Task ontology: Ontology for building

conceptual problem solving models

Mitsuru IKEDA ! Kazuhisa SETA' Osamu KAKUSHO?
Riichiro MIZOGUCHI *

Abstract. We have investigated the property of problem solving knowledggynification of diagnostic task ontology, control task ontology, design

and tried to design its ontology, that is, Task ontology. The main purpose @§gk ontology, scheduling task ontology and so on. It may be right.
this paper is to illustrate a Conceptual LEvel Programming Environmenéut we do not discuss such a unified ontology in this paper, instead
(named CLEPE) as an implemented system based on Task ontology. CLEPE ' '

provides three major advantages as follows. (A) It provides human-friendlWe discuss the issue with a specific task in our mind in order to make

primitives in terms of which users can easily describe their own problerﬁ~Ie ontology more task-specific than."method ontology“[Heist
solving process (descriptiveness, readability). (B) The systems with task/][Chandrsekaran,98] which deals with rather general concepts

ontology can simulate the problem solving process at an abstract level iRdependently both of domain and task.
terms of conceptual level primitives (conceptual level operationality). (C) It One of the issues related to task-domain decomposition is:
provides ontology author with an environment for building task ontology scAlthough the decomposition contributes to reuse of knowledge, it is
that he/she can build a consistent and useful ontology. In this paper, firsthot easy to find the appropriate place in the problem solving process
we briefly introduce the concept of task ontology. Secondly, CLEPE and itﬁ/here each piece of domain know|edge should be put Our task
design principle is described. In CLEPE, one can represent his/her ovghio|ogy research was initiated taking such an issue into account
problem solving knowledge and realize ttonceptual-level execution. from the beginning. It includes two kinds of concepts related to
activity and role of an object to which an activity applies. The latter
1, |ntr0d uction represents the role which the object bound to plays during the problem

Knowledge becomes usable and useful only when it fits to thgolving process. The advantage of task ontology is that it specifies

use-context. This is the justification of the expert system technolo ot only skel_eton of the problem solv!ng process_bqt al_so context
whose power relies heavily on heuristic knowledge or expertise here domain concepts are used. This characteristic gives several
makable utility discussed below.

domain experts rather than objective knowledge like domaintheor{f.e MULTIS. a task struct isition intervi " has b
Expert system technology has obtained high performance at the cost » @ lask SIUCIUTe acquisttion INTErView system, nas been
of non-reusability of knowledge and low productivity of the uilt based on task ontology [Mizoguchi 92][Tijerino 93] . Task

knowledge base development. As is well-known, overcoming Sucﬂntology of MULTIS has been evaluated by describing task structures

difficulties has been the major goal in knowledge engineerin f several expert systems which evaluators, members of a consortium,
community for years. The key ideas include decomposition 0%ere involved in their development. The evaluation shows our task
expertise into two kinds of knowledge: Task-dependent knowledg%nml?gy has sufflClen_t el\)/l(ﬂrfﬁsslve p_owter for-screﬂulmgd tﬁfk
and domain-dependent knowledge. The early work on the former %ruc' ures. rowever, in project, we just showe ©
found in [Chandrasekaran 86], [Clancey 85], [McDermott 88]p035|blllty of task ontology but the whole ideas have not been
followed by KADS[Wielinga 92’] Protege [Pu’erta 1992] andformalized well. The formalization is needed badly to attain our
MULTIS[Mizoguchi 92],[Tijerino 93a] , [Mizoguchi 95]. The authors '€S€arch goal. The following four issues seem to be helpful in
have proposed the concept of task ontology[Mizoguchi 92] t@ttemptlng ;ketch out our research on task ont_olc_;gy engineering.
formalize the knowledge for problem solving domain-independently. t?'?“fy the area ofttask odntolr?gy by specifying task - sharing
Similar ideas have discussedextensively in knowledge acquisition etween a computer and a human.

community. B. Build _task ontolog_y.

The term "task ontology" can be intepreted in two ways: (1) Task- C. Sptelt:lfy the relation between task ontology and general
subtask decomposition together with task categorization such as %n 0logy. ¢ K to brid h b h del
diagnosis, scheduling, design, etc. and (2) An ontology for specifying de5|gr_1ba drat;newc(;r to th” gett Tgap e;wi—zﬁnt € moble
problem solving processes*. The latter shares the word usage with escribe Iased ?n € ontology an € runnable
"domain ontology" which means an ontology of a domian and Th com;ljutaftlona mo eh K | K bl
specifies concetps and relations appearing in a domain of interest., . € goals of our research on tas ‘”?‘0 ogy are o fmaxe problem
"Domain ontology” does not mean domain-subdomainsowmg knowledge explicit and exemplify its availability through
decomposition. Likewise, by "task ontology", we here mean the Iatteﬁhe _developmgilltzslfz CLEZE: C;‘onceptl_JaI LdEVE| Prograrprlr;lng
that is, an ontology specifying concepts and relations appearing in wronmgnt. provi est ree major a vantages_as OTlows.
task of interest. (A) It provides human-friendly primitives in terms of which users

Roughly speaking, one could imagine task ontology is a union o an easily describe their own problem solving process
gnty sp g g 9y descriptiveness, readability). (B) The systems with task ontology

We know the term "problem-solving ontology" is better than the term
! ISIR Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567, Japan "task ontology" as a terminological point of view. But, we followed
? Faculty of Economics and Information Science, Hyogo University, 230%the convention word useage in the knolwedge-based systems
Sihn-zaike, Hiraoka-machi, Kakogawa, Hyogo, 675-01, Japan community in which we call diagonsis, design, etc. a task.

can simulate the problem solving process at an abstract level in termysq Task Ontology
of conceptual level primitives (conceptual level operationality). (C)N . . .
It provides ontology author with an environment for building task oW 1€t us go into the detail of task ontology. Roughly speaking

ontology so that he/she can build a consistent and useful ontolodg.WtOIOgy is composed of two parts, that is, taxonomy and axioms.
In this paper we firstly discuss the basic issue on the concept of taS@X0Nomy is a hierarchical system of concepts and axioms are

ontology and then describe the design principle of CLEPE as a forfipt@Plished rules, principles, or laws among the concepts. From the
of ontology use. viewpoint of the ontology use, axioms specify the competence of

. ontology. In other words, a class of the questions to which the answers
2. Conceptual Level Programming can be derived from the axiom specifies the competence of the
Environment

ontology.
Following the analogy of natural language processing, we can

An ontology explicitly represents the meaning of concepts and theasily understand the role of task ontology as a system of semantic
relation among them. To obtain a sophisticated ontology, we need@atures to represent the meaning of the problem solving description.
methodology for ontology construction. And we also need tol he advantages of the integration of task ontology into CLEPE is as
demonstrate its effective use to convince people. Our final goal is f6llows:
build an integrated enviroment for building and use of an ontology. A. Task ontology provides human-friendly primitives in terms
As a first step, the goals of this research is mainly concerned with of which users can easily describe their own problem solving
task ontology. In this context, CLEPE has been designed for both of processes (descriptiveness, readability).
development and use of ontology. From one aspect it is an B. The system can simulate the problem solving processes at
environment to build the task ontology, and from the other it is an the conceptual level and show users the execution process
environment to describe one's problem solving knowledge in terms in terms of conceptual level primitives (conceptual level
of the ontology. operationality).

The main role of task ontology author is to analyze the problem C. The systemtranslates problem solving knowledge into symbol
solving knowledge and to build the task ontology which can be easily level code (symbol level operationality).
acceptable to end-users . To support the ontology author's work, For the moment, it may be useful to look more closely at the
CLEPE provides Task Ontology representation Language (namddnctional feature of task ontology. Here, let us introduce three models
TOL) and an environment for editing and browsing the ontology. M(A), M(B), and M(C), which embody the functions A, B, and C

It is a quite time consuming work for end-users to describe thelfsted above, respectively. According to the analogy of natural
own problem solving processes in a rigid form. To lighten the loa¢fnguage again, M(A) corresponds to the lexical level of natural
of end-users, it is important for task ontology to reflect their commo#nguage, M(B) is an internal model of intended meaning represented
conceptual understanding of problem solving. On the other han&Y the sentences, and M(C) has a capability to simulate the dynamic,
from computers standpoint, the description of the problem solvingoncrete story implied by the sentences.
process should be rigid enough to specify the computational From now on, M(A), M(B) and M(C) are called "lexical level
semantics. We may say that this conflict is a common problem dnodel”, "conceptual level model”, and "symbol level model”,
programming |anguages for end_user(s)_ The key to the pr0b|em ﬁgSpeCtiVely. Lexical level model mainly deals with the SyntaCtiC
to shift task ontology close to users and to embody the function gspect of the problem solving description, and conceptual level model
fill the gap between end-users and computers. CLEPE has the abilfigptures conceptual level meaning of the description. Symbol level

to make up for the deficit of user's description and to reconstruéfodel corresponds to runnable program and specifies the
rigid specification of the computation. computational semantics of the problem solving.

Table 1 shows a configuration of task ontology. Task ontology is
composed of three layers. The top layer is called lexical level ontology
(TO/K-L) in terms of which M(A) is represented. The middle layer
is called conceptual level ontology (TO/K-C) which specifies

Table 1. Configuration of task ontology

Ontology

Vocabulary

AXiom

Task Ontology (TO)

Vocabulary for representing
problem solving process

Execution model based on correspondence
between TO/K and TO/S

Knowledge Level
Ontology
(TO/K)

Vocabulary for representing
conceptual level execution
process

Correspondence between TO/K-L and TO/K-C
(pragmatic meaning),

Conceptual level execution model

LexicalLevel Ontology]
(TO/K-L)

Generic vocabulary (generic noun,
generic verb, generic adjective,etc.)

Nodes and links constitute GPN

Syntactic rules in generic process

Meaning of generic process (syntactic meaning)

Conceptual Level
Ontology (TO/K-C)

Vocabulary stands for
objects and task activities

Effects as meaning of activity

Symbol Level Library
(TO/S)

(Program components at symbol level)

Axiom related to execution process of task
based on symbol level computational semantics

@/ Generic Vocabulary) —-

Nurse

Material Guard)
Update
. Human Worker)
Facility last Furnac
Space Machine)

(Generic Constraint

—(Generic Adjective —(_Data/Informatio)—(_Attribute)
—(Schedule Representation)

—(Generic Adverb l -

Figure 1. Part of lexical level ontology

computational semantics of M(B). Knowledge level ontology iswithout paying attention to its usage is difficult to find out how to
composed of general terms for these two ontologies. Lexical leva@icorporate what portion of it into a specific problem solving process.
ontology specifies the language in terms of which end-users the above examples, Schedule recipient and Schedule resource
externalize their own knowledge of the target task, while conceptuaépresent two major objects in the scheduling task domain and its
level ontology is an ontology which represents the contents ables. One of the most important characteristics of task ontology is
knowledge in their minds. that meanings of verbs are also defined at the symbol level, that is, at
Figure 1 shows a hierarchy of lexical level ontology. All theleast one executable code is associated with each verb to enable
concepts of lexical level ontology are organized into word classesemiautomatic generation of runnable problem solving engine for
such as, generic verb, generic noun, generic adjective etc. Thiee target task.
determination of the abstraction level of task ontology requires a Figure 2 shows an image of interface for users. The network in
close consideration on granularity and generality. Representation thfe figure is called Generic Process Network (GPN). GPN represents
two sentences with the same meaning in terms of lexical leveiser's problem solving process in terms of lexical level ontology.
ontology should be the same. These observations suggest lexical leelch node of the GPN is separated into two parts. The upper part
task ontology consists of the following four kinds of concepts: represents a concrete process in terms of natural language, and the
(1) Generic nouns representing objects reflecting their role®wer is a generic process which is a task ontology translation of the

appearing in the problem solving process, upper part. Generic processes are represented in terms of generic
(2) Generic verbs representing unit activities appearing in theerms which are defined on the lexical level task ontology (TOK/-
problem solving process, L). Basically the generic process has a form as follows:
(3) Generic adjectives modifying the objects, and
(4) Other words specific to the task. Generic process = Generic verb + Generic noun

Task ontology for scheduling tasks, for example, looks as follows:
Generic Nouns: Schedule recipient, Schedule resource, Due Typical examples includes classify-schedule_resource(RSC),
date, Solution representation, Constraints, Goal, Priority, sequence-schedule_recipient(RCP), pickup-RCP, select-RSC, assign-
Generic Verbs: Assign, Classify, Pick up, Select, Relax, Negle®SC_schedule_RCP, update-priority, relax-constraint, and so on. A

Generic Adjective: Unassigned, The last, etc. generic term, which acts as component of generic process, is the
Others: Strong constraint, Constraint predicates, Constrairsimallest concept of lexical level task ontology concepts.
attributes, etc. The author of Generic Process Network (GPN) firstly inputs the

In the conceptual level ontology, the concepts to represent oupper part of GPN node and then translates it into generic process.
perception of problem solving are organized into generic concefithe link of GPN represents the control flow of problem solving. A
class, such as, activity, object, status, and so on. There are so@EN can be thought of as task flow defined in terms of general,
relations among the two worlds, i.e., lexical world and conceptuakusable component that describes meaningful stages of the problem
world. Intuitively generic verb, generic noun, and generic adjectiveolving process.
in lexical world correspond to activity, object, and status in the A GPN does not represent data flow explicitly, though it manages
conceptual world, respectively. TO/S is a collection of symbol leveit implicitly and presents it to the user during the interpretation process
CLOS code fragments. Thus, task ontology provides primitives ito verify the correctness of the GPN built. The GPN is used by the
terms of which we can describe problem solving context and mak&PNC (Generic-Process-Network Compiler) to generate code of the
it easy to put domain knowledge into problem solving context, sincproblem solving process.
it provides us with abstract roles of various objects which could be
instantiated to domain-specific objects. Domain knowledge organized

| specifies the semantics of task specific ontology. We think separation

Task Type: @ﬂ of core task ontology and task specific ontology is a key to task

concel ontology engineering. In this paper, we use the terms OA(C-Task)

24 Hour I v " :] and OA(Task-S) to refer to the core task ontology author and task
—‘Elsjdmz 24 Hour Nurse Scheduling System Ef SDECiﬁC ontology author, respectively.

24 H N
Sk [P
CLASSIFY-RSC

2.3 Examples of task ontology description
The correspondence relation between a concept of conceptual level

e ontology and one of lexical level ontology, as has been suggested, is
<> important for task ontology definition.

| re | ke dob Take "a set of assignments" from scheduling task-type as an
. example.

take Job

P ICRIPRaC Our conceptual understanding about "a set of assignments" in a

problem solving context is that it runs through GPN changing its
status successively, for example, "not completed" at first, then
"completed but inappropriate" and finally "appropriate”. When we
externalize this understanding, we would choose one word from three
different words, that is, "partial solution", "temporary solution", and
"final solution", according to the status of the object.

The point of this example is that, the single conceptual level object
could be represented by more than one different lexical level terms
2.2 Task ontology representation n GT':]N' . - .

. e upper part of Figure 3 shows a definition of a generic noun
We have been developing a language TOL, a Task Ontologyass of "temporary solution” included in lexical level ontology. Note
representation Language. Before going into TOL specification, a feyyat the reserved keywords of lexical level ontology and conceptual
remarks should be made concerning general requirements f&e| ontology definition are specified by core task ontology. "Define-
ontology representation language. Tol-noun", for example, is a reserved word used for generic-noun

When we build an ontology, it is important to see the target worlg|5ss definition. The necessary slots in the body of Define-Tol-noun
from a viewpoint of one's purpose. In our research on task ontologyye also specified by C-Task ontology. By ":cor-object", for example,
there are two viewpoints, that is, task-type independent one and taglgyrespondence between lexical level ontology and conceptual level
type specific one. Task type is a kind of categorization of tasks, fQjntology needs to be specified in the body of Define-Tol-noun form.
example, scheduling task-type, bookkeeping task-type and so on.‘4gmporary-solution" is defined as a generic-noun of lexical level
general, conceptual recognition of problem solving and theask ontology. The meaning of the body of the definition is "it is a
vocabulary used for describing it largely depend on task-types. Henggpclass of assignment-set (:class-hierarchy), the class of the
we cannot build human friendly ontology if we ignore the task-typgorresponding object should be O-assignment-set and the status of
specific characteristics. On the other hand, we have to note the tagka object should be S-temporary (completed but inappropriate)”.
type independent viewpoint is also very important to capture general op the other hand, the lower parts of Figure 3 shows the definition
problem solving concepts and to make problem solving knowledggs the object of conceptual level task ontology. In the definition, we
more reusable. specify class hierarchy (:class-hierarchy), permanent property of the

We divide task ontology into two types, that is, task specificopject (:object-spec), and set of status constraints by which the status
ontology (Task-S) and core task ontology (C-Task). Task specifigf the object in a certain task context can be represented (:status-
ontology is an explicit description of task types specificspec). "0-assignment-set" is defined as a class of conceptual level
characteristics. Core task ontology provides ontology authors with@gk ontology objects. The specification of the class is divided into
set of task type independent primitives to build task specific ontologyy,q categories, that is,: object-spec and :status-spec. :object-spec

To embody these two viewpoints, TOL should allow ontologyspecifies permanent property of objects, while :status-spec represents

authors to represent relations between task specific ontology and c@fist of state in which the object would get in a certain problem
task ontology explicitly. To put the matter simply, core task ontologyg|ying context.

SELECT-RCP

O
i

<af

Fig.2 A screen image of CLEPE

(Tol-noun temporary-solution (?t-sol)
:class-hierachy (subclass-of temporary-solution assignment-set)
:cor-object (?0-ass-set :constraints (instance-of ?0-ass-set O-assignment-set))
‘status-spec ((S-temporary ?0-ass-set)))

(Tol-object O-assignment-set (?$0-ass)
:class-hierachy (subclass-of assignment-set object)
:object-spec (?$0-ass :constraints
(forall ?0-ass
(=> (member ?0-ass ?$0-ass)
(instance-of ?0-ass O-assignment))))
:status-spec (?status-spec :constraints
(member ?status-spec
((not (s-temporary ?$0-ass)) (s-partial ?$0-ass)
(s-temporal ?$0-ass)(s-optimal ?$0-ass)))))

Figure. 3 Definition of a noun gtemporal-solution and object assignment-setAh

We think that systematic organization of task ontology presenteftow analysis. Focus model models a context of anaphoric reference
thus far could be a basic framework of ontology construction andmong objects based on syntactic information, effects of the verb,
use. properties of noun, and structure of a GPN. Figure 4 shows a GPN

: FE and a focus model. Each focus represented by shaded ellipse in the
3. DeS|gn pﬂﬂCIple Figure includes some objects created by prior processes. The third
CLEPE is a comprehensive environment on which two types ofhaded ellipse from the top shows that an assignment is generated
authors, that is, ontology authors and GPN authors, can work. Thg the process 6, that is, "assign-RCP-t0-RSC" and consists of a
work of ontology authors is to write the task ontology definition inscheduling-resource(rsc) picked up by the process 4 and a scheduling
terms of TOL, as shown in Figure 3. In this section, however, weecipient (rcp) selected by the process 5. Appearance and
discuss the design principle of CLEPE only from GPN authors' poirdisappearance of objects depend on GPN structure. Focus model in
of view. In CLEPE, GPN author can describe his/her problem solvinghe Figure illustrates that the objects created inside of the loop is
knowledge and observe the execution process in terms of plain wordssappeared outside and the assignment-set is created as an output
We will discuss object flow analysis and conceptual level executiodf the whole loop.
from functional aspects in the following so that readers can concretely Once the GPN is built by users, CLEPE interprets it on the
capture what implicitness the system permits and how it deals witissumption that he/she completely agrees with ontological
them. commitment. However, there might be a gap between the

To provide a human friendly environment for describing problemninterpretation and the user's intention because the agreement is partial.
solving knowledge, computers need to be as close as possibleliosuch a case, we have no choice but to expect the user to revise the
humans so that they can interpret the implicitness in problem solvinGPN. To support the user's work, CLEPE provides conceptual level

knowledge. execution of GPN.
Let us take an example of the implicitness in problem solving Advantages of conceptual level execution are as follows: (1) A
description. user can recognize the difference between the meaning intended by

The lack of human's consciousness of the objects to whichm/her and system's interpretation. (2) A user and system can reach
process takes effect is a source of the implicitness. When a GRi¥ agreement on the problem solving description more explicitly. In
author puts a generic verb into a generic process, its input and out@uR we will give a detailed description of the conceptual level
objects should be bound into the input and the output of the genegdgecution.
process, respectively. However the bindings cannot be always Ontology, in general, is an agreement between users and systems.
specified by a GPN author explicitly. For example, in case of a checkhus, the goal of ontology author is to build an ontology which can
process to check the termination condition of the loop for sequentigk easily accepted by most users. But in practice, we cannot ignore
scan of a set, input/output objects are often omitted in the descriptiaihe gap between the meanings which users read into the terms and
because it is quite obvious for a GPN author, that is, "until the setige semantics rigidly defined by ontology. As has been suggested,
exhausted”. This is a typical example of the lack of a humanise gaps have to be ultimately filled in by users. It follows from what
consciousness of problem solving. They know it but don't write ifve discussed thus far that we should realize the existence of the gap
explicitly. Having respect for user's consciousness of problem solvirgnd implement the function to support user's work of filling the gap.
is a key to human friendliness of CLEPE. We think the function is essential to ontology engineering.

Loss of the information caused by human's unconsciousness j .
compensated by the axiom of knowledge-level task-ontology (TO%f' Conceptual Level Programmmg
K). In the case of the example above, CLEPE can derive th .
te)rmination condition from thg axiom on the pragmatics reIationEnVIronment
between pickup and check. _ H _

To make the implicit explicit, CLEPE analyzes GPN and try to Construction of CLEPE
reconstruct the object flow intended by a GPN author. The process®-EPE supports both ontology authors who construct ontology and

called object flow analysis. CLEPE employs a focus model for objedePN authors who describe GPNs using the ontology.
In Figure 5, ontology author (OA) is arranged above side and

+ GPN author (GPNA) left side. Thin planes stand for languages, e.g.

_>| 4.pickup-RSC | the base and the left side correspond to the description level of CLOS.
Core task (C-Task) ontology is the task ontology independent of
@ task types. Ideally Core task ontology should be constant and an
| 5.select-RCP | ontology authors concentrate on building the task specific (Task-S)
ontologies for new task types. CLEPE provides ontology authors
with functions of editing and browsing both core task ontology, task
specific ontology and symbol level ontology, because our current
research interests include to fix the boundary between the three
ontologies.

The main work of a GPN author are as follows: (1) To describe
their own problem solving, (2) to make sure that his/her problem
solving knowledge represented by GPN is correctly interpreted by
the system, (3) to modify GPN if necessary.

Figure 6 shows the module structure of CLEPE. In this figure,
rectangles and ellipses stand for the functional modules and data,
respectively. Arrows linking modules stand for the data flow. In the

Figure.4 A part of GPN and corresponding focus following, we explain each module briefly.

T

| 6.assign-RCP-to-RSC

| 7.update-data |

the execution process to users.

OA(C-Task) OA(JO/S) In preparation for interpretation of the GPN

"4 OA(Task-S) written by a GPN author, CLEPE reads task
ontology description represented with TOL.
The task ontology description is translated into
internal form by TOL-Parser and stored into
ontology base. Ontology Manager manages the
ontology base and deals with the requests
related to the ontology made by other modules,
for example, inquiries for class information,
creation of a class instance and so on. Once a
GPN author completes editing his/her own
GPN, CLEPE initiates the GPN interpretation
process. The functional modules in shaded
portion of Figure 6 takes an internal form of
GPN from GPN-Parser and generates the
conceptual-level execution model. We call the
shaded portion ARM: Anaphoric Resolution

Execution
Model

O-Editor T =
TO-Browser Information of
Execution model

Executer-
Interface

0
\
d

Figure.5 Overview of CLEPE module. We adopt a focus model as a basic
_ _ framework of anaphoric resolution. Focus manager updates the focus
TOL-Parser parses the task ontology described with TOL. model dynamically based on the constraints generated by the other

Ontology Manager manages ontology base and deals with thgodules. Two types of constraints, that is, local constraints and global
requests for the class information or instance generation. constraints, are generated in different manners. For each generic

GPN-Parser parses a GPN process, local constraints are composed based on the syntactic
Model Generator generates conceptual level execution modsirycture of the generic process and the ontological meaning of each
by referring the object flow analyzed. word. After all the local constraints for the whole GPN are generated,
Working Memory Manager manages all the data related to thgobal constraints are synthesized along the structure of the GPN by
object flow analysis. anaphoric resolution engine. It tries to find the consistent
Constraint Generator generates syntactic or pragmatigorrespondence relations among the objects appeared in the GPN
constraints as results of object flow analysis. based on the local constraints and the latest focus model. Focus

Anaphoric Resolution Engine identifies anaphoric referenceepresents a set of objects which can be accessible from a certain
among objects based on the focus and constraints generatgdneric process. Focus manager interprets constraints newly added
Focus Manager manages the focus which plays a key role in objggto WM and infer whether the presence of objects referred to by the

flow analysis.) constraints could change or not. Once a consistent anaphoric relation
Executor interprets conceptual level execution model and shows

4 - N
TO-Browser
_ Ontology
Gc Anaphoric Ontology
Result Base
Refer Refer Regist Refer
\
WM Ontolo .
Y |- — TOL-Parser
Refer to Manager Manager Read class definitions
anaphoric A _ A J
results © Refer to class
] definitions
B 5 REiriD Referto class | |8
83 anaplhorlc definitions § Read GPN
© | gt 2 ||GPN-Parser @
g
o
! &
Regist ; <+ 0 i
Focus anaphoric] Constraint Parsing — (Execution Model
Manager results Generator || Result
Update Read
Referto LC xecution mode
Focus Refer to focus A Yy
Anaphoric Model
Resolution Generate Executer
Engine Generator || execution model
\ J

Figure. 6 Module structure of CLEPE

is established by ARM, the GPN is translated into conceptual levelhile dynamic constraint depends on task context. For instance, the
execution model. A GPN author can run the execution model witmembership of a solution in the solution class is permanently true.

executor. On the other hand, a dynamic constraint of the optimality of a solution
In the following sections, we describe TOL and conceptual levellepends on the context of object flow. In the conceptual level
execution. execution model, an object is generated based on static membership

4.1 TOL: a |anguage for describing task ontology and its history is represented py dyqamic consFraints. So execution
at the level of conceptual level is defined as a history of the changes

Figure 5 shows a hierarchy of ontology description language. TOLJt qpiacts. These two constraints are explicitly separated in the

0 at the bottom of the hierarchy provides description primitives fof.finition of task ontology.

ontology author and define§ semantics of upper-layelr Iangqage. Figure 7 shows a rough image of a conceptual level execution.

_ Therefore all the semantics of task ontology described with TOkry¢ |6t sige of the figure represents a problem solving knowledge

is spec_lf_led uItlmater_ at the level _of TOL/0. To say conc_rgtely, TOL/(TO/K-L model) about a 24 hour job assignment task. In the TO/K-

0 sp_ecmes the meaning of generic concep_ts_f_or describing IC’rople[”description, the problem solving knowledge is described with a set

solving knowledge and provides some primitives for constructing¢ hyman friendly primitives. The right side shows the conceptual

core task ontology. . . level execution model corresponding to the problem solving
(;pre task ontology author [QA(C-Task)] §pgg|f|es the lex'_calknowledge. Fragments headed by :sc and :dc are constraints inferred

entities and conceptual ones using TOL/O primitives, e.g. Defingsy qpiect flow analysis. :sc and :dc fragments correspond to static

Tol-Core-Lexical-Word, Define-Tol-Core-Concept, etc. By readingsmpership and a dynamic constraint, respectively. The transition

th_e s_p_euflcatlon of core task _ontology into CLEPE, a seF Qf conceptu%m the input objects to the output one of assign process shows that

primitives at the TOL level is introduced. Task specific OntOIC)gythe output object is an instance of the assignment class and composed

author [OA(Task-S)] specifies the concepts appearing in the targgt the two objects which are the output of the "pick-up” process and

task type with TOL. For example, the semantics of the verb "assign, .« of the "select" process. In terms of the conceptual level

which appears in the scheduling task type, is defined at TOL-levgh,copjary, we could say the role of "assign” process is to bind the
by using Define-Tol-Verb.] "picked-up job" and "selected nurse" together and produce a new
4.2 Conceptual level execution assignment. The assignment set in the rectangle represents the output,

Once CLEPE established the consistent object flow of a GPN byartial solution,” of loop structure.

object flow analysis, a conceptual level execution model is generated. On€ might say "I can't find any difference between the execution
Object flow specifies the history of each object run through thénodel itself_ as a resu_lt of object flow analysis and the conc_eptgal
problem solving model, for example, "when an object appears angvel execution." The dlﬁerence would be r_nore_clearer by considering
disappears,” or "how the status of the object changes". Since tHée competence of "execution”. The major difference between the
history is described at knowledge-level task ontology (TO/K) levelModel and execution is that the model captures the descriptive and
a GPN author could easily understand the execution process of hi&@tiC aspect of task structure, while the execution captures the
her own GPN. Related to this, there are some differences betweensfPstantial and dynamic aspect based on conceptual level
object constraint and a status constraint. The former is static and th@mpPutational semantics. At any time point during the execution,
latter is dynamic. Static membership is a permanent property of obje¢ger can make inquiries about any event of the execution, for example,

___— cor-obj
Solution Representation Solution Representation
[cor-obj N
I (I , I I LT LI
TO/K-L $Jo ::$Nursu}/'_ $Rsc I |{ $Rtp TO/K-C
EE |
+ :sc $Rsc
_»l Pick-upJob B l

:sc Rsc
* :dc ((picked-up Rsc Rsc-G))

| Select NUrse = [B-eceecsccsccscasasssscssnssssnssasansnanashannnnnannn Select L
'sc Rep
@ :dc ((selected Rcp $Rcp))

Assign Selected Nurse

tothe Job Jrremmrrmmmrmme
:sc Assignment
:dc ((Include Assignment Rsc) :sc Data
(Include Assignment Rcp))
| Update Load =~ Reeeeeccmmmmmeaciiiceacccsrea i ssrsa e nrrra e l

:sc :Data
:dc ((updated Data))

¢ sc Assignment-set p
de @ D Activity
Partial

((Include Assignment-set Assignment))
Epartlal Assignment-set)) O sObJect
tatus

Figure 7 An image of conceptual level execution

Kth iteration $Rcp

:
(AssignNursefd b |
.

Update
O
$Rcp
e sz]

q dup

selected for)

" (1) Part-Whole Causaity

Q

:) (2) lIgop-invariant generate causality
~—

(K+1)th iteration ["$Rep | sel d r@
—

|
COTER
: Siob
Py o

Nurse-k Nurse-k'
| Load | | Load |/ \\

Assignment-k Assignment-k'
e —— "
b
Conerper

$Assignment

Figure 8 Examples of Problem Solving Causality

“What types of objects still remain (after running the pickup procesg)ow the change of an object or relation happened. Furthermore,
?" or "What objects are generated now (after nth execution of thghanges of version are propagated over the model, for example, the
loop) ?" and system can answer the inquiries in the right situationversion change of part of an object is propagated to the whole object.
By keeping the continuity from the symbol level program code tdt reflects how end-users recognize the changes of objects in domain
conceptual level model, CLEPE can give the conceptual levavorld. An important point, here, is that all the changes happened in
execution about the execution result at the symbol level. domain world should not be reported to end-users, because too much
information would bather them. Instead, the report should include
S Competence of Conceptual Model of only the information really useful for end-user to grasp problem
. solving behavior clearly. Problem solving causality is a set of axioms
Problem Solvmg needed to realize this summarization function. Here, we show "(1)
Task ontology consists of a variety of axioms which play the importargart-whole causality" and "(2) Loop-invariant generate causality" as
role to realize most functions of CLEPE. Because of space limitatiomxamples.
here we will take up some of the axioms needed for conceptual level Figure 8 shows object flow model (partially) and domain model
execution and show an example of conceptual problem solving modedrresponding to it.
and its competence. In object flow model, all the effects of an activity at each step of
Conceptual level execution is a function which provides the trac&PN are represented. In the domain model which corresponds to the
information of execution process of GPN in the appropriate abstragiven task flow model, changes of domain objects caused by the
level. The function reduces the load of the end-users' work whilactivities and the changes of relations among the objects are also
they are debugging the GPN. In general, an end-user usingrepresented in terms of 'version.'
conventional programming environment often feels uncomfortable, In figure 8, we discuss the relation among task flow and changes
because the abstract level of the trace information such as real dafedomain world objects taking the part-whole causal relation as an
is too low for them to matched it off against their understanding ofxample. Let's focus on the causal relation between the update process
problem solving. On the other hand, conceptual level executioim kth iteration of the loop and the select process (which selects a
provides end-users with the conceptual level information which camurse with minimum load from a set of nurses) in (k+1)th iteration.
be easily mapped off against their understanding of the intend&hen update process updates the load data of the nurse who is
behavior of GPN. In the following, we introduce the concept ofassigned to a job in assign process in kth iteration, we can say the
problem solving causality which plays most important role forversion of the nurse changes. In addition to this, the set of nurses
generating appropriate information about the behavior of GPN . including the nurse also changes its status. This is the case that the
The information provided by the conceptual level execution mainlghange of the part is propagated to the whole through the component-
concerns on how objects and the relation among them change durifgrelations among objects specified in the domain world. However,
problem solving. An idea of 'version' of objects is introduced as whether this propagation should be reported to end-users or not is a
source of the information. Change of version represents when anghtter for argument on problem solving causality. Problem solving

causality answers the question based on whether the changerétations.

important or not from problem solving viewpoint. In this case, it is . :
important because the change of the set of nurse guarante scapturmg the Problem SOIVIng Model

correctness of the input to the select process in the succeediRgoblem solving causality is built in the task ontology as general
iteration. Thus, when the select process is executed in (k+1)th iteratie@lation among problem solving processes and objects. As we can
of the loop, conceptual level execution shows end-users that the ingite in the examples of the previous section, by using the problem
object of the select process is identical to one in kth iteration and tiselving causality, dynamics of problem solving processes is presented
load data of all its members are appropriately updated by updat@ end-users as not only the time series of computational operations
process in kth iteration. By representing the changes of objects caudedt also meaningful causal relations among the changes of objects
by task execution in terms of 'version of the domain object," it iwith keeping the correspondence between problem solving processes
possible for CLEPE to explain the behavior of problem solving agnd domain concept. The presentation would be well acceptable to
arbitrary time in terms of appropriate expression. For examplegnd-users because it appropriately reflects the epistemic characteristic
concerning the roles of select process at every loop iteration, "tieé their understanding of the problem solving process. Thus, we could
select process, through all the loop iteration, selects a nurse wigAy that problem solving causality is one of the most important parts
minimal load from the set of the nurses whose load are adequatgljtask ontology as user model. In this section, we will exemplify the
updated by update process in the last itelation of the loop." roles of the problem solving causality as a static user model.

Another example is the one we call loop-invariant generatg 1 Problem Solving Causality

causality. In preparation, let us consider the life of a relation amonlgroblem solving causality is causal relation amond the parts of
objects. In Figure 8, we can see two types of relations, that is, Ioo&- 9 y 9 P
i

temporal relations and permanent relations. 'Picked_up' bina r°b'e”? solving quel. ane the Obje(.:t flowlmodel correspond]ng
. . . .10 the given GPN is identified, CLEPE tries to find out causal relation

relation for the Jobk is an example of loop-temporal relation. This . .
nderlying the problem solving model based on the ontology of

appears when pickup process outputs the Jobk in kth iteration of the

loop and disappears when the iteration is completed. The same thii blem solving causality and then build a conceptual level execution

is true for 'Selected for' relation for the Nursek. model. When CLEPE provides end-users with the trace information

The life span of the 'Picked_up' relation in the Pickup-Check loo ;?r%nc?ftz?: vael exgcuitlon,rthemprgtblenr]n rs}olvnrrlwdg caursallrt])(/j IE,E?IIESPE
structure is specified by the axiom of task ontology. The versio poriant role as a basic agreement among end-users a
.) . . to share the common understanding of the problem solving process.
maintenance function of CLEPE sets up the life span of each insta . L : .
. . . e major role of the causality, in general, is to assign the role
of the relation based on the axiom. In case of the 'Selected_for

relation, it becomes more complex. In the axiom related to Selegieamngful from prqblem solving viewpoint to each of the objects
referred by the relation as arguments.

process, there is no specification for the life span of the relation. In general. the causal relation underlving a problem solving model
Instead, the general axiom of task ontology says that "if a conceptual 9 ' yingap 9

entity depends tightly on the other conceptual entities, the life spallﬁqu'te complicated and entangled. If one tries to draw the figure to

of them should be same as a general rule.” Following the principlghow the causal relation of a certain problem solving model, he/she

'Selected_for (Nursek,Picked_up(Jobk))' should disappear at the sa?‘x@ f|nd_ t_hat itis too complicated to (_Jlraw Iton one pIan_e. Thus,_lt_ IS
time that 'Picked_up(Jobk) disappears, because Nursek %L(Ilte difficult for end-users to describe the causal relation explicitly

Selected_for 'Picked_up(Jobk).' Here, however, we should notice th themselves, even if it is obvious for them. So, n order for end-
the generic relations, Pickup_ up(*) and Selected_for(*,¥), form artisers and CLEPE to share the common understanding of the problem

invariant structure through the iteration of the loop. solving model, we cannot expect that end-users to express their

On the other hand, the consist-of relation among Assignment, J(l)rt])tentlon by themselves as input to CLEPE. Instead, CLEPE accepts

and Nurse is an example of permanent relation. There are two kinE%tgei[\zlr:nrﬂ(e:odnistrcl:ggotz:fo%rztc):ltef?c])\/svorlx:)n dgeIp;OnCc??Z\,/:;fshtﬁz (éapu’iZ{I
of permanencies in our task ontology, that is, the problem solvin)

permanercy a e problen permanency. The former means i P17 ey pased o sk oncioy i ractice of o
conceptual entity remains throughout problem solving but disappe y 9y-

when completion. The latter mean that an entity never disappears t8 overcome the difficulty, CLEPE interacts with end-users to reveal

)) . end-users' real intentions of GPN. Nevertheless, if there still remains
represent the results of problem solving as the consist-of relation h

our example. some gap between end-users' intention and CLEPE's understanding,

The life of each conceptual entities appearing in problem solvin LEPE provides end-users with the conceptual level execution

processes is maintained by the version management mechanism Oqctlpn_ and expects them o adapt (debug) th_elr problem sol_vmg
CLEPE. The problem solving causality is specified in terms of th escription to task ontology by themselves. In this sense, we believes

. . " hat the conceptual level execution function, together with the
relation among the version changes of the conceptual entities. . . . LT
) . h o o . reconstruction function of problem solving causality is indispensable
Loop-invariant generate causality' is specified as "if a portion of

problem solving model generates permanent conceptual entities from S for enq-user programming :_envwonm_ent. . .
loop-invariant ones, there may exiktop-invariant generate As we discussed in the previous section, it is desirable that the

causality”" In our case, the causal relation extracted by the causalit)pmblem solving causality would be presented to end-user in domain-

. o rien manner, nd- rs prefer main-orien
is that "Assign process generates an Assignment which consists B¢ ted manner, because end-users prefers domain-oriented

Picked-up Job and Nurse Selected for the Job in each iteration (r)(;presentatlon to task-oriented one in general. To cope with domain

the loop oriented property of end-users' consciousness for the problem solving,

The Assignment is added to the Assignment-set which is th.tge task-oriented representation of the causz_zlllty, Whlch_ls sp_ecnﬂed
in task ontology, needs to be translated into domain-oriented

solution to the given problem. representation. To embody such a hybrid representation, we
As we can see in the above two examples, the problem solvin P ' y y P !

causality can extract a meaningful set of relations from the IargI troduced a task-domain binding (TD-binding) mechanism which

. . . . act as glue to integrate the domain concepts into task context. For
number of relations on the problem solving model. Without it, end- A .

. ; ; . example, in Figure 1, we can say that the nurse of a domain concept
users would be bored with an incontinent talk of meaningless

is integrated into the task context and assigned the role as a schedu"r_fz
recipient (RCP). In this case, TD-bhinding binds the domain concept, %ferences
nurse, and the task concept, RCP, together, and serves either meaffigandrasekaran 86] Chandrasekaran,B. Generic tasks for

of nurse or one of RCP in compliance with requests. knowledge based reasoning: the right level of abstraction for
6.2 Roles of Problem Solving Causality I;gg\évledge acquisition, IEEE Expert, Vol.1, Not.3, pp.23-30,

Figure 5 shows an overview of conceptual level programmingchandrasekaran 98] Chandrasekaran, B. et. al. Ontology of Task
environment CLEPE. The processes represented by arrows marked 4nq Methods, ECAI98 Workshop on Applications of

with (1) (2) and (3) are end-user's work for describing GPN, object Ontologies and Problem solving Methods, 1998.
flow model construction, and conceptual level execution respectiveIYmancey 85] Clancey, W.J. Heuristic classification, Artificial

All the processes are supported by task ontology, for example, lexical Intelligence, Vol.27, No.3, pp.289-350, 1985
task ontology specifies syntax of GPN description in (1), conceptuTbeBe”is 95] Michael DeBellis: User-Centric Software
task ontology and TD-binding specifies meaning of the object flow Engineering,IEEE EXPERT, Februrary (1995).

model in (2). In (3), as we discussed thus far, problem solvingischer 96] Fisher, G.: Seeding, Evolutionary Growth and
causality plays important role. In the next section, we would like to Receeding: Constructing, Capturing and Knowledge in

focus attention on what concepts we should prepare as axiom of Domain-Oriented Environment, Domain Knowledge for

problem solving causality to realize the function of (3) and how Interface System Design,Chapman&Hall, pp.1-16 (1996)
CLEPE uses them . o B _ [Fox 93] Fox, M.S., Chionglo, J., Fadel, F.: A Common-Sense Model
Problem solving causality is specified as axioms among concepts of the Enterprise, Proc. of the Industrial Engineering Research

of task ontology . In the conceptual level execution, CLEPE explicitly Conference (1993)

presents the process of how the domain objects changes throughizoguchi 95] Mizoguchi, R., et. al., Task ontology for Reuse of

problem solving based on the causality. Thus end-users can easily proplem Solving Knowledge, Proc. of 2nd International

understand the behavior of their own GPN by observing the Conference on Very L:arge-Scale Knowledge Bases,

conceptual level execution. _ Tnschede, The Netherland, pp.46-59 (1995)

_ We skip detailed explanation of the axiom because of spaggicpermott 1988] McDermot. J. Using problem solving methods

limitation, however, instead, rough classification of the causality is to impose structure on knowledge. Proceedings of the

shown below. o . _ International Conference on Al Applications, pp. 7-11,(1988)
. Activity causalitywhich captures functional relation among [\jizoguchi 92] Mizoguchi, R. et al. Task ontology and its use in a

activities, e.g. the activity as supplier provides the other task analysis interview system -- Two-level mediating

activities as consumers with input objects. representation in MULTIS --, Proc. of the JKAW'92, pp.185-
Il. Object causality which captures how objects are generated, 198.(1992)

e.g. relation among material objects (input objects of afpyerta, 1992] Puerta, A.R, et al., A multiple-method knowledge-

activity) and product objects (output objects of the activity) acquisition shell for the automatic generation of knowledge-
[1l. Control causalitywhich captures causal relationship among acquisition tools, Knowledge Acquisition, 4, pp.171-196,

activities based on control structure, e.g. loop structure. 1992.

Causality |, Il are adapted to the model based on object flow mod@beta 96] Kazuhisa Seta, Mitsuru Ikeda, Osamu Kakusho, Riichiro
and Il is based on the control structure of GPN. We report the problem Mizoguchi: Design of a Conceptual Level Programming

solving causality in detail in other papers. Environment Based on Task Ontology, Proc. of Successes

We explain the validity of task context through some examples of and Failures of Knowledge Based Systems in Real World
conceptual level execution and illustrate what a human friendly Applications, p.p. 11-20 (1996).
enviranment of execution is provided for end-users. [Steels 90] Components of Expertise, Al Magazine, Vol.11, No.2,
7. Concluding remarks pp. 28-49 (1990).

[Tijerino 90] Tijerino, A.Y. et al, (1990). A task analysis interview

In this paper, we proposed a conceptual level programming system that uses a problem solving model, Proc. of JKAW'90,
environment based on task ontology. The system can answer for the pp.331-344

continuity from the conceptual level description to problem SOIVing{Tijerino 93a] Tijerino A.Y. et al., MULTIS Il : Enabling End-Users

and runnable code. . to Design Problem-Solving Engines Via Two-Level Task
Both COMMET workbench as an embodiment of Components of Ontologies, Proc. of EKAW ‘93, pp. 340-359, (1993)

Expertise [Steels 90] and SBF (Spark, Burn, Firefighter) [Mcdermotirjie ing 93p] Tijerino.A, Ikeda, M., Kitahashi, T., and Mizoguchi,
88][Yost 95] are practical and sophisticated systems for end-users R. (1993). A Methodology for Building Expert Systems Based

programming. However, knowledge level analysis has not been done on Task Ontology and Reuse of Knowledge, Journal of
in a systematic manner and ontological commitment assumed is not Japanese Society for Artificial Intelligence \/ol.8 No.4

presented explicitly. _ _ pp.476-487 (in Japanese)

The most rel_ated work to our research is TOVE (Toron_to V'rtuatVan Heijest 97] Van,Heist et.al., Using explicit ontologies in KBS
Enterprise) project headed by Mark S.Fox [Fox 93],[Gruninger 95]. development, Internatinal Journal of Human-Comupter
The idea concerning task ontology is almost same as ours. The Studies, Vol 47, pp.183-292 (1997)
important difference is that we think a great deal of the lexical aSpeﬂVielinga 92] Wielinga, B.J.KADS: A modeling approach to

of ontology.)]) knowledge engineering, J. of Knowledge Acquisition, Vol.4,
We are currently implementing CLEPE based on the design No.1, pp.5-53 (1992)
principle presented in this paper . [Yost 94] G.R.Yost et.al..The SBF Framework,1989-1994: From
Applications to Workplaces, Proc. of the EKAW-94, pp.318-
339 (1994).

