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Preface

Mathematics is known to be difficult and not interesting to many 
people. However, some people including me think that mathematics 

is an interesting and challenging subject. Why is this so? We want to know 
the reason why the viewpoints of mathematics are different among people.  
I decided to write this book with the hope that people can change their nega-
tive mind on mathematics into the positive mind.

People who think that mathematics is exciting have a good feeling about 
mathematics since their childhood. Mathematics is made up of numbers. 
Kids already know or are familiar with numbers before they go to school. 
Kids eat an apple and ask for another one. They share some candies with 
their friends and count the remaining candies. They experience numbers in 
real life and learn formal numbers at school. Hence, they feel comfortable 
with simple numbers.

However, when they learn even and odd numbers, addition or multi-
plication of two-digit numbers, the patterns of various figures, and more 
advanced mathematical concepts as time goes by, they are gradually losing 
their interest in mathematics.

Then, is there a way to think that mathematics is creative and challenging 
by enjoying mathematical concepts? If we remember our old days with no 
internet, there were offline games. The most common game was played with 
marbles. If a player guesses the correct number of marbles hidden in a hand, 
the player wins the game. Sometimes, a player tries to hit marbles from a dis-
tance in order to send them further than others. In some sense, the former 
game is like an Algebra and the latter game is like a Geometry. By playing 
these kinds of games, I became familiar with mathematics and majored in 
mathematics in the end.

Thanks to this experience, I came up with games related to mathematics. 
I hope that adults as well as kids can eliminate their anxiety on mathematics 
by this approach and regard mathematics as a kind of game or play.

I have selected famous games for this book which also have some math-
ematical concepts. This book is based on a series of columns which appeared 
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as “Jon-Lark Kim’s board game festa” in the public magazine Math Donga 
of Korea. It consists of games which can be played alone or with other 
people. Some games can be played online. These games can be used as 
a means of teaching mathematical concepts at school or after school. Of 
course, they can be used for recreation among friends without any dif-
ficulty to learn mathematics hidden in the games.

In this book, there are games which help to learn basic mathematical 
concepts, and there are also games which contain very complicated math-
ematical concepts although the rules of the games are easy to follow. There 
is no problem enjoying the games even if you do not know the principles 
of mathematics. However, if you know the mathematical concept, you will 
enjoy the game with a lot of interest. There are mathematicians who try 
to solve the games mathematically. While there are also mathematicians 
who create mathematical games, I will try to introduce mathematicians 
who worked in various eras together with their brilliant ideas containing 
mathematical concepts. These mathematicians really enjoyed the games. 
With the games in this book, you can feel the taste of mathematics real 
mathematicians feel.

I was supported by many people. In particular, I thank my daughter 
Sylvie Jinna Kim for playing some of the games together when she was 
young and my wife Seung Kyung Yang for her encouragement. I am also 
thankful to Dr. Young Gun Roe and Hyeck Ki Min for the comments on 
the manuscript and Seung Jun Mun for drawing various figures.

The first fourteen chapters are basically the translation of the Korean 
book, and the remaining three chapters are added for this English version. 
I really appreciate the editorial team of the publisher, especially Mansi 
Kabra and Callum Fraser for their patience and advice.

If there are questions or comments on this book, please email me at 
ctryggoggo1@gmail.com.

Jon-Lark Kim from Seoul

mailto:ctryggoggo1@gmail.com
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C h a p t e r  1

15 Puzzle
A Tile Matching Game That Is 
Difficult Even for Computers

A PUZZLE MADE BY A POSTMAN
The 15 puzzle, also called Boss puzzle, is a game created in 1874 by Noyes 
Palmer Chapman, a postmaster in the town of Canastota, USA. In 1880, 
it became a sensation in the United States and Europe. About 130 years 
later, it is still loved by many people around the world. The 15 Puzzle is 
also a game familiar to computer programmers. It is not known yet what 
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algorithm is the best. Hence, many people are trying to find it. The math-
ematics of a ‘permutation’ is hidden in the game (Figure 1).

In the 15 puzzle, square tiles numbered from 1 to 15 are placed side by 
side in a ×4 4 square frame. A total of 16 tiles can be placed on the square 
frame and one spot is empty so that other tiles can move. First, place 
randomly the 15 numbered tiles and arrange the numbers on the tiles in 
an ascending order. This arrangement of numbers in order is called the 
‘standard array’.

In 1878, an American chess player and puzzle expert Sam Loyd (1841–
1911) offered $1,000 to a person who would solve the puzzle where the 14th 
and 15th tiles were swapped (Figure 2). In other words, the puzzle is to go 
back to the standard array from an arrangement where the positions of 
tiles 14 and 15 from the standard array are switched. Due to such a prize, 
the 15 puzzle became very popular in the United States. Loyd did a great 
job of making this puzzle popular with the public. In fact, if it is analyzed 
using a mathematical theory, it is shown to be impossible to convert this 
array into the standard array.

PERMUTATION
To figure out which arrays can be turned into the standard array or not, 
we must first represent them as a ‘permutation’. A permutation is a func-
tion that represents an array of n elements, such as numbers or alphabets. 
Usually, n elements produce a total of n!(=n × (n − 1) × (n − 2) ×  × 2 × 1) 

FIGURE 1  The 15 puzzle.
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permutations. For example, consider the case of n = 3, and the three ele-
ments are 1, 2, 3. If we consider all the arrangements of 1, 2, and 3, then 
1–2–3, 1–3–2, 2–1–3, 2–3–1, 3–1–2, 3–2–1. There are a total of six permuta-
tions. If the blank space in the 15 puzzle is the 16th tile, there are 16 num-
bers in total, so there are 16! = 20,922,789,888,000 permutations.

Now let us pick one of several permutations to show it in more detail. 
Comparing the tile arrangement of the 15 puzzle in Figure 3 with the stan-
dard array, the table below can be represented. (This is called a one-to-one 
correspondence function.)

In this table, except for the tiles 6, 7, 10, 11, 12, 15, and 16, all the other 
tiles are placed in the standard array. The 7th tile is placed on the 6th tile, 
the 10th tile is on the 7th tile, and the 6th tile is placed on the 10th tile. 
More simply, we can indicate which number is placed in the standard 
array position with an arrow like this:

1 → 1, 2 → 2, 3 → 3, 4 → 4, 5 → 5, 6 → 7, 7 → 10, 8 → 8, 9 → 9, 10 → 6, 11 → 16, 
12 → 11, 13 → 13, 14 → 14, 15 → 12, 16 → 15

As shown above, if we use an arrow to explain which number is placed in 
the positions of tiles 6, 7, and 10 in the standard array, we can write 6 → 7, 

FIGURE 2  Illustration from Sam Loyd’s book.
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7 → 10, 10 → 6. Now, write (6 7 10) except for the overlapping numbers and 
arrows. By reading from the left to the right, we think 7 in the place of the 
6th tile, 10 in the place of the 7th tile, and 6 again in the place of the 10th 
tile. Similarly, the rest of the tiles can be represented as 11 → 16, 16 → 15,  
15 → 12, 12 → 11, so we can write (11 16 15 12). Then these simple notations 
(6 7 10), (11 16 15 12) can represent an array.

EVEN PERMUTATION AND ODD PERMUTATION
When an array is expressed as a permutation, an odd number of num-
bers in parentheses is called an even permutation, and an even number is 
called an odd permutation. If the number is odd, why is it called an even 
permutation and not an odd permutation? The reason is not because of the 
number of numbers in the parentheses but the number of transpositions 
in the permutation. A transposition is an odd permutation of two numbers 
like (6 7), which can be expressed as 6 → 7, 7 → 6, so it is a symbol to swap 
the positions of the two numbers in parentheses. Any even or odd permu-
tation can be expressed as a product of transpositions.

For example, (6 7 10) is expressed as (6 10)(6 7) by using two 
transpositions.  This symbol means that in the standard array apply the 

FIGURE 3  An arrangement of the 15 puzzle
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transposition on the right first to swap the places 6 and 7, and then swap the 
places 6 and 10 again. That is, in the first (6 7), it is calculated as 6 → 7. There is 
no 7 in (6 10), so finally 6 → 7. How about 7? From (6 7) we have 7 → 6. However, 
from (6 10), we have 6 → 10, so if we connect these two, we end up with  
7 → 10. Finally, what is the output value of 10? (6 7) has no 10, so it passes 
and instead (6 10) has 10 and 10 → 6, so 10 → 6 in the end. Similarly, (11 16 
15 12) can be written as (11 12)(11 15)(11 16) using three transpositions. 
After all, the permutation represented by (6 7 10)(11 16 15 12) has even and 
odd transpositions, respectively, so the total is an even permutation + odd 
permutation = odd permutation.

Now we introduce our main theorem which states that under what con-
dition a given array in the 15 puzzle can be moved to a standard array.

The only necessary and sufficient condition for a given array with 
the  lower right corner spot empty in the 15 puzzle to be the standard 
array is that if the permutation corresponding to the given array is an even 
permutation. Only 16!/2 arrays can be moved to the standard array since 
the number of even permutations is equal to that of odd permutations.

This theorem was proved by American mathematicians William 
Johnson and William Story. According to this theorem, if the permutation 
representing an array is an odd permutation, it cannot be replaced with 
the standard array. Since Sam Loyd’s array in which tiles 14 and 15 are 
switched can be expressed as odd permutation (14 15), it was an unsolvable 
problem actually. Let us see if the standard array is possible even in the 
case shown below. We represent this as a function:

The corresponding permutation has the following form: (2 3 5 9)(4 7 13 
10)(6 11)(8 15 14 12) = odd permutation + odd permutation + odd permuta-
tion + odd permutation = even permutation.

So this array can be the standard array. Of course, doing this in practice 
takes a lot of time. In general, there is a necessary and sufficient condition 
to become the standard array even for an ×1 2n n  ( ≥,  21 2n n ) board.

Assume that the lower right corner spot is empty on the board ×1 2n n   
( ≥,  21 2n n ). Then a necessary and sufficient condition for a given array in 
the ( )−11 2n n  puzzle to be the standard array is that the permutation cor-
responding to the given array is an even permutation.
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MOVING TO THE STANDARD ARRAY 
WITH SMALLEST NUMBER
Using the theorem demonstrated by Johnson and Story, we can see which 
arrays cannot be standardized in the 15 puzzle as well as in puzzles of vari-
ous sizes. However, even if it is an array that can be moved to the standard 
array, it is not yet known how to move specifically which tiles and how to 
create a standard array by moving only the smallest number of tiles.

In 1986, American computer scientists Daniel Ratner and Manfred 
Watmuth found a way to create the standard array by moving only the few-
est number of tiles from an (n2 – 1) puzzle consisting of n tiles in each col-
umn and row. They proved that the problem belongs to NP-hard. In other 
words, if you do an (n2 – 1) puzzle on an n × n board, it is very difficult to find 
the fastest way. (NP-hard is a set of problems with similar complexity of an 
algorithm for solving problems. There are P, NP, NP-hard, and PSPACE. 
NP-hard is the second most difficult set of problems after PSPACE.)

But we can tell at least how many times you need it this way: Let us look 
at the example (Figure 4). Using ‘Manhattan Street’ and ‘Hamming Street’ 
you can guess at least how many times a tile needs to be moved.

The Manhattan distance is the sum of the distances each number in this 
array must move horizontally or vertically to get to the standard array. 
That is, 1 is in the position of the standard array, so there is no need to 
move it; 3 is in the second position, so move it to the right once; 5 is in the 

FIGURE 4  A special arrangement of the 15 puzzle
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third position, so it needs to move down once and twice to the left for a 
total of 3 moves. This can be represented in a table as follows.

So in this case you need to make at least 32 moves. Finding the 
Manhattan distance takes some time, so Hamming distance is efficient. 
You can find the distance and quickly get a rough idea of how many moves 
you need to move. Hamming distance gives a distance value of 0 if the 
given number of arrays is in the standard array, and a distance value of 1 
otherwise. This is shown in a table as follows:

So, you have to move at least 14 times to get to the standard array. Of 
course, the Hamming distance is always less than or equal to the Manhattan 
distance. In 1999, computer scientists Adrian Bürger et al. were able to 
roughly calculate the minimum and maximum values, proving that any 
array can be constructed in 80 times as long as it is an even permutation.

PROBLEMS

	 1.	(*) Show directly (without any theory) that the left one cannot be 
moved to the right one.

	 2.	(*) Show that the array below has a permutation (1 9 8 7 6 5 4 3 2) and 
find a way to make the standard array. Also, how many moves are 
needed by the Manhattan distance?
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	 3.	(**) Determine an even or odd permutation for the following array.

	 4.	(**) The following array has the property that the sum of numbers 
horizontally, vertically, and diagonally, respectively, is exactly 30. 
Determine whether this array can be moved to the standard array.

	 5.	Enjoy online 15 puzzle at the following.
http://lorecioni.github.io/fifteen-puzzle-game/
* denotes the degree of difficulty.

http://lorecioni.github.io
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Peg Solitaire
Jumping Game Where 
We Meet Algebra

PEG SOLITAIRE WHICH CAN BE DONE ALONE
Peg solitaire is a board game played over 300 years. Peg means a ‘stack’, and 
solitaire means ‘patience’. Usually one calls a one-player game a solitaire. 
But Peg solitaire can be played between two players. Peg solitaire was played 
by high-class French people in the 17th century. For example, Madam 
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Anne de Rohan-Chabot was playing it as seen in the 1687 French journal 
(Figure 5).

The rule of the game is simple. Place several pegs on a cross board. 
Pick one peg and jump it over a neighbor peg horizontally or vertically. 
The jumped peg is removed from the board. If there remains only one peg, 
the game is over.

Since peg solitaire has a long history, the shapes of the board vary 
depending on countries. There are three well-known shapes of the board. 
Two of them use the cross shape. The English board has 33 holes while 
the French or European board has 37 holes. The third one has a shape of a 
regular triangle with 15 holes.

Hence, the English peg solitaire has 33 holes and 32 pegs. We fill in the 
32 holes except for the center hole with 32 pegs. Using the game rule, a 
peg can jump any neighboring peg, that is then removed from the board. 

FIGURE 5  Anne de Rohan-Chabot Princesse de Soubise (1663–1709) with Peg 
Solitaire, portrait painting, 1697.
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When this is played by one person, the person wins if there is only one 
peg left. When this is played by two persons, a person loses the game if the 
person cannot move. This book discusses the case when only one person 
plays the game (Figure 6).

WHERE DO WE PUT A LAST PEG?
Let us take a look at peg solitaire mathematically. For our convenience, the 
position of a hole can be described by the Cartesian coordinate system. 
Each location of a peg solitaire with x, y or z is given in Figure 7.

We explain how we place x, y, and z.
Any three consecutive holes correspond to the three different letters, 

and we place same letters along any anti-diagonal direction, or the right 
upper direction. The central hole is assigned to (0,0). Then x, y, z, and the 
number 0 satisfy the following addition rule. This is called the Klein four 
group in Algebra. The equation + =x y z means that x jumps over y to 
arrive at the position z.

FIGURE 6  English solitaire board (above) and European solitaire board (below).
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When we play the English peg solitaire, the central hole (y value) is 
assumed to be empty in the beginning. To win the game, only one peg 
should remain at the end. What is a possible position of the last peg? 
Interestingly, the position occurs at one of the eleven holes where y is 

FIGURE 7  Value of each hole.
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denoted. In particular, a peg can be located at the central position or 
one of four locations on each edge (Figure 8). The reason is as follows. If 
we reflect the y value at (1,1) about the vertical line of symmetry, we get 
(−1,1) that has the z value. This violates the condition that the final value 
of the game should be y. Therefore, the (1,1) position is not a possible loca-
tion for the final peg. Similarly, the four positions such as (−1, −1), (−1, 2),  
(2, −1), (1, −2) are not possible locations for the final peg.

The English peg solitaire starts with an empty hole in the center. If we 
start with an empty hole in other places, how many different games are 
possible? Clearly, there are 32 more games since there are 32 other holes 
except the center hole. It is natural to consider various symmetries. In this 
case, we need to consider the vertical and horizontal lines of symmetry 
together with rotations. Considering the symmetries, we can start with 
empty holes at x, y, z above the vertical line passing through the center 
and three additional locations that are at the left of these three holes. These 
cases produce six more non-symmetric games. Therefore, considering the 
original English peg solitaire game, there are seven different peg solitaire 
games based on the English board.

From now on, let us find a solution of the English peg solitaire. From 
Figure 9, there are three pegs in the block denoted by 1, which can be 

FIGURE 8  The possible positions for the last peg.
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removed by using the central hole. There are six pegs in the block denoted 
by 2, which also can be removed successively. Following this pattern, there 
remain two pegs in the block denoted by 7, from which the last peg can be 
placed in the center (Figure 9).

TRIANGLE PEG SOLITAIRE
There are 15 holes and 14 pegs in triangle peg solitaire. In general, the top 
hole is empty. You can jump over an adjacent peg (which shares the edge) 
and remove the jumped peg. If there is only one peg left at the end, you 
win the game. Just like the English peg solitaire, we put x, y, z in the board. 
Assuming that there is only one peg left, where is the position of the last 
peg? The answer is one of the five positions denoted by x (Figures 10 and 11).

If the empty holes are one of the three green positions, then we have 
solutions in Figure 12.

FIGURE 9  Finding solutions of English peg solitaire based on the orders of the 
block.
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FIGURE 11  Triangle peg solitaire.

FIGURE 10  x, y, z labeling.
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FIGURE 12  Empty position is at the top (A), the center (B), and the bottom (C).
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PROBLEMS

	 1.	(**) Try the English peg solitaire by yourself and find your own 
solution.

	 2.	(**) Try the triangle peg solitaire by yourself and find your own 
solution.

	 3.	(***) We are given the following peg. One of the orange positions is 
empty, and the other is filled with a peg. Solve the problem until the 
last peg is placed in one of the orange positions.

(Answer: Assume that the left orange position has a peg, denoted by 
number 0. We label the dot from the top to bottom as 1–6. Then jump the 
pegs as follows.

0 → 4 → 1 → 6 → 3. Then the peg on the right orange can jump the peg on 
position 2 to return the left orange position.
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C h a p t e r  3

Chomp Game
Avoid a Poisoned Chocolate

DO NOT EAT A POISONED CHOCOLATE BAR
Chomp is made by an American mathematician and economist David 
Gale (1921–2008). Gale studied game theory and Ramsey theory and also 
invented Bridge-It besides Chomp. Chomp means chewing food vigorously 
and noisily. As the name implies, two players eat chocolate bars alternately. 
The person who eats a poisoned chocolate bar will be the loser. You can 
also enjoy the game by using blocks or go stones instead of chocolate bars 
if the chocolate bars are unavailable.

DOI: 10.1201/9781003268024-3
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The rule is simple. Prepare rectangle chocolate bars and assume that the 
bottom left piece has the poison. Each player chooses and eats a chocolate 
piece and additionally eats all the pieces that are above and on the right of 
the chosen piece. Players play the game alternately and if a player eats the 
poisoned chocolate bar, that person loses the game.

Let us play Chomp where the chocolate has four pieces vertically and 
five pieces horizontally as in Figure 13. Player A eats the right six pieces. 
Player B eats the right two pieces. Continuing this, B will leave the poi-
soned piece at the 6th step, and therefore A will lose the game. Play Chomp 
that has the same size with your friends.

If the size of the chocolate bar is ×m n then it is called an ×m n chomp. The 
position of the poisoned chocolate bar is assumed to be at the bottom left. 
We can represent it as the Cartesian coordinate (1,1) and represent the posi-
tions of the other bars in a similar way. For example, the bar with the third 
position horizontally and the second position vertically is denoted by (3,2). 
Therefore, when the (p,q) bar is chosen, a player should eat all of the pieces 
that are located at (r,s), where ≥ ≥, r p s q.

Since the two players play alternately, it appears that there is no winning 
solution. However, Gale proved in 1974 that the first player can win the 

FIGURE 13  An example of Chomp.
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game for any size of the chocolate bar. To explain the proof, suppose that I 
choose (p, q) piece and the other player chooses (i, j) piece.

We can think of two cases. In the first case, if I win the game after I 
choose (p, q), then this position is the winning position. In the second 
case, I lose the game after I choose (p, q). The reason is that the other player 
has chosen the position (i, j). Hence if I chose (i, j) in the beginning, then I 
would win the game. This proof is called the existence proof. But except for 
some m, n, it is not known how to choose positions concretely.

Now let us find a simple winning strategy. Consider ×1 n chomp. If I 
choose (1,2) and eat all the bars to the right, then the other player should 
eat (1,1) and so I win the game. What happens if we play ×m m chomp? The 
answer is to choose (2,2) and eat all the bars above it and on the right. If 
the other player chooses (1, j) or (j, 1) then I choose (j, 1) or (1, j) symmetri-
cally. Then in the end the other player has no choice but (1,1).

Now let us consider ×3 2 chomp. The position I should eat is (2,3) 
(see Figure 14).

How about ×3 4 chomp? (see Figure 15). First I choose (3,2). Then think 
about the other positions.

We might think about the case when m or n is infinite. For convenience, 
assume that n is infinite(∞). 1 × ∞ represents an infinite chocolate bar. To 
win the game, it is enough to choose (1,2). In 2 × ∞ chomp, the other player 
can always win the game (try this!). If m is greater than or equal to 3, then 
I can always win m × ∞ chomp. The reason is that if I choose (1,3), the other 
player should choose a position on 2 × ∞ chomp.

FIGURE 15  3 × 4 Chomp.

FIGURE 14  3 × 2 Chomp.
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PARTIALLY ORDERED SET
Chomp game can be understood as a partially ordered set. Partially ordered 
set is a set where some elements of the set have an order.

Any two elements in the first set {1, 2, 3, 4, 5} can be compared. 
However, a and 1 in the second set {1, 2, 3, a, b} cannot be compared since 
a is not a number.

Let us transform ×2 3 chomp into a partially ordered set in a simple 
way. First, we represent each chocolate piece as a coordinate and make 
a set {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)}. In this set, (a,b) is called greater 
than (c,d) if (i) a is greater than c and b is greater than or equal to d or 
(ii) a is equal to c and b is greater than d. For example, (2,2) is greater 
than (2,1) but it is not compared with (3,1). Thus the set is a partially 
ordered set. Now instead of choosing a chocolate piece, choose a coor-
dinate and instead of eating a chocolate bar, erase all the coordinates 
greater than or equal to the chosen coordinate. Then, the person who 
erases (1,1) will lose the game.

×m n chomp can also be explained as a ‘factor game’. Let’s con-
sider the number = ×2 3N m n. Write down all the (positive) divi-
sors of N of the form ×2 3a b, where a and b are at least 1. For example, 

× × × × …2 3,   2 3 ,  2 3,   2 3 , 2 2 2 2  are possible divisors. Instead of choosing a 
chocolate piece, we choose one of the divisors and erase all the multiples of 
this divisor so that the person who erases ×2 3 will lose the game.

3-DIMENSIONAL CHOMP
So far I have explained the 2-dimensional Chomp. A 3-dimensional Chomp 
is also possible. Make a chocolate block instead of a chocolate bar and con-
sider a cuboid piece instead of a rectangle piece. The poisoned piece of a 
cuboid is one of the corner positions and let (1,1,1) be the position. Then 
the cuboid is defined as the set of (i, j, k) where ≤ ≤ ≤ ≤ ≤ ≤1 , 1 , 1i m j n k l,  
and we can define an order in the set. If ′ ≤ ′ ≤ ′ ≤,  , i i j j k k , then 
( ) ( )′ ′ ′ ≤,  ,  ,  ,i j k i j k . We do not define the order for other cases, and hence 
this is a partially ordered set. Figure 16 is a × ×4 4 4 chomp. The person who 
chooses the red block loses the game. If a yellow block is chosen, the green 
blocks are erased.
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NIM is similar to Chomp. Instead of the chocolate pieces, one or 
more beads will be moved simultaneously from one of the three piles of 
the beads hanging on a string. Two players alternately move the bead(s).  
If one cannot remove a bead, the person loses the game.

PROBLEMS

	 1.	(*) In × × ×2 3,   2 4,  2 5 chomp, if you want to win the game, which 
piece should you choose? If you find the piece, try a solution for a 
general ×2 m chomp game, where ≥ 2m .

	

FIGURE 16  3-dimensional Chomp.
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	 2.	(**) In a 2 × ∞ chomp (horizontally infinite), what is a winning strat-
egy that the second player wins the game?

	 3.	(**) In a 3 × m chomp ( ≤ ≤5 12m ), find a position where the first 
player wins the game.

	 4.	(***) In a × ×3 3 3 chomp, find a position where the first player wins 
the game.

	 5.	(****) In a 3 × 3 × ∞ chomp (height is infinite) and the ∞ × ∞ × ∞ 
chomp, find a position where the first or second player wins the game.
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C h a p t e r  4

Super Tic-Tac-Toe
Stone Game over a Donut

TIC-TAC-TOE GAME
In Korea, there is a game called the 5-stone game. In the Go board, the 
first player picks a stone of one color and the second player picks the other 
color. They put their stones alternately and one wins the game if the person 
makes five stones of the person’s color connected horizontally, vertically, 
or diagonally.

DOI: 10.1201/9781003268024-4
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In this sense, the tic-tac-toe game can be thought of the 3-stone game. 
Instead of putting stones, tic-tac-toe uses X or O alternately on the  

×3 3 board. The person who makes three X’s or O’s wins the game.  
Tic-tac-toe has been played from the ancient Egypt. Because the rule is 
so simple, the game ends tie often when the two experienced players play. 
However, there is a more interesting tic-tac-toe like game.

A NEW CONNECTION, AFFINE PLANE TIC-TAC-TOE GAME
In 2006, an American mathematician Stephen Dougherty suggested an 
interesting tic-tac-toe. He adds more three positions for a win as follows.
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What is the property of this tic-tac-toe? Let us look at ①. The first two 
rows mark X diagonally to the right and if we extend it then it will be like 
Figure 17. The third X is then off the ×3 3 board. However, if we assume that 
the ×3 3 board is connected continuously, then the position corresponds to 
the bottom lower left of the ×3 3 board. Therefore, the three Xs in ① is 
another set of winning positions. Similarly, even though the three Xs in 
the remaining cases like ②, ③, and ④ look apart, they are considered to be 
connected as in Figure 17. We call this tic-tac-toe ‘affine plane tic-tac-toe’ 
or ‘torus tic-tac-toe’. Torus is like a tube for swimming or a donut with one 
whole. The reason why it is called a torus tic-tac-toe is that if we roll the top 
and the bottom of the tic-tac-toe board to make a straw and then connect 
the end of the straw, then we obtain a torus. Therefore, the new three Xs in 
the affine plane tic-tac-toe are in fact connected on the torus (Figure 18).
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FIGURE 18  Torus tic-tac-toe, from codegolf.stackexchange.com.

FIGURE 17  Diagonally connected tic-tac-toe. 

http://codegolf.stackexchange.com
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The ×3 3 tic-tac-toe is usually a tie game even if we fill the board. 
However, this is not true for the affine plane tic-tac-toe. Why is that so? 
Suppose that we have a tie game after we fill in the affine plane tic-tac-
toe. Assume that the first player marks X. Then, the board has five Xs 
and four Os. Now, we can consider four cases where four, three, two Xs 
and one X are on edges of the board and prove that a tie game cannot 
occur in all of the four cases.

	 1.	Suppose that Xs appear on the four sides as in Figure 19①. The spots 
where Xs appear are filled with a color. To have five Xs in total, the 
remaining X should be added to some empty spot. If X is marked 
at the center, we have two 3 Xs horizontally and vertically. If X is 
marked at any one of the four corners, they correspond to one of the 
cases in Figure 17. Therefore, X will win the game.

	 2.	Suppose that Xs appear at three spots on the four sides as in Figure 
19②. We need to add two more Xs in the board. If we place X in any 
of the positions marked as N, then X will win the game. Therefore, 
we have to consider two empty spots on the top row. If we put two 
remaining Xs in those two empty spots, we have three Xs in the top 
row. Therefore, X will win the game.

FIGURE 19  Affine plane tic-tac-toe winning case. Labeled as  ①, ②, ③, ④ from 
the top.
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	 3.	Suppose that Xs appear on the four sides as in Figure 19③. Then there 
are two cases. As in 2, N is the position where X needs to be avoided. 
If three Xs are placed in any of the four empty spots, a three Xs will 
be formed and therefore X will win the game.

	 4.	Figure 19④ has one X marked and four forbidden positions marked 
as N. In these cases, four Xs should be added. If one X is marked at 
the center, then the remaining three Xs are marked at three of the 
four corners, which results in a diagonally winning three positions. 
If one X is not marked at the center, then the remaining four Xs are 
marked at the four corners. This top row is the winning three posi-
tions. Therefore, X will win the game

Therefore, the affine plane tic-tac-toe game ends with a win. Even though 
the first player has some advantage, the game can end before all the Xs and 
Os are marked so the second play needs some strategy for a win.

AN ORDER FOUR AFFINE PLANE TIC-TAC-TOE GAME
The previous tic-tac-toe game is an order 3 affine plane tic-tac-toe. 
An order 4 affine plane tic-tac-toe is a tic-tac-toe game where we make a 
set of four connected stones on the affine plane of order 4 as in Figure 20. 
Each color has four sets of four connected stones. There are five colors. 
Therefore, there are twenty winning sets of four connected stones.

0 1 a

0

1+a

1

a

1+a

FIGURE 20  The order four affine plane tic-tac-toe.
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SUPER TIC-TAC-TOE
Super tic-tac-toe or Ultimate tic-tac-toe is a game on a big ×3 3 board where 
each cell has another tic-tac-toe ×3 3 board. If X or O wins in a ×3 3 cell, 
then mark X or O accordingly. The person who makes three Xs or Ox first 
overall on the big ×3 3 board wins the game.

The rule is as follows. Choose one of the nine ×3 3 tic-tac-toes in the ×9 9 
board (=the big ×3 3 board) and then put X or O there (see Figure 21). For 
example, if the first player chooses the middle tic-tac-toe cell and put X at 
the right corner, then the second player moves to the upper right tic-tac-toe 
cell and puts O at any empty position. Then the first player moves to the 
corresponding tic-tac-toe cell and puts X there and so on. If a tic-tac-toe 
cell ends with a win or a tie, then skip that tic-tac-toe cell and move to 
another tic-tac-toe cell and put X or O.

It is not known whether there is a winning strategy for super tic-tac-
toe. In 2013, Eytan Lifshitz and David Tsurel (AI Approaches to Ultimate 
Tic-Tac-Toe, preprint), PhD students at Computer Science Department, 
Hebrew University of Jerusalem, Israel used the computer simulation 
and analyzed the statistics to conclude that the winning probability that 
the first player wins the game is 56%. Recently in 2020, Bertholon et al. 
(At most 43 moves, at least 29: optimal strategies and bounds for ulti-
mate tic-tac-toe, preprint) showed that there is a winning strategy for 
the first player.

FIGURE 21  Super tic-tac-toe.
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PROBLEMS

	 1.	(*) Play the order 3 affine tic-tac-toe with your friends.

	 2.	(*) Play Super tic-tac-toe with your friends.

	 3.	(**) Below is an order 4 affine plane tic-tac-toe. Show that it is a tie 
game.
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C h a p t e r  5

Mastermind
A Cryptographic Game

GUESS THE PASSWORD
Mastermind is a board game guessing the opponent’s password or 
secret code. Mordecai Meirowitz, an Israel postmaster and telecom-
munications expert, invented the Mastermind in 1970. After Meirowitz 
invented the game, he contacted many game companies but they refused 
to commodify his invention. Luckily, a plastic company, Invicta Plastics, 
showed an interest and purchased all the rights to the game to be avail-
able on the market.
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A Mastermind’s board consists of several rows, each of which has four 
small holes and four large holes. The number of rows depends on the dif-
ficulty of the game (see Figure 22), usually being 12. On top of that, there 
are pegs of six colors, and there are small pins of red and white colors. One 
can put up to four pins in each row.

Mastermind is a two-player game. One person is called a codemaker and 
the other is called a codebreaker. Codemaker chooses four colored pegs 
out of the six colored pegs and hides them at the bottom of Mastermind’s 
board. We call them a password or secret code or code simply. The color 
of the four chosen pegs is allowed to be the same. Now the codebreaker 
should guess the color of the four pegs and place them in the first row. 
Then the codemaker puts a red pin (R) on the right if the color and its posi-
tion are correct. If the color is correct but the position is not correct, then 
put a white pin (W). Otherwise, do not put any pins there.

Repeat this process up to 12 rows. If the codebreaker guesses the pass-
word correctly within 12 rows, the codebreaker wins the game. Otherwise, 
the codemaker wins the game. If one game ends, change the role. After fix-
ing the total number of the plays, players with more wins will win the game.

ANALYZE MASTERMIND MATHEMATICALLY
It was Donald Knuth, an American computer scientist, mathematician, 
professor emeritus at Stanford University who analyzed Mastermind 
mathematically. He earned a PhD in Mathematics from Caltech in 1963 

FIGURE 22  Mastermind, CC BY-SA 2.0.
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under his advisor Marshall Hall, a famous group theorist. At the age of 
24, he published a book titled The Art of Computer Programming, which 
is regarded as one of the monumental books in the computer science area.

Knuth published a paper (The computer as master mind, J. Recreational 
Mathematics, Vol. 9, No. 1, p. 1–6, 1976–1977) on Mastermind in the 
Journal of Recreational Mathematics in 1976. He represented those six col-
ors as 1, 2, 3, 4, 5, 6 and four pegs as four numbers with repetition allowed. 
Therefore, there are 64 = 1,296 possible passwords. He made an algorithm 
to suggest numbers in each step and proved that the password can be 
found within at most five guesses.

Because Knuth’s proof is complicated, let us explain it with a simple 
example. Suppose that you are a codebreaker and assume that a code-
maker picked a password consisting of four numbers from 1 to 6. We try 
1122 first. If there are four white pins(write ‘4W’), then the only possible 
answer is 2211. If there are three white pins (3W), then 221□, 22□1, 2□11, 
□211 (here □ can be one of 3, 4, 5, 6 except 1 and 2). Thus there are 16 
ways to consider. To test these 16 cases, we ask 1213 which looks unrelated 
(see Figure 23). Then we will get at least 1R. Among them, if 1R2W is the 

FIGURE 23  The case of 1213.
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answer, 2231, 2411, 2511, and 2611 are passwords. Then let us ask 1415. 
Then there are four cases as follows:

2231 1W

2411 2R1W

2511 1R2W

2611 1R1W

By looking at this output, we can guess an original password. Even if 1R2W 
is not an answer, we can find an answer in a similar way. If 3R appears out 
of the 16 cases, then as it appears once as in Figure 23, the corresponding 
password is 2213. There are three cases that 2R appears out of 16 cases, 
the password is one of 2214, 2215, and 2216. We may simply take one of 
them, but then we may ask up to three questions. To reduce the number of 
questions, we ask 1415 as in the case of 1R2W. Then 2214 corresponds to 
1R1W, 2215 to 2R, and 2216 to 1R, from which we can find the password. 
In the case of 1R1W, we also ask 1415 so that we can find the password. 
Altogether, we can find the password with up to four questions.

In the above, we have proved that if there is 3W, it suffices to ask four 
questions. What happens if there is 2W? In this case, the possible pass-
words are as follows and we have =×4 6 962  cases.

22□□, □□11, 2□1□, □2□1, 2□□1, □21□
(here, □ denotes one of 3,4,5,6.)
If there is one white pin (1W), we have =×3 4 3244  cases.
□□1□, □□□1, 2□□□, □2□□
(here, □ denotes one of 3,4,5,6.)
If there is no white pin (0W), then each position should be one of 3,4,5,6 

which results in =4 2564  cases.

GUESS THE PASSWORD IN 4.34 QUESTIONS
Many researchers besides Knuth tried to find an algorithm to find the pass-
word of Mastermind. In 1993, Kenji Koyama and Tony W. Lai (An optimal 
Mastermind Strategy, Journal of Recreational Mathematics, 25(4):251–256, 
1993) showed that there is a method to find the password with the average 
of 4.34 questions. According to this paper, at most six questions are enough 
to break the secret code. Jeff Stuckman and Guo-Qiang Zhang (Mastermind 
is NP-complete, INFOCOMP Journal of Computer Science 5, 25–28 (2006)) 
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proved that the problem to decide whether given a random set of colored 
pegs and its score, there is at least one password satisfying these conditions 
is a NP-complete problem.

There are several games similar to Mastermind. Bulls and Cows is a 
pencil-and-paper game. This was a well-known game before the appear-
ance of Mastermind. Bulls and Cows is a two-player game. One player 
plays the role of ‘Bull’ and the other plays the role of ‘Cow’.

Bulls and Cows breaks the password consisting of four digits from 0 to 
9. We do not allow the repetition of the digits, which makes the difference 
from Mastermind. Instead of putting pins, if the codebreaker guesses the 
correct number and its position, it is called 1Bull and if the codebreaker 
guesses the correct number and the codebreaker guesses incorrect posi-
tion, then it is called 1Cow. For example, suppose that the password is 1357 
and the codebreaker says 1235. Then the number 1 is correct and its posi-
tion is also correct so we have 1Bull. The numbers 3 and 5 are correct but 
their positions are different from the password so we have 2Cows. Because 
Bulls and Cows was very popular, a student at MIT in the late 1960s made 
a game program called ‘MOO’.

There is also word Mastermind. This game uses four alphabets instead 
of numbers as password. The rules are the same as those of Bulls and 
Cows. If FOUR is the password and the codebreaker guesses GOOD, then 
the codemaker answers with 1Bull and 0Cow.

Super Mastermind is another type of Mastermind. The rules of Super 
Mastermind are the same as those of Mastermind. There are eight colors of 
pegs and five holes for the password (Figure 24).

FIGURE 24  Super mastermind.
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PROBLEMS

	 1.	(*) Play Mastermind using numbers 1–6 with friends.

	 2.	(*) Play Mastermind using numbers 0–9 with friends.

	 3.	(**) Play word Mastermind using the first 10 alphabets.

	 4.	(***) The following is part of Mastermind using numbers 1–6. What 
is the final password? Try this for 10 minutes without the hint: The 
password consists of one 2, two 3s, and one 6.
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C h a p t e r  6

Ramsey Theory 
and Sim Game 
Don’t Draw a Red Triangle

SIM, A GAME ON THE REGULAR 6-GON
Sim (or the game of SIM) is a pencil-and-paper game played by two players 
on the 6-gon. An American cryptographer Gustavus Simmons introduced 
this game in 1969 (The game of SIM, J. Recreational Mathematics, 2(2), 
1969, pp. 66). Many people tried to find a winning strategy.
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Sim is played by drawing lines on the regular 6-gon with all edges con-
necting any two vertices. Note that the regular 6-gon has six vertices. 
Hence there are 15 edges connecting any two vertices. For example, we 
represent the line connecting vertices A and B by line AB so that there are 
5 lines starting from vertex A. Similarly, there are 4 lines starting from 
vertex B, 3 lines starting from vertex C, 2 lines starting from vertex D, and 
1 line starting from E. Hence by adding numbers from 1 to 5 we get 15 
distinct lines. We can also compute this number by counting all permuta-
tions on six objects (Figure 25).

The rule of Sim is very simple. Mark six vertices on a paper and each 
player draws one of the 15 lines alternately. Suppose that the first player 
(R) uses a red pen and the second player (B) uses a blue pen. If there is no 
colored pen, use a pencil with dots or straight lines. Players draw their 
colored lines alternately. If one player has a triangle with one color, that 
player loses the game. Thus, in order to win the game, each player should 
avoid a triangle with each player’s color and make the other player draw a 
triangle with one color.

Let us give a simple example. In Figure 26, the left game has been pro-
gressed from a red line AC first and there are seven lines now. So far there 
is no triangle with one color. Now it is player B’s turn. If player B draws 
line FD or line FB, there is a triangle with blue color and so player B loses 

FIGURE 25  Sim game on the 6-gon.
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the game. Therefore, play B should find other lines. Similarly, what lines 
should player R avoid? These are line EC and line EB.

Now we continue to draw lines and ask whether it is possible that there 
is no triangle with one color at the end. I mean if Sim can end with a tie 
game. The answer is that the game cannot be a tie game. Frank Ramsey, a 
British philosopher and mathematician proved this. 

RAMSEY’S THEOREM
Frank Ramsey was a genius and died prematurely. He was born in 1903 
in the family of mathematicians and died at the age of 28. His favorite 
philosopher was Ludwig Wittgenstein who was a best analytical philoso-
pher at that time. Ramsey translated Wittgenstein’s <Tractatus Logico-
Philosophicus> into English at the age of 20. He discussed Math and 
Philosophy regularly with Wittgenstein at Cambridge University.

Ramsey made an important contribution to Logic. However, what made 
him famous was Ramsey’s theorem which says that there always exists a 
subgraph with a special property in a graph. Basic facts are as follows.

A graph with n vertices such that there is an edge between any two dis-
tinct vertices is called a complete graph, denoted by Kn. You may visualize 
Kn as a regular n-gon with all edges between any two vertices. For exam-
ple, when = 3n , it becomes a triangle. When = 4n , it becomes a square 
with two more edges inside. When = 5n , it becomes a pentagon with a star 
inside. See Figure 27.

Theorem: If all the edges of 6K  are colored by red or blue, then there exists 
a triangle 3K  with monochrome.

FIGURE 26  Lines that each player should avoid.
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PROOF OF RAMSEY’S THEOREM USING FINGERS
Shall we prove Ramsey’s theorem briefly using fingers? Represent the six 
vertices of 6K  by the five fingertips of a right hand and a middle point p 
of palm. See Figure 28. Connect p with those five fingertips. Then there 
are at least three lines with monochrome. Why is that so? There will be 
red or blue lines from p to the five fingertips. Since there are five lines,  

FIGURE 28  Proof of Ramsey theorem using fingers.

FIGURE 27  Complete graphs.
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there should be at least three red lines or at least three blue lines. This is 
because if there are only two red lines and only two blue lines, then there 
are only four colored lines which is a contradiction.

Suppose that there are three red lines. Let us focus on the three finger-
tips. If there is a red line connecting two of these fingertips, then the red 
line and two previously colored red lines form a red triangle. If the three 
fingertips are connected with only blue lines, then we get a blue triangle. 
Thus in any case, we get a triangle with monochrome.

I will explain Ramsey’s theorem using another example. In a party with 
at least six people, it is true that either three people know each other or 
three people do not know each other.

Consider a complete graph 5K  which has only five vertices. Can you find 
a triangle with monochrome? The answer is no. If you color the five inside 
lines in blue and five outside lines in red, you cannot find a triangle with 
monochrome. See Figure 29. Since Sim is based on Ramsey’s theorem, we 
cannot play on a pentagon.

The minimum number n of vertices of Kn such that there exists a sub-
graph Kr in red color or a subgraph Ks  in blue color is called a Ramsey num-
ber, denoted by ( ),R r s . Sim game is based on Ramsey’s theorem saying that 

( )=3,3 6R . Although it is known that ( ),R r s  exists, it is very difficult to find 
the exact value. Still after 40 years of Ramsey’s theorem, it is only known that 

( )5,5R  is greater than or equal to 43 and is less than or equal to 48.
It is known that the second player (red) can have a winning strategy. 

The actual method is rather complicated and so there is no easy method 
yet to apply the strategy. One simple rule is that when one line is selected 
among the player’s available lines try to keep unavailable lines to a mini-
mum. Following this rule, the player with more lines available will win the 
game at the end.

If we use Ramsey’s theorem, we can generalize Sim game to a graph 
with more than six vertices. We call it ‘graph Ramsey game’. For example, 
using the fact that ( )=4,4 18R , we can play on 18K  with the game rule that 
the player drawing 4K  with monochrome loses the game. If more Ramsey 
numbers are found, then we can enjoy Sim game on various graphs. The 
graph 18K  in Figure 30 contains 153 edges so it will be complicated to play 
on paper.

In addition, we can play with three colors. It is known that ( )=3,3,3 17R .  
This means that there always exists a triangle in red, blue, or green color in 
the graph 17K  and that there is a coloring of the edges with no triangle in 
monochrome in the graph 16K . 
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FIGURE 30  Sim game on the 18-gon.

FIGURE 29  Is Sim game possible on a pentagon?
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PROBLEMS

	 1.	(*) Let us play Sim game with friends. The game can be a tie.

	 2.	(**) It is known that ( )=3,3,3 17R . To prove this, we need to show 
that ( )≠3,3,3 16R . In the following graph with the three colored 
edges, there does not exist a triangle with only one color. Check that 
there is no triangle with red color.
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	 3.	(***) There are several strategies to win Sim game. Nevertheless, an 
effective strategy in a real game is not known yet. Find your own 
strategy.

	 4.	(****) Currently it is known that ( )≤ ≤43 5,5 48R . Prove that either 
( )>5,5 43R  or ( )<5,5 48R .

REFERENCE
	 1.	 Simmons, Gustavus J. “The game of SIM,” J. Recreational Mathematics, 2(2), 

1969, pp. 66.
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C h a p t e r  7

Nine Men’s Morris
Three Soldiers Side by Side

GAME ENJOYED IN THE ROMAN EMPIRE AND INDIA
Nine men’s morris is an ancient board game played by two players since 
the Roman Empire. It has been played around the world including Egypt, 
England, and North America. Since it consist of pegs and a board, it has 
been one of the popular games. These days, one can also have fun with 
a web version of Nine men’s morris. Because the word “morris” has the 
meaning of a “coin” and the shapes of the coin represent soldiers, it is 
called a “nine men’s morris”.

DOI: 10.1201/9781003268024-7

https://doi.org/10.1201/9781003268024-7


9 Men’s Morris    ◾    47

To play nine men’s morris, each player prepares the nine pegs with one 
color (usually black or white) or shape to distinguish with the other player 
on a board consisting of 24 points.

The game is simple. Two players put pegs on an empty place alterna-
tively. When there are three pegs of the same color in a line, it is called a 
“mill”. If one player makes a mill, the player can remove the other player’s 
peg. A player loses the game if the player has only two pegs or cannot move 
a peg anymore. Shall we take a closer look at the game? (Figure 31). 

FIRST STEP: PLACING PEGS ON A BOARD
Two players place their pegs alternately on empty spots out of the 24 points. 
If one player places three pegs in a horizontal line or in a vertical line, then 
the player can remove the other player’s peg. Here, first try to remove the 
other player’s peg not in a mill. If such a peg is not available, then the player 
can remove a peg from a mill.

SECOND STEP: PUSHING PEGS ON A BOARD
If all the pegs are placed in the first step, then the players need to push 
their pegs to make a mill. This time, a peg can be moved to an adjacent 
point. There is a tip. If a player can move a peg in a mill to an adjacent 
point and make a mill again, then the player can remove the other’s peg. 
Continue this way. If a player has only three pegs left, move to the third 
step (Figure 32). 

FIGURE 31  9 Men’s Morris from the book <Libro de los juegos> in 1283.
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THIRD STEP: JUMPING A PEG ON A BOARD
If there are only three pegs left, it is like reaching a dead end. If the oppo-
nent player makes a mill and removes my mill, then it is not possible for 
me to make a mill. Therefore, if there are only two pegs from one of the 
two players, the game is over. If there are only three pegs left, a peg can 
jump a point and move to any empty point. This third step is not always 
necessary. If the players agree, then they can play until there are two pegs 
left based on the first two steps.

SEVERAL MORRIS GAMES
Although nine men’s morris game is most common, other numbers of men 
are also possible. Three men’s morris can be played on the board with nine 
points with three pegs, which is called ‘9 holes’. In this game, the player 
who makes a mill first (horizontally, vertically, or diagonally) wins the 
game. If two players have not made a mill, they can play based on one of 
the two options. The first option is to move a peg to an adjacent point as in 
step 2. The second option is to move a peg to any empty point.

Six men’s morris has a board with 16 points and 6 pegs for each player. 
The rule is the same as nine men’s morris. This game is more fun if the 
rules of the first step and the second step are used without the third step 
(Figure 33).

Twelve men’s morris has more pegs and lines than nine men’s morris. It 
is known as ‘morabaraba’ in South Africa. At first glance, the board looks 
the same but there are four more diagonal lines at the four corners so that 
one can make more mills. The rules of this game are the same as those of 
nine men’s morris. The only different rule is that if both players place 12 
pegs on the board without making a mill until then, the game is a draw.

FIGURE 32  Mills on vertical lines and horizontal lines shown in blue color.
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WINNING STRATEGY FOR NINE MEN’S MORRIS
It is not known whether there is a winning strategy for nine men’s morris. 
Instead, when the game has somewhat progressed, there is an analysis for 
the probability that the first player (Black pegs) wins based on the condi-
tion that where and how many pegs are left. In 1996, Ralph Gasser, a soft-
ware engineer from Switzerland proved that the game ends in a draw in 
most cases by an exhaustive search. (See Solving Nine Men’s Morris, Games 
of No Chance. 29: 101–113. Retrieved 2015-06-01, 1996.)

Gasser made a 3D bar graph for the probability that Black pegs win the 
game according to the number of White pegs and Black pegs left in second 
step. To understand the graph, we represent a–b when there are a Black 
pegs and b White pegs. For example, 7–4 means there are a 7 Black pegs 
and 4 White pegs. In this case, the game changes into 6–4 or 7–3 game. In 
other words, the current pattern of pegs is affected by the previous pattern 
of pegs (see Figure 34).

Figure 34 represents the probability that the player with a pegs beats the 
player with b pegs, denoted by a-b, where a is a number on the x-axis and 
b is a number on the y-axis. For example, in the case of 3–3, the first player 
will win the game with probability of 83%. In the case of 3–6, the winning 
probability for a player with 3 pegs is zero. This means that the player loses 
the game or the game is a draw. An interesting case is 9–9, which means 
that when all the nine pegs are filled in, the first player will win the game 
with high probability. 

FIGURE 33  3 men, 6 men, and 12 men’s morris in order.
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PROBLEMS

	 1.	(*) Now is Black’s turn in first step. Find a winning strategy for Black.

	 2.	(*) Now is Black’s turn in second step so that Black should push pegs. 
Show that White can always win the game.

FIGURE 34  Pattern of pegs for nine men’s morris, from Ralph Gasser (1996).
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	 3.	(**) According to Gasser’s graph, when there are three Black pegs 
and five White pegs, there is a little chance that Black wins the game. 
Find such an example.
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	 4.	(***) What is the condition that always gives a win for three men’s 
morris? Find this under first step and second step. 
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C h a p t e r  8

The Game of 
Quatrainment
Flip Neighbor Stones

THE GAME OF QUATRAINMENT
The game of Quatrainment is a game on a board of shape ×4 4. Quatrain 
means a poem with four lines. Quatrainment was introduced by Sean 
Puckett, an American Software engineer, in 1984 in the magazine called 
<Compute!> and then became famous. Tom Gantner, a mathematician at 
the University of Dayton found a solution by representing it mathemati-
cally (Figure 35).
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Quatrainment requires two boards of shape ×4 4. One is a starting board 
and the other is an ending board. Some spots of each board are marked as 
X. The goal of the game is to convert the Xs’ positions in the starting board 
into the Xs’ positions in the ending board. Flipping X becomes the empty 
place and flipping the empty place becomes X.

FIGURE 35  Sean Puckett’s quatrainment in the journal Compute!
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If one can flip any place without any condition, this game can be done 
easily. Here is a condition. When we flip X, some of its neighboring places 
should be also flipped. There are three cases depending on the position of 
X (see Figure 36 for details).

FIGURE 36  Rules for quatrainment.
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MATHEMATICAL PRINCIPLE
Let us apply the above three rules in the ×3 3 board. See Figure 37. We call 
it ‘quatrainment of order 3’. Rule 2 in this case requires that the chosen 
position needs to be flipped as well.

Here is the arithmetic we apply.

	 + =0 0 0

	 + =0 1 1 

	 + =1 0 1 

	 + =1 1 0

The reason why + =1 1 0 instead of + =1 1 2 is that if we think 1 as an odd 
number and 0 as an even number, then the fact that odd number + odd 
number = even number is represented as + =1 1 0.

We can represent the board with Xs as an ×3 3 array with 0 and 1. If 
there is an X, then put “1” and if there is no X, then put “0”. For example, 
the starting board and the ending board are transformed into ×3 3 arrays 
as in Figure 38.

Flipping a corner position of a staring board is the same as adding two 
arrays in Figure 39.

Therefore, we make nine arrays consisting of 0 and 1 corresponding to 
the nine cases such as four corner positions, four edge positions, and the 
center position (see Figure 40).

Therefore, if we represent the starting board, the ending board, and the 
nine flipping rules as arrays of 0 and 1 and add them using the matrix 
addition rule, then we can find an explicit solution. A matrix means an 

FIGURE 37  Quatrainment of order 3.
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array of numbers in general. When we add two matrices, we add the cor-
responding components. To add two matrices, the size of the matrices 
should be the same.

For convenience, assume that A is a staring array and B is an end-
ing array. Flipping A is the same as adding some ~1 9M M  repeatedly. If 
we apply the scalar multiple of a matrix A by a scalar c, then the whole 
process of the solution can be described as a matrix equation. If A is 
flipped using the array 1M  1c  times, then we can represent it as +A 1 1c M .  
Therefore, in order to get the ending board from the given starting 
board by several flips, there is a solution to the following matrix equa-
tion + + + + =A        1 1 2 2 9 9c M c M c M B for some ~1 9c c . Now this equation 
becomes the following system of linear equations.

FIGURE 38  Mapping the board to 3×3 array with 0 and 1.

FIGURE 39  Sum of two boards.
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It seems very difficult to solve it by hand. Noting that adding any Mi 
twice results in the zero array, we may assume that ~1 9c c  is 0 or 1. It is 
then easy to find the values of ~1 9c c . First plug in 0 or 1 from ,  , 1 2 3c c c .  
There are eight cases. For each case, plug in 0 or 1 from ,  ,  , 1 2 3 4c c c c  
to see if there is a solution. One can see that there is a solution 

FIGURE 40  Representation of all the rules by arrays of 0 and 1.
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= = = = = = = = =0,  0,  1,  1,  0,  0,  1,  0,  01 2 3 4 5 6 7 8 9c c c c c c c c c . This shows 
that which rules should be applied to arrive at the ending board. We do not 
need to be tied up with this formula. Just enjoy the game by trial and error.

PROBLEMS

	 1.	(*) In the quatrainment of order 3, the staring board A and the ending 
board B are given as follows. How many and which flips are needed? 
Double check your answer with the formula in the chapter.

	 2.	(*) In the original quatrainment, the starting board A and the ending 
board B are given as follows. How many and which flips are needed?

	 3.	(**) Find a formula (a system of linear equations) for the game of 
quatrainment similar to the quatrainment of order 3. 

	 4.	(***) If you want the game of quatrainment of order 5, what kinds of 
rules are needed? Find a formula (a system of linear equations) for 
this game. 
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C h a p t e r  9

n-Queens Game 
and Puzzle
Playing Chess Only with Queens

THE n-QUEENS GAME WITH MANY QUEENS
T﻿here is a piece called a queen in chess game. The queen can move to any 
empty position horizontally and vertically just like a ‘car’ in the Korean 
chess game called ‘Jang Gi’. It can also move diagonally. A queen is one of 
the most powerful pieces in Chess. Besides a queen, there are other pieces 
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including a king, a rook, a pawn, a knight, and a bishop. However, the 
n-queens game uses ×n n chessboard and many queens. You may use go 
board and go stones (Figure 41).

The n-queens game started from the eight-queens puzzle where the 
eight queens are placed according to the rule on the ×8 8 chess board. It 
was first introduced in 1848 by Max Bezzel, a German chess researcher. 
Two years later, a German doctor Franz Nauck figured out the solution of 
the eight-queens puzzle and extended it to the ×n n chess board. Famous 
mathematicians including Carl Friedrich Gauss had an interest in the puz-
zle and studied its solutions. In 2016, Glen Van Brummelen at Bennington 
College and his student Hassan Noon converted the puzzle game as a two-
player game.

Let us take a look at the rule of the eight-queens game. Prepare the ×8 8 
chess board. Make four white pieces and four black pieces, all of which 
represent queens. Decide who will play first and play alternately. The rule 
is that players should place a new queen which should not be attacked. If a 
player cannot put a queen, the player loses the game.

FIGURE 41  Queens which do not attack each other.
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ADVANTAGE FOR THE FIRST PLAYER?
When you play the game several times, you will see that there would be 
at least five queens on the board to end the game. Since queens cannot be 
placed horizontally and vertically, there can be at most eight queens on the 
board. Therefore, the first player should win the game at the fifth or seventh 
turn. The second player should win the game on the sixth or eighth turn.

When = 4n , the first player can always win the game. For example, if 
the first player puts the queen at the corner, then the second player has two 
options. After this option, the first player has an empty place, and hence 
wins the game.

	

Corner position: Try non-corner positions.
Is there a winning strategy for other values of n? For example, when 

= 7n , the first player can always win the game (Figure 42). The first player 
should put the queen at the center (Figure 42a). The second player will put 
a queen like Figure 42b. Then the first player can put a queen in a symmet-
ric way (Figure 42c). By continuing this way, the first player can always win 
the game. In general, this strategy works when n is odd. However, there is 
no winning strategy known when n is even.

MATHEMATICAL PRINCIPLE
Unlikely the n-queens game between two players, the n-queens puzzle is to 
place n queens on the ×n n board with non-attacking positions. Depending 
on n, there can be no way or many ways to put the n queens. If = 27n , there 
are 234, 907, 967, 154, 122, 528 ways.



n-Queens Game and Puzzle    ◾    63

There is at least one way for any n, except for = =2,  3n n . We just know 
there is a way but we do not know an explicit formula for the number of ways. 
When n increases infinitely, we do not know whether the number diverges 
or converges to a number. When n is 1–27, there is an exact number of ways.

FIGURE 42  n = 7 case, queens’ move.
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When = 2n , put a first queen at the left top corner first. Then it is easy 
to see that there is no available place to put a second queen. So there is no 
way to two queens.

When = 3n , there are three places to put a first queen. First we put it at 
one of the four corners. Then there are two available places. If one place is 
chosen, then the other place is not available. Hence three queens cannot 
be on the ×3 3 board.

When a first queen is placed on one of the edges, it is easy to see that 
we cannot put three queens together. When a first queen is placed on the 
center, it attacks all positions. Therefore, when = 3n , we cannot put three 
queens.
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When = 4n , there is one way to put four queens as follows. By shifting this 
shape with respect to the x-axis or the y-axis, we can obtain another solution 
so that we have two solutions at the end. When we want to find all solutions, 
we first find a solution and then apply the symmetry of the solution.

It was a math genius Gauss who found the number of ways to put the eight 
queens for the 8-queens puzzle. In 1850 when there was no computer, 
Gauss found that there are exactly 92 ways in the 8-queens puzzle. Since 

the 8-queens puzzle has 64 spots, there are 






64
8

 = 4,426,165,368. 

Hence using the rule that if one queen is placed then the rows and col-
umns containing the queen cannot be selected, we can reduce the possi-
bility. Of course, we can consider the diagonal rule but it already reduced 
many possibilities.

Since the chess board also consists of the eight columns, we choose any 
spot in the first column, and choose another spot among the seven avail-
able spots in the second column. Continuing this way, we have at most 

=8! 40,320 possible ways to place 8 queens. In 2002, Zongyan Qui from 
Peking University showed that there are 12 ways up to symmetry by using 
a computer search as in Figure 43.

We rotate each of the first 11 solutions (Figure 43) 90 degrees to obtain 
3 more solutions and flip each horizontally, vertically, and diagonally 
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to obtain 4 more. These imply that there are × =11 8 88 solutions. The 
12th solution of Figure 43 results in 3 more solutions after rotation 
and reflection. Therefore, there are exactly 92 distinct solutions for the 
8-queens puzzle.

It has been known up to now that there are exact solutions for the 
n-queens puzzle when n is less than or equal to 27.

FIGURE 43  Eight-queens puzzle solutions. Wikipedia.
(Continued)
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PROBLEMS

	 1.	(*) Play the 8-queens game with friends ten times. Compute the 
average number of turns to win or lose the game. Explain why there 
should be at least five turns to win the game. 

	 2.	(**) Play the 6-queens game with friends ten times and discuss a 
winning strategy. 

FIGURE 43 (Continued)  Eight-queens puzzle solutions. Wikipedia.
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	 3.	(*) In the 4-queens game, find all symmetric positions of the given 
4 queens below. 

	 4.	(**) Up to the symmetry, show that there are only two solutions to 
place 5 queens in the 5-queen game. Then find the ten symmetric 
solutions. 

	 5.	(***) Up to the symmetry, show that there is only one solution to 
place 6 queens in the 6-queens game. Then find the four symmetric 
solutions. In particular, this number is smaller than the case of the 
5-queens game.

REFERENCE

Qiu, Zongyan (February 2002). “Bit-vector encoding of n-queen problem”. ACM 
SIGPLAN Notices. 37 (2): 68–70.
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C h a p t e r  10

Light Out
Turn Off Lights by Linear Equations

LIGHT OUT BY PUSHING A BUTTON
In 1978, a game designer Bob Doyle from NASA made a game machine 
called ‘Merlin’. Merlin was so popular that two millions of Merlin were 
sold in the USA in 1980. Merlin contains six games including Tic-Tac-Toe. 
Among them, ‘Magic Square’ is the most interesting game mathematically. 
The Magic Square is the original game for the light out game.

Magic Square is played on a ×3 3 array where each entry has a button 
so that one can turn on or off the light until there remains only one light 
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at the center. If one pushes a button, then the neighboring lights are on or 
out, which makes the game not easy. For example, if one pushes a button 
at a corner, then the button, the two buttons next to it and its diagonal 
button change the status of the light (Figure 44(i)). If one pushes a button 
on an edge, the button and the two buttons next to it change the status of 
light (Figure 44(ii)). If one pushes the center button, the button and its four 
neighboring buttons change the status of the light (Figure 44(iii)).
In 1987, a Canadian mathematician Don Pelletier introduced a strategy 
for doing well Magic Square in the American Mathematical Monthly. He 
used vectors to represent the state of on and out. Let us get into the detail.

First, we denote the light on by 1 and the light out by 0. Read the top line 
from the left to the right to get an initial binary vector of length 9. Thus, all 
the rules can be represented by the nine binary vectors. If the initial vector 
is the zero vector, when the button 3 is pressed, the zero vector becomes 
( )0,1,1,0,1,1,0,0,0 . By adding these kinds of vectors, we need to make 
( )1,1,1,1,0,1,1,1,1  which corresponds to (on, on, on, on, off, on, on, on, on) 
in order to win the game. Now, ‘adding’ here is a little different from add-
ing two binary numbers. For example, + = + = + =0 0 0,  1 0 0 1 1 as usual, 
but + =1 1 0. This means that there is no carry in this addition (Figure 45).

FIGURE 45  Representation of each status by a binary vector as (0,0,0,0,0,0,0), 
(0,1,1,0,1,1,0,0,0), (1,1,1,1,0,1,1,1,1) respectively.

FIGURE 44  Three types of rules (i), (ii), (iii) from the left.
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LIGHT OUT
Light out was made by an American game company Tiger Electronics in 
1995. There are on/out buttons on the ×5 5 array. If you press a button, 
then the button and its neighboring buttons switch the status of the light. 
Unlike Magic Square, the diagonal buttons do not change. The goal of the 
light out is to turn off all the lights (Figure 46).

Mini light out is a shortened light out based on the ×4 4 array. While 
light out switches the status of the buttons next to a given button, mini 
light out also switches the status of the buttons opposite to a given side but-
ton because we assume that a top side button and a corresponding bottom 
side button are neighbors and a left side button and a corresponding right 
side button are neighbors.

In Mathematics, we call such a structure a torus. A torus appears often 
in Topology. A torus is topologically equivalent to a square. This is because 
we can attach opposite sides to make a torus. Therefore, pressing one 

FIGURE 46  Lights out.
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button changes the status of the neighboring lights, which is the difference 
with the light out game. Just like the light out game, the aim of this game is 
to turn off all the lights given arbitrarily lit lights (Figure 47).

Both magic squares and light out game can be solved by setting a system 
of linear equations. For simplicity, we consider ×2 2 mini light out game. 
The rule of this game is the same as the light out game. Pressing one button 
changes the status of the lights in the button itself and its two neighboring 
buttons. If we think of “on” as 1 and “off” as 0, then there are four cases 
depending on the position of the button.

Suppose that there are two lights on as follows. Turn off all the lights by 
pressing the least number of buttons.

FIGURE 47  Torus (CC0.1).
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After some trials and errors, you can make all status 0s. In fact, two 
buttons will be enough.

Each button can correspond to one of letters, a, b, c, and d. Remember 
that + = + = + = + =0 0 0, 1 0 0 1 1, 1 1 0. Since a is lit and b and c are not lit, we 
have ① + + = 1a b c  by this arithmetic. Since a and d are lit, ② + + = 0a b d .  
In a similar manner, ③ + + = 0,a c d  ④ + + = 1b c d . Now we can solve the 
system of these equations. By adding ① to ②, we get ⑤ + = 1c d . If we press 
one button twice, we have + = + =0 0 0, 1 1 0 because it has the effect that we 
have done nothing. In other words, we have = =2 0, 2 0a b .

If we subtract ⑤ from ③, we get = 1a . Subtracting ⑤ from ④ results in 
= 0b . Plug = =1,  0a b  into ① to get = 0c  and = =1,  0a b  into ② to get = 1d . 

Therefore, press buttons a and d.
Besides the square, one can play light out game on various figures or 

graphs. Choose your favorite figure to make your own light out game.

PROBLEMS

	 1.	(*) Let us enjoy the ×2 2 mini light out game, by pressing the mini-
mum number of buttons to solve the following problems. Solve it by 
your intuition first and by a system of equations. 

	 2.	(**) In magic square game, explain why the center light can be off at 
the end regardless of any initial status. 

	 3.	(**) In the light out game, we are given the following. What is the 
minimum number of buttons to turn off all the lights? 
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	 4.	(***) In the mini light out game, explain why all the lights can be off 
at the end regardless of any initial status. 
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1258 Board Game
Magic Square and 
Orthogonal Latin Square

THE 36 OFFICERS PROBLEMS
In 1782, Leonhard Euler proposed the following 36 officers’ problem.

Is it possible to arrange a delegation of six regiments, each of which 
sends a colonel, a lieutenant-colonel, a major, a captain, a lieutenant, and 
a sub-lieutenant in a 6 by 6 array such that no row or column duplicates a 
rank or a regiment?
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Euler tried many ways and conjectured that such an array is not pos-
sible. If n is 5, that is, the problem to arrange five regiments with five dif-
ferent ranks without duplications in a 5 by 5 array is possible. However, if n 
is 6, the solution is hard to find. This problem was not solved for 120 years.

Finally, in 1901, a French mathematician Gaston Tarry proved that such an 
array is not possible by enumerating several thousands of cases. In 1984, a 
Canadian mathematician Doug Stinson proved it by using a combinatorial 
design theory and in 1994, an American mathematician Steven Dougherty 
reproved it by using Coding Theory and Finite Geometry. Their proofs are 
based on advanced mathematics. There is no known proof based on an 
elementary method which can be understood by a college student.

Let us get back to Euler’s conjecture. Euler also conjectured that it 
will not be possible to arrange n regiments with n different ranks with-
out duplications in an n by n array when n k k( )= + ≥4 2    2 . However, in 
1959, Raj Chandra Bose, Sharadchandra Shankar Shrikhande, and Ernest 
Parker disproved this conjecture when n =10. Since then, the conjecture 
was disproved for any n k k( )= + ≥4 2    2 .

SEOK-JEONG CHOI WHO STUDIED ORTHOGONAL  
LATIN SQUARES
The arrays appearing in Euler’s conjecture are called orthogonal Latin 
squares. We recall that the square array with numbers 1 to n2 where the 
row sum, the column sum, and the diagonal sum are all the same is called 
a magic square. Latin square is a variant of a magic square such that each 
row has n numbers (symbols) such that each number (symbol) appears 
exactly once and the same is true for each column. Sudoku is a good 
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example of a Latin square. When two Latin squares of an order n (mean-
ing size of n n× ) are superimposed and the ordered paired entries in the 
positions are all distinct, we call such a pair of Latin squares orthogonal.

The study of orthogonal Latin squares is regarded as the origin of 
Combinatorics. In Europe, Euler wrote a paper on orthogonal Latin 
squares in 1776. However, it was discovered that Seok-Jeong Choi from 
Korea studied orthogonal Latin squares 61 years earlier than Euler. He was 
a prime minister in Chosun dynasty and introduced a pair of orthogonal 
Latin squares of order 9 for the first time in his book Koo-Soo-Ryak (or 
Gusuryak). Using this, he also constructed a magic square of order 9. It 
is unknown how and why he discovered such a pair of orthogonal Latin 
squares of order 9 (Figure 48).

FIGURE 48  Conversion from orthogonal Latin squares to a magic square.
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1258 GAME AND ORTHOGONAL LATIN SQUARES
In this section, I would like to introduce a board game called 1258 game 
which I invented in 2017. What is the connection between 1258 game and 
orthogonal Latin squares? Simply speaking, 1258 game is to find values in 
the row or column of a pair of orthogonal Latin squares of order 4 consist-
ing of 1, 2, 5, and 8. Let us look at the rules of 1258 game.

First determine the order of the players, shuffle the cards, put nine cards 
on the deck in the form of a 3 by 3 array. The remaining cards are placed 
on the center card of the deck. In your turn, pick one card from one of the 
eight cards or one from the pile of the center card. If one card is picked 
from the eight cards, move one card from the pile to the empty spot. Each 
player repeats this process. If there are at least four cards in your hand, 
check if the ones places and the tens places in the four cards consist of 1, 2, 
5, 8 in any order. Because of the symmetries in the numbers 1, 2, 5, 8, you 
may rotate the cards 180 degrees or flip them. If you find such four cards, 
call ‘Ola’ and put them aside. Ola has three types of scores. If all colors of 
the four cards are the same, 4 scores are given. If all colors are different, 
2 scores are given. For other cases, 1 score is given. Play this game until 
there is no more card left in the deck. Then add all the scores each player 
obtained. Rank the players based on the scores. If two total scores are 
equal, the player with more 4 scores will be ranked higher. If the 4 scores 
are also equal, the player with more 2 scores will be ranked higher. If the 2 
scores are also equal, the game is a tie.

In Mathematics, a Latin square is represented as a matrix of order n. 
A matrix of order n is an n n×  square array whose entries are numbers or 
letters, normally enclosed by a parenthesis or a bracket. Therefore, we can 
make a Latin square of order 4 based on 1, 2, 5, 8, and represent them as 
the following matrices A and B.

Now we superimpose A and B to get a matrix C.

If you look at each row or column of C, the ones places contain 1, 2, 5, 8 
exactly once and the tens places contain 1, 2, 5, 8 exactly once. This is true 
for the two diagonals. In other words, if we regard each entry of the matrix 
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C as a card with two digits, then each row or column of C corresponds to 
the four cards called ‘Ola’. From now on, enjoy the 1258 game and try to 
find any mathematical properties of 1258 game.

If one card is picked from the eight cards, move one card from the center 
to the empty spot.

If one card is picked from the center, no more action is needed.

THE RULE OF THE 1258 GAME
1258 cards consist of 96 cards and two joker cards; 16 cards have two digits 
from 1, 2, 5, 8, and there are 6 distinct colors so that there are × =16 6 96 
cards. Any card can be rotated 180 degrees and can be also flipped to get a 
possibly new number. For example, 15 can be transformed into 51, 12, 21.

The following describes some patterns of the numbers:

	 1.	When rotated or flipped, the numbers are the same: 11 88.

	 2.	When rotated or flipped, the numbers produce another numbers: 18, 
81, 22, 55.

	 3.	When rotated or flipped, the numbers produce three new numbers: 
12, 21, 15, 51, 28, 82, 58, 85.

PROBLEMS

	 1	 (*) The sum of all the numbers in Ola is always 176. Why is it so?
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	 2	 (*) The following matrix C becomes a magic square of order 4 such 
that the sum of the diagonal is 176.

	 3	 (*) Using matrix C, make a magic square of order 4 whose row sum, 
column sum, and diagonal sum is 68.

	 4	 (***) Find other examples like C in Problem 2.

	 5	 (**) We can represent each Ola card as a bijective function between 
{1, 2, 5, 8} and {1, 2, 5, 8}. Why is that so?

	 6	 (**) How many Ola cards of the circulant form like 12, 25, 58, 81 do 
there exist? That is, the ones place is connected with the tens place.

(Hint: Such an Ola card has the property that f(a) = a is not true 
for any value of a.)
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Switching Game
Shannon’s Network Game

FIND A DETOUR
The Shannon switching game was invented in 1951 by Claude Shannon, 
who is an American mathematician and engineer well known as the father 
of information theory. When there was a disconnection in a network con-
necting many computers, he was trying to find a detour connecting the 
network. Motivated by this situation, switching game was made. Shannon 
studied how to send information such as letters, sound, image reliably 
through a noisy channel. One of his papers titled as “The Mathematical 
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Theory of Communication” is a foundational paper for information theory 
and is a classic in communication theory.

The Shannon switching game (simply switching game) is usually played 
on a square lattice graph. Recall that a graph consists of vertices and edges. 
An edge is a line connecting two vertices. First, determine two vertices 
on the graph as a starting point and an ending point. One player is called 
‘Short’ who colors edges, and the other player is called ‘Cut’ who deletes 
edges. The goal of Short is to make a path connecting the starting point 
and the ending point. The goal of Cut is to interrupt Short not to make 
such a path.

Let us take a look at switching game on a square lattice graph with 25 
vertices. Short(green color) colors edges in order to make a path from ver-
tex A to vertex B, and Cut(red color) removes edges in order for Short not 
to make a path connecting A and B. In the graph below, Cut removes the 
16th edge so that Short cannot arrive at B. Therefore, Cut wins the game.
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In the following graph, even though Cut has started first and Short has 
followed, Short can always win the game.

In 1964, a mathematician Alfred Lehman proved that there is a way to 
win switching game using a very complicated method. In 1996, Richard 
Mansfield reproved Lehman’s result using a less complicated method. 
However, there is no explicit solution for switching game. Please try by 
yourself!

In spite of different look, ‘Bridg-It’ and ‘Hex’ are played in a similar way 
(Figure 49).
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BRIDG-IT
Bridg-It was made by David Gale who also made Chomp. Unlike switching 
game, Bridg-It uses a rectangular lattice without edges where there are n 
vertices vertically and n + 1 vertices horizontally. Rotate another rectangu-
lar lattice of the same size 90 degrees to superimpose it with the original 
one to play the game. See the picture of Bridg-It.

FIGURE 49  Bridg-It game, Green wins.
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The rule of Bridg-It is as follows. A player who plays on the original lattice 
(blue color in the picture) is called ‘Right’ and a player who plays on the 
rotated lattice (red color in the picture) is called ‘Left’. Left chooses one of the 
n vertices on the top as a starting point and connects vertices in the rotated 
lattice until Left arrives at any vertex at the bottom. Similarly, Right starts 
from any vertex on the left side and tries to reach any vertex on the right side.

Left and Right draw lines connecting adjacent vertices in their own lat-
tice and should not cross their lines. The person who reaches the other 
end wins the game. If we separate the two lattices, then the two players 
are playing switching game at the same time. The condition that Left and 
Right should not cross their lines is equivalent to the condition that Cut in 
switching game removes edges.

HEXAGONAL GAME, HEX
Hex is a two-player board game on an ×11 11 rhombus-shape board con-
sisting of hexagons. Just like Bridg-It, the player who connects hexagons 
first in the opposite sides wins the game. The only difference is that each 
player puts his/her stones instead of connecting lines.

Hex was invented by a mathematician and poet Piet Hein in 1942 and 
was claimed to be rediscovered independently and popularized by John 
Nash in 1948 who is well known for his game theory. John Nash is the only 
person to be awarded both the 1994 Nobel prize in Economic Sciences and 
the 2015 Abel prize. Nash proved that the first player can always win the 
game and also proved the Hex theorem which states that Hex cannot end 
in a draw. In 1952, Parker Brothers, an American toy and game manufac-
turer, commercialized it. This game is still popular in the USA and Europe 
(Figure 50).

FIGURE 50  Hex game.
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According to the Hex theorem, you can win the game by interrupt-
ing the other player’s stones instead of connecting your own stones. Since 
there is no draw, if one player cannot connect his/her opposite sides, then 
the other player will win the game.

Let us look at the game in more detail. Each hexagon in the board can be 
regarded as a vertex. Two players are called White and Black. White starts 
from any position on one edge (marked green in the picture) and puts 
white stones to connect to any position on the opposite edge while inter-
rupting black stones. Likewise, Black tries to connect black stones while 
interrupting white stones. In other words, the Shannon switching game 
is played by White and Black at the same time. Hex is usually played on a 

×11 11 rhombus-shape board but the board size can be variously adjusted.
Who can win the ×3 3 Hex game? A player who puts on the center can 

win the game. As in Figure 51, if there is a black stone in the center, Black 
can make a path connecting two opposite edges wherever White puts 
stones. It is more complicated for the ×4 4 Hex game. The first player who 
puts one stone in the positions 1, 2, 3, or 4 can win the game. Otherwise, 
lose the game. Then as the board size increases, where should we put stones 
to win the game? No explicit method is known. However, as indicated in 
the beginning, Nash proved that the first player can always win the game.

A surprising thing about Hex game is that there is no draw. This is called 
the Hex theorem. As we recall, tic-tac-toe game has a tie often. Hence this 
theorem is not obvious. In 1979, Gale proved that the Hex theorem and the 
Brouwer fixed point theorem are equivalent (Figure 52).

The Brouwer fixed point theorem named after Dutch mathematician 
Luitzen Brouwer can be a little difficult to explain mathematically. We 
explain it in a figurative way. Suppose that each of two persons go up or 
go down a mountain road with an angle of 45 degrees. One person goes 

FIGURE 51  3 × 3 Hex and 4 × 4 Hex.
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up from the bottom to the top of the mountain with a constant speed for 
an hour. The other person goes down from the top of the mountain to the 
bottom with any speed. Then the two persons should meet at some point. 
In Figure 53, x-axis denotes time and y-axis denotes height. The line graph 
y x=  and the curve y f x( )=  should always meet at x f x( ),  ( )0 0  because the 
curve y f x( )=  represents the height of the person going down and so this 
curve is continuous. Roughly speaking, this is the fixed-point theorem. 
Nash applied the fixed-point theorem to game theory to prove the Nash 
equilibrium which is the most common way to define the solution of a 
non-cooperative game involving two or more players.

PROBLEMS

	 1.	(*) We can play switching game on Petersen’s graph which contains 
ten vertices and 15 edges. It is a small graph that serves as a good 
example or a counterexample for many problems. Choose any two 
non-adjacent vertices outside as a starting point and an ending point. 
Can Short win the game by playing first or second?

FIGURE 52  Fixed point theorem.
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	 2.	(*) Play Bridg-It on a ×6 7 board with friends.
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	 3.	 (***) Below is the Hex game with 3, 4, or 5 hexagons on each edge. 
Assuming White’s turn (green stones), where are the black stones 
placed to win each game?
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Dots and Boxes
Occupy More Boxes

DOTS AND BOXES
Dots and Boxes is a pencil-and-paper game for two players. French math-
ematician Édouard Lucas in the 19th century described it and called it La 
Pipopipette. It is also known as the Dots Game, Boxes, Dots and Dashes, 
and Pigs in a Pen. Lucas studied the Fibonacci sequence and created the 
Lucas sequence by changing the first two initial values. Being interested 
a lot in recreational mathematics, he invented both Dots and Boxes and 
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the Tower of Hanoi. The Tower of Hanoi is a well-known game moving 
the disks of various size stacked in one rod to another rod via a third rod 
under certain rules. Lucas explained Dots and Boxes in a book on recre-
ational mathematics in 1889.

Dots and Boxes is a game played on a square lattice of size  
× × ×3 3, 4 4, 5 5, etc. As the name indicates, each player plays alternately 

and connects any two adjacent vertices (that is, makes an edge) to make a 
square box. It is an easy game with the following rules.

Each edge should be drawn one by one either horizontally or vertically. 
You do not need to draw all the edges of a square by your own drawing. 
Even if your opponent draws three edges of a square, you can take the 
square if you draw the last edge. The last rule is most important. If you 
make a square in your turn, you have to draw another edge. If you make 
another square by drawing an edge, you can continue to draw an edge. The 
game is over when all the edges are drawn. A winner is a person with more 
boxes. If there is an equal number of boxes, the first player loses the game.

Then let us play ×3 3 Dots and Boxes. Let us call the first player Red who 
draws a red edge and the second player Blue who draws a blue edge. The 
box Red occupies is marked as ‘R’ and the box Blue occupies is marked as 
‘B’. In this way, we have distinguished the edges by colors and the boxes by 
‘R’ or ‘B’ (Figure 53).

UC Berkeley mathematician Elwyn Berlekamp was interested in Dots 
and Boxes even when he was an elementary school student in 1946. In 
1982, he co-authored the book “Winning Ways for your Mathematical 
Plays” with John Conway and Richard Guy and introduced a strategy for 
Dots and Boxes. In 2000, he wrote the book “The Dots-and-Boxes Game”. 
Berlekamp did not find a winning strategy. In fact, finding a winning 
strategy for Dots and Boxes belongs to NP-hard, which is one of the most 
difficult problems in math and computer science. Nevertheless, he found a 
winning way for some cases.

The next strategy I assumes that Red plays first on the ×4 4 lattice board. 
Since there is no occupied box and there is an even number of lines, it is 
Red’s turn.
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FIGURE 53  Example of dots and boxes.



Dot and Box Game    ◾    93

If Red draws one edge, then four boxes are marked as ‘R’ according to 
Strategy I, which is a common way. In this case, although there are four 
‘R’s, there are still unmarked five boxes.

If Red chooses strategy I, Red should draw another edge. Since the result 
will be the same, we suppose that a dotted red line is drawn at the lower 
right side as in Figure 54 ①, ②, ③. Then Blue completes a square at the right 
bottom first and then completes four more boxes. Suddenly, since the score 
4–0 changed to 4–5, Red loses the game.

If Red chooses strategy II, then Blue occupies two boxes as in Figure 54  
①, ②, ③ and draws an additional edge somewhere, say, the dotted line in 
the middle. Red makes use of the blue lines to occupy five boxes as in 
Figure 54 ①, ②, ③. In the beginning of strategy II, Red occupies less squares 
in order to throw the bait. Red obtains five more boxes so that Red wins 
the game with 7–2. This strategy is called a ‘double-cross strategy’.

FIGURE 54  Which strategy is needed?.
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WINNING BY A CHAIN OF BOXES
Can the double-cross strategy work always? If the opponent also uses the 
double-cross strategy, how can you win the game? In order to apply the 
double-cross strategy, we need a condition that there is a chain of boxes 
in the lattice. In the previous example, Red’s double-cross strategy was 
successful because after Blue draws an edge, Red can make five boxes in 
a successive way. If we can make at least n boxes successively after draw-
ing one edge, we call such a shape ‘a chain of boxes of length n’. Here we 
assume that n is at least 3.

A possible winning strategy for Dots and Boxes is as follows. Each player 
tries to force the opponent to make the first long chain because this chain 
of boxes is in fact a sacrifice to produce more boxes later.

For example, in Dots and Boxes on the 4 × 4 board (Figure 55), try not 
to make boxes in the beginning. Try to avoid the double-cross strategy if 
possible. Since this strategy is relative, it is hard to guess who will win the 
game at the end.

VARIOUS DOTS AND BOXES GAMES
There are Dots and Boxes games based on triangles and hexagons. For 
example, there are 28 vertices and 36 edges on the triangular graph board. 
A box needs four edges but a triangle needs only three edges. Hence, many 
triangles are formed easily. Even though the shapes are different, players 
can apply a double-cross strategy to make a long chain of boxes by yielding 
a short chain of boxes (Figure 56).

FIGURE 55  4 × 4 board.
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STRINGS AND COINS GAME
There is a game called ‘Strings and Coins’ which is basically the same game 
as Dots and Boxes. Display coins in a square lattice which correspond to 
the boxes in Dots and Boxes. Connect coins with strings in four directions 
so that coins in the edges or corners will have 1 or 2 additional strings. 
Players cut the strings with a scissors alternately. If a player cuts the four 
strings, the player can take the coin and cut another string just like Dots and 
Boxes. A box in Dots and Boxes corresponds to a coin in Strings and Coins 
and the adjacent boxes correspond to the string connecting two coins. The 
edge sharing two boxes correspond to edge cutting. As in Figure 57, two 
boxes marked A means that two coins are not connected by any strings.

FIGURE 56  Dots and Boxes games based on triangles and hexagons.

FIGURE 57  Rules for strings and coins.
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PROBLEMS

	 1.	(*) In Dots and Boxes on ×3 3 lattice, one can see that who can win 
the game when there are 9, 10, or 11 edges drawn on the board. After 
playing several games, find which patterns exist.

	 2.	(*) In the following Dots and Boxes on ×3 3 lattice, which edge is the 
worst decision?

	 3.	(***) In the following two Dots and Boxes on ×4 4 lattice, you can 
win the game by drawing only one edge in each game. Where do you 
draw an edge?

	 4.	(****) Is there a winning strategy in Dots and Boxes on ×4 4 lattice? 
Write down your own thought.
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Matricking
Factorization and Cube Net Game

MATRICKING
Even a person who likes Mathematics can be nervous when the person 
learns a new mathematical concept. This is true especially when the for-
mula is new and problems are not understandable. If one can learn some 
games related to mathematical concepts, learning mathematics can be 
enjoyable. Therefore, I have made a website called Matricking.

DOI: 10.1201/9781003268024-14

https://doi.org/10.1201/9781003268024-14


98    ◾    Mathematicians Playing Games

Matricking is a combination of Math, Trick, and King. Like an appetizer, 
Matricking can arouse mathematical curiosity and knowledge. It is based 
on simple rules so that one can learn Mathematics with fun. Matricking 
has several online games including factorization, cube net, ratio, and acute 
triangle (www.matricking.com). Each game is played on a square board 
with various levels against a computer. In a battle mode, 2~4 people can 
play together.

We explain each game with two players. The first player is denoted by 
Red and the second player is denoted by Blue.

FACTORIZATION GAME
Just as we write 12 as × ×2 6, 3 4, factorization is a process to factor an 
integer into a product of two integers. Depending on an integer, there can 
be various ways to factor the integer. Factorization game represents each 
factorization as a rectangle so that the concept can be easily visualized.

For example, factorization with number 4 has the following five types 
of rules.

	 1.	Since 4 is represented as ×1 4, place four stones horizontally.

	 2.	Since 4 is represented as ×4 1, place four stones vertically.

	 3.	Since 4 is represented as ×2 2, place two stones horizontally and two 
stones vertically.

	 4.	Place four stones diagonally. There are two ways.

In general, when n is given, one represents =n ab so that there are a stones 
horizontally and b stones vertically. Of course, we allow two diagonals 
in order to have more fun. Each player puts stones alternately based on 
the rules. The person who can no longer play will lose the game. Do it on 
Figure 58.

If n is a prime greater than 2, the factorization game based on ×n n 
board has a winning strategy for the first player. The first player places 
n stones in an odd number of turns. This means that the second player 
should places n stones in the same direction as the first player since that is 
the only way to place them. Since there are n turns and n is odd, the first 
player will win the game.

For example, in the board of size ×3 3, as there is only one way to place 
three stones, the first player will always win the game. In general, if n is not 

http://www.matricking.com
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a prime number and the board size is ×m m (m>n), then there is no known 
winning strategy so far. One strategy is that the first player tries to finish 
the game at the odd number of turns and the second player tries to finish 
the game at the even number of turns. The player who keeps this strategy 
will win the game.

CUBE NET
Cube net game is similar to factorization game. The difference is to draw 
the cube net instead of squares. When you do this game, open your eyes 
wide. There might be a space for a cube net to fit in.

There are 11 cube nets in total (Figure 59). Select one of them and the 
other player selects one of them as well. Just mark six boxes based on the 
11 cube nets. Do it alternately and the person who can no longer play will 
lose the game.

FIGURE 58  Board for the factorization game.
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In Figure 60, Red plays first and Blue plays second. Suppose that this is 
Red’s turn. Where does Red put? Take a close look at some of six empty 
boxes in the middle to make a cube net. Therefore, Red can win the game.

In a small board of size ×4 4, the first player can draw one of the ten 
cube nets from Figure 59 since the tenth cube net requires five horizontal 
boxes and wins the game. In a board of size ×5 5, Red can always win the 
game with some simple strategy. For example, Red puts the T shape in the 
center of the board. Then Blue has only two shapes such as ① and ➉ in 
Figure 59 which should be placed on the left or right side with respect to T. 
Then Red puts the same shape as Blue in the opposite side. Hence Red wins 
the game. In the case of board size ×6 6, we do not have a winning strategy 
for either the first player or the second player. The first player should put 
the last stone at the odd number of turns while the second player should 
put the last stone at the even number of turns.

ACUTE TRIANGLE
Acute triangle game is a game putting three stones at the same time such 
that the three stones make an acute triangle. For example, the three red 
dots form an acute triangle. The three blue dots also form an acute tri-
angle. They play alternately and the person who can no longer put an acute 
triangle will lose the game

FIGURE 59  11 Cube nets.
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FIGURE 60  A cube net game on the 7 × 7 board.

FIGURE 61  Acute triangle game.
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For example, on the ×3 3 board, there are two types of possible three stones. 
If we rotate an acute triangle 90, 180, 270 degrees from each type, then we 
get three more distinct triangles. Therefore, there are eight distinct shapes 
from (a) and (b). If Red puts one of the types of (a) or (b), Blue can put a 
different type to win the game.

How about the game on the ×3 3 board? It is more complicated, but 
there are at most five turns. Because there are 16 spots to place stones and 
three stones are put at the same time to reduce the available spots, there 
are at most five turns. Therefore, the strategy for Red is to finish the game 
in the fifth turn and the strategy for Blue is to finish the game in the fourth 
turn. In general, in the case of the ×n n board for this acute triangle game, 
there are at most / 32n  turns. In fact, when you play this game, there are 
one or two less turns than this maximal number. Therefore, when you 
make a mistake, the result for winning or losing can change.

As similar games, one can think of rectangle games, obtuse triangle, and 
a general triangle. Furthermore, an n-gon game is possible. Please think 
about various games and try them.

PROBLEMS

	 1.	(*) When two players play factorization game on the ×4 4 board, is 
there a winning strategy for the first player?
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	 2.	(**) When two players play cube net game on the ×6 6 board, find at 
least five winning strategies for the first player.

	 3.	(**) When two players play acute triangle game on the ×5 5 board, 
find at least five winning strategies for the first player? Also, find at 
least five winning strategies for the second player.

	 4.	(***) Make your own games similar to factorization game, cube net 
game, and acute game and share them with your friends.
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C h a p t e r  15

SET Game
Steiner Triple System Game

CHOOSE A SET OF THREE CARDS
SET Game is a real-time game played by one or more people. A genetic 
engineer Marsha Falco invented this game in 1974 while she was research-
ing genetics of Shepherds. She put symbols in cards to represent infor-
mation of dogs. Different symbols with different properties represented 
different traits. She found it fun to explain to other people. Later, she 
launched Set Enterprises in 1991 to commercialize SET and now the com-
pany has grown up internationally. This game was selected as one of the 
top games by Mensa.

SET consists of 81 cards with four types of symbols. Each type has three 
properties. More precisely, each card contains numbers (1, 2, 3), shapes 
(diamond, squiggle, oval), shading (solid, striped, open), and color (red, 
green, purple). Therefore, there are × × × =3 3 3 3 81 cards.
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The rule of SET is simple. A dealer mixes the 81 cards and displays  
12 cards on the table. The goal of the game is to select a set of three cards 
such that properties are either all same or all different. Such a set of three 
cards are called a ‘Set’. The player who makes a set will take three cards. 
Then the dealer adds three cards to the remaining nine cards. Play the 
game until there is no more Set. The player who has the largest number of 
cards becomes the winner.

The following three cards form a Set. We need to check whether each type 
satisfies either of the two conditions, all same or all different. In this case, 
there are three different numbers, the same shape, the same shading, and 
the different colors.

We can display nine cards where each row, each column, and two diago-
nals form Sets. This is like a magic square in some sense.
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For example, the first column is a Set since all numbers are the same 
while the shapes, the shadings, and the colors are all different. In fact, all 
three columns have the same number and the other types are all distinct. 
However, the three rows have the condition that all properties are differ-
ent. In each diagonal, only one property is the same and the other three 
properties are all different.

Although SET may not intend any mathematical feature, it can be easily 
described in terms of a combinational design. One can observe that given 
any two cards there is a unique third card so that the three cards form a 
Set. This property was already known in a design theory, known as a bal-
anced incomplete block design (BIBD).

A BIBD is a collection B of b subsets, called blocks, of a finite set X of v 
elements such that any element of X is contained in the same number r of 
blocks, every block has the same number k of elements, and each pair of 
distinct elements appear together in the same number λ of blocks. BIBD 
are also called as 2-designs, that is, any two elements belong to λ blocks of 
size k. BIBD are denoted by λ( )−2 ,  , v k  design. In particular, if λ = 1 and 

= 3k , such a BIBD is called a Steiner triple system of order v denoted by 
( )2, 3, S v .

For example, when = 7v , we have s Steiner triple system of order 7, 
( )2, 3, 7S . This is called the Fano plane. It consists of 7 points and 7 blocks 

(or lines). Each block contains three points and every pair of points belongs 
to a unique block.

SET has 81 cards or 81 elements. Any pair of two cards belongs to a unique 
Set since there is a unique third card to form a Set. Each Set corresponds to 
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a block of size 3. Therefore, the 81 cards in SET form a Steiner triple system 
of order 81, that is, SET is ( )2, 3, 81S .

Another interesting question is that how many cards should be placed 
on the table in order to make sure that one can find at least one set among 
them. This question makes sense because if there are a few cards on the 
table, we might not find a set. It might happen that there is no SET from 
the twelve cards on the table. Adding a few more might not guarantee the 
existence of a SET. Here comes the concept of a cap. A cap is a collection of 
cards containing no SET. It was proved that the maximum size of a cap is 
20. In other words, there is a set of 20 cards where you cannot find a SET. 
The proof of this fact is beyond our scope. But there is a mathematical rep-
resentation of a cap as follows.

Let { }= 0, 1, 23F  be the field of three elements, where the addition and 
multiplication are done by modulo 3 operation. These numbers correspond 
to the three properties such as red, green, purple. We associate each of the 
four types with one of the three elements from 3F . Therefore, each card in SET 
game corresponds to an element of F a a a a a F ii( )= ∈{ ,  ,  ,  |       for each  }3

4
1 2 3 4 3 . 

This accounts for 81 cards in SET game.
Let x, y, z be any three elements of 3

4F . One can check that the following 
conditions are equivalent.

	 i.	x, y, and z form a SET,

	 ii.	x + y + z = 0,

	 iii.	x, y, and z are in a line.

For example, let x = ( )0, 1, 2, 0 , y = ( )1, 1, 2, 0 . Then to make a SET, we 
need z = ( )2, 1, 2, 0  satisfying x + y + z = 0 so that each coordinate satis-
fies 0 + 1 + 2 = 0 (mod 3) or 1 + 1 + 1 = 0 (mod 3), 2 + 2 + 2 = 0 (mod 3), or 
0 + 0 + 0 = 0 (mod 3).

Therefore, a cap in 3
4F  is a set of elements in 3

4F  such that no three 
elements (points) are not in a line. As discussed above, the maximum size 
of a cap in 3

4F  is 20. Instead of proving this, we consider a cap in 3
2F  as 

follows.
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There are no three points in a straight line, where we allow the side points 
are connected with the other side points just like a torus. One can check 
that the maximum size of a cap in 3

2F  is 4. In general, let α ( )n  be the maxi-
mum size of a cap in 3Fn. Its exact values are known from https://oeis.org/
A090245 up to = 6n , as shown below.

n 1 2 3 4 5 6 7

nα ( ) 2 4 9 20 45 112 unknown

Therefore, it will be a challenging open problem to compute α ( )7 .

PROBLEMS

	 1.	Find at least three Sets in the following. In fact, there are six Sets.

(selected from https://www.setgame.com/set/puzzle/yesterday 
February 2, 2023)

https://oeis.org
https://oeis.org
https://www.setgame.com
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One example of a Set is

	 2.	(*) Find another cap of size 4 in 3
2F , different from the above example.

	 3.	(*) Show that the maximum size of a cap in 3
2F  is 4.

	 4.	(**) Show that the maximum size of a cap in 3
3F  is 9.

Answer for Problem 1
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C h a p t e r  16

Dobble Game
Finite Projective Plane Game

ANY TWO CARDS SHARE EXACTLY ONE SYMBOL
Dobble is a speedy game played by two or more people. It is also known 
as Spot It in the USA. Any two cards of Dobble share exactly one symbol.

It goes back to Jacques Cottereau who introduced a set of 31 cards in 
1976. Each card has six images of insects and any two cards share exactly 
one image. We note that = + +31 5 5 12 . Here, the number = 5n  plays an 
important parameter. If = 2n , then there will be seven cards such that 
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each card has three symbols and any two cards share exactly one symbol. 
These seven cards are shown below.

In 2008, a game designer Denis Blanchot added more cards to develop the 
idea to create the current Dobble which has been commercialized by the 
company Asmodee. Dobble has 55 cards, each of which has eight symbols. 
It can be played by two to five players. The rule of the game is easy to follow.

	 1.	Place all the cards in the center of the table with face up.

	 2.	Each player takes one card with face up.

	 3.	When the game starts, each player shouts a symbol that is common 
with his or her top card. If this is correct, that player takes the card 
and puts it on the player’s top card.

	 4.	The game continues until all the cards on the table are exhausted 
completely.

	 5.	Rank the players according to the number of cards they collected.

There are other rules of the game. All the rules are based on the special 
property that any two cards share exactly one symbol.
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In the following two cards, what is a common symbol?

The following symbol is the only common symbol.

FINITE PROJECTIVE PLANE OF ORDER N
It is rather mysterious why any two cards from the 55 cards share a symbol 
and it is the only one. To explain this, we introduce the concept of a finite 
projective plane of order n. Here is the definition.

A projective plane of order n ( ≥  2n ) is a finite set of points and lines 
(defined as sets of points) satisfying the following conditions:

	 1.	Every line contains +1n  points.

	 2.	Every point lies on +1n  lines.

	 3.	Any two distinct lines intersect in a unique point.

	 4.	Any two distinct points lie on a unique line.

When = 2n , the Fano plane is the unique projective plane of order 2 shown 
below.
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From the previous chapter, it is also known as a Steiner triple system 
of order 7 denoted by ( )2, 3, 7S . Each line of the Fano plane consists of 
3 = 2 + 1 points and corresponds to a block of size 3. Each point lies on the 
three lines. Any two distinct lines meet at a unique point. Any two dis-
tinct points determine a unique line. Therefore, the Fano plane is a finite 
projective plane of order 2. In terms of a BIBD in the previous chapter, a 
projective plane of order n is the same as ( )− + + +2 1,  1, 12n n n  design. This 
means that a projective plane of order n has exactly + +12n n  points and 

+ +12n n  lines.
Now, this explains why Cottereau considered 31 cards with six images 

of insects. He was thinking of a projective plane of order 5 so that each 
card (corresponding to a line) consists of 5 + 1 = 6 images and there are 

+ + =5 5 1 312  cards together. Now we introduce a theorem telling the exis-
tence of a projective plane of order n.

Theorem. If =n pk, where p is a prime and k is a positive integer, then 
there exists a projective plane of order n.

Interestingly, the orders of all the known finite projective planes are a 
prime power. Therefore, finding a finite projective plane of other orders 
has been an active open problem. One necessary condition for the exis-
tence of a finite projective plane of order n was known as the Bruck-Ryser 
theorem.
Theorem (Bruck-Ryser). If there is a finite projective plane of order n and n 
is congruent to 1 or 2 (mod 4), then n is the sum of two squares.
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The first non-prime power order is 6. Since 6 is congruent to 2 (mod 4), 
6 must be the sum of two squares if there exists a finite projective plane of 
order 6. It is easy to see that this is not possible. Therefore, we know that 
there is no finite projective plane of order 6.

We note that the converse of the Bruck-Ryser theorem does not hold 
in general. For example, when = 10n , 10 is the sum of 1 and 9. Since 1970, 
there was a hope that there would exist a projective plane of order 10. 
Using the knowledge of the weight distribution of the code generated by 
the 111 by 111 incidence matrix of a putative projective plane of order 10, 
Lam, Thiel, and Swiercz in 1989 proved that there does not exist a finite 
projective plane of order 10.

Now, we can see that Dobble game is based on a finite projective plane 
of order 7. There should be + + =7 7 1 572  cards. We recall that Dobble has 
only 55 cards. The company removed two cards. The author has calculated 
that the two missing cards are as follows.

PROBLEMS

	 1.	(*) In the above two missing cards, what is a common symbol?

	 2.	(**) Check that the following figure represents a finite projective 
plane of order 3. There should be 13 points and 13 lines. Identify all 
13 lines.
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	 3.	 (*) The following is called an affine plane of order 3. Each line 
contains  exactly three points. How many lines are there? What is 
the difference and relation between an affine plane of order 3 and a 
projective plane of order 3?
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C h a p t e r  17

Find-a-Best-Friend Game
A Game of the Perfect 
Hamming Code

HOW TO PLAY THE GAME
In this chapter, we introduce a game called “Find-a-best-friend” 
invented by the author in 2018 who got the motivation from error-cor-
recting codes.

Find-a-best-friend is a two or more players’ game with the goal that each 
player should find a pair of cards (called the matching cards) whose colors 
differ in exactly one place.
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Find-a-best-friend consists of 48 cards. Twelve cards have a grey color 
background, called the Hamming cards. The other 36 cards have a white 
color background, called the best-friend cards.

One Hamming card and one best-friend card are called a “match” if 
there is only one color difference between them. See below. Only yellow 
color is different.

The following two cards are not matching cards since there are three 
colors difference.

(Hamming card)   (best-friend card)
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Below is the order of the game.

	 1.	Determine who will play first.

	 2.	Mix the Hamming cards and best-friend cards separately.

	 3.	Place the 12 Hamming cards in the center on the table with face down.

	 4.	Each player is given five best-friend cards and put them face up.

	

	 5.	The first player picks the Hamming card in the center and face up.

	 6.	Each player checks whether each player has a best-friend card which 
is a best-friend with the picked Hamming card as shown below. If so, 
shout “match”.
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	 7.	 If there is no more best-friend card to put down, then move to a next 
player to turn up the Hamming card.

	 8.	The next player puts the Hamming card on the previous Hamming 
card.

	 9.	Players repeat this process until all the Hamming cards are 
exhausted.
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	 10.	One can use “chance” only one time if there is exactly two colors dif-
ference between the Hamming card and one’s own best-friend card.

� Chance

	 11.	(penalty rule)
If a player puts down a wrong best-friend card to match with a 

Hamming card or the chance call was wrong, the player should get 
an extra best-friend card as a penalty.
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If a player does not say “match”, “pass”, or “chance” within the 
agreed time limit such as 5 or 10 seconds, then the player should get 
an extra best-friend card as a penalty.

	 12.	(rank) The player who first matches all the five best-friend cards with 
the Hamming cards will be the winner. So, the rank is based on the 
order of the players finishing the game. When there is a tie, the player 
who shouts “match” first will be ranked higher.

MATHEMATICS OF FIND-A-BEST-FRIEND
Now we can describe the mathematics behind the game. We remark that 
Find-a-best-friend is based on the Hamming code of length 7.

The Hamming code of length 7 is the set of binary sequences of length 7 
satisfying a certain condition so that it can correct any one-error out of the 
seven positions. The Hamming code and its generalization were found by 
Richard Hamming in the late 1940s. He shared his idea on the existence of 
one-error-correcting code with Claude Shannon. In 1948, Shannon pub-
lished a seminal paper on Information Theory titled as “A mathematical 
theory of communication” which opened the area of Coding Theory or the 
Theory of Error-Correcting Codes.

One of the ways to represent the Hamming code of length 7 is to com-
bine three circles like a Venn Diagram.

There are seven colored regions. Each region is placed a 0 or 1. 
The four intersection regions ,  ,  , 1 2 3 4d d d d  can take any values of 0 or 
1, meaning that these are independent variables. Hence, there are 16 
possible values of ,  ,  , 1 2 3 4d d d d . The other three variables ,  , 1 2 3p p p  are 
dependent. More precisely,
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	 i.	 = + +     1 1 2 4p d d d 	 (mod 2)

	 ii.	 = + +     2 1 3 4p d d d 	 (mod 2)

	 iii.	 = + +     3 2 3 4p d d d 	 (mod 2)

For example, if = = = =1,  0,  0,  01 2 3 4d d d d , then = = =1,  1,  01 2 3p p p . Then, 
we obtain a vector ( )=( , ,  ,  ,  ,  ,  ) 1, 0, 0, 0, 1, 1,01 2 3 4 1 2 3d d d d p p p , called a 
codeword of the Hamming code. We can rewrite i, ii, iii as the parity-
check equations as follows.

	 iv.	 + + + =    01 2 4 1d d d p 	 (mod 2)

	 v.	 + + + =    01 3 4 2d d d p 	 (mod 2)

	 vi.	 + + + =    02 3 4 3d d d p 	 (mod 2)

Now, we can visualize iv, v, and vi by the condition that each circle has an 
even number of ones including no ones. If each circle has only zeros, it cor-
responds to the zero vector ( )=0 0, 0, 0, 0, 0, 0,0 , which satisfies the three 
conditions iv, v, and vi.

In fact, these conditions may help to correct any one-error out of the 
seven positions. For example,

The top circle has three 1 s. Therefore, it does not satisfy the condition iv. 
However, the left circle has four 1’s satisfying the condition v, and the right 
circle has four 1’s satisfying the condition vi. It is enough to modify the 
first circle. In particular, if the zero in the first circle is changed to 1, then 
the first circle has four 1’s, which satisfies the condition iv. This change 
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does not affect the parity of the other two circles. Therefore, we have cor-
rected one error.

Now we can suggest a decoding algorithm as follows.

	 1.	Check if all circles have even number of ones. If not, go to step 2.

	 2.	If only one circle has an odd number of ones, then switch the out-
most bit, which does not overlap with other circles. Then exit.

	 3.	 If exactly two circles have odd numbers of ones, then switch the bit in 
the common circle but not in the center region. Then exit.

	 4.	 If the three circles have odd numbers of ones, then switch the bit in 
the center region. Then exit.

After this algorithm, we will have a correct Hamming codeword.
Therefore, Find-a-best-friend game uses the Venn diagram representa-

tion of the Hamming [7,4] code. Instead of the circles, the author designed 
three cubes to make them into a 3-dimensional figure.

As one can see, the Hamming cards have an even number of colors 
for each cube and the best-friend cards have an odd number of colors 
for some cube. The Hamming cards correspond to the Hamming code-
words. Therefore, the process that the best-friend card is matched with the 
Hamming card using the help of colors is the same as decoding a vector of 
length 7 with one error to a Hamming codeword.

PROBLEMS

	 1.	(**) Find-a-best-friend cards have 12 Hamming cards. It is a little 
strange since there are 16 Hamming codewords. Those 12 Hamming 
cards have only one axis of symmetry. The Hamming card below has 
one axis of symmetry which is the line passing the purple block and 
the white cube. 
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Describe the other 11 Hamming cards.
Find the four cards which do not satisfy this condition but 

correspond to the four Hamming codewords.
	 2.	(**) Using the property of (1), describe why there are the 36 best-

friend cards which match with the 12 Hamming cards. How many 
best-friend cards are there matching with a given Hamming card? 

	 3.	(*) Using the relation on the Hamming code of length 7, find all 
codewords of length 7 of the Hamming code. 

	 4.	(*) Prove that the decoding algorithm for the Hamming [7,4] code 
described in this chapter really works. 

	 5.	(*) Enjoy this game with another rule described as follows. 

	 (1)	 Place twelve Hamming cards as follows.

	 (2)	 Share best-friend cards equally. For example, 18 cards for two 
players, 12 cards for three players, etc.

	 (3)	 When it starts, every player matches his/her best-friend cards 
with the faced-up Hamming cards as quickly as possible.

	 (4)	 Rank the players based on the order of completing the matching.
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