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Abstract. In this review, we aim to introduce the reader to the technique of electrical

impedance spectroscopy (EIS) with a focus on its biological and medical applications.

We explain the theoretical and experimental aspects of the EIS with the details

essential for biological studies, i.e. interaction of metal electrodes with biological

matter and liquids, strategies of increasing measurement rate and noise reduction in

bio-EIS experiments etc. We give various examples of successful bio-EIS practical

implementations in science and technology: from the whole-body health monitoring

and sensors for vision prosthetic care to single living cell examination platforms and

virus diseases research. Present review can be used as a bio-EIS tutorial for students

as well as a handbook for scientists and engineers due to extensive references covering

the contemporary research papers in the field.

1. Introduction

Since 1886, when electrical impedance spectroscopy (EIS) was originally conceptualized

by Oliver Heaviside [1, 2], it has evolved into a powerful and widely used experimental

technique [3, 4, 5, 6, 7]. Despite the simple concept – measuring the electrical

current passing through the sample at various frequencies of the excitation voltage

– this technique is currently applied in numerous domains. For example, EIS is
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commonly used as a testing technique for modern electronic devices: from semiconductor

hetero-structures [8] to audiophile amplifiers [9]; EIS is a state-of-the-art method in

electrochemistry and materials science: from nano-objects investigation and alternative

energy sources characterization to Mars surface research [10, 11, 12, 13, 14, 15]. Being a

label-free non-optical non-destructive and easy to implement technique, EIS became

a promising experimental approach in biological and medical applications, such as

biosensing technologies [6, 16, 17, 18, 19, 20] and diagnosis of diseases, including cancer

and virus detection [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Historically, one of the first biological EIS applications was proposed in 1926 by

Leon S. Theremin, who developed a contactless musical instrument – thereminvox –

that converts the impedance of the performer’s hands into various music tones [33, 34].

Almost at the same time, in 1928, Kenneth S. Cole developed the theoretical basis for the

description of the tissue impedance, and later in 1937, together with Howard J. Curtis

he performed one of the first EIS investigations of large living cells, namely the giant

plant cells Nitella [35, 36, 37]. In 1992, Charles R. Keese and Ivar Giaever take

advantage of the remarkable progress in the microelectronics fabrication to extend EIS

applications for studying a wide range of living cells, including mammalian cells, and

bring into life this idea in electrical cell-substrate impedance sensing (ECIS) technology

[16, 17, 38, 39], which for now days became an outstanding tool for label-free and real-

time cells research. ECIS device uses the modified Petri dish with the planar electrodes

located on it’s bottom on which investigated living cells are seeded. As far as the

cells affect significantly the electrodes impedance [16] it becomes possible to determine

their properties by studying ECIS impedance and its evolution. For example, the ECIS

methodology allows measuring the number of cells adherent to the electrodes [40, 41],

estimating the viability of cells [42, 43], studying cell motility [41], investigating cell-cell

interactions [44], quantifying the activity of pharmaceuticals [17, 45, 46, 47], etc.

This extensive EIS utilization in the science resulted in appearance of the large

number of remarkable text-books, monographs, and review papers devoted to the

impedance spectroscopy [3, 4, 5, 6, 7, 48, 17]. Moreover, a significant part of information

on EIS grounds can be found in stand-alone chapters in almost every physics and

electronics textbooks [49, 50]. However, most number of these texts either focus mainly

on applications, not explaining enough the underlying theory, or focus on the detailed

explanation of the EIS theory, making it difficult for the first reading. Thus in this

tutorial review we make effort to keep the balance for EIS explanation. To be specific,

we try to make introduction to the theory, experiment, and bio-applications of the EIS

from the first principles. We explain the plans of the problems solution and stress the

most important points. As a consequence, to read this this tutorial only the basic

knowledge in differential and integral calculus, complex variable theory, and general

physics are required. This paper can be used by students as first-reading reference in

the bio-EIS area.

The article is organized as follows. First, we will introduce the theoretical basis for

EIS with a focus on the details that are important for biological applications. Then, we
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will consider the experimental aspects of EIS, and also compare different impedance-

measurement techniques. Finally, we will discuss the application of EIS in biology and

medicine with paying special attention to cell research, health monitoring, and decease

diagnostics such as viral infection and cancer.

2. Theoretical aspects of EIS

2.1. Electrical Immittance

Impedance is complex-valued electrical resistance that depends on the frequency ω of

excitation voltage (EV). Typically, impedance is denoted as Z, or Z(ω) stressing the

frequency dependence. A closely related quantity is admittance, or complex-valued

conductivity, that is defined as
1

Z
and typically denoted as Y . From the complex

quantities of impedance and admittance, one can derive a number of meaningful

characteristics, including real parts (denoted as < or by placing apostrophe 8), imaginary

parts (so-called reactances, denoted as X, =, or by placing double apostrophe 88), phases,

magnitudes, etc. For convenience, to refer to impedance, admittance or any physical

quantity that is a function of impedance or admittance, a generic term immittance is

often used.

For the single-frequency sine-shape excitation voltage (EV)

V (t) = V0e
iωt (1)

the immittance could be measured as shown in Fig. 1. If a sample is linear (i.e. the

V

Z(ω)

∼ AV (ω) J(ω)

Figure 1. The common immittance measurement scheme. The excitation voltage

V (ω) is applied to the sample with impedance Z(ω), which results in current response

J(ω) through it. Excitation voltage and current response are measured with the

voltmeter V and the ammeter A, respectively, to derive impedance Z(ω).

superposition principle for excitation voltages and corresponding current responses is

fulfilled), the current response will be also a sine-shaped function with frequency ω

J(t) = J0e
iωt+iϕ, (2)
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where J0 = J0(ω) is the magnitude of the current, ϕ = ϕ(ω) is the current phase-shift

with respect to the applied voltage. So, according to Ohm’s law, the impedance at

frequency ω can be defined as

Z(ω) =
1

Y (ω)
=
V (t)

J(t)
=
V0
J0
e−iϕ = |Z|eiφ = Z 8 + iZ 88, (3)

where |Z| = V0/J0 is magnitude of the impedance, φ = −ϕ is phase of the impedance,

Z 8 = |Z| cosφ is real part of the impedance, Z 88 = |Z| sinφ is imaginary part of the

impedance. Remarkably, that expression (3) is time-independent.

Now by using superposition principle and equation (3), we can easily calculate

the current response for a non-sine, arbitrary-shaped excitation voltage. Based on the

fact that any physically realistic EV can be represented as sum of the single-frequency

harmonics of the form Eq. (1) or in more general form as a Fourier integral

V (t) =

∞∫
−∞

Ṽ (ω)eiωtdω, (4)

one can start with calculating the response to each harmonic of the excitation voltage

using the equation (3). Here the amplitude V0 from Eq. (1) is naturally replaced by

Ṽ (ω) – a complex amplitude of the harmonic with frequency ω. At the next step, one

can calculate the overall current response as the sum (or integral) of current responses

at each frequency

J(t) =

∞∫
−∞

Ṽ (ω)

Z(ω)
eiωtdω =

∞∫
−∞

Y (ω)Ṽ (ω)eiωtdω. (5)

From Eq. (5) one can see that the immittance completely defines the electrical current

through the sample for an arbitrary excitation voltage, or in other words, the immittance

contains full information about sample electrical properties. That’s why the immittance

concept is very useful for electrical characterisation.

Moreover, despite that definition of the immittance in Eq. (3) is applicable only to

linear samples (the sample does not produce the overtones), it’s is possible to extend EIS

application for non-linear systems too. E.g., one can use the small-signal approximation,

which is valid if the amplitude of an excitation voltage is small enough to eliminate

sample’s non-linearity. Typically, in this type of experiments, a large constant offset

voltage is added to a small-signal alternating EV to obtain additional experimental data

[48]. Particularly, this technique is a state-off-the-art for semiconductors diagnostics.

The immittance of any real system has several common properties, which we will

briefly discussed here without giving the proofs, which can be found in Ref. [3, 4].

(i) The real and the imaginary parts of the immittance are related to each other via

Kramers-Kronig relations [51].

(ii) The real part and the magnitude of immittance are even functions of frequency.
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(iii) The imaginary part and the phase of the immittance are odd functions.

(iv) The poles of the immittance have a negative real part.

2.2. The concept of equivalent circuits

One of the main advantages of EIS as an experimental technique is the possibility to

analyze the obtained immittance spectra by means of the equivalent circuits approach

[3, 4]. The key idea of this method consist in constructing an equivalent electrical

circuit that has the same immittance as an investigated sample. For example, a suitable

equivalent circuit for an ideal semiconductor diode is a serial RC-circuit, because the

pn-junction has zero conductivity at constant current and high conductivity at high-

frequency current [48] (here we assume that EV has small amplitude and rectification

effects are eliminated). As a result, we can associate the capacitance in equivalent circuit

with a space charge region of pn-junction, and the resistance in the equivalent circuit

with the bulk resistance of the diode base. Alternatively, for a living cell membrane, a

suitable equivalent circuit is the parallel RC-circuit, because it has low (but non-zero)

conductivity at constant current and very high conductivity at high-frequency current.

Here, the capacitor corresponds to the geometrical capacitance of the cell membrane,

and the resistor corresponds to the resistance of the membrane. Thus, the equivalent

circuit approach allows direct associating the immittance spectrum with physical and

chemical phenomena in the investigated sample and extracting its characteristics.

To determine the topology of the equivalent circuit of the sample, it is often useful to

perform a preliminary analysis by plotting special graphs – Bode diagram (immittance

magnitude and phase v.s. frequency) and Nyquist plot that is also called the immittance

locus (the imaginary part of immittance v.s. real part of the immittance). Nyquist plot

is in fact a paramteric plot of these two function with the parameter being a frequency.

As an example for this procedure, let’s consider a serial RC circuit (see Table 1). Its

impedance and admittance are described as

Z = R +
1

iωC
=

√
R2 +

1

(ωC)2
× e−i arctan[1/(ωRC)], (6)

Y =
1

Z
=

ω2RC2

1 + (ωRC)2
+ i

ωC

1 + (ωRC)2
, (7)

where R is the resistance, and C is the capacitance. At low frequencies the impedance of

the capacitor is high, and the Bode diagram demonstrates hyperbolic behavior. At high

frequencies the impedance of the capacitor is low, and the total impedance is determined

by the resistance R and it does not depend on frequency. The Nyquist admittance

diagram of the serial RC-circuit has a semi-circle shape (see Table 1) with a radius 1/R

and centered at point 1/(2R) + i · 0, which easy to show by taking the magnitude of

the quantity Y − 1/(2R). Thus, if the Nyquist admittance plot of a measured sample

has a semi-circle shape, it is highly likely that the sample can be represented as a serial

RC-circuit. A question can arise: why for a serial RC-circuit we consider admittance
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locus instead impedance locus, which has a much simpler shape (the line parallel to

the imaginary axis at the distance R)? The answer to this question is as follows: the

admittance representation is very useful in case of the parallel connection of N serial

RC-circuits (see last line in Table 1). Indeed, the admittance locus of such system is a

vector sum of all RC-circuit loci, and, as a result, the total locus will have a shape of

N overlapped semicircles. The analogical shape will be observed for impedance of the

serial connected parallel RC-circuits. So, the Nyquist plot allows us to determine how

many RC-circuits we should take into account to construct the equivalent circuit. Thus,

the immittance plotting can be a key for choosing the best equivalent circuit topology.

When the equivalent circuit for the sample is constructed, its parameters (ratings of

resistance, capacitance, etc) should be tuned to match the equivalent-circuit spectrum

to the experimentally observed spectrum. To perform this task three methods are

commonly used: geometric method [52], algebraic method (AM) [53], and complex

non-linear least squares (CNLS) method [52, 54, 55]. In geometric approach, which

was used in the early EIS studies, the graphical operations with the immittance

locus are performed to evaluate equivalent circuit parameters. For a more accurate

algebraic approach, the parameters of the equivalent circuit are calculated based on the

characteristics of immittance spectrum, i.e. the numerical parameters such as minima,

maxima, inflection points, etc are analyzed and used for the calculation of equivalent

circuit parameters. For the most widely used and simple equivalent circuits, their

immittances, Nyquist plots, and algebraic method solutions are presented in Table 1.

Even though the algebraic approach provides more accurate results than the

geometric method, it is applicable only to simple circuits. Generally, no exact algebraic

solution exists for equivalent circuit parameters calculation (e.g., see last line in Table 1).

For this reason, the complex non-linear least squares method, proposed in 1978 by

J. Ross Macdonald [56], is usually applied for EIS spectrum analysis. The key idea of the

CNLS protocol is to approximate the equivalent circuit parameters by the minimization

of the following functional

L∑
n=1

∣∣∣Yexp(ωn)− YEC(ωn, ~P )
∣∣∣2 = min, (8)

where Yexp(ωn) is the experimentally obtained admittance at frequency ωn, YEC(ωn, ~P )

is the equivalent circuit admittance at frequency ωn, ~P is a vector of the equivalent

circuit parameters (resistances, capacitances, inductions etc.), and L is a number of

frequencies used to perform the measurements. The admittance in equation (8) can be

replaced by impedance, the magnitude of impedance, or any other immittance function.

Also the weighting function W (ωn) can be added if some frequency range has higher

importance than others

L∑
n=1

∣∣∣Yexp(ωn)− YEC(ωn, ~P )
∣∣∣2W (ωn) = min . (9)
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Table 1. Widely used equivalent circuits and their immittances. Here ωmax is the

angular frequency at which the admittance imaginary part reaches its maximum value;

ωmin is the angular frequency at which the impedance imaginary part reaches its

minimum value; fmin is the angular frequency at which its impedance magnitude

reaches the minimum value; fmax is the frequency at which the admittance imaginary

part reaches its maximum value, ‖ denotes impedance of two parallel elements.

Circuit Immittance Nyquist plot AM solution

Serial RC

R C

Z = R +
1

iωC

Y 88

Y 8

R =
1

2Y 88(ωmax)
,

C =
2Y 88(ωmax)

ωmax

.

Parallel RC

R

C

Y = iωC +
1

R

Z 88

Z 8 R = −2Z 88(ωmin),

C = − 1

Z 88(ωmin)ωmin

.

Serial RLC

R C
L

Z = R +
1

iωC
+ iωL

Y 88

Y 8

R = |Z(fmin)|,

L =
Rfmax

2π(f 2
min − f 2

max)
,

C =
1

L(2πfmin)2
.

Serial R-CPE

R
CPE Z = R +

1

W (iω)α

Y 88

Y 8

R =
1

2Y 8(ωmax)
,

α =
4

π
arctan[2RY 88(ωmax)],

W =
1

Rωαmax

.

Two serial RC in parallel

R1
C1

R2 C2

Z1 = R1 +
1

iωC1

,

Z2 = R2 +
1

iωC2

,

Z = Z1 ‖ Z2.

Y 88

Y 8 Simple AM solution

does not exist

For the minimization of function (8) a large number of optimization algorithms exist. For

example, freeware levm program by J. Ross Macdonald uses the Levenberg-Marquardt

algorithm [57]; nelm package for matlab and python, which was developed by the



Bio-Impedance Spectroscopy: Basics and Applications 8

authors, uses the Nelder-Mead algorithm [58] and can support big data sets (the package

can be obtained by a request). It is interestingly to note, that as a starting vector
~P , these optimization algorithms frequently use the results of the algebraic method

approximation.

2.3. Immittance models for bioelectronics

The described above equivalent circuit concept opens one of the fruitful ways

for studying biological systems. Particularly, for contact between the metallic

electrode, electrolyte (physiological medium), and biological matter (cells, tissues,

macromolecules) – the key element existing in the most number of the bio-impedance

based devices – it is possible to construct the relatively simple EC, which correctly

reflect physical, chemical, and biological phenomena in such interface. In this section

we will derive this EC and demonstrate its advantages for cell research. In order to

make the explications consistent, we will firstly consider a model of a metal/electrolyte

interface.

2.3.1. Double electrical layer. In 1853, Hermann von Helmholtz has found that

in the absence of electrochemical reactions the metal/electrolyte interface, which he

called a double electrical layer (DL) [59], demonstrates capacitor-like behavior. Later,

Louis G. Gouy (1910) and David L. Chapman (1913) made the first effort to construct a

model of the metal/electrolyte interface, which we will briefly discuss now. For simplicity

we will deal with one-dimension case. Let’s consider an planar electrode embedded in an

electrolyte solution with ion concentration η0, dielectric permeability ε, and temperature

T ; ions in the electrolyte are considered to be the ideal gas [Fig. 2(a)]. What happens

if the voltage V0 is applied to the electrode [Fig. 2(b)]?

According to the Poisson equation, the electric potential distribution in the

electrolyte can be described as

∂2

∂x2
ϕ(x) = −4π

ε
ρ(x), (10)

where x is coordinate in the direction perpendicular to the electrode, and ρ(x) is a

charge density formed by ions. Besides, the distribution of ion concentration should

satisfy the Boltzmann statistics, namely distribution of positively charged ions is equal

to

η+(x) = η0e
− eϕ(x)/kT , (11)

and distribution of negatively charged ions is equal to

η−(x) = η0e
+eϕ(x)/kT , (12)

where e is electron charge (here and further for simplicity we will consider singularly

charged only). The total charge density equals

ρ(x) = e η+(x)− e η−(x). (13)



Bio-Impedance Spectroscopy: Basics and Applications 9

E
le
ct
ro
d
e

+

+

+

+

–

–

–

–

+

+

+

+

–

–

–

–

x

(a)

E
le
ct
ro
d
e

+

+

+

+

+

+

+

+

+

+ +

+

–

+

+

–

+

+

+

+

–

–

–

–

x

︸ ︷︷ ︸
`D

HL Gouy-Chapman layer

(b)

Figure 2. Sketch for the Gouy-Chapman-Stern problem (not in scale). (a) The

ions distribution before applying a voltage to the electrode. (b) The ions distribution

after applying a negative voltage to the electrode: ions form the Helmholtz layer (HL)

and Gouy-Chapman layer (diffusion layer). For low electrode voltages in the Gouy-

Chapman layer on the distance `D (Debye screening length) the ions non-uniform

concentration falls in e = 2.71828... times. Note, that the Helmholtz layer could be

presented as several ions and solvent molecules layers.

Combining Eqs. (10), (11), (12), and (13) we obtain the equation for the potential

∂2

∂x2
ϕ(x) =

8π e

ε
η0 sinh

eϕ(x)

kT
. (14)

To solve this equation, we consider the case eϕ� kT (Debye approximation) and

expand the right-hand side of the equation (14) into the Taylor series. As a result, in

the Debye approximation, the potential distribution can be written as

ϕ = V0e
−x/`D , (15)

where

`D =

√
εkT

8π e2 η0
(16)
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is the Debye screening length (here we assumed that ϕ(∞) = 0). For example, in the

physiological solution (0.9% NaCl) `D = 8 Å. Now the electrode capacitance can be

easily calculated as the charge-to-voltage ratio

C =
Q

V0
=

∞∫
0

ρdx

V0
S =

εϕ′(x)
∣∣∣∞
0

4πV0
S =

εS

4π`D
, (17)

where Q is the total charge of the electrode, S is the area of the electrode. It is worth

noticing, that equation (17) is similar to the equation that describes the capacitance of

the parallel-plate capacitor with the dielectric permeability ε and inter-plate distance

`D. Verification of the equation (17) by experimental data revealed that this model

overestimates the experimental capacitance value. To obtain more accurate results,

Gouy and Chapman found the exact solution of the one-dimension equation (14) and

used it to derive the differential capacitance of the metal/electrolyte interface

CGC =
εS

4π`D
cosh

eV0
2kT

, (18)

which matches the Debye-approximation capacitance for eV0 � 2kT [the Eq. (14) could

be easily integrated by multiplying it on 2ϕ′(x)]. Unfortunately, already for relatively

small values of voltage applied to the electrode, the Gouy-Chapman capacitance becomes

too large and loses any physical meaning.

This paradox arises from the fact that the ideal gas model for ions in electrolyte is

not valid if high voltage is applied to the electrode. Indeed, from Eqs. (11) and (12) it

is easy to see that ions density at electrode is equal

η(0) = η+(0) + η−(0) = 2η0 cosh

(
eV0
kT

)
. (19)

On the other hand, we can estimate the maximum density of the ions as

ηmax ≈
1

Single ion volume
=

3

4πr3
, (20)

where r is the ion effective radius. From these equations, it is clear that for NaCl 0.9%

solution at room temperature the sodium ions density at electrode η(0) became greater

than maximum sodium ion density ηmax when electrode voltage became -0.15 V (here

we have used value 0.18 nm for sodium-ion radius [60]). The similar estimation could be

done if we will take as ηmax = 8/(5.65 Å)3 – the “concentation” of the ions in the crystal

NaCl (the ration of atoms number per lattice cell to lattice cell volume). Moreover,

ions radius [60] and crystal NaCl lattice parameter (5.65 Å[61]) in this example system

are comparable with Debye screening length, and thus the potential distribution (15)

and followed from it ions density became loosely applicable at x = 0. That’s why it

is impossible to consider ions as point-like objects at the electrode surface and at high

electrode voltages.
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For this reason, ions cannot approach arbitrarily closely to the electrode, but

they form a so-called Helmholtz layer (or plane of closest approach) on its surface.

Nevertheless, at relatively large distances from the electrode (a few `D) ions distribution

can be correctly described by the Debye approximation.

These effects was taken into account by Otto Stern in 1924, who proposed the

two-region structure for metal/electrolyte interface [59, 62, 63]. In this model, ions are

assumed to form both the Helmholtz layer and the more distant Gouy-Chapman layer,

which is also called diffusion layer [Fig. 2(b)].

The double electrical layer in Gouy-Chapman-Stern theory can be described by the

equivalent circuit that contains a serial connection of the Helmholtz layer capacitance

and the Gouy-Chapman capacitance. Due to the fact that the value of Helmholtz

capacitance is usually (e.g. at high ion concentrations) much lower than the value of

the Gouy-Chapman capacitance, the capacitance of the metal/electrolyte interface is

determinated by the Helmholtz layer [59, 63]. Typically Helmholtz layer capacitance is

defined as

CH = S × cu, (21)

where S is area, and cu is experimentally obtained capacitance per area unit. Therefore,

the total immittance of the metal-electrolyte interface can be represented by a serial RC-

circuit

Zm/e = Rb +
1

iωCdl
, (22)

where Rb is the electrolyte bulk resistance and Cdl = CH ‖ CGC is the double layer

capacitance.

2.3.2. Dispersion of the Double Layer Capacitance. Even though the Gouy-Chapman-

Stern theory is completely consistent, the frequency dependence of the metal/electrolyte

immittance described by Eq. (22) is rarely observed due to the effect of so-called

capacitance dispersion [64, 65]. This phenomena predict that instead capacitor-like

behaviour (22) immittance of the metal/electrolyte interface is govern by the following

equation

Zm/e = Rb +
1

W (iω)α
, (23)

where Rb is still the bulk resistance of electrolyte, α is the so-called non-ideality

parameter, and W is the pseudo-capacitance with dimension Ω−1Hz−α=Ssα. The

element with impedance
1

W (iω)α
is directly refereed to capacitance dispersion and called

the constant phase element (CPE), because its impedance phase
πα

2
is independent of

frequency (for CPE properties see Table 1).

Despite the fact that numerous experimental and theoretical papers are devoted

to the subject, the true origin of the capacitance dispersion is still not elucidated
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[66, 67, 68, 69, 70]. However, there exist two types of useful and illustrative models

that partially explain this phenomenon. The models of the first type are based on the

diffusion and chemical effects, and the models of the second type explain capacitance

dispersion via the spatial nonuniformity current flow through an electrode. Here, we

will outline the two well-known examples of such models, one for each type.

The first example is the model proposed by E. Warburg (the so called Warburg

impedance) [3]. The model can be introduced as follows. Let’s assume that after

applying voltage to the electrode, the non-equilibrium ions concentration is generated

on its surface. For example, this non-equilibrium concentration can arise from the

electrochemical reactions between electrolyte ions and atoms of the electrode. Due to

the fact that the ions form a non-uniform concentration η(x, t), a diffusion flow of ions

(i.e. diffusion current) also takes place (in this model, if the Debye length is small and

the electrical field in the electrolyte is weak we can neglect the drift electrical current).

Then the assumption that the concentration of ions on the electrode surface (at

x = 0) is proportional to the magnitude of the applied voltage V0, i.e. η
∣∣∣
x=0

= γV0

is made. Thus, in the case of one-dimensional distribution of ions and the harmonic

excitation voltage V0 := V0e
iωt we can write the following set of equations which are

based on diffusion equation 
D
∂2

∂x2
η(x, t) =

∂

∂t
η(x, t),

η(x, t)
∣∣∣
x=0

= γV0e
iωt,

η(x, t)
∣∣∣
x=+∞

= 0,

(24)

where D is the diffusion coefficient. After solving this system, we obtain the expression

for the ion concentration

η(x, t) = γV0e
−
√
iω/Dxeiωt. (25)

Finally, to derive Warburg immittance we should use Fick’s law to calculate the

current through the electrode (at x = 0) and relate it to the excitation voltage V0. As

a result, we obtain

YW =
− eDη′(x = 0)eiωt

V0eiωt
= e γ

√
iωD (26)

or

ZW =
1

e γ
√
D(iω)

1
2

. (27)

From Eq. (27) one can see that taking into account the diffusion effects results in

capacitance dispersion with the non-ideality parameter α =
1

2
.

The second example that we will consider is the R. Levie model of an electrode

with a scratch on its surface [71]. For simplicity, we will deal with the limiting case of

the Levie model, when a scratch has infinite depth and degenerates into the pore [see
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Fig. 3(a), the direction from right to left corresponds to going deeper to pore along its

central axis]. To calculate the immittance of this system, the so-called transmission-

line approximation approach can be used. Let’s divide the pore across its symmetry

axis into parts with infinitely small length (Fig. 3). One can see that the current Jn
that flows through the cross-section resistance of the n-th section is formed by the sum

of the current Jn−1 in the (n − 1)-th section and the current J⊥n that flows through

the metal/electrolyte impedance (which we assume to be capacitive). The current that

flows through the n-th section is added to the similar current Jn+1 that flows through

the (n + 1)-th section resistance, and so on (Jn+1 = Jn + J⊥n+1, Jn+2 = Jn+1 + J⊥n+2,

etc). Therefore in transmission-line approximation a pore can be modeled as an infinite

ladder RC-circuit, the impedance ZL of which can be easily calculated [49]. Indeed,

notice that the value of ZL does not change if we connect one more RC-branch to the

circuit [Fig. 3(b)]

ZL = R + ZL ‖
1

iωC
, (28)

where the designation ‖ symbolizes the impedance of the two parallel elements, and

thus

ZL =
R

2

(
1 +

√
1 +

4

iωRC

)
. (29)

It is easy to see that in the ultra low frequency limit Eq. (29) can be written as

ZL =

√
R

iωC
, (30)

and again we observe the capacitance dispersion with α =
1

2
.

2.3.3. Metal/electrolyte/cell interface. Up to date, there exist a large number of models

that describe the electrical properties of the metal/electrolyte/cell interface: an electrode

carrying either the cell population or a single cell on its surface [72, 73, 74, 75, 76]. One of

the most popular qualitative equivalent circuits for the metal/electrolyte/cell interface

is the ECIS model proposed by I. Giaever and C. Keese [16]. To better understand

its origin, the Table 2 lists the most significant properties of the MEC contact. From

data given in this table, one can see that a cell itself is a very strong dielectric: at low

frequencies a cell impedance is higher than the impedance of the pure metal-electrolyte

interface. This picture is due to the lipid-based composition of a membrane and the very

selective ion channels in the form of proteins [77]. So, in fact one can neglect current

flow through cell at low frequencies. At the same time, we can notice that cells are

attached to the electrode surface by so-called focal contacts, i.e. the most part of cell

membrane does not have a direct contact with the electrode surface [78]. Thus, between

cell’s membrane and electrode surface exist an effective seal. The Giaever-Keese model

is based on this statement [16, 20].
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C ↑ J⊥n−1

R

Jn−1
−→

C ↑ J⊥n

R

Jn
−→

C ↑ J⊥n+1

R

Jn+1
−→

C

R

C

R

Metal

Electrolyte

Metal

(a)

ZL
ZL

C

R

=

(b)

Figure 3. On the Levie problem. (a) An infinite pore in the electrode can be

represented as an infinite ladder RC circuit. Here, voltage is applied to the metal

and to the right part of the electrolyte. The direction from the surface of the electrode

into the depth of the pore is from the right to the left. (b) The impedance of such

pore ZL can be easily calculated, if we noted, that it does not change after connecting

one more RC-branch.

In order to pass the metal/electrolyte/cell interface the current has to overcome

the electrochemical impedance Zm/e [Eq. (23), Fig. 4(a), left panel] and also the

resistance of the seal between the cell and the electrode surface [Fig. 4(a), center

panel]. This phenomenon can be described with a serial active resistance RS in the

metal/electrolyte/cell interface

ZMEC = Zm/e +Rs. (31)

It should be notices, that the additional resistance Rs has a geometrical nature because

the current-carrying ion fluxes at low frequencies can not penetrate the cell and should

flow along the cell membrane following its shape. As far as ZMEC depends on the

electrical and morphological properties of a cell, its value can be used for the functional
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(a)

(b) (c)

Figure 4. On the Giaever-Keese model in the low-frequency limit. (a) The scheme of

the metal/electrolyte/cell interface. Here, red arrows denote the electrical current. The

cell-covered electrode (center panel) has a higher impedance than the empty electrode

(left panel) because in the case of metal/electrolyte/cell interface current flows not

only through an electrochemical impedance but also through the seal between the cell

membrane and the electrode. If a cell membrane becomes distorted upon interaction

with toxins or radiation (right panel), the current has the possibility to bypass the seal

through the distorted membrane, and therefore impedance spectra of cell-covered and

empty electrodes become close to each other. (b, c) Morphology of HeLa cells adhesion

[confocal microscopy obtained with microscope Zeiss Observer.Z1 (Zeiss, Germany)

and Deep Red Cell Mask dye, pseudocolor]. Cells are attached to the surface by a

small number of focal adhesion contacts (several contacts are highlighted with yellow

and white arrows), and a large part of the cell membrane does not have direct contact

with the surface. This phenomenon forms the above-mentioned seal.
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characterization of cells. For example, if cells become damaged by toxins or radiation,

the distortion of the cell membrane takes place. This results in a decrease of RS and an

increase of current through metal/electrolyte/cell interface [Fig. 4(a), right panel]. In

this case, the alteration of ZMEC ' Zm/e is observed, which could used for non-optical and

label-free cells viability estimation [42, 79]. Also in the framework of the Giaever-Keese

Quantity Value

Dielectric permeability of the membrane 3 [77]

Cell membrane thickness 75 Å[77]

Cell membrane capacitance per unit area ∼ 100 nF/cm2 [77], 0.95 µF/cm2 [80]

Whole cell membrane capacitance for 30-µm cell ∼ 1 pF

Electrical conductivity of the cytoplasm 220 Ω · cm [80]

Ion channel resistance 10 GΩ [77]

Physiological medium resistance 50 Ω · cm [6]

Typical bulk electrolyte resistance for 30-µm electrode 50 kΩ [42]

DL capacitance (300 K, 0.9% NaCl, 10 mV) 0.8 pF /µm2, Eq. (18)

Table 2. Electrical properties of cells and bioelectrodes.

model, the EIS of the metal/electrolyte/cell interface can be used to investigate cell

motility [41], to study interactions between cells [17], in pharmacology and in wound

healing research [45, 46], in biosensorics [81], and even as a diagnostic tool in vision-

prosthesis devices [82].

3. Experimental techniques in impedance spectroscopy

The wide range of EIS applications resulted in the appearance of a large number of

methods for immittance measurements, which can be divided into frequency-domain

approaches and time-domain approaches [5]. To illustrate this classification let’s consider

the most common scheme for immittance measurements, which is depicted on Fig. 1.

Frequency-domain methods use a sine-shaped excitation voltage at a single frequency

[Fig. 5(a)], and immittance is measured in a step-wise frequency-by-frequency manner

[3]. The advantages of frequency-domain approaches include high noise-immunity and

the simplicity of experimental setups. However, a fundamental drawback of these

approaches is a very low measurement rate.

In time-domain methods, the sample is scanned simultaneously at all frequencies

from a broad frequency region of interest by using EV with wide spectrum [5, 83, 84].

A typical waveform for time-domain methods is presented in Fig. 5(b). Such strategy

dramatically reduces the time required for a single immittance measurement. However,

classical time-domain methods that are based on the Fourier transformation demonstrate

very low noise immunity. The combination of high measurement rate and high noise

immunity can be achieved by using adaptive-filtering EIS [85].
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t

V J

(a)

t

V J

(b)

Figure 5. The comparison of excitation voltage and current waveforms between the

frequency-domain approach (a) and the time-domain approach (b).

Below we will consider the most commonly used EIS experimental implementations

[3, 4, 5]. Note, that for all discussed immittance measuring approaches the EV could

be recorded directly by analogue-to-digital converter (ADC), and the current response

could be recorded by using ADC and ammeter, which scheme depicted in Fig. 12.5 in

Ref. [50].

3.1. Frequency-domain approaches

3.1.1. Oscilloscopic approach. The most simple way to determine immittance in

the frequency-domain approach is to use a two-channel oscilloscope with one channel

connected to a voltmeter and another channel connected to an ammeter output (see

Fig. 1) [3]. The data that is typically observed in the oscilloscopic approach is presented

in Fig. 5(a). Accordingly, the magnitude of the impedance can be derived from the

ratio of voltage amplitude to current amplitude, and the phase of the impedance can be

derived from the phase shift between voltage and current [see Eq. (3)]. The advantages

of the oscilloscopic approach are the simplicity and the geometric visualization, the

disadvantages include a very low accuracy and instability to noises. Oscilloscopic

approach could be used in preliminary bio-EIS studies.

3.1.2. Measurements with a bridge method. Up to date, one of the most accurate

methods for EIS measurements is based on the usage of a measurement bridge. In the

simplest case, the measurement bridge is represented by the Wheatstone bridge shown

in Fig. 6(a). Its working principle is based on an obvious fact – the ammeter A will

show a zero-current value (no current flow through Z5) when the voltage difference at
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Figure 6. The scheme of the Wheatstone bridge. (a) Common scheme; (b) practical

realisation of the Wheatstone measuring bridge.

Z5 terminals will be equal to zero. This situation takes place when

Z1

Z3

=
Z2

Z4

, (32)

which can be derived easily by using the divider relation.

To measure the immittance with Wheatstone bridge, particularly, one can replace

Z4 element with investigated sample with unknown admittance Y?, replace Z1 and Z2

elements with frequency-independent resistors (e.g. Z1 = Z2 = R), replace Z3 with an

element that has tunable real and imaginary parts of immittance (e.g. a parallel RC-

circuit with tunable capacitor Ct and tunable resistor Rt), short-circuit element Z5, and

apply to bridge single-sine EV at frequency ω, for example V = V0 cos(ωt) [Fig. 6(b)].

At the next step, one has to tune RC-circuit immittance in such a way to obtain zero

current through the ammeter. Then the immittance of investigated sample at frequency

ω can be easily calculated with Eq. (32), namely

Y?(ω) =
1

Rt
+ iωCt. (33)

It should alse be noted, that the bridge methods are stable to drift of the EV amplitude

due to their zero-current measuring principle. The bridge methods due to their circuit

simplicity could be useful in portable bio-EIS devices.

3.1.3. Frequency response analyser. Finally, we will consider the frequency response

analyser, which is currently the most popular frequency-domain EIS technique [3, 4].

The main idea of this approach is to use a lock-in amplifier [50], which is extremely

useful for immittance measurements. Indeed, let’s consider the excitation voltage with
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the shape

V = V0 cos(ωt) = <V0eiωt, (34)

where ω is the angular frequency of the excitation voltage and V0 is the amplitude of

the excitation voltage. Due to Ohm’s law, the current response to the excitation voltage

(34) can be written as follows

J = V0|Y (ω)| cos [ωt+ ϕ(ω)] = <
[
V0e

iωt|Y (ω)|eiϕ(ω)
]
, (35)

where |Y (ω)| is the admittance magnitude and ϕ(ω) is the admittance phase. Now

let’s take into account additive current noise ε(t), and multiply (35) by (2/V0) cos(ωt),

after which let’s take the average of the result over the period of the excitation voltage

T = 2π/ω

2

T

T/2∫
−T/2

J + ε(t)

V0
cos(ωt)dt =

2

T

T/2∫
−T/2

|Y (ω)| cos [ωt+ ϕ(ω)] cos(ωt)dt = <Y (ω), (36)

i.e., we obtain the real part of the admittance. If we will make the similar procedure

but at the beginning we multiply Eq. (35) by −(2/V0) sin(ωt) we will obtain imaginary

part of the sample’s admittance

− 2

T

T/2∫
−T/2

J + ε(t)

V0
sin(ωt)dt = − 2

T

T/2∫
−T/2

|Y (ω)| cos [ωt+ ϕ(ω)] sin(ωt)dt = =Y (ω). (37)

Here we used a plausible assumption that noise does not correlate with the excitation

voltage

2

T

T/2∫
−T/2

ε(t) cos(ωt)dt = 0,
2

T

T/2∫
−T/2

ε(t) sin(ωt)dt = 0. (38)

Thus, by applying the multiply-and-average technique it is possible to calculate

the real and imaginary parts of the admittance independently, even in the presence of

noise. In practice, this algorithm could be implemented in common scheme Fig. 1 by

additional usage of analogue four-quadrant multipliers for providing product operations

in Eqs. (36) and (37) and by using low-pass filter for providing averaging operation (see

Sec. 11.8 and Sec. 13 in Ref. [50]). The lock-in technique is currently used in ECIS

device [39] and in the other home-made setups for cells research.

It is worth noticing that in frequency response analyzer approach it is possible

to use Kramers-Kronig relations to derive the imaginary part from the real part and

vice versa, i.e. it is not necessary to measure both parts of admittance experimentally.

However, researchers usually measure both parts of the admittance and then check them

for validity by Kramers-Kronig relations [3, 51].
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3.2. Time-domain methods

3.2.1. Fourier EIS. Above we have mentioned that the key disadvantage of frequency-

domain methods is a low measurement rate. For example, it will take at least 10 seconds

to measure impedance in the frequency range from 1 Hz to 40 kHz with a 1 Hz resolution.

This problem of low measurement rate was solved in 1992 by G. Popkirov, who proposed

to scan the sample simultaneously in a broad frequency range by applying the broad-

spectrum excitation voltage and then to use Fourier transformation for extracting

sample’s immittance from measured EV and current response time-domain sequences

[83] [a typical waveform of EV for this approach is depicted on Fig. 5(b)]. I.e. sample’s

immittance could be derived as a relation between the Fourier images of excitation

voltage and current responses. Such method is called Fourier-EIS [5, 83, 84].

The idea of Fourier-EIS is inspired by the Eq. (5). In practice however, a

discrete Fourier transformation [86] is used rather than a continuous transformation,

because excitation voltage and current response are recorded with an analogue-to-

digital converter and stored in computer memory as discrete sequences Vk and Jk of

the excitation voltage and current response values respectively (k is the time counter).

Thus, because any periodical sequences can be expanded into discrete Fourier series,

immittance on the frequency fm can be calculated as

Zm =
J̃m

Ṽm
, Ym =

Ṽm

J̃m
, (39)

where

Ṽm =
1

N

N−1∑
j=0

Vke
2πifm·k(T/N), (40)

J̃m =
1

N

N−1∑
j=0

Jke
2πifm·k(T/N) (41)

are discrete Fourier images of the excitation voltage and current response respectively,

N is the length of the recorded excitation voltage and current response sequences, T is

the duration of the measurement, fm = m/T is the discrete Fourier harmonic frequency

(m ∈ Z, 0 ≤ m ≤ N). Thereby, the resolution of the Fourier-EIS method is
1

T
.

It is obvious that the minimal measurement rate required for Fourier-EIS is limited

by the period of the lowest-frequency harmonic of the excitation voltage. So, for

mentioned above example with Fourier-EIS it will take 1 second to measure impedance

in the frequency range from 1 Hz to 40 kHz with a 1 Hz resolution, i.e. time-domain

Fourier EIS could be faster on the order with respect to frequency-domain methods.

Finnally it should be noticed, that Fourier-EIS is most efficient in case when N = 2d,

d ∈ N, because in this case it is possible to use fast Fourier transformation algorithms

that significantly accelerate Fourier image (40) and (41) calculations [86]. Today Fourier-

EIS is used for investigating fast processes in the cells [87].
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3.2.2. Adaptive filtering based EIS. Unfortunately, a high measurement rate of Fourier-

EIS is in direct contradiction with a classical noise cancellation technique that performs

signal accumulation and averaging (see, for example [88]). Thus, if an apparatus

noise cancellation method such as shielding, temperature decreasing, varying electrode

geometry, etc. are insufficient (which frequently takes place in bio-applications), then

the current response and thus the Fourier-EIS immittance spectrum will be dramatically

corrupted with noises.

In rare cases such problem can be partially solved with the CNLS method. However,

in most cases the CNLS method does not provide noise-immunity and it can be very

sensitive to the experimental spectrum distortion provided as an input. So, to save high

measurement rate conserving noise-immunity, we proposed the adaptive filtering EIS

(AF-EIS) [85].

×n0×n1×n2...×n`n

×d1×d2...×d`d
×(−1)

Jak

VkVk−1Vk−2...Vk−`n Vk+1 Vk+2 Vk+3 ...

JkJk−1Jk−2...Jk−`d Jk+1 Jk+2 Jk+3 ...

εkεk−1εk−2...εk−`d εk+1 εk+2 εk+3 ...

+++++ + + + +

∑
δk = Jak − Jk

Ja
k =

`n∑
j=0

njVk−j +
`d∑
j=1

djJk−j

∑
by all k

δ2k = min

Figure 7. The working principle of adaptive filtering EIS. At each step k, the adaptive

filter takes several previous values of the excitation voltage and current responses of the

unknown sample, multiplies them on the weight coefficients, sum result, and modifies

weight coefficients in such a way to minimize the difference between adaptive filtering

prediction Ja
k and experimentally obtained current response Jk. After this procedure,

the transfer function of the adaptive filter will be the noise-free approximation of the

sample admittance.

The key idea of the AF-EIS is that the current response and the excitation voltage

are not independent, as in the case of Fourier-EIS, and are related to each other via a

linear equation in finite differences. Or in other words, the current response is formed

by processing excitation voltage with a digital filter. So, if we guess what filter converts

the excitation voltage into the current response, we can easily find its transfer function,

which is obviously equal to admittance of the sample. This problem is known as the

problem of a linear system identification or a black-box identification. A powerful tool for

solving this problem is the adaptive filtering technique [89, 90]. From the mathematical

point of view this problem can be formulated as follows (Fig. 7). Given the Vk and Jk



Bio-Impedance Spectroscopy: Basics and Applications 22

sequences, and we should construct such filter

Jak =
`n∑
j=0

njVk−j +

`d∑
j=1

djJk−j, (42)

that minimises the functional ∑
by all k

|Jk − Jak |2 = min . (43)

Here, Jak is the prediction of the adaptive filter, nj and dj are so-called weight

coefficients, and max(`n, `d) is the filter order. When optimal weight coefficients are

found (after filter learning process), with a high enough sampling rate and high enough

data collection time, the admittance of the sample can be simply calculated with the

formula

Y ≈

(
`n∑
j=0

njϕj

)/(
1−

`d∑
j=1

djϕj

)
, (44)

where ϕj = exp [i2π(f/f0)j], f is the frequency, and f0 is the sampling rate. In fact,

Eq. 44 is the Levy [91] approximation of the sample admittance in the [−fB, fB] range

(fB is the highest harmonic of the excitation voltage) with its weight equals to the

square of the excitation voltage spectrum magnitude. The main advantage of the AF-

EIS compared to Fourier-EIS is the high noise immunity. It can be shown that in case of

auto-correlated noise that is not correlated with the excitation voltage and the current

response, the error in weight coefficients and, as a consequence, the error in the obtained

immittance spectrum is

Error in WC ≤ C
〈ε2〉√

`n + `d + 1
, (45)

where 〈ε2〉 is noise mean square value, and C is a multiplayer, which value depends on the

conditioning of the problem (43) [85]. The AF-EIS could be applicable for single living

cell research even in high-noise environment (signal-to-noise ratio 3 dB) [42, 85, 92, 93].

4. EIS applications in biology and medicine

In this section, we will briefly describe several applications of EIS in biology, medicine,

pharmacology, and biosensorics.

4.1. Living cells research

One of the most popular EIS biological applications is the research on living cells. These

studies are usually based on the ECIS-type electrodes geometry, where cells are grown on

the planar electrodes located on the bottom of the modified Petri dish (see Sec. 2.3.3).

The analysis of time-resolved electrodes immittance response allows the researchers to

estimate the number of cells on the electrode, the motility or viability of cells, etc. Up to
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date, two commercially-available systems that can be used to perform this tasks exist:

ECIS (Applied Biophysics, USA) and xCelligence (ACEA Bioscience, USA). Further we

will deal with last one device.

Despite of the xCelligence in fact produces immittance measurement at the only

one frequency (10 kHz, [94]), and thus it generally speaking it is not spectroscope, it

can be successfully used in number of the actual cells-research applications. Here we

should emphasise that as an output result xCelligence provides a normalized impedance

that is called the Cell Index

Cell Index =
Z(t)− Z(0)

Z(0)
, (46)

where Z(t) is the magnitude of the impedance at frequency 10 kHz at time t and Z(0)

is the magnitude of the impedance at the beginning of the experiment. One of possible

xCelligence application – building growth curve of the HeLa cells [95] – is shown on

the Fig. 8. It depicts the impedance evolutions of two electrodes: one is covered with

cells and another is the control one (cells-free). One can see that the Cell Index of the

empty electrode is stable in time, however, the Cell Index of the cell-covered electrode

demonstrates a logistic rise [96], which is related to cell fission and growth. So, the data

presented in Fig. 8 qualitatively confirms the Giaever-Keese model.

Another important bio-EIS application for cell research is the identification of the

cell state. As an example, we will describe an experiment that was performed both

with the xCelligence device and with a home-built device based on the multielectrode

array 60StimMEA200/30-Ti (Multichannel Systems, Germany) and the adaptive

filtering for signal analysis [85]. As a sample we again have used the HeLa cancer

cells. The experimental protocol was trivial: we measured the immittance of the

metal/electrolyte/cell interface before and after the addition of the toxin Triton x100

(Union Carbide, USA) to cell medium. The results are presented on Figs. 9 and 10.

As one can see from Fig. 9 the Cell Indexes measured by xCelligence before and after

the addition of the toxin are distinctly different. This effect is confirms Giaever-Keese

model: due to membrane distortion of dead cells the electrode covered with them has

lower impedance compared to the electrode covered with alive cells (see Fig. 4). Thus

the EIS allows for distinguishing between dead and alive cells. However, xCelligence

provides measurements only at a single frequency, and for this reason, it does not provide

a reliable cell viability estimation. I.e., a picture similar to the Fig. 9 can be obtained

by destroying the dielectric coating of the electrodes or by increasing the conductivity

of cell medium after a toxin addition. To significantly increase the reliability of EIS

as a method for estimating cell viability, one has to perform measurements in a broad

frequency range and to use the control (empty) electrode that is located in the same

medium [97]. These two modifications will allow the researcher to distinguish biological

and physical/chemical phenomena affecting immittance.

The clear advantages of the broad-frequency range approach with the usage of

multiple electrodes are shown in Fig. 10. One can see that the impedance of the control
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Figure 8. The impedance evolution of a cell-covered electrode (green) and an empty

electrode (red). During fission and growth of cells the impedance of the cell-covered

electrode demonstrates a logistic growth. In contrast the impedance of the empty

electrode is stable in time. This result confirm Giaever-Keese model (Sec. 2.3.3).

electrode is stable upon the addition of a toxin, thus the conductivity of the medium

does not changed during the experiment. On the contrary, for the electrode with cells,

the high-frequency part of the impedance decreases upon the addition of the toxin.

This drop of impedance is directly caused by the destruction of the cell membrane,

i.e. cell death [see Fig. 4(a)], which is also confirmed by fluorescence microscopy data

[Fig. 10(a, b)]. In the same time, the low-frequency part of the electrodes’ spectra

demonstrates a capacitance-like behaviour [see Eqs. (31) and (23)], so the electrodes

does not destruct during the experiment. Thus, compared to single-sine EIS methods,

a broad-frequency EIS approach based on a multielectrode array provides reliable data

that is robust to non-biological phenomena.

4.2. Medical applications

EIS also finds a wide range of applications in medicine and healthcare. One of the

examples is impedance cardiography – the monitoring of heart activity by measuring the

impedance of a patient’s thorax. In literature [21] two mechanisms that affect impedance

variation v.s. cardiac systole are considered. The first mechanism is based on the fact

that blood has high conductivity compared to tissues. Thus, the increase of blood

volume in thorax results in a decrease in its resistance. The second mechanism involves
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Figure 9. The effect of a toxin addition on the metal/electrolyte/cell impedance

measured with xCelligence at frequency 10 kHz. One can see, that the electrode

covered by dead cells has significantly lower impedance compared to the impedance of

the electrode with alive cells. Data was averaged over three measurements, the error

bars correspond to 99.9% confidence interval.

the phenomenon of erythrocytes orientation. Due to mechanical stress in the blood, the

disk-shaped erythrocytes arrange parallel to the blood flux, what results in decreasing

blood, and thus thorax, resistance. Therefore, impedance cardiography reflects the

pumping activity of the heart, contrary to electrocardiography that reflects the heart’s

electrical activity. An obvious advantage of impedance cardiography compared to

electrocardiography is a high noise immunity. Impedance cardiography signal can be

increased to higher amplitudes relative to electrocardiography amplitudes and it is

robust to the interference with industrial frequencies (50 or 60 Hz) because impedance

cardiography measurement is performed at higher frequencies.

Another medical application of the EIS is pathology diagnostics, including cancer

detection. Even though the tissue impedance spectrum can vary for different patients,

for disease detection one can compare the impedance spectra of paired organs, one of

which is healthy, and the second one is pathological. For example, typically cancer

tissue has lower resistance relative to normal tissue. This phenomena and based on

it technique is applied for the early detection of breast cancer [22]. The difference

in the impedances of the pathology and healthy tissues is also used for skin cancer

detection. These diagnostic techniques are performed by using multielectrode sensor
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(a) (b)

(c)

Figure 10. The effect of a toxin addition on the metal/electrolyte/cell interface

measured in broad frequency range. (a) and (b) a pseudo-photograph of cells before and

after the addition of the toxin respectively. The red channel corresponds to propidium

iodide dye [98] fluorescence in the nuclei of dead cells. Blue channel corresponds to

the bright field image in transfer light. (c) Obtained impedance spectra. One can see

that after the addition of a toxin the high-frequency part of the impedance of the cell-

covered electrode decreases to the level of the empty control electrode. However, the

low-frequency part of the spectrum demonstrates a capacitance-like behavior, which

means that electrodes are not destroyed, and the impedance decrease is indeed caused

by biological effects. Spectra are averaged over three measurements. The obtained

confidence intervals for 99.9% reliability is very small, and thus omitted from the plot.
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for in vivo impedance measurement of the two skin regions – the region of interest,

which possibly contain tumor, and healthy neighborhood region. For example, if cancer

test provided on the arm’s skin it is possible to use contralateral regions of it for such

probing. As reported in Refs. [99, 100] impedance-based skin cancer detection allows

to distinguish healthy and pathology skin regions, which open a new perspectives in

oncology monitoring. It also should be notices, that EIS is widelly use not only in

cancer diagnostics, but also in cancer research [17].

The fact that different tissues have different conductivity could be used for providing

impedance tomography, i.e. for visualizing in-body space by impedance measurements

[23]. This diagnostic technique usually utilizes an array of electrodes that are placed

on the body around the volume of interest, for example around the thorax. The

impedances of electrodes are measured and then by applying special reconstructing

algorithms [101] their values are used for building the 3D-image of the body region that

is being examined. This type of tomography provide real-time, inexpensive, and easy

in implementation diagnostics. Its another advantage is being hazard-free, because low

currents are safe for human unlike, for example, x-rays. This non-hazard property of the

impedance tomography is extremely useful for monitoring health of the patients with

pulmonology as well as health of the attending them pulmonologists. Moreover, with

the usage of multi frequency impedance tomography it is possible to provide additional

tissues characterization as it was mentioned above. For instance, impedance tomography

applicable for detection breast cancer even without comparison with health gland [102].

The another applications of the impedance tomography involved brain visualization,

temperature treatment control in tumor oncotherapy, gastrointestinal tract diagnostics,

and thorax monitoring in aircraft industry [103].

Impedance spectroscopy is also used in electronic implants as a label-free

characterization tool. For example, impedance measurements are used in vision

prosthetic care Argus II device for the diagnostics of the interface between retina

and stimulus electrodes [82]. This interface defines the quality of the patient’s visual

perception and it could be also described by Giaever-Keese model. If the electrodes are

in good contact with retina cells, their impedance magnitude will be relatively high.

On the contrary, if electrodes have a low impedance magnitude, it means that the

implant stimulus array is detached from the retina, and the patient should consult with

a doctor. Finally, if the electrode shows a very high impedance magnitude, it means that

the electrode is burnt-out or damaged. In this case, Argus II implant electronics will

switch off the failure electrode and switch on one of neighbouring reserved electrodes. It

should be stressed out that in vision and hearing prosthetic care the impedance of the

stimulus electrodes is their main characteristic, and engineers try to make it as small as

possible [104].
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4.3. Bio-matter and biosensorics

As a non-optical, label-free, sensitive, and easy in implementation technique, EIS found

many applications in biosensorics and biological matter studies. For example, EIS

was proposed as a method for the detection of glucose in biological samples. In the

work [81], the ECIS-like device allowed the authors to detect glucose with 3T3-L1

fibroblast cells. Another approach was proposed in the work [105]. The authors showed

a quantitative difference in impedance spectra of the metal/blood interface for different

glucose concentrations in blood samples. This technique can be useful for portable

on-body devices like system reported in [106].

EIS is also used for the investigation of biomolecules [107, 108, 109, 110].

Particularly, in Ref. [107] and [111] the metal/protein interface was thoroughly

investigated. It was demonstrated that the immittance of the metal/protein interface

significantly depends on the protein structure and state. Along with the impedance

network protein analog approach [111, 112], these results may pave the road for the

development of new EIS based tools for protein investigation.

One more promising EIS bio-sensing application is virus detection. Several scientific

groups recently have shown, that it is possible to detect viruses by measuring the

impedance of the electrodes, which surface is modified by antibodies [24, 25, 26]. These

sensor approaches relatively inexpensive, easy-in-implementation, and could be realized

in portable devices, which is important for personalized medicine. The authors also

reported that EIS provides sensitive (detection limits 8 ng/ml [26] and ∼ 100 virions in

µl [24]) and fast (in ∼ 30 min [24]) virus detection in near to physiological envelopment.

Additionally, proposed in Ref. [25] phenomenological EC for anti-body modified

electrodes together with CNLS fitting [Eq. (8)] open way for more informative and

reliable virus biosensing technologies. Another scientific groups [27, 28, 29, 30, 31, 32]

propose to use cell-based EIS virus sensors, which working principle is directly grounded

on the Giaever-Keese model [see Fig. 4]: the addition of the viruses to the cells’ medium

results in cell infection and death what dramatically reduce the impedance of covered by

them electrodes. Thus, by monitoring electrode/cell interface impedance it is possible

to detect viruses without special electrode preparation with antibodies and other surface

modification reagents. Moreover, cell-based EIS virus sensors in contrast to convenient

ELISA kits and real-time PCR methods [113, 114] can react on the unknown types

of viruses and also could be utilized several times, because the their virus-detection

properties could be repaired by treatment electrodes in high-pressure steam sterilizer

with following cells seeding on them. It also should be stressed, that nowadays cell-

based biosensors found several applications in virus disease research [115, 116, 117].

The information about completely label-free EIS virus detectors is presented in Refs.

[118, 119]. To summarize, the EIS-based virus sensing technologies provide a hopeful

tool for fighting with various virus diseases like immunodeficiency syndrome, dengue

virus-infection, and, highly likely, COVID19.

Finally, it is worth mentioning that EIS can be used to study cell membranes in
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combination with patch-clamp technology [120]. In this diagnostic technique, a cell

membrane is attached to the glass microtube with a diameter of ∼ µm that is filled

with electrolyte. Two AgCl electrodes are placed in the microtube and the cell medium,

and the impedance is measured between these electrodes. Because the impedance of

the membrane is significantly higher than the impedance of the electrodes/electrolyte

interface (Tab. 2), its value will define the immittance between the electrodes. As a

result, the combination of a patch-clamp with EIS allows the researchers to evaluate

the conductivity of the cell membrane, the resistivity of ion channels in cell membrane

and other important electrical characteristics of a cell. For example, in Ref. [87] this

technique based on Fourier-EIS allowed the authors to detect that living neurons can

regulate their capacitance in response to changes of membrane area.

5. Conclusion

In this tutorial article, we reviewed modern electrical impedance spectroscopy from the

theoretical and experimental points of view, paying special attention to its applications

in cell research, medicine, including viruses and cancer study, and biosensing. We hope

that this article will be useful for students as rapid introduction to EIS as well as for

scientists and engineers as EIS handbook. Nevertheless, we do not expect that our

study can completely replace classical and modern works on EIS. For further reading,

the following papers can be used. The books by E. Barsoukov and J. Ross Macdonald

[3] and V.F. Lvovich [4] thoroughly describe electrical impedance spectroscopy and its

application for electrochemistry. The book by S. Grimnes and O.G. Martinsen contains

a lot of information about bio-impedance [6]. The review [5] by B.Y. Chang and S.M.

Park is devoted to modern high-speed EIS technique based on Fourier transformation.

The description of another high-speed technique, adaptive filtering EIS, can be found in

the article [85]. The article [54] by J. Ross Macdonald is devoted to complex non-linear

least-squares approximation – a state-of-art tool for EIS spectra analysis. Chapters 3.4

and 7 in Ref. [18] by P. Wang and Q. Liu contain information on biosensorics based

on EIS. The book [17] by Wen G. Jiang contains information about cellular biology

research conducted with EIS. The review by R.H. Bayford is concerned with the progress

in impedance tomography. Titche and Shnek book [50] introduces the reader into EIS

basics and its measuring equipment. The most simple and elegant introduction into EIS

can be found in Richard Feynman’s lectures [49] in chapter 25-5.
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