, then Ω is
simply connected. This will be achieved by showing that Ω is holomor-
phically simply connected. Therefore, let γ be a closed curve in Ω and f
a holomorphic function on Ω. Since Ω is bounded, the set1

K = {z ∈ Ω : d(z,Ωc) ≥ ε}

is compact, and for sufficiently small ε, the set K contains γ. In an
attempt to apply Runge’s theorem (Theorem 5.7 in Chapter 2), we must
first show that the complement Kc of K is connected.

If this is not the case, then Kc is the disjoint union of two non-empty
open sets, say Kc = O1 ∪O2. Let

F1 = O1 ∩ Ωc and F2 = O2 ∩ Ωc.

Clearly, Ωc = F1 ∪ F2, so if we can show that F1 and F2 are disjoint,
closed, and non-empty, then we will conclude that Ωc is not connected,
thus contradicting the hypothesis in the theorem. Since O1 and O2 are
disjoint, so are F1 and F2. To see why F1 is closed, suppose {zn} is a
sequence of points in F1 that converges to z. Since Ωc is closed we must
have z ∈ Ωc, and since Ωc is at a finite distance from K, we deduce that
z ∈ O1 ∪O2. Now we observe that we cannot have z ∈ O2, for otherwise
we would have zn ∈ O2 for sufficiently large n because O2 is open, and
this contradicts the fact that zn ∈ F1 and O1 ∩ O2 = ∅. Hence z ∈ O1

and F1 is closed, as desired. Finally, we claim that F1 is non-empty.
If otherwise, O1 is contained in Ω. Select any point w ∈ O1, and since
w /∈ K, there exists z ∈ Ωc with |w − z| < ε, and the entire line segment
from w to z belongs to Kc. Since z ∈ O2 (because O1 ⊂ Ω), some point

1Here, d(z,Ωc) = inf{|z − w| : w ∈ Ωc} denotes the distance from z to Ωc.
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on the line segment [z, w] must belong to neither O1 nor O2, and this is
a contradiction. More precisely, if we set

t∗ = sup{0 ≤ t ≤ 1 : (1 − t)z + tw ∈ O2},

then 0 < t∗ < 1, and the point (1 − t∗)z + t∗w, which is not in K, cannot
belong to either O1 or O2 since these sets are open. Similar arguments
imply the same conclusions for F2, and we have reached the desired
contradiction. Thus Kc is connected.

Therefore, Runge’s theorem guarantees that f can be approximated
uniformly on K, and hence on γ, by polynomials. However,

∫
γ
P (z) dz =

0 whenever P is a polynomial, so in the limit we conclude that
∫

γ
f(z) dz =

0, as desired.

The converse result, that Ωc is connected whenever Ω is bounded and
simply connected, will follow from the notion of winding numbers, which
we discuss next.

Winding numbers

If γ is a closed curve in C and z a point not lying on γ, then we may
calculate the number of times the curve γ winds around z by looking at
the change of argument of the quantity ζ − z as ζ travels on γ. Every time
γ loops around z, the quantity (1/2π) arg(ζ − z) increases (or decreases)
by 1. If we recall that logw = log |w| + i argw, and denote the beginning
and ending points of γ by ζ1 and ζ2, then we may guess that the quantity

1
2πi

[log(ζ1 − z) − log(ζ2 − z)] , which “equals”
1

2πi

∫
γ

dζ

ζ − z
,

computes precisely the number of times γ loops around ζ.
These considerations lead to the following precise definition: the wind-

ing number of a closed curve γ around a point z /∈ γ is

Wγ(z) =
1

2πi

∫
γ

dζ

ζ − z
.

Sometimes, Wγ(z) is also called the index of z with respect to γ.
For example, if γ(t) = eikt, 0 ≤ t ≤ 2π, is the unit circle traversed k

times in the positive direction (with k ∈ N), then Wγ(0) = k. In fact,
one has

Wγ(z) =
{
k if |z| < 1,
0 if |z| > 1.
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Similarly, if γ(t) = e−ikt, 0 ≤ t ≤ 2π, is the unit circle traversed k times
in the negative direction, then we find that Wγ(z) = −k in the interior
of the disc, and Wγ(z) = 0 in its exterior.

Note that, if γ denotes a positively oriented toy contour, then

Wγ(z) =
{

1 if z ∈ interior of γ,
0 if z ∈ exterior of γ.

In general we have the following natural facts about winding numbers.

Lemma 1.3 Let γ be a closed curve in C.

(i) If z /∈ γ, then Wγ(z) ∈ Z.

(ii) If z and w belong to the same open connected component in the
complement of γ, then Wγ(z) = Wγ(w).

(iii) If z belongs to the unbounded connected component in the comple-
ment of γ, then Wγ(z) = 0.

Proof. To see why (i) is true, suppose that γ : [0, 1] → C is a parametriza-
tion for the curve, and let

G(t) =
∫ t

0

γ′(s)
γ(s) − z

ds.

Then G is continuous and, except possibly at finitely many points, it
is differentiable with G′(t) = γ′(t)/(γ(t) − z). This implies that, except
possibly at finitely many points, the derivative of the continuous function
H(t) = (γ(t) − z)e−G(t) is zero, and hence H must be constant. Putting
t = 0 and recalling that γ is closed, so that γ(0) = γ(1), we find

1 = eG(0) = c(γ(0)− z) = c(γ(1)− z) = eG(1).

Therefore, G(1) is an integral multiple of 2πi, as desired.
For (ii), we simply note that Wγ(z) is a continuous function of z /∈ γ

that is integer-valued, so it must be constant in any open connected
component in the complement of γ.

Finally, one observes that lim|z|→∞Wγ(z) = 0, and, combined with (ii),
this establishes (iii).

We now show that the notion of a bounded simply connected set Ω
may be understood in the following sense: no curve in Ω winds around
points in Ωc.
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Theorem 1.4 A bounded region Ω is simply connected if and only if
Wγ(z) = 0 for any closed curve γ in Ω and any point z not in Ω.

Proof. If Ω is simply connected and z /∈ Ω, then f(ζ) = 1/(ζ − z) is
holomorphic in Ω, and Cauchy’s theorem gives Wγ(z) = 0.

For the converse, it suffices to prove that the complement of Ω is
connected (Theorem 1.2). We argue by contradiction, and construct an
explicit closed curve γ in Ω and find a point w so that Wγ(w) �= 0.

If we suppose that Ωc is not connected, then we may write
Ωc = F1 ∪ F2 where F1, F2 are disjoint, closed, and non-empty. Only
one of these sets can be unbounded, so that we may assume that F1 is
bounded, thus compact. The curve γ will be constructed as part of the
boundary of an appropriate union of squares.

Lemma 1.5 Let w be any point in F1. Under the above assumptions,
there exists a finite collection of closed squares Q = {Q1, . . . , Qn} that
belong to a uniform grid G of the plane, and are such that:

(i) w belongs to the interior of Q1.

(ii) The interiors of Qj and Qk are disjoint when j �= k.

(iii) F1 is contained in the interior of
⋃n

j=1Qj .

(iv)
⋃n

j=1Qj is disjoint from F2.

(v) The boundary of
⋃n

j=1Qj lies entirely in Ω, and consists of a finite
union of disjoint simple closed polygonal curves.

Assuming this lemma for now, we may easily finish the proof of the
theorem. The boundary ∂Qj of each square is equipped with the positive
orientation. Since w ∈ Q1, and w /∈ Qj for all j > 1, we have

(2)
n∑

j=1

1
2πi

∫
∂Qj

dζ

ζ − w
= 1.

If γ1, . . . , γM denotes the polygonal curves in (v) of the lemma, then, the
cancellations arising from integrating over the same side but in opposite
directions in (2) yield

n∑
j=1

1
2πi

∫
γj

dζ

ζ − w
= 1,

and hence Wγj0
(w) �= 0 for some j0. The closed curve γj0 lies entirely in

Ω, and this gives the desired contradiction.



350Appendix B: SIMPLE CONNECTIVITY AND JORDAN CURVE THEOREM

Proof of the lemma. Since F2 is closed, the sets F1 and F2 are at a
finite non-zero distance d from one another. Now consider a uniform grid
G0 of the plane consisting of closed squares of side length which is much
smaller than d, say < d/100, and such that w lies at the center of a closed
square R1 in this grid. Let R = {R1, . . . , Rm} denote the finite collection
of all closed squares in the grid that intersect F1. Then, the collection R
satisfies properties (i) through (iv) of the lemma. To guarantee (v), we
argue as follows.

The boundary of each square in R is given the positive (counterclock-
wise) orientation. The boundary of

⋃m
j=1Rj is then equal to the union

of all boundary sides, that is, those sides that do not belong to two ad-
jacent squares in the collection R. Similarly, the boundary vertices are
the end-points of all boundary sides. A boundary vertex is said to be
“bad,” if it is the end-point of more than two boundary sides. (See point
P on Figure 1.)

G0 G

P

Figure 1. Eliminating bad boundary vertices

To eliminate the bad boundary vertices, we refine the grid G0 and
possibly add some squares. More precisely, consider the grid G obtained
as a refinement of the original grid, by dissecting all squares of G0 into
nine equal subsquares. Then, let Q1, . . . , Qp denote all the squares in the
grid G that are subsquares of squares in the collection R (so in particular,
p = 9n), and where Q1 is chosen so that w ∈ Q1. Then, we may add
finitely many squares from G near each bad boundary vertex, so that the
resulting family Q = {Q1, . . . , Qn} has no bad boundary vertices. (See
Figure 1.)
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Clearly, Q still satisfies (i) through (iv), and we claim this collec-
tion also satisfies (v). Indeed, let [a1, a2] denote any boundary side of⋃n

j=1Qj with its orientation from a1 to a2. By considering the three
different possibilities, one sees that a2 is the beginning point of another
boundary side [a2, a3]. Continuing in this fashion, we obtain a sequence
of boundary sides [a1, a2], [a2, a3], . . . , [an, an+1], . . .. Since there are only
finitely many sides, we must have an = am for some n and some m > n.
We may choose the smallest m so that an = am, say m = m′. Then,
we note that if n > 1, then am′ is an end-point of at least three bound-
ary sides, namely [an−1, an], [an, an+1], and [am′−1, am′ ], hence am′ is
a bad boundary vertex. Since we arranged that Q had no such bound-
ary vertices, we conclude that n = 1, and hence the polygon formed by
a1, . . . , am′ is closed and simple. We may repeat this process and find
that Q satisfies property (v), and the proof of Lemma 1.5 is complete.

Finally, we are now able to finish the proof of Theorem 1.2, namely,
if Ω is bounded and simply connected we can conclude that Ωc is con-
nected. To see this, note that if Ωc is not connected, then we have
constructed a curve γ ⊂ Ω and found a point w /∈ Ω so that Wγ(w) �= 0,
thus contradicting the fact that Ω is simply connected.

2 The Jordan curve theorem

Although we emphasize in the statement of the theorems which follow
that the curves are piecewise-smooth, we note that the proofs involve the
use of curves that may only be continuous, (the curves Γε below).

The two main results in this section are the following.

Theorem 2.1 Let Γ be curve in the plane that is simple and piecewise-
smooth. Then, the complement of Γ is an open connected set whose
boundary is precisely Γ.

Theorem 2.2 Let Γ be a curve in the plane which is simple, closed, and
piecewise-smooth. Then, the complement of Γ consists of two disjoint
connected open sets. Precisely one of these regions is bounded and simply
connected; it is called the interior of Γ and denoted by Ω. The other
component is unbounded, called the exterior of Γ, and denoted by U .

Moreover, with the appropriate orientation for Γ, we have

WΓ(z) =
{

1 if z ∈ Ω,
0 if z ∈ U .
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Remark. These two theorems continue to hold in the general case
where we drop the assumption that the curves are piecewise-smooth.
However, as it turns out, the proofs then are more difficult. Fortunately,
the restricted setting of piecewise-smooth curves suffices for many appli-
cations.

As a consequence of the above propositions, we may state a version of
Cauchy’s theorem as follows:

Theorem 2.3 Suppose f is a function that is holomorphic in the inte-
rior Ω of a simple closed curve Γ. Then∫

η

f(ζ) dζ = 0

whenever η is any closed curve contained in Ω.

The idea of the proof of Theorem 2.1 can be roughly summarized as
follows. Since the complement of Γ is open, it is sufficient to show it
is pathwise connected (Exercise 5, Chapter 1). Let z and w belong to
the complement of Γ, and join these two points by a curve. If this curve
intersects Γ, we first connect z to z′ and w to w′, where z′ and w′ are
close to Γ, by curves that do not intersect Γ. Then, we join z′ to w′

by traveling “parallel” to the curve Γ and going around its end-points if
necessary.

Therefore, the key is to construct a family of continuous curves that are
“parallel” to Γ. This can be achieved because of the conditions imposed
on the curve. Indeed, if γ is a parametrization for a smooth piece of Γ,
then γ is continuously differentiable, and γ′(t) �= 0. Moreover, the vector
γ′(t) is tangent to Γ. Consequently, iγ′(t) is perpendicular to Γ, and
if Γ is simple, considering γ(t) + iεγ′(t) amounts to a new curve that is
“parallel” to Γ. The details are as follows.

In the next three lemmas and two propositions, we emphasize that Γ0

denotes a simple smooth curve. We recall that an arc-length parametriza-
tion γ for a smooth curve Γ0 satisfies |γ′(t)| = 1 for all t. Every smooth
curve has an arc-length parametrization.

Lemma 2.4 Let Γ0 be a simple smooth curve with an arc-length parametriza-
tion given by γ : [0, L] → C. For each real number ε, let Γε be the con-
tinuous curve defined by the parametrization

γε(t) = γ(t) + iεγ′(t), for 0 ≤ t ≤ L.

Then, there exists κ1 > 0 so that Γ0 ∩ Γε = ∅ whenever 0 < |ε| < κ1.
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Proof. We first prove the result locally. If s and t belong to [0, L],
then

γε(t) − γ(s) = γ(t) − γ(s) + iεγ′(t)

=
∫ t

s

γ′(u) du+ iεγ′(t)

=
∫ t

s

[γ′(u) − γ′(t)] du+ (t− s+ iε)γ′(t).

Since γ′ is uniformly continuous on [0, L], there exists δ > 0 so that
|γ′(x) − γ′(y)| < 1/2 whenever |x− y| < δ. In particular, if |s− t| < δ
we find that

|γε(t) − γ(s)| > |t− s+ iε| |γ′(t)| − |t− s|
2

.

Since γ is an arc-length parametrization, we have |γ′(t)| = 1, and hence

|γε(t) − γ(s)| > |ε|/2,

where we have used the simple fact that 2|a+ ib| ≥ |a| + |b| whenever a
and b are real. This proves that γε(t) �= γ(s) whenever |t− s| < δ and
ε �= 0.

To conclude the proof of the lemma, we argue as follows. (See Figure 2
for an illustration of the argument.)

γε(J ′
k)

w

γε(Jk)
γε(J ′

k)

zζ

γ(Ik)
γ(J ′

k)
γ(J ′

k)

Figure 2. Situation in the proof of Lemma 2.4

Let 0 = t0 < · · · < tn = L be a partition of [0, L] with |tk+1 − tk| < δ
for all k, and consider

Ik = {t : |t− tk| ≤ δ/4}, Jk = {t : |t − tk| ≤ δ/2},
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and

J ′
k = {t : |t− tk| ≥ δ/2}.

Then, we have just proved that

(3) γ(Ik) ∩ γε(Jk) = ∅ whenever ε �= 0.

Since Γ0 is simple, the distance dk between the two compact sets γ(Ik)
and γ(J ′

k) is strictly positive. We now claim that

(4) γ(Ik) ∩ γε(J ′
k) = ∅ whenever |ε| < dk/2.

Indeed, if z ∈ γ(Ik) and w ∈ γε(J ′
k), then we choose s in J ′

k so that
w = γε(s) and let ζ = γ(s). The triangle inequality then implies

|z − w| ≥ |z − ζ| − |ζ − w| ≥ dk − |ε| ≥ dk/2,

and the claim is established. Finally, if we choose κ1 = mink dk/2, then (3)
and (4) imply that Γ0 ∩ Γε = ∅ whenever 0 < |ε| < κ1, as desired.

The next lemma shows that any point close to an interior point of the
curve belongs to one of its parallel translates. By an interior point of
the curve, we mean a point of the form γ(t) with t in the open interval
(0, L). Such a point should not to be confused with an “interior” point
of a curve, as in Theorem 2.2.

Lemma 2.5 Suppose z is a point which does not belong to the smooth
curve Γ0, but that is closer to an interior point of the curve than to either
of its end-points. Then z belongs to Γε for some ε �= 0.

More precisely, if z0 ∈ Γ0 is closest to z and z0 = γ(t0) for some t0 in
the open interval (0, L), then z = γ(t0) + iεγ′(t0) for some ε �= 0.

Proof. For t in a neighborhood of t0 the fact that γ is differentiable
guarantees that

z − γ(t) = z − γ(t0) − γ′(t0)(t− t0) + o(|t− t0|).

Since z0 = γ(t0) minimizes the distance from z to Γ0, we find that
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|z − z0|2 ≤ |z − γ(t)|2 = |z − z0|2 − 2(t− t0)Re
(
[z − γ(t0)]γ′(t0)

)
+

+ o (|t− t0|).

Since t− t0 can take on positive or negative values, we must have

Re
(
[z − γ(t0)]γ′(t0)

)
= 0, otherwise the above inequality can be vio-

lated for t close to t0. As a result, there exists a real number ε with
[z − γ(t0)]γ′(t0) = iε. Since |γ′(t0)| = 1 we have γ′(t0) = 1/γ′(t0), and
therefore z − γ(t0) = iεγ′(t0). The proof of the lemma is complete.

Suppose that z and w are close to interior points of Γ0, so that z ∈ Γε

and w ∈ Γη for some non-zero ε and η. If ε and η have the same sign, we
say that the points z and w belong to the same side of Γ0. Otherwise,
z and w are said to be on opposite sides of Γ0. We stress the fact that
we do not attempt to define the “two sides of Γ0,” but only that given
two points near Γ0, we may infer if they are on the “same side” or on
“opposite sides”. Also, nothing we have done so far shows that these
conditions are mutually exclusive.

Roughly speaking, points on the same side can be joined almost di-
rectly by a curve “parallel” to Γ0, while for points on opposite sides, we
also need to go around one of the end-points of Γ0.

We first investigate the situation for points on the same side of Γ0.

Proposition 2.6 Let A and B denote the two end-points of a simple
smooth curve Γ0, and suppose that K is a compact set that satisfies
either

Γ0 ∩K = ∅ or Γ0 ∩K = A ∪B.

If z /∈ Γ0 and w /∈ Γ0 lie on the same side of Γ0, and are closer to interior
points of Γ0 than they are to K or to the end-points of Γ0, then z and w
can be joined by a continuous curve that lies entirely in the complement
of K ∪ Γ0.

The unspecified compact set K will be chosen appropriately in the
proof of the Jordan curve theorem.

Proof. By the previous lemma, consider z0 = γ(t0) and w0 = γ(s0)
that are interior points of Γ0 closest to z and w, respectively. Then

z = γ(t0) + iε0γ
′(t0) and w = γ(s0) + iη0γ

′(s0),
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where ε0 and η0 have the same sign, which we may assume to be positive.
We may also assume that t0 ≤ s0.

The hypothesis of the lemma implies that the line segments joining z
to z0 and w to w0 are entirely contained in the complement of K and
Γ0. Therefore, for all small ε > 0, we may join z and w to the points

zε = γ(t0) + iεγ′(t0) and w = γ(s0) + iεγ′(s0),

respectively. See Figure 3.

Γ z

z0

w0
wε

w

zε

Figure 3. Situation in the proof of Proposition 2.6

Finally, if ε is chosen smaller than κ1 in Lemma 2.4 and also smaller
than the distance from K to the part of Γ0 between z0 and w0, that is,
{γ(t) : t0 ≤ t ≤ s0}, then the corresponding part of Γε, namely {γε(t) :
t0 ≤ t ≤ s0}, joins the point zε to wε. Moreover, this curve is contained
in the complement of K and Γ0. This proves the proposition.

To join points on opposite sides of Γ0, we need the following prelimi-
nary result, which ensures that there is enough room necessary to travel
around the end-points.

Lemma 2.7 Let Γ0 be a simple smooth curve. There exists κ2 > 0 so
that the set N , which consists of points of the form z = γ(L) + εeiθγ′(L)
with −π/2 ≤ θ ≤ π/2 and 0 < ε < κ2, is disjoint from Γ0.

Proof. The argument is similar to the one given in the proof of
Lemma 2.4. First, we note that

γ(L) + εeiθγ′(L) − γ(t) =
∫ L

t

[γ′(u) − γ′(L)] du+ (L− t+ εeiθ)γ′(L).
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If we choose δ so that |γ′(u) − γ′(L)| < 1/2 when |u− L| < δ, then
|t− L| < δ implies

|γ(L) + εeiθγ′(L) − γ(t)| ≥ |ε|/2 .

Therefore γ(t) /∈ N whenever L− δ ≤ t ≤ L. Finally, it suffices to choose
κ2 smaller than the distance from the end-point γ(L) to the rest of the
curve γ(t) with 0 ≤ t ≤ L− δ, to conclude the proof.

Finally, we may state the result analogous to Proposition 2.6 for points
that could lie on opposite sides of Γ0.

Proposition 2.8 Let A denote an end-point of the simple smooth curve
Γ0, and suppose that K is a compact set that satisfies either

Γ0 ∩K = ∅ or Γ0 ∩K = A.

If z /∈ Γ0 and w /∈ Γ0 are closer to interior points of Γ0 than they are to
K or to the end-points of Γ0, then z and w can be joined by a continuous
curve that lies entirely in the complement of Γ0 ∪K.

We only provide an outline of the argument, which is similar to the
proof of Proposition 2.6. It suffices to consider the case when z and w
lie on opposite sides of Γ0 and A = γ(0). First, we may join

zε = γ(t0) + iεγ′(t0) and wε = γ(s0) − iεγ′(s0)

to the points

z′ε = γ(L) + iεγ′(L) and w′
ε = γ(L) − iεγ′(L).

Then, z′ε and w′
ε may be joined within the “half-neighborhood” N of

Lemma 2.7. Here, if t0 ≤ s0 we must select |ε| smaller than the dis-
tance from {γ(t) : t0 ≤ t ≤ L} to K, and also smaller than κ1 and κ2 of
Lemmas 2.4 and 2.7.

Proof of Theorem 2.1

Let Γ be a simple piecewise-smooth curve.
First, we prove that the boundary of the set O = Γc is precisely Γ.

Clearly, O is an open set whose boundary is contained in Γ. Moreover,
any point where Γ is smooth also belongs to the boundary of O (by
Lemma 2.4 for instance). Since the boundary of O must also be closed,
we conclude it is equal to all of Γ.
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Γ
z

w

N

Figure 4. Situation in the proof of Proposition 2.8

The proof that O is connected is by induction on the number of smooth
curves constituting Γ. Suppose first that Γ is simple and smooth, and let
Z and W be any two points that do not lie on Γ. Let Λ be any smooth
curve in C that joins Z and W , and which omits the two end-points of Γ.
If Λ intersects Γ, it does so at interior points. Therefore, we may join Z
by a piece of Λ that does not intersect Γ to a point z that is closer to the
interior of Γ than to either of its end-points. Similarly, W can be joined
in the complement of Γ to a point w also closer to the interior of Γ than
to either of its end-points. Proposition 2.8 (with K empty) then shows
that z and w can be joined by a continuous curve in the complement of
Γ. Altogether, we may join any two points in the complement of Γ, and
this proves the base step of the induction.

Suppose that the theorem is proved for all curves containing n− 1
smooth curves, and let Γ consist of n smooth curves, so that we may
write

Γ = K ∪ Γ0,

where K is the union of n− 1 consecutive smooth curves, and Γ0 is
smooth. In particular, K is compact and intersects Γ0 in a single one of
its end-points. By the induction hypothesis, any two points Z and W in
the complement of Γ can be joined by a curve that does not intersect K,
and we may also assume that this curve omits both end-points of Γ0. If
this curve intersects Γ0 in its interior, then we apply Proposition 2.8 to
conclude the proof of the theorem.
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Proof of Theorem 2.2

Let Γ denote a curve which is simple, closed, and piecewise-smooth. We
first prove that the complement of Γ consists of at most two components.

Fix a point W that lies outside some large disc that contains Γ, and
let U denote the set of all points that can be joined to W by a continuous
curve that lies entirely in the complement of Γ. The set U is clearly open,
and also connected since any two points can be joined by passing first
through W . Now we define

Ω = Γc − U .

We must show that Ω is connected. To this end, let K denote the curve
obtained by deleting a smooth piece Γ0 of Γ. By the Jordan arc theorem,
we may join any point Z ∈ Ω to W by a curve ΛZ that does not intersect
K. Since Z /∈ U , the curve ΛZ must intersect Γ0 at one of its interior
points. We may therefore choose two points z, w ∈ ΛZ closer to interior
points of Γ0 than to either of its end-points, and so that the pieces of ΛZ

joining Z to z and W to w are entirely contained in the complement of
Γ. Then, the points z and w are on opposite sides of Γ0, for otherwise,
we could apply Proposition 2.6 to find that Z can be joined to W by a
curve lying in the complement of Γ, and this contradicts Z /∈ U . Finally,
if Z1 is another point in Ω, the two corresponding points z1 and w1

must also lie on opposite sides of Γ0. Moreover, z and z1 must lie on
the same side of Γ0, for otherwise z and w1 do, and we can once again
join Z to W without crossing Γ, thus contradicting Z /∈ U . Therefore,
by Proposition 2.6 the points z and z1 can be joined by a curve in the
complement of Γ, and we conclude that Z and Z1 belong to the same
connected component.

The argument thus far proves that Γc contains at most two compo-
nents, but nothing as yet guarantees that Ω is non-empty. To show that
Γc has precisely two components, it suffices (by Lemma 1.3) to prove
that there are points that have different winding numbers with respect
to Γ. In fact, we claim that points that are on opposite sides of Γ have
winding numbers that differ by 1. To see this, fix a point z0 on a smooth
part of Γ, say z0 = γ(t0), let ε > 0, and define

zε = γ(t0) + iεγ′(t0) and wε = γ(t0) − iεγ′(t0).

By our previous observations, points on the same side of Γ belong to the
same connected component, and hence

� = |WΓ(zε) −WΓ(wε)|
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is constant for all small ε > 0.
First, we may write(

γ′(t)
γ(t) − zε

− γ′(t)
γ(t) − wε

)
=

2iεγ′(t0)γ′(t)
[γ(t) − γ(t0)]2 + ε2γ′(t0)2

.

For the numerator, we use

γ′(t) = γ′(t0) + [γ′(t) − γ′(t0)]

= γ′(t0) + ψ(t),

where ψ(t) → 0 as t→ t0. For the denominator, we recall that γ′(t0) �= 0,
so that

[γ(t) − γ(t0)]2 + ε2γ′(t0)2 = γ′(t0)2[(t− t0)2 + ε2] + o(|t − t0|).

Putting these results together, we see that(
γ′(t)

γ(t) − zε
− γ′(t)
γ(t) − wε

)
=

2iε
(t− t0)2 + ε2

+ E(t),

where given η > 0, there exists δ > 0 so that if |t− t0| ≤ δ, the error term
satisfies

|E(t)| ≤ η
ε

(t − t0)2 + ε2
.

We then write

� =
1

2πi

∫
|t−t0|≥δ

(
γ′(t)

γ(t) − zε
− γ′(t)
γ(t) − wε

)
dt+

+
1

2πi

∫
|t−t0|<δ

(
2iε

(t− t0)2 + ε2
+E(t)

)
dt.

The first integral goes to 0 as ε→ 0. In the second integral we make the
change of variables t− t0 = εs, and note that

1
π

∫ ρ

−ρ

ds

s2 + 1
=

1
π

[arctan s]ρ−ρ → 1 as ρ→ ∞.

We therefore see that letting ε→ 0 gives

|� − 1| < η.
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We conclude that � = 1, and hence Γc has precisely two components.
Finally, only one of these components can be unbounded, namely U , and
the winding number of Γ in this component must therefore be zero. By
our last result, we see that, after possibly reversing the orientation of the
curve, the winding number of any point in the bounded component Ω is
constant and equal to 1. Also, it is clear from what has been said that
any smooth point on Γ can be approached by points in either component,
and hence Γ is the boundary of both Ω and U .

The final step in the proof is to show that the interior of the curve,
that is, the bounded component Ω, is simply connected. By Theorem 1.2
it suffices to show that Ωc is connected. If not, then

Ωc = F1 ∪ F2,

where F1 and F2 are closed, disjoint, and non-empty. Let

O1 = U ∩ F1 and O2 = U ∩ F2.

Clearly, O1 and O2 are disjoint. If z ∈ O1, then z ∈ U , and every small
ball centered at z is contained in U . If every such ball intersects F2,
then z ∈ F2 since F2 is closed. However, F1 and F2 are disjoint, so this
cannot happen. Consequently, O1 is open, and by the same argument, so
is O2. Finally, we claim that O1 is non-empty. If not, then F1 is entirely
contained in Γ and U is contained in F2. Pick any point z ∈ F1, which
we know belongs to Γ. Now every ball centered at z intersects U , hence
F2. But F2 is closed and disjoint from F1, so we get a contradiction. A
similar argument for O1 proves that

U = O1 ∪O2,

where O1,O2 are disjoint, open, and non-empty. This contradicts the
fact that U is connected, and concludes the proof of the Jordan curve
theorem for piecewise-smooth curves.

2.1 Proof of a general form of Cauchy’s theorem

Theorem 2.9 If a function f is holomorphic in an open set that con-
tains a simple closed piecewise-smooth curve Γ and its interior, then∫

Γ

f = 0.

Let O denote an open set on which f is holomorphic, and which con-
tains Γ and its interior Ω. The idea is to construct a closed curve Λ
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in Ω that is so close to Γ that
∫
Γ
f =

∫
Λ
f . Then, the integral on the

right-hand side is 0, since f is holomorphic in the simply connected open
set Ω. We build Λ as follows. Near the smooth parts of Γ, the curve Λ
is essentially a curve like Γε in Lemma 2.4. Near points where smooth
parts of Γ join, we shall use for Λ an arc of a circle. This is illustrated
in Figure 5.

Ω

Γ

Λ

Figure 5. The curve Λ

To find the appropriate connecting arcs, we need the following prelim-
inary result.

Lemma 2.10 Let γ : [0, 1] → C be a simple smooth curve. Then, for all
sufficiently small δ > 0 the circle Cδ centered at γ(0) and of radius δ
intersects γ in precisely one point.

Proof. We may assume that γ(0) = 0. Since γ(0) �= γ(1) it is clear
that for each small δ > 0, the circle Cδ intersects γ in at least one point.
If the conclusion in the lemma is false, we can find a sequence of positive
δj going to 0, and so that the equation |γ(t)| = δj has at least two distinct
solutions. The mean value theorem applied to h(t) = |γ(t)|2 provides a
sequence of positive numbers tj so that tj → 0 and h′(tj) = 0. Thus

γ′(tj) · γ(tj) = 0 for all j.

However, the curve is smooth, so

γ(t) = γ(0) + γ′(0)t+ tϕ(t) and γ′(t) = γ′(0) + ψ(t),
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where |ϕ(t)| → 0 and |ψ(t)| → 0 as t goes to 0. Then recalling that γ(0) =
0, we find γ′(t) · γ(t) = |γ′(0)|2t+ o(|t|). The definition of a smooth curve
also requires that γ′(0) �= 0, so the above gives

γ′(t) · γ(t) �= 0 for all small t.

This is the desired contradiction.

Returning to the proof of Cauchy’s theorem, choose ε so small that
the open set U of all points at a distance < ε of Γ is contained in O.

Next, if P1, . . . , Pn denote the consecutive points where smooth parts
of Γ join, we may pick δ < ε/10 so small that each circle Cj centered at a
point Pj and of radius δ intersects Γ in precisely two distinct points (this
is possible by the previous lemma). These two points on Cj determine
two arcs of circles, only one of which (denoted by Cj) has an interior
entirely contained in Ω. To see this, it suffices to recall that if γ is a
parametrization of a smooth part of Γ with end-point Pj, then for all
small ε′ the curves parametrized by γε′ and γ−ε′ of Lemma 2.4 lie on
opposite sides of Γ and must intersect the circle Cj . By construction the
disc D∗

j centered at Pj and of radius 2δ is also contained in U , hence
in O.

Bj

Aj

Pj+1

Ω

ΛjPj

Γj

Bj+1

Aj+1

Figure 6. Construction of the curve Λ

We wish to construct Λ so that we may argue as in the proof of The-
orem 5.1, Chapter 3 and establish

∫
Γ
f =

∫
Λ
f . To do so, we consider a

chain of discs D = {D0, . . . , DK} contained in U , and so that Γ is con-
tained in their union, with Dk ∩Dk+1 �= ∅, D0 = DK , and with the discs
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D∗
j part of the chain D. Suppose Γj is the smooth part of Γ that joins Pj

to Pj+1. By Lemma 2.4 it is possible to construct a continuous curve Λj

that is contained in Ω and in the union of the discs, and which connects
a point on Bj on Cj to a point on Aj+1 on Cj+1 (see Figure 6). Since
we only assumed that Γ has one continuous derivative, Λj need not be
smooth, but by approximating this continuous curve by polygonal lines
if necessary, we may actually assume that Λj is also smooth. Then, Aj+1

is joined to Bj+1 by a piece of Cj+1, and so on. This procedure provides
a piecewise-smooth curve Λ that is closed and contained in Ω.

Since f has a primitive on each disc of the family D, we may argue as
in the proof of Theorem 5.1, Chapter 3 to find that

∫
Γ
f =

∫
Λ
f . Since

Ω is simply connected, we have
∫
Λ
f = 0, and as a result∫

Γ

f = 0.



Notes and References

Useful references for many of the subjects treated here are Saks and Zygmund [34],
Ahlfors [2], and Lang [23].

Introduction

The citation is from Riemann’s dissertation [32].

Chapter 1

The citation is a free translation of a passage in Borel’s book [6].
Chapter 2

The citation is a translation of an excerpt from Cauchy’s memoir [7].
Results related to the natural boundaries of holomorphic functions in the unit

disc can be found in Titchmarsh [36].
The construction of the universal functions in Problem 5 are due to G. D. Birkhoff

and G.R. MacLane.

Chapter 3

The citation is a translation of a passage in Cauchy’s memoir [8].
Problem 1 and other results related to injective holomorphic mappings (uni-

valent functions) can be found in Duren [11].
Also, see Muskhelishvili [25] for more about the Cauchy integral introduced

in Problem 5.

Chapter 4

The citation is from Wiener [40].
The argument in Exercise 1 was discovered by D. J. Newman; see [4].
The Paley-Wiener theorems appeared first in [28]; further generalizations can

be found in Stein and Weiss [35].
Results related to the Borel transform (Problem 4) can be found in Boas [5].

Chapter 5

The citation is a translation from the German of a passage in a letter from
K. Weierstrass to S. Kowalewskaja; see [38].

A classical reference for Nevanlinna theory is the book by R. Nevanlinna
himself [27].

Chapter 6

A number of different proofs of the analytic continuation and functional equation
for the zeta function can be found in Chapter 2 of Titchmarsch [37].

Chapter 7

The citation is from Hadamard [14]. Riemann’s statement concerning the zeroes
of the zeta function in the critical strip is a passage taken from his paper [33].

Further material related to the proof of the prime number theorem presented
in the text is in Chapter 2 of Ingham [19], and Chapter 3 of Titchmarsch [37].

365



366 NOTES AND REFERENCES

The “elementary” analysis of the distribution of primes (without using the
analytic properties of the zeta function) was initiated by Tchebychev, and cul-
minated in the Erdös-Selberg proof of the prime number theorem. See Chap-
ter XXII in Hardy and Wright [17].

The results in Problems 2 and 3 can be found in Chapter 4 of Ingham [19].
For Problem 4, consult Estermann [13].

Chapter 8

The citation is from Christoffel [9].
A systematic treatment of conformal mappings is Nehari [26].
Some history related to the Riemann mapping theorem, as well as the details

in Problem 7, can be found in Remmert [31].
Results related to the boundary behavior of holomorphic functions (Prob-

lem 6) are in Chapter XIV of Zygmund [41].
An introduction to the interplay between the Poincaré metric and complex

analysis can be found in Ahlfors [1]. For further results on the Schwartz-Pick
lemma and hyperbolicity, see Kobayashi [21].

For more on Bieberbach’s conjecture, see Chapter 2 in Duren [11] and Chap-
ter 8 in Hayman [18].

Chapter 9

The citation is taken from Poincaré [30].
Problems 2, 3, and 4 are in Saks and Zygmund [34].

Chapter 10

The citation is from Hardy, Chapter IX in [16].

A systematic account of the theory of theta functions and Jacobi’s theory of
elliptic functions is in Whittaker and Watson [39], Chapters 21 and 22.

Section 2. For more on the partition function, see Chapter XIX in Hardy and
Wright [17].

Section 3. The more standard proofs of the theorems about the sum of two
and four squares are in Hardy and Wright [17], Chapter XX. The approach we
use was developed by Mordell and Hardy [15] to derive exact formulas for the
number of representations as the sum of k squares, when k ≥ 5. The special
case k = 8 is in Problem 6. For k ≤ 4 the method as given there breaks down
because of the non-absolute convergence of the associated “Eisenstein series.” In
our presentation we get around this difficulty by using the “forbidden” Eisenstein
series. When k = 2, an entirely different construction is needed, and the analysis
centering around C(τ) is a further new aspect of this problem.

The theorem on the sum of three squares (Problem 1) is in Part I, Chapter 4
of Landau [22].

Appendix A

The citation is taken from the appendix in Airy’s article [3].
For systematic accounts of Laplace’s method, stationary phase, and the method

of steepest descent, see Erdélyi [12] and Copson [10].
The more refined asymptotics of the partition function can be found in Chap-

ter 8 of Hardy [16].
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Appendix B

The citation is taken from Picard’s address found in Jordan’s collected works [20].
The proof of the Jordan curve theorem for piecewise-smooth curve due to

Pederson [29] is an adaptation of the proof for polygonal curves which can be
found in Saks and Zygmund [34].

For a proof of the Jordan theorem for continuous curves using notions of
algebraic topology, see Munkres [24].
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Symbol Glossary

The page numbers on the right indicate the first time the symbol or
notation is defined or used. As usual, Z, Q, R, and C denote the integers,
the rationals, the reals, and the complex numbers respectively.

Re(z), Im(z) Real and Imaginary parts 2
arg z Argument of z 4
|z|, z Absolute value and complex conjugate 3, 3
Dr(z0), Dr(z0) Open and closed discs centered at z0

and with radius r
5, 6

Cr(z0) Circle centered at z0 with radius r 6
D, C Generic disc and circle
D Unit disc 6
Ωc, Ω, ∂Ω Complement, closure, and boundary of Ω 6
diam(Ω) Diameter of Ω 6
∂
∂z , ∂

∂z Differential operators 12
ez, cos z, sin z Complex exponential and trigonometric

functions
14, 16

γ− Reverse parametrization 19
O, o, ∼ Bounds and asymptotic relations 24
� Laplacian 27
F (α, β, γ; z) Hypergeometric series 28
reszf Residue 75
Pr(γ), Py(x) Poisson kernels 67, 78
cosh z, sinh z Hyperbolic cosine and sine 81, 83
S Riemann sphere 89
log, logΩ Logarithms 98, 99
f̂(ξ) Fourier transform 111
Fa, F Class of functions with moderate decay in

strips
113, 114

Sa, Sδ,M Horizontal strips 113, 160
ρ, ρf Order of growth 138
Ek Canonical factors 145
ψα Blaschke factors 153
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Γ(s) Gamma function 160
ζ(s) Riemann zeta function 168
ϑ, Θ(z|τ), θ(τ) Theta function 169, 284, 284
ξ(s) Xi function 169
Jν Bessel functions 176
Bm Bernoulli number 179
π(x) Number of primes ≤ x 182
f(x) ≈ g(x) Asymptotic relation 182
ψ(x), Λ(n), ψ1(x) Functions of Tchebychev 188, 189, 190
d(n) Number of divisors of n 200
σa(n) Sum of the ath powers of divisors of n 200
µ(n) Möbius function 200
Li(x) Approximation to π(x) 202
H Upper half-plane 208
Aut(Ω) Automorphism group of Ω 219
SL2(R) Special linear group 222
PSL2(R) Projective special linear group 223
SU(1, 1) Group of fractional linear transforma-

tions
257

Λ, Λ∗ Lattice and lattice minus the origin 262, 267
℘ Weierstrass elliptic function 269
Ek(τ), E∗

2 (τ) Eisenstein series 273, 305
F (τ), F̃ (τ) Forbidden Eisenstein series and its re-

verse
278, 305

Π(z|τ) Triple product 286
η(τ) Dedekind eta function 292
p(n) Partition function 293
r2(n) Number of ways n is a sum of two squares 296
r4(n) Number of ways n is a sum of four

squares
297

d1(n), d3(n), σ∗
1(n) Divisor functions 297, 304

Ai(s) Airy function 328
Wγ(z) Winding number 347



Index

Relevant items that also arise in Book I are listed in this index,
preceeded by the numeral I.

Abel’s theorem, 28
Airy function, 328
amplitude, 323; (I)3
analytic continuation, 53
analytic function, 9, 18
angle preserving, 255
argument principle, 90
arithmetic-geometric mean, 260
automorphisms, 219

of the disc, 220
of the upper half-plane, 222

axis
imaginary, 2
real, 2

Bernoulli
numbers, 179, 180; (I)97, 167
polynomials, 180; (I)98

Bessel function, 29, 176, 319;
(I)197

Beta function, 175
Bieberbach conjecture, 259
Blaschke

factors, 26, 153, 219
products, 157

bump functions, (I)162

canonical factor, 145
degree, 145

Casorati-Weierstrass theorem,
86

Cauchy inequalities, 48
Cauchy integral formulas, 48
Cauchy sequence, 5; (I)24

Cauchy theorem
for a disc, 39
for piecewise-smooth curves,

361
for simply connected regions,

97
Cauchy-Riemann equations, 12
chain rule

complex version, 27
for holomorphic functions, 10

circle
negative orientation, 20
positive orientation, 20

closed disc, 6
complex differentiable, 9
complex number

absolute value, 3
argument, 4
conjugate, 3
imaginary part, 2
polar form, 4
purely imaginary, 2
real part, 2

component, 26
conformal

equivalence, 206
map, 206
mapping onto polygons, 231

connected
closed set, 7
component, 26
open set, 7
pathwise, 25
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cotangent (partial fractions),
142

critical points, 326
critical strip, 184
curve, 20; (I)102

closed, 20; (I)102
end-points, 20
length, 21; (I)102
piecewise-smooth, 20
simple, 20; (I)102
smooth, 19
homotopic, 93

cusps, 301

Dedekind eta function, 292
deleted neighborhood, 74
Dirichlet problem, 212, 216

in a strip, 212; (I)170
in the unit disc, 215; (I)20

disc of convergence, 15
divisor functions, 277, 297, 304;

(I)269,280
doubly periodic function, 262

Eisenstein series, 273
forbidden, 278

elliptic function, 265
order, 266

elliptic integrals, 233, 245
entire function, 9, 134
equivalent parametrizations, 19
essential singularity, 85

at infinity, 87
Euler

constant, 167; (I)268
formulas for cos z and

sin z, 16
product, 182; (I)249

exhaustion, 226
expansion (mapping), 258
exponential function, 14; (I)24
exponential type, 112

exterior, 351

Fibonacci numbers, 310; (I)122
fixed point, 250
Fourier

inversion formula, 115; (I)141
series, 101; (I)34
transform, 111;

(I)134,136,181
fractional linear

tranformations, 209
Fresnel integrals, 64
function

Airy Ai, 328
analytic, 9, 18
Bessel, 29, 176, 319; (I)197
Beta, 175
complex differentiable, 9
continuous, 8
doubly periodic, 262
elliptic, 265
entire, 9, 134
exponential type, 112
gamma Γ, 160; (I)165
harmonic, 27; (I)20
holomorphic, 8
maximum, 8
meromorphic, 86
minimum, 8
moderate decrease, 112;

(I)131, 179, 294
open mapping, 91
partition, 293
regular, 9
Weierstrass ℘, 269
zeta ζ, 168; (I)98,155,166,248

functional equation
of η, 292
of ϑ, 169; (I)155
of ζ, 170

fundamental domain, 302
fundamental parallelogram, 262
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fundamental theorem of
algebra, 50

gamma function, 160; (I)165
generating function, 293
golden mean, 310
Goursat’s theorem, 34,65
Green’s function, 217

Hadamard formula, 15
Hadamard’s factorization

theorem, 147
half-periods, 271
Hardy’s theorem, 131
Hardy-Ramanujan asymptotic

formula, 334
harmonic function, 27; (I)20
Hermitian inner product in C,

24; (I)72
holomorphic function, 8
holomorphically simply

connected, 231
homotopic curves, 93
hyperbolic

distance, 256
length, 256

hypergeometric series, 28, 176

imaginary part (complex
number), 2

inner product in R2, 24
of a set, 6
point, 6

isogonal, 254
isolated singularity, 73
isotropic, 254

Jensen’s formula, 135, 153
Jordan arc theorem

(piecewise-smooth curves),
350

Jordan curve theorem
(piecewise-smooth
curves),350

keyhole toy contour, 40

Laplace’s method, 317,322
Laplacian, 27; (I)20,149,185
Laurent series expansion, 109
limit point, 6
Liouville’s theorem, 50,264
local bijection, 248
logarithm

branch or sheet, 97
principal branch, 98

Maximum modulus principle,
92

mean-value property, 102;
(I)152

Mellin transform, 177
meromorphic

in the extended complex
plane, 87

Mittag-Leffler’s theorem, 156
modular

character of Eisenstein series,
274

group, 273
Montel’s theorem, 225
Morera’s theorem, 53, 68
multiplicity or order

of a zero, 74

nested sets, 7
normal family, 225

one-point compactification, 89
open covering, 7
open disc, 5
open mapping theorem, 92
order of an elliptic function, 266
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order of growth (entire
function), 138

Paley-Wiener theorem, 122
parametrized curve

piecewise-smooth, 19
smooth, 19

partition function, 293
pentagonal numbers, 294
period parallelogram, 263
phase, 323; (I)3
Phragmén-Lindelöf principle,

124, 129
Picard’s little theorem, 155
Poincaré metric, 256
Poisson integral formula, 45, 67,

109; (I)57
Poisson kernel

unit disc, 67,109, 216;
(I)37,55

upper half-plane, 78, 113;
(I)149

Poisson summation formula,
118; (I)154–156, 165, 174

pole, 74
at infinity, 87
order or multiplicity, 75
simple, 75

polygonal region, 238
power series, 14

expansion, 18
radius and disc of

convergence, 15
prime number theorem, 182
primitive, 22
principal part, 75
Pringsheim interpolation

formula, 156
product formula for sinπz, 142
product formula for 1/Γ, 166
projective special linear group,

223, 315

proper subset, 224
pseudo-hyperbolic distance, 251
Pythagorean triples, 296

radius of convergence, 15
real part (complex number), 2
region, 7

polygonal, 238
regular function, 9
removable singularity, 84

at infinity, 87
residue, 75
residue formula, 77
reverse

of the forbidden Eisenstein
series, 278

orientation, 19
Riemann

hypothesis, 184
mapping theorem, 224
sphere, 89

rotation, 210, 218; (I)177
Rouché’s theorem, 91
Runge’s approximation

theorem, 61, 69

Schwarz
lemma, 218
reflection principle, 60

Schwarz-Christoffel integral,
235

Schwarz-Pick lemma, 251
set

boundary, 6
bounded, 6
closed, 6
closure, 6
compact, 6
convex, 107
diameter, 6
interior, 6
open, 6
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star-shaped, 107
simple curve, 20
simply connected, 96, 231, 345
slit plane, 96
special linear group, 222
stationary phase, 324
steepest descent, 331
sterographic projection, 87
Stirling’s formula, 322, 341
summation by parts, 28; (I)60
Sums of squares

eight squares, 316
four-squares, 304
two-squares, 297

Symmetry principle, 58

Tchebychev ψ-function, 188
theta function, 120, 153, 169,

284; (I)155
three-lines lemma, 133
total ordering, 25
toy contour, 40

orientation, 40
transitive action, 221

trigonometric functions, 16;
(I)35

triple product formula (Jacobi),
286
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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.

II. Complex analysis.

III. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and José Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses, and
has since taken over the teaching of the second round of the series; and
Daniel Levine, who gave valuable help in proof-reading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein

Rami Shakarchi

Princeton, New Jersey
August 2002

In this third volume we establish the basic facts concerning measure
theory and integration. This allows us to reexamine and develop further
several important topics that arose in the previous volumes, as well as to
introduce a number of other subjects of substantial interest in analysis.
To aid the interested reader, we have starred sections that contain more
advanced material. These can be omitted on first reading. We also want
to take this opportunity to thank Daniel Levine for his continuing help in
proof-reading and the many suggestions he made that are incorporated
in the text.

November 2004
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Introduction

I turn away in fright and horror from this lamentable
plague of functions that do not have derivatives.

C. Hermite, 1893

Starting in about 1870 a revolutionary change in the conceptual frame-
work of analysis began to take shape, one that ultimately led to a vast
transformation and generalization of the understanding of such basic ob-
jects as functions, and such notions as continuity, differentiability, and
integrability.

The earlier view that the relevant functions in analysis were given by
formulas or other “analytic” expressions, that these functions were by
their nature continuous (or nearly so), that by necessity such functions
had derivatives for most points, and moreover these were integrable by
the accepted methods of integration − all of these ideas began to give
way under the weight of various examples and problems that arose in
the subject, which could not be ignored and required new concepts to
be understood. Parallel with these developments came new insights that
were at once both more geometric and more abstract: a clearer under-
standing of the nature of curves, their rectifiability and their extent; also
the beginnings of the theory of sets, starting with subsets of the line, the
plane, etc., and the “measure” that could be assigned to each.

That is not to say that there was not considerable resistance to the
change of point-of-view that these advances required. Paradoxically,
some of the leading mathematicians of the time, those who should have
been best able to appreciate the new departures, were among the ones
who were most skeptical. That the new ideas ultimately won out can
be understood in terms of the many questions that could now be ad-
dressed. We shall describe here, somewhat imprecisely, several of the
most significant such problems.

xv
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1 Fourier series: completion

Whenever f is a (Riemann) integrable function on [−π, π] we defined in
Book I its Fourier series f ∼ ∑

aneinx by

(1) an =
1
2π

∫ π

−π

f(x)e−inx dx,

and saw then that one had Parseval’s identity,

∞∑
n=−∞

|an|2 =
1
2π

∫ π

−π

|f(x)|2 dx.

However, the above relationship between functions and their Fourier
coefficients is not completely reciprocal when limited to Riemann inte-
grable functions. Thus if we consider the space R of such functions with
its square norm, and the space `2(Z) with its norm,1 each element f in
R assigns a corresponding element {an} in `2(Z), and the two norms are
identical. However, it is easy to construct elements in `2(Z) that do not
correspond to functions in R. Note also that the space `2(Z) is complete
in its norm, while R is not.2 Thus we are led to two questions:

(i) What are the putative “functions” f that arise when we complete
R? In other words: given an arbitrary sequence {an} ∈ `2(Z) what
is the nature of the (presumed) function f corresponding to these
coefficients?

(ii) How do we integrate such functions f (and in particular verify (1))?

2 Limits of continuous functions

Suppose {fn} is a sequence of continuous functions on [0, 1]. We assume
that limn→∞ fn(x) = f(x) exists for every x, and inquire as to the nature
of the limiting function f .

If we suppose that the convergence is uniform, matters are straight-
forward and f is then everywhere continuous. However, once we drop
the assumption of uniform convergence, things may change radically and
the issues that arise can be quite subtle. An example of this is given by
the fact that one can construct a sequence of continuous functions {fn}
converging everywhere to f so that

1We use the notation of Chapter 3 in Book I.
2See the discussion surrounding Theorem 1.1 in Section 1, Chapter 3 of Book I.
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(a) 0 ≤ fn(x) ≤ 1 for all x.

(b) The sequence fn(x) is montonically decreasing as n →∞.

(c) The limiting function f is not Riemann integrable.3

However, in view of (a) and (b), the sequence
∫ 1

0
fn(x) dx converges to

a limit. So it is natural to ask: what method of integration can be used
to integrate f and obtain that for it

∫ 1

0

f(x) dx = lim
n→∞

∫ 1

0

fn(x) dx ?

It is with Lebesgue integration that we can solve both this problem
and the previous one.

3 Length of curves

The study of curves in the plane and the calculation of their lengths
are among the first issues dealt with when one learns calculus. Suppose
we consider a continuous curve Γ in the plane, given parametrically by
Γ = {(x(t), y(t))}, a ≤ t ≤ b, with x and y continuous functions of t. We
define the length of Γ in the usual way: as the supremum of the lengths
of all polygonal lines joining successively finitely many points of Γ, taken
in order of increasing t. We say that Γ is rectifiable if its length L is
finite. When x(t) and y(t) are continuously differentiable we have the
well-known formula,

(2) L =
∫ b

a

(
(x′(t))2 + (y′(t))2

)1/2
dt.

The problems we are led to arise when we consider general curves.
More specifically, we can ask:

(i) What are the conditions on the functions x(t) and y(t) that guar-
antee the rectifiability of Γ?

(ii) When these are satisfied, does the formula (2) hold?

The first question has a complete answer in terms of the notion of func-
tions of “bounded variation.” As to the second, it turns out that if x and
y are of bounded variation, the integral (2) is always meaningful; how-
ever, the equality fails in general, but can be restored under appropriate
reparametrization of the curve Γ.

3The limit f can be highly discontinuous. See, for instance, Exercise 10 in Chapter 1.
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There are further issues that arise. Rectifiable curves, because they
are endowed with length, are genuinely one-dimensional in nature. Are
there (non-rectifiable) curves that are two-dimensional? We shall see
that, indeed, there are continuous curves in the plane that fill a square,
or more generally have any dimension between 1 and 2, if the notion of
fractional dimension is appropriately defined.

4 Differentiation and integration

The so-called “fundamental theorem of the calculus” expresses the fact
that differentiation and integration are inverse operations, and this can
be stated in two different ways, which we abbreviate as follows:

(3) F (b)− F (a) =
∫ b

a

F ′(x) dx,

(4)
d

dx

∫ x

0

f(y) dy = f(x).

For the first assertion, the existence of continuous functions F that are
nowhere differentiable, or for which F ′(x) exists for every x, but F ′ is
not integrable, leads to the problem of finding a general class of the F for
which (3) is valid. As for (4), the question is to formulate properly and
establish this assertion for the general class of integrable functions f that
arise in the solution of the first two problems considered above. These
questions can be answered with the help of certain “covering” arguments,
and the notion of absolute continuity.

5 The problem of measure

To put matters clearly, the fundamental issue that must be understood
in order to try to answer all the questions raised above is the problem
of measure. Stated (imprecisely) in its version in two dimensions, it
is the problem of assigning to each subset E of R2 its two-dimensional
measure m2(E), that is, its “area,” extending the standard notion defined
for elementary sets. Let us instead state more precisely the analogous
problem in one dimension, that of constructing one-dimensional measure
m1 = m, which generalizes the notion of length in R.

We are looking for a non-negative function m defined on the family of
subsets E of R that we allow to be extended-valued, that is, to take on
the value +∞. We require:
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(a) m(E) = b− a if E is the interval [a, b], a ≤ b, of length b− a.

(b) m(E) =
∑∞

n=1 m(En) whenever E =
⋃∞

n=1 En and the sets En are
disjoint.

Condition (b) is the “countable additivity” of the measure m. It implies
the special case:

(b′) m(E1 ∪ E2) = m(E1) + m(E2) if E1 and E2 are disjoint.

However, to apply the many limiting arguments that arise in the theory
the general case (b) is indispensable, and (b′) by itself would definitely
be inadequate.

To the axioms (a) and (b) one adds the translation-invariance of m,
namely

(c) m(E + h) = m(E), for every h ∈ R.

A basic result of the theory is the existence (and uniqueness) of such
a measure, Lebesgue measure, when one limits oneself to a class of rea-
sonable sets, those which are “measurable.” This class of sets is closed
under countable unions, intersections, and complements, and contains
the open sets, the closed sets, and so forth.4

It is with the construction of this measure that we begin our study.
From it will flow the general theory of integration, and in particular the
solutions of the problems discussed above.

A chronology
We conclude this introduction by listing some of the signal events that
marked the early development of the subject.

1872 − Weierstrass’s construction of a nowhere differentiable function.

1881 − Introduction of functions of bounded variation by Jordan and
later (1887) connection with rectifiability.

1883 − Cantor’s ternary set.

1890 − Construction of a space-filling curve by Peano.

1898 − Borel’s measurable sets.

1902 − Lebesgue’s theory of measure and integration.

1905 − Construction of non-measurable sets by Vitali.

1906 − Fatou’s application of Lebesgue theory to complex analysis.

4There is no such measure on the class of all subsets, since there exist non-measurable
sets. See the construction of such a set at the end of Section 3, Chapter 1.
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The sets whose measure we can define by virtue of the
preceding ideas we will call measurable sets; we do
this without intending to imply that it is not possible
to assign a measure to other sets.

E. Borel, 1898

This chapter is devoted to the construction of Lebesgue measure in Rd

and the study of the resulting class of measurable functions. After some
preliminaries we pass to the first important definition, that of exterior
measure for any subset E of Rd. This is given in terms of approximations
by unions of cubes that cover E. With this notion in hand we can
define measurability and thus restrict consideration to those sets that
are measurable. We then turn to the fundamental result: the collection
of measurable sets is closed under complements and countable unions,
and the measure is additive if the subsets in the union are disjoint.

The concept of measurable functions is a natural outgrowth of the
idea of measurable sets. It stands in the same relation as the concept
of continuous functions does to open (or closed) sets. But it has the
important advantage that the class of measurable functions is closed
under pointwise limits.

1 Preliminaries

We begin by discussing some elementary concepts which are basic to the
theory developed below.

The main idea in calculating the “volume” or “measure” of a subset
of Rd consists of approximating this set by unions of other sets whose
geometry is simple and whose volumes are known. It is convenient to
speak of “volume” when referring to sets in Rd; but in reality it means
“area” in the case d = 2 and “length” in the case d = 1. In the approach
given here we shall use rectangles and cubes as the main building blocks
of the theory: in R we use intervals, while in Rd we take products of
intervals. In all dimensions rectangles are easy to manipulate and have
a standard notion of volume that is given by taking the product of the
length of all sides.
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Next, we prove two simple theorems that highlight the importance of
these rectangles in the geometry of open sets: in R every open set is a
countable union of disjoint open intervals, while in Rd, d ≥ 2, every open
set is “almost” the disjoint union of closed cubes, in the sense that only
the boundaries of the cubes can overlap. These two theorems motivate
the definition of exterior measure given later.

We shall use the following standard notation. A point x ∈ Rd consists
of a d-tuple of real numbers

x = (x1, x2, . . . , xd), xi ∈ R, for i = 1, . . . , d.

Addition of points is componentwise, and so is multiplication by a real
scalar. The norm of x is denoted by |x| and is defined to be the standard
Euclidean norm given by

|x| = (
x2

1 + · · ·+ x2
d

)1/2
.

The distance between two points x and y is then simply |x− y|.
The complement of a set E in Rd is denoted by Ec and defined by

Ec = {x ∈ Rd : x /∈ E}.

If E and F are two subsets of Rd, we denote the complement of F in E
by

E − F = {x ∈ Rd : x ∈ E and x /∈ F}.

The distance between two sets E and F is defined by

d(E, F ) = inf |x− y|,

where the infimum is taken over all x ∈ E and y ∈ F .

Open, closed, and compact sets

The open ball in Rd centered at x and of radius r is defined by

Br(x) = {y ∈ Rd : |y − x| < r}.

A subset E ⊂ Rd is open if for every x ∈ E there exists r > 0 with
Br(x) ⊂ E. By definition, a set is closed if its complement is open.

We note that any (not necessarily countable) union of open sets is
open, while in general the intersection of only finitely many open sets
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is open. A similar statement holds for the class of closed sets, if one
interchanges the roles of unions and intersections.

A set E is bounded if it is contained in some ball of finite radius.
A bounded set is compact if it is also closed. Compact sets enjoy the
Heine-Borel covering property:

• Assume E is compact, E ⊂ ⋃
αOα, and each Oα is open. Then

there are finitely many of the open sets, Oα1 ,Oα2 , . . . ,OαN
, such

that E ⊂ ⋃N
j=1Oαj .

In words, any covering of a compact set by a collection of open sets
contains a finite subcovering.

A point x ∈ Rd is a limit point of the set E if for every r > 0, the ball
Br(x) contains points of E. This means that there are points in E which
are arbitrarily close to x. An isolated point of E is a point x ∈ E such
that there exists an r > 0 where Br(x) ∩ E is equal to {x}.

A point x ∈ E is an interior point of E if there exists r > 0 such
that Br(x) ⊂ E. The set of all interior points of E is called the interior
of E. Also, the closure E of the E consists of the union of E and all
its limit points. The boundary of a set E, denoted by ∂E, is the set of
points which are in the closure of E but not in the interior of E.

Note that the closure of a set is a closed set; every point in E is a
limit point of E; and a set is closed if and only if it contains all its limit
points. Finally, a closed set E is perfect if E does not have any isolated
points.

Rectangles and cubes

A (closed) rectangle R in Rd is given by the product of d one-dimensional
closed and bounded intervals

R = [a1, b1]× [a2, b2]× · · · × [ad, bd],

where aj ≤ bj are real numbers, j = 1, 2, . . . , d. In other words, we have

R = {(x1, . . . , xd) ∈ Rd : aj ≤ xj ≤ bj for all j = 1, 2, . . . , d}.

We remark that in our definition, a rectangle is closed and has sides
parallel to the coordinate axis. In R, the rectangles are precisely the
closed and bounded intervals, while in R2 they are the usual four-sided
rectangles. In R3 they are the closed parallelepipeds.

We say that the lengths of the sides of the rectangle R are b1 −
a1, . . . , bd − ad. The volume of the rectangle R is denoted by |R|, and



4 Chapter 1. MEASURE THEORY

R2

R

R3

Figure 1. Rectangles in Rd, d = 1, 2, 3

is defined to be

|R| = (b1 − a1) · · · (bd − ad).

Of course, when d = 1 the “volume” equals length, and when d = 2 it
equals area.

An open rectangle is the product of open intervals, and the interior of
the rectangle R is then

(a1, b1)× (a2, b2)× · · · × (ad, bd).

Also, a cube is a rectangle for which b1 − a1 = b2 − a2 = · · · = bd − ad.
So if Q ⊂ Rd is a cube of common side length `, then |Q| = `d.

A union of rectangles is said to be almost disjoint if the interiors of
the rectangles are disjoint.

In this chapter, coverings by rectangles and cubes play a major role,
so we isolate here two important lemmas.

Lemma 1.1 If a rectangle is the almost disjoint union of finitely many
other rectangles, say R =

⋃N
k=1 Rk, then

|R| =
N∑

k=1

|Rk|.
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Proof. We consider the grid formed by extending indefinitely the
sides of all rectangles R1, . . . , RN . This construction yields finitely many
rectangles R̃1, . . . , R̃M , and a partition J1, . . . , JN of the integers between
1 and M , such that the unions

R =
M⋃

j=1

R̃j and Rk =
⋃

j∈Jk

R̃j , for k = 1, . . . , N

are almost disjoint (see the illustration in Figure 2).

RN
R̃M

R1

R2 R̃1 R̃2

R

Figure 2. The grid formed by the rectangles Rk

For the rectangle R, for example, we see that |R| = ∑M
j=1 |R̃j |, since

the grid actually partitions the sides of R and each R̃j consists of taking
products of the intervals in these partitions. Thus when adding the
volumes of the R̃j we are summing the corresponding products of lengths
of the intervals that arise. Since this also holds for the other rectangles
R1, . . . , RN , we conclude that

|R| =
M∑

j=1

|R̃j | =
N∑

k=1

∑
j∈Jk

|R̃j | =
N∑

k=1

|Rk|.

A slight modification of this argument then yields the following:
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Lemma 1.2 If R, R1, . . . , RN are rectangles, and R ⊂ ⋃N
k=1 Rk, then

|R| ≤
N∑

k=1

|Rk|.

The main idea consists of taking the grid formed by extending all sides
of the rectangles R, R1, . . . , RN , and noting that the sets corresponding
to the Jk (in the above proof) need not be disjoint any more.

We now proceed to give a description of the structure of open sets in
terms of cubes. We begin with the case of R.

Theorem 1.3 Every open subset O of R can be writen uniquely as a
countable union of disjoint open intervals.

Proof. For each x ∈ O, let Ix denote the largest open interval contain-
ing x and contained in O. More precisely, since O is open, x is contained
in some small (non-trivial) interval, and therefore if

ax = inf{a < x : (a, x) ⊂ O} and bx = sup{b > x : (x, b) ⊂ O}

we must have ax < x < bx (with possibly infinite values for ax and bx).
If we now let Ix = (ax, bx), then by construction we have x ∈ Ix as well
as Ix ⊂ O. Hence

O =
⋃

x∈O
Ix.

Now suppose that two intervals Ix and Iy intersect. Then their union
(which is also an open interval) is contained in O and contains x. Since
Ix is maximal, we must have (Ix ∪ Iy) ⊂ Ix, and similarly (Ix ∪ Iy) ⊂ Iy.
This can happen only if Ix = Iy; therefore, any two distinct intervals in
the collection I = {Ix}x∈O must be disjoint. The proof will be complete
once we have shown that there are only countably many distinct intervals
in the collection I. This, however, is easy to see, since every open interval
Ix contains a rational number. Since different intervals are disjoint, they
must contain distinct rationals, and therefore I is countable, as desired.

Naturally, if O is open and O =
⋃∞

j=1 Ij , where the Ij ’s are disjoint
open intervals, the measure of O ought to be

∑∞
j=1 |Ij |. Since this rep-

resentation is unique, we could take this as a definition of measure; we
would then note that wheneverO1 andO2 are open and disjoint, the mea-
sure of their union is the sum of their measures. Although this provides
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a natural notion of measure for an open set, it is not immediately clear
how to generalize it to other sets in R. Moreover, a similar approach in
higher dimensions already encounters complications even when defining
measures of open sets, since in this context the direct analogue of The-
orem 1.3 is not valid (see Exercise 12). There is, however, a substitute
result.

Theorem 1.4 Every open subset O of Rd, d ≥ 1, can be written as a
countable union of almost disjoint closed cubes.

Proof. We must construct a countable collection Q of closed cubes
whose interiors are disjoint, and so that O =

⋃
Q∈QQ.

As a first step, consider the grid in Rd formed by taking all closed cubes
of side length 1 whose vertices have integer coordinates. In other words,
we consider the natural grid of lines parallel to the axes, that is, the grid
generated by the lattice Zd. We shall also use the grids formed by cubes
of side length 2−N obtained by successively bisecting the original grid.

We either accept or reject cubes in the initial grid as part of Q accord-
ing to the following rule: if Q is entirely contained in O then we accept
Q; if Q intersects both O and Oc then we tentatively accept it; and if Q
is entirely contained in Oc then we reject it.

As a second step, we bisect the tentatively accepted cubes into 2d cubes
with side length 1/2. We then repeat our procedure, by accepting the
smaller cubes if they are completely contained in O, tentatively accepting
them if they intersect both O and Oc, and rejecting them if they are
contained in Oc. Figure 3 illustrates these steps for an open set in R2.

OO

Step 1 Step 2

Figure 3. Decomposition of O into almost disjoint cubes
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This procedure is then repeated indefinitely, and (by construction)
the resulting collection Q of all accepted cubes is countable and consists
of almost disjoint cubes. To see why their union is all of O, we note
that given x ∈ O there exists a cube of side length 2−N (obtained from
successive bisections of the original grid) that contains x and that is
entirely contained in O. Either this cube has been accepted, or it is
contained in a cube that has been previously accepted. This shows that
the union of all cubes in Q covers O.

Once again, if O =
⋃∞

j=1 Rj where the rectangles Rj are almost dis-
joint, it is reasonable to assign to O the measure

∑∞
j=1 |Rj |. This is

natural since the volume of the boundary of each rectangle should be 0,
and the overlap of the rectangles should not contribute to the volume
of O. We note, however, that the above decomposition into cubes is
not unique, and it is not immediate that the sum is independent of this
decomposition. So in Rd, with d ≥ 2, the notion of volume or area, even
for open sets, is more subtle.

The general theory developed in the next section actually yields a
notion of volume that is consistent with the decompositions of open sets
of the previous two theorems, and applies to all dimensions. Before we
come to that, we discuss an important example in R.

The Cantor set

The Cantor set plays a prominent role in set theory and in analysis in
general. It and its variants provide a rich source of enlightening examples.

We begin with the closed unit interval C0 = [0, 1] and let C1 denote
the set obtained from deleting the middle third open interval from [0, 1],
that is,

C1 = [0, 1/3] ∪ [2/3, 1].

Next, we repeat this procedure for each sub-interval of C1; that is, we
delete the middle third open interval. At the second stage we get

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

We repeat this process for each sub-interval of C2, and so on (Figure 4).
This procedure yields a sequence Ck, k = 0, 1, 2, . . . of compact sets

with

C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ck ⊃ Ck+1 ⊃ · · · .
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0 11/3

C2

C3

1/9 2/9
2/3

7/9 8/9

0 1/3 2/3 1

C1

0 1

C0

Figure 4. Construction of the Cantor set

The Cantor set C is by definition the intersection of all Ck’s:

C =
∞⋂

k=0

Ck.

The set C is not empty, since all end-points of the intervals in Ck (all k)
belong to C.

Despite its simple construction, the Cantor set enjoys many interest-
ing topological and analytical properties. For instance, C is closed and
bounded, hence compact. Also, C is totally disconnected: given any
x, y ∈ C there exists z /∈ C that lies between x and y. Finally, C is per-
fect: it has no isolated points (Exercise 1).

Next, we turn our attention to the question of determining the “size”
of C. This is a delicate problem, one that may be approached from
different angles depending on the notion of size we adopt. For instance,
in terms of cardinality the Cantor set is rather large: it is not countable.
Since it can be mapped to the interval [0, 1], the Cantor set has the
cardinality of the continuum (Exercise 2).

However, from the point of view of “length” the size of C is small.
Roughly speaking, the Cantor set has length zero, and this follows from
the following intuitive argument: the set C is covered by sets Ck whose
lengths go to zero. Indeed, Ck is a disjoint union of 2k intervals of length
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3−k, making the total length of Ck equal to (2/3)k. But C ⊂ Ck for all
k, and (2/3)k → 0 as k tends to infinity. We shall define a notion of
measure and make this argument precise in the next section.

2 The exterior measure

The notion of exterior measure is the first of two important concepts
needed to develop a theory of measure. We begin with the definition and
basic properties of exterior measure. Loosely speaking, the exterior mea-
sure m∗ assigns to any subset of Rd a first notion of size; various examples
show that this notion coincides with our earlier intuition. However, the
exterior measure lacks the desirable property of additivity when taking
the union of disjoint sets. We remedy this problem in the next section,
where we discuss in detail the other key concept of measure theory, the
notion of measurable sets.

The exterior measure, as the name indicates, attempts to describe
the volume of a set E by approximating it from the outside. The set
E is covered by cubes, and if the covering gets finer, with fewer cubes
overlapping, the volume of E should be close to the sum of the volumes
of the cubes.

The precise definition is as follows: if E is any subset of Rd, the
exterior measure1 of E is

(1) m∗(E) = inf
∞∑

j=1

|Qj |,

where the infimum is taken over all countable coverings E ⊂ ⋃∞
j=1 Qj by

closed cubes. The exterior measure is always non-negative but could be
infinite, so that in general we have 0 ≤ m∗(E) ≤ ∞, and therefore takes
values in the extended positive numbers.

We make some preliminary remarks about the definition of the exterior
measure given by (1).

(i) It is important to note that it would not suffice to allow finite sums
in the definition of m∗(E). The quantity that would be obtained if one
considered only coverings of E by finite unions of cubes is in general
larger than m∗(E). (See Exercise 14.)
(ii) One can, however, replace the coverings by cubes, with coverings
by rectangles; or with coverings by balls. That the former alternative

1Some authors use the term outer measure instead of exterior measure.
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yields the same exterior measure is quite direct. (See Exercise 15.) The
equivalence with the latter is more subtle. (See Exercise 26 in Chapter 3.)

We begin our investigation of this new notion by providing examples
of sets whose exterior measures can be calculated, and we check that
the latter matches our intuitive idea of volume (length in one dimension,
area in two dimensions, etc.)

Example 1. The exterior measure of a point is zero. This is clear once
we observe that a point is a cube with volume zero, and which covers
itself. Of course the exterior measure of the empty set is also zero.

Example 2. The exterior measure of a closed cube is equal to its volume.
Indeed, suppose Q is a closed cube in Rd. Since Q covers itself, we must
have m∗(Q) ≤ |Q|. Therefore, it suffices to prove the reverse inequality.

We consider an arbitrary covering Q ⊂ ⋃∞
j=1 Qj by cubes, and note

that it suffices to prove that

(2) |Q| ≤
∞∑

j=1

|Qj |.

For a fixed ε > 0 we choose for each j an open cube Sj which contains Qj ,
and such that |Sj | ≤ (1 + ε)|Qj |. From the open covering

⋃∞
j=1 Sj of the

compact set Q, we may select a finite subcovering which, after possibly
renumbering the rectangles, we may write as Q ⊂ ⋃N

j=1 Sj . Taking the
closure of the cubes Sj , we may apply Lemma 1.2 to conclude that |Q| ≤∑N

j=1 |Sj |. Consequently,

|Q| ≤ (1 + ε)
N∑

j=1

|Qj | ≤ (1 + ε)
∞∑

j=1

|Qj |.

Since ε is arbitrary, we find that the inequality (2) holds; thus |Q| ≤
m∗(Q), as desired.

Example 3. If Q is an open cube, the result m∗(Q) = |Q| still holds.
Since Q is covered by its closure Q, and |Q| = |Q|, we immediately see
that m∗(Q) ≤ |Q|. To prove the reverse inequality, we note that if Q0 is
a closed cube contained in Q, then m∗(Q0) ≤ m∗(Q), since any covering
of Q by a countable number of closed cubes is also a covering of Q0 (see
Observation 1 below). Hence |Q0| ≤ m∗(Q), and since we can choose Q0

with a volume as close as we wish to |Q|, we must have |Q| ≤ m∗(Q).
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Example 4. The exterior measure of a rectangle R is equal to its volume.
Indeed, arguing as in Example 2, we see that |R| ≤ m∗(R). To obtain the
reverse inequality, consider a grid in Rd formed by cubes of side length
1/k. Then, if Q consists of the (finite) collection of all cubes entirely
contained in R, and Q′ the (finite) collection of all cubes that intersect
the complement of R, we first note that R ⊂ ⋃

Q∈(Q∪Q′) Q. Also, a simple
argument yields

∑
Q∈Q

|Q| ≤ |R|.

Moreover, there are O(kd−1) cubes2 in Q′, and these cubes have volume
k−d, so that

∑
Q∈Q′ |Q| = O(1/k). Hence

∑

Q∈(Q∪Q′)
|Q| ≤ |R|+ O(1/k),

and letting k tend to infinity yields m∗(R) ≤ |R|, as desired.

Example 5. The exterior measure of Rd is infinite. This follows from
the fact that any covering of Rd is also a covering of any cube Q ⊂ Rd,
hence |Q| ≤ m∗(Rd). Since Q can have arbitrarily large volume, we must
have m∗(Rd) = ∞.

Example 6. The Cantor set C has exterior measure 0. From the con-
struction of C, we know that C ⊂ Ck, where each Ck is a disjoint union
of 2k closed intervals, each of length 3−k. Consequently, m∗(C) ≤ (2/3)k

for all k, hence m∗(C) = 0.

Properties of the exterior measure

The previous examples and comments provide some intuition underlying
the definition of exterior measure. Here, we turn to the further study of
m∗ and prove five properties of exterior measure that are needed in what
follows.

First, we record the following remark that is immediate from the def-
inition of m∗:

2We remind the reader of the notation f(x) = O(g(x)), which means that |f(x)| ≤
C|g(x)| for some constant C and all x in a given range. In this particular example, there
are fewer than Ckd−1 cubes in question, as k →∞.
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• For every ε > 0, there exists a covering E ⊂ ⋃∞
j=1 Qj with

∞∑
j=1

m∗(Qj) ≤ m∗(E) + ε.

The relevant properties of exterior measure are listed in a series of
observations.

Observation 1 (Monotonicity) If E1 ⊂ E2, then m∗(E1) ≤ m∗(E2).

This follows once we observe that any covering of E2 by a countable
collection of cubes is also a covering of E1.

In particular, monotonicity implies that every bounded subset of Rd

has finite exterior measure.

Observation 2 (Countable sub-additivity) If E =
⋃∞

j=1 Ej, then
m∗(E) ≤ ∑∞

j=1 m∗(Ej).

First, we may assume that each m∗(Ej) < ∞, for otherwise the in-
equality clearly holds. For any ε > 0, the definition of the exterior mea-
sure yields for each j a covering Ej ⊂

⋃∞
k=1 Qk,j by closed cubes with

∞∑

k=1

|Qk,j | ≤ m∗(Ej) +
ε

2j
.

Then, E ⊂ ⋃∞
j,k=1 Qk,j is a covering of E by closed cubes, and therefore

m∗(E) ≤
∑

j,k

|Qk,j | =
∞∑

j=1

∞∑

k=1

|Qk,j |

≤
∞∑

j=1

(
m∗(Ej) +

ε

2j

)

=
∞∑

j=1

m∗(Ej) + ε.

Since this holds true for every ε > 0, the second observation is proved.

Observation 3 If E ⊂ Rd, then m∗(E) = inf m∗(O), where the infi-
mum is taken over all open sets O containing E.
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By monotonicity, it is clear that the inequality m∗(E) ≤ inf m∗(O)
holds. For the reverse inequality, let ε > 0 and choose cubes Qj such
that E ⊂ ⋃∞

j=1 Qj , with

∞∑
j=1

|Qj | ≤ m∗(E) +
ε

2
.

Let Q0
j denote an open cube containing Qj , and such that |Q0

j | ≤ |Qj |+
ε/2j+1. Then O =

⋃∞
j=1 Q0

j is open, and by Observation 2

m∗(O) ≤
∞∑

j=1

m∗(Q0
j) =

∞∑
j=1

|Q0
j |

≤
∞∑

j=1

(
|Qj |+ ε

2j+1

)

≤
∞∑

j=1

|Qj |+ ε

2

≤ m∗(E) + ε.

Hence inf m∗(O) ≤ m∗(E), as was to be shown.

Observation 4 If E = E1 ∪ E2, and d(E1, E2) > 0, then

m∗(E) = m∗(E1) + m∗(E2).

By Observation 2, we already know that m∗(E) ≤ m∗(E1) + m∗(E2),
so it suffices to prove the reverse inequality. To this end, we first select δ
such that d(E1, E2) > δ > 0. Next, we choose a covering E ⊂ ⋃∞

j=1 Qj by
closed cubes, with

∑∞
j=1 |Qj | ≤ m∗(E) + ε. We may, after subdividing

the cubes Qj , assume that each Qj has a diameter less than δ. In this
case, each Qj can intersect at most one of the two sets E1 or E2. If we
denote by J1 and J2 the sets of those indices j for which Qj intersects
E1 and E2, respectively, then J1 ∩ J2 is empty, and we have

E1 ⊂
∞⋃

j∈J1

Qj as well as E2 ⊂
∞⋃

j∈J2

Qj .
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Therefore,

m∗(E1) + m∗(E2) ≤
∑
j∈J1

|Qj |+
∑
j∈J2

|Qj |

≤
∞∑

j=1

|Qj |

≤ m∗(E) + ε.

Since ε is arbitrary, the proof of Observation 4 is complete.

Observation 5 If a set E is the countable union of almost disjoint cubes
E =

⋃∞
j=1 Qj, then

m∗(E) =
∞∑

j=1

|Qj |.

Let Q̃j denote a cube strictly contained in Qj such that |Qj | ≤ |Q̃j |+
ε/2j , where ε is arbitrary but fixed. Then, for every N , the cubes
Q̃1, Q̃2, . . . , Q̃N are disjoint, hence at a finite distance from one another,
and repeated applications of Observation 4 imply

m∗

(
N⋃

j=1

Q̃j

)
=

N∑
j=1

|Q̃j | ≥
N∑

j=1

(|Qj | − ε/2j
)
.

Since
⋃N

j=1 Q̃j ⊂ E, we conclude that for every integer N ,

m∗(E) ≥
N∑

j=1

|Qj | − ε.

In the limit as N tends to infinity we deduce
∑∞

j=1 |Qj | ≤ m∗(E) + ε

for every ε > 0, hence
∑∞

j=1 |Qj | ≤ m∗(E). Therefore, combined with
Observation 2, our result proves that we have equality.

This last property shows that if a set can be decomposed into almost
disjoint cubes, its exterior measure equals the sum of the volumes of the
cubes. In particular, by Theorem 1.4 we see that the exterior measure of
an open set equals the sum of the volumes of the cubes in a decomposi-
tion, and this coincides with our initial guess. Moreover, this also yields
a proof that the sum is independent of the decomposition.
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One can see from this that the volumes of simple sets that are cal-
culated by elementary calculus agree with their exterior measure. This
assertion can be proved most easily once we have developed the requisite
tools in integration theory. (See Chapter 2.) In particular, we can then
verify that the exterior measure of a ball (either open or closed) equals
its volume.

Despite observations 4 and 5, one cannot conclude in general that if
E1 ∪ E2 is a disjoint union of subsets of Rd, then

(3) m∗(E1 ∪ E2) = m∗(E1) + m∗(E2).

In fact (3) holds when the sets in question are not highly irregular or
“pathological” but are measurable in the sense described below.

3 Measurable sets and the Lebesgue measure

The notion of measurability isolates a collection of subsets in Rd for
which the exterior measure satisfies all our desired properties, including
additivity (and in fact countable additivity) for disjoint unions of sets.

There are a number of different ways of defining measurability, but
these all turn out to be equivalent. Probably the simplest and most
intuitive is the following: A subset E of Rd is Lebesgue measurable,
or simply measurable, if for any ε > 0 there exists an open set O with
E ⊂ O and

m∗(O − E) ≤ ε.

This should be compared to Observation 3, which holds for all sets E.
If E is measurable, we define its Lebesgue measure (or measure)

m(E) by

m(E) = m∗(E).

Clearly, the Lebesgue measure inherits all the features contained in Ob-
servations 1 - 5 of the exterior measure.

Immediately from the definition, we find:

Property 1 Every open set in Rd is measurable.

Our immediate goal now is to gather various further properties of
measurable sets. In particular, we shall prove that the collection of
measurable sets behave well under the various operations of set theory:
countable unions, countable intersections, and complements.
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Property 2 If m∗(E) = 0, then E is measurable. In particular, if F is
a subset of a set of exterior measure 0, then F is measurable.

By Observation 3 of the exterior measure, for every ε > 0 there ex-
ists an open set O with E ⊂ O and m∗(O) ≤ ε. Since (O − E) ⊂ O,
monotonicity implies m∗(O − E) ≤ ε, as desired.

As a consequence of this property, we deduce that the Cantor set C in
Example 6 is measurable and has measure 0.

Property 3 A countable union of measurable sets is measurable.

Suppose E =
⋃∞

j=1 Ej , where each Ej is measurable. Given ε > 0, we
may choose for each j an open set Oj with Ej ⊂ Oj and
m∗(Oj − Ej) ≤ ε/2j . Then the union O =

⋃∞
j=1Oj is open, E ⊂ O, and

(O − E) ⊂ ⋃∞
j=1(Oj − Ej), so monotonicity and sub-additivity of the

exterior measure imply

m∗(O − E) ≤
∞∑

j=1

m∗(Oj −Ej) ≤ ε.

Property 4 Closed sets are measurable.

First, we observe that it suffices to prove that compact sets are mea-
surable. Indeed, any closed set F can be written as the union of compact
sets, say F =

⋃∞
k=1 F ∩Bk, where Bk denotes the closed ball of radius k

centered at the origin; then Property 3 applies.
So, suppose F is compact (so that in particular m∗(F ) < ∞), and let

ε > 0. By Observation 3 we can select an open set O with F ⊂ O and
m∗(O) ≤ m∗(F ) + ε. Since F is closed, the difference O − F is open,
and by Theorem 1.4 we may write this difference as a countable union
of almost disjoint cubes

O − F =
∞⋃

j=1

Qj .

For a fixed N , the finite union K =
⋃N

j=1 Qj is compact; therefore
d(K, F ) > 0 (we isolate this little fact in a lemma below). Since (K ∪
F ) ⊂ O, Observations 1, 4, and 5 of the exterior measure imply

m∗(O) ≥ m∗(F ) + m∗(K)

= m∗(F ) +
N∑

j=1

m∗(Qj).
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Hence
∑N

j=1 m∗(Qj) ≤ m∗(O)−m∗(F ) ≤ ε, and this also holds in the
limit as N tends to infinity. Invoking the sub-additivity property of the
exterior measure finally yields

m∗(O − F ) ≤
∞∑

j=1

m∗(Qj) ≤ ε,

as desired.

We digress briefly to complete the above argument by proving the
following.

Lemma 3.1 If F is closed, K is compact, and these sets are disjoint,
then d(F, K) > 0.

Proof. Since F is closed, for each point x ∈ K, there exists δx > 0 so
that d(x, F ) > 3δx. Since

⋃
x∈K B2δx(x) covers K, and K is compact, we

may find a subcover, which we denote by
⋃N

j=1 B2δj
(xj). If we let δ =

min(δ1, . . . , δN ), then we must have d(K,F ) ≥ δ > 0. Indeed, if x ∈ K
and y ∈ F , then for some j we have |xj − x| ≤ 2δj , and by construction
|y − xj | ≥ 3δj . Therefore

|y − x| ≥ |y − xj | − |xj − x| ≥ 3δj − 2δj ≥ δ,

and the lemma is proved.

Property 5 The complement of a measurable set is measurable.

If E is measurable, then for every positive integer n we may choose an
open set On with E ⊂ On and m∗(On − E) ≤ 1/n. The complement Oc

n

is closed, hence measurable, which implies that the union S =
⋃∞

n=1Oc
n

is also measurable by Property 3. Now we simply note that S ⊂ Ec, and

(Ec − S) ⊂ (On − E),

such that m∗(Ec − S) ≤ 1/n for all n. Therefore, m∗(Ec − S) = 0, and
Ec − S is measurable by Property 2. Therefore Ec is measurable since
it is the union of two measurable sets, namely S and (Ec − S).

Property 6 A countable intersection of measurable sets is measurable.

This follows from Properties 3 and 5, since

∞⋂
j=1

Ej =

( ∞⋃
j=1

Ec
j

)c

.
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In conclusion, we find that the family of measurable sets is closed under
the familiar operations of set theory. We point out that we have shown
more than simply closure with respect to finite unions and intersections:
we have proved that the collection of measurable sets is closed under
countable unions and intersections. This passage from finite operations
to infinite ones is crucial in the context of analysis. We emphasize, how-
ever, that the operations of uncountable unions or intersections are not
permissible when dealing with measurable sets!

Theorem 3.2 If E1, E2, . . ., are disjoint measurable sets, and E =⋃∞
j=1 Ej, then

m(E) =
∞∑

j=1

m(Ej).

Proof. First, we assume further that each Ej is bounded. Then, for
each j, by applying the definition of measurability to Ec

j , we can choose
a closed subset Fj of Ej with m∗(Ej − Fj) ≤ ε/2j . For each fixed N ,

the sets F1, . . . , FN are compact and disjoint, so that m
(⋃N

j=1 Fj

)
=

∑N
j=1 m(Fj). Since

⋃N
j=1 Fj ⊂ E, we must have

m(E) ≥
N∑

j=1

m(Fj) ≥
N∑

j=1

m(Ej)− ε.

Letting N tend to infinity, since ε was arbitrary we find that

m(E) ≥
∞∑

j=1

m(Ej).

Since the reverse inequality always holds (by sub-additivity in Observa-
tion 2), this concludes the proof when each Ej is bounded.

In the general case, we select any sequence of cubes {Qk}∞k=1 that
increases to Rd, in the sense that Qk ⊂ Qk+1 for all k ≥ 1 and

⋃∞
k=1 Qk =

Rd. We then let S1 = Q1 and Sk = Qk −Qk−1 for k ≥ 2. If we define
measurable sets by Ej,k = Ej ∩ Sk, then

E =
⋃

j,k

Ej,k.

The union above is disjoint and every Ej,k is bounded. Moreover Ej =⋃∞
k=1 Ej,k, and this union is also disjoint. Putting these facts together,
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and using what has already been proved, we obtain

m(E) =
∑

j,k

m(Ej,k) =
∑

j

∑

k

m(Ej,k) =
∑

j

m(Ej),

as claimed.

With this, the countable additivity of the Lebesgue measure on mea-
surable sets has been established. This result provides the necessary
connection between the following:

• our primitive notion of volume given by the exterior measure,

• the more refined idea of measurable sets, and

• the countably infinite operations allowed on these sets.

We make two definitions to state succinctly some further consequences.
If E1, E2, . . . is a countable collection of subsets of Rd that increases

to E in the sense that Ek ⊂ Ek+1 for all k, and E =
⋃∞

k=1 Ek, then we
write Ek ↗ E.

Similarly, if E1, E2, . . . decreases to E in the sense that Ek ⊃ Ek+1 for
all k, and E =

⋂∞
k=1 Ek, we write Ek ↘ E.

Corollary 3.3 Suppose E1, E2, . . . are measurable subsets of Rd.

(i) If Ek ↗ E, then m(E) = limN→∞m(EN ).

(ii) If Ek ↘ E and m(Ek) < ∞ for some k, then

m(E) = lim
N→∞

m(EN ).

Proof. For the first part, let G1 = E1, G2 = E2 − E1, and in gen-
eral Gk = Ek − Ek−1 for k ≥ 2. By their construction, the sets Gk are
measurable, disjoint, and E =

⋃∞
k=1 Gk. Hence

m(E) =
∞∑

k=1

m(Gk) = lim
N→∞

N∑

k=1

m(Gk) = lim
N→∞

m

(
N⋃

k=1

Gk

)
,

and since
⋃N

k=1 Gk = EN we get the desired limit.
For the second part, we may clearly assume that m(E1) < ∞. Let

Gk = Ek − Ek+1 for each k, so that

E1 = E ∪
∞⋃

k=1

Gk
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is a disjoint union of measurable sets. As a result, we find that

m(E1) = m(E) + lim
N→∞

N−1∑

k=1

(m(Ek)−m(Ek+1))

= m(E) + m(E1)− lim
N→∞

m(EN ).

Hence, since m(E1) < ∞, we see that m(E) = limN→∞m(EN ), and the
proof is complete.

The reader should note that the second conclusion may fail without
the assumption that m(Ek) < ∞ for some k. This is shown by the simple
example when En = (n,∞) ⊂ R, for all n.

What follows provides an important geometric and analytic insight
into the nature of measurable sets, in terms of their relation to open and
closed sets. Its thrust is that, in effect, an arbitrary measurable set can
be well approximated by the open sets that contain it, and alternatively,
by the closed sets it contains.

Theorem 3.4 Suppose E is a measurable subset of Rd. Then, for every
ε > 0:

(i) There exists an open set O with E ⊂ O and m(O − E) ≤ ε.

(ii) There exists a closed set F with F ⊂ E and m(E − F ) ≤ ε.

(iii) If m(E) is finite, there exists a compact set K with K ⊂ E and
m(E −K) ≤ ε.

(iv) If m(E) is finite, there exists a finite union F =
⋃N

j=1 Qj of closed
cubes such that

m(E4F ) ≤ ε.

The notation E4F stands for the symmetric difference between the
sets E and F , defined by E4F = (E − F ) ∪ (F − E), which consists of
those points that belong to only one of the two sets E or F .

Proof. Part (i) is just the definition of measurability. For the second
part, we know that Ec is measurable, so there exists an open set O with
Ec ⊂ O and m(O − Ec) ≤ ε. If we let F = Oc, then F is closed, F ⊂ E,
and E − F = O − Ec. Hence m(E − F ) ≤ ε as desired.

For (iii), we first pick a closed set F so that F ⊂ E and m(E − F ) ≤
ε/2. For each n, we let Bn denote the ball centered at the origin of radius
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n, and define compact sets Kn = F ∩Bn. Then E −Kn is a sequence
of measurable sets that decreases to E − F , and since m(E) < ∞, we
conclude that for all large n one has m(E −Kn) ≤ ε.

For the last part, choose a family of closed cubes {Qj}∞j=1 so that

E ⊂
∞⋃

j=1

Qj and
∞∑

j=1

|Qj | ≤ m(E) + ε/2.

Since m(E) < ∞, the series converges and there exists N > 0 such that∑∞
j=N+1 |Qj | < ε/2. If F =

⋃N
j=1 Qj , then

m(E4F ) = m(E − F ) + m(F − E)

≤ m

( ∞⋃
j=N+1

Qj

)
+ m

( ∞⋃
j=1

Qj −E

)

≤
∞∑

j=N+1

|Qj |+
∞∑

j=1

|Qj | −m(E)

≤ ε.

Invariance properties of Lebesgue measure

A crucial property of Lebesgue measure in Rd is its translation-invariance,
which can be stated as follows: if E is a measurable set and h ∈ Rd, then
the set Eh = E + h = {x + h : x ∈ E} is also measurable, and m(E +
h) = m(E). With the observation that this holds for the special case
when E is a cube, one passes to the exterior measure of arbitrary sets
E, and sees from the definition of m∗ given in Section 2 that m∗(Eh) =
m∗(E). To prove the measurability of Eh under the assumption that E
is measurable, we note that if O is open, O ⊃ E, and m∗(O − E) < ε,
then Oh is open, Oh ⊃ Eh, and m∗(Oh − Eh) < ε.

In the same way one can prove the relative dilation-invariance of
Lebesgue measure. Suppose δ > 0, and denote by δE the set {δx :
x ∈ E}. We can then assert that δE is measurable whenever E is,
and m(δE) = δdm(E). One can also easily see that Lebesgue mea-
sure is reflection-invariant. That is, whenever E is measurable, so is
−E = {−x : x ∈ E} and m(−E) = m(E).

Other invariance properties of Lebesgue measure are in Exercise 7
and 8, and Problem 4 of Chapter 2.
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σ-algebras and Borel sets

A σ-algebra of sets is a collection of subsets of Rd that is closed under
countable unions, countable intersections, and complements.

The collection of all subsets of Rd is of course a σ-algebra. A more
interesting and relevant example consists of all measurable sets in Rd,
which we have just shown also forms a σ-algebra.

Another σ-algebra, which plays a vital role in analysis, is the Borel
σ-algebra in Rd, denoted by BRd , which by definition is the smallest σ-
algebra that contains all open sets. Elements of this σ-algebra are called
Borel sets.

The definition of the Borel σ-algebra will be meaningful once we have
defined the term “smallest,” and shown that such a σ-algebra exists and
is unique. The term “smallest” means that if S is any σ-algebra that
contains all open sets in Rd, then necessarily BRd ⊂ S. Since we observe
that any intersection (not necessarily countable) of σ-algebras is again a
σ-algebra, we may define BRd as the intersection of all σ-algebras that
contain the open sets. This shows the existence and uniqueness of the
Borel σ-algebra.

Since open sets are measurable, we conclude that the Borel σ-algebra
is contained in the σ-algebra of measurable sets. Naturally, we may ask
if this inclusion is strict: do there exist Lebesgue measurable sets which
are not Borel sets? The answer is “yes.” (See Exercise 35.)

From the point of view of the Borel sets, the Lebesgue sets arise as
the completion of the σ-algebra of Borel sets, that is, by adjoining all
subsets of Borel sets of measure zero. This is an immediate consequence
of Corollary 3.5 below.

Starting with the open and closed sets, which are the simplest Borel
sets, one could try to list the Borel sets in order of their complexity. Next
in order would come countable intersections of open sets; such sets are
called Gδ sets. Alternatively, one could consider their complements, the
countable union of closed sets, called the Fσ sets.3

Corollary 3.5 A subset E of Rd is measurable

(i) if and only if E differs from a Gδ by a set of measure zero,

(ii) if and only if E differs from an Fσ by a set of measure zero.

Proof. Clearly E is measurable whenever it satisfies either (i) or (ii),
since the Fσ, Gδ, and sets of measure zero are measurable.

3The terminology Gδ comes from German “Gebiete” and “Durschnitt”; Fσ comes from
French “fermé” and “somme.”
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Conversely, if E is measurable, then for each integer n ≥ 1 we may
select an open set On that contains E, and such that m(On − E) ≤ 1/n.
Then S =

⋂∞
n=1On is a Gδ that contains E, and (S − E) ⊂ (On − E)

for all n. Therefore m(S − E) ≤ 1/n for all n; hence S − E has exterior
measure zero, and is therefore measurable.

For the second implication, we simply apply part (ii) of Theorem 3.4
with ε = 1/n, and take the union of the resulting closed sets.

Construction of a non-measurable set

Are all subsets of Rd measurable? In this section, we answer this question
when d = 1 by constructing a subset of R which is not measurable.4

This justifies the conclusion that a satisfactory theory of measure cannot
encompass all subsets of R.

The construction of a non-measurable set N uses the axiom of choice,
and rests on a simple equivalence relation among real numbers in [0, 1].

We write x ∼ y whenever x− y is rational, and note that this is an
equivalence relation since the following properties hold:

• x ∼ x for every x ∈ [0, 1]

• if x ∼ y, then y ∼ x

• if x ∼ y and y ∼ z, then x ∼ z.

Two equivalence classes either are disjoint or coincide, and [0, 1] is the
disjoint union of all equivalence classes, which we write as

[0, 1] =
⋃
α

Eα.

Now we construct the set N by choosing exactly one element xα from
each Eα, and setting N = {xα}. This (seemingly obvious) step requires
further comment, which we postpone until after the proof of the following
theorem.

Theorem 3.6 The set N is not measurable.

The proof is by contradiction, so we assume that N is measurable. Let
{rk}∞k=1 be an enumeration of all the rationals in [−1, 1], and consider
the translates

Nk = N + rk.

4The existence of such a set in R implies the existence of corresponding non-measurable
subsets of Rd for each d, as a consequence of Proposition 3.4 in the next chapter.
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We claim that the sets Nk are disjoint, and

(4) [0, 1] ⊂
∞⋃

k=1

Nk ⊂ [−1, 2].

To see why these sets are disjoint, suppose that the intersection
Nk ∩Nk′ is non-empty. Then there exist rationals rk 6= r′k and α and
β with xα + rk = xβ + rk′ ; hence

xα − xβ = rk′ − rk.

Consequently α 6= β and xα − xβ is rational; hence xα ∼ xβ , which con-
tradicts the fact that N contains only one representative of each equiv-
alence class.

The second inclusion is straightforward since each Nk is contained in
[−1, 2] by construction. Finally, if x ∈ [0, 1], then x ∼ xα for some α, and
therefore x− xα = rk for some k. Hence x ∈ Nk, and the first inclusion
holds.

Now we may conclude the proof of the theorem. If N were measurable,
then so would be Nk for all k, and since the union

⋃∞
k=1Nk is disjoint,

the inclusions in (4) yield

1 ≤
∞∑

k=1

m(Nk) ≤ 3.

Since Nk is a translate of N , we must have m(Nk) = m(N ) for all k.
Consequently,

1 ≤
∞∑

k=1

m(N ) ≤ 3.

This is the desired contradiction, since neither m(N ) = 0 nor m(N ) > 0
is possible.

Axiom of choice

That the construction of the set N is possible is based on the following
general proposition.

• Suppose E is a set and {Eα} is a collection of non-empty subsets
of E. (The indexing set of α’s is not assumed to be countable.)
Then there is a function α 7→ xα (a “choice function”) such that
xα ∈ Eα, for all α.
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In this general form this assertion is known as the axiom of choice.
This axiom occurs (at least implicitly) in many proofs in mathematics,
but because of its seeming intuitive self-evidence, its significance was
not at first understood. The initial realization of the importance of
this axiom was in its use to prove a famous assertion of Cantor, the
well-ordering principle. This proposition (sometimes referred to as
“transfinite induction”) can be formulated as follows.

A set E is linearly ordered if there is a binary relation ≤ such that:

(a) x ≤ x for all x ∈ E.

(b) If x, y ∈ E are distinct, then either x ≤ y or y ≤ x (but not both).

(c) If x ≤ y and y ≤ z, then x ≤ z.

We say that a set E can be well-ordered if it can be linearly ordered in
such a way that every non-empty subset A ⊂ E has a smallest element
in that ordering (that is, an element x0 ∈ A such that x0 ≤ x for any
other x ∈ A).

A simple example of a well-ordered set is Z+, the positive integers with
their usual ordering. The fact that Z+ is well-ordered is an essential part
of the usual (finite) induction principle. More generally, the well-ordering
principle states:

• Any set E can be well-ordered.

It is in fact nearly obvious that the well-ordering principle implies the
axiom of choice: if we well-order E, we can choose xα to be the smallest
element in Eα, and in this way we have constructed the required choice
function. It is also true, but not as easy to show, that the converse impli-
cation holds, namely that the axiom of choice implies the well-ordering
principle. (See Problem 6 for another equivalent formulation of the Ax-
iom of Choice.)

We shall follow the common practice of assuming the axiom of choice
(and hence the validity of the well-ordering principle).5 However, we
should point out that while the axiom of choice seems self-evident the
well-ordering principle leads quickly to some baffling conclusions: one
only needs to spend a little time trying to imagine what a well-ordering
of the reals might look like!

5It can be proved that in an appropriate formulation of the axioms of set theory, the
axiom of choice is independent of the other axioms; thus we are free to accept its validity.
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4 Measurable functions

With the notion of measurable sets in hand, we now turn our attention
to the objects that lie at the heart of integration theory: measurable
functions.

The starting point is the notion of a characteristic function of a set
E, which is defined by

χE(x) =
{

1 if x ∈ E,
0 if x /∈ E.

The next step is to pass to the functions that are the building blocks of
integration theory. For the Riemann integral it is in effect the class of
step functions, with each given as a finite sum

(5) f =
N∑

k=1

akχRk
,

where each Rk is a rectangle, and the ak are constants.

However, for the Lebesgue integral we need a more general notion, as
we shall see in the next chapter. A simple function is a finite sum

(6) f =
N∑

k=1

akχEk

where each Ek is a measurable set of finite measure, and the ak are
constants.

4.1 Definition and basic properties

We begin by considering only real-valued functions f on Rd, which we
allow to take on the infinite values +∞ and −∞, so that f(x) belongs
to the extended real numbers

−∞ ≤ f(x) ≤ ∞.

We shall say that f is finite-valued if −∞ < f(x) < ∞ for all x. In
the theory that follows, and the many applications of it, we shall almost
always find ourselves in situations where a function takes on infinite
values on at most a set of measure zero.
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A function f defined on a measurable subset E of Rd is measurable,
if for all a ∈ R, the set

f−1([−∞, a)) = {x ∈ E : f(x) < a}

is measurable. To simplify our notation, we shall often denote the set
{x ∈ E : f(x) < a} simply by {f < a} whenever no confusion is possible.

First, we note that there are many equivalent definitions of measurable
functions. For example, we may require instead that the inverse image of
closed intervals be measurable. Indeed, to prove that f is measurable if
and only if {x : f(x) ≤ a} = {f ≤ a} is measurable for every a, we note
that in one direction, one has

{f ≤ a} =
∞⋂

k=1

{f < a + 1/k},

and recall that the countable intersection of measurable sets is measur-
able. For the other direction, we observe that

{f < a} =
∞⋃

k=1

{f ≤ a− 1/k}.

Similarly, f is measurable if and only if {f ≥ a} (or {f > a}) is measur-
able for every a. In the first case this is immediate from our definition
and the fact that {f ≥ a} is the complement of {f < a}, and in the sec-
ond case this follows from what we have just proved and the fact that
{f ≤ a} = {f > a}c. A simple consequence is that −f is measurable
whenever f is measurable.

In the same way, one can show that if f is finite-valued, then it is
measurable if and only if the sets {a < f < b} are measurable for every
a, b ∈ R. Similar conclusions hold for whichever combination of strict or
weak inequalities one chooses. For example, if f is finite-valued, then it
is measurable if and only if {a ≤ f < b} for all a, b ∈ R. By the same
arguments one sees the following:

Property 1 The finite-valued function f is measurable if and only if
f−1(O) is measurable for every open set O, and if and only if f−1(F ) is
measurable for every closed set F .

Note that this property also applies to extended-valued functions, if we
make the additional hypothesis that both f−1(∞) and f−1(−∞) are
measurable sets.
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Property 2 If f is continuous on Rd, then f is measurable. If f is mea-
surable and finite-valued, and Φ is continuous, then Φ ◦ f is measurable.

In fact, Φ is continuous, so Φ−1((−∞, a)) is an open set O, and hence
(Φ ◦ f)−1((−∞, a)) = f−1(O) is measurable.

It should be noted, however, that in general it is not true that
f ◦ Φ is measurable whenever f is measurable and Φ is continuous. See
Exercise 35.

Property 3 Suppose {fn}∞n=1 is a sequence of measurable functions.
Then

sup
n

fn(x), inf
n

fn(x), lim sup
n→∞

, fn(x) and lim inf
n→∞

fn(x)

are measurable.

Proving that supn fn is measurable requires noting that {supn fn > a} =⋃
n{fn > a}. This also yields the result for infn fn(x), since this quantity

equals − supn(−fn(x)).
The result for the limsup and liminf also follows from the two obser-

vations

lim sup
n→∞

fn(x) = inf
k
{sup

n≥k
fn} and lim inf

n→∞
fn(x) = sup

k
{ inf

n≥k
fn}.

Property 4 If {fn}∞n=1 is a collection of measurable functions, and

lim
n→∞

fn(x) = f(x),

then f is measurable.

Since f(x) = lim supn→∞ fn(x) = lim infn→∞ fn(x), this property is a
consequence of property 3.

Property 5 If f and g are measurable, then

(i) The integer powers fk, k ≥ 1 are measurable.

(ii) f + g and fg are measurable if both f and g are finite-valued.

For (i) we simply note that if k is odd, then {fk > a} = {f > a1/k}, and
if k is even and a ≥ 0, then {fk > a} = {f > a1/k} ∪ {f < −a1/k}.

For (ii), we first see that f + g is measurable because

{f + g > a} =
⋃

r∈Q
{f > a− r} ∩ {g > r},
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with Q denoting the rationals.
Finally, fg is measurable because of the previous results and the fact

that

fg =
1
4
[(f + g)2 − (f − g)2].

We shall say that two functions f and g defined on a set E are equal
almost everywhere, and write

f(x) = g(x) a.e. x ∈ E,

if the set {x ∈ E : f(x) 6= g(x)} has measure zero. We sometimes ab-
breviate this by saying that f = g a.e. More generally, a property or
statement is said to hold almost everywhere (a.e.) if it is true except on
a set of measure zero.

One sees easily that if f is measurable and f = g a.e., then g is measur-
able. This follows at once from the fact that {f < a} and {g < a} differ
by a set of measure zero. Moreover, all the properties above can be re-
laxed to conditions holding almost everywhere. For instance, if {fn}∞n=1

is a collection of measurable functions, and

lim
n→∞

fn(x) = f(x) a.e.,

then f is measurable.

Note that if f and g are defined almost everywhere on a measurable
subset E ⊂ Rd, then the functions f + g and fg can only be defined on
the intersection of the domains of f and g. Since the union of two sets of
measure zero has again measure zero, f + g is defined almost everywhere
on E. We summarize this discussion as follows.

Property 6 Suppose f is measurable, and f(x) = g(x) for a.e. x. Then
g is measurable.

In this light, Property 5 (ii) also holds when f and g are finite-valued
almost everywhere.

4.2 Approximation by simple functions or step functions

The theorems in this section are all of the same nature and provide
further insight in the structure of measurable functions. We begin by
approximating pointwise, non-negative measurable functions by simple
functions.
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Theorem 4.1 Suppose f is a non-negative measurable function on Rd.
Then there exists an increasing sequence of non-negative simple functions
{ϕk}∞k=1 that converges pointwise to f , namely,

ϕk(x) ≤ ϕk+1(x) and lim
k→∞

ϕk(x) = f(x), for all x.

Proof. We begin first with a truncation. For N ≥ 1, let QN denote
the cube centered at the origin and of side length N . Then we define

FN (x) =





f(x) if x ∈ QN and f(x) ≤ N ,
N if x ∈ QN and f(x) > N ,
0 otherwise.

Then, FN (x) → f(x) as N tends to infinity for all x. Now, we partition
the range of FN , namely [0, N ], as follows. For fixed N, M ≥ 1, we define

E`,M =
{

x ∈ QN :
`

M
< FN (x) ≤ ` + 1

M

}
, for 0 ≤ ` < NM .

Then we may form

FN,M (x) =
∑

`

`

M
χE`,M

(x).

Each FN,M is a simple function that satisfies 0 ≤ FN (x)− FN,M (x) ≤
1/M for all x. If we now choose N = M = 2k with k ≥ 1 integral, and
let ϕk = F2k,2k , then we see that 0 ≤ FM (x)− ϕk(x) ≤ 1/2k for all x,
{ϕk} is increasing, and this sequence satisfies all the desired properties.

Note that the result holds for non-negative functions that are extended-
valued, if the limit +∞ is allowed. We now drop the assumption that f
is non-negative, and also allow the extended limit −∞.

Theorem 4.2 Suppose f is measurable on Rd. Then there exists a se-
quence of simple functions {ϕk}∞k=1 that satisfies

|ϕk(x)| ≤ |ϕk+1(x)| and lim
k→∞

ϕk(x) = f(x), for all x.

In particular, we have |ϕk(x)| ≤ |f(x)| for all x and k.
Proof. We use the following decomposition of the function f : f(x) =

f+(x)− f−(x), where

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0).



32 Chapter 1. MEASURE THEORY

Since both f+ and f− are non-negative, the previous theorem yields
two increasing sequences of non-negative simple functions {ϕ(1)

k (x)}∞k=1

and {ϕ(2)
k (x)}∞k=1 which converge pointwise to f+ and f−, respectively.

Then, if we let

ϕk(x) = ϕ
(1)
k (x)− ϕ

(2)
k (x),

we see that ϕk(x) converges to f(x) for all x. Finally, the sequence {|ϕk|}
is increasing because the definition of f+, f− and the properties of ϕ

(1)
k

and ϕ
(2)
k imply that

|ϕk(x)| = ϕ
(1)
k (x) + ϕ

(2)
k (x).

We may now go one step further, and approximate by step functions.
Here, in general, the convergence may hold only almost everywhere.

Theorem 4.3 Suppose f is measurable on Rd. Then there exists a se-
quence of step functions {ψk}∞k=1 that converges pointwise to f(x) for
almost every x.

Proof. By the previous result, it suffices to show that if E is a
measurable set with finite measure, then f = χE can be approximated
by step functions. To this end, we recall part (iv) of Theorem 3.4,
which states that for every ε there exist cubes Q1, . . . , QN such that
m(E4⋃N

j=1 Qj) ≤ ε. By considering the grid formed by extending the
sides of these cubes, we see that there exist almost disjoint rectangles
R̃1, . . . , R̃M such that

⋃N
j=1 Qj =

⋃M
j=1 R̃j . By taking rectangles Rj con-

tained in R̃j , and slightly smaller in size, we find a collection of disjoint
rectangles that satisfy m(E4⋃M

j=1 Rj) ≤ 2ε. Therefore

f(x) =
M∑

j=1

χRj (x),

except possibly on a set of measure ≤ 2ε. Consequently, for every k ≥ 1,
there exists a step function ψk(x) such that if

Ek = {x : f(x) 6= ψk(x)},

then m(Ek) ≤ 2−k. If we let FK =
⋃∞

j=K+1 Ej and F =
⋂∞

K=1 FK , then
m(F ) = 0 since m(FK) ≤ 2−K , and ψk(x) → f(x) for all x in the com-
plement of F , which is the desired result.
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4.3 Littlewood’s three principles

Although the notions of measurable sets and measurable functions rep-
resent new tools, we should not overlook their relation to the older con-
cepts they replaced. Littlewood aptly summarized these connections in
the form of three principles that provide a useful intuitive guide in the
initial study of the theory.

(i) Every set is nearly a finite union of intervals.

(ii) Every function is nearly continuous.

(iii) Every convergent sequence is nearly uniformly convergent.

The sets and functions referred to above are of course assumed to
be measurable. The catch is in the word “nearly,” which has to be
understood appropriately in each context. A precise version of the first
principle appears in part (iv) of Theorem 3.4. An exact formulation of
the third principle is given in the following important result.

Theorem 4.4 (Egorov) Suppose {fk}∞k=1 is a sequence of measurable
functions defined on a measurable set E with m(E) < ∞, and assume
that fk → f a.e on E. Given ε > 0, we can find a closed set Aε ⊂ E
such that m(E −Aε) ≤ ε and fk → f uniformly on Aε.

Proof. We may assume without loss of generality that fk(x) → f(x)
for every x ∈ E. For each pair of non-negative integers n and k, let

En
k = {x ∈ E : |fj(x)− f(x)| < 1/n, for all j > k}.

Now fix n and note that En
k ⊂ En

k+1, and En
k ↗ E as k tends to infinity.

By Corollary 3.3, we find that there exists kn such that m(E − En
kn

) <
1/2n. By construction, we then have

|fj(x)− f(x)| < 1/n whenever j > kn and x ∈ En
kn

.

We choose N so that
∑∞

n=N 2−n < ε/2, and let

Ãε =
⋂

n≥N

En
kn

.

We first observe that

m(E − Ãε) ≤
∞∑

n=N

m(E − En
kn

) < ε/2.
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Next, if δ > 0, we choose n ≥ N such that 1/n < δ, and note that x ∈
Ãε implies x ∈ En

kn
. We see therefore that |fj(x)− f(x)| < δ whenever

j > kn. Hence fk converges uniformly to f on Ãε.
Finally, using Theorem 3.4 choose a closed subset Aε ⊂ Ãε with m(Ãε −

Aε) < ε/2. As a result, we have m(E −Aε) < ε and the theorem is
proved.

The next theorem attests to the validity of the second of Littlewood’s
principle.

Theorem 4.5 (Lusin) Suppose f is measurable and finite valued on E
with E of finite measure. Then for every ε > 0 there exists a closed set
Fε, with

Fε ⊂ E, and m(E − Fε) ≤ ε

and such that f |Fε is continuous.

By f |Fε
we mean the restriction of f to the set Fε. The conclusion of

the theorem states that if f is viewed as a function defined only on Fε,
then f is continuous. However, the theorem does not make the stronger
assertion that the function f defined on E is continuous at the points of
Fε.

Proof. Let fn be a sequence of step functions so that fn → f a.e.
Then we may find sets En so that m(En) < 1/2n and fn is continuous
outside En. By Egorov’s theorem, we may find a set Aε/3 on which
fn → f uniformly and m(E −Aε/3) ≤ ε/3. Then we consider

F ′ = Aε/3 −
⋃

n≥N

En

for N so large that
∑

n≥N 1/2n < ε/3. Now for every n ≥ N the function
fn is continuous on F ′; thus f (being the uniform limit of {fn}) is also
continuous on F ′. To finish the proof, we merely need to approximate
the set F ′ by a closed set Fε ⊂ F ′ such that m(F ′ − Fε) < ε/3.

5* The Brunn-Minkowski inequality

Since addition and multiplication by scalars are basic features of vector
spaces, it is not surprising that properties of these operations arise in a
fundamental way in the theory of Lebesgue measure on Rd. We have al-
ready discussed in this connection the translation-invariance and relative
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dilation-invariance of Lebesgue measure. Here we come to the study of
the sum of two measurable sets A and B, defined as

A + B = {x ∈ Rd : x = x′ + x′′ with x′ ∈ A and x′′ ∈ B}.

This notion is of importance in a number of questions, in particular in
the theory of convex sets; we shall apply it to the isoperimetric problem
in Chapter 3.

In this regard the first (admittedly vague) question we can pose is
whether one can establish any general estimate for the measure of A + B
in terms of the measures of A and B (assuming that these three sets
are measurable). We can see easily that it is not possible to obtain an
upper bound for m(A + B) in terms of m(A) and m(B). Indeed, simple
examples show that we may have m(A) = m(B) = 0 while m(A + B) >
0. (See Exercise 20.)

In the converse direction one might ask for a general estimate of the
form

m(A + B)α ≥ cα (m(A)α + m(B)α) ,

where α is a positive number and the constant cα is independent of A
and B. Clearly, the best one can hope for is cα = 1. The role of the
exponent α can be understood by considering convex sets. Such sets
A are defined by the property that whenever x and y are in A then
the line segment joining them, {xt + y(1− t) : 0 ≤ t ≤ 1}, also belongs
to A. If we recall the definition λA = {λx, x ∈ A} for λ > 0, we note
that whenever A is convex, then A + λA = (1 + λ)A. However, m((1 +
λ)A) = (1 + λ)dm(A), and thus the presumed inequality can hold only
if (1 + λ)dα ≥ 1 + λdα, for all λ > 0. Now

(7) (a + b)γ ≥ aγ + bγ if γ ≥ 1 and a, b ≥ 0,

while the reverse inequality holds if 0 ≤ γ ≤ 1. (See Exercise 38.) This
yields α ≥ 1/d. Moreover, (7) shows that the inequality with the expo-
nent 1/d implies the corresponding inequality with α ≥ 1/d, and so we
are naturally led to the inequality

(8) m(A + B)1/d ≥ m(A)1/d + m(B)1/d.

Before proceeding with the proof of (8), we need to mention a technical
impediment that arises. While we may assume that A and B are mea-
surable, it does not necessarily follow that then A + B is measurable.
(See Exercise 13 in the next chapter.) However it is easily seen that this
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difficulty does not occur when, for example, A and B are closed sets, or
when one of them is open. (See Exercise 19.)

With the above considerations in mind we can state the main result.

Theorem 5.1 Suppose A and B are measurable sets in Rd and their
sum A + B is also measurable. Then the inequality (8) holds.

Let us first check (8) when A and B are rectangles with side lengths
{aj}d

j=1 and {bj}d
j=1, respectively. Then (8) becomes

(9)

(
d∏

j=1

(aj + bj)

)1/d

≥
(

d∏
j=1

aj

)1/d

+

(
d∏

j=1

bj

)1/d

,

which by homogeneity we can reduce to the special case where aj +
bj = 1 for each j. In fact, notice that if we replace aj , bj by λjaj , λjbj ,
with λj > 0, then both sides of (9) are multiplied by (λ1λ2 · · ·λd)1/d.
We then need only choose λj = (aj + bj)−1. With this reduction, the
inequality (9) is an immediate consequence of the arithmetic-geometric
inequality (Exercise 39)

1
d

d∑
j=1

xj ≥
(

d∏
j=1

xj

)1/d

, for all xj ≥ 0:

we add the two inequalities that result when we set xj = aj and xj = bj ,
respectively.

We next turn to the case when each A and B are the union of finitely
many rectangles whose interiors are disjoint. We shall prove (8) in this
case by induction on the total number of rectangles in A and B. We
denote this number by n. Here it is important to note that the desired
inequality is unchanged when we translate A and B independently. In
fact, replacing A by A + h and B by B + h′ replaces A + B by A + B +
h + h′, and thus the corresponding measures remain the same. We now
choose a pair of disjoint rectangles R1 and R2 in the collection making up
A, and we note that they can be separated by a coordinate hyperplane.
Thus we may assume that for some j, after translation by an appropriate
h, R1 lies in A− = A ∩ {xj ≤ 0}, and R2 in A+ = A ∩ {0 ≤ xj}. Observe
also that both A+ and A− contain at least one less rectangle than A does,
and A = A− ∪A+.

We next translate B so that B− = B ∩ {xj ≤ 0} and B+ = B ∩ {xj ≥
0} satisfy

m(B±)
m(B)

=
m(A±)
m(A)

.
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However, A + B ⊃ (A+ + B+) ∪ (A− + B−), and the union on the right
is essentially disjoint, since the two parts lie in different half-spaces.
Moreover, the total number of rectangles in either A+ and B+, or A−
and B− is also less than n. Thus the induction hypothesis applies and

m(A + B) ≥ m(A+ + B+) + m(A− + B−)

≥ (
m(A+)1/d + m(B+)1/d

)d
+

(
m(A−)1/d + m(B−)1/d

)d

= m(A+)

[
1 +

(
m(B)
m(A)

)1/d
]d

+ m(A−)

[
1 +

(
m(B)
m(A)

)1/d
]d

=
(
m(A)1/d + m(B)1/d

)d
,

which gives the desired inequality (8) when A and B are both finite
unions of rectangles with disjoint interiors.

Next, this quickly implies the result when A and B are open sets of
finite measure. Indeed, by Theorem 1.4, for any ε > 0 we can find unions
of almost disjoint rectangles Aε and Bε, such that Aε ⊂ A, Bε ⊂ B, with
m(A) ≤ m(Aε) + ε and m(B) ≤ m(Bε) + ε. Since A + B ⊃ Aε + Bε, the
inequality (8) for Aε and Bε and a passage to a limit gives the desired
result. From this, we can pass to the case where A and B are arbitrary
compact sets, by noting first that A + B is then compact, and that if
we define Aε = {x : d(x,A) < ε}, then Aε are open, and Aε ↘ A as ε →
0. With similar definitions for Bε and (A + B)ε, we observe also that
A + B ⊂ Aε + Bε ⊂ (A + B)2ε. Hence, letting ε → 0, we see that (8) for
Aε and Bε implies the desired result for A and B. The general case,
in which we assume that A, B, and A + B are measurable, then follows
by approximating A and B from inside by compact sets, as in (iii) of
Theorem 3.4.

6 Exercises

1. Prove that the Cantor set C constructed in the text is totally disconnected and
perfect. In other words, given two distinct points x, y ∈ C, there is a point z /∈ C
that lies between x and y, and yet C has no isolated points.

[Hint: If x, y ∈ C and |x− y| > 1/3k, then x and y belong to two different intervals
in Ck. Also, given any x ∈ C there is an end-point yk of some interval in Ck that
satisfies x 6= yk and |x− yk| ≤ 1/3k.]

2. The Cantor set C can also be described in terms of ternary expansions.
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(a) Every number in [0, 1] has a ternary expansion

x =

∞X

k=1

ak3−k, where ak = 0, 1, or 2.

Note that this decomposition is not unique since, for example, 1/3 =
P∞

k=2 2/3k.

Prove that x ∈ C if and only if x has a representation as above where every
ak is either 0 or 2.

(b) The Cantor-Lebesgue function is defined on C by

F (x) =

∞X

k=1

bk

2k
if x =

P∞
k=1 ak3−k, where bk = ak/2.

In this definition, we choose the expansion of x in which ak = 0 or 2.

Show that F is well defined and continuous on C, and moreover F (0) = 0 as
well as F (1) = 1.

(c) Prove that F : C → [0, 1] is surjective, that is, for every y ∈ [0, 1] there exists
x ∈ C such that F (x) = y.

(d) One can also extend F to be a continuous function on [0, 1] as follows. Note
that if (a, b) is an open interval of the complement of C, then F (a) = F (b).
Hence we may define F to have the constant value F (a) in that interval.

A geometrical construction of F is described in Chapter 3.

3. Cantor sets of constant dissection. Consider the unit interval [0, 1], and
let ξ be a fixed real number with 0 < ξ < 1 (the case ξ = 1/3 corresponds to the
Cantor set C in the text).

In stage 1 of the construction, remove the centrally situated open interval in
[0, 1] of length ξ. In stage 2, remove two central intervals each of relative length ξ,
one in each of the remaining intervals after stage 1, and so on.

Let Cξ denote the set which remains after applying the above procedure indefi-
nitely.6

(a) Prove that the complement of Cξ in [0, 1] is the union of open intervals of
total length equal to 1.

(b) Show directly that m∗(Cξ) = 0.

[Hint: After the kth stage, show that the remaining set has total length = (1− ξ)k.]

4. Cantor-like sets. Construct a closed set Ĉ so that at the kth stage of the
construction one removes 2k−1 centrally situated open intervals each of length `k,
with

`1 + 2`2 + · · ·+ 2k−1`k < 1.

6The set we call Cξ is sometimes denoted by C 1−ξ
2

.
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(a) If `j are chosen small enough, then
P∞

k=1 2k−1`k < 1. In this case, show

that m(Ĉ) > 0, and in fact, m(Ĉ) = 1−P∞
k=1 2k−1`k.

(b) Show that if x ∈ Ĉ, then there exists a sequence of points {xn}∞n=1 such
that xn /∈ Ĉ, yet xn → x and xn ∈ In, where In is a sub-interval in the
complement of Ĉ with |In| → 0.

(c) Prove as a consequence that Ĉ is perfect, and contains no open interval.

(d) Show also that Ĉ is uncountable.

5. Suppose E is a given set, and On is the open set:

On = {x : d(x, E) < 1/n}.

Show:

(a) If E is compact, then m(E) = limn→∞m(On).

(b) However, the conclusion in (a) may be false for E closed and unbounded; or
E open and bounded.

6. Using translations and dilations, prove the following: Let B be a ball in Rd of
radius r. Then m(B) = vdrd, where vd = m(B1), and B1 is the unit ball, B1 =
{x ∈ Rd : |x| < 1}.

A calculation of the constant vd is postponed until Exercise 14 in the next
chapter.

7. If δ = (δ1, . . . , δd) is a d-tuple of positive numbers δi > 0, and E is a subset of
Rd, we define δE by

δE = {(δ1x1, . . . , δdxd) : where (x1, . . . , xd) ∈ E}.

Prove that δE is measurable whenever E is measurable, and

m(δE) = δ1 · · · δdm(E).

8. Suppose L is a linear transformation of Rd. Show that if E is a measurable
subset of Rd, then so is L(E), by proceeding as follows:

(a) Note that if E is compact, so is L(E). Hence if E is an Fσ set, so is L(E).

(b) Because L automatically satisfies the inequality

|L(x)− L(x′)| ≤ M |x− x′|

for some M , we can see that L maps any cube of side length ` into a
cube of side length cdM`, with cd = 2

√
d. Now if m(E) = 0, there is a

collection of cubes {Qj} such that E ⊂ Sj Qj , and
P

j m(Qj) < ε. Thus

m∗(L(E)) ≤ c′ε, and hence m(L(E)) = 0. Finally, use Corollary 3.5.
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One can show that m(L(E)) = | det L|m(E); see Problem 4 in the next chapter.

9. Give an example of an open set O with the following property: the boundary
of the closure of O has positive Lebesgue measure.

[Hint: Consider the set obtained by taking the union of open intervals which are
deleted at the odd steps in the construction of a Cantor-like set.]

10. This exercise provides a construction of a decreasing sequence of positive
continuous functions on the interval [0, 1], whose pointwise limit is not Riemann
integrable.

Let Ĉ denote a Cantor-like set obtained from the construction detailed in Exer-
cise 4, so that in particular m(Ĉ) > 0. Let F1 denote a piecewise-linear and contin-
uous function on [0, 1], with F1 = 1 in the complement of the first interval removed
in the construction of Ĉ, F1 = 0 at the center of this interval, and 0 ≤ F1(x) ≤ 1 for
all x. Similarly, construct F2 = 1 in the complement of the intervals in stage two of
the construction of Ĉ, with F2 = 0 at the center of these intervals, and 0 ≤ F2 ≤ 1.
Continuing this way, let fn = F1 · F2 · · ·Fn (see Figure 5).

F2

F1

Figure 5. Construction of {Fn} in Exercise 10

Prove the following:

(a) For all n ≥ 1 and all x ∈ [0, 1], one has 0 ≤ fn(x) ≤ 1 and fn(x) ≥ fn+1(x).
Therefore, fn(x) converges to a limit as n →∞ which we denote by f(x).

(b) The function f is discontinuous at every point of Ĉ.
[Hint: Note that f(x) = 1 if x ∈ Ĉ, and find a sequence of points {xn} so
that xn → x and f(xn) = 0.]

Now
R

fn(x) dx is decreasing, hence
R

fn converges. However, a bounded func-
tion is Riemann integrable if and only if its set of discontinuities has measure zero.
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(The proof of this fact, which is given in the Appendix of Book I, is outlined in
Problem 4.) Since f is discontinuous on a set of positive measure, we find that f
is not Riemann integrable.

11. Let A be the subset of [0, 1] which consists of all numbers which do not have
the digit 4 appearing in their decimal expansion. Find m(A).

12. Theorem 1.3 states that every open set in R is the disjoint union of open
intervals. The analogue in Rd, d ≥ 2, is generally false. Prove the following:

(a) An open disc in R2 is not the disjoint union of open rectangles.

[Hint: What happens to the boundary of any of these rectangles?]

(b) An open connected set Ω is the disjoint union of open rectangles if and only
if Ω is itself an open rectangle.

13. The following deals with Gδ and Fσ sets.

(a) Show that a closed set is a Gδ and an open set an Fσ.

[Hint: If F is closed, consider On = {x : d(x, F ) < 1/n}.]
(b) Give an example of an Fσ which is not a Gδ.

[Hint: This is more difficult; let F be a denumerable set that is dense.]

(c) Give an example of a Borel set which is not a Gδ nor an Fσ.

14. The purpose of this exercise is to show that covering by a finite number of
intervals will not suffice in the definition of the outer measure m∗.

The outer Jordan content J∗(E) of a set E in R is defined by

J∗(E) = inf

NX
j=1

|Ij |,

where the inf is taken over every finite covering E ⊂ SN
j=1 Ij , by intervals Ij .

(a) Prove that J∗(E) = J∗(E) for every set E (here E denotes the closure of
E).

(b) Exhibit a countable subset E ⊂ [0, 1] such that J∗(E) = 1 while m∗(E) = 0.

15. At the start of the theory, one might define the outer measure by taking
coverings by rectangles instead of cubes. More precisely, we define

mR
∗ (E) = inf

∞X
j=1

|Rj |,
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where the inf is now taken over all countable coverings E ⊂ S∞j=1 Rj by (closed)
rectangles.

Show that this approach gives rise to the same theory of measure developed in
the text, by proving that m∗(E) = mR

∗ (E) for every subset E of Rd.

[Hint: Use Lemma 1.1.]

16. The Borel-Cantelli lemma. Suppose {Ek}∞k=1 is a countable family of
measuable subsets of Rd and that

∞X

k=1

m(Ek) < ∞.

Let

E = {x ∈ Rd : x ∈ Ek, for infinitely many k}
= lim sup

k→∞
(Ek).

(a) Show that E is measurable.

(b) Prove m(E) = 0.

[Hint: Write E =
T∞

n=1

S
k≥n Ek.]

17. Let {fn} be a sequence of measurable functions on [0, 1] with |fn(x)| < ∞ for
a.e x. Show that there exists a sequence cn of positive real numbers such that

fn(x)

cn
→ 0 a.e. x

[Hint: Pick cn such that m({x : |fn(x)/cn| > 1/n}) < 2−n, and apply the Borel-
Cantelli lemma.]

18. Prove the following assertion: Every measurable function is the limit a.e. of a
sequence of continuous functions.

19. Here are some observations regarding the set operation A + B.

(a) Show that if either A and B is open, then A + B is open.

(b) Show that if A and B are closed, then A + B is measurable.

(c) Show, however, that A + B might not be closed even though A and B are
closed.

[Hint: For (b) show that A + B is an Fσ set.]

20. Show that there exist closed sets A and B with m(A) = m(B) = 0, but m(A +
B) > 0:
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(a) In R, let A = C (the Cantor set), B = C/2. Note that A + B ⊃ [0, 1].

(b) In R2, observe that if A = I × {0} and B = {0} × I (where I = [0, 1]), then
A + B = I × I.

21. Prove that there is a continuous function that maps a Lebesgue measurable
set to a non-measurable set.

[Hint: Consider a non-measurable subset of [0, 1], and its inverse image in C by the
function F in Exercise 2.]

22. Let χ[0,1] be the characteristic function of [0, 1]. Show that there is no every-
where continuous function f on R such that

f(x) = χ[0,1](x) almost everywhere.

23. Suppose f(x, y) is a function on R2 that is separately continuous: for each
fixed variable, f is continuous in the other variable. Prove that f is measurable
on R2.

[Hint: Approximate f in the variable x by piecewise-linear functions fn so that
fn → f pointwise.]

24. Does there exist an enumeration {rn}∞n=1 of the rationals, such that the
complement of

∞[
n=1

„
rn − 1

n
, rn +

1

n

«

in R is non-empty?

[Hint: Find an enumeration where the only rationals outside of a fixed bounded
interval take the form rn, with n = m2 for some integer m.]

25. An alternative definition of measurability is as follows: E is measurable if for
every ε > 0 there is a closed set F contained in E with m∗(E − F ) < ε. Show that
this definition is equivalent with the one given in the text.

26. Suppose A ⊂ E ⊂ B, where A and B are measurable sets of finite measure.
Prove that if m(A) = m(B), then E is measurable.

27. Suppose E1 and E2 are a pair of compact sets in Rd with E1 ⊂ E2, and let
a = m(E1) and b = m(E2). Prove that for any c with a < c < b, there is a compact
set E with E1 ⊂ E ⊂ E2 and m(E) = c.

[Hint: As an example, if d = 1 and E is a measurable subset of [0, 1], consider
m(E ∩ [0, t]) as a function of t.]



44 Chapter 1. MEASURE THEORY

28. Let E be a subset of R with m∗(E) > 0. Prove that for each 0 < α < 1, there
exists an open interval I so that

m∗(E ∩ I) ≥ α m∗(I).

Loosely speaking, this estimate shows that E contains almost a whole interval.

[Hint: Choose an open set O that contains E, and such that m∗(E) ≥ α m∗(O).
Write O as the countable union of disjoint open intervals, and show that one of
these intervals must satisfy the desired property.]

29. Suppose E is a measurable subset of R with m(E) > 0. Prove that the
difference set of E, which is defined by

{z ∈ R : z = x− y for some x, y ∈ E},

contains an open interval centered at the origin.
If E contains an interval, then the conclusion is straightforward. In general, one

may rely on Exercise 28.

[Hint: Indeed, by Exercise 28, there exists an open interval I so that m(E ∩ I) ≥
(9/10) m(I). If we denote E ∩ I by E0, and suppose that the difference set of E0

does not contain an open interval around the origin, then for arbitrarily small a the
sets E0, and E0 + a are disjoint. From the fact that (E0 ∪ (E0 + a)) ⊂ (I ∪ (I + a))
we get a contradiction, since the left-hand side has measure 2m(E0), while the
right-hand side has measure only slightly larger than m(I).]

A more general formulation of this result is as follows.

30. If E and F are measurable, and m(E) > 0, m(F ) > 0, prove that

E + F = {x + y : x ∈ E, x ∈ F}

contains an interval.

31. The result in Exercise 29 provides an alternate proof of the non-measurability
of the set N studied in the text. In fact, we may also prove the non-measurability
of a set in R that is very closely related to the set N .

Given two real numbers x and y, we shall write as before that x ∼ y whenever
the difference x− y is rational. Let N ∗ denote a set that consists of one element in
each equivalence class of ∼. Prove that N ∗ is non-measurable by using the result
in Exercise 29.

[Hint: IfN ∗ is measurable, then so are its translatesN ∗
n = N ∗ + rn, where {rn}∞n=1

is an enumeration of Q. How does this imply that m(N ∗) > 0? Can the difference
set of N ∗ contain an open interval centered at the origin?]

32. Let N denote the non-measurable subset of I = [0, 1] constructed at the end
of Section 3.

(a) Prove that if E is a measurable subset of N , then m(E) = 0.
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(b) If G is a subset of R with m∗(G) > 0, prove that a subset of G is non-
measurable.

[Hint: For (a) use the translates of E by the rationals.]

33. Let N denote the non-measurable set constructed in the text. Recall from the
exercise above that measurable subsets of N have measure zero.

Show that the set N c = I −N satisfies m∗(N c) = 1, and conclude that if E1 =
N and E2 = N c, then

m∗(E1) + m∗(E2) 6= m∗(E1 ∪ E2),

although E1 and E2 are disjoint.

[Hint: To prove that m∗(N c) = 1, argue by contradiction and pick a measurable
set U such that U ⊂ I, N c ⊂ U and m∗(U) < 1− ε.]

34. Let C1 and C2 be any two Cantor sets (constructed in Exercise 3). Show that
there exists a function F : [0, 1] → [0, 1] with the following properties:

(i) F is continuous and bijective,

(ii) F is monotonically increasing,

(iii) F maps C1 surjectively onto C2.

[Hint: Copy the construction of the standard Cantor-Lebesgue function.]

35. Give an example of a measurable function f and a continuous function Φ so
that f ◦ Φ is non-measurable.

[Hint: Let Φ : C1 → C2 as in Exercise 34, with m(C1) > 0 and m(C2) = 0. Let
N ⊂ C1 be non-measurable, and take f = χΦ(N).]

Use the construction in the hint to show that there exists a Lebesgue measurable
set that is not a Borel set.

36. This exercise provides an example of a measurable function f on [0, 1] such
that every function g equivalent to f (in the sense that f and g differ only on a
set of measure zero) is discontinuous at every point.

(a) Construct a measurable set E ⊂ [0, 1] such that for any non-empty open
sub-interval I in [0, 1], both sets E ∩ I and Ec ∩ I have positive measure.

(b) Show that f = χE has the property that whenever g(x) = f(x) a.e x, then
g must be discontinuous at every point in [0, 1].

[Hint: For the first part, consider a Cantor-like set of positive measure, and add in
each of the intervals that are omitted in the first step of its construction, another
Cantor-like set. Continue this procedure indefinitely.]

37. Suppose Γ is a curve y = f(x) in R2, where f is continuous. Show that
m(Γ) = 0.
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[Hint: Cover Γ by rectangles, using the uniform continuity of f .]

38. Prove that (a + b)γ ≥ aγ + bγ whenever γ ≥ 1 and a, b ≥ 0. Also, show that
the reverse inequality holds when 0 ≤ γ ≤ 1.

[Hint: Integrate the inequality between (a + t)γ−1 and tγ−1 from 0 to b.]

39. Establish the inequality

(10)
x1 + · · ·+ xd

d
≥ (x1 · · ·xd)1/d for all xj ≥ 0, j = 1, . . . , d

by using backward induction as follows:

(a) The inequality is true whenever d is a power of 2 (d = 2k, k ≥ 1).

(b) If (10) holds for some integer d ≥ 2, then it must hold for d− 1, that is,
one has (y1 + · · ·+ yd−1)/(d− 1) ≥ (y1 · · · yd−1)

1/(d−1) for all yj ≥ 0, with
j = 1, . . . , d− 1.

[Hint: For (a), if k ≥ 2, write (x1 + · · ·+ x2k )/2k as (A + B)/2, where A = (x1 +
· · ·+ x2k−1)/2k−1, and apply the inequality when d = 2. For (b), apply the in-
equality to x1 = y1, . . . , xd−1 = yd−1 and xd = (y1 + · · ·+ yd−1)/(d− 1).]

7 Problems

1. Given an irrational x, one can show (using the pigeon-hole principle, for exam-
ple) that there exists infinitely many fractions p/q, with relatively prime integers
p and q such that

˛̨
˛̨x− p

q

˛̨
˛̨ ≤ 1

q2
.

However, prove that the set of those x ∈ R such that there exist infinitely many
fractions p/q, with relatively prime integers p and q such that

˛̨
˛̨x− p

q

˛̨
˛̨ ≤ 1

q3
(or ≤ 1/q2+ε),

is a set of measure zero.

[Hint: Use the Borel-Cantelli lemma.]

2. Any open set Ω can be written as the union of closed cubes, so that Ω =
S

Qj

with the following properties

(i) The Qj ’s have disjoint interiors.

(ii) d(Qj , Ω
c) ≈ side length of Qj . This means that there are positive constants

c and C so that c ≤ d(Qj , Ω
c)/`(Qj) ≤ C, where `(Qj) denotes the side

length of Qj .
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3. Find an example of a measurable subset C of [0, 1] such that m(C) = 0, yet the
difference set of C contains a non-trivial interval centered at the origin. Compare
with the result in Exercise 29.

[Hint: Pick the Cantor set C = C. For a fixed a ∈ [−1, 1], consider the line y =
x + a in the plane, and copy the construction of the Cantor set, but in the cube
Q = [0, 1]× [0, 1]. First, remove all but four closed cubes of side length 1/3, one at
each corner of Q; then, repeat this procedure in each of the remaining cubes (see
Figure 6). The resulting set is sometimes called a Cantor dust. Use the property
of nested compact sets to show that the line intersects this Cantor dust.]

Figure 6. Construction of the Cantor dust

4. Complete the following outline to prove that a bounded function on an interval
[a, b] is Riemann integrable if and only if its set of discontinuities has measure zero.
This argument is given in detail in the appendix to Book I.

Let f be a bounded function on a compact interval J , and let I(c, r) denote
the open interval centered at c of radius r > 0. Let osc(f, c, r) = sup |f(x)− f(y)|,
where the supremum is taken over all x, y ∈ J ∩ I(c, r), and define the oscillation
of f at c by osc(f, c) = limr→0 osc(f, c, r). Clearly, f is continuous at c ∈ J if and
only if osc(f, c) = 0.

Prove the following assertions:

(a) For every ε > 0, the set of points c in J such that osc(f, c) ≥ ε is compact.

(b) If the set of discontinuities of f has measure 0, then f is Riemann integrable.

[Hint: Given ε > 0 let Aε = {c ∈ J : osc(f, c) ≥ ε}. Cover Aε by a finite
number of open intervals whose total length is ≤ ε. Select an appropriate
partition of J and estimate the difference between the upper and lower sums
of f over this partition.]
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(c) Conversely, if f is Riemann integrable on J , then its set of discontinuities
has measure 0.

[Hint: The set of discontinuities of f is contained in
S

n A1/n. Choose a
partition P such that U(f, P )− L(f, P ) < ε/n. Show that the total length
of the intervals in P whose interior intersect A1/n is ≤ ε.]

5. Suppose E is measurable with m(E) < ∞, and

E = E1 ∪ E2, E1 ∩ E2 = ∅.

If m(E) = m∗(E1) + m∗(E2), then E1 and E2 are measurable.
In particular, if E ⊂ Q, where Q is a finite cube, then E is measurable if and

only if m(Q) = m∗(E) + m∗(Q− E).

6.∗ The fact that the axiom of choice and the well-ordering principle are equivalent
is a consequence of the following considerations.

One begins by defining a partial ordering on a set E to be a binary relation ≤
on the set E that satisfies:

(i) x ≤ x for all x ∈ E.

(ii) If x ≤ y and y ≤ x, then x = y.

(iii) If x ≤ y and y ≤ z, then x ≤ z.

If in addition x ≤ y or y ≤ x whenever x, y ∈ E, then ≤ is a linear ordering of E.

The axiom of choice and the well-ordering principle are then logically equivalent
to the Hausdorff maximal principle:

Every non-empty partially ordered set has a (non-empty) maximal
linearly ordered subset.

In other words, if E is partially ordered by ≤, then E contains a non-empty subset
F which is linearly ordered by ≤ and such that if F is contained in a set G also
linearly ordered by ≤, then F = G.

An application of the Hausdorff maximal principle to the collection of all well-
orderings of subsets of E implies the well-ordering principle for E. However, the
proof that the axiom of choice implies the Hausdorff maximal principle is more
complicated.

7.∗ Consider the curve Γ = {y = f(x)} in R2, 0 ≤ x ≤ 1. Assume that f is twice
continuously differentiable in 0 ≤ x ≤ 1. Then show that m(Γ + Γ) > 0 if and only
if Γ + Γ contains an open set, if and only if f is not linear.

8.∗ Suppose A and B are open sets of finite positive measure. Then we have
equality in the Brunn-Minkowski inequality (8) if and only if A and B are convex
and similar, that is, there are a δ > 0 and an h ∈ Rd such that

A = δB + h.



2 Integration Theory

...amongst the many definitions that have been succes-
sively proposed for the integral of real-valued functions
of a real variable, I have retained only those which, in
my opinion, are indispensable to understand the trans-
formations undergone by the problem of integration,
and to capture the relationship between the notion of
area, so simple in appearance, and certain more com-
plicated analytical definitions of the integral.

One might ask if there is sufficient interest to oc-
cupy oneself with such complications, and if it is not
better to restrict oneself to the study of functions that
necessitate only simple definitions.... As we shall see
in this course, we would then have to renounce the
possibility of resolving many problems posed long ago,
and which have simple statements. It is to solve these
problems, and not for love of complications, that I
have introduced in this book a definition of the inte-
gral more general than that of Riemann.

H. Lebesgue, 1903

1 The Lebesgue integral: basic properties and conver-

gence theorems

The general notion of the Lebesgue integral on Rd will be defined in a
step-by-step fashion, proceeding successively to increasingly larger fam-
ilies of functions. At each stage we shall see that the integral satisfies
elementary properties such as linearity and monotonicity, and we prove
appropriate convergence theorems that amount to interchanging the in-
tegral with limits. At the end of the process we shall have achieved a
general theory of integration that will be decisive in the study of further
problems.

We proceed in four stages, by progressively integrating:

1. Simple functions

2. Bounded functions supported on a set of finite measure

3. Non-negative functions
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4. Integrable functions (the general case).

We emphasize from the onset that all functions are assumed to be mea-
surable. At the beginning we also consider only finite-valued functions
which take on real values. Later we shall also consider extended-valued
functions, and also complex-valued functions.

Stage one: simple functions

Recall from the previous chapter that a simple function ϕ is a finite sum

(1) ϕ(x) =
N∑

k=1

akχEk
(x),

where the Ek are measurable sets of finite measure and the ak are con-
stants. A complication that arises from this definition is that a simple
function can be written in a multitude of ways as such finite linear com-
binations; for example, 0 = χE − χE for any measurable set E of finite
measure. Fortunately, there is an unambiguous choice for the represen-
tation of a simple function, which is natural and useful in applications.

The canonical form of ϕ is the unique decomposition as in (1), where
the numbers ak are distinct and non-zero, and the sets Ek are disjoint.

Finding the canonical form of ϕ is straightforward: since ϕ can take
only finitely many distinct and non-zero values, say c1, . . . , cM , we may
set Fk = {x : ϕ(x) = ck}, and note that the sets Fk are disjoint. There-
fore ϕ =

∑M
k=1 ckχFk

is the desired canonical form of ϕ.

If ϕ is a simple function with canonical form ϕ(x) =
∑M

k=1 ckχFk
(x),

then we define the Lebesgue integral of ϕ by

∫

Rd

ϕ(x) dx =
M∑

k=1

ckm(Fk).

If E is a measurable subset of Rd with finite measure, then ϕ(x)χE(x)
is also a simple function, and we define

∫

E

ϕ(x) dx =
∫

ϕ(x)χE(x) dx.

To emphasize the choice of the Lebesgue measure m in the definition of
the integral, one sometimes writes

∫

Rd

ϕ(x) dm(x)
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for the Lebesgue integral of ϕ. In fact, as a matter of convenience, we
shall often write

∫
ϕ(x) dx or simply

∫
ϕ for the integral of ϕ over Rd.

Proposition 1.1 The integral of simple functions defined above satisfies
the following properties:

(i) Independence of the representation. If ϕ =
∑N

k=1 akχEk
is any rep-

resentation of ϕ, then

∫
ϕ =

N∑

k=1

akm(Ek).

(ii) Linearity. If ϕ and ψ are simple, and a, b ∈ R, then
∫

(aϕ + bψ) = a

∫
ϕ + b

∫
ψ.

(iii) Additivity. If E and F are disjoint subsets of Rd with finite mea-
sure, then

∫

E∪F

ϕ =
∫

E

ϕ +
∫

F

ϕ.

(iv) Monotonicity. If ϕ ≤ ψ are simple, then
∫

ϕ ≤
∫

ψ.

(v) Triangle inequality. If ϕ is a simple function, then so is |ϕ|, and
∣∣∣∣
∫

ϕ

∣∣∣∣ ≤
∫
|ϕ|.

Proof. The only conclusion that is a little tricky is the first, which
asserts that the integral of a simple function can be calculated by us-
ing any of its decompositions as a linear combination of characteristic
functions.

Suppose that ϕ =
∑N

k=1 akχEk
, where we assume that the sets Ek are

disjoint, but we do not suppose that the numbers ak are distinct and non-
zero. For each distinct non-zero value a among the {ak} we define E′

a =⋃
Ek, where the union is taken over those indices k such that ak = a.

Note then that the sets E′
a are disjoint, and m(E′

a) =
∑

m(Ek), where
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the sum is taken over the same set of k’s. Then clearly ϕ =
∑

aχE′a ,
where the sum is over the distinct non-zero values of {ak}. Thus

∫
ϕ =

∑
am(E′

a) =
N∑

k=1

akm(Ek).

Next, suppose ϕ =
∑N

k=1 akχEk
, where we no longer assume that the Ek

are disjoint. Then we can “refine” the decomposition
⋃N

k=1 Ek by finding
sets E∗

1 , E∗
2 , . . . , E∗

n with the property that
⋃N

k=1 Ek =
⋃n

j=1 E∗
j ; the

sets E∗
j (j = 1, . . . , n) are mutually disjoint; and for each k, Ek =

⋃
E∗

j ,
where the union is taken over those E∗

j that are contained in Ek. (A proof
of this elementary fact can be found in Exercise 1.) For each j, let now
a∗j =

∑
ak, with the summation taken over all k such that Ek contains

E∗
j . Then clearly ϕ =

∑n
j=1 a∗jχE∗j . However, this is a decomposition

already dealt with above because the E∗
j are disjoint. Thus

∫
ϕ =

∑
a∗jm(E∗

j ) =
∑ ∑

Ek⊃E∗j

akm(E∗
j ) =

∑
akm(Ek),

and conclusion (i) is established.
Conclusion (ii) follows by using any representation of ϕ and ψ, and

the obvious linearity of (i).
For the additivity over sets, one must note that if E and F are disjoint,

then

χE∪F = χE + χF ,

and we may use the linearity of the integral to see that
∫

E∪F
ϕ =

∫
E

ϕ +∫
F

ϕ.
If η ≥ 0 is a simple function, then its canonical form is everywhere non-

negative, and therefore
∫

η ≥ 0 by the definition of the integral. Applying
this argument to ψ − ϕ gives the desired monotonicity property.

Finally, for the triangle inequality, it suffices to write ϕ in its canonical
form ϕ =

∑N
k=1 akχEk

and observe that

|ϕ| =
N∑

k=1

|ak|χEk
(x).

Therefore, by the triangle inequality applied to the definition of the in-
tegral, one sees that

∣∣∣∣
∫

ϕ

∣∣∣∣ =

∣∣∣∣∣
N∑

k=1

akm(Ek)

∣∣∣∣∣ ≤
N∑

k=1

|ak|m(Ek) =
∫
|ϕ|.
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Incidentally, it is worthwhile to point out the following easy fact: when-
ever f and g are a pair of simple functions that agree almost everywhere,
then

∫
f =

∫
g. The identity of the integrals of two functions that agree

almost everywhere will continue to hold for the successive definitions of
the integral that follow.

Stage two: bounded functions supported on a set of finite
measure

The support of a measurable function f is defined to be the set of all
points where f does not vanish,

supp(f) = {x : f(x) 6= 0}.

We shall also say that f is supported on a set E, if f(x) = 0 whenever
x /∈ E.

Since f is measurable, so is the set supp(f). We shall next be interested
in those bounded measurable functions that have m(supp(f)) < ∞.

An important result in the previous chapter (Theorem 4.2) states the
following: if f is a function bounded by M and supported on a set E, then
there exists a sequence {ϕn} of simple functions, with each ϕn bounded
by M and supported on E, and such that

ϕn(x) → f(x) for all x.

The key lemma that follows allows us to define the integral for the class
of bounded functions supported on sets of finite measure.

Lemma 1.2 Let f be a bounded function supported on a set E of finite
measure. If {ϕn}∞n=1 is any sequence of simple functions bounded by M ,
supported on E, and with ϕn(x) → f(x) for a.e. x, then:

(i) The limit lim
n→∞

∫
ϕn exists.

(ii) If f = 0 a.e., then the limit lim
n→∞

∫
ϕn equals 0.

Proof. The assertions of the lemma would be nearly obvious if we
had that ϕn converges to f uniformly on E. Instead, we recall one of
Littlewood’s principles, which states that the convergence of a sequence
of measurable functions is “nearly” uniform. The precise statement lying
behind this principle is Egorov’s theorem, which we proved in Chapter 1,
and which we apply here.
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Since the measure of E is finite, given ε > 0 Egorov’s theorem guar-
antees the existence of a (closed) measurable subset Aε of E such that
m(E −Aε) ≤ ε, and ϕn → f uniformly on Aε. Therefore, setting In =∫

ϕn we have that

|In − Im| ≤
∫

E

|ϕn(x)− ϕm(x)| dx

=
∫

Aε

|ϕn(x)− ϕm(x)| dx +
∫

E−Aε

|ϕn(x)− ϕm(x)| dx

≤
∫

Aε

|ϕn(x)− ϕm(x)| dx + 2M m(E −Aε)

≤
∫

Aε

|ϕn(x)− ϕm(x)| dx + 2Mε.

By the uniform convergence, one has, for all x ∈ Aε and all large n and
m, the estimate |ϕn(x)− ϕm(x)| < ε, so we deduce that

|In − Im| ≤ m(E)ε + 2Mε for all large n and m.

Since ε is arbitrary and m(E) < ∞, this proves that {In} is a Cauchy
sequence and hence converges, as desired.

For the second part, we note that if f = 0, we may repeat the argument
above to find that |In| ≤ m(E)ε + Mε, which yields limn→∞ In = 0, as
was to be shown.

Using Lemma 1.2 we can now turn to the integration of bounded func-
tions that are supported on sets of finite measure. For such a function f
we define its Lebesgue integral by

∫
f(x) dx = lim

n→∞

∫
ϕn(x) dx,

where {ϕn} is any sequence of simple functions satisfying: |ϕn| ≤ M ,
each ϕn is supported on the support of f , and ϕn(x) → f(x) for a.e. x
as n tends to infinity. By the previous lemma, we know that this limit
exists.

Next, we must first show that
∫

f is independent of the limiting se-
quence {ϕn} used, in order for the integral to be well-defined. There-
fore, suppose that {ψn} is another sequence of simple functions that is
bounded by M , supported on supp(f), and such that ψn(x) → f(x) for
a.e. x as n tends to infinity. Then, if ηn = ϕn − ψn, the sequence {ηn}
consists of simple functions bounded by 2M , supported on a set of fi-
nite measure, and such that ηn → 0 a.e. as n tends to infinity. We may
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therefore conclude, by the second part of the lemma, that
∫

ηn → 0 as n
tends to infinity. Consequently, the two limits

lim
n→∞

∫
ϕn(x) dx and lim

n→∞

∫
ψn(x) dx

(which exist by the lemma) are indeed equal.

If E is a subset of Rd with finite measure, and f is bounded with
m(supp(f)) < ∞, then it is natural to define

∫

E

f(x) dx =
∫

f(x)χE(x) dx.

Clearly, if f is itself simple, then
∫

f as defined above coincides with
the integral of simple functions studied earlier. This extension of the def-
inition of integration also satisfies all the basic properties of the integral
of simple functions.

Proposition 1.3 Suppose f and g are bounded functions supported on
sets of finite measure. Then the following properties hold.

(i) Linearity. If a, b ∈ R, then

∫
(af + bg) = a

∫
f + b

∫
g.

(ii) Additivity. If E and F are disjoint subsets of Rd, then

∫

E∪F

f =
∫

E

f +
∫

F

f.

(iii) Monotonicity. If f ≤ g, then

∫
f ≤

∫
g.

(iv) Triangle inequality. |f | is also bounded, supported on a set of finite
measure, and

∣∣∣∣
∫

f

∣∣∣∣ ≤
∫
|f |.
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All these properties follow by using approximations by simple functions,
and the properties of the integral of simple functions given in Proposi-
tion 1.1.

We are now in a position to prove the first important convergence
theorem.

Theorem 1.4 (Bounded convergence theorem) Suppose that {fn}
is a sequence of measurable functions that are all bounded by M , are
supported on a set E of finite measure, and fn(x) → f(x) a.e. x as n →
∞. Then f is measurable, bounded, supported on E for a.e. x, and

∫
|fn − f | → 0 as n →∞.

Consequently,
∫

fn →
∫

f as n →∞.

Proof. From the assumptions one sees at once that f is bounded by M
almost everywhere and vanishes outside E, except possibly on a set of
measure zero. Clearly, the triangle inequality for the integral implies
that it suffices to prove that

∫ |fn − f | → 0 as n tends to infinity.
The proof is a reprise of the argument in Lemma 1.2. Given ε > 0, we

may find, by Egorov’s theorem, a measurable subset Aε of E such that
m(E −Aε) ≤ ε and fn → f uniformly on Aε. Then, we know that for
all sufficiently large n we have |fn(x)− f(x)| ≤ ε for all x ∈ Aε. Putting
these facts together yields
∫
|fn(x)− f(x)| dx ≤

∫

Aε

|fn(x)− f(x)| dx +
∫

E−Aε

|fn(x)− f(x)| dx

≤ εm(E) + 2M m(E −Aε)

for all large n. Since ε is arbitrary, the proof of the theorem is complete.

We note that the above convergence theorem is a statement about the
interchange of an integral and a limit, since its conclusion simply says

lim
n→∞

∫
fn =

∫
lim

n→∞
fn.

A useful observation that we can make at this point is the following: if
f ≥ 0 is bounded and supported on a set of finite measure E and

∫
f = 0,
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then f = 0 almost everywhere. Indeed, if for each integer k ≥ 1 we set
Ek = {x ∈ E : f(x) ≥ 1/k}, then the fact that k−1χEk

(x) ≤ f(x) implies

k−1m(Ek) ≤
∫

f,

by monotonicity of the integral. Thus m(Ek) = 0 for all k, and since
{x : f(x) > 0} =

⋃∞
k=1 Ek, we see that f = 0 almost everywhere.

Return to Riemann integrable functions

We shall now show that Riemann integrable functions are also Lebesgue
integrable. When we combine this with the bounded convergence theo-
rem we have just proved, we see that Lebesgue integration resolves the
second problem in the Introduction.

Theorem 1.5 Suppose f is Riemann integrable on the closed interval
[a, b]. Then f is measurable, and

∫ R

[a,b]

f(x) dx =
∫ L

[a,b]

f(x) dx,

where the integral on the left-hand side is the standard Riemann integral,
and that on the right-hand side is the Lebesgue integral.

Proof. By definition, a Riemann integrable function is bounded, say
|f(x)| ≤ M , so we need to prove that f is measurable, and then establish
the equality of integrals.

Again, by definition of Riemann integrability,1 we may construct two
sequences of step functions {ϕk} and {ψk} that satisfy the following
properties: |ϕk(x)| ≤ M and |ψk(x)| ≤ M for all x ∈ [a, b] and k ≥ 1,

ϕ1(x) ≤ ϕ2(x) ≤ · · · ≤ f ≤ · · · ≤ ψ2(x) ≤ ψ1(x),

and

(2) lim
k→∞

∫ R

[a,b]

ϕk(x) dx = lim
k→∞

∫ R

[a,b]

ψk(x)dx =
∫ R

[a,b]

f(x) dx.

Several observations are in order. First, it follows immediately from their
definition that for step functions the Riemann and Lebesgue integrals
agree; therefore
(3)∫ R

[a,b]

ϕk(x) dx =
∫ L

[a,b]

ϕk(x) dx and
∫ R

[a,b]

ψk(x) dx =
∫ L

[a,b]

ψk(x) dx

1See also Section 1 of the Appendix in Book I.
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for all k ≥ 1. Next, if we let

ϕ̃(x) = lim
k→∞

ϕk(x) and ψ̃(x) = lim
k→∞

ψk(x),

we have ϕ̃ ≤ f ≤ ψ̃. Moreover, both ϕ̃ and ψ̃ are measurable (being the
limit of step functions), and the bounded convergence theorem yields

lim
k→∞

∫ L

[a,b]

ϕk(x) dx =
∫ L

[a,b]

ϕ̃(x) dx

and

lim
k→∞

∫ L

[a,b]

ψk(x) dx =
∫ L

[a,b]

ψ̃(x) dx.

This together with (2) and (3) yields
∫ L

[a,b]

(ψ̃(x)− ϕ̃(x)) dx = 0,

and since ψk − ϕk ≥ 0, we must have ψ̃ − ϕ̃ ≥ 0. By the observation
following the proof of the bounded convergence theorem, we conclude
that ψ̃ − ϕ̃ = 0 a.e., and therefore ϕ̃ = ψ̃ = f a.e., which proves that f
is measurable. Finally, since ϕk → f almost everywhere, we have (by
definition)

lim
k→∞

∫ L

[a,b]

ϕk(x) dx =
∫ L

[a,b]

f(x) dx,

and by (2) and (3) we see that
∫R
[a,b]

f(x) dx =
∫ L
[a,b]

f(x) dx, as desired.

Stage three: non-negative functions

We proceed with the integrals of functions that are measurable and non-
negative but not necessarily bounded. It will be important to allow
these functions to be extended-valued, that is, these functions may take
on the value +∞ (on a measurable set). We recall in this connection the
convention that one defines the supremum of a set of positive numbers
to be +∞ if the set is unbounded.

In the case of such a function f we define its (extended) Lebesgue
integral by ∫

f(x) dx = sup
g

∫
g(x) dx,
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where the supremum is taken over all measurable functions g such that
0 ≤ g ≤ f , and where g is bounded and supported on a set of finite
measure.

With the above definition of the integral, there are only two possible
cases; the supremum is either finite, or infinite. In the first case, when∫

f(x) dx < ∞, we shall say that f is Lebesgue integrable or simply
integrable.

Clearly, if E is any measurable subset of Rd, and f ≥ 0, then fχE is
also positive, and we define

∫

E

f(x) dx =
∫

f(x)χE(x) dx.

Simple examples of functions on Rd that are integrable (or non-integrable)
are given by

fa(x) =
{ |x|−a if |x| ≤ 1,

0 if |x| > 1.

Fa(x) =
1

1 + |x|a , all x ∈ Rd.

Then fa is integrable exactly when a < d, while Fa is integrable exactly
when a > d. See the discussion following Corollary 1.10 and also Exer-
cise 10.

Proposition 1.6 The integral of non-negative measurable functions en-
joys the following properties:

(i) Linearity. If f, g ≥ 0, and a, b are positive real numbers, then
∫

(af + bg) = a

∫
f + b

∫
g.

(ii) Additivity. If E and F are disjoint subsets of Rd, and f ≥ 0, then
∫

E∪F

f =
∫

E

f +
∫

F

f.

(iii) Monotonicity. If 0 ≤ f ≤ g, then
∫

f ≤
∫

g.
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(iv) If g is integrable and 0 ≤ f ≤ g, then f is integrable.

(v) If f is integrable, then f(x) < ∞ for almost every x.

(vi) If
∫

f = 0, then f(x) = 0 for almost every x.

Proof. Of the first four assertions, only (i) is not an immediate
consequence of the definitions, and to prove it we argue as follows. We
take a = b = 1 and note that if ϕ ≤ f and ψ ≤ g, where both ϕ and ψ are
bounded and supported on sets of finite measure, then ϕ + ψ ≤ f + g,
and ϕ + ψ is also bounded and supported on a set of finite measure.
Consequently

∫
f +

∫
g ≤

∫
(f + g).

To prove the reverse inequality, suppose η is bounded and supported on a
set of finite measure, and η ≤ f + g. If we define η1(x) = min(f(x), η(x))
and η2 = η − η1, we note that

η1 ≤ f and η2 ≤ g.

Moreover both η1, η2 are bounded and supported on sets of finite mea-
sure. Hence

∫
η =

∫
(η1 + η2) =

∫
η1 +

∫
η2 ≤

∫
f +

∫
g.

Taking the supremum over η yields the required inequality.
To prove the conclusion (v) we argue as follows. Suppose Ek = {x :

f(x) ≥ k}, and E∞ = {x : f(x) = ∞}. Then
∫

f ≥
∫

χEk
f ≥ km(Ek),

hence m(Ek) → 0 as k →∞. Since Ek ↘ E∞, Corollary 3.3 in the pre-
vious chapter implies that m(E∞) = 0.

The proof of (vi) is the same as the observation following Theorem 1.4.

We now turn our attention to some important convergence theorems
for the class of non-negative measurable functions. To motivate the re-
sults that follow, we ask the following question: Suppose fn ≥ 0 and
fn(x) → f(x) for almost every x. Is it true that

∫
fn dx → ∫

f dx ? Un-
fortunately, the example that follows provides a negative answer to this,
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and shows that we must change our formulation of the question to obtain
a positive convergence result.

Let

fn(x) =
{

n if 0 < x < 1/n,
0 otherwise.

Then fn(x) → 0 for all x, yet
∫

fn(x) dx = 1 for all n. In this particular
example, the limit of the integrals is greater than the integral of the limit
function. This turns out to be the case in general, as we shall see now.

Lemma 1.7 (Fatou) Suppose {fn} is a sequence of measurable func-
tions with fn ≥ 0. If limn→∞ fn(x) = f(x) for a.e. x, then

∫
f ≤ lim inf

n→∞

∫
fn.

Proof. Suppose 0 ≤ g ≤ f , where g is bounded and supported on a
set E of finite measure. If we set gn(x) = min(g(x), fn(x)), then gn is
measurable, supported on E, and gn(x) → g(x) a.e., so by the bounded
convergence theorem ∫

gn →
∫

g.

By construction, we also have gn ≤ fn, so that
∫

gn ≤
∫

fn, and therefore
∫

g ≤ lim inf
n→∞

∫
fn.

Taking the supremum over all g yields the desired inequality.

In particular, we do not exclude the cases
∫

f = ∞, or lim infn→∞ fn =
∞.

We can now immediately deduce the following series of corollaries.

Corollary 1.8 Suppose f is a non-negative measurable function, and
{fn} a sequence of non-negative measurable functions with fn(x) ≤ f(x)
and fn(x) → f(x) for almost every x. Then

lim
n→∞

∫
fn =

∫
f.

Proof. Since fn(x) ≤ f(x) a.e x, we necessarily have
∫

fn ≤
∫

f for
all n; hence

lim sup
n→∞

∫
fn ≤

∫
f.
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This inequality combined with Fatou’s lemma proves the desired limit.

In particular, we can now obtain a basic convergence theorem for the
class of non-negative measurable functions. Its statement requires the
following notation.

In analogy with the symbols ↗ and ↘ used to describe increasing and
decreasing sequences of sets, we shall write

fn ↗ f

whenever {fn}∞n=1 is a sequence of measurable functions that satisfies

fn(x) ≤ fn+1(x) a.e x, all n ≥ 1 and lim
n→∞

fn(x) = f(x) a.e x.

Similarly, we write fn ↘ f whenever

fn(x) ≥ fn+1(x) a.e x, all n ≥ 1 and lim
n→∞

fn(x) = f(x) a.e x.

Corollary 1.9 (Monotone convergence theorem) Suppose {fn} is
a sequence of non-negative measurable functions with fn ↗ f . Then

lim
n→∞

∫
fn =

∫
f.

The monotone convergence theorem has the following useful conse-
quence:

Corollary 1.10 Consider a series
∑∞

k=1 ak(x), where ak(x) ≥ 0 is mea-
surable for every k ≥ 1. Then

∫ ∞∑

k=1

ak(x) dx =
∞∑

k=1

∫
ak(x) dx.

If
∑∞

k=1

∫
ak(x) dx is finite, then the series

∑∞
k=1 ak(x) converges for

a.e. x.

Proof. Let fn(x) =
∑n

k=1 ak(x) and f(x) =
∑∞

k=1 ak(x). The func-
tions fn are measurable, fn(x) ≤ fn+1(x), and fn(x) → f(x) as n tends
to infinity. Since

∫
fn =

n∑

k=1

∫
ak(x) dx,
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the monotone convergence theorem implies

∞∑

k=1

∫
ak(x) dx =

∫ ∞∑

k=1

ak(x) dx.

If
∑∫

ak < ∞, then the above implies that
∑∞

k=1 ak(x) is integrable,
and by our earlier observation, we conclude that

∑∞
k=1 ak(x) is finite

almost everywhere.

We give two nice illustrations of this last corollary.

The first consists of another proof of the Borel-Cantelli lemma (see
Exercise 16, Chapter 1), which says that if E1, E2, . . . is a collection
of measurable subsets with

∑
m(Ek) < ∞, then the set of points that

belong to infinitely many sets Ek has measure zero. To prove this fact,
we let

ak(x) = χEk
(x),

and note that a point x belongs to infinitely many sets Ek if and only
if

∑∞
k=1 ak(x) = ∞. Our assumption on

∑
m(Ek) says precisely that∑∞

k=1

∫
ak(x) dx < ∞, and the corollary implies that

∑∞
k=1 ak(x) is finite

except possibly on a set of measure zero, and thus the Borel-Cantelli
lemma is proved.

The second illustration will be useful in our discussion of approxima-
tions to the identity in Chapter 3. Consider the function

f(x) =
{

1
|x|d+1 if x 6= 0,

0 otherwise.

We prove that f is integrable outside any ball, |x| ≥ ε, and moreover

∫

|x|≥ε

f(x) dx ≤ C

ε
, for some constant C > 0.

Indeed, if we let Ak = {x ∈ Rd : 2kε < |x| ≤ 2k+1ε}, and define

g(x) =
∞∑

k=0

ak(x) where ak(x) =
1

(2kε)d+1
χAk

(x),

then we must have f(x) ≤ g(x), and hence
∫

f ≤ ∫
g. Since the set Ak

is obtained from A = {1 < |x| < 2} by a dilation of factor 2kε, we have
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by the relative dilation-invariance properties of the Lebesgue measure,
that m(Ak) = (2kε)dm(A). Also by Corollary 1.10, we see that

∫
g =

∞∑

k=0

m(Ak)
(2kε)d+1

= m(A)
∞∑

k=0

(2kε)d

(2kε)d+1
=

C

ε
,

where C = 2m(A). Note that the same dilation-invariance property in
fact shows that

∫

|x|≥ε

dx

|x|d+1
=

1
ε

∫

|x|≥1

dx

|x|d+1
.

See also the identity (7) below.

Stage four: general case

If f is any real-valued measurable function on Rd, we say that f is
Lebesgue integrable (or just integrable) if the non-negative measur-
able function |f | is integrable in the sense of the previous section.

If f is Lebesgue integrable, we give a meaning to its integral as follows.
First, we may define

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0),

so that both f+ and f− are non-negative and f+ − f− = f . Since f± ≤
|f |, both functions f+ and f− are integrable whenever f is, and we then
define the Lebesgue integral of f by

∫
f =

∫
f+ −

∫
f−.

In practice one encounters many decompositions f = f1 − f2, where
f1, f2 are both non-negative integrable functions, and one would expect
that regardless of the decomposition of f , we always have

∫
f =

∫
f1 −

∫
f2.

In other words, the definition of the integral should be independent of the
decomposition f = f1 − f2. To see why this is so, suppose f = g1 − g2

is another decomposition where both g1 and g2 are non-negative and
integrable. Since f1 − f2 = g1 − g2 we have f1 + g2 = g1 + f2; but both
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sides of this last identity consist of positive measurable functions, so the
linearity of the integral in this case yields

∫
f1 +

∫
g2 =

∫
g1 +

∫
f2.

Since all integrals involved are finite, we find the desired result
∫

f1 −
∫

f2 =
∫

g1 −
∫

g2.

In considering the above definitions it is useful to keep in mind the
following small observations. Both the integrability of f , and the value
of its integral are unchanged if we modify f arbitrarily on a set of measure
zero. It is therefore useful to adopt the convention that in the context
of integration we allow our functions to be undefined on sets of measure
zero. Moreover, if f is integrable, then by (v) of Proposition 1.6, it is
finite-valued almost everywhere. Thus, availing ourselves of the above
convention, we can always add two integrable functions f and g, since
the ambiguity of f + g, due to the extended values of each, resides in a
set of measure zero. Moreover, we note that when speaking of a function
f , we are, in effect, also speaking about the collection of all functions
that equal f almost everywhere.

Simple applications of the definition and the properties proved previ-
ously yield all the elementary properties of the integral:

Proposition 1.11 The integral of Lebesgue integrable functions is lin-
ear, additive, monotonic, and satisfies the triangle inequality.

We now gather two results which, although instructive in their own
right, are also needed in the proof of the next theorem.

Proposition 1.12 Suppose f is integrable on Rd. Then for every ε > 0:

(i) There exists a set of finite measure B (a ball, for example) such
that ∫

Bc

|f | < ε.

(ii) There is a δ > 0 such that
∫

E

|f | < ε whenever m(E) < δ.
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The last condition is known as absolute continuity.

Proof. By replacing f with |f | we may assume without loss of gener-
ality that f ≥ 0.

For the first part, let BN denote the ball of radius N centered at the
origin, and note that if fN (x) = f(x)χBN

(x), then fN ≥ 0 is measur-
able, fN (x) ≤ fN+1(x), and limN→∞ fN (x) = f(x). By the monotone
convergence theorem, we must have

lim
N→∞

∫
fN =

∫
f.

In particular, for some large N ,

0 ≤
∫

f −
∫

fχBN
< ε,

and since 1− χBN
= χBc

N
, this implies

∫
Bc

N
f < ε, as we set out to prove.

For the second part, assuming again that f ≥ 0, we let fN (x) = f(x)χEN

where

EN = {x : f(x) ≤ N}.

Once again, fN ≥ 0 is measurable, fN (x) ≤ fN+1(x), and given ε > 0
there exists (by the monotone convergence theorem) an integer N > 0
such that ∫

(f − fN ) <
ε

2
.

We now pick δ > 0 so that Nδ < ε/2. If m(E) < δ, then
∫

E

f =
∫

E

(f − fN ) +
∫

E

fN

≤
∫

(f − fN ) +
∫

E

fN

≤
∫

(f − fN ) + Nm(E)

≤ ε

2
+

ε

2
= ε.

This concludes the proof of the proposition.

Intuitively, integrable functions should in some sense vanish at infinity
since their integrals are finite, and the first part of the proposition at-
taches a precise meaning to this intuition. One should observe, however,
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that integrability need not guarantee the more naive pointwise vanishing
as |x| becomes large. See Exercise 6.

We are now ready to prove a cornerstone of the theory of Lebesgue
integration, the dominated convergence theorem. It can be viewed as a
culmination of our efforts, and is a general statement about the interplay
between limits and integrals.

Theorem 1.13 Suppose {fn} is a sequence of measurable functions such
that fn(x) → f(x) a.e. x, as n tends to infinity. If |fn(x)| ≤ g(x), where
g is integrable, then

∫
|fn − f | → 0 as n →∞,

and consequently
∫

fn →
∫

f as n →∞.

Proof. For each N ≥ 0 let EN = {x : |x| ≤ N, g(x) ≤ N}. Given
ε > 0, we may argue as in the first part of the previous lemma, to see
that there exists N so that

∫
Ec

N
g < ε. Then the functions fnχEN

are
bounded (by N) and supported on a set of finite measure, so that by the
bounded convergence theorem, we have

∫

EN

|fn − f | < ε, for all large n.

Hence, we obtain the estimate
∫
|fn − f | =

∫

EN

|fn − f |+
∫

Ec
N

|fn − f |

≤
∫

EN

|fn − f |+ 2
∫

Ec
N

g

≤ ε + 2ε = 3ε

for all large n. This proves the theorem.

Complex-valued functions

If f is a complex-valued function on Rd, we may write it as

f(x) = u(x) + iv(x),
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where u and v are real-valued functions called the real and imaginary
parts of f , respectively. The function f is measurable if and only if both u
and v are measurable. We then say that f is Lebesgue integrable if the
function |f(x)| = (u(x)2 + v(x)2)1/2 (which is non-negative) is Lebesgue
integrable in the sense defined previously.

It is clear that

|u(x)| ≤ |f(x)| and |v(x)| ≤ |f(x)|.

Also, if a, b ≥ 0, one has (a + b)1/2 ≤ a1/2 + b1/2, so that

|f(x)| ≤ |u(x)|+ |v(x)|.

As a result of these simple inequalities, we deduce that a complex-valued
function is integrable if and only if both its real and imaginary parts are
integrable. Then, the Lebesgue integral of f is defined by

∫
f(x) dx =

∫
u(x) dx + i

∫
v(x) dx.

Finally, if E is a measurable subset of Rd, and f is a complex-valued
measurable function on E, we say that f is Lebesgue integrable on E if
fχE is integrable on Rd, and we define

∫
E

f =
∫

fχE .

The collection of all complex-valued integrable functions on a mea-
surable subset E ⊂ Rd forms a vector space over C. Indeed, if f and g
are integrable, then so is f + g, since the triangle inequality gives |(f +
g)(x)| ≤ |f(x)|+ |g(x)|, and monotonicity of the integral then yields

∫

E

|f + g| ≤
∫

E

|f |+
∫

E

|g| < ∞.

Also, it is clear that if a ∈ C and if f is integrable, then so is af . Finally,
the integral continues to be linear over C.

2 The space L1 of integrable functions

The fact that the integrable functions form a vector space is an impor-
tant observation about the algebraic properties of such functions. A
fundamental analytic fact is that this vector space is complete in the
appropriate norm.
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For any integrable function f on Rd we define the norm2 of f ,

‖f‖ = ‖f‖L1 = ‖f‖L1(Rd) =
∫

Rd

|f(x)| dx.

The collection of all integrable functions with the above norm gives a
(somewhat imprecise) definition of the space L1(Rd). We also note that
‖f‖ = 0 if and only if f = 0 almost everywhere (see Proposition 1.6),
and this simple property of the norm reflects the practice we have al-
ready adopted not to distinguish two functions that agree almost every-
where. With this in mind, we take the precise definition of L1(Rd) to be
the space of equivalence classes of integrable functions, where we define
two functions to be equivalent if they agree almost everywhere. Often,
however, it is convenient to retain the (imprecise) terminology that an
element f ∈ L1(Rd) is an integrable function, even though it is only an
equivalence class of such functions. Note that by the above, the norm
‖f‖ of an element f ∈ L1(Rd) is well-defined by the choice of any inte-
grable function in its equivalence class. Moreover, L1(Rd) inherits the
property that it is a vector space. This and other straightforward facts
are summarized in the following proposition.

Proposition 2.1 Suppose f and g are two functions in L1(Rd).

(i) ‖af‖L1(Rd) = |a| ‖f‖L1(Rd) for all a ∈ C.

(ii) ‖f + g‖L1(Rd) ≤ ‖f‖L1(Rd) + ‖g‖L1(Rd).

(iii) ‖f‖L1(Rd) = 0 if and only if f = 0 a.e.

(iv) d(f, g) = ‖f − g‖L1(Rd) defines a metric on L1(Rd).

In (iv), we mean that d satisfies the following conditions. First, d(f, g) ≥
0 for all integrable functions f and g, and d(f, g) = 0 if and only if f = g
a.e. Also, d(f, g) = d(g, f), and finally, d satisfies the triangle inequality

d(f, g) ≤ d(f, h) + d(h, g), for all f, g, h ∈ L1(Rd).

A space V with a metric d is said to be complete if for every Cauchy
sequence {xk} in V (that is, d(xk, x`) → 0 as k, ` →∞) there exists
x ∈ V such that limk→∞ xk = x in the sense that

d(xk, x) → 0, as k →∞.

Our main goal of completing the space of Riemann integrable functions
will be attained once we have established the next important theorem.

2In this chapter the only norm we consider is the L1-norm, so we often write ‖f‖ for
‖f‖L1 . Later, we shall have occasion to consider other norms, and then we shall modify
our notation accordingly.
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Theorem 2.2 (Riesz-Fischer) The vector space L1 is complete in its
metric.

Proof. Suppose {fn} is a Cauchy sequence in the norm, so that ‖fn −
fm‖ → 0 as n, m →∞. The plan of the proof is to extract a subsequence
of {fn} that converges to f , both pointwise almost everywhere and in
the norm.

Under ideal circumstances we would have that the sequence {fn} con-
verges almost everywhere to a limit f , and we would then prove that the
sequence converges to f also in the norm. Unfortunately, almost every-
where convergence does not hold for general Cauchy sequences (see Exer-
cise 12). The main point, however, is that if the convergence in the norm
is rapid enough, then almost everywhere convergence is a consequence,
and this can be achieved by dealing with an appropriate subsequence of
the original sequence.

Indeed, consider a subsequence {fnk
}∞k=1 of {fn} with the following

property:

‖fnk+1 − fnk
‖ ≤ 2−k, for all k ≥ 1.

The existence of such a subsequence is guaranteed by the fact that ‖fn −
fm‖ ≤ ε whenever n,m ≥ N(ε), so that it suffices to take nk = N(2−k).

We now consider the series whose convergence will be seen below,

f(x) = fn1(x) +
∞∑

k=1

(fnk+1(x)− fnk
(x))

and

g(x) = |fn1(x)|+
∞∑

k=1

|fnk+1(x)− fnk
(x)|,

and note that
∫
|fn1 |+

∞∑

k=1

∫
|fnk+1 − fnk

| ≤
∫
|fn1 |+

∞∑

k=1

2−k < ∞.

So the monotone convergence theorem implies that g is integrable, and
since |f | ≤ g, hence so is f . In particular, the series defining f converges
almost everywhere, and since the partial sums of this series are precisely
the fnk

(by construction of the telescopic series), we find that

fnk
(x) → f(x) a.e. x.
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To prove that fnk
→ f in L1 as well, we simply observe that |f − fnk

| ≤ g
for all k, and apply the dominated convergence theorem to get ‖fnk

−
f‖L1 → 0 as k tends to infinity.

Finally, the last step of the proof consists in recalling that {fn} is
Cauchy. Given ε, there exists N such that for all n,m > N we have
‖fn − fm‖ < ε/2. If nk is chosen so that nk > N , and ‖fnk

− f‖ < ε/2,
then the triangle inequality implies

‖fn − f‖ ≤ ‖fn − fnk
‖+ ‖fnk

− f‖ < ε

whenever n > N . Thus {fn} has the limit f in L1, and the proof of the
theorem is complete.

Since every sequence that converges in the norm is a Cauchy sequence
in that norm, the argument in the proof of the theorem yields the fol-
lowing.

Corollary 2.3 If {fn}∞n=1 converges to f in L1, then there exists a sub-
sequence {fnk

}∞k=1 such that

fnk
(x) → f(x) a.e. x.

We say that a family G of integrable functions is dense in L1 if for any
f ∈ L1 and ε > 0, there exists g ∈ G so that ‖f − g‖L1 < ε. Fortunately
we are familiar with many families that are dense in L1, and we describe
some in the theorem that follows. These are useful when one is faced
with the problem of proving some fact or identity involving integrable
functions. In this situation a general principle applies: the result is often
easier to prove for a more restrictive class of functions (like the ones in
the theorem below), and then a density (or limiting) argument yields the
result in general.

Theorem 2.4 The following families of functions are dense in L1(Rd):

(i) The simple functions.

(ii) The step functions.

(iii) The continuous functions of compact support.

Proof. Let f be an integrable function on Rd. First, we may assume
that f is real-valued, because we may approximate its real and imaginary
parts independently. If this is the case, we may then write f = f+ − f−,
where f+, f− ≥ 0, and it now suffices to prove the theorem when f ≥ 0.
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For (i), Theorem 4.1 in Chapter 1 guarantees the existence of a se-
quence {ϕk} of non-negative simple functions that increase to f point-
wise. By the dominated convergence theorem (or even simply the mono-
tone convergence theorem) we then have

‖f − ϕk‖L1 → 0 as k →∞.

Thus there are simple functions that are arbitrarily close to f in the L1

norm.

For (ii), we first note that by (i) it suffices to approximate simple
functions by step functions. Then, we recall that a simple function is
a finite linear combination of characteristic functions of sets of finite
measure, so it suffices to show that if E is such a set, then there is a
step function ψ so that ‖χE − ψ‖L1 is small. However, we now recall
that this argument was already carried out in the proof of Theorem 4.3,
Chapter 1. Indeed, there it is shown that there is an almost disjoint
family of rectangles {Rj} with m(E4⋃M

j=1 Rj) ≤ 2ε. Thus χE and ψ =∑
j χRj

differ at most on a set of measure 2ε, and as a result we find
that ‖χE − ψ‖L1 < 2ε.

By (ii), it suffices to establish (iii) when f is the characteristic function
of a rectangle. In the one-dimensional case, where f is the characteristic
function of an interval [a, b], we may choose a continuous piecewise linear
function g defined by

g(x) =
{

1 if a ≤ x ≤ b,
0 if x ≤ a− ε or x ≥ b + ε,

and with g linear on the intervals [a− ε, a] and [b, b + ε]. Then ‖f −
g‖L1 < 2ε. In d dimensions, it suffices to note that the characteristic
function of a rectangle is the product of characteristic functions of inter-
vals. Then, the desired continuous function of compact support is simply
the product of functions like g defined above.

The results above for L1(Rd) lead immediately to an extension in which
Rd can be replaced by any fixed subset E of positive measure. In fact
if E is such a subset, we can define L1(E) and carry out the arguments
that are analogous to L1(Rd). Better yet, we can proceed by extending
any function f on E by setting f̃ = f on E and f̃ = 0 on Ec, and defining
‖f‖L1(E) = ‖f̃‖L1(Rd). The analogues of Proposition 2.1 and Theorem 2.2
then hold for the space L1(E).
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Invariance Properties

If f is a function defined on Rd, the translation of f by a vector h ∈ Rd

is the function fh, defined by fh(x) = f(x− h). Here we want to examine
some basic aspects of translations of integrable functions.

First, there is the translation-invariance of the integral. One way to
state this is as follows: if f is an integrable function, then so is fh and

(4)
∫

Rd

f(x− h) dx =
∫

Rd

f(x) dx.

We check this assertion first when f = χE , the characteristic function
of a measurable set E. Then obviously fh = χEh

, where Eh = {x + h :
x ∈ E}, and thus the assertion follows because m(Eh) = m(E) (see Sec-
tion 3 in Chapter 1). As a result of linearity, the identity (4) holds for
all simple functions. Now if f is non-negative and {ϕn} is a sequence of
simple functions that increase pointwise a.e to f (such a sequence exists
by Theorem 4.1 in the previous chapter), then {(ϕn)h} is a sequence of
simple functions that increase to fh pointwise a.e, and the monotone con-
vergence theorem implies (4) in this special case. Thus, if f is complex-
valued and integrable we see that

∫
Rd |f(x− h)| dx =

∫
Rd |f(x)| dx, which

shows that fh ∈ L1(Rd) and also ‖fh‖ = ‖f‖. From the definitions, we
then conclude that (4) holds whenever f ∈ L1.

Incidentally, using the relative invariance of Lebesgue measure under
dilations and reflections (Section 3, Chapter 1) one can prove in the same
way that if f(x) is integrable, so is f(δx), δ > 0, and f(−x), and
(5)

δd

∫

Rd

f(δx) dx =
∫

Rd

f(x) dx, while
∫

Rd

f(−x) dx =
∫

Rd

f(x) dx.

We digress to record for later use two useful consequences of the above
invariance properties:

(i) Suppose that f and g are a pair of measurable functions on Rd so
that for some fixed x ∈ Rd the function y 7→ f(x− y)g(y) is integrable.
As a consequence, the function y 7→ f(y)g(x− y) is then also integrable
and we have

(6)
∫

Rd

f(x− y)g(y) dy =
∫

Rd

f(y)g(x− y) dy.

This follows from (4) and (5) on making the change of variables which
replaces y by x− y, and noting that this change is a combination of a
translation and a reflection.
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The integral on the left-hand side is denoted by (f ∗ g)(x) and is de-
fined as the convolution of f and g. Thus (6) asserts the commutativity
of the convolution product.

(ii) Using (5) one has that for all ε > 0

(7)
∫

|x|≥ε

dx

|x|a = ε−a+d

∫

|x|≥1

dx

|x|a whenever a > d,

and

(8)
∫

|x|≤ε

dx

|x|a = ε−a+d

∫

|x|≤1

dx

|x|a whenever a < d.

It can also be seen that the integrals
∫
|x|≥1

dx
|x|a and

∫
|x|≤1

dx
|x|a (respec-

tively, when a > d and a < d) are finite by the argument that appears
after Corollary 1.10.

Translations and continuity

We shall next examine how continuity properties of f are related to the
way the translations fh vary with h. Note that for any given x ∈ Rd, the
statement that fh(x) → f(x) as h → 0 is the same as the continuity of
f at the point x.

However, a general f which is integrable may be discontinuous at ev-
ery x, even when corrected on a set of measure zero; see Exercise 15.
Nevertheless, there is an overall continuity that an arbitrary f ∈ L1(Rd)
enjoys, one that holds in the norm.

Proposition 2.5 Suppose f ∈ L1(Rd). Then

‖fh − f‖L1 → 0 as h → 0.

The proof is a simple consequence of the approximation of integrable
functions by continuous functions of compact support as given in The-
orem 2.4. In fact for any ε > 0, we can find such a function g so that
‖f − g‖ < ε. Now

fh − f = (gh − g) + (fh − gh)− (f − g).

However, ‖fh − gh‖ = ‖f − g‖ < ε, while since g is continuous and has
compact support we have that clearly

‖gh − g‖ =
∫

Rd

|g(x− h)− g(x)| dx → 0 as h → 0.

So if |h| < δ, where δ is sufficiently small, then ‖gh − g‖ < ε, and as a
result ‖fh − f‖ < 3ε, whenever |h| < δ.
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3 Fubini’s theorem

In elementary calculus integrals of continuous functions of several vari-
ables are often calculated by iterating one-dimensional integrals. We
shall now examine this important analytic device from the general point
of view of Lebesgue integration in Rd, and we shall see that a number of
interesting issues arise.

In general, we may write Rd as a product

Rd = Rd1 × Rd2 where d = d1 + d2, and d1, d2 ≥ 1.

A point in Rd then takes the form (x, y), where x ∈ Rd1 and y ∈ Rd2 .
With such a decomposition of Rd in mind, the general notion of a slice,
formed by fixing one variable, becomes natural. If f is a function in
Rd1 × Rd2 , the slice of f corresponding to y ∈ Rd2 is the function fy of
the x ∈ Rd1 variable, given by

fy(x) = f(x, y).

Similarly, the slice of f for a fixed x ∈ Rd1 is fx(y) = f(x, y).
In the case of a set E ⊂ Rd1 × Rd2 we define its slices by

Ey = {x ∈ Rd1 : (x, y) ∈ E} and Ex = {y ∈ Rd2 : (x, y) ∈ E}.
See Figure 1 for an illustration.

x

y
Ey

Ex

Rd1

Rd2

Figure 1. Slices Ey and Ex (for fixed x and y) of a set E

3.1 Statement and proof of the theorem

That the theorem that follows is not entirely straightforward is clear
from the first difficulty that arises in its formulation, involving the mea-
surability of the functions and sets in question. In fact, even with the
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assumption that f is measurable on Rd, it is not necessarily true that
the slice fy is measurable on Rd1 for each y; nor does the corresponding
assertion necessarily hold for a measurable set: the slice Ey may not
be measurable for each y. An easy example arises in R2 by placing a
one-dimensional non-measurable set on the x-axis; the set E in R2 has
measure zero, but Ey is not measurable for y = 0. What saves us is that,
nevertheless, measurability holds for almost all slices.

The main theorem is as follows. We recall that by definition all inte-
grable functions are measurable.

Theorem 3.1 Suppose f(x, y) is integrable on Rd1 × Rd2 . Then for al-
most every y ∈ Rd2 :

(i) The slice fy is integrable on Rd1 .

(ii) The function defined by
∫
Rd1

fy(x) dx is integrable on Rd2 .

Moreover:

(iii)
∫

Rd2

(∫

Rd1

f(x, y) dx

)
dy =

∫

Rd

f .

Clearly, the theorem is symmetric in x and y so that we also may conclude
that the slice fx is integrable on Rd2 for a.e. x. Moreover,

∫
Rd2

fx(y) dy
is integrable, and

∫

Rd1

(∫

Rd2

f(x, y) dy

)
dx =

∫

Rd

f.

In particular, Fubini’s theorem states that the integral of f on Rd can
be computed by iterating lower-dimensional integrals, and that the iter-
ations can be taken in any order

∫

Rd2

(∫

Rd1

f(x, y) dx

)
dy =

∫

Rd1

(∫

Rd2

f(x, y) dy

)
dx =

∫

Rd

f.

We first note that we may assume that f is real-valued, since the
theorem then applies to the real and imaginary parts of a complex-valued
function. The proof of Fubini’s theorem which we give next consists of a
sequence of six steps. We begin by letting F denote the set of integrable
functions on Rd which satisfy all three conclusions in the theorem, and
set out to prove that L1(Rd) ⊂ F .

We proceed by first showing that F is closed under operations such
as linear combinations (Step 1) and limits (Step 2). Then we begin to
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construct families of functions in F . Since any integrable function is the
“limit” of simple functions, and simple functions are themselves linear
combinations of sets of finite measure, the goal quickly becomes to prove
that χE belongs to F whenever E is a measurable subset of Rd with
finite measure. To achieve this goal, we begin with rectangles and work
our way up to sets of type Gδ (Step 3), and sets of measure zero (Step 4).
Finally, a limiting argument shows that all integrable functions are in F .
This will complete the proof of Fubini’s theorem.

Step 1. Any finite linear combination of functions in F also belongs
to F .

Indeed, let {fk}N
k=1 ⊂ F . For each k there exists a set Ak ⊂ Rd2 of

measure 0 so that fy
k is integrable on Rd1 whenever y /∈ Ak. Then, if

A =
⋃N

k=1 Ak, the set A has measure 0, and in the complement of A,
the y-slice corresponding to any finite linear combination of the fk is
measurable, and also integrable. By linearity of the integral, we then
conclude that any linear combination of the fk’s belongs to F .

Step 2. Suppose {fk} is a sequence of measurable functions in F so
that fk ↗ f or fk ↘ f , where f is integrable (on Rd). Then f ∈ F .

By taking −fk instead of fk if necessary, we note that it suffices to
consider the case of an increasing sequence. Also, we may replace fk

by fk − f1 and assume that the fk’s are non-negative. Now, we observe
that an application of the monotone convergence theorem (Corollary 1.9)
yields

(9) lim
k→∞

∫

Rd

fk(x, y) dx dy =
∫

Rd

f(x, y) dx dy.

By assumption, for each k there exists a set Ak ⊂ Rd2 , so that fy
k is

integrable on Rd1 whenever y /∈ Ak. If A =
⋃∞

k=1 Ak, then m(A) = 0 in
Rd2 , and if y /∈ A, then fy

k is integrable on Rd1 for all k, and, by the
monotone convergence theorem, we find that

gk(y) =
∫

Rd1

fy
k (x) dx increases to a limit g(y) =

∫

Rd1

fy(x) dx

as k tends to infinity. By assumption, each gk(y) is integrable, so that
another application of the monotone convergence theorem yields

(10)
∫

Rd2

gk(y) dy →
∫

Rd2

g(y) dy as k →∞.
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By the assumption that fk ∈ F we have
∫

Rd2

gk(y) dy =
∫

Rd

fk(x, y) dx dy,

and combining this fact with (9) and (10), we conclude that
∫

Rd2

g(y) dy =
∫

Rd

f(x, y) dx dy.

Since f is integrable, the right-hand integral is finite, and this proves that
g is integrable. Consequently g(y) < ∞ a.e. y, hence fy is integrable for
a.e. y, and

∫

Rd2

(∫

Rd1

f(x, y) dx

)
dy =

∫

Rd

f(x, y) dx dy.

This proves that f ∈ F as desired.

Step 3. Any characteristic function of a set E that is a Gδ and of finite
measure belongs to F .
We proceed in stages of increasing order of generality.

(a) First suppose E is a bounded open cube in Rd, such that E = Q1 ×
Q2, where Q1 and Q2 are open cubes in Rd1 and Rd2 , respectively. Then,
for each y the function χE(x, y) is measurable in x, and integrable with

g(y) =
∫

Rd1

χE(x, y) dx

{ |Q1| if y ∈ Q2,
0 otherwise.

Consequently, g = |Q1|χQ2 is also measurable and integrable, with
∫

Rd2

g(y) dy = |Q1| |Q2|.

Since we initially have
∫
Rd χE(x, y) dx dy = |E| = |Q1| |Q2|, we deduce

that χE ∈ F .
(b) Now suppose E is a subset of the boundary of some closed cube.
Then, since the boundary of a cube has measure 0 in Rd, we have∫
Rd χE(x, y) dx dy = 0.
Next, we note, after an investigation of the various possibilities, that

for almost every y, the slice Ey has measure 0 in Rd1 , and therefore if
g(y) =

∫
Rd1

χE(x, y) dx we have g(y) = 0 for a.e. y. As a consequence,∫
Rd2

g(y) dy = 0, and therefore χE ∈ F .
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(c) Suppose now E is a finite union of closed cubes whose interiors are
disjoint, E =

⋃K
k=1 Qk. Then, if Q̃k denotes the interior of Qk, we may

write χE as a linear combination of the χQ̃k
and χAk

where Ak is a
subset of the boundary of Qk for k = 1, . . . ,K. By our previous analysis,
we know that χQk

and χAk
belong to F for all k, and since Step 1

guarantees that F is closed under finite linear combinations, we conclude
that χE ∈ F , as desired.
(d) Next, we prove that if E is open and of finite measure, then χE ∈
F . This follows from taking a limit in the previous case. Indeed, by
Theorem 1.4 in Chapter 1, we may write E as a countable union of
almost disjoint closed cubes

E =
∞⋃

j=1

Qj .

Consequently, if we let fk =
∑k

j=1 χQj , then we note that the functions
fk increase to f = χE , which is integrable since m(E) is finite. Therefore,
we may conclude by Step 2 that f ∈ F .
(e) Finally, if E is a Gδ of finite measure, then χE ∈ F . Indeed, by
definition, there exist open sets Õ1, Õ2, . . ., such that

E =
∞⋂

k=1

Õk.

Since E has finite measure, there exists an open set Õ0 of finite measure
with E ⊂ Õ0. If we let

Ok = O0 ∩
k⋂

j=1

Õj ,

then we note that we have a decreasing sequence of open sets of finite
measure O1 ⊃ O2 ⊃ · · · with

E =
∞⋂

k=1

Ok.

Therefore, the sequence of functions fk = χOk
decreases to f = χE , and

since χOk
∈ F for all k by (d) above, we conclude by Step 2 that χE

belongs to F .

Step 4. If E has measure 0, then χE belongs to F .
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Indeed, since E is measurable, we may choose a set G of type Gδ with
E ⊂ G and m(G) = 0 (Corollary 3.5, Chapter 1). Since χG ∈ F (by the
previous step) we find that

∫

Rd2

(∫

Rd1

χG(x, y) dx

)
dy =

∫

Rd

χG = 0.

Therefore ∫

Rd1

χG(x, y) dx = 0 for a.e. y.

Consequently, the slice Gy has measure 0 for a.e. y. The simple obser-
vation that Ey ⊂ Gy then shows that Ey has measure 0 for a.e. y, and∫
Rd1

χE(x, y) dx = 0 for a.e. y. Therefore,

∫

Rd2

(∫

Rd1

χE(x, y) dx

)
dy = 0 =

∫

Rd

χE ,

and thus χE ∈ F , as was to be shown.

Step 5. If E is any measurable subset of Rd with finite measure, then
χE belongs to F .
To prove this, recall first that there exists a set of finite measure G of
type Gδ, with E ⊂ G and m(G− E) = 0. Since

χE = χG − χG−E ,

and F is closed under linear combinations, we find that χE ∈ F , as
desired.

Step 6. This is the final step, which consists of proving that if f is
integrable, then f ∈ F .
We note first that f has the decomposition f = f+ − f−, where both f+

and f− are non-negative and integrable, so by Step 1 we may assume
that f is itself non-negative. By Theorem 4.1 in the previous chapter,
there exists a sequence {ϕk} of simple functions that increase to f . Since
each ϕk is a finite linear combination of characteristic functions of sets
with finite measure, we have ϕk ∈ F by Steps 5 and 1, hence f ∈ F by
Step 2.

3.2 Applications of Fubini’s theorem

Theorem 3.2 Suppose f(x, y) is a non-negative measurable function on
Rd1 × Rd2 . Then for almost every y ∈ Rd2 :
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(i) The slice fy is measurable on Rd1 .

(ii) The function defined by
∫
Rd1

fy(x) dx is measurable on Rd2 .

Moreover:

(iii)
∫

Rd2

(∫

Rd1

f(x, y) dx

)
dy =

∫

Rd

f(x, y) dx dy in the extended sense.

In practice, this theorem is often used in conjunction with Fubini’s
theorem.3 Indeed, suppose we are given a measurable function f on Rd

and asked to compute
∫
Rd f . To justify the use of iterated integration, we

first apply the present theorem to |f |. Using it, we may freely compute
(or estimate) the iterated integrals of the non-negative function |f |. If
these are finite, Theorem 3.2 guarantees that f is integrable, that is,∫ |f | < ∞. Then the hypothesis in Fubini’s theorem is verified, and we
may use that theorem in the calculation of the integral of f .

Proof of Theorem 3.2. Consider the truncations

fk(x, y) =
{

f(x, y) if |(x, y)| < k and f(x, y) < k,
0 otherwise.

Each fk is integrable, and by part (i) in Fubini’s theorem there exists a
set Ek ⊂ Rd2 of measure 0 such that the slice fy

k (x) is measurable for all
y ∈ Ec

k. Then, if we set E =
⋃

k Ek, we find that fy(x) is measurable for
all y ∈ Ec and all k. Moreover, m(E) = 0. Since fy

k ↗ fy, the monotone
convergence theorem implies that if y /∈ E, then

∫

Rd1

fk(x, y) dx ↗
∫

Rd1

f(x, y) dx as k →∞.

Again by Fubini’s theorem,
∫
Rd1

fk(x, y) dx is measurable for all y ∈ Ec,
hence so is

∫
Rd1

f(x, y) dx. Another application of the monotone conver-
gence theorem then gives

(11)
∫

Rd2

(∫

Rd1

fk(x, y) dx

)
dy →

∫

Rd2

(∫

Rd1

f(x, y) dx

)
dy.

By part (iii) in Fubini’s theorem we know that

(12)
∫

Rd2

(∫

Rd1

fk(x, y) dx

)
dy =

∫

Rd

fk.

3Theorem 3.2 was formulated by Tonelli. We will, however, use the short-hand of
referring to it, as well as Theorem 3.1 and Corollary 3.3, as Fubini’s theorem.
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A final application of the monotone convergence theorem directly to fk

also gives

(13)
∫

Rd

fk →
∫

Rd

f.

Combining (11), (12), and (13) completes the proof of Theorem 3.2.

Corollary 3.3 If E is a measurable set in Rd1 × Rd2 , then for almost
every y ∈ Rd2 the slice

Ey = {x ∈ Rd1 : (x, y) ∈ E}

is a measurable subset of Rd1 . Moreover m(Ey) is a measurable function
of y and

m(E) =
∫

Rd2

m(Ey) dy.

This is an immediate consequence of the first part of Theorem 3.2 applied
to the function χE . Clearly a symmetric result holds for the x-slices in
Rd2 .

We have thus established the basic fact that if E is measurable on
Rd1 × Rd2 , then for almost every y ∈ Rd2 the slice Ey is measurable in
Rd1 (and also the symmetric statement with the roles of x and y inter-
changed). One might be tempted to think that the converse assertion
holds. To see that this is not the case, note that if we let N denote a
non-measurable subset of R, and then define

E = [0, 1]×N ⊂ R× R,

we see that

Ey =
{

[0, 1] if y ∈ N ,
∅ if y /∈ N .

Thus Ey is measurable for every y. However, if E were measurable, then
the corollary would imply that Ex = {y ∈ R : (x, y) ∈ E} is measurable
for almost every x ∈ R, which is not true since Ex is equal to N for all
x ∈ [0, 1].

A more striking example is that of a set E in the unit square [0, 1]×
[0, 1] that is not measurable, and yet the slices Ey and Ex are measurable
with m(Ey) = 0 and m(Ex) = 1 for each x, y ∈ [0, 1]. The construction
of E is based on the existence of a highly paradoxical ordering ≺ of
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the reals, with the property that {x : x ≺ y} is a countable set for each
y ∈ R. (The construction of this ordering is discussed in Problem 5.)
Given this ordering we let

E = {(x, y) ∈ [0, 1]× [0, 1], with x ≺ y}.

Note that for each y ∈ [0, 1], Ey = {x : x ≺ y}; thus Ey is countable and
m(Ey) = 0. Similarly m(Ex) = 1, because Ex is the complement of a
denumerable set in [0, 1]. If E were measurable, it would contradict the
formula in Corollary 3.3.

In relating a set E to its slices Ex and Ey, matters are straightforward
for the basic sets which arise when we consider Rd as the product Rd1 ×
Rd2 . These are the product sets E = E1 ×E2, where Ej ⊂ Rdj .

Proposition 3.4 If E = E1 × E2 is a measurable subset of Rd, and
m∗(E2) > 0, then E1 is measurable.

Proof. By Corollary 3.3, we know that for a.e. y ∈ Rd2 , the slice
function

(χE1×E2)
y(x) = χE1(x)χE2(y)

is measurable as a function of x. In fact, we claim that there is some
y ∈ E2 such that the above slice function is measurable in x; for such a
y we would have χE1×E2(x, y) = χE1(x), and this would imply that E1

is measurable.
To prove the existence of such a y, we use the assumption that m∗(E2) >

0. Indeed, let F denote the set of y ∈ Rd2 such that the slice Ey is
measurable. Then m(F c) = 0 (by the previous corollary). However,
E2 ∩ F is not empty because m∗(E2 ∩ F ) > 0. To see this, note that
E2 = (E2 ∩ F )

⋃
(E2 ∩ F c), hence

0 < m∗(E2) ≤ m∗(E2 ∩ F ) + m∗(E2 ∩ F c) = m∗(E2 ∩ F ),

because E2 ∩ F c is a subset of a set of measure zero.

To deal with a converse of the above result, we need the following
lemma.

Lemma 3.5 If E1 ⊂ Rd1 and E2 ⊂ Rd2 , then

m∗(E1 × E2) ≤ m∗(E1) m∗(E2),

with the understanding that if one of the sets Ej has exterior measure
zero, then m∗(E1 ×E2) = 0.



84 Chapter 2. INTEGRATION THEORY

Proof. Let ε > 0. By definition, we can find cubes {Qk}∞k=1 in Rd1

and {Q′
`}∞`=1 in Rd2 such that

E1 ⊂
∞⋃

k=1

Qk, and E2 ⊂
∞⋃

`=1

Q′`

and

∞∑

k=1

|Qk| ≤ m∗(E1) + ε and
∞∑

`=1

|Q′
`| ≤ m∗(E2) + ε.

Since E1 × E2 ⊂
⋃∞

k,`=1 Qk ×Q′`, the sub-additivity of the exterior mea-
sure yields

m∗(E1 × E2) ≤
∞∑

k,`=1

|Qk ×Q′
`|

=

( ∞∑

k=1

|Qk|
)( ∞∑

`=1

|Q′
`|
)

≤ (m∗(E1) + ε)(m∗(E2) + ε).

If neither E1 nor E2 has exterior measure 0, then from the above we find

m∗(E1 × E2) ≤ m∗(E1) m∗(E2) + O(ε),

and since ε is arbitrary, we must have m∗(E1 × E2) ≤ m∗(E1) m∗(E2).
If for instance m∗(E1) = 0, consider for each positive integer j the

set Ej
2 = E2 ∩ {y ∈ Rd2 : |y| ≤ j}. Then, by the above argument, we

find that m∗(E1 × Ej
2) = 0. Since (E1 × Ej

2) ↗ (E1 × E2) as j →∞, we
conclude that m∗(E1 × E2) = 0.

Proposition 3.6 Suppose E1 and E2 are measurable subsets of Rd1 and
Rd2 , respectively. Then E = E1 × E2 is a measurable subset of Rd. More-
over,

m(E) = m(E1) m(E2),

with the understanding that if one of the sets Ej has measure zero, then
m(E) = 0.

Proof. It suffices to prove that E is measurable, because then the
assertion about m(E) follows from Corollary 3.3. Since each set Ej is
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measurable, there exist sets Gj ⊂ Rdj of type Gδ, with Gj ⊃ Ej and
m∗(Gj −Ej) = 0 for each j = 1, 2. (See Corollary 3.5 in Chapter 1.)
Clearly, G = G1 ×G2 is measurable in Rd1 × Rd2 and

(G1 ×G2)− (E1 × E2) ⊂ ((G1 −E1)×G2) ∪ (G1 × (G2 − E2)) .

By the lemma we conclude that m∗(G− E) = 0, hence E is measurable.

As a consequence of this proposition we have the following.

Corollary 3.7 Suppose f is a measurable function on Rd1 . Then the
function f̃ defined by f̃(x, y) = f(x) is measurable on Rd1 × Rd2 .

Proof. To see this, we may assume that f is real-valued, and recall
first that if a ∈ R and E1 = {x ∈ Rd1 : f(x) < a}, then E1 is measurable
by definition. Since

{(x, y) ∈ Rd1 × Rd2 : f̃(x, y) < a} = E1 × Rd2 ,

the previous proposition shows that {f̃(x, y) < a} is measurable for each
a ∈ R. Thus f̃(x, y) is a measurable function on Rd1 × Rd2 , as desired.

Finally, we return to an interpretation of the integral that arose first in
the calculus. We have in mind the notion that

∫
f describes the “area”

under the graph of f . Here we relate this to the Lebesgue integral and
show how it extends to our more general context.

Corollary 3.8 Suppose f(x) is a non-negative function on Rd, and let

A = {(x, y) ∈ Rd × R : 0 ≤ y ≤ f(x)}.

Then:

(i) f is measurable on Rd if and only if A is measurable in Rd+1.

(ii) If the conditions in (i) hold, then
∫

Rd

f(x) dx = m(A).

Proof. If f is measurable on Rd, then the previous proposition guar-
antees that the function

F (x, y) = y − f(x)
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is measurable on Rd+1, so we immediately see that A = {y ≥ 0} ∩ {F ≤
0} is measurable.

Conversely, suppose that A is measurable. We note that for each
x ∈ Rd1 the slice Ax = {y ∈ R : (x, y) ∈ A} is a closed segment, namely
Ax = [0, f(x)]. Consequently Corollary 3.3 (with the roles of x and y
interchanged) yields the measurability of m(Ax) = f(x). Moreover

m(A) =
∫

χA(x, y) dx dy =
∫

Rd1

m(Ax) dx =
∫

Rd1

f(x) dx,

as was to be shown.

We conclude this section with a useful result.

Proposition 3.9 If f is a measurable function on Rd, then the function
f̃(x, y) = f(x− y) is measurable on Rd × Rd.

By picking E = {z ∈ Rd : f(z) < a}, we see that it suffices to prove
that whenever E is a measurable subset of Rd, then Ẽ = {(x, y) : x− y ∈
E} is a measurable subset of Rd × Rd.

Note first that if O is an open set, then Õ is also open. Taking count-
able intersections shows that if E is a Gδ set, then so is Ẽ. Assume
now that m(Ẽk) = 0 for each k, where Ẽk = Ẽ ∩Bk and Bk = {|y| < k}.
Again, take O to be open in Rd, and let us calculate m(Õ ∩Bk). We
have that χÕ∩Bk

= χO(x− y)χBk
(y). Hence

m(Õ ∩Bk) =
∫

χO(x− y)χBk
(y) dy dx

=
∫ (∫

χO(x− y) dx

)
χBk

(y) dy

= m(O) m(Bk),

by the translation-invariance of the measure. Now if m(E) = 0, there is
a sequence of open sets On such that E ⊂ On and m(On) → 0. It follows
from the above that Ẽk ⊂ Õn ∩Bk and m(Õn ∩Bk) → 0 in n for each
fixed k. This shows m(Ẽk) = 0, and hence m(Ẽ) = 0. The proof of the
proposition is concluded once we recall that any measurable set E can
be written as the difference of a Gδ and a set of measure zero.

4* A Fourier inversion formula

The question of the inversion of the Fourier transform encompasses in
effect the problem at the origin of Fourier analysis. This issue involves
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establishing the validity of the inversion formula for a function f in terms
of its Fourier transform f̂ , that is,

f̂(ξ)=
∫

Rd

f(x)e−2πix·ξ dx,(14)

f(x)=
∫

Rd

f̂(ξ)e2πix·ξ dξ.(15)

We have already encountered this problem in Book I in the rudimen-
tary case when in fact both f and f̂ were continuous and had rapid (or
moderate) decrease at infinity. In Book II we also considered the ques-
tion in the one-dimensional setting, seen from the viewpoint of complex
analysis. The most elegant and useful formulations of Fourier inversion
are in terms of the L2 theory, or in its greatest generality stated in the
language of distributions. We shall take up these matters systematically
later.4 It will, nevertheless, be enlightening to digress here to see what
our knowledge at this stage teaches us about this problem. We intend to
do this by presenting a variant of the inversion formula appropriate for
L1, one that is both simple and adequate in many circumstances.

To begin with, we need to have an idea of what can be said about the
Fourier transform of an arbitrary function in L1(Rd).

Proposition 4.1 Suppose f ∈ L1(Rd). Then f̂ defined by (14) is con-
tinuous and bounded on Rd.

In fact, since |f(x)e−2πix·ξ| = |f(x)|, the integral representing f̂ con-
verges for each ξ and supξ∈Rd |f̂(ξ)| ≤ ∫

Rd |f(x)| dx = ‖f‖. To verify the
continuity, note that for every x, f(x)e−2πix·ξ → f(x)e−2πix·ξ0 as ξ → ξ0,
where ξ0 is any point in Rd; hence f̂(ξ) → f̂(ξ0) by the dominated con-
vergence theorem.

One can assert a little more than the boundedness of f̂ ; namely, one
has f̂(ξ) → 0 as |ξ| → ∞, but not much more can be said about the
decrease at infinity of f̂ . (See Exercises 22 and 25.) As a consequence,
for general f ∈ L1(Rd) the function f̂ is not in L1(Rd), and the presumed
formula (15) becomes problematical. The following theorem evades this
difficulty and yet is useful in a number of situations.

Theorem 4.2 Suppose f ∈ L1(Rd) and assume also that f̂ ∈ L1(Rd).
Then the inversion formula (15) holds for almost every x.

An immediate corollary is the uniqueness of the Fourier transform
on L1.

4The L2 theory will be dealt with in Chapter 5, and distributions will be studied in
Book IV.
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Corollary 4.3 Suppose f̂(ξ) = 0 for all ξ. Then f = 0 a.e.

The proof of the theorem requires only that we adapt the earlier argu-
ments carried out for Schwartz functions in Chapter 5 of Book I to the
present context. We begin with the “multiplication formula.”

Lemma 4.4 Suppose f and g belong to L1(Rd). Then
∫

Rd

f̂(ξ)g(ξ) dξ =
∫

Rd

f(y)ĝ(y) dy.

Note that both integrals converge in view of the proposition above. Con-
sider the function F (ξ, y) = g(ξ)f(y)e−2πiξ·y defined for (ξ, y) ∈ Rd ×
Rd = R2d. It is measurable as a function on R2d in view of Corollary 3.7.
We now apply Fubini’s theorem to observe first that

∫

Rd

∫

Rd

|F (ξ, y)| dξ dy =
∫

Rd

|g(ξ)| dξ

∫

Rd

|f(y)| dy < ∞.

Next, if we evaluate
∫
Rd

∫
Rd F (ξ, y) dξ dy by writing it as

∫
Rd

(∫
Rd F (ξ, y) dξ

)
dy

we get the left-hand side of the desired equality. Evaluating the double
integral in the reverse order gives as the right-hand side, proving the
lemma.

Next we consider the modulated Gaussian, g(ξ) = e−πδ|ξ|2e2πix·ξ, where
for the moment δ and x are fixed, with δ > 0 and x ∈ Rd. An elementary
calculation gives5

ĝ(y) =
∫

Rd

e−πδ|ξ|2e2πi(x−y)·ξ dξ = δ−d/2e−π|x−y|2/δ,

which we will abbreviate as Kδ(x− y). We recognize Kδ as a “good
kernel” that satisfies:

(i)
∫

Rd

Kδ(y) dy = 1.

(ii) For each η > 0,
∫

|y|>η

Kδ(y) dy → 0 as δ → 0.

Applying the lemma gives

(16)
∫

Rd

f̂(ξ)e−πδ|ξ|2e2πix·ξ dξ =
∫

Rd

f(y)Kδ(x− y) dy.

5See for example Chapter 6 in Book I.
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Note that since f̂ ∈ L1(Rd), the dominated convergence theorem shows
that the left-hand side of (16) converges to

∫
Rd f̂(ξ)e2πix·ξ dξ as δ → 0, for

each x. As for the right-hand side, we make two successive change of vari-
ables y → y + x (a translation), and y → −y (a reflection), and take into
account the corresponding invariance of the integrals (see equations (4)
and (5)). Thus the right-hand side becomes

∫
Rd f(x− y)Kδ(y) dy, and

we will prove that this function converges in the L1-norm to f as δ → 0.
Indeed, we can write the difference as

∆δ(x) =
∫

Rd

f(x− y)Kδ(y) dy − f(x) =
∫

Rd

(f(x− y)− f(x))Kδ(y) dy,

because of property (i) above. Thus

|∆δ(x)| ≤
∫

Rd

|f(x− y)− f(x)|Kδ(y) dy.

We can now apply Fubini’s theorem, recalling that the measurability
of f(x) and f(x− y) on Rd × Rd are established in Corollary 3.7 and
Proposition 3.9. The result is

‖∆δ‖ ≤
∫

Rd

‖fy − f‖Kδ(y) dy, where fy(x) = f(x− y).

Now, for given ε > 0 we can find (by Proposition 2.5) η > 0 so small such
that ‖fy − f‖ < ε when |y| < η. Thus

‖∆δ‖ ≤ ε +
∫

|y|>η

‖fy − f‖Kδ(y) dy ≤ ε + 2‖f‖
∫

|y|>η

Kδ(y) dy.

The first inequality follows by using (i) again; the second holds because
‖fy − f‖ ≤ ‖fy‖+ ‖f‖ = 2‖f‖. Therefore, with the use of (ii), the com-
bination above is ≤ 2ε if δ is sufficiently small. To summarize: the right-
hand side of (16) converges to f in the L1-norm as δ → 0, and thus
by Corollary 2.3 there is a subsequence that converges to f(x) almost
everywhere, and the theorem is proved.

Note that an immediate consequence of the theorem and the proposi-
tion is that if f̂ were in L1, then f could be modified on a set of measure
zero to become continuous everywhere. This is of course impossible for
the general f ∈ L1(Rd).

5 Exercises

1. Given a collection of sets F1, F2, . . . , Fn, construct another collection F ∗1 , F ∗2 , . . . , F ∗N ,
with N = 2n − 1, so that

Sn
k=1 Fk =

SN
j=1 F ∗j ; the collection {F ∗j } is disjoint; also
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Fk =
S

F∗j ⊂Fk
F ∗j , for every k.

[Hint: Consider the 2n sets F ′1 ∩ F ′2 ∩ · · · ∩ F ′n where each F ′k is either Fk or F c
k .]

2. In analogy to Proposition 2.5, prove that if f is integrable on Rd and δ > 0,
then f(δx) converges to f(x) in the L1-norm as δ → 1.

3. Suppose f is integrable on (−π, π] and extended to R by making it periodic of
period 2π. Show that

Z π

−π

f(x) dx =

Z

I

f(x) dx,

where I is any interval in R of length 2π.

[Hint: I is contained in two consecutive intervals of the form (kπ, (k + 2)π).]

4. Suppose f is integrable on [0, b], and

g(x) =

Z b

x

f(t)

t
dt for 0 < x ≤ b.

Prove that g is integrable on [0, b] and

Z b

0

g(x) dx =

Z b

0

f(t) dt.

5. Suppose F is a closed set in R, whose complement has finite measure, and let
δ(x) denote the distance from x to F , that is,

δ(x) = d(x, F ) = inf{|x− y| : y ∈ F}.

Consider

I(x) =

Z

R

δ(y)

|x− y|2 dy.

(a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condi-
tion

|δ(x)− δ(y)| ≤ |x− y|.

(b) Show that I(x) = ∞ for each x /∈ F .

(c) Show that I(x) < ∞ for a.e. x ∈ F . This may be surprising in view of the
fact that the Lispshitz condition cancels only one power of |x− y| in the
integrand of I.



5. Exercises 91

[Hint: For the last part, investigate
R

F
I(x) dx.]

6. Integrability of f on R does not necessarily imply the convergence of f(x) to 0
as x →∞.

(a) There exists a positive continuous function f on R so that f is integrable
on R, but yet lim supx→∞ f(x) = ∞.

(b) However, if we assume that f is uniformly continuous on R and integrable,
then lim|x|→∞ f(x) = 0.

[Hint: For (a), construct a continuous version of the function equal to n on the
segment [n, n + 1/n3), n ≥ 1.]

7. Let Γ ⊂ Rd × R, Γ = {(x, y) ∈ Rd × R : y = f(x)}, and assume f is measurable
on Rd. Show that Γ is a measurable subset of Rd+1, and m(Γ) = 0.

8. If f is integrable on R, show that F (x) =
R x

−∞ f(t) dt is uniformly continuous.

9. Tchebychev inequality. Suppose f ≥ 0, and f is integrable. If α > 0 and
Eα = {x : f(x) > α}, prove that

m(Eα) ≤ 1

α

Z
f.

10. Suppose f ≥ 0, and let E2k = {x : f(x) > 2k} and Fk = {x : 2k < f(x) ≤
2k+1}. If f is finite almost everywhere, then

∞[

k=−∞
Fk = {f(x) > 0},

and the sets Fk are disjoint.
Prove that f is integrable if and only if

∞X

k=−∞
2km(Fk) < ∞, if and only if

∞X

k=−∞
2km(E2k ) < ∞.

Use this result to verify the following assertions. Let

f(x) =

 |x|−a if |x| ≤ 1,
0 otherwise,

and g(x) =

 |x|−b if |x| > 1,
0 otherwise.

Then f is integrable on Rd if and only if a < d; also g is integrable on Rd if and
only if b > d.

11. Prove that if f is integrable on Rd, real-valued, and
R

E
f(x) dx ≥ 0 for ev-

ery measurable E, then f(x) ≥ 0 a.e. x. As a result, if
R

E
f(x) dx = 0 for every

measurable E, then f(x) = 0 a.e.
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12. Show that there are f ∈ L1(Rd) and a sequence {fn} with fn ∈ L1(Rd) such
that

‖f − fn‖L1 → 0,

but fn(x) → f(x) for no x.

[Hint: In R, let fn = χIn , where In is an appropriately chosen sequence of intervals
with m(In) → 0.]

13. Give an example of two measurable sets A and B such that A + B is not
measurable.

[Hint: In R2 take A = {0} × [0, 1] and B = N × {0}.]

14. In Exercise 6 of the previous chapter we saw that m(B) = vdrd, whenever B
is a ball of radius r in Rd and vd = m(B1), with B1 the unit ball. Here we evaluate
the constant vd.

(a) For d = 2, prove using Corollary 3.8 that

v2 = 2

Z 1

−1

(1− x2)1/2 dx,

and hence by elementary calculus, that v2 = π.

(b) By similar methods, show that

vd = 2vd−1

Z 1

0

(1− x2)(d−1)/2 dx.

(c) The result is

vd =
πd/2

Γ(d/2 + 1)
.

Another derivation is in Exercise 5 in Chapter 6 below. Relevant facts about the
gamma and beta functions can be found in Chapter 6 of Book II.

15. Consider the function defined over R by

f(x) =


x−1/2 if 0 < x < 1,

0 otherwise.

For a fixed enumeration {rn}∞n=1 of the rationals Q, let

F (x) =

∞X
n=1

2−nf(x− rn).
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Prove that F is integrable, hence the series defining F converges for almost every
x ∈ R. However, observe that this series is unbounded on every interval, and in
fact, any function F̃ that agrees with F a.e is unbounded in any interval.

16. Suppose f is integrable on Rd. If δ = (δ1, . . . , δd) is a d-tuple of non-zero real
numbers, and

fδ(x) = f(δx) = f(δ1x1, . . . , δdxd),

show that fδ is integrable with

Z

Rd

fδ(x) dx = |δ1|−1 · · · |δd|−1

Z

Rd

f(x) dx.

17. Suppose f is defined on R2 as follows: f(x, y) = an if n ≤ x < n + 1 and n ≤
y < n + 1, (n ≥ 0); f(x, y) = −an if n ≤ x < n + 1 and n + 1 ≤ y < n + 2, (n ≥ 0);
while f(x, y) = 0 elsewhere. Here an =

P
k≤n bk, with {bk} a positive sequence

such that
P∞

k=0 bk = s < ∞.

(a) Verify that each slice fy and fx is integrable. Also for all x,
R

fx(y) dy = 0,
and hence

R `R
f(x, y) dy

´
dx = 0.

(b) However,
R

fy(x) dx = a0 if 0 ≤ y < 1, and
R

fy(x) dx = an − an−1 if n ≤
y < n + 1 with n ≥ 1. Hence y 7→ R

fy(x) dx is integrable on (0,∞) and

Z „Z
f(x, y) dx

«
dy = s.

(c) Note that
R
R×R |f(x, y)| dx dy = ∞.

18. Let f be a measurable finite-valued function on [0, 1], and suppose that |f(x)−
f(y)| is integrable on [0, 1]× [0, 1]. Show that f(x) is integrable on [0, 1].

19. Suppose f is integrable on Rd. For each α > 0, let Eα = {x : |f(x)| > α}.
Prove that

Z

Rd

|f(x)| dx =

Z ∞

0

m(Eα) dα.

20. The problem (highlighted in the discussion preceding Fubini’s theorem) that
certain slices of measurable sets can be non-measurable may be avoided by re-
stricting attention to Borel measurable functions and Borel sets. In fact, prove the
following:

Suppose E is a Borel set in R2. Then for every y, the slice Ey is a Borel set in
R.
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[Hint: Consider the collection C of subsets E of R2 with the property that each
slice Ey is a Borel set in R. Verify that C is a σ-algebra that contains the open
sets.]

21. Suppose that f and g are measurable functions on Rd.

(a) Prove that f(x− y)g(y) is measurable on R2d.

(b) Show that if f and g are integrable on Rd, then f(x− y)g(y) is integrable
on R2d.

(c) Recall the definition of the convolution of f and g given by

(f ∗ g)(x) =

Z

Rd

f(x− y)g(y) dy.

Show that f ∗ g is well defined for a.e. x (that is, f(x− y)g(y) is integrable
on Rd for a.e. x).

(d) Show that f ∗ g is integrable whenever f and g are integrable, and that

‖f ∗ g‖L1(Rd) ≤ ‖f‖L1(Rd) ‖g‖L1(Rd),

with equality if f and g are non-negative.

(e) The Fourier transform of an integrable function f is defined by

f̂(ξ) =

Z

Rd

f(x)e−2πix·ξ dx.

Check that f̂ is bounded and is a continuous function of ξ. Prove that for
each ξ one has

(̂f ∗ g)(ξ) = f̂(ξ)ĝ(ξ).

22. Prove that if f ∈ L1(Rd) and

f̂(ξ) =

Z

Rd

f(x)e−2πixξ dx,

then f̂(ξ) → 0 as |ξ| → ∞. (This is the Riemann-Lebesgue lemma.)

[Hint: Write f̂(ξ) = 1
2

R
Rd [f(x)− f(x− ξ′)]e−2πixξ dx, where ξ′ = 1

2
ξ
|ξ|2 , and use

Proposition 2.5.]

23. As an application of the Fourier transform, show that there does not exist a
function I ∈ L1(Rd) such that

f ∗ I = f for all f ∈ L1(Rd).
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24. Consider the convolution

(f ∗ g)(x) =

Z

Rd

f(x− y)g(y) dy.

(a) Show that f ∗ g is uniformly continuous when f is integrable and g bounded.

(b) If in addition g is integrable, prove that (f ∗ g)(x) → 0 as |x| → ∞.

25. Show that for each ε > 0 the function F (ξ) = 1
(1+|ξ|2)ε is the Fourier transform

of an L1 function.

[Hint: With Kδ(x) = e−π|x|2/δδ−d/2 consider f(x) =
R∞
0

Kδ(x)e−πδδε−1 dδ. Use

Fubini’s theorem to prove f ∈ L1(Rd), and

f̂(ξ) =

Z ∞

0

e−πδ|ξ|2e−πδδε−1 dδ,

and evaluate the last integral as π−εΓ(ε) 1
(1+|ξ|2)ε . Here Γ(s) is the gamma function

defined by Γ(s) =
R∞
0

e−tts−1 dt.]

6 Problems

1. If f is integrable on [0, 2π], then
R 2π

0
f(x)e−inx dx → 0 as |n| → ∞.

Show as a consequence that if E is a measurable subset of [0, 2π], then

Z

E

cos2(nx + un) dx → m(E)

2
, as n →∞

for any sequence {un}.
[Hint: See Exercise 22.]

2. Prove the Cantor-Lebesgue theorem: if

∞X
n=0

An(x) =

∞X
n=0

(an cos nx + bn sin nx)

converges for x in a set of positive measure (or in particular for all x), then an → 0
and bn → 0 as n →∞.

[Hint: Note that An(x) → 0 uniformly on a set E of positive measure.]

3. A sequence {fk} of measurable functions on Rd is Cauchy in measure if for
every ε > 0,

m({x : |fk(x)− f`(x)| > ε}) → 0 as k, ` →∞.
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We say that {fk} converges in measure to a (measurable) function f if for every
ε > 0

m({x : |fk(x)− f(x)| > ε}) → 0 as k →∞.

This notion coincides with the “convergence in probability” of probability theory.

Prove that if a sequence {fk} of integrable functions converges to f in L1, then
{fk} converges to f in measure. Is the converse true?

We remark that this mode of convergence appears naturally in the proof of
Egorov’s theorem.

4. We have already seen (in Exercise 8, Chapter 1) that if E is a measurable set
in Rd, and L is a linear transformation of Rd to Rd, then L(E) is also measurable,
and if E has measure 0, then so has L(E). The quantitative statement is

m(L(E)) = |det(L)|m(E).

As a special case, note that the Lebesgue measure is invariant under rotations.
(For this special case see also Exercise 26 in the next chapter.)

The above identity can be proved using Fubini’s theorem as follows.

(a) Consider first the case d = 2, and L a “strictly” upper triangular transfor-
mation x′ = x + ay, y′ = y. Then

χL(E)(x, y) = χE(L−1(x, y)) = χE(x− ay, y).

Hence

m(L(E)) =

Z

R×R

„Z
χE(x− ay, y)

«
dy

=

Z

R×R

„Z
χE(x, y) dx

«
dy

= m(E),

by the translation-invariance of the measure.

(b) Similarly m(L(E)) = m(E) if L is strictly lower triangular. In general, one
can write L = L1∆L2, where Lj are strictly (upper and lower) triangular
and ∆ is diagonal. Thus m(L(E)) = |det(L)|m(E), if one uses Exercise 7
in Chapter 1.

5. There is an ordering ≺ of R with the property that for each y ∈ R the set
{x ∈ R : x ≺ y} is at most countable.

The existence of this ordering depends on the continuum hypothesis, which
asserts: whenever S is an infinite subset of R, then either S is countable, or S has
the cardinality of R (that is, can be mapped bijectively to R).6

6This assertion, formulated by Cantor, is like the well-ordering principle independent
of the other axioms of set theory, and so we are also free to accept its validity.
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[Hint: Let ≺ denote a well-ordering of R, and define the set X by X = {y ∈
R : the set {x : x ≺ y} is not countable}. If X is empty we are done. Otherwise,
consider the smallest element y in X, and use the continuum hypothesis.]



3 Differentiation and Integration

The Maximal Problem:
The problem is most easily grasped when stated

in the language of cricket, or any other game in which
a player compiles a series of scores of which an average
is recorded.

G. H. Hardy and J. E. Littlewood, 1930

That differentiation and integration are inverse operations was already
understood early in the study of the calculus. Here we want to reexamine
this basic idea in the framework of the general theory studied in the
previous chapters. Our objective is the formulation and proof of the
fundamental theorem of the calculus in this setting, and the development
of some of the concepts that occur. We shall try to achieve this by
answering two questions, each expressing one of the ways of representing
the reciprocity between differentiation and integration.

The first problem involved may be stated as follows.

• Suppose f is integrable on [a, b] and F is its indefinite integral
F (x) =

∫ x

a
f(y) dy. Does this imply that F is differentiable (at

least for almost every x), and that F ′ = f ?

We shall see that the affirmative answer to this question depends
on ideas that have broad application and are not limited to the one-
dimensional situation.

For the second question we reverse the order of differentiation and
integration.

• What conditions on a function F on [a, b] guarantee that F ′(x) ex-
ists (for a.e. x), that this function is integrable, and that moreover

F (b)− F (a) =
∫ b

a

F ′(x) dx ?

While this problem will be examined from a narrower perspective than
the first, the issues it raises are deep and the consequences entailed are



1. Differentiation of the integral 99

far-reaching. In particular, we shall find that this question is connected
to the problem of rectifiability of curves, and as an illustration of this
link, we shall establish the general isoperimetric inequality in the plane.

1 Differentiation of the integral

We begin with the first problem, that is, the study of differentiation of
the integral. If f is given on [a, b] and integrable on that interval, we let

F (x) =
∫ x

a

f(y) dy, a ≤ x ≤ b.

To deal with F ′(x), we recall the definition of the derivative as the limit
of the quotient

F (x + h)− F (x)
h

when h tends to 0.

We note that this quotient takes the form (say in the case h > 0)

1
h

∫ x+h

x

f(y) dy =
1
|I|

∫

I

f(y) dy,

where we use the notation I = (x, x + h) and |I| for the length of this
interval. At this point, we pause to observe that the above expression
is the “average” value of f over I, and that in the limit as |I| → 0,
we might expect that these averages tend to f(x). Reformulating the
question slightly, we may ask whether

lim
|I| → 0
x ∈ I

1
|I|

∫

I

f(y) dy = f(x)

holds for suitable points x. In higher dimensions we can pose a similar
question, where the averages of f are taken over appropriate sets that
generalize the intervals in one dimension. Initially we shall study this
problem where the sets involved are the balls B containing x, with their
volume m(B) replacing the length |I| of I. Later we shall see that as a
consequence of this special case similar results will hold for more general
collections of sets, those that have bounded “eccentricity.”

With this in mind we restate our first problem in the context of Rd,
for all d ≥ 1.
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Suppose f is integrable on Rd. Is it true that

lim
m(B) → 0

x ∈ B

1
m(B)

∫

B

f(y) dy = f(x), for a.e. x?

The limit is taken as the volume of open balls B containing
x goes to 0.

We shall refer to this question as the averaging problem. We remark
that if B is any ball of radius r in Rd, then m(B) = vdr

d, where vd is
the measure of the unit ball. (See Exercise 14 in the previous chapter.)

Note of course that in the special case when f is continuous at x , the
limit does converge to f(x). Indeed, given ε > 0, there exists δ > 0 such
that |f(x)− f(y)| < ε whenever |x− y| < δ. Since

f(x)− 1
m(B)

∫

B

f(y) dy =
1

m(B)

∫

B

(f(x)− f(y)) dy,

we find that whenever B is a ball of radius < δ/2 that contains x, then
∣∣∣∣f(x)− 1

m(B)

∫

B

f(y) dy

∣∣∣∣ ≤
1

m(B)

∫

B

|f(x)− f(y)| dy < ε,

as desired.

The averaging problem has an affirmative answer, but to establish that
fact, which is qualitative in nature, we need to make some quantitative
estimates bearing on the overall behavior of the averages of f . This will
be done in terms of the maximal averages of |f |, to which we now turn.

1.1 The Hardy-Littlewood maximal function

The maximal function that we consider below arose first in the one-
dimensional situation treated by Hardy and Littlewood. It seems that
they were led to the study of this function by toying with the question
of how a batsman’s score in cricket may best be distributed to maximize
his satisfaction. As it turns out, the concepts involved have a universal
significance in analysis. The relevant definition is as follows.

If f is integrable on Rd, we define its maximal function f∗ by

f∗(x) = sup
x∈B

1
m(B)

∫

B

|f(y)| dy, x ∈ Rd,

where the supremum is taken over all balls containing the point x. In
other words, we replace the limit in the statement of the averaging prob-
lem by a supremum, and f by its absolute value.
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The main properties of f∗ we shall need are summarized in a theorem.

Theorem 1.1 Suppose f is integrable on Rd. Then:

(i) f∗ is measurable.

(ii) f∗(x) < ∞ for a.e. x.

(iii) f∗ satisfies

(1) m({x ∈ Rd : f∗(x) > α}) ≤ A

α
‖f‖L1(Rd)

for all α > 0, where A = 3d, and ‖f‖L1(Rd) =
∫
Rd |f(x)| dx.

Before we come to the proof we want to clarify the nature of the main
conclusion (iii). As we shall observe, one has that f∗(x) ≥ |f(x)| for a.e.
x; the effect of (iii) is that, broadly speaking, f∗ is not much larger than
|f |. From this point of view, we would have liked to conclude that f∗ is
integrable, as a result of the assumed integrability of f . However, this
is not the case, and (iii) is the best substitute available (see Exercises 4
and 5).

An inequality of the type (1) is called a weak-type inequality be-
cause it is weaker than the corresponding inequality for the L1-norms.
Indeed, this can be seen from the Tchebychev inequality (Exercise 9 in
Chapter 2), which states that for an arbitrary integrable function g,

m({x : |g(x)| > α}) ≤ 1
α
‖g‖L1(Rd), for all α > 0.

We should add that the exact value of A in the inequality (1) is unim-
portant for us. What matters is that this constant be independent of α
and f .

The only simple assertion in the theorem is that f∗ is a measurable
function. Indeed, the set Eα = {x ∈ Rd : f∗(x) > α} is open, because if
x ∈ Eα, there exists a ball B such that x ∈ B and

1
m(B)

∫

B

|f(y)| dy > α.

Now any point x close enough to x will also belong to B; hence x ∈ Eα

as well.
The two other properties of f∗ in the theorem are deeper, with (ii)

being a consequence of (iii). This follows at once if we observe that

{x : f∗(x) = ∞} ⊂ {x : f∗(x) > α}
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for all α. Taking the limit as α tends to infinity, the third property yields
m({x : f∗(x) = ∞}) = 0.

The proof of inequality (1) relies on an elementary version of a Vitali
covering argument.1

Lemma 1.2 Suppose B = {B1, B2, . . . , BN} is a finite collection of open
balls in Rd. Then there exists a disjoint sub-collection Bi1 , Bi2 , . . . , Bik

of B that satisfies

m

(
N⋃

`=1

B`

)
≤ 3d

k∑
j=1

m(Bij
).

Loosely speaking, we may always find a disjoint sub-collection of balls
that covers a fraction of the region covered by the original collection of
balls.

Proof. The argument we give is constructive and relies on the fol-
lowing simple observation: Suppose B and B′ are a pair of balls that
intersect, with the radius of B′ being not greater than that of B. Then
B′ is contained in the ball B̃ that is concentric with B but with 3 times
its radius.

As a first step, we pick a ball Bi1 in B with maximal (that is, largest)
radius, and then delete from B the ball Bi1 as well as any balls that
intersect Bi1 . Thus all the balls that are deleted are contained in the
ball B̃i1 concentric with Bi1 , but with 3 times its radius.

The remaining balls yield a new collection B′, for which we repeat the
procedure. We pick Bi2 with largest radius in B′, and then delete from
B′ the ball Bi2 and any ball that intersects Bi2 . Continuing this way we
find, after at most N steps, a collection of disjoint balls Bi1 , Bi2 , . . . , Bik

.
Finally, to prove that this disjoint collection of balls satisfies the in-

equality in the lemma, we use the observation made at the beginning of
the proof. We let B̃ij denote the ball concentric with Bij , but with 3
times its radius. Since any ball B in B must intersect a ball Bij and have
equal or smaller radius than Bij

, we must have B ⊂ B̃ij
, thus

m

(
N⋃

`=1

B`

)
≤ m

(
k⋃

j=1

B̃ij

)
≤

k∑
j=1

m(B̃ij
) = 3d

k∑
j=1

m(Bij
).

1We note that the lemma that follows is the first of a series of covering arguments that
occur below in the theory of differentiation; see also Lemma 3.9 and its corollary, as well
as Lemma 3.5, where the covering assertion is more implicit.
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B

B̃

B′

Figure 1. The balls B and B̃

In the last step we have used the fact that in Rd a dilation of a set by
δ > 0 results in the multiplication by δd of the Lebesgue measure of this
set.

The proof of (iii) in Theorem 1.1 is now in reach. If we let Eα = {x :
f∗(x) > α}, then for each x ∈ Eα there exists a ball Bx that contains x,
and such that

1
m(Bx)

∫

Bx

|f(y)| dy > α.

Therefore, for each ball Bx we have

(2) m(Bx) <
1
α

∫

Bx

|f(y)| dy.

Fix a compact subset K of Eα. Since K is covered by
⋃

x∈Eα
Bx, we

may select a finite subcover of K, say K ⊂ ⋃N
`=1 B`. The covering lemma

guarantees the existence of a sub-collection Bi1 , . . . , Bik
of disjoint balls

with

(3) m

(
N⋃

`=1

B`

)
≤ 3d

k∑
j=1

m(Bij
).
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Since the balls Bi1 , . . . , Bik
are disjoint and satisfy (2) as well as (3), we

find that

m(K) ≤ m

(
N⋃

`=1

B`

)
≤ 3d

k∑
j=1

m(Bij
) ≤ 3d

α

k∑
j=1

∫

Bij

|f(y)| dy

=
3d

α

∫
Sk

j=1 Bij

|f(y)| dy

≤ 3d

α

∫

Rd

|f(y)| dy.

Since this inequality is true for all compact subsets K of Eα, the proof
of the weak type inequality for the maximal operator is complete.

1.2 The Lebesgue differentiation theorem

The estimate obtained for the maximal function now leads to a solution
of the averaging problem.

Theorem 1.3 If f is integrable on Rd, then

(4) lim
m(B) → 0

x ∈ B

1
m(B)

∫

B

f(y) dy = f(x) for a.e. x.

Proof. It suffices to show that for each α > 0 the set

Eα =



x : lim sup

m(B) → 0
x ∈ B

∣∣∣∣
1

m(B)

∫

B

f(y) dy − f(x)
∣∣∣∣ > 2α





has measure zero, because this assertion then guarantees that the set
E =

⋃∞
n=1 E1/n has measure zero, and the limit in (4) holds at all points

of Ec.
We fix α, and recall Theorem 2.4 in Chapter 2, which states that for

each ε > 0 we may select a continuous function g of compact support with
‖f − g‖L1(Rd) < ε. As we remarked earlier, the continuity of g implies
that

lim
m(B) → 0

x ∈ B

1
m(B)

∫

B

g(y) dy = g(x), for all x.

Since we may write the difference 1
m(B)

∫
B

f(y) dy − f(x) as

1
m(B)

∫

B

(f(y)− g(y)) dy +
1

m(B)

∫

B

g(y) dy − g(x) + g(x)− f(x)
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we find that

lim sup
m(B) → 0

x ∈ B

∣∣∣∣
1

m(B)

∫

B

f(y) dy − f(x)
∣∣∣∣ ≤ (f − g)∗(x) + |g(x)− f(x)|,

where the symbol ∗ indicates the maximal function. Consequently, if

Fα = {x : (f − g)∗(x) > α} and Gα = {x : |f(x)− g(x)| > α}

then Eα ⊂ (Fα ∪Gα), because if u1 and u2 are positive, then u1 + u2 >
2α only if ui > α for at least one ui. On the one hand, Tchebychev’s
inequality yields

m(Gα) ≤ 1
α
‖f − g‖L1(Rd),

and on the other hand, the weak type estimate for the maximal function
gives

m(Fα) ≤ A

α
‖f − g‖L1(Rd).

The function g was selected so that ‖f − g‖L1(Rd) < ε. Hence we get

m(Eα) ≤ A

α
ε +

1
α

ε.

Since ε is arbitrary, we must have m(Eα) = 0, and the proof of the the-
orem is complete.

Note that as an immediate consequence of the theorem applied to |f |,
we see that f∗(x) ≥ |f(x)| for a.e. x, with f∗ the maximal function.

We have worked so far under the assumption that f is integrable. This
“global” assumption is slightly out of place in the context of a “local”
notion like differentiability. Indeed, the limit in Lebesgue’s theorem is
taken over balls that shrink to the point x, so the behavior of f far from
x is irrelevant. Thus, we expect the result to remain valid if we simply
assume integrability of f on every ball.

To make this precise, we say that a measurable function f on Rd

is locally integrable, if for every ball B the function f(x)χB(x) is
integrable. We shall denote by L1

loc(Rd) the space of all locally integrable
functions. Loosely speaking, the behavior at infinity does not affect the
local integrability of a function. For example, the functions e|x| and
|x|−1/2 are both locally integrable, but not integrable on Rd.

Clearly, the conclusion of the last theorem holds under the weaker
assumption that f is locally integrable.
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Theorem 1.4 If f ∈ L1
loc(Rd), then

lim
m(B) → 0

x ∈ B

1
m(B)

∫

B

f(y) dy = f(x), for a.e. x.

Our first application of this theorem yields an interesting insight into
the nature of measurable sets. If E is a measurable set and x ∈ Rd, we
say that x is a point of Lebesgue density of E if

lim
m(B) → 0

x ∈ B

m(B ∩E)
m(B)

= 1.

Loosely speaking, this condition says that small balls around x are almost
entirely covered by E. More precisely, for every α < 1 close to 1, and
every ball of sufficiently small radius containing x, we have

m(B ∩ E) ≥ αm(B).

Thus E covers at least a proportion α of B.
An application of Theorem 1.4 to the characteristic function of E im-

mediately yields the following:

Corollary 1.5 Suppose E is a measurable subset of Rd. Then:

(i) Almost every x ∈ E is a point of density of E.

(ii) Almost every x /∈ E is not a point of density of E.

We next consider a notion that for integrable functions serves as a useful
substitute for pointwise continuity.

If f is locally integrable on Rd, the Lebesgue set of f consists of all
points x ∈ Rd for which f(x) is finite and

lim
m(B) → 0

x ∈ B

1
m(B)

∫

B

|f(y)− f(x)| dy = 0.

At this stage, two simple observations about this definition are in order.
First, x belongs to the Lebesgue set of f whenever f is continuous at x.
Second, if x is in the Lebesgue set of f , then

lim
m(B) → 0

x ∈ B

1
m(B)

∫

B

f(y) dy = f(x).

Corollary 1.6 If f is locally integrable on Rd, then almost every point
belongs to the Lebesgue set of f .
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Proof. An application of Theorem 1.4 to the function |f(y)− r| shows
that for each rational r, there exists a set Er of measure zero, such that

lim
m(B) → 0

x ∈ B

1
m(B)

∫

B

|f(y)− r| dy = |f(x)− r| whenever x /∈ Er.

If E =
⋃

r∈QEr, then m(E) = 0. Now suppose that x /∈ E and f(x) is
finite. Given ε > 0, there exists a rational r such that |f(x)− r| < ε.
Since

1
m(B)

∫

B

|f(y)− f(x)| dy ≤ 1
m(B)

∫

B

|f(y)− r| dy + |f(x)− r|,

we must have

lim sup
m(B) → 0

x ∈ B

1
m(B)

∫

B

|f(y)− f(x)| dy ≤ 2ε,

and thus x is in the Lebesgue set of f . The corollary is therefore proved.

Remark. Recall from the definition in Section 2 of Chapter 2 that
elements of L1(Rd) are actually equivalence classes, with two functions
being equivalent if they differ on a set of measure zero. It is interesting
to observe that the set of points where the averages (4) converge to a
limit is independent of the representation of f chosen, because

∫

B

f(y) dy =
∫

B

g(y) dy

whenever f and g are equivalent. Nevertheless, the Lebesgue set of f
depends on the particular representative of f that we consider.

We shall see that the Lebesgue set of a function enjoys a universal
property in that at its points the function can be recovered by a wide
variety of averages. We will prove this both for averages over sets that
generalize balls, and in the setting of approximations to the identity.
Note that the theory of differentiation developed so far uses averages
over balls, but as we mentioned earlier, one could ask whether similar
conclusions hold for other families of sets, such as cubes or rectangles.
The answer depends in a fundamental way on the geometric properties
of the family in question. For example, we now show that in the case of
cubes (and more generally families of sets with bounded “eccentricity”)
the above results carry over. However, in the case of the family of all
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rectangles the existence of the limit almost everywhere and the weak
type inequality fail (see Problem 8).

A collection of sets {Uα} is said to shrink regularly to x (or has
bounded eccentricity at x) if there is a constant c > 0 such that for
each Uα there is a ball B with

x ∈ B, Uα ⊂ B, and m(Uα) ≥ cm(B).

Thus Uα is contained in B, but its measure is comparable to the measure
of B. For example, the set of all open cubes containing x shrink regularly
to x. However, in Rd with d ≥ 2 the collection of all open rectangles
containing x does not shrink regularly to x. This can be seen if we
consider very thin rectangles.

Corollary 1.7 Suppose f is locally integrable on Rd. If {Uα} shrinks
regularly to x, then

lim
m(Uα) → 0

x ∈ Uα

1
m(Uα)

∫

Uα

f(y) dy = f(x)

for every point x in the Lebesgue set of f .

The proof is immediate once we observe that if x ∈ B with Uα ⊂ B
and m(Uα) ≥ cm(B), then

1
m(Uα)

∫

Uα

|f(y)− f(x)| dy ≤ 1
cm(B)

∫

B

|f(y)− f(x)| dy.

2 Good kernels and approximations to the identity

We shall now turn to averages of functions given as convolutions,2 which
can be written as

(f ∗Kδ)(x) =
∫

Rd

f(x− y)Kδ(y) dy.

Here f is a general integrable function, which we keep fixed, while the Kδ

vary over a specific family of functions, referred to as kernels. Expressions
of this kind arise in many questions (for instance, in the Fourier inversion
theorem of the previous chapter), and were already discussed in Book I.

In our initial consideration we called these functions “good kernels” if
they are integrable and satisfy the following conditions for δ > 0:

2Some basic properties of convolutions are described in Exercise 21 of the previous
chapter.
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(i)
∫

Rd

Kδ(x) dx = 1.

(ii)
∫

Rd

|Kδ(x)| dx ≤ A.

(iii) For every η > 0,
∫

|x|≥η

|Kδ(x)| dx → 0 as δ → 0.

Here A is a constant independent of δ.
The main use of these kernels was that whenever f is bounded, then

(f ∗Kδ)(x) → f(x) as δ → 0, at every point of continuity of f . To obtain
a similar conclusion, one also valid at all points of the Lebesgue set
of f , we need to strengthen somewhat our assumptions on the kernels
Kδ. To reflect this situation we adopt a different terminology and refer
to the resulting narrower class of kernels as approximations to the
identity. The assumptions are again that the Kδ are integrable and
satisfy conditions (i) but, instead of (ii) and (iii), we assume:

(ii′) |Kδ(x)| ≤ Aδ−d for all δ > 0.

(iii′) |Kδ(x)| ≤ Aδ/|x|d+1 for all δ > 0 and x ∈ Rd.3

We observe that these requirements are stronger and imply the conditions
in the definition of good kernels. Indeed, we first prove (ii). For that, we
use the second illustration of Corollary 1.10 in Chapter 2, which gives

(5)
∫

|x|≥ε

dx

|x|d+1
≤ C

ε
for some C > 0 and all ε > 0.

Then, using the estimates (ii′) and (iii′) when |x| < δ and |x| ≥ δ, re-
spectively, yields

∫

Rd

|Kδ(x)| dx =
∫

|x|<δ

|Kδ(x)| dx +
∫

|x|≥δ

|Kδ(x)| dx

≤ A

∫

|x|<δ

dx

δd
+ Aδ

∫

|x|≥δ

1
|x|d+1

dx

≤ A′ + A′′ < ∞.

3Sometimes the condition (iii′) is replaced by the requirement |Kδ(x)| ≤ Aδε/|x|d+ε

for some fixed ε > 0. However, the special case ε = 1 suffices in most circumstances.
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Finally, the last condition of a good kernel is also verified, since another
application of (5) gives

∫

|x|≥η

|Kδ(x)| dx ≤ Aδ

∫

|x|≥η

dx

|x|d+1

≤ A′δ
η

,

and this last expression tends to 0 as δ → 0.

The term “approximation to the identity” originates in the fact that
the mapping f 7→ f ∗Kδ converges to the identity mapping f 7→ f , as
δ → 0, in various senses, as we shall see below. It is also connected with
the following heuristics. Figure 2 pictures a typical approximation to the
identity: for each δ > 0, the kernel is supported on the set |x| < δ and
has height 1/2δ. As δ tends to 0, this family of kernels converges to the

1/2δ

−δ 0 δ

Figure 2. An approximation to the identity

so-called unit mass at the origin or Dirac delta “function.” The latter
is heuristically defined by

D(x) =
{ ∞ if x = 0

0 if x 6= 0
and

∫
D(x) dx = 1.
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Since each Kδ integrates to 1, we may say loosely that

Kδ → D as δ → 0.

If we think of the convolution f ∗ D as
∫

f(x− y)D(y) dy, the product
f(x− y)D(y) is 0 except when y = 0, and the mass of D is concentrated
at y = 0, so we may intuitively expect that

(f ∗ D)(x) = f(x).

Thus f ∗ D = f , and D plays the role of the identity for convolutions.
We should mention that this discussion can be formalized and D given
a precise definition either in terms of Lebesgue-Stieltjes measures, which
we take up in Chapter 6, or in terms of “generalized functions” (that is,
distributions), which we defer to Book IV.

We now turn to a series of examples of approximations to the identity.

Example 1. Suppose ϕ is a non-negative bounded function in Rd that
is supported on the unit ball |x| ≤ 1, and such that

∫

Rd

ϕ = 1.

Then, if we set Kδ(x) = δ−dϕ(δ−1x), the family {Kδ}δ>0 is an approx-
imation to the identity. The simple verification is left to the reader.
Important special cases are in the next two examples.

Example 2. The Poisson kernel for the upper half-plane is given by

Py(x) =
1
π

y

x2 + y2
, x ∈ R,

where the parameter is now δ = y > 0.

Example 3. The heat kernel in Rd is defined by

Ht(x) =
1

(4πt)d/2
e−|x|

2/4t.

Here t > 0 and we have δ = t1/2. Alternatively, we could set δ = 4πt to
make the notation consistent with the specific usage in Chapter 2.

Example 4. The Poisson kernel for the disc is

1
2π

Pr(x) =





1
2π

1− r2

1− 2r cos x + r2
if |x| ≤ π,

0 if |x| > π.
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Here we have 0 < r < 1 and δ = 1− r.

Example 5. The Fejér kernel is defined by

1
2π

FN (x) =





1
2πN

sin2(Nx/2)
sin2(x/2)

if |x| ≤ π,

0 if |x| > π,

where δ = 1/N .

We note that Examples 2 through 5 have already appeared in Book I.

We now turn to a general result about approximations to the identity
that highlights the role of the Lebesgue set.

Theorem 2.1 If {Kδ}δ>0 is an approximation to the identity and f is
integrable on Rd, then

(f ∗Kδ)(x) → f(x) as δ → 0

for every x in the Lebesgue set of f . In particular, the limit holds for
a.e. x.

Since the integral of each kernel Kδ is equal to 1, we may write

(f ∗Kδ)(x)− f(x) =
∫

[f(x− y)− f(x)] Kδ(y) dy.

Consequently,

|(f ∗Kδ)(x)− f(x)| ≤
∫
|f(x− y)− f(x)| |Kδ(y)| dy,

and it now suffices to prove that the right-hand side tends to 0 as δ goes
to 0. The argument we give depends on a simple result that we isolate
in the next lemma.

Lemma 2.2 Suppose that f is integrable on Rd, and that x is a point of
the Lebesgue set of f . Let

A(r) =
1
rd

∫

|y|≤r

|f(x− y)− f(x)| dy, whenever r > 0.

Then A(r) is a continuous function of r > 0, and

A(r) → 0 as r → 0.

Moreover, A(r) is bounded, that is, A(r) ≤ M for some M > 0 and all
r > 0.
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Proof. The continuity of A(r) follows by invoking the absolute conti-
nuity in Proposition 1.12 of Chapter 2.

The fact that A(r) tends to 0 as r tends to 0 follows since x belongs
to the Lebesgue set of f , and the measure of a ball of radius r is vdr

d.
This and the continuity of A(r) for 0 < r ≤ 1 show that A(r) is bounded
when 0 < r ≤ 1. To prove that A(r) is bounded for r > 1, note that

A(r) ≤ 1
rd

∫

|y|≤r

|f(x− y)| dy +
1
rd

∫

|y|≤r

|f(x)| dy

≤ r−d‖f‖L1(Rd) + vd|f(x)|,

and this concludes the proof of the lemma.

We now return to the proof of the theorem. The key consists in writing
the integral over Rd as a sum of integrals over annuli as follows:

∫
|f(x− y)− f(x)| |Kδ(y)| dy =

∫

|y|≤δ

+
∞∑

k=0

∫

2kδ<|y|≤2k+1δ

.

By using the property (ii′) of the approximation to the identity, the first
term is estimated by

∫

|y|≤δ

|f(x− y)− f(x)| |Kδ(y)| dy ≤ c

δd

∫

|y|≤δ

|f(x− y)− f(x)| dy

≤ cA(δ).

Each term in the sum is estimated similarly, but this time by using
property (iii′) of approximations to the identity:
∫

2kδ<|y|≤2k+1δ

|f(x− y)− f(x)| |Kδ(y)| dy

≤ cδ

(2kδ)d+1

∫

|y|≤2k+1δ

|f(x− y)− f(x)| dy

≤ c′

2k(2k+1δ)d

∫

|y|≤2k+1δ

|f(x− y)− f(x)| dy

≤ c′ 2−kA(2k+1δ).

Putting these estimates together, we find that

|(f ∗Kδ)(x)− f(x)| ≤ cA(δ) + c′
∞∑

k=0

2−kA(2k+1δ).
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Given ε > 0, we first choose N so large that
∑

k≥N 2−k < ε. Then, by
making δ sufficiently small, we have by the lemma

A(2kδ) < ε/N, whenever k = 0, 1, . . . , N − 1.

Hence, recalling that A(r) is bounded, we find

|(f ∗Kδ)(x)− f(x)| ≤ Cε

for all sufficiently small δ, and the theorem is proved.

In addition to this pointwise result, convolutions with approximations
to the identity also provide convergence in the L1-norm.

Theorem 2.3 Suppose that f is integrable on Rd and that {Kδ}δ>0 is
an approximation to the identity. Then, for each δ > 0, the convolution

(f ∗Kδ)(x) =
∫

Rd

f(x− y)Kδ(y) dy

is integrable, and

‖(f ∗Kδ)− f‖L1(Rd) → 0, as δ → 0.

The proof is merely a repetition in a more general context of the argument
in the special case where Kδ(x) = δ−d/2e−π|x|2/δ given in Section 4*,
Chapter 2, and so will not be repeated.

3 Differentiability of functions

We now take up the second question raised at the beginning of this
chapter, that of finding a broad condition on functions F that guarantees
the identity

(6) F (b)− F (a) =
∫ b

a

F ′(x) dx.

There are two phenomena that make a general formulation of this identity
problematic. First, because of the existence of non-differentiable func-
tions,4 the right-hand side of (6) might not be meaningful if we merely
assumed F was continuous. Second, even if F ′(x) existed for every x,
the function F ′ would not necessarily be (Lebesgue) integrable. (See
Exercise 12.)

4In particular, there are continuous nowhere differentiable functions. See Chapter 4 in
Book I, or also Chapter 7 below.



3. Differentiability of functions 115

How do we deal with these difficulties? One way is by limiting ourselves
to those functions F that arise as indefinite integrals (of integrable func-
tions). This raises the issue of how to characterize such functions, and
we approach that problem via the study of a wider class, the functions
of bounded variation. These functions are closely related to the question
of rectifiability of curves, and we start by considering this connection.

3.1 Functions of bounded variation

Let γ be a parametrized curve in the plane given by z(t) = (x(t), y(t)),
where a ≤ t ≤ b. Here x(t) and y(t) are continuous real-valued functions
on [a, b]. The curve γ is rectifiable if there exists M < ∞ such that, for
any partition a = t0 < t1 < · · · < tN = b of [a, b],

(7)
N∑

j=1

|z(tj)− z(tj−1)| ≤ M.

By definition, the length L(γ) of the curve is the supremum over all
partitions of the sum on the left-hand side, that is,

L(γ) = sup
a=t0<t1<···<tN=b

N∑
j=1

|z(tj)− z(tj−1)|.

Alternatively, L(γ) is the infimum of all M that satisfy (7). Geomet-
rically, the quantity L(γ) is obtained by approximating the curve by
polygonal lines and taking the limit of the length of these polygonal
lines as the interval [a, b] is partitioned more finely (see the illustration
in Figure 3).

Naturally, we may now ask the following questions: What analytic
condition on x(t) and y(t) guarantees rectifiability of the curve γ? In
particular, must the derivatives of x(t) and y(t) exist? If so, does one
have the desired formula

L(γ) =
∫ b

a

(x′(t)2 + y′(t)2)1/2 dt?

The answer to the first question leads directly to the class of functions
of bounded variation, a class that plays a key role in the theory of dif-
ferentiation.

Suppose F (t) is a complex-valued function defined on [a, b], and a =
t0 < t1 < · · · < tN = b is a partition of this interval. The variation of F
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Figure 3. Approximation of a rectifiable curve by polygonal lines

on this partition is defined by

N∑
j=1

|F (tj)− F (tj−1)|.

The function F is said to be of bounded variation if the variations of
F over all partitions are bounded, that is, there exists M < ∞ so that

N∑
j=1

|F (tj)− F (tj−1)| ≤ M

for all partitions a = t0 < t1 < · · · < tN = b. In this definition we do not
assume that F is continuous; however, when applying it to the case of
curves, we will suppose that F (t) = z(t) = x(t) + iy(t) is continuous.

We observe that if a partition P̃ given by a = t̃0 < t̃1 < · · · < t̃M = b is
a refinement5 of a partition P given by a = t0 < t1 < · · · < tN = b, then
the variation of F on P̃ is greater than or equal to the variation of F on
P.

Theorem 3.1 A curve parametrized by (x(t), y(t)), a ≤ t ≤ b, is rectifi-
able if and only if both x(t) and y(t) are of bounded variation.

The proof is immediate once we observe that if F (t) = x(t) + iy(t), then

F (tj)− F (tj−1) = (x(tj)− x(tj−1)) + i (y(tj)− y(tj−1)) ,

5We say that a partition P̃ of [a, b] is a refinement of a partition P of [a, b] if every
point in P also belongs to P̃.
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and if a and b are real, then |a + ib| ≤ |a|+ |b| ≤ 2|a + ib|.
Intuitively, a function of bounded variation cannot oscillate too often

with amplitudes that are too large. Some examples should help clarify
this assertion.

We first fix some terminology. A real-valued function F defined on
[a, b] is increasing if F (t1) ≤ F (t2) whenever a ≤ t1 ≤ t2 ≤ b. If the
inequality is strict, we say that F is strictly increasing.

Example 1. If F is real-valued, monotonic, and bounded, then F is of
bounded variation. Indeed, if for example F is increasing and bounded
by M , we see that

N∑
j=1

|F (tj)− F (tj−1)| =
N∑

j=1

F (tj)− F (tj−1)

= F (b)− F (a) ≤ 2M.

Example 2. If F is differentiable at every point, and F ′ is bounded,
then F is of bounded variation. Indeed, if |F ′| ≤ M , the mean value
theorem implies

|F (x)− F (y)| ≤ M |x− y|, for all x, y ∈ [a, b],

hence
∑N

j=1 |F (tj)− F (tj−1)| ≤ M(b− a). (See also Exercise 23.)

Example 3. Let

F (x) =
{

xa sin(x−b) for 0 < x ≤ 1,
0 if x = 0.

Then F is of bounded variation on [0, 1] if and only if a > b (Exercise 11).
Figure 4 illustrates the three cases a > b, a = b, and a < b.

The next result shows that in some sense the first example above ex-
hausts all functions of bounded variation. For its proof, we need the fol-
lowing definitions. The total variation of f on [a, x] (where a ≤ x ≤ b)
is defined by

TF (a, x) = sup
N∑

j=1

|F (tj)− F (tj−1)|,
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a = 2, b = 1

a = 1/2, b = 1

a = 1, b = 1

Figure 4. Graphs of xa sin(x−b) for different values of a and b

where the sup is over all partitions of [a, x]. The preceding definition
makes sense if F is complex-valued. The succeeding ones require that
F is real-valued. In the spirit of the first definition, we say that the
positive variation of F on [a, x] is

PF (a, x) = sup
∑

(+)

F (tj)− F (tj−1),

where the sum is over all j such that F (tj) ≥ F (tj−1), and the supremum
is over all partitions of [a, x]. Finally, the negative variation of F on
[a, x] is defined by

NF (a, x) = sup
∑

(−)

−[F (tj)− F (tj−1)],

where the sum is over all j such that F (tj) ≤ F (tj−1), and the supremum
is over all partitions of [a, x].

Lemma 3.2 Suppose F is real-valued and of bounded variation on [a, b].
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Then for all a ≤ x ≤ b one has

F (x)− F (a) = PF (a, x)−NF (a, x),

and

TF (a, x) = PF (a, x) + NF (a, x).

Proof. Given ε > 0 there exists a partition a = t0 < · · · < tN = x of
[a, x], such that

∣∣∣∣∣∣
PF −

∑

(+)

F (tj)− F (tj−1)

∣∣∣∣∣∣
< ε and

∣∣∣∣∣∣
NF −

∑

(−)

−[F (tj)− F (tj−1)]

∣∣∣∣∣∣
< ε.

(To see this, it suffices to use the definition to obtain similar estimates
for PF and NF with possibly different partitions, and then to consider a
common refinement of these two partitions.) Since we also note that

F (x)− F (a) =
∑

(+)

F (tj)− F (tj−1)−
∑

(−)

−[F (tj)− F (tj−1)],

we find that |F (x)− F (a)− [PF −NF ]| < 2ε, which proves the first iden-
tity.

For the second identity, we also note that for any partition of a = t0 <
· · · < tN = x of [a, x] we have

N∑
j=1

|F (tj)− F (tj−1)| =
∑

(+)

F (tj)− F (tj−1) +
∑

(−)

−[F (tj)− F (tj−1)],

hence TF ≤ PF + NF . Also, the above implies

∑

(+)

F (tj)− F (tj−1) +
∑

(−)

−[F (tj)− F (tj−1)] ≤ TF .

Once again, one can argue using common refinements of partitions in the
definitions of PF and NF to deduce the inequality PF + NF ≤ TF , and
the lemma is proved.

Theorem 3.3 A real-valued function F on [a, b] is of bounded variation
if and only if F is the difference of two increasing bounded functions.
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Proof. Clearly, if F = F1 − F2, where each Fj is bounded and in-
creasing, then F is of bounded variation.

Conversely, suppose F is of bounded variation. Then, we let F1(x) =
PF (a, x) + F (a) and F2(x) = NF (a, x). Clearly, both F1 and F2 are in-
creasing, of bounded variation, and by the lemma F (x) = F1(x)− F2(x).

Observe that as a consequence, a complex-valued function of bounded
variation is a (complex) linear combination of four increasing functions.

Returning to the curve γ parametrized by a continuous function z(t) =
x(t) + iy(t), we want to make some comment about its associated length
function. Assuming that the curve is rectifiable, we define L(A,B) as the
length of the segment of γ that arises as the image of those t for which
A ≤ t ≤ B, with a ≤ A ≤ B ≤ b. Note that L(A,B) = TF (A,B), where
F (t) = z(t). We see that

(8) L(A,C) + L(C, B) = L(A,B) if A ≤ C ≤ B.

We also observe that L(A,B) is a continuous function of B (and of
A). Since it is an increasing function, to prove its continuity in B from
the left, it suffices to see that for each B and ε > 0, we can find B1 < B
such that L(A,B1) ≥ L(A,B)− ε. We do this by first finding a partition
A = t0 < t1 < · · · < tN = B such that the length of the corresponding
polygonal line is ≥ L(A,B)− ε/2. By continuity of the function z(t),
we can find a B1, with tN−1 < B1 < B, such that |z(B)− z(B1)| < ε/2.
Now for the refined partition t0 < t1 < · · · < tN−1 < B1 < B, the length
of the polygonal line is still ≥ L(A,B)− ε/2. Therefore, the length
for the partition t0 < t1 < · · · < tN−1 = B1 is ≥ L(A,B)− ε, and thus
L(A,B1) ≥ L(A,B)− ε.

To prove continuity from the right at B, let ε > 0, pick any C > B,
and choose a partition B = t0 < t1 < · · · < tN = C such that L(B, C)−
ε/2 <

∑N−1
j=0 |z(tj+1)− z(tj)|. By considering a refinement of this par-

tition if necessary, we may assume since z is continuous that |z(t1)−
z(t0)| < ε/2. If we denote B1 = z(t1), then we get

L(B, C)− ε/2 < ε/2 + L(B1, C).

Since L(B, B1) + L(B1, C) = L(B, C) we have L(B, B1) < ε, and there-
fore L(A,B1)− L(A,B) < ε.

Note that what we have observed can be re-stated as follows: if a
function of bounded variation is continuous, then so is its total variation.

The next result lies at the heart of the theory of differentiation.
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Theorem 3.4 If F is of bounded variation on [a, b], then F is differen-
tiable almost everywhere.

In other words, the quotient

lim
h→0

F (x + h)− F (x)
h

exists for almost every x ∈ [a, b]. By the previous result, it suffices to
consider the case when F is increasing. In fact, we shall first also assume
that F is continuous. This makes the argument simpler. As for the
general case, we leave that till later. (See Section 3.3.) It will then
be instructive to examine the nature of the possible discontinuities of a
function of bounded variation, and reduce matters to the case of “jump
functions.”

We begin with a nice technical lemma of F. Riesz, which has the effect
of a covering argument.

Lemma 3.5 Suppose G is real-valued and continuous on R. Let E be
the set of points x such that

G(x + h) > G(x) for some h = hx > 0.

If E is non-empty, then it must be open, and hence can be written as a
countable disjoint union of open intervals E =

⋃
(ak, bk). If (ak, bk) is a

finite interval in this union, then

G(bk)−G(ak) = 0.

Proof. Since G is continuous, it is clear that E is open whenever it is
non-empty and can therefore be written as a disjoint union of countably
many open intervals (Theorem 1.3 in Chapter 1). If (ak, bk) denotes a
finite interval in this decomposition, then ak /∈ E; therefore we cannot
have G(bk) > G(ak). We now suppose that G(bk) < G(ak). By continu-
ity, there exists ak < c < bk so that

G(c) =
G(ak) + G(bk)

2
,

and in fact we may choose c farthest to the right in the interval (ak, bk).
Since c ∈ E, there exists d > c such that G(d) > G(c). Since bk /∈ E, we
must have G(x) ≤ G(bk) for all x ≥ bk; therefore d < bk. Since G(d) >
G(c), there exists (by continuity) c′ > d with c′ < bk and G(c′) = G(c),
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which contradicts the fact that c was chosen farthest to the right in
(ak, bk). This shows that we must have G(ak) = G(bk), and the lemma
is proved.

Note. This result sometimes carries the name “rising sun lemma” for
the following reason. If one thinks of the sun rising from the east (at
the right) with the rays of light parallel to the x-axis, then the points
(x,G(x)) on the graph of G, with x ∈ E, are precisely the points which
are in the shade; these points appear in bold in Figure 5.

Figure 5. Rising sun lemma

A slight modification of the proof of Lemma 3.5 gives:

Corollary 3.6 Suppose G is real-valued and continuous on a closed in-
terval [a, b]. If E denotes the set of points x in (a, b) so that G(x + h) >
G(x) for some h > 0, then E is either empty or open. In the latter
case, it is a disjoint union of countably many intervals (ak, bk), and
G(ak) = G(bk), except possibly when a = ak, in which case we only have
G(ak) ≤ G(bk).

For the proof of the theorem, we define the quantity

4h(F )(x) =
F (x + h)− F (x)

h
.
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We also consider the four Dini numbers at x defined by

D+(F )(x)= lim sup
h → 0
h > 0

4h(F )(x)

D+(F )(x)= lim inf
h → 0
h > 0

4h(F )(x)

D−(F )(x)= lim sup
h → 0
h < 0

4h(F )(x)

D−(F )(x)= lim inf
h → 0
h < 0

4h(F )(x).

Clearly, one has D+ ≤ D+ and D− ≤ D−. To prove the theorem it
suffices to show that

(i) D+(F )(x) < ∞ for a.e. x, and;

(ii) D+(F )(x) ≤ D−(F )(x) for a.e. x.

Indeed, if these results hold, then by applying (ii) to −F (−x) instead of
F (x) we obtain D−(F )(x) ≤ D+(F )(x) for a.e. x. Therefore

D+ ≤ D− ≤ D− ≤ D+ ≤ D+ < ∞ for a.e. x.

Thus all four Dini numbers are finite and equal almost everywhere, hence
F ′(x) exists for almost every point x.

We recall that we assume that F is increasing, bounded, and continu-
ous on [a, b]. For a fixed γ > 0, let

Eγ = {x : D+(F )(x) > γ}.

First, we assert that Eγ is measurable. (The proof of this simple fact is
outlined in Exercise 14.) Next, we apply Corollary 3.6 to the function
G(x) = F (x)− γx, and note that we then have Eγ ⊂

⋃
k(ak, bk), where

F (bk)− F (ak) ≥ γ(bk − ak). Consequently,

m(Eγ) ≤
∑

k

m((ak, bk))

≤ 1
γ

∑

k

F (bk)− F (ak)

≤ 1
γ

(F (b)− F (a)).

Therefore m(Eγ) → 0 as γ tends to infinity, and since {D+F (x) < ∞} ⊂
Eγ for all γ, this proves that D+F (x) < ∞ almost everywhere.
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Having fixed real numbers r and R such that R > r, we let

E = {x ∈ [a, b] : D+(F )(x) > R and r > D−(F )(x)}.

We will have shown D+(F )(x) ≤ D−(F )(x) almost everywhere once we
prove that m(E) = 0, since it then suffices to let R and r vary over the
rationals with R > r.

To prove that m(E) = 0 we may assume that m(E) > 0 and arrive at
a contradiction. Because R/r > 1 we can find an open set O such that
E ⊂ O ⊂ (a, b), yet m(O) < m(E) ·R/r.

Now O can be written as
⋃

In, with In disjoint open intervals. Fix
n and apply Corollary 3.6 to the function G(x) = −F (−x) + rx on the
interval −In. Reflecting through the origin again yields an open set⋃

k(ak, bk) contained in In, where the intervals (ak, bk) are disjoint, with

F (bk)− F (ak) ≤ r(bk − ak).

However, on each interval (ak, bk) we apply Corollary 3.6, this time to
G(x) = F (x)−Rx. We thus obtain an open set On =

⋃
k,j (ak,j , bk,j) of

disjoint open intervals (ak,j , bk,j) with (ak,j , bk,j) ⊂ (ak, bk) for every j,
and

F (bk,j)− F (ak,j) ≥ R(bk,j − ak,j).

Then using the fact that F is increasing we find that

m(On) =
∑

k,j

(bk,j − ak,j) ≤ 1
R

∑

k,j

F (bk,j)− F (ak,j)

≤ 1
R

∑

k

F (bk)− F (ak) ≤ r

R

∑

k

(bk − ak)

≤ r

R
m(In).

Note that On ⊃ E ∩ In, since D+F (x) > R and r > D−F (x) for each
x ∈ E; of course, In ⊃ On. We now sum in n. Therefore

m(E) =
∑

n

m(E ∩ In) ≤
∑

n

m(On) ≤ r

R

∑
m(In) =

r

R
m(O) < m(E).

The strict inequality gives a contradiction and Theorem 3.4 is proved, at
least when F is continuous.

Let us see how far we have come regarding (6) if F is a monotonic
function.
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Corollary 3.7 If F is increasing and continuous, then F ′ exists almost
everywhere. Moreover F ′ is measurable, non-negative, and

∫ b

a

F ′(x) dx ≤ F (b)− F (a).

In particular, if F is bounded on R, then F ′ is integrable on R.

Proof. For n ≥ 1, we consider the quotient

Gn(x) =
F (x + 1/n)− F (x)

1/n
.

By the previous theorem, we have that Gn(x) → F ′(x) for a.e. x, which
shows in particular that F ′ is measurable and non-negative.

We now extend F as a continuous function on all of R. By Fatou’s
lemma (Lemma 1.7 in Chapter 2) we know that

∫ b

a

F ′(x) dx ≤ lim inf
n→∞

∫ b

a

Gn(x) dx.

To complete the proof, it suffices to note that
∫ b

a

Gn(x) dx =
1

1/n

∫ b

a

F (x + 1/n) dx− 1
1/n

∫ b

a

F (x) dx

=
1

1/n

∫ b+1/n

a+1/n

F (y) dy − 1
1/n

∫ b

a

F (x) dx

=
1

1/n

∫ b+1/n

b

F (x) dx− 1
1/n

∫ a+1/n

a

F (x) dx.

Since F is continuous, the first and second terms converge to F (b) and
F (a), respectively, as n goes to infinity, so the proof of the corollary is
complete.

We cannot go any farther than the inequality in the corollary if we
allow all continuous increasing functions, as is shown by the following
important example.

The Cantor-Lebesgue function

The following simple construction yields a continuous function F : [0, 1] →
[0, 1] that is increasing with F (0) = 0 and F (1) = 1, but F ′(x) = 0 al-
most everywhere! Hence F is of bounded variation, but

∫ b

a

F ′(x) dx 6= F (b)− F (a).
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Consider the standard triadic Cantor set C ⊂ [0, 1] described at the
end of Section 1 in Chapter 1, and recall that

C =
∞⋂

k=0

Ck,

where each Ck is a disjoint union of 2k closed intervals. For example,
C1 = [0, 1/3] ∪ [2/3, 1]. Let F1(x) be the continuous increasing function
on [0, 1] that satisfies F1(0) = 0, F1(x) = 1/2 if 1/3 ≤ x ≤ 2/3, F1(1) = 1,
and F1 is linear on C1. Similarly, let F2(x) be continuous and increasing,
and such that

F2(x) =





0 if x = 0,
1/4 if 1/9 ≤ x ≤ 2/9,
1/2 if 1/3 ≤ x ≤ 2/3,
3/4 if 7/9 ≤ x ≤ 8/9,
1 if x = 1,

and F2 is linear on C2. See Figure 6.

3/4

2/9 10 1/9 1/3 2/3 7/9 8/9

1/4

1/2

Figure 6. Construction of F2

This process yields a sequence of continuous increasing functions
{Fn}∞n=1 such that clearly

|Fn+1(x)− Fn(x)| ≤ 2−n−1.

Hence {Fn}∞n=1 converges uniformly to a continuous limit F called the
Cantor-Lebesgue function (Figure 7).6 By construction, F is increas-
ing, F (0) = 0, F (1) = 1, and we see that F is constant on each interval
of the complement of the Cantor set. Since m(C) = 0, we find that
F ′(x) = 0 almost everywhere, as desired.

6The reader may check that indeed this function agrees with the one given in Exercise 2
of Chapter 1.
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0 1

Figure 7. The Cantor-Lebesgue function

The considerations in this section, as well as this last example, show
that the assumption of bounded variation guarantees the existence of a
derivative almost everywhere, but not the validity of the formula

∫ b

a

F ′(x) dx = F (b)− F (a).

In the next section, we shall present a condition on a function that will
completely settle the problem of establishing the above identity.

3.2 Absolutely continuous functions

A function F defined on [a, b] is absolutely continuous if for any ε > 0
there exists δ > 0 so that

N∑

k=1

|F (bk)− F (ak)| < ε whenever
N∑

k=1

(bk − ak) < δ,

and the intervals (ak, bk), k = 1, . . . , N are disjoint. Some general re-
marks are in order.

• From the definition, it is clear that absolutely continuous functions
are continuous, and in fact uniformly continuous.

• If F is absolutely continuous on a bounded interval, then it is also of
bounded variation on the same interval. Moreover, as is easily seen,
its total variation is continuous (in fact absolutely continuous). As
a consequence the decomposition of such a function F into two
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monotonic functions given in Section 3.1 shows that each of these
functions is continuous.

• If F (x) =
∫ x

a
f(y) dy where f is integrable, then F is absolutely

continuous. This follows at once from (ii) in Proposition 1.12,
Chapter 2.

In fact, this last remark shows that absolute continuity is a necessary
condition to impose on F if we hope to prove

∫ b

a
F ′(x) dx = F (b)− F (a).

Theorem 3.8 If F is absolutely continuous on [a, b], then F ′(x) exists
almost everywhere. Moreover, if F ′(x) = 0 for a.e. x, then F is constant.

Since an absolutely continuous function is the difference of two continu-
ous monotonic functions, as we have seen above, the existence of F ′(x)
for a.e. x follows from what we have already proved. To prove that
F ′(x) = 0 a.e. implies F is constant requires a more elaborate version of
the covering argument in Lemma 1.2. For the moment we revert to the
generality of d dimensions to describe this.

A collection B of balls {B} is said to be a Vitali covering of a set E
if for every x ∈ E and any η > 0 there is a ball B ∈ B, such that x ∈ B
and m(B) < η. Thus every point is covered by balls of arbitrarily small
measure.

Lemma 3.9 Suppose E is a set of finite measure and B is a Vitali cov-
ering of E. For any δ > 0 we can find finitely many balls B1, . . . , BN in
B that are disjoint and so that

N∑
i=1

m(Bi) ≥ m(E)− δ.

Proof. We apply the elementary Lemma 1.2 iteratively, with the
aim of exhausting the set E. It suffices to take δ sufficiently small, say
δ < m(E), and using the just cited covering lemma, we can find an initial
collection of disjoint balls B1, B2, . . . , BN1 in B such that

∑N1
i=1 m(Bi) ≥

γδ. (For simplicity of notation, we have written γ = 3−d.) Indeed, first
we have m(E′) ≥ δ for an appropriate compact subset E′ of E. Because
of the compactness of E′, we can cover it by finitely many balls from B,
and then the previous lemma allows us to select a disjoint sub-collection
of these balls B1, B2, . . . , BN1 such that

∑N1
i=1 m(Bi) ≥ γm(E′) ≥ γδ.

With B1, . . . , BN1 as our initial sequence of balls, we consider two
possibilities: either

∑N1
i=1 m(Bi) ≥ m(E)− δ and we are done with N =



3. Differentiability of functions 129

N1; or, contrariwise,
∑N1

i=1 m(Bi) < m(E)− δ. In the second case, with
E2 = E −⋃N1

i=1 Bi, we have m(E2) > δ (recall that m(Bi) = m(Bi)). We
then repeat the previous argument, by choosing a compact subset E′

2 of
E2 with m(E′

2) ≥ δ, and by noting that the balls in B that are disjoint
from

⋃N1
i=1 Bi still cover E2 and in fact give a Vitali covering for E2, and

hence for E′
2. Thus we can choose a finite disjoint collection of these

balls Bi, N1 < i ≤ N2, so that
∑

N1<i≤N2
m(Bi) ≥ γδ. Therefore, now∑N2

i=1 m(Bi) ≥ 2γδ, and the balls Bi, 1 ≤ i ≤ N2, are disjoint.
We again consider two alternatives, whether or not

∑N2
i=1 m(Bi) ≥

m(E)− δ. In the first case, we are done with N2 = N , and in the second
case, we proceed as before. If, continuing this way, we had reached the
kth stage and not stopped before then, we would have selected a collection
of disjoint balls with the sum of their measures ≥ kγδ. In any case, our
process achieves the desired goal by the kth stage if k ≥ (m(E)− δ)/γδ,
since in this case

∑Nk

i=1 m(Bi) ≥ m(E)− δ.

A simple consequence is the following.

Corollary 3.10 We can arrange the choice of the balls so that

m(E −
N⋃

i=1

Bi) < 2δ.

In fact, let O be an open set, with O ⊃ E and m(O − E) < δ. Since
we are dealing with a Vitali covering of E, we can restrict all of our
choices above to balls contained inO. If we do this, then (E −⋃N

i=1 Bi) ∪⋃N
i=1 Bi ⊂ O, where the union on the left-hand side is a disjoint union.

Hence

m(E −
N⋃

i=1

Bi) ≤ m(O)−m(
N⋃

i=1

Bi) ≤ m(E) + δ − (m(E)− δ) = 2δ.

We now return to the situation on the real line. To complete the proof
of the theorem it suffices to show that under its hypotheses we have
F (b) = F (a), since if that is proved, we can replace the interval [a, b] by
any sub-interval. Now let E be the set of those x ∈ (a, b) where F ′(x)
exists and is zero. By our assumption m(E) = b− a. Next, momentarily
fix ε > 0. Since for each x ∈ E we have

lim
h→0

∣∣∣∣
F (x + h)− F (x)

h

∣∣∣∣ = 0,
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then for each η > 0 we have an open interval I = (ax, bx) ⊂ [a, b] con-
taining x, with

|F (bx)− F (ax)| ≤ ε(bx − ax) and bx − ax < η.

The collection of these intervals forms a Vitali covering of E, and
hence by the lemma, for δ > 0, we can select finitely many Ii, 1 ≤ i ≤ N ,
Ii = (ai, bi), which are disjoint and such that

(9)
N∑

i=1

m(Ii) ≥ m(E)− δ = (b− a)− δ.

However, |F (bi)− F (ai)| ≤ ε(bi − ai), and upon adding these inequalities
we get

N∑
i=1

|F (bi)− F (ai)| ≤ ε(b− a),

since the intervals Ii are disjoint and lie in [a, b]. Next consider the
complement of

⋃N
j=1 Ij in [a, b]. It consists of finitely many closed in-

tervals
⋃M

k=1[αk, βk] with total length ≤ δ because of (9). Thus by the
absolute continuity of F (if δ is chosen appropriately in terms of ε),∑M

k=1 |F (βk)− F (αk)| ≤ ε. Altogether, then,

|F (b)− F (a)| ≤
N∑

i=1

|F (bi)− F (ai)|+
M∑

k=1

|F (βk)− F (αk)| ≤ ε(b− a) + ε.

Since ε was positive but otherwise arbitrary, we conclude that F (b)−
F (a) = 0, which we set out to show.

The culmination of all our efforts is contained in the next theorem. In
particular, it resolves our second problem of establishing the reciprocity
between differentiation and integration.

Theorem 3.11 Suppose F is absolutely continuous on [a, b]. Then F ′

exists almost everywhere and is integrable. Moreover,

F (x)− F (a) =
∫ x

a

F ′(y) dy, for all a ≤ x ≤ b.

By selecting x = b we get F (b)− F (a) =
∫ b

a
F ′(y) dy.

Conversely, if f is integrable on [a, b], then there exists an absolutely
continuous function F such that F ′(x) = f(x) almost everywhere, and in
fact, we may take F (x) =

∫ x

a
f(y) dy.
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Proof. Since we know that a real-valued absolutely continuous
function is the difference of two continuous increasing functions, Corol-
lary 3.7 shows that F ′ is integrable on [a, b]. Now let G(x) =

∫ x

a
F ′(y) dy.

Then G is absolutely continuous; hence so is the difference G(x)− F (x).
By the Lebesgue differentiation theorem (Theorem 1.4), we know that
G′(x) = F ′(x) for a.e. x; hence the difference F −G has derivative 0 al-
most everywhere. By the previous theorem we conclude that F −G is
constant, and evaluating this expression at x = a gives the desired result.

The converse is a consequence of the observation we made earlier,
namely that

∫ x

a
f(y) dy is absolutely continuous, and the Lebesgue dif-

ferentiation theorem, which gives F ′(x) = f(x) almost everywhere.

3.3 Differentiability of jump functions

We now examine monotonic functions that are not assumed to be con-
tinuous. The resulting analysis will allow us to remove the continuity
assumption made earlier in the proof of Theorem 3.4.

As before, we may assume that F is increasing and bounded. In par-
ticular, these two conditions guarantee that the limits

F (x−) = lim
y → x
y < x

F (y) and F (x+) = lim
y → x
y > x

F (y)

exist. Then of course F (x−) ≤ F (x) ≤ F (x+), and the function F is
continuous at x if F (x−) = F (x+); otherwise, we say that it has a jump
discontinuity. Fortunately, dealing with these discontinuities is manage-
able, since there can only be countably many of them.

Lemma 3.12 A bounded increasing function F on [a, b] has at most
countably many discontinuities.

Proof. If F is discontinuous at x, we may choose a rational number
rx so that F (x−) < rx < F (x+). If f is discontinuous at x and z with
x < z, we must have F (x+) ≤ F (z−), hence rx < rz. Consequently, to
each rational number corresponds at most one discontinuity of F , hence
F can have at most a countable number of discontinuities.

Now let {xn}∞n=1 denote the points where F is discontinuous, and let
αn denote the jump of F at xn, that is, αn = F (x+

n )− F (x−n ). Then

F (x+
n ) = F (x−n ) + αn

and

F (xn) = F (x−n ) + θnαn, for some θn, with 0 ≤ θn ≤ 1.
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If we let

jn(x) =





0 if x < xn,
θn if x = xn,
1 if x > xn,

then we define the jump function associated to F by

JF (x) =
∞∑

n=1

αnjn(x).

For simplicity, and when no confusion is possible, we shall write J instead
of JF .

Our first observation is that if F is bounded, then we must have

∞∑
n=1

αn ≤ F (b)− F (a) < ∞,

and hence the series defining J converges absolutely and uniformly.

Lemma 3.13 If F is increasing and bounded on [a, b], then:

(i) J(x) is discontinuous precisely at the points {xn} and has a jump
at xn equal to that of F .

(ii) The difference F (x)− J(x) is increasing and continuous.

Proof. If x 6= xn for all n, each jn is continuous at x, and since the
series converges uniformly, J must be continuous at x. If x = xN for
some N , then we write

J(x) =
N∑

n=1

αnjn(x) +
∞∑

n=N+1

αnjn(x).

By the same argument as above, the series on the right-hand side is
continuous at x. Clearly, the finite sum has a jump discontinuity at xN

of size αN .
For (ii), we note that (i) implies at once that F − J is continuous.

Finally, if y > x we have

J(y)− J(x) ≤
∑

x<xn≤y

αn ≤ F (y)− F (x),
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where the last inequality follows since F is increasing. Hence

F (x)− J(x) ≤ F (y)− J(y),

and the difference F − J is increasing, as desired.

Since we may write F (x) = [F (x)− J(x)] + J(x), our final task is to
prove that J is differentiable almost everywhere.

Theorem 3.14 If J is the jump function considered above, then J ′(x)
exists and vanishes almost everywhere.

Proof. Given any ε > 0, we note that the set E of those x where

(10) lim sup
h→0

J(x + h)− J(x)
h

> ε

is a measurable set. (The proof of this little fact is outlined in Exercise 14
below.) Suppose δ = m(E). We need to show that δ = 0. Now observe
that since the series

∑
αn arising in the definition of J converges, then for

any η, to be chosen later, we can find an N so large that
∑

n>N αn < η.
We then write

J0(x) =
∑
n>N

αnjn(x),

and because of our choice of N we have

(11) J0(b)− J0(a) < η.

However, J − J0 is a finite sum of terms αnjn(x), and therefore the set
of points where (10) holds, with J replaced by J0, differs from E by
at most a finite set, the points {x1, x2, . . . , xN}. Thus we can find a
compact set K, with m(K) ≥ δ/2, so that lim suph→0

J0(x+h)−J0(x)
h > ε

for each x ∈ K. Hence there are intervals (ax, bx) containing x, x ∈ K, so
that J0(bx)− J0(ax) > ε(bx − ax). We can first choose a finite collection
of these intervals that covers K, and then apply Lemma 1.2 to select
intervals I1, I2, . . . , In which are disjoint, and for which

∑n
j=1 m(Ij) ≥

m(K)/3. The intervals Ij = (aj , bj) of course satisfy

J0(bj)− J0(aj) > ε(bj − aj).

Now,

J0(b)− J0(a) ≥
N∑

j=1

J0(bj)− J0(aj) > ε
∑

(bj − aj) ≥ ε

3
m(K) ≥ ε

6
δ.
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Thus by (11), εδ/6 < η, and since we are free to choose η, it follows that
δ = 0 and the theorem is proved.

4 Rectifiable curves and the isoperimetric inequality

We turn to the further study of rectifiable curves and take up first the
validity of the formula

(12) L =
∫ b

a

(x′(t)2 + y′(t)2)1/2 dt,

for the length L of the curve parametrized by (x(t), y(t)).
We have already seen that rectifiable curves are precisely the curves

where, besides the assumed continuity of x(t) and y(t), these functions
are of bounded variation. However a simple example shows that for-
mula (12) does not always hold in this context. Indeed, let x(t) = F (t)
and y(t) = F (t), where F is the Cantor-Lebesgue function and 0 ≤ t ≤ 1.
Then this parametrized curve traces out the straight line from (0, 0) to
(1, 1) and has length

√
2, yet x′(t) = y′(t) = 0 for a.e. t.

The integral formula expressing the length of L is in fact valid if we
assume in addition that the coordinate functions of the parametrization
are absolutely continuous.

Theorem 4.1 Suppose (x(t), y(t)) is a curve defined for a ≤ t ≤ b. If
both x(t) and y(t) are absolutely continuous, then the curve is rectifiable,
and if L denotes its length, we have

L =
∫ b

a

(x′(t)2 + y′(t)2)1/2 dt.

Note that if F (t) = x(t) + iy(t) is absolutely continuous then it is auto-
matically of bounded variation, and hence the curve is rectifiable. The
identity (12) is an immediate consequence of the proposition below, which
can be viewed as a more precise version of Corollary 3.7 for absolutely
continuous functions.

Proposition 4.2 Suppose F is complex-valued and absolutely continu-
ous on [a, b]. Then

TF (a, b) =
∫ b

a

|F ′(t)| dt.
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In fact, because of Theorem 3.11, for any partition a = t0 < t1 < · · · <
tN = b of [a, b], we have

N∑
j=1

|F (tj)− F (tj−1)| =
N∑

j=1

∣∣∣∣∣
∫ tj

tj−1

F ′(t) dt

∣∣∣∣∣

≤
N∑

j=1

∫ tj

tj−1

|F ′(t)| dt

=
∫ b

a

|F ′(t)| dt.

So this proves

(13) TF (a, b) ≤
∫ b

a

|F ′(t)| dt.

To prove the reverse inequality, fix ε > 0, and using Theorem 2.4 in
Chapter 2 find a step function g on [a, b], such that F ′ = g + h with∫ b

a
|h(t)| dt < ε. Set G(x) =

∫ x

a
g(t) dt, and H(x) =

∫ x

a
h(t) dt. Then F =

G + H, and as is easily seen

TF (a, b) ≥ TG(a, b)− TH(a, b).

However, by (13) TH(a, b) < ε, so that

TF (a, b) ≥ TG(a, b)− ε.

Now partition the interval [a, b], as a = t0 < · · · < tN = b, so that the step
function g is constant on each of the intervals (tj−1, tj), j = 1, 2, . . . , N .
Then

TG(a, b) ≥
N∑

j=1

|G(tj)−G(tj−1)|

=
N∑

j=1

∣∣∣∣∣
∫ tj

tj−1

g(t) dt

∣∣∣∣∣

=
∑∫ tj

tj−1

|g(t)| dt

=
∫ b

a

|g(t)| dt.
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Since
∫ b

a
|g(t)| dt ≥ ∫ b

a
|F ′(t)| dt− ε, we obtain as a consequence that

TF (a, b) ≥
∫ b

a

|F ′(t)| dt− 2ε,

and letting ε → 0 we establish the assertion and also the theorem.

Now, any curve (viewed as the image of a mapping t 7→ z(t)) can in
fact be realized by many different parametrizations. A rectifiable curve,
however, has associated to it a unique natural parametrization, the arc-
length parametrization. Indeed, let L(A,B) denote the length function
(considered in Section 3.1), and for the variable t in [a, b] set s = s(t) =
L(a, t). Then s(t), the arc-length, is a continuous increasing function
which maps [a, b] to [0, L], where L is the length of the curve. The arc-
length parametrization of the curve is now given by the pair z̃(s) =
x̃(s) + iỹ(s), where z̃(s) = z(t), for s = s(t). Notice that in this way the
function z̃(s) is well defined on [0, L], since if s(t1) = s(t2), t1 < t2, then
in fact z(t) does not vary in the interval [t1, t2] and thus z(t1) = z(t2).
Moreover |z̃(s1)− z̃(s2)| ≤ |s1 − s2|, for all pairs s1, s2 ∈ [0, L], since the
left-hand side of the inequality is the distance between two points on the
curve, while the right-hand side is the length of the portion of the curve
joining these two points. Also, as s varies from 0 to L, z̃(s) traces out
the same points (in the same order) that z(t) does as t varies from a to b.

Theorem 4.3 Suppose (x(t), y(t)), a ≤ t ≤ b, is a rectifiable curve that
has length L. Consider the arc-length parametrization z̃(s) = (x̃(s), ỹ(s))
described above. Then x̃ and ỹ are absolutely continuous, |z̃′(s)| = 1 for
almost every s ∈ [0, L], and

L =
∫ L

0

(x̃′(s)2 + ỹ′(s)2)1/2 ds.

Proof. We noted that |z̃(s1)− z̃(s2)| ≤ |s1 − s2|, so it follows im-
mediately that z̃(s) is absolutely continuous, hence differentiable almost
everywhere. Moreover, this inequality also proves that |z̃′(s)| ≤ 1, for
almost every s. By definition the total variation of z̃ equals L, and by
the previous theorem we must have L =

∫ L

0
|z̃′(s)| ds. Finally, we note

that this identity is possible only when |z̃′(s)| = 1 almost everywhere.

4.1* Minkowski content of a curve

The proof we give below of the isoperimetric inequality depends in a key
way on the concept of the Minkowski content. While the idea of this
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content has an interest on its own right, it is particularly relevant for us
here. This is because the rectifiability of a curve is tantamount to having
(finite) Minkowski content, with that quantity the same as the length of
the curve.

We begin our discussion of these matters with several definitions. A
curve parametrized by z(t) = (x(t), y(t)), a ≤ t ≤ b, is said to be simple
if the mapping t 7→ z(t) is injective for t ∈ [a, b]. It is a closed simple
curve if the mapping t 7→ z(t) is injective for t in [a, b), and z(a) = z(b).
More generally, a curve is quasi-simple if the mapping is injective for t
in the complement of finitely many points in [a, b].

Figure 8. A quasi-simple curve

We shall find it convenient to designate by Γ the pointset traced out by
the curve z(t) as t varies in [a, b], that is, Γ = {z(t) : a ≤ t ≤ b}. For any
compact set K ⊂ R2 (we take K = Γ below), we denote by Kδ the open
set that consists of all points at distance (strictly) less than δ from K,

Kδ = {x ∈ R2 : d(x,K) < δ}.

Γ

Γδ

Figure 9. The curve Γ and the set Γδ
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We then say that the set K has Minkowski content7 if the limit

lim
δ→0

m(Kδ)
2δ

exists. When this limit exists, we denote it by M(K).

Theorem 4.4 Suppose Γ = {z(t), a ≤ t ≤ b} is a quasi-simple curve. The
Minkowski content of Γ exists if and only if Γ is rectifiable. When this
is the case and L is the length of the curve, then M(Γ) = L.

To prove the theorem, we also consider for any compact set K

M∗(K) = lim sup
δ→0

m(Kδ)
2δ

and M∗(K) = lim inf
δ→0

m(Kδ)
2δ

(both taken as extended positive numbers). Of courseM∗(K) ≤M∗(K).
To say that the Minkowski content exists is the same as saying that
M∗(K) < ∞ andM∗(K) = M∗(K). Their common value is thenM(K).

The theorem just stated is the consequence of two propositions con-
cerning M∗(K) and M∗(K). The first is as follows.

Proposition 4.5 Suppose Γ = {z(t), a ≤ t ≤ b} is a quasi-simple curve.
If M∗(Γ) < ∞, then the curve is rectifiable, and if L denotes its length,
then

L ≤M∗(Γ).

The proof depends on the following simple observation.

Lemma 4.6 If Γ = {z(t), a ≤ t ≤ b} is any curve, and ∆ = |z(b)− z(a)|
is the distance between its end-points, then m(Γδ) ≥ 2δ∆.

Proof. Since the distance function and the Lebesgue measure are
invariant under translations and rotations (see Section 3 in Chapter 1
and Problem 4 in Chapter 2) we may transform the situation by an
appropriate composition of these motions. Therefore we may assume
that the end-points of the curve have been placed on the x-axis, and
thus we may suppose that z(a) = (A, 0), z(b) = (B, 0) with A < B, and
∆ = B −A (in the case A = B the conclusion is automatically verified).

By the continuity of the function x(t), there is for each x in [A, B] a
value t in [a, b], such that x = x(t). Since Q = (x(t), y(t)) ∈ Γ, the set

7This is one-dimensional Minkowski content; variants are in Exercise 28 and also in
Chapter 7 below.
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Γδ contains a segment parallel to the y-axis, of length 2δ centered at Q
lying above x (see Figure 10). In other words the slice (Γδ)x contains
the interval (y(t)− δ, y(t) + δ), and hence m1((Γδ)x) ≥ 2δ (where m1 is
the one-dimensional Lebesgue measure). However by Fubini’s theorem

m(Γδ) =
∫

R
m1((Γδ)x) dx ≥

∫ B

A

m1((Γδ)x) dx ≥ 2δ(B −A) = 2δ∆,

and the lemma is proved.

Γ

A B

Q

x = x(t)

Figure 10. The situation in Lemma 4.6

We now pass to the proof of the proposition. Let us assume first that
the curve is simple. Let P be any partition a = t0 < t1 < · · · < tN = b
of the interval [a, b], and let LP denote the length of the corresponding
polygonal line, that is,

LP =
N∑

j=1

|z(tj)− z(tj−1)|.

For each ε > 0, the continuity of t 7→ z(t) guarantees the existence of N
proper closed sub-intervals Ij = [aj , bj ] of (tj−1, tj), so that

N∑
j=1

|z(bj)− z(aj)| ≥ LP − ε.

Let Γj denote the segment of the curve given by Γj = {z(t); t ∈ Ij}. Since
the closed intervals I1, . . . , IN are disjoint, it follows by the simplicity of
the curve that the compact sets Γ1, Γ2, . . . , ΓN are disjoint. However,
Γ ⊃ ⋃N

j=1 Γj and Γδ ⊃ ⋃N
j=1(Γj)δ. Moreover, the disjointness of the Γj

implies that the sets (Γj)δ are also disjoint for sufficiently small δ. Hence
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for those δ, the previous lemma applied to each Γj gives

m(Γδ) ≥
N∑

j=1

m((Γj)δ) ≥ 2δ
∑

|z(bj)− z(aj)|.

As a result, m(Γδ)/(2δ) ≥ LP − ε, and a passage to the limit gives
M∗(Γ) ≥ LP − ε. Since this inequality is true for all partitions P and
all ε > 0, it implies that the curve is rectifiable and its length does not
exceed M∗(Γ).

The proof when the curve is merely quasi-simple is similar, except
the partitions P considered must be refined so as to include as partition
points those (finitely many) points in whose complement (in [a, b]) the
mapping t 7→ z(t) is injective. The details may be left to the reader.

The second proposition is in the reverse direction.

Proposition 4.7 Suppose Γ = {z(t), a ≤ t ≤ b} is a rectifiable curve with
length L. Then

M∗(Γ) ≤ L.

The quantitiesM∗(Γ) and L are of course independent of the parametriza-
tion used; since the curve is rectifiable, it will be convenient to use the arc-
length parametrization. Thus we write the curve as z(s) = (x(s), y(s)),
with 0 ≤ s ≤ L, and recall that then z(s) is absolutely continuous and
|z′(s)| = 1 for a.e. s ∈ [0, L].

We first fix any 0 < ε < 1, and find a measurable set Eε ⊂ R and a
positive number rε such that m(Eε) < ε and

(14) sup
0<|h|<rε

∣∣∣∣
z(s + h)− z(s)

h
− z′(s)

∣∣∣∣ < ε for all s ∈ [0, L]− Eε.

Indeed, for each integer n, let

Fn(s) = sup
0<|h|<1/n

∣∣∣∣
z(s + h)− z(s)

h
− z′(s)

∣∣∣∣

(where z(s) has been extended outside [0, L], so that z(s) = z(0), when
s < 0, and z(s) = z(L) when s > L). Because z(s) is continuous the
supremum of h in the definition of Fn(s) can be replaced by a supremum
of countably many measurable functions, and hence each Fn is measur-
able. However, Fn(s) → 0, as n →∞ for a.e s ∈ [a, b]. Thus by Egorov’s
theorem the convergence is uniform outside a set Eε with m(Eε) < ε,
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and so we merely need to choose rε = 1/n for sufficiently large n to es-
tablish (14). It will be convenient in what follows to assume, as we may,
that z′(s) exists and |z′(s)| = 1 for every s /∈ Eε.

Now for any 0 < ρ < rε (with ρ < 1), we partition the interval [0, L]
into consecutive closed intervals, each of length ρ, (except that the last
interval may have length ≤ ρ). Then there is a total of N ≤ L/ρ + 1 such
intervals that arise. We call these intervals I1, I2, . . . , IN , and divide them
into two classes. The first class, those intervals Ij we call “good,” are the
ones that enjoy the property that Ij 6⊂ Eε. The second class, those which
are “bad,” have the property that Ij ⊂ Eε. As a result,

⋃
Ij bad Ij ⊂ Eε,

hence the union has measure < ε.
We have of course that [0, L] ⊂ ⋃N

j=1 Ij , and if we denote by Γj the

segment of Γ given by {z(s) : s ∈ Ij}, then Γ =
⋃N

j=1 Γj , and as a result

Γδ =
⋃N

j=1(Γj)δ and m(Γδ) ≤ ∑N
j=1 m((Γj)δ).

We consider first the contribution of m((Γj)δ) when Ij is a good in-
terval. Recall that for such Ij = [aj , bj ] there is an s0 ∈ Ij which is not
in Eε, and therefore (14) holds for s = s0. Let us now visualize Γj by in-
troducing a coordinate system such that z(s0) = 0 and z′(s0) = 1 (which
we may assume after a suitable translation and rotation). We maintain
the notations z(s) and Γj for the so transformed segment of the curve.

bj − s0 + ερ

aj bjs0

0 = z(s0)aj − s0 − ερ aj − s0 bj − s0

Γj

Figure 11. Estimate of m((Γj)δ) for a good interval Ij

Note that as h varies over the interval [aj − s0, bj − s0], s0 + h varies
over Ij = [aj , bj ]. Therefore Γj is contained in the rectangle

[aj − s0 − ερ, bj − s0 + ερ]× [−ερ, ερ],
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since |h| ≤ ρ < rε by construction, and |z(s0 + h)− h| < ε|h| by (14). See
Figure 11. Thus (Γj)δ is contained in the rectangle

[aj − s0 − ερ− δ, bj − s0 + ερ + δ]× [−ερ− δ, ερ + δ],

which has measure ≤ (ρ + 2ερ + 2δ)(2ερ + 2δ). Therefore, since ε ≤ 1,
we have

(15) m((Γj)δ) ≤ 2δρ + O(εδρ + δ2 + ερ2),

where the bound arising in O is independent of ε, δ, and ρ. This is our
desired estimate for the good intervals.

To pass to the remaining intervals we use the fact that |z(s)− z(s′)| ≤
|s− s′| for all s and s′. Thus in every case Γj is contained in a ball
(disc) of radius ρ, and hence (Γj)δ is contained in a ball of radius ρ + δ.
Therefore we have the crude estimate

(16) m((Γj)δ) = O(δ2 + ρ2).

We now sum (15) over the good intervals (of which there are at most
L/ρ + 1), and (16) over the bad intervals. There are at most ε/ρ + 1
of the latter kind, since their union is included in Eε and this set has
measure < ε. Altogether, then,

m(Γδ) ≤ 2δL + 2δρ + O(εδ + δ2/ρ + ερ) + O
(
(ε/ρ + 1)(δ2 + ρ2)

)
,

which simplifies to the inequalities

m(Γδ)
2δ

≤ L + O

(
ρ + ε +

δ

ρ
+

ερ

δ
+

εδ

ρ
+ δ +

ρ2

δ

)

≤ L + O

(
ρ + ε +

δ

ρ
+

ερ

δ
+

ρ2

δ

)
,

where in the last line we have used the fact that ε < 1 and ρ < 1. In
order to obtain a favorable estimate from this as δ → 0, we need to
choose ρ (the length of the sub-intervals) very roughly of the same size
as δ. An effective choice is ρ = δ/ε1/2. If we fix this choice and restrict
our attention to δ for which 0 < δ < ε1/2rε, then automatically ρ < rε,
as required by (14). Inserting ρ = δ/ε1/2 in the above inequality gives

m(Γδ)
2δ

≤ L + O

(
δ

ε1/2
+ ε + ε1/2 +

δ

ε

)
,
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and thus

lim sup
δ→0

m(Γδ)
2δ

≤ L + O(ε + ε1/2).

Now we can let ε → 0 to obtain the desired conclusion M∗(Γ) ≤ L, and
the proofs of the proposition and theorem are complete.

4.2* Isoperimetric inequality

The isoperimetric inequality in the plane states, in effect, that among all
curves of a given length it is the circle that encloses the maximum area.
A simple form of this theorem already appeared in Book I. While the
proof given there had the virtue of being brief and elegant, it did suffer
several shortcomings. Among them the “area” in the statement was
defined indirectly via a technical artifice, and the scope of the conclusion
was limited because only relatively smooth curves were considered. Here
we want to remedy those defects and deal with a general version of the
result.

We suppose that Ω is a bounded open subset of R2, and that its bound-
ary Ω− Ω, is a rectifiable curve Γ, with length `(Γ). We do not require
that Γ be a simple closed curve. The isoperimetric theorem then asserts
the following.

Theorem 4.8 4π m(Ω) ≤ `(Γ)2.

Proof. For each δ > 0 we consider the outer set

Ω+(δ) = {x ∈ R2 : d(x,Ω) < δ},

and the inner set

Ω−(δ) = {x ∈ R2 : d(x,Ωc) ≥ δ}.

Thus Ω−(δ) ⊂ Ω ⊂ Ω+(δ).
We notice that for Γδ = {x : d(x, Γ) < δ} we have

(17) Ω+(δ) = Ω−(δ) ∪ Γδ,

and that this union is disjoint. Moreover, if D(δ) is the open ball (disc)
of radius δ centered at the origin, D(δ) = {x ∈ R2, |x| < δ}, then clearly

(18)
{

Ω+(δ) ⊃ Ω + D(δ),
Ω ⊃ Ω−(δ) + D(δ).
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Ω−(δ)

Ω

Ω+(δ)

Figure 12. The sets Ω, Ω−(δ) and Ω+(δ)

We now apply the Brunn-Minkowski inequality (Theorem 5.1 in Chap-
ter 1) to the first inclusion, and obtain

m(Ω+(δ)) ≥ (m(Ω)1/2 + m(D(δ))1/2)2.

Since m(D(δ)) = πδ2 (this standard formula is established in Exercise 14
in the previous chapter), and (A + B)2 ≥ A2 + 2AB whenever A and B
are positive, we find that

m(Ω+(δ)) ≥ m(Ω) + 2π1/2δ m(Ω)1/2.

Similarly, m(Ω) ≥ m(Ω−(δ)) + 2π1/2δ m(Ω−(δ))1/2 using the second in-
clusion in (18), which implies

−m(Ω−(δ)) ≥ −m(Ω) + 2π1/2δ m(Ω−(δ))1/2.

Now by (17)

m(Γδ) = m(Ω+(δ))−m(Ω−(δ)),

and by the inequalities above, we have

m(Γδ) ≥ 2π1/2δ(m(Ω)1/2 + m(Ω−(δ))1/2).

We now divide both sides by 2δ and take the limsup as δ → 0. This
yields

M∗(Γ) ≥ π1/2(2m(Ω)1/2),
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since Ω−(δ) ↗ Ω as δ → 0. However, by Proposition 4.7, `(Γ) ≥M∗(Γ),
so

`(Γ) ≥ 2π1/2m(Ω)1/2,

which proves the theorem.

Remark. A similar result holds even without the assumption that the
boundary is a (rectifiable) curve. In fact the proof shows that for any
bounded open set Ω whose boundary is Γ we have

4π m(Ω) ≤M∗(Γ)2.

5 Exercises

1. Suppose ϕ is an integrable function on Rd with
R
Rd ϕ(x) dx = 1. Set Kδ(x) =

δ−dϕ(x/δ), δ > 0.

(a) Prove that {Kδ}δ>0 is a family of good kernels.

(b) Assume in addition that ϕ is bounded and supported in a bounded set.
Verify that {Kδ}δ>0 is an approximation to the identity.

(c) Show that Theorem 2.3 (convergence in the L1-norm) holds for good kernels
as well.

2. Suppose {Kδ} is a family of kernels that satisfies:

(i) |Kδ(x)| ≤ Aδ−d for all δ > 0.

(ii) |Kδ(x)| ≤ Aδ/|x|d+1 for all δ > 0.

(iii)
R∞
−∞Kδ(x) dx = 0 for all δ > 0.

Thus Kδ satisfies conditions (i) and (ii) of approximations to the identity, but the
average value of Kδ is 0 instead of 1. Show that if f is integrable on Rd, then

(f ∗Kδ)(x) → 0 for a.e. x, as δ → 0.

3. Suppose 0 is a point of (Lebesgue) density of the set E ⊂ R. Show that for each
of the individual conditions below there is an infinite sequence of points xn ∈ E,
with xn 6= 0, and xn → 0 as n →∞.

(a) The sequence also satisfies −xn ∈ E for all n.

(b) In addition, 2xn belongs to E for all n.
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Generalize.

4. Prove that if f is integrable on Rd, and f is not identically zero, then

f∗(x) ≥ c

|x|d , for some c > 0 and all |x| ≥ 1.

Conclude that f∗ is not integrable on Rd. Then, show that the weak type estimate

m({x : f∗(x) > α}) ≤ c/α

for all α > 0 whenever
R |f | = 1, is best possible in the following sense: if f is

supported in the unit ball with
R |f | = 1, then

m({x : f∗(x) > α}) ≥ c′/α

for some c′ > 0 and all sufficiently small α.

[Hint: For the first part, use the fact that
R

B
|f | > 0 for some ball B.]

5. Consider the function on R defined by

f(x) =

8
<
:

1

|x|(log 1/|x|)2 if |x| ≤ 1/2,

0 otherwise.

(a) Verify that f is integrable.

(b) Establish the inequality

f∗(x) ≥ c

|x|(log 1/|x|) for some c > 0 and all |x| ≤ 1/2,

to conclude that the maximal function f∗ is not locally integrable.

6. In one dimension there is a version of the basic inequality (1) for the maximal
function in the form of an identity. We define the “one-sided” maximal function

f∗+(x) = sup
h>0

1

h

Z x+h

x

|f(y)| dy.

If E+
α = {x ∈ R : f∗+(x) > α}, then

m(E+
α ) =

1

α

Z

E+
α

|f(y)| dy.

[Hint: Apply Lemma 3.5 to F (x) =
R x

0
|f(y)| dy − αx. Then E+

α is the union of

disjoint intervals (ak, bk) with
R bk

ak
|f(y)| dy = α(ak − bk).]
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7. Using Corollary 1.5, prove that if a measurable subset E of [0, 1] satisfies
m(E ∩ I) ≥ α m(I) for some α > 0 and all intervals I in [0, 1], then E has measure
1. See also Exercise 28 in Chapter 1.

8. Suppose A is a Lebesgue measurable set in R with m(A) > 0. Does there exist
a sequence {sn}∞n=1 such that the complement of

S∞
n=1(A + sn) in R has measure

zero?

[Hint: For every ε > 0, find an interval Iε of length `ε such that m(A ∩ Iε) ≥
(1− ε)m(Iε). Consider

S∞
k=−∞(A + tk), with tk = k`ε. Then vary ε.]

9. Let F be a closed subset in R, and δ(x) the distance from x to F , that is,

δ(x) = d(x, F ) = inf{|x− y| : y ∈ F}.

Clearly, δ(x + y) ≤ |y| whenever x ∈ F . Prove the more refined estimate

δ(x + y) = o(|y|) for a.e. x ∈ F ,

that is, δ(x + y)/|y| → 0 for a.e. x ∈ F .

[Hint: Assume that x is a point of density of F .]

10. Construct an increasing function on R whose set of discontinuities is pre-
cisely Q.

11. If a, b > 0, let

f(x) =


xa sin(x−b) for 0 < x ≤ 1,

0 if x = 0.

Prove that f is of bounded variation in [0, 1] if and only if a > b. Then, by tak-
ing a = b, construct (for each 0 < α < 1) a function that satisfies the Lipschitz
condition of exponent α

|f(x)− f(y)| ≤ A|x− y|α

but which is not of bounded variation.

[Hint: Note that if h > 0, the difference |f(x + h)− f(x)| can be estimated by
C(x + h)a, or C′h/x by the mean value theorem. Then, consider two cases,
whether xa+1 ≥ h or xa+1 < h. What is the relationship between α and a?]

12. Consider the function F (x) = x2 sin(1/x2), x 6= 0, with F (0) = 0. Show that
F ′(x) exists for every x, but F ′ is not integrable on [−1, 1].

13. Show directly from the definition that the Cantor-Lebesgue function is not
absolutely continuous.

14. The following measurability issues arose in the discussion of differentiability
of functions.
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(a) Suppose F is continuous on [a, b]. Show that

D+(F )(x) = lim sup
h → 0
h > 0

F (x + h)− F (x)

h

is measurable.

(b) Suppose J(x) =
P∞

n=1 αnjn(x) is a jump function as in Section 3.3. Show
that

lim sup
h→0

J(x + h)− J(x)

h

is measurable.

[Hint: For (a), the continuity of F allows one to restrict to countably many h in tak-

ing the limsup. For (b), given k > m, let F N
k,m = sup1/k≤|h|≤1/m

˛̨
˛JN (x+h)−JN (x)

h

˛̨
˛,

where JN (x) =
PN

n=1 αnjn(x). Note that each F N
k,m is measurable. Then, succes-

sively, let N →∞, k →∞, and finally m →∞.]

15. Suppose F is of bounded variation and continuous. Prove that F = F1 − F2,
where both F1 and F2 are monotonic and continuous.

16. Show that if F is of bounded variation in [a, b], then:

(a)
R b

a
|F ′(x)| dx ≤ TF (a, b).

(b)
R b

a
|F ′(x)| dx = TF (a, b) if and only if F is absolutely continuous.

As a result of (b), the formula L =
R b

a
|z′(t)| dt for the length of a rectifiable curve

parametrized by z holds if and only if z is absolutely continuous.

17. Prove that if {Kε}ε>0 is a family of approximations to the identity, then

sup
ε>0

|(f ∗Kε)(x)| ≤ cf∗(x)

for some constant c > 0 and all integrable f .

18. Verify the agreement between the two definitions given for the Cantor-Lebesgue
function in Exercise 2, Chapter 1 and in Section 3.1 of this chapter.

19. Show that if f : R→ R is absolutely continuous, then

(a) f maps sets of measure zero to sets of measure zero.

(b) f maps measurable sets to measurable sets.
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20. This exercise deals with functions F that are absolutely continuous on [a, b]
and are increasing. Let A = F (a) and B = F (b).

(a) There exists such an F that is in addition strictly increasing, but such that
F ′(x) = 0 on a set of positive measure.

(b) The F in (a) can be chosen so that there is a measurable subset E ⊂ [A, B],
m(E) = 0, so that F−1(E) is not measurable.

(c) Prove, however, that for any increasing absolutely continuous F , and E a
measurable subset of [A, B], the set F−1(E) ∩ {F ′(x) > 0} is measurable.

[Hint: (a) Let F (x) =
R x

a
χK(x) dx, where K is the complement of a Cantor-like

set C of positive measure. For (b), note that F (C) is a set of measure zero. Finally,
for (c) prove first that m(O) =

R
F−1(O)

F ′(x) dx for any open set O.]

21. Let F be absolutely continuous and increasing on [a, b] with F (a) = A and
F (b) = B. Suppose f is any measurable function on [A, B].

(a) Show that f(F (x))F ′(x) is measurable on [a, b]. Note: f(F (x)) need not be
measurable by Exercise 20 (b).

(b) Prove the change of variable formula: If f is integrable on [A, B], then so is
f(F (x))F ′(x), and

Z B

A

f(y) dy =

Z b

a

f(F (x))F ′(x) dx.

[Hint: Start with the identity m(O) =
R

F−1(O)
F ′(x) dx used in (c) of Exercise 20

above.]

22. Suppose that F and G are absolutely continuous on [a, b]. Show that their
product FG is also absolutely continuous. This has the following consequences.

(a) Whenever F and G are absolutely continuous in [a, b],

Z b

a

F ′(x)G(x) dx = −
Z b

a

F (x)G′(x) dx + [F (x)G(x)]ba.

(b) Let F be absolutely continuous in [−π, π] with F (π) = F (−π). Show that
if

an =
1

2π

Z π

−π

F (x)e−inx dx,

such that F (x) ∼P aneinx, then

F ′(x) ∼
X

inaneinx.
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(c) What happens if F (−π) 6= F (π)? [Hint: Consider F (x) = x.]

23. Let F be continuous on [a, b]. Show the following.

(a) Suppose (D+F )(x) ≥ 0 for every x ∈ [a, b]. Then F is increasing on [a, b].

(b) If F ′(x) exists for every x ∈ (a, b) and |F ′(x)| ≤ M , then |F (x)− F (y)| ≤
M |x− y| and F is absolutely continuous.

[Hint: For (a) it suffices to show that F (b)− F (a) ≥ 0. Assume otherwise. Hence
with Gε(x) = F (x)− F (a) + ε(x− a), for sufficiently small ε > 0 we have Gε(a) =
0, but Gε(b) < 0. Now let x0 ∈ [a, b) be the greatest value of x0 such that Gε(x0) ≥
0. However, (D+Gε)(x0) > 0.]

24. Suppose F is an increasing function on [a, b].

(a) Prove that we can write

F = FA + FC + FJ ,

where each of the functions FA, FC , and FJ is increasing and:

(i) FA is absolutely continuous.

(ii) FC is continuous, but F ′C(x) = 0 for a.e. x.

(iii) FJ is a jump function.

(b) Moreover, each component FA, FC , FJ is uniquely determined up to an
additive constant.

The above is the Lebesgue decomposition of F . There is a corresponding
decomposition for any F of bounded variation.

25. The following shows the necessity of allowing for general exceptional sets of
measure zero in the differentiation Theorems 1.4, 3.4, and 3.11. Let E be any set
of measure zero in Rd. Show that:

(a) There exists a non-negative integrable f in Rd, so that

lim inf
m(B) → 0

x ∈ B

1

m(B)

Z

B

f(y) dy = ∞ for each x ∈ E.

(b) When d = 1 this may be restated as follows. There is an increasing abso-
lutely continuous function F so that

D+(F )(x) = D−(F )(x) = ∞, for each x ∈ E.
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[Hint: Find open sets On ⊃ E, with m(On) < 2−n, and let f(x) =
P∞

n=1 χOn(x).]

26. An alternative way of defining the exterior measure m∗(E) of an arbitrary set
E, as given in Section 2 of Chapter 1, is to replace the coverings of E by cubes
with coverings by balls. That is, suppose we define mB

∗ (E) as inf
P∞

j=1 m(Bj),
where the infimum is taken over all coverings E ⊂ S∞j=1 Bj by open balls. Then

m∗(E) = mB
∗ (E). (Observe that this result leads to an alternate proof that the

Lebesgue measure is invariant under rotations.)
Clearly m∗(E) ≤ mB

∗ (E). Prove the reverse inequality by showing the follow-
ing. For any ε > 0, there is a collection of balls {Bj} such that E ⊂ Sj Bj whileP

j m(Bj) ≤ m∗(E) + ε. Note also that for any preassigned δ, we can choose the
balls to have diameter < δ.

[Hint: Assume first that E is measurable, and pick O open so that O ⊃ E and
m(O − E) < ε′. Next, using Corollary 3.10, find balls B1, . . . , BN such thatPN

j=1 m(Bj) ≤ m(E) + 2ε′ and m(E −SN
j=1 Bj) ≤ 3ε′. Finally, cover E −SN

j=1 Bj

by a union of cubes, the sum of whose measures is ≤ 4ε′, and replace these cubes
by balls that contain them. For the general E, begin by applying the above when
E is a cube.]

27. A rectifiable curve has a tangent line at almost all points of the curve. Make
this statement precise.

28. A curve in Rd is a continuous map t 7→ z(t) of an interval [a, b] into Rd.

(a) State and prove the analogues of the conditions dealing with the rectifiability
of curves and their length that are given in Theorems 3.1, 4.1, and 4.3.

(b) Define the (one-dimensional) Minkowski content M(K) of a compact set in
Rd as the limit (if it exists) of

m(Kδ)

md−1(B(δ))
as δ → 0,

where md−1(B(δ)) is the measure (in Rd−1) of the ball defined by B(δ) =
{x ∈ Rd−1, |x| < δ}. State and prove analogues of Propositions 4.5 and 4.7
for curves in Rd.

29. Let Γ = {z(t), a ≤ t ≤ b} be a curve, and suppose it satisfies a Lipschitz
condition with exponent α, 1/2 ≤ α ≤ 1, that is,

|z(t)− z(t′)| ≤ A|t− t′|α for all t, t′ ∈ [a, b].

Show that m(Γδ) = O(δ2−1/α) for 0 < δ ≤ 1.

30. A bounded function F is said to be of bounded variation on R if F is of
bounded variation on any finite sub-interval [a, b], and supa,b TF (a, b) < ∞.

Prove that such an F enjoys the following two properties:
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(a)
R
R |F (x + h)− F (x)| dx ≤ A|h|, for some constant A and all h ∈ R.

(b) | RR F (x)ϕ′(x) dx| ≤ A, where ϕ ranges over all C1 functions of bounded
support with supx∈R |ϕ(x)| ≤ 1.

For the converse, and analogues in Rd, see Problem 6∗ below.

[Hint: For (a), write F = F1 − F2, where Fj are monotonic and bounded. For (b),
deduce this from (a).]

31. Let F be the Cantor-Lebesgue function described in Section 3.1. Consider the
curve that is the graph of F , that is, the curve given by x(t) = t and y(t) = F (t)
with 0 ≤ t ≤ 1. Prove that the length L(x) of the segment 0 ≤ t ≤ x of the curve
is given by L(x) = x + F (x). Hence the total length of the curve is 2.

32. Let f : R→ R. Prove that f satisfies the Lipschitz condition

|f(x)− f(y)| ≤ M |x− y|

for some M and all x, y ∈ R, if and only if f satisfies the following two properties:

(i) f is absolutely continuous.

(ii) |f ′(x)| ≤ M for a.e. x.

6 Problems

1. Prove the following variant of the Vitali covering lemma: If E is covered in
the Vitali sense by a family B of balls, and 0 < m∗(E) < ∞, then for every η > 0
there exists a disjoint collection of balls {Bj}∞j=1 in B such that

m∗

 
E/

∞[
j=1

Bj

!
= 0 and

∞X
j=1

|Bj | ≤ (1 + η)m∗(E).

2. The following simple one-dimensional covering lemma can be used in a number
of different situations.

Suppose I1, I2, . . . , IN is a given finite collection of open intervals in R. Then
there are two finite sub-collections I ′1, I

′
2, . . . , I

′
K , and I ′′1 , I ′′2 , . . . , I ′′L, so that each

sub-collection consists of mutually disjoint intervals and

N[
j=1

Ij =

K[

k=1

I ′k ∪
L[

`=1

I ′′` .

Note that, in contrast with Lemma 1.2, the full union is covered and not merely a
part.
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[Hint: Choose I ′1 to be an interval whose left end-point is as far left as possible.
Discard all intervals contained in I ′1. If the remaining intervals are disjoint from
I ′1, select again an interval as far to the left as possible, and call it I ′2. Otherwise
choose an interval that intersects I ′1, but reaches out to the right as far as possible,
and call this interval I ′′1 . Repeat this procedure.]

3.∗ There is no direct analogue of Problem 2 in higher dimensions. However, a full
covering is afforded by the Besicovitch covering lemma. A version of this lemma
states that there is an integer N (dependent only on the dimension d) with the
following property. Suppose E is any bounded set in Rd that is covered by a
collection B of balls in the (strong) sense that for each x ∈ E, there is a B ∈ B
whose center is x. Then, there are N sub-collections B1,B2, . . . ,BN of the original
collection B, such that each Bj is a collection of disjoint balls, and moreover,

E ⊂
[

B∈B′
B, where B′ = B1 ∪ B2 ∪ · · · ∪ BN .

4. A real-valued function ϕ defined on an interval (a, b) is convex if the region
lying above its graph {(x, y) ∈ R2 : y > ϕ(x), a ≤ x ≤ b} is a convex set, as defined
in Section 5*, Chapter 1. Equivalently, ϕ is convex if

ϕ(θx1 + (1− θ)x2) ≤ θϕ(x1) + (1− θ)ϕ(x2)

for every x1, x2 ∈ (a, b) and 0 ≤ θ ≤ 1. One can also observe as a consequence that
we have the following inequality of the slopes:

ϕ(x + h)− ϕ(x)

h
≤ ϕ(y)− ϕ(x)

y − x
≤ ϕ(y)− ϕ(y − h)

h
,

whenever x < y, h > 0, and x + h < y.
The following can then be proved.

(a) ϕ is continuous on (a, b).

(b) ϕ satisfies a Lipschitz condition of order 1 in any proper closed sub-interval
[a′, b′] of (a, b). Hence ϕ is absolutely continuous in each sub-interval.

(c) ϕ′ exists at all but an at most denumerable number of points, and ϕ′ = D+ϕ
is an increasing function with

ϕ(y)− ϕ(x) =

Z y

x

ϕ′(t) dt.

(d) Conversely, if ψ is any increasing function on (a, b), then ϕ(x) =
R x

c
ψ(t) dt

is a convex function in (a, b) (for c ∈ (a, b)).

5. Suppose that F is continuous on [a, b], F ′(x) exists for every x ∈ (a, b), and
F ′(x) is integrable. Then F is absolutely continuous and

F (b)− F (a) =

Z b

a

F ′(x) dx.
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x + h y − h

ϕ

yx

Figure 13. A convex function

[Hint: Assume F ′(x) ≥ 0 for a.e. x. We want to conclude that F (b) ≥ F (a). Let
E be the set of measure 0 of those x such that F ′(x) < 0. Then according to
Exercise 25, there is a function Φ which is increasing, absolutely continuous, and for
which D+Φ(x) = ∞, x ∈ E. Consider F + δΦ, for each δ and apply the result (a)
in Exercise 23.]

6.∗ The following converse to Exercise 30 characterizes functions of bounded vari-
ation.

Suppose F is a bounded measurable function on R. If F satisfies either of
conditions (a) or (b) in that exercise, then F can be modified on a set of measure
zero so as to become a function of bounded variation on R.

Moreover, on Rd we have the following assertion. Suppose F is a bounded
measurable function on Rd. Then the following two conditions on F are equivalent:

(a′)
R
Rd |F (x + h)− F (x)| dx ≤ A|h|, for all h ∈ Rd.

(b′) | RRd F (x) ∂ϕ
∂xj

dx| ≤ A, for all j = 1, . . . , d,

for all ϕ ∈ C1 that have bounded support, and for which supx∈Rd |ϕ(x)| ≤ 1.
The class of functions that satisfy either (a′) or (b′) is the extension to Rd of

the class of functions of bounded variation.

7. Consider the function

f1(x) =

∞X
n=0

2−ne2πi2nx.

(a) Prove that f1 satisfies |f1(x)− f1(y)| ≤ Aα|x− y|α for each 0 < α < 1.

(b)∗ However, f1 is nowhere differentiable, hence not of bounded variation.
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8.∗ Let R denote the set of all rectangles in R2 that contain the origin, and with
sides parallel to the coordinate axis. Consider the maximal operator associated to
this family, namely

f∗R(x) = sup
R∈R

1

m(R)

Z

R

|f(x− y)| dy.

(a) Then, f 7→ f∗R does not satisfy the weak type inequality

m({x : f∗R(x) > α}) ≤ A

α
‖f‖L1

for all α > 0, all integrable f , and some A > 0.

(b) Using this, one can show that there exists f ∈ L1(R) so that for R ∈ R

lim sup
diam(R)→0

1

m(R)

Z

R

f(x− y) dy = ∞ for almost every x.

Here diam(R) = supx ,y∈R |x − y | equals the diameter of the rectangle.

[Hint: For part (a), let B be the unit ball, and consider the function ϕ(x) =
χB(x)/m(B). For δ > 0, let ϕδ(x) = δ−2ϕ(x/δ). Then

(ϕδ)
∗
R(x) → 1

|x1| |x2| as δ → 0,

for every (x1, x2), with x1x2 6= 0. If the weak type inequality held, then we would
have

m({|x| ≤ 1 : |x1x2|−1 > α}) ≤ A

α
.

This is a contradiction since the left-hand side is of the order of (log α)/α as α
tends to infinity.]



4 Hilbert Spaces: An
Introduction

Born barely 10 years ago, the theory of integral equa-
tions has attracted wide attention as much as for its
inherent interest as for the importance of its applica-
tions. Several of its results are already classic, and no
one doubts that in a few years every course in analysis
will devote a chapter to it.

M. Plancherel, 1912

There are two reasons that account for the importance of Hilbert
spaces. First, they arise as the natural infinite-dimensional generaliza-
tions of Euclidean spaces, and as such, they enjoy the familiar properties
of orthogonality, complemented by the important feature of complete-
ness. Second, the theory of Hilbert spaces serves both as a conceptual
framework and as a language that formulates some basic arguments in
analysis in a more abstract setting.

For us the immediate link with integration theory occurs because of
the example of the Lebesgue space L2(Rd). The related example of
L2([−π, π]) is what connects Hilbert spaces with Fourier series. The
latter Hilbert space can also be used in an elegant way to analyze the
boundary behavior of bounded holomorphic functions in the unit disc.

A basic aspect of the theory of Hilbert spaces, as in the familiar finite-
dimensional case, is the study of their linear transformations. Given the
introductory nature of this chapter, we limit ourselves to rather brief
discussions of several classes of such operators: unitary mappings, pro-
jections, linear functionals, and compact operators.

1 The Hilbert space L2

A prime example of a Hilbert space is the collection of square inte-
grable functions on Rd, which is denoted by L2(Rd), and consists of
all complex-valued measurable functions f that satisfy

∫

Rd

|f(x)|2 dx < ∞.
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The resulting L2(Rd)-norm of f is defined by

‖f‖L2(Rd) =
(∫

Rd

|f(x)|2 dx

)1/2

.

The reader should compare those definitions with these for the space
L1(Rd) of integrable functions and its norm that were described in Sec-
tion 2, Chapter 2. A crucial difference is that L2 has an inner product,
which L1 does not. Some relative inclusion relations between those spaces
are taken up in Exercise 5.

The space L2(Rd) is naturally equipped with the following inner prod-
uct:

(f, g) =
∫

Rd

f(x)g(x) dx, whenever f, g ∈ L2(Rd),

which is intimately related to the L2-norm since

(f, f)1/2 = ‖f‖L2(Rd).

As in the case of integrable functions, the condition ‖f‖L2(Rd) = 0 only
implies f(x) = 0 almost everywhere. Therefore, we in fact identify func-
tions that are equal almost everywhere, and define L2(Rd) as the space
of equivalence classes under this identification. However, in practice it is
often convenient to think of elements in L2(Rd) as functions, and not as
equivalence classes of functions.

For the definition of the inner product (f, g) to be meaningful we need
to know that fg is integrable on Rd whenever f and g belong to L2(Rd).
This and other basic properties of the space of square integrable functions
are gathered in the next proposition.

In the rest of this chapter we shall denote the L2-norm by ‖ · ‖ (drop-
ping the subscript L2(Rd)) unless stated otherwise.

Proposition 1.1 The space L2(Rd) has the following properties:

(i) L2(Rd) is a vector space.

(ii) f(x)g(x) is integrable whenever f, g ∈ L2(Rd), and the Cauchy-
Schwarz inequality holds: |(f, g)| ≤ ‖f‖ ‖g‖.

(iii) If g ∈ L2(Rd) is fixed, the map f 7→ (f, g) is linear in f , and also
(f, g) = (g, f).

(iv) The triangle inequality holds: ‖f + g‖ ≤ ‖f‖+ ‖g‖.
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Proof. If f, g ∈ L2(Rd), then since |f(x) + g(x)| ≤ 2max(|f(x)|, |g(x)|),
we have

|f(x) + g(x)|2 ≤ 4(|f(x)|2 + |g(x)|2),

therefore ∫
|f + g|2 ≤ 4

∫
|f |2 + 4

∫
|g|2 < ∞,

hence f + g ∈ L2(Rd). Also, if λ ∈ C we clearly have λf ∈ L2(Rd), and
part (i) is proved.

To see why fg is integrable whenever f and g are in L2(Rd), it suffices
to recall that for all A,B ≥ 0, one has 2AB ≤ A2 + B2, so that

(1)
∫
|fg| ≤ 1

2
[‖f‖2 + ‖g‖2] .

To prove the Cauchy-Schwarz inequality, we first observe that if either
‖f‖ = 0 or ‖g‖ = 0, then fg = 0 is zero almost everywhere, hence (f, g) =
0 and the inequality is obvious. Next, if we assume that ‖f‖ = ‖g‖ = 1,
then we get the desired inequality |(f, g)| ≤ 1. This follows from the fact
that |(f, g)| ≤ ∫ |fg|, and inequality (1). Finally, in the case when both
‖f‖ and ‖g‖ are non-zero, we normalize f and g by setting

f̃ = f/‖f‖ and g̃ = g/‖g‖,

so that ‖f̃‖ = ‖g̃‖ = 1. By our previous observation we then find

|(f̃ , g̃)| ≤ 1.

Multiplying both sides of the above by ‖f‖ ‖g‖ yields the Cauchy-Schwarz
inequality.

Part (iii) follows from the linearity of the integral.
Finally, to prove the triangle inequality, we use the Cauchy-Schwarz

inequality as follows:

‖f + g‖2 = (f + g, f + g)
= ‖f‖2 + (f, g) + (g, f) + ‖g‖2
≤ ‖f‖2 + 2 |(f, g)|+ ‖g‖2
≤ ‖f‖2 + 2 ‖f‖ ‖g‖+ ‖g‖2
= (‖f‖+ ‖g‖)2,

and taking square roots completes the argument.
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We turn our attention to the notion of a limit in the space L2(Rd).
The norm on L2 induces a metric d as follows: if f, g ∈ L2(Rd), then

d(f, g) = ‖f − g‖L2(Rd).

A sequence {fn} ⊂ L2(Rd) is said to be Cauchy if d(fn, fm) → 0 as
n,m →∞. Moreover, this sequence converges to f ∈ L2(Rd) if d(fn, f) →
0 as n →∞.

Theorem 1.2 The space L2(Rd) is complete in its metric.

In other words, every Cauchy sequence in L2(Rd) converges to a function
in L2(Rd). This theorem, which is in sharp contrast with the situation for
Riemann integrable functions, is a graphic illustration of the usefulness
of Lebesgue’s theory of integration. We elaborate on this point and its
relation to Fourier series in Section 3 below.

Proof. The argument given here follows closely the proof in Chapter 2
that L1 is complete. Let {fn}∞n=1 be a Cauchy sequence in L2, and
consider a subsequence {fnk

}∞k=1 of {fn} with the following property:

‖fnk+1 − fnk
‖ ≤ 2−k, for all k ≥ 1.

If we now consider the series whose convergence will be seen below,

f(x) = fn1(x) +
∞∑

k=1

(fnk+1(x)− fnk
(x))

and

g(x) = |fn1(x)|+
∞∑

k=1

|(fnk+1(x)− fnk
(x))|,

together the partial sums

SK(f)(x) = fn1(x) +
K∑

k=1

(fnk+1(x)− fnk
(x))

and

SK(g)(x) = |fn1(x)|+
K∑

k=1

|fnk+1(x)− fnk
(x)|,
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then the triangle inequality implies

‖SK(g)‖ ≤ ‖fn1‖+
K∑

k=1

‖fnk+1 − fnk
‖

≤ ‖fn1‖+
K∑

k=1

2−k.

Letting K tend to infinity, and applying the monotone convergence theo-
rem proves that

∫ |g|2 < ∞, and since |f | ≤ g, we must have f ∈ L2(Rd).
In particular, the series defining f converges almost everywhere, and

since (by construction of the telescopic series) the (K − 1)th partial sum
of this series is precisely fnK

, we find that

fnk
(x) → f(x) a.e. x.

To prove that fnk
→ f in L2(Rd) as well, we simply observe that |f −

SK(f)|2 ≤ (2g)2 for all K, and apply the dominated convergence theorem
to get ‖fnk

− f‖ → 0 as k tends to infinity.
Finally, the last step of the proof consists of recalling that {fn} is

Cauchy. Given ε, there exists N such that for all n,m > N we have
‖fn − fm‖ < ε/2. If nk is chosen so that nk > N , and ‖fnk

− f‖ < ε/2,
then the triangle inequality implies

‖fn − f‖ ≤ ‖fn − fnk
‖+ ‖fnk

− f‖ < ε

whenever n > N . This concludes the proof of the theorem.

An additional useful property of L2(Rd) is contained in the following
theorem.

Theorem 1.3 The space L2(Rd) is separable, in the sense that there
exists a countable collection {fk} of elements in L2(Rd) such that their
linear combinations are dense in L2(Rd).

Proof. Consider the family of functions of the form rχR(x), where r
is a complex number with rational real and imaginary parts, and R is
a rectangle in Rd with rational coordinates. We claim that finite linear
combinations of these type of functions are dense in L2(Rd).

Suppose f ∈ L2(Rd) and let ε > 0. Consider for each n ≥ 1 the func-
tion gn defined by

gn(x) =
{

f(x) if |x| ≤ n and |f(x)| ≤ n,
0 otherwise.
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Then |f − gn|2 ≤ 4|f |2 and gn(x) → f(x) almost everywhere.1 The dom-
inated convergence theorem implies that ‖f − gn‖2L2(Rd)

→ 0 as n tends
to infinity; therefore we have

‖f − gN‖L2(Rd) < ε/2 for some N .

Let g = gN , and note that g is a bounded function supported on a
bounded set; thus g ∈ L1(Rd). We may now find a step function ϕ so
that |ϕ| ≤ N and

∫ |g − ϕ| < ε2/16N (Theorem 2.4, Chapter 2). By re-
placing the coefficients and rectangles that appear in the canonical form
of ϕ by complex numbers with rational real and imaginary parts, and
rectangles with rational coordinates, we may find a ψ with |ψ| ≤ N and∫ |g − ψ| < ε2/8N . Finally, we note that

∫
|g − ψ|2 ≤ 2N

∫
|g − ψ| < ε2/4.

Consequently ‖g − ψ‖ < ε/2, therefore ‖f − ψ‖ < ε, and the proof is
complete.

The example L2(Rd) possesses all the characteristic properties of a
Hilbert space, and motivates the definition of the abstract version of this
concept.

2 Hilbert spaces

A set H is a Hilbert space if it satisfies the following:

(i) H is a vector space over C (or R).2

(ii) H is equipped with an inner product (·, ·), so that

• f 7→ (f, g) is linear on H for every fixed g ∈ H,

• (f, g) = (g, f),

• (f, f) ≥ 0 for all f ∈ H.

We let ‖f‖ = (f, f)1/2.

(iii) ‖f‖ = 0 if and only if f = 0.

1By definition f ∈ L2(Rd) implies that |f |2 is integrable, hence f(x) is finite for a.e x.
2At this stage we consider both cases, where the scalar field can be either C or R.

However, in many applications, such as in the context of Fourier analysis, one deals
primarily with Hilbert spaces over C.
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(iv) The Cauchy-Schwarz and triangle inequalities hold

|(f, g)| ≤ ‖f‖ ‖g‖ and ‖f + g‖ ≤ ‖f‖+ ‖g‖

for all f, g ∈ H.

(v) H is complete in the metric d(f, g) = ‖f − g‖.
(vi) H is separable.

We make two comments about the definition of a Hilbert space. First,
the Cauchy-Schwarz and triangle inequalities in (iv) are in fact easy
consequences of assumptions (i) and (ii). (See Exercise 1.) Second, we
make the requirement that H be separable because that is the case in
most applications encountered. That is not to say that there are no
interesting non-separable examples; one such example is described in
Problem 2.

Also, we remark that in the context of a Hilbert space we shall of-
ten write limn→∞ fn = f or fn → f to mean that limn→∞ ‖fn − f‖ = 0,
which is the same as d(fn, f) → 0.

We give some examples of Hilbert spaces.

Example 1. If E is a measurable subset of Rd with m(E) > 0, we let
L2(E) denote the space of square integrable functions that are supported
on E,

L2(E) =
{

f supported on E, so that
∫

E

|f(x)|2 dx < ∞
}

.

The inner product and norm on L2(E) are then

(f, g) =
∫

E

f(x)g(x) dx and ‖f‖ =
(∫

E

|f(x)|2 dx

)1/2

.

Once again, we consider two elements of L2(E) to be equivalent if they
differ only on a set of measure zero; this guarantees that ‖f‖ = 0 implies
f = 0. The properties (i) through (vi) follow from these of L2(Rd) proved
above.

Example 2. A simple example is the finite-dimensional complex Eu-
clidean space. Indeed,

CN = {(a1, . . . , aN ) : ak ∈ C}
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becomes a Hilbert space when equipped with the inner product

N∑

k=1

akbk,

where a = (a1, . . . , aN ) and b = (b1, . . . , bN ) are in CN . The norm is then

‖a‖ =

(
N∑

k=1

|ak|2
)1/2

.

One can formulate in the same way the real Hilbert space RN .

Example 3. An infinite-dimensional analogue of the above example is
the space `2(Z). By definition

`2(Z) =

{
(. . . , a−2, a−1, a0, a1, . . .) : ai ∈ C,

∞∑
n=−∞

|an|2 < ∞
}

.

If we denote infinite sequences by a and b, the inner product and norm
on `2(Z) are

(a, b) =
∞∑

k=−∞
akbk and ‖a‖ =

( ∞∑

k=−∞
|ak|2

)1/2

.

We leave the proof that `2(Z) is a Hilbert space as Exercise 4.
While this example is very simple, it will turn out that all infinite-

dimensional (separable) Hilbert spaces are `2(Z) in disguise.
Also, a slight variant of this space is `2(N), where we take only one-

sided sequences, that is,

`2(N) =

{
(a1, a2, . . .) : ai ∈ C,

∞∑
n=1

|an|2 < ∞
}

.

The inner product and norm are then defined in the same way with the
sums extending from n = 1 to ∞.

A characteristic feature of a Hilbert space is the notion of orthogo-
nality. This aspect, with its rich geometric and analytic consequences,
distinguishes Hilbert spaces from other normed vector spaces. We now
describe some of these properties.
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2.1 Orthogonality

Two elements f and g in a Hilbert space H with inner product (·, ·) are
orthogonal or perpendicular if

(f, g) = 0, and we then write f ⊥ g.

The first simple observation is that the usual theorem of Pythagoras
holds in the setting of abstract Hilbert spaces:

Proposition 2.1 If f ⊥ g, then ‖f + g‖2 = ‖f‖2 + ‖g‖2.
Proof. It suffices to note that (f, g) = 0 implies (g, f) = 0, and there-

fore

‖f + g‖2 = (f + g, f + g) = ‖f‖2 + (f, g) + (g, f) + ‖g‖2
= ‖f‖2 + ‖g‖2.

A finite or countably infinite subset {e1, e2, . . .} of a Hilbert space H
is orthonormal if

(ek, e`) =
{

1 when k = `,
0 when k 6= `.

In other words, each ek has unit norm and is orthogonal to e` whenever
` 6= k.

Proposition 2.2 If {ek}∞k=1 is orthonormal, and f =
∑

akek ∈ H where
the sum is finite, then

‖f‖2 =
∑

|ak|2.

The proof is a simple application of the Pythagorean theorem.

Given an orthonormal subset {e1, e2, . . .} = {ek}∞k=1 of H, a natural
problem is to determine whether this subset spans all of H, that is,
whether finite linear combinations of elements in {e1, e2, . . .} are dense
in H. If this is the case, we say that {ek}∞k=1 is an orthonormal basis
for H. If we are in the presence of an orthonormal basis, we might expect
that any f ∈ H takes the form

f =
∞∑

k=1

akek,
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for some constants ak ∈ C. In fact, taking the inner product of both
sides with ej , and recalling that {ek} is orthonormal yields (formally)

(f, ej) = aj .

This question is motivated by Fourier series. In fact, a good insight
into the theorem below is afforded by considering the case where H
is L2([−π, π]) with inner product (f, g) = 1

2π

∫ π

−π
f(x)g(x) dx, and the

orthonormal set {ek}∞k=1 is merely a relabeling of the exponentials
{einx}∞n=−∞.

Adapting the notation used in Fourier series, we write f ∼ ∑∞
k=1 akek,

where aj = (f, ej) for all j.

In the next theorem, we provide four equivalent characterizations that
{ek} is an orthonormal basis for H.

Theorem 2.3 The following properties of an orthonormal set {ek}∞k=1

are equivalent.

(i) Finite linear combinations of elements in {ek} are dense in H.

(ii) If f ∈ H and (f, ej) = 0 for all j, then f = 0.

(iii) If f ∈ H, and SN (f) =
∑N

k=1 akek, where ak = (f, ek), then SN (f) →
f as N →∞ in the norm.

(iv) If ak = (f, ek), then ‖f‖2 =
∑∞

k=1 |ak|2.

Proof. We prove that each property implies the next, with the last
one implying the first.

We begin by assuming (i). Given f ∈ H with (f, ej) = 0 for all j, we
wish to prove that f = 0. By assumption, there exists a sequence {gn}
of elements in H that are finite linear combinations of elements in {ek},
and such that ‖f − gn‖ tends to 0 as n goes to infinity. Since (f, ej) = 0
for all j, we must have (f, gn) = 0 for all n; therefore an application of
the Cauchy-Schwarz inequality gives

‖f‖2 = (f, f) = (f, f − gn) ≤ ‖f‖ ‖f − gn‖ for all n.

Letting n →∞ proves that ‖f‖2 = 0; hence f = 0, and (i) implies (ii).

Now suppose that (ii) is verified. For f ∈ H we define

SN (f) =
N∑

k=1

akek, where ak = (f, ek),
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and prove first that SN (f) converges to some element g ∈ H. Indeed,
one notices that the definition of ak implies (f − SN (f)) ⊥ SN (f), so
the Pythagorean theorem and Proposition 2.2 give

(2) ‖f‖2 = ‖f − SN (f)‖2 + ‖SN (f)‖2 = ‖f − SN (f)‖2 +
N∑

k=1

|ak|2.

Hence ‖f‖2 ≥ ∑N
k=1 |ak|2, and letting N tend to infinity we obtain Bessel’s

inequality
∞∑

k=1

|ak|2 ≤ ‖f‖2,

which implies that the series
∑∞

k=1 |ak|2 converges. Therefore, {SN (f)}∞N=1

forms a Cauchy sequence in H since

‖SN (f)− SM (f)‖2 =
N∑

k=M+1

|ak|2 whenever N > M .

Since H is complete, there exists g ∈ H such that SN (f) → g as N tends
to infinity.

Fix j, and note that for all sufficiently large N , (f − SN (f), ej) =
aj − aj = 0. Since SN (f) tends to g, we conclude that

(f − g, ej) = 0 for all j.

Hence f = g by assumption (ii), and we have proved that f =
∑∞

k=1 akek.
Now assume that (iii) holds. Observe from (2) that we immediately

get in the limit as N goes to infinity

‖f‖2 =
∞∑

k=1

|ak|2.

Finally, if (iv) holds, then again from (2) we see that ‖f − SN (f)‖
converges to 0. Since each SN (f) is a finite linear combination of elements
in {ek}, we have completed the circle of implications, and the theorem
is proved.

In particular, a closer look at the proof shows that Bessel’s inequality
holds for any orthonormal family {ek}. In contrast, the identity

‖f‖2 =
∞∑

k=1

|ak|2, where ak = (f, ek),
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which is called Parseval’s identity, holds if and only if {ek}∞k=1 is also
an orthonormal basis.

Now we turn our attention to the existence of a basis.

Theorem 2.4 Any Hilbert space has an orthonormal basis.

The first step in the proof of this fact is to recall that (by definition)
a Hilbert space H is separable. Hence, we may choose a countable col-
lection of elements F = {hk} in H so that finite linear combinations of
elements in F are dense in H.

We start by recalling a definition already used in the case of finite-
dimensional vector spaces. Finitely many elements g1, . . . , gN are said to
be linearly independent if whenever

a1g1 + · · ·+ aNgN = 0 for some complex numbers ai,

then a1 = a2 = · · · = aN = 0. In other words, no element gj is a lin-
ear combination of the others. In particular, we note that none of the
gj can be 0. We say that a countable family of elements is linearly
independent if all finite subsets of this family are linearly independent.

If we next successively disregard the elements hk that are linearly
dependent on the previous elements h1, h2, . . . , hk−1, then the result-
ing collection h1 = f1, f2, . . . , fk, . . . consists of linearly independent ele-
ments, whose finite linear combinations are the same as those given by
h1, h2, . . . , hk, . . ., and hence these linear combinations are also dense in
H.

The proof of the theorem now follows from an application of a familiar
construction called the Gram-Schmidt process. Given a finite family
of elements {f1, . . . , fk} we call the span of this family the set of all
elements which are finite linear combinations of the elements {f1, . . . , fk}.
We denote the span of {f1, . . . , fk} by Span({f1, . . . , fk}).

We now construct a sequence of orthonormal vectors e1, e2, . . . such
that Span({e1, . . . , en}) = Span({f1, . . . , fn}) for all n ≥ 1. We do this
by induction.

By the linear independence hypothesis, f1 6= 0, so we may take e1 =
f1/‖f1‖. Next, assume that orthonormal vectors e1, . . . , ek have been
found such that Span({e1, . . . , ek}) = Span({f1, . . . , fk}) for a given k.
We then try e′k+1 as fk+1 +

∑k
j=1 ajej . To have (e′k+1, ej) = 0 requires

that aj = −(fk+1, ej), and this choice of aj for 1 ≤ j ≤ k assures that
e′k+1 is orthogonal to e1, . . . , ek. Moreover our linear independence hy-
pothesis assures that e′k+1 6= 0; hence we need only “renormalize” and
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take ek+1 = e′k+1/‖e′k+1‖ to complete the inductive step. With this we
have found an orthonormal basis for H

Note that we have implicitly assumed that the number of linearly in-
dependent elements f1, f2, . . . is infinite. In the case where there are only
N linearly independent vectors f1, . . . , fN , then e1, . . . , eN constructed
in the same way also provide an orthonormal basis for H. These two
cases are differentiated in the following definition. If H is a Hilbert space
with an orthonormal basis consisting of finitely many elements, then we
say that H is finite-dimensional. Otherwise H is said to be infinite-
dimensional.

2.2 Unitary mappings

A correspondence between two Hilbert spaces that preserves their struc-
ture is a unitary transformation. More precisely, suppose we are given
two Hilbert spaces H and H′ with respective inner products (·, ·)H and
(·, ·)H′ , and the corresponding norms ‖ · ‖H and ‖ · ‖H′ . A mapping
U : H → H′ between these space is called unitary if:

(i) U is linear, that is, U(αf + βg) = αU(f) + βU(g).

(ii) U is a bijection.

(iii) ‖Uf‖H′ = ‖f‖H for all f ∈ H.

Some observations are in order. First, since U is bijective it must
have an inverse U−1 : H′ → H that is also unitary. Part (iii) above also
implies that if U is unitary, then

(Uf, Ug)H′ = (f, g)H for all f, g ∈ H.

To see this, it suffices to “polarize,” that is, to note that for any vector
space (say over C) with inner product (·, ·) and norm ‖ · ‖, we have

(F, G) =
1
4

[
‖F + G‖2 − ‖F −G‖2 + i

(
‖F

i
+ G‖2 − ‖F

i
−G‖2

)]

whenever F and G are elements of the space.

The above leads us to say that the two Hilbert spaces H and H′ are
unitarily equivalent or unitarily isomorphic if there exists a unitary
mapping U : H → H′. Clearly, unitary isomorphism of Hilbert spaces is
an equivalence relation.

With this definition we are now in a position to give precise meaning
to the statement we made earlier that all infinite-dimensional Hilbert
spaces are the same and in that sense `2(Z) in disguise.
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Corollary 2.5 Any two infinite-dimensional Hilbert spaces are unitarily
equivalent.

Proof. If H and H′ are two infinite-dimensional Hilbert spaces, we
may select for each an orthonormal basis, say

{e1, e2, . . .} ⊂ H and {e′1, e′2, . . .} ⊂ H′.

Then, consider the mapping defined as follows: if f =
∑∞

k=1 akek, then

U(f) = g, where g =
∞∑

k=1

ake′k.

Clearly, the mapping U is both linear and invertible. Moreover, by Par-
seval’s identity, we must have

‖Uf‖2H′ = ‖g‖2H′ =
∞∑

k=1

|ak|2 = ‖f‖2H,

and the corollary is proved.

Consequently, all infinite-dimensional Hilbert spaces are unitarily equiv-
alent to `2(N), and thus, by relabeling, to `2(Z). By similar reasoning
we also have the following:

Corollary 2.6 Any two finite-dimensional Hilbert spaces are unitarily
equivalent if and only if they have the same dimension.

Thus every finite-dimensional Hilbert space over C (or over R) is equiv-
alent with Cd (or Rd), for some d.

2.3 Pre-Hilbert spaces

Although Hilbert spaces arise naturally, one often starts with a pre-
Hilbert space instead, that is, a space H0 that satisfies all the defining
properties of a Hilbert space except (v); in other wordsH0 is not assumed
to be complete. A prime example arose implicitly early in the study of
Fourier series with the space H0 = R of Riemann integrable functions
on [−π, π] with the usual inner product; we return to this below. Other
examples appear in the next chapter in the study of the solutions of
partial differential equations.

Fortunately, every pre-Hilbert space H0 can be completed.
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Proposition 2.7 Suppose we are given a pre-Hilbert space H0 with in-
ner product (·, ·)0. Then we can find a Hilbert space H with inner product
(·, ·) such that

(i) H0 ⊂ H.

(ii) (f, g)0 = (f, g) whenever f, g ∈ H0.

(iii) H0 is dense in H.

A Hilbert space satisfying properties like H in the above proposition is
called a completion of H0. We shall only sketch the construction of
H, since it follows closely Cantor’s familiar method of obtaining the real
numbers as the completion of the rationals in terms of Cauchy sequences
of rationals.

Indeed, consider the collection of all Cauchy sequences {fn} with fn ∈
H0, 1 ≤ n < ∞. One defines an equivalence relation in this collection
by saying that {fn} is equivalent to {f ′n} if fn − f ′n converges to 0 as
n →∞. The collection of equivalence classes is then taken to be H. One
then easily verifies that H inherits the structure of a vector space, with
an inner product (f, g) defined as limn→∞(fn, gn), where {fn} and {gn}
are Cauchy sequences in H0, representing, respectively, the elements f
and g in H. Next, if f ∈ H0 we take the sequence {fn}, with fn = f for
all n, to represent f as an element of H, giving H0 ⊂ H. To see that
H is complete, let {F k}∞k=1 be a Cauchy sequence in H, with each F k

represented by {fk
n}∞n=1, fk

n ∈ H0. If we define F ∈ H as represented by
the sequence {fn} with fn = fn

N(n), where N(n) is so that |fn
N(n) − fn

j | ≤
1/n for j ≥ N(n), then we note that F k → F in H.

One can also observe that the completion H of H0 is unique up to
isomorphism. (See Exercise 14.)

3 Fourier series and Fatou’s theorem

We have already seen an interesting relation between Hilbert spaces and
some elementary facts about Fourier series. Here we want to pursue this
idea and also connect it with complex analysis.

When considering Fourier series, it is natural to begin by turning to
the broader class of all integrable functions on [−π, π]. Indeed, note that
L2([−π, π]) ⊂ L1([−π, π]), by the Cauchy-Schwarz inequality, since the
interval [−π, π] has finite measure. Thus, if f ∈ L1([−π, π]) and n ∈ Z,
we define the nth Fourier coefficient of f by

an =
1
2π

∫ π

−π

f(x)e−inx dx.
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The Fourier series of f is then formally
∑∞

n=−∞ aneinx, and we write

f(x) ∼
∞∑

n=−∞
aneinx

to indicate that the sum on the right is the Fourier series of the func-
tion on the left. The theory developed thus far provides the natural
generalization of some earlier results obtained in Book I.

Theorem 3.1 Suppose f is integrable on [−π, π].

(i) If an = 0 for all n, then f(x) = 0 for a.e. x.

(ii)
∑∞

n=−∞ anr|n|einx tends to f(x) for a.e. x, as r → 1, r < 1.

The second conclusion is the almost everywhere “Abel summability” to
f of its Fourier series. Note that since |an| ≤ 1

2π

∫ π

−π
|f(x)| dx, the series∑

anr|n|einx converges absolutely and uniformly for each r, 0 ≤ r < 1.

Proof. The first conclusion is an immediate consequence of the second.
To prove the latter we recall the identity

∞∑
n=−∞

r|n|einy = Pr(y) =
1− r2

1− 2r cos y + r2

for the Poisson kernel; see Book I, Chapter 2. Starting with our given
f ∈ L1([−π, π]) we extend it as a function on R by making it periodic of
period 2π.3 We then claim that for every x

(3)
∞∑

n=−∞
anr|n|einx =

1
2π

∫ π

−π

f(x− y)Pr(y) dy.

Indeed, by the dominated convergence theorem the right-hand side equals

∑
r|n|

1
2π

∫ π

−π

f(x− y)einy dy.

Moreover, for each x and n

∫ π

−π

f(x− y)einy dy =
∫ π+x

−π+x

f(y)ein(x−y) dy

= einx

∫ π

−π

f(y)e−iny dy = einx2πan.

3Note that we may without loss of generality assume that f(π) = f(−π) so as to make
the periodic extension unambiguous.



172 Chapter 4. HILBERT SPACES: AN INTRODUCTION

The first equality follows by translation invariance (see Section 3, Chap-
ter 2), and the second since

∫ π

−π
F (y) dy =

∫
I
F (y) dy whenever F is peri-

odic of period 2π and I is an interval of length 2π (Exercise 3, Chapter 2).
With these observations, the identity (3) is established. We can now in-
voke the facts about approximations to the identity (Theorem 2.1 and
Example 4, Chapter 3) to conclude that the left-hand side of (3) tends to
f(x) at every point of the Lebesgue set of f , hence almost everywhere.
(To be correct, the hypotheses of the theorem require that f be integrable
on all of R. We can achieve this for our periodic function by setting f
equal to zero outside [−2π, 2π], and then (3) still holds for this modified
f , whenever x ∈ [−π, π].)

We return to the more restrictive setting of L2. We express the essen-
tial conclusions of Theorem 2.3 in the context of Fourier series. With
f ∈ L2([−π, π]), we write as before an = 1

2π

∫ π

−π
f(x)e−inx dx.

Theorem 3.2 Suppose f ∈ L2([−π, π]). Then:

(i) We have Parseval’s relation

∞∑
n=−∞

|an|2 =
1
2π

∫ π

−π

|f(x)|2 dx.

(ii) The mapping f 7→ {an} is a unitary correspondence between
L2([−π, π]) and `2(Z).

(iii) The Fourier series of f converges to f in the L2-norm, that is,

1
2π

∫ π

−π

|f(x)− SN (f)(x)|2 dx → 0 as N →∞,

where SN (f) =
∑
|n|≤N aneinx.

To apply the previous results, we let H = L2([−π, π]) with inner prod-
uct (f, g) = 1

2π

∫ π

−π
f(x)g(x) dx, and take the orthonormal set {ek}∞k=1

to be the exponentials {einx}∞n=−∞, with k = 1 when n = 0, k = 2n for
n > 0, and k = 2|n| − 1 for n < 0.

By the previous result, assertion (ii) of Theorem 2.3 holds and thus
all the other conclusions hold. We therefore have Parseval’s relation,
and from (iv) we conclude that ‖f − SN (f)‖2 =

∑
|n|>N |an|2 → 0 as

N →∞. Similarly, if {an} ∈ `2(Z) is given, then ‖SN (f)− SM (f)‖2 →
0, as N, M →∞. Hence the completeness of L2 guarantees that there is
an f ∈ L2 such that ‖f − SN (f)‖ → 0, and one verifies directly that f
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has {an} as its Fourier coefficients. Thus we deduce that the mapping
f 7→ {an} is onto and hence unitary. This is a key conclusion that holds
in the setting on L2 and was not valid in an earlier context of Riemann
integrable functions. In fact the space R of such functions on [−π, π] is
not complete in the norm, containing as it does the continuous functions,
but R is itself restricted to bounded functions.

3.1 Fatou’s theorem

Fatou’s theorem is a remarkable result in complex analysis. Its proof
combines elements of Hilbert spaces, Fourier series, and deeper ideas of
differentiation theory, and yet none of these notions appear in its state-
ment. The question that Fatou’s theorem answers may be put simply as
follows.

Suppose F (z) is holomorphic in the unit disc D = {z ∈ C :
|z| < 1}. What are conditions on F that guarantee that F (z)
will converge, in an appropriate sense, to boundary values
F (eiθ) on the unit circle?

In general a holomorphic function in the unit disc can behave quite
erratically near the boundary. It turns out, however, that imposing a
simple boundedness condition is enough to obtain a strong conclusion.

If F is a function defined in the unit disc D, we say that F has a radial
limit at the point −π ≤ θ ≤ π on the circle, if the limit

lim
r → 1
r < 1

F (reiθ)

exists.

Theorem 3.3 A bounded holomorphic function F (reiθ) on the unit disc
has radial limits at almost every θ.

Proof. We know that F (z) has a power series expansion
∑∞

n=0 anzn in
D that converges absolutely and uniformly whenever z = reiθ and r < 1.
In fact, for r < 1 the series

∑∞
n=0 anrneinθ is the Fourier series of the

function F (reiθ), that is,

anrn =
1
2π

∫ π

−π

F (reiθ)e−inθ dθ when n ≥ 0,

and the integral vanishes when n < 0. (See also Chapter 3, Section 7 in
Book II).
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We pick M so that |F (z)| ≤ M , for all z ∈ D. By Parseval’s identity

∞∑
n=0

|an|2r2n =
1
2π

∫ π

−π

|F (reiθ)|2dθ for each 0 ≤ r < 1.

Letting r → 1 one sees that
∑ |an|2 converges (and is ≤ M2). We now let

F (eiθ) be the L2-function whose Fourier coefficients are an when n ≥ 0,
and 0 when n < 0. Hence by conclusion (ii) in Theorem 3.1

∞∑
n=0

anrneinθ → F (eiθ), for a.e θ,

concluding the proof of the theorem.

If we examine the argument given above we see that the same conclu-
sion holds for a larger class of functions. In this connection, we define
the Hardy space H2(D) to consist of all holomorphic functions F on
the unit disc D that satisfy

sup
0≤r<1

1
2π

∫ π

−π

|F (reiθ)|2 dθ < ∞.

We also define the “norm” for functions F in this class, ‖F‖H2(D), to be
the square root of the above quantity.

One notes that if F is bounded, then F ∈ H2(D), and moreover the
conclusion of the existence of radial limits almost everywhere holds for
any F ∈ H2(D), by the same argument given for the bounded case.4 Fi-
nally, one notes that F ∈ H2(D) if and only if F (z) =

∑∞
n=0 anzn with∑∞

n=0 |an|2 < ∞; moreover,
∑∞

n=0 |an|2 = ‖F‖2H2(D). This states in par-
ticular that H2(D) is in fact a Hilbert space that can be viewed as the
“subspace” `2(Z+) of `2(Z), consisting of all {an} ∈ `2(Z), with an = 0
when n < 0.

Some general considerations of subspaces and their concomitant or-
thogonal projections will be taken up next.

4 Closed subspaces and orthogonal projections

A linear subspace S (or simply subspace) of H is a subset of H that
satisfies αf + βg ∈ S whenever f, g ∈ S and α, β are scalars. In other
words, S is also a vector space. For example in R3, lines passing through

4An even more general statement is given in Problem 5∗.
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the origin and planes passing through the origin are the one-dimensional
and two-dimensional subspaces, respectively.

The subspace S is closed if whenever {fn} ⊂ S converges to some
f ∈ H, then f also belongs to S. In the case of finite-dimensional Hilbert
spaces, every subspace is closed. This is, however, not true in the gen-
eral case of infinite-dimensional Hilbert spaces. For instance, as we
have already indicated, the subspace of Riemann integrable functions
in L2([−π, π]) is not closed, nor is the subspace obtained by fixing a ba-
sis and taking all vectors that are finite linear combinations of these basis
elements. It is useful to note that every closed subspace S of H is itself a
Hilbert space, with the inner product on S that which is inherited from
H. (For the separability of S, see Exercise 11.)

Next, we show that a closed subspace enjoys an important character-
istic property of Euclidean geometry.

Lemma 4.1 Suppose S is a closed subspace of H and f ∈ H. Then:

(i) There exists a (unique) element g0 ∈ S which is closest to f , in the
sense that

‖f − g0‖ = inf
g∈S

‖f − g‖.

(ii) The element f − g0 is perpendicular to S, that is,

(f − g0, g) = 0 for all g ∈ S.

The situation in the lemma can be visualized as in Figure 1.

f

g0

S

Figure 1. Nearest element to f in S



176 Chapter 4. HILBERT SPACES: AN INTRODUCTION

Proof. If f ∈ S, then we choose f = g0, and there is nothing left
to prove. Otherwise, we let d = infg∈S ‖f − g‖, and note that we must
have d > 0 since f /∈ S and S is closed. Consider a sequence {gn}∞n=1 in
S such that

‖f − gn‖ → d as n →∞.

We claim that {gn} is a Cauchy sequence whose limit will be the desired
element g0. In fact, it would suffice to show that a subsequence of {gn}
converges, and this is immediate in the finite-dimensional case because
a closed ball is compact. However, in general this compactness fails, as
we shall see in Section 6, and so a more intricate argument is needed at
this point.

To prove our claim, we use the parallelogram law, which states that
in a Hilbert space H

(4) ‖A + B‖2 + ‖A−B‖2 = 2
[‖A‖2 + ‖B‖2] for all A,B ∈ H.

The simple verification of this equality, which consists of writing each
norm in terms of the inner product, is left to the reader. Putting A =
f − gn and B = f − gm in the parallelogram law, we find

‖2f − (gn + gm)‖2 + ‖gm − gn‖2 = 2
[‖f − gn‖2 + ‖f − gm‖2

]
.

However S is a subspace, so the quantity 1
2(gn + gm) belongs to S, hence

‖2f − (gn + gm)‖ = 2‖f − 1
2
(gn + gm)‖ ≥ 2d.

Therefore

‖gm − gn‖2 = 2
[‖f − gn‖2 + ‖f − gm‖2

]− ‖2f − (gn + gm)‖2
≤ 2

[‖f − gn‖2 + ‖f − gm‖2
]− 4d2.

By construction, we know that ‖f − gn‖ → d and ‖f − gm‖ → d as n,m →
∞, so the above inequality implies that {gn} is a Cauchy sequence. Since
H is complete and S closed, the sequence {gn} must have a limit g0 in
S, and then it satisfies d = ‖f − g0‖.

We prove that if g ∈ S, then g ⊥ (f − g0). For each ε (positive or neg-
ative), consider the perturbation of g0 defined by g0 − εg. This element
belongs to S, hence

‖f − (g0 − εg)‖2 ≥ ‖f − g0‖2.
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Since ‖f − (g0 − εg)‖2 = ‖f − g0‖2 + ε2‖g‖2 + 2ε Re(f − g0, g), we find
that

(5) 2ε Re(f − g0, g) + ε2‖g‖2 ≥ 0.

If Re(f − g0, g) < 0, then taking ε small and positive contradicts (5).
If Re(f − g0, g) > 0, a contradiction also follows by taking ε small and
negative. Thus Re(f − g0, g) = 0. By considering the perturbation g0 −
iεg, a similar argument gives Im(f − g0, g) = 0, and hence (f − g0, g) =
0.

Finally, the uniqueness of g0 follows from the above observation about
orthogonality. Suppose g̃0 is another point in S that minimizes the
distance to f . By taking g = g0 − g̃0 in our last argument we find
(f − g0) ⊥ (g0 − g̃0), and the Pythagorean theorem gives

‖f − g̃0‖2 = ‖f − g0‖2 + ‖g0 − g̃0‖2.

Since by assumption ‖f − g̃0‖2 = ‖f − g0‖2, we conclude that ‖g0 − g̃0‖ =
0, as desired.

Using the lemma, we may now introduce a useful concept that is an-
other expression of the notion of orthogonality. If S is a subspace of a
Hilbert space H, we define the orthogonal complement of S by

S⊥ = {f ∈ H : (f, g) = 0 for all g ∈ S}.

Clearly, S⊥ is also a subspace of H, and moreover S ∩ S⊥ = {0}. To see
this, note that if f ∈ S ∩ S⊥, then f must be orthogonal to itself; thus
0 = (f, f) = ‖f‖, and therefore f = 0. Moreover, S⊥ is itself a closed
subspace. Indeed, if fn → f , then (fn, g) → (f, g) for every g, by the
Cauchy-Schwarz inequality. Hence if (fn, g) = 0 for all g ∈ S and all n,
then (f, g) = 0 for all those g.

Proposition 4.2 If S is a closed subspace of a Hilbert space H, then

H = S ⊕ S⊥.

The notation in the proposition means that every f ∈ H can be written
uniquely as f = g + h, where g ∈ S and h ∈ S⊥; we say that H is the
direct sum of S and S⊥. This is equivalent to saying that any f in H
is the sum of two elements, one in S, the other in S⊥, and that S ∩ S⊥
contains only 0.

The proof of the proposition relies on the previous lemma giving the
closest element of f in S. In fact, for any f ∈ H, we choose g0 as in the
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lemma and write

f = g0 + (f − g0).

By construction g0 ∈ S, and the lemma implies f − g0 ∈ S⊥, and this
shows that f is the sum of an element in S and one in S⊥. To prove that
this decomposition is unique, suppose that

f = g + h = g̃ + h̃ where g, g̃ ∈ S and h, h̃ ∈ S⊥.

Then, we must have g − g̃ = h̃− h. Since the left-hand side belongs to
S while the right-hand side belongs to S⊥ the fact that S ∩ S⊥ = {0}
implies g − g̃ = 0 and h̃− h = 0. Therefore g = g̃ and h = h̃ and the
uniqueness is established.

With the decomposition H = S ⊕ S⊥ one has the natural projection
onto S defined by

PS(f) = g, where f = g + h and g ∈ S, h ∈ S⊥.

The mapping PS is called the orthogonal projection onto S and sat-
isfies the following simple properties:

(i) f 7→ PS(f) is linear,

(ii) PS(f) = f whenever f ∈ S,

(iii) PS(f) = 0 whenever f ∈ S⊥,

(iv) ‖PS(f)‖ ≤ ‖f‖ for all f ∈ H.

Property (i) means that PS(αf1 + βf2) = αPS(f1) + βPS(f2), whenever
f1, f2 ∈ H and α and β are scalars.

It will be useful to observe the following. Suppose {ek} is a (finite
or infinite) collection of orthonormal vectors in H. Then the orthogonal
projection P in the closure of the subspace spanned by {ek} is given by
P (f) =

∑
k(f, ek)ek. In case the collection is infinite, the sum converges

in the norm of H.
We illustrate this with two examples that arise in Fourier analysis.

Example 1. On L2([−π, π]), recall that if f(θ) ∼ ∑∞
n=−∞ aneinθ then

the partial sums of the Fourier series are

SN (f)(θ) =
N∑

n=−N

aneinθ.
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Therefore, the partial sum operator SN consists of the projection onto
the closed subspace spanned by {e−N , . . . , eN}.

The sum SN can be realized as a convolution

SN (f)(θ) =
1
2π

∫ π

−π

DN (θ − ϕ)f(ϕ) dϕ,

where DN (θ) = sin((N + 1/2)θ)/ sin(θ/2) is the Dirichlet kernel.

Example 2. Once again, consider L2([−π, π]) and let S denote the
subspace that consists of all F ∈ L2([−π, π]) with

F (θ) ∼
∞∑

n=0

aneinθ.

In other words, S is the space of square integrable functions whose
Fourier coefficients an vanish for n < 0. From the proof of Fatou’s theo-
rem, this implies that S can be identified with the Hardy space H2(D),
where D is the unit disc, and so is a closed subspace unitarily isomorphic
to `2(Z+). Therefore, using this identification, if P denotes the orthogo-
nal projection from L2([−π, π]) to S, we may also write P (f)(z) for the
element corresponding to H2(D), that is,

P (f)(z) =
∞∑

n=0

anzn.

Given f ∈ L2([−π, π]), we define the Cauchy integral of f by

C(f)(z) =
1

2πi

∫

γ

f(ζ)
ζ − z

dζ,

where γ denotes the unit circle and z belongs to the unit disc. Then we
have the identity

P (f)(z) = C(f)(z), for all z ∈ D.

Indeed, since f ∈ L2 it follows by the Cauchy-Schwarz inequality that
f ∈ L1([−π, π]), and therefore we may interchange the sum and integral
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in the following calculation (recall |z| < 1):

P (f)(z) =
∞∑

n=0

anzn =
∞∑

n=0

(
1
2π

∫ π

−π

f(eiθ)e−inθdθ

)
zn

=
1
2π

∫ π

−π

f(eiθ)
∞∑

n=0

(e−iθz)ndθ

=
1
2π

∫ π

−π

f(eiθ)
1− e−iθz

dθ

=
1

2πi

∫ π

−π

f(eiθ)
eiθ − z

ieiθdθ

= C(f)(z).

5 Linear transformations

The focus of analysis in Hilbert spaces is largely the study of their lin-
ear transformations. We have already encountered two classes of such
transformations, the unitary mappings and the orthogonal projections.
There are two other important classes we shall deal with in this chapter
in some detail: the “linear functionals” and the “compact operators,”
and in particular those that are symmetric.

Suppose H1 and H2 are two Hilbert spaces. A mapping T : H1 → H2

is a linear transformation (also called linear operator or operator)
if

T (af + bg) = aT (f) + bT (g) for all scalars a, b and f, g ∈ H1.

Clearly, linear operators satisfy T (0) = 0.
We shall say that a linear operator T : H1 → H2 is bounded if there

exists M > 0 so that

(6) ‖T (f)‖H2 ≤ M‖f‖H1 .

The norm of T is denoted by ‖T‖H1→H2 or simply ‖T‖ and defined by

‖T‖ = inf M,

where the infimum is taken over all M so that (6) holds. A trivial example
is given by the identity operator I, with I(f) = f . It is of course a
unitary operator and a projection, with ‖I‖ = 1.
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In what follows we shall generally drop the subscripts attached to the
norms of elements of a Hilbert space, when this causes no confusion.

Lemma 5.1 ‖T‖ = sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1}, where of course
f ∈ H1 and g ∈ H2.

Proof. If ‖T‖ ≤ M , the Cauchy-Schwarz inequality gives

|(Tf, g)| ≤ M whenever ‖f‖ ≤ 1 and ‖g‖ ≤ 1;

thus sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1} ≤ ‖T‖.
Conversely, if sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1} ≤ M , we claim that

‖Tf‖ ≤ M‖f‖ for all f . If f or Tf is zero, there is nothing to prove.
Otherwise, f ′ = f/‖f‖ and g′ = Tf/‖Tf‖ have norm 1, so by assump-
tion

|(Tf ′, g′)| ≤ M.

But since |(Tf ′, g′)| = ‖Tf‖/‖f‖ this gives ‖Tf‖ ≤ M‖f‖, and the
lemma is proved.

A linear transformation T is continuous if T (fn) → T (f) whenever
fn → f . Clearly, linearity implies that T is continuous on all of H1 if
and only if it is continuous at the origin. In fact, the conditions of being
bounded or continuous are equivalent.

Proposition 5.2 A linear operator T : H1 → H2 is bounded if and only
if it is continuous.

Proof. If T is bounded, then ‖T (f)− T (fn)‖H2 ≤ M‖f − fn‖H1 ,
hence T is continuous. Conversely, suppose that T is continuous but
not bounded. Then for each n there exists fn 6= 0 such that ‖T (fn)‖ ≥
n‖fn‖. The element gn = fn/(n‖fn‖) has norm 1/n, hence gn → 0.
Since T is continuous at 0, we must have T (gn) → 0, which contradicts
the fact that ‖T (gn)‖ ≥ 1. This proves the proposition.

In the rest of this chapter we shall assume that all linear operators are
bounded, hence continuous. It is noteworthy to recall that any linear
operator between finite-dimensional Hilbert spaces is necessarily contin-
uous.

5.1 Linear functionals and the Riesz representation theorem

A linear functional ` is a linear transformation from a Hilbert space
H to the underlying field of scalars, which we may assume to be the
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complex numbers,

` : H → C.

Of course, we view C as a Hilbert space equipped with its standard norm,
the absolute value.

A natural example of a linear functional is provided by the inner prod-
uct on H. Indeed, for fixed g ∈ H, the map

`(f) = (f, g)

is linear, and also bounded by the Cauchy-Schwarz inequality. Indeed,

|(f, g)| ≤ M‖f‖, where M = ‖g‖.

Moreover, `(g) = M‖g‖ so we have ‖`‖ = ‖g‖. The remarkable fact is
that this example is exhaustive, in the sense that every continuous linear
functional on a Hilbert space arises as an inner product. This is the so-
called Riesz representation theorem.

Theorem 5.3 Let ` be a continuous linear functional on a Hilbert space
H. Then, there exists a unique g ∈ H such that

`(f) = (f, g) for all f ∈ H.

Moreover, ‖`‖ = ‖g‖.

Proof. Consider the subspace of H defined by

S = {f ∈ H : `(f) = 0}.

Since ` is continuous the subspace S, which is called the null-space of `,
is closed. If S = H, then ` = 0 and we take g = 0. Otherwise S⊥ is non-
trivial and we may pick any h ∈ S⊥ with ‖h‖ = 1. With this choice of h
we determine g by setting g = `(h)h. Thus if we let u = `(f)h− `(h)f ,
then u ∈ S, and therefore (u, h) = 0. Hence

0 = (`(f)h− `(h)f, h) = `(f)(h, h)− (f, `(h)h).

Since (h, h) = 1, we find that `(f) = (f, g) as desired.

At this stage we record the following remark for later use. Let H0

be a pre-Hilbert space whose completion is H. Suppose `0 is a linear
functional on H0 which is bounded, that is, |`0(f)| ≤ M‖f‖ for all f ∈
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H0. Then `0 has an extension ` to a bounded linear functional on H,
with |`(f)| ≤ M‖f‖ for all f ∈ H. This extension is also unique. To see
this, one merely notes that {`0(fn)} is a Cauchy sequence whenever the
vectors {fn} belong to H0, and fn → f in H, as n →∞. Thus we may
define `(f) as limn→∞ `0(fn). The verification of the asserted properties
of ` is then immediate. (This result is a special case of the extension
Lemma 1.3 in the next chapter.)

5.2 Adjoints

The first application of the Riesz representation theorem is to determine
the existence of the “adjoint” of a linear transformation.

Proposition 5.4 Let T : H → H be a bounded linear transformation.
There exists a unique bounded linear transformation T ∗ on H so that:

(i) (Tf, g) = (f, T ∗g),

(ii) ‖T‖ = ‖T ∗‖,
(iii) (T ∗)∗ = T .

The linear operator T ∗ : H → H satisfying the above conditions is called
the adjoint of T .

To prove the existence of an operator satisfying (i) above, we observe
that for each fixed g ∈ H, the linear functional ` = `g, defined by

`(f) = (Tf, g),

is bounded. Indeed, since T is bounded one has ‖Tf‖ ≤ M‖f‖; hence
the Cauchy-Schwarz inequality implies that

|`(f)| ≤ ‖Tf‖ ‖g‖ ≤ B‖f‖,
where B = M‖g‖. Consequently, the Riesz representation theorem guar-
antees the existence of a unique h ∈ H, h = hg, such that

`(f) = (f, h).

Then we define T ∗g = h, and note that the association T ∗ : g 7→ h is
linear and satisfies (i).

The fact that ‖T‖ = ‖T ∗‖ follows at once from (i) and Lemma 5.1:

‖T‖ = sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1}
= sup{|(f, T ∗g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1}
= ‖T ∗‖.
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To prove (iii), note that (Tf, g) = (f, T ∗g) for all f and g if and only
if (T ∗f, g) = (f, Tg) for all f and g, as one can see by taking complex
conjugates and reversing the roles of f and g.

We record here a few additional remarks.

(a) In the special case when T = T ∗ (we say that T is symmetric), then

(7) ‖T‖ = sup{|(Tf, f)| : ‖f‖ = 1}.

This should be compared to Lemma 5.1, which holds for any linear oper-
ator. To establish (7), let M = sup{|(Tf, f)| : ‖f‖ = 1}. By Lemma 5.1
it is clear that M ≤ ‖T‖. Conversely, if f and g belong on H, then one
has the following “polarization” identity which is easy to verify

(Tf, g) =
1
4
[(T (f + g), f + g)− (T (f − g), f − g)

+ i (T (f + ig), f + ig)− i (T (f − ig), f − ig)].

For any h ∈ H, the quantity (Th, h) is real, because T = T ∗, hence
(Th, h) = (h, T ∗h) = (h, Th) = (Th, h). Consequently

Re(Tf, g) =
1
4

[(T (f + g), f + g)− (T (f − g), f − g)] .

Now |(Th, h)| ≤ M‖h‖2, so |Re(Tf, g)| ≤ M
4

[‖f + g‖2 + ‖f − g‖2], and
an application of the parallelogram law (4) then implies

|Re(Tf, g)| ≤ M

2
[‖f‖2 + ‖g‖2].

So if ‖f‖ ≤ 1 and ‖g‖ ≤ 1, then |Re(Tf, g)| ≤ M . In general, we may
replace g by eiθg in the last inequality to find that whenever ‖f‖ ≤ 1 and
‖g‖ ≤ 1, then |(Tf, g)| ≤ M , and invoking Lemma 5.1 once again gives
the result, ‖T‖ ≤ M .

(b) Let us note that if T and S are bounded linear transformations ofH to
itself, then so is their product TS, defined by (TS)(f) = T (S(f)). More-
over we have automatically (TS)∗ = S∗T ∗; in fact, (TSf, g) = (Sf, T ∗g) =
(f, S∗T ∗g).

(c) One can also exhibit a natural connection between linear transforma-
tions on a Hilbert space and their associated bilinear forms. Suppose first
that T is a bounded operator in H. Define the corresponding bilinear
form B by

(8) B(f, g) = (Tf, g).
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Note that B is linear in f and conjugate linear in g. Also by the Cauchy-
Schwarz inequality |B(f, g)| ≤ M‖f‖ ‖g‖, where M = ‖T‖. Conversely if
B is linear in f , conjugate linear in g and satisfies |B(f, g)| ≤ M‖f‖ ‖g‖,
there is a unique linear transformation so that (8) holds with M = ‖T‖.
This can be proved by the argument of Proposition 5.4; the details are
left to the reader.

5.3 Examples

Having presented the elementary facts about Hilbert spaces, we now
digress to describe briefly the background of some of the early develop-
ments of the theory. A motivating problem of considerable interest was
that of the study of the “eigenfunction expansion” of a differential oper-
ator L. A particular case, that of a Sturm-Liouville operator, arises on
an interval [a, b] of R with L defined by

L =
d2

dx2
− q(x),

where q is a given real-valued function. The question is then that of
expanding an “arbitrary” function in terms of the eigenfunctions ϕ, that
is those functions that satisfy L(ϕ) = µϕ for some µ ∈ R. The classi-
cal example of this is that of Fourier series, where L = d2/dx2 on the
interval [−π, π] with each exponential einx an eigenfunction of L with
eigenvalue µ = −n2.

When made precise in the “regular” case, the problem for L can be
resolved by considering an associated “integral operator” T defined on
L2([a, b]) by

T (f)(x) =
∫ b

a

K(x, y)f(y) dy,

with the property that for suitable f ,

LT (f) = f.

It turns out that a key feature that makes the study of T tractable is
a certain compactness it enjoys. We now pass to the definitions and
elaboration of some of these ideas, and begin by giving two relevant
illustrations of classes of operators on Hilbert spaces.

Infinite diagonal matrix

Suppose {ϕk}∞k=1 is an orthonormal basis of H. Then, a linear transfor-
mation T : H → H is said to be diagonalized with respect to the basis
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{ϕk} if

T (ϕk) = λkϕk, where λk ∈ C for all k.

In general, a non-zero element ϕ is called an eigenvector of T with
eigenvalue λ if Tϕ = λϕ. So the ϕk above are eigenvectors of T , and
the numbers λk are the corresponding eigenvalues.

So if

f ∼
∞∑

k=1

akϕk then Tf ∼
∞∑

k=1

akλkϕk.

The sequence {λk} is called the multiplier sequence corresponding to
T .

In this case, one can easily verify the following facts:

• ‖T‖ = supk |λk|.
• T ∗ corresponds to the sequence {λk}; hence T = T ∗ if and only if

the λk are real.

• T is unitary if and only if |λk| = 1 for all k.

• T is an orthogonal projection if and only if λk = 0 or 1 for all k.

As a particular example, consider H = L2([−π, π]), and assume that
every f ∈ L2([−π, π]) is extended to R by periodicity, so that f(x +
2π) = f(x) for all x ∈ R. Let ϕk(x) = eikx for k ∈ Z. For a fixed h ∈ R
the operator Uh defined by

Uh(f)(x) = f(x + h)

is unitary with λk = eikh. Hence

Uh(f) ∼
∞∑

k=−∞
akλkeikx if f ∼

∞∑

k=−∞
akeikx.

Integral operators, and in particular, Hilbert-Schmidt
operators

Let H = L2(Rd). If we can define an operator T : H → H by the formula

T (f)(x) =
∫

Rd

K(x, y)f(y) dy whenever f ∈ L2(Rd),
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we say that the operator T is an integral operator and K is its asso-
ciated kernel.

In fact, it was the problem of invertibility related to such operators,
and more precisely the question of solvability of the equation f − Tf = g
for given g, that initiated the study of Hilbert spaces. These equations
were then called “integral equations.”

In general a bounded linear transformation cannot be expressed as an
(absolutely convergent) integral operator. However, there is an inter-
esting class for which this is possible and which has a number of other
worthwhile properties: Hilbert-Schmidt operators, those with a ker-
nel K that belongs to L2(Rd × Rd).

Proposition 5.5 Let T be a Hilbert-Schmidt operator on L2(Rd) with
kernel K.

(i) If f ∈ L2(Rd), then for almost every x the function y 7→ K(x, y)f(y)
is integrable.

(ii) The operator T is bounded from L2(Rd) to itself, and

‖T‖ ≤ ‖K‖L2(Rd×Rd),

where ‖K‖L2(Rd×Rd) is the L2-norm of K on Rd × Rd = R2d.

(iii) The adjoint T ∗ has kernel K(y, x).

Proof. By Fubini’s theorem we know that for almost every x, the
function y 7→ |K(x, y)|2 is integrable. Then, part (i) follows directly from
an application of the Cauchy-Schwarz inequality.

For (ii), we make use again of the Cauchy-Schwarz inequality as follows
∣∣∣∣
∫

K(x, y)f(y) dy

∣∣∣∣ ≤
∫
|K(x, y)||f(y)| dy

≤
(∫

|K(x, y)|2 dy

)1/2 (∫
|f(y)|2 dy

)1/2

.

Therefore, squaring this and integrating in x yields

‖Tf‖2L2(Rd) ≤
∫ (∫

|K(x, y)|2dy

∫
|f(y)|2dy

)
dx

= ‖K‖2L2(Rd×Rd)‖f‖2L2(Rd).

Finally, part (iii) follows by writing out (Tf, g) in terms of a double
integral, and then interchanging the order of integration, as is permissible
by Fubini’s theorem.
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Hilbert-Schmidt operators can be defined analogously for the Hilbert
space L2(E), where E is a measurable subset of Rd. We leave it to the
reader to formulate an prove the analogue of Proposition 5.5 that holds
in this case.

Hilbert-Schmidt operators enjoy another important property: they are
compact. We will now discuss this feature in more detail.

6 Compact operators

We shall use the notion of sequential compactness in a Hilbert space H:
a set X ⊂ H is compact if for every sequence {fn} in X, there exists a
subsequence {fnk

} that converges in the norm to an element in X.

Let H denote a Hilbert space, and B the closed unit ball in H,

B = {f ∈ H : ‖f‖ ≤ 1}.

A well-known result in elementary real analysis says that in a finite-
dimensional Euclidean space, a closed and bounded set is compact. How-
ever, this does not carry over to the infinite-dimensional case. The fact
is that in this case the unit ball, while closed and bounded, is not com-
pact. To see this, consider the sequence {fn} = {en}, where the en are
orthonormal. By the Pythagorean theorem, ‖en − em‖2 = 2 if n 6= m, so
no subsequence of the {en} can converge.

In the infinite-dimensional case we say that a linear operator T : H →
H is compact if the closure of

T (B) = {g ∈ H : g = T (f) for some f ∈ B}

is a compact set. Equivalently, an operator T is compact if, whenever
{fk} is a bounded sequence in H, there exists a subsequence {fnk

} so
that Tfnk

converges. Note that a compact operator is automatically
bounded.

Note that by what has been said, a linear transformation is in general
not compact (take for instance the identity operator!). However, if T is
of finite rank, which means that its range is finite-dimensional, then
it is automatically compact. It turns out that dealing with compact
operators provides us with the closest analogy to the usual theorems of
(finite-dimensional) linear algebra. Some relevant analytic properties of
compact operators are given by the proposition below.

Proposition 6.1 Suppose T is a bounded linear operator on H.
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(i) If S is compact on H, then ST and TS are also compact.

(ii) If {Tn} is a family of compact linear operators with ‖Tn − T‖ → 0
as n tends to infinity, then T is compact.

(iii) Conversely, if T is compact, there is a sequence {Tn} of operators
of finite rank such that ‖Tn − T‖ → 0.

(iv) T is compact if and only if T ∗ is compact.

Proof. Part (i) is immediate. For part (ii) we use a diagonalization
argument. Suppose {fk} is a bounded sequence in H. Since T1 is com-
pact, we may extract a subsequence {f1,k}∞k=1 of {fk} such that T1(f1,k)
converges. From {f1,k} we may find a subsequence {f2,k}∞k=1 such that
T2(f2,k) converges, and so on. If we let gk = fk,k, then we claim {T (gk)}
is a Cauchy sequence. We have

‖T (gk)− T (g`)‖ ≤ ‖T (gk)− Tm(gk)‖+ ‖Tm(gk)− Tm(g`)‖+
+ ‖Tm(g`)− T (g`)‖.

Since ‖T − Tm‖ → 0 and {gk} is bounded, we can make the first and
last term each < ε/3 for some large m independent of k and `. With this
fixed m, we note that by construction ‖Tm(gk)− Tm(g`)‖ < ε/3 for all
large k and `. This proves our claim; hence {T (gk)} converges in H.

To prove (iii) let {ek}∞k=1 be a basis of H and let Qn be the orthogonal
projection on the subspace spanned by the ek with k > n. Then clearly
Qn(g) ∼ ∑

k>n akek whenever g ∼ ∑∞
k=1 akek, and ‖Qng‖2 is a decreas-

ing sequence that tends to 0 as n →∞ for any g ∈ H. We claim that
‖QnT‖ → 0 as n →∞. If not, there is a c > 0 so that ‖QnT‖ ≥ c, and
hence for each n we can find fn, with ‖fn‖ = 1 so that ‖QnTfn‖ ≥ c.
Now by compactness of T , choosing an appropriate subsequence {fnk

},
we have Tfnk

→ g for some g. But Qnk
(g) = Qnk

Tfnk
−Qnk

(Tfnk
− g),

and hence we conclude that ‖Qnk
(g)‖ ≥ c/2, for large k. This contradic-

tion shows that ‖QnT‖ → 0. So if Pn is the complementary projection
on the finite-dimensional space spanned by e1, . . . , en, I = Pn + Qn, then
‖QnT‖ → 0 means that ‖PnT − T‖ → 0. Since each PnT is of finite rank,
assertion (iii) is established.

Finally, if T is compact the fact that ‖PnT − T‖ → 0 implies ‖T ∗Pn −
T ∗‖ → 0, and clearly T ∗Pn is again of finite rank. Thus we need only
appeal to the second conclusion to prove the last.

We now state two further observations about compact operators.
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• If T can be diagonalized with respect to some basis {ϕk} of eigen-
vectors and corresponding eigenvalues {λk}, then T is compact if
and only if |λk| → 0. See Exercise 25.

• Every Hilbert-Schmidt operator is compact.

To prove the second point, recall that a Hilbert-Schmidt operator is
given on L2(Rd) by

T (f)(x) =
∫

Rd

K(x, y)f(y) dy, where K ∈ L2(Rd × Rd).

If {ϕk}∞k=1 denotes an orthonormal basis for L2(Rd), then the collection
{ϕk(x)ϕ`(y)}k,`≥1 is an orthonormal basis for L2(Rd × Rd); the proof of
this simple fact is outlined in Exercise 7. As a result

K(x, y) ∼
∞∑

k,`=1

ak`ϕk(x)ϕ`(y), with
∑

k,` |ak`|2 < ∞.

We define an operator

Tnf(x) =
∫

Rd

Kn(x, y)f(y)dy, where Kn(x, y) =
∑n

k,`=1 ak`ϕk(x)ϕ`(y).

Then, each Tn has finite-dimensional range, hence is compact. Moreover,

‖K −Kn‖2L2(Rd×Rd) =
∑

k ≥ n or ` ≥ n

|ak`|2 → 0 as n →∞.

By Proposition 5.5, ‖T − Tn‖ ≤ ‖K −Kn‖L2(Rd×Rd), so we can conclude
the proof that T is compact by appealing to Proposition 6.1.

The climax of our efforts regarding compact operators is the infinite-
dimensional version of the familiar diagonalization theorem in linear al-
gebra for symmetric matrices. Using a similar terminology, we say that
a bounded linear operator T is symmetric if T ∗ = T . (These operators
are also called “self-adjoint” or “Hermitian.”)

Theorem 6.2 (Spectral theorem) Suppose T is a compact symmet-
ric operator on a Hilbert space H. Then there exists an (orthonormal)
basis {ϕk}∞k=1 of H that consists of eigenvectors of T . Moreover, if

Tϕk = λkϕk,

then λk ∈ R and λk → 0 as k →∞.
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Conversely, every operator of the above form is compact and symmetric.
The collection {λk} is called the spectrum of T .

Lemma 6.3 Suppose T is a bounded symmetric linear operator on a
Hilbert space H.

(i) If λ is an eigenvalue of T , then λ is real.

(ii) If f1 and f2 are eigenvectors corresponding to two distinct eigen-
values, then f1 and f2 are orthogonal.

Proof. To prove (i), we first choose a non-zero eigenvector f such
that T (f) = λf . Since T is symmetric (that is, T = T ∗), we find that

λ(f, f) = (Tf, f) = (f, Tf) = (f, λf) = λ(f, f),

where we have used in the last equality the fact that the inner product is
conjugate linear in the second variable. Since f 6= 0, we must have λ = λ
and hence λ ∈ R.

For (ii), suppose f1 and f2 have eigenvalues λ1 and λ2, respectively.
By the previous argument both λ1 and λ2 are real, and we note that

λ1(f1, f2) = (λ1f1, f2)
= (Tf1, f2)

= (f1, T f2)
= (f1, λ2f2)

= λ2(f1, f2).

Since by assumption λ1 6= λ2 we must have (f1, f2) = 0 as desired.

For the next lemma note that every non-zero element of the null-space
of T − λI is an eigenvector with eigenvalue λ.

Lemma 6.4 Suppose T is compact, and λ 6= 0. Then the dimension of
the null space of T − λI is finite. Moreover, the eigenvalues of T form
at most a denumerable set λ1, . . . , λk, . . ., with λk → 0 as k →∞. More
specifically, for each µ > 0, the linear space spanned by the eigenvectors
corresponding to the eigenvalues λk with |λk| > µ is finite-dimensional.

Proof. Let Vλ denote the null-space of T − λI, that is, the eigenspace
of T corresponding to λ. If Vλ is not finite-dimensional, there exists
a countable sequence of orthonormal vectors {ϕk} in Vλ. Since T is
compact, there exists a subsequence {ϕnk

} such that T (ϕnk
) converges.



192 Chapter 4. HILBERT SPACES: AN INTRODUCTION

But since T (ϕnk
) = λϕnk

and λ 6= 0, we conclude that ϕnk
converges,

which is a contradiction since ‖ϕnk
− ϕnk′‖2 = 2 if k 6= k′.

The rest of the lemma follows if we can show that for each µ > 0, there
are only finitely many eigenvalues whose absolute values are greater than
µ. We argue again by contradiction. Suppose there are infinitely many
distinct eigenvalues whose absolute values are greater than µ, and let
{ϕk} be a corresponding sequence of eigenvectors. Since the eigenvalues
are distinct, we know from the previous lemma that {ϕk} is orthogonal,
and after normalization, we may assume that this set of eigenvectors is
orthonormal. One again, since T is compact, we may find a subsequence
so that T (ϕnk

) converges, and since

T (ϕnk
) = λnk

ϕnk

the fact that |λnk
| > µ leads to a contradiction, since {ϕk} is an or-

thonormal set and thus ‖λnk
ϕnk

− λnj
ϕnj

‖2 = λ2
nk

+ λ2
nj
≥ 2µ2.

Lemma 6.5 Suppose T 6= 0 is compact and symmetric. Then either ‖T‖
or −‖T‖ is an eigenvalue of T .

Proof. By the observation (7) made earlier, either

‖T‖ = sup{(Tf, f) : ‖f‖ = 1} or − ‖T‖ = inf{(Tf, f) : ‖f‖ = 1}.

We assume the first case, that is,

λ = ‖T‖ = sup{(Tf, f) : ‖f‖ = 1},

and prove that λ is an eigenvalue of T . (The proof of the other case is
similar.)

We pick a sequence {fn} ⊂ H such that ‖fn‖ = 1 and (Tfn, fn) → λ.
Since T is compact, we may assume also (by passing to a subsequence of
{fn} if necessary) that {Tfn} converges to a limit g ∈ H. We claim that
g is an eigenvector of T with eigenvalue λ. To see this, we first observe
that Tfn − λfn → 0 because

‖Tfn − λfn‖2 = ‖Tfn‖2 − 2λ(Tfn, fn) + λ2‖fn‖2
≤ ‖T‖2‖fn‖2 − 2λ(Tfn, fn) + λ2‖fn‖2
≤ 2λ2 − 2λ(Tfn, fn) → 0.

Since Tfn → g, we must have λfn → g, and since T is continuous, this
implies that λTfn → Tg. This proves that λg = Tg. Finally, we must
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have g 6= 0, for otherwise ‖Tnfn‖ → 0, hence (Tfn, fn) → 0, and λ =
‖T‖ = 0, which is a contradiction.

We are now equipped with the necessary tools to prove the spectral
theorem. Let S denote the closure of the linear space spanned by all
eigenvectors of T . By Lemma 6.5, the space S is non-empty. The goal
is to prove that S = H. If not, then since

(9) S ⊕ S⊥ = H,

S⊥ would be non-empty. We will have reached a contradiction once
we show that S⊥ contains an eigenvector of T . First, we note that T
respects the decomposition (9). In other words, if f ∈ S then Tf ∈ S,
which follows from the definitions. Also, if g ∈ S⊥ then Tg ∈ S⊥. This
is because T is symmetric and maps S to itself, and hence

(Tg, f) = (g, Tf) = 0 whenever g ∈ S⊥ and f ∈ S.

Now consider the operator T1, which by definition is the restriction of
T to the subspace S⊥. The closed subspace S⊥ inherits its Hilbert space
structure from H. We see immediately that T1 is also a compact and
symmetric operator on this Hilbert space. Moreover, if S⊥ is non-empty,
the lemma implies that T1 has a non-zero eigenvector in S⊥. This eigen-
vector is clearly also an eigenvector of T , and therefore a contradiction
is obtained. This concludes the proof of the spectral theorem.

Some comments about Theorem 6.2 are in order. If in its statement we
drop either of the two assumptions (the compactness or symmetry of T ),
then T may have no eigenvectors. (See Exercises 32 and 33.) However,
when T is a general bounded linear transformation which is symmetric,
there is an appropriate extension of the spectral theorem that holds for
it. Its formulation and proof require further ideas that are deferred to
Chapter 6.

7 Exercises

1. Show that properties (i) and (ii) in the definition of a Hilbert space (Section 2)
imply property (iii): the Cauchy-Schwarz inequality |(f, g)| ≤ ‖f‖ · ‖g‖ and the
triangle inequality ‖f + g‖ ≤ ‖f‖+ ‖g‖.
[Hint: For the first inequality, consider (f + λg, f + λg) as a positive quadratic
function of λ. For the second, write ‖f + g‖2 as (f + g, f + g).]

2. In the case of equality in the Cauchy-Schwarz inequality we have the following.
If |(f, g)| = ‖f‖ ‖g‖ and g 6= 0, then f = cg for some scalar c.
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[Hint: Assume ‖f‖ = ‖g‖ = 1 and (f, g) = 1. Then f − g and g are orthogonal,
while f = f − g + g. Thus ‖f‖2 = ‖f − g‖2 + ‖g‖2.]

3. Note that ‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2Re(f, g) for any pair of elements in a
Hilbert space H. As a result, verify the identity ‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 +
‖g‖2).

4. Prove from the definition that `2(Z) is complete and separable.

5. Establish the following relations between L2(Rd) and L1(Rd):

(a) Neither the inclusion L2(Rd) ⊂ L1(Rd) nor the inclusion L1(Rd) ⊂ L2(Rd)
is valid.

(b) Note, however, that if f is supported on a set E of finite measure and if f ∈
L2(Rd), applying the Cauchy-Schwarz inequality to fχE gives f ∈ L1(Rd),
and

‖f‖L1(Rd) ≤ m(E)1/2‖f‖L2(Rd).

(c) If f is bounded (|f(x)| ≤ M), and f ∈ L1(Rd), then f ∈ L2(Rd) with

‖f‖L2(Rd) ≤ M1/2‖f‖1/2

L1(Rd)
.

[Hint: For (a) consider f(x) = |x|−α, when |x| ≤ 1 or when |x| > 1.]

6. Prove that the following are dense subspaces of L2(Rd).

(a) The simple functions.

(b) The continuous functions of compact support.

7. Suppose {ϕk}∞k=1 is an orthonormal basis for L2(Rd). Prove that the collection
{ϕk,j}1≤k,j<∞ with ϕk,j(x, y) = ϕk(x)ϕj(y) is an orthonormal basis of L2(Rd ×
Rd).

[Hint: First verify that the {ϕk,j} are orthonormal, by Fubini’s theorem. Next,
for each j consider Fj(x) =

R
Rd F (x, y)ϕj(y) dy. If one assumes that (F, ϕk,j) = 0

for all j, then
R

Fj(x)ϕk(x) dx = 0.]

8. Let η(t) be a fixed strictly positive continuous function on [a, b]. Define Hη =
L2([a, b], η) to be the space of all measurable functions f on [a, b] such that

Z b

a

|f(t)|2η(t) dt < ∞.

Define the inner product on Hη by

(f, g)η =

Z b

a

f(t)g(t)η(t) dt.
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(a) Show that Hη is a Hilbert space, and that the mapping U : f 7→ η1/2f gives
a unitary correspondence between Hη and the usual space L2([a, b]).

(b) Generalize this to the case when η is not necessarily continuous.

9. Let H1 = L2([−π, π]) be the Hilbert space of functions F (eiθ) on the unit circle
with inner product (F, G) = 1

2π

R π

−π
F (eiθ)G(eiθ) dθ. Let H2 be the space L2(R).

Using the mapping

x 7→ i− x

i + x

of R to the unit circle, show that:

(a) The correspondence U : F → f , with

f(x) =
1

π1/2(i + x)
F

„
i− x

i + x

«

gives a unitary mapping of H1 to H2.

(b) As a result,


1

π1/2

„
i− x

i + x

«n
1

i + x

ff∞

n=−∞

is an orthonormal basis of L2(R).

10. Let S denote a subspace of a Hilbert space H. Prove that (S⊥)⊥ is the
smallest closed subspace of H that contains S.

11. Let P be the orthogonal projection associated with a closed subspace S in a
Hilbert space H, that is,

P (f) = f if f ∈ S and P (f) = 0 if f ∈ S⊥.

(a) Show that P 2 = P and P ∗ = P .

(b) Conversely, if P is any bounded operator satisfying P 2 = P and P ∗ = P ,
prove that P is the orthogonal projection for some closed subspace of H.

(c) Using P , prove that if S is a closed subspace of a separable Hilbert space,
then S is also a separable Hilbert space.

12. Let E be a measurable subset of Rd, and suppose S is the subspace of L2(Rd)
of functions that vanish for a.e. x /∈ E. Show that the orthogonal projection P on
S is given by P (f) = χE · f , where χE is the characteristic function of E.
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13. Suppose P1 and P2 are a pair of orthogonal projections on S1 and S2, respec-
tively. Then P1P2 is an orthogonal projection if and only if P1 and P2 commute,
that is, P1P2 = P2P1. In this case, P1P2 projects onto S1 ∩ S2.

14. Suppose H and H′ are two completions of a pre-Hilbert space H0. Show that
there is a unitary mapping from H to H′ that is the identity on H0.

[Hint: If f ∈ H, pick a Cauchy sequence {fn} in H0 that converges to f in H. This
sequence will also converge to an element f ′ in H′. The mapping f 7→ f ′ gives the
required unitary mapping.]

15. Let T be any linear transformation from H1 to H2. If we suppose that H1 is
finite-dimensional, then T is automatically bounded. (If H1 is not assumed to be
finite-dimensional this may fail; see Problem 1 below.)

16. Let F0(z) = 1/(1− z)i.

(a) Verify that |F0(z)| ≤ eπ/2 in the unit disc, but that limr→1 F0(r) does not
exist.

[Hint: Note that |F0(r)| = 1 and F0(r) oscillates between ±1 infinitely often
as r → 1.]

(b) Let {αn}∞n=1 be an enumeration of the rationals, and let

F (z) =

∞X
j=1

δjF0(ze−iαj ),

where δ is sufficiently small. Show that limr→1 F (reiθ) fails to exist when-
ever θ = αj , and hence F fails to have a radial limit for a dense set of points
on the unit circle.

17. Fatou’s theorem can be generalized by allowing a point to approach the
boundary in larger regions, as follows.

For each 0 < s < 1 and point z on the unit circle, consider the region Γs(z)
defined as the smallest closed convex set that contains z and the closed disc Ds(0).
In other words, Γs(z) consists of all lines joining z with points in Ds(0). Near the
point z, the region Γs(z) looks like a triangle. See Figure 2.

We say that a function F defined in the open unit disc has a non-tangential
limit at a point z on the circle, if for every 0 < s < 1, the limit

lim
w → z

w ∈ Γs(z)

F (w)

exists.
Prove that if F is holomorphic and bounded on the open unit disc, then F has

a non-tangential limit for almost every point on the unit circle.
[Hint: Show that the Poisson integral of a function f has non-tangential limits at
every point of the Lebesgue set of f .]
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Γs(z)

z

Figure 2. The region Γs(z)

18. Let H denote a Hilbert space, and L(H) the vector space of all bounded linear
operators on H. Given T ∈ L(H), we define the operator norm

‖T‖ = inf{B : ‖Tv‖ ≤ B‖v‖, for all v ∈ H}.

(a) Show that ‖T1 + T2‖ ≤ ‖T1‖+ ‖T2‖ whenever T1, T2 ∈ L(H).

(b) Prove that

d(T1, T2) = ‖T1 − T2‖

defines a metric on L(H).

(c) Show that L(H) is complete in the metric d.

19. If T is a bounded linear operator on a Hilbert space, prove that

‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2 = ‖T ∗‖2.

20. Suppose H is an infinite-dimensional Hilbert space. We have seen an example
of a sequence {fn} in H with ‖fn‖ = 1 for all n, but for which no subsequence
of {fn} converges in H. However, show that for any sequence {fn} in H with
‖fn‖ = 1 for all n, there exist f ∈ H and a subsequence {fnk} such that for all
g ∈ H, one has

lim
k→∞

(fnk , g) = (f, g).

One says that {fnk} converges weakly to f .

[Hint: Let g run through a basis for H, and use a diagonalization argument. One
can then define f by giving its series expansion with respect to the chosen basis.]
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21. There are several senses in which a sequence of bounded operators {Tn} can
converge to a bounded operator T (in a Hilbert space H). First, there is con-
vergence in the norm, that is, ‖Tn − T‖ → 0, as n →∞. Next, there is a weaker
convergence, which happens to be called strong convergence, that requires that
Tnf → Tf , as n →∞, for every vector f ∈ H. Finally, there is weak conver-
gence (see also Exercise 20) that requires (Tnf, g) → (Tf, g) for every pair of
vectors f, g ∈ H.

(a) Show by examples that weak convergence does not imply strong convergence,
nor does strong convergence imply convergence in the norm.

(b) Show that for any bounded operator T there is a sequence {Tn} of bounded
operators of finite rank so that Tn → T strongly as n →∞.

22. An operator T is an isometry if ‖Tf‖ = ‖f‖ for all f ∈ H.

(a) Show that if T is an isometry, then (Tf, Tg) = (f, g) for every f, g ∈ H.
Prove as a result that T ∗T = I.

(b) If T is an isometry and T is surjective, then T is unitary and TT ∗ = I.

(c) Give an example of an isometry that is not unitary.

(d) Show that if T ∗T is unitary then T is an isometry.

[Hint: Use the fact that (Tf, Tf) = (f, f) for f replaced by f ± g and f ± ig.]

23. Suppose {Tk} is a collection of bounded operators on a Hilbert space H, with
‖Tk‖ ≤ 1 for all k. Suppose also that

TkT ∗j = T ∗k Tj = 0 for all k 6= j.

Let SN =
PN

k=−N Tk.
Show that SN (f) converges as N →∞, for every f ∈ H. If T (f) denotes the

limit, prove that ‖T‖ ≤ 1.
A generalization is given in Problem 8∗ below.

[Hint: Consider first the case when only finitely many of the Tk are non-zero, and
note that the ranges of the Tk are mutually orthogonal.]

24. Let {ek}∞k=1 denote an orthonormal set in a Hilbert space H. If {ck}∞k=1 is a
sequence of positive real numbers such that

P
c2

k < ∞, then the set

A = {
∞X

k=1

akek : |ak| ≤ ck}

is compact in H.

25. Suppose T is a bounded operator that is diagonal with respect to a basis {ϕk},
with Tϕk = λkϕk. Then T is compact if and only if λk → 0.



7. Exercises 199

[Hint: If λk → 0, then note that ‖PnT − T‖ → 0, where Pn is the orthogonal
projection on the subspace spanned by ϕ1, ϕ2, . . . , ϕn. ]

26. Suppose w is a measurable function on Rd with 0 < w(x) < ∞ for a.e. x, and
K is a measurable function on R2d that satisfies:

(i)

Z

Rd

|K(x, y)|w(y) dy ≤ Aw(x) for almost every x ∈ Rd, and

(ii)

Z

Rd

|K(x, y)|w(x) dx ≤ Aw(y) for almost every y ∈ Rd.

Prove that the integral operator defined by

Tf(x) =

Z

Rd

K(x, y)f(y) dy, x ∈ Rd

is bounded on L2(Rd) with ‖T‖ ≤ A.
Note as a special case that if

R |K(x, y)| dy ≤ A for all x, and
R |K(x, y)| dx ≤ A

for all y, then ‖T‖ ≤ A.

[Hint: Show that if f ∈ L2(Rd), then

Z
|K(x, y)| |f(y)| dy ≤ A1/2w(x)1/2

»Z
|K(x, y)| |f(y)|2w(y)−1 dy

–1/2

.]

27. Prove that the operator

Tf(x) =
1

π

Z ∞

0

f(y)

x + y
dy

is bounded on L2(0,∞) with norm ‖T‖ ≤ 1.

[Hint: Use Exercise 26 with an appropriate w.]

28. Suppose H = L2(B), where B is the unit ball in Rd. Let K(x, y) be a mea-
surable function on B ×B that satisfies |K(x, y)| ≤ A|x− y|−d+α for some α > 0,
whenever x, y ∈ B. Define

Tf(x) =

Z

B

K(x, y)f(y)dy.

(a) Prove that T is a bounded operator on H.

(b) Prove that T is compact.

(c) Note that T is a Hilbert-Schmidt operator if and only if α > d/2.

[Hint: For (b), consider the operators Tn associated with the truncated kernels
Kn(x, y) = K(x, y) if |x− y| ≥ 1/n and 0 otherwise. Show that each Tn is compact,
and that ‖Tn − T‖ → 0 as n →∞.]

29. Let T be a compact operator on a Hilbert space H, and assume λ 6= 0.
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(a) Show that the range of λI − T defined by

{g ∈ H : g = (λI − T )f, for some f ∈ H}

is closed. [Hint: Suppose gj → g, where gj = (λI − T )fj . Let Vλ denote
the eigenspace of T corresponding to λ, that is, the kernel of λI − T . Why
can one assume that fj ∈ V ⊥

λ ? Under this assumption prove that {fj} is a
bounded sequence.]

(b) Show by example that this may fail when λ = 0.

(c) Show that the range of λI − T is all of H if and only if the null-space of
λI − T ∗ is trivial.

30. Let H = L2([−π, π]) with [−π, π] identified as the unit circle. Fix a bounded
sequence {λn}∞n=−∞ of complex numbers, and define an operator Tf by

Tf(x) ∼
∞X

n=−∞
λnaneinx whenever f(x) ∼

∞X
n=−∞

aneinx.

Such an operator is called a Fourier multiplier operator, and the sequence
{λn} is called the multiplier sequence.

(a) Show that T is a bounded operator on H and ‖T‖ = supn |λn|.
(b) Verify that T commutes with translations, that is, if we define τh(x) =

f(x− h) then

T ◦ τh = τh ◦ T for every h ∈ R.

(c) Conversely, prove that if T is any bounded operator on H that commutes
with translations, then T is a Fourier multiplier operator. [Hint: Consider
T (einx).]

31. Consider a version of the sawtooth function defined on [−π, π) by5

K(x) = i(sgn(x)π − x),

and extended to R with period 2π. Suppose f ∈ L1([−π, π]) is extended to R with
period 2π, and define

Tf(x) =
1

2π

Z π

−π

K(x− y)f(y) dy

=
1

2π

Z π

−π

K(y)f(x− y) dy.

5The symbol sgn(x) denotes the sign function: it equals 1 or −1 if x is positive or
negative respectively, and 0 if x = 0.
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(a) Show that F (x) = Tf(x) is absolutely continuous, and if
R π

−π
f(y)dy = 0,

then F ′(x) = if(x) a.e. x.

(b) Show that the mapping f 7→ Tf is compact and symmetric on L2([−π, π]).

(c) Prove that ϕ(x) ∈ L2([−π, π]) is an eigenfunction for T if and only if ϕ(x)
is (up to a constant multiple) equal to einx for some integer n 6= 0 with
eigenvalue 1/n, or ϕ(x) = 1 with eigenvalue 0.

(d) Show as a result that {einx}n∈Z is an orthonormal basis of L2([−π, π]).

Note that in Book I, Chapter 2, Exercise 8, it is shown that the Fourier series
of K is

K(x) ∼
X

n6=0

einx

n
.

32. Consider the operator T : L2([0, 1]) → L2([0, 1]) defined by

T (f)(t) = tf(t).

(a) Prove that T is a bounded linear operator with T = T ∗, but that T is not
compact.

(b) However, show that T has no eigenvectors.

33. Let H be a Hilbert space with basis {ϕk}∞k=1. Verify that the operator T
defined by

T (ϕk) =
1

k
ϕk+1

is compact, but has no eigenvectors.

34. Let K be a Hilbert-Schmidt kernel which is real and symmetric. Then, as we
saw, the operator T whose kernel is K is compact and symmetric. Let {ϕk(x)} be
the eigenvectors (with eigenvalues λk) that diagonalize T . Then:

(a)
P

k |λk|2 < ∞.

(b) K(x, y) ∼Pλkϕk(x)ϕk(y) is the expansion of K in the basis {ϕk(x)ϕk(y)}.

(c) Suppose T is a compact operator which is symmetric. Then T is of Hilbert-
Schmidt type if and only if

P
n |λn|2 < ∞, where {λn} are the eigenvalues

of T counted according to their multiplicities.

35. Let H be a Hilbert space. Prove the following variants of the spectral theorem.
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(a) If T1 and T2 are two linear symmetric and compact operators on H that
commute (that is, T1T2 = T2T1), show that they can be diagonalized simul-
taneously. In other words, there exists an orthonormal basis for H which
consists of eigenvectors for both T1 and T2.

(b) A linear operator on H is normal if TT ∗ = T ∗T . Prove that if T is normal
and compact, then T can be diagonalized.

[Hint: Write T = T1 + iT2 where T1 and T2 are symmetric, compact and
commute.]

(c) If U is unitary, and U = λI − T , where T is compact, then U can be diago-
nalized.

8 Problems

1. Let H be an infinite-dimensional Hilbert space. There exists a linear functional
` defined on H that is not bounded (and hence not continuous).

[Hint: Using the axiom of choice (or one of its equivalent forms), construct an
algebraic basis ofH, {eα}; it has the property that every element ofH is uniquely
a finite linear combination of the {eα}. Select a denumerable collection {en}∞n=1,
and define ` to satisfy the requirement that `(en) = n‖en‖ for all n ∈ N.]

2.∗ The following is an example of a non-separable Hilbert space. We consider
the collection of exponentials {eiλx} on R, where λ ranges over the real numbers.
Let H0 denote the space of finite linear combinations of these exponentials. For
f, g ∈ H0, we define the inner product as

(f, g) = lim
T→∞

1

2T

Z T

−T

f(x)g(x) dx.

(a) Show that this limit exists, and

(f, g) =

NX

k=1

aλkbλk

if f(x) =
PN

k=1 aλkeiλkx and g(x) =
PN

k=1 bλkeiλkx.

(b) With this inner product H0 is a pre-Hilbert space. Notice that ‖f‖ ≤
supx |f(x)|, if f ∈ H0, where ‖f‖ denotes the norm 〈f, f〉1/2. Let H be

the completion of H0. Then H is not separable because eiλx and eiλ′x are
orthonormal if λ 6= λ′.

A continuous function F defined on R is called almost periodic if it is the
uniform limit (on R) of elements in H0. Such functions can be identified
with (certain) elements in the completion H: We haveH0 ⊂ AP ⊂ H, where
AP denotes the almost periodic functions.
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(c) A continuous function F is in AP if for every ε > 0 we can find a length
L = Lε such that any interval I ⊂ R of length L contains an “almost period”
τ satisfying

sup
x
|F (x + τ)− F (x)| < ε.

(d) An equivalent characterization is that F is in AP if and only if every se-
quence F (x + hn) of translates of F contains a subsequence that converges
uniformly.

3. The following is a direct generalization of Fatou’s theorem: if u(reiθ) is harmonic
in the unit disc and bounded there, then limr→1 u(reiθ) exists for a.e. θ.

[Hint: Let an(r) = 1
2π

R 2π

0
u(reiθ)e−inθ dθ. Then a′′n(r) + 1

r
a′n(r)− n2

r2 an(r) = 0,

hence an(r) = Anrn + Bnr−n, n 6= 0, and as a result6 u(reiθ) =
P∞
−∞ anr|n|einθ.

From this one can proceed as in the proof of Theorem 3.3.]

4.∗ This problem provides some examples of functions that fail to have radial limits
almost everywhere.

(a) At almost every point of the boundary unit circle, the function
P∞

n=0 z2n

fails to have a radial limit.

(b) More generally, suppose F (z) =
P∞

n=0 anz2n

. Then, if
P |an|2 = ∞ the

function F fails to have radial limits at almost every boundary point. How-
ever, if

P |an|2 < ∞, then F ∈ H2(D), and we know by the proof of Theo-
rem 3.3 that F does have radial limits almost everywhere.

5.∗ Suppose F is holomorphic in the unit disc, and

sup
0≤r<1

1

2π

Z π

−π

log+ |F (reiθ)| dθ < ∞,

where log+ u = log u if u ≥ 1, and log+ u = 0 if u < 1.
Then limr→1 F (reiθ) exists for almost every θ.
The above condition is satisfied whenever (say)

sup
0≤r<1

1

2π

Z π

−π

|F (reiθ)|p dθ < ∞, for some p > 0,

(since epu ≥ pu, u ≥ 0).
Functions that satisfy the latter condition are said to belong to the Hardy

space Hp(D).

6.∗ If T is compact, and λ 6= 0, show that

6See also Section 5, Chapter 2 in Book I.
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(a) λI − T is injective if and only if λI − T ∗ is injective.

(b) λI − T is injective if and only if λI − T is surjective.

This result, known as the Fredholm alternative, is often combined with that in
Exercise 29.

7. Show that the identity operator on L2(Rd) cannot be given as an (absolutely)
convergent integral operator. More precisely, if K(x, y) is a measurable function
on Rd × Rd with the property that for each f ∈ L2(Rd), the integral T (f)(x) =R
Rd K(x, y)f(y) dy converges for almost every x, then T (f) 6= f for some f .

[Hint: Prove that otherwise for any pair of disjoint balls B1 and B2 in Rd, we
would have that K(x, y) = 0 for a.e. (x, y) ∈ B1 ×B2.]

8.∗ Suppose {Tk} is a collection of bounded opeartors on a Hilbert space H. As-
sume that

‖TkT ∗j ‖ ≤ ak−j and ‖T ∗k Tj‖ ≤ a∗k−j ,

for positive constants {an} with the property that
P∞
−∞ an = A < ∞. Then

SN (f) converges as N →∞, for every f ∈ H, with SN =
PN
−N Tk. Moreover,

T = limN→∞ SN satisfies ‖T‖ ≤ A.

9. A discussion of a class of regular Sturm-Liouville operators follows. Other
special examples are given in the problems below.

Suppose [a, b] is a bounded interval, and L is defined on functions f that are
twice continuously differentiable in [a, b] (we write, f ∈ C2([a, b])) by

L(f)(x) =
d2f

dx2
− q(x)f(x).

Here the function q is continuous and real-valued on [a, b], and we assume for
simplicity that q is non-negative. We say that ϕ ∈ C2([a, b]) is an eigenfunction
of L with eigenvalue µ if L(ϕ) = µϕ, under the assumption that ϕ satisfies the
boundary conditions ϕ(a) = ϕ(b) = 0. Then one can show:

(a) The eigenvalues µ are strictly negative, and the eigenspace corresponding
to each eigenvalue is one-dimensional.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal in L2([a, b]).

(c) Let K(x, y) be the “Green’s kernel” defined as follows. Choose ϕ−(x) to be
a solution of L(ϕ−) = 0, with ϕ−(a) = 0 but ϕ′−(a) 6= 0. Similarly, choose
ϕ+(x) to be a solution of L(ϕ+) = 0 with ϕ+(b) = 0, but ϕ′+(b) 6= 0. Let
w = ϕ′+(x)ϕ−(x)− ϕ′−(x)ϕ+(x), be the “Wronskian” of these solutions, and
note that w is a non-zero constant.

Set

K(x, y) =

(
ϕ−(x)ϕ+(y)

w
if a ≤ x ≤ y ≤ b,

ϕ+(x)ϕ−(y)

w
if a ≤ y ≤ x ≤ b.
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Then the operator T defined by

T (f)(x) =

Z b

a

K(x, y)f(y) dy

is a Hilbert-Schmidt operator, and hence compact. It is also symmetric.
Moreover, whenever f is continuous on [a, b], Tf is of class C2([a, b]) and

L(Tf) = f.

(d) As a result, each eigenvector of T (with eigenvalue λ) is an eigenvector of L
(with eigenvalue µ = 1/λ). Hence Theorem 6.2 proves the completeness of
the orthonormal set arising from normalizing the eigenvectors of L.

10.∗ Let L be defined on C2([−1, 1]) by

L(f)(x) = (1− x2)
d2f

dx2
− 2x

df

dx
.

If ϕn is the nth Legendre polynomial, given by

ϕn(x) =

„
d

dx

«n

(1− x2)n, n = 0, 1, 2, . . . ,

then Lϕn = −n(n + 1)ϕn.
When normalized the ϕn form an orthonormal basis of L2([−1, 1]) (see also

Problem 2, Chapter 3 in Book I, where ϕn is denoted by Ln.)

11.∗ The Hermite functions hk(x) are defined by the generating identity

∞X

k=0

hk(x)
tk

k!
= e−(x2/2−2tx+t2).

(a) They satisfy the “creation” and “annihilation” identities
`
x− d

dx

´
hk(x) =

hk+1(x) and
`
x + d

dx

´
hk(x) = hk−1(x) for k ≥ 0 where h−1(x) = 0. Note

that h0(x) = e−x2/2, h1(x) = 2xe−x2/2, and more generally hk(x) =

Pk(x)e−x2/2, where Pk is a polynomial of degree k.

(b) Using (a) one sees that the hk are eigenvectors of the operator L = −d2/dx2 +
x2, with L(hk) = λkhk, where λk = 2k + 1. One observes that these func-
tions are mutually orthogonal. Since

Z

R
[hk(x)]2 dx = π1/22kk! = ck,

we can normalize them obtaining a orthonormal sequence {Hk}, with Hk =

c
−1/2
k hk. This sequence is complete in L2(Rd) since

R
R fHk dx = 0 for all k

implies
R∞
−∞ f(x)e−

x2
2 +2tx dx = 0 for all t ∈ C.
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(c) Suppose that K(x, y) =
P∞

k=0
Hk(x)Hk(y)

λk
, and also F (x) = T (f)(x) =R

R K(x, y)f(y) dy. Then T is a symmetric Hilbert-Schmidt operator, and
if f ∼P∞

k=0 akHk, then F ∼P∞
k=0

ak
λk

Hk.

One can show on the basis of (a) and (b) that whenever f ∈ L2(R), not only is
F ∈ L2(R), but also x2F (x) ∈ L2(R). Moreover, F can be corrected on a set of
measure zero, so it is continuously differentiable, F ′ is absolutely continuous, and
F ′′ ∈ L2(R). Finally, the operator T is the inverse of L in the sense that

LT (f) = LF = −F ′′ + x2F = f for every f ∈ L2(R).

(See also Problem 7* in Chapter 5 of Book I.)



5 Hilbert Spaces: Several
Examples

What is the difference between a mathematician and
a physicist? It is this: To a mathematician all Hilbert
spaces are the same; for a physicist, however, it is their
different realizations that really matter.

Attributed to E. Wigner, ca. 1960

Hilbert spaces arise in a large number of different contexts in analysis.
Although it is a truism that all (infinite-dimensional) Hilbert spaces are
the same, it is in fact their varied and distinct realizations and separate
applications that make them of such interest in mathematics. We shall
illustrate this via several examples.

To begin with, we consider the Plancherel formula and the resulting
unitary character of the Fourier transform. The relevance of these ideas
to complex analysis is then highlighted by the study of holomorphic func-
tions in a half-space that belong to the Hardy space H2. That function
space itself is another interesting realization of a Hilbert space. The con-
siderations here are analogous to the ideas that led us to Fatou’s theorem
for the unit disc, but are of a more involved character.

We next see how complex analysis and the Fourier transform com-
bine to guarantee the existence of solutions to linear partial differential
equations with constant coefficients. The proof relies on a basic L2 es-
timate, which once established can be exploited by simple Hilbert space
techniques.

Our final example is Dirichlet’s principle and its applications to the
boundary value problem for harmonic functions. Here the Hilbert space
that arises is given by Dirichlet’s integral, and the solution is expressed
by aid of an appropriate orthogonal projection operator.

1 The Fourier transform on L2

The Fourier transform of a function f on Rd is defined by

(1) f̂(ξ) =
∫

Rd

f(x) e−2πix·ξ dx,
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and its attached inversion is given by

(2) f(x) =
∫

Rd

f̂(ξ) e2πix·ξ dξ.

These formulas have already appeared in several different contexts.
We considered first (in Book I) the properties of the Fourier transform
in the elementary setting by restricting to functions in the Schwartz class
S(Rd). The class S consists of functions f that are smooth (indefinitely
differentiable) and such that for each multi-index α and β, the function
xα( ∂

∂x)βf is bounded on Rd.1 We saw that on this class the Fourier trans-
form is a bijection, that the inversion formula (2) holds, and moreover
we have the Plancherel identity

(3)
∫

Rd

|f̂(ξ)|2 dξ =
∫

Rd

|f(x)|2 dx.

Turning now to more general (in particular, non-continuous) functions,
we note that the largest class for which the integral defining f̂(ξ) con-
verges (absolutely) is the space L1(Rd). For it, we saw in Chapter 2 that
a (relative) inversion formula is valid.

Beyond these particular facts, what we would like here is to reestablish
in the general context the symmetry between f and f̂ that holds for S.
This is where the special role of the Hilbert space L2(Rd) enters.

We shall define the Fourier transform on L2(Rd) as an extension of its
definition on S. For this purpose, we temporarily adopt the notational
device of denoting by F0 and F the Fourier transform on S and its
extension to L2, respectively.

The main results we prove are the following.

Theorem 1.1 The Fourier transform F0, initially defined on S(Rd),
has a (unique) extension F to a unitary mapping of L2(Rd) to itself. In
particular,

‖F(f)‖L2(Rd) = ‖f‖L2(Rd)

for all f ∈ L2(Rd).

The extension F will be given by a limiting process: if {fn} is a sequence
in the Schwartz space that converges to f in L2(Rd), then {F0(fn)} will

1Recall that xα = xα1
1 xα2

2 · · ·xαd
d and ( ∂

∂x
)β = ( ∂

∂x1
)β1 · · · ( ∂

∂xd
)βd , where α =

(α1, . . . , αd) and β = (β1, . . . , βd), with αj and βj positive integers. The order of α is
denoted by |α| and defined to be α1 + · · ·+ αd.
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converge to an element in L2(Rd) which we will define as the Fourier
transform of f . To implement this approach we have to see that every L2

function can be approximated by elements in the Schwartz space.

Lemma 1.2 The space S(Rd) is dense in L2(Rd). In other words, given
any f ∈ L2(Rd), there exists a sequence {fn} ⊂ S(Rd) such that

‖f − fn‖L2(Rd) → 0 as n →∞.

For the proof of the lemma, we fix f ∈ L2(Rd) and ε > 0. Then, for
each M > 0, we define

gM (x) =
{

f(x) if |x| ≤ M and |f(x)| ≤ M ,
0 otherwise.

Then, |f(x)− gM (x)| ≤ 2|f(x)|, hence |f(x)− gM (x)|2 ≤ 4|f(x)|2, and
since gM (x) → f(x) as M →∞ for almost every x, the dominated con-
vergence theorem guarantees that for some M , we have

‖f − gM‖L2(Rd) < ε.

We write g = gM , note that this function is bounded and supported on
a bounded set, and observe that it now suffices to approximate g by
functions in the Schwartz space. To achieve this goal, we use a method
called regularization, which consists of “smoothing” g by convolving it
with an approximation of the identity. Consider a function ϕ(x) on Rd

with the following properties:

(a) ϕ is smooth (indefinitely differentiable).

(b) ϕ is supported in the unit ball.

(c) ϕ ≥ 0.

(d)
∫

Rd

ϕ(x) dx = 1.

For instance, one can take

ϕ(x) =

{
c e
− 1

1−|x|2 if |x| < 1,
0 if |x| ≥ 1,

where the constant c is chosen so that (d) holds.
Next, we consider the approximation to the identity defined by

Kδ(x) = δ−dϕ(x/δ).



210 Chapter 5. HILBERT SPACES: SEVERAL EXAMPLES

The key observation is that g ∗Kδ belongs to S(Rd), with this convolu-
tion in fact bounded and supported on a fixed bounded set, uniformly in
δ (assuming for example that δ ≤ 1). Indeed, we may write

(g ∗Kδ)(x) =
∫

g(y)Kδ(x− y) dy =
∫

g(x− y)Kδ(y) dy,

in view of the identity (6) in Chapter 2. We note that since g is supported
on some bounded set and Kδ vanishes outside the ball of radius δ, the
function g ∗Kδ is supported in some fixed bounded set independent of δ.
Also, the function g is bounded by construction, hence

|(g ∗Kδ)(x)| ≤
∫
|g(x− y)|Kδ(y) dy

≤ sup
z∈Rd

|g(z)|
∫

Kδ(y) dy = sup
z∈Rd

|g(z)|,

which shows that g ∗Kδ is also uniformly bounded in δ. Moreover, from
the first integral expression for g ∗Kδ above, one may differentiate under
the integral sign to see that g ∗Kδ is smooth and all of its derivatives
have support in some fixed bounded set.

The proof of the lemma will be complete if we can show that g ∗Kδ

converges to g in L2(Rd). Now Theorem 2.1 in Chapter 3 guarantees
that for almost every x, the quantity |(g ∗Kδ)(x)− g(x)|2 converges to 0
as δ tends to 0. An application of the bounded convergence theorem
(Theorem 1.4 in Chapter 2) yields

‖(g ∗Kδ)− g‖2L2(Rd) → 0 as δ → 0.

In particular, ‖(g ∗Kδ)− g‖L2(Rd) < ε for an appropriate δ and hence
‖f − g ∗Kδ‖L2(Rd) < 2ε, and choosing a sequence of ε tending to zero
gives the construction of the desired sequence {fn}.

For later purposes it is useful to observe that the proof of the above
lemma establishes the following assertion: if f belongs to both L1(Rd)
and L2(Rd), then there is a sequence {fn}, fn ∈ S(Rd), that converges
to f in both the L1-norm and the L2-norm.

Our definition of the Fourier transform on L2(Rd) combines the above
density of S with a general “extension principle.”

Lemma 1.3 Let H1 and H2 denote Hilbert spaces with norms ‖ · ‖1 and
‖ · ‖2, respectively. Suppose S is a dense subspace of H1 and T0 : S → H2

a linear transformation that satisfies ‖T0(f)‖2 ≤ c‖f‖1 whenever f ∈ S.
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Then T0 extends to a (unique) linear transformation T : H1 → H2 that
satisfies ‖T (f)‖2 ≤ c‖f‖1 for all f ∈ H1.

Proof. Given f ∈ H1, let {fn} be a sequence in S that converges to f ,
and define

T (f) = lim
n→∞

T0(fn),

where the limit is taken in H2. To see that T is well-defined we must
verify that the limit exists, and that it is independent of the sequence
{fn} used to approximate f . Indeed, for the first point, we note that
{T (fn)} is a Cauchy sequence in H2 because by construction {fn} is
Cauchy in H1, and the inequality verified by T0 yields

‖T0(fn)− T0(fm)‖2 ≤ c‖fn − fm‖1 → 0 as n,m →∞;

thus {T0(fn)} is Cauchy, hence converges in H2.
Second, to justify that the limit is independent of the approximating

sequence, let {gn} be another sequence in S that converges to f in H1.
Then

‖T0(fn)− T0(gn)‖2 ≤ c‖fn − gn‖1,

and since ‖fn − gn‖1 ≤ ‖fn − f‖1 + ‖f − gn‖1, we conclude that {T0(gn)}
converges to a limit in H2 that equals the limit of {T0(fn)}.

Finally, we recall that if fn → f and T0(fn) → T (f), then ‖fn‖1 →
‖f‖1 and ‖T0(fn)‖2 → ‖T (f)‖2, so in the limit as n →∞, the inequality
‖T (f)‖2 ≤ c‖f‖1 holds for all f ∈ H1.

In the present case of the Fourier transform, we apply this lemma with
H1 = H2 = L2(Rd) (equipped with the L2-norm), S = S(Rd), and T0 =
F0 the Fourier transform defined on the Schwartz space. The Fourier
transform on L2(Rd) is by definition the unique (bounded) extension of
F0 to L2 guaranteed by Lemma 1.3. Thus if f ∈ L2(Rd) and {fn} is any
sequence in S(Rd) that converges to f (that is, ‖f − fn‖L2(Rd) → 0 as
n →∞), we define the Fourier transform of f by

(4) F(f) = lim
n→∞

F0(fn),

where the limit is taken in the L2 sense. Clearly, the argument in the
proof of the lemma shows that in our special case the extension F con-
tinues to satisfy the identity (3):

‖F(f)‖L2(Rd) = ‖f‖L2(Rd) whenever f ∈ L2(Rd).
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The fact that F is invertible on L2 (and thus F is a unitary mapping)
is also a consequence of the analogous property on S(Rd). Recall that
on the Schwartz space, F−1

0 is given by formula (2), that is,

F−1
0 (g)(x) =

∫

Rd

g(ξ)e2πix·ξ dξ,

and satisfies again the identity ‖F−1
0 (g)‖L2 = ‖g‖L2 . Therefore, arguing

in the same fashion as above, we can extend F−1
0 to L2(Rd) by a limiting

argument. Then, given f ∈ L2(Rd), we choose a sequence {fn} in the
Schwartz space so that ‖f − fn‖L2 → 0. We have

fn = F−1
0 F0(fn) = F0F−1

0 (fn),

and taking the limit as n tends to infinity, we see that

f = F−1F(f) = FF−1(f),

and hence F is invertible. This concludes the proof of Theorem 1.1.

Some remarks are in order.
(i) Suppose f belongs to both L1(Rd) and L2(Rd). Are the two definitions
of the Fourier transform the same? That is, do we have F(f) = f̂ , with
F(f) defined by the limiting process in Theorem 1.1 and f̂ defined by the
convergent integral (1)? To prove that this is indeed the case we recall
that we can approximate f by a sequence {fn} in S so that fn → f both
in the L1-norm and the L2-norm. Since F0(fn) = f̂n, a passage to the
limit gives the desired conclusion. In fact, F0(fn) converges to F(f) in
the L2-norm, so a subsequence converges to F(f) almost everywhere; see
the analogous statement for L1 in Corollary 2.3, Chapter 2. Moreover,

sup
ξ∈Rd

|f̂n(ξ)− f̂(ξ)| ≤ ‖fn − f‖L1(Rd),

hence f̂n converges to f̂ everywhere, and the assertion is established.
(ii) The theorem gives a rather abstract definition of the Fourier trans-
form on L2. In view of what we have just said, we can also define the
Fourier transform more concretely as follows. If f ∈ L2(Rd), then

f̂(ξ) = lim
R→∞

∫

|x|≤R

f(x)e−2πix·ξ dx,

where the limit is taken in the L2-norm. Note in fact that if χR denotes
the characteristic function of the ball {x ∈ Rd : |x| ≤ R}, then for each
R the function fχR is in both L1 and L2, and fχR → f in the L2-norm.
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(iii) The identity of the various definitions of the Fourier transform dis-
cussed above allows us to choose f̂ as the preferred notation for the
Fourier transform. We adopt this practice in what follows.

2 The Hardy space of the upper half-plane

We will apply the L2 theory of the Fourier transform to holomorphic
functions in the upper half-plane. This leads us to consider the relevant
analogues of the Hardy space and Fatou’s theorem discussed in the previ-
ous chapter.2 It incidentally provides an answer to the following natural
question: What are the functions f ∈ L2(R) whose Fourier transforms
are supported on the half-line (0,∞)?

Let R2
+ = {z = x + iy, x ∈ R, y > 0} be the upper half-plane. We

define the Hardy space H2(R2
+) to consist of all functions F analytic

in R2
+ with the property that

(5) sup
y>0

∫

R
|F (x + iy)|2 dx < ∞.

We define the corresponding norm, ‖F‖H2(R2
+), to be the square root of

the quantity (5).

Let us first describe a (typical) example of a function F in H2(R2
+).

We start with a function F̂0 that belongs to L2(0,∞), and write

(6) F (x + iy) =
∫ ∞

0

F̂0(ξ)e2πiξz dξ, z = x + iy, y > 0.

(The choice of the particular notation F̂0 will become clearer below.)
We claim that for any δ > 0 the integral (6) converges absolutely and
uniformly as long as y ≥ δ. Indeed, |F̂0(ξ)e2πiξz| = |F̂0(ξ)|e−2πξy, hence
by the Cauchy-Schwarz inequality

∫ ∞

0

|F̂0(ξ)e2πiξz| dξ ≤
(∫ ∞

0

|F̂0(ξ)|2dξ

)1/2 (∫ ∞

0

e−4πξδdξ

)1/2

,

from which the asserted convergence is established. From the uniform
convergence it follows that F (z) is holomorphic in the upper half-plane.
Moreover, by Plancherel’s theorem

∫

R
|F (x + iy)|2 dx =

∫ ∞

0

|F̂0(ξ)|2 e−4πξy dξ ≤ ‖F̂0‖2L2(0,∞),

2Further motivation and some elementary background material may be found in The-
orem 3.5 in Chapter 4 of Book II.
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and in fact, by the monotone convergence theorem,

sup
y>0

∫

R
|F (x + iy)|2 dx = ‖F̂0‖2L2(0,∞).

In particular, F belongs to H2(R2
+). The main result we prove next is

the converse, that is, every element of the space H2(R2
+) is in fact of the

form (6).

Theorem 2.1 The elements F in H2(R2
+) are exactly the functions

given by (6), with F̂0 ∈ L2(0,∞). Moreover

‖F‖H2(R2
+) = ‖F̂0‖L2(0,∞).

This shows incidentally that H2(R2
+) is a Hilbert space that is isomorphic

to L2(0,∞) via the correspondence (6).

The crucial point in the proof of the theorem is the following fact. For
any fixed strictly positive y, we let F̂y(ξ) denote the Fourier transform
of the L2 function F (x + iy), x ∈ R. Then for any pair of choices of y,
y1 and y2, we have that

(7) F̂y1(ξ)e
2πy1ξ = F̂y2(ξ)e

2πy2ξ for a.e. ξ.

To establish this assertion we rely on a useful technical observation.

Lemma 2.2 If F belongs to H2(R2
+), then F is bounded in any proper

half-plane {z = x + iy, y ≥ δ}, where δ > 0.

To prove this we exploit the mean-value property of holomorphic func-
tions. This property may be stated in two alternative ways. First, in
terms of averages over circles,

(8) F (ζ) =
1
2π

∫ 2π

0

F (ζ + reiθ) dθ if 0 < r ≤ δ.

(Note that if ζ lies in the upper half-plane, Im(ζ) > δ, then the disc
centered at ζ of radius r belongs to R2

+.) Alternatively, integrating over
r, we have the mean-value property in terms of discs,

(9) F (ζ) =
1

πδ2

∫

|z|<δ

F (ζ + z) dx dy, z = x + iy.

These assertions actually hold for harmonic functions in R2 (see Corol-
lary 7.2, Chapter 3 in Book II for the result about holomorphic functions,
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and Lemma 2.8, Chapter 5 in Book I for the case of harmonic functions);
later in this chapter we in fact prove the extension of (9) to Rd.

From (9) we see from the Cauchy-Schwarz inequality that

|F (ζ)|2 ≤ 1
πδ2

∫

|z|<δ

|F (ζ + z)|2 dx dy.

Writing z = x + iy and ζ = ξ + iη, with η > δ, we see that the disc
Bδ(ζ) of center ζ and radius δ is contained in the strip {z + ζ : z =
x + iy, −δ < y < δ}, and moreover this strip lies in the half-plane R2

+.
See Figure 1.

ζ

Bδ(ζ)

Figure 1. Disc contained in a strip

This gives the following majorization:
∫

|z|<δ

|F (ζ + z)|2 dx dy ≤
∫

|y|<δ

∫

R
|F (ζ + x + iy)|2 dx dy

≤ 2δ sup
−δ<y<δ

∫

R
|F (x + i(η + y))|2 dx.

Recalling that η > δ, we see that the last expression is in fact majorized
by

2δ sup
y>0

∫

R
|F (x + iy)|2 dx = 2δ ‖F‖2H2(R2

+).

In all |F (ζ)|2 ≤ 2
πδ‖F‖2H2 in the half-plane Im(ζ) > 0, which proves the

lemma.

We now turn to the proof of the identity (7). Starting with F in
H2(R2

+), we improve it by replacing it with the function F ε defined by

F ε(z) = F (z)
1

(1− iεz)2
, with ε > 0.

Observe that |F ε(z)| ≤ |F (z)| when Im(z) > 0; also F ε(z) → F (z) for
each such z, as ε → 0. This shows that for each y > 0, F ε(x + iy) →
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F (x + iy) in the L2-norm. Moreover, the lemma guarantees that each
F ε satisfies the decay estimate

F ε(z) = O

(
1

1 + x2

)
whenever Im(z) > δ, for some δ > 0.

We assert first that (7) holds with F replaced by F ε. This is a simple
consequence of contour integration applied to the function

G(z) = F ε(z)e−2πizξ.

In fact we integrate G(z) over the rectangle with vertices −R + iy1, R +
iy1, R + iy2, −R + iy2, and let R →∞. If we take into account that
G(z) = O(1/(1 + x2)) in this rectangle, then we find that

∫

L1

G(z) dz =
∫

L2

G(z) dz,

where Lj is the line {x + iyj : x ∈ R}, j = 1, 2. Since

∫

Lj

G(z) dz =
∫

R
F ε(x + iyj)e−2πi(x+iyj)ξ dx,

This means that

F̂ ε
y1

(ξ)e2πy1ξ = F̂ ε
y2

(ξ)e2πy2ξ.

Since F ε(x + iyj) → F (x + iyj) in the L2-norm as ε → 0, we then ob-
tain (7).

The identity we have just proved states that F̂y(ξ)e2πyξ is independent
of y, y > 0, and thus there is a function F̂0(ξ) so that F̂y(ξ)e2πξy = F̂0(ξ);
as a result

F̂y(ξ) = F̂0(ξ)e−2πξy for all y > 0.

Therefore by Plancherel’s identity
∫

R
|F (x + iy)|2 dx =

∫

R
|F̂0(ξ)|2e−4πξy dξ,

and hence

sup
y>0

∫

R
|F̂0(ξ)|2e−4πξy dξ = ‖F‖2H2(R2

+) < ∞.
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Finally this in turn implies that F̂0(ξ) = 0 for almost every ξ ∈ (−∞, 0).
For if this were not the case, then for appropriate positive numbers a, b,
and c we could have that |F̂0(ξ)| ≥ a for ξ in a set E in (−∞,−b), with
m(E) ≥ c. This would give

∫ |F̂0(ξ)|2e−4πξy dξ ≥ a2ce4πby, which grows
indefinitely as y →∞. The contradiction thus obtained shows that F̂0(ξ)
vanishes almost everywhere when ξ ∈ (−∞, 0).

To summarize, for each y > 0 the function F̂y(ξ) equals F̂0(ξ)e−2πξy,
with F̂0 ∈ L2(0,∞). The Fourier inversion formula then yields the repre-
sentation (6) for an arbitrary element of H2, and the proof of the theorem
is concluded.

The second result we deal with may be viewed as the half-plane ana-
logue of Fatou’s theorem in the previous chapter.

Theorem 2.3 Suppose F belongs to H2(R2
+). Then limy→0 F (x + iy) =

F0(x) exists in the following two senses:

(i) As a limit in the L2(R)-norm.

(ii) As a limit for almost every x.

Thus F has boundary values (denoted by F0) in either of the two senses
above. The function F0 is sometimes referred to as the boundary-value
function of f . The proof of (i) is immediate from what we already know.
Indeed, if F0 is the L2 function whose Fourier transform is F̂0, then

‖F (x + iy)− F0(x)‖2L2(R) =
∫ ∞

0

|F̂0(ξ)|2|e−2πξy − 1|2 dy,

and this tends to zero as y → 0 by the dominated convergence theorem.
To prove the almost everywhere convergence, we establish the Poisson

integral representation

(10)
∫

R
f̂(ξ)e−2π|ξ|ye2πixξ dξ =

∫

R
f(x− t)Py(t) dt,

with

Py(x) =
1
π

y

y2 + x2

the Poisson kernel.3 This identity holds for every (x, y) ∈ R2
+ and any

function f in L2(R). To see this, we begin by noting the following ele-
mentary integration formulas:

(11)
∫ ∞

0

e2πiξz dξ =
i

2πz
if Im(z) > 0,

3This is the analogue in R of the identity (3) for the circle, given in Chapter 4.
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and

(12)
∫

R
e−2π|ξ|ye2πiξx dξ =

1
π

y

y2 + x2
if y > 0.

The first is an immediate consequence of the fact that

∫ N

0

e2πiξz dξ =
1

2πiz
[e2πiNz − 1]

if we let N →∞. To prove the second formula, we write the integral as
∫ ∞

0

e−2πξye2πiξx dξ +
∫ ∞

0

e−2πξye−2πiξx dξ,

which equals

i

2π

[
1

x + iy
+

1
−x + iy

]
=

1
π

y

y2 + x2

by (11).
Next we establish (10) when f belongs to (say) the space S. Indeed, for

fixed (x, y) ∈ R2
+ consider the function Φ(t, ξ) = f(t)e−2πiξte−2π|ξ|ye2πiξx

on R2 = {(ξ, t)}. Since |Φ(t, ξ)| = |f(t)|e−2π|ξ|y, then (because f is rapidly
decreasing) Φ is integrable over R2. Applying Fubini’s theorem yields

∫

R

(∫

R
Φ(t, ξ) dξ

)
dt =

∫

R

(∫

R
Φ(t, ξ) dt

)
dξ.

The right-hand side obviously gives
∫
R f̂(ξ)e−2π|ξ|ye2πixξ dξ, while the

left-hand side yields
∫
R f(t)Py(x− y) dt in view of (12) above. However,

if we use the relation (6) in Chapter 2 we see that
∫

R
f(t)Py(x− y) dt =

∫

R
f(x− t)Py(t) dt.

Thus the Poisson integral representation (10) holds for every f ∈ S. For
a general f ∈ L2(R) we consider a sequence {fn} of elements in S, so
that fn → f (and also f̂n → f̂) in the L2-norm. A passage to the limit
then yields the formula for f from the corresponding formula for each
fn. Indeed, by the Cauchy-Schwarz inequality we have

∣∣∣∣
∫

R
[f̂(ξ)− f̂n(ξ)]e−2π|ξ|ye2πixξ dξ

∣∣∣∣ ≤ ‖f̂ − f̂n‖L2

(∫

R
e−4π|ξ|y dξ

)1/2

,
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and also

∣∣∣∣
∫

R
[f(x− t)− fn(x− t)]Py(t) dt

∣∣∣∣ ≤ ‖f − fn‖L2

(∫

R
|Py(t)|2 dt

)1/2

,

and the right-hand sides tend to 0 because for each fixed (x, y) ∈ R2
+ the

functions e−2π|ξ|y, ξ ∈ R, and Py(t), t ∈ R, belong to L2(R).

Having established the Poisson integral representation (10), we return
to our given element F ∈ H2(R2

+). We know that there is an L2 function
F̂0(ξ) (which vanishes when ξ < 0) such that (6) holds. With F0 the
L2(R) function whose Fourier transform is F̂0(ξ), we see from (10), with
f = F0, that

F (x + iy) =
∫

R
F0(x− t)Py(t) dt.

From this we deduce the fact that F (x + iy) → F0(x) a.e in x as y → 0,
since the family {Py} is an approximation of the identity for which The-
orem 2.1 in Chapter 3 applies. There is, however, one small obstacle that
has to be overcome: the theorem as stated applied to L1 functions and
not to functions in L2. Nevertheless, given the nature of the approxima-
tion to the identity, a simple “localization” argument will succeed. We
proceed as follows.

It will suffice to see that for any large N , which is fixed, F (x + iy) →
F0(x), for a.e x with |x| < N . To do this, decompose F0 as G + H, where
G(x) = F0(x) when |x| > 2N , G(x) = 0 when |x| ≥ 2N ; thus H(x) = 0
if |x| ≤ 2N but |H(x)| ≤ |F0(x)|. Note that now G ∈ L1 and

∫

R
F0(x− t)Py(t) dt =

∫

R
G(x− t)Py(t) dt +

∫

R
H(x− t)Py(t) dt.

Therefore, by the above mentioned theorem in Chapter 3, the first in-
tegral on the right-hand side converges for a.e x to G(x) = F0(x) when
|x| < N . While when |x| < N the integrand of the second integral van-
ishes when |t| < N (since then |x− t| < 2N). That integral is therefore
majorized by

(∫

R
|H(x− t)|2 dt

)1/2 (∫

|t|≥N

|Py(t)|2 dt

)1/2

.

However
(∫
R |H(x− t)|2 dt

)1/2 ≤ ‖F0‖L2 , while (as is easily seen)∫
|t|≥N

|Py(t)|2 dt → 0 as y → 0. Hence F (x + iy) → F0(x) for a.e x with
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|x| < N , as y → 0, and since N is arbitrary, the proof of Theorem 2.3 is
now complete.

The following comments may help clarify the thrust of the above the-
orems.
(i) Let S be the subspace of L2(R) consisting of all functions F0 arising in
Theorem 2.3. Then, since the functions F0 are exactly those functions in
L2 whose Fourier transform is supported on the half-line (0,∞), we see
that S is a closed subspace. We might be tempted to say that S consists
of those functions in L2 that arise as boundary values of holomorphic
functions in the upper half-plane; but this heuristic assertion is not exact
if we do not add a quantitative restriction such as in the definition (5)
of the Hardy space. See Exercise 4.
(ii) Suppose we defined P to be the orthogonal projection on the subspace
S of L2. Then, as is easily seen, (̂Pf)(ξ) = χ(ξ)f̂(ξ) for any f ∈ L2(R);
here χ is the characteristic function of (0,∞). The operator P is also
closely related to the Cauchy integral. Indeed, if F is the (unique)
element in H2(R2

+) whose boundary function (according to Theorem 2.3)
is P (f), then

F (z) =
1

2πi

∫

R

f(t)
t− z

dt, z ∈ R2
+.

To prove this it suffices to verify that for any f ∈ L2(R) and any fixed
z = x + iy ∈ R2

+, we have

∫ ∞

0

f̂(ξ)e2πiξz dξ =
1

2πi

∫

R

f(t)
t− z

dt.

This is proved in the same way as the Poisson integral representation (10)
except here we use the identity (11) instead of (12). The details may be
left to the interested reader. Also, the reader might note the close analogy
between this version of the Cauchy integral for the upper-half plane, and
a corresponding version for the unit disc, as given in Example 2, Section 4
of Chapter 4.
(iii) In analogy with the periodic case discussed in Exercise 30 of Chap-
ter 4, we define a Fourier multiplier operator T on R to be a linear
operator on L2(R) determined by a bounded function m (the multi-
plier), such that T is defined by the formula (̂Tf)(ξ) = m(ξ)f̂(ξ) for
any f ∈ L2(R). The orthogonal projection P above is such an operator
and its multiplier is the characteristic function χ(ξ). Another closely
related operator of this type is the Hilbert transform H defined by
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P = I+iH
2 . Then H is a Fourier multiplier operator corresponding to the

multiplier 1
i sign(ξ). Among the many important properties of H is its

connection to conjugate harmonic functions. Indeed, for f a real-valued
function in L2(R), f and H(f) are, respectively, the real and imaginary
parts of the boundary values of a function in the Hardy space. More
about the Hilbert transform can be found in Exercises 9 and 10 and
Problem 5 below.

3 Constant coefficient partial differential equations

We turn our attention to solving the linear partial differential equation

(13) L(u) = f,

where the operator L takes the form

L =
∑

|α|≤n

aα

(
∂

∂x

)α

with aα ∈ C constants.
In the study of the classical examples of L, such as the wave equation,

the heat equation, and Laplace’s equation, one already sees the Fourier
transform entering in an important way.4 For general L, this key role
is further indicated by the following simple observation. If, for example,
we try to solve this equation with both u and f elements in S, then this
is equivalent to the algebraic equation

P (ξ)û(ξ) = f̂(ξ),

where P (ξ) is the characteristic polynomial of f defined by

P (ξ) =
∑

|α|≤n

aα(2πiξ)α.

This is because one has the Fourier transform identity
(̂

∂αf

∂xα

)
(ξ) = (2πiξ)αf̂(ξ).

Thus a solution u in the space S (if it exists) would be uniquely deter-
mined by

û(ξ) =
f̂(ξ)
P (ξ)

.

4See for example Chapters 5 and 6 in Book I.
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In a more general setting, matters are not so easy: aside from the ques-
tion of defining (13), the Fourier transform is not directly applicable;
also, solutions that we prove to exist (but are not unique!) have to be
understood in a wider sense.

3.1 Weak solutions

As the reader may have guessed, it will not suffice to restrict our attention
to those functions for which L(u) is defined in the usual way, but instead
a broader notion is needed, one involving the idea of “weak solutions.”
To describe this concept, we start with a given open set Ω in Rd and
consider the space C∞0 (Ω), which consists of the indefinitely differentiable
functions5 having compact support in Ω.6 We have the following fact.

Lemma 3.1 The space C∞0 (Ω) is dense in L2(Ω) in the norm ‖ · ‖L2(Ω).

The proof is essentially a repetition of that of Lemma 1.2. We take the
precaution of modifying the definition of gM given there to be: gM (x) =
f(x) if |x| ≤ M , d(x, Ωc) ≥ 1/M and |f(x)| ≤ M , and gM (x) = 0 oth-
erwise. Also, when we regularize gM , we replace it with gM ∗ ϕδ, with
δ < 1/2M . Then the support of gM ∗ ϕδ is still compact and at a distance
≥ 1/2M from Ωc.

We next consider the adjoint operator of L defined by

L∗ =
∑

|α|≤n

(−1)|α|aα

(
∂

∂x

)α

.

The operator L∗ is called the adjoint of L because, in analogy with
the definition of the adjoint of a bounded linear transformation given in
Section 5.2 of the previous chapter, we have

(14) (Lϕ,ψ) = (ϕ,L∗ψ) whenever ϕ,ψ ∈ C∞0 (Ω),

where (·, ·) denotes the inner product on L2(Ω) (which is the restriction
of the usual inner product on L2(Rd)). The identity (14) is proved by
successive integration by parts. Indeed, consider first the special case
when L = ∂/∂xj , and then L∗ = −∂/∂xj . If we use Fubini’s theorem,
integrating first in the xj variable, then in this case (14) reduces to the

5Indefinitely differentiable functions are also referred to as C∞ functions, or smooth
functions.

6This means that the closure of the support of f , as defined in Section 1 of Chapter 2,
is compact and contained in Ω.
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familiar one-dimensional formula
∫ ∞

−∞

(
dϕ

dx

)
ψ dx = −

∫ ∞

−∞
ϕ

(
dψ

dx

)
dx,

with the integrated boundary terms vanishing because of the assumed
support properties of ψ (or ϕ). Once established for L = ∂/∂xj , 1 ≤ j ≤
n, then (14) follows for L = (∂/∂x)α by iteration, and hence for general
L by linearity.

At this point we digress momentarily to consider besides C∞0 (Ω) some
other spaces of differentiable functions on Ω that will be useful later.
The space Cn(Ω) consists of all functions f on Ω that have continuous
partial derivatives of order ≤ n. Also, the space Cn(Ω) consists of those
functions on Ω that can be extended to functions in Rd that belong to
Cn(Rd). Thus, in an obvious sense, we have the inclusion relation

C∞0 (Ω) ⊂ Cn(Ω) ⊂ Cn(Ω), for each positive integer n.

Returning to our partial differential operator L, it is useful to observe
that the formula

(Lu, ψ) = (u, L∗ψ)

continues to hold (with the same proof) if we merely assume that u ∈
Cn(Ω) without assuming it has compact support, while still supposing
ψ ∈ C∞0 (Ω).

In particular, if we have L(u) = f in the ordinary sense (sometimes
called the “strong” sense), which requires the assumption that u ∈ Cn(Ω)
in order to define the partial derivatives entering in Lu, then we would
also have

(15) (f, ψ) = (u, L∗ψ) for all ψ ∈ C∞0 (Ω).

This leads to the following important definition: if f ∈ L2(Ω), a function
u ∈ L2(Ω) is a weak solution of the equation Lu = f in Ω if (15) holds.
Of course an ordinary solution is always a weak solution.

Significant instances of weak solutions that are not ordinary solutions
already arise in elementary situations such as in the study of the one-
dimensional wave equation. Here L(u) = (∂2u/∂x2)− (∂2u/∂t2), so the
underlying space is R2 = {(x1, x2) : with x1 = x, x2 = t}. Suppose, for
example, we consider the case of the “plucked string.”7 We are then

7See Chapter 1 in Book I.
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looking at the solution of L(u) = 0 subject to the boundary conditions
u(x, 0) = f(x) and (∂u/∂t)(x, 0) = 0 for 0 ≤ x ≤ π, where the graph of
f is piecewise linear and is illustrated in Figure 2.

0

h

p π

Figure 2. Initial position of a plucked string

If one extends f to [−π, π] by making it odd, and then to all of R
by periodicity (of period 2π), then the solution is given by d’Alembert’s
formula

u(x, t) =
f(x + t) + f(x− t)

2
.

In the present case u is not twice continuously differentiable, and it is
therefore not an ordinary solution. Nevertheless it is a weak solution.
To see this, approximate f by a sequence of functions fn that are C∞

and such that fn → f uniformly on every compact subset of R.8 If we
define un(x, t) as [fn(x + t) + fn(x− t)]/2, we can check directly that
L(un) = 0 and hence (un, L∗ψ) = 0 for all ψ ∈ C∞0 (R2), and thus by
uniform convergence we obtain that (u, L∗ψ) = 0 as desired.

A different example illustrating the nature of weak solutions arises for
the operator L = d/dx on R. If we suppose Ω = (0, 1), then with u and
f in L2(Ω), we have that Lu = f in the weak sense if and only if there is
an absolutely continuous function F on [0, 1] such that F (x) = u(x) and
F ′(x) = f(x) almost everywhere. For more about this, see Exercise 14.

3.2 The main theorem and key estimate

We now turn to the general theorem guaranteeing the existence of solu-
tions of partial differential equations with constant coefficients

Theorem 3.2 Suppose Ω is a bounded open subset of Rd. Given a linear
partial differential operator L with constant coefficients, there exists a

8One may write, for example, fn = f ∗ ϕ1/n, where {ϕε} is the approximation to the
identity, as in the proof of Lemma 1.2.
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bounded linear operator K on L2(Ω) such that whenever f ∈ L2(Ω), then

L(Kf) = f in the weak sense.

In other words, u = K(f) is a weak solution to L(u) = f .

The heart of the matter lies in an inequality that we state next, but
whose proof (which uses the Fourier transform) is postponed until the
next section.

Lemma 3.3 There exists a constant c such that

‖ψ‖L2(Ω) ≤ c‖L∗ψ‖L2(Ω) whenever ψ ∈ C∞0 (Ω).

The usefulness of this lemma comes about for the following reason.
If L is a finite-dimensional linear transformation, the solvability of L
(the fact that it is surjective) is of course equivalent with the fact that
its adjoint L∗ is injective. In effect, the lemma provides the analytic
substitute for this reasoning in an infinite-dimensional setting.

We first prove the theorem assuming the validity of the inequality in
the lemma.

Consider the pre-Hilbert space H0 = C∞0 (Ω) equipped with the inner
product and norm

〈ϕ,ψ〉 = (L∗ϕ,L∗ψ), ‖ψ‖20 = ‖L∗ψ‖L2(Ω).

Following the results in Section 2.3 of Chapter 4, we let H denote the
completion of H0. By Lemma 3.3, a Cauchy sequence in the ‖ · ‖0-norm
is also Cauchy in the L2(Ω)-norm; hence we may identify H with a
subspace of L2(Ω). Also, L∗, initially defined as a bounded operator
from H0 to L2(Ω), extends to a bounded operator L∗ from H to L2(Ω)
(by Lemma 1.3). For a fixed f ∈ L2(Ω), consider the linear map `0 :
C∞0 (Ω) → C defined by

`0(ψ) = (ψ, f) for ψ ∈ C∞0 (Ω).

The Cauchy-Schwarz inequality together with another application of
Lemma 3.3 yields

|`0(ψ)| = |(ψ, f)| ≤ ‖ψ‖L2(Ω)‖f‖L2(Ω)

≤ c‖L∗ψ‖L2(Ω)‖f‖L2(Ω)

≤ c′‖ψ‖0,
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with c′ = c‖f‖L2(Ω). Hence `0 is bounded on the pre-Hilbert space H0.
Therefore, ` extends to a bounded linear functional onH (see Section 5.1,
Chapter 4), and the above inequalities show that ‖`‖ ≤ c‖f‖L2(Ω). By
the Riesz representation theorem applied to ` on the Hilbert space H
(Theorem 5.3 in Chapter 4), there exists U ∈ H such that

`(ψ) = 〈ψ, U〉 = (L∗ψ,L∗U) for all ψ ∈ C∞0 (Ω).

Here 〈·, ·〉 denotes the extension to H of the initial inner product on H0,
and L∗ also denotes the extension of L∗ originally given on H0.

If we let u = L∗U , then u ∈ L2(Ω), and we find that

`(ψ) = (ψ, f) = (L∗ψ, u) for all ψ ∈ C∞0 (Rd).

Hence

(f, ψ) = (u, L∗ψ) for all ψ ∈ C∞0 (Rd),

and by definition, u is a weak solution to the equation Lu = f in Ω. If
we let Kf = u, we see that once f is given, Kf is uniquely determined
by the above steps. Since ‖U‖0 = ‖`‖ ≤ c‖f‖L2(Ω) we see that

‖Kf‖L2(Ω) = ‖u‖L2(Ω) = ‖L∗U‖L2(Ω) = ‖U‖0 ≤ c‖f‖L2(Ω),

whence K : L2(Ω) → L2(Ω) is bounded.

Proof of the main estimate

To complete the proof of the theorem, we must still prove the estimate
in Lemma 3.3, that is,

‖ψ‖L2(Ω) ≤ c‖L∗ψ‖L2(Ω) whenever ψ ∈ C∞0 (Ω).

The reasoning below relies on an important fact: if f has compact
support in R, then f̂(ξ) initially defined for ξ ∈ R extends to an entire
function for ζ = ξ + iη ∈ C. This observation reduces the problem to an
inequality about holomorphic functions and polynomials.

Lemma 3.4 Suppose P (z) = zm + · · ·+ a1z + a0 is a polynonial of de-
gree m with leading coefficient 1. If F is a holomorphic function on C,
then

|F (0)|2 ≤ 1
2π

∫ 2π

0

|P (eiθ)F (eiθ)|2dθ.
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Proof. The lemma is a consequence of the special case when P = 1

(16) |F (0)|2 ≤ 1
2π

∫ 2π

0

∫ 2π

0

|F (eiθ)|2 dθ.

This assertion follows directly from the mean-value identity (8) in Sec-
tion 2 with ζ = 0 and r = 1, via the Cauchy-Schwarz inequality. With it
we begin by factoring P :

P (z) =
∏

|α|≥1

(z − α)
∏

|β|<1

(z − β) = P1(z)P2(z),

where each product is finite and taken over the roots of P whose absolute
values are ≥ 1 and < 1, respectively.

Note that |P1(0)| = ∏
|α|≥1 |α| ≥ 1.

For P2 we write

(z − β) = −(1− βz)ψβ(z),

where ψβ(z) = β−z

1−βz
are the “Blaschke factors” that have the obvious

property that they are holomorphic in a region containing the closed
unit disc and |ψβ(eiθ)| = 1; see also Chapter 8 in Book II. We write
P̃2 =

∏
|β|<1(1− βz) and P̃ = P1P̃2. Thus |P̃ (0)| ≥ 1, while |P̃ (eiθ)| =

|P (eiθ)| for every θ. We now apply (16) to the function P̃F in place of
F and find that

|F (0)|2 ≤ |P̃ (0)F (0)|2 ≤ 1
2π

∫ 2π

0

|P̃ (eiθ)F (eiθ)|2 dθ

=
1
2π

∫ 2π

0

|P (eiθ)F (eiθ)|2 dθ,

which gives the desired conclusion.

We turn to the proof of the inequality ‖ψ‖ ≤ c‖L∗ψ‖ for all ψ ∈ C∞0 (Ω)
in the special case of one dimension, that is, Ω ⊂ R.

Suppose f is an L2 function supported on the interval [−M,M ]. Then

f̂(ξ) =
∫ M

−M

f(x)e−2πixξ dx

whenever ξ ∈ R. In fact, the above integral converges whenever ξ is re-
placed by ζ = ξ + iη ∈ C, and we may extend f̂ to a holomorphic func-
tion of ζ in the whole complex plane. An application of the Plancherel
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formula (for fixed η) yields
∫ ∞

−∞
|f̂(ξ + iη)|2 dξ ≤ e4πM |η|

∫ ∞

−∞
|f(x)|2 dx.

We use this observation in the following context. We may assume (upon
multiplying L by a suitable constant) that

L∗ =
∑

0≤k≤n

(−1)kak

(
∂

∂x

)k

,

where an = (2πi)−n. If we let Q(ξ) =
∑

0≤k≤n(−1)kak(2πiξ)k be its
characteristic polynomial, then we note that

L̂∗ψ(ξ) = Q(ξ)ψ̂(ξ) whenever ψ ∈ C∞0 (R).

If M is chosen so large that Ω ⊂ [−M, M ], then our previous observation
gives

(17)
∫ ∞

−∞
|Q(ξ + iη)ψ̂(ξ + iη)|2dξ ≤ e4πM |η|

∫ ∞

−∞
|L∗ψ(x)|2dx.

Picking η = i sin θ, and making a translation by cos θ yields
∫ ∞

−∞
|Q(ξ + cos θ + i sin θ)ψ̂(ξ + cos θ+i sin θ)|2dξ ≤

≤ e4πM

∫ ∞

−∞
|L∗ψ(x)|2dx.

An application of Lemma 3.4 with F (z) = ψ̂(ξ + z) and Q(ξ + z) in place
of P (z) then gives

|ψ̂(ξ)|2 ≤ 1
2π

∫ 2π

0

|Q(ξ + cos θ + i sin θ)ψ̂(ξ + cos θ + i sin θ)|2dθ.

We now integrate in ξ over R, and on the right-hand side interchange
the order of the ξ and θ integrations; also by translation invariance we
replace the integration in the ξ variable by that in the variable ξ + cos θ.
Using (17) the result is

‖ψ̂‖2L2(R) ≤
1
2π

∫ 2π

0

∫

R
|Q(ξ + i sin θ)ψ̂(ξ + i sin θ)|2 dξ dθ

≤ e4πM

∫

R
|L∗ψ(x)|2 dx,
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which by Plancherel’s identity proves the main lemma in the one-dimensional
case.

The higher dimensional case is a modification of the argument above.
Let Q =

∑
|α|≤n(−1)αaα(2πiξ)α be the characteristic polynomial of L∗.

Then we can choose a new set of orthogonal axes (whose coordinates we
denote by (ξ1, . . . , ξd)) so that if ξ = (ξ1, ξ

′) with ξ′ = (ξ2, . . . , ξd), then
after multiplying by a suitable constant

(18) Q(ξ) = (2πi)−nξn
1 +

n−1∑
j=0

ξj
1qj(ξ′),

where qj(ξ′) are polynomials of ξ′ (of degrees ≤ n− j).
To see that such a choice is possible, write Q = Qn + Q′, where Qn is

homogeneous of degree n and Q′ has degree < n. Then since we may
assume Qn 6= 0 there is (after multiplying Q by a suitable constant),
a unit vector γ so that Qn(γ) = (2πi)−n. Then Qn(ξ) = (2πi)−nrn if
ξ = γr, r ∈ R. We can then take the ξ1-axis to lie along γ, and the
ξ2, . . . , ξd-axes to be in mutually orthogonal directions, from which the
form (18) is clear.

Proceeding now as before we obtain

|ψ̂(ξ1, ξ
′)|2 ≤ 1

2π

∫ 2π

0

|Q(ξ1 + eiθ, ξ′)ψ̂(ξ1 + eiθ, ξ′)|2 dθ

for each (ξ1, ξ
′) ∈ Rd. An integration9 then gives

‖ψ̂‖2L2(Rd) ≤
1
2π

∫ 2π

0

∫

Rd

|Q(ξ1 + i sin θ, ξ′)ψ̂(ξ1 + i sin θ, ξ′)|2 dξ dθ.

If we suppose that the projection of the (bounded) set Ω on the x1-axis
is contained in [−M, M ], we see as before that the right-hand side above
is majorized by e4πM

∫
Rd |L∗ψ(x)|2 dx, finishing the proof of Lemma 3.3

and hence that of the theorem.

4* The Dirichlet principle

Dirichlet’s principle arose in the study of the boundary-value problem
for Laplace’s equation. Stated in the case of two dimensions it refers to
the classical problem of finding the steady-state temperature of a plate

9We note that by the rotational invariance of Lebesgue measure (Problem 4 in Chap-
ter 2 and Exercise 26 in Chapter 3), integration in ξ can be carried out in the new
coordinates as well.
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whose boundary is exposed to a given temperature distribution. The
issue raised is the following question, called the Dirichlet problem:
If Ω is a bounded open set in R2 and f a continuous function on the
boundary ∂Ω, we wish to find a function u(x1, x2) such that

(19)
{ 4u = 0 in Ω,

u = f on ∂Ω.

Thus we need to determine a function that is C2 (twice continuously
differentiable) in Ω, whose Laplacian10 is zero, and which is continuous
on the closure of Ω, with u|∂Ω = f .

With either Ω or f satisfying special symmetry conditions, the solution
to this problem can sometimes be written out explicitly. For instance, if
Ω is the unit disc, then

u(reiθ) =
1
2π

∫ π

−π

f(ϕ)Pr(θ − ϕ) dϕ,

where Pr is the Poisson kernel (for the disc). We also obtained (in Books I
and II) explicit formulas for the solution of the Dirichlet problem for some
unbounded domains. For example, when Ω is the upper half-plane the
solution is

u(x, y) =
∫

R
Py(x− t)f(t) dt,

where Py(x) is the analogous Poisson kernel for the upper half-plane. A
somewhat similar convolution formula was obtained when Ω is a strip.
Also, the Dirichlet problem can be solved explicitly for certain Ω by using
conformal mappings.11

In general, however, there are no explicit solutions, and other methods
must be found. An idea that was used intially was based on an approach
of wide utility in mathematics and physics: to find the equilibrium state
of a system one seeks to minimize an appropriate “energy” or “action.”
In the present case the role of this energy is played by the Dirichlet
integral, which is defined for appropriate functions U by

D(U) =
∫

Ω

|∇U |2 =
∫

Ω

∣∣∣∣
∂U

∂x1

∣∣∣∣
2

+
∣∣∣∣
∂U

∂x2

∣∣∣∣
2

dx1dx2.

(Note the similarity with the expression of the “potential energy” in the
case of the vibrating string in Chapters 3 and 6 of Book I.) In fact,

10The Laplacian of a function u in Rd is defined by 4u =
Pd

k=1 ∂2u/∂x2
k.

11The close relation between conformal maps and the Dirichlet problem is discussed in
the last part of Section 1 of Chapter 8, in Book II.
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that approach underlies the proof Riemann proposed for his well-known
mapping theorem. About this early history R. Courant has written:

Already some years before the rise of Riemann’s genius,
C.F. Gauss and W. Thompson had observed that the bound-
ary value problem of the harmonic differential equation4u =
uxx + uyy = 0 for a domain G in the x, y-plane can be re-
duced to the problem of minimizing the integral D[φ] for the
domain G, under the condition that the functions φ admitted
to competition have the prescribed boundary values. Because
of the positive character of D[φ] the existence of a solution
for the latter problem was considered obvious and hence the
existence for the former assured. As a student in Dirichlet’s
lectures, Riemann had been fascinated by this convincing ar-
gument: soon afterwards he used it, under the name “Dirich-
let’s Principle,” in a more varied and spectacular manner as
the very foundation of his new geometric function theory.

The application of Dirichlet’s principle was thought to have been jus-
tified by the following simple observation:

Proposition 4.1 Suppose there exists a function u ∈ C2(Ω) that mini-
mizes D(U) among all U ∈ C2(Ω) with U |∂Ω = f . Then u is harmonic
in Ω.

Proof. For functions F and G in C2(Ω) define the following inner-
product

〈F, G〉 =
∫

Ω

(
∂F

∂x1

∂G

∂x1
+

∂F

∂x2

∂G

∂x2

)
dx1dx2.

We then note that D(u) = 〈u, u〉. If v is any function in C2(Ω) with
v|∂Ω = 0, then for all ε we have

D(u + εv) ≥ D(u),

since u + εv and u have the same boundary values, and u minimizes the
Dirichlet integral. We note, however, that

D(u + εv) = D(u) + ε2D(v) + ε〈u, v〉+ ε〈v, u〉.

Hence

ε2D(v) + ε〈u, v〉+ ε〈v, u〉 ≥ 0,
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and since ε can be both positive or negative, this can happen only if
Re〈u, v〉 = 0. Similarly, considering the perturbation u + iεv, we find
Im〈u, v〉 = 0, and therefore 〈u, v〉 = 0. An integration by parts then pro-
vides

0 = 〈u, v〉 = −
∫

Ω

(4u)v

for all v ∈ C2(Ω) with v|∂Ω = 0. This implies that 4u = 0 in Ω, and of
course u equals f on the boundary.

Nevertheless, several serious objections were later raised to Dirich-
let’s principle. The first was by Weierstrass, who pointed out that it
was not clear (and had not been proved) that a minimizing function for
the Dirichlet integral exists, so there might simply be no winner to the
implied competition in Proposition 4.1. He argued by analogy with a
simpler one-dimensional problem: that of minimizing the integral

D(ϕ) =
∫ 1

−1

|xϕ′(x)|2dx

among all C1 functions on [−1, 1] that satisfy ϕ(−1) = −1 and ϕ(1) = 1.
The minimum value achieved by this integral is zero. To verify this, let
ψ be a smooth non-decreasing function on R that satisfies ψ(x) = 1 for
x ≥ 1, and ψ(x) = −1 if x ≤ −1. For each 0 < ε < 1, we consider the
function

ϕε(x) =





1 if ε ≤ x,
ψ(x/ε) if −ε < x < ε,
−1 if x ≤ −ε.

Then ϕε satisfies the desired constraints, and if M denotes a bound for
the derivative of ψ, we find

D(ϕε) =
∫ ε

−ε

|x|2|ε−1ψ′(x/ε)|2dx

≤
∫ ε

−ε

|ψ′(x/ε)|2dx

≤ 2εM2.

In the limit as ε tends to 0, we find that the minimum value of the integral
D(ϕ) is zero. This minimum value cannot be reached by a C1 function
satisfying the boundary conditions, since D(ϕ) = 0 implies ϕ′(x) = 0 and
thus ϕ is constant.
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A further objection was raised by Hadamard, who remarked that D(u)
may be infinite even for a solution u of the boundary value problem:
thus, in effect, there may simply be no competitors who qualify for the
competition!

To illustrate this point, we return to the disc, and consider the function

f(θ) = fα(θ) =
∞∑

n=0

2−nαei2nθ

for α > 0. This function first appeared in Chapter 4 of Book I, where it
is shown that fα is continuous but nowhere differentiable if α ≤ 1. The
solution of the Dirichlet problem on the unit disc with boundary value
fα is given by the Poisson integral

u(r, θ) =
∞∑

n=0

r2n

2−nαei2nθ.

However, the use of polar coordinates gives

∣∣∣∣
∂u

∂x1

∣∣∣∣
2

+
∣∣∣∣

∂u

∂x2

∣∣∣∣
2

=
∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
1
r2

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

.

Thus

∫ ∫

Dρ

(∣∣∣∣
∂u

∂x1

∣∣∣∣
2

+
∣∣∣∣

∂u

∂x2

∣∣∣∣
2
)

dx1dx2 =
∫ ρ

0

∫ 2π

0

(∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
1
r2

∣∣∣∣
∂u

∂θ

∣∣∣∣
2
)

dθrdr

where Dρ is the disc of radius 0 < ρ < 1 centered at the origin. Since

∂u

∂r
∼

∑
2n2−nαr2n−1ei2nθ and

∂u

∂θ
∼

∑
r2n

2−nαi2nei2nθ,

applications of Parseval’s identity lead to

∫ ∫

Dρ

(∣∣∣∣
∂u

∂x1

∣∣∣∣
2

+
∣∣∣∣

∂u

∂x2

∣∣∣∣
2
)

dx1dx2 ≈
∫ ρ

0

∞∑
n=0

22n+12−2nαr2n+1−1dr

=
∞∑

n=0

ρ2n+1
2n2−2nα,

which tends to infinity as ρ → 1 if α ≤ 1/2.
One can formulate this objection in a more precise way by appealing

to the result in Exercise 20.
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Despite these significant difficulties, Dirichlet’s principle can indeed be
validated, if applied in the appropriate way. A key insight is that the
space of competing functions arising in the proof of the above proposition
is itself a pre-Hilbert space, with inner product 〈·, ·〉 given there. The
desired solution lies in the completion of this pre-Hilbert space, and this
requires the L2 theory for its analysis. These ideas were clearly not
available at the time Dirichlet’s principle was first formulated and used.

In what follows we shall describe how these additional concepts can
be exploited. We will begin our presentation in the more general d-
dimensional setting, but conclude with the application of these tech-
niques to the solution of the two-dimensional problem (19). As an impor-
tant preliminary matter we start with the study of some basic properties
of harmonic functions.

4.1 Harmonic functions

Throughout this section Ω will denote an open subset of Rd. A function u
is harmonic in Ω if it is twice continuously differentiable12 and u solves

4u =
d∑

j=1

∂2u

∂x2
j

= 0.

We shall see that harmonic functions can be characterized by a number
of equivalent properties.13 Adapting the terminology used in Section 3,
we say that u is weakly harmonic in Ω if

(20) (u,4ψ) = 0 for every ψ ∈ C∞0 (Ω).

Note that the left-hand side of (20) is well-defined for any u that is inte-
grable on compact subsets of Ω. Thus, in particular, a weakly harmonic
function needs to be defined only almost everywhere. Clearly, however,
any harmonic function is weakly harmonic.

Another notion is the mean-value property generalizing the iden-
tity (9) in Section 2 for holomorphic functions. A continuous function u
defined in Ω satisfies this property if

(21) u(x0) =
1

m(B)

∫

B

u(x) dx

for each ball B whose center is x0 and whose closure B is contained in Ω.

12In other words, u is in C2(Ω) in the notation of Section 3.1.
13Note that in the case of one dimension, harmonic functions are linear and so their

theory is essentially trivial.
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The following two theorems give alternative characterizations of har-
monic functions. Their proofs are closely intertwined.

Theorem 4.2 If u is harmonic in Ω, then u satisfies the mean-value
property (21). Conversely, a continuous function satisfying the mean-
value property is harmonic.

Theorem 4.3 Any weakly harmonic function u in Ω can be corrected
on a set of measure zero so that the resulting function is harmonic in Ω.

The above statement says that for a given weakly harmonic function u
there exists a harmonic function ũ, so that ũ(x) = u(x) for a.e. x ∈ Ω.
Notice since ũ is necessarily continuous it is uniquely determined by u.

Before we prove the theorems, we deduce a noteworthy corollary. It is
a version of the maximum principle.

Corollary 4.4 Suppose Ω is a bounded open set, and let ∂Ω = Ω− Ω
denote its boundary. Assume that u is continuous in Ω and is harmonic
in Ω. Then

max
x∈Ω

|u(x)| = max
x∈∂Ω

|u(x)|.

Proof. Since the sets Ω and ∂Ω are compact and u is continuous, the
two maxima above are clearly attained. We suppose that maxx∈Ω |u(x)|
is attained at an interior point x0 ∈ Ω, for otherwise there is nothing to
prove.

Now by the mean-value property, |u(x0)| ≤ 1
m(B)

∫
B
|u(x)| dx. If for

some point x′ ∈ B we had |u(x′)| < |u(x0)|, then a similar inequality
would hold in a small neighborhood of x′, and since |u(x)| ≤ |u(x0)|
throughout B, the result would be that 1

m(B)

∫
B
|u(x)| dx < |u(x0)|, which

is a contradiction. Hence |u(x)| = |u(x0)| for each x ∈ B. Now this is
true for each ball Br of radius r, centered at x0, such that Br ⊂ Ω. Let
r0 be the least upper bound of such r; then Br0 intersects the boundary
Ω at some point x̃. Since |u(x)| = |u(x0)| for all x ∈ Br, r < r0, it follows
by continuity that |u(x̃)| = |u(x0)|, proving the corollary.

Turning to the proofs of the theorems, we first establish a variant
of Green’s formula (for the unit ball) that does not explicitly involve
boundary terms.14 Here u, v, and η are assumed to be twice continuously
differentiable functions in a neighborhood of the closure of B, but η is
also supposed to be supported in a compact subset of B.

14The more usual version requires integration over the (boundary) sphere, a topic
deferred to the next chapter. See also Exercises 6 and 7 in that chapter.
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Lemma 4.5 We have the identity
∫

B

(v4u− u4v)η dx =
∫

B

u(∇v · ∇η)− v(∇u · ∇η) dx.

Here ∇u is the gradient of u, that is, ∇u =
(

∂u
∂x1

, ∂u
∂x2

, . . . , ∂u
∂xd

)
and

∇v · ∇η =
d∑

j=1

∂v

∂xj

∂η

∂xj
,

with ∇u · ∇η defined similarly.
In fact, by integrating by parts as in the proof of (14) we have

∫

B

∂u

∂xj
vη dx = −

∫

B

u
∂v

∂xj
η dx−

∫

B

uv
∂η

∂xj
dx.

We then repeat this with u replaced by ∂u/∂xj , and sum in j to obtain
∫

B

(4u)vη dx = −
∫

B

(∇u · ∇v)η dx−
∫

B

(∇u · ∇η)v dx.

This yields the lemma if we subtract from this the symmetric formula
with u and v interchanged.

We shall apply the lemma when u is a given harmonic function, while
v is one of the three following “test” functions: first, v(x) = 1; second,
v(x) = |x|2; and third, v(x) = |x|−d+2 if d ≥ 3, while v(x) = log |x| if
d = 2. The relevance of these choices arises because 4v = 0 in the first
case, while 4v is a non-zero constant in the second case; also v in the
third case is a constant multiple of a “fundamental solution,” and in
particular v(x) is harmonic for x 6= 0.

When v(x) = 1, we take η = η+
ε , where η+

ε (x) = 1 for |x| ≤ 1− ε,
η+

ε (x) = 0 for |x| ≥ 1, and |∇η+
ε (x)| ≤ c/ε. We accomplish this by setting

η+
ε (x) = χ

(
|x|−1+ε

ε

)
for 1− ε ≤ |x| ≤ 1, where χ is a fixed C2 function

on [0, 1] that equals 1 in [0, 1/4] and equals 0 in [3/4, 1]. A picture of η+
ε

is given in Figure 3.
Since u is harmonic, we see that with v = 1, Lemma 4.5 implies

(22)
∫

B

∇u · ∇η+
ε dx = 0.

Next we take v(x) = |x|2; then clearly 4v = 2d, and with η = η+
ε the

lemma yields:

2d

∫

B

uη+
ε dx =

∫

B

|x|2(∇u · ∇η+
ε ) dx− 2

∫

B

u(x · ∇η+
ε ) dx.
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11− ε

1

|x|

Figure 3. The function η+
ε

However, since ∇η+
ε is supported in the spherical shell S+

ε = {x : 1− ε ≤
|x| ≤ 1}, we see that

∫

B

|x|2(∇u · ∇η+
ε ) dx =

∫

B

(∇u · ∇η+
ε ) dx + O(ε),

and hence by (22) we get

(23) d

∫

B

u dx = − lim
ε→0

∫

B

u(x · ∇η+
ε ) dx.

We finally turn to v(x) = |x|−d+2, when d ≥ 3, and calculate (4v)(x)
for x 6= 0 to see that it vanishes there. In fact, since ∂|x|/∂xj = xj/|x|,
we note that

∂|x|a
∂xj

= axj |x|a−2 and
∂2|x|a
∂x2

j

= a|x|a−2 + a(a− 2)x2
j |x|a−4.

Upon adding in j, we obtain that 4(|x|a) = [da + a(a− 2)]|x|a−2, and
this is zero if a = −d + 2 (or a = 0). A similar argument shows that
4(log |x|) = 0 when d = 2 and x 6= 0.

We now apply the lemma with this v and η = ηε defined as follows:

ηε(x) = 1− χ(|x|/ε) for |x| ≤ ε,
ηε(x) = 1 for ε ≤ |x| ≤ 1− ε,

ηε(x) = η+
ε (x) = χ

(
|x|−1+ε

ε

)
for 1− ε ≤ |x| ≤ 1.

The picture for ηε is as follows (Figure 4):
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11− ε

1

|x|0 ε

Figure 4. The function ηε

We note that |∇ηε| is O(1/ε) throughout. Now both u and v are
harmonic in the support of ηε, and in this case ∇ηε is supported only
near the unit sphere (in the shell S+

ε ) or near the origin (in the ball
Bε = {|x| < ε}). Thus the right-hand side of the identity of the lemma
gives two contributions, one over S+

ε and the other over Bε. We consider
the first contribution (when d ≥ 3); it is

∫

S+
ε

u∇(|x|−d+2) · ∇ηε dx−
∫

S+
ε

|x|−d+2(∇u · ∇η+
ε ) dx.

Now the first integral is (−d + 2)
∫

S+
ε

u|x|−d(x · ∇η+
ε ) dx, which by (23)

tends to c
∫

B
u dx as ε → 0, where c is the constant (2− d)d, since |x|−d −

1 = O(ε) over S+
ε . The second term tends to zero as ε → 0 because of (22)

and the fact that the integrand there is supported in the shell S+
ε . A

similar argument for d = 2, with v(x) = log |x|, yields the result with
c = 1.

To consider the contribution near the origin, that is, over Bε, we tem-
porarily make the additional assumption that u(0) = 0. Then because
of the differentiability assumption satisfied by a harmonic function, we
have u(x) = O(|x|) as |x| → 0. Now over Bε we have two terms, the first
being

∫
Bε

u∇(|x|−d+2)∇ηε dx, which is majorized by

∫

Bε

O(ε)|x|−d+1O(1/ε) dx ≤ O

(∫

|x|≤ε

|x|−d+1 dx

)
≤ O(ε),

because of (8) in Section 2 of Chapter 2. This term tends to 0 with ε.
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The second term is
∫

Bε
|x|−d+2(∇u · ∇ηε) dx, which is majorized by

c1

ε

∫

|x|≤ε

|x|−d+2 = c2ε,

using the result just cited. We have used the fact that ∇u is bounded
and ∇ηε is O(1/ε) throughout B. Letting ε → 0 we see that this term
tends to zero also. A similar argument works when d = 2.

Thus we have proved that if u is harmonic in a neighborhood of the
closure of the unit ball B, and u(0) = 0, then

∫
B

u dx = 0. We can drop
the assumption u(0) = 0 by applying the conclusion we have just reached
to u(x)− u(0) in place of u(x). Therefore we have achieved the mean-
value property (21) for the unit ball.

Now suppose Br(x0) = {x : |x− x0| < r} is the ball of radius r cen-
tered at x0, and consider U(x) = u(x0 + rx). If we suppose that u is har-
monic in Br(x0), then clearly U is harmonic in the unit ball (indeed, the
property of being harmonic is unchanged under translations x → x + x0

and dilations x → rx, as is easily verified). Thus if u were supported in Ω,
and Br(x0) ⊂ Ω, then by the result just proved U(0) = 1

m(B)

∫
B

U(x) dx,
which means that

u(x0) =
1

m(B)

∫

|x|≤1

u(x0 + rx) dx =
1

rdm(B)

∫

|x|≤r

u(x0 + x) dx

=
1

m(Br(x0))

∫

Br

u(x) dx,

by the relative invariance of Lebesgue measure under dilations and trans-
lations. This establishes (21) in general.

The converse property

To prove this, we first show that the mean-value property allows a useful
extension of itself. For this purpose, we fix a function ϕ(y) that is contin-
uous in the closed unit ball {|y| ≤ 1} and is radial (that is, ϕ(y) = Φ(|y|)
for an appropriate Φ), and extend ϕ to be zero when |y| > 1. Suppose
in addition that

∫
ϕ(y) dy = 1. We then claim the following:

Lemma 4.6 Whenever u satisfies the mean-value property (21) in Ω,
and the closure of the ball {x : |x− x0| < r} lies in Ω, then
(24)

u(x0) =
∫

Rd

u(x0 − ry)ϕ(y) dy =
∫

Rd

u(x0 − y)ϕr(y) dy = (u ∗ ϕr)(x0),

where ϕr(y) = r−dϕ(y/r).
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That the second of the two identities holds is an immediate consequence
of the change of variables y → y/r; the rightmost equality is merely the
definition of u ∗ ϕr.

We can prove (24) as a consequence of a simple observation about
integration. Let ψ(y) be another function on the ball {|y| ≤ 1}, which
we assume is bounded. For each N , a large positive integer, denote by
B(j) the ball {|y| ≤ j/N}. Recall that ϕ(y) = Φ(|y|). Then

(25)
∫

ϕ(y)ψ(y) dy = lim
N→∞

N∑
j=1

Φ
(

j

N

)∫

B(j)−B(j−1)

ψ(y) dy.

To verify this, note that the left-hand side of (25) equals

N∑
j=1

∫

B(j)−B(j−1)

ϕ(y)ψ(y) dy.

However, sup1≤j≤N supy∈B(j)−B(j−1) |ϕ(y)− Φ(j/N)| = εN , which tends
to zero as N →∞, since ϕ is radial, continuous, and ϕ(y) = Φ(|y|). Thus
the left-hand side of (25) differs from

∑N
j=1 Φ(j/N)

∫
B(j)−B(j−1)

ψ(y) dy

by at most εN

∫
|y|≤1

|ψ(y)| dy, proving (25).

We now use this in the case where ψ(y) = u(x0 − ry) and ϕ is as before.
Then

∫
u(x0 − ry)ϕ(y) dy = lim

N→∞

N∑
j=1

Φ
(

j

N

)∫

B(j)−B(j−1)

u(x0 − ry) dy.

However, it follows from the mean-value property assumed for u that
∫

B(j)−B(j−1)

u(x0 − ry) dy = u(x0)[m(B(j))−m(B(j − 1))].

Therefore, the right-hand side above equals

u(x0) lim
N→∞

N∑
j=1

Φ
(

j

N

)∫

B(j)−B(j−1)

dy,

and this is u(x0) if we use (25) again, this time with ψ = 1, and recall
that

∫
ϕ(y) dy = 1. We have therefore proved the lemma.

We see from this that every continuous function which satisfies the
mean-value property is its own regularization! To be precise, we have

(26) u(x) = (u ∗ ϕr)(x)
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whenever x ∈ Ω and the distance from x to the boundary of Ω is larger
than r. If we now require in addition that ϕ ∈ C∞0 {|y| < 1}, then by the
discussion in Section 1 we conclude that u is smooth throughout Ω.

Let us now establish that such functions are harmonic. Indeed, by
Taylor’s theorem, for every x0 ∈ Ω

(27) u(x0 + x)− u(x0) =
d∑

j=1

ajxj +
1
2

d∑

j,k=1

ajkxjxk + ε(x),

where ε(x) = O(|x|3) as |x| → 0. We note next that
∫
|x|≤r

xj dx = 0 and∫
|x|≤r

xjxk dx = 0 for all j and k with k 6= j. This follows by carrying
out the integrations first in the xj variable and noting that the integral
vanishes because xj is an odd function. Also by an obvious symmetry∫
|x|≤r

x2
j dx =

∫
|x|≤r

x2
k dx, and by the relative dilation-invariance (see

Section 3, Chapter 1) these are equal to r2
∫
|x|≤r

(x1/r)2 dx =
rd+2

∫
|x|≤1

x2
1 dx = crd+2, with c > 0. We now integrate both sides of (27)

over the ball {|x| ≤ r}, divide by rd, and use the mean-value property.
The result is that

c

2
r2

d∑
j=1

ajj =
cr2

2
(4u)(x0) = O

(
1
rd

∫

|x|≤r

|ε(x)| dx

)
= O(r3).

Letting r → 0 then gives 4u(x0) = 0. Since x0 was an arbitrary point
of Ω, the proof of Theorem 4.2 is concluded.

Theorem 4.3 and some corollaries

We come now to the proof of Theorem 4.3. Let us assume that u is
weakly harmonic in Ω. For each ε > 0 we define Ωε to be the set of
points in Ω that are at a distance greater than ε from its boundary:

Ωε = {x ∈ Ω : d(x, ∂Ω) > ε}.

Notice that Ωε is open, and that every point of Ω belongs to Ωε if ε
is small enough. Then the regularization u ∗ ϕr = ur considered in the
previous theorem is defined in Ωε, for r < ε, and as we have noted is a
smooth function there. We next observe that it is weakly harmonic in
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Ωε. In fact, for ψ ∈ C∞0 (Ωε) we have

(ur,4ψ) =
∫

Rd

(∫

Rd

u(x− ry)ϕ(y) dy

)
(4ψ)(x) dx

=
∫

Rd

ϕ(y)
(∫

Rd

u(x− ry)(4ψ)(x) dx

)
dy,

by Fubini’s theorem, and the inner integral vanishes for y, |y| ≤ 1, be-
cause it equals (u,4ψr), with ψr = ψ(x + ry). Thus we have

(u ∗ ϕr,4ψ) = 0,

and hence u ∗ ϕr is weakly harmonic. Next, since this regularization is
automatically smooth it is then also harmonic. Moreover, we claim that

(28) (u ∗ ϕr1)(x) = (u ∗ ϕr2)(x)

whenever x ∈ Ωε and r1 + r2 < ε. Indeed, (u ∗ ϕr1) ∗ ϕr2 = u ∗ ϕr1 as
we have shown in (26) above. However convolutions are commutative
(see Remark (6) in Chapter 2); thus (u ∗ ϕr1) ∗ ϕr2 = (u ∗ ϕr2) ∗ ϕr1 =
u ∗ ϕr2 , and (28) is proved.

Now we can let r1 tend to zero, while keeping r2 fixed. We know by the
properties of approximations to the identity that u ∗ ϕr1(x) → u(x) for
almost every x in Ωε; hence u(x) equals ur2(x) for almost every x ∈ Ωε.
Thus u can be corrected on Ωε (setting it equal to ur2), so that it becomes
harmonic there. Now since ε can be taken arbitrarily small, the proof of
the theorem is complete.

We state several further corollaries arising out of the above theorems.

Corollary 4.7 Every harmonic function is indefinitely differentiable.

Corollary 4.8 Suppose {un} is a sequence of harmonic functions in Ω
that converges to a function u uniformly on compact subsets of Ω as
n →∞. Then u is also harmonic.

The first of these corollaries was already proved as a consequence
of (26). For the second, we use the fact that each un satisfies the mean-
value property

un(x0) =
1

m(B)

∫

B

un(x) dx

whenever B is a ball with center at x0, and B ⊂ Ω. Thus by the uniform
convergence it follows that u also satisfies this property, and hence u is
harmonic.
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We should point out that these properties of harmonic functions on
Rd are reminiscent of similar properties of holomorphic functions. But
this should not be surprising, given the close connection between these
two classes of functions in the special case d = 2.

4.2 The boundary value problem and Dirichlet’s principle

The d-dimensional Dirichlet boundary value problem we are concerned
with may be stated as follows. Let Ω be an open bounded set in Rd.
Given a continuous function f defined on the boundary ∂Ω, we wish to
find a function u that is continuous in Ω, harmonic in Ω, and such that
u = f on ∂Ω.

An important preliminary observation is that the solution to the prob-
lem, if it exists, is unique. Indeed, if u1 and u2 are two solutions
then u1 − u2 is harmonic in Ω and vanishes on the boundary. Thus by
the maximum principle (Corollary 4.4) we have u1 − u2 = 0, and hence
u1 = u2.

Turning to the existence of a solution, we shall now pursue the ap-
proach of Dirichlet’s principle outlined earlier.

We consider the class of functions C1(Ω), and equip this space with
the inner product

〈u, v〉 =
∫

Ω

(∇u · ∇v) dx,

where of course

∇u · ∇v =
d∑

j=1

∂u

∂xj

∂v

∂xj
.

With this inner product, we have a corresponding norm given by
‖u‖2 = 〈u, u〉. We note that ‖u‖ = 0 is the same as ∇u = 0 through-
out Ω, which means that u is constant on each connected component of
Ω. Thus we are led to consider equivalence classes in C1(Ω) of elements
modulo functions that are constant on components of Ω. These then
form a pre-Hilbert space with inner product and norm given as above.
We call this pre-Hilbert space H0.

In studying the completion H of H0 and its applications to the bound-
ary value problem, the following lemma is needed.

Lemma 4.9 Let Ω be an open bounded set in Rd. Suppose v belongs to
C1(Ω) and v vanishes on ∂Ω. Then

(29)
∫

Ω

|v(x)|2 dx ≤ cΩ

∫

Ω

|∇v(x)|2 dx.
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Proof. This conclusion could in fact be deduced from the considera-
tions given in Lemma 3.3. We prefer to prove this easy version separately
to highlight a simple idea that we shall also use later. It should be noted
that the argument yields the estimate cΩ ≤ d(Ω)2, where d(Ω) is the
diameter of Ω.

We proceed on the basis of the following observation. Suppose f is a
function in C1(I), where I = (a, b) is an interval in R. Assume that f
vanishes at one of the end-points of I. Then

(30)
∫

I

|f(t)|2 dt ≤ |I|2
∫

I

|f ′(t)|2 dt,

where |I| denotes the length of I.
Indeed, suppose f(a) = 0. Then f(s) =

∫ s

a
f ′(t) dt, and by the Cauchy-

Schwarz inequality

|f(s)|2 ≤ |I|
∫ s

a

|f ′(t)|2 dt ≤ |I|
∫

I

|f ′(t)|2 dt.

Integrating this in s over I then yields (30).

To prove (29), write x = (x1, x
′) with x1 ∈ R and x′ ∈ Rd−1 and ap-

ply (30) to f defined by f(x1) = v(x1, x
′), with x′ fixed. Let J(x′)

be the open set in R that is the corresponding slice of Ω given by
{x1 ∈ R : (x1, x

′) ∈ Ω}. The set J(x′) can be written as a disjoint union
of open intervals Ij . (Note that in fact f(x1) vanishes at both end-points
of each Ij .) For each j, on applying (30) we obtain

∫

Ij

|v(x1, x
′)|2 dx1 ≤ |Ij |2

∫

Ij

|∇v(x1, x
′)|2 dx1.

Now since |Ij | ≤ d(Ω), summing over the disjoint intervals Ij gives
∫

J(x′)
|v(x1, x

′)|2 dx1 ≤ d(Ω)2
∫

J(x′)
|∇v(x1, x

′)|2 dx1,

and an integration over x′ ∈ Rd then leads to (29).

Now let S0 denote the linear subspace of C1(Ω) consisting of functions
that vanish on the boundary of Ω. We note that distinct elements of S0

remain distinct under the equivalence relation defining H0 (since con-
stants on each component that vanish on the boundary are zero), and so
S0 may be identified with a subspace of H0. Denote by S the closure in
H of this subspace, and let PS be the orthogonal projection of H onto S.
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With these preliminaries out of the way, we first try to solve the bound-
ary value problem with f given on ∂Ω under the additional assumption
that f is the restriction to ∂Ω of a function F in C1(Ω). (How this
additional hypothesis can be removed will be explained below.) Fol-
lowing the prescription of Dirichlet’s principle, we seek a sequence {un}
with un ∈ C1(Ω) and un|∂Ω = F |∂Ω, such that the Dirichlet integrals
‖un‖2 converge to a minimum value. This means that un = F − vn,
with vn ∈ S0, and that limn→∞ ‖un‖ minimizes the distance from F to
S0. Since S = S0, this sequence also minimizes the distance from F to
S in H.

Now what do the elementary facts about orthogonal projections teach
us? According to the proof of Lemma 4.1 in the previous chapter, we
conclude that the sequence {vn}, and hence also the sequence {un},
both converge in the norm of H, the former having a limit PS(F ). Now
applying Lemma 4.9 to vn − vm we deduce that {vn} and {un} are also
Cauchy in the L2(Ω)-norm, and thus converge also in the L2-norm. Let
u = limn→∞ un. Then

(31) u = F − PS(F ).

We see that u is weakly harmonic. Indeed, whenever ψ ∈ C∞0 (Ω), then
ψ ∈ S, and hence by (31) 〈u, ψ〉 = 0. Therefore 〈un, ψ〉 → 0, but by
integration by parts, as we have seen,

〈un, ψ〉 =
∫

Ω

(∇un · ∇ψ) dx = −
∫

Ω

un4ψ dx = −(un,4ψ).

As a result, (u,4ψ) = 0, and so u is weakly harmonic and thus can be
corrected on a set of measure zero to become harmonic.

This is the purported solution to our problem. However, two issues
still remain to be resolved.

The first is that while u is the limit of a sequence {un} of continuous
functions in Ω and un|∂Ω = f , for each n, it is not clear that u itself is
continuous in Ω and u|∂Ω = f .

The second issue is that we restricted our argument above to those
f defined on the boundary of Ω that arise as restrictions of functions
in C1(Ω).

The second obstacle is the easier of the two to overcome, and this can
be done by the use of the following lemma, applied to the set Γ = ∂Ω.

Lemma 4.10 Suppose Γ is a compact set in Rd, and f is a continuous
function on Γ. Then there exists a sequence {Fn} of smooth functions
on Rd so that Fn → f uniformly on Γ.
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In fact, supposing we can deal with the first issue raised, then with the
lemma we proceed as follows. We find the functions Un that are har-
monic in Ω, continuous on Ω, and such that Un|∂Ω = Fn|∂Ω. Now since
the {Fn} converges uniformly (to f) on ∂Ω, it follows by the maximum
principle that the sequence {Un} converges uniformly to a function u
that is continuous on Ω, has the property that u|∂Ω = f , and which is
moreover harmonic (by Corollary 4.8 above). This achieves our goal.

The proof of Lemma 4.10 is based on the following extension principle.

Lemma 4.11 Let f be a continuous function on a compact subset Γ of
Rd. Then there exists a function G on Rd that is continuous, and so that
G|∂Γ = f .

Proof. We begin with the observation that if K0 and K1 are two
disjoint compact sets, there exists a continuous function 0 ≤ g(x) ≤ 1 on
Rd which takes the value 0 on K0 and 1 on K1. Indeed, if d(x, Ω) denotes
the distance from x to Ω, we see that

g(x) =
d(x,K0)

d(x, K0) + d(x,K1)

has the required properties.
Now, we may assume without loss of generality that f is non-negative

and bounded by 1 on Γ. Let

K0 = {x ∈ Γ : 2/3 ≤ f(x) ≤ 1} and K1 = {x ∈ Γ : 0 ≤ f(x) ≤ 1/3},
so that K0 and K1 are disjoint. Clearly, the observation before the
lemma guarantees that there exists a function 0 ≤ G1(x) ≤ 1/3 on Rd

which takes the value 1/3 on K0 and 0 on K1. Then we see that

0 ≤ f(x)−G1(x) ≤ 2
3

for all x ∈ Γ.

We now repeat the argument with f replaced by f −G1. In the first
step, we have gone from 0 ≤ f ≤ 1 to 0 ≤ f −G1 ≤ 2/3. Consequently,
we may find a continuous function G2 on Rd so that

0 ≤ f(x)−G1(x)−G2(x) ≤
(

2
3

)2

on Γ,

and 0 ≤ G2 ≤ 1
3

2
3 . Repeating this process, we find continuous functions

Gn on Rd such that

0 ≤ f(x)−G1(x)− · · · −GN (x) ≤
(

2
3

)N

on Γ,
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and 0 ≤ GN ≤ 1
3

(
2
3

)N−1
on Rd. If we define

G =
∞∑

n=1

Gn,

then G is continuous and equals f on Γ.

To complete the proof of Lemma 4.10, we argue as follows. We regu-
larize the function G obtained in Lemma 4.11 by defining

Fε(x) = ε−d

∫

Rd

G(x− y)ϕ(y/ε) dy =
∫

Rd

G(y)ϕε(x− y) dy,

with ϕε(y) = ε−dϕ(y/ε), where ϕ is a non-negative C∞0 function sup-
ported in the unit ball with

∫
ϕ(y) dy = 1. Then each Fε is a C∞ func-

tion. However,

Fε(x)−G(x) =
∫

(G(y)−G(x))ϕε(x− y) dy.

Since the integration above is restricted to |x− y| ≤ ε, then if x ∈ Γ, we
see that

|Fε(x)−G(x)| ≤ sup
|x−y|≤ε

|G(x)−G(y)|
∫

ϕε(x− y) dy

≤ sup
|x−y|≤ε

|G(x)−G(y)|.

The last quantity tends to zero with ε by the uniform continuity of G
near Γ, and if we choose ε = 1/n we obtain our desired sequence.

The two-dimensional theorem

We now take up the problem of whether the proposed solution u takes
on the desired boundary values. Here we limit our discussion to the case
of two dimensions for the reason that in the higher dimensional situation
the problems that arise involve a number of questions that would take
us beyond the scope of this book. In contrast, in two dimensions, while
the proof of the result below is a little tricky, it is within the reach of the
Hilbert space methods we have been illustrating.

The Dirichlet problem can be solved (in two dimensions as well as
in higher dimensions) only if certain restrictions are made concerning
the nature of the domain Ω. The regularity we shall assume, while not
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optimal,15 is broad enough to encompass many applications, and yet
has a simple geometric form. It can be described as follows. We fix an
initial triangle T0 in R2. To be precise, we assume that T0 is an isosceles
triangle whose two equal sides have length `, and make an angle α at
their common vertex. The exact values of ` and α are unimportant;
they may both be taken as small as one wishes, but must be kept fixed
throughout our discussion. With the shape of T0 thus determined, we
say that T is a special triangle if it is congruent to T0, that is, T arises
from T0 by a translation and rotation. The vertex of T is defined to be
the intersection of its two equal sides.

The regularity property of Ω we assume, the outside-triangle con-
dition, is as follows: with ` and α fixed, for each x in the boundary of
Ω, there is a special triangle with vertex x whose interior lies outside Ω.
(See Figure 5.)

T0

α

`

∂Ω
T

x

Ω

Figure 5. The triangle T0 and the special triangle T

Theorem 4.12 Let Ω be an open bounded set in R2 that satisfies the
outside-triangle condition. If f is a continuous function on ∂Ω, then the
boundary value problem 4u = 0 with u continuous in Ω and u|∂Ω = f is
always uniquely solvable.

Some comments are in order.
(1) If Ω is bounded by a polygonal curve, it satisfies the conditions of
the theorem.
(2) More generally, if Ω is appropriately bounded by finitely many Lips-
chitz curves, or in particular C1 curves, the conditions are also satisfied.
(3) There are simple examples where the problem is not solvable: for
instance, if Ω is the punctured disc. This example of course does not
satisfy the outside-triangle condition.

15The optimal conditions involve the notion of capacity of sets.
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(4) The conditions on Ω in this theorem are not optimal: one can con-
struct examples of Ω when the problem is solvable for which the above
regularity fails.

For more details on the above, see Exercise 19 and Problem 4.

We turn to the proof of the theorem. It is based on the following
proposition, which may be viewed as a refined version of Lemma 4.9
above.

Proposition 4.13 For any bounded open set Ω in R2 that satisfies the
outside-triangle condition there are two constants c1 < 1 and c2 > 1 such
that the following holds. Suppose z is a point in Ω whose distance from
∂Ω is δ. Then whenever v belongs to C1(Ω) and v|∂Ω = 0, we have

(32)
∫

Bc1δ(z)

|v(x)|2 dx ≤ Cδ2

∫

Bc2δ(z)∩Ω

|∇v(x)|2 dx.

The bound C can be chosen to depend only on the diameter of Ω and the
parameters ` and α which determine the triangles T .

z

Bc2δ(z)

Bc1δ(z)

Ω

Figure 6. The situation in Proposition 4.13

Let us see how the proposition proves the theorem. We have already
shown that it suffices to assume that f is the restriction to ∂Ω of an
F that belongs to C1(Ω). We recall we had the minimizing sequence
un = F − vn, with vn ∈ C1(Ω) and vn|∂Ω = 0. Moreover, this sequence
converges in the norm of H and L2(Ω) to a limit v, such that u = F − v
is harmonic in Ω. Then since (32) holds for each vn, it also holds for
v = F − u; that is,

(33)
∫

Bc1δ(z)

|(F − u)(x)|2 dx ≤ Cδ2

∫

Bc2δ(z)∩Ω

|∇(F − u)(x)|2 dx.
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To prove the theorem it suffices, in view of the continuity of u in Ω, to
show that if y is any fixed point in ∂Ω, and z is a variable point in Ω,
then u(z) → f(y) as z → y. Let δ = δ(z) denote the distance of z from
the boundary. Then δ(z) ≤ |z − y| and therefore δ(z) → 0 as z → y.

We now consider the averages of F and u taken over the discs centered
at z of radius c1δ(z) (recall that c1 < 1). We denote these averages
by Av(F )(z) and Av(u)(z), respectively. Then by the Cauchy-Schwarz
inequality, we have

|Av(F )(z)−Av(u)(z)|2 ≤ 1
π(c1δ)2

∫

Bc1δ(z)∩Ω

|F − u|2 dx,

which by (33) is then majorized by

C ′
∫

Bc2δ(z)∩Ω

|∇(F − u)|2 dx.

The absolute continuity of the integral guarantees that the last integral
tends to zero with δ, since m(Bc2δ) → 0. However, by the mean-value
property, Av(u)(z) = u(z), while by the continuity of F in Ω,

Av(F )(z) =
1

m(Bc1δ(z))

∫

Bc1δ(z)

F (x) dx → f(y),

because F |∂Ω = f and z → y. Altogether this gives u(z) → f(y), and the
theorem is proved, once the proposition is established.

To prove the proposition, we construct for each z ∈ Ω whose distance
from ∂Ω is δ, and for δ sufficiently small, a rectangle R with the following
properties:

(1) R has side lengths 2c1δ and Mδ (with c1 ≤ 1/2, M ≤ 4).

(2) Bc1δ(z) ⊂ R.

(3) Each segment in R, that is parallel to and of length equal to the
length of the long side, intersects the boundary of Ω.

To obtain R we let y be a point in ∂Ω so that δ = |z − y|, and we apply
the outside-triangle condition at y. As a result, the line joining z with
y and one of the sides of the special triangle whose vertex is at y must
make an angle β < π. (In fact β ≤ π − α/2, as is easily seen.) Now after
a suitable rotation and translation we may assume that y = 0 and that
the angle going from the x2-axis to the line joining z to 0 is equal to the
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Side of triangle

γ

γ

z

0

∂Ω

x2

Figure 7. Placement of the rectangle R

angle of the side of the triangle to the x2-axis. This angle can be taken
to be γ, with γ > α/4. (See Figure 7.)

There is an alternate possibility that occurs with this figure reflected
through the x2-axis.

With this picture in mind we construct the rectangle R as indicated
in Figure 8.

It has its long side parallel to the x2-axis, contains the disc Bc1δ(z),
and every segment R parallel to the x2-axis intersects the (extension) of
the side of the triangle.

Note that the coordinates of z are (−δ sin γ, δ cos γ). We choose c1 <
sin γ, then Bc1δ(z) lies in the same (left) half-plane as z.

We next focus our attention on two points: P1, which lies on the x1-
axis at the intersection of this axis with the far side of the rectangle; and
P2, which is at the corner of that side of the rectangle, that is, at the
intersection of the (continuation) of the side of the outside triangle and
the further side of the rectangle. The coordinates of P1 are (−a, 0), where
a = δc1 + δ sin γ. The coordinates of P2 are (−a,−a cos γ

sin γ ). Note that the
distance of P2 from the origin is a/ sin γ, which is δ + c1δ/ sin γ ≤ 2δ,
since c1 < sin γ.

Now we observe that the length of the larger side of the rectangle is
the sum of the part that lies above the x1-axis and the part that lies
below. The upper part has length the sum of the radius of the disc plus
the height of z, and this is c1δ + δ cos γ ≤ 2δ. The lower part has length
equal to a/ tan γ, which is δ cos γ + δc1

cos γ
sin γ ≤ 2δ, since c1 < sin γ. Thus
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z

x2

Bc1δ(z)

x1

γ
∂Ω

P1

P2

Figure 8. The disc Bc1δ(z) and the rectangle R containing it

we find that the length of the side is ≤ 4δ.
Now it is clear from the construction that each vertical segment in R

starting from the disc Bc1δ(z) when continued downward and parallel to
the x2-axis intersects the line joining 0 to P2, (which is a continuation
of the side of the triangle). Moreover, if the length ` of this side of the
triangle exceeds the distance of P2 from the origin, then the segment in-
tersects the triangle. When this intersection occurs the segment starting
from Bc2δ(z) must also intersect the boundary of Ω, since the triangle
lies outside Ω. Therefore if ` ≥ 2δ the desired intersection occurs, and
each of the conclusions (1), (2), and (3) are verified. (We shall lift the
restriction δ ≤ `/2 momentarily.)

Now we integrate over each line segment parallel to the x2-axis in R,
including its portion in Bc1δ(z), which is continued downward until it
meets ∂Ω. Call such a segment I(x1). Then, using (30) we see that

∫

I(x1)

|v(x1, x2)|2 dx2 ≤ M2δ2

∫

I(x1)

∣∣∣∣
∂v

∂x2
(x1, x2)

∣∣∣∣
2

dx2,

and an integration in x1 gives
∫

R∩Ω

|v(x)|2 dx ≤ Mδ2

∫

R∩Ω

|∇v(x)|2 dx.
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However, we note that Bc1δ(z) ⊂ R, and Bc2δ(z) ⊃ R when c2 ≥ 2. Thus
the desired inequality (32) is established, still under the assumption that
δ is small, that is, δ ≤ `/2. When δ > `/2 it suffices merely to use the
crude estimate (29) and the proposition is then proved. The proof of the
theorem is therefore complete.

5 Exercises

1. Suppose f ∈ L2(Rd) and k ∈ L1(Rd).

(a) Show that (f ∗ k)(x) =
R

f(x− y)k(y) dy converges for a.e. x.

(b) Prove that ‖f ∗ k‖L2(Rd) ≤ ‖f‖L2(Rd)‖k‖L1(Rd).

(c) Establish (̂f ∗ k)(ξ) = k̂(ξ)f̂(ξ) for a.e. ξ.

(d) The operator Tf = f ∗ k is a Fourier multiplier operator with multiplier
m(ξ) = k̂(ξ).

[Hint: See Exercise 21 in Chapter 2.]

2. Consider the Mellin transform defined initially for continuous functions f of
compact support in R+ = {t ∈ R : t > 0} and x ∈ R by

Mf(x) =

Z ∞

0

f(t)tix−1dt.

Prove that (2π)−1/2M extends to a unitary operator from L2(R+, dt/t) to L2(R).
The Mellin transform serves on R+, with its multiplicative structure, the same
purpose as the Fourier transform on R, with its additive structure.

3. Let F (z) be a bounded holomorphic function in the half-plane. Show in two
ways that limy→0 F (x + iy) exists for a.e. x.

(a) By using the fact that F (z)/(z + i) is in H2(R2
+).

(b) By noting that G(z) = F
“
i 1−z
1+z

”
is a bounded holomorphic function in the

unit disc, and using Exercise 17 in the previous chapter.

4. Consider F (z) = ei/z/(z + i) in the upper half-plane. Note that F (x + iy) ∈
L2(R), for each y > 0 and y = 0. Observe also that F (z) → 0 as |z| → 0. However,
F /∈ H2(R2

+). Why?

5. For a < b, let Sa,b denote the strip {z = x + iy, a < y < b}. Define H2(Sa,b)
to consist of the holomorphic functions F in Sa,b so that

‖F‖2H2(Sa,b) = sup
a<y<b

Z

R2
|F (x + iy)|2 dx < ∞.
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Define H2(Sa,∞) and H2(S−∞,b) to be the obvious variants of the Hardy spaces
for the half-planes {z = x + iy, y > a} and {z = x + iy, y < b}, respectively.

(a) Show that F ∈ H2(Sa,b) if and only if F can be written as

F (z) =

Z

R
f(ξ)e−2πizξ dξ,

with
R
R |f(ξ)|2(e4πaξ + e4πbξ) dξ < ∞.

(b) Prove that every F ∈ H2(Sa,b) can be decomposed as F = G1 + G2, where
G∈H2(Sa,∞) and G2 ∈ H2(S−∞,b).

(c) Show that lima<y<b,y→a F (x + iy) = Fa(x) exists in the L2-norm and also
almost everywhere, with a similar result for lima<y<b,y→b F (x + iy).

6. Suppose Ω is an open set in C = R2, and let H be the subspace of L2(Ω)
consisting of holomorphic functions on Ω. Show that H is a closed subspace of
L2(Ω), and hence is a Hilbert space with inner product

(f, g) =

Z

Ω

f(z)g(z) dx dy, where z = x + iy.

[Hint: Prove that for f ∈ H, we have |f(z)| ≤ c
d(z,Ωc)

‖f‖ for z ∈ Ω, where c =

π−1/2, using the mean-value property (9). Thus if {fn} is a Cauchy sequence in
H, it converges uniformly on compact subsets of Ω.]

7. Following up on the previous exercise, prove:

(a) If {ϕn}∞n=0 is an orthonormal basis of H, then

∞X
n=0

|ϕn(z)|2 ≤ c2

d(z, Ωc)
for z ∈ Ω.

(b) The sum

B(z, w) =

∞X
n=0

ϕn(z)ϕn(w)

converges absolutely for (z, w) ∈ Ω× Ω, and is independent of the choice of
the orthonormal basis {ϕn} of H.

(c) To prove (b) it is useful to characterize the function B(z, w), called the
Bergman kernel, by the following property. Let T be the linear transfor-
mation on L2(Ω) defined by

Tf(z) =

Z

Ω

B(z, w)f(w) du dv, w = u + iv.

Then T is the orthogonal projection of L2(Ω) to H.
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(d) Suppose that Ω is the unit disc. Then f ∈ H exactly when f(z) =
P∞

n=0 anzn,
with

∞X
n=0

|an|2(n + 1)−1 < ∞.

Also, the sequence { zn(n+1)

π1/2 }∞n=0 is an orthonormal basis of H. Moreover,
in this case

B(z, w) =
1

π(1− zw)2
.

8. Continuing with Exercise 6, suppose Ω is the upper half-plane R2
+. Then every

f ∈ H has a representation

(34) f(z) =
√

4π

Z ∞

0

f̂0(ξ)e
2πiξz dξ, z ∈ R2

+,

where
R∞
0
|f̂0(ξ)|2 dξ

ξ
< ∞. Moreover, the mapping f̂0 → f given by (34) is a uni-

tary mapping from L2((0,∞), dξ
ξ

) to H.

9. Let H be the Hilbert transform. Verify that

(a) H∗ = −H, H2 = −I, and H is unitary.

(b) If τh denotes the translation operator, τh(f)(x) = f(x− h), then H com-
mutes with τh, τhH = Hτh.

(c) If δa denotes the dilation operator, δa(f)(x) = f(ax) with a > 0, then H
commutes with δa, δaH = Hδa.

A converse is given in Problem 5 below.

10. Let f ∈ L2(R) and let u(x, y) be the Poisson integral of f , that is u = (f ∗
Py)(x), as given in (10) above. Let v(x, y) = (Hf ∗ Py)(x), the Poisson integral of
the Hilbert transform of f . Prove that:

(a) F (x + iy) = u(x, y) + iv(x, y) is analytic in the half-plane R2
+, so that u and

v are conjugate harmonic functions. We also have f = limy→0 u(x, y) and
Hf = limy→0 v(x, y).

(b) F (z) = 1
πi

R
R f(t) dt

t−z
.

(c) v(x, y) = f ∗ Qy, whereQy(x) = 1
π

x
x2+y2 is the conjugate Poisson kernel.

[Hint: Note that i
πz

= Py(x) + iQy(x), z = x + iy.]

11. Show that


1

π1/2(i + z)

„
i− z

i + z

«nff∞

n=0
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is an orthonormal basis of H2(R2
+).

Note that
n

1

π1/2(i+x)

“
i−x
i+x

”no∞
n=0

is an orthonormal basis of L2(R); see Exer-

cise 9 in the previous chapter.

[Hint: It suffices to show that if F ∈ H2(R2
+) and

Z ∞

−∞
F (x)

(x + i)n

(x− i)n+1
dx = 0 for n = 0, 1, 2, . . .,

then F = 0. Use the Cauchy integral formula to prove that

„
d

dz

«n

(F (z)(z + i)n)|z=i = 0,

and thus F (n)(i) = 0 for n = 0, 1, 2, . . ..]

12. We consider whether the inequality

‖u‖L2(Ω) ≤ c‖L(u)‖L2(Ω)

can hold for open sets Ω that are unbounded.

(a) Assume d ≥ 2. Show that for each constant coefficient partial differential
operator L, there are unbounded connected open sets Ω for which the above
holds for all u ∈ C∞0 (Ω).

(b) Show that ‖u‖L2(Rd) ≤ c‖L(u)‖L2(Rd) for all u ∈ C∞0 (Rd) if and only if
|P (ξ)| ≥ c > 0 all ξ, where P is the characteristic polynomial of L.

[Hint: For (a) consider first L = (∂/∂x1)
n and a strip {x : −1 < x1 < 1}.]

13. Suppose L is a linear partial differential operator with constant coefficients.
Show that when d ≥ 2, the linear space of solutions u of L(u) = 0 with u ∈ C∞(Rd)
is not finite-dimensional.

[Hint: Consider the zeroes ζ of P (ζ), ζ ∈ Cd, where P is the characteristic poly-
nomial of L.]

14. Suppose F and G are two integrable functions on a bounded interval [a, b].
Show that G is the weak derivative of F if and only if F can be corrected on a set
of measure 0, such that F is absolutely continuous and F ′(x) = G(x) for almost
every x.

[Hint: If G is the weak derivative of F , use an approximation to show that

Z b

a

G(x)ϕ(x)dx = −
Z b

a

F (x)ϕ′(x)dx

holds for the function ϕ illustrated in Figure 9.]
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αα− h β β + h0

1

Figure 9. The function ϕ in Exercise 14

15. Suppose f ∈ L2(Rd). Prove that there exists g ∈ L2(Rd) such that

„
∂

∂x

«α

f(x) = g(x)

in the weak sense, if and only if

(2πiξ)αf̂(ξ) = ĝ(ξ) ∈ L2(Rd).

16. Sobolev embedding theorem. Suppose n is the smallest integer > d/2. If

f ∈ L2(Rd) and

„
∂

∂x

«α

f ∈ L2(Rd)

in the weak sense, for all 1 ≤ |α| ≤ n, then f can be modified on a set of measure
zero so that f is continuous and bounded.

[Hint: Express f in terms of f̂ , and show that f̂ ∈ L1(Rd) by the Cauchy-Schwarz
inequality.]

17. The conclusion of the Sobolev embedding theorem fails when n = d/2. Con-
sider the case d = 2, and let f(x) = (log 1/|x|)αη(x), where η is a smooth cut-
off function with η = 1 for x near the origin, but η(x) = 0 if |x| ≥ 1/2. Let
0 < α < 1/2.

(a) Verify that ∂f/∂x1 and ∂f/∂x2 are in L2 in the weak sense.

(b) Show that f cannot be corrected on a set of measure zero such that the
resulting function is continuous at the origin.

18. Consider the linear partial differential operator

L =
X

|α|≤n

aα

„
∂

∂x

«α

.
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Then

P (ξ) =
X

|α|≤n

aα(2πiξ)α

is called the characteristic polynomial of L. The differential operator L is said
to be elliptic if

|P (ξ)| ≥ c|ξ|n for some c > 0 and all ξ sufficiently large.

(a) Check that L is elliptic if and only if
P
|α|=n aα(2πξ)α vanishes only when

ξ = 0.

(b) If L is elliptic, prove that for some c > 0 the inequality

‚‚‚‚
„

∂

∂x

«α

ϕ

‚‚‚‚
L2(Rd)

≤ c
`‖Lϕ‖L2(Rd) + ‖ϕ‖L2(Rd)

´

holds for all ϕ ∈ C∞0 (Ω) and |α| ≤ n.

(c) Conversely, if (b) holds then L is elliptic.

19. Suppose u is harmonic in the punctured unit disc D∗ = {z ∈ C : 0 < |z| < 1}.

(a) Show that if u is also continuous at the origin, then u is harmonic throughout
the unit disc.

[Hint: Show that u is weakly harmonic.]

(b) Prove that the Dirichlet problem for the punctured unit disc is in general
not solvable.

20. Let F be a continuous function on the closure D of the unit disc. Assume that
F is in C1 on the (open) disc D, and

R
D |∇F |2 < ∞.

Let f(eiθ) denote the restriction of F to the unit circle, and write f(eiθ) ∼P∞
n=−∞ aneinθ. Prove that

P∞
n=−∞ |n| |an|2 < ∞.

[Hint: Write F (reiθ) ∼P∞
n=−∞ Fn(r)einθ, with Fn(1) = an. Express

R
D |∇F |2 in

polar coordinates, and use the fact that

1

2
|F (1)|2 ≤ L−1

Z 1

1/2

|F ′(r)|2 dr + L

Z 1

1/2

|F (r)|2 dr,

for L ≥ 2; apply this to F = Fn, L = |n|.]
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6 Problems

1. Suppose F0(x) ∈ L2(R). Then a necessary and sufficient condition that there
exists an entire analytic function F , such that |F (z)| ≤ Aea|z| for all z ∈ C, and
F0(x) = F (x) a.e. x ∈ R, is that F̂0(ξ) = 0 whenever |ξ| > a/2π.

[Hint: Consider the regularization F ε(z) =
R∞
−∞ F (z − t)ϕε(t) dt and apply to it

the considerations in Theorem 3.3 of Chapter 4 in Book II.]

2. Suppose Ω is an open bounded subset of R2. A boundary Lipschitz arc γ is
a portion of ∂Ω which after a rotation of the axes is represented as

γ = {(x1, x2) : x2 = η(x1), a ≤ x1 ≤ b},

where a < b and γ ⊂ ∂Ω. It is also supposed that

(35) |η(x1)− η(x′1)| ≤ M |x1 − x′1|, whenever x1, x
′
1 ∈ [a, b],

and moreover if γδ = {(x1, x2) : x2 − δ ≤ η(x1) ≤ x2}, then γδ ∩ Ω = ∅ for some
δ > 0. (Note that the condition (35) is satisfied if η ∈ C1([a, b]).)

Suppose Ω satisfies the following condition. There are finitely many open discs
D1, D2, . . . , DN with the property that

S
j Dj contains ∂Ω and for each j, ∂Ω ∩Dj

is a boundary Lipschitz arc (see Figure 10). Then Ω verifies the outside-triangle
condition of Theorem 4.12, guaranteeing the solvability of the boundary value
problem.

Ω

Dj

Figure 10. A domain with boundary Lipschitz arcs

3.∗ Suppose the bounded domain Ω has as its boundary a closed simple continuous
curve. Then the boundary value problem is solvable for Ω. This is because there
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exists a conformal map Φ of the unit disc D to Ω that extends to a continuous
bijection from D to Ω. (See Section 1.3 and Problem 6∗ in Chapter 8 of Book II.)

4. Consider the two domains Ω in R2 given by Figure 11.

Domain I Domain II

Figure 11. Domains with a cusp

The set I has as its boundary a smooth curve, with the exception of an (inside)
cusp. The set II is similar, except it has an outside cusp. Both I and II fall
within the scope of the result of Problem 3, and hence the boundary value problem
is solvable in each case. However, II satisfies the outside-triangle condition while
I does not.

5. Let T be a Fourier multiplier operator on L2(Rd). That is, suppose there

is a bounded function m such that (̂Tf)(ξ) = m(ξ)f̂(ξ), all f ∈ L2(Rd). Then T
commutes with translations, τhT = Tτh, where τh(f)(x) = f(x− h), for all h ∈ Rd.

Conversely any bounded operator on L2(Rd) that commutes with translations
is a Fourier multiplier operator.

[Hint: It suffices to prove that if a bounded operator T̂ commutes with multiplica-
tion by exponentials e2πiξ·h, h ∈ Rd, then there is an m so that T̂ g(ξ) = m(ξ)g(ξ)
for all g ∈ L2(Rd). To do this, show first that

T̂ (Φg) = ΦT̂ (g), all g ∈ L2(Rd), whenever Φ ∈ C∞0 (Rd).

Next, for large N , choose Φ so that it equals 1 in the ball |ξ| ≤ N . Then m(ξ) =
T̂ (Φ)(ξ) for |ξ| ≤ N .]

As a consequence of this theorem show that if T is a bounded operator on L2(R)
that commutes with translations and dilations (as in Exercise 9 above), then

(a) If (Tf)(−x) = T (f(−x)) it follows T = cI, where c is an appropriate con-
stant and I the identity operator.

(b) If (Tf)(−x) = −T (f(−x)), then T = cH, where c is an appropriate constant
and H the Hilbert transform.

6. This problem provides an example of the contrast between analysis on L1(Rd)
and L2(Rd).
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Recall that if f is locally integrable on Rd, the maximal function f∗ is defined
by

f∗(x) = sup
x∈B

1

m(B)

Z

B

|f(y)| dy,

where the supremum is taken over all balls containing the point x.
Complete the following outline to prove that there exists a constant C so that

‖f∗‖L2(Rd) ≤ C‖f‖L2(Rd).

In other words, the map that takes f to f∗ (although not linear) is bounded
on L2(Rd). This differs notably from the situation in L1(Rd), as we observed in
Chapter 3.

(a) For each α > 0, prove that if f ∈ L2(Rd), then

m({x : f∗(x) > α}) ≤ 2A

α

Z

|f |>α/2

|f(x)| dx.

Here, A = 3d will do.

[Hint: Consider f1(x) = f(x) if |f(x)| ≥ α/2 and 0 otherwise. Check that
f1 ∈ L1(Rd), and

{x : f∗(x) > α} ⊂ {x : f∗1 (x) > α/2}.]

(b) Show that

Z

Rd

|f∗(x)|2dx = 2

Z ∞

0

αm(Eα)dα,

where Eα = {x : f∗(x) > α}.
(c) Prove that ‖f∗‖L2(Rd) ≤ C‖f‖L2(Rd).



6 Abstract Measure and
Integration Theory

What immediately suggest itself, then, is that these
characteristic properties themselves be treated as the
main object of investigation, by defining and dealing
with abstract objects which need satisfy no other con-
ditions than those required by the very theory to be
developed.

This procedure has been made use of − more or
less consciously − by mathematicians of every era.
The geometry of Euclid and the literal algebra of the
sixteenth and seventeenth centuries arose in this way.
But only in more recent times has this method, called
the axiomatic method, been consistently developed
and carried through to its logical conclusion.

It is our intention to treat the theories of measure
and integration by means of the axiomatic method just
described.

C. Carathéodory, 1918

In much of mathematics integration plays a significant role. It is used,
in one form or another, when dealing with questions that arise in analysis
on a variety of different spaces. While in some situations it suffices to
integrate continuous or other simple functions on these spaces, the deeper
study of a number of other problems requires integration based on the
more refined ideas of measure theory. The development of these ideas,
going beyond the setting of the Euclidean space Rd, is the goal of this
chapter.

The starting point is a fruitful insight of Carathéodory and the re-
sulting theorems that lead to construction of measures in very general
circumstances. Once this has been achieved, the deduction of the fun-
damental facts about integration in the general context then follows a
familiar path.

We apply the abstract theory to obtain several useful results: the
theory of product measures; the polar coordinate integration formula,
which is a consequence of this; the construction of the Lebesgue-Stieltjes
integral and its corresponding Borel measure on the real line; and the
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general notion of absolute continuity. Finally, we treat some of the basic
limit theorems of ergodic theory. This not only gives an illustration of
the abstract framework we have established, but also provides a link with
the differentiation theorems studied in Chapter 3.

1 Abstract measure spaces

A measure space consists of a set X equipped with two fundamental
objects:

(I) A σ-algebra M of “measurable” sets, which is a non-empty col-
lection of subsets of X closed under complements and countable
unions and intersections.

(II) A measure µ : M→ [0,∞] with the following defining property:
if E1, E2, . . . is a countable family of disjoint sets in M, then

µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ(En).

A measure space is therefore often denoted by the triple (X,M, µ) to em-
phasize its three main components. Sometimes, however, when there is
no ambiguity we will abbreviate this notation by referring to the measure
space as (X, µ), or simply X.

A feature that a measure space often enjoys is the property of being
σ-finite. This means that X can be written as the union of countably
many measurable sets of finite measure.

At this early stage we give only two simple examples of measure spaces:

(i) The first is the discrete example with X a countable set, X =
{xn}∞n=1, M the collection of all subsets of X, and the measure
µ determined by µ(xn) = µn, with {µn}∞n=1 a given sequence of
(extended) non-negative numbers. Note that µ(E) =

∑
xn∈E µn.

When µn = 1 for all n, we call µ the counting measure, and also
denote it by #. In this case integration will amount to nothing but
the summation of (absolutely) convergent series.

(ii) Here X = Rd, M is the collection of Lebesgue measurable sets, and
µ(E) =

∫
E

f dx, where f is a given non-negative measurable func-
tion on Rd. The case f = 1 corresponds to the Lebesgue measure.
The countable additivity of µ follows from the usual additivity and
limiting properties of integrals of non-negative functions proved in
Chapter 2.
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The construction of measure spaces relevant for most applications require
further ideas, and to these we now turn.

1.1 Exterior measures and Carathéodory’s theorem

To begin the construction of a measure and its corresponding measurable
sets in the general setting requires, as in the special case of Lebesgue mea-
sure considered in Chapter 1, a prerequisite notion of “exterior” measure.
This is defined as follows.

Let X be a set. An exterior measure (or outer measure) µ∗ on
X is a function µ∗ from the collection of all subsets of X to [0,∞] that
satisfies the following properties:

(i) µ∗(∅) = 0.

(ii) If E1 ⊂ E2, then µ∗(E1) ≤ µ∗(E2).

(iii) If E1, E2, . . . is a countable family of sets, then

µ∗

( ∞⋃
j=1

Ej

)
≤

∞∑
j=1

µ∗(Ej).

For instance, the exterior Lebesgue measure m∗ in Rd defined in Chap-
ter 1 enjoys all these properties. In fact, this example belongs to a
large class of exterior measures that can be obtained using “coverings”
by a family of special sets whose measures are taken as known. This
idea is systematized by the notion of a “premeasure” taken up below in
Section 1.3. A different type of example is the exterior α-dimensional
Hausdorff measure m∗

α defined in Chapter 7.
Given an exterior measure µ∗, the problem that one faces is how to de-

fine the corresponding notion of measurable sets. In the case of Lebesgue
measure in Rd such sets were characterized by their difference from open
(or closed) sets, when considered in terms of µ∗. For the general case,
Carathéodory found an ingenious substitute condition. It is as follows.

A set E in X is Carathéodory measurable or simply measurable
if one has

(1) µ∗(A) = µ∗(E ∩A) + µ∗(Ec ∩A) for every A ⊂ X.

In other words, E separates any set A in two parts that behave well
in regard to the exterior measure µ∗. For this reason, (1) is sometimes
referred to as the separation condition. One can show that in Rd with the
Lebesgue exterior measure the notion of measurability (1) is equivalent
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to the definition of Lebesgue measurability given in Chapter 1. (See
Exercise 3.)

A first observation we make is that to prove a set E is measurable, it
suffices to verify

µ∗(A) ≥ µ∗(E ∩A) + µ∗(Ec ∩A) for all A ⊂ X,

since the reverse inequality is automatically verified by the sub-additivity
property (iii) of the exterior measure. We see immediately from the
definition that sets of exterior measure zero are necessarily measurable.

The remarkable fact about the definition (1) is summarized in the next
theorem.

Theorem 1.1 Given an exterior measure µ∗ on a set X, the collection
M of Carathéodory measurable sets forms a σ-algebra. Moreover, µ∗
restricted to M is a measure.

Proof. Clearly, ∅ and X belong to M and the symmetry inherent
in condition (1) shows that Ec ∈M whenever E ∈M. Thus M is non-
empty and closed under complements.

Next, we prove that M is closed under finite unions of disjoint sets,
and µ∗ is finitely additive on M. Indeed, if E1, E2 ∈M, and A is any
subset of X, then

µ∗(A) = µ∗(E2 ∩A) + µ∗(Ec
2 ∩A)

= µ∗(E1 ∩E2 ∩A) + µ∗(Ec
1 ∩E2 ∩A)+

+ µ∗(E1 ∩Ec
2 ∩A) + µ∗(Ec

1 ∩ Ec
2 ∩A)

≥ µ∗((E1 ∪ E2) ∩A) + µ∗((E1 ∪ E2)c ∩A),

where in the first two lines we have used the measurability condition
on E2 and then E1, and where the last inequality was obtained using
the sub-additivity of µ∗ and the fact that E1 ∪ E2 = (E1 ∩ E2) ∪ (Ec

1 ∩
E2) ∪ (E1 ∩Ec

2). Therefore, we have E1 ∪ E2 ∈M, and if E1 and E2 are
disjoint, we find

µ∗(E1 ∪E2) = µ∗ (E1 ∩ (E1 ∪ E2)) + µ∗ (Ec
1 ∩ (E1 ∪E2))

= µ∗(E1) + µ∗(E2).

Finally, it suffices to show that M is closed under countable unions of
disjoint sets, and that µ∗ is countably additive on M. Let E1, E2, . . .
denote a countable collection of disjoint sets in M, and define

Gn =
n⋃

j=1

Ej and G =
∞⋃

j=1

Ej .
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For each n, the set Gn is a finite union of sets in M, hence Gn ∈M.
Moreover, for any A ⊂ X we have

µ∗(Gn ∩A) = µ∗(En ∩ (Gn ∩A)) + µ∗(Ec
n ∩ (Gn ∩A))

= µ∗(En ∩A) + µ∗(Gn−1 ∩A)

=
n∑

j=1

µ∗(Ej ∩A),

where the last equality is obtained by induction. Since we know that
Gn ∈M, and Gc ⊂ Gc

n, we find that

µ∗(A) = µ∗(Gn ∩A) + µ∗(Gc
n ∩A) ≥

n∑
j=1

µ∗(Ej ∩A) + µ∗(Gc ∩A).

Letting n tend to infinity, we obtain

µ∗(A) ≥
∞∑

j=1

µ∗(Ej ∩A) + µ∗(Gc ∩A) ≥ µ∗(G ∩A) + µ∗(Gc ∩A)

≥ µ∗(A).

Therefore all the inequalities above are equalities, and we conclude that
G ∈M, as desired. Moreover, by taking A = G in the above, we find
that µ∗ is countably additive on M, and the proof of the theorem is
complete.

Our previous observation that sets of exterior measure 0 are Carathéodory
measurable shows that the measure space (X,M, µ) in the theorem
is complete: whenever F ∈M satisfies µ(F ) = 0 and E ⊂ F , then
E ∈M.

1.2 Metric exterior measures

If the underlying set X is endowed with a “distance function” or “met-
ric,” there is a particular class of exterior measures that is of interest in
practice. The importance of these exterior measures is that they induce
measures on the natural σ-algebra generated by the open sets in X.

A metric space is a set X equipped with a function d : X ×X →
[0,∞) that satisfies:

(i) d(x, y) = 0 if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X.
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(iii) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

The last property is of course called the triangle inequality, and a func-
tion d that satisfies all these conditions is called a metric on X. For
example, the set Rd with d(x, y) = |x− y| is a metric space. Another
example is provided by the space of continuous functions on a compact
set K with d(f, g) = supx∈K |f(x)− g(x)|.

A metric space (X, d) is naturally equipped with a family of open balls.
Here

Br(x) = {y ∈ X : d(x, y) < r}

defines the open ball of radius r centered at x. Together with this, we say
that a set O ⊂ X is open if for any x ∈ O there exists r > 0 so that the
open ball Br(x) is contained in O. A set is closed if its complement is
open. With these definitions, one checks easily that an (arbitrary) union
of open sets is open, and a similar intersection of closed sets is closed.

Finally, on a metric space X we can define, as in Section 3 of Chapter 1,
the Borel σ-algebra, BX , that is the smallest σ-algebra of sets in X
that contains the open sets of X. In other words BX is the intersection
of all σ-algebras that contain the open sets. Elements in BX are called
Borel sets.

We now turn our attention to those exterior measures on X with the
special property of being additive on sets that are “well separated.” We
show that this property guarantees that this exterior measure defines a
measure on the Borel σ-algebra. This is achieved by proving that all
Borel sets are Carathéodory measurable.

Given two sets A and B in a metric space (X, d), the distance between
A and B is defined by

d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.

Then an exterior measure µ∗ on X is a metric exterior measure if it
satisfies

µ∗(A ∪B) = µ∗(A) + µ∗(B) whenever d(A,B) > 0.

This property played a key role in the case of exterior Lebesgue measure.

Theorem 1.2 If µ∗ is a metric exterior measure on a metric space X,
then the Borel sets in X are measurable. Hence µ∗ restricted to BX is a
measure.
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Proof. By the definition of BX it suffices to prove that closed sets
in X are Carathéodory measurable. Therefore, let F denote a closed set
and A a subset of X with µ∗(A) < ∞. For each n > 0, let

An = {x ∈ F c ∩A : d(x, F ) ≥ 1/n}.

Then An ⊂ An+1, and since F is closed we have F c ∩A =
⋃∞

n=1 An.
Also, the distance between F ∩A and An is ≥ 1/n, and since µ∗ is a
metric exterior measure, we have

(2) µ∗(A) ≥ µ∗((F ∩A) ∪An) = µ∗(F ∩A) + µ∗(An).

Next, we claim that

(3) lim
n→∞

µ∗(An) = µ∗(F c ∩A).

To see this, let Bn = An+1 ∩Ac
n and note that

d(Bn+1, An) ≥ 1
n(n + 1)

.

Indeed, if x ∈ Bn+1 and d(x, y) < 1/n(n + 1) the triangle inequality shows
that d(y, F ) < 1/n, hence y /∈ An. Therefore

µ∗(A2k+1) ≥ µ∗(B2k ∪A2k−1) = µ∗(B2k) + µ∗(A2k−1),

and this implies that

µ∗(A2k+1) ≥
k∑

j=1

µ∗(B2j).

A similar argument also gives

µ∗(A2k) ≥
k∑

j=1

µ∗(B2j−1).

Since µ∗(A) is finite, we find that both series
∑

µ∗(B2j) and
∑

µ∗(B2j−1)
are convergent. Finally, we note that

µ∗(An) ≤ µ∗(F c ∩A) ≤ µ∗(An) +
∞∑

j=n+1

µ∗(Bj),



1. Abstract measure spaces 269

and this proves the limit (3). Letting n tend to infinity in the inequal-
ity (2) we find that µ∗(A) ≥ µ∗(F ∩A) + µ∗(F c ∩A), and hence F is
measurable, as was to be shown.

Given a metric space X, a measure µ defined on the Borel sets of X
will be referred to as a Borel measure. Borel measures that assign a
finite measure to all balls (of finite radius) also satisfy a useful regularity
property. The requirement that µ(B) < ∞ for all balls B is satisfied in
many (but not in all) circumstances that arise in practice.1 When it does
hold, we get the following proposition.

Proposition 1.3 Suppose the Borel measure µ is finite on all balls in
X of finite radius. Then for any Borel set E and any ε > 0, there are
an open set O and a closed set F such that E ⊂ O and µ(O − E) < ε,
while F ⊂ E and µ(E − F ) < ε.

Proof. We need the following preliminary observation. Suppose
F ∗ =

⋃∞
k=1 Fk, where the Fk are closed sets. Then for any ε > 0, we can

find a closed set F ⊂ F ∗ such that µ(F ∗ − F ) < ε. To prove this we can
assume that the sets {Fk} are increasing. Fix a point x0 ∈ X, and let Bn

denote the ball {x : d(x, x0) < n}, with B0 = {∅}. Since
⋃∞

n=1 Bn = X,
we have that

F ∗ =
⋃

F ∗ ∩ (Bn −Bn−1).

Now for each n, F ∗ ∩ (Bn −Bn−1) is the limit as k →∞ of the increasing
sequence of closed sets Fk ∩ (Bn −Bn−1), so (recalling that Bn has finite
measure) we can find an N = N(n) so that (F ∗ − FN(n)) ∩ (Bn −Bn−1)
has measure less than ε/2n. If we now let

F =
∞⋃

n=1

(
FN(n) ∩ (Bn −Bn−1)

)
,

it follows that the measure of F ∗ − F is less that
∑∞

n=1 ε/2n = ε. We
also see that F ∩Bk is closed since it is the finite union of closed sets.
Thus F itself is closed because, as is easily seen, any set F is closed
whenever the sets F ∩Bk are closed for all k.

Having established the observation, we call C the collection of all sets
that satisfy the conclusions of the proposition. Notice first that if E
belongs to C then automatically so does its complement.

1This restriction is not always valid for the Hausdorff measures that are considered in
the next chapter.
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Suppose now that E =
⋃∞

k=1 Ek, with each Ek ∈ C. Then there are
open sets Ok, Ok ⊃ Ek, with µ(Ok − Ek) < ε/2k. However, if O =⋃∞

k=1Ok, thenO − E ⊂ ⋃∞
k=1(Ok − Ek), and so µ(O − E) ≤ ∑∞

k=1 ε/2k =
ε.

Next, there are closed sets Fk ⊂ Ek with µ(Ek − Fk) < ε/2k. Thus if
F ∗ =

⋃∞
k=1 Fk, we see as before that µ(E − F ∗) < ε. However, F ∗ is not

necessarily closed, so we can use our preliminary observation to find a
closed set F ⊂ F ∗ with µ(F ∗ − F ) < ε. Thus µ(E − F ) < 2ε. Since ε is
arbitrary, this proves that

⋃∞
k=1 Ek belongs to C.

Let us finally note that any open set O is in C. The property regarding
containment by open sets is immediate. To find a closed F ⊂ O, so
that µ(O − F ) < ε, let Fk = {x ∈ Bk : d(x,Oc) ≥ 1/k}. Then it is clear
that each Fk is closed and O =

⋃∞
k=1 Fk. We then need only apply the

observation again to find the required set F . Thus we have shown that C
is a σ-algebra that contains the open sets, and hence all Borel sets. The
proposition is therefore proved.

1.3 The extension theorem

As we have seen, a class of measurable sets on X can be constructed
once we start with a given exterior measure. However, the definition of
an exterior measure usually depends on a more primitive idea of measure
defined on a simpler class of sets. This is the role of a premeasure defined
below. As we will show, any premeasure can be extended to a measure
on X. We begin with several definitions.

Let X be a set. An algebra in X is a non-empty collection of subsets
of X that is closed under complements, finite unions, and finite intersec-
tions. Let A be an algebra in X. A premeasure on an algebra A is a
function µ0 : A → [0,∞] that satisfies:

(i) µ0(∅) = 0.

(ii) If E1, E2, . . . is a countable collection of disjoint sets in A with⋃∞
k=1 Ek ∈ A, then

µ0

( ∞⋃

k=1

Ek

)
=

∞∑

k=1

µ0(Ek).

In particular, µ0 is finitely additive on A.

Premeasures give rise to exterior measures in a natural way.
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Lemma 1.4 If µ0 is a premeasure on an algebra A, define µ∗ on any
subset E of X by

µ∗(E) = inf

{ ∞∑
j=1

µ0(Ej) : E ⊂
∞⋃

j=1

Ej , where Ej ∈ A for all j

}
.

Then, µ∗ is an exterior measure on X that satisfies:

(i) µ∗(E) = µ0(E) for all E ∈ A.

(ii) All sets in A are measurable in the sense of (1).

Proof. Proving that µ∗ is an exterior measure presents no difficulty.
To see why the restriction of µ∗ to A coincides with µ0, suppose that
E ∈ A. Clearly, one always has µ∗(E) ≤ µ0(E) since E covers itself. To
prove the reverse inequality let E ⊂ ⋃∞

j=1 Ej , where Ej ∈ A for all j.
Then, if we set

E′
k = E ∩

(
Ek −

k−1⋃
j=1

Ej

)
,

the sets E′
k are disjoint elements of A, E′

k ⊂ Ek and E =
⋃∞

k=1 E′
k. By

(ii) in the definition of a premeasure, we have

µ0(E) =
∞∑

k=1

µ0(E′
k) ≤

∞∑

k=1

µ0(Ek).

Therefore, we find that µ0(E) ≤ µ∗(E), as desired.
Finally, we must prove that sets in A are measurable for µ∗. Let A

be any subset of X, E ∈ A, and ε > 0. By definition, there exists a
countable collection E1, E2, . . . of sets in A such that A ⊂ ⋃∞

j=1 Ej and

∞∑
j=1

µ0(Ej) ≤ µ∗(A) + ε.

Since µ0 is a premeasure, it is finitely additive on A and therefore

∞∑
j=1

µ0(Ej) =
∞∑

j=1

µ0(E ∩ Ej) +
∞∑

j=1

µ0(Ec ∩ Ej)

≥ µ∗(E ∩A) + µ∗(Ec ∩A).
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Since ε is arbitrary, we conclude that µ∗(A) ≥ µ∗(E ∩A) + µ∗(Ec ∩A),
as desired.

The σ-algebra generated by an algebra A is by definition the smallest
σ-algebra that contains A. The above lemma then provides the necessary
step for extending µ0 on A to a measure on the σ-algebra generated by
A.

Theorem 1.5 Suppose that A is an algebra of sets in X, µ0 a premea-
sure on A, and M the σ-algebra generated by A. Then there exists a
measure µ on M that extends µ0.

One notes below that µ is the only such extension of µ0 under the as-
sumption that µ is σ-finite.

Proof. The exterior measure µ∗ induced by µ0 defines a measure µ on
the σ-algebra of Carathéodory measurable sets. Therefore, by the result
in the previous lemma, µ is also a measure on M that extends µ0. (We
should observe that in general the class M is not as large as the class of
all sets that are measurable in the sense of (1).)

To prove that this extension is unique whenever µ is σ-finite, we argue
as follows. Suppose that ν is another measure on M that coincides with
µ0 on A, and suppose that F ∈M has finite measure. We claim that
µ(F ) = ν(F ). If F ⊂ ⋃

Ej , where Ej ∈ A, then

ν(F ) ≤
∞∑

j=1

ν(Ej) =
∞∑

j=1

µ0(Ej),

so that ν(F ) ≤ µ(F ). To prove the reverse inequality, note that if E =⋃
Ej , then the fact that ν and µ are two measures that agree on A gives

ν(E) = lim
n→∞

ν(
n⋃

j=1

Ej) = lim
n→∞

µ(
n⋃

j=1

Ej) = µ(E).

If the sets Ej are chosen so that µ(E) ≤ µ(F ) + ε, then the fact that
µ(F ) < ∞ implies µ(E − F ) ≤ ε, and therefore

µ(F ) ≤ µ(E) = ν(E) = ν(F ) + ν(E − F ) ≤ ν(F ) + µ(E − F )

≤ µ(F ) + ε.

Since ε is arbitrary, we find that µ(F ) ≤ ν(F ), as desired.
Finally, we use this last result to prove that if µ is σ-finite, then µ =

ν. Indeed, we may write X =
⋃

Ej , where E1, E2, . . . is a countable
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collection of disjoint sets in A with µ(Ej) < ∞. Then for any F ∈M we
have

µ(F ) =
∑

µ(F ∩Ej) =
∑

ν(F ∩ Ej) = ν(F ),

and the uniqueness is proved.

For later use we record the following observation about the premeasure
µ0 on the algebra A and the resulting measure µ∗ that is implicit in the
argument given above. The details of the proof may be left to the reader.

We define Aσ as the collection of sets that are countable unions of sets
in A, and Aσδ as the sets that arise as countable intersections of sets in
Aσ.

Proposition 1.6 For any set E and any ε > 0, there are sets E1 ∈
Aσ and E2 ∈ Aσδ, such that E ⊂ E1, E ⊂ E2, and µ∗(E1) ≤ µ∗(E) + ε,
while µ∗(E2) = µ∗(E).

2 Integration on a measure space

Once we have established the basic properties of a measure space X, the
fundamental facts about measurable functions and integration of such
functions on X can be deduced as in the case of the Lebesgue measure
on Rd. Indeed, the results in Section 4 of Chapter 1 and all of Chapter 2
go over to the general case, with proofs remaining almost word-for-word
the same. For this reason we shall not repeat these arguments but limit
ourselves to the bare statement of the main points. The reader should
have no difficulty in filling in the missing details.

To avoid unnecessary complications we will assume throughout that
the measure space (X,M, µ) under consideration is σ-finite.

Measurable functions

A function f on X with values in the extended real numbers is measur-
able if

f−1([−∞, a)) = {x ∈ X : f(x) < a} ∈ M for all a ∈ R.

With this definition, the basic properties of measurable functions ob-
tained in the case of Rd with the Lebesgue measure continue to hold.
(See Properties 3 through 6 for measurable functions in Chapter 1.) For
instance, the collection of measurable functions is closed under the ba-
sic algebraic manipulations. Also, the pointwise limits of measurable
functions are measurable.
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The notion of “almost everywhere” that we use now is with respect to
the measure µ. For instance, if f and g are measurable functions on X,
we write f = g a.e. to say that

µ ({x ∈ X : f(x) 6= g(x)}) = 0.

A simple function on X takes the form

N∑

k=1

akχEk
,

where Ek are measurable sets of finite measure and ak are real numbers.
Approximations by simple functions played an important role in the defi-
nition of the Lebesgue integral. Fortunately, this result continues to hold
in our abstract setting.

• Suppose f is a non-negative measurable function on a measure
space (X,M, µ). Then there exists a sequence of simple functions
{ϕk}∞k=1 that satisfies

ϕk(x) ≤ ϕk+1(x) and lim
k→∞

ϕk(x) = f(x) for all x.

In general, if f is only measurable, there exists a sequence of simple
functions {ϕk}∞k=1 that satisfies

|ϕk(x)| ≤ |ϕk+1(x)| and lim
k→∞

ϕk(x) = f(x) for all x.

The proof of this result can be obtained with some obvious minor
modifications of the proofs of Theorems 4.1 and 4.2 in Chapter 1. Here,
one makes use of the technical condition imposed on X, that of being σ-
finite. Indeed, if we write X =

⋃
Fk, where Fk ∈M are of finite measure,

then the sets Fk play the role of the cubes Qk in the proof of Theorem 4.1,
Chapter 1.

Another important result that generalizes immediately is Egorov’s the-
orem.

• Suppose {fk}∞k=1 is a sequence of measurable functions defined on
a measurable set E ⊂ X with µ(E) < ∞, and fk → f a.e. Then
for each ε > 0 there is a set Aε with Aε ⊂ E, µ(E −Aε) ≤ ε, and
such that fk → f uniformly on Aε.
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Definition and main properties of the integral

The four-step approach to the construction of the Lebesgue integral that
begins with its definition on simple functions given in Chapter 2 carries
over to the situation of a σ-finite measure space (X,M, µ). This leads
to the notion of the integral, with respect to the measure µ, of a non-
negative measurable function f on X. This integral is denoted by

∫

X

f(x) dµ(x),

which we sometimes simplify as
∫

X
f dµ,

∫
f dµ or

∫
f , when no con-

fusion is possible. Finally, we say that a measurable function f is inte-
grable if

∫

X

|f(x)| dµ(x) < ∞.

The elementary properties of the integral, such as linearity and mono-
tonicity, continue to hold in this general setting, as well as the following
basic limit theorems.

(i) Fatou’s lemma. If {fn} is a sequence of non-negative measurable
functions on X, then

∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

(ii) Monotone convergence. If {fn} is a sequence of non-negative mea-
surable functions with fn ↗ f , then

lim
n→∞

∫
fn =

∫
f.

(iii) Dominated convergence. If {fn} is a sequence of measurable func-
tions with fn → f a.e., and such that |fn| ≤ g for some integrable
g, then

∫
|fn − f | dµ → 0 as n →∞,

and consequently
∫

fn dµ →
∫

f dµ as n →∞.
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The spaces L1(X, µ) and L2(X, µ)

The equivalence classes (modulo functions that vanish almost every-
where) of integrable functions on (X,M, µ) form a vector space equipped
with a norm. This space is denoted by L1(X,µ) and its norm is

(4) ‖f‖L1(X,µ) =
∫

X

|f(x)| dµ(x).

Similarly we can define L2(X,µ) to be the equivalence class of measurable
functions for which

∫
X
|f(x)|2 dµ(x) < ∞. The norm is then

(5) ‖f‖L2(X,µ) =
(∫

X

|f(x)|2 dµ(x)
)1/2

.

There is also an inner product on this space given by

(f, g) =
∫

X

f(x)g(x) dµ(x).

The proofs of Proposition 2.1 and Theorem 2.2 in Chapter 2, as well as
the results in Section 1 of Chapter 4, extend to this general case and
give:

• The space L1(X, µ) is a complete normed vector space.

• The space L2(X, µ) is a (possibly non-separable) Hilbert space.

3 Examples

We now discuss some useful examples of the general theory.

3.1 Product measures and a general Fubini theorem

Our first example concerns the construction of product measures, and
leads to a general form of the theorem that expresses a multiple integral
as a repeated integral, extending the case of Euclidean space considered
in Section 3 of Chapter 2.

Suppose (X1,M1, µ1) and (X2,M2, µ2) are a pair of measure spaces.
We want to describe the product measure µ1 × µ2 on the space X =
X1 ×X2 = {(x1, x2) : x1 ∈ X1, x2 ∈ X2}.

We will assume here that the two measure spaces are each complete
and σ-finite.

We begin by considering measurable rectangles: these are subsets
of X of the form A×B, with A and B measurable sets, that is, A ∈M1
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and B ∈M2. We then let A denote the collection of all sets in X that are
finite unions of disjoint measurable rectangles. It is easy to check that A
is an algebra of subsets of X. (Indeed, the complement of a measurable
rectangle is the union of three disjoint such rectangles, while the union
of two measurable rectangles is the disjoint union of at most six such
rectangles.) From now on we abbreviate our terminology by referring to
measurable rectangles simply as “rectangles.”

On the rectangles we define the function µ0 by µ0(A×B) = µ1(A)µ2(B).
Now the fact that µ0 has a unique extension to the algebra A for which
µ0 becomes a premeasure is a consequence of the following fact: when-
ever a rectangle A×B is the disjoint union of a countable collection of
rectangles {Aj ×Bj}, A×B =

⋃∞
j=1 Aj ×Bj , then

(6) µ0(A×B) =
∞∑

j=1

µ0(Aj ×Bj).

To prove this, observe that if x1 ∈ A, then for each x2 ∈ B the point
(x1, x2) belongs to exactly one Aj ×Bj . Therefore we see that B is the
disjoint union of the Bj for which x1 ∈ Aj . By the countable additivity
property of the measure µ2 this has as an immediate consequence the
fact that

χA(x1)µ2(B) =
∞∑

j=1

χAj
(x1)µ2(Bj).

Hence integrating in x1 and using the monotone convergence theorem we
get µ1(A)µ2(B) =

∑∞
j=1 µ1(Aj)µ2(Bj), which is (6).

Now that we know that µ0 is a premeasure on A, we obtain from The-
orem 1.5 a measure (which we denote by µ = µ1 × µ2) on the σ-algebra
M of sets generated by the algebra A of measurable rectangles. In this
way, we have defined the product measure space (X1 ×X2,M, µ1 × µ2).

Given a set E in M we shall now consider slices

Ex1 = {x2 ∈ X2 : (x1, x2) ∈ E} and Ex2 = {x1 ∈ X1 : (x1, x2) ∈ E}.

We recall the definitions according to which Aσ denotes the collection
of sets that are countable unions of elements of A, and Aσδ the sets
that arise as countable intersections of sets from Aσ. We then have the
following key fact.
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Proposition 3.1 If E belongs to Aσδ, then Ex2 is µ1-measurable for
every x2; moreover, µ1(Ex2) is a µ2-measurable function. In addition

(7)
∫

X2

µ1(Ex2) dµ2 = (µ1 × µ2)(E).

Proof. One notes first that all the assertions hold immediately when
E is a (measurable) rectangle. Next suppose E is a set in Aσ. Then we
can decompose it as a countable union of disjoint rectangles Ej . (If the
Ej are not already disjoint we only need to replace the Ej by

⋃
k≤j Ek −⋃

k≤j−1 Ek.) Then for each x2 we have Ex2 =
⋃∞

j=1 Ex2
j , and we observe

that {Ex2
j } are disjoint sets. Thus by (7) applied to each rectangle Ej

and the monotone convergence theorem we get our conclusion for each
set E ∈ Aσ.

Next assume E ∈ Aσδ and that (µ1 × µ2)(E) < ∞. Then there is
a sequence {Ej} of sets with Ej ∈ Aσ, Ej+1 ⊂ Ej , and E =

⋂∞
j=1 Ej .

We let fj(x2) = µ1(Ex2
j ) and f(x2) = µ1(Ex2). To see that Ex2 is µ1-

measurable and f(x2) is well-defined, note that Ex2 is the decreasing
limit of the sets Ex2

j , which we have seen by the above are measur-
able. Moreover, since E1 ∈ Aσ and (µ1 × µ2)(E1) < ∞, we see that
fj(x2) → f(x2), as j →∞ for each x2. Thus f(x2) is measurable. How-
ever, {fj(x2)} is a decreasing sequence of non-negative functions, hence

∫

X2

f(x2) dµ2(x) = lim
j→∞

∫

X2

fj(x2) dµ2(x),

and therefore (7) is proved in the case when (µ1 × µ2)(E) < ∞. Now
since we assumed both µ1 and µ2 are σ-finite, we can find sequences F1 ⊂
F2 ⊂ · · · ⊂ Fj ⊂ · · · ⊂ X1 and G1 ⊂ G2 ⊂ · · · ⊂ Gj ⊂ · · · ⊂ X2, with⋃∞

j=1 Fj = X1,
⋃∞

j=1 Gj = X2, µ1(Fj) < ∞, and µ2(Gj) < ∞ for all j.
Then we merely need to replace E by Ej = E ∩ (Fj ×Gj), and let j →∞
to obtain the general result.

We now extend the result in the above proposition to an arbitrary
measurable set E in X1 ×X2, that is, E ∈M, the σ-algebra generated
by the measurable rectangles.

Proposition 3.2 If E is an arbitrary measurable set in X, then the
conclusion of Proposition 3.1 are still valid except that we only assert that
Ex2 is µ1-measurable and µ1(Ex2) is defined for almost every x2 ∈ X2.

Proof. Consider first the case when E is a set of measure zero.
Then we know by Proposition 1.6 that there is a set F ∈ Aσδ such that
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E ⊂ F and (µ1 × µ2)(F ) = 0. Since Ex2 ⊂ F x2 for every x2 and F x2 has
µ1-measure zero for almost every x2 by (7) applied to F , the assumed
completeness of the measure µ2 shows that Ex2 is measurable and has
measure zero for those x2. Thus the desired conclusion holds when E
has measure zero.

If we drop this assumption on E, we can invoke Proposition 1.6 again
to find an F ∈ Aσδ, F ⊃ E, such that F − E = Z has measure zero.
Since F x2 − Ex2 = Zx2 we can apply the case we have just proved, and
find that for almost all x2 the set Ex2 is measurable and µ1(Ex2) =
µ1(F x2)− µ1(Zx2). From this the proposition follows.

We now obtain the main result, generalizing Fubini’s theorem in Chap-
ter 2.

Theorem 3.3 In the setting above, suppose f(x1, x2) is an integrable
function on (X1 ×X2, µ1 × µ2).

(i) For almost every x2 ∈ X2, the slice fx2(x1) = f(x1, x2) is inte-
grable on (X1, µ1).

(ii)
∫

X1
f(x1, x2) dµ1 is an integrable function on X2.

(iii)
∫

X2

(∫
X1

f(x1, x2) dµ1

)
dµ2 =

∫
X1×X2

f dµ1 × µ2.

Proof. Note that if the desired conclusions hold for finitely many
functions, they also hold for their linear combinations. In particular it
suffices to assume that f is non-negative. When f = χE , where E is a set
of finite measure, what we wish to prove is contained in Proposition 3.2.
Hence the desired result also holds for simple functions. Therefore by
the monotone convergence theorem it is established for all non-negative
functions, and the theorem is proved.

We remark that in general the product space (X,M, µ) constructed
above is not complete. However, if we define the completed space (X,M, µ)
as in Exercise 2, the theorem continues to hold in this completed space.
The proof requires only a simple modification of the argument in Propo-
sition 3.2.

3.2 Integration formula for polar coordinates

The polar coordinates of a point x ∈ Rd − {0} are the pair (r, γ), where
0 < r < ∞ and γ belongs to the unit sphere Sd−1 = {x ∈ Rd, |x| = 1}.
These are determined by

(8) r = |x|, γ =
x

|x| , and reciprocally by x = rγ.
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Our intention here is to deal with the formula that, with appropriate
definitions and under suitable hypotheses, states:

(9)
∫

Rd

f(x) dx =
∫

Sd−1

(∫ ∞

0

f(rγ)rd−1 dr

)
dσ(γ).

For this we consider the following pair of measure spaces. First,
(X1,M1, µ1), where X1 = (0,∞), M1 is the collection of Lebesgue mea-
surable sets in (0,∞), and dµ1(r) = rd−1dr in the sense that µ1(E) =∫

E
rd−1 dr. Next, X2 is the unit sphere Sd−1, and the measure µ2 is

the one in effect determined by (9) with µ2 = σ. Indeed given any set
E ⊂ Sd−1 we let Ẽ = {x ∈ Rd : x/|x| ∈ E, 0 < |x| < 1} be the “sector”
in the unit ball whose “end-points” are in E. We shall say E ∈M2

exactly when Ẽ is a Lebesgue measurable subset of Rd, and define
µ2(E) = σ(E) = d ·m(Ẽ), where m is Lebesgue measure in Rd.

With this it is clear that both (X1,M1, µ1) and (X2,M2, µ2) satisfy
all the properties of complete and σ-finite measure spaces. We note also
that the sphere Sd−1 has a metric on it given by d(γ, γ′) = |γ − γ′|, for
γ, γ′ ∈ Sd−1. If E is an open set (with respect to this metric) in Sd−1,
then Ẽ is open in Rd, and hence E is a measurable set in Sd−1.

Theorem 3.4 Suppose f is an integrable function on Rd. Then for al-
most every γ ∈ Sd−1 the slice fγ defined by fγ(r) = f(rγ) is an integrable
function with respect to the measure rd−1 dr. Moreover,

∫∞
0

fγ(r)rd−1 dr
is integrable on Sd−1 and the identity (9) holds.

There is a corresponding result with the order of integration of r and
γ reversed.

Proof. We consider the product measure µ = µ1 × µ2 on X1 ×X2

given by Theorem 3.3. Since the space X1 ×X2 = {(r, γ) : 0 < r <
∞ and γ ∈ Sd−1} can be identified with Rd − {0}, we can think of µ
as a measure of the latter space, and our main task is to identify it with
the (restriction of) Lebesgue measure on that space. We claim first that

(10) m(E) = µ(E)

whenever E is a measurable rectangle E = E1 × E2, and in this case
µ(E) = µ1(E1)µ2(E2). In fact this holds for E2 an arbitrary measurable
subset of Sd−1 and E1 = (0, 1), because then E = E1 × E2 is the sector
Ẽ2, while µ1(E1) = 1/d.

Because of the relative dilation-invariance of Lebesgue measure, (10)
also holds when E = (0, b)× E2, b > 0. A simple limiting argument then
proves the result for sets E1 = (0, a], and by subtraction to all open
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intervals E1 = (a, b), and thus for all open sets. Thus we have m(E1 ×
E2) = µ1(E1)µ2(E2) for all open sets E1, and hence for all closed sets,
and therefore for all Lebesgue measurable sets. (In fact, we can find
sets F1 ⊂ E1 ⊂ O1 with F1 closed and O1 open, such that m1(O1)− ε ≤
m1(E1) ≤ m1(F1) + ε, and apply the above to F1 × E2 and O1 ×E2.)
So we have established the identity (10) for all measurable rectangles
and as a result for all finite unions of measurable rectangles. This is
the algebra A that occurs in the proof of Theorem 3.3, and hence by
the uniqueness in Theorem 1.5, the identity extends to the σ-algebra
generated by A, which is the σ-algebra M on which the measure µ is
defined. To summarize, whenever E ∈M, the assertion (9) holds for
f = χE .

To go further we note that any open set in Rd − {0} can be written
as a countable union of rectangles

⋃∞
j=1 Aj ×Bj , where Aj and Bj are

open in (0,∞) and Sd−1, respectively. (This small technical point is
taken up in Exercise 12.) It follows that any open set is in M, and
therefore so is any Borel set. Thus (9) is valid for χE whenever E is
any Borel set in Rd − {0}. The result then goes over to any Lebesgue
set E′ ⊂ Rd − {0}, since such a set can be written as a disjoint union
E′ = E ∪ Z, where E is a Borel set and Z ⊂ F , with F a Borel set
of measure zero. To finish the proof we follow the familiar steps of
deducing (9) for simple functions, and then by monotonic convergence
for non-negative integrable functions, and from that for the general case.

3.3 Borel measures on R and the Lebesgue-Stieltjes integral

The Stieltjes integral was introduced to provide a generalization of the
Riemann integral

∫ b

a
f(x) dx, where the increments dx were replaced by

the increments dF (x) for a given increasing function F on [a, b]. We wish
to pursue this idea from the general point of view taken in this chapter.
The question that is then raised is that of characterizing the measures
on R that arise in this way, and in particular measures defined on the
Borel sets on the real line.

To have a unique correspondence between measures and increasing
functions as we shall have below, we need first to normalize these func-
tions appropriately. Recall that an increasing function F can have at
most a countable number of discontinuities. If x0 is such a discontinuity,
then

lim
x < x0
x → x0

F (x) = F (x−0 ) and lim
x > x0
x → x0

F (x) = F (x+
0 )
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both exist, while F (x−0 ) < F (x+
0 ) and F (x0) is some value between F (x−0 )

and F (x+
0 ). We shall now modify F at x0, if necessary, by setting

F (x0) = F (x+
0 ), and we do this for every point of discontinuity. The

function F so obtained is now still increasing, yet right-continuous at ev-
ery point, and we say such functions are normalized. The main result
is then as follows.

Theorem 3.5 Let F be an increasing function on R that is normalized.
Then there is a unique measure µ (also denoted by dF ) on the Borel
sets B on R such that µ((a, b]) = F (b)− F (a) if a < b. Conversely, if
µ is a measure on B that is finite on bounded intervals, then F defined
by F (x) = µ((0, x]), x > 0, F (0) = 0 and, F (x) = −µ((−x, 0]), x < 0, is
increasing and normalized.

Before we come to the proof, we remark that the condition that µ be
finite on bounded intervals is crucial. In fact, the Hausdorff measures
that will be considered in the next chapter provide examples of Borel
measures on R of a very different character from those treated in the
theorem.

Proof. We define a function µ∗ on all subsets of R by

µ∗(E) = inf
∞∑

j=1

(F (bj)− F (aj)),

where the infimum is taken over all coverings of E of the form
⋃∞

j=1(aj , bj ].
It is easy to verify that µ∗ is an exterior measure on R. We observe

next that µ∗((a, b]) = (F (b)− F (a)), if a < b. Clearly µ∗((a, b]) ≤ F (b)−
F (a), since (a, b], then covers itself. Next, suppose that

⋃∞
j=1(aj , bj ]

covers (a, b]; then it covers [a′, b] for any a < a′ < b. However, by the
right-continuity of F , if ε > 0 is given, we can always choose b′j > bj such
that F (b′j) ≤ F (bj) + ε/2j . Now the union of open intervals

⋃∞
j=1(aj , b

′
j)

covers [a′, b]. By the compactness of this interval,
⋃N

j=1(aj , b
′
j) covers

[a′, b] for some N . Thus since F is increasing we have

F (b)− F (a′) ≤
N∑

j=1

F (b′j)− F (aj) ≤
N∑

j=1

(F (bj)− F (aj) + ε/2j)

≤ µ∗((a, b]) + ε.

Thus letting a′ → a, and using the right-continuity of F again, we see
that F (b)− F (a) ≤ µ∗((a, b]) + ε. Since ε was arbitrary this then proves
F (b)− F (a) = µ∗((a, b]).
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Next we show that µ∗ is a metric exterior measure (for the usual
metric d(x, x′) = |x− x′| on the real line). Since µ∗ is an exterior measure
we have µ∗(E1 ∪E2) ≤ µ∗(E1) + µ∗(E2); thus it suffices to see that the
reverse inequality holds whenever d(E1, E2) ≥ δ, for some δ > 0.

Suppose that we are given a positive ε, and that
⋃∞

j=1(aj , bj ] is a
covering of E1 ∪E2 such that

∞∑
j=1

F (bj)− F (aj) ≤ µ∗(E1 ∪E2) + ε.

We may assume, after subdividing the intervals (aj , bj ] into smaller half-
open intervals, that each interval in the covering has length less than δ.
When this is so each interval can intersect at most one of the two sets E1

or E2. If we denote by J1 and J2 the sets of those indices for which (aj , bj ]
intersects E1 and E2, respectively, then J1 ∩ J2 is empty; moreover, we
have E1 ⊂

⋃
j∈J1

(aj , bj ] as well as E2 ⊂
⋃

j∈J2
(aj , bj ]. Therefore

µ∗(E1) + µ∗(E2) ≤
∑
j∈J1

F (bj)− F (aj) +
∑
j∈J2

F (bj)− F (aj)

≤
∞∑

j=1

F (bj)− F (aj) ≤ µ∗(E1 ∪E2) + ε.

Since ε was arbitrary, we see that µ∗(E1) + µ∗(E2) ≤ µ∗(E1 ∪ E2), as we
intended to show.

We can now invoke Theorem 1.5. This guarantees the existence of a
measure µ for which the Borel sets are measurable; moreover, we have
µ((a, b]) = F (b)− F (a), since clearly (a, b]) is a Borel set and we have
previously seen that µ∗((a, b]) = F (b)− F (a).

To prove that µ is the unique Borel measure on R for which µ((a, b]) =
F (b)− F (a), let us suppose that ν is another Borel measure with this
property. It now suffices to show that ν = µ on all Borel sets.

We can write any open interval as a disjoint union (a, b) =
⋃∞

j=1(aj , bj ],
by choosing {bj}∞j=1 to be a strictly increasing sequence with a < bj < b,
bj → b as j →∞, and taking a1 = a, aj+1 = bj . Since ν and µ agree on
each (aj , bj ], it follows that ν and µ agree on (a, b), and hence on all
open intervals, and therefore on all open sets. Moreover, clearly ν and µ
are finite on all bounded intervals; thus the regularity in Proposition 1.3
allows one to conclude that µ = ν on all Borel sets.

Conversely, if we start with a Borel measure µ on R that is finite on
bounded intervals, we can define the function F as in the statement of the
theorem. Then clearly F is increasing. To see that it is right-continuous,
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note that if, for instance, x0 > 0, the sets En = (0, x0 + 1/n] decrease
to E = (0, x0] as n →∞, hence µ(En) → µ(E), since µ(E1) < ∞. This
means that F (x0 + 1/n) → F (x0). Since F is increasing, this implies
that F is right-continuous at x0. The argument for any x0 ≤ 0 is similar,
and thus the theorem is proved.

Remarks. Several comments about the theorem are in order.

(i) Two increasing functions F and G give the same measure if F −
G is constant. The converse if also true because F (b)− F (a) =
G(b)−G(a) for all a < b exactly when F −G is constant.

(ii) The measure µ constructed in the proof of the theorem is defined
on a larger σ-algebra than the Borel sets, and is actually complete.
However, in applications, its restriction to the Borel sets often suf-
fices.

(iii) If F is an increasing normalized function given on a closed interval
[a, b], we can extend it to R by setting F (x) = F (a) for x < a, and
F (x) = F (b) for x > b. For the resulting measure µ, the intervals
(−∞, a] and (b,∞) have measure zero. One then often writes

∫

R
f(x) dµ(x) =

∫ b

a

f(x) dF (x),

for every f that is integrable with respect to µ. If F arises from an
increasing function F0 defined on R, one may wish to account for
the possible jump of F0 at a. In this case it is sometimes useful to
define

∫ b

a−
f(x) dF (x) as

∫ b

a

f(x) dµ0(x),

where µ0 is the measure on R corresponding to F0.

(iv) Note that the above definition of the Lebesgue-Stieltjes integral
extends to the case when F is of bounded variation. Indeed suppose
F is a complex-valued function on [a, b] such that F =

∑4
j=1 εjFj ,

where each Fj is increasing and normalized, and εj are ±1 or ±i.
Then we can define

∫ b

a
f(x) dF (x) as

∑4
j=1 εj

∫ b

a
f(x) dFj(x); here

we require that f be integrable with respect to the Borel measure
µ =

∑4
j=1 µj , where µj is the measure corresponding to Fj .

(v) The value of these integrals can be calculated more directly in the
following cases.
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(a) If F is an absolutely continuous function on [a, b], then

∫ b

a

f(x) dF (x) =
∫ b

a

f(x)F ′(x) dx

for every Borel measurable function f that is integrable with
respect to µ = dF .

(b) Suppose F is a pure jump function as in Section 3.3, Chap-
ter 3, with jumps {αn}∞n=1 at the points {xn}∞n=1. Then when-
ever f is, say, continuous and vanishes outside some finite
interval we have

∫ b

a

f(x) dF (x) =
∞∑

n=1

f(xn)αn.

In particular, for the measure µ we have µ({xn}) = αn and
µ(E) = 0 for all sets that do not contain any of the xn.

(c) A special instance arises when F = H, the Heaviside function
defined by H(x) = 1 for x ≥ 0, and H(x) = 0 for x < 0. Then

∫ ∞

−∞
f(x) dH(x) = f(0),

which is another expression for the Dirac delta function arising
in Section 2 of Chapter 3.

Further details about (v) can be found in Exercise 11.

4 Absolute continuity of measures

The generalization of the notion of absolute continuity considered in
Chapter 3 requires that we extend the ideas of a measure to encompass
set functions that may be positive or negative. We describe this notion
first.

4.1 Signed measures

Loosely speaking, a signed measure possesses all the properties of a mea-
sure, except that it may take positive or negative values. More precisely,
a signed measure ν on a σ-algebra M is a mapping that satisfies:

(i) The set function ν is extended-valued in the sense that −∞ <
ν(E) ≤ ∞ for all E ∈M.
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(ii) If {Ej}∞j=1 are disjoint subsets of M, then

ν

( ∞⋃
j=1

Ej

)
=

∞∑
j=1

ν(Ej).

Note that for this to hold the sum
∑

ν(Ej) must be independent of
the rearrangements of terms, so that if ν(

⋃∞
j=1 Ej) is finite, it implies

that the sum converges absolutely.

Examples of signed measures arise naturally if we drop the assumption
that f be non-negative in the expression

ν(E) =
∫

E

f dµ,

where (X,M, µ) is a measure space and f is µ-measurable. In fact,
to ensure that ν satisfies (i) and (ii) the function f is required to be
“integrable” with respect to µ in the extended sense that

∫
f− dµ must

be finite, while
∫

f+ dµ may be infinite.
Given a signed measure ν on (X,M) it is always possible to find a

(positive) measure µ that dominates ν, in the sense that

ν(E) ≤ µ(E) for all E,

and that in addition is the “smallest” µ that has this property.
The construction is in effect an abstract version of the decomposition

of a function of bounded variation as the difference of two increasing
functions, as carried out in Chapter 3. We proceed as follows. We define
a function |ν| on M, called the total variation of ν, by

|ν|(E) = sup
∞∑

j=1

|ν(Ej)|,

where the supremum is taken over all partitions of E, that is, over all
countable unions E =

⋃∞
j=1 Ej , where the sets Ej are disjoint and belong

to M.
The fact that |ν| is actually additive is not obvious, and is given in the

proof below.

Proposition 4.1 The total variation |ν| of a signed measure ν is itself
a (positive) measure that satisfies ν ≤ |ν|.
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Proof. Suppose {Ej}∞j=1 is a countable collection of disjoints sets in
M, and let E =

⋃
Ej . It suffices to prove:

(11)
∑

|ν|(Ej) ≤ |ν|(E) and |ν|(E) ≤
∑

|ν|(Ej).

Let αj be a real number that satisfies αj < |ν|(Ej). By definition, each
Ej can be written as Ej =

⋃
i Fi,j , where the Fi,j are disjoint, belong to

M, and

αj ≤
∞∑

i=1

|ν(Fi,j)|.

Since E =
⋃

i,j Fi,j , we have

∑
αj ≤

∑
j,i

|ν(Fi,j)| ≤ |ν|(E).

Consequently, taking the supremum over the numbers αj gives the first
inequality in (11).

For the reverse inequality, let Fk be any other partition of E. For a
fixed k, {Fk ∩ Ej}j is a partition of Fk, so

∑

k

|ν(Fk)| =
∑

k

∣∣∣∣∣
∑

j

ν(Fk ∩ Ej)

∣∣∣∣∣ ,

since ν is a signed measure. An application of the triangle inequality and
the fact that {Fk ∩ Ej}k is a partition of Ej gives

∑

k

|ν(Fk)| ≤
∑

k

∑
j

|ν(Fk ∩ Ej)|

=
∑

j

∑

k

|ν(Fk ∩ Ej)|

≤
∑

j

|ν|(Ej).

Since {Fk} was an arbitrary partition of E, we obtain the second in-
equality in (11) and the proof is complete.

It is now possible to write ν as the difference of two (positive) measures.
To see this, we define the positive variation and negative variation
of ν by

ν+ =
1
2
(|ν|+ ν) and ν− =

1
2
(|ν| − ν).
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By the proposition we see that ν+ and ν− are measures, and they clearly
satisfy

ν = ν+ − ν− and |ν| = ν+ + ν−.

In the above if ν(E) = ∞ for a set E, then |ν|(E) = ∞, and ν−(E) is
defined to be zero.

We also make the following definition: we say that the signed measure
ν is σ-finite if the measure |ν| is σ-finite. Since ν ≤ |ν| and | − ν| = |ν|,
we find that

−|ν| ≤ ν ≤ |ν|.

As a result, if ν is σ-finite, then so are ν+ and ν−.

4.2 Absolute continuity

Given two measures defined on a common σ-algebra we describe here the
relationships that can exist between them. More concretely, consider two
measures ν and µ defined on the σ-algebra M; two extreme scenarios
are

(a) ν and µ are “supported” on separate parts of M.

(b) The support of ν is an essential part of the support of µ.

Here we adopt the terminology that the measure ν is supported on a
set A, if ν(E) = ν(E ∩A) for all E ∈M.

The Lebesgue-Radon-Nikodym theorem below states that in a precise
sense the relationship between any two measures ν and µ is a combination
of the above two possibilities.

Mutually singular and absolutely continuous measures

Two signed measures ν and µ on (X,M) are mutually singular if there
are disjoint subsets A and B in M so that

ν(E) = ν(A ∩E) and µ(E) = µ(B ∩ E) for all E ∈M.

Thus ν and µ are supported on disjoint subsets. We use the symbol
ν ⊥ µ to denote the fact that the measures are mutually singular.

In contrast, if ν is a signed measure and µ a (positive) measure on M,
we say that ν is absolutely continuous with respect to µ if

(12) ν(E) = 0 whenever E ∈M and µ(E) = 0.
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Thus if ν is supported in a set A, then A must be an essential part of the
support of µ in the sense that µ(A) > 0. We use the symbol ν ¿ µ to
indicate that ν is absolutely continuous with respect to µ. Note that if
ν and µ are mutually singular, and ν is also absolutely continuous with
respect to µ, then ν vanishes identically.

An important example is given by integration with respect to µ. In-
deed, if f ∈ L1(X, µ), or if f is merely integrable in the extended sense
(where

∫
f− < ∞, but possibly

∫
f+ = ∞), then the signed measure ν

defined by

(13) ν(E) =
∫

E

f dµ

is absolutely continuous with respect to µ. We shall use the shorthand
dν = fdµ to indicate that ν is defined by (13).

This is a variant of the notion of absolute continuity that arose in
Chapter 3 in the special case of R (with M the Lebesgue measurable
sets and dµ = dx the Lebesgue measure). In fact, with ν defined by (13)
and f an integrable function, we saw that in place of (12) we had the
following stronger assertion:
(14)
For each ε > 0, there is a δ > 0 such that µ(E) < δ implies |ν(E)| < ε.

In the general situation the relation between the two conditions (12)
and (14) is clarified by the following observation.

Proposition 4.2 The assertion (14) implies (12). Conversely, if |ν| is
a finite measure, then (12) implies (14).

That (12) is a consequence of (14) is obvious because µ(E) = 0 gives
|ν(E)| < ε for every ε > 0. To prove the converse, it suffices to consider
the case when ν is positive, upon replacing ν by |ν|. We then assume
that (14) does not hold. This means that it fails for some fixed ε >
0. Hence for each n, there is a measurable set En with µ(En) < 2−n

while ν(En) ≥ ε. Now let E∗ = lim supn→∞En =
⋂∞

n=1 E∗
n, where E∗

n =⋃
k≥n Ek. Then since µ(E∗

n) ≤ ∑
k≥n 1/2k = 1/2n−1, and the decreasing

sets {E∗
k} are contained in a set of finite measure (E∗

1), we get µ(E∗) = 0.
However ν(E∗

n) ≥ ν(En) ≥ ε, and the ν measure is assumed finite. So
ν(E∗) = limn→∞ ν(E∗

n) ≥ ε, which gives a contradiction.

After these preliminaries we can come to the main result. It guarantees
among other things a converse to the representation (13); it was proved
in the case of R by Lebesgue, and in the general case by Radon and
Nikodym.
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Theorem 4.3 Suppose µ is a σ-finite positive measure on the measure
space (X,M) and ν a σ-finite signed measure on M. Then there exist
unique signed measures νa and νs on M such that νa ¿ µ, νs ⊥ µ and
ν = νa + νs. In addition, the measure νa takes the form dνa = fdµ; that
is,

νa(E) =
∫

E

f(x) dµ(x)

for some extended µ-integrable function f .

Note the following consequence. If ν is absolutely continuous with respect
to µ, then dν = fdµ, and this assertion can be viewed as a generalization
of Theorem 3.11 in Chapter 3.

There are several known proofs of the above theorem. The argument
given below, due to von Neumann, has the virtue that it exploits elegantly
the application of a simple Hilbert space idea.

We start with the case when both ν and µ are positive and finite. Let
ρ = ν + µ, and consider the transformation on L2(X, ρ) defined by

`(ψ) =
∫

X

ψ(x) dν(x).

The mapping ` defines a bounded linear functional on L2(X, ρ) since

|`(ψ)| ≤
∫

X

|ψ(x)| dν(x) ≤
∫

X

|ψ(x)| dρ(x)

≤ (ρ(X))1/2

(∫

X

|ψ(x)|2 dρ(x)
)1/2

,

where the last inequality follows by the Cauchy-Schwarz inequality. But
L2(X, ρ) is a Hilbert space, so the Riesz representation theorem (in Chap-
ter 4) guarantees the existence of g ∈ L2(X, ρ) such that

(15)
∫

X

ψ(x) dν(x) =
∫

X

ψ(x)g(x) dρ(x) for all ψ ∈ L2(X, ρ).

If E ∈M with ρ(E) > 0, when we set ψ = χE in (15) and recall that
ν ≤ ρ, we find

0 ≤ 1
ρ(E)

∫

E

g(x) dρ(x) ≤ 1,

from which we conclude that 0 ≤ g(x) ≤ 1 for a.e. x (with respect to the
measure ρ). In fact, 0 ≤ ∫

E
g(x) dρ(x) for all sets E ∈M implies that
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g(x) ≥ 0 almost everywhere. In the same way, 0 ≤ ∫
E

(1− g(x)) dρ(x)
for all E ∈M guarantees that g(x) ≤ 1 almost everywhere. Therefore
we may clearly assume 0 ≤ g(x) ≤ 1 for all x without disturbing the
identity (15), which we rewrite as

(16)
∫

ψ(1− g) dν =
∫

ψg dµ.

Consider now the two sets

A = {x ∈ X : 0 ≤ g(x) < 1} and B = {x ∈ X : g(x) = 1},

and define two measures νa and νs on M by

νa(E) = ν(A ∩ E) and νs(E) = ν(B ∩ E).

To see why νs ⊥ µ, it suffices to note that setting ψ = χB in (16) gives

0 =
∫

χB dµ = µ(B).

Finally, we set ψ = χE(1 + g + · · ·+ gn) in (16) :

(17)
∫

E

(1− gn+1) dν =
∫

E

g(1 + · · ·+ gn) dµ.

Since (1− gn+1)(x) = 0 if x ∈ B, and (1− gn+1)(x) → 1 if x ∈ A, the
dominated convergence theorem implies that the left-hand side of (17)
converges to ν(A ∩ E) = νa(E). Also, 1 + g + · · ·+ gn converges to 1

1−g ,
so we find in the limit that

νa(E) =
∫

E

f dµ, where f = g
1−g .

Note that f ∈ L1(X, µ), since νa(X) ≤ ν(X) < ∞. If µ and ν are σ-finite
and positive we may clearly find sets Ej ∈M such that X =

⋃
Ej and

µ(Ej) < ∞, ν(Ej) < ∞ for all j.

We may define positive and finite measures on M by

µj(E) = µ(E ∩ Ej) and νj(E) = ν(E ∩Ej),

and then we can write for each j, νj = νj,a + νj,s where νj,s ⊥ µj and
νj,a = fj dµj . Then it suffices to set

f =
∑

fj , νs =
∑

νj,s, and νa =
∑

νj,a.



292 Chapter 6. ABSTRACT MEASURE AND INTEGRATION THEORY

Finally, if ν is signed, then we apply the argument separately to the
positive and negative variations of ν.

To prove the uniqueness of the decomposition, suppose we also have
ν = ν′a + ν′s, where ν′a ¿ µ and ν′s ⊥ µ. Then

νa − ν′a = ν′s − νs.

The left-hand side is absolutely continuous with respect to µ, and the
right-hand side is singular with respect to µ. Thus both sides are zero
and the theorem is proved.

5* Ergodic theorems

Ergodic theory had its beginnings in certain problems in statistical me-
chanics studied in the late nineteenth century. Since then it has grown
rapidly and has gained wide influence in a number of mathematical disci-
plines, in particular those related to dynamical systems and probability
theory. It is not our purpose to try to give an account of this broad
and fascinating theory. Rather, we restrict our presentation to some of
the basic limit theorems that lie at its foundation. These theorems are
most naturally formulated in the general context of abstract measure
spaces, and thus for us they serve as excellent illustrations of the general
framework developed in this chapter.

The setting for the theory is a σ-finite measure space (X,M, µ) en-
dowed with a mapping τ : X → X such that whenever E is a measurable
subset of X, then so is τ−1(E), and µ(τ−1(E)) = µ(E). Here τ−1(E) is
the pre-image of E under τ ; that is, τ−1(E) = {x ∈ X : τ(x) ∈ E}. A
mapping τ with these properties is called a measure-preserving trans-
formation. If in addition for such a τ we have the feature that it is a
bijection and τ−1 is also a measure-preserving transformation, then τ is
referred to as a measure-preserving isomorphism.

Let us note that if τ is a measure-preserving transformation, then
f(τ(x)) is measurable if f(x) is measurable, and is integrable if f is
integrable; moreover, then

(18)
∫

X

f(τ(x)) dµ(x) =
∫

X

f(x) dµ(x).

Indeed, if χE is the characteristic function of the set E, we note that
χE(τ(x)) = χτ−1(E)(x), and so the assertion holds for characteristic func-
tions of measurable sets and thus for simple functions, and hence by the
usual limiting arguments for all non-negative measurable functions, and
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then integrable functions. For later purposes we record here an equiva-
lent statement: whenever f is a real-valued measurable function and α
is any real number, then

µ({x : f(x) > α}) = µ({x : f(τ(x)) > α}).

Before we proceed further, we describe several examples of measure-
preserving transformations:

(i) Here X = Z, the integers, with µ its counting measure; that is,
µ(E) = #(E) = the number of integers in E, for any E ⊂ Z. We
define τ to be the unit translation, τ : n 7→ n + 1. Note that τ gives
a measure-preserving isomorphism of Z.

(ii) Another easy example is X = Rd with Lebesgue measure, and τ a
translation, τ : x 7→ x + h for some fixed h ∈ Rd. This is of course
a measure-preserving isomorphism. (See the section on invariance
properties of the Lebesgue measure in Chapter 1.)

(iii) Here X is the unit circle, given as R/Z, with the measure induced
from Lebesgue measure on R. That is, we may realize X as the unit
interval (0, 1], and take µ to be the Lebesgue measure restricted
to this interval. For any real number α, the translation x 7→ x +
α, taken modulo Z, is well defined on X = R/Z, and is measure-
preserving. (See the related Exercise 3 in Chapter 2.) It can be
interpreted as a rotation of the circle by angle 2πα.

(iv) In this example X is again (0, 1] with Lebesgue measure µ, but τ
is the doubling map τ(x) = 2x mod 1. It is easy to verify that
τ is a measure-preserving transformation. Indeed, any set E ⊂
(0, 1] has two pre-images E1 and E2, the first in (0, 1/2] and the
second in (1/2, 1], both of measure µ(E)/2, if E is measurable.
(See Figure 1.) However, τ is not an isomorphism, since τ is not
injective.

(v) A trickier example is given by the transformation that is key in
the theory of continued fractions. Here X = [0, 1) and τ is defined
by τ(x) = 〈1/x〉, the fractional part of 1/x; when x = 0 we set
τ(0) = 0. Gauss observed, in effect, that the measure dµ = 1

1+x dx
is preserved by the transformation τ . Note that each x ∈ (0, 1) has
infinitely many pre-images under τ ; that is, the sequence {1/(x +
k)}∞k=1. More about this example can be found in Problems 8
through 10 below.
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1/200

E1 E2

1 11/2

E

τ

Figure 1. Pre-images E1 and E2 under the doubling map

Having pointed out these examples, we can now return to the general
theory. The notions described above are of interest, in part, because they
abstract the idea of a dynamical system, one whose totality of states is
represented by the space X, with each point x ∈ X giving a particular
state of the system. The mapping τ : X → X then describes the trans-
formation of the system after a unit of time has elapsed. For such a
system there is often associated a notion of “volume” or “mass” that is
unchanged by the evolution, and this is the role of the invariant measure
µ. The iterates, τn = τ ◦ τ ◦ · · · ◦ τ (n times) describe the evolution of
the system after n units of time, and a principal concern is the average
behaviour, as n →∞, of various quantities associated with the system.
Thus one is led to study averages

(19) An(f)(x) =
1
n

n−1∑

k=0

f(τk(x)),

and their limits as n →∞. To this we now turn.

5.1 Mean ergodic theorem

The first theorem dealing with the averages (19) that we consider is
purely Hilbert-space in character. Historically it preceded both Theo-
rems 5.3 and 5.4 which will be proved below.

For the specific application of the theorem below, one takes the Hilbert
space H to be L2(X,M, µ). Given the measure-preserving transforma-
tion τ on X, we define the linear operator T on H by

(20) T (f)(x) = f(τ(x)).

Then T is an isometry; that is,

(21) ‖Tf‖ = ‖f‖,
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where ‖ · ‖ denotes the Hilbert space (that is, the L2) norm. This is clear
from (18) with f replaced by |f |2. Observe that if τ were also supposed
to be a measure-preserving isomorphism, then T would be invertible and
hence unitary; but we do not assume this.

Now with T as above, consider the subspace S of invariant vec-
tors, S = {f ∈ H : T (f) = f}. Clearly, because of (21), the subspace
S is closed. Let P denote the orthogonal projection on this subspace.
The theorem that follows deals with the “mean” convergence, meaning
convergence in the norm.

Theorem 5.1 Suppose T is an isometry of the Hilbert space H, and let
P be the orthogonal projection on the subspace of the invariant vectors of
T . Let An = 1

n(I + T + T 2 + · · ·+ Tn−1). Then for each f ∈ H, An(f)
converges to P (f) in norm, as n →∞.

Together with the subspace S defined above we consider the subspaces
S∗ = {f ∈ H : T ∗(f) = f} and S1 = {f ∈ H : f = g − Tg, g ∈ H}; here
T ∗ denotes the adjoint of T . Then S∗, like S, is closed, but S1 is not
necessarily closed. We denote its closure by S1. The proof of the theorem
is based on the following lemma.

Lemma 5.2 The following relations hold among the subspaces S, S∗,
and S1.

(i) S = S∗.

(ii) The orthogonal complement of S1 is S.

Proof. First, since T is an isometry, we have that (Tf, Tg) = (f, g)
for all f, g ∈ H, and thus T ∗T = I. (See Exercise 22 in Chapter 4.) So
if Tf = f then T ∗Tf = T ∗f , which means that f = T ∗f . To prove the
converse inclusion, assume T ∗f = f . As a consequence (f, T ∗f − f) = 0,
and thus (f, T ∗f)− (f, f) = 0; that is, (Tf, f) = ‖f‖2. However, ‖Tf‖ =
‖f‖, so we have in the above an instance of equality for the Cauchy-
Schwarz inequality. As a result of Exercise 2 in Chapter 4 we get Tf =
cf , which by the above gives Tf = f . Thus part (i) is proved.

Next we observe that f is in the orthogonal complement of S1 ex-
actly when (f, g − Tg) = 0, for all g ∈ H. However, this means that
(f − T ∗f, g) = 0 for all g, and hence f = T ∗f , which by part (i) means
f ∈ S.

Having established the lemma we can finish the proof of the theorem.
Given any f ∈ H, we write f = f0 + f1, where f0 ∈ S and f1 ∈ S1 (since
S and S1 are orthogonal complements). We also fix ε > 0 and pick f ′1 ∈
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S1 such that ‖f1 − f ′1‖ < ε. We then write

(22) An(f) = An(f0) + An(f ′1) + An(f1 − f ′1),

and consider each term separately.
For the first term, we recall that P is the orthogonal projection on S,

so P (f) = f0, and since Tf0 = f0 we deduce

An(f0) =
1
n

n−1∑

k=0

T k(f0) = f0 = P (f) for every n ≥ 1.

For the second term, we recall the definition of S1 and pick a g ∈ H
with f ′1 = g − Tg. Thus

An(f ′1) =
1
n

n−1∑

k=0

T k(1− T )(g) =
1
n

n−1∑

k=0

T k(g)− T k+1(g)

=
1
n

(g − Tn(g)).

Since T is an isometry, the above identity shows that An(f ′1) converges
to 0 in the norm as n →∞.

For the last term, we use once again the fact that each T k is an isometry
to obtain

‖An(f1 − f ′1)‖ ≤
1
n

n−1∑

k=0

‖T k(f1 − f ′1)‖ ≤ ‖f1 − f ′1‖ < ε.

Finally, from (22) and the above three observations, we deduce that
lim supn→∞ ‖An(f)− P (f)‖ ≤ ε, and this concludes the proof of the the-
orem.

5.2 Maximal ergodic theorem

We now turn to the question of almost everywhere convergence of the
averages (19). As in the case of the averages that occur in the differ-
entiation theorems of Chapter 3, the key to dealing with such pointwise
limits lies in estimates for their corresponding maximal functions. In the
present case this function is defined by

(23) f∗(x) = sup
1≤m<∞

1
m

m−1∑

k=0

|f(τk(x))|.
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Theorem 5.3 Whenever f ∈ L1(X,µ), the maximal function f∗(x) is
finite for almost every x. Moreover, there is a universal constant A so
that

(24) µ({x : f∗(x) > α}) ≤ A

α
‖f‖L1(X,µ) for all α > 0.

There are several proofs of this theorem. The one we choose emphasizes
the close connection to the maximal function given in Section 1.1 of
Chapter 3, and we shall in fact deduce the present theorem from the
one-dimensional case of that chapter. This argument gives the value
A = 6 for the constant in (24). By a different argument one can obtain
A = 1, but this improvement is not relevant in what follows.

Before beginning the proof, we make some preliminary remarks. Note
that in the present case the function f∗ is automatically measurable,
since it is the supremum of a countable number of measurable functions.
Also, we may assume that our function f is non-negative, since otherwise
we may replace it by |f |.

Step 1. The case when X = Z and τ : n 7→ n + 1.
For each function f on Z, we consider its extension f̃ to R defined by

f̃(x) = f(n) for n ≤ x < n + 1, n ∈ Z. (See Figure 2.)

−1

f̃(x)

1 2−1

f(n)

1 2n = 0 x = 0

Figure 2. Extension of f to R

Similarly, if E ⊂ Z, denote by Ẽ the set in R given by Ẽ =
⋃

n∈E [n, n +
1). Note that as a result of these definitions we have m(Ẽ) = #(E) and∫
R f̃(x) dx =

∑
n∈Z f(n), and thus ‖f̃‖L1(R) = ‖f‖L1(Z). Here m is the

Lebesgue measure on R, and # is the counting measure on Z. Note also
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that

m−1∑

k=0

f(n + k) =
∫ m

0

f̃(n + t) dt.

However, because
∫ m

0
f̃(n + t) dt ≤ ∫ m

−1
f̃(x + t) dt whenever x ∈ [n, n +

1), we see that

1
m

m−1∑

k=0

f(n + k) ≤
(

m + 1
m

)
1

m + 1

∫ m

−1

f̃(x + t) dt if x ∈ [n, n + 1).

Taking the supremum over all m ≥ 1 in the above and noting that (m +
1)/m ≤ 2, we obtain

(25) f∗(n) ≤ 2(f̃)∗(x) whenever x ∈ [n, n + 1).

To be clear about the notation here: f∗(n) denotes the maximal function
of f on Z defined by (23), with f(τk(n)) = f(n + k), while (f̃)∗ is the
maximal function as defined in Chapter 3, of the extended function f̃
on R.

By (25)

#({n : f∗(n) > α}) ≤ m({x ∈ R : (f̃)∗(x) > α/2}),

and thus the latter is majorized by A′/(α/2)
∫

f̃(x) dx = 2A′/α‖f̃‖L1(R),
according to the maximal theorem for R. The constant A′ that occurs in
that theorem (there denoted by A) can be taken to be 3. Hence we have

(26) #({n : f∗(n) > α}) ≤ 6
α
‖f‖L1(Z),

since ‖f̃‖L1(R) = ‖f‖L1(Z). This disposes of the special case when X = Z.

Step 2. The general case.
By a sleight-of-hand we shall “transfer” the result for Z just proved to

the general case. We proceed as follows.
For every positive integer N , we consider the truncated maximal func-

tion f∗N defined as

f∗N (x) = sup
1≤m≤N

1
m

m−1∑

k=0

f(τk(x)).
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Since {f∗N (x)} forms an increasing sequence with N , and limN→∞ f∗N (x) =
f∗(x) for every x, it suffices to show that

(27) µ{x : f∗N (x) > α} ≤ A

α
‖f‖L1(X,µ),

with constant A independent of N . Letting N →∞ will then give the
desired result.

So in place of f∗ we estimate f∗N , and to simplify our notation we write
the latter as f∗, dropping the N subscript. Our argument will compare
the maximal function f∗ with the special case arising for Z. To clarify
the formula below we temporarily adopt the expedient of denoting the
second maximal function by M(f). Thus for a positive function f on Z
we set

M(f)(n) = sup
1≤m

1
m

m−1∑

k=0

f(n + k).

Now starting with a function f on X that is integrable, we define the
function F on X × Z by

F (x, n) =
{

f(τn(x)) if n ≥ 0,
0 if n < 0.

Then

Am(f)(x) =
1
m

m−1∑

k=0

f(τk(x)) =
1
m

m−1∑

k=0

F (x, k).

In the above we replace x by τn(x); then since τk(τn(x)) = τn+k(x), we
have

Am(f)(τn(x)) =
1
m

m−1∑

k=0

F (x, n + k).

Now we fix a large positive a and set b = a + N . We also write Fb for
the truncated function on X × Z defined by Fb(x, n) = F (x, n) if n < b,
Fb(x, n) = 0 otherwise. We then have

Am(f)(τn(x)) =
1
m

m−1∑

k=0

Fb(x, n + k) if m ≤ N and n < a.

Thus

(28) f∗(τn(x)) ≤M(Fb)(x, n) if n < a.
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(Recall that f∗ is actually f∗N !) This is the comparison of the two maxi-
mal functions we wished to obtain. Now set Eα = {x : f∗(x) > α}. Then
by the measure-preserving character of τ , µ({x : f∗(τn(x)) > α}) =
µ(Eα). Hence on the product space X × Z the product measure µ×#
of the set {(x, n) ∈ X × Z : f∗(τn(x)) > α, 0 ≤ n < a} equals aµ(Eα).
However, because of (28) the µ×# measure of this set is no more than

∫

X

#({n ∈ Z : M(Fb)(x, n) > α}) dµ.

Because of the maximal estimate (26) for Z, we see that the integrand
above is no more than

A

α
‖Fb(x, n)‖L1(Z) =

A

α

b−1∑
n=0

f(τn(x)),

with of course A = 6.
Hence, integrating this over X and recalling that

∫
X

f(τn(x)) dµ =∫
X

f(x) dµ gives us

aµ(Eα) ≤ A

α
b ‖f‖L1(X) =

A

α
(a + N) ‖f‖L1(X).

Thus µ(Eα) ≤ A
α

(
1 + N

a

) ‖f‖L1(X), and letting a →∞ yields estimate (27).
As we have seen, a final limit as N →∞ then completes the proof.

5.3 Pointwise ergodic theorem

The last of the series of limit theorems we will study is the pointwise
(or individual) ergodic theorem, which combines ideas of the first two
theorems. At this stage it will be convenient to assume that the measure
space (X, µ) is finite; we can then normalize the measure and suppose
µ(X) = 1.

Theorem 5.4 Suppose f is integrable over X. Then for almost every
x ∈ X the averages Am(f) = 1

m

∑m−1
k=0 f(τk(x)) converge to a limit as

m →∞.

Corollary 5.5 If we denote this limit by P ′(f), we have that
∫

X

|P ′(f)(x)| dµ(x) ≤
∫

X

|f(x)| dµ(x).

Moreover P ′(f) = P (f) whenever f ∈ L2(X,µ).
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The idea of the proof is as follows. We first show that Am(f) converges
to a limit almost everywhere for a set of functions f that is dense in
L1(X, µ). We then use the maximal theorem to show that this implies
the conclusion for all integrable functions.

We remark to begin with that because the total measure of X is 1, we
have L2(X,µ) ⊂ L1(X, µ) and ‖f‖L1 ≤ ‖f‖L2 , and moreover L2(X, µ) is
dense in L1(X,µ). In fact, if f belongs to L1, consider the sequence
{fn} defined by fn(x) = f(x) if |f(x)| ≤ n, fn(x) = 0 otherwise. Then
each fn is clearly in L2, while by the dominated convergence theorem
‖f − fn‖L1 → 0.

Now starting with an integrable f and any ε > 0 we shall see that we
can write f = F + H, where ‖H‖L1 < ε, and F = F0 + (1− T )G, where
both F0 and G belong to L2, and T (F0) = F0, with T (F0) = F0(τ(x)). To
obtain this decomposition of f , we first write f = f ′ + h′, where f ′ ∈ L2

and ‖h′‖L1 < ε/2, which we can do in view of the density of L2 in L1

as seen above. Next, since the subspaces S and S1 of Lemma 5.2 are
orthogonal complements in L2, we can find F0 ∈ S, F1 ∈ S1, such that
f ′ = F0 + F1 + h with ‖h‖L2 < ε/2. Because F1 ∈ S1 is automatically
of the form F1 = (1− T )G, we obtain f = F + H, with F = F0 + (1−
T )G and H = h + h′. Thus ‖H‖L1 ≤ ‖h‖L1 + ‖h′‖L1 and since ‖h‖L1 ≤
‖h‖L2 < ε/2 we have achieved our desired decomposition of f .

Now Am(F ) = Am(F0) + Am((1− T )G) = F0 + 1
m(1− Tm(G)), as we

have already seen in the proof of Theorem 5.1. Note that 1
mTm(G) =

1
mG(τm(x)) converges to zero as m →∞ for almost every x ∈ X. In-
deed, the series

∑∞
m=1

1
m2 (G(τm(x)))2 converges almost everywhere by

the monotone convergence theorem, since its integral over X is

∞∑
m=1

1
m2

‖TmG‖2L2 = ‖G‖2L2

∞∑
m=1

1
m2

,

which is finite.

As a result, Am(F )(x) converges for almost every x ∈ X. Finally,
to prove the corresponding convergence for Am(f)(x), we argue as in
Theorem 1.3 in Chapter 3 and set

Eα = {x : lim
N→∞

sup
n,m≥N

|An(f)(x)−Am(f)(x)| > α}.

Then it suffices to see that µ(Eα) = 0 for all α > 0. However, since
An(f)−Am(f) = An(F )−Am(F ) + An(H)−Am(H), and Am(F )(x) con-
verges almost everywhere as m →∞, it follows that almost every point
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in the set Eα is contained in E′
α, where

E′
α = {x : sup

n,m≥N
|An(H)(x)−Am(H)(x)| > α},

and thus µ(Eα) ≤ µ(E′
α) ≤ µ({x : 2 supm |Am(H)(x)| > α}). The last

quantity is majorized by A/(α/2)‖H‖L1 ≤ 2εA/α by Theorem 5.3. Since
ε was arbitrary we see that µ(Eα) = 0, and hence Am(f)(x) is a Cauchy
sequence for almost every x, and the theorem is proved.

To establish the corollary, observe that if f ∈ L2(X), we know by
Theorem 5.1 that Am(f) converges to P (f) in the L2-norm, and hence
a subsequence converges almost everywhere to that limit, showing that
P (f) = P ′(f) in that case. Next, for any f that is merely integrable, we
have

∫

X

|Am(f)| dx ≤ 1
m

m−1∑

k=0

∫

X

|f(τk(x))| dµ(x) =
∫

X

|f(x)| dµ(x),

and thus since Am(f) → P ′(f) almost everywhere, we get by Fatou’s
lemma that

∫
X
|P ′(f)(x)| dµ(x) ≤ ∫

X
|f(x)| dµ(x). With this the corol-

lary is also proved.

It can be shown that the conclusions of the theorem and corollary are
still valid if we drop the assumption that the space X has finite measure.
The modifications of the argument needed to obtain this more general
conclusion are outlined in Exercise 26.

5.4 Ergodic measure-preserving transformations

The adjective “ergodic” is commonly applied to the three limit theorems
proved above. It also has a related but separate usage describing an
important class of transformations of the space X.

We say that a measure-preserving transformation τ of X is ergodic
if whenever E is a measurable set that is “invariant,” that is, E and
τ−1(E) differ by sets of measure zero, then either E or Ec has measure
zero.

There is a useful rephrasing of this condition of ergodicity. Expanding
the definition used in Section 5.1 we say that a measurable function f
is invariant if f(x) = f(τ(x)) for a.e. x ∈ X. Then τ is ergodic exactly
when the only invariant functions are equivalent to constants. In fact,
let τ be an ergodic transformation, and assume that f is a real-valued in-
variant function. Then each of the sets Ea = {x : f(x) > a} is invariant,
hence µ(Ea) = 0 or µ(Ec

a) = 0 for each a. However, if f is not equivalent
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to a constant, then both µ(Ea) and µ(Ec
a) must have strictly positive

measure for some a. In the converse direction we merely need to note
that if all characteristic functions of measurable sets that are invariant
must be constants, then τ is ergodic.

The following result subsumes the conclusion of Theorem 5.4 for er-
godic transformations. We keep to the assumption of that theorem that
the underlying space X has measure equal to 1.

Corollary 5.6 Suppose τ is an ergodic measure-preserving transforma-
tion. For any integrable function f we have

1
m

m−1∑

k=0

f(τk(x)) converges to
∫

X

f dµ for a.e. x ∈ X as m →∞.

The result has the interpretation that the “time average” of f equals its
“space average.”

Proof. By Theorem 5.1 we know that the averages Am(f) converge
to P (f), whenever f ∈ L2, where P is the orthogonal projection on the
subspace of invariant vectors. Since in this case the invariant vectors
form a one-dimensional space spanned by the constant functions, we
observe that P (f) = 1(f, 1) =

∫
X

f dµ, where 1 designates the function
identically equal to 1 on X. To verify this, note that P is the identity on
constants and annihilates all functions orthogonal to constants. Next we
write any f ∈ L1 as g + h, where g ∈ L2 and ‖h‖L1 < ε. Then P ′(f) =
P ′(g) + P ′(h). However, we also know that P ′(g) = P (g), and ‖P ′(h)‖ ≤
‖h‖L1 < ε by the corollary to Theorem 5.4. Thus

P ′(f)−
∫

X

f dµ =
∫

X

(g − f) dµ + P ′(h)

yields that ‖P ′(f)− ∫
X

f dµ‖L1 ≤ ‖g − f‖L1 + ε < 2ε. This shows that
P ′(f) is the constant

∫
X

f dµ and the assertion is proved.

We shall now elaborate on the nature of ergodicity and illustrate its
thrust in terms of several examples.

a) Rotations of the circle
Here we take up the example described in (iii) at the beginning of

Section 5*. On the unit circle R/Z with the induced Lebesgue measure,
we consider the action τ given by x 7→ x + α mod 1. The result is

• The mapping τ is ergodic if and only if α is irrational.
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To begin with, if α is irrational we know by the equidistribution theorem
that

(29)
1
n

n−1∑

k=0

f(x + kα) →
∫ 1

0

f(x) dx as n →∞

for every x if f is continuous on [0, 1] and periodic (f(0) = f(1)). The
argument used to prove this goes as follows.2 First we verify that (29)
holds whenever f(x) = e2πinx, n ∈ Z, by considering the cases n = 0 and
n 6= 0 separately. It then follows that (29) is valid for any trigonometric
polynomial (a finite linear combination of these exponentials). Finally,
any continuous and periodic function can be uniformly approximated by
trigonometric polynomials, so (29) goes over to the general case.

Now if P is the projection on invariant L2-functions, then Theorem 5.1
and (29) show that P projects onto the constants, when restricted to the
continuous periodic functions. Since this subspace is dense in L2, we
see that P still projects all of L2 on constants; hence the invariant L2-
functions are constants and thus τ is ergodic.

On the other hand, suppose α = p/q. Choose any set E0 ⊂ (0, 1/q), so
that 0 < m(E0) < 1/q, and let E denote the disjoint union

⋃q−1
r=0(E0 +

r/q). Then clearly E is invariant under τ : x 7→ x + p/q, and 0 < m(E) =
qm(E0) < 1; thus τ is not ergodic.

The property (29) we used, which involves the existence of the limit
at all points, is actually stronger than ergodicity: it implies that the
measure dµ = dx is uniquely ergodic for this mapping τ . That means
that if ν is any measure on the Borel sets of X preserved by τ and
ν(X) = 1, then ν must equal µ.

To see that this so in the present case, let Pν be the orthogonal projec-
tion guaranteed by Theorem 5.1, on the space L2(X, ν). Then (29) shows
again that the range of Pν on the continuous functions, and then on all
of L2(X, ν), is the subspace of constants, and thus Pν(f) =

∫ 1

0
f dν.

This means also that
∫ 1

0
f(x) dx =

∫ 1

0
f dν whenever f is continuous

and periodic. By a simple limiting argument we then get that the mea-
sure dx = dµ and ν agree on all open intervals, and thus on all open
sets. As we have seen, this then proves that the two measures are then
identical.

In general, uniquely ergodic measure-preserving transformations are
ergodic, but the converse need not be true, as we shall see below.

b) The doubling mapping

2See also Section 2, Chapter 4 in Book I.
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We now consider the mapping x 7→ 2x mod 1 for x ∈ (0, 1], with µ
Lebesgue measure, that arose in example (iv) at the beginning of Sec-
tion 5*. We shall prove that τ is ergodic and in fact satisfies a different
and stronger property called mixing.3 It is defined as follows.

If τ is a measure-preserving transformation on the space (X, µ), it is
said to be mixing if whenever E and F are a pair of measurable subsets
then

(30) µ(τ−n(E) ∩ F ) → µ(E)µ(F ) as n →∞.

The meaning of (30) can be understood as follows. In probability theory
one often encounters a “universe” of possible events to which probabilities
are assigned. These events are represented as measurable subsets E of
some space (X, µ) with µ(X) = 1. The probability of each event is then
µ(E). Two events E and F are “independent” if the probability that
they both occur is the product of their separate probabilities, that is,
µ(E ∩ F ) = µ(E)µ(F ). The assertion (30) of mixing is then that in the
limit as time n tends to infinity, the sets τ−n(E) and F are asymptotically
independent, whatever the choices of E and F .

We shall next observe that the mixing condition is implied by the
seemingly stronger condition

(31) (Tnf, g) → (f, 1)(1, g) as n →∞,

where Tn(f)(x) = f(τn(x)) whenever f and g belong to L2(X, µ). This
implication follows immediately upon taking f = χE and g = χF . The
converse is also true, but we leave its proof as an exercise to the reader.

We now remark that the mixing condition implies the ergodicity of τ .
Indeed, by (31)

(An(f), g) =
1
n

n−1∑

k=0

(T kf, g) converges to (f, 1)(1, g).

This means (P (f), g) = (f, 1)(1, g), and hence P (f) is orthogonal to all
g that are orthogonal to constants. This of course means that P is the
orthogonal projection on constants, and hence τ is ergodic.

We next observe that the doubling map is mixing. Indeed, if f(x) =
e2πimx, g(x) = e2πikx, then (f, 1)(1, g) = 0, unless both m and k are 0,
in which case this product equals 1. However, in this case (Tnf, g) =∫ 1

0
e2πim2nxe−2πikx dx, and this vanishes for sufficiently large n, unless

3This property is often referred to as a “strongly mixing” to distinguish it from still
another kind of ergodicity called “weakly mixing.”
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both m and k are 0, in which case the integral equals 1. Thus (31)
holds for all exponentials f(x) = e2πimx, g(x) = e2πikx, and therefore by
linearity for all trigonometric polynomials f and g. It is from there an
easy step to use the completeness in Chapter 4 to pass to all f and g in
L2((0, 1]) by approximating these functions in the L2-norm by trigono-
metric polynomials.

Let us observe that the action of rotations τ : x 7→ x + α of the unit
circle for irrational α, although ergodic, is not mixing. Indeed, if we take
f(x) = g(x) = e2πimx, m 6= 0, then (Tnf, g) = e2πinmα(f, g) = e2πinmα,
while (f, 1) = (1, g) = 0; thus (Tnf, g) does not converge to (f, 1)(1, g)
as n →∞.

Finally, we note that the doubling map τ : x 7→ 2x mod 1 on (0, 1]
is not uniquely ergodic. Besides the Lesbesgue measure, the measure ν
with ν{1} = 1 but ν(E) = 0 if 1 /∈ E is also preserved by τ .

Further examples of ergodic transformations are given below.

6* Appendix: the spectral theorem

The purpose of this appendix is to present an outline of the proof of the spectral
theorem for bounded symmetric operators on a Hilbert space. Details that are
not central to the proof of the theorem will be left to the interested reader to fill
in. The theorem provides an interesting application of the ideas related to the
Lebesgue-Stieltjes integrals that are treated in this chapter.

6.1 Statement of the theorem

A basic notion is that of a spectral resolution (or spectral family) on a Hilbert
space H. This is a function λ 7→ E(λ) from R to orthogonal projections on H that
satisfies the following:

(i) E(λ) is increasing in the sense that ‖E(λ)f‖ is an increasing function of λ
for every f ∈ H.

(ii) There is an interval [a, b] such that E(λ) = 0 if λ < a, and E(λ) = I if λ ≥ b.
Here I denotes the identity operator on H.

(iii) E(λ) is right-continuous, that is, for every λ one has

lim
µ → λ
µ > λ

E(µ)f = E(λ)f for every f ∈ H.

Observe that property (i) is equivalent with each of the following three assertions
(holding for all pairs λ, µ with µ > λ): (a) the range of E(µ) contains the range of
E(λ); (b) E(µ)E(λ) = E(λ); (c) E(µ)− E(λ) is an orthogonal projection.

Now given a spectral resolution {E(λ)} and an element f ∈ H, note that the
function λ 7→ (E(λ)f, f) = ‖E(λ)f‖2 is also increasing. As a result, the polar-
ization identity (see Section 5 in Chapter 4) shows that for every pair f, g ∈ H,
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the function F (λ) = (E(λ)f, g) is of bounded variation, and is moreover right-
continuous. With these two observations we can now state the main result.

Theorem 6.1 Suppose T is a bounded symmetric operator on a Hilbert space H.
Then there exists a spectral resolution {E(λ)} such that

T =

Z b

a−
λ dE(λ)

in the sense that for every f, g ∈ H

(32) (Tf, g) =

Z b

a−
λ d(E(λ)f, g) =

Z b

a−
λ dF (λ).

The integral on the right-hand side is taken in the Lebesgue-Stieltjes sense, as
in (iii) and (iv) of Section 3.3.

The result encompasses the spectral theorem for compact symmetric operators T
in the following sense. Let {ϕk} be an orthonormal basis of eigenvectors of T with
corresponding eigenvalues λk, as guaranteed by Theorem 6.2 in Chapter 4. In this
case, we take the spectral resolution to be defined via this orthogonal expansion
by

E(λ)f ∼
X

λk≤λ

(f, ϕk)ϕk,

and one easily verifies that it satisfies conditions (i), (ii) and (iii) above. We also
note that ‖E(λ)f‖2 =

P
λk≤λ |(f, ϕk)|2, and thus F (λ) = (E(λ)f, g) is a pure jump

function as in Section 3.3 in Chapter 3.

6.2 Positive operators

The proof of the theorem depends on the concept of positivity of operators. We
say that T is positive, written as T ≥ 0, if T is symmetric and (Tf, f) ≥ 0 for
all f ∈ H. (Note that (Tf, f) is automatically real if T is symmetric.) One then
writes T1 ≥ T2 to mean that T1 − T2 ≥ 0. Note that for two orthogonal projections
we have E2 ≥ E1 if and only if ‖E2f‖ ≥ ‖E1f‖ for all f ∈ H, and that is then
equivalent with the corresponding properties (a)−(c) described above. Notice also
that if S is symmetric, then S2 = T is positive. Now for T symmetric, let us write

(33) a = min(Tf, f) and b = max(Tf, f) for ‖f‖ ≤ 1.

Proposition 6.2 Suppose T is symmetric. Then ‖T‖ ≤ M if and only if −MI ≤
T ≤ MI. As a result, ‖T‖ = max(|a|, |b|).

This is a consequence of (7) in Chapter 4.

Proposition 6.3 Suppose T is positive. Then there exists a symmetric operator
S (which can be written as T 1/2) such that S2 = T and S commutes with every
operator that commutes with T .
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The last assertion means that if for some operator A we have AT = TA, then
AS = SA.

The existence of S is seen as follows. After multiplying by a suitable positive
scalar, we may assume that ‖T‖ ≤ 1. Consider the binomial expansion of (1−
t)1/2, given by (1− t)1/2 =

P∞
k=0 bktk, for |t| < 1. The relevant fact that is needed

here is that the bk are real and
P∞

k=0 |bk| < ∞. Indeed, by direct calculation of

the power series expansion of (1− t)1/2 we find that b0 = 1, b1 = −1/2, b2 = −1/8,
and more generally, bk = −1/2 · 1/2 · · · (k − 3/2)/k!, if k ≥ 2, from which it follows
that bk = O(k−3/2). Or more simply, since bk < 0 when k ≥ 1, if we let t → 1 in
the definition, we see that −P∞

k=1 bk = 1 and so
P∞

k=0 |bk| = 2.

Now let sn(t) denote the polynomial
Pn

k=0 bktk. Then the polynomial

(34) s2
n(t)− (1− t) =

2nX

k=0

cn
k tk

has the property that
P2n

k=0 |cn
k | → 0 as n →∞. In fact, sn(t) = (1− t)1/2 − rn(t),

with rn(t) =
P∞

k=n+1 bktk, so s2
n(t)− (1− t) = −r2

n(t)− 2sn(t)rn(t). Now the left-
hand side is clearly a polynomial of degree ≤ 2n, and so comparing coefficients with
those on the right-hand side shows that the cn

k are majorized by 3
P

j>n |bj | |bk−j |.
From this it is immediate that

P
k |cn

k | = O(
P

j>n |bj |) → 0 as n →∞, as asserted.

To apply this, set T1 = I − T ; then 0 ≤ T1 ≤ I, and thus ‖T1‖ ≤ 1, by Proposi-
tion 6.2. Let Sn = sn(T1) =

Pn
k=0 bkT k

1 , with T 0
1 = I. Then in terms of operator

norms, ‖Sn − Sm‖ ≤
P

k≥min(n,m) |bk| → 0 as n, m →∞, because ‖T k
1 ‖ ≤ ‖T1‖k ≤

1. Hence Sn converges to some operator S. Clearly Sn is symmetric for each n,
and thus S is also symmetric. Moreover, by (34), S2

n − T =
P2n

k=0 cn
kT k

1 , therefore
‖S2

n − T‖ ≤P |cn
k | → 0 as n →∞, which implies that S2 = T . Finally, if A com-

mutes with T it clearly commutes with every polynomial in T , hence with Sn, and
thus with S. The proof of the proposition is therefore complete.

Proposition 6.4 If T1 and T2 are positive operators that commute, then T1T2 is
also positive.

Indeed, if S is a square root of T1 given in the previous proposition, then T1T2 =
SST2 = ST2S, and hence (T1T2f, f) = (ST2Sf, f) = (T2Sf, Sf), since S is sym-
metric, and thus the last term is positive.

Proposition 6.5 Suppose T is symmetric and a and b are given by (33). If p(t) =Pn
k=0 cktk is a real polynomial which is positive for t ∈ [a, b], then the operator

p(T ) =
Pn

k=0 ckT k is positive.

To see this, write p(t) = c
Q

j(t− ρj)
Q

k(ρ′k − t)
Q

`((t− µ`)
2 + ν`), where c is pos-

itive and the third factor corresponds to the non-real roots of p(t) (arising in con-
jugate pairs), and the real roots of p(t) lying in (a, b) which are necessarily of
even order. The first factor contains the real roots ρj with ρj ≤ a, and the second
factor the real roots ρ′k with ρ′k ≥ b. Since each of the factors T − ρjI, ρ′jI − T
and (T − µ`I)2 + ν2

` I is positive and these commute, the desired conclusion follows
from the previous proposition.
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Corollary 6.6 If p(t) is a real polynomial, then

‖p(T )‖ ≤ sup
t∈[a,b]

|p(t)|.

This is an immediate consequence using Proposition 6.2, since −M ≤ p(t) ≤ M ,
where M = supt∈[a,b] |p(t)|, and thus −MI ≤ p(T ) ≤ MI.

Proposition 6.7 Suppose {Tn} is a sequence of positive operators that satisfy
Tn ≥ Tn+1 for all n. Then there is a positive operator T , such that Tnf → Tf as
n →∞ for every f ∈ H.

Proof. We note that for each fixed f ∈ H the sequence of positive numbers
(Tnf, f) is decreasing and hence convergent. Now observe that for any positive
operator S with ‖S‖ ≤ M we have

(35) ‖S(f)‖2 ≤ (Sf, f)1/2M3/2‖f‖.

In fact, the quadratic function (S(tI + S)f, (tI + S)f) = t2(Sf, f) + 2t(Sf, Sf) +
(S2f, Sf) is positive for all real t. Hence its discriminant is negative, that is,
‖S(f)‖4 ≤ (Sf, f)(S2f, Sf), and (35) follows. We apply this to S = Tn − Tm with
n ≤ m; then ‖Tn − Tm‖ ≤ ‖Tn‖ ≤ ‖T1‖ = M , and since ((Tn − Tm)f, f) → 0 as
n, m →∞ we see that ‖Tnf − Tmf‖ → 0 as n, m →∞. Thus limn→∞ Tn(f) =
T (f) exists, and T is also clearly positive.

6.3 Proof of the theorem

Starting with a given symmetric operator T , and with a, b given by (33), we shall
now exploit further the idea of associating to each suitable function Φ on [a, b] a
symmetric operator Φ(T ). We do this in increasing order of generality. First, if
Φ is a real polynomial

Pn
k=0 cktk, then, as before, Φ(T ) is defined as

Pn
k=0 ckT k.

Notice that this association is a homomorphism: if Φ = Φ1 + Φ2, then Φ(T ) =
Φ1(T ) + Φ2(T ); also if Φ = Φ1 · Φ2, then Φ(T ) = Φ1(T ) · Φ2(T ). Moreover, since
Φ is real (and the ck are real), Φ(T ) is symmetric.

Next, because every real-valued continuous function Φ on [a, b] can be approx-
imated uniformly by polynomials pn (see, for instance, Section 1.8, Chapter 5 of
Book I), we see by Corollary 6.6 that the sequence pn(T ) converges, in the norm of
operators, to a limit which we call Φ(T ), and moreover this limit does not depend
on the sequence of polynomials approximating Φ. Also, Φ(T ) is automatically a
symmetric operator. If Φ(t) ≥ 0 on [a, b] we can always take the approximating
sequence to be positive on [a, b], and as a result Φ(T ) ≥ 0.

Finally, we define Φ(T ) whenever Φ arises as a limit, Φ(t) = limn→∞ Φn(t),
where {Φn(t)} is a decreasing sequence of positive continuous functions on [a, b]. In
fact, by Proposition 6.7 the limit limn→∞ Φn(T ) exists by what we have established
above for Φn. To show that this limit is independent of the sequence {Φn} and
thus that Φ(t) is well-defined as the limit above, let {Φ′n} be another sequence of
decreasing continuous functions converging to Φ. Then whenever ε > 0 is given and
k is fixed, Φ′n(t) ≤ Φk(t) + ε for all n sufficiently large. Thus Φ′n(T ) ≤ Φk(T ) + εI
for these n, and passing to the limit first in n, then in k, and then with ε → 0, we get
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limn→∞ Φ′n(T ) ≤ limk→∞ Φk(T ). By symmetry, the reverse inequality holds, and
the two limits are the same. Note also that for a pair of these limiting functions,
if Φ1(t) ≤ Φ2(t) for t ∈ [a, b], then Φ1(T ) ≤ Φ2(T ).

The basic functions Φ, Φ = ϕλ, that give us the spectral resolution are defined
for each real λ by

ϕλ(t) = 1 if t ≤ λ and ϕλ(t) = 0 if λ < t.

We note that ϕλ(t) = lim ϕλ
n(t), where ϕλ

n(t) = 1 if t ≤ λ, ϕλ
n(t) = 0 if t ≥ λ + 1/n,

and ϕλ
n(t) is linear for t ∈ [λ, λ + 1/n]. Thus each ϕλ(t) is a limit of a decreasing

sequence of continuous functions. In accordance with the above we set

E(λ) = ϕλ(T ).

Since limn→∞ ϕλ1
n (t)ϕλ2

n (t) = ϕλ1
n (t) whenever λ1 ≤ λ2, we see that E(λ1)E(λ2) =

E(λ1). Thus E(λ)2 = E(λ) for every λ, and because E(λ) is symmetric it is
therefore an orthogonal projection. Moreover, for every f ∈ H

‖E(λ1)f‖ = ‖E(λ1)E(λ2)f‖ ≤ ‖E(λ2)f‖,

thus E(λ) is increasing. Clearly E(λ) = 0 if λ < a, since for those λ, ϕλ(t) = 0 on
[a, b]. Similarly, E(λ) = I for λ ≥ b.

Next we note that E(λ) is right-continuous. In fact, fix f ∈ H and ε > 0. Then
for some n, which we now keep fixed, ‖E(λ)f − ϕλ

n(T )f‖ < ε. However, ϕµ
n(t)

converges to ϕλ
n(t) uniformly in t as µ → λ. Hence supt |ϕµ

n(t)− ϕλ
n(t)| < ε, if

|µ− λ| < δ, for an appropriate δ. Thus by the corollary ‖ϕµ
n(T )− ϕλ

n(T )‖ < ε
and therefore ‖E(λ)f − ϕµ

n(T )‖ < 2ε. Now with µ ≥ λ we have that E(µ)E(λ) =
E(λ) and E(µ)ϕµ

n(T ) = E(µ). As a result ‖E(λ)f − E(µ)f‖ < 2ε, if λ ≤ µ ≤ λ +
δ. Since ε was arbitrary, the right continuity is established.

Finally we verify the spectral representation (32). Let a = λ0 < λ1 < · · · < λk =
b be any partition of [a, b] for which supj(λj − λj−1) < δ. Then since

t =

kX
j=1

t(ϕλj (t)− ϕλj−1(t)) + tϕλ0(t)

we note that

t ≤
kX

j=1

λj(ϕ
λj (t)− ϕλj−1(t)) + λ0ϕ

λ0(t) ≤ t + δ.

Applying these functions to the operator T we obtain

T ≤
kX

j=1

λj(E(λj)− E(λj−1)) + λ0E(λ0) ≤ T + δI,
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and thus T differs in norm from the sum above by at most δ. As a result

˛̨
˛̨
˛(Tf, f)−

kX
j=1

λj

Z

(λj−1,λj ]

d(E(λ)f, f)− λ0(E(λ0)f, f)

˛̨
˛̨
˛ ≤ δ‖f‖2.

But as we vary the partitions of [a, b], letting their meshes δ tend to zero, the

above sum tends to
R b

a− λ d(E(λ)f, f). Therefore (Tf, f) =
R b

a− λ d(E(λ)f, f), and
the polarization identity gives (32).

A similar argument shows that if Φ is continuous on [a, b], then the operator
Φ(T ) has an analogous spectral representation

(36) (Φ(T )f, g) =

Z b

a−
Φ(λ) d(E(λ)f, g).

This is because |Φ(t)−Pk
j=1 Φ(λj)(ϕ

λj (t)− ϕλj−1(t))− Φ(λ0)ϕ
λ0(t)| < δ′, where

δ′ = sup|t−t′|≤δ |Φ(t)− Φ(t′)|, which tends to zero as δ → 0.
This representation also extends to continuous Φ that are complex-valued (by

considering the real and imaginary parts separately) or for Φ that are limits of
decreasing pointwise continuous functions.

6.4 Spectrum

We say that a bounded operator S on H is invertible if S is a bijection of H
and its inverse, S−1, is also bounded. Note that S−1 satisfies S−1S = SS−1 = I.
The spectrum of S, denoted by σ(S), is the set of complex numbers z for which
S − zI is not invertible.

Proposition 6.8 If T is symmetric, then σ(T ) is a closed subset of the interval
[a, b] given by (33).

Note that if z /∈ [a, b], the function Φ(t) = (t− z)−1 is continuous on [a, b] and
Φ(T )(T − zI) = (T − zI)Φ(T ) = I, so Φ(T ) is the inverse of T − zI. Now suppose
T0 = T − λ0I is invertible. Then we claim that T0 − εI is invertible for all (com-
plex) ε that are sufficiently small. This will prove that the complement of σ(T ) is
open. Indeed, T0 − εI = T0(I − εT−1

0 ), and we can invert the operator (I − εT−1
0 )

(formally) by writing its inverse as a sum

∞X
n=0

εn(T−1
0 )n+1.

Since
P∞

n=0 ‖εn(T−1
0 )n+1‖ ≤P |ε|n‖T−1

0 ‖n+1, the series converges when |ε| < ‖T−1
0 ‖−1,

and the sum is majorized by

(37) ‖T−1
0 ‖ 1

1− |ε|‖T−1
0 ‖ .

Thus we can define the operator (T0 − εI)−1 as limN→∞ T−1
0

PN
n=0 εn(T−1

0 )n+1,
and it gives the desired inverse, as is easily verified.

Our last assertion connects the spectrum σ(T ) with the spectral resolution
{E(λ)}.
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Proposition 6.9 For each f ∈ H, the Lebesgue-Stieltjes measure corresponding
to F (λ) = (E(λ)f, f) is supported on σ(T ).

To put it another way, F (λ) is constant on each open interval of the complement
of σ(T ).

To prove this, let J be one of the open intervals in the complement of σ(T ),
x0 ∈ J , and J0 the sub-interval centered at x0 of length 2ε, with ε < ‖(T − x0I)−1‖.
First note that if z has non-vanishing imaginary part then (T − zI)−1 is given by
Φz(T ), with Φz(t) = (t− z)−1. Hence (T − zI)−1(T − zI)−1 is given by Ψz(T ),
with Ψz(t) = 1/|t− z|2. Therefore by the estimate given in (37) and the represen-
tation (36) applied to Φ = Ψz, we obtain

Z
dF (λ)

|λ− z|2 ≤ A′,

as long as z is complex and |x0 − z| < ε. We can therefore obtain the same in-
equality for x real, |x0 − x| < ε. Now integration in x ∈ J0 using the fact thatR

Jε

dx
|λ−x|2 = ∞ for every λ ∈ Jε, gives

R
Jε

dF (λ) = 0. Thus F (λ) is constant in Jε,

but since x0 was an arbitrary point of J the function F (λ) is constant throughout
J and the proposition is proved.

7 Exercises

1. Let X be a set and M a non-empty collection of subsets of X. Prove that if
M is closed under complements and countable unions of disjoint sets, then M is
a σ-algebra.

[Hint: Any countable union of sets can be written as a countable union of disjoint
sets.]

2. Let (X,M, µ) be a measure space. One can define the completion of this
space as follows. Let M be the collection of sets of the form E ∪ Z, where E ∈M,
and Z ⊂ F with F ∈M and µ(F ) = 0. Also, define µ(E ∪ Z) = µ(E). Then:

(a) M is the smallest σ-algebra containing M and all subsets of elements of M
of measure zero.

(b) The function µ is a measure on M, and this measure is complete.

[Hint: To prove M is a σ-algebra it suffices to see that if E1 ⊂M, then Ec
1 ⊂M.

Write E1 = E ∪ Z with Z ⊂ F , E and F in M. Then Ec
1 = (E ∪ F )c ∪ (F − Z).]

3. Consider the exterior Lebesgue measure m∗ introduced in Chapter 1. Prove that
a set E in Rd is Carathéodory measurable if and only if E is Lebesgue measurable
in the sense of Chapter 1.

[Hint: If E is Lebesgue measurable and A is any set, choose a Gδ set G such
that A ⊂ G and m∗(A) = m(G). Conversely, if E is Carathéodory measurable and
m∗(E) < ∞, choose a Gδ set G with E ⊂ G and m∗(E) = m∗(G). Then G− E
has exterior measure 0.]
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4. Let r be a rotation of Rd. Using the fact that the mapping x 7→ r(x) preserves
Lebesgue measure (see Problem 4 in Chapter 2 and Exercise 26 in Chapter 3), show
that it induces a measure-preserving map of the sphere Sd−1 with its measure dσ.

A converse is stated in Problem 4.

5. Use the polar coordinate formula to prove the following:

(a)
R
Rd e−π|x|2 dx = 1, when d = 2. Deduce from this that the same identity

holds for all d.

(b)
“R∞

0
e−πr2

rd−1 dr
”

σ(Sd−1) = 1, and as a result, σ(Sd−1) = 2πd/2/Γ(d/2).

(c) If B is the unit ball, vd = m(B) = πd/2/Γ(d/2 + 1), since this quantity

equals
“R 1

0
rd−1 dr

”
σ(Sd−1). (See Exercise 14 in Chapter 2.)

6. A version of Green’s formula for the unit ball B in Rd can be stated as follows.
Suppose u and v are a pair of functions that are in C2(B). Then one has

Z

B

(v4u− u4v) dx =

Z

Sd−1

„
v

∂u

∂n
− u

∂v

∂n

«
dσ.

Here Sd−1 is the unit sphere with dσ the measure defined in Section 3.2, and
∂u/∂n, ∂v/∂n denote the directional derivatives of u and v (respectively) along
the inner normals to Sd−1.

Show that the above can be derived from Lemma 4.5 of the previous chapter by
taking η = η+

ε and letting ε → 0.

7. There is an alternate version of the mean-value property given in (21) of Chap-
ter 5. It can be stated as follows. Suppose u is harmonic in Ω, and B is any ball
of center x0 and radius r whose closure is contained in Ω. Then

u(x0) = c

Z

Sd−1
u(x0 + ry) dσ(y), with c−1 = σ(Sd−1).

Conversely, a continuous function satisfying this mean-value property is harmonic.

[Hint: This can be proved as a direct consequence of the corresponding result
for averages over balls (Theorem 4.27 in Chapter 5), or can be deduced from
Exercise 6.]

8. The fact that the Lebesgue measure is uniquely characterized by its translation
invariance can be made precise by the following assertion: If µ is a Borel measure
on Rd that is translation-invariant, and is finite on compact sets, then µ is a
multiple of Lebesgue measure m. Prove this theorem by proceeding as follows.

(a) Suppose Qa denotes a translate of the cube {x : 0 < xj ≤ a, j = 1, 2, . . . , d}
of side length a. If we let µ(Q1) = c, then µ(Q1/n) = cn−d for each integer n.
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(b) As a result µ is absolutely continuous with respect to m, and there is a
locally integrable function f such that

µ(E) =

Z

E

f dx.

(c) By the differentiation theorem (Corollary 1.7 in Chapter 3) it follows that
f(x) = c a.e., and hence µ = cm.

[Hint: Q1 can be written as a disjoint union of nd translates of Q1/n.]

9. Let C([a, b]) denote the vector space of continuous functions on the closed and
bounded interval [a, b]. Suppose we are given a Borel measure µ on this interval,
with µ([a, b]) < ∞. Then

f 7→ `(f) =

Z b

a

f(x) dµ(x)

is a linear functional on C([a, b]), with ` positive in the sense that `(f) ≥ 0 if f ≥ 0.
Prove that, conversely, for any linear functional ` on C([a, b]) that is positive in

the above sense, there is a unique finite Borel measure µ so that `(f) =
R b

a
f dµ for

f ∈ C([a, b]).

[Hint: Suppose a = 0 and u ≥ 0. Define F (u) by F (u) = limε→0 `(fε), where

fε(x) =


1 for 0 ≤ x ≤ u,
0 for u + ε ≤ x,

and fε is linear between u and u + ε. (See Figure 3.) Then F is increasing and

right-continuous, and `(f) can be written as
R b

a
f(x) dF (x) via Theorem 3.5.]

The result also holds if [a, b] is replaced by a closed infinite interval; we then
assume that ` is defined on the continuous functions of bounded support, and
obtain that the resulting µ is finite on all bounded intervals.

A generalization is given in Problem 5.

10. Suppose ν, ν1, ν2 are signed measures on (X,M) and µ a (positive) measure
on M. Using the symbols ⊥ and ¿ defined in Section 4.2, prove:

(a) If ν1 ⊥ µ and ν2 ⊥ µ, then ν1 + ν2 ⊥ µ.

(b) If ν1 ¿ µ and ν2 ¿ µ, then ν1 + ν2 ¿ µ.

(c) ν1 ⊥ ν2 implies |ν1| ⊥ |ν2|.
(d) ν ¿ |ν|.
(e) If ν ⊥ µ and ν ¿ µ, then ν = 0.

11. Suppose that F is an increasing normalized function on R, and let F =
FA + FC + FJ be the decomposition of F in Exercise 24 in Chapter 3; here FA is
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u0

fε

bu + ε

1

Figure 3. The function fε in Exercise 9

absolutely continuous, FC is continuous with F ′C = 0 a.e, and FJ is a pure jump
function. Let µ = µA + µC + µJ with µ, µA, µC , and µJ the Borel measures
associated to F , FA, FC , and FJ , respectively. Verify that:

(i) µA is absolutely continuous with respect to Lebesgue measure and µA(E) =R
E

F ′(x) dx for every Lebesgue measurable set E.

(ii) As a result, if F is absolutely continuous, then
R

f dµ =
R

f dF =R
f(x)F ′(x) dx whenever f and fF ′ are integrable.

(iii) µC + µJ and Lebesgue measure are mutually singular.

12. Suppose Rd − {0} is represented as R+ × Sd−1, with R+ = {0 < r < ∞}.
Then every open set in Rd − {0} can be written as a countable union of open
rectangles of this product.

[Hint: Consider the countable collection of rectangles of the form

{rj < r < r′k} × {γ ∈ Sd−1 : |γ − γ`| < 1/n}.

Here rj and r′k range over all positive rationals, and {γ`} is a countable dense set
of Sd−1.]

13. Let mj be the Lebesgue measure for the space Rdj , j = 1, 2. Consider the
product Rd = Rd1 × Rd2 (d = d1 + d2), with m the Lebesgue measure on Rd. Show
that m is the completion (in the sense of Exercise 2) of the product measure
m1 ×m2.

14. Suppose (Xj ,Mj , µj), 1 ≤ j ≤ k, is a finite collection of measure spaces.
Show that parallel with the case k = 2 considered in Section 3 one can construct
a product measure µ1 × µ2 × · · · × µk on X = X1 ×X2 × · · · ×Xk. In fact, for
any set E ⊂ X such that E = E1 × E2 × · · · × Ek, with Ej ⊂Mj for all j, define
µ0(E) =

Qk
j=1 µj(Ej). Verify that µ0 extends to a premeasure on the algebra A

of finite disjoint unions of such sets, and then apply Theorem 1.5.
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15. The product theory extends to infinitely many factors, under the requisite
assumptions. We consider measure spaces (Xj ,Mj , µj) with µj(Xj) = 1 for all
but finitely many j. Define a cylinder set E as

{x = (xj), xj ∈ Ej , Ej ∈Mj , but Ej = Xj for all but finitely many j}.

For such a set define µ0(E) =
Q∞

j=1 µj(Ej). If A is the algebra generated by the
cylinder sets, µ0 extends to a premeasure on A, and we can apply Theorem 1.5
again.

16. Consider the d-dimensional torus Td = Rd/Zd. Identify Td as T1 × · · · × T1

(d factors) and let µ be the product measure on Td given by µ = µ1 × µ2 × · · · × µd,
where µj is Lebesgue measure on Xj identified with the circle T. That is, if we
represent each point in Xj uniquely as xj with 0 < xj ≤ 1, then the measure µj is
the induced Lebesgue measure on R1 restricted to (0, 1].

(a) Check that the completion µ is Lebesgue measure induced on the cube
Q = {x : 0 < xj ≤ 1, j = 1, . . . , d}.

(b) For each function f on Q let f̃ be its extension to Rd which is periodic, that
is, f̃(x + z) = f̃(x) for every z ∈ Zd. Then f is measurable on Td if and
only if f̃ is measurable on Rd, and f is continuous on Td if and only if f̃ is
continuous on Rd.

(c) Suppose f and g are integrable on Td. Show that the integral defining
(f ∗ g)(x) =

R
Td f(x− y)g(y) dy is finite for a.e. x, that f ∗ g is integrable

over Td, and that f ∗ g = g ∗ f .

(d) For any integrable function f on Td, write

f ∼
X

n∈Zd

ane2πin·x

to mean that an =
R
Td f(x)e−2πin·x dx. Prove that if g is also integrable,

and g ∼Pn∈Zd bne2πin·x, then

f ∗ g ∼
X

n∈Zd

anbne2πin·x.

(e) Verify that {e2πin·x}n∈Zd is an orthonormal basis for L2(Td). As a result
‖f‖L2(Td) =

P
n∈Zd |an|2.

(f) Let f be any continuous periodic function on Td. Then f can be uniformly
approximated by finite linear combinations of the exponentials {e2πin·x}n∈Zd .

[Hint: For (e), reduce to the case d = 1 by Fubini’s theorem. To prove (f) let
g(x) = gε(x) = ε−d, if 0 < xj ≤ ε, j = 1, . . . , d, and gε(x) = 0 elsewhere in Q. Then
(f ∗ gε)(x) → f(x) uniformly as ε → 0. However (f ∗ gε)(x) =

P
anbne2πinx with

bn =
R
Td gε(x)e−2πin·x dx, and

P |anbn| < ∞.]
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17. By reducing to the case d = 1, show that each “rotation” x 7→ x + α of the
torus Td = Rd/Zd is measure preserving, for any α ∈ Rd.

18. Suppose τ is a measure-preserving transformation on a measure space (X, µ)
with µ(X) = 1. Recall that a measurable set E is invariant if τ−1(E) and E differ
by a set of measure zero. A sharper notion is to require that τ−1(E) equal E.
Prove that if E is any invariant set, there is a set E′ so that E′ = τ−1(E′), and E
and E′ differ by a set of measure zero.

[Hint: Let E′ = lim supn→∞{τ−n(E)} =
T∞

n=0

“S
k≥n τ−k(E)

”
.]

19. Let τ be a measure-preserving transformation on (X, µ) with µ(X) = 1. Then
τ is ergodic if and only if whenever ν is absolutely continuous with respect to µ and
ν is invariant (that is, ν(τ−1(E)) = ν(E) for all measurable sets E), then ν = cµ,
with c a constant.

20. Suppose τ is a measure-preserving transformation on (X, µ). If

µ(τ−n(E) ∩ F ) → µ(E)µ(F )

as n →∞ for all measurable sets E and F , then (T nf, g) → (f, 1)(1, g) whenever
f, g ∈ L2(X) with (Tf)(x) = f(τ(x)). Thus τ is mixing.

[Hint: By linearity the hypothesis implies the conclusion whenever f and g are
simple functions.]

21. Let Td be the torus, and τ : x 7→ x + α the mapping arising in Exercise 17.
Then τ is ergodic if and only if α = (α1, . . . , αd) with α1, α2, . . . , αd, and 1 are
linearly independent over the rationals. To do this show that:

(a)
1

m

m−1X

k=0

f(τk(x)) →
Z

Td

f(x) dx as m →∞, for each x ∈ Td, whenever f is

continuous and periodic and α satisfies the hypothesis.

(b) Prove as a result that in this case τ is uniquely ergodic.

[Hint: Use (f) in Exercise 16.]

22. Let X =
Q∞

i=1 Xi, where each (Xi, µi) is identical to (X1, µ1), with µ1(X1) =
1, and let µ be the corresponding product measure defined in Exercise 15. Define
the shift τ : X → X by τ((x1, x2, . . .)) = (x2, x3, . . .) for x = (xi) ∈

Q∞
i=1 Xi.

(a) Verify that τ is a measure-preserving transformation.

(b) Prove that τ is ergodic by showing that it is mixing.

(c) Note that in general τ is not uniquely ergodic.

If we define the corresponding shift on the two-sided infinite product, then τ is
also a measure-preserving isomorphism.
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[Hint: For (b) note that µ(τ−n(E ∩ F )) = µ(E)µ(F ) whenever E and F are cylin-
der sets and n is sufficiently large. For (c) note that, for example, if we fix a point
x ∈ X1, the set E = {(xi) : xj = x all j} is invariant.]

23. Let X =
Q∞

i=1 Z(2), where each factor is the two-point space Z(2) = {0, 1}
with µ1(0) = µ1(1) = 1/2, and suppose µ denotes the product measure on X. Con-
sider the mapping D : X → [0, 1] given by D({aj}) →

P∞
j=1

aj

2j . Then there are
denumerable sets Z1 ⊂ X and Z2 ⊂ [0, 1], such that:

(a) D is a bijection from X − Z1 to [0, 1]− Z2.

(b) A set E in X is measurable if and only if D(E) is measurable in [0, 1], and
µ(E) = m(D(E)), where m is Lebesgue measure on [0, 1].

(c) The shift map on
Q∞

i=1 Z(2) then becomes the doubling map of example (b)
in Section 5.4.

24. Consider the following generalization of the doubling map. For each integer
m, m ≥ 2, we define the map τm of (0, 1] by τ(x) = mx mod 1.

(a) Verify that τ is measure-preserving for Lebesgue measure.

(b) Show that τ is mixing, hence ergodic.

(c) Prove as a consequence that almost every number x is normal in the scale m,
in the following sense. Consider the m-adic expansion of x,

x =

∞X
j=1

aj

mj
, where each aj is an integer 0 ≤ aj ≤ m− 1.

Then x is normal if for each integer k, 0 ≤ k ≤ m− 1,

#{j : aj = k, 1 ≤ j ≤ n}
N

→ 1

m
as N →∞.

Note the analogy with the equidistribution statements in Section 2, Chap-
ter 4, of Book I.

25. Show that the mean ergodic theorem still holds if we replace the assumption
that T is an isometry by the assumption that T is a contraction, that is, ‖Tf‖ ≤
‖f‖ for all f ∈ H.

[Hint: Prove that T is a contraction if and only if T ∗ is a contraction, and use the
identity (f, T ∗f) = (Tf, f).]

26. There is an L2 version of the maximal ergodic theorem. Suppose τ is a
measure-preserving transformation on (X, µ). Here we do not assume that µ(X) <
∞. Then

f∗(x) = sup
1

m

m−1X

k=0

|f(τk(x))|
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satisfies

‖f∗‖L2(X) ≤ c‖f‖L2(X), whenever f ∈ L2(X).

The proof is the same as outlined in Problem 6, Chapter 5 for the maximal function
on Rd. With this, extend the pointwise ergodic theorem to the case where µ(X) =
∞, as follows:

(a) Show that limm→∞ 1
m

Pm−1
k=0 f(τk(x)) converges for a.e. x to P (f)(x) for

every f ∈ L2(X), because this holds for a dense subspace of L2(X).

(b) Prove that the conclusion holds for every f ∈ L1(X), because it holds for
the dense subspace L1(X) ∩ L2(X).

27. We saw that if ‖fn‖L2 ≤ 1, then fn(x)
n

→ 0 as n →∞ for a.e. x. However, show
that the analogue where one replaces the L2-norm by the L1-norm fails, by con-
structing a sequence {fn}, fn ∈ L1(X), ‖fn‖L1 ≤ 1, but with lim supn→∞

fn(x)
n

=
∞ for a.e. x.

[Hint: Find intervals In ⊂ [0, 1], so that m(In) = 1/(n log n) but lim supn→∞{In} =
[0, 1]. Then take fn(x) = n log nχIn .]

28. We know by the Borel-Cantelli lemma that if {En} is a collection of measurable
sets in a measure a space (X, µ) and

P∞
n=1 µ(En) < ∞ then E = lim supn→∞{En}

has measure zero.
In the opposite direction, if τ is a mixing measure-preserving transformation

on X (with µ(X) = 1), then whenever
P∞

n=1 µ(En) = ∞, there are integers m =
mn so that if E′

n = τ−mn(En), then lim supn→∞(E′
n) = X, except for a set of

measure 0.

8 Problems

1. Suppose Φ is a C1 bijection of an open set O in Rd onto another open set O′
in Rd.

(a) If E is a measurable subset of O, then Φ(E) is also measurable.

(b) m(Φ(E)) =
R

E
|det Φ′(x)| dx, where Φ′ is the Jacobian of Φ.

(c)
R
O′ f(y) dy =

R
O f(Φ(x)) | detΦ′(x)| dx whenever f is integrable on O′.

[Hint: To prove (a) follow the argument in Exercise 8, Chapter 1. For (b) assume
E is a bounded open set, and write E as

S∞
j=1 Qj , where Qj are cubes whose

interiors are disjoint, and whose diameters are less than ε. Let zk be the center of
Qk. Then if x ∈ Qk,

Φ(x) = Φ(zk) + Φ′(zk)(x− zk) + o(ε),
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hence Φ(Qk) = Φ(zk) + Φ′(zk)(Qk − zk) + o(ε), and as a result (1− η(ε))Φ′(zk)(Qk −
zk) ⊂ Φ(Qk)− Φ(zk) ⊂ (1 + η(ε))Φ′(zk)(Qk − zk), where η(ε) → 0 as ε → 0. This
means that

m(Φ(O)) =
X

k

m(Φ(Qk)) =
X

k

|det(Φ′(zk))|m(Qk) + o(1) as ε → 0

on account of the linear transformation property of the Lebesgue measure given in
Problem 4 of Chapter 2. Note that (b) is (c) for f(Φ(x)) = χE(x).]

2. Show as a consequence of the previous problem: the measure dµ = dxdy
y2 in the

upper half-plane R2
+ = {z = x + iy, y > 0} is preserved by any fractional linear

transformation z 7→ az+b
cz+d

, where

„
a b
c d

«
belongs to SL2(R).

3. Let S be a hypersurface in Rd = Rd−1 × R, given by

S = {(x, y) ∈ Rd−1 × R : y = F (x)},

with F a C1 function defined on an open set Ω in Rd−1. For each subset E ⊂ Ω
we write bE for the corresponding subset of S given by bE = {(x, F (x)) x ∈ E}. We
note that the Borel sets of S can be defined in terms of the metric on S (which is
the restriction of the Euclidean metric on Rd). Thus if E is a Borel set in Ω, then
bE is a Borel subset of S.

(a) Let µ be the Borel measure on S given by

µ( bE) =

Z

E

p
1 + |∇F |2 dx.

If B is a ball in Ω, let bBδ = {(x, y) ∈ Rd, d((x, y), bB) < δ}. Show that

µ( bB) = lim
δ→0

1

2δ
m(( bB)δ),

where m denotes the d-dimensional Lebesgue measure. This result is anal-
ogous to Theorem 4.4 in Chapter 3.

(b) One may apply (a) to the case when S is the (upper) half of the unit sphere
in Rd, given by y = F (x), F (x) = (1− |x|2)1/2, |x| < 1, x ∈ Rd−1. Show
that in this case dµ = dσ, the measure on the sphere arising in the polar
coordinate formula in Section 3.2.

(c) The above conclusion allows one to write an explicit formula for dσ in
terms of spherical coordinates. Take, for example, the case d = 3, and
write y = cos θ, x = (x1, x2) = (sin θ cos ϕ, sin θ sin ϕ) with 0 ≤ θ < π/2, 0 ≤
ϕ < 2π. Then according to (a) and (b) the element of area dσ equals
(1− |x|2)−1/2 dx. Use the change of variable theorem in Problem 1 to deduce
that in this case dσ = sin θ dθ dϕ. This may be generalized to d dimensions,
d ≥ 2, to obtain the formulas in Section 2.4 of the appendix in Book I.
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4.∗ Let µ be a Borel measure on the sphere Sd−1 which is rotation-invariant in the
following sense: µ(r(E)) = µ(E), for every rotation r of Rd and each Borel subset
E of Sd−1. If µ(Sd−1) < ∞, then µ is a constant multiple of the measure σ arising
in the polar coordinate integration formula.

[Hint: Show that
Z

Sd−1
Yk(x) dµ(x) = 0

for every surface spherical harmonic of degree k ≥ 1. As a result, there is a constant
c so that

Z

Sd−1
f dµ = c

Z

Sd−1
f dσ

for every continuous function f on Sd−1.]

5.∗ Suppose X is a metric space, and µ is a Borel measure on X with the property
that µ(B) < ∞ for every ball B. Define C0(X) to be the vector space of continuous
functions on X that are each supported in some closed ball. Then `(f) =

R
X

f dµ
defines a linear functional on C0(X) that is positive, that is, `(f) ≥ 0 if f ≥ 0.

Conversely, for any positive linear functional ` on C0(X), there exists a unique
Borel measure µ that is finite on all balls, such that `(f) =

R
f dµ.

6. Consider an automorphism A of Td = Rd/Zd, that is, A is a linear isomorphism
of Rd that preserves the lattice Zd. Note that A can be written as a d× d matrix
whose entries are integers, with det A = ±1. Define the mapping τ : Td → Td by
τ(x) = A(x).

(a) Observe that τ is a measure-preserving isomorphism of Td.

(b) Show that τ is ergodic (in fact, mixing) if and only if A has no eigenvalues
of the form e2πip/q, where p and q are integers.

(c) Note that τ is never uniquely ergodic.

[Hint: The condition (b) is the same as (At)q has no invariant vectors, where At is

the transpose of A. Note also that f(τk(x)) = e2πi(At)k(n)·x where f(x) = e2πin·x.]

7.∗ There is a version of the maximal ergodic theorem that is akin to the “rising
sun lemma” and Exercise 6 in Chapter 3.

Suppose f is real-valued, and f#(x) = supm
1
m

Pm−1
k=0 f(τk(x)). Let E0 = {x :

f#(x) > 0}. Then
Z

E0

f(x) dx ≥ 0.

As a result (when we apply this to f(x)− α), we get when f ≥ 0 that

µ{x : f∗(x) > α} ≤ 1

α

Z

{f∗(x)>α}
f(x) dx.
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In particular, the constant A in Theorem 5.3 can be taken to be 1.

8. Let X = [0, 1), τ(x) = 〈1/x〉, x 6= 0, τ(0) = 0. Here 〈x〉 denotes the fractional
part of x. With the measure dµ = 1

log 2
dx

1+x
, we have of course µ(X) = 1.

Show that τ is a measure-preserving transformation.

[Hint:
P∞

k=1
1

(x+k)(x+k+1)
= 1

1+x
.]

9.∗ The transformation τ in the previous problem is ergodic.

10.∗ The connection between continued fractions and the transformation τ(x) =
〈1/x〉 will now be described. A continued fraction, a0 + 1/(a1 + 1/a2) · · · , also
written as [a0a1a2 · · · ], where the aj are positive integers, can be assigned to any
positive real number x in the following way. Starting with x, we successively
transform it by two alternating operations: reducing it modulo 1 to lie in [0, 1),
and then taking the reciprocal of that number. The integers aj that arise then
define the continued fraction of x.

Thus we set x = a0 + r0, where a0 = [x] = the greatest integer in x, and r0 ∈
[0, 1). Next we write 1/r0 = a1 + r1, with a1 = [1/r0], r1 ∈ [0, 1), to obtain suc-
cessively 1/rn−1 = an + rn, where an = [1/rn−1], rn ∈ [0, 1). If rn = 0 for some n,
we write ak = 0 for all k > n, and say that such a continued fraction terminates.

Note that if 0 ≤ x < 1, then r0 = x and a1 = [1/x], while r1 = 〈1/x〉 = τ(x).
More generally then, ak(x) = [1/τk−1(x)] = a1τ

k−1(x). The following properties
of continued fractions of positive real numbers x are known:

(a) The continued fraction of x terminates if and only if x is rational.

(b) If x = [a0a1 · · · an · · · ], and xN = [a0a1 · · · aN00 · · · ], then xN → x as N →
∞. The sequence {xN} gives essentially an optimal approximation of x by
rationals.

(c) The continued fraction is periodic, that is, ak+N = ak for some N ≥ 1, and
all sufficiently large k, if and only if x is an algebraic number of degree ≤ 2
over the rationals.

(d) One can conclude that a1+a2+···+an
n

→∞ as n →∞ for almost every x. In
particular, the set of numbers x whose continued fractions [a0a1 · · · an · · · ]
are bounded has measure zero.

[Hint: For (d) apply a consequence of the pointwise ergodic theorem, which is as
follows: Suppose f ≥ 0, and

R
f dµ = ∞. If τ is ergodic, then 1

m

Pm−1
k=0 f(τk(x)) →

∞ for a.e. x as m →∞. In the present case take f(x) = [1/x].]



7 Hausdorff Measure and
Fractals

Carathéodory developed a remarkably simple general-
ization of Lebesgue’s measure theory which in particu-
lar allowed him to define the p-dimensional measure of
a set in q-dimensional space. In what follows, I present
a small addition.... a clarification of p-dimensional
measure that leads immediately to an extension to
non-integral p, and thus gives rise to sets of fractional
dimension.

F. Hausdorff, 1919

I coined fractal from the Latin adjective fractus. The
corresponding Latin verb frangere means to “break”:
to create irregular fragments.

B. Mandelbrot, 1977

The deeper study of the geometric properties of sets often requires
an analysis of their extent or “mass” that goes beyond what can be
expressed in terms of Lebesgue measure. It is here that the notions
of the dimension of a set (which can be fractional) and an associated
measure play a crucial role.

Two initial ideas may help to provide an intuitive grasp of the concept
of the dimension of a set. The first can be understood in terms of how
the set replicates under scalings. Given the set E, let us suppose that
for some positive number n we have that nE = E1 ∪ · · · ∪ Em, where the
sets Ej are m essentially disjoint congruent copies of E. Note that if
E were a line segment this would hold with m = n; if E were a square,
we would have m = n2; if E were a cube, then m = n3; etc. Thus, more
generally, we might be tempted to say that E has dimension α if m = nα.
Observe that if E is the Cantor set C in [0, 1], then 3C consists of 2 copies
of C, one in [0, 1] and the other in [2, 3]. Here n = 3, m = 2, and we would
be led to conclude that log 2/ log 3 is the dimension of the Cantor set.
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Another approach is relevant for curves that are not necessarily rec-
tifiable. Start with a curve Γ = {γ(t) : a ≤ t ≤ b}, and for each ε > 0
consider polygonal lines joining γ(a) to γ(b), whose vertices lie on suc-
cessive points of Γ, with each segment not exceeding ε in length. Denote
by #(ε) the least number of segments that arise for such polygonal lines.
If #(ε) ≈ ε−1 as ε → 0, then Γ is rectifiable. However, #(ε) may well
grow more rapidly than ε−1 as ε → 0. If we had #(ε) ≈ ε−α, 1 < α,
then, in the spirit of the previous example, it would be natural to say
that Γ has dimension α. These considerations have even an interest in
other parts of science. For instance, in studying the question of determin-
ing the length of the border of a country or its coastline, L.F. Richardson
found that the length of the west coast of Britain obeyed the empirical
law #(ε) ≈ ε−α, with α approximately 1.5. Thus one might conclude
that the coast has fractional dimension!

While there are a number of different ways to make some of these
heuristic notions precise, the theory that has the widest scope and great-
est flexibility is the one involving Hausdorff measure and Hausdorff di-
mension. Probably the most elegant and simplest illustration of this
theory can be seen in terms of its application to a general class of self-
similar sets, and this is what we consider first. Among these are the
curves of von Koch type, and these can have any dimension between 1
and 2.

Next, we turn to an example of a space-filling curve, which, broadly
speaking, falls under the scope of self-replicating constructions. Not
only does this curve have an intrinsic interest, but its nature reveals the
important fact that from the point of view of measure theory the unit
interval and the unit square are the same.

Our final topic is of a somewhat different nature. It begins with the
realization of an unexpected regularity that all subsets of Rd (of finite
Lebesgue measure) enjoy, when d ≥ 3. This property fails in two di-
mensions, and the key counter-example is the Besicovitch set. This set
appears also in a number of other problems. While it has measure zero,
this is barely so, since its Hausdorff dimension is necessarily 2.

1 Hausdorff measure

The theory begins with the introduction of a new notion of volume or
mass. This “measure” is closely tied with the idea of dimension which
prevails throughout the subject. More precisely, following Hausdorff,
one considers for each appropriate set E and each α > 0 the quantity
mα(E), which can be interpreted as the α-dimensional mass of E among
sets of dimension α, where the word “dimension” carries (for now) only
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an intuitive meaning. Then, if α is larger than the dimension of the set
E, the set has a negligible mass, and we have mα(E) = 0. If α is smaller
than the dimension of E, then E is very large (comparatively), hence
mα(E) = ∞. For the critical case when α is the dimension of E, the
quantity mα(E) describes the actual α-dimensional size of the set.

Two examples, to which we shall return in more detail later, illustrate
this circle of ideas.

First, recall that the standard Cantor set C in [0, 1] has zero Lebesgue
measure. This statement expresses the fact that C has one-dimensional
mass or length equal to zero. However, we shall prove that C has a
well-defined fractional Hausdorff dimension of log 2/ log 3, and that the
corresponding Hausdorff measure of the Cantor set is positive and finite.

Another illustration of the theory developed below consists of starting
with Γ, a rectifiable curve in the plane. Then Γ has zero two-dimensional
Lebesgue measure. This is intuitively clear, since Γ is a one-dimensional
object in a two-dimensional space. This is where the Hausdorff measure
comes into play: the quantity m1(Γ) is not only finite, but precisely equal
to the length of Γ as we defined it in Section 3.1 of Chapter 3.

We first consider the relevant exterior measure, defined in terms of
coverings, whose restriction to the Borel sets is the desired Hausdorff
measure.

For any subset E of Rd, we define the exterior α-dimensional Haus-
dorff measure of E by

m∗
α(E) = lim

δ→0
inf

{∑

k

(diam Fk)α : E ⊂
∞⋃

k=1

Fk, diam Fk ≤ δ all k

}
,

where diam S denotes the diameter of the set S, that is, diam S =
sup{|x− y| : x, y ∈ S}. In other words, for each δ > 0 we consider covers
of E by countable families of (arbitrary) sets with diameter less than δ,
and take the infimum of the sum

∑
k(diam Fk)α. We then define m∗

α(E)
as the limit of these infimums as δ tends to 0. We note that the quantity

Hδ
α(E) = inf

{∑

k

(diam Fk)α : E ⊂
∞⋃

k=1

Fk, diam Fk ≤ δ all k

}

is increasing as δ decreases, so that the limit

m∗
α(E) = lim

δ→0
Hδ

α(E)

exists, although m∗
α(E) could be infinite. We note that in particu-

lar, one has Hδ
α(E) ≤ m∗

α(E) for all δ > 0. When defining the exte-
rior measure m∗

α(E) it is important to require that the coverings be of
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sets of arbitrarily small diameters; this is the thrust of the definition
m∗

α(E) = limδ→0Hδ
α(E). This requirement, which is not relevant for

Lebesgue measure, is needed to ensure the basic additive feature stated
in Property 3 below. (See also Exercise 12.)

Scaling is the key notion that appears at the heart of the definition of
the exterior Hausdorff measure. Loosely speaking, the measure of a set
scales according to its dimension. For instance, if Γ is a one-dimensional
subset of Rd, say a smooth curve of length L, then rΓ has total length
rL. If Q is a cube in Rd, the volume of rQ is rd|Q|. This feature is
captured in the definition of exterior Hausdorff measure by the fact that
if the set F is scaled by r, then (diam F )α scales by rα. This key idea
reappears in the study of self-similar sets in Section 2.2.

We begin with a list of properties satisfied by the Hausdorff exterior
measure.

Property 1 (Monotonicity) If E1 ⊂ E2, then m∗
α(E1) ≤ m∗

α(E2).

This is straightforward, since any cover of E2 is also a cover of E1.

Property 2 (Sub-additivity) m∗
α(

⋃∞
j=1 Ej) ≤

∑∞
j=1 m∗

α(Ej) for any
countable family {Ej} of sets in Rd.

For the proof, fix δ, and choose for each j a cover {Fj,k}∞k=1 of Ej by
sets of diameter less than δ such that

∑
k(diam Fj,k)α ≤ Hδ

α(Ej) + ε/2j .
Since

⋃
j,k Fj,k is a cover of E by sets of diameter less than δ, we must

have

Hδ
α(E) ≤

∞∑
j=1

Hδ
α(Ej) + ε

≤
∞∑

j=1

m∗
α(Ej) + ε.

Since ε is arbitrary, the inequality Hδ
α(E) ≤ ∑

m∗
α(Ej) holds, and we let

δ tend to 0 to prove the countable sub-additivity of m∗
α.

Property 3 If d(E1, E2) > 0, then m∗
α(E1 ∪ E2) = m∗

α(E1) + m∗
α(E2).

It suffices to prove that m∗
α(E1 ∪E2) ≥ m∗

α(E1) + m∗
α(E2) since the re-

verse inequality is guaranteed by sub-additivity. Fix ε > 0 with ε <
d(E1, E2). Given any cover of E1 ∪ E2 with sets F1, F2 . . . , of diame-
ter less than δ, where δ < ε, we let

F ′j = E1 ∩ Fj and F ′′j = E2 ∩ Fj .
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Then {F ′j} and {F ′′j } are covers for E1 and E2, respectively, and are
disjoint. Hence,

∑
j

(diam F ′j)
α +

∑
i

(diam F ′′i )α ≤
∑

k

(diam Fk)α.

Taking the infimum over the coverings, and then letting δ tend to zero
yields the desired inequality.

At this point, we note that m∗
α satisfies all the properties of a metric

Carathéodory exterior measure as discussed in Chapter 6. Thus m∗
α

is a countably additive measure when restricted to the Borel sets. We
shall therefore restrict ourselves to Borel sets and write mα(E) instead
of m∗

α(E). The measure mα is called the α-dimensional Hausdorff
measure.

Property 4 If {Ej} is a countable family of disjoint Borel sets, and
E =

⋃∞
j=1 Ej, then

mα(E) =
∞∑

j=1

mα(Ej).

For what follows in this chapter, the full additivity in the above prop-
erty is not needed, and we can manage with a weaker form whose proof
is elementary and not dependent on the developments of Chapter 6. (See
Exercise 2.)

Property 5 Hausdorff measure is invariant under translations

mα(E + h) = mα(E) for all h ∈ Rd,

and rotations

mα(rE) = mα(E),

where r is a rotation in Rd.
Moreover, it scales as follows:

mα(λE) = λαmα(E) for all λ > 0.

These conclusions follow once we observe that the diameter of a set S
is invariant under translations and rotations, and satisfies diam(λS) =
λdiam(S) for λ > 0.

We describe next a series of properties of Hausdorff measure, the first
of which is immediate from the definitions.
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Property 6 The quantity m0(E) counts the number of points in E,
while m1(E) = m(E) for all Borel sets E ⊂ R. (Here m denotes the
Lebesgue measure on R.)

In fact, note that in one dimension every set of diameter δ is contained in
an interval of length δ (and for an interval its length equals its Lebesgue
measure).

In general, d-dimensional Hausdorff measure in Rd is, up to a constant
factor, equal to Lebesgue measure.

Property 7 If E is a Borel subset of Rd, then cdmd(E) = m(E) for
some constant cd that depends only on the dimension d.

The constant cd equals m(B)/(diam B)d, for the unit ball B; note that
this ratio is the same for all balls B in Rd, and so cd = vd/2d (where vd

denotes the volume of the unit ball). The proof of this property relies on
the so-called iso-diametric inequality, which states that among all sets of
a given diameter, the ball has largest volume. (See Problem 2.) Without
using this geometric fact one can prove the following substitute.

Property 7 ′ If E is a Borel subset of Rd and m(E) is its Lebesgue
measure, then md(E) ≈ m(E), in the sense that

cdmd(E) ≤ m(E) ≤ 2dcdmd(E).

Using Exercise 26 in Chapter 3 we can find for every ε, δ > 0, a covering
of E by balls {Bj}, such that diam Bj < δ, while

∑
j m(Bj) ≤ m(E) + ε.

Now,

Hδ
d(E) ≤

∑
j

(diam Bj)d = c−1
d

∑
j

m(Bj) ≤ c−1
d (m(E) + ε).

Letting δ and ε tend to 0, we get md(E) ≤ c−1
d m(E). For the reverse

direction, let E ⊂ ⋃
j Fj be a covering with

∑
j(diam Fj)d ≤ md(E) + ε.

We can always find closed balls Bj centered at a point of Fj so that
Bj ⊃ Fj and diam Bj = 2 diam Fj . However, m(E) ≤ ∑

j m(Bj), since
E ⊂ ⋃

j Bj , and the last sum equals

∑
cd(diam Bj)d = 2dcd

∑
(diam Fj)d ≤ 2dcd (md(E) + ε) .

Letting ε → 0 gives m(E) ≤ 2dcdmd(E).

Property 8 If m∗
α(E) < ∞ and β > α, then m∗

β(E) = 0. Also, if m∗
α(E) >

0 and β < α, then m∗
β(E) = ∞.
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Indeed, if diam F ≤ δ, and β > α, then

(diam F )β = (diam F )β−α(diam F )α ≤ δβ−α(diam F )α.

Consequently

Hδ
β(E) ≤ δβ−αHδ

α(E) ≤ δβ−αm∗
α(E).

Since m∗
α(E) < ∞ and β − α > 0, we find in the limit as δ tends to 0,

that m∗
β(E) = 0.

The contrapositive gives m∗
β(E) = ∞ whenever m∗

α(E) > 0 and β < α.

We now make some easy observations that are consequences of the
above properties.

1. If I is a finite line segment in Rd, then 0 < m1(I) < ∞.

2. More generally, if Q is a k-cube in Rd (that is, Q is the product of
k non-trivial intervals and d− k points), then 0 < mk(Q) < ∞.

3. If O is a non-empty open set in Rd, then mα(O) = ∞ whenever
α < d. Indeed, this follows because md(O) > 0.

4. Note that we can always take α ≤ d. This is because when α > d,
mα vanishes on every ball, and hence on all of Rd.

2 Hausdorff dimension

Given a Borel subset E of Rd, we deduce from Property 8 that there
exists a unique α such that

mβ(E) =
{ ∞ if β < α,

0 if α < β.

In other words, α is given by

α = sup{β : mβ(E) = ∞} = inf{β : mβ(E) = 0}.
We say that E has Hausdorff dimension α, or more succinctly, that
E has dimension α. We shall write α = dim E. At the critical value α
we can say no more than that in general the quantity mα(E) satisfies
0 ≤ mα(E) ≤ ∞. If E is bounded and the inequalities are strict, that is,
0 < mα(E) < ∞, we say that E has strict Hausdorff dimension α.
The term fractal is commonly applied to sets of fractional dimension.

In general, calculating the Hausdorff measure of a set is a difficult
problem. However, it is possible in some cases to bound this measure
from above and below, and hence determine the dimension of the set in
question. A few examples will illustrate these new concepts.
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2.1 Examples

The Cantor set

The first striking example consists of the Cantor set C, which was con-
structed in Chapter 1 by successively removing the middle-third intervals
in [0, 1].

Theorem 2.1 The Cantor set C has strict Hausdorff dimension α =
log 2/ log 3.

The inequality

mα(C) ≤ 1

follows from the construction of C and the definitions. Indeed, recall from
Chapter 1 that C =

⋂
Ck, where each Ck is a finite union of 2k intervals of

length 3−k. Given δ > 0, we first choose K so large that 3−K < δ. Since
the set CK covers C and consists of 2K intervals of diameter 3−K < δ,
we must have

Hδ
α(C) ≤ 2K(3−K)α.

However, α satisfies precisely 3α = 2, hence 2K(3−K)α = 1, and therefore
mα(C) ≤ 1.

The reverse inequality, which consists of proving that 0 < mα(C), re-
quires a further idea. Here we rely on the Cantor-Lebesgue function,
which maps C surjectively onto [0, 1]. The key fact we shall use about
this function is that it satisfies a precise continuity condition that reflects
the dimension of the Cantor set.

A function f defined on a subset E of Rd satisfies a Lipschitz con-
dition on E if there exists M > 0 such that

|f(x)− f(y)| ≤ M |x− y| for all x, y ∈ E.

More generally, a function f satisfies a Lipschitz condition with ex-
ponent γ (or is Hölder γ) if

|f(x)− f(y)| ≤ M |x− y|γ for all x, y ∈ E.

The only interesting case is when 0 < γ ≤ 1. (See Exercise 3.)

Lemma 2.2 Suppose a function f defined on a compact set E satisfies
a Lipschitz condition with exponent γ. Then

(i) mβ(f(E)) ≤ Mβmα(E) if β = α/γ.
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(ii) dim f(E) ≤ 1
γ dimE.

Proof. Suppose {Fk} is a countable family of sets that covers E.
Then {f(E ∩ Fk)} covers f(E) and, moreover, f(E ∩ Fk) has diameter
less than M(diam Fk)γ . Hence

∑

k

(diam f(E ∩ Fk))α/γ ≤ Mα/γ
∑

k

(diam Fk)α,

and part (i) follows. This result now immediately implies conclusion (ii).

Lemma 2.3 The Cantor-Lebesgue function F on C satisfies a Lipschitz
condition with exponent γ = log 2/ log 3.

Proof. The function F was constructed in Section 3.1 of Chapter 3 as
the limit of a sequence {Fn} of piecewise linear functions. The function
Fn increases by at most 2−n on each interval of length 3−n. So the slope
of Fn is always bounded by (3/2)n, and hence

|Fn(x)− Fn(y)| ≤
(

3
2

)n

|x− y|.

Moreover, the approximating sequence also satisfies |F (x)− Fn(x)| ≤
1/2n. These two estimates together with an application of the triangle
inequality give

|F (x)− F (y)| ≤ |Fn(x)− Fn(y)|+ |F (x)− Fn(x)|+ |F (y)− Fn(y)|

≤
(

3
2

)n

|x− y|+ 2
2n

.

Having fixed x and y, we then minimize the right hand side by choosing
n so that both terms have the same order of magnitude. This is achieved
by taking n so that 3n|x− y| is between 1 and 3. Then, we see that

|F (x)− F (y)| ≤ c2−n = c(3−n)γ ≤ M |x− y|γ ,

since 3γ = 2 and 3−n is not greater than |x− y|. This argument is re-
peated in Lemma 2.8 below.

With E = C, f the Cantor-Lebesgue function, and α = γ = log 2/ log 3,
the two lemmas give

m1([0, 1]) ≤ Mβmα(C).
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Thus mα(C) > 0, and we find that dim C = log 2/ log 3.

The proof of this example is typical in the sense that the inequal-
ity mα(C) < ∞ is usually easier to obtain than 0 < mα(C). Also, with
some extra effort, it is possible to show that the log 2/ log 3-dimensional
Hausdorff measure of C is precisely 1. (See Exercise 7.)

Rectifiable curves

A further example of the role of dimension comes from looking at con-
tinuous curves in Rd. Recall that a continuous curve γ : [a, b] → Rd is
said to be simple if γ(t1) 6= γ(t2) whenever t1 6= t2, and quasi-simple
if the mapping t 7→ z(t) is injective for t in the complement of finitely
many points.

Theorem 2.4 Suppose the curve γ is continuous and quasi-simple. Then
γ is rectifiable if and only if Γ = {γ(t) : a ≤ t ≤ b} has strict Hausdorff
dimension one. Moreover, in this case the length of the curve is precisely
its one-dimensional measure m1(Γ).

Proof. Suppose to begin with that Γ is a rectifiable curve of length L,
and consider an arc-length parametrization γ̃ such that Γ = {γ̃(t) : 0 ≤
t ≤ L}. This parametrization satisfies the Lipschitz condition

|γ̃(t1)− γ̃(t2)| ≤ |t1 − t2|.

This follows since |t1 − t2| is the length of the curve between t1 and t2,
which is greater than the distance from γ̃(t1) to γ̃(t2). Since γ̃ satisfies
the conditions of Lemma 2.2 with exponent 1 and M = 1, we find that

m1(Γ) ≤ L.

To prove the reverse inequality, we let a = t0 < t1 < · · · < tN = b denote
a partition of [a, b] and let

Γj = {γ(t) : tj ≤ t ≤ tj+1},

so that Γ =
⋃N−1

j=0 Γj , and hence

m1(Γ) =
N−1∑
j=0

m1(Γj)

by an application of Property 4 of the Hausdorff measure and the fact
that Γ is quasi-simple. Indeed, by removing finitely many points the
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union
⋃N−1

j=0 Γj becomes disjoint, while the points removed clearly have
zero m1-measure. We next claim that m1(Γj) ≥ `j , where `j is the dis-
tance from γ(tj) to γ(tj+1), that is, `j = |γ(tj+1)− γ(tj)|. To see this,
recall that Hausdorff measure is rotation-invariant, and introduce new or-
thogonal coordinates x and y such that [γ(tj), γ(tj + 1)] is the segment
[0, `j ] on the x-axis. The projection π(x, y) = x satisfies the Lipschitz
condition

|π(P )− π(Q)| ≤ |P −Q|,

and clearly the segment [0, `j ] on the x-axis is contained in the image
π(Γj). Therefore, Lemma 2.2 guarantees

`j ≤ m1(Γj),

and thus m1(Γ) ≥ ∑
`j . Since by definition the length L of Γ is the

supremum of the sums
∑

`j over all partitions of [a, b], we find that
m1(Γ) ≥ L, as desired.

Conversely, if Γ has strict Hausdorff dimension 1, then m1(Γ) < ∞,
and the above argument shows that Γ is rectifiable.

The reader may note the resemblance of this characterization of rec-
tifiability and an earlier one in terms of Minkowski content, given in
Chapter 3. In this connection we point out that there is a different
notion of dimension that is sometimes used instead of Hausdorff dimen-
sion. For a compact set E, this dimension is given in terms of the size
of Eδ = {x ∈ Rd : d(x,E) < δ} as δ → 0. One observes that if E is a
k-dimensional cube in Rd, then m(Eδ) ≤ cδd−k as δ → 0, with m the
Lebesgue measure of Rd. With this in mind, the Minkowski dimen-
sion of E is defined by

inf {β : m(Eδ) = O(δd−β) as δ → 0}.

One can show that the Hausdorff dimension of a set does not exceed its
Minkowski dimension, but that equality does not hold in general. More
details may be found in Exercises 17 and 18.

The Sierpinski triangle

A Cantor-like set can be constructed in the plane as follows. We begin
with a (solid) closed equilateral triangle S0, whose sides have unit length.
Then, as a first step we remove the shaded open equilateral triangle
pictured in Figure 1.
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Figure 1. Construction of the Sierpinski triangle

This leaves three closed triangles whose union we denote by S1. Each
triangle is half the size of the original (or parent) triangle S0, and these
smaller closed triangles are said to be of the first generation: the trian-
gles in S1 are the children of the parent S0. In the second step, we repeat
the process in each triangle of the first generation. Each such triangle
has three children of the second generation. We denote by S2 the union
of the three triangles in the second generation. We then repeat this pro-
cess to find a sequence Sk of compact sets which satisfy the following
properties:

(a) Each Sk is a union of 3k closed equilateral triangles of side length
2−k. (These are the triangles of the kth generation.)

(b) {Sk} is a decreasing sequence of compact sets; that is, Sk+1 ⊂ Sk

for all k ≥ 0.

The Sierpinski triangle is the compact set defined by

S =
∞⋂

k=0

Sk.

Theorem 2.5 The Sierpinski triangle S has strict Hausdorff dimension
α = log 3/ log 2.

The inequality mα(S) ≤ 1 follows immediately from the construction.
Given δ > 0, choose K so that 2−K < δ. Since the set SK covers S and
consists of 3K triangles each of diameter 2−K < δ, we must have

Hδ
α(S) ≤ 3K(2−K)α.

But since 2α = 3, we find Hδ
α(S) ≤ 1, hence mα(S) ≤ 1.

The inequality mα(S) > 0 is more subtle. For its proof we need to fix
a special point in each triangle that appears in the construction of S.
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We choose to call the lower left vertex of a triangle the vertex of that
triangle. With this choice there are 3k vertices of the kth generation.
The argument that follows is based on the important fact that all these
vertices belong to S.

Suppose S ⊂ ⋃∞
j=1 Fj , with diam Fj < δ. We wish to prove that

∑
j

(diam Fj)α ≥ c > 0

for some constant c. Clearly, each Fj is contained in a ball of twice the
diameter of Fj , so upon replacing 2δ by δ and noting that S is compact,
it suffices to show that if S ⊂ ⋃N

j=1 Bj , where B = {Bj}N
j=1 is a finite

collection of balls whose diameters are less than δ, then

N∑
j=1

(diam Bj)α ≥ c > 0.

Suppose we have such a covering by balls. Consider the minimum diam-
eter of the Bj , and choose k so that

2−k ≤ min
1≤j≤N

diam Bj < 2−k+1.

Lemma 2.6 Suppose B is a ball in the covering B that satisfies

2−` ≤ diam B < 2−`+1 for some ` ≤ k.

Then B contains at most c3k−` vertices of the kth generation.

In this chapter, we shall continue use the common practice of denoting
by c, c′, . . . generic constants whose values are unimportant and may
change from one usage to another. We also use A ≈ B to denote that
the quantities A and B are comparable, that is, cB ≤ A ≤ c′B, for
appropriate constants c and c′.

Proof of Lemma 2.6. Let B∗ denote the ball with same center as B but
three times its diameter, and let 4k be a triangle of the kth generation
whose vertex v lies in B. If 4′

` denotes the triangle of the `th generation
that contains 4k, then since diam B ≥ 2−`,

v ∈ 4k ⊂ 4′
` ⊂ B∗,

as shown in Figure 2.
Next, there is a positive constant c such that B∗ can contain at most

c distinct triangles of the `th generation. This is because triangles of the
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4′
`

4k

B

v

B∗

Figure 2. The setting in Lemma 2.6

`th generation have disjoint interiors and area equal to c′4−`, while B∗

has area at most equal to c′′4−`. Finally, each 4′
` contains 3k−` triangles

of the kth generation, hence B can contain at most c3k−` vertices of
triangles of the kth generation.

To complete the proof that
∑N

j=1(diam Bj)α ≥ c > 0, note that

N∑
j=1

(diam Bj)α ≥
∑

`

N`2−`α,

where N` denotes the number of balls in B that satisfy 2−` ≤ diam Bj ≤
2−`+1. By the lemma, we see that the total number of vertices of triangles
in the kth generation that can be covered by the collection B can be no
more than c

∑
` N`3k−`. Since all 3k vertices of triangles in the kth

generation belong to S, and all vertices of the kth generation must be
covered, we must have c

∑
` N`3k−` ≥ 3k. Hence
∑

`

N`3−` ≥ c.

It now suffices to recall the definition of α which guarantees 2−`α = 3−`,
and therefore

N∑
j=1

(diam Bj)α ≥ c,
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as desired.

We give a final example that exhibits properties similar to the Cantor
set and Sierpinski triangle. It is the curve discovered by von Koch in 1904.

The von Koch curve

Consider the unit interval K0 = [0, 1], which we may think of as lying
on the x-axis in the xy-plane. Then consider the polygonal path K1

illustrated in Figure 3, which consists of four equal line segments of
length 1/3.

K0

K1

K3

K2

Figure 3. The first few stages in the construction of the von Koch curve

Let K1(t), for 0 ≤ t ≤ 1, denote the parametrization of K1 that has
constant speed. In other words, as t travels from 0 to 1/4, the point
K1(t) travels on the first line segment. As t travels from 1/4 to 1/2, the
point K1(t) travels on the second line segment, and so on. In particular,
we see that K1(`/4) for 0 ≤ ` ≤ 4 correspond to the five vertices of K1.

At the second stage of the construction we repeat the process of re-
placing each line segment in stage one by the corresponding polygonal
line. We then obtain the polygonal curve K2 illustrated in Figure 3. It
has 16 = 42 segments of length 1/9 = 3−2. We choose a parametrization
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K2(t) (0 ≤ t ≤ 1) of K2 that has constant speed. Observe that K2(`/42)
for 0 ≤ ` ≤ 42 gives all vertices of K2, and that the vertices of K1 belong
to K2, with

K2(`/4) = K1(`/4) for 0 ≤ ` ≤ 4.

Repeating this process indefinitely, we obtain a sequence of continuous
polygonal curves {Kj}, where Kj consists of 4j segments of length 3−j

each. If Kj(t) (0 ≤ t ≤ 1) is the parametrization of Kj that has constant
speed, then the vertices are precisely at the points Kj(`/4j), and

Kj′(`/4j) = Kj(`/4j) for 0 ≤ ` ≤ 4j

whenever j′ ≥ j.
In the limit as j tends to infinity, the polygonal lines Kj tend to the

von Koch curve K. Indeed, we have

|Kj+1(t)−Kj(t)| ≤ 3−j for all 0 ≤ t ≤ 1 and j ≥ 0.

This is clear when j = 0, and follows by induction in j when we consider
the nature of the construction of the jth stage. Since we may write

KJ(t) = K1(t) +
J−1∑
j=1

(Kj+1(t)−Kj(t)),

the above estimate proves that the series

K1(t) +
∞∑

j=1

(Kj+1(t)−Kj(t))

converges absolutely and uniformly to a continuous function K(t) that is
a parametrization of K. Besides continuity, the function K(t) satisfies a
regularity assumption that takes the form of a Lipschitz condition, as in
the case of the Cantor-Lebesgue function.

Theorem 2.7 The function K(t) satisfies a Lipschitz condition of expo-
nent γ = log 3/ log 4, that is:

|K(t)−K(s)| ≤ M |t− s|γ for all t, s ∈ [0, 1].

We have already observed that |Kj+1(t)−Kj(t)| ≤ 3−j . Since Kj travels
a distance of 3−j in 4−j units of time, we see that

|K ′
j(t)| ≤

(
4
3

)j

except when t = `/4j .
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Consequently we must have

|Kj(t)−Kj(s)| ≤
(

4
3

)j

|t− s|.

Moreover, K(t) = K1(t) +
∑∞

j=1(Kj+1(t)−Kj(t)). We now find our-
selves in precisely the same situation as in the proof that the Cantor-
Lebesgue function satisfies a Lipschitz condition with exponent log 2/ log 3.
We generalize that argument in the following lemma.

Lemma 2.8 Suppose {fj} is a sequence of continuous functions on the
interval [0, 1] that satisfy

|fj(t)− fj(s)| ≤ Aj |t− s| for some A > 1,

and

|fj(t)− fj+1(t)| ≤ B−j for some B > 1.

Then the limit f(t) = limj→∞ fj(t) exists and satisfies

|f(t)− f(s)| ≤ M |t− s|γ ,

where γ = log B/ log(AB).

Proof. The continuous limit f is given by the uniformly convergent
series

f(t) = f1(t) +
∞∑

k=1

(fk+1(t)− fk(t)),

and therefore

|f(t)− fj(t)| ≤
∞∑

k=j

|fk+1(t)− fk(t)| ≤
∞∑

k=j

B−k ≤ cB−j .

The triangle inequality, an application of the inequality just obtained,
and the inequality in the statement of the lemma give

|f(t)− f(s)| ≤ |fj(t)− fj(s)|+ |(f − fj)(t)|+ |(f − fj)(s)|
≤ c(Aj |t− s|+ B−j).

For a fixed pair of numbers t and s with t 6= s, we choose j to minimize
the sum Aj |t− s|+ B−j . This is essentially achieved by picking j so that
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two terms Aj |t− s| and B−j are comparable. More precisely, we choose
a j that satisfies

(AB)j |t− s| ≤ 1 and 1 ≤ (AB)j+1|t− s|.

Since |t− s| ≤ 2 and AB > 1, such a j must exist. The first inequality
then gives

Aj |t− s| ≤ B−j ,

while raising the second inequality to the power γ, and using the fact
that (AB)γ = B gives

1 ≤ Bj |t− s|γ .

Thus B−j ≤ |t− s|γ , and consequently

|f(t)− f(s)| ≤ c(Aj |t− s|+ B−j) ≤ M |t− s|γ ,

as was to be shown.

In particular, this result with Lemma 2.2 implies that

dimK ≤ 1
γ

=
log 4
log 3

.

To prove that mγ(K) > 0 and hence dimK = log 4/ log 3 requires an ar-
gument similar to the one given for the Sierpinski triangle. In fact,
this argument generalizes to cover a general family of sets that have a
self-similarity property. We therefore turn our attention to this general
theory next.

Remarks. We mention some further facts about the von Koch curve.
More details can be found in Exercises 13, 14, and 15 below.

1. The curve K is one in a family of similarly constructed curves. For
each `, 1/4 < ` < 1/2, consider at the first stage the curve K`

1(t)
given by four line segments each of length `, the first and last on the
x-axis, and the second and third forming two sides of an isoceles
triangle whose base lies on the x-axis. (See Figure 4.) The case
` = 1/3 corresponds to the previously defined von Koch curve.

Proceeding as in the case ` = 1/3, one obtains a curve K`, and it
can be seen that

dim(K`) =
log 4

log 1/`
.
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`

``

`

Figure 4. The curve K`
1(t)

Thus for every α, 1 < α < 2, we have a curve of this kind of dimen-
sion α. Note that when ` → 1/4 the limiting curve is a straight line
segment, which has dimension 1. When ` → 1/2, the limit can be
seen to correspond to a “space-filling” curve.

2. The curves t 7→ K`(t), 1/4 < ` ≤ 1/2, are each nowhere differen-
tiable. One can also show that each curve is simple when 1/4 ≤
` < 1/2.

2.2 Self-similarity

The Cantor set C, the Sierpinski triangle S, and von Koch curve K all
share an important property: each of these sets contains scaled copies
of itself. Moreover, each of these examples was constructed by iterating
a process closely tied to its scaling. For instance, the interval [0, 1/3]
contains a copy of the Cantor set scaled by a factor of 1/3. The same is
true for the interval [2/3, 1], and therefore

C = C1 ∪ C2,

where C1 and C2 are scaled versions of C. Also, each interval [0, 1/9],
[2/9, 3/9], [6/9, 7/9] and [8/9, 1] contains a copy of C scaled by a factor
of 1/9, and so on.

In the case of the Sierpinski triangle, each of the three triangles in the
first generation contains a copy of S scaled by the factor of 1/2. Hence

S = S1 ∪ S2 ∪ S3,

where each Sj , j = 1, 2, 3, is obtained by scaling and translating the
original Sierpinski triangle. More generally, every triangle in the kth

generation is a copy of S scaled by the factor of 1/2k.
Finally, each line segment in the initial stage of the construction of the

von Koch curve gives rise to a scaled and possibly rotated copy of the
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von Koch curve. In fact

K = K1 ∪ K2 ∪ K3 ∪ K4,

where Kj , j = 1, 2, 3, 4, is obtained by scaling K by the factor of 1/3 and
translating and rotating it.

Thus these examples each contain replicas of themselves, but on a
smaller scale. In this section, we give a precise definition of the resulting
notion of self-similarity and prove a theorem determining the Hausdorff
dimension of these sets.

A mapping S : Rd → Rd is said to be a similarity with ratio r > 0 if

|S(x)− S(y)| = r|x− y|.

It can be shown that every similarity of Rd is the composition of a trans-
lation, a rotation, and a dilation by r. (See Problem 3.)

Given finitely many similarities S1, . . . , Sm with the same ratio r, we
say that the set F ⊂ Rd is self-similar if

F = S1(F ) ∪ · · · ∪ Sm(F ).

We point out the relevance of the various examples we have already seen.

When F = C is the Cantor set, there are two similarities given by

S1(x) = x/3 and S2(x) = x/3 + 2/3

of ratio 1/3. So m = 2 and r = 1/3.

In the case of F = S, the Sierpinski triangle, the ratio is r = 1/2 and
there are m = 3 similarities given by

S1(x) =
x

2
, S2(x) =

x

2
+ α and S3(x) =

x

2
+ β.

Here, α and β are the points drawn in the first diagram in Figure 5.

If F = K, the von Koch curve, we have

S1(x) =
x

3
, S2(x) = ρ

x

3
+ α, S3(x) = ρ−1 x

3
+ β,

and

S4(x) =
x

3
+ γ,
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α

β0 0 α

β

γ 1

Figure 5. Similarities of the Sierpinski triangle and von Koch curve

where ρ is the rotation centered at the origin and of angle π/3. There
are m = 4 similarities which have ratio r = 1/3. The points α, β, and γ
are shown in the second diagram in Figure 5.

Another example, sometimes called the Cantor dust D, is another
two-dimensional version of the standard Cantor set. For each fixed 0 <
µ < 1/2, the set D may be constructed by starting with the unit square
Q = [0, 1]× [0, 1]. At the first stage we remove everything but the four
open squares in the corners of Q that have side length µ. This yields a
union D1 of four squares, as illustrated in Figure 6.

D1 D2

Figure 6. Construction of the Cantor dust

We repeat this process in each sub-square of D1; that is, we remove
everything but the four squares in the corner, each of side length µ2.
This gives a union D2 of 16 squares. Repeating this process, we obtain
a family D1 ⊃ D2 ⊃ · · · ⊃ Dk ⊃ · · · of compact sets whose intersection
defines the Cantor dust corresponding to the parameter µ.
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There are here m = 4 similarities of ratio µ given by

S1(x)= µx,

S2(x)= µx + (0, 1− µ),
S3(x)= µx + (1− µ, 1− µ),

S4(x)= µx + (1− µ, 0).

It is to be noted that D is the product Cξ × Cξ, with Cξ the Cantor set
of constant dissection ξ, as defined in Exercise 3, of Chapter 1. Here
ξ = 1− 2µ.

The first result we prove guarantees the existence of self-similar sets
under the assumption that the similarities are contracting, that is, that
their ratio satisfies r < 1.

Theorem 2.9 Suppose S1, S2, . . . , Sm are m similartities, each with the
same ratio r that satisfies 0 < r < 1. Then there exists a unique non-
empty compact set F such that

F = S1(F ) ∪ · · · ∪ Sm(F ).

The proof of this theorem is in the nature of a fixed point argument.
We shall begin with some large ball B and iteratively apply the mappings
S1, . . . , Sm. The fact that the similarities have ratio r < 1 will suffice to
imply that this process contracts to a unique set F with the desired
property.

Lemma 2.10 There exists a closed ball B so that Sj(B) ⊂ B for all
j = 1, . . . , m.

Proof. Indeed, we note that if S is a similarity with ratio r, then

|S(x)| ≤ |S(x)− S(0)|+ |S(0)|
≤ r|x|+ |S(0)|.

If we require that |x| ≤ R implies |S(x)| ≤ R, it suffices to choose R
so that rR + |S(0)| ≤ R, that is, R ≥ |S(0)|/(1− r). In this fashion,
we obtain for each Sj a ball Bj centered at the origin that satisfies
Sj(Bj) ⊂ Bj . If B denotes the ball among the Bj with the largest radius,
then the above shows that Sj(B) ⊂ B for all j.

Now for any set A, let S̃(A) denote the set given by

S̃(A) = S1(A) ∪ · · · ∪ Sm(A).
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Note that if A ⊂ A′, then S̃(A) ⊂ S̃(A′).
Also observe that while each Sj is a mapping from Rd to Rd, the

mapping S̃ is not a point mapping, but takes subsets of Rd to subsets of
Rd.

To exploit the notion of contraction with a ratio less than 1, we intro-
duce the distance between two compact sets as follows. For each δ > 0
and set A, we let

Aδ = {x : d(x,A) < δ}.

Hence Aδ is a set that contains A but which is slightly larger in terms of δ.
If A and B are two compact sets, we define the Hausdorff distance as

dist(A,B) = inf{δ : B ⊂ Aδ and A ⊂ Bδ}.

Lemma 2.11 The distance function dist defined on compact subsets of
Rd satisfies

(i) dist(A,B) = 0 if and only if A = B.

(ii) dist(A,B) = dist(B,A).

(iii) dist(A,B) ≤ dist(A,C) + dist(C, B).

If S1, . . . , Sm are similarities with ratio r, then

(iv) dist(S̃(A), S̃(B)) ≤ r dist(A,B).

The proof of the lemma is simple and may be left to the reader.

Using both lemmas we may now prove Theorem 2.9. We first choose
B as in Lemma 2.10, and let Fk = S̃k(B), where S̃k denotes the kth com-
position of S̃, that is, S̃k = S̃k−1 ◦ S̃ with S̃1 = S̃. Each Fk is compact,
non-empty, and Fk ⊂ Fk−1, since S̃(B) ⊂ B. If we let

F =
∞⋂

k=1

Fk,

then F is compact, non-empty, and clearly S̃(F ) = F , since applying S̃
to

⋂∞
k=1 Fk yields

⋂∞
k=2 Fk, which also equals F .

Uniqueness of the set F is proved as follows. Suppose G is another
compact set so that S̃(G) = G. Then, an application of part (iv) in
Lemma 2.11 yields dist(F, G) ≤ r dist(F, G). Since r < 1, this forces
dist(F, G) = 0, so that F = G, and the proof of Theorem 2.9 is com-
plete.
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Under an additional technical condition, one can calculate the precise
Hausdorff dimension of the self-similar set F . Loosely speaking, the
restriction holds if the sets S1(F ), . . . , Sm(F ) do not overlap too much.
Indeed, if these sets were disjoint, then we could argue that

mα(F ) =
m∑

j=1

mα(Sj(F )).

Since each Sj scales by r, we would then have mα(Sj(F )) = rαmα(F ).
Hence

mα(F ) = mrαmα(F ).

If mα(F ) were finite, then we would have that mrα = 1; thus

α =
log m

log 1/r
.

The restriction we impose is as follows. We say that the similarities
S1, . . . , Sm are separated if there is an bounded open set O so that

O ⊃ S1(O) ∪ · · · ∪ Sm(O),

and the Sj(O) are disjoint. It is not assumed that O contains F .

Theorem 2.12 Suppose S1, S2, . . . , Sm are m separated similarities with
the common ratio r that satisfies 0 < r < 1. Then the set F has Haus-
dorff dimension equal to log m/ log(1/r).

Observe first that when F is the Cantor set we may take O to be
the open unit interval, and note that we have already proved that its
dimension is log 2/ log 3. For the Sierpinski triangle the open unit triangle
will do, and dimS = log 3/ log 2. In the example of the Cantor dust the
open unit square works, and dimD = log m/ log µ−1. Finally, for the von
Koch curve we may take the interior of the triangle pictured in Figure 7,
and we will have dimK = log 4/ log 3.

We now turn to the proof of Theorem 2.12, which will follow the same
approach used in the case of the Sierpinski triangle. If α = log m/ log(1/r),
we claim that mα(F ) < ∞, hence dimF ≤ α. Moreover, this inequality
holds even without the separation assumption. Indeed, recall that

Fk = S̃k(B),
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Figure 7. Open set in the separation of the von Koch similarities

and S̃k(B) is the union of mk sets of diameter less than crk (with c =
diam B), each of the form

Sn1 ◦ Sn2 ◦ · · · ◦ Snk
(B), where 1 ≤ ni ≤ m and 1 ≤ i ≤ k.

Consequently, if crk ≤ δ, then

Hδ
α(F ) ≤

∑
n1,...,nk

(diam Sn1 ◦ · · · ◦ Snk
(B))α

≤ c′mkrαk

≤ c′,

since mrα = 1, because α = log m/ log(1/r). Since c′ is independent of
δ, we get mα(F ) ≤ c′.

To prove mα(F ) > 0, we now use the separation condition. We argue
in parallel with the earlier calculation of the Hausdorff dimension of the
Sierpinski triangle.

Fix a point x in F . We define the “vertices” of the kth generation as
the mk points that lie in F and are given by

Sn1 ◦ · · · ◦ Snk
(x), where 1 ≤ n1 ≤ m, . . . , 1 ≤ nk ≤ m.

Each vertex is labeled by (n1, . . . , nk). Vertices need not be distinct, so
they are counted with their multiplicities.

Similarly, we define the “open sets” of the kth generation to be the mk

sets given by

Sn1 ◦ · · · ◦ Snk
(O), where 1 ≤ n1 ≤ m, . . . , 1 ≤ nk ≤ m,

and where O is fixed and chosen to satisfy the separation condition.
Such open sets are again labeled by multi-indices (n1, n2, . . . , nk) with
1 ≤ nj ≤ m, 1 ≤ j ≤ k.
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Then the open sets of the kth generation are disjoint, since those of
the first generation are disjoint. Moreover if k ≥ `, each open set of the
`th generation contains mk−` open sets of the kth generation.

Suppose v is a vertex of the kth generation, and let O(v) denote the
open set in the kth generation which is associated to v, that is, v and
O(v) carry the same label (n1, n2, . . . , nk). Since x is at a fixed distance
from the original open set O, and O has a finite diameter, we find that

(a) d(v,O(v)) ≤ crk.

(b) c′rk ≤ diam O(v) ≤ crk.

As in the case of the Sierpinski triangle, it suffices to prove that if
B = {Bj}N

j=1 is a finite collection of balls whose diameters are less than
δ and whose union covers F , then

N∑
j=1

(diam Bj)α ≥ c > 0.

Suppose we have such a covering by balls, and choose k so that

rk ≤ min
1≤j≤N

diam Bj < rk−1.

Lemma 2.13 Suppose B is a ball in the covering B that satisfies

r` ≤ diam B < r`−1 for some ` ≤ k.

Then B contains at most cmk−` vertices of the kth generation.

Proof. If v is a vertex of the kth generation with v ∈ B, and O(v)
denotes the corresponding open set of the kth generation, then, for some
fixed dilate B∗ of B, properties (a) and (b) above guarantee that O(v) ⊂
B∗, and B∗ also contains the open set of generation ` that contains O(v).

Since B∗ has volume crd`, and each open set in the `th generation has
volume ≈ rd` (by property (b) above), B∗ can contain at most c open
sets of generation `. Hence B∗ contains at most cmk−` open sets of the
kth generation. Consequently, B can contain at most cmk−` vertices of
the kth generation, and the lemma is proved.

For the final argument, let N` denote the number of balls in B so that

r` ≤ diam Bj ≤ r`−1.

By the lemma, we see that the total number of vertices of the kth gen-
eration that can be covered by the collection B can be no more than
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c
∑

` N`m
k−`. Since all mk vertices of the kth generation belong to F ,

we must have c
∑

` N`m
k−` ≥ mk, and hence

∑

`

N`m
−` ≥ c.

The definition of α gives r`α = m−`, and therefore

N∑
j=1

(diam Bj)α ≥
∑

`

N`r
`α ≥ c,

and the proof of Theorem 2.12 is complete.

3 Space-filling curves

The year 1890 heralded an important discovery: Peano constructed a
continuous curve that filled an entire square in the plane. Since then,
many variants of his construction have been given. We shall describe here
a construction that has the feature of elucidating an additional significant
fact. It is that from the point of measure theory, speaking broadly, the
unit interval and unit square are “isomorphic.”

Theorem 3.1 There exists a curve t 7→ P(t) from the unit interval to
the unit square with the following properties:

(i) P maps [0, 1] to [0, 1]× [0, 1] continuously and surjectively.

(ii) P satisfies a Lipschitz condition of exponent 1/2, that is,

|P(t)− P(s)| ≤ M |t− s|1/2.

(iii) The image under P of any sub-interval [a, b] is a compact subset of
the square of (two-dimensional) Lebesgue measure exactly b− a.

The third conclusion can be elaborated further.

Corollary 3.2 There are subsets Z1 ⊂ [0, 1] and Z2 ⊂ [0, 1]× [0, 1], each
of measure zero, such that P is bijective from

[0, 1]− Z1 to [0, 1]× [0, 1]− Z2

and measure preserving. In other words, E is measurable if and only if
P(E) is measurable, and

m1(E) = m2(P(E)).
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Here m1 and m2 denote the Lebesgue measures in R1 and R2, respec-
tively.

We shall call the function t 7→ P(t) the Peano mapping. Its image
is called the Peano curve.

Several observations help clarify the nature of the conclusions of the
theorem. Suppose that F : [0, 1] → [0, 1]× [0, 1] is continuous and sur-
jective. Then:

(a) F cannot be Lipschitz of exponent γ > 1/2. This follows at once
from Lemma 2.2, which states that

dim F ([0, 1]) ≤ 1
γ

dim[0, 1],

so that 2 ≤ 1/γ as desired.

(b) F cannot be injective. Indeed, if this were the case, then the in-
verse G of F would exist and would be continuous. Given any two
points a 6= b in [0, 1], we would get a contradiction by looking at
two distinct curves in the square that join F (a) and F (b), since the
image of these two curves under G would have to intersect at points
between a and b. In fact, given any open disc D in the square, there
always exists x ∈ D so that F (t) = F (s) = x yet t 6= s.

The proof of Theorem 3.1 will follow from a careful study of a natu-
ral class of mappings that associate sub-squares in [0, 1]× [0, 1] to sub-
intervals in [0, 1]. This implements the approach implicit in Hilbert’s
iterative procedure, which he set forth in the first three stages in Fig-
ure 8.

Figure 8. Construction of the Peano curve

We turn now to the study of the general class of mappings.
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3.1 Quartic intervals and dyadic squares

The quartic intervals arise when [0, 1] is successively sub-divided by
powers of 4. For instance, the first generation quartic intervals are the
closed intervals

I1 = [0, 1/4], I2 = [1/4, 1/2], I3 = [1/2, 3/4], I4 = [3/4, 1].

The second generation quartic intervals are obtained by sub-dividing each
interval of the first generation by 4. Hence there are 16 = 42 quartic in-
tervals of the second generation. In general, there are 4k quartic intervals
of the kth generation, each of the form [ `

4k , `+1
4k ], where ` is integral with

0 ≤ ` < 4k.
A chain of quartic intervals is a decreasing sequence of intervals

I1 ⊃ I2 ⊃ · · · ⊃ Ik ⊃ · · · ,

where Ik is a quartic interval of the kth generation (hence |Ik| = 4−k).

Proposition 3.3 Chains of quartic intervals satisfy the following prop-
erties:

(i) If {Ik} is a chain of quartic intervals, then there exists a unique
t ∈ [0, 1] such that t ∈ ⋂

k Ik.

(ii) Conversely, given t ∈ [0, 1], there is a chain {Ik} of quartic inter-
vals such that t ∈ ⋂

k Ik.

(iii) The set of t for which the chain in part (ii) is not unique is a set
of measure zero (in fact, this set is countable).

Proof. Part (i) follows from the fact that {Ik} is a decreasing sequence
of compact sets whose diameters go to 0.

For part (ii), we fix t and note that for each k there exists at least one
quartic interval Ik with t ∈ Ik. If t is of the form `/4k, where 0 < ` < 4k,
then there are exactly two quartic intervals of the kth generation that
contain t. Hence, the set of points for which the chain is not unique is
precisely the set of dyadic rationals

`

4k
, where 1 ≤ k, and 0 < ` < 4k.

Note that of course, these fractions are the same as those of the form
`′/2k′ with 0 < `′ < 2k′ . This set is countable, hence has measure 0.
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It is clear that each chain {Ik} of quartic intervals can be represented
naturally by a string .a1a2 · · · ak · · · , where each ak is either 0, 1, 2, or 3.
Then the point t corresponding to this chain is given by

t =
∞∑

k=1

ak

4k
.

The points where ambiguity occurs are precisely those where ak = 3 for
all sufficiently large k, or equivalently where ak = 0 for all sufficiently
large k.

Part of our description of the Peano mapping will follow from associ-
ating to each quartic interval a dyadic square. These dyadic squares
are obtained by sub-dividing the unit square [0, 1]× [0, 1] in the plane by
successively bisecting the sides.

For instance, dyadic squares of the first generation arise from bisecting
the sides of the unit square. This yields four closed squares S1, S2, S3

and S4, each of side length 1/2 and area |Si| = 1/4, for i = 1, . . . , 4.
The dyadic squares of the second generation are obtained by bisecting

each dyadic square of the first generation, and so on. In general, there
are 4k squares of the kth generation, each of side length 1/2k and area
1/4k.

A chain of dyadic squares is a decreasing sequence of squares

S1 ⊃ S2 ⊃ · · · ⊃ Sk ⊃ · · · ,

where Sk is a dyadic square of the kth generation.

Proposition 3.4 Chains of dyadic squares have the following proper-
ties:

(i) If {Sk} is a chain of dyadic squares, then there exists a unique
x ∈ [0, 1]× [0, 1] such that x ∈ ⋂

k Sk.

(ii) Conversely, given x ∈ [0, 1]× [0, 1], there is a chain {Sk} of dyadic
squares such that x ∈ ⋂

k Sk.

(iii) The set of x for which the chain in part (ii) is not unique is a set
of measure zero.

In this case, the set of ambiguities consists of all points (x1, x2) where
one of the coordinates is a dyadic rational. Geometrically, this set is
the (countable) union of vertical and horizontal segments in [0, 1]× [0, 1]
determined by the grid of dyadic rationals. This set has measure zero.
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Moreover, each chain of dyadic squares can be represented by a string
.b1b2 · · · , where each bk is either 0, 1, 2 or 3. Then

(1) x =
∞∑

k=1

bk

2k
,

where

bk = (0, 0) if bk = 0,
bk = (0, 1) if bk = 1,
bk = (1, 0) if bk = 2,
bk = (1, 1) if bk = 3.

3.2 Dyadic correspondence

A dyadic correspondence is a mapping Φ from quartic intervals to
dyadic squares that satisfies:

(1) Φ is bijective.

(2) Φ respects generations.

(3) Φ respects inclusion.

By (2), we mean that if I is a quartic interval of the kth generation, then
Φ(I) is a dyadic square of the kth generation. By (3), we mean that if
I ⊂ J , then Φ(I) ⊂ Φ(J).

For example, the trivial, or standard correspondence assigns to the
string .a1a2 · · · the string .b1b2 · · · with bk = ak.

Given a dyadic correspondence Φ, the induced mapping Φ∗ maps
[0, 1] to [0, 1]× [0, 1] and is given as follows. If {t} =

⋂
Ik where {Ik}

is a chain of quartic intervals, then, since {Φ(Ik)} is a chain of dyadic
squares, we may let

Φ∗(t) = x =
⋂

Φ(Ik).

We note that Φ∗ is well-defined except on a (countable) set of measure
zero, (those points t that are represented by more than one quartic chain.)

A moment’s reflection will show that if I ′ is a quartic interval of the
kth generation, then the images Φ∗(I ′) = {Φ∗(t), t ∈ I ′}, comprise the
dyadic square of the kth generation Φ(I ′). Thus Φ∗(I ′) = Φ(I ′), and
hence m1(I ′) = m2(Φ∗(I ′)).

Theorem 3.5 Given a dyadic correspondence Φ, there exist sets Z1 ⊂
[0, 1] and Z2 ⊂ [0, 1]× [0, 1], each of measure zero, so that:
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(i) Φ∗ is a bijection on [0, 1]− Z1 to [0, 1]× [0, 1]− Z2.

(ii) E is measurable if and only if Φ∗(E) is measurable.

(iii) m1(E) = m2(Φ∗(E)).

Proof. First, let N1 denote the collection of chains of those quartic
intervals arising in (iii) of Proposition 3.3, those for which the points in
I = [0, 1] are not uniquely representable. Similarly, let N2 denote the
collection of chains of those dyadic squares for which the corresponding
points in the square I × I are not uniquely representable.

Since Φ is a bijection from chains of quartic intervals to chains of dyadic
squares, it is also a bijection from N1 ∪ Φ−1(N2) to Φ(N1) ∪N2, and
hence also of their complements. Let Z1 be the subset of I consisting of
all points in I that can be represented (according to (i) of Proposition 3.3)
by the chains in N1 ∪ Φ−1(N2), and let Z2 be the set of points in the
square that can be represented by dyadic squares in Φ(N1) ∪N2. Then
Φ∗, the induced mapping, is well-defined on I − Z1, and gives a bijection
of I − Z1 to (I × I)− Z2. To prove that both Z1 and Z2 have measure
zero, we invoke the following lemma. We suppose {fk}∞k=1 is a fixed given
sequence, with each fk either 0, 1, 2, or 3.

Lemma 3.6 Let

E0 = {x =
∞∑

k=1

ak/4k, where ak 6= fk for all sufficiently large k}.

Then m(E0) = 0.

Indeed, if we fix r, then m({x : ar 6= fr}) = 3/4, and

m({x : ar 6= fr and ar+1 6= fr+1}) = (3/4)2, etc.

Thus m({x : ak 6= fk, all k ≥ r}) = 0, and E0 is a countable union of
such sets, from which the lemma follows.

There is a similar statement for points in the square S = I × I in terms
of the representation (1).

Note that as a result the set of points in I corresponding to chains in
N1 form a set of measure zero. In fact, we may use the lemma for the
sequence for which fk = 1, for all k, since the elements of N1 correspond
to sequences {ak} with ak = 0 for all sufficiently large k, or ak = 3 for
all sufficiently large k.

Similarly, the points in the square S corresponding to N2 form a set of
measure zero. To see this, take for example fk = 1 for k odd, and fk = 2
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for k even, and note that N2 corresponds to all sequences {ak} where
one of the following four exclusive alternatives holds for all sufficiently
large k: either ak is 0 or 1; or ak is 2 or 3; or ak is 0 or 2; or ak is 1
or 3. By similar reasoning the points Φ−1(N2) and Φ(N1) form sets of
measure zero in I and I × I respectively.

We now turn to the proof that Φ∗ (which is a bijection from I − Z1

to (I × I)− Z2) is measure preserving. For this it is useful to recall
Theorem 1.4 in Chapter 1, whereby any open set O in the unit interval
I can be realized as a countable union

⋃∞
j=1 Ij , where each Ij is a closed

interval and the Ij have disjoint interiors. Moreover, an examination of
the proof shows that the intervals can be taken to be dyadic, that is, of the
form [`/2j , (` + 1)/2j ], for appropriate integers ` and j. Further, such an
interval is itself a quartic interval if j is even, j = 2k, or the union of two
quartic intervals [(2`)/22k, (2` + 1)/22k] and [(2` + 1)/22k, (2` + 2)/22k],
if j is odd, j = 2k − 1. Thus any open set in I can be given as a union of
quartic intervals whose interiors are disjoint. Similarly, any open set in
the square I × I is a union of dyadic squares whose interiors are disjoint.

Now let E be any set of measure zero in I − Z1 and ε > 0. Then we
can cover E ⊂ ⋃

j Ij , where Ij are quartic intervals and
∑

j m1(Ij) < ε.
Because Φ∗(E) ⊂ ⋃

j Φ∗(Ij), then

m2(Φ∗(E)) ≤
∑

m2(Φ∗(Ij)) =
∑

m1(Ij) < ε.

Thus Φ∗(E) is measurable and m2(Φ∗(E)) = 0. Similarly, (Φ∗)−1 maps
sets of measure zero in (I × I)− Z2 to sets of measure zero in I.

Now the argument above also shows that if O is any open set in I,
then Φ∗(O − Z1) is measurable, and m2(Φ∗(O − Z1)) = m1(O). Thus
this identity goes over to Gδ sets in I. Since any measurable set differs
from a Gδ set by a set of measure zero, we see that we have established
that m2(Φ∗(E)) = m1(E) for any measurable subset of E of I − Z1. The
same argument can be applied to (Φ∗)−1, and this completes the proof
of the theorem.

The Peano mapping will be obtained as Φ∗ for a special correspon-
dence Φ.

3.3 Construction of the Peano mapping

The particular dyadic correspondence we now present provides us with
the steps to follow when tracing the approximations of the Peano curve.
The main idea behind its construction is that as we go from one quartic
interval in the kth generation to the next quartic interval in the same
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generation, we move from a dyadic square of the kth generation to another
square of the kth generation that shares a common side.

More precisely, we say that two quartic intervals in the same generation
are adjacent if they share a point in common. Also, two squares in the
same generation are adjacent if they share a side in common.

Lemma 3.7 There is a unique dyadic correspondence Φ so that:

(i) If I and J are two adjacent intervals of the same generation, then
Φ(I) and Φ(J) are two adjacent squares (of the same generation).

(ii) In generation k, if I− is the left-most interval and I+ the right-
most interval, then Φ(I−) is the left-lower square and Φ(I+) is the
right-lower square.

Part (ii) of the lemma is illustrated in Figure 9.

0 1

I+I−

Figure 9. Special dyadic correspondence

Given a square S and its four immediate sub-squares, an acceptable
traverse is an ordering of the sub-squares S1, S2, S3, and S4, so that
Sj and Sj+1 are adjacent for j = 1, 2, 3. With such an ordering, we note
that if we color S1 white, and then alternate black and white, the square
S3 is also white, while S2 and S4 are black. The important point to
remember is that if the first square in a traverse is white, then the last
square is black.

The key observation is the following. Suppose we are given a square
S, and a side σ of S. If S1 is any of the immediate four sub-squares in
S, then there exists a unique traverse S1, S2, S3, and S4 so that the last
square S4 has a side in common with σ. With the initial square S1 in
the lower-left corner of S, the four possibilities which correspond to the
four choices of σ, are illustrated in Figure 10.

We may now begin the inductive description of the dyadic correspon-
dence satisfying the conditions in the lemma. On quartic intervals of the
first generation we assign the square Sj = Φ(Ij), as pictured in Figure 11.
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S4

σ

S2

S1

S3

σ

S1 S2

S3S4

σ

S1

S2 S3

S4

S1 S2

S3S4

σ

Figure 10. Traverses

S2 S3

S4S1

I1 I3 I4I2

Figure 11. Initial step of the correspondence

Now suppose Φ has been defined for all quartic intervals of generation
less than or equal to k. We now write the intervals in generation k in
increasing order as I1, . . . , I4k , and let Sj = Φ(Ij). We then divide I1

into four quartic intervals of generation k + 1 and denote them by I1,1,
I1,2, I1,3, and I1,4, where the intervals are chosen in increasing order.

Then, we assign to each interval I1,j a dyadic square Φ(I1,j) = Sj of
generation k + 1 contained in S1 so that:

(a) S1,1 is the lower-left sub-square of S1,

(b) S1,4 touches the side that S1 shares with S2,

(c) S1,1, S1,2, S1,3, and S1,4 is a traverse.

This is possible, since the induction hypothesis guarantees that S2 is
adjacent to S1.
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This settles the assignments for the sub-squares of S1, so we now turn
our attention to S2. Let I2,1, I2,2, I2,3, and I2,4 denote the quartic
intervals of generation k + 1 in I2, written in increasing order. First, we
take S2,1 = Φ(I2,1) to be the sub-square of S2 which is adjacent to S1,4.
This can be done because S1,4 touches S2 by construction. Note that
we leave S1 from a black square (S1,4), and enter S2 in a white square
(S2,1). Since S3 is adjacent to S2, we may now find a traverse S2,1, S2,2,
S2,3 and S2,4 so that S2,4 touches S3.

We may then repeat this process in each interval Ij and square Sj ,
j = 3, . . . , 4k. Note that at each stage the square Sj,1 (the “entering”
square) is white, while Sj,4 (the “exiting” square) is black.

In the final step, the induction hypothesis guarantees that S4k is the
lower-right corner square. Moreover, since S4k−1 must be adjacent to
S4k it must be either above it, or to the left of it, so we enter a square of
the (k + 1)st generation along an upper or left side. The entering square
is a white square, and we traverse to the lower right corner sub-square
of S4k , which is a black square.

This concludes the inductive step, hence the proof of Lemma 3.7.

We may now begin the actual description of the Peano curve. For each
generation k we construct a polygonal line which consists of vertical and
horizontal line segments connecting the centers of consecutive squares.
More precisely, let Φ denote the dyadic correspondence in Lemma 3.7,
and let S1, . . . , S4k be the squares of the kth generation ordered according
to Φ, that is, Φ(Ij) = Sj . Let tj denote the middle point of Ij ,

tj =
j − 1

2

4k
for j = 1, . . . , 4k.

Let xj be the center of the square Sj , and define

Pk(tj) = xj .

Also set

Pk(0) = (0, 1/2k+1) = x0 where t0 = 0,

and

Pk(1) = (1, 1/2k+1) = x4k+1 where t4k+1 = 1.

Then, we extend Pk(t) to the unit interval 0 ≤ t ≤ 1 by linearity along
the sub-intervals determined by the division points t0, . . . , t4k+1.
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Note that the distance |xj − xj+1| = 1/2k, while |tj − tj+1| = 1/4k for
0 ≤ j ≤ 4k. Also

|x1 − x0| = |x4k − x4k+1 | = 1
2 · 2k

,

while

|t1 − t0| = |t4k − t4k+1 | = 1
2 · 4k

.

Therefore P ′k(t) = 4k2−k = 2k except when t = tj .
As a result,

|Pk(t)− Pk(s)| ≤ 2k|t− s|.

However,

|Pk+1(t)− Pk(t)| ≤
√

2 2−k,

because when `/4k ≤ t ≤ (` + 1)/4k, then Pk+1(t) and Pk(t) belong to
the same dyadic square of generation k.

Therefore the limit

P(t) = lim
k→∞

Pk(t) = P1(t) +
∞∑

j=1

Pj+1(t)−Pj(t)

exists, and defines a continuous function in view of the uniform conver-
gence. By Lemma 2.8 we conclude that

|P(t)− P(s)| ≤ M |t− s|1/2,

and P satisfies a Lipschitz condition of exponent of 1/2.
Moreover, each Pk(t) visits each dyadic square of generation k as t

ranges in [0, 1]. Hence P is dense in the unit square, and by continuity
we find that t 7→ P(t) is a surjection.

Finally, to prove the measure preserving property of P, it suffices to
establish P = Φ∗.

Lemma 3.8 If Φ is the dyadic correspondence in Lemma 3.7, then Φ∗(t) =
P(t) for every 0 ≤ t ≤ 1.

Proof. First, we observe that Φ∗(t) is unambiguously defined for
every t. Indeed, suppose t ∈ ⋂

k Ik and t ∈ ⋂
k Jk are two chains of

quartic intervals; then Ik and Jk must be adjacent for sufficiently large
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k. Thus Φ(Ik) and Φ(Jk) must be adjacent squares for all sufficiently
large k. Hence ⋂

k

Φ(Ik) =
⋂

k

Φ(Jk).

Next, directly from our construction we have
⋂

k

Φ(Ik) = limPk(t) = P(t).

This gives the desired conclusion.

The argument also shows that P(I) = Φ(I) for any quartic interval I.
Now recall that any interval (a, b) can be written as

⋃
j Ij , where the Ij

are quartic intervals with disjoint interiors. Because P(Ij) = Φ(Ij), these
are then dyadic squares with disjoint interiors. Since P(a, b) =

⋃
k P(Ij),

we have

m2(P(a, b)) =
∞∑

j=1

m2(P(Ij)) =
∞∑

j=1

m2(Φ(Ij)) =
∞∑

j=1

m1(Ij) = m1(a, b).

This proves conclusion (iii) of Theorem 3.1. The other conclusions hav-
ing already been established, we need only note that the corollary is
contained in Theorem 3.5.

As a result, we conclude that t 7→ P(t) also induces a measure pre-
serving mapping from [0, 1] to [0, 1]× [0, 1]. This concludes the proof of
Theorem 3.1.

4* Besicovitch sets and regularity

We begin by presenting a surprising regularity property enjoyed by all
measurable subsets (of finite measure) of Rd when d ≥ 3. As we shall
see, the fact that the corresponding phenomenon does not hold for d =
2 is due to the existence of a remarkable set that was discovered by
Besicovitch. A construction of a set of this kind will be detailed in
Section 4.4.

We first fix some notation. For each unit vector γ on the sphere,
γ ∈ Sd−1, and each t ∈ R we consider the plane Pt,γ , which is defined
as the (d− 1)-dimensional affine hyperplane perpendicular to γ and of
“signed distance” t from the origin.1 The plane Pt,γ is given by

Pt,γ = {x ∈ Rd : x · γ = t}.

1Note that there are two planes perpendicular to γ and of distance |t| from the origin;
this accounts for the fact that t may be either positive or negative.
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We observe that each Pt,γ carries a natural (d− 1) Lebesgue measure,
denoted by md−1. In fact, if we complete γ to an orthonormal basis
e1, e2, . . . , ed−1, γ of Rd, then we can write any x ∈ Rd in terms of the
corresponding coordinates as x = x1e1 + x2e2 + · · ·+ xdγ. When we set
x ∈ Rd = Rd−1 × R with (x1, . . . , xd−1) ∈ Rd−1, xd ∈ R, then the mea-
sure md−1 on Pt,γ is the Lebesgue measure on Rd−1. This definition of
md−1 is independent of the choice of orthonormal vectors e1, e2, . . . , ed−1,
since Lebesgue measure is invariant under rotations. (See Problem 4,
Chapter 2, or Exercise 26, Chapter 3.)

With these preliminaries out of the way, we define for each subset
E ⊂ Rd the slice of E cut out by the plane Pt,γ as

Et,γ = E ∩ Pt,γ .

We now consider the slices Et,γ as t varies, where E is measurable and
γ is fixed. (See Figure 12.)

Et1,γ

Pt2,γ

γ

Pt1,γ

Figure 12. The slices E ∩ Pt,γ as t varies

We observe that for almost every t the set Et,γ is md−1 measurable
and, moreover, md−1(Et,γ) is a measurable function of t. This is a
direct consequence of Fubini’s theorem and the above decomposition,
Rd = Rd−1 × R. In fact, so long as the direction γ is pre-assigned, not
much more can be said in general about the function t 7→ md−1(Et,γ).
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However, when d ≥ 3 the nature of the function is dramatically different
for “most” γ. This is contained in the following theorem.

Theorem 4.1 Suppose E is of finite measure in Rd, with d ≥ 3. Then
for almost every γ ∈ Sd−1:

(i) Et,γ is measurable for all t ∈ R.

(ii) md−1(Et,γ) is continuous in t ∈ R.

Moreover, the function of t defined by µ(t, γ) = md−1(Et,γ) satisfies a
Lipschitz condition with exponent α for any α with 0 < α < 1/2.

The almost everywhere assertion is with respect to the natural measure
dσ on Sd−1 that arises in the polar coordinate formula in Section 3.2 of
the previous chapter.

We recall that a function f is Lipschitz with exponent α if

|f(t1)− f(t2)| ≤ A|t1 − t2|α for some A.

A significant part of (i) is that for a.e. γ, the slice Et,γ is measurable
for all values of the parameter t. In particular, one has the following.

Corollary 4.2 Suppose E is a set of measure zero in Rd with d ≥ 3.
Then, for almost every γ ∈ Sd−1, the slice Et,γ has zero measure for all
t ∈ R.

The fact that there is no analogue of this when d = 2 is a consequence of
the existence of a Besicovitch set, (also called a “Kakeya set”), which is
defined as a set that satisfies the three conditions in the theorem below.

Theorem 4.3 There exists a set B in R2 that:

(i) is compact,

(ii) has Lebesgue measure zero,

(iii) contains a translate of every unit line segment.

Note that with F = B and γ ∈ S1 one has m1(F ∩ Pt0,γ) ≥ 1 for some t0.
If m1(F ∩ Pt,γ) were continuous in t, then this measure would be strictly
positive for an interval in t containing t0, and thus we would have
m2(F ) > 0, by Fubini’s theorem. This contradiction shows that the ana-
logue of Theorem 4.1 cannot hold for d = 2.

While the set B has zero two-dimensional measure, this assertion can-
not be improved by replacing this measure by α-dimensional Hausdorff
measure, with α < 2.

Theorem 4.4 Suppose F is any set that satisfies the conclusions (i)
and (iii) of Theorem 4.3. Then F has Hausdorff dimension 2.
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4.1 The Radon transform

Theorems 4.1 and 4.4 will be derived by an analysis of the regularity
properties of the Radon transform R. The operator R arises in a number
of problems in analysis, and was already considered in Chapter 6 of
Book I.

For an appropriate function f on Rd, the Radon transform of f is
defined by

R(f)(t, γ) =
∫

Pt,γ

f.

The integration is performed over the plane Pt,γ with respect to the
measure md−1 discussed above. We first make the following simple ob-
servation:

1. If f is continuous and has compact support, then f is of course
integrable on every plane Pt,γ , and so R(f)(t, γ) is defined for all
(t, γ) ∈ R× Sd−1. Moreover it is a continuous function of the pair
(t, γ) and has compact support in the t-variable.

2. If f is merely Lebesgue integrable, then f may fail to be measurable
or integrable on Pt,γ for some (t, γ), and thus R(f)(t, γ) is not
defined for those (t, γ).

3. Suppose f is the characteristic function of the set E, that is, f =
χE . Then R(f)(t, γ) = md−1(Et,γ) if Et,γ is measurable.

It is this last property that links the Radon transform to our problem.
Key estimates in this conclusion involve a maximal “Radon transform”
defined by

R∗(f)(γ) = sup
t∈R

|R(f)(t, γ)|,

as well as corresponding expressions controlling the Lipschitz character
of R(f)(t, γ) as a function of t. A basic fact inherent in our analysis
is that the regularity of the Radon transform actually improves as the
dimension of the underlying space increases.

Theorem 4.5 Suppose f is continuous and has compact support in Rd

with d ≥ 3. Then

(2)
∫

Sd−1
R∗(f)(γ) dσ(γ) ≤ c

[‖f‖L1(Rd) + ‖f‖L2(Rd)

]

for some constant c > 0 that does not depend on f .
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An inequality of this type is a typical “a priori” estimate. It is obtained
first under some regularity assumption on the function f , and then a
limiting argument allows one to pass to the more general case when f
belongs to L1 ∩ L2.

We make some comments about the appearance of both the L1-norm
and L2-norm in (2). The L2-norm imposes a crucial local control of
the kind that is necessary for the desired regularity. (See Exercise 27.)
However, without some restriction on f of a global nature, the function
f might fail to be integrable on any plane Pt,γ , as the example f(x) =
1/(1 + |x|d−1) shows. Note that this function belongs to L2(Rd) if d ≥ 3,
but not to L1(Rd).

The proof of Theorem 4.5 actually gives an essentially stronger result,
which we state as a corollary.

Corollary 4.6 Suppose f is continuous and has compact support in
Rd, d ≥ 3. Then for any α, 0 < α < 1/2, the inequality (2) holds with
R∗(f)(γ) replaced by

(3) sup
t1 6=t2

|R(f)(t1, γ)−R(f)(t2, γ)|
|t1 − t2|α .

The proof of the theorem relies on the interplay between the Radon
transform and the Fourier transform.

For fixed γ ∈ Sd−1, we let R̂(f)(λ, γ) denote the Fourier transform of
R(f)(t, γ) in the t-variable

R̂(f)(λ, γ) =
∫ ∞

−∞
R(f)(t, γ)e−2πiλt dt.

In particular, we use λ ∈ R to denote the dual variable of t.
We also write f̂ for the Fourier transform of f as a function on Rd,

namely

f̂(ξ) =
∫

Rd

f(x)e−2πix·ξ dx.

Lemma 4.7 If f is continuous with compact support, then for every
γ ∈ Sd−1 we have

R̂(f)(λ, γ) = f̂(λγ).

The right-hand side is just the Fourier transform of f evaluated at the
point λγ.
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Proof. For each unit vector γ we use the adapted coordinate system
described above: x = (x1, . . . , xd) where γ coincides with the xd direc-
tion. We can then write each x ∈ Rd as x = (u, t) with u ∈ Rd−1, t ∈ R,
where x · γ = t = xd and u = (x1, . . . , xd−1). Moreover

∫

Pt,γ

f =
∫

Rd−1
f(u, t) du,

and Fubini’s theorem shows that
∫
Rd f(x) dx =

∫∞
−∞

(∫
Pt,γ

f
)

dt. Ap-

plying this to f(x)e−2πix·(λγ) in place of f(x) gives

f̂(λγ) =
∫

Rd

f(x)e−2πix·(λγ) dx =
∫ ∞

−∞

(∫

Rd−1
f(u, t) du

)
e−2πiλt dt

=
∫ ∞

−∞

(∫

Pt,γ

f

)
e−2πiλt dt.

Therefore f̂(λγ) = R̂(f)(λ, γ), and the lemma is proved.

Lemma 4.8 If f is continuous with compact support, then
∫

Sd−1

(∫ ∞

−∞
|R̂(f)(λ, γ)|2|λ|d−1dλ

)
dσ(γ) = 2

∫

Rd

|f(x)|2dx.

Let us observe the crucial point that the greater the dimension d, the
larger the factor |λ|d−1 as |λ| tends to infinity. Hence the greater the
dimension, the better the decay of the Fourier transform R̂(f)(λ, γ),
and so the better the regularity of the Radon transform R(f)(t, γ) as a
function of t.

Proof. The Plancherel formula in Chapter 5 guarantees that

2
∫

Rd

|f(x)|2 dx = 2
∫

Rd

|f̂(ξ)|2 dξ.

Changing to polar coordinates ξ = λγ where λ > 0 and γ ∈ Sd−1, we
obtain

2
∫

Rd

|f̂(ξ)|2 dξ = 2
∫

Sd−1

∫ ∞

0

|f̂(λγ)|2λd−1 dλ dσ(γ).

We now observe that a simple change of variables provides
∫

Sd−1

∫ ∞

0

|f̂(λγ)|2λd−1 dλ dσ(γ) =
∫

Sd−1

∫ 0

−∞
|f̂(λγ)|2|λ|d−1 dλ dσ(γ),
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and the proof is complete once we invoke the result of Lemma 4.7.

The final ingredient in the proof of Theorem 4.5 consists of the follow-
ing:

Lemma 4.9 Suppose

F (t) =
∫ ∞

−∞
F̂ (λ)e2πiλt dλ,

where

sup
λ∈R

|F̂ (λ)| ≤ A and
∫ ∞

−∞
|F̂ (λ)|2|λ|d−1dλ ≤ B2.

Then

(4) sup
t∈R

|F (t)| ≤ c(A + B).

Moreover, if 0 < α < 1/2, then

(5) |F (t1)− F (t2)| ≤ cα|t1 − t2|α(A + B) for all t1, t2.

Proof. The first inequality is obtained by considering separately the
two cases |λ| ≤ 1 and |λ| > 1. We write

F (t) =
∫

|λ|≤1

F̂ (λ)e2πiλt dλ +
∫

|λ|>1

F̂ (λ)e2πiλt dλ.

Clearly, the first integral is bounded by cA. To estimate the second inte-
gral it suffices to bound

∫
|λ|>1

|F̂ (λ)| dλ. An application of the Cauchy-
Schwarz inequality gives

∫

|λ|>1

|F̂ (λ)|dλ ≤
(∫

|λ|>1

|F̂ (λ)|2|λ|d−1dλ

)1/2 (∫

|λ|>1

|λ|−d+1dλ

)1/2

.

This last integral is convergent precisely when −d + 1 < −1, which is
equivalent to d > 2, namely d ≥ 3, which we assume. Hence |F (t)| ≤
c(A + B) as desired.

To establish Lipschitz continuity, we first note that

F (t1)− F (t2) =
∫ ∞

−∞
F̂ (λ)

[
e2πiλt1 − e2πiλt2

]
dλ.
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Since one has the inequality2 |eix − 1| ≤ |x|, we immediately see that

|e2πiλt1 − e2πiλt2 | ≤ c|t1 − t2|αλα if 0 ≤ α < 1.

We may then write the difference F (t1)− F (t2) as a sum of two inte-
grals. The integral over |λ| ≤ 1 is clearly bounded by cA|t1 − t2|α. The
second integral, the one over |λ| > 1, can be estimated from above by

|t1 − t2|α
∫

|λ|>1

|F̂ (λ)||λ|α dλ.

An application of the Cauchy-Schwarz inequality show that this last in-
tegral is majorized by

(∫

|λ|>1

|F̂ (λ)|2|λ|d−1 dλ

)1/2 (∫

|λ|>1

|λ|−d+1+2α dλ

)1/2

≤ cαB,

since the second integral is finite if −d + 1 + 2α < −1, and in particular
this holds if α < 1/2 when d ≥ 3. This concludes the proof of the lemma.

We now gather these results to prove the theorem. For each γ ∈ Sd−1

let

F (t) = R(f)(t, γ).

Note that with this definition we have

sup
t∈R

|F (t)| = R∗(f)(γ).

Let

A(γ) = sup
λ
|F̂ (λ)| and B2(γ) =

∫ ∞

−∞
|F̂ (λ)|2|λ|d−1 dλ.

Then by (4)

sup
t∈R

|F (t)| ≤ c(A(γ) + B(γ)).

However, we observed that F̂ (λ) = f̂(λγ), and hence

A(γ) ≤ ‖f‖L1(Rd).

2The distance in the plane from the point eix to the point 1 is shorter than the length
of the arc on the unit circle joining them.
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Therefore,

|R∗(f)(γ)|2 ≤ c(A(γ)2 + B(γ)2),

and thus
∫

Sd−1
|R∗(f)(γ)|2 dσ(γ) ≤ c(‖f‖2L1(Rd) + ‖f‖2L2(Rd)),

since
∫

B2(γ) dσ(γ) = 2‖f‖2L2 by Lemma 4.8. Consequently,

∫

Sd−1
R∗(f)(γ) dσ(γ) ≤ c(‖f‖L1(Rd) + ‖f‖L2(Rd)).

Note that the identity we have used,

R(f)(t, γ) =
∫ ∞

−∞
F̂ (λ)e2πiλt dλ,

with F (t) = R(f)(t, γ), is justified for almost every γ ∈ Sd−1 by the
Fourier inversion result in Theorem 4.2 of Chapter 2. Indeed, we have
seen that A(γ) and B(γ) are finite for almost every γ, and thus F̂ is
integrable for those γ. This completes the proof of the theorem. The
corollary follows the same way if we use (5) instead of (4).

We now return to the situation in the plane to see what information
we may deduce from the above analysis. The inequality (2) as it stands
does not hold when d = 2. However, a modification of it does hold, and
this will be used in the proof of Theorem 4.4.

If f ∈ L1(Rd) we define

Rδ(f)(t, γ) =
1
2δ

∫ t+δ

t−δ

R(f)(s, γ) ds

=
1
2δ

∫

t−δ≤x·γ≤t+δ

f(x) dx.

In this definition of Rδ(f)(t, γ) we integrate the function f in a small
“strip” of width 2δ around the plane Pt,γ . Thus Rδ is an average of
Radon transforms.

We let

R∗δ(f)(γ) = sup
t∈R

|Rδ(f)(t, γ)|.
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Theorem 4.10 If f is continuous with compact support, then
∫

S1
R∗δ(f)(γ) dσ(γ) ≤ c(log 1/δ)1/2

(‖f‖L1(R2) + ‖f‖L2(R2)

)

when 0 < δ ≤ 1/2.

The same argument as in the proof of Theorem 4.5 applies here, except
that we need a modified version of Lemma 4.9. More precisely, let us set

Fδ(t) =
∫ ∞

−∞
F̂ (λ)

(
e2πi(t+δ)λ − e2πi(t−δ)λ

2πiλ(2δ)

)
dλ,

and suppose that

sup
λ
|F̂ (λ)| ≤ A and

∫ ∞

−∞
|F̂ (λ)|2|λ| dλ ≤ B.

Then we claim that

(6) sup
t
|Fδ(t)| ≤ c(log 1/δ)1/2(A + B).

Indeed, we use the fact that |(sinx)/x| ≤ 1 to see that, in the definition
of Fδ(t), the integral over |λ| ≤ 1 gives the cA. Also, the integral over
|λ| > 1 can be split and is bounded by the sum

∫

1<|λ|≤1/δ

|F̂ (λ)| dλ +
c

δ

∫

1/δ≤|λ|
|F̂ (λ)||λ|−1 dλ.

The first integral above can be estimated by the Cauchy-Schwarz in-
equality, as follows

∫

1<|λ|≤1/δ

|F̂ (λ)| dλ ≤ c

(∫

1<|λ|≤1/δ

|F̂ (λ)|2|λ| dλ

)1/2(∫

1<|λ|≤1/δ

|λ|−1 dλ

)1/2

≤ cB(log 1/δ)1/2.

Finally, we also note that

c

δ

∫

1/δ≤|λ|
|F̂ (λ)||λ|−1 dλ ≤ c

(∫

1/δ≤|λ|
|F̂ (λ)|2|λ| dλ

)1/2 1
δ

(∫

1/δ≤|λ|
|λ|−3 dλ

)1/2

≤ cB

and this establishes (6), and hence the theorem.
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4.2 Regularity of sets when d ≥ 3

We now extend to the general context the basic estimates for the Radon
transform, proved for continuous functions of compact support. This will
yield the regularity result formulated in Theorem 4.1.

Proposition 4.11 Suppose d ≥ 3, and let f belong to L1(Rd) ∩ L2(Rd).
Then for a.e. γ ∈ Sd−1 we can assert the following:

(a) f is measurable and integrable on the plane Pt,γ, for every t ∈ R.

(b) The function R(f)(t, γ) is continuous in t and satisfies a Lips-
chitz condition with exponent α for each α < 1/2. Moreover, the
inequality (2) of Theorem 4.5 and its variant with (3) hold for f .

We prove this in a series of steps.

Step 1. We consider f = χO, the characteristic function of a bounded
open set O. Here the assertion (a) is evident since O ∩ Pt,γ is an open
and bounded set in Pt,γ and is bounded. Thus R(f)(t, γ) is defined for
all (t, γ).

Next we can find a sequence {fn} of non-negative continuous func-
tions of compact support so that for every x, fn(x) increases to f(x) as
n →∞. Thus R(fn)(t, γ) →R(f)(t, γ) for every (t, γ) by the monotone
convergence theorem, and alsoR∗(fn)(γ) →R∗(f)(γ) for each γ ∈ Sd−1.
As a result we see that the inequality (2) is valid for f = χO, with O
open and bounded.

Step 2. We now consider f = χE , where E is a set of measure zero,
and take first the case when the set E is bounded. Then we can find a
decreasing sequence {On} of open and bounded sets, such that E ⊂ On,
while m(On) → 0 as n →∞.

Let Ẽ =
⋂On. Since Ẽ ∩ Pt,γ is measurable for every (t, γ), the func-

tionsR(χẼ)(t, γ) andR∗(χẼ)(γ) are well-defined. However,R∗(χẼ)(γ) ≤
R∗(χOn

)(γ), while the R∗(χOn
) decrease. Thus the inequality (2) we

have just proved for f = χOn shows that R∗(χẼ)(γ) = 0 for a.e. γ. The
fact that E ⊂ Ẽ then implies that for a.e. γ, the set E ∩ Pt,γ has (d− 1)-
dimensional measure zero for every t ∈ R. This conclusion immediately
extends to the case when E is not necessarily bounded, by writing E as a
countable union of bounded sets of measure zero. Therefore Corollary 4.2
is proved.

Step 3. Here we assume that f is a bounded measurable function
supported on a bounded set. Then by familiar arguments we can find
a sequence {fn} of continuous functions that are uniformly bounded,
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supported in a fixed compact set, and so that fn(x) → f(x) a.e. By the
bounded convergence theorem, ‖fn − f‖L1 and ‖fn − f‖L2 both tend to
zero as n →∞, and upon selecting a subsequence if necessary, we can
suppose that ‖fn − f‖L1 + ‖fn − f‖L2 ≤ 2−n. By what we have just
proved in Step 2 we have, for a.e. γ ∈ Sd−1, that fn(x) → f(x) on Pt,γ

a.e. with respect to the measure md−1, for each t ∈ R. Thus again by the
bounded convergence theorem for those (t, γ), we see that R(fn)(t, γ) →
R(f)(t, γ), and this limit defines R(f). Now applying Theorem 4.5 to
fn − fn−1 gives

∞∑
n=1

∫

Sd−1
R∗(fn − fn−1)(γ) dσ(γ) ≤ c

∞∑
n=1

2−n < ∞.

This means that
∑

n

sup
t
|R(fn)(t, γ)−R(fn−1)(t, γ)| < ∞,

for a.e.γ ∈ Sd−1, and hence for those γ the sequence of functionsR(fn)(t, γ)
converges uniformly. As a consequence, for those γ the functionR(f)(t, γ)
is continuous in t, and the inequality (2) is valid for this f . The inequality
with (3) is deduced in the same way.

Finally, we deal with the general f in L1 ∩ L2 by approximating it by
a sequence of bounded functions each with bounded support. The details
of the argument are similar to the case treated above and are left to the
reader.

Observe that the special case f = χE of the proposition gives us The-
orem 4.1.

4.3 Besicovitch sets have dimension 2

Here we prove Theorem 4.4, that any Besicovitch set necessarily has
Hausdorff dimension 2. We use Theorem 4.10, namely, the inequality

∫

S1
R∗δ(f)(γ) dσ(γ) ≤ c(log 1/δ)1/2

(‖f‖L1(R2) + ‖f‖L2(R2)

)
.

This inequality was proved under the assumption that f was continuous
and had compact support. In the present situation it goes over without
difficulty to the general case where f ∈ L1 ∩ L2, by an easy limiting
argument, since it is clear that R∗δ(fn)(γ) converges to R∗δ(f)(γ) for all
γ if fn → f in the L1-norm.
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Now suppose F is a Besicovitch set and α is fixed with 0 < α < 2.
Assume that F ⊂ ⋃∞

i=1 Bi is a covering, where Bi are balls with diameter
less than a given number. We must show that

∑
i

(diam Bi)α ≥ cα > 0.

We proceed in two steps, considering first a simple situation that will
make clear the idea of the proof.

Case 1. We suppose first that all the balls Bi have the same diameter
δ (with δ ≤ 1/2) and also that there are only a finite number, say N , of
balls in the covering. We must prove that Nδα ≥ cα.

Let B∗
i denote the double of Bi and F ∗ =

⋃
i B∗

i . Then, we clearly
have

m(F ∗) ≤ cNδ2.

Since F is a Besicovitch set, for each γ ∈ S1 there is a segment sγ of
unit length, perpendicular to γ, and which is contained in F . Also, by
construction, any translate by less than δ of a point in sγ must belong
to F ∗. Hence

R∗δ(χF∗)(γ) ≥ 1 for every γ.

If we take f = χF∗ in the inequality (6), and note that the Cauchy-
Schwarz inequality implies

‖χF∗‖L1(R2) ≤ c‖χF∗‖L2(R2) ≤ c(m(F ∗))1/2,

then we obtain

c ≤ N1/2δ(log 1/δ)1/2.

This implies Nδα ≥ c for α < 2.

Case 2. We now treat the general case. Suppose F ⊂ ⋃∞
i=1 Bi, where

the balls Bi each have diameter less than 1. For each integer k let Nk be
the number of balls in the collection {Bi} for which

2−k−1 ≤ diam Bi ≤ 2−k.

We need to show that
∑∞

k=0 Nk2−kα ≥ cα. In fact, we shall prove the
stronger result that there exists a positive integer k′ such that Nk′2−k′α ≥
cα.
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Let

Fk = F
⋂


 ⋃

2−k−1≤diam Bi≤2−k

Bi


 ,

and let

F ∗k =
⋃

2−k−1≤diam Bi≤2−k

B∗
i ,

where B∗
i denotes the double of Bi. Then we note that

m1(F ∗k ) ≤ cNk2−2k for all k.

Since F is a Besicovitch set, for each γ ∈ S1 there is a segment sγ of
unit length entirely contained in F . We now make precise the fact that
for some k, a large proportion of sγ belongs to Fk.

We pick a sequence of real numbers {ak}∞k=0 such that 0 ≤ ak ≤ 1,∑
ak = 1, but ak does not tend to zero too quickly. For instance, we

may choose ak = cε2−εk with cε = 1− 2−ε, and ε > 0 but ε sufficiently
small.

Then, for some k we must have

m1(sγ ∩ Fk) ≥ ak.

Otherwise, since F =
⋃

Fk, we would have

m1(sγ ∩ F ) <
∑

ak = 1,

and this contradicts the fact that m1(sγ ∩ F ) = 1, since sγ is entirely
contained in F .

Therefore, with this k, we must have

R∗2−k(χF∗k )(γ) ≥ ak,

because any point of distance less than 2−k from Fk must belong to F ∗k .
Since the choice of k may depend on γ, we let

Ek = {γ : R∗2−k(χF∗k )(γ) ≥ ak}.

By our previous observations, we have

S1 =
∞⋃

k=1

Ek,
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and so for at least one k, which we denote by k′, we have

m(Ek′) ≥ 2πak′ ,

for otherwise m(S1) < 2π
∑

ak = 2π. As a result

2πa2
k′ = 2πak′ak′

≤
∫

Ek′
ak′ dσ(γ)

≤
∫

S1

R∗
2−k′ (χF∗

k′
)(γ) dσ(γ).

By the fundamental inequality (6) we get

a2
k′ ≤ c(log 2k′)1/2‖χF∗

k′
‖L2(R2).

Recalling that by our choice ak ≈ 2−εk, and noting that ‖χF∗
k′
‖L2 ≤

cN
1/2
k′ 2−k′ , we obtain

2(1−2ε)k′ ≤ c(log 2k′)1/2N
1/2
k′ .

Finally, this last inequality guarantees that Nk′2−αk′ ≥ cα as long as
4ε < 2− α.

This concludes the proof of the theorem.

4.4 Construction of a Besicovitch set

There are a number of different constructions of Besicovitch sets. The one
we have chosen to describe here involves the concept of self-replicating
sets, an idea that permeates much of the discussion of this chapter.

We consider the Cantor set of constant dissection C1/2, which for sim-
plicity we shall write as C, and which is defined in Exercise 3, Chapter 1.
Note that C =

⋂∞
k=0 Ck, where C0 = [0, 1], and Ck is the union of 2k

closed intervals of length 4−k obtained by removing from Ck−1 the 2k−1

centrally situated open intervals of length 1
2 · 4−k+1. The set C can also

be represented as the set of points x ∈ [0, 1] of the form x =
∑∞

k=1 εk/4k,
with εk either 0 or 3.

We now place a copy of C on the x-axis of the plane R2 = {(x, y)}, and a
copy of 1

2C on the line y = 1. That is, we put E0 = {(x, y) : x ∈ C, y = 0}
and E1 = {(x, y) : 2x ∈ C, y = 1}. The set F that will play the central
role is defined as the union of all line segments that join a point of E0

with a point of E1. (See Figure 13.)
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Figure 13. Several line segments joining E0 with E1

Theorem 4.12 The set F is compact and of two-dimensional measure
zero. It contains a translate of any unit line segment whose slope is a
number s that lies outside the intervals (−1, 2).

Once the theorem is proved, our job is done. Indeed, a finite union of
rotations of the set F contains unit segments of any slope, and that set
is therefore a Besicovitch set.

The proof of the required properties of the set F amounts to showing
the following paradoxical facts about the set C + λC, for λ > 0. Here
C + λC = {x1 + λx2 : x1 ∈ C, x2 ∈ C}:

• C + λC has one-dimensional measure zero, for a.e. λ.

• C + 1
2C is the interval [0, 3/2].

Let us see how these two assertions imply the theorem. First, we note
that the set F is closed (and hence compact), because both E0 and E1

are closed. Next observe that with 0 < y < 1, the slice F y of the set
F is exactly (1− y)C + y

2C. This set is obtained from the set C + λC,
where λ = y/(2(1− y)), by scaling with the factor 1− y. Hence F y is of
measure zero whenever C + λC is also of measure zero. Moreover, under
the mapping y 7→ λ, sets of measure zero in (0,∞) correspond to sets of
measure zero in (0, 1). (For this see, for example, Exercise 8 in Chapter 1,
or Problem 1 in Chapter 6.) Therefore, the first assertion and Fubini’s
theorem prove that the (two-dimensional) measure of F is zero.

Finally the slope s of the segment joining the point (x0, 0), with the
point (x1, 1) is s = 1/(x1 − x0). Thus the quantity s can be realized if
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x1 ∈ C/2 and x0 ∈ C, that is, if 1/s ∈ C/2− C. However, by an obvious
symmetry C = 1− C, and so the condition becomes 1/s ∈ C/2 + C − 1,
which by the second assertion is 1/s ∈ [−1, 1/2]. This last is equivalent
with s /∈ (−1, 2).

Our task therefore remains the proof of the two assertions above. The
proof of the second is nearly trivial. In fact,

2
3

(
C +

1
2
C
)

=
2
3
C +

1
3
C,

and this set consists of all x of the form x =
∑∞

k=1

(
2εk

3 + ε′k
3

)
4−k, where

εk and ε′k are independently 0 or 3. Since then 2εk

3 + ε′k
3 can take any

of the values 0, 1, 2, or 3, we have that 2
3

(C + 1
2C

)
= [0, 1], and hence

C + 1
2C = [0, 3/2].

The proof that m(C + λC) = 0 for a.e. λ

We come to the main point: that C + λC has measure zero for almost all
λ. We show this by examining the self-replicating properties of the sets
C and C + λC.

We know that C = C1 ∪ C2, where C1 and C2 are two similar copies
of C, obtained with similarity ratio 1/4, and given by C1 = 1

4C and
C2 = 1

4C + 3
4 . Thus C1 ⊂ [0, 1/4] and C2 ⊂ [3/4, 1]. Iterating ` times this

decomposition of C, that is, reaching the `th “generation,” we can write

(7) C =
⋃

1≤j≤2`

C`
j ,

with C`
1 = (1/4)`C and each C`

j a translate of C`
1.

We consider in the same way the set

K(λ) = C + λC,

and we shall sometimes omit the λ and write K(λ) = K, when this causes
no confusion. By its definition we have

K = K1 ∪ K2 ∪ K3 ∪ K4,

whereK1 = C1 + λC1, K2 = C1 + λC2, K3 = C2 + λC1, andK4 = C2 + λC2.
An iteration of this decomposition using (7) gives

(8) K =
⋃

1≤i≤4`

K`
i ,
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where each K`
i equals C`

j1
+ λC`

j2
for a pair of indices j1, j2. In fact,

this relation among the indices sets up a bijection between the i with
1 ≤ i ≤ 4`, and the pair j1, j2 with 1 ≤ j1 ≤ 2` and 1 ≤ j2 ≤ 2`. Note
that each K`

i is a translate of K`
1, and each K`

i is also obtained from K by
a similarity of ratio 4−`. Now note that C = C/4

⋃
(C/4 + 3/4) implies

that

K(λ) = C + λC = (C +
λ

4
C) ∪ (C +

λ

4
C +

3λ

4
)

= K(λ/4) ∪ (K(λ/4) +
3λ

4
).

Thus K(λ) has measure zero if and only if K(λ/4) has measure zero.
Hence it suffices to prove that K(λ) has measure zero for a.e. λ ∈ [1, 4].

After these preliminaries let us observe that we immediately obtain
that m(K(λ)) = 0 for some special λ’s, those for which the following
coincidence takes place: for some ` and a pair i and i′ with i 6= i′,

K`
i(λ) = K`

i′(λ).

Indeed, if we have this coincidence, then (8) gives

m(K(λ)) ≤
4`∑

i=1, i 6=i′
m(K`

i(λ)) = (4` − 1)4−`m(K(λ)),

and this implies m(K(λ)) = 0.
The key insight below is that, in a quantitative sense, the λ’s for which

this coincidence takes place are “dense” relative to the size of `. More
precisely, we have the following.

Proposition 4.13 Suppose λ0 and ` are given, with 1 ≤ λ0 ≤ 4 and `
a positive integer. Then, there exist a λ and a pair i, i′ with i 6= i′ such
that

(9) K`
i(λ) = K`

i′(λ) and |λ− λ0| ≤ c4−`.

Here c is a constant independent of λ0 and `.

This is proved on the basis of the following observation.

Lemma 4.14 For every λ0 there is a pair 1 ≤ i1, i2 ≤ 4, with i1 6= i2
such that Ki1(λ0) and Ki2(λ0) intersect.
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Proof. Indeed, if the Ki are disjoint for 1 ≤ i ≤ 4 then for sufficiently
small δ the Kδ

i are also disjoint. Here we have used the notation that F δ

denotes the set of points of distance less than δ from F . (See Lemma 3.1
in Chapter 1.) However, Kδ =

⋃4
i=1Kδ

i , and by similarity m(K4δ) =
4m(Kδ

i ). Thus by the disjointness of the Kδ
i we have m(Kδ) = m(K4δ),

which is a contradiction, since K4δ −Kδ contains an open ball (of radius
3δ/2). The lemma is therefore proved.

Now apply the lemma for our given λ0 and write Ki1 = Cµ1 + λ0Cν1 ,
Ki2 = Cµ2 + λ0Cν2 , where the µ’s and ν’s are either 1 or 2. However, since
i1 6= i2 we have µ1 6= µ2 or ν1 6= ν2 (or both). Assume for the moment
that ν1 6= ν2.

The fact that Ki1(λ0) and Ki2(λ0) intersect means that there are pairs
of numbers (a, b) and (a′, b′), with a ∈ Cµ1 , b ∈ Cν1 , a′ ∈ Cµ2 , and b′ ∈ Cν2

such that

(10) a + λ0b = a′ + λ0b
′.

Note that the fact that ν1 6= ν2 means that |b− b′| ≥ 1/2. Next, look-
ing at the `th generation we find via (7) that there are indices 1 ≤
j1, j2, j

′
1, j

′
2 ≤ 2`, so that a ∈ C`

j1
⊂ Cµ1 , b ∈ C`

j2
⊂ Cν1 , a′ ∈ C`

j′1
⊂ Cµ2 , b′ ∈

C`
j′2
⊂ Cν2 . We also observe that the above sets are translates of each

other, that is, C`
j1

= C`
j′1

+ τ1 and C`
j2

= C`
j′2

+ τ2, with |τk| ≤ 1. Hence if
i and i′ correspond to the pairs (j1, j2) and (j′1, j

′
2), respectively, we have

(11) K`
i(λ) = K`

i′(λ) + τ(λ) with τ(λ) = τ1 + λτ2.

Now let (A,B) be the pair that corresponds to (a′, b′) under the above
translations, namely

(12) A = a′ + τ1, B = b′ + τ2.

We claim there is a λ such that

(13) A + λB = a′ + λb′.

In fact, by (12) we have put B in C`
j2
⊂ Cν1 , while b′ is in C`

j′2
⊂ Cν2 . Thus

|B − b′| ≥ 1/2, since ν1 6= ν2. We can therefore solve (13) by taking
λ = (A− a′)/(b′ −B). Now we compare this with (10), and get λ0 =
(a− a′)/(b′ − b). Moreover, |A− a| ≤ 4−` and |B − b| ≤ 4−`, since A
and a both lie in C`

j1
, and B and b lie in C`

j2
. This yields the inequality

(14) |λ− λ0| ≤ c4−`.
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Also, (12) and (13) clearly imply τ(λ) = τ1 + λτ2 = 0, and this together
with (11) proves the coincidence.

Therefore our proposition is proved under the restriction we made
earlier that ν1 6= ν2. The situation where instead µ1 6= µ2 is obtained
from the case ν1 6= ν2 if we replace λ0 by λ−1

0 . Note that K`
i(λ0) =

K`
i′(λ0) if and only if C`

j1
+ λ0C`

j2
= C`

j′1
+ λ0C`

j′2
and this is the same as

C`
j2

+ λ−1
0 C`

j1
= C`

j′2
+ λ−1

0 C`
j′1

. This allows us to reduce to the case µ1 6=
µ2, since C`

j1
⊂ Cµ1 and C`

j′1
⊂ Cµ2 . Here the fact that 1 ≤ λ0 ≤ 4 gives

λ−1
0 ≤ 1 and guarantees that the constant c in (9) can be taken to be

independent of λ0. The proposition is therefore established.

Note that as a consequence, the following holds near the points λ where
the coincidence (9) takes place: If |λ− λ| ≤ ε4−`, then

(15) K`
i(λ) = K`

i′(λ) + τ(λ) with |τ(λ)| ≤ ε4−`.

In fact, this is (11) together with the observation that

|τ(λ)| = |τ(λ)− τ(λ)| ≤ |λ− λ|,

since |τ(λ)| = τ1 + λτ2 and |τ2| ≤ 1.
The assertion (15) leads to the following more elaborate version of

itself:

There is a set Λ of full measure such that whenever λ ∈ Λ
and ε > 0 are given, there are ` and a pair i, i′ so that (15)
holds.3

Indeed, for fixed ε > 0, let Λε denote the set of λ that satisfies (15) for
some `, i and i′. For any interval I of length not exceeding 1, we have

m(Λε ∩ I) ≥ ε4−` ≥ c−1εm(I),

because of (9) and (15). Thus Λc
ε has no points of Lebesgue density,

hence Λc
ε has measure zero, and thus Λε is a set of full measure. (See

Corollary 1.5 in Chapter 3.) Since Λ =
⋂

ε Λε, and Λε decreases with ε,
we see that Λ also has full measure and our assertion is proved.

Finally, our theorem will be established once we show that m(K(λ)) =
0 whenever λ ∈ Λ. To prove this, we assume contrariwise that m(K(λ)) >
0. Using again the point of density argument, there must be for any

3The terminology that Λ has “full measure” means that its complement has measure
zero.
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0 < δ < 1, a non-empty open interval I with m(K(λ) ∩ I) ≥ δm(I). We
then fix δ with 1/2 < δ < 1 and proceed. With this fixed δ, we select
ε used below as ε = m(I)(1− δ). Next, find `, i, and i′ for which (15)
holds. The existence of such indices is guaranteed by the hypothesis that
λ ∈ Λ.

We then consider the two similarities (of ratio 4−`) that map K(λ) to
K`

i(λ) and K`
i′(λ), respectively. These take the interval I to correspond-

ing intervals Ii and Ii′ , respectively, with m(Ii) = m(Ii′) = 4−`m(I).
Moreover,

m(K`
i ∩ Ii) ≥ δm(Ii) and m(K`

i′ ∩ Ii′) ≥ δm(Ii′).

Also, as in (15), Ii′ = Ii + τ(λ), with |τ(λ)| ≤ ε4−`. This shows that

m(Ii ∩ Ii′) ≥ m(Ii)− τ(λ) ≥ 4−`m(I)− ε4−` ≥ δm(Ii),

since ε4−` = (1− δ)m(Ii). Thus m(Ii − Ii ∩ Ii′) ≤ (1− δ)m(Ii), and

m(K`
i ∩ Ii ∩ Ii′) ≥ m(K`

i ∩ Ii)−m(Ii − Ii ∩ Ii′)
≥ (2δ − 1)m(Ii)

>
1
2
m(Ii) ≥ 1

2
m(Ii ∩ Ii′).

So m(K`
i ∩ Ii ∩ Ii′) > 1

2m(Ii ∩ Ii′) and the same holds for i′ in place of i.
Hence m(K`

i ∩ K`
i′) > 0, and this contradicts the decomposition (8) and

the fact that m(K`
i) = 4−`m(K) for every i. Therefore we obtain that

m(K(λ)) = 0 for every λ ∈ Λ, and the proof of Theorem 4.12 is now
complete.

5 Exercises

1. Show that the measure mα is not σ-finite on Rd if α < d.

2. Suppose E1 and E2 are two compact subsets of Rd such that E1 ∩ E2 contains
at most one point. Show directly from the definition of the exterior measure that
if 0 < α ≤ d, and E = E1 ∪ E2, then

m∗
α(E) = m∗

α(E1) + m∗
α(E2).

[Hint: Suppose E1 ∩ E2 = {x}, let Bε denote the open ball centered at x and of
diameter ε, and let Eε = E ∩Bc

ε . Show that

m∗
α(Eε) ≥ Hε

α(E) ≥ m∗
α(E)− µ(ε)− εα,
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where µ(ε) → 0. Hence m∗
α(Eε) → m∗

α(E).]

3. Prove that if f : [0, 1] → R satisfies a Lipschitz condition of exponent γ > 1,
then f is a constant.

4. Suppose f : [0, 1] → [0, 1]× [0, 1] is surjective and satisfies a Lipschitz condition

|f(x)− f(y)| ≤ C|x− y|γ .

Prove that γ ≤ 1/2 directly, without using Theorem 2.2.

[Hint: Divide [0, 1] into N intervals of equal length. The image of each sub-interval
is contained in a ball of volume O(N−2γ), and the union of all these balls must
cover the square.]

5. Let f(x) = xk be defined on R, where k is a positive integer and let E be a
Borel subset of R.

(a) Show that if mα(E) = 0 for some α, then mα(f(E)) = 0.

(b) Prove that dim(E) = dim f(E).

6. Let {Ek} be a sequence of Borel sets in Rd. Show that if dim Ek ≤ α for some
α and all k, then

dim
[

k

Ek ≤ α.

7. Prove that the (log 2/ log 3)-Hausdorff measure of the Cantor set is precisely
equal to 1.

[Hint: Suppose we have a covering of C by finitely many closed intervals {Ij}.
Then there exists another covering of C by intervals {I ′`} each of length 3−k for
some k, such that

P
j |Ij |α ≥

P
` |I ′`|α ≥ 1, where α = log 2/ log 3.]

8. Show that the Cantor set of constant dissection, Cξ, in Exercise 3 of Chapter 1
has strict Hausdorff dimension log 2/ log(2/(1− ξ)).

9. Consider the set Cξ1 × Cξ2 in R2, with Cξ as in the previous exercise. Show that
Cξ1 × Cξ2 has strict Hausdorff dimension dim(Cξ1) + dim(Cξ2).

10. Construct a Cantor-like set (as in Exercise 4, Chapter 1) that has Lebesgue
measure zero, yet Hausdorff dimension 1.

[Hint: Choose `1, `2, . . . , `k, . . . so that 1−Pk
j=1 2j−1`j tends to zero sufficiently

slowly as k →∞.]

11. Let D = Dµ be the Cantor dust in R2 given as the product Cξ × Cξ, with
µ = (1− ξ)/2.
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(a) Show that for any real number λ, the set Cξ + λCξ is similar to the projection
of D on the line in R2 with slope λ = tan θ.

(b) Note that among the Cantor sets Cξ, the value ξ = 1/2 is critical in the
construction of the Besicovitch set in Section 4.4. In fact, prove that with
ξ > 1/2, then Cξ + λCξ has Lebesgue measure zero for every λ. See also
Problem 10 below.

[Hint: mα(Cξ + λCξ) < ∞ for α = dimDµ.]

12. Define a primitive one-dimensional “measure” m̃1 as

m̃1 = inf

∞X

k=1

diam Fk, E ⊂
∞[

k=1

Fk.

This is akin to the one-dimensional exterior measure m∗
α, α = 1, except that no

restriction is placed on the size of the diameters Fk.
Suppose I1 and I2 are two disjoint unit segments in Rd, d ≥ 2, with I1 = I2 + h,

and |h| < ε. Then observe that m̃1(I1) = m̃1(I2) = 1, while m̃1(I1 ∪ I2) ≤ 1 + ε.
Thus

m̃1(I1 ∪ I2) < m̃1(I1) + m̃1(I2) when ε < 1;

hence m̃1 fails to be additive.

13. Consider the von Koch curve K`, 1/4 < ` < 1/2, as defined in Section 2.1.
Prove for it the analogue of Theorem 2.7: the function t 7→ K`(t) satisfies a Lip-
schitz condition of exponent γ = log(1/`)/ log 4. Moreover, show that the set K`

has strict Hausdorff dimension α = 1/γ.

[Hint: Show that if O is the shaded open triangle indicated in Figure 14, then O ⊃
S0(O) ∪ S1(O) ∪ S2(O) ∪ S3(O), where S0(x) = `x, S1(x) = ρθ(`x) + a, S2(x) =
ρ−1

θ (`x) + c, and S3(x) = `x + b, with ρθ the rotation of angle θ. Note that the
sets Sj(O) are disjoint.]

a `

`

θ

b

c

`

`

Figure 14. The open set O in Exercise 13

14. Show that if ` < 1/2, the von Koch curve t 7→ K`(t) in Exercise 13 is a simple
curve.
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[Hint: Observe that if t =
P∞

j=1 aj/4j , with aj = 0, 1, 2, or 3, then

{K(t)} =

∞\
j=1

Saj

`· · ·Sa2

`
Sa1(O)

´´
.]

15. Note that if we take ` = 1/2 in the definition of the von Koch curve in
Exercise 13 we get a “space-filling” curve, one that fills the right triangle whose
vertices are (0, 0), (1, 0), and (1/2, 1/2). The first three steps of the construction
are as in Figure 15, with the intervals traced out in the indicated order.

10

11

161 4

6

7

9

5

13

3

1

3

4

2

12 14 15

8

2

Figure 15. The first three steps of the von Koch curve when ` = 1/2

16. Prove that the von Koch curve t 7→ K`(t), 1/4 < ` ≤ 1/2 is continuous but
nowhere differentiable.

[Hint: If K′(t) exists for some t, then

lim
n→∞

K(un)−K(vn)

un − vn

must exist, where un ≤ t ≤ vn, and un − vn → 0. Choose un = k/4n and vn =
(k + 1)/4n.]

17. For a compact set E in Rd, define #(ε) to be the least number of balls of
radius ε that cover E. Note that we always have #(ε) = O(ε−d) as ε → 0, and
#(ε) = O(1) if E is finite.

One defines the covering dimension of E, denoted by dimC(E), as inf β such
that #(ε) = O(ε−β), as ε → 0. Show that dimC(E) = dimM (E), where dimM is the
Minkowski dimension discussed in Section 2.1, by proving the following inequalities
for all δ > 0:



384 Chapter 7. HAUSDORFF MEASURE AND FRACTALS

(i) m(Eδ) ≤ c#(δ)δd.

(ii) #(δ) ≤ c′m(Eδ)δ−d.

[Hint: To prove (ii), use Lemma 1.2 in Chapter 3 to find a collection of disjoint
balls B1, B2, . . . , BN of radius δ/3, each centered at E, such that their “triples”
B̃1, B̃2, . . . , B̃N (of radius δ) cover E. Then #(δ) ≤ N , while Nm(Bj) = cNδd ≤
m(Eδ), since the balls Bj are disjoint and are contained in Eδ.]

18. Let E be a compact set in Rd.

(a) Prove that dim(E) ≤ dimM (E), where dim and dimM are the Hausdorff and
Minkowski dimensions, respectively.

(b) However, prove that if E = {0, 1/ log 2, 1/ log 3, . . . , 1/ log n, . . .}, then
dimM E = 1, yet dim E = 0.

19. Show that there is a constant cd, dependent only on the dimension d, such
that whenever E is a compact set,

m(E2δ) ≤ cdm(Eδ).

[Hint: Consider the maximal function f∗, with f = χEδ , and take cd = 6d.]

20. Show that if F is the self-similar set considered in Theorem 2.12, then it has
the same Minkowski dimension as Hausdorff dimension.

[Hint: Each Fk is the union of mk balls of radius crk. In the converse direction one
sees by Lemma 2.13 that if ε = rk, then each ball of radius ε can contain at most
c′ vertices of the kth generation. So it takes at least mk/c′ such balls to cover F .]

21. From the unit interval, remove the second and fourth quarters (open intervals).
Repeat this process in the remaining two closed intervals, and so on. Let F be the
limiting set, so that

F = {x : x =

∞X

k=1

ak/4k ak = 0 or 2}.

Prove that 0 < m1/2(F ) < ∞.

22. Suppose F is the self-similar set arising in Theorem 2.9.

(a) Show that if m ≤ 1/rd, then md(Fi ∩ Fj) = 0 if i 6= j.

(b) However, if m ≥ 1/rd, prove that Fi ∩ Fj is not empty for some i 6= j.

(c) Prove that under the hypothesis of Theorem 2.12

mα(Fi ∩ Fj) = 0, with α = log m/ log(1/r), whenever i 6= j.



6. Problems 385

23. Suppose S1, . . . , Sm are similarities with ratio r, 0 < r < 1. For each set E,
let

S̃(E) = S1(E) ∪ · · · ∪ Sm(E),

and suppose F denotes the unique non-empty compact set with S̃(F ) = F .

(a) If x ∈ F , show that the set of points {S̃n(x)}∞n=1 is dense in F .

(b) Show that F is homogeneous in the following sense: if x0 ∈ F and B is
any open ball centered at x0, then F ∩B contains a set similar to F .

24. Suppose E is a Borel subset of Rd with dim E < 1. Prove that E is totally
disconnected, that is, any two distinct points in E belong to different connected
components.

[Hint: Fix x, y ∈ E, and show that f(t) = |t− x| is Lipschitz of order 1, and hence
dim f(E) < 1. Conclude that f(E) has a dense complement in R. Pick r in the
complement of f(E) so that 0 < r < f(y), and use the fact that E = {t ∈ E :
|t− x| < r} ∪ {t ∈ E : |t− x| > r}.]

25. Let F (t) be an arbitrary non-negative measurable function on R, and γ ∈ Sd−1.
Then there exists a measurable set E in Rd, such that F (t) = md−1(E ∩ Pt,γ).

26. Theorem 4.1 can be refined for d ≥ 4 as follows.
Define Ck,α to be the class of functions F (t) on R that are Ck and for which

F (k)(t) satisfies a Lipschitz condition of exponent α.
If E has finite measure, then for a.e. γ ∈ Sd−1 the function m(E ∩ Pt,γ) is in

Ck,α for k = (d− 3)/2, α < 1/2, if d is odd, d ≥ 3; and for, k = (d− 4)/2, α < 1,
if d is even, d ≥ 4.

27. Show that the modification of the inequality (2) of Theorem 4.5 fails if we
drop ‖f‖L2(Rd) from the right-hand side.

[Hint: Consider R∗(fε), with fε defined by fε(x) = (|x|+ ε)−d+δ, for |x| ≤ 1, with
δ fixed, 0 < δ < 1, and ε → 0.]

28. Construct a compact set E ⊂ Rd, d ≥ 3, such that md(E) = 0, yet E contains
translates of any segment of unit length in Rd. (While particular examples of such
sets can be easily obtained from the case d = 2, the determination of the least
Hausdorff dimension among all such sets is an open problem.)

6 Problems

1. Carry out the construction below of two sets U and V so that

dim U = dim V = 0 but dim(U × V ) ≥ 1.

Let I1, . . . , In, . . . be given as follows:
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• Each Ij is a finite sequence of consecutive positive integers; that is, for all j

Ij = {n ∈ N : Aj ≤ n ≤ Bj} for some given Aj and Bj .

• For each j, Ij+1 is to the right of Ij ; that is, Aj+1 > Bj .

Let U ⊂ [0, 1] consist of all x which when written dyadically x = .a1a2 · · · an · · ·
have the property that an = 0 whenever n ∈ Sj Ij . Assume also that Aj and Bj

tend to infinity (as j →∞) rapidly enough, say Bj/Aj →∞ and Aj+1/Bj →∞.
Also, let Jj be the complementary blocks of integers, that is,

Jj = {n ∈ N : Bj < n < Aj+1}.

Let V ⊂ [0, 1] consist of those x = .a1a2 · · · an · · · with an = 0 if n ∈ Sj Jj .
Prove that U and V have the desired property.

2.∗ The iso-diametric inequality states the following: If E is a bounded subset of
Rd and diam E = sup{|x− y| : x, y ∈ E}, then

m(E) ≤ vd

„
diam E

2

«d

,

where vd denotes the volume of the unit ball in Rd. In other words, among sets of
a given diameter, the ball has maximum volume. Clearly, it suffices to prove the
inequality for E instead of E, so we can assume that E is compact.

(a) Prove the inequality in the special case when E is symmetric, that is, −x ∈ E
whenever x ∈ E.

In general, one reduces to the symmetric case by using a technique called Steiner
symmetrization. If e is a unit vector in Rd, and P is a plane perpendicular to e,
the Steiner symmetrization of E with respect to E is defined by

S(E, e) = {x + te : x ∈ P, |t| ≤ 1

2
L(E; e; x)},

where L(E; e; x) = m ({t ∈ R : x + t · e ∈ E}), and m denotes the Lebesgue mea-
sure. Note that x + te ∈ S(E, e) if and only if x− te ∈ S(E, e).

(b) Prove that S(E, e) is a bounded measurable subset of Rd that satisfies
m(S(E, e)) = m(E).

[Hint: Use Fubini’s theorem.]

(c) Show that diam S(E, e) ≤ diam E.

(d) If ρ is a rotation that leaves E and P invariant, show that ρS(E, e) =
S(E, e).

(e) Finally, consider the standard basis {e1, . . . , ed} of Rd. Let E0 = E, E1 =
S(E0, e1), E2 = S(E1, e2), and so on. Use the fact that Ed is symmetric to
prove the iso-diametric inequality.
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(f) Use the iso-diametric inequality to show that m(E) = vd

2d md(E) for any

Borel set E in Rd.

3. Suppose S is a similarity.

(a) Show that S maps a line segment to a line segment.

(b) Show that if L1 and L2 are two segments that make an angle α, then S(L1)
and S(L2) make an angle α or −α.

(c) Show that every similarity is a composition of a translation, a rotation
(possibly improper), and a dilation.

4.∗ The following gives a generalization of the construction of the Cantor-Lebesgue
function.

Let F be the compact set in Theorem 2.9 defined in terms of m similarities
S1, S2, . . . , Sm with ratio 0 < r < 1. There exists a unique Borel measure µ sup-
ported on F such that µ(F ) = 1 and

µ(E) =
1

m

mX
j=1

µ(S−1
j (E)) for any Borel set E.

In the case when F is the Cantor set, the Cantor-Lebesgue function is µ([0, x]).

5. Prove a theorem of Hausdorff: Any compact subset K of Rd is a continuous
image of the Cantor set C.
[Hint: Cover K by 2n1 (some n1) open balls of radius 1, say B1, . . . , B` (with
possible repetitions). Let Kj1 = K ∩Bj1 and cover each Kj1 with 2n2 balls of
radius 1/2 to obtain compact sets Kj1,j2 , and so on. Express t ∈ C as a ternary
expansion, and assign to t a unique point in K defined by the intersection Kj1 ∩
Kj1,j2 ∩ · · · for appropriate j1, j2, . . .. To prove continuity, observe that if two
points in the Cantor set are close, then their ternary expansions agree to high
order.]

6. A compact subset K of Rd is uniformly locally connected if given ε > 0
there exists δ > 0 so that whenever x, y ∈ K and |x− y| < δ, there is a continuous
curve γ in K joining x to y, such that γ ⊂ Bε(x) and γ ⊂ Bε(y).

Using the previous problem, one can show that a compact subset K of Rd is
the continuous image of the unit interval [0, 1] if and only if K is uniformly locally
connected.

7. Formulate and prove a generalization of Theorem 3.5 to the effect that once
appropriate sets of measure zero are removed, there is a measure-preserving iso-
morphism of the unit interval in R and the unit cube in Rd.

8.∗ There exists a simple continuous curve in the plane of positive two-dimensional
measure.
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9. Let E be a compact set in Rd−1. Show that dim(E × I) = dim(E) + 1, where
I is the unit interval in R.

10.∗ Let Cξ be the Cantor set considered in Exercises 8 and 11. If ξ < 1/2, then
Cξ + λCξ has positive Lebesgue measure for almost every λ.



Notes and References

There are several excellent books that cover many of the subjects treated here.
Among these texts are Riesz and Nagy [27], Wheeden and Zygmund [33], Fol-
land [13], and Bruckner et al. [4].

Introduction

The citation is a translation of a passage in a letter from Hermite to Stieltjes [18].

Chapter 1

The citation is a translation from the French of a passage in [3].
We refer to Devlin [7] for more details about the axiom of choice, Hausdorff

maximal principle, and well-ordering principle.
See the expository paper of Gardner [14] for a survey of results regarding the

Brunn-Minkowski inequality.

Chapter 2

The citation is a passage from the preface to the first edition of Lebesgue’s book
on integration [20].

Devlin [7] contains a discussion of the continuum hypothesis.

Chapter 3

The citation is from Hardy and Littlewood’s paper [15].
Hardy and Littlewood proved Theorem 1.1 in the one-dimensional case by

using the idea of rearrangements. The present form is due to Wiener.
Our treatment of the isoperimetric inequality is based on Federer [11]. This

work also contains significant generalizations and much additional material on
geometric measure theory.

A proof of the Besicovitch covering in the lemma in Problem 3∗ is in Mat-
tila [22].

For an account of functions of bounded variations in Rd, see Evans and
Gariepy [8].

An outline of the proof of Problem 7 (b)∗ can be found at the end of Chapter 5
in Book I.

The result in part (b) of Problem 8∗ is a theorem of S. Saks, and its proof as
a consequence of part (a) can be found in Stein [31].

Chapter 4

The citation is translated from the introduction of Plancherel’s article [25].
An account of the theory of almost periodic functions which is touched upon

in Problem 2∗ can be found in Bohr [2].
The results in Problems 4∗ and 5∗ are in Zygmund [35], in Chapters V and VII,

respectively.
Consult Birkhoff and Rota [1] for more on Sturm-Liouville systems, Legendre

polynomials, and Hermite functions.
Chapter 5

389
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See Courant [6] for an account of the Dirichlet principle and some of its applica-
tions. The solution of the Dirichlet problem for general domains in R2 and the
related notion of logarithmic capacity of sets are treated in Ransford [26]. Fol-
land [12] contains another solution to the Dirichlet problem (valid in Rd, d ≥ 2)
by methods which do not use the Dirichlet principle.

The result regarding the existence of the conformal mapping stated in Prob-
lem 3∗ is in Chapter VII of Zygmund [35].

Chapter 6

The citation is a translation from the German of a passage in C. Carathéodory [5].
Petersen [24] gives a systematic presentation of ergodic theory, including a

proof of the theorem in Problem 7∗.
The facts about spherical harmonics needed in Problem 4∗ can be found in

Chapter 4 in Stein and Weiss [32].
We refer to Hardy and Wright [16] for an introduction to continued fractions.

Their connection to ergodic theory is discussed in Ryll-Nardzewski [28].

Chapter 7

The citation is a translation from the German of a passage in Hausdorff’s arti-
cle [17], while Mandelbrot’s citation is from his book [21].

Mandelbrot’s book also contains many interesting examples of fractals arising
in a variety of different settings, including a discussion of Richardson’s work on
the length of coastlines. (See in particular Chapter 5.)

Falconer [10] gives a systematic treatment of fractals and Hausdorff dimension.
We refer to Sagan [29] for further details on space-filling curves, including the

construction of a curve arising in Problem 8∗.
The monograph of Falconer [10] also contains an alternate construction of the

Besicovitch set, as well as the fact that such sets must necessarily have dimension
two. The particular Besicovitch set described in the text appears in Kahane [19],
but the fact that it has measure zero required further ideas which are contained,
for instance, in Peres et al. [30].

Regularity of sets in Rd, d ≥ 3, and the estimates for the maximal function
associated to the Radon transform are in Falconer [9], and Oberlin and Stein [23].

The theory of Besicovitch sets in higher dimensions, as well as a number of
interesting related topics can be found in the survey of Wolff [34].
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Symbol Glossary

The page numbers on the right indicate the first time the symbol or
notation is defined or used. As usual, Z, Q, R, and C denote the integers,
the rationals, the reals, and the complex numbers respectively.

|x| (Euclidean) Norm of x 2
Ec, E − F Complements and relative complements of

sets
2

d(E, F ) Distance between two sets 2
Br(x), Br(x) Open and closed balls 2
E, ∂E Closure and boundary of E, respectively 3
|R| Volume of the rectangle R 3
O(· · · ) O notation 12
C, Cξ, Ĉ Cantor sets 9, 38
m∗(E) Exterior (Lebesgue) measure of the set E 10
Ek ↗ E, Ek ↘ E Increasing and decreasing sequences of sets 20
E4F Symmetric difference of E and F 21
Eh = E + h Translation by h of the set E 22
BRd Borel σ-algebra on Rd 23
Gδ, Fσ Sets of type Gδ or Fσ 23
N Non-measurable set 24
a.e. Almost everywhere 30
f+(x), f−(x) Positive and negative parts of f 31, 64
A + B Sum of two sets 35
vd Volume of the unit ball in Rd 39
supp(f) Support of the function f 53
fk ↗ f , fk ↘ f Increasing and decreasing sequences of func-

tions
62

fh Translation by h of the function f 73
L1(Rd), L1

loc(Rd) Integrable and locally integrable functions 69, 105
f ∗ g Convolution of f and g 74
fy, fx, Ey, Ex Slices of the function f and set E 75
f̂ , F(f) Fourier transform of f 87, 208
f∗ Maximal functions of f 100, 296
L(γ) Length of the (rectifiable) curve γ 115
TF , PF , NF Total, positive, and negative variations of F 117, 118
L(A,B) Length of a curve between t = A and t = B 120
D+(F ), . . . , D−(F ) Dini numbers of F 123
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M(K) Minkowski content of K 138
Ω+(δ), Ω−(δ) Outer and inner set of Ω 143
L2(Rd) Square integrable functions 156
`2(Z), `2(N) Square summable sequences 163
H Hilbert space 161
f ⊥ g Orthogonal elements 164
D Unit disc 173
H2(D), H2(R2

+) Hardy spaces 174, 213
S⊥ Orthogonal complement of S 177
A⊕B Direct sum of A and B 177
PS Orthogonal projection onto S 178
T ∗, L∗ Adjoint of operators 183, 222
S(Rd) Schwartz space 208
C∞0 (Ω) Smooth functions with compact support

in Ω
222

Cn(Ω), Cn(Ω) Functions with n continuous derivatives on
Ω and Ω

223

4u Laplacian of u 230
(X,M, µ), (X, µ) Measure space 263
µ, µ∗, µ0 Measure, exterior measure, premeasure 263, 264, 270
µ1 × µ2 Product measure 276
Sd−1 Unit sphere in Rd 279
σ, dσ(γ) Surface measure on the sphere 280
dF Lebesgue-Stieltjes measure 282
|ν|, ν+, ν− Total, positive, and negative variations of ν 286, 287
ν ⊥ µ Mutually singular measures 288
ν ¿ µ Absolutely continuous measures 289
σ(S) Spectrum of S 311
m∗

α(E) Exterior α-dimensional Hausdorff measure 325
diam S Diameter of S 325
dimE Hausdorff dimension of E 329
S Sierpinski triangle 334
A ≈ B A comparable to B 335
K, K` Von Koch curves 338, 340
dist(A,B) Hausdorff distance 345
P(t) Peano mapping 349
Pt,γ Hyperplane 360
R(f), Rδ(f) Radon transform 363, 368
R∗(f), R∗δ(f) Maximal Radon transform 363, 368



Index

Relevant items that also arose in Book I or Book II are listed in this
index, preceeded by the numerals I or II, respectively.

Fσ, 23
Gδ, 23
σ-algebra

Borel, 23
of sets, 23
Borel, 267

σ-finite, 263
σ-finite signed measure, 288
O notation, 12

absolute continuity
of the Lebesgue integral, 66

absolutely continuous
functions, 127
measures, 288

adjoint, 183, 222
algebra of sets, 270
almost disjoint (union), 4
almost everywhere, a.e., 30
almost periodic function, 202
approximation to the identity, 109;

(I)49
arc-length parametrization, 136;

(I)103
area of unit sphere, 313
area under graph, 85
averaging problem, 100
axiom of choice, 26, 48

basis
algebraic, 202
orthonormal, 164

Bergman kernel, 254
Besicovitch

covering lemma, 153
set, 360, 362, 374

Bessel’s inequality, 166; (I)80
Blaschke factors, 227; (I)26, 153,

219

Borel
σ-algebra, 23, 267
measure, 269
on R, 281
sets, 23, 267

Borel-Cantelli lemma, 42, 63
boundary, 3
boundary-value function, 217
bounded convergence theorem, 56
bounded set, 3
bounded variation, 116
Brunn-Minkowski inequality, 34, 48

canonical form, 50
Cantor dust, 47, 343
Cantor set, 8, 38, 126, 330, 387

constant dissection, 38
Cantor-Lebesgue

function, 38, 126, 331, 387
theorem, 95

Carathéodory measurable, 264
Cauchy

in measure, 95
integral, 179, 220; (II)48
sequence, 159; (I)24; (II)24

Cauchy-Schwarz inequality, 157,
162; (I)72

chain
of dyadic squares, 352
of quartic intervals, 351

change of variable formula, 149;
(I)292

characteristic
function, 27
polynomial, 221, 258

closed set, 2, 267; (II)6
closure, 3
coincidence, 377
compact linear operator, 188
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compact set, 3, 188; (II)6
comparable, 335
complement of a set, 2
complete

L2, 159
measure space, 266
mectric space, 69

completion
Borel σ-algebra, 23
Hilbert space, 170; (I)74
measure space, 312

complex-valued function, 67
conjugate Poisson kernel, 255
continued fraction, 293, 322
continuum hypothesis, 96
contraction, 318
convergence in measure, 96
convex

function, 153
set, 35

convolution, 74, 94, 253; (I)44, 139,
239

countable unions, 19
counting measure, 263
covering dimension, 383
covering lemma

Vitali, 102, 128, 152
cube, 4
curve

closed and simple, 137; (I)102;
(II)20

length, 115
quasi-simple, 137, 332
rectifiable, 115, 134, 332
simple, 137, 332
space-filling, 349, 383
von Koch, 338, 340, 382

cylinder set, 316

d’Alembert’s formula, 224
dense family of functions, 71
difference set, 44
differentiation of the integral, 99
dimension

Hausdorff, 329
Minkowski, 333

Dini numbers, 123
Dirac delta function, 110, 285
direct sum, 177

Dirichlet
integral, 230
kernel, 179; (I)37
principle, 229, 243
problem, 230; (I)10, 28, 64, 170;

(II)212, 216
distance

between two points, 2
between two sets, 2, 267
Hausdorff, 345

dominated convergence theorem, 67
doubling mapping, 304
dyadic

correspondence, 353
induced mapping, 353
rationals, 351
square, 352

Egorov’s theorem, 33
eigenvalue, 186; (I)233
eigenvector, 186
equivalent functions, 69
ergodic, (I) 111

maximal theorem, 297
mean theorem, 295
measure-preserving

transformation, 302
pointwise theorem, 300

extension principle, 183, 210
exterior measure, 264

Hausdorff, 325
Lebesgue, 10
metric, 267

Fatou’s lemma, 61
Fatou’s theorem, 173
Fejér kernel, 112; (I)53, 163
finite rank operator, 188
finite-valued function, 27
Fourier

coefficient, 170; (I)16, 34
inversion formula, 86; (I)141, 182;

(II)115
multiplier operator, 200, 220
series, 171, 316; (I)34; (II)101
transform in L1, 87
transform in L2, 207, 211

fractal, 329
Fredholm alternative, 204
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Fubini’s theorem, 75, 276
function

absolutely continuous, 127, 285
almost periodic, 202
boundary-value, 217
bounded variation, 116, 154
Cantor-Lebesgue, 126, 331
characteristic, 27
complex-valued, 67
convex, 153
Dirac delta, 110
finite-valued, 27
increasing, 117
integrable, 59, 275
jump, 132
Lebesgue integrable, 59, 64, 68
Lipschitz (Hölder), 330; (I)43
measurable, 28
negative variation, 118
normalized, 282
nowhere differentiable, 154, 383
positive variation, 118
sawtooth, 200; (I)60, 83
simple, 27, 50, 274
slice, 75
smooth, 222
square integrable, 156
step, 27
strictly increasing, 117
support, 53
total variation, 117

fundamental theorem of the
calculus, 98

Gaussian, 88; (I)135, 181
good kernel, 88, 108; (I)48
gradient, 236
Gram-Schmidt process, 167
Green’s

formula, 313
kernel, 204; (II)217

Hardy space, 174, 203, 213
harmonic function, 234; (I)20; (II)27
Hausdorff

dimension, 329
distance, 345
exterior measure, 325
maximal principle, 48

measure, 327
strict dimension, 329

heat kernel, 111; (I)120, 146, 209
Heaviside function, 285
Heine-Borel covering property, 3
Hermite functions, 205; (I)168, 173
Hermitian operator, 190
Hilbert space, 161; (I)75

L2, 156
finite dimensional, 168
infinite dimensional, 168
orthonormal basis, 164

Hilbert transform, 220, 255
Hilbert-Schmidt operator, 187
homogeneous set, 385

identity operator, 180
inequality

Bessel, 166; (I)80
Brunn-Minkowski, 34, 48
Cauchy-Schwarz, 157, 162; (I)72
iso-diametric, 328, 386
isoperimetric, 143; (I)103
triangle, 157, 162

inner product, 157; (I)71
integrable function, 59, 275
integral operator, 187

kernel, 187
interior

of a set, 3
point, 3

invariance of Lebesgue measure
dilation, 22, 73
linear transformation, 96
rotation, 96, 151
translation, 22, 73, 313

invariant
function, 302
set, 302
vectors, 295

iso-diametric inequality, 328, 386
isolated point, 3
isometry, 198
isoperimetric inequality, 143; (I)103,

122

jump
discontinuity, 131; (I)63
function, 132
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Kakeya set, 362
kernel

Dirichlet, 179; (I)37
Fejér, 112; (I)53
heat, 111; (I)209
Poisson, 111, 171, 217; (I)37, 55,

149, 210; (II)67, 78, 109, 113,
216

Laplacian, 230
Lebesgue

decomposition, 150
density, 106
exterior measure, 10
integrable function, 59, 64, 68
integral, 50, 54, 58, 64
measurable set, 16
set, 106

Lebesgue differentiation theorem,
104, 121

Lebesgue measure, 16
dilation-invariance, 22, 73
rotation-invariance, 96, 151
translation-invariance, 22, 73, 313

Lebesgue-Radon-Nikodym theorem,
290

Lebesgue-Stieltjes integral, 281
Legendre polynomials, 205; (I)95
limit

non-tangential, 196
point, 3
radial, 173

linear functional, 181
null-space, 182

linear operator (transformation),
180

adjoint, 183
bounded, 180
compact, 188
continuous, 181
diagonalized, 185
finite rank, 188
Hilbert-Schmidt, 187
identity, 180
invertible, 311
norm, 180
positive, 307
spectrum, 311
symmetric, 190

linear ordering, 26, 48
linearly independent

elements, 167
family, 167

Lipschitz condition, 90, 147, 151,
330, 362

Littlewood’s principles, 33
locally integrable function, 105
Lusin’s theorem, 34

maximal
function, 100, 261
theorem, 101, 297

maximum principle, 235; (II)92
mean-value property, 214, 234, 313;

(I)152; (II)102
measurable

Carathéodory, 264
function, 28, 273
rectangle, 276
set, 16, 264

measure, 263
absolutely continuous, 288
counting, 263
exterior, 264
Hausdorff, 327
Lebesgue, 16
mutually singular, 288
outer, 264
signed, 285
support, 288

measure space, 263
complete, 266

measure-preserving
isomorphism, 292
transformation, 292

Mellin transform, 253; (II)177
metric, 267

exterior measure, 267
space, 266

Minkowski
content, 138, 151
dimension, 333

mixing, 305
monotone convergence theorem, 62
multiplication formula, 88
multiplier, 220
multiplier sequence, 186, 200
mutually singular measures, 288
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negative variation
function, 118
measure, 287

non-measurable set, 24, 44, 82
non-tangential limit, 196
norm

L1(Rd), 69
L2(Rd), 157
Euclidean, 2
Hardy space, 174, 213
linear operator, 180

normal
number, 318
operator, 202

normalized
increasing function, 282

nowhere differentiable function, 154,
383; (I)113, 126

open
ball, 2, 267
set, 2, 267

ordered set
linear, 26, 48
partial, 48

orthogonal
complement, 177
elements, 164
projection, 178

orthonormal
basis, 164
set, 164

outer
Jordan content, 41
measure, 10, 264

outside-triangle condition, 248

Paley-Wiener theorem, 214, 259;
(II)122

parallelogram law, 176
Parseval’s identity, 167, 172; (I)79
partial differential operator

constant coefficient, 221
elliptic, 258

partitions of a set, 286
Peano

curve, 350
mapping, 350

perfect set, 3

perpendicular elements, 164
Plancherel’s theorem, 208; (I)182
plane, 360
point in Rd, 2
point of density, 106
Poisson

integral representation, 217;
(I)57; (II)45, 67, 109

kernel, 111, 171, 217; (I)37, 55,
149, 210; (II)67, 78, 109, 113,
216

polar coordinates, 279; (I)179
polarization, 168, 184
positive variation

function, 118
measure, 287

pre-Hilbert space, 169, 225; (I)75
premeasure, 270
product

measure, 276
sets, 83

Pythagorean theorem, 164; (I)72

quartic intervals, 351
chain, 351

quasi-simple curve, 332

radial limit, 173
Radon transform, 363; (I)200, 203

maximal, 363
rectangle, 3

measurable, 276
volume, 3

rectifiable curve, 115, 134, 332
refinement (of a partition), 116;

(I)281, 290
regularity of sets, 360
regularization, 209
Riemann integrable, 40, 47, 57;

(I)31, 281, 290
Riemann-Lebesgue lemma, 94
Riesz representation theorem, 182,

290
Riesz-Fischer theorem, 70
rising sun lemma, 121
rotations of the circle, 303

sawtooth function, 200; (I)60, 83
self-adjoint operator, 190
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self-similar, 342
separable Hilbert space, 160, 162
set

bounded eccentricity, 108
cylinder, 316
difference, 44
self-similar, 342
shrink regularly, 108
slice, 75
uniformly locally connected, 387

shift, 317
Sierpinski triangle, 334
signed measure, 285
similarities

separated, 346
similarity, 342

ratio, 342
simple

curve, 332
function, 27, 50, 274

slice, 361
function, 75
set, 75

smooth function, 222
Sobolev embedding, 257
space L1 of integrable functions, 68
space-filling curve, 349, 383
span, 167
special triangle, 248
spectral

family, 306
resolution, 306
theorem, 190, 307; (I)233

spectrum, 191, 311
square integrable functions, 156
Steiner symmetrization, 386
step function, 27
strong convergence, 198
Sturm-Liouville, 185, 204
subspace

closed, 175
linear, 174

support
function, 53
measure, 288

symmetric
difference, 21
linear operator, 184, 190

Tchebychev inequality, 91
Tietze extension principle, 246
Tonelli’s theorem, 80
total variation

function, 117
measure, 286

translation, 73; (I)177
continuity under, 74; (I)133

triangle inequality, 157, 162, 267

uniquely ergodic, 304
unit disc, 173; (II)6
unitary

equivalence, 168
isomorphism, 168
mapping, 168; (I)143, 233

Vitali covering, 102, 128, 152
volume of unit ball, 92, 313; (I)208
von Koch curve, 338, 340, 382

weak
convergence, 197, 198
solution, 223

weak-type inequality, 101, 146, 161
weakly harmonic function, 234
well ordering

principle, 26, 48
well-ordered set, 26
Wronskian, 204


