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Loophole-free Bell inequality violation using
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More than 50 years ago1, John Bell proved that no theory of nature
that obeys locality and realism2 can reproduce all the predictions of
quantum theory: in any local-realist theory, the correlations
between outcomes of measurements on distant particles satisfy
an inequality that can be violated if the particles are entangled.
Numerous Bell inequality tests have been reported3–13; however,
all experiments reported so far required additional assump-
tions to obtain a contradiction with local realism, resulting in
‘loopholes’13–16. Here we report a Bell experiment that is free of
any such additional assumption and thus directly tests the principles
underlying Bell’s inequality. We use an event-ready scheme17–19 that
enables the generation of robust entanglement between distant
electron spins (estimated state fidelity of 0.92 6 0.03). Efficient
spin read-out avoids the fair-sampling assumption (detection
loophole14,15), while the use of fast random-basis selection and spin
read-out combined with a spatial separation of 1.3 kilometres
ensure the required locality conditions13. We performed 245 trials
that tested the CHSH–Bell inequality20 S # 2 and found
S 5 2.42 6 0.20 (where S quantifies the correlation between mea-
surement outcomes). A null-hypothesis test yields a probability
of at most P 5 0.039 that a local-realist model for space-like sepa-
rated sites could produce data with a violation at least as large as
we observe, even when allowing for memory16,21 in the devices.
Our data hence imply statistically significant rejection of the
local-realist null hypothesis. This conclusion may be further con-
solidated in future experiments; for instance, reaching a value of
P 5 0.001 would require approximately 700 trials for an observed
S 5 2.4. With improvements, our experiment could be used for
testing less-conventional theories, and for implementing device-
independent quantum-secure communication22 and randomness
certification23,24.

We consider a Bell test in the form proposed by Clauser, Horne,
Shimony and Holt (CHSH)20 (Fig. 1a). The test involves two boxes
labelled A and B. Each box accepts a binary input (0 or 1) and subse-
quently delivers a binary output (11 or 21). In each trial of the Bell
test, a random input bit is generated on each side and input to the
respective box. The random input bit triggers the box to produce an
output value that is recorded. The test concerns correlations between
the output values (labelled x and y for boxes A and B, respectively) and
the input bits (labelled a and b for A and B, respectively) generated
within the same trial.

The discovery made by Bell is that in any theory of physics that is
both local (physical influences do not propagate faster than light) and
realistic (physical properties are defined before, and independent of,
observation) these correlations are bounded more strongly than they
are in quantum theory. In particular, if the input bits can be considered
free random variables (condition of ‘free will’) and the boxes are

sufficiently separated such that locality prevents communication
between the boxes during a trial, then the following inequality holds
under local realism:

S~ x :yh i(0,0)z x :yh i(0,1)z x :yh i(1,0){ x :yh i(1,1)

��� ���ƒ2 ð1Þ

where Æx ? yæ(a,b) denotes the expectation value of the product of x and y
for input bits a and b. (A mathematical formulation of the concepts
underlying Bell’s inequality is found in, for example, ref. 25.)

Quantum theory predicts that the Bell inequality can be significantly
violated in the following setting. We add one particle, for example an
electron, to each box. The spin degree of freedom of the electron forms
a two-level system with eigenstates j"æ and j#æ. For each trial, the two
spins are prepared into the entangled state jy{i~ j:;i{j;:ið Þ
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.
The spin in box A is then measured along direction Z (for input bit
a 5 0) or X (for a 5 1) and the spin in box B is measured along
{ZzXð Þ
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(for b 5 0) or {Z{Xð Þ
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(for b 5 1). If the mea-
surement outcomes are used as outputs of the boxes, then quantum
theory predicts a value of S~2
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, which shows that the combination
of locality and realism is fundamentally incompatible with the predic-
tions of quantum mechanics.

Bell’s inequality provides a powerful recipe for probing fundamental
properties of nature: all local-realist theories that specify where and
when the free random input bits and the output values are generated
can be experimentally tested against it.

Violating Bell’s inequality with entangled particles poses two main
challenges: excluding any possible communication between the boxes
(locality loophole13) and guaranteeing efficient measurements (detec-
tion loophole14,15). First, if communication is possible, a box can in
principle respond using knowledge of both input settings, rendering
the Bell inequality invalid. The locality conditions thus require boxes A
and B and their respective free-input-bit generations to be separated in
such a way that signals travelling at the speed of light (the maximum
allowed under special relativity) cannot communicate the local input
setting of box A to box B, before the output value of box B has been
recorded, and vice versa. Second, disregarding trials in which a box
does not produce an output bit (that is, assuming fair sampling) would
allow the boxes to select trials on the basis of the input setting. The fair
sampling assumption thus opens a detection loophole14,15: the selected
subset of trials may show a violation even though the set of all trials
may not.

The locality loophole has been addressed with pairs of photons
separated over a large enough distance, in combination with fast set-
tings changes4 and later with settings determined by fast random
number generators5,9. However, these experiments left open the detec-
tion loophole, owing to imperfect detectors and inevitable photon loss
during the spatial distribution of entanglement. The detection loop-
hole has been closed in different experiments6–8,10–12, but these did not
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close the locality loophole. So far, no experiment has closed all the
loopholes simultaneously.

A Bell test that closes all experimental loopholes at the same time—
commonly referred to as a loophole-free Bell test15,19—is of founda-
tional importance to the understanding of nature. In addition, a loop-
hole-free Bell test is a critical component for device-independent
quantum security protocols22 and randomness certification23,24. In
such adversarial scenarios, all loopholes are ideally closed because they
allow for security breaches in the system26.

One approach for realizing a loophole-free set-up was proposed by
Bell himself17. The key idea is to record an additional signal (dashed
box in Fig. 1a) to indicate whether the required entangled state was
successfully shared between A and B, that is, whether the boxes
were ready to be used for a trial of the Bell test. By conditioning the
validity of a Bell-test trial on this event-ready signal, failed entangle-
ment distribution events are excluded upfront from being used in the
Bell test.

We implemented an event-ready Bell set-up18,19 with boxes that use
the electronic spin associated with a single nitrogen-vacancy (NV)
defect centre in a diamond chip (Fig. 1b). The diamond chips are
mounted in closed-cycle cryostats (T 5 4 K) located in distant laborat-
ories named A and B (Fig. 1c). We control the electronic spin state of
each NV centre with microwave pulses applied to on-chip striplines
(Fig. 1c, inset). The spins are initialized through optical pumping and
read out along the Z axis via spin-dependent fluorescence27. The read-
out relies on resonant excitation of a spin-selective cycling transition
(12-ns lifetime), which causes the NV centre to emit many photons when
it is in the bright ms 5 0 spin state, while it remains dark when it is in
either of the ms 5 61 states. We assign the value 11 (ms 5 0) to the
output if we record at least one photo-detector count during the read-out
window, and the value 21 (ms 5 61) otherwise. Read-out in a rotated
basis is achieved by first rotating the spin, followed by read-out along Z.

We generate entanglement between the two distant spins by entan-
glement swapping18 in the Barrett–Kok scheme28,29 using a third loca-
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Figure 1 | Bell-test schematic and experimental realization. a, Bell-test set-
up: two boxes, A and B, accept binary inputs (a, b) and produce binary outputs
(x, y). In an event-ready scenario, an additional box C gives a binary output
signalling that A and B were successfully prepared. b, Experimental realization.
The set-up consists of three separate laboratories, A, B and C. The boxes at
locations A and B each contain a single NV centre in diamond. A quantum
random-number generator (RNG) is used to provide the input. The NV
electronic spin is read out in a basis that depends on the input bit, and the
resultant signal provides the output. A box at location C records the arrival
of single photons that were previously emitted by, and entangled with, the spins
at A and B. c, Experimental set-up at A and B. The NV centre is located in a
low-temperature confocal microscope (Obj.). Depending on the output of the
RNG, a fast switch (Sw.) transmits one of two different microwave pulses
(P0 and P1) into a gold line deposited on the diamond surface (inset, scanning

electron microscope image). Pulsed red and yellow lasers are used to
resonantly excite the optical transitions of the NV centre. The emission (dashed
arrows) is spectrally separated into an off-resonant part (phonon side band,
PSB) and a resonant part (zero-phonon line, ZPL), using a dichroic mirror
(DM). The PSB emission is detected with a single-photon counter (APD). The
ZPL emission is transmitted through a beam-sampler (BS, reflection #4%)
and wave plates (l/2 and l/4), and sent to location C through a single-mode
fibre. d, Set-up at location C. The fibres from A and B are connected to a fibre-
based beam splitter (FBS) after passing a fibre-based polarizer (POL). Photons
in the output ports are detected and recorded. e, Aerial photograph of the
campus of Delft University of Technology indicating the distances between
locations A, B and C. The red dotted line marks the path of the fibre connection.
Aerial photograph by Slagboom en Peeters Luchtfotografie BV.
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tion C (roughly midway between A and B; see Fig. 1e). First we
entangle each spin with the emission time of a single photon (time-
bin encoding). The two photons are then sent to location C, where they
are overlapped on a beam-splitter and subsequently detected. If the
photons are indistinguishable in all degrees of freedom, then the obser-
vation of one early and one late photon in different output ports
projects the spins at A and B into the maximally entangled state
jy{i~ j:;i{j;:ið Þ
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, where ms 5 0 ; j"æ and ms 5 21 ; j#æ.
These detections herald the successful preparation and play the role of
the event-ready signal in Bell’s proposed set-up. As can be seen in the
space–time diagram in Fig. 2a, we ensure that this event-ready signal is
space-like separated from the random input-bit generation at locations
A and B.

The separation of the spins by 1,280 m defines a 4.27-ms time win-
dow during which the local events at A and B are space-like separated
from each other (see the space–time diagram in Fig. 2b). To comply
with the locality conditions of the Bell test, the choice of measurement
bases and the measurement of the spins should be performed within
this time window. For the basis choice we use fast random-number
generators with real-time randomness extraction30. We reserve 160 ns
for the random basis choice, during which time one extremely random
bit is generated from 32 partially random raw bits (Supplementary

Information). The random bit sets the state of a fast microwave switch
that selects one out of two preprogrammed microwave pulses imple-
menting the two possible read-out bases (Fig. 1c). Adding the dura-
tions of each of the above steps yields a maximum time from the start
of the basis choice to the start of the read-out of 480 ns. We choose the
read-out duration to be 3.7ms, which leaves 90 ns to cover any uncer-
tainty in the distance between the laboratories and the synchronization
of the set-up (estimated total error is at most 16 ns; see Supplementary
Information). For this read-out duration, the combined initialization
and single-shot read-out fidelity of sample A is (97.1 6 0.2)% (Fig. 2c);
sample B achieves (96.3 6 0.3)%. In summary, the use of the event-
ready scheme enables us to comply with the strict locality conditions of
the Bell set-up by using photons to distribute entanglement, while
simultaneously using the single-shot nature of the spin read-out to
close the detection loophole.

Before running the Bell test we first characterized the set-up and the
preparation of the spin–spin entangled state. Figure 3a displays cor-
relation measurements on the entangled spin-photon states to be used
for the entanglement swapping. For both locations A and B we observe
near-unity correlations between spin state and photon time bin when
spin read-out errors are accounted for. We then estimate the degree of
indistinguishability of the single photons emitted at locations A and B
in a Hong–Ou–Mandel31 two-photon-interference experiment at loca-
tion C, that is, after the photons have travelled through a combined
length of 1.7 km of fibre. Using the observed two-photon interference
contrast of 0.90 6 0.06 and the spin-photon correlation data, we
estimate that the fidelity to the ideal state y2 of the spin–spin entang-
led states generated in our set-up is 0.92 6 0.03 (Supplementary
Information). Combined with measured read-out fidelities, the gen-
erated entangled state is thus expected to violate the CHSH–Bell
inequality with S 5 2.30 6 0.07.

As a final characterization we ran the full Bell sequence including
random number generation and fast read-out, but with co-linear mea-
surement bases (ZZ and XX) such that spin–spin correlations could be
observed with optimal contrast. To test the fast basis selection and
rotation, the Z (X) basis measurements are randomly performed along
the 1Z (1X) and 2Z (2X) axis. The observed correlations, shown in
Fig. 3c (orange bars), are consistent with the estimated quantum state
and the independently measured read-out fidelities (dotted bars),
which confirms that the set-up is performing as expected and that
the desired entangled state is generated.

We find a success probability per entanglement generation attempt
of about 6.4 3 1029, which yields slightly more than one event-ready
signal per hour. Compared to our previous heralded entanglement
experiments over 3 m (ref. 29), this probability is reduced, mainly
owing to additional photon loss (8 dB km21) in the 1.7-km optical
fibre. To ensure the required long-term operation, we exploit active
stabilization on different relevant timescales via automated feedback
loops (Supplementary Information). We note that the distance
between the entangled electrons is nearly two orders of magnitude
larger than it was in any previous experiment7,10,29,32 with entangled
matter systems.

Using the results of the characterization measurements we deter-
mine the optimal read-out bases for our Bell test. A numerical optim-
ization yields the following angles for the read-out bases with respect to
Z: 0 (for a 5 0), 1p/2 (for a 5 1), 23p/4 2 e (for b 5 0) and 3p/4 1 e
(for b 5 1), with e 5 0.026p. Adding the small angle e is beneficial
because of the stronger correlations in ZZ compared to XX.
Furthermore, we use the characterization data to determine the time
window for valid photon-detection events at location C to optimally
reject reflected laser light and detector dark counts. We choose this
window conservatively to optimize the entangled-state fidelity at the
cost of a reduced data rate. These settings are then fixed and used
throughout the actual Bell test. As a final optimization we replaced
the photo-detectors at location C with the best set we had available.
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Figure 2 | Space–time analysis of the experiment. a, Space–time diagram
of a single repetition of the entanglement generation. The x axis denotes the
distance along the lines AC and CB. After spin initialization, spin-photon
entanglement is generated, such that the two photons from A and B arrive
simultaneously at C where the detection time of the photons is recorded.
Successful preparation of the spins is signalled (bell symbol) by a specific
coincidence detection pattern. Independent of the event-ready signal, the set-
ups at locations A and B choose a random basis (RNG symbol), rotate the
spin accordingly and start the optical spin read-out (measurement symbol).
Vertical bars indicate durations. The event-ready signal lies outside the
future light cone (coloured regions) of the random basis choices of A and B.
b, Space–time diagram of the Bell test. The x axis denotes the distance along the
line AB. The read-out on each side is completed before any light-speed signal
can communicate the basis choice from the other side. The uncertainty in
the depicted event times and locations is much smaller than the symbol size.
c, Single-shot spin read-out fidelity at location A as a function of read-out
duration (set by the latest time that detection events are taken into account).
Blue (orange) line, fidelity of outcome 11 (21) when the spin is prepared in
ms 5 0 (ms 5 61); green line, average read-out fidelity; dotted line, read-out
duration used (3.7ms). The inset shows the relevant ground and excited-state
levels (not to scale).
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We ran 245 trials of the Bell test during a total measurement time of
220 h over a period of 18 days. Figure 4a summarizes the observed data,
from which we find S 5 2.42, in violation of the CHSH–Bell inequality
S # 2. We quantify the significance of this violation for two different
scenarios (see Fig. 4b). First, similar to previous work4–9, we analyse the
data under the assumptions that the Bell trials are independent of each
other, that the recorded random input bits have zero predictability and
that the outcomes follow a Gaussian distribution. This analysis (which
we term ‘conventional’) yields a standard deviation of 0.20 on S. In this
case, the null hypothesis that a local-realist model for space-like sepa-
rated sites describes our experiment is rejected with a P value of 0.019
(see Supplementary Information).

The assumptions made in the conventional analysis are not justified
in a typical Bell experiment. For instance, although the locality condi-
tions outlined earlier are designed to ensure independent operation
during a single trial, the boxes can in principle have access to the entire
history including results from all previous trials and adjust their output
to it16,21. Our second analysis (which we term ‘complete’) allows for
arbitrary memory, takes the partial predictability of the random input
bits into account and also makes no assumption about the probability
distributions underlying the data (see Supplementary Information). In
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interference signal, with dt the time between the two photo-detection events.
When the NV centres at A and B emit indistinguishable photons, coincident
detections of two photons, one in each output arm of the beam-splitter at C, are
expected to vanish. The observed contrast between the cases of indistinguishable
(orange) and distinguishable (grey) photons (3 versus 28 events in the central
peak) yields a visibility of (90 6 6)% (Supplementary Information).
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b, Statistical analysis for n 5 245 trials. For the null-hypothesis test performed
(Supplementary Information), the dependence of the P value on the I value is
shown (complete analysis, red). Here I~8 k

n { 1
2

� �
, with k the number of times

(21)(a ? b)x ? y 5 1. (For equal n(a,b), I 5 S with S defined in equation (1).) A
small P value indicates strong evidence against the null hypothesis. We find
k 5 196, which results in a rejection of the null hypothesis with a P # 0.039. For
comparison, we also plot the P value for an analysis (conventional analysis,
orange) assuming independent and identically distributed (i.i.d.) trials,
Gaussian statistics, no memory and perfect random-number generators.
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this case, the null hypothesis that an arbitrary local-realist model of
space-like separated sites governs our experiment is rejected with a P
value of 0.039 (Fig. 4b). This P value might be further tightened in
future experiments.

Our experiment realizes the first Bell test that simultaneously
addresses both the detection loophole and the locality loophole.
Being free of the experimental loopholes, the set-up tests local-realist
theories of nature without introducing extra assumptions such as fair
sampling, a limit on (sub-)luminal communication or the absence of
memory in the set-up. Our observation of a statistically significant
loophole-free Bell inequality violation thus indicates rejection of all
local-realist theories that accept that the number generators produce a
free random bit in a timely manner and that the outputs are final once
recorded in the electronics.

Strictly speaking, no Bell experiment can exclude all conceivable
local-realist theories, because it is fundamentally impossible to prove
when and where free random input bits and output values came into
existence13. Even so, our loophole-free Bell test opens the possibility to
progressively bound such less-conventional theories: by increasing the
distance between A and B (for example, to test theories with increased
speed of physical influence); by using different random input bit gen-
erators (to test theories with specific free-will agents, for example,
humans); or by repositioning the random input bit generators (to
test theories where the inputs are already determined earlier, some-
times referred to as ‘freedom-of-choice’9). In fact, our experiment
already enables tests of all models that predict that the random inputs
are determined a maximum of 690 ns before we record them
(Supplementary Information).

Combining the presented event-ready scheme with higher entang-
ling rates (for example, through the use of optical cavities) provides
prospects for the implementation of device-independent quantum key
distribution22 and randomness certification23,24. In combination with
quantum repeaters, this might enable the realization of large-scale
quantum networks that are secured through the very same counter-
intuitive concepts that inspired one of the most fundamental scientific
debates for 80 years1,2,25.
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18. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. “Event-ready-detectors” Bell
experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

19. Simon,C.& Irvine,W.T.M.Robust long-distanceentanglementanda loophole-free
Bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).

20. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test
local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

21. Gill, R. D. Time, finite statistics, and Bell’s fifth position. In Proc. Foundations of
Probability and Physics 2 179–206 (Växjö Univ. Press, 2003).
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