
Abstract. We have investigated the property of problem solving knowledge
and tried to design its ontology, that is, Task ontology. The main purpose of
this paper is to illustrate a Conceptual LEvel Programming Environment
(named CLEPE) as an implemented system based on Task ontology. CLEPE
provides three major advantages as follows. (A) It provides human-friendly
primitives in terms of which users can easily describe their own problem
solving process (descriptiveness, readability). (B) The systems with task
ontology can simulate the problem solving process at an abstract level in
terms of conceptual level primitives (conceptual level operationality). (C) It
provides ontology author with an environment for building task ontology so
that he/she can build a consistent and useful ontology. In this paper, firstly
we briefly introduce the concept of task ontology. Secondly, CLEPE and its
design principle is described. In CLEPE, one can represent his/her own
problem solving knowledge and realize the conceptual-level execution.

1. Introduction
Knowledge becomes usable and useful only when it fits to the

use-context. This is the justification of the expert system technology
whose power relies heavily on heuristic knowledge or expertise of
domain experts rather than objective knowledge like domain theory.
Expert system technology has obtained high performance at the cost
of non-reusability of knowledge and low productivity of the
knowledge base development. As is well-known, overcoming such
difficulties has been the major goal in knowledge engineering
community for years. The key ideas include decomposition of
expertise into two kinds of knowledge: Task-dependent knowledge
and domain-dependent knowledge. The early work on the former is
found in [Chandrasekaran 86], [Clancey 85], [McDermott 88]
followed by KADS[Wielinga 92], Protege [Puerta, 1992] and
MULTIS[Mizoguchi 92],[Tijerino 93a] , [Mizoguchi 95]. The authors
have proposed the concept of task ontology[Mizoguchi 92] to
formalize the knowledge for problem solving domain-independently.
Similar ideas have discussedextensively in knowledge acquisition
community.

The term "task ontology" can be intepreted in two ways: (1) Task-
subtask decomposition together with task categorization such as
diagnosis, scheduling, design, etc. and (2) An ontology for specifying
problem solving processes*. The latter shares the word usage with
"domain ontology" which means an ontology of a domian and
specifies concetps and relations appearing in a domain of interest.
"Domain ontology" does not mean domain-subdomain
decomposition. Likewise, by "task ontology", we here mean the latter,
that is, an ontology specifying concepts and relations appearing in a
task of interest.

Roughly speaking, one could imagine task ontology is a union or

Task ontology: Ontology for building

conceptual problem solving models
Mitsuru IKEDA 1 Kazuhisa SETA1 Osamu KAKUSHO2

 Riichiro MIZOGUCHI 1

unification of diagnostic task ontology, control task ontology, design
task ontology, scheduling task ontology and so on. It may be right.
But, we do not discuss such a unified ontology in this paper, instead,
we discuss the issue with a specific task in our mind in order to make
the ontology more task-specific than "method ontology"[Heist
97][Chandrsekaran,98] which deals with rather general concepts
independently both of domain and task.

One of the issues related to task-domain decomposition is:
Although the decomposition contributes to reuse of knowledge, it is
not easy to find the appropriate place in the problem solving process
where each piece of domain knowledge should be put. Our task
ontology research was initiated taking such an issue into account
from the beginning. It includes two kinds of concepts related to
activity and role of an object to which an activity applies. The latter
represents the role which the object bound to plays during the problem
solving process. The advantage of task ontology is that it specifies
not only skeleton of the problem solving process but also context
where domain concepts are used. This characteristic gives several
remakable utility discussed below.

MULTIS, a task structure acquisition interview system, has been
built based on task ontology [Mizoguchi 92][Tijerino 93] . Task
ontology of MULTIS has been evaluated by describing task structures
of several expert systems which evaluators, members of a consortium,
were involved in their development. The evaluation shows our task
ontology has sufficient expressive power for scheduling task
structures. However, in MULTIS project, we just showed the
possibility of task ontology but the whole ideas have not been
formalized well. The formalization is needed badly to attain our
research goal. The following four issues seem to be helpful in
attempting sketch out our research on task ontology engineering.

A. Clarify the area of task ontology by specifying task sharing
between a computer and a human.

B. Build task ontology.
C. Specify the relation between task ontology and general

ontology.
D. Design a framework to bridge the gap between the model

described based on the ontology and the runnable
computational model.

 The goals of our research on task ontology are to make problem
solving knowledge explicit and exemplify its availability through
the development of CLEPE: Conceptual LEvel Programming
Environment. CLEPE provides three major advantages as follows.
(A) It provides human-friendly primitives in terms of which users
can easi ly describe their own problem solving process
(descriptiveness, readability). (B) The systems with task ontology

1 ISIR Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567, Japan
2 Faculty of Economics and Information Science, Hyogo University, 2301,

Sihn-zaike, Hiraoka-machi, Kakogawa, Hyogo, 675-01, Japan

We know the term "problem-solving ontology" is better than the term
"task ontology" as a terminological point of view. But, we followed
the convention word useage in the knolwedge-based systems
community in which we call diagonsis, design, etc. a task.

can simulate the problem solving process at an abstract level in terms
of conceptual level primitives (conceptual level operationality). (C)
It provides ontology author with an environment for building task
ontology so that he/she can build a consistent and useful ontology.
In this paper we firstly discuss the basic issue on the concept of task
ontology and then describe the design principle of CLEPE as a form
of ontology use.

2. Conceptual Level Programming

Environment
An ontology explicitly represents the meaning of concepts and the
relation among them. To obtain a sophisticated ontology, we need a
methodology for ontology construction. And we also need to
demonstrate its effective use to convince people. Our final goal is to
build an integrated enviroment for building and use of an ontology.
As a first step, the goals of this research is mainly concerned with
task ontology. In this context, CLEPE has been designed for both of
development and use of ontology. From one aspect it is an
environment to build the task ontology, and from the other it is an
environment to describe one's problem solving knowledge in terms
of the ontology.

 The main role of task ontology author is to analyze the problem
solving knowledge and to build the task ontology which can be easily
acceptable to end-users . To support the ontology author's work,
CLEPE provides Task Ontology representation Language (named
TOL) and an environment for editing and browsing the ontology.

It is a quite time consuming work for end-users to describe their
own problem solving processes in a rigid form. To lighten the load
of end-users, it is important for task ontology to reflect their common
conceptual understanding of problem solving. On the other hand,
from computers standpoint, the description of the problem solving
process should be rigid enough to specify the computational
semantics. We may say that this conflict is a common problem of
programming languages for end-user(s). The key to the problem is
to shift task ontology close to users and to embody the function to
fill the gap between end-users and computers. CLEPE has the ability
to make up for the deficit of user's description and to reconstruct
rigid specification of the computation.

2.1 Task Ontology
Now let us go into the detail of task ontology. Roughly speaking
ontology is composed of two parts, that is, taxonomy and axioms.
Taxonomy is a hierarchical system of concepts and axioms are
established rules, principles, or laws among the concepts. From the
viewpoint of the ontology use, axioms specify the competence of
ontology. In other words, a class of the questions to which the answers
can be derived from the axiom specifies the competence of the
ontology.

Following the analogy of natural language processing, we can
easily understand the role of task ontology as a system of semantic
features to represent the meaning of the problem solving description.
The advantages of the integration of task ontology into CLEPE is as
follows:

A. Task ontology provides human-friendly primitives in terms
of which users can easily describe their own problem solving
processes (descriptiveness, readability).

B. The system can simulate the problem solving processes at
the conceptual level and show users the execution process
in terms of conceptual level primitives (conceptual level
operationality).

C. The systemtranslates problem solving knowledge into symbol
level code (symbol level operationality).

 For the moment, it may be useful to look more closely at the
functional feature of task ontology. Here, let us introduce three models
M(A), M(B), and M(C), which embody the functions A, B, and C
listed above, respectively. According to the analogy of natural
language again, M(A) corresponds to the lexical level of natural
language, M(B) is an internal model of intended meaning represented
by the sentences, and M(C) has a capability to simulate the dynamic,
concrete story implied by the sentences.

From now on, M(A), M(B) and M(C) are called "lexical level
model", "conceptual level model", and "symbol level model",
respectively. Lexical level model mainly deals with the syntactic
aspect of the problem solving description, and conceptual level model
captures conceptual level meaning of the description. Symbol level
model corresponds to runnable program and specifies the
computational semantics of the problem solving.

Table 1 shows a configuration of task ontology. Task ontology is
composed of three layers. The top layer is called lexical level ontology
(TO/K-L) in terms of which M(A) is represented. The middle layer
is called conceptual level ontology (TO/K-C) which specifies

Ontology Vocabulary Axiom

Correspondence between TO/K-L and TO/K-C
(pragmatic meaning),

Task Ontology (TO)

Knowledge Level
Ontology
(TO/K)

LexicalLevel Ontology
(TO/K-L)

Vocabulary for representing
problem solving process

Vocabulary for representing
conceptual level execution
process

Conceptual Level
Ontology (TO/K-C)

Generic vocabulary (generic noun,
generic verb, generic adjective,etc.)

Vocabulary stands for
objects and task activities

Symbol Level Library
(TO/S)

(Program components at symbol level)

Execution model based on correspondence
between TO/K and TO/S

Syntactic rules in generic process

Meaning of generic process (syntactic meaning)

Effects as meaning of activity

Axiom related to execution process of task
based on symbol level computational semantics

Nodes and links constitute GPN

Conceptual level execution model

Table 1. Configuration of task ontology

computational semantics of M(B). Knowledge level ontology is
composed of general terms for these two ontologies. Lexical level
ontology specifies the language in terms of which end-users
externalize their own knowledge of the target task, while conceptual
level ontology is an ontology which represents the contents of
knowledge in their minds.

Figure 1 shows a hierarchy of lexical level ontology. All the
concepts of lexical level ontology are organized into word classes,
such as, generic verb, generic noun, generic adjective etc. The
determination of the abstraction level of task ontology requires a
close consideration on granularity and generality. Representation of
two sentences with the same meaning in terms of lexical level
ontology should be the same. These observations suggest lexical level
task ontology consists of the following four kinds of concepts:

(1) Generic nouns representing objects reflecting their roles
appearing in the problem solving process,

(2) Generic verbs representing unit activities appearing in the
problem solving process,

(3) Generic adjectives modifying the objects, and
(4) Other words specific to the task.
Task ontology for scheduling tasks, for example, looks as follows:
 Generic Nouns: Schedule recipient, Schedule resource, Due

date, Solution representation, Constraints, Goal, Priority,
Generic Verbs: Assign, Classify, Pick up, Select, Relax, Neglect
Generic Adjective: Unassigned, The last, etc.
Others: Strong constraint, Constraint predicates, Constraint

attributes, etc.
 In the conceptual level ontology, the concepts to represent our

perception of problem solving are organized into generic concept
class, such as, activity, object, status, and so on. There are some
relations among the two worlds, i.e., lexical world and conceptual
world. Intuitively generic verb, generic noun, and generic adjective
in lexical world correspond to activity, object, and status in the
conceptual world, respectively. TO/S is a collection of symbol level
CLOS code fragments. Thus, task ontology provides primitives in
terms of which we can describe problem solving context and makes
it easy to put domain knowledge into problem solving context, since
it provides us with abstract roles of various objects which could be
instantiated to domain-specific objects. Domain knowledge organized

without paying attention to its usage is difficult to find out how to
incorporate what portion of it into a specific problem solving process.
In the above examples, Schedule recipient and Schedule resource
represent two major objects in the scheduling task domain and its
roles. One of the most important characteristics of task ontology is
that meanings of verbs are also defined at the symbol level, that is, at
least one executable code is associated with each verb to enable
semiautomatic generation of runnable problem solving engine for
the target task.

Figure 2 shows an image of interface for users. The network in
the figure is called Generic Process Network (GPN). GPN represents
user's problem solving process in terms of lexical level ontology.
Each node of the GPN is separated into two parts. The upper part
represents a concrete process in terms of natural language, and the
lower is a generic process which is a task ontology translation of the
upper part. Generic processes are represented in terms of generic
terms which are defined on the lexical level task ontology (TOK/-
L). Basically the generic process has a form as follows:

Generic process = Generic verb + Generic noun

Typical examples includes classify-schedule_resource(RSC),
sequence-schedule_recipient(RCP), pickup-RCP, select-RSC, assign-
RSC_schedule_RCP, update-priority, relax-constraint, and so on. A
generic term, which acts as component of generic process, is the
smallest concept of lexical level task ontology concepts.

The author of Generic Process Network (GPN) firstly inputs the
upper part of GPN node and then translates it into generic process.
The link of GPN represents the control flow of problem solving. A
GPN can be thought of as task flow defined in terms of general,
reusable component that describes meaningful stages of the problem
solving process.

A GPN does not represent data flow explicitly, though it manages
it implicitly and presents it to the user during the interpretation process
to verify the correctness of the GPN built. The GPN is used by the
GPNC (Generic-Process-Network Compiler) to generate code of the
problem solving process.

Generic Verb

Generic Noun

RCP

RSC

Schedule

Material

Human

Facility

Nurse

Guard

Worker

Space

Job

Schedule Representation

Generic Constraint

Generic Adjective

Generic Adverb

Select

Check

Update

Assign

Data/Information Attribute

Blast Furnace

Machine

Pulp

Berth

Generic Vocabularyw

 Figure 1. Part of lexical level ontology

2.2 Task ontology representation
We have been developing a language TOL, a Task Ontology
representation Language. Before going into TOL specification, a few
remarks should be made concerning general requirements for
ontology representation language.

When we build an ontology, it is important to see the target world
from a viewpoint of one's purpose. In our research on task ontology,
there are two viewpoints, that is, task-type independent one and task-
type specific one. Task type is a kind of categorization of tasks, for
example, scheduling task-type, bookkeeping task-type and so on. In
general, conceptual recognition of problem solving and the
vocabulary used for describing it largely depend on task-types. Hence
we cannot build human friendly ontology if we ignore the task-type
specific characteristics. On the other hand, we have to note the task-
type independent viewpoint is also very important to capture general
problem solving concepts and to make problem solving knowledge
more reusable.

We divide task ontology into two types, that is, task specific
ontology (Task-S) and core task ontology (C-Task). Task specific
ontology is an explicit description of task types specific
characteristics. Core task ontology provides ontology authors with a
set of task type independent primitives to build task specific ontology.

To embody these two viewpoints, TOL should allow ontology
authors to represent relations between task specific ontology and core
task ontology explicitly. To put the matter simply, core task ontology

specifies the semantics of task specific ontology. We think separation
of core task ontology and task specific ontology is a key to task
ontology engineering. In this paper, we use the terms OA(C-Task)
and OA(Task-S) to refer to the core task ontology author and task
specific ontology author, respectively.

2.3 Examples of task ontology description
The correspondence relation between a concept of conceptual level
ontology and one of lexical level ontology, as has been suggested, is
important for task ontology definition.

Take "a set of assignments" from scheduling task-type as an
example.

Our conceptual understanding about "a set of assignments" in a
problem solving context is that it runs through GPN changing its
status successively, for example, "not completed" at first, then
"completed but inappropriate" and finally "appropriate". When we
externalize this understanding, we would choose one word from three
different words, that is, "partial solution", "temporary solution", and
"final solution", according to the status of the object.

The point of this example is that, the single conceptual level object
could be represented by more than one different lexical level terms
in GPN.

 The upper part of Figure 3 shows a definition of a generic noun
class of "temporary solution" included in lexical level ontology. Note
that the reserved keywords of lexical level ontology and conceptual
level ontology definition are specified by core task ontology. "Define-
Tol-noun", for example, is a reserved word used for generic-noun
class definition. The necessary slots in the body of Define-Tol-noun
are also specified by C-Task ontology. By ":cor-object", for example,
correspondence between lexical level ontology and conceptual level
ontology needs to be specified in the body of Define-Tol-noun form.
"temporary-solution" is defined as a generic-noun of lexical level
task ontology. The meaning of the body of the definition is "it is a
subclass of assignment-set (:class-hierarchy), the class of the
corresponding object should be O-assignment-set and the status of
the object should be S-temporary (completed but inappropriate)".

On the other hand, the lower parts of Figure 3 shows the definition
of the object of conceptual level task ontology. In the definition, we
specify class hierarchy (:class-hierarchy), permanent property of the
object (:object-spec), and set of status constraints by which the status
of the object in a certain task context can be represented (:status-
spec). "O-assignment-set" is defined as a class of conceptual level
task ontology objects. The specification of the class is divided into
two categories, that is,: object-spec and :status-spec. :object-spec
specifies permanent property of objects, while :status-spec represents
a list of state in which the object would get in a certain problem
solving context.

Fig.2 A screen image of CLEPE

(Tol-object O-assignment-set (?$O-ass)
 :class-hierachy (subclass-of assignment-set object)
 :object-spec (?$O-ass :constraints
 (forall ?O-ass
 (=> (member ?O-ass ?$O-ass)
 (instance-of ?O-ass O-assignment))))
 :status-spec (?status-spec :constraints
 (member ?status-spec
 ((not (s-temporary ?$O-ass)) (s-partial ?$O-ass)
 (s-temporal ?$O-ass)(s-optimal ?$O-ass)))))

(Tol-noun temporary-solution (?t-sol)
 :class-hierachy (subclass-of temporary-solution assignment-set)
 :cor-object (?O-ass-set :constraints (instance-of ?O-ass-set O-assignment-set))
 :status-spec ((S-temporary ?O-ass-set)))

Figure. 3 Definition of a noun gtemporal-solution and object assignment-setÅh

We think that systematic organization of task ontology presented
thus far could be a basic framework of ontology construction and
use.

3. Design principle
CLEPE is a comprehensive environment on which two types of
authors, that is, ontology authors and GPN authors, can work. The
work of ontology authors is to write the task ontology definition in
terms of TOL, as shown in Figure 3. In this section, however, we
discuss the design principle of CLEPE only from GPN authors' point
of view. In CLEPE, GPN author can describe his/her problem solving
knowledge and observe the execution process in terms of plain words.
We will discuss object flow analysis and conceptual level execution
from functional aspects in the following so that readers can concretely
capture what implicitness the system permits and how it deals with
them.

To provide a human friendly environment for describing problem
solving knowledge, computers need to be as close as possible to
humans so that they can interpret the implicitness in problem solving
knowledge.

Let us take an example of the implicitness in problem solving
description.

The lack of human's consciousness of the objects to which a
process takes effect is a source of the implicitness. When a GPN
author puts a generic verb into a generic process, its input and output
objects should be bound into the input and the output of the generic
process, respectively. However the bindings cannot be always
specified by a GPN author explicitly. For example, in case of a check
process to check the termination condition of the loop for sequential
scan of a set, input/output objects are often omitted in the description,
because it is quite obvious for a GPN author, that is, "until the set is
exhausted". This is a typical example of the lack of a human's
consciousness of problem solving. They know it but don't write it
explicitly. Having respect for user's consciousness of problem solving
is a key to human friendliness of CLEPE.

Loss of the information caused by human's unconsciousness is
compensated by the axiom of knowledge-level task-ontology (TO/
K). In the case of the example above, CLEPE can derive the
termination condition from the axiom on the pragmatics relation
between pickup and check.

To make the implicit explicit, CLEPE analyzes GPN and try to
reconstruct the object flow intended by a GPN author. The process is
called object flow analysis. CLEPE employs a focus model for object

flow analysis. Focus model models a context of anaphoric reference
among objects based on syntactic information, effects of the verb,
properties of noun, and structure of a GPN. Figure 4 shows a GPN
and a focus model. Each focus represented by shaded ellipse in the
Figure includes some objects created by prior processes. The third
shaded ellipse from the top shows that an assignment is generated
by the process 6, that is, "assign-RCP-to-RSC" and consists of a
scheduling-resource(rsc) picked up by the process 4 and a scheduling
recipient (rcp) selected by the process 5. Appearance and
disappearance of objects depend on GPN structure. Focus model in
the Figure illustrates that the objects created inside of the loop is
disappeared outside and the assignment-set is created as an output
of the whole loop.

Once the GPN is built by users, CLEPE interprets it on the
assumption that he/she completely agrees with ontological
commitment. However, there might be a gap between the
interpretation and the user's intention because the agreement is partial.
In such a case, we have no choice but to expect the user to revise the
GPN. To support the user's work, CLEPE provides conceptual level
execution of GPN.

Advantages of conceptual level execution are as follows: (1) A
user can recognize the difference between the meaning intended by
him/her and system's interpretation. (2) A user and system can reach
an agreement on the problem solving description more explicitly. In
4.2 we will give a detailed description of the conceptual level
execution.

Ontology, in general, is an agreement between users and systems.
Thus, the goal of ontology author is to build an ontology which can
be easily accepted by most users. But in practice, we cannot ignore
the gap between the meanings which users read into the terms and
the semantics rigidly defined by ontology. As has been suggested,
the gaps have to be ultimately filled in by users. It follows from what
we discussed thus far that we should realize the existence of the gap
and implement the function to support user's work of filling the gap.
We think the function is essential to ontology engineering.

4. Conceptual Level Programming

Environment

 -Construction of CLEPE-
CLEPE supports both ontology authors who construct ontology and
GPN authors who describe GPNs using the ontology.

In Figure 5, ontology author (OA) is arranged above side and
GPN author (GPNA) left side. Thin planes stand for languages, e.g.
the base and the left side correspond to the description level of CLOS.

Core task (C-Task) ontology is the task ontology independent of
task types. Ideally Core task ontology should be constant and an
ontology authors concentrate on building the task specific (Task-S)
ontologies for new task types. CLEPE provides ontology authors
with functions of editing and browsing both core task ontology, task
specific ontology and symbol level ontology, because our current
research interests include to fix the boundary between the three
ontologies.

The main work of a GPN author are as follows: (1) To describe
their own problem solving, (2) to make sure that his/her problem
solving knowledge represented by GPN is correctly interpreted by
the system, (3) to modify GPN if necessary.

Figure 6 shows the module structure of CLEPE. In this figure,
rectangles and ellipses stand for the functional modules and data,
respectively. Arrows linking modules stand for the data flow. In the
following, we explain each module briefly.

rcp

rsc

rsc

rcp
rsc

rcp
rsc

4.pickup-RSC

5.select-RCP

6.assign-RCP-to-RSC

7.update-data

8.check

assignment-set

assign
ment

assign
ment

load-data

Figure.4 A part of GPN and corresponding focus

TOL-Parser parses the task ontology described with TOL.
Ontology Manager manages ontology base and deals with the

requests for the class information or instance generation.
GPN-Parser parses a GPN
Model Generator generates conceptual level execution model

by referring the object flow analyzed.
Working Memory Manager manages all the data related to the

object flow analysis.
Constraint Generator generates syntactic or pragmatic

constraints as results of object flow analysis.
Anaphoric Resolution Engine identifies anaphoric reference

among objects based on the focus and constraints generated.
Focus Manager manages the focus which plays a key role in object

flow analysis.
Executor interprets conceptual level execution model and shows

the execution process to users.
 In preparation for interpretation of the GPN

written by a GPN author, CLEPE reads task
ontology description represented with TOL.
The task ontology description is translated into
internal form by TOL-Parser and stored into
ontology base. Ontology Manager manages the
ontology base and deals with the requests
related to the ontology made by other modules,
for example, inquiries for class information,
creation of a class instance and so on. Once a
GPN author completes editing his/her own
GPN, CLEPE initiates the GPN interpretation
process. The functional modules in shaded
portion of Figure 6 takes an internal form of
GPN from GPN-Parser and generates the
conceptual-level execution model. We call the
shaded portion ARM: Anaphoric Resolution
module. We adopt a focus model as a basic

framework of anaphoric resolution. Focus manager updates the focus
model dynamically based on the constraints generated by the other
modules. Two types of constraints, that is, local constraints and global
constraints, are generated in different manners. For each generic
process, local constraints are composed based on the syntactic
structure of the generic process and the ontological meaning of each
word. After all the local constraints for the whole GPN are generated,
global constraints are synthesized along the structure of the GPN by
anaphoric resolution engine. It tries to find the consistent
correspondence relations among the objects appeared in the GPN
based on the local constraints and the latest focus model. Focus
represents a set of objects which can be accessible from a certain
generic process. Focus manager interprets constraints newly added
into WM and infer whether the presence of objects referred to by the
constraints could change or not. Once a consistent anaphoric relation

　

Information of
Execution model

GPNA

GPNA

GPN-

TO/0

Task-S Ontology
TO/K-L

TO/K-C

TO/S

TO-Browser
TO-Editor

GPN-C

Executer-

TOL

OA(C-Task)
OA(Task-S)

OA(TO/S)

C-Task Ontology

TOL-Interpreter Editor

Interface

CLOS

GPN

Execution
Model

Figure.5 Overview of CLEPE

Task -S
Ontology

GPN

Ontology
Manager TOL-Parser

WM
Manager

Constraint
Generator

Model
Generator

Focus
Manager

Executer
Focus
Model

Refer

Refer to LC
Refer to focus

Core-Task
Ontology

TO -Browser

Ontology
Base

Parsing
Result

LC

GC

WM

GPN-Parser

Refer to
anaphoric
results

Refer

Update
Focus

Regist
anaphoric
results

Anaphoric
Result

Refer to
anaphoric
resultR

eg
is
t

LC
/G
Ｃ

Anaphoric
Resolution
Engine

G
en
er
at
e
in
st
an
ce

Refer to class
definitions

ReferRegist

Generate
execution model

Read
execution model

Read GPN

Read class definitions

Refer to class
definitions

Execution Model

Figure. 6 Module structure of CLEPE

is established by ARM, the GPN is translated into conceptual level
execution model. A GPN author can run the execution model with
executor.

In the following sections, we describe TOL and conceptual level
execution.

4.1 TOL: a language for describing task ontology
Figure 5 shows a hierarchy of ontology description language. TOL/
0 at the bottom of the hierarchy provides description primitives for
ontology author and defines semantics of upper-layer language.

Therefore all the semantics of task ontology described with TOL
is specified ultimately at the level of TOL/0. To say concretely, TOL/
0 specifies the meaning of generic concepts for describing problem
solving knowledge and provides some primitives for constructing
core task ontology.

Core task ontology author [OA(C-Task)] specifies the lexical
entities and conceptual ones using TOL/0 primitives, e.g. Define-
Tol-Core-Lexical-Word, Define-Tol-Core-Concept, etc. By reading
the specification of core task ontology into CLEPE, a set of conceptual
primitives at the TOL level is introduced. Task specific ontology
author [OA(Task-S)] specifies the concepts appearing in the target
task type with TOL. For example, the semantics of the verb "assign,"
which appears in the scheduling task type, is defined at TOL-level
by using Define-Tol-Verb.

4.2 Conceptual level execution
Once CLEPE established the consistent object flow of a GPN by
object flow analysis, a conceptual level execution model is generated.
Object flow specifies the history of each object run through the
problem solving model, for example, "when an object appears and
disappears," or "how the status of the object changes". Since the
history is described at knowledge-level task ontology (TO/K) level,
a GPN author could easily understand the execution process of his/
her own GPN. Related to this, there are some differences between an
object constraint and a status constraint. The former is static and the
latter is dynamic. Static membership is a permanent property of object

while dynamic constraint depends on task context. For instance, the
membership of a solution in the solution class is permanently true.
On the other hand, a dynamic constraint of the optimality of a solution
depends on the context of object flow. In the conceptual level
execution model, an object is generated based on static membership
and its history is represented by dynamic constraints. So execution
at the level of conceptual level is defined as a history of the changes
of objects. These two constraints are explicitly separated in the
definition of task ontology.

Figure 7 shows a rough image of a conceptual level execution.
The left side of the figure represents a problem solving knowledge
(TO/K-L model) about a 24 hour job assignment task. In the TO/K-
L description, the problem solving knowledge is described with a set
of human friendly primitives. The right side shows the conceptual
level execution model corresponding to the problem solving
knowledge. Fragments headed by :sc and :dc are constraints inferred
by object flow analysis. :sc and :dc fragments correspond to static
membership and a dynamic constraint, respectively. The transition
from the input objects to the output one of assign process shows that
the output object is an instance of the assignment class and composed
of the two objects which are the output of the "pick-up" process and
one of the "select" process. In terms of the conceptual level
vocabulary, we could say the role of "assign" process is to bind the
"picked-up job" and "selected nurse" together and produce a new
assignment. The assignment set in the rectangle represents the output,
"partial solution," of loop structure.

One might say "I can't find any difference between the execution
model itself as a result of object flow analysis and the conceptual
level execution." The difference would be more clearer by considering
the competence of "execution". The major difference between the
model and execution is that the model captures the descriptive and
static aspect of task structure, while the execution captures the
substantial and dynamic aspect based on conceptual level
computational semantics. At any time point during the execution,
user can make inquiries about any event of the execution, for example,

Figure 7 An image of conceptual level execution

Pick-up Job

Select Nurse

Assign Selected Nurse

Update Load

check

Pick-up

Update

Rsc

Rcp

Assign-
ment

Selected

Data

Select

Assign

Picked-up

Updated

$Rcp

to the Job

Data

Rsc-G:sc $Rsc

:sc Rsc
:dc ((picked-up Rsc Rsc-G)) :sc $Rcp

:sc Rcp
:dc ((selected Rcp $Rcp))

:sc Data

:sc :Data
:dc ((updated Data))

:sc Assignment
:dc ((Include Assignment Rsc)

(Include Assignment Rcp))

Activity

Object
Status

Assign-
set
ment-

Partial

:dc
:sc Assignment-set

((Include Assignment-set Assignment)

Solution Representation

RcpRsc$Nurse$Job

Solution Representation
cor-obj

cor-obj

TO/K-L TO/K-C

(partial Assignment-set))

"What types of objects still remain (after running the pickup process)
?" or "What objects are generated now (after nth execution of the
loop) ?" and system can answer the inquiries in the right situation.

By keeping the continuity from the symbol level program code to
conceptual level model, CLEPE can give the conceptual level
execution about the execution result at the symbol level.

5 Competence of Conceptual Model of

Problem Solving
Task ontology consists of a variety of axioms which play the important
role to realize most functions of CLEPE. Because of space limitation,
here we will take up some of the axioms needed for conceptual level
execution and show an example of conceptual problem solving model
and its competence.

Conceptual level execution is a function which provides the trace
information of execution process of GPN in the appropriate abstract
level. The function reduces the load of the end-users' work while
they are debugging the GPN. In general, an end-user using a
conventional programming environment often feels uncomfortable,
because the abstract level of the trace information such as real data
is too low for them to matched it off against their understanding of
problem solving. On the other hand, conceptual level execution
provides end-users with the conceptual level information which can
be easily mapped off against their understanding of the intended
behavior of GPN. In the following, we introduce the concept of
problem solving causality which plays most important role for
generating appropriate information about the behavior of GPN .

The information provided by the conceptual level execution mainly
concerns on how objects and the relation among them change during
problem solving. An idea of 'version' of objects is introduced as a
source of the information. Change of version represents when and

how the change of an object or relation happened. Furthermore,
changes of version are propagated over the model, for example, the
version change of part of an object is propagated to the whole object.
It reflects how end-users recognize the changes of objects in domain
world. An important point, here, is that all the changes happened in
domain world should not be reported to end-users, because too much
information would bather them. Instead, the report should include
only the information really useful for end-user to grasp problem
solving behavior clearly. Problem solving causality is a set of axioms
needed to realize this summarization function. Here, we show "(1)
part-whole causality" and "(2) Loop-invariant generate causality" as
examples.

Figure 8 shows object flow model (partially) and domain model
corresponding to it.

In object flow model, all the effects of an activity at each step of
GPN are represented. In the domain model which corresponds to the
given task flow model, changes of domain objects caused by the
activities and the changes of relations among the objects are also
represented in terms of 'version.'

In figure 8, we discuss the relation among task flow and changes
of domain world objects taking the part-whole causal relation as an
example. Let's focus on the causal relation between the update process
in kth iteration of the loop and the select process (which selects a
nurse with minimum load from a set of nurses) in (k+1)th iteration.
When update process updates the load data of the nurse who is
assigned to a job in assign process in kth iteration, we can say the
version of the nurse changes. In addition to this, the set of nurses
including the nurse also changes its status. This is the case that the
change of the part is propagated to the whole through the component-
of relations among objects specified in the domain world. However,
whether this propagation should be reported to end-users or not is a
matter for argument on problem solving causality. Problem solving

member

Nurse-k

Pickup Job

Select Nurse

Check

Assign Nurse to Job

Update Load
LoadLoad

Nurse-kRcpk

$Rcp

(K+1)th iteration

Pickup Job

Select Nurse

Check

Assign Nurse to Job

Update Load

$Nurses$Rcp

RcpK' selected for

Rsck'

consist-of

picked up

Assignmentk'

Rcpk selected for

Rsck

consist-of

picked up

Assignmentk

selected for

Rsck

consist-of

picked up

Assignmentk

Rcpk$Rcp

Job-k

$Job

Job-k'

Assignment-k Assignment-k'

$Assignment

member

member

Nurse-k'

$Nurses

Load Load

consist of consist of

Kth iteration

(1) Part-Whole Causaity

(2) loop-invariant generate causality

Figure 8 Examples of Problem Solving Causality

causality answers the question based on whether the change is
important or not from problem solving viewpoint. In this case, it is
important because the change of the set of nurse guarantees
correctness of the input to the select process in the succeeding
iteration. Thus, when the select process is executed in (k+1)th iteration
of the loop, conceptual level execution shows end-users that the input
object of the select process is identical to one in kth iteration and the
load data of all its members are appropriately updated by update
process in kth iteration. By representing the changes of objects caused
by task execution in terms of 'version of the domain object,' it is
possible for CLEPE to explain the behavior of problem solving at
arbitrary time in terms of appropriate expression. For example,
concerning the roles of select process at every loop iteration, "the
select process, through all the loop iteration, selects a nurse with
minimal load from the set of the nurses whose load are adequately
updated by update process in the last itelation of the loop."

Another example is the one we call loop-invariant generate
causality. In preparation, let us consider the life of a relation among
objects. In Figure 8, we can see two types of relations, that is, loop-
temporal relations and permanent relations. 'Picked_up' binary
relation for the Jobk is an example of loop-temporal relation. This
appears when pickup process outputs the Jobk in kth iteration of the
loop and disappears when the iteration is completed. The same thing
is true for 'Selected for' relation for the Nursek.

The life span of the 'Picked_up' relation in the Pickup-Check loop
structure is specified by the axiom of task ontology. The version
maintenance function of CLEPE sets up the life span of each instance
of the relation based on the axiom. In case of the 'Selected_for'
relation, it becomes more complex. In the axiom related to Select
process, there is no specification for the life span of the relation.
Instead, the general axiom of task ontology says that "if a conceptual
entity depends tightly on the other conceptual entities, the life span
of them should be same as a general rule." Following the principle,
'Selected_for (Nursek,Picked_up(Jobk))' should disappear at the same
time that 'Picked_up(Jobk) disappears, because Nursek is
Selected_for 'Picked_up(Jobk).' Here, however, we should notice that
the generic relations, Pickup_up(*) and Selected_for(*,*), form an
invariant structure through the iteration of the loop.

On the other hand, the consist-of relation among Assignment, Job
and Nurse is an example of permanent relation. There are two kinds
of permanencies in our task ontology, that is, the problem solving
permanency and the problem permanency. The former means that a
conceptual entity remains throughout problem solving but disappears
when completion. The latter mean that an entity never disappears to
represent the results of problem solving as the consist-of relation in
our example.

The life of each conceptual entities appearing in problem solving
processes is maintained by the version management mechanism of
CLEPE. The problem solving causality is specified in terms of the
relation among the version changes of the conceptual entities.

'Loop-invariant generate causality' is specified as "if a portion of
problem solving model generates permanent conceptual entities from
loop-invariant ones, there may exist loop-invariant generate
causality." In our case, the causal relation extracted by the causality
is that "Assign process generates an Assignment which consists of
Picked-up Job and Nurse Selected for the Job in each iteration of
the loop.

The Assignment is added to the Assignment-set which is the
solution to the given problem.

As we can see in the above two examples, the problem solving
causality can extract a meaningful set of relations from the large
number of relations on the problem solving model. Without it, end-
users would be bored with an incontinent talk of meaningless

relations.

6 Capturing the Problem Solving Model
Problem solving causality is built in the task ontology as general
relation among problem solving processes and objects. As we can
see in the examples of the previous section, by using the problem
solving causality, dynamics of problem solving processes is presented
to end-users as not only the time series of computational operations
but also meaningful causal relations among the changes of objects
with keeping the correspondence between problem solving processes
and domain concept. The presentation would be well acceptable to
end-users because it appropriately reflects the epistemic characteristic
of their understanding of the problem solving process. Thus, we could
say that problem solving causality is one of the most important parts
of task ontology as user model. In this section, we will exemplify the
roles of the problem solving causality as a static user model.

6.1 Problem Solving Causality
Problem solving causality is causal relation among the parts of
problem solving model. Once the object flow model corresponding
to the given GPN is identified, CLEPE tries to find out causal relation
underlying the problem solving model based on the ontology of
problem solving causality and then build a conceptual level execution
model. When CLEPE provides end-users with the trace information
of conceptual level execution, the problem solving causality plays
an important role as a basic agreement among end-users and CLEPE
to share the common understanding of the problem solving process.
The major role of the causality, in general, is to assign the role
meaningful from problem solving viewpoint to each of the objects
referred by the relation as arguments.

In general, the causal relation underlying a problem solving model
is quite complicated and entangled. If one tries to draw the figure to
show the causal relation of a certain problem solving model, he/she
will find that it is too complicated to draw it on one plane. Thus, it is
quite difficult for end-users to describe the causal relation explicitly
by themselves, even if it is obvious for them. So, in order for end-
users and CLEPE to share the common understanding of the problem
solving model, we cannot expect that end-users to express their
intention by themselves as input to CLEPE. Instead, CLEPE accepts
rather simple description of problem solving process, such as GPNs,
and then reconstructs the object flow model and reveals the causal
relation underlying it based on task ontology. In practice, of course,
the reconstruction task is not easy one even with aid of task ontology.
To overcome the difficulty, CLEPE interacts with end-users to reveal
end-users' real intentions of GPN. Nevertheless, if there still remains
some gap between end-users' intention and CLEPE's understanding,
CLEPE provides end-users with the conceptual level execution
function and expects them to adapt (debug) their problem solving
description to task ontology by themselves. In this sense, we believes
that the conceptual level execution function, together with the
reconstruction function of problem solving causality is indispensable
one for end-user programming environment.

As we discussed in the previous section, it is desirable that the
problem solving causality would be presented to end-user in domain-
oriented manner, because end-users prefers domain-oriented
representation to task-oriented one in general. To cope with domain
oriented property of end-users' consciousness for the problem solving,
the task-oriented representation of the causality, which is specified
in task ontology, needs to be translated into domain-oriented
representation. To embody such a hybrid representation, we
introduced a task-domain binding (TD-binding) mechanism which
act as glue to integrate the domain concepts into task context. For
example, in Figure 1, we can say that the nurse of a domain concept

is integrated into the task context and assigned the role as a scheduling
recipient (RCP). In this case, TD-binding binds the domain concept,
nurse, and the task concept, RCP, together, and serves either meaning
of nurse or one of RCP in compliance with requests.

6.2 Roles of Problem Solving Causality
Figure 5 shows an overview of conceptual level programming
environment CLEPE. The processes represented by arrows marked
with (1) (2) and (3) are end-user's work for describing GPN, object
flow model construction, and conceptual level execution respectively.
All the processes are supported by task ontology, for example, lexical
task ontology specifies syntax of GPN description in (1), conceptual
task ontology and TD-binding specifies meaning of the object flow
model in (2). In (3), as we discussed thus far, problem solving
causality plays important role. In the next section, we would like to
focus attention on what concepts we should prepare as axiom of
problem solving causality to realize the function of (3) and how
CLEPE uses them .

Problem solving causality is specified as axioms among concepts
of task ontology . In the conceptual level execution, CLEPE explicitly
presents the process of how the domain objects changes through
problem solving based on the causality. Thus end-users can easily
understand the behavior of their own GPN by observing the
conceptual level execution.

We skip detailed explanation of the axiom because of space
limitation, however, instead, rough classification of the causality is
shown below.

I. Activity causality which captures functional relation among
activities, e.g. the activity as supplier provides the other
activities as consumers with input objects.

II. Object causality which captures how objects are generated,
e.g. relation among material objects (input objects of an
activity) and product objects (output objects of the activity)

III. Control causality which captures causal relationship among
activities based on control structure, e.g. loop structure.

Causality I, II are adapted to the model based on object flow model
and III is based on the control structure of GPN. We report the problem
solving causality in detail in other papers.

We explain the validity of task context through some examples of
conceptual level execution and illustrate what a human friendly
environment of execution is provided for end-users.

7. Concluding remarks
 In this paper, we proposed a conceptual level programming
environment based on task ontology. The system can answer for the
continuity from the conceptual level description to problem solving
and runnable code.

Both COMMET workbench as an embodiment of Components of
Expertise [Steels 90] and SBF (Spark, Burn, Firefighter) [Mcdermott
88][Yost 95] are practical and sophisticated systems for end-users
programming. However, knowledge level analysis has not been done
in a systematic manner and ontological commitment assumed is not
presented explicitly.

The most related work to our research is TOVE (Toronto Virtual
Enterprise) project headed by Mark S.Fox [Fox 93],[Gruninger 95].
The idea concerning task ontology is almost same as ours. The
important difference is that we think a great deal of the lexical aspect
of ontology.

We are currently implementing CLEPE based on the design
principle presented in this paper .

References
[Chandrasekaran 86] Chandrasekaran,B. Generic tasks for

knowledge based reasoning: the right level of abstraction for
knowledge acquisition, IEEE Expert, Vol.1, Not.3, pp.23-30,
1986.

[Chandrasekaran 98] Chandrasekaran, B. et. al. Ontology of Task
and Methods, ECAI98 Workshop on Applications of
Ontologies and Problem solving Methods, 1998.

[Clancey 85] Clancey, W.J. Heuristic classification, Artificial
Intelligence, Vol.27, No.3, pp.289-350, 1985

[DeBell is 95] Michael DeBell is: User-Centric Software
Engineering,IEEE EXPERT, Februrary (1995).

[Fischer 96] Fisher, G.: Seeding, Evolutionary Growth and
Receeding: Constructing, Capturing and Knowledge in
Domain-Oriented Environment, Domain Knowledge for
Interface System Design,Chapman&Hall, pp.1-16 (1996)

[Fox 93] Fox, M.S., Chionglo, J., Fadel, F.: A Common-Sense Model
of the Enterprise, Proc. of the Industrial Engineering Research
Conference (1993)

[Mizoguchi 95] Mizoguchi, R., et. al., Task ontology for Reuse of
Problem Solving Knowledge, Proc. of 2nd International
Conference on Very L:arge-Scale Knowledge Bases,
Tnschede, The Netherland, pp.46-59 (1995)

[McDermott 1988] McDermot. J. Using problem solving methods
to impose structure on knowledge. Proceedings of the
International Conference on AI Applications, pp. 7-11,(1988)

[Mizoguchi 92] Mizoguchi, R. et al. Task ontology and its use in a
task analysis interview system -- Two-level mediating
representation in MULTIS --, Proc. of the JKAW'92, pp.185-
198.(1992)

[Puerta, 1992] Puerta, A.R, et al., A multiple-method knowledge-
acquisition shell for the automatic generation of knowledge-
acquisition tools, Knowledge Acquisition, 4, pp.171-196,
1992.

[Seta 96] Kazuhisa Seta, Mitsuru Ikeda, Osamu Kakusho, Riichiro
Mizoguchi: Design of a Conceptual Level Programming
Environment Based on Task Ontology, Proc. of Successes
and Failures of Knowledge Based Systems in Real World
Applications, p.p. 11-20 (1996).

[Steels 90] Components of Expertise, AI Magazine, Vol.11, No.2,
pp. 28-49 (1990).

[Tijerino 90] Tijerino, A.Y. et al, (1990). A task analysis interview
system that uses a problem solving model, Proc. of JKAW'90,
pp.331-344

[Tijerino 93a] Tijerino A.Y. et al., MULTIS II : Enabling End-Users
to Design Problem-Solving Engines Via Two-Level Task
Ontologies, Proc. of EKAW '93, pp. 340-359, (1993)

[Tijerino 93b] Tijerino.A, Ikeda, M., Kitahashi, T., and Mizoguchi,
R. (1993). A Methodology for Building Expert Systems Based
on Task Ontology and Reuse of Knowledge, Journal of
Japanese Society for Artificial Intelligence, Vol.8, No.4,
pp.476-487 (in Japanese)

[Van Heijest 97] Van,Heist et.al., Using explicit ontologies in KBS
development, Internatinal Journal of Human-Comupter
Studies, Vol 47, pp.183-292 (1997)

[Wielinga 92] Wielinga, B.J.KADS: A modeling approach to
knowledge engineering, J. of Knowledge Acquisition, Vol.4,
No.1, pp.5-53 (1992)

[Yost 94] G.R.Yost et.al.:The SBF Framework,1989-1994: From
Applications to Workplaces, Proc. of the EKAW-94, pp.318-
339 (1994).

