
TE
AM
FL
Y

Team-Fly®

M I N I N G T H E W E B
D I S C O V E R I N G K N O W L E D G E F R O M H Y P E R T E X T D A T A

The Morgan Kaufmann Series in Data Management Systems
Series Editor: Jim Gray, Microsoft Research

Mining the Web: Discovering Knowledge from
Hypertext Data
Soumen Chakrabarti

Advanced SQL: 1999—Understanding Object-
Relational and Other Advanced Features
Jim Melton

Database Tuning: Principles, Experiments, and
Troubleshooting Techniques
Dennis Shasha and Philippe Bonnet

SQL: 1999—Understanding Relational
Language Components
Jim Melton and Alan R. Simon

Information Visualization in Data Mining and
Knowledge Discovery
Edited by Usama Fayyad, Georges G.
Grinstein, and Andreas Wierse

Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency
Control and Recovery
Gerhard Weikum and Gottfried Vossen

Spatial Databases: With Application to GIS
Philippe Rigaux, Michel Scholl, and Agnès
Voisard

Information Modeling and Relational Databases:
From Conceptual Analysis to Logical Design
Terry Halpin

Component Database Systems
Edited by Klaus R. Dittrich and Andreas
Geppert

Managing Reference Data in Enterprise Databases:
Binding Corporate Data to the Wider World
Malcolm Chisholm

Data Mining: Concepts and Techniques
Jiawei Han and Micheline Kamber

Understanding SQL and Java Together: A Guide
to SQLJ, JDBC, and Related Technologies
Jim Melton and Andrew Eisenberg

Database: Principles, Programming, and
Performance, Second Edition
Patrick O’Neil and Elizabeth O’Neil

The Object Data Standard: ODMG 3.0
Edited by R. G. G. Cattell and Douglas Barry

Data on the Web: From Relations to Semistructured
Data and XML
Serge Abiteboul, Peter Buneman, and Dan
Suciu

Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations
Ian Witten and Eibe Frank

Joe Celko’s SQL for Smarties: Advanced SQL
Programming, Second Edition
Joe Celko

Joe Celko’s Data and Databases: Concepts in
Practice
Joe Celko

Developing Time-Oriented Database Applications
in SQL
Richard T. Snodgrass

Web Farming for the Data Warehouse
Richard D. Hackathorn

Database Modeling & Design, Third Edition
Toby J. Teorey

Management of Heterogeneous and Autonomous
Database Systems
Edited by Ahmed Elmagarmid, Marek
Rusinkiewicz, and Amit Sheth

Object-Relational DBMSs: Tracking the Next
Great Wave, Second Edition
Michael Stonebraker and Paul Brown, with
Dorothy Moore

A Complete Guide to DB2 Universal Database
Don Chamberlin

Universal Database Management: A Guide to
Object/Relational Technology
Cynthia Maro Saracco

Readings in Database Systems, Third Edition
Edited by Michael Stonebraker and Joseph M.
Hellerstein

Understanding SQL’s Stored Procedures: A
Complete Guide to SQL/PSM
Jim Melton

Principles of Multimedia Database Systems
V. S. Subrahmanian

Principles of Database Query Processing for
Advanced Applications
Clement T. Yu and Weiyi Meng

Advanced Database Systems
Carlo Zaniolo, Stefano Ceri, Christos
Faloutsos, Richard T. Snodgrass, V. S.
Subrahmanian, and Roberto Zicari

Principles of Transaction Processing for the Systems
Professional
Philip A. Bernstein and Eric Newcomer

Using the New DB2: IBM’s Object-Relational
Database System
Don Chamberlin

Distributed Algorithms
Nancy A. Lynch

Active Database Systems: Triggers and Rules For
Advanced Database Processing
Edited by Jennifer Widom and Stefano Ceri

Migrating Legacy Systems: Gateways, Interfaces,
& the Incremental Approach
Michael L. Brodie and Michael Stonebraker

Atomic Transactions
Nancy Lynch, Michael Merritt, William
Weihl, and Alan Fekete

Query Processing for Advanced Database Systems
Edited by Johann Christoph Freytag, David
Maier, and Gottfried Vossen

Transaction Processing: Concepts and Techniques
Jim Gray and Andreas Reuter

Building an Object-Oriented Database System:
The Story of O2
Edited by François Bancilhon, Claude
Delobel, and Paris Kanellakis

Database Transaction Models for Advanced
Applications
Edited by Ahmed K. Elmagarmid

A Guide to Developing Client/Server SQL
Applications
Setrag Khoshafian, Arvola Chan, Anna Wong,
and Harry K. T. Wong

The Benchmark Handbook for Database and
Transaction Processing Systems, Second Edition
Edited by Jim Gray

Camelot and Avalon: A Distributed Transaction
Facility
Edited by Jeffrey L. Eppinger, Lily B.
Mummert, and Alfred Z. Spector

Readings in Object-Oriented Database Systems
Edited by Stanley B. Zdonik and David Maier

M I N I N G T H E W E B
D I S C O V E R I N G K N O W L E D G E F R O M H Y P E R T E X T D A T A

Soumen Chakrabarti

Indian Institute of Technology, Bombay

Senior Editor Lothlórien Homet
Publishing Services Manager Edward Wade
Editorial Assistant Corina Derman
Cover Design Ross Carron Design
Text Design Frances Baca Design
Cover Image Kimihiro Kuno/Photonica
Composition and Technical Illustration Windfall Software, using ZzTEX
Copyeditor Sharilyn Hovind
Proofreader Jennifer McClain
Indexer Steve Rath
Printer The Maple-Vail Book Manufacturing Group

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
www.mkp.com

© 2003 by Elsevier Science (USA)
All rights reserved
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written
permission of the publisher.

Library of Congress Control Number: 2002107241
ISBN: 1-55860-754-4

This book is printed on acid-free paper.

F O R E W O R D
Jiawei Han
University of Illinois, Urbana-Champaign

The World Wide Web overwhelms us with immense amounts of widely dis-
tributed, interconnected, rich, and dynamic hypertext information. It has pro-
foundly influenced many aspects of our lives, changing the ways we communicate,
conduct business, shop, entertain, and so on. However, the abundant information
on the Web is not stored in any systematically structured way, a situation which
poses great challenges to those seeking to effectively search for high quality in-
formation and to uncover the knowledge buried in billions of Web pages. Web
mining-or the automatic discovery of interesting and valuable information from
the Web-has therefore become an important theme in data mining.

As a prominent researcher on Web mining, Soumen Chakrabarti has presented
tutorials and surveys on this exciting topic at many international conferences.
Now, after years of dedication, he presents us with this excellent book. Mining the
Web: Discovering Knowledge from Hypertext Data is the first book solely dedicated
to the theme of Web mining and if offers comprehensive coverage and a rigorous
treatment. Chakrabarti starts with a thorough introduction to the infrastructure
of the Web, including the mechanisms for Web crawling, Web page indexing,
and keyword or similarity-based searching of Web contents. He then gives a
systematic description of the foundations of Web mining, focusing on hypertext-
based machine learning and data mining methods, such as clustering, collaborative
filtering, supervised learning, and semi-supervised learning. After that, he presents
the application of these fundamental principles to Web mining itself-especially
Web linkage analysis-introducing the popular PageRank and HITS algorithms
that substantially enhance the quality of keyword-based Web searches.

If you are a researcher, a Web technology developer, or just an interested
reader curious about how to explore the endless potential of the Web, you will
find this book provides both a solid technical background and state-of-the-art
knowledge on this fascinating topic. It is a jewel in the collection of data mining
and Web technology books. I hope you enjoy it.

vii

Preface xv...
Prerequisites and Contents xvi............
Omissions xvi.......................................
Acknowledgments xvii...........................

INTRODUCTION 1................................
Crawling and Indexing 6....................
Topic Directories 7.............................
Clustering and Classification 8..........
Hyperlink Analysis 9..........................
Resource Discovery and Vertical
Portals 11...
Structured vs. Unstructured Data
Mining 11...
Bibliographic Notes 13.........................

Part I INFRASTRUCTURE 15.................
CRAWLING THE WEB 17...................

HTML and HTTP Basics 18....................
Crawling Basics 19..................................
Engineering Large- Scale Crawlers 21...

DNS Caching, Prefetching, and
Resolution 22.....................................
Multiple Concurrent Fetches 23..........
Link Extraction and
Normalization 25.................................
Robot Exclusion 26............................
Eliminating Already- Visited
URLs 26...
Spider Traps 28..................................
Avoiding Repeated Expansion of
Links on Duplicate Pages 29..............
Load Monitor and Manager 29...........

Per- Server Work- Queues 30............
Text Repository 31.............................
Refreshing Crawled Pages 33............

Putting Together a Crawler 35................
Design of the Core Components 35...
Case Study: Using 40.........................

Bibliographic Notes 40............................
WEB SEARCH AND
INFORMATION RETRIEVAL 45..........

Boolean Queries and the Inverted
Index 45..

Stopwords and Stemming 48.............
Batch Indexing and Updates 49.........
Index Compression Techniques 51....

Relevance Ranking 53............................
Recall and Precision 53......................
The Vector- Space Model 56..............
Relevance Feedback and
Rocchio�s Method 57..........................
Probabilistic Relevance
Feedback Models 58..........................
Advanced Issues 61...........................

Similarity Search 67................................
Handling � Find- Similar� Queries 68...
Eliminating Near Duplicates via
Shingling 71..
Detecting Locally Similar
Subgraphs of the Web 73...................

Bibliographic Notes 75............................

Part II LEARNING 77..............................
SIMILARITY AND CLUSTERING 79...

Formulations and Approaches 81...........
Partitioning Approaches 81................

Geometric Embedding
Approaches 82...................................
Generative Models and
Probabilistic Approaches 83...............

Bottom- Up and Top- Down
Partitioning Paradigms 84.......................

Agglomerative Clustering 84..............
The 87..
Means Algorithm 87............................

Clustering and Visualization via
Embeddings 89.......................................

Self- Organizing Maps (SOMs) 90.....
Multidimensional Scaling (MDS)
and FastMap 91.................................
Projections and Subspaces 94...........
Latent Semantic Indexing (LSI) 96....

Probabilistic Approaches to
Clustering 99...

Generative Distributions for
Documents 101....................................
Mixture Models and Expectation
Maximization (EM) 103........................
Multiple Cause Mixture Model (
MCMM) 108..
Aspect Models and Probabilistic
LSI 109...
Model and Feature Selection 112.........

Collaborative Filtering 115........................
Probabilistic Models 115.......................
Combining Content- Based and
Collaborative Features 117..................

Bibliographic Notes 121............................
SUPERVISED LEARNING 125.............

The Supervised Learning Scenario 126....
Overview of Classification
Strategies 128...

Evaluating Text Classifiers 129.................
Benchmarks 130..................................
Measures of Accuracy 131...................

Nearest Neighbor Learners 133................
Pros and Cons 134...............................
Is TFIDF Appropriate? 135...................

Feature Selection 136...............................
Greedy Inclusion Algorithms 137..........
Truncation Algorithms 144....................
Comparison and Discussion 145..........

Bayesian Learners 147.............................
Naive Bayes Learners 148...................
Small- Degree Bayesian
Networks 152.......................................

Exploiting Hierarchy among Topics 155....
Feature Selection 155..........................
Enhanced Parameter Estimation 155...
Training and Search Strategies 157.....

Maximum Entropy Learners 160...............
Discriminative Classification 163...............

Linear Least- Square
Regression 163....................................
Support Vector Machines 164..............

Hypertext Classification 169......................
Representing Hypertext for
Supervised Learning 169.....................
Rule Induction 171...............................

Bibliographic Notes 173............................
SEMISUPERVISED LEARNING 177....

Expectation Maximization 178..................
Experimental Results 179.....................
Reducing the Belief in Unlabeled
Documents 181....................................
Modeling Labels Using Many
Mixture Components 183.....................

Labeling Hypertext Graphs 184................

TE
AM
FL
Y

Team-Fly®

Absorbing Features from
Neighboring Pages 185........................
A Relaxation Labeling Algorithm 188...
A Metric Graph- Labeling
Problem 193...

Co- training 195...
Bibliographic Notes 198............................

Part III APPLICATIONS 201.....................
SOCIAL NETWORK ANALYSIS 203.....

Social Sciences and Bibliometry 205........
Prestige 205...
Centrality 206.......................................
Co- citation 207....................................

PageRank and HITS 209..........................
PageRank 209......................................
HITS 212..
Stochastic HITS and Other
Variants 216...

Shortcomings of the Coarse-
Grained Graph Model 219.........................

Artifacts of Web Authorship 219...........
Topic Contamination and Drift 223.......

Enhanced Models and Techniques 225....
Avoiding Two- Party Nepotism 225......
Outlier Elimination 226.........................
Exploiting Anchor Text 227...................
Exploiting Document Markup
Structure 228..

Evaluation of Topic Distillation 235...........
HITS and Related Algorithms 235........
Effect of Exploiting Other
Hypertext Features 238........................

Measuring and Modeling the Web 243.....
Power- Law Degree
Distributions 243...................................

The � Bow Tie� Structure and
Bipartite Cores 246...............................
Sampling Web Pages at
Random 246...

Bibliographic Notes 254............................
RESOURCE DISCOVERY 255.............

Collecting Important Pages
Preferentially 257......................................

Crawling as Guided Search in a
Graph 257..
Keyword- Based Graph Search 259.....

Similarity Search Using Link
Topology 264..
Topical Locality and Focused
Crawling 268...

Focused Crawling 270..........................
Identifying and Exploiting Hubs 277.....
Learning Context Graphs 279..............
Reinforcement Learning 280................

Discovering Communities 284..................
Bipartite Cores as Communities 284....
Network Flow/ Cut- Based
Notions of Communities 285................
(d) (e) (c) (b) (a) 287..........................

Bibliographic Notes 288............................
THE FUTURE OF WEB MINING 289....

Information Extraction 290........................
Natural Language Processing 295............

Lexical Networks and Ontologies 296..
Part- of- Speech and Sense
Tagging 297...
Parsing and Knowledge
Representation 299..............................

Question Answering 302...........................

Profiles, Personalization, and
Collaboration 305......................................

References 307..

Index 327..

About the Author 345..............................

P R E F A C E

This book is about finding significant statistical patterns relating hypertext docu-
ments, topics, hyperlinks, and queries and using these patterns to connect users to
information they seek. The Web has become a vast storehouse of knowledge, built
in a decentralized yet collaborative manner. It is a living, growing, populist, and
participatory medium of expression with no central editorship. This has positive
and negative implications. On the positive side, there is widespread participation
in authoring content. Compared to print or broadcast media, the ratio of content
creators to the audience is more equitable. On the negative side, the heterogeneity
and lack of structure makes it hard to frame queries and satisfy information needs.
For many queries posed with the help of words and phrases, there are thousands
of apparently relevant responses, but on closer inspection these turn out to be
disappointing for all but the simplest queries. Queries involving nouns and noun
phrases, where the information need is to find out about the named entity, are the
simplest sort of information-hunting tasks. Only sophisticated users succeed with
more complex queries—for instance, those that involve articles and prepositions
to relate named objects, actions, and agents. If you are a regular seeker and user
of Web information, this state of affairs needs no further description.

Detecting and exploiting statistical dependencies between terms, Web pages, and
hyperlinks will be the central theme in this book. Such dependencies are also called
patterns, and the act of searching for such patterns is called machine learning, or data
mining. Here are some examples of machine learning for Web applications. Given
a crawl of a substantial portion of the Web, we may be interested in constructing
a topic directory like Yahoo!, perhaps detecting the emergence and decline of
prominent topics with passing time. Once a topic directory is available, we may
wish to assign freshly crawled pages and sites to suitable positions in the directory.

In this book, the data that we will “mine” will be very rich, comprising text,
hypertext markup, hyperlinks, sites, and topic directories. This distinguishes the
area of Web mining as a new and exciting field, although it also borrows liberally
from traditional data analysis. As we shall see, useful information on the Web is
accompanied by incredible levels of noise, but thankfully, the law of large numbers
kicks in often enough that statistical analysis can make sense of the confusion. Our

xv

xvi Preface

goal is to provide both the technical background and tools and tricks of the trade
of Web content mining, which was developed roughly between 1995 and 2002,
although it continues to advance. This book is addressed to those who are, or
would like to become, researchers and innovative developers in this area.

Prerequisites and Contents
The contents of this book are targeted at fresh graduate students but are also
quite suitable for senior undergraduates. The book is partly based on tutorials at
SIGMOD 1999 and KDD 2000, a survey article in SIGKDD Explorations, invited
lectures at ACL 1999 and ICDT 2001, and teaching a graduate elective at IIT
Bombay in the spring of 2001. The general style is a mix of scientific and statistical
programming with system engineering and optimizations. A background in
elementary undergraduate statistics, algorithms, and networking should suffice
to follow the material. The exposition also assumes that the reader is a regular
user of search engines, topic directories, and Web content in general, and has
some appreciation for the limitations of basic Web access based on clicking on
links and typing keyword queries.

The chapters fall into three major parts. For concreteness, we start with some
engineering issues: crawling, indexing, and keyword search. This part also gives
us some basic know-how for efficiently representing, manipulating, and analyzing
hypertext documents with computer programs. In the second part, which is the
bulk of the book, we focus on machine learning for hypertext: the art of creating
programs that seek out statistical relations between attributes extracted from Web
documents. Such relations can be used to discover topic-based clusters from a
collection of Web pages, assign a Web page to a predefined topic, or match a
user’s interest to Web sites. The third part is a collection of applications that draw
upon the techniques discussed in the first two parts.

To make the presentation concrete, specific URLs are indicated throughout,
but there is no saying how long they will remain accessible on the Web. Luckily,
the Internet Archive will let you view old versions of pages at www.archive.org/,
provided this URL does not get dated.

Omissions
The field of research underlying this book is in rapid flux. A book written at this
juncture is guaranteed to miss out on important areas. At some point a snapshot

Acknowledgments xvii

must be taken to complete the project. A few omissions, however, are deliberate.
Beyond bare necessities, I have not engaged in a study of protocols for representing
and transferring content on the Internet and the Web. Readers are assumed to be
reasonably familiar with HTML. For the purposes of this book, you do not need
to understand the XML (Extensible Markup Language) standard much more deeply
than HTML. There is also no treatment of Web application services, dynamic site
management, or associated networking and data-processing technology.

I make no attempt to cover natural language (NL) processing, natural lan-
guage understanding, or knowledge representation. This is largely because I do
not know enough about natural language processing. NL techniques can now
parse relatively well-formed sentences in many languages, disambiguate polyse-
mous words with high accuracy, tag words in running text with part-of-speech
information, represent NL documents in a canonical machine-usable form, and
perform NL translation. Web search engines have been slow to embrace NL pro-
cessing except as an explicit translation service. In this book, I will make occasional
references to what has been called “ankle-deep semantics”—techniques that lever-
age semantic databases (e.g., as a dictionary or thesaurus) in shallow, efficient ways
to improve keyword search.

Another missing area is Web usage mining. Optimizing large, high-flux Web
sites to be visitor-friendly is nontrivial. Monitoring and analyzing the behavior of
visitors in the past may lead to valuable insights into their information needs, and
help in continually adapting the design of the site. Several companies have built
systems integrated with Web servers, especially the kind that hosts e-commerce
sites, to monitor and analyze traffic and propose site organization strategies. The
array of techniques brought to bear on usage mining has a large overlap with
traditional data mining in the relational data-warehousing scenario, for which
excellent texts already exist.

Acknowledgments
I am grateful to many people for making this work possible. I was fortunate to
associate with Byron Dom, Inderjit Dhillon, Dharmendra Modha, David Gibson,
Dimitrios Gunopulos, Jon Kleinberg, Kevin McCurley, Nimrod Megiddo, and
Prabhakar Raghavan at IBM Almaden Research Center, where some of the
inventions described in this book were made between 1996 and 1999. I also
acknowledge the extremely stimulating discussions I have had with researchers
at the then Digital System Research Center in Palo Alto, California: Krishna

xviii Preface

Bharat, Andrei Bröder, Monika Henzinger, Hannes Marais, and Mark Najork,
some of whom have moved on to Google and AltaVista. Similar gratitude is also
due to Gary Flake, C. Lee Giles, Steve Lawrence, and Dave Pennock at NEC
Research, Princeton. Thanks also to Pedro Domingos, Susan Dumais, Ravindra
Jaju, Ronny Lempel, David Lewis, Tom Mitchell, Mandar Mitra, Kunal Punera,
Mehran Sahami, Eric Saund, and Amit Singhal for helpful discussions. Jiawei
Han’s text on data mining and his encouragement helped me decide to write
this book. Krishna Bharat, Lyle Ungar, Karen Watterson, Ian Witten, and other,
anonymous, referees have greatly enhanced the quality of the manuscript.

Closer to home, Sunita Sarawagi and S. Sudarshan gave valuable feedback.
Together with Pushpak Bhattacharya and Krithi Ramamritham, they kept up
my enthusiasm during this long project in the face of many adversities. I am
grateful to Tata Consultancy Services for their generous support through the
Lab for Intelligent Internet Research during the preparation of the manuscript.
T. P. Chandran offered invaluable administrative help. I thank Diane Cerra,
Lothlórien Homet, Edward Wade, Mona Buehler, Corina Derman, and all the
other members of the Morgan Kaufmann team for their patience with many delays
in the schedule and their superb production job. I regret forgetting to express my
gratitude to anyone else who has contributed to this work. The gratitude does live
on in my heart. Finally, I wish to thank my wife, Sunita Sarawagi, and my parents,
Sunil and Arati Chakrabarti, for their constant support and encouragement.

c h a p t e r 1
I N T R O D U C T I O N

The World Wide Web is the largest and most widely known repository of
hypertext. Hypertext documents contain text and generally embed hyperlinks to
other documents distributed across the Web. Today, the Web comprises billions of
documents, authored by millions of diverse people, edited by no one in particular,
and distributed over millions of computers that are connected by telephone lines,
optical fibers, and radio modems. It is a wonder that the Web works at all. Yet it is
rapidly assisting and supplementing newspapers, radio, television, and telephone,
the postal system, schools and colleges, libraries, physical workplaces, and even
the sites of commerce and governance.

A brief history of hypertext and the Web. Citation, a form of hyperlinking, is as old as
written language itself. The Talmud, with its heavy use of annotations and nested
commentary, and the Ramayana and Mahabharata, with their branching, nonlin-
ear discourse, are ancient examples of hypertext. Dictionaries and encyclopedias
can be viewed as a self-contained network of textual nodes joined by referential
links. Words and concepts are described by appealing to other words and con-
cepts. In modern times (1945), Vannevar Bush is credited with the first design of
a photo-electrical-mechanical storage and computing device called a Memex (for
“memory extension”), which could create and help follow hyperlinks across doc-
uments. Doug Engelbart and Ted Nelson were other early pioneers; Ted Nelson
coined the term hypertext in 1965 [160] and created the Xanadu hypertext system
with robust two-way hyperlinks, version management, controversy management,
annotation, and copyright management.

1

2 C H A P T E R 1 Introduction

In 1980 Tim Berners-Lee, a consultant with CERN (the European organi-
zation for nuclear research) wrote a program to create and browse along named,
typed bidirectional links between documents in a collection. By 1990, a more
general proposal to support hypertext repositories was circulating in CERN, and
by late 1990, Berners-Lee had started work on a graphical user interface (GUI) to
hypertext, and named the program the “World Wide Web.” By 1992, other GUI
interfaces such as Erwise and Viola were available. The Midas GUI was added
to the pool by Tony Johnson at the Stanford Linear Accelerator Center in early
1993.

In February 1993, Mark Andressen at NCSA (National Center for Supercom-
puting Applications, www.ncsa.uiuc.edu/) completed an initial version of Mosaic, a
hypertext GUI that would run on the popular X Window System used on UNIX
machines. Behind the scenes, CERN also developed and improved HTML, a
markup language for rendering hypertext, and Http, the hypertext transport pro-
tocol for sending HTML and other data over the Internet, and implemented a
server of hypertext documents called the CERN HTTPD. Although stand-alone
hypertext browsing systems had existed for decades, this combination of simple
content and transport standards, coupled with user-friendly graphic browsers led
to the widespread adoption of this new hypermedium. Within 1993, Http traf-
fic grew from 0.1% to over 1% of the Internet traffic on the National Science
Foundation backbone. There were a few hundred Http servers by the end of
1993.

Between 1991 and 1994, the load on the first Http server (info.cern.ch) in-
creased by a factor of one thousand (see Figure 1.1(a)). The year 1994 was a land-
mark: the Mosaic Communications Corporation (later Netscape) was founded,
the first World Wide Web conference was held, and MIT and CERN agreed
to set up the World Wide Web Consortium (W3C). The following years (1995–
2001) featured breakneck innovation, irrational exuberance, and return to reason,
as is well known. We will review some of the other major events later in this
chapter.

A populist, participatory medium. As the Web has grown in size and diversity, it has
acquired immense value as an active and evolving repository of knowledge. For
the first time, there is a medium where the number of writers—disseminators of
facts, ideas, and opinions—starts to approach the same order of magnitude as the
number of readers. To date, both numbers still fall woefully short of representing
all of humanity,and its languages, cultures, and aspirations. Still, it is a definitive
move toward recording many areas of human thought and endeavor in a manner

TE
AM
FL
Y

Team-Fly®

Introduction 3

July
1

10

102

103

104

105

October January
1992

April July October

(a)

January
1993

April July October January
1994

April

Logs during weekend
Logs per weekday

January
1991

1

10

102

103

104

105

106

107

108

109

July January
1992

July January
1993

July January
1994

(b)

July January
1995

July January
1996

July January
1997

Internet traffic

Web sites

Pages

Internet hosts

Gopher
traffic

Web
traffic

F I G U R E 1 . 1 The early days of the Web: CERN Http traffic grows by a factor of 1000 between
1991 and 1994 (a) (image courtesy W3C); the number of servers grows from a few hundred to a
million between 1991 and 1997 (b) (image courtesy Nielsen [165]).

4 C H A P T E R 1 Introduction

far more populist and accessible than before. Although media moguls have quickly
staked out large territories in cyberspace as well, the political system is still far more
anarchic (or democratic, depending on the point of view) than conventional print
or broadcast media. Ideas and opinions that would never see the light of day in
conventional media can live vibrant lives in cyberspace. Despite growing concerns
in legal and political circles, censorship is limited in practice to only the most
flagrant violations of “proper” conduct.

Just as biochemical processes define the evolution of genes, mass media defines
the evolution of memes, a word coined by Richard Dawkins to describe ideas,
theories, habits, skills, languages, and artistic expressions that spread from person
to person by imitation. Memes are replicators—just like genes—that are copied
imperfectly and selected on the basis of viability, giving rise to a new kind of
evolutionary process. Memes have driven the invention of writing, printing, and
broadcasting, and now they have constructed the Internet. “Free speech online,”
chain letters, and email viruses are some of the commonly recognized memes
on the Internet, but there are many, many others. For any broad topic, memetic
processes shape authorship, hyperlinking behavior, and resulting popularity of
Web pages. In the words of Susan Blackmore, a prominent researcher of memetics,
“From the meme’s-eye point of view the World Wide Web is a vast playground
for their own selfish propagation.”

The crisis of abundance and diversity. The richness of Web content has also made it
progressively more difficult to leverage the value of information. The new me-
dium has no inherent requirements of editorship and approval from authority.
Institutional editorship addresses policy more than form and content. In addition,
storage and networking resources are cheap. These factors have led to a largely
liberal and informal culture of content generation and dissemination. (Most uni-
versities and corporations will not prevent an employee from writing at reasonable
length about their latest kayaking expedition on their personal homepage, hosted
on a server maintained by the employer.) Because the Internet spans nations and
cultures, there is little by way of a uniform civil code. Legal liability for disseminat-
ing unverified or even libelous information is practically nonexistent, compared
to print or broadcast media.

Whereas the unregulated atmosphere has contributed to the volume and
diversity of Web content, it has led to a great deal of redundancy and nonstandard
form and content. The lowest common denominator model for the Web is rather
primitive: the Web is a set of documents, where each document is a multiset

Introduction 5

(bag) of terms. Basic search engines let us find pages that contain or do not
contain specified keywords and phrases. This leaves much to be desired. For most
broad queries (e.g., “java” or “kayaking”) there are millions of qualifying pages.
By “qualifying,” all we mean is that the page contains those, or closely related,
keywords. There is little support to disambiguate short queries like java unless
embedded in a longer, more specific query. There is no authoritative information
about the reliability and prestige of a Web document or a site.

Uniform accessibility of documents intended for diverse readership also com-
plicates matters. Outside cyberspace, bookstores and libraries are quite helpful in
guiding people with different backgrounds to different floors, aisles, and shelves.
The amateur gardener and a horticulture professional know well how to walk
their different ways. This is harder on the Web, because most sites and documents
are just as accessible as any other, and conventional search services to date have
little support for adapting to the background of specific users.

The Web is also adversarial in that commercial interests routinely influence
the operation of Web search and analysis tools. Most Web users pay only for their
network access, and little, if anything, for the published content that they use.
Consequently, the upkeep of content depends on the sale of products, services,
and online advertisements.1 This results in the introduction of a large volume of
ads. Sometimes these are explicit ad hyperlinks. At other times they are more
subtle, biasing apparently noncommercial matter in insidious ways. There are
businesses dedicated exclusively to raising the rating of their clients as judged by
prominent search engines, officially called search engine optimization.

The goal of this book. In this book I seek to study and develop programs that
connect people to the information they seek from the Web. The techniques
that are examined will be more generally applicable to any hypertext corpus.
I will call hypertext data semistructured or unstructured, because they do not have a
compact or precise description of data items. Such a description is called a schema,
which is mandatory for relational databases. The second major difference is that
unstructured and semistructured hypertext has a very large number of attributes,
if each lexical unit (word or token) is considered as a potential attribute. (We will
return to a comparison of data mining for structured and unstructured domains
in Section 1.6.)

1. It is unclear if such revenue models will be predominant even a few years from now.

6 C H A P T E R 1 Introduction

The Web is used in many ways other than authoring and seeking information,
but we will largely limit our attention to this aspect. We will not be directly
concerned with other modes of usage, such as Web-enabled email, news, or
chat services, although chances are some of the techniques we study may be
applicable to those situations. Web-enabled transactions on relational databases
are also outside the scope of this book.

We shall proceed from standard ways to access the Web (using keyword
search engines) to relatively sophisticated analyses of text and hyperlinks in later
chapters. Machine learning is a large and deep body of knowledge we shall tap
liberally, together with overlapping and related work in pattern recognition and
data mining. Broadly, these areas are concerned with searching for, confirming,
explaining, and exploiting nonobvious and statistically significant constraints and
patterns between attributes of large volumes of potentially noisy data. Identifying
the main topic(s) discussed in a document, modeling a user’s topics of interest,
and recommending content to a user based on past behavior and that of other
users all come under the broad umbrella of machine learning and data mining.
These are well-established fields, but the novelty of highly noisy hypertext data
does necessitate some notable innovations.

The following sections briefly describe the sequence of material in the
chapters of this book.

1.1 Crawling and Indexing
We shall visit a large variety of programs that process textual and hypertextual
information in diverse ways, but the capability to quickly fetch a large number
of Web pages into a local repository and to index them based on keywords is
required in many applications. Large-scale programs that fetch tens of thousands
of Web pages per second are called crawlers, spiders, Web robots, or bots. Crawling
is usually performed to subsequently index the documents fetched. Together, a
crawler and an index form key components of a Web search engine.

One of the earliest search engines to be built was Lycos, founded in January
1994, operational in June 1994, and a publicly traded company in April 1996.
Lycos was born from a research project at Carnegie Mellon University by Dr.
Michael Mauldin. Another search engine, WebCrawler, went online in spring
1994. It was also started as a research project, at the University of Washington,
by Brian Pinkerton. During the spring of 1995, Louis Monier, Joella Paquette,
and Paul Flaherty at Digital Equipment Corporation’s research labs developed
AltaVista, one of the best-known search engines with claims to over 60 patents,

1.2 Topic Directories 7

the highest in this area so far. Launched in December 1995, AltaVista started
fielding two million queries a day within three weeks.

Many others followed the search engine pioneers and offered various in-
novations. HotBot and Inktomi feature a distributed architecture for crawling
and storing pages. Excite could analyze similarity between keywords and match
queries to documents having no syntactic match. Many search engines started
offering a “more like this” link with each response. Search engines remain some
of the most visited sites today.

Chapter 2 looks at how to write crawlers of moderate scale and capability
and addresses various performance issues. Then, Chapter 3 discusses how to
process the data into an index suitable for answering queries. Indexing enables
keyword and phrase queries and Boolean combinations of such queries. Unlike
relational databases, the query engine cannot simply return all qualifying responses
in arbitrary order. The user implicitly expects the responses to be ordered in a way
that maximizes the chances of the first few responses satisfying the information
need. These chapters can be skimmed if you are more interested in mining per
se; more in-depth treatment of information retrieval (IR) can be found in many
excellent classic texts cited later.

1.2 Topic Directories
The first wave of innovations was related to basic infrastructure comprising
crawlers and search engines. Topic directories were the next significant feature to
gain visibility.

In 1994, Jerry Yang and David Filo, Ph.D. students at Stanford University,
created the Yahoo!2 directory (www.yahoo.com/) to help their friends locate useful
Web sites, growing by the thousands each day. Srinija Srinivasan, another Stanford
alum, provided the expertise to create and maintain the treelike branching hier-
archies that steer people to content. By April 1995, the project that had started
out as a hobby was incorporated as a company.

The dazzling success of Yahoo! should not make one forget that organiz-
ing knowledge into ontologies is an ancient art, descended from philosophy and
epistemology. An ontology defines a vocabulary, the entities referred to by ele-
ments in the vocabulary, and relations between the entities. The entities may be

2. Yahoo! is an acronym for “Yet Another Hierarchical Officious Oracle!”

8 C H A P T E R 1 Introduction

fine-grained, as in WordNet, a lexical network for English, or they may be rela-
tively coarse-grained topics, as in the Yahoo! topic directory.

The paradigm of browsing a directory of topics arranged in a tree where
children represent specializations of the parent topic is now pervasive. The av-
erage computer user is familiar with hierarchies of directories and files, and this
familiarity carries over rather naturally to topic taxonomies. Following Yahoo!’s
example, a large number of content portals have added support for hosting topic
taxonomies. Some organizations (e.g., Yahoo!) employ a team of editors to main-
tain the taxonomy; others (e.g., About.com and the Open Directory Project
(dmoz.org/) are more decentralized and work through a loosely coupled network
of volunteers. A large fraction of Web search engines now incorporate some form
of taxonomy-based search as well.

Topic directories offer value in two forms. The obvious contribution is the
cataloging of Web content, which makes it easier to search (e.g., SOCKS as in the
firewall protocol is easier to distinguish from the clothing item). Collecting links
into homogeneous clusters also offers an implicit “more like this” mechanism:
once the user has located a few sites of interest, others belonging to the same,
sibling, or ancestor categories may also be of interest. The second contribution is
in the form of quality control. Because the links in a directory usually go through
editorial scrutiny, however cursory, they tend to reflect the more authoritative
and popular sections of the Web. As we shall see, both of these forms of human
input can be exploited well by Web mining programs.

1.3 Clustering and Classification
Topic directories built with human effort (e.g., Yahoo! or the Open Directory)
immediately raise a question: Can they be constructed automatically out of an
amorphous corpus of Web pages, such as collected by a crawler? We study one
aspect of this problem, called clustering, or unsupervised learning, in Chapter 4.
Roughly speaking, a clustering algorithm discovers groups in the set of doc-
uments such that documents within a group are more similar than documents
across groups.

Clustering is a classic area of machine learning and pattern recognition [72].
However, a few complications arise in the hypertext domain. A basic problem is
that different people do not agree about what they expect a clustering algorithm to
output for a given data set. This is partly because they are implicitly using different
similarity measures, and it is difficult to guess what their similarity measures are
because the number of attributes is so large.

1.4 Hyperlink Analysis 9

Hypertext is also rich in features: textual tokens, markup tags, URLs, host
names in URLs, substrings in the URLs that could be meaningful words, and
host IP addresses, to name a few. How should they contribute to the similarity
measure so that we can get good clusterings? We study these and other related
problems in Chapter 4.

Once a taxonomy is created, it is necessary to maintain it with example URLs
for each topic as the Web changes and grows. Human effort to this end may be
greatly assisted by supervised learning, or classification, which is the subject of
Chapter 5. A classifier is first trained with a corpus of documents that are labeled
with topics. At this stage, the classifier analyzes correlations between the labels
and other document attributes to form models. Later, the classifier is presented
with unlabeled instances and is required to estimate their topics reliably.

Like clustering, classification is also a classic operation in machine learning and
data mining. Again, the number, variety, and nonuniformity of features make the
classification problem interesting in the hypertext domain. We shall study many
flavors of classifiers and discuss their strengths and weaknesses.

Although research prototypes abound, clustering and classification software
is not as widely used as basic keyword search services. IBM’s Lotus Notes text-
processing system and its Intelligent Miner for Text include some state-of-the-art
clustering and classification packages. Verity’s K2 text-processing product also
includes a text categorization tool. We will review other systems in the respective
chapters.

Clustering and classification are at two opposite extremes with regard to the
extent of human supervision they need. Real-life applications are somewhere in
between, because unlabeled data is easy to collect but labeling data is onerous.
In our preliminary discussion above, a classifier trains on labeled instances and is
presented unlabeled test instances only after the training phase is completed. Might
it help to have the test instances available while training? In a different setting
specific to hypertext, if the labels of documents in the link neighborhood of a
test document are known, can that help determine the label of the test document
with higher accuracy? We study such issues in Chapter 6.

1.4 Hyperlink Analysis
Although classic information retrieval has provided extremely valuable core tech-
nology for Web searching, the combined challenges of abundance, redundancy,
and misrepresentation have been unprecedented in the history of IR. By 1996,

10 C H A P T E R 1 Introduction

it was clear that relevance-ranking techniques from classic IR were not sufficient
for Web searching. Web queries were very short (two to three terms) compared
with IR benchmarks (dozens of terms). Short queries, unless they include highly
selective keywords, tend to be broad because they do not embed enough infor-
mation to pinpoint responses. Such broad queries matched thousands to millions
of pages, but sometimes missed the best responses because there was no direct
keyword match. The entry pages of Toyota and Honda do not explicitly say that
they are Japanese car companies. At one time, the query “Web browser” failed to
match the entry pages of Netscape Corporation or Microsoft’s Internet Explorer
page, but there were thousands of pages with hyperlinks to these sites with the
term browser somewhere close to the link.

It was becoming clear that the assumption of a flat corpus, common in IR, was
not taking advantage of the structure of the Web graph. In particular, relevance
to a query is not sufficient if responses are abundant. In the arena of academic
publications, the number of citations to a paper is an indicator of its prestige. In the
fall of 1996, Larry Page and Sergey Brin, Ph.D. students at Stanford University,
applied a variant of this idea to a crawl of 60 million pages to assign a prestige score
called PageRank (after Page). Then they built a search system called Backrub. In
1997, Backrub went online as Google (www.google.com/). Around the same time,
Jon Kleinberg, then a researcher at IBM Research, invented a similar system called
HITS (for hyperlink induced topic search). HITS assigned two scores to each node in
a hypertext graph. One was a measure of authority, similar to Google’s prestige,
the other was a measure of a node being a comprehensive catalog of links to good
authorities.

Chapter 7 is a study of these and other algorithms for analyzing the link
structure of hypertext graphs. The analysis of social networks is quite mature,
and so is one special case of social network analysis, called bibliometry, which is
concerned with the bibliographic citation graph of academic papers. The initial
specifications of these pioneering hyperlink-assisted ranking systems have close
cousins in social network analysis and bibliometry, and have elegant underpinnings
in the linear algebra and graph-clustering literature. The PageRank and HITS
algorithms have led to a flurry of research activity in this area (by now known
generally as topic distillation) that continues to this day. This book follows this
literature in some detail and shows how topic-distillation algorithms are adapting
to the idioms of Web authorship and linking styles. Apart from algorithmic
research, the book covers techniques for Web measurements and notable results
therefrom.

1.6 Structured vs. Unstructured Data Mining 11

1.5 Resource Discovery and Vertical Portals
Despite their great sophistication, Web search tools still cannot match an experi-
enced librarian or researcher finding relevant papers in a research area. At some
stage, it seems inevitable that the “shallow” syntactic and statistical analysis will
fall short of representing and querying knowledge.

Unfortunately, language analysis does not scale to billions of documents yet.
We can counter this by throwing more hardware at the problem. One way to
do this is to use federations of crawling and search services, each specializing in
specific topical areas. Domain specialists in those areas can best help build the
lexicon and tune the algorithms for the corresponding communities.

Each member of such a federation needs to be a goal-driven information
forager. It needs to locate sites and pages related to its broad umbrella of topics,
while minimizing resources lost on fetching and inspecting irrelevant pages.
Information thus collected may be used to host “vertical portals” that cater to
a special-interest group, such as “kayaking” or “high-end audio equipment.”

Chapter 8 presents several recent techniques for goal-driven Web resource
discovery that build upon the crawling and learning techniques developed in
earlier chapters.

Much remains to be done beyond a statistical analysis of the Web. Clearly
the goal is substantial maturity in extracting, from syntactic features, semantic
knowledge in forms that can be manipulated automatically. Important applica-
tions include structured information extraction (e.g., “monitor business news for
acquisitions, or maintain an internal portal of competitors’ Web sites”) and pro-
cessing natural language queries (e.g., “even though I updated /etc/lilo.conf
and /etc/fstab, my computer uses /dev/sda1 rather than /dev/sdb1 as the boot
partition—why?”). For some of these problems, no practical solution is in sight;
for others, progress is being made. We will briefly explore the landscape of ongoing
research in the final Chapter 9.

1.6 Structured vs. Unstructured Data Mining
Is there a need for a separate community and literature on Web mining? I have
noted that Web mining borrows heavily from IR, machine learning, statistics,
pattern recognition, and data mining, and there are dozens of excellent texts and
conferences in those areas. Nevertheless, I feel that the new medium of Web

12 C H A P T E R 1 Introduction

publishing has resulted in, and will continue to inspire, significant innovations
over and above the contribution of the classic research areas.

Large volumes of easily accessible data are crucial to the success of any data
analysis research. Although there is a decades-old community engaged in hyper-
text research, most of the exciting developments traced in this book were enabled
only after Web authorship exploded. Even traditional data mining researchers are
increasingly engaging in Web analysis because data is readily available, the data is
very rich in features and patterns, and the positive effects of successful analysis are
immediately evident to the researcher, who is also often an end user.

In traditional data mining, which is usually coupled with data warehousing
systems, data is structured and relational in nature, having well-defined tables,
attributes (columns), tuples (rows), keys, and constraints. Most data sets in the
machine learning domain (e.g., the well-known University of California at Irvine
data set) are structured as tables as well.

A feature that is unique to the Web is the spontaneous formation and evolution
of topic-induced graph clusters and hyperlink-induced communities in the Web
graph. Hyperlinks add significant amounts of useful information beyond text for
search, relevance ranking, classification, and clustering,

Another feature is that well-formed HTML pages represent a tree structure,
with text and attributes embedded in the nodes. A properly parsed HTML page
gives a tag-tree, which may reveal valuable clues to content-mining algorithms
through layout and table directives. For example, the entry page of an online
newspaper undergoes temporal changes in a very interesting fashion: the masthead
is static, the advertisements change almost every time the page is accessed, and
breaking news items drift slowly through the day. Links to prominent sections
remain largely the same, but their content changes maybe once a day. The tag-
tree is a great help in “taking the page apart” and selecting and analyzing specific
portions, as we shall see in Chapters 7 and 8.

In a perfectly engineered world, Web pages will be written in a more
sophisticated markup language with a universally accepted metadata description
format. XML (www.w3.org/XML/) and RDF (Resource Description Framework;
www.w3.org/RDF/) have made great strides in that direction, especially in specific
domains like e-commerce, electronic components, genomics, and molecular
chemistry. I believe that the Web will always remain adventurous enough that its
most interesting and timely content can never be shoehorned into rigid schemata.
While I am by no means downplaying the importance of XML and associated
standards, this book is more about discovering patterns that are spontaneously driven
by semantics, rather than designing patterns by fiat.

TE
AM
FL
Y

Team-Fly®

1.7 Bibliographic Notes 13

1.7 Bibliographic Notes
The Web is befittingly a great source of information on its history. The W3C Web
site (www.w3c.org/) and the Internet Society (www.isoc.org/internet-history/) have
authoritative material tracing the development of the Web’s greatest innovations.
Nielsen records many such events from 1990 to 1995 as well [165]. Search Engine
Watch (searchenginewatch.com/) has a wealth of details about crawler and search
engine technology. Vannevar Bush proposed the Memex in his seminal paper “As
We May Think” [29]. Details about Xanadu can be found at www.xanadu.net/
and Nelson’s book Literary Machines [161]. The references to memetics are from
the intriguing books by Dawkins [62] and Blackmore [19].

p a r t i
I N F R A S T R U C T U R E

c h a p t e r 2
C R A W L I N G T H E W E B

The World Wide Web, or the Web for short, is a collection of billions of doc-
uments written in a way that enables them to cite each other using hyperlinks,
which is why they are a form of hypertext. These documents, or Web pages, are
typically a few thousand characters long, written in a diversity of languages, and
cover essentially all topics of human endeavor. Web pages are served through the
Internet using the hypertext transport protocol (Http) to client computers, where they
can be viewed using browsers. Http is built on top of the transport control protocol
(TCP), which provides reliable data streams to be transmitted from one computer
to another across the Internet.

Throughout this book, we shall study how automatic programs can analyze
hypertext documents and the networks induced by the hyperlinks that connect
them. To do so, it is usually necessary to fetch the pages to the computer where
those programs will be run. This is the job of a crawler (also called a spider , robot,
or bot). In this chapter we will study in detail how crawlers work. If you are more
interested in how pages are indexed and analyzed, you can skip this chapter with
hardly any loss of continuity.

I will assume that you have basic familiarity with computer networking using
TCP, to the extent of writing code to open and close sockets and read and write
data using a socket. We will focus on the organization of large-scale crawlers,
which must handle millions of servers and billions of pages.

17

18 C H A P T E R 2 Crawling the Web

2.1 HTML and HTTP Basics
Web pages are written in a tagged markup language called the hypertext markup
language (HTML). HTML lets the author specify layout and typeface, embed
diagrams, and create hyperlinks. A hyperlink is expressed as an anchor tag with an
href attribute, which names another page using a uniform resource locator (URL),
like this:

The IIT Bombay
Computer Science Department

In its simplest form, the target URL contains a protocol field (http), a server
hostname (www.cse.iitb.ac.in), and a file path (/, the “root” of the published file
system).

A Web browser such as Netscape Communicator or Internet Explorer will
let the reader click the computer mouse on the hyperlink. The click is translated
transparently by the browser into a network request to fetch the target page using
Http.

A browser will fetch and display a Web page given a complete URL like
the one above, but to reveal the underlying network protocol, we will (ab)use
the telnet command available on UNIX machines, as shown in Figure 2.1. First
the telnet client (as well as any Web browser) has to resolve the server hostname
www.cse.iitb.ac.in to an Internet address of the form 144.16.111.14 (called an IP
address, IP standing for Internet protocol) to be able to contact the server using
TCP. The mapping from name to address is done using the Domain Name Service
(DNS), a distributed database of name-to-IP mappings maintained at known
servers [202]. Next, the client connects to port 80, the default Http port, on the
server. The underlined text is entered by the user (this is transparently provided
by Web browsers). The slanted text is called the MIME header . (MIME stands for
multipurpose Internet mail extensions, and is a metadata standard for email and Web
content transfer.) The ends of the request and response headers are indicated by
the sequence CR-LF-CR-LF (double newline, written in C/C++ code as "\r\n\r\n"
and shown as the blank lines).

Browsing is a useful but restrictive means of finding information. Given a
page with many links to follow, it would be unclear and painstaking to explore
them in search of a specific information need. A better option is to index all the
text so that information needs may be satisfied by keyword searches (as in library
catalogs). To perform indexing, we need to fetch all the pages to be indexed using
a crawler.

2.2 Crawling Basics 19

% telnet www.cse.iitb.ac.in 80
Trying 144.16.111.14...
Connected to www.cse.iitb.ac.in.
Escape character is ’]̂’.
GET / Http/1.0

Http/1.1 200 OK
Date: Sat, 13 Jan 2001 09:01:02 GMT
Server: Apache/1.3.0 (Unix) PHP/3.0.4
Last-Modified: Wed, 20 Dec 2000 13:18:38 GMT
ETag: "5c248-153d-3a40b1ae"
Accept-Ranges: bytes
Content-Length: 5437
Connection: close
Content-Type: text/html
X-Pad: avoid browser bug

<html>
<head><title>IIT Bombay CSE Department Home Page</title></head>
<body>...IIT Bombay...
</body></html>
Connection closed by foreign host.
%

F I G U R E 2 . 1 Fetching a Web page using telnet and Http.

2.2 Crawling Basics
How does a crawler fetch “all” Web pages? Before the advent of the Web,
traditional text collections such as bibliographic databases and journal abstracts
were provided to the indexing system directly, say, on magnetic tape or disk. In
contrast, there is no catalog of all accessible URLs on the Web. The only way to
collect URLs is to scan collected pages for hyperlinks to other pages that have
not been collected yet. This is the basic principle of crawlers. They start from a
given set of URLs, progressively fetch and scan them for new URLs (outlinks),
and then fetch these pages in turn, in an endless cycle. New URLs found thus
represent potentially pending work for the crawler. The set of pending work
expands quickly as the crawl proceeds, and implementers prefer to write this data
to disk to relieve main memory as well as guard against data loss in the event of a
crawler crash. There is no guarantee that all accessible Web pages will be located in

20 C H A P T E R 2 Crawling the Web

this fashion; indeed, the crawler may never halt, as pages will be added continually
even as it is running. Apart from outlinks, pages contain text; this is submitted to
a text indexing system (described in Section 3.1) to enable information retrieval
using keyword searches.

It is quite simple to write a basic crawler, but a great deal of engineering goes
into industry-strength crawlers that fetch a substantial fraction of all accessible
Web documents. Web search companies like AltaVista, Northern Light, Inktomi,
and the like do publish white papers on their crawling technologies, but piecing
together the technical details is not easy. There are only a few documents in the
public domain that give some detail, such as a paper about AltaVista’s Mercator
crawler [108] and a description of Google’s first-generation crawler [26]. Based
partly on such information, Figure 2.2 should be a reasonably accurate block
diagram of a large-scale crawler.

The central function of a crawler is to fetch many pages at the same time, in
order to overlap the delays involved in

1. Resolving the hostname in the URL to an IP address using DNS

2. Connecting a socket to the server and sending the request

3. Receiving the requested page in response

together with time spent in scanning pages for outlinks and saving pages to a
local document repository. Typically, for short pages, DNS lookup and socket
connection take a large portion of the processing time, which depends on round-
trip times on the Internet and is generally unmitigated by buying more bandwidth.

The entire life cycle of a page fetch, as listed above, is managed by a logical
thread of control. This need not be a thread or process provided by the operating
system, but may be specifically programmed for this purpose for higher efficiency.
In Figure 2.2 this is shown as the “Page fetching context/thread,” which starts
with DNS resolution and finishes when the entire page has been fetched via
Http (or some error condition arises). After the fetch context has completed
its task, the page is usually stored in compressed form to disk or tape and
also scanned for outgoing hyperlinks (hereafter called “outlinks”). Outlinks are
checked into a work pool. A load manager checks out enough work from the pool
to maintain network utilization without overloading it. This process continues
until the crawler has collected a “sufficient” number of pages. It is difficult to
define “sufficient” in general. For an intranet of moderate size, a complete crawl
may well be possible. For the Web, there are indirect estimates of the number

2.3 Engineering Large-Scale Crawlers 21

Load monitor
and work-thread

manager

Persistent
global work

pool of URLs

Wait
for

DNS

Wait
until
Http

socket
available

Page fetching context/thread

Http
send and
receive

Crawl
metadata

isUrlVisited?
URL

approval
guard

Per-server
queues

Fr
es

h
w

or
k

DNS resolver
client (UDP)

Text indexing
and other
analyses

Async UDP
DNS prefetch

client

Caching DNS
(slack about

expiration dates)

isPageKnown?

Hyperlink
extractor and
normalizer

R
el

at
iv

e
lin

ks
, l

in
ks

em
be

dd
ed

 in
 s

cr
ip

ts
, i

m
ag

es
H

an
dl

es
 s

pi
de

r
tr

ap
s,

ro
bo

ts
.tx

t

Text
repository
and index

DNS
cache

F I G U R E 2 . 2 Typical anatomy of a large-scale crawler.

of publicly accessible pages, and a crawler may be run until a substantial fraction
is fetched. Organizations with less networking or storage resources may need to
stop the crawl for lack of space, or to build indices frequently enough to be useful.

2.3 Engineering Large-Scale Crawlers
In the previous section we discussed a basic crawler. Large-scale crawlers that send
requests to millions of Web sites and collect hundreds of millions of pages need
a great deal of care to achieve high performance. In this section we will discuss
the important performance and reliability considerations for a large-scale crawler.
Before we dive into the details, it will help to list the main concerns:

22 C H A P T E R 2 Crawling the Web

� Because a single page fetch may involve several seconds of network latency, it
is essential to fetch many pages (typically hundreds to thousands) at the same
time to utilize the network bandwidth available.

� Many simultaneous fetches are possible only if the DNS lookup is streamlined
to be highly concurrent, possibly replicated on a few DNS servers.

� Multiprocessing or multithreading provided by the operating system is not the
best way to manage the multiple fetches owing to high overheads. The best
bet is to explicitly encode the state of a fetch context in a data structure and
use asynchronous sockets, which do not block the process/thread using it, but
can be polled to check for completion of network transfers.

� Care is needed to extract URLs and eliminate duplicates to reduce redundant
fetches and to avoid “spider traps”—hyperlink graphs constructed carelessly
or malevolently to keep a crawler trapped in that graph, fetching what can
potentially be an infinite set of “fake” URLs.

2.3.1 DNS Caching, Prefetching, and Resolution
Address resolution is a significant bottleneck that needs to be overlapped with
other activities of the crawler to maintain throughput. In an ordinary local area
network, a DNS server running on a modest PC can perform name mappings for
hundreds of workstations. A crawler is much more demanding as it may generate
dozens of mapping requests per second. Moreover, many crawlers avoid fetching
too many pages from one server, which might overload it; rather, they spread their
access over many servers at a time. This lowers the locality of access to the DNS
cache. For all these reasons, large-scale crawlers usually include a customized DNS
component for better performance. This comprises a custom client for address
resolution and possibly a caching server and a prefetching client.

First, the DNS caching server should have a large cache that should be
persistent across DNS restarts, but residing largely in memory if possible. A desktop
PC with 256 MB of RAM and a disk cache of a few GB will be adequate for a
caching DNS, but it may help to have a few (say, two to three) of these. Normally,
a DNS cache has to honor an expiration date set on mappings provided by its
upstream DNS server or peer. For a crawler, strict adherence to expiration dates
is not too important. (However, the DNS server should try to keep its mapping
as up to date as possible by remapping the entries in cache during relatively
idle time intervals.) Second, many clients for DNS resolution are coded poorly.
Most UNIX systems provide an implementation of gethostbyname (the DNS client

TE
AM
FL
Y

Team-Fly®

2.3 Engineering Large-Scale Crawlers 23

API—application program interface), which cannot concurrently handle multiple
outstanding requests. Therefore, the crawler cannot issue many resolution requests
together and poll at a later time for completion of individual requests, which is
critical for acceptable performance. Furthermore, if the system-provided client
is used, there is no way to distribute load among a number of DNS servers. For
all these reasons, many crawlers choose to include their own custom client for
DNS name resolution. The Mercator crawler from Compaq System Research
Center reduced the time spent in DNS from as high as 87% to a modest 25% by
implementing a custom client. The ADNS asynchronous DNS client library1 is
ideal for use in crawlers.

In spite of these optimizations, a large-scale crawler will spend a substantial
fraction of its network time not waiting for Http data transfer, but for address
resolution. For every hostname that has not been resolved before (which happens
frequently with crawlers), the local DNS may have to go across many network
hops to fill its cache for the first time. To overlap this unavoidable delay with useful
work, prefetching can be used. When a page that has just been fetched is parsed,
a stream of HREFs is extracted. Right at this time, that is, even before any of the
corresponding URLs are fetched, hostnames are extracted from the HREF targets,
and DNS resolution requests are made to the caching server. The prefetching
client is usually implemented using UDP (user datagram protocol, a connectionless,
packet-based communication protocol that does not guarantee packet delivery)
instead of TCP, and it does not wait for resolution to be completed. The request
serves only to fill the DNS cache so that resolution will be fast when the page is
actually needed later on.

2.3.2 Multiple Concurrent Fetches
Research-scale crawlers fetch up to hundreds of pages per second. Web-scale
crawlers fetch hundreds to thousands of pages per second. Because a single down-
load may take several seconds, crawlers need to open many socket connections to
different Http servers at the same time. There are two approaches to managing
multiple concurrent connections: using multithreading and using nonblocking
sockets with event handlers. Since crawling performance is usually limited by
network and disk, multi-CPU machines generally do not help much.

1. See www.chiark.greenend.org.uk/~ian/adns/.

24 C H A P T E R 2 Crawling the Web

Multithreading

After name resolution, each logical thread creates a client socket, connects the
socket to the Http service on a server, sends the Http request header, then reads
the socket (by calling recv) until no more characters are available, and finally
closes the socket. The simplest programming paradigm is to use blocking system
calls, which suspend the client process until the call completes and data is available
in user-specified buffers.

This programming paradigm remains unchanged when each logical thread
is assigned to a physical thread of control provided by the operating system, for
example, through the pthreads multithreading library available on most UNIX
systems [164]. When one thread is suspended waiting for a connect, send, or recv
to complete, other threads can execute. Threads are not generated dynamically
for each request; rather, a fixed number of threads is allocated in advance. These
threads use a shared concurrent work-queue to find pages to fetch. Each thread
manages its own control state and stack, but shares data areas. Therefore, some
implementers prefer to use processes rather than threads so that a disastrous crash
of one process does not corrupt the state of other processes.

There are two problems with the concurrent thread/process approach. First,
mutual exclusion and concurrent access to data structures exact some performance
penalty. Second, as threads/processes complete page fetches and start modifying
the document repository and index concurrently, they may lead to a great deal of
interleaved, random input-output on disk, which results in slow disk seeks.

The second performance problem may be severe. To choreograph disk access
and to transfer URLs and page buffers between the work pool, threads, and the
repository writer, the numerous fetching threads/processes must use one of shared
memory buffers, interprocess communication, semaphores, locks, or short files.
The exclusion and serialization overheads can become serious bottlenecks.

Nonblocking sockets and event handlers

Another approach is to use nonblocking sockets. With nonblocking sockets, a
connect, send, or recv call returns immediately without waiting for the network
operation to complete. The status of the network operation may be polled
separately. In particular, a nonblocking socket provides the select system call,
which lets the application suspend and wait until more data can be read from or
written to the socket, timing out after a prespecified deadline. select can in fact
monitor several sockets at the same time, suspending the calling process until any
one of the sockets can be read or written.

2.3 Engineering Large-Scale Crawlers 25

Each active socket can be associated with a data structure that maintains the
state of the logical thread waiting for some operation to complete on that socket,
and callback routines that complete the processing once the fetch is completed.
When a select call returns with a socket identifier, the corresponding state record is
used to continue processing. The data structure also contains the page in memory
as it is being fetched from the network. This is not very expensive in terms of
RAM. One thousand concurrent fetches on 10 KB pages would still use only
10 MB of RAM.

Why is using select more efficient? The completion of page fetching threads
is serialized, and the code that completes processing the page (scanning for outlinks,
saving to disk) is not interrupted by other completions (which may happen but
are not detected until we explicitly select again). Consider the pool of freshly
discovered URLs. If we used threads or processes, we would need to protect this
pool against simultaneous access with some sort of mutual exclusion device. With
selects, there is no need for locks and semaphores on this pool. With processes or
threads writing to a sequential dump of pages, we need to make sure disk writes
are not interleaved. With select, we only append complete pages to the log, again
without the fear of interruption.

2.3.3 Link Extraction and Normalization
It is straightforward to search an HTML page for hyperlinks, but URLs extracted
from crawled pages must be processed and filtered in a number of ways before
throwing them back into the work pool. It is important to clean up and canon-
icalize URLs so that pages known by different URLs are not fetched multiple
times. However, such duplication cannot be eliminated altogether, because the
mapping between hostnames and IP addresses is many-to-many, and a “site” is
not necessarily the same as a “host.”

A computer can have many IP addresses and many hostnames. The reply to
a DNS request includes an IP address and a canonical hostname. For large sites,
many IP addresses may be used for load balancing. Content on these hosts will
be mirrors, or may even come from the same file system or database. On the
other hand, for organizations with few IP addresses and a need to publish many
logical sites, virtual hosting or proxy pass may be used2 to map many different sites
(hostnames) to a single IP address (but a browser will show different content for

2. See the documentation for the Apache Web server at www.apache.org/.

26 C H A P T E R 2 Crawling the Web

the different sites). The best bet is to avoid IP mapping for canonicalization and
stick to the canonical hostname provided by the DNS response.

Extracted URLs may be absolute or relative. An example of an absolute
URL is http://www.iitb.ac.in/faculty/, whereas a relative URL may look like
photo.jpg or /~soumen/. Relative URLs need to be interpreted with reference to
an absolute base URL. For example, the absolute form of the second and third
URLs with regard to the first are http://www.iitb.ac.in/faculty/photo.jpg and
http://www.iitb.ac.in/~soumen/ (the starting “/” in /~soumen/ takes you back to
the root of the Http server’s published file system). A completely canonical form
including the default Http port (number 80) would be http://www.iitb.ac.in:80/
faculty/photo.jpg.

Thus, a canonical URL is formed by the following steps:

1. A standard string is used for the protocol (most browsers tolerate Http, which
should be converted to lowercase, for example).

2. The hostname is canonicalized as mentioned above.

3. An explicit port number is added if necessary.

4. The path is normalized and cleaned up, for example, /books/../papers
/sigmod1999.ps simplifies to /papers/sigmod1999.ps.

2.3.4 Robot Exclusion
Another necessary step is to check whether the server prohibits crawling a
normalized URL using the robots.txt mechanism. This file is usually found in the
Http root directory of the server (such as http://www.iitb.ac.in/robots.txt). This
file specifies a list of path prefixes that crawlers should not attempt to fetch. The
robots.txt file is meant for crawlers only and does not apply to ordinary browsers.
This distinction is made based on the User-agent specification that clients send
to the Http server (but this can be easily spoofed). Figure 2.3 shows a sample
robots.txt file.

2.3.5 Eliminating Already-Visited URLs
Before adding a new URL to the work pool, we must check if it has already been
fetched at least once, by invoking the isUrlVisited? module, shown in Figure 2.2.
(Refreshing the page contents is discussed in Section 2.3.11.) Many sites are quite
densely and redundantly linked, and a page is reached via many paths; hence, the
isUrlVisited? check needs to be very quick. This is usually achieved by computing
a hash function on the URL.

2.3 Engineering Large-Scale Crawlers 27

AltaVista Search
User-agent: AltaVista Intranet V2.0 W3C Webreq
Disallow: /Out-Of-Date

exclude some access-controlled areas
User-agent: *
Disallow: /Team
Disallow: /Project
Disallow: /Systems

F I G U R E 2 . 3 A sample robots.txt file.

For compactness and uniform size, canonical URLs are usually hashed using
a hash function such as MD5. (The MD5 algorithm takes as input a message of
arbitrary length and produces as output a 128-bit fingerprint or message digest of the
input. It is conjectured that it is computationally hard to produce two messages
having the same message digest, or to produce any message having a prespecified
message digest value. See www.rsasecurity.com/rsalabs/faq/3-6-6.html for details.)
Depending on the number of distinct URLs that must be supported, the MD5
may be collapsed into anything between 32 and 128 bits, and a database of these
hash values is maintained. Assuming each URL costs just 8 bytes of hash value
(ignoring search structure costs), a billion URLs will still cost 8 GB, a substantial
amount of storage that usually cannot fit in main memory.

Storing the set of hash values on disk unfortunately makes the isUrlVisited?
check slower, but luckily, there is some locality of access on URLs. Some
URLs (such as www.netscape.com/) seem to be repeatedly encountered no matter
which part of the Web the crawler is traversing. Thanks to relative URLs within
sites, there is also some spatiotemporal locality of access: once the crawler starts
exploring a site, URLs within the site are frequently checked for a while.

To exploit locality, we cannot hash the whole URL to a single hash value,
because a good hash function will map the domain strings uniformly over the
range. This will jeopardize the second kind of locality mentioned above, because
paths on the same host will be hashed over the range uniformly. This calls for
a two-block or two-level hash function. The most significant bits (say, 24 bits)
are derived by hashing the hostname plus port only, whereas the lower-order
bits (say, 40 bits) are derived by hashing the path. The hash values of URLs on
the same host will therefore match in the 24 most significant bits. Therefore, if

28 C H A P T E R 2 Crawling the Web

the concatenated bits are used as a key in a B-tree that is cached at page level,
spatiotemporal locality is exploited.

Finally, the qualifying URLs (i.e., those whose hash values are not found in
the B-tree) are added to the pending work set on disk, also called the frontier of
the crawl. The hash values are also added to the B-tree.

2.3.6 Spider Traps
Because there is no editorial control on Web content, careful attention to coding
details is needed to render crawlers immune to inadvertent or malicious quirks
in sites and pages. Classic lexical scanning and parsing tools are almost useless. I
have encountered a page with 68 KB of null characters in the middle of a URL
that crashed a lexical analyzer generated by flex.3 Hardly any page follows the
HTML standard to a level where a context-free parser like yacc or bison can
parse it well. Commercial crawlers need to protect themselves from crashing on
ill-formed HTML or misleading sites. HTML scanners have to be custom-built
to handle errors in a robust manner, discarding the page summarily if necessary.

Using soft directory links and path remapping features in an Http server, it is
possible to create an infinitely “deep” Web site, in the sense that there are paths
of arbitrary depth (in terms of the number of slashes in the path or the number
of characters). CGI (common gateway interface) scripts can be used to generate an
infinite number of pages dynamically (e.g., by embedding the current time or a
random number). A simple check for URL length (or the number of slashes in
the URL) prevents many “infinite site” problems, but even at finite depth, Http
servers can generate a large number of dummy pages dynamically. The following
are real URLs encountered in a recent crawl:

� www.troutbums.com/Flyfactory/hatchline/hatchline/hatchline/flyfactory/flyfactory
/hatchline/flyfactory/flyfactory/flyfactory/flyfactory/flyfactory/flyfactory/flyfactory
/flyfactory/hatchline/hatchline/flyfactory/flyfactory/hatchline/

� www.troutbums.com/Flyfactory/flyfactory/flyfactory/hatchline/hatchline/flyfactory
/hatchline/flyfactory/hatchline/flyfactory/flyfactory/flyfactory/hatchline/flyfactory
/hatchline/

� www.troutbums.com/Flyfactory/hatchline/hatchline/flyfactory/flyfactory/flyfactory
/flyfactory/hatchline/flyfactory/flyfactory/flyfactory/flyfactory/flyfactory/flyfactory
/hatchline/

3. Available online at www.gnu.org/software/flex/.

2.3 Engineering Large-Scale Crawlers 29

Certain classes of traps can be detected (see the following section), but no
automatic technique can be foolproof. The best policy is to prepare regular
statistics about the crawl. If a site starts dominating the collection, it can be added
to the guard module shown in Figure 2.2, which will remove from consideration
any URL from that site. Guards may also be used to disable crawling active content
such as CGI form queries, or to eliminate URLs whose data types are clearly not
textual (e.g., not one of HTML, plain text, PostScript, PDF, or Microsoft Word).

2.3.7 Avoiding Repeated Expansion of Links on Duplicate Pages
It is desirable to avoid fetching a page multiple times under different names (e.g. ,
u1 and u2), not only to reduce redundant storage and processing costs but also
to avoid adding a relative outlink v multiple times to the work pool as u1/v and
u2/v. Even if u1 and u2 have been fetched already, we should control the damage
at least at this point. Otherwise there could be quite a bit of redundancy in the
crawl, or worse, the crawler could succumb to the kind of spider traps illustrated
in the previous section.

Duplicate detection is essential for Web crawlers owing to the practice of
mirroring Web pages and sites—that is, copying them to a different host to speed
up access to a remote user community. If u1 and u2 are exact duplicates, this can
be detected easily. When the page contents are stored, a digest (e.g., MD5) is also
stored in an index. When a page is crawled, its digest is checked against the index
(shown as isPageKnown? in Figure 2.2). This can be implemented to cost one seek
per test. Another way to catch such duplicates is to take the contents of pages u1
and u2, hash them to h(u1) and h(u2), and represent the relative link v as tuples
(h(u1), v) and (h(u2), v). If u1 and u2 are aliases, the two outlink representations
will be the same, and we can avoid the isPageKnown? implementation.

Detecting exact duplicates this way is not always enough, because mirrors may
have minor syntactic differences, for example, the date of update, or the name
and email of the site administrator may be embedded in the page. Unfortunately,
even a single altered character will completely change the digest. Shingling, a more
complex and robust way to detect near duplicates, is described in Section 3.3.2.
Shingling is also useful for eliminating annoying duplicates from search engine
responses.

2.3.8 Load Monitor and Manager
Network requests are orchestrated by the load monitor and thread manager shown
in Figure 2.2. The load monitor keeps track of various system statistics:

30 C H A P T E R 2 Crawling the Web

� Recent performance of the wide area network (WAN) connection, say, latency
and bandwidth estimates. Large crawlers may need WAN connections from
multiple Internet service providers (ISPs); in such cases their performance param-
eters are individually monitored.

� An operator-provided or estimated maximum number of open sockets that
the crawler should not exceed.

� The current number of active sockets.

The load manager uses these statistics to choose units of work from the pending
work pool or frontier, schedule the issue of network resources, and distribute
these requests over multiple ISPs if appropriate.

2.3.9 Per-Server Work-Queues
Many commercial Http servers safeguard against denial of service (DoS) attacks.
DoS attackers swamp the target server with frequent requests that prevent it from
serving requests from bona fide clients. A common first line of defense is to limit
the speed or frequency of responses to any fixed client IP address (to, say, at most
three pages per second). Servers that have to execute code in response to requests
(e.g. , search engines) are even more sensitive; frequent requests from one IP
address are in fact actively penalized.

As an Http client, a crawler needs to avoid such situations, not only for
high performance but also to avoid legal action. Well-written crawlers limit the
number of active requests to a given server IP address at any time. This is done
by maintaining a queue of requests for each server (see Figure 2.2). Requests are
removed from the head of the queue, and network activity is initiated at a specified
maximum rate. This technique also reduces the exposure to spider traps: no matter
how large or deep a site is made to appear, the crawler fetches pages from it at
some maximum rate and distributes its attention relatively evenly between a large
number of sites.

From version 1.1 onward, Http has defined a mechanism for opening one
connection to a server and keeping it open for several requests and responses in
succession. Per-server host queues are usually equipped with Http version 1.1
persistent socket capability. This reduces overheads of DNS access and Http
connection setup. On the other hand, to be polite to servers (and also because
servers protect themselves by closing the connection after some maximum number
of transfers), the crawler must move from server to server often. This tension

2.3 Engineering Large-Scale Crawlers 31

between access locality and politeness (or protection against traps) is inherent in
designing crawling policies.

2.3.10 Text Repository
The crawler’s role usually ends with dumping the contents of the pages it fetches
into a repository. The repository can then be used by a variety of systems and
services which may, for instance, build a keyword index on the documents
(see Chapter 3), classify the documents into a topic directory like Yahoo! (see
Chapter 5), or construct a hyperlink graph to perform link-based ranking and
social network analysis (see Chapter 7). Some of these functions can be initiated
within the crawler itself without the need for preserving the page contents, but
implementers often prefer to decouple the crawler from these other functions for
efficiency and reliability, provided there is enough storage space for the pages.
Sometimes page contents need to be stored to be able to provide, along with
responses, short blurbs from the matched pages that contain the query terms.

Page-related information is stored in two parts: metadata and page contents.
The metadata includes fields like content type, last modified date, content length,
Http status code, and so on. The metadata is relational in nature but is usually
managed by custom software rather than a relational database. Conventional rela-
tional databases pay some overheads to support concurrent updates, transactions,
and recovery. These features are not needed for a text index, which is usually
managed by bulk updates with permissible downtime.

HTML page contents are usually stored compressed using, for example, the
popular compression library zlib. Since the typical text or HTML Web page is
10 KB long4 and compresses down to 2 to 4 KB, using one file per crawled page
is ruled out by file block fragmentation (most file systems have a 4 to 8 KB file
block size). Consequently, page storage is usually relegated to a custom storage
manager that provides simple access methods for the crawler to add pages and for
programs that run subsequently (e.g., the indexer) to retrieve documents.

For small-scale systems where the repository is expected to fit within the
disks of a single machine, one may use the popular public domain storage
manager Berkeley DB (available from www.sleepycat.com/), which manages disk-
based databases within a single file. Berkeley DB provides several access methods.
If pages need to be accessed using a key such as their URLs, the database can

4. Graphic files may be longer.

32 C H A P T E R 2 Crawling the Web

N/w interface
Internet service

provider #1
Storage
server

N/w interface

N/w interface

N/w interface

Crawler Fast local network

Storage
server

Storage
server

Internet service
provider #2

Internet service
provider #3

F I G U R E 2 . 4 Large-scale crawlers often use multiple ISPs and a bank of local storage servers to
store the pages crawled.

be configured as a hash table or a B-tree, but updates will involve expensive disk
seeks, and a fragmentation loss between 15% and 25% will accrue. If subsequent
page processors can handle pages in any order, which is the case with search engine
indexing, the database can be configured as a sequential log of page records. The
crawler only appends to this log, which involves no seek and negligible space
overhead. It is also possible to first concatenate several pages and then compress
them for a better compression factor.

For larger systems, the repository may be distributed over a number of storage
servers connected to the crawler through a fast local network (such as gigabit
Ethernet), as shown in Figure 2.4. The crawler may hash each URL to a specific
storage server and send it the URL and the page contents. The storage server
simply appends it to its own sequential repository, which may even be a tape
drive, for archival. High-end tapes can transfer over 40 GB per hour,5 which is
about 10 million pages per hour, or about 200 hours for the whole Web (about 2
billion pages) at the time of writing. This is comparable to the time it takes today
for the large Web search companies to crawl a substantial portion of the Web.
Obviously, to complete the crawl in as much time requires the aggregate network
bandwidth to the crawler to match the 40 GB per hour number, which is about
100 Mb per second, which amounts to about two T3-grade leased lines.

5. I use B for byte and b for bit.

TE
AM
FL
Y

Team-Fly®

2.3 Engineering Large-Scale Crawlers 33

% telnet www.cse.iitb.ac.in 80
Trying 144.16.111.14...
Connected to surya.cse.iitb.ac.in.
Escape character is ’]̂’.
GET / HTTP/1.0
If-modified-since: Sat, 13 Jan 2001 09:01:02 GMT

HTTP/1.1 304 Not Modified
Date: Sat, 13 Jan 2001 10:48:58 GMT
Server: Apache/1.3.0 (Unix) PHP/3.0.4
Connection: close
ETag: "5c248-153d-3a40b1ae"
Connection closed by foreign host.
%

F I G U R E 2 . 5 Using the If-modified-since request header to check if a page needs to be crawled
again. In this specific case it does not.

2.3.11 Refreshing Crawled Pages
Ideally, a search engine’s index should be fresh—that is, it should reflect the most
recent version of all documents crawled. Because there is no general mechanism
of updates and notifications, the ideal cannot be attained in practice. In fact, a
Web-scale crawler never “completes” its job; it is simply stopped when it has
collected “enough” pages. Most large search engines then index the collected
pages and start a fresh crawl. Depending on the bandwidth available, a round of
crawling may run up to a few weeks. Many crawled pages do not change during
a round—or ever, for that matter—but some sites may change many times.

Figure 2.5 shows how to use the Http protocol to check if a page changed
since a specified time and, if so, to fetch the page contents. Otherwise the server
sends a “not modified” response code and does not send the page. For a browser
this may be useful, but for a crawler it is not as helpful, because, as I have noted,
resolving the server address and connecting a TCP socket to the server already
take a large chunk of crawling time.

When a new crawling round starts, it would clearly be ideal to know which
pages have changed since the last crawl and refetch only those pages. This is
possible in a very small number of cases, using the Expires Http response header
(see Figure 2.6). For each page that did not come with an expiration date, we
have to guess if revisiting that page will yield a modified version. If the crawler

34 C H A P T E R 2 Crawling the Web

% telnet vancouver-webpages.com 80
Trying 216.13.169.244...
Connected to vancouver-webpages.com (216.13.169.244).
Escape character is ’^]’.
HEAD/cgi-pub/cache-test.pl/exp=in+1+minute&mod=Last+Night&rfc=1123 HTTP/1.0

HTTP/1.1 200 OK
Date: Tue, 26 Feb 2002 04:56:09 GMT
Server: Apache/1.3.6 (Unix) (Red Hat/Linux) mod_perl/1.19
Expires: Tue, 26 Feb 2002 04:57:10 GMT
Last-Modified: Tue, 26 Feb 2002 04:56:10 GMT
Connection: close
Content-Type: text/html

F I G U R E 2 . 6 Some sites with time-sensitive information send an Expires attribute in the Http
response header.

had access to some sort of score reflecting the probability that each page has been
modified, it could simply fetch URLs in decreasing order of that score. Even a
crawler that runs continuously would benefit from an estimate of the expiration
date of each page that has been crawled.

We can build such an estimate by assuming that the recent update rate will
remain valid for the next crawling round—that is, that the recent past predicts the
future. If the average interval at which the crawler checks for changes is smaller
than the intermodification times of a page, we can build a reasonable estimate of
the time to the next modification. The estimate could be way off, however, if the
page is changed more frequently than the poll rate: we might have no idea how
many versions successive crawls have missed. Another issue is that in an expanding
Web, more pages appear young as time proceeds. These issues are discussed by
Brewington and Cybenko [24], who also provide algorithms for maintaining a
crawl in which most pages are fresher than a specified epoch. Cho [50] has also
designed incremental crawlers based on the same basic principle.

Most search engines cannot afford to wait for a full new round of crawling
to update their indices. Between every two complete crawling rounds, they run
a crawler at a smaller scale to monitor fast-changing sites, especially related to
current news, weather, and the like, so that results from this index can be patched
into the master index. This process is discussed in Section 3.1.2.

2.4 Putting Together a Crawler 35

2.4 Putting Together a Crawler
The World Wide Web Consortium (www.w3c.org/) has published a reference
implementation of the Http client protocol in a package called w3c-libwww. It is
written in C and runs on most operating systems. The flexibility and consequent
complexity of the API may be daunting, but the package greatly facilitates the
writing of reasonably high-performance crawlers. Commercial crawlers probably
resemble crawlers written using this package up to the point where storage
management begins.

Because the details of commercial crawlers are carefully guarded, I will focus
on the design and use of the w3c-libwww library instead. This section has two parts.
In the first part, I will discuss the internals of a crawler built along the same
style as w3c-libwww. Since w3c-libwww is large, general, powerful, and complex, I
will abstract its basic structure through pseudocode that uses C++ idioms for
concreteness. In the second part, I will give code fragments that show how to use
w3c-libwww.

2.4.1 Design of the Core Components
It is easiest to start building a crawler with a core whose only responsibility is to
copy bytes from network sockets to storage media: this is the Crawler class. The
Crawler’s contract with the user is expressed in these methods:

class Crawler {
void setDnsTimeout(int milliSeconds);
void setHttpTimeout(int milliSeconds);
void fetchPush(const string& url);
virtual boolean fetchPull(string& url); // set url, return success
virtual void fetchDone(const string& url,

const ReturnCode returnCode, // timeout, server not found, ...
const int httpStatus, // 200, 404, 302, ...
const hash_map<string, string>& mimeHeader,

// Content-type = text/html
// Last-modified = ...

const unsigned char * pageBody,
const size_t pageSize);

};

The user can push a URL to be fetched to the Crawler. The crawler im-
plementation will guarantee that within a finite time (preset by the user using

36 C H A P T E R 2 Crawling the Web

setDnsTimeout and setHttpTimeout) the termination callback handler fetchDone will
be called with the same URL and associated fields as shown. (I am hiding many
more useful arguments for simplicity.) fetchPush inserts the URL into a memory
buffer: this may waste too much memory for a Web-scale crawler and is volatile.
A better option is to check new URLs into a persistent database and override
fetchPull to extract new work from this database. The user also overrides the
(empty) fetchDone method to process the document, usually storing page data
and metadata from the method arguments, scanning pageBody for outlinks, and
recording these for later fetchPulls. Other functions are implemented by extend-
ing the Crawler class. These include retries, redirections, and scanning for outlinks.
In a way, “Crawler” is a misnomer for the core class; it just fetches a given list of
URLs concurrently.

Let us now turn to the implementation of the Crawler class. We will need two
helper classes called DNS and Fetch. Crawler is started with a fixed set of DNS servers.
For each server, a DNS object is created. Each DNS object creates a UDP socket with
its assigned DNS server as the destination. The most important data structure
included in a DNS object is a list of Fetch contexts waiting for the corresponding
DNS server to respond:

class DNS {
list<Fetch*> waitForDns;
.
.
. //other members

}

A Fetch object contains the context required to complete the fetch of one
URL using asynchronous sockets. waitForDns is the list of Fetches waiting for this
particular DNS server to respond to their address-resolution requests.

Apart from members to hold request and response data and methods to deal
with socket events, the main member in a Fetch object is a state variable that
records the current stage in retrieving a page:

typedef enum {
STATE_ERROR = -1, STATE_INIT = 0,
STATE_DNS_RECEIVE, STATE_HTTP_SEND, STATE_HTTP_RECEIVE, STATE_FINAL

} State;
State state;

2.4 Putting Together a Crawler 37

For completeness I also list a set of useful ReturnCodes. Most of these are self-
explanatory; others have to do with the innards of the DNS and Http protocols.

typedef enum {
SUCCESS = 0,
//--
DNS_SERVER_UNKNOWN,
DNS_SOCKET, DNS_CONNECT, DNS_SEND, DNS_RECEIVE, DNS_CLOSE, DNS_TIMEOUT,
// and a variety of error codes DNS_PARSE_... if the DNS response
// cannot be parsed properly for some reason
//--
HTTP_BAD_URL_SYNTAX, HTTP_SERVER_UNKNOWN,
HTTP_SOCKET, HTTP_CONNECT, HTTP_SEND, HTTP_RECEIVE,
HTTP_TIMEOUT, HTTP_PAGE_TRUNCATED,
//--
MIME_MISSING, MIME_PAGE_EMPTY, MIME_NO_STATUS_LINE,
MIME_UNSUPPORTED_HTTP_VERSION, MIME_BAD_CHUNK_ENCODING

} ReturnCode;

The remaining important data structures within the Crawler are given below.

class Crawler {
deque<string> waitForIssue;

// Requests wait here to limit the number of network connections.
// When resources are available, they go to...

hash_map<SocketID, DNS*> dnsSockets;
// There is one entry for each DNS socket, i.e., for each DNS server.
// New Fetch record entries join the shortest list.
// Once addresses are resolved, Fetch records go to...

deque<Fetch*> waitForHttp;
// When the system can take on a new Http connection, Fetch records
// move from waitForHttp to...

hash_map<SocketID, Fetch*> httpSockets;
// A Fetch record completes its lifetime while attached to an Http socket.
// To avoid overloading a server, we keep a set of IP addresses that
// we are nominally connected to at any given time

hash_set<IPAddr> busyServers;
.
.
. //rest of Crawler definition

}

38 C H A P T E R 2 Crawling the Web

1: Crawler::start()
2: while event loop has not been stopped do
3: if not enough active Fetches to keep system busy then
4: try a fetchPull to replenish the system with more work
5: if no pending Fetches in the system then
6: stop the event loop
7: end if
8: end if
9: if not enough Http sockets busy and

there is a Fetch f in waitForHttp whose server IP address �∈ busyServers then
10: remove f from waitForHttp
11: lock the IP address by adding an entry to busyServers (to be polite

to the server)
12: change f.state to STATE_HTTP_SEND
13: allocate an Http socket s to start the Http protocol
14: set the Http timeout for f
15: set httpSockets[s] to the Fetch pointer
16: continue the outermost event loop
17: end if
18: if the shortest waitForDns is “too short” then
19: remove a URL from the head of waitForIssue
20: create a Fetch object f with this URL
21: issue the DNS request for f
22: set f.state to STATE_DNS_RECEIVE
23: set the DNS timeout for f
24: put f on the laziest DNS’s waitForDns
25: continue the outermost event loop
26: end if
27: collect open SocketIDs from dnsSockets and httpSockets
28: also collect the earliest deadline over all active Fetches
29: perform the select call on the open sockets with the earliest deadline

as timeout

F I G U R E 2 . 7 The Crawler’s event loop. For simplicity, the normal workflow is shown, hiding many
conditions where the state of a Fetch ends in an error.

The heart of the Crawler is a method called Crawler::start(), which starts
its event loop. This is the most complex part of the Crawler and is given as a
pseudocode in Figure 2.7. Each Fetch object passes through a workflow. It first

2.4 Putting Together a Crawler 39

30: if select returned with a timeout then
31: for each expired Fetch record f in dnsSockets and httpSockets do
32: remove f
33: invoke f.fetchDone(...) with suitable timeout error codes
34: remove any locks held in busyServers
35: end for
36: else
37: find a SocketID s that is ready for read or write
38: locate a Fetch record f in dnsSockets or httpSockets that was waiting on s
39: if a DNS request has been completed for f then
40: move f from waitForDns to waitForHttp
41: else
42: if socket is ready for writing then
43: send request
44: change f.state to STATE_HTTP_RECEIVE
45: else
46: receive more bytes
47: if receive completed then
48: invoke f.fetchDone(...) with successful status codes
49: remove any locks held in busyServers
50: remove f from waitForHttp and destroy f
51: end if
52: end if
53: end if
54: end if
55: end while

F I G U R E 2 . 7 (continued)

joins the waitForDNS queue on some DNS object. When the server name resolution
step is completed, it goes into the waitForHttp buffer. When we can afford another
Http connection, it leaves waitForHttp and joins the httpSockets pool, where there
are two major steps: sending the Http request and filling up a byte buffer with the
response. Finally, when the page content is completely received, the user callback
function fetchDone is called with suitable status information. The user has to extend
the Crawler class and redefine fetchDone to parse the page and extract outlinks to
make it a real crawler.

40 C H A P T E R 2 Crawling the Web

2.4.2 Case Study: Using w3c-libwww
So far we have seen a simplified account of how the internals of a package like
w3c-libwww is designed; now we will see how to use it. The w3c-libwww API is
extremely flexible and therefore somewhat complex, because it is designed not
only for writing crawlers but for general, powerful manipulation of distributed
hypertext, including text-mode browsing, composing dynamic content, and so
on. Here we will sketch a simple application that issues a batch of URLs to fetch
and installs a fetchDone callback routine that just throws away the page contents.
We start with the main routine in Figure 2.8.

Unlike the simplified design presented in the previous section, w3c-libwww
can process responses as they are streaming in and does not need to hold them
in a memory buffer. The user can install various processors through which
the incoming stream has to pass. For example, we can define a handler called
hrefHandler to extract HREFs, which would be useful in a real crawler. It is
registered with the w3c-libwww system as shown in Figure 2.8. Many other objects
are mentioned in the code fragment below, but most of them are not key to
understanding the main idea. hrefHandler is shown in Figure 2.9.

The method fetchDone, shown in Figure 2.10, is quite trivial in our case. It
checks if the number of outstanding fetches is enough to keep the system busy;
if not, it adds some more work. Then it just frees up resources associated with
the request that has just completed and returns. Each page fetch is associated with
an HTRequest object, similar to our Fetch object. At the very least, a termination
handler should free this request object. If there is no more work to be found, it
stops the event loop.

2.5 Bibliographic Notes
Details of the TCP/IP protocol and its implementation can be found in the
classic work by Stevens [202]. Precise specifications of hypertext-related and older
network protocols are archived at the World Wide Web Consortium (W3C Web
site www.w3c.org/). Web crawling and indexing companies are rather protective
about the engineering details of their software assets. Much of the discussion of
the typical anatomy of large crawlers is guided by an early paper discussing the
crawling system [26] for Google, as well as a paper about the design of Mercator,
a crawler written in Java at Compaq Research Center [108]. There are many
public-domain crawling and indexing packages, but most of them do not handle

2.5 Bibliographic Notes 41

vector<string> todo;
int tdx = 0;

//...global variables storing all the URLs to be fetched...
int inProgress=0;

//...keep track of active requests to exit the event loop properly...
int main(int ac, char ** av) {

HTProfile_newRobot("CSE@IITBombay", "1.0");
HTNet_setMaxSocket(64); // ...keep at most 64 sockets open at a time
HTHost_setEventTimeout(40000); //...Http timeout is 40 seconds
//...install the hrefHandler...
HText_registerLinkCallback(hrefHandler);
//...install our fetch termination handler...
HTNet_addAfter(fetchDone, NULL, NULL, HT_ALL, HT_FILTER_LAST);
//...read URL list from file...
ifstream ufp("urlset.txt");
string url;
while (ufp.good() && (ufp >> url) && url.size() > 0)

todo.push_back(url);
ufp.close();
//...start off the first fetch...
if (todo.empty()) return;
++inProgress;
HTRequest * request = HTRequest_new();
HTAnchor * anchor = HTAnchor_findAddress(todo[tdx++].c_str());
if (YES == HTLoadAnchor(anchor, request)) {

//...and enter the event loop...
HTEventList_newLoop();

}
//...control returns here when event loop is stopped

}

F I G U R E 2 . 8 Sketch of the main routine for a crawler using w3c-libwww.

the scale that commercial crawlers do. w3c-libwww is an open implementation suited
for applications of moderate scale.

Estimating the size of the Web has fascinated Web users and researchers alike.
Because the Web includes dynamic pages and spider traps, it is not easy to even
define its size. Some well-known estimates were made by Bharat and Bröder
[16] and Lawrence and Lee Giles [133]. The Web continues to grow, but not

void hrefHandler(HText * text,
int element_number,
int attribute_number,
HTChildAnchor * anchor,
const BOOL * present,
const char ** value)

{
if (!anchor) return;
HTAnchor * childAnchor = HTAnchor_followMainLink((HTAnchor*)anchor);
if (!childAnchor) return;
char * childUrl = HTAnchor_address((HTAnchor*) childAnchor);
//...add childUrl to work pool, or issue a fetch right now...
HT_FREE(childUrl);

}

F I G U R E 2 . 9 A handler that is triggered by w3c-libwww whenever an HREF token is detected in the
incoming stream.

#define LIBWWW_BATCH_SIZE 16
//...number of concurrent fetches...

int fetchDone(HTRequest * request, HTResponse * response,
void * param, int status)

{
if (request == NULL) return -1;
//...replenish concurrent fetch pool if needed...
while (inProgress < LIBWWW_BATCH_SIZE && tdx < todo.size()) {

++inProgress;
string newUrl(todo[tdx]);
++tdx;
HTRequest * nrq = HTRequest_new();
HTAnchor * nax = HTAnchor_findAddress(newUrl.c_str());
(void) HTLoadAnchor(nax, nrq);

}
//...process the just-completed fetch here...
inProgress--;
const bool noMoreWork = (inProgress <= 0);
HTRequest_delete(request);
if (noMoreWork)

HTEventList_stopLoop();
return 0;

}

F I G U R E 2 . 1 0 Page fetch completion handler for the w3c-libwww–based crawler.

TE
AM
FL
Y

Team-Fly®

2.5 Bibliographic Notes 43

at as heady a pace as in the late 1990s. Nevertheless, some of the most accessed
sites change frequently. The Internet Archive (www.archive.org/) started to archive
large portions of the Web in October 1996, in a bid to prevent most of it from
disappearing into the past [120]. At the time of this writing, the archive has
about 11 billion pages, taking up over 100 terabytes. Storage at such a scale is
not unprecedented: a music radio station holds about 10,000 records, or about 5
terabytes of uncompressed data, and the U.S. Library of Congress contains about
20 million volumes, or an estimated 20 terabytes of text. The Internet Archive is
available to researchers, historians, and scholars. An interface called the Wayback
Machine lets users access old versions of archived Web pages.

c h a p t e r 3
W E B S E A R C H A N D I N F O R M A T I O N

R E T R I E V A L

This chapter discusses how Web search engines work. Search engines have their
roots in information retrieval (IR) systems, which prepare a keyword index for the
given corpus and respond to keyword queries with a ranked list of documents.
The query language provided by most search engines lets us look for Web pages
that contain (or do not contain) specified words and phrases. Conjunctions and
disjunctions of such clauses are also permitted. Mature IR technology predates
the Web by at least a decade. One of the earliest applications of rudimentary
IR systems to the Internet was Archie, which supported title search across sites
serving files over the File Transfer Protocol (FTP). It was only in the mid-1990s that
IR was widely applied to Web content by early adopters such as AltaVista. The
new application revealed several issues peculiar to hypertext and Web data: Web
pages have internal tag structure, they are connected to each other in semantically
meaningful ways, they are often duplicated, and they sometimes lie about their
actual contents to rate highly in keyword queries. We will review classical IR and
discuss some of the new problems and their solutions.

3.1 Boolean Queries and the Inverted Index
The simplest kind of query one may ask involves relationships between terms and
documents, such as

1. Documents containing the word “Java”

2. Documents containing the word “Java” but not the word “coffee”

45

46 C H A P T E R 3 Web Search and Information Retrieval

3. Documents containing the phrase “Java beans” or the term “API”

4. Documents where “Java” and “island” occur in the same sentence

The last two queries are called proximity queries because they involve the lexical
distance between tokens. These queries can be answered using an inverted index.
This section describes how inverted indices are constructed from a collection of
documents.

Documents in the collection are tokenized in a suitable manner. For ASCII
text without markups, tokens may be regarded as any nonempty sequence of
characters not including spaces and punctuation. For HTML, one may choose to
first filter away all tags delimited by the < and > characters.1 Each distinct token
in the corpus may be represented by a suitable integer (typically 32 bits suffice).
A document is thus transformed into a sequence of integers.

There may be a deliberate slight loss of information prior to this step, depend-
ing on the needs of the application. For example, terms may be downcased, and
variant forms (is, are, were) may be conflated to one canonical form (be), or word
endings representing parts of speech may be “stemmed” away (running to run).

At this point a document is simply a sequence of integer tokens. Consider
the following two documents:

d1: My1 care2 is3 loss4 of5 care6 with7 old8 care9 done10.

d2: Your1 care2 is3 gain4 of5 care6 with7 new8 care9 won10.

Here the subscripts indicate the position where the token appears in the docu-
ment. The same information (minus case and punctuation) can be represented in
the following table, called POSTING:

tid did pos

my 1 1
care 1 2
is 1 3

...
new 2 8
care 2 9
won 2 10

1. However, some search engines pay special attention to the contents of META tags.

3.1 Boolean Queries and the Inverted Index 47

Here tid, did, and pos signify token ID, document ID, and position, respectively.
(For clarity I will use strings rather than integers for tid.) Given a table like this,
it is simple to answer the sample queries mentioned above using SQL queries,
as so:

1. select did from POSTING where tid = ‘java’

2. (select did from POSTING where tid = ‘java’) except (select did
from POSTING where tid = ‘coffee’)

3. with
D_JAVA (did, pos) as (select did, pos from POSTING where tid = ‘java’),
D_BEANS(did, pos) as (select did, pos from POSTING where tid = ‘beans’),
D_JAVABEANS(did) as

(select D_JAVA.did from D_JAVA, D_BEANS
where D_JAVA.did = D_BEANS.did
and D_JAVA.pos + 1 = D_BEANS.pos),

D_API(did) as (select did from POSTING where tid = ‘api’),
(select did from D_JAVABEANS) union (select did from D_API)

If sentence terminators are well defined, one can keep a sentence counter
(apart from a token counter as above) and maintain sentence positions as well as
token positions in the POSTING table. This will let us search for terms occurring in
the same or adjacent sentences, for example (query 4).

Although the three-column table makes it easy to write keyword queries, it
wastes a great deal of space. A straightforward implementation using a relational
database uses prohibitive amounts of space, up to 10 times the size of the original
text [79]. Furthermore, access to this table for all the queries above show the
following common pattern: given a term, convert it to a tid, then use that to
probe the table, getting a set of (did, pos) tuples, sorted in lexicographic order.
For queries not involving term position, discard pos and sort the set by did,
which is useful for finding the union, intersection, and differences of sets of dids.
One can thus reduce the storage required by mapping tids to a lexicographically
sorted buffer of (did, pos) tuples. If fast proximity search is not needed, we
can discard the position information and reduce storage further. Both forms of
indices are shown in Figure 3.1 for the two sample documents. In effect, indexing
takes a document-term matrix and turns it into a term-document matrix, and is
therefore called inverted indexing, although transposing might be a more accurate
description.

48 C H A P T E R 3 Web Search and Information Retrieval

Your care is gain of
care with new care won.

My care is loss of care
with old care done.

d2

d1

my

care

is

loss

of

with

old

done

your

gain

new

won

d1

d1; d2

d1

d1; d2

d1; d2

d1

d1

d2

d2

d2

d2

d2

my

care

is

loss

of

with

old

done

your

gain

new

won

d1/1

d1/2, 6, 9; d2/2, 6, 9

d1/3; d2/3

d1/4

d1/5; d2/5

d1/7; d2/7

d1/8

d1/10

d2/1

d2/4

d2/8

d2/10

F I G U R E 3 . 1 Two variants of the inverted index data structure, usually stored on disk. The simpler
version in the middle does not store term offset information; the version to the right stores term
offsets. The mapping from terms to documents and positions (written as “document/position”)
may be implemented using a B-tree or a hash table.

As with managing the document repository (discussed in Section 2.3.10), a
storage manager such as Berkeley DB (available from www.sleepycat.com/) is again a
reasonable choice to maintain mappings from tids to document records. However,
Berkeley DB is most useful for dynamic corpora where documents are frequently
added, modified, and deleted. For relatively static collections, more space-efficient
indexing options are discussed in Section 3.1.3.

3.1.1 Stopwords and Stemming
Most natural languages have so-called function words and connectives such as
articles and prepositions that appear in a large number of documents and are
typically of little use in pinpointing documents that satisfy a searcher’s information
need. Such words (e.g., a, an, the, on for English) are called stopwords.

Search engines will usually not index stopwords, but will replace them with
a placeholder so as to remember the offset at which stopwords occur. This
enables searching for phrases containing stopwords, such as “gone with the wind”

3.1 Boolean Queries and the Inverted Index 49

(although there is a small chance of different phrases being aliased together).
Reducing index space and improving performance are important reasons for
eliminating stopwords. However, some queries such as “to be or not to be” can
no longer be asked. Other surprises involve polysemy (a word having multiple
senses depending on context or part of speech): can as a verb is not very useful
for keyword queries, but can as a noun could be central to a query, so it should
not be included in the stopword list.

Stemming or conflation is another device to help match a query term with
a morphological variant in the corpus. In English, as in some other languages,
parts of speech, tense, and number are conveyed by word inflections. One may
want a query containing the word gaining to match a document containing the
word gains, or a document containing the word went to respond to a query
containing the word goes. Common stemming methods use a combination of
morphological analysis (For example, Porter’s algorithm [179]) and dictionary
lookup (e.g., WordNet [151]). Stemming can increase the number of documents
in the response, but may at times include irrelevant documents. For example,
Porter’s algorithm stems both university and universal to univers. When in doubt, it
is better not to stem, especially for Web searches, where aliases and abbreviations
abound: a community may be gated, but so is the UNIX router demon; a sock
is worn on the foot, but SOCKS more commonly refers to a firewall protocol;
and it is a bad idea to stem ides to IDE, the hard disk standard. Owing to the
variety of abbreviations and names coined in the technical and commercial sectors,
polysemy is rampant on the Web. Thanks to inherent biases in Web authorship,
any polysemous or ambiguous query has a chance of retrieving documents related
to the commercial or technical sense in lieu of the sense intended by the user.

3.1.2 Batch Indexing and Updates
For large-scale indexing systems (such as those that are used in Web search engines)
the mappings shown in Figure 3.1 are not constructed incrementally as documents
are added to the collection one by one, because this would involve random disk
I/O and therefore be very time-consuming. Moreover, as the postings grow, there
could be a high level of disk block fragmentation.

With some amount of extra space, one can replace the indexed update of
variable-length postings with simple sort-merges. When documents are scanned,
the postings table is naturally sorted in (d, t) order. The basic operation of
“inverting” the index involves transposing the sort order to (t, d), as shown in

50 C H A P T E R 3 Web Search and Information Retrieval

Build compact
index (may

hold partly in
RAM)

Fast indexing
(may not

be compact)

Main
index

Stop-press
index

(t,d)

(t,d,s)

Batch
sort

Merge-
purge

(d,t)

(d,t,s)

Batch
sort

Query
logs

Query
processor

User

Fresh batch
of documents

May preserve this
sorted sequence

New or deleted
documents

F I G U R E 3 . 2 How indices are maintained over dynamic collections.

Figure 3.2. Once the postings records are in (t, d) order (together with offset
information) the data structures shown in Figure 3.1 may be created easily.

For a dynamic collection where documents are added, modified, or deleted,
a single document-level change may need to update hundreds to thousands of
records. (If position information is kept, many term offsets are likely to change
after any modification is made to a document.) As we shall also see in Section 3.1.3,
the data structures illustrated in Figure 3.1 may be compressed, but this makes in-
place updates very difficult.

Figure 3.2 offers a simpler solution. Initially, a static compact index is made
out of the (t, d)–sorted postings. This is the main index used for answering queries.
Meanwhile documents are added or deleted; let’s call these the “documents

3.1 Boolean Queries and the Inverted Index 51

in flux.” (In this discussion, we can model document modification as deletion
followed by insertion for simplicity.) Documents in flux are represented by a signed
(d, t) record shown as (d, t, s), where s is a bit to specify if the document has been
deleted or inserted.

The (d, t, s) records are indexed to create a stop-press index. A user query is
sent to both the main index and the stop-press index. Suppose the main index
returns a document set D0. The stop-press index returns two document sets: one,
D+, is the set of documents not yet indexed in D0 that match the query, and the
other, D−, is the set of documents matching the query that have been removed
from the collection since D0 was constructed. The final answer to the query is
D0 ∪D+ \D−.

The stop-press index has to be created quickly and therefore may not be built
as carefully and compactly as the main index. (See the next section for details
on compressing inverted indices.) When the stop-press index gets too large, the
signed (d, t, s) records are sorted in (t, d, s) order and merge-purged into the master
(t, d) records. The result is used to rebuild the main index, and now the stop-
press index can be emptied. The compact main index may be partly cached in
memory for speed; usually this involves analyzing query logs for frequent keywords
and caching their inverted records preferentially.

3.1.3 Index Compression Techniques
The reader may notice that modulo missing stopwords, cases, and punctuation,
an inverted index with position information can be used to reconstruct the
documents in a collection. Therefore, the size of the index can be substantial
compared to the size of the corpus. Despite some benefits from caching, large
disk-resident indices will lead to a great deal of random I/O. Therefore, for large,
high-performance IR installations (as with Web search engines), it is important
to compress the index as far as possible, so that much of it can be held in memory.

A major portion of index space is occupied by the document IDs. The larger
the collection, the larger the number of bits used to represent each document ID.
At least 32 bits are needed to represent document IDs in a system crawling a large
fraction of the 2+ billion pages on the Web today.

The easiest way to save space in storing document IDs is to sort them in
increasing order and to store the first ID in full, and subsequently only the
difference from the previous ID, which we call the gap. This is called delta encoding.

52 C H A P T E R 3 Web Search and Information Retrieval

For example, if the word bottle appears in documents numbered 5, 30, and 47,
the record for bottle is the vector (5, 25, 17).

For small examples this may not seem like much savings, but consider that
for frequent terms the average inter-ID gap will be smaller, and rare terms don’t
take up too much space anyway, so both cases work in our favor. Furthermore,
for collections crawled from the Web, the host ID remains fixed for all pages
collected from a single site. Since the unique ID of the page is the concatenation
of a host ID and a path ID (see Section 2.3.5), unique IDs from different hosts do
not interleave. Sites are usually semantically focused and coherent: pages within a
site tend to reuse the same terms over and over. As a result, the sorted document
ID vector for a given term tends to be highly clustered, meaning that inter-ID
gaps are mostly small.

The next issue is how to encode these gaps in a variable number of bits,
so that a small gap costs far fewer bits than a document ID. The standard binary
encoding, which assigns the same length to all symbols or values to be encoded, is
optimal2 when all values are equally likely, which is not the case for gaps. Another
extreme is the unary code (where a gap x is represented by x− 1ones followed by
a terminating marker), which favors short gaps too strongly (it is optimal if the gap
follows a distribution given by Pr(X = x)= 2−x, that is, the probability of large
gaps decays exponentially). Somewhere in the middle is the gamma code, which
represents gap x as

1. Unary code for 1+ �log x�, followed by

2. x − 2�log x� represented in binary, costing another �log x� bits.

Thus gap x is encoded in roughly 1+ 2 log x bits—for example, the number 9 is
represented as “1110001.” A further enhancement to this idea results in Golomb
codes [215].

In contrast to the methods discussed so far, one may also employ lossy
compression mechanisms that trade off space for time. A simple lossy approach
is to collect documents into buckets. Suppose we have a million documents, each
with a 20-bit ID. We can collect them into a thousand buckets with a thousand
documents in each bucket. Bucket IDs will cost us only 10 bits.

2. If the number of bits in the code for value x is L(x), the cost of this code is
∑

x Pr(x)L(x), the
expected number of bits to transmit one symbol. An optimal code minimizes this cost.

TE
AM
FL
Y

Team-Fly®

3.2 Relevance Ranking 53

In the simpler variant, an inverted index is constructed from terms to bucket
IDs, which saves a lot of space because the “document” IDs have shrunk to half
their size. But when a bucket responds to a query, all documents in that bucket
need to be scanned, which consumes extra time. To avoid this, a second variant of
this idea indexes documents in each bucket separately. Glimpse (webglimpse.org/)
uses such techniques to limit space usage.

Generally, an index that has been compressed to the limit is also very messy
to update when documents are added, deleted, or modified. For example, if new
documents must be added to the inverted index, the posting records of many
terms will expand in size, leading to storage allocation and compaction problems.
These can be solved only with a great deal of random I/O, which makes large-scale
updates impractical.

3.2 Relevance Ranking
Relational databases have precise schema and are queried using SQL (structured
query language). In relational algebra, the response to a query is always an unordered
set of qualifying tuples. Keyword queries are not precise, in the sense that a Boolean
decision to include or exclude a response is unacceptable. A safer bet is to rate
each document for how likely it is to satisfy the user’s information need, sort in
decreasing order of this score, and present the results in a ranked list.

Since only a part of the user’s information need is expressed through the query,
there can be no algorithmic way of ensuring that the ranking strategy always favors
the information need. However, mature practice in IR has evolved a vector-space
model for documents and a broad class of ranking algorithms based on this model.
This combination works well in practice. In later years, the empirical vector-
space approach has been rationalized and extended with probabilistic foundations.
I will first describe how the accuracy of IR systems is assessed and then discuss
the document models and ranking techniques that aim to score well with regard
to such assessment measures.

3.2.1 Recall and Precision
The queries we have studied thus far are answered by a set of documents. A
document either belongs to the response set or does not. The response set may be
reported in any order. Although such a Boolean query has a precise meaning (like

54 C H A P T E R 3 Web Search and Information Retrieval

SQL queries), an unordered response is of little use if the response set is very large
(e.g., by recent estimates, over 12 million Web pages contain the word “java”).

The set-valued response is of little use in such cases: no one can inspect all
documents selected by the query. It might be argued that in such cases a longer,
more selective query should be demanded from the user, but for nonprofessional
searchers this is wishful thinking. The search system should therefore try to guess
the user’s information need and rank the responses so that satisfactory documents
are found near the top of the list. Before one embarks on such a mission, it is
important to specify how such rankings would be evaluated.

A benchmark is specified by a corpus of n documents D and a set of queries Q.
For each query q ∈Q, an exhaustive set of relevant documents Dq⊆D is identified
manually. Let us fix the query for the rest of this discussion. The query is now
submitted to the query system, and a ranked list of documents (d1, d2, . . . , dn)

is returned. (Practical search systems only show the first several items on this
complete list.) Corresponding to this list, we can compute a 0/1 relevance list
(r1, r2, . . . , rn), where ri = 1 if di ∈Dq and 0 otherwise.

For this query q, the recall at rank k ≥ 1 is defined as

recall(k)= 1

|Dq|
∑

1≤i≤k

ri (3.1)

that is, the fraction of all relevant documents included in (d1, . . . , dk), and the
precision at rank k is defined as

precision(k)= 1

k

∑
1≤i≤k

ri (3.2)

that is, the fraction of the top k responses that are actually relevant. Another figure
of merit is the average precision:

average precision= 1

|Dq|
∑

1≤k≤|D|
rk × precision(k) (3.3)

The average precision is the sum of the precision at each relevant hit position in
the response list, divided by the total number of relevant documents. The average
precision is 1 only if the engine retrieves all relevant documents and ranks them
ahead of any irrelevant document.

3.2 Relevance Ranking 55

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

k

1

1
1

1

1

1

rk

Recall

1

0
0 1

Pr
ec

isi
on

Recall

1

0
0 1

In
te

rp
ol

at
ed

F I G U R E 3 . 3 Precision and interpolated precision plotted against recall for the given relevance
vector. Missing rks are zeros.

To combine precision values from multiple queries, interpolated precision3 is
used for a set of standard recall values, usually 0, 0.1, 0.2, . . . , 1. For a given
query, to interpolate precision at standard recall value ρ, we take the maximum
precision obtained for the query for any experimental recall greater than or equal
to ρ. Having obtained the interpolated precision for all the queries at each recall
level, we can average them together to draw the precision-vs.-recall curve for
the benchmark. A sample relevance list and its associated plots of precision and
interpolated precision against recall are shown in Figure 3.3. Interpolated precision
cannot increase with recall.

Generally, there is a trade-off between recall and precision. If k= 0, precision
is by convention equal to 1 but recall is 0. (Interpolated precision at recall

3. Technically, this is not interpolation.

56 C H A P T E R 3 Web Search and Information Retrieval

level 0 may be less than 1.) To drive up recall, we can inspect more and more
documents (increasing k), but we will start encountering more and more irrelevant
documents, driving down the precision. A search engine with a good ranking
function will generally show a negative relation between recall and precision. It
will provide most of the relevant results early in the list. Therefore, a plot of
precision against recall will generally slope down to the right. The curve of a
better search engine will tend to remain above that of a poorer search engine.

We should note in passing that the recall and precision measures are not
without their limitations. For a large corpus in rapid flux, such as the Web, it
is impossible to determine Dq. Precision can be estimated using a great deal of
manual labor. Furthermore, as we shall see in Chapter 7, precision or relevance
are not the only criteria by which users expect to see search responses ranked;
measures of authority are also useful. Despite these shortcomings, the recall
precision framework is a useful yardstick for search engine design.

3.2.2 The Vector-Space Model
In the vector-space model, documents are represented as vectors in a multidimen-
sional Euclidean space. Each axis in this space corresponds to a term (token). The
coordinate of document d in the direction corresponding to term t is determined
by two quantities:

Term frequency TF(d, t). This is simply n(d, t), the number of times term t
occurs in document d, scaled in any of a variety of ways to normalize doc-
ument length. For example, one may normalize the sum of term counts,
in which case TF(d, t) = n(d, t)/

∑
τ n(d, τ); or one may set TF(d, t) =

n(d, t)/ maxτ n(d, τ). Other forms are also known; for example, the Cornell
SMART system uses

TF(d, t)=
{

0 if n(d, t)= 0
1+ log(1+ log(n(d, t))) otherwise

(3.4)

Inverse document frequency IDF(t). Not all axes in the vector space are equally
important. Coordinates corresponding to function words such as a, an, and the
will be large and noisy irrespective of the content of the document. IDF seeks
to scale down the coordinates of terms that occur in many documents. If D
is the document collection and Dt is the set of documents containing t, then

3.2 Relevance Ranking 57

one common form of IDF weighting (used by SMART again) is

IDF(t)= log
1+ |D|
|Dt|

(3.5)

If |Dt| � |D| the term t will enjoy a large IDF scale factor and vice versa.
Other variants are also used; like the formula above, these are mostly dampened
functions of |D|/|Dt|.

TF and IDF are combined into the complete vector-space model in the obvious
way: the coordinate of document d in axis t is given by

dt = TF(d, t) IDF(t) (3.6)

We will overload the notation to let �d represent document d in TFIDF-space.
A query q is also interpreted as a document and transformed to �q in the same
TFIDF-space defined by D. (Negations and phrases in the query are handled in
ways discussed in Section 3.2.5.)

The remaining issue is how to measure the proximity between �q and �d for all
d ∈D. One possibility is to use the magnitude of the vector difference, |�d − �q|. If
this measure is used, document vectors must be normalized to unit length in the
L1 or L2 metric prior to the similarity computation. (Otherwise, if document d2
is a five-fold replication of document d1, the distance |d1− d2| will be significant,
which is not semantically intuitive.) Because queries are usually short, they tend
to be at large distances from long documents, which are thus unduly penalized.
Another option is to measure the similarity between d and q as the cosine of
the angle between �d and �q. This could have the opposite bias: short documents
naturally overlap with fewer query terms, and thereby get lower scores. Even so,
IR systems generally find cosine more acceptable than distance.

Summarizing, a TFIDF-based IR system first builds an inverted index with
TF and IDF information, and given a query (vector) lists some number of
document vectors that are most similar to the query.

3.2.3 Relevance Feedback and Rocchio’s Method
The initial response from a search engine may not satisfy the user’s information
need if the query is incomplete or ambiguous. The average Web query is only two
words long. Users can rarely express their information need within two words in
sufficient detail to pinpoint relevant documents right away. If the response list has
at least some relevant documents, sophisticated users can learn how to modify their

58 C H A P T E R 3 Web Search and Information Retrieval

queries by adding or negating additional keywords. Relevance feedback automates
this query refinement process. Initial ranked responses are presented together with
a rating form (which can be generated easily in HTML). Usually a simple binary
useful/useless opinion is all that is asked for. The user, after visiting some of the
reported URLs, may choose to check some of these boxes.

This second round of input (called relevance feedback) from the user has been
found to be quite valuable in “correcting” the ranks to the user’s taste. In Chapter 5
we shall discuss various techniques that can exploit such “training” by the user for
better relevance judgments. One particularly successful and early technique for
“folding in” user feedback was Rocchio’s method, which simply adds to the original
query vector �q a weighted sum of the vectors corresponding to the relevant
documents D+, and subtracts a weighted sum of the irrelevant documents D−:

�q′ = α�q+ β
∑
D+

�d − γ
∑
D−

�d (3.7)

where α, β, and γ are adjustable parameters. D+ and D− may be provided
manually by the user, or they may be generated automatically, in which case
the process is called pseudo-relevance feedback or PRF. PRF usually collects D+
by assuming that a certain number of the most relevant documents found by the
vector-space method are relevant. γ is commonly set to zero (that is, D− not used)
unless human-labeled irrelevant documents are available. In the Cornell SMART
system, the top 10 documents reported by the first-round query execution are
included in D+. It is also unsafe to let all words found in D+ and D− contribute
to (3.7): a bad word may offset the benefits of many good words. It is typical to
pick the top 10 to 20 words in decreasing IDF order.

Relevance feedback is not a commonly available feature on Web search
engines. Apparently, this is partly because Web users want instant gratification
with searches: they are not patient enough to give their feedback to the system.
Another possible reason is system complexity. Major search engines field millions
of queries per hour, and therefore have to dispose of each query in only a few
milliseconds. Depending on the size of the vocabulary gleaned from D+ in PRF,
executing the second-round query may be much slower than the original query.

3.2.4 Probabil istic Relevance Feedback Models
Thanks to a great deal of empirical work with standard benchmarks, vector-
space–based IR technology is extremely mature. Even so, the vector-space model
is operational: it gives a precise recipe for computing the relevance of a document

3.2 Relevance Ranking 59

with regard to the query, but does not attempt to justify why the relevance should
be defined thus, based on some statistical model for the generation of documents
and queries. This might be very useful if, for instance, we could propose generative
models for corpora relating to different topics, and found that the best way to tune
the IR system was closely related to parameters of our models that can be estimated
easily.

Contributions from both operational and statistical viewpoints are needed to
understand the behavior of practical IR systems, and in particular, to extend them
to new domains such as hypertext. Because the judgment of relevance is inherently
variable and uncertain, it is natural that probabilistic models be used to estimate
the relevance of documents. Another potential advantage is that once a model of
relevance is built in this manner, additional kinds of features, like hyperlinks, may
be folded in without much effort.

Consider document d, which we may represent as a binary term vector �d, and
a given query q. Let R be a Boolean random variable that represents the relevance
of document d with regard to query q. A reasonable order for ranking documents
is their odds ratio for relevance:

Pr(R|q, �d)

Pr(R̄|q, �d)
= Pr(R, q, �d)/ Pr(q, �d)

Pr(R̄, q, �d)/ Pr(q, �d)
= Pr(R|q) Pr(�d|R, q)

Pr(R̄|q) Pr(�d|R̄, q)
(3.8)

We will approximate Pr(�d|R, q) and Pr(�d|R̄, q) by the product of the probabilities
of individual terms in d—that is, we will assume that term occurrences are
independent given the query and the value of R. (Similar simplifications will be
made in Chapter 5 and elsewhere.) If {t} is a universe of terms, and xd,t ∈ {0, 1}
reflects whether the term t appears in document d or not, then the last expression
can be approximated as

Pr(�d|R, q)

Pr(�d|R̄, q)
≈

∏
t

Pr(xt|R, q)

Pr(xt|R̄, q)
(3.9)

Let at,q = Pr(xt = 1|R, q) and bt,q = Pr(xt = 1|R̄, q). Simple manipulations on the
last formula show that

Pr(�d|R, q)

Pr(�d|R̄, q)
∝

∏
t∈d

at,q(1− bt,q)

bt,q(1− at,q)
(3.10)

Responses can be sorted in decreasing order of odds ratio. The only parameters
involved here are at,q and bt,q. The simplest way to estimate these parameters is

60 C H A P T E R 3 Web Search and Information Retrieval

Document
layer

d1 d3 dn

Representation
layer

r1 r2Dog Cowr3 Sheepr10 rm

Query concept
layer

Query

(a) (b)

c1 c2 “Mammal”c20

q

“Pursue” co

d2

animals
* cat
** "feline"
** "kitten"
** "kitty"
* bird
** "avian"
** "birdy"

F I G U R E 3 . 4 Bayesian inference network for relevance ranking. A document is relevant to the
extent that setting its corresponding belief node to true lets us assign a high degree of belief in
the node corresponding to the query (a). Manual specification of mappings between terms to
approximate concepts (b).

from relevance feedback, but that requires too much effort on the part of the
searcher, who has to rate some responses before the probabilistic ranking system
can kick in.

A more general probabilistic retrieval framework casts the problem of finding
documents relevant to a query as a Bayesian inference problem, represented by the
directed acyclic graph in Figure 3.4(a). (This is a simplified version of a general
model proposed by Turtle and Croft [204], with some layers missing. More details
about Bayesian inference networks are to be found in Section 5.6.2.) The nodes
correspond to various entities like documents, terms, “concepts” (which we will
never precisely define), and the query.

The representation layer may use any feature that can be extracted from
the documents, like words and phrases. Multiple nodes may be allocated to the
same word because it is polysemous, or it appears in titles, author names, or
other document fields. Nodes may also be added for synthesized features. For
example, scholarly articles in many fields tend to use more sophisticated words
and sentences. If the user is trying to discriminate between beginner material and
scholarly research, the number of syllables in a word may be a useful feature. We
will return to such issues in Chapter 5.

For basic vector-space IR systems, the concept and representation layers are
the same: each token approximates a concept, although synonymy, polysemy, and

3.2 Relevance Ranking 61

other term relations may confound searches. More mature IR systems, such as
Verity’s Search97 (see www.verity.com/ for details) allow administrators and users
to define hierarchies of concepts in files that resemble the format shown in
Figure 3.4(b). The concept layer and its connections to the representation layer
usually need to be designed explicitly with human input, as in Search97.

Each node is associated with a random Boolean variable, and we have some
belief between 0 and 1 that the Boolean variable is true; for brevity I also call
this the belief of the node. The directed arcs signify that the belief of a node is
a function of the belief of its immediate parents (which depend in turn on its
parents, etc.). If a node v has k parents u1, . . . , uk, each of which is associated
with a Boolean variable, we need a table of size 2k, which, for each combination
of parent variables, gives the probability that the variable at v is true. Aliasing a
node and its Boolean variable, the table contains entries Pr(v = true|u1, . . . , uk)

for all combinations of u1, . . . , uk.
Obviously, the model hinges on the construction of the graph and the design

of the functions relating the belief of a node to the belief of its parents. Suppose
v has three parents u1, u2, u3 with the corresponding beliefs. v may be designed
as an or-node, in which case v = 1− (1− u1)(1− u2)(1− u3). Other Boolean
functions follow similar rules resembling fuzzy logic.

The relevance of a document d with regard to the query is estimated by setting
the belief of the corresponding document node to 1 and all other document beliefs
to 0, and then computing the belief of the query. The document nodes are thus
“activated” one at a time, evaluating each document. Finally the documents are
ranked in decreasing order of belief that they induce in the query.

Although probabilistic retrieval models have been studied deeply in the
research literature, they are used rarely compared to standard vector-space IR
engines.

3.2.5 Advanced Issues
In this section I briefly review a number of issues that need to be handled by
hypertext search engines. Some of these are peculiar to hypertext and the Web.

Spamming

In classical IR corpora, document authors were largely truthful about the purpose
of the document; terms found in the document were broadly indicative of
content. Economic reality on the Web and the need to “capture eyeballs” has
led to quite a different culture. Spammers are authors who (among other things)

62 C H A P T E R 3 Web Search and Information Retrieval

surreptitiously add popular query terms to pages unrelated to those terms. They
may add the terms “Hawaii vacation rental,” for example, to a page about Internet
gambling in a way that will go unnoticed by human readers of the page while still
being noted by search engines—e.g., by making the font color the same as the
background color. Human readers could not see such an addition, but a search
engine would duly index this hypothetical page about Internet gambling under
the terms “Hawaii,” “vacation,” and “rental.”

In the early days of the Web, the skirmish between search engines and
spammers was entertaining to watch. It was a veritable war, with search engines
using many clues, such as font color, position, and repetition to eliminate some
words from the index. They guarded their secrets zealously, for knowing those
secrets would enable spammers to beat the system again easily enough.

With the invention of hyperlink-based ranking techniques for the Web, which
I shall discuss in detail in Chapter 7, spamming went through a setback phase. The
number and popularity of sites that cited a page started to matter quite strongly
in determining the rank of that page in response to a query, sometimes more so
than the text occurring on the page itself. However, when we revisit this topic, I
will point out renewed efforts to spam even link-based ranking mechanisms.

Titles, headings, metatags, and anchor text

Although specific implementations may well include various bells and whistles,
the standard TFIDF framework treats all terms uniformly. On the Web, valu-
able information may be lost this way, because the authorship idioms for the
Web are quite different from the genres in classical IR benchmarks (news ar-
ticles, financial news, medical abstracts). Web pages may also be shorter than
a typical document in IR benchmarks, and depend on frames, menu bars,
and other hypertext navigation aids for exposition. Most search engines re-
spond to these different idioms by assigning weights to text occurring in titles
(<title>...</title>), headings (<h2>...</h2>), font modifiers (...
, ..., ..., ...), and metatags (see Fig-
ure 3.5).

As the HTML standard matured, the metatag was introduced to help page
writers identify the HTML version that the page follows, to insert descriptive
keywords in a relatively structured format without having to cloak them, and to
control caching and expiration parameters to be honored by browsers and crawlers
(see Section 2.3.11). Figure 3.5 shows an example. For a while this scheme worked
well, and some search engines started to use metatags for indexing and presenting

TE
AM
FL
Y

Team-Fly®

3.2 Relevance Ranking 63

<HEAD>
<TITLE>Philately</TITLE>
<META name="description" content="Everything you wanted to know
about stamps, from prices to history.">
<META name="keywords" content="stamps, stamp collecting, stamp
history, prices, stamps for sale">
<META http-equiv="expires" content="Wed, 26 Feb 1997 08:21:57 GMT">
<META http-equiv="Pragma" content="no-cache">
</HEAD>

F I G U R E 3 . 5 Use of HTML metatags.

blurbs alongside responses. Gradually, however, metatags became fertile grounds
for spammers to run amok. Subsequently, search engines became more wary of
paying attention to metatags for indexing.

On the other hand, the Web’s rich hyperlink structure came to the rescue.
Succinct descriptions of the content of a page or site v may often be found in the
text of pages u that link to v. The text in and near the “anchor” or HREF construct
may be especially significant, as in the following page fragment:

<h2>Japanese car companies</h2>

Toyota
Mazda

In fact, Toyota may never say it is a Japanese car company on its homepage,
and www.ibm.com may not mention that the company manufactures mainframe
computers.

In the World Wide Web Worm system, McBryan built an index where page
v, which had not been fetched by the crawler, would be indexed using anchor
text on pages u that link to v [143]. At that time, this was done primarily to enable
some limited form of search and retrieval over pages not covered by the crawler,
effectively increasing its “reach” by one link’s worth. Lycos (www.lycos.com/) and
Google (www.google.com/) adopted the same approach, increasing their reach by
almost a factor of two. As we shall see in Chapter 7, (near) anchor text on u offers
valuable editorial judgment about v as well. Consensus among many authors of
pages like u about what terms to use as (near) anchor text is valuable in fighting
spam and returning better-ranked responses.

64 C H A P T E R 3 Web Search and Information Retrieval

Ranking for complex queries including phrases

Many search systems permit the query to contain single words, phrases, and word
inclusions and exclusions, (e.g., socks -shoes +"network protocol"). Search engines
differ in how they perform vector-space ranking in the presence of phrases,
inclusions, and exclusions. Explicit inclusions and exclusions using + and - are
hard Boolean predicates; all responses must satisfy these. Hard clauses involving
phrases are dealt with similarly. With operators and phrases, the query (or the
documents) can no longer be treated as ordinary points in vector space.

Suppose we had access to a dictionary of phrases while indexing the collection.
The simplest approach is to construct two separate indices: one for single terms and
another for phrases. Basically, we can regard the phrases as new dimensions added
to the vector space [154]. If necessary, while computing similarity to the query,
we can use a suitable scale factor (apart from IDF) for the axes representing the
phrases. This approach is useful when query phrases are found in the dictionary.
Otherwise, computing the IDF of a query phrase would require a subquery by
itself, which may slow down the search.

The phrase dictionary could be cataloged manually, or derived from the
corpus itself using statistical techniques. To decide if “t1 t2” occurs more often
as a phrase than their individual rates of occurrence would lead us to expect, we
build their contingency table:

k00 = k(t̄1 t̄2) k01= k(t̄1 t2)

k10 = k(t1 t̄2) k11= k(t1 t2)

Here t̄ means a term other than t, and k() is the count of the respective events in
the corpus. Let us propose and test the null hypothesis that the occurrences of t1
and t2 are independent, in which case we should observe Pr(t1 t2)= Pr(t1) Pr(t2).
To the extent the pair violates the null hypothesis, it is likely to be a phrase.
If the null hypothesis holds, we need only two parameters, Pr(t1) and Pr(t2),
whereas if it does not, the alternative hypothesis holds, and we need the four
probabilities corresponding to each cell—that is, three parameters (because the
four probabilities add up to 1).

We can use the well-known “likelihood ratio test.” A hypothesis has parameters
p taken from a parameter space
 and observations k, and the likelihood of the
hypothesis is denoted H(p; k). The likelihood ratio of the hypothesis is

3.2 Relevance Ranking 65

λ= maxp∈
0
H(p; k)

maxp∈
 H(p; k)
(3.11)

where
 is the entire parameter space and
0 is the parameter space corresponding
to the null hypothesis. Because
0 ⊆
, λ ≤ 1. It is known that −2 log λ is
asymptotically χ2-distributed with degree of freedom equal to the difference in
the dimensions of
0 (in our example, 2) and
 (3). If occurrences of t1 and t2
are independent, λ is almost 1, and −2 log λ is almost 0. The larger the value of
−2 log λ, the stronger the dependence. In the Bernoulli trial setting that we have
used,

H(p00, p01, p10, p11; k00, k01, k10, k11)∝ pk00
00 pk01

01 pk10
10 pk11

11 (3.12)

whereas

H(p1, p2; k00, k01, k10, k11)∝ ((1− p1)(1− p2))
k00 ((1− p1)p2)

k01

× (p1(1− p2))
k10 (p1p2)

k11
(3.13)

It is easy to maximize these probabilities through suitable choices of the pa-
rameters: for example, for the null hypothesis, p1/(1− p1) should equal (k10 +
k11)/(k01+ k00) to maximize the probability. Now one can sort the entries by
−2 log λ and compare the top rankers against a χ2 table to note the confidence
with which the null hypothesis is violated. Dunning [75] reports the following
top candidates from some common English text:

−2 log λ Phrase

271 the swiss
264 can be
257 previous year
167 mineral water

...

We will return to more tools for finding statistically significant dependence
later in this book, notably in Chapter 5.

66 C H A P T E R 3 Web Search and Information Retrieval

Approximate string matching

Even though a large fraction of Web pages are written in English, many other
languages are also used. Dialects of English or transliteration from other lan-
guages may make many word spellings nonuniform. Often an exact character-
by-character match between the query terms entered by the user and the keys in
the inverted index may miss relevant matches.

Broadly speaking, there are two ways to reduce this problem. The first is to
use an aggressive conflation mechanism that will collapse variant spellings into
the same token. Soundex is one such conflation scheme that takes phonetics and
pronunciation details into account [159], and has been used with great success
in indexing and searching last names in census and telephone directory data. For
example, bradley, bartle, bartlett, and brodley all share the soundex code B634.
Soundex works well with western names, but cannot conflate, for example, chiang
and gong, two transliterations of a Chinese word meaning “river.”

The other approach is to decompose terms into a sequence of q-grams or
sequences of q characters. For example, wong decomposes into the 2-grams wo,
on, and ng, whereas yang decomposes into ya, an, and ng, and they now overlap
in one out of three 2-grams. (If all vowels are conflated ahead of time, the terms
become w@ng and y@ng, and the overlap is 2/3.) Depending on the language
and the number of characters in a typical syllable, q is usually set between 2 and 4.

Looking up the inverted index now becomes a two-stage affair: first a
different, smaller index of q-grams is consulted to expand each query term into
a set of slightly distorted query terms, then all these terms are submitted to the
regular index. An overlap threshold tunes the recall-precision trade-off. A similar
idea has been used to find near duplicate Web pages; this technique will be
discussed in Section 3.3.2. Approximate term matching in its general form is
not very common in search engines. Some search engines like AltaVista permit
query words to end with the wildcard character “*”: univ* will match “universe”
and “university.” Recently, Google has started suggesting variant spellings of query
terms. We conjecture that these variants are found from frequent queries in query
logs using q-gram techniques.

Metasearch systems

Web IR as we have seen so far brings the documents to a central indexing and
query processing system. The crawler turns the distributed document repository
into a local one, on which IR systems can work. However, we can, to some

3.3 Similarity Search 67

extent, take the search engine to the document rather than take the document
to the search engine. More precisely, a metasearch system4 forwards queries to
many geographically distributed repositories, each with its own search service,
and consolidates their responses.

Metasearch systems are fairly popular because they add value in a number
of ways. Some of them perform nontrivial query rewriting to suit a single user
query to many search engines with different query syntaxes. The overlap between
the crawls collected by the major Web search engines is curiously small [16]. A
metasearch system improves recall and thereby becomes a one-stop shop for many
users.

Apart from providing a common query interface, metasearch systems must
combine and present responses from multiple underlying search engines. The
function has to go beyond just eliminating duplicates. Generally, each constituent
search engine has a different, unpublished ranking algorithm. The metasearch
system can generally depend only on the rank ordering. Web search services
usually do not provide standard scores that can be combined by middleware
easily and meaningfully. Rank consolidation is a simpler problem for intranet
settings because all the constituent search engines and the metasearch system can
be designed to work with each other.

3.3 Similarity Search
The “cluster hypothesis” in IR states that documents similar to documents that
you have found relevant are also likely to be relevant. Many search engines provide
a “more like this” or “find similar” button or hyperlink accompanying each search
result. In this section I will first discuss efficient ways to provide a “find similar”
service in the context of the vector-space model.

On the Web, a naive implementation of “find similar” is likely to bring
up many copies of the query document. Many Web pages and sites are copied
for faster and robust access worldwide in the face of poor or unpredictable
network performance. Copying a single page is called replication or duplication,
whereas copying an entire site is usually called mirroring. We will use these terms
interchangeably where there is no danger of confusion.

4. They are sometimes wrongly called metacrawlers, although they generally do not do any crawling.

68 C H A P T E R 3 Web Search and Information Retrieval

For a Web search engine, avoiding replicated documents and sites is desirable
for a number of reasons: the index becomes smaller, searches get faster, and
users are not annoyed by several identical responses to a query (keyword or “find
similar”). In addition, as we have seen in Chapter 2, detecting duplicate pages also
helps us delete duplicate outlinks during crawling, which can lead to significant
savings in network and storage systems.

3.3.1 Handling “Find-Similar” Queries
In the vector-space model, queries and documents are both represented using
unit-length, TFIDF vectors. Therefore, we can simply define the “find-similar”
problem as, Given a “query” document dq, find some small number (say, 10 to
20) of documents d from the corpus D having the largest value of dq · d among
all documents in D, where · is the dot-product.

To simplify the discussion, I will pick a slightly simpler measure. An alternative
representation of a document d is a set of tokens T (d). While discussing basic
indexing, we have already seen how a document may be tokenized so that
it can be represented as a sequence of tokens. Depending on the application,
similarity searching may need more detailed preprocessing. For example, financial
documents copied to different countries may choose to customize money amounts
in units of local currency, in which case the currency symbol as well as the amounts
change. One may choose to replace all currency symbols with a single token and
all digit sequences following a currency symbol with another single token for
such an application. Apart from these comments, we leave the specification of the
tokenization step deliberately incomplete.

Using T (d), one may define a similarity measure called the Jaccard coefficient:

r ′(d1, d2)= |T (d1) ∩ T (d2)|
|T (d1) ∪ T (d2)|

(3.14)

r ′ would forgive any number of occurrences and any permutations of the terms.
r ′(d, d)= 1 and r ′(d1, d2)= r ′(d2, d1), but r ′ does not satisfy the triangle inequality.
A slightly different measure of distance, 1− r ′(d1, d2), is a metric.

It is easiest to precompute the nearest documents for each document, because
dq will be a rather long query otherwise, and the precomputed result is only linear
in the size of the corpus and very small compared to, say, the inverted index itself.
So our modified problem is, Given a large corpus D, find and store, for each d ∈D,
some small number of other documents most similar to d as per the measure r ′.

3.3 Similarity Search 69

1: for each document d in the collection do
2: for each term t ∈ d do
3: write out record (t, d) to a file f1.
4: end for
5: end for
6: sort the file f1 in (t, d) order
7: aggregate records from f1 into the form (t, Dt), where Dt is the set of

documents that contain t
8: for each term t scanned from f1 do
9: for each pair d1, d2 ∈Dt do

10: write out record (d1, d2, 1) to another file f2
11: end for
12: end for
13: sort and aggregate f2 on key (d1, d2) to compute a map from (d1, d2)

to the number of terms shared between d1 and d2
14: find r ′ for qualifying document pairs
15: report document pairs with large r ′

F I G U R E 3 . 6 Using sketches to detect near duplicates.

For large D (such as a Web crawl) we cannot afford to score all pairs of
documents, but the extreme sparsity of document vectors may save us. Two
documents need to share at least one term to figure in the rankings. Also, we can
a priori eliminate very frequent terms that occur, say, in more than 50% of the
documents, because they are not very indicative of content (an IDF consideration).
Next we can scan the inverted index of qualifying terms, compiling document
pairs that share each term. Sorting on the document pair as the key lets us easily
estimate the number of terms shared between all pairs of documents with nonzero
overlap. Pseudocode for these steps is shown in Figure 3.6.

This procedure is still at the mercy of the data: frequent terms can mess up the
running time even though the output size is linear in the number of documents.
Part of the problem is that the obvious algorithm seeks to estimate every r ′ exactly,
which is unnecessary; a fixed error threshold would be quite adequate. This leads
us to a randomized approach that I describe next. The main idea is to reduce the
two term sets to two numbers using a carefully chosen random function, such
that the two numbers match with a probability equal to the Jaccard coefficient
between the two sets. In what follows, remember that each document d is now
simply a set T (d) of term IDs.

70 C H A P T E R 3 Web Search and Information Retrieval

Suppose the universe of distinct term IDs is N = {1, 2, . . . , n}, and let π :
N →N be a permutation from N to N chosen uniformly at random from the n!
available permutations. Let A, B⊆N and let π(X)⊆N denote the set of numbers
obtained by applying π elementwise on X ⊆N . How many permutations out of
the n! available permutations satisfy

min(π(A))=min(π(B)) (3.15)

It is easy to see that if x =min(π(A))=min(π(B)), then π−1(x) must belong
to A ∩ B. Thus the question simplifies to, How many permutations map some
element of A ∩ B to the minimum image of all elements in A ∪ B? To construct
such a permutation

1. We can pick from N the range to which A ∪ B is mapped in
(n
|A∪B|

)
ways.

2. The remaining n− |A∪ B| elements that were not chosen may be permuted
every way, that is, in (n − |A ∪ B|)! ways.

3. The element to be mapped to the minimum value in the range can be chosen
in |A ∩ B| ways.

4. The remaining elements in A ∪ B can be permuted in (|A ∪ B| − 1)! ways.

Multiplying these together, we get(
n

|A ∪ B|
)

(n − |A ∪ B|)! |A ∩ B| (|A ∪ B| − 1)!= |A ∩ B|
|A ∪ B|n! ways (3.16)

Therefore, if a permutation π were picked uniformly at random from the n!
available permutations,

Pr π (min(π(A))=min(π(B))) = |A ∩ B|
|A ∪ B| (3.17)

This suggests a simple technique for estimating the Jaccard coefficient r ′(d1, d2)

using more than one random permutation, shown in Figure 3.7. The choice of
m, the number of permutations, is guided by the precision sought in estimating r ′.

To convert the pairwise test to a more efficient batch process over all doc-
uments, we would organize the computation as shown in Figure 3.8. The
number of (d1, d2) entries over all the g streams, divided by m, gives the de-
sired estimate of r ′(d1, d2) where this is positive. For each d1, we can now retain
a small number of d2s that have sufficiently large r ′(d1, d2).

3.3 Similarity Search 71

1: generate a set of m random permutations {π}
2: for each π do
3: compute π(T (d1)) and π(T (d2))

4: check if min π(T (d1))=min π(T (d2))

5: end for
6: if equality was observed in k cases, estimate r ′(d1, d2)= k/m.

F I G U R E 3 . 7 Using a random permutation to estimate the Jaccard coefficient.

1: for each random permutation π do
2: create a file fπ
3: for each document d do
4: write out 〈s =min π(T (d)), d〉 to fπ
5: end for
6: sort fπ using key s—this results in contiguous blocks with fixed s containing

all associated ds
7: create a file gπ
8: for each pair (d1, d2) within a run of fπ having a given s do
9: write out a document pair record (d1, d2) to gπ

10: end for
11: sort gπ on key (d1, d2)

12: end for
13: merge gπ for all π in (d1, d2) order, counting the number of (d1, d2) entries

F I G U R E 3 . 8 Using random permutations for fast similarity search.

3.3.2 Eliminating Near Duplicates via Shingling
The “find-similar” algorithm described thus far will (correctly) report all dupli-
cates of a query document dq as being most similar to dq, which will likely not
be very satisfying to the user. One way to eliminate these duplicate pages in the
response is to maintain a checksum with every page in the corpus, and throw out
from the response any page whose checksum also matches the checksum of dq.

Comparing simple checksums of entire pages (see Section 2.3.7) may, how-
ever, fail to detect replicated documents in many cases. The contents of replicated
documents are often slightly dissimilar from the source. Replicated pages may in-
clude URLs that contain different hostnames, even if the file paths look similar.
The anchors may be modified to suit the organization of the site where the copy
is stored, a site maintainer’s name or the latest update time may be added to the
bottom of the page. The source page may change after the copying is completed
or between copying instants. Formatting may be customized across sites.

72 C H A P T E R 3 Web Search and Information Retrieval

Instead of depending on exact equality of checksums, one can define and
measure some graded notion of dissimilarity between pages. A standard approach
to measuring the dissimilarity between two strings is the edit distance between
them: the number of character insertions, deletions, and replacements required
to transform one string to the other [56]. The time taken to compute the edit
distance between two strings is proportional to the product of their lengths, which
would be a little slow for whole Web documents, which are typically a few
kilobytes long. More problematic is the need to compare documents pairwise.
If a crawler fetches a billion documents, finding the edit distance between all
pairs of documents would be impractical.

Note that our implicit assumption is that an overlap in the set of keywords used
by two documents hints at semantic similarity, whereas sharing entire sequences of
words is a sign of plagiarism or duplication. A simpler way to catch plagiarism
than edit distance is the so-called q-gram approach, which we study now.

A q-gram, also called a shingle, is a contiguous subsequence of tokens taken
from a document. S(d, w) is the set of distinct shingles of width w contained
in document d. When w is fixed, we shall shorthand this to S(d). (Note that
T (d)= S(d, 1).) As with single tokens, one may represent a shingle by a fixed-
length integer. S(d) is thus just a set of integers. For example, if each token is
represented by a 32-bit ID, and w = 4, a shingle is a 128-bit number, and S(d) is
an unordered set of 128-bit numbers. In practice, w = 10 has been found suitable.

Using the shingled document representation, one may again define the
resemblance between documents d1 and d2 as the Jaccard coefficient

r(d1, d2)= |S(d1) ∩ S(d2)|
|S(d1) ∪ S(d2)|

(3.18)

Hereafter, we can plug in the technique for finding similar documents that we
studied in the previous section. In effect, we take all document pairs that look
similar, then eliminate those that look too similar. While running the algorithm
on shingles, we can use the results of the first run to limit the number of candidate
document pairs written out in Figure 3.8.

It might be useful to run these algorithms even during crawling. Detecting
replicated pages may also help us identify mirror sites and use this information
to streamline subsequent crawls. Replication is one aspect of Web IR that is
almost nonexistent in classic IR. Unfortunately, not all Web search engines
do high-quality near duplicate elimination, possibly to avoid the computational
complexity. Google is a notable exception.

TE
AM
FL
Y

Team-Fly®

3.3 Similarity Search 73

3.3.3 Detecting Locally Similar Subgraphs of the Web
Interestingly, similarity search and duplicate elimination can be applied not only
on text but also on the graph structure of the Web. Collapsing locally similar
Web subgraphs can improve the quality of hyperlink-assisted ranking in Web
search engines. In this chapter we have reviewed text-based IR for the most
part. In Chapter 7 we shall see that for a hypertext repository such as the Web,
hyperlinks are a valuable indicator of the authority of a page, which may be
used as a supplementary ranking device. As a crude measure, the total number of
citations to a page may be considered an indicator of its popularity. Deliberate
or inadvertent spamming is not limited to terms alone; knowledge of link-
based ranking algorithms lets site designers synthesize Web subgraphs that are
favored by search engines using such ranking algorithms. In fact, there are many
businesses whose exclusive portfolio is to improve search engine rankings for
their customers. One common trick they use is to build tightly knit hyperlink
communities between their customers’ sites, using a number of replicated pages
and sites hosted in diverse Internet domains. If the pages u that link to a page v
are extensively replicated without independent editorial judgment based on page
contents, current link-based ranking algorithms are likely to rate page v more
popular than may be regarded as fair. Therefore, the ability to collapse similar
regions of the Web graph can also improve link-based ranking algorithms.

In this section we will review a few approaches to detecting mirrored sites (as
opposed to replicated single documents). The first approach involves repeatedly
finding pages with nearly identical outlink sequences, collapsing the names of
these pages, and replacing links to these pages by canonical, collapsed names.

Given a large collection of HTML pages, such as obtained from a crawler,
the first step is to collect a database of HREF targets and turn them into a canonical
form, such as by using the default hostname using a DNS resolution, adding a
default port number, and adding trailing slashes if needed. (Obtaining the effective
URI, universal resource identifier, for each page by an actual fetch might be too slow.)
The cleaned URLs are listed and sorted to find duplicates and near duplicates,
and each set of equivalent URLs is assigned a unique token ID. Each page is now
stripped of all text and represented as a sequence of these outlink IDs alone.

Suppose u1 links to v1, and u2 links to v2, and v1 and v2 pass our test
for being duplicates. For example, v1 could be http://www.yahoo.com/ and v2
could be http://dir.yahoo.com/. (At the time of writing, most outlinks in
http://www.yahoo.com/ are relative, and their corresponding outlinks in http://
dir.yahoo.com/ are relative to http://www.yahoo.com/ using an

74 C H A P T E R 3 Web Search and Information Retrieval

directive.) In u1 and u2, we can now replace the HREFs by a common name
v′. Observe that this makes the link sequences in u1 and u2 look more sim-
ilar than before; in particular, they may now be regarded as duplicates. This
process can be started using textual duplicate detection and then continued using
the link sequence representation, until no further collapse of multiple URLs is
possible.

The second approach, somewhat similar to the first, is to identify single nodes
that are near duplicates, using text shingling, for instance, and then to extend
single-node mirrors to two-node mirrors, and continue to larger and larger graphs
that are likely mirrors of one another. Both of these are bottom-up approaches,
requiring page contents to be analyzed for candidate replicas.

The third approach uses regularity in URL strings to identify host pairs that
are mirrors, hopefully before many of the corresponding pages need to be fetched.
Building upon the notion of near duplication of pages, two hosts are said to be
mirrors if a large fraction of paths (the portions of the URL after the hostname,
see Section 2.1) are valid on both Web sites, and these common paths link to
pages that are near duplicates.

The algorithm proceeds by identifying candidate host pairs that might be
mirrors and then performing a more thorough check. The raw data for each host
is simply a set of known URL paths on it. Since our candidate detection must be
fast, we need to design a suitable set of features to extract from this set of paths.
To this end, we

1. Convert host and path to all lowercase characters

2. Let any punctuation or digit sequence be a token separator

3. Tokenize the URL into a sequence of tokens, for example, www6.infoseek.com
gives www, infoseek, com

4. Eliminate stop terms such as htm, html, txt, main, index, home, bin, cgi

5. Form positional bigrams from the token sequence, for example, /cell-
block16/inmates/dilbert/personal/foo.htm yields bigrams (cellblock,inmates,0),
(inmates,dilbert,1), (dilbert,personal,2), and (personal, foo,3)

Once hosts are represented as sets of such positional bigrams, we can use the
same sort of algorithms as shown in Figure 3.6 or Figure 3.8 to flag potentially
mirrored hosts. Subsequent tests can involve matching textual similarity between
pages hosted at the candidate mirrors.

3.4 Bibliographic Notes 75

3.4 Bibliographic Notes
There exist several authoritative and comprehensive texts about text indexing
and vector-space searching that cover the area in more depth than possible in
this chapter. Interested readers are referred to the classic texts by Salton and
McGill [186]; Keith van Reijsbergen (Information Retrieval, available online at
www.dcs.gla.ac.uk/Keith/Preface.html and www.dcs.gla.ac.uk/~iain/keith/index.htm);
Frakes and Baeza-Yates [82]; and Witten, Moffat, and Bell [215] for details
of indexing and searching. The SMART IR system from Cornell Univer-
sity (ftp://ftp.cs.cornell.edu/pub/smart/) is, after decades, still a definitive code
base for IR research. The Glimpse system from the University of Arizona
(glimpse.cs.arizona.edu/) has also seen wide circulation for efficient crawling and
indexing of medium-scale Web servers for intranet use. In the commercial do-
main, Verity and PLS are well-known vendors of text indexing systems. The
ACM Special Interest Group for IR (www.acm.org/sigir/) and TREC, the Text
REtrieval Conference (trec.nist.gov/) publish the performance of IR systems on
many standard corpora.

The compression of indices and their use for fast IR have been researched
extensively; much of that work is accessible via Witten, Moffat, and Bell’s book. I
note a few issues here. Search engines try hard to order the execution plan so that
the active result size is cut down as fast as possible. Consider a simple and query
involving terms t1, t2, and t3. The engine starts by probing the index with these
three terms and gets three sorted lists of document IDs. A simple strategy is to
start with the smallest document ID list. Furthermore, an IR system has to answer
so-called iceberg queries: in principle, given the query q, it has to evaluate the
similarity between q and each candidate document d in the collection, and then
discard all but the k most similar documents. If k is small (typically 10 to 20) and
the corpus is large (typically one-half to one billion), the computational effort
in similarity computation is out of proportion compared to the size of the useful
output. (The user is searching for the “tip of the iceberg” but the system computes
the whole iceberg.) In cosine-based ranking, any document having even one word
in common with the query will have a positive similarity score and needs to be
considered for ranking. However, low-IDF terms may contribute little to the final
ranking and may be possible to prune while the query execution is in progress.
An elegant algorithm for bulk queries is given by Cohen and Lewis [52].

Some of the early work in probabilistic IR is reported by Sparck Jones,
Robertson, and Walker [183, 200], Ponte and Croft [177], and Turtle and Croft
[204]. The probabilistic retrieval models described in this chapter may be regarded

76 C H A P T E R 3 Web Search and Information Retrieval

as supervised learners (see Chapter 5), which need labels (relevant or irrelevant)
from the user to be able to estimate parameters such as a and b discussed before.
To apply probabilistic techniques to ad hoc queries more effectively, we need to
reuse relevance feedback across queries, using what is called the description-oriented
approach [92, 86]. The idea is to synthesize several query-neutral attributes on
the (q, d) pair and let probabilistic inferencing techniques learn from relevance
feedback which attributes are useful for ranking. The advantage of query-neutral
attribute synthesis is that each query can potentially improve the system for any
future query if there are terms shared between these queries. Description-oriented
approaches are thus a practical compromise between domain knowledge and
purely data-driven learning.

For Web search engines, the Web is the best source of current information.
Search Engine Watch (searchenginewatch.com/) has extremely informative articles
about coverage, ranking technology, and anecdotes about major search engines.
Bharat and Bröder made early estimates of the relative coverage of major Web
search engines [16]. Lawrence and Lee Giles made estimates of the number of
functioning Http servers and the number of pages therein [133]. Document
fingerprinting and hashing are classic topics, but in the context of the Web,
the shingling idea discussed in Section 3.3.2 was first proposed by Bröder and
others [27]. The technique described in Section 3.3.3 for collapsing near duplicate
subgraphs of the Web was used by Kumar and others [128]. The bottom-up
cluster-growing approach is due to Cho et al. [51]. Bharat, Bröder, and others
proposed and evaluated a top-down mirror detection approach [17] based on
URL paths; I have briefly mentioned some salient features of their approach.

Indexing high-dimensional data is a classic difficult problem. For low-
dimensional data it is possible to index one or more attributes for faster range
and proximity search, as is done using B-trees or kd-trees for relational databases.
However, as the number of dimensions increases, these data structures become
less effective. This problem is not peculiar to text searches alone, but also occurs
in indexing and searching images or speech where, too, the number of features is
large. Recent work by Kleinberg [123] and Gionis et al. [90] provide new algo-
rithms for similarity searches in high dimension. Whether they can outperform
inverted index-based methods depends on the typical number of terms in a query
(for Web queries, two terms on average) and the typical number of documents
containing a query term. If the inverted index is sparse and the query is short,
the standard inverted index approach may be quite efficient.

p a r t i i
L E A R N I N G

c h a p t e r 4
S I M I L A R I T Y A N D C L U S T E R I N G

Keyword query processing and response ranking, described in Chapter 3, depend
on computing a measure of similarity between the query and documents in the
collection. Although the query is regarded at par with the documents in the
vector-space model, it is usually much shorter and prone to ambiguity (the average
Web query is only two to three words long). For example, the query star is
highly ambiguous, retrieving documents about astronomy, plants and animals,
popular media and sports figures, and American patriotic songs. Their vector-
space similarity (see Chapter 3) to the single-word query may carry no hint that
documents pertaining to these topics are highly dissimilar. However, if the search
clusters the responses along the lines of these topics, as shown in Figure 4.1, the
user can quickly disambiguate the query or drill down into a specific topic.

Apart from visualization of search results, clustering is useful for taxonomy
design and similarity search. Topic taxonomies such as Yahoo! and the Open
Directory (dmoz.org/) are constructed manually, but this process can be greatly
facilitated by a preliminary clustering of large samples of Web documents. Clus-
tering can also assist fast similarity search, described in Section 3.3.1. Given a
precomputed clustering of the corpus, the search for documents similar to a query
document dq may be efficiently limited to a small number of clusters that are most
similar to dq, quickly eliminating a large number of documents that we can safely
surmise would rank poorly.

Similarity, in a rather general way, is fundamental to many search and mining
operations on hypertext and is central to most of this book. In this chapter we will
study how measures of similarity are used to cluster a collection of documents into

79

80 C H A P T E R 4 Similarity and Clustering

Cluster 1 Size: 8 key army war francis spangle banner air song scott word poem british

Star-Spangled Banner, The
Key, Francis Scott
Fort McHenry
Arnold, Henry Harley
National Anthem

Cluster 2 Size: 68 film play career win television role record award york popular stage p

Burstyn, Ellen
Stanwyck, Barbara
Berle, Milton
Zukor, Adolph
Bankhead, Tallulah

Cluster 3 Size: 97 bright magnitude cluster constellation line type contain period spectr

star
Galaxy, The
extragalactic systems
interstellar matter
cluster star

Cluster 4 Size: 67 astronomer observatory astronomy position measure celestial telescop

astronomy and astrophysics
astrometry
Agena
astronomical catalogs and atlases
Herschel, Sir William

Cluster 5 Size: 10 family species flower animal arm plant shape leaf brittle tube foot hor

blazing star
brittle star
bishop's cap
feather star

F I G U R E 4 . 1 Scatter/Gather, a text clustering system, can separate salient topics in response to
keyword queries. (Image courtesy of Hearst [101].)

groups within which interdocument similarity is large compared to the similarity
between documents chosen from different groups. The utility of clustering for
text and hypertext information retrieval lies in the so-called cluster hypothesis: given
a “suitable” clustering of a collection, if the user is interested in document d, she
is likely to be interested in other members of the cluster to which d belongs.

The cluster hypothesis is not limited to documents alone. If documents are
similar because they share terms, terms can also be represented as bit-vectors
representing the documents in which they occur, and these bit-vectors can be
used to cluster the terms. As with terms and documents, we can set up a bipartite

4.1 Formulations and Approaches 81

relation for people liking documents, and use this to cluster both people and
documents, with the premise that similar people like similar documents, and vice
versa. This important ramification of clustering is called collaborative filtering.

This chapter is organized as follows: I start with an overview of basic formu-
lations and approaches to clustering (Section 4.1). Then I describe two impor-
tant clustering paradigms: a bottom-up agglomerative technique (Section 4.2.1),
which collects similar documents into larger and larger groups, and a top-down
partitioning technique (Section 4.2.2), which divides a corpus into topic-oriented
partitions. These are followed by a slew of clustering techniques that can be
broadly classified as embeddings of the corpus in a low-dimensional space so as to
bring out the clustering present in the data (Section 4.3). Next, I discuss proba-
bilistic models and algorithms in Section 4.4, and end the chapter with a discussion
of collaborative filtering.

4.1 Formulations and Approaches
Formulations of clustering problems range from combinatorial to fuzzy, and no
single objective serves all applications. Most of the combinatorial definitions are
intractable to optimize. Clustering is a classic applied art where a great deal of
experience with data must supplement stock algorithms. It is beyond the scope
of a single chapter to cover the entire breadth of the subject, but there are many
classic books on it. My goal is to highlight broad classes of algorithms and the
specific issues that arise when one seeks to find structure in text and hypertext
domains.

I first propose a few formal specifications of the clustering problem and outline
some basic approaches to clustering. We are given a collection D of documents
(in general, entities to be clustered). Entities either may be characterized by some
internal property, such as the vector-space model for documents, or they may be
characterized only externally, via a measure of distance (dissimilarity) δ(d1, d2) or
resemblance (similarity) ρ(d1, d2) specified between any two pairs of documents.
For example, we can use the Euclidean distance between length-normalized
document vectors for δ and cosine similarity for ρ. These measures have been
discussed earlier, in Chapter 3.

4.1.1 Partitioning Approaches
One possible goal that we can set up for a clustering algorithm is to partition
the document collection into k subsets or clusters D1, . . . , Dk so as to minimize

82 C H A P T E R 4 Similarity and Clustering

the intracluster distance
∑

i
∑

d1,d2∈Di
δ(d1, d2) or maximize the intracluster re-

semblance
∑

i
∑

d1,d2∈Di
ρ(d1, d2). If an internal representation of documents is

available, then it is also usual to specify a representation of clusters with regard
to that same model. For example, if documents are represented using the vector-
space model, a cluster of documents may be represented by the centroid (average)
of the document vectors. When a cluster representation is available, a modified
goal could be to partition D into D1, . . . , Dk so as to minimize

∑
i
∑

d∈Di
δ(d, �Di)

or maximize
∑

i
∑

d∈Di
ρ(d, �Di), where �Di is the vector-space representation of

cluster i.
One could think of assigning document d to cluster i as setting a Boolean

variable zd,i to 1. This can be generalized to fuzzy or soft clustering where zd,i is
a real number between zero and one. In such a scenario, one may wish to find
zd,i so as to minimize

∑
i
∑

d∈D zd,iδ(d, �Di) or maximize
∑

i
∑

d∈D zd,iρ(d, �Di).
Partitions can be found in two ways. We can start with each document in a

group of its own, and collapse together groups of documents until the number
of partitions is suitable; this is called bottom-up clustering. Alternatively, we can
declare the number of partitions that we want a priori, and assign documents
to partitions; this is called top-down clustering. I will discuss both variants in
Section 4.2.

4.1.2 Geometric Embedding Approaches
The human eye is impressive at noticing patterns and clusters in data presented
as points embedded in two or three dimensions, as borne out by the naming of
constellations and archipelagoes. If there is natural clustering in the data, and we
manage to embed or project the data points to two or three dimensions without
losing the clustering property, the resulting “map” may itself be an adequate
clustering aid.

I will discuss several approaches to creating clusters in low-dimensional space.
In one approach, called self-organizing maps, clusters are laid out on a plane in a
regular grid, and documents are iteratively assigned to regions of the plane. For
this approach we need documents to be specified using an internal description. In
another approach, called multidimensional scaling, the system input is the pairwise
(dis-)similarity between documents. The algorithm seeks to embed the docu-
ments as points in 2D to 3D space with the minimum distortion of pairwise
distances. Both of these approaches are heuristic in nature; there is no general
guarantee that all collections can be rendered well. Another technique, called

TE
AM
FL
Y

Team-Fly®

4.1 Formulations and Approaches 83

latent semantic indexing, uses techniques from linear algebra to factor the term-
document matrix. The factors can be used to derive a low-dimensional represen-
tation for documents as well as terms. This representation can also be used for ad
hoc searching.

A different form of partition-based clustering is to identify dense regions in
space. As an extreme example, we can start with a 1D space with a finite extent
and a finite number of points, and claim that a cluster is demarcated by endpoints
within which the number of points per unit length (density) is higher than (some
multiple of) the average global density. Such a density-based notion of clustering
can be readily extended to more dimensions. In particular, there may be no
discernible clustering when the points are considered in the original space, but
clusters may emerge when the points are projected to a subspace with a smaller
number of dimensions. We can look for density-based clusters in a simple bottom-
up fashion. The basic observation is that if a region is dense in k dimensions, then
all projections of this region are dense. Therefore, the algorithm first finds 1D
dense “regions,” tries to compose them into 2D regions, discarding those that fail
the density test, and so on. Unfortunately this method would not scale to textual
data with tens of thousands of dimensions. The only way around seems to be to
propose simple generative distributions for documents, discussed next.

4.1.3 Generative Models and Probabil istic Approaches
In the approaches outlined thus far, the measures of (dis-)similarity are provided by
the user. Carelessly designed measures can easily damage the quality of clustering.
The probabilistic approach seeks to model the document collection as being
generated by a random process following a specific set of distributions. For
example, we can assume that each cluster that we seek is associated with a
distribution over the terms in our lexicon. Given the collection, we must estimate
the number of distributions, and the parameters defining these distributions.
Indeed, estimating these distributions can be defined as the clustering problem. We
will study several techniques for estimating cluster distributions. Initially we will
assume that each document is generated from exactly one distribution. However,
in the common situation that clusters correspond to topics, a single-topic-per-
document model is not entirely realistic: documents are often mixtures of multiple
topics. The more advanced techniques that we will study can estimate models in
this more general setting. (This part of the chapter is key to understanding many
later chapters.)

84 C H A P T E R 4 Similarity and Clustering

Estimating a term distribution over documents is difficult. There is little hope
of capturing the joint distribution between terms or term sequences, given the
large number of terms in the vocabulary (tens to hundreds of thousands for many
standard collections). Most practical models need to assume that term occurrences
are independent of each other. Even if each term is associated with a simple
Boolean event (the term occurs or does not occur in a document), the number
of event combinations is astronomical compared to the size of any document
collection that we are likely to encounter.

4.2 Bottom-Up and Top-Down Partitioning Paradigms
We will now study one bottom-up clustering technique that will repeatedly merge
groups of similar documents until the desired number of clusters is attained, and
a top-down technique that will iteratively refine the assignment of documents to
a preset number of clusters. The former method is somewhat slower, but may be
used on a small sample of the corpus to “seed” the initial clusters before the latter
algorithm takes over.

4.2.1 Agglomerative Clustering
Although many formulations of the clustering problem are intractable, a simple,
intuitive heuristic is to start with all the documents and successively combine
them into groups within which interdocument similarity is high, collapsing
down to as many groups as desired. This style is called bottom-up, agglomerative,
or hierarchical agglomerative clustering (HAC) and is characterized by the broad
pseudocode shown in Figure 4.2. HAC is widely used in document clustering
and other IR applications [180, 213].

1: let each document d be in a singleton group {d}
2: let G be the set of groups
3: while |G|> 1 do
4: choose �, � ∈G according to some measure of similarity s(�, �)

5: remove � and � from G
6: let �= � ∪�

7: insert � into G
8: end while

F I G U R E 4 . 2 Basic template for bottom-up hierarchical agglomerative clustering.

4.2 Bottom-Up and Top-Down Partitioning Paradigms 85

0.1

0.3

0.5

0.7

0.9

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 Documents

Si
m

ila
ri

ty

F I G U R E 4 . 3 A dendrogram presents the progressive, hierarchy-forming merging process picto-
rially. The user can cut across the dendrogram at a suitable level of similarity to get the desired
number of clusters. (Taken from [141].)

The hierarchical merging process leads to a tree called a dendrogram, drawn
in the specific style shown in Figure 4.3. Typically, the earlier mergers happen
between groups with a large similarity s(� ∪�). This value becomes lower and
lower for later merges. The user can “cut across” the dendrogram at a suitable
level to “read off” any desired number of clusters.

Algorithms differ as to how they compute the figure of merit for merging
� and �. One commonly used measure is the self-similarity of � ∪�. The self-
similarity of a group of documents � is defined as the average pairwise similarity
between documents in �

s(�)= 1(|�|
2

) ∑
d1,d2∈�

s(d1, d2)= 2

|�| (|�| − 1)

∑
d1,d2∈�

s(d1, d2) (4.1)

where the TFIDF cosine measure is commonly used for interdocument similarity
s(d1, d2). Other merger criteria exist. One may choose to merge that pair of
clusters (�, �), which maximizes mind1∈�,d2∈� s(d1, d2), maxd1∈�,d2∈� s(d1, d2),
or (

∑
d1∈�,d2∈� s(d1, d2))/(|�| |�|).

In this section, we will denote a document as d and its corresponding vector-
space representation as �d, which we will sometimes simplify to d if there is no

86 C H A P T E R 4 Similarity and Clustering

chance for confusion. If documents are already normalized to unit length in the
L2 norm, s(d1, d2) is simply the dot-product, 〈d1, d2〉.

By maintaining carefully chosen statistics, the dendrogram can be computed
in about quadratic time and space. For any group � of documents, we maintain
an unnormalized group profile vector

p(�)=
∑
d∈�
�d (4.2)

which is simply the sum of the document vectors belonging to that group, together
with the number of documents in the group. It is easy to verify that

s(�)= 〈p(�), p(�)〉 − |�|
|�|(|�| − 1)

(4.3)

and

p(� ∪�)= 〈p(�), p(�)〉 + 〈p(�), p(�)〉 + 2 〈p(�), p(�)〉 (4.4)

Thus, in Figure 4.2, to compute s(� ∪�) from p(�) and p(�) will cost just the
time to do a few dot-products. For the moment we will assume that dimensionality
of documents and group profiles are fixed, and therefore we can calculate a dot-
product in constant time. (We will return to this issue.) Not much changes on
each merge, so we would also like to maintain with each group � a heap [56]
of partner groups � ordered by largest s(� ∪�). Thus, for each group, we can
access its best partner (together with the score) in constant time. With n groups to
start with, we precompute all pairwise similarities in O(n2) time, and insert them
in heaps in O(n2 log n) time. Now we can pick the best pair of groups to merge in
O(n) time, delete these groups from each of the heaps in O(log n) time, compute
the similarity of the merger with old groups in O(n) time, and update all heaps
in O(n log n) time. Since there are n − 1 merges, the total time is O(n2 log n),
and all the heaps together consume O(n2) space.

Earlier we assumed that documents and group profile vectors are embedded
in a space with a fixed number of dimensions. This is true, but the number of
dimensions is rather large, running into tens of thousands. Moreover, the time
taken to compute a dot-product is not really proportional to the number of
dimensions, but only the number of nonzero coordinates, assuming a sparse vector
representation is used (as it should be). For example, the Reuters collection [139]
has about 22,000 financial news articles, a typical article having a few dozen to
a few hundred distinct terms, whereas the total number of unique terms in the

4.2 Bottom-Up and Top-Down Partitioning Paradigms 87

collection is over 30,000. As a result, dot-product computations near the leaves
of the dendrogram would be very fast, but would get slower as the group profiles
become denser, until near the root, profile vectors are almost entirely dense. A
simple way to reduce the running time is to truncate document and group profile
vectors to a fixed number (e.g., 1000) of the largest magnitude coordinates. In
theory, this may lead to a clustering output that is different from what would
be computed with a full representation, but empirical evidence suggests that the
quality of clustering remains unaffected [60, 191].

4.2.2 The k -Means Algorithm
Bottom-up clustering, used directly, takes quadratic time and space and is not
practical for large document collections. If the user can preset a (small) number k
of desired clusters, a more efficient top-down partitioning strategy may be used.
The best-known member of this family of algorithms is the k-means algorithm.
We will discuss two forms of the k-means algorithm here. One makes “hard”
(0/1) assignments of documents to clusters. The other makes “soft” assignments,
meaning documents belong to clusters with a fractional score between 0 and 1.

k -means with “hard” assignment

In its common form, k-means uses internal representations for both the objects
being clustered and the clusters themselves. For documents, the vector-space
representation is used, and the cluster is represented as the centroid of the
documents belonging to that cluster.

The initial configuration is arbitrary (or chosen by a heuristic external to the
k-means algorithm), consisting of a grouping of the documents into k groups,
and k corresponding vector-space centroids computed accordingly. Thereafter,
the algorithm proceeds in alternating half-steps, as shown in Figure 4.4.

The basic step in k-means is also called move-to-nearest, for obvious reasons.
A variety of criteria may be used for terminating the loop. One may exit when
the assignment of documents to clusters ceases to change (much), or when cluster
centroids move by negligible distances in successive iterations.

k -means with “soft’ assignment

Rather than make any specific assignment of documents to clusters, the “soft”
variant of k-means represents each cluster c using a vector µc in term space. Since
there is no explicit assignment of documents to clusters, µc is not directly related to
documents—for example, it is not necessarily the centroid of some documents.

88 C H A P T E R 4 Similarity and Clustering

1: initialize cluster centroids to arbitrary vectors
2: while further improvement is possible do
3: for each document d do
4: find the cluster c whose centroid is most similar to d
5: assign d to this cluster c
6: end for
7: for each cluster c do
8: recompute the centroid of cluster c based on documents assigned to it
9: end for

10: end while

F I G U R E 4 . 4 The k-means algorithm.

The goal of “soft” k-means is to find a µc for each c so as to minimize the
quantization error,

∑
d minc |d − µc|2.

A simple strategy to iteratively reduce the error is to bring the mean vectors
closer to the documents that they are closest to. We scan repeatedly through the
documents, and for each document d, accumulate a “correction” �µc for that
µc that is closest to d:

�µc =
∑

d

{
η(d − µc), if µc is closest to d
0 otherwise

(4.5)

After scanning once through all documents, all the µcs are updated in a batch by
setting all µc←µc +�µc. η is called the learning rate. It maintains some memory
of the past and stabilizes the system. Note that each d moves only one µc in each
batch.

The contribution from d need not be limited to only that µc that is closest to
it. The contribution can be shared among many clusters, the portion for cluster
c being directly related to the current similarity between µc and d. For example,
we can soften (4.5) to

�µc = η
1/|d − µc|2∑
γ 1/|d − µγ |2

(d − µc)

or

�µc = η
exp(−|d − µc|2)∑
γ exp(−|d − µγ |2)

(d − µc) (4.6)

4.3 Clustering and Visualization via Embeddings 89

Many other update rules, similar in spirit, are possible. Soft assignment does not
break close ties to make documents contribute to a single cluster that wins
narrowly. It is easy to show that some variants of soft k-means are special cases of
the EM algorithm (see Section 4.4.2), which can be proved to converge to local
optima.

Running time

In both variants of k-means, for each round, n documents have to be compared
against k centroids, which will take O(kn) time. The number of rounds is usually
not too strongly dependent on n or k, and may be regarded as fixed.

Bottom-up clustering is often used to “seed” the k-means procedure. If k
clusters are sought, the strategy is to randomly select O(

√
kn) documents from

the collection of n documents and subject them to bottom-up clustering until
there are k groups left. This will take O(kn log n) time. Once this step is over, the
centroids of the k clusters, together with the remaining points, are used to seed a
k-means procedure, which takes O(kn) time. The total time over the two phases
is thus O(kn log n).

4.3 Clustering and Visualization via Embeddings
Visualization of results from IR systems is a key driving force behind clustering
algorithms. Of the two clustering techniques we have studied so far, HAC lends
itself more readily to visualization, because trees and hierarchies are ubiquitous
as user interfaces. Although k-means collects documents into clusters, it has no
mechanism to represent the clusters visually, in a small number of dimensions.

In this section we will study a few clustering approaches that directly represent
the documents as points in a given number of dimensions (two to three if
direct visualization is desired). We start with Kohonen or self-organizing maps
(SOMs), a close cousin of k-means. Next, we study multidimensional scaling
(MDS), which gives an explicit optimization objective: we wish to minimize the
error or distortion of interpoint distances in the low-dimensional embedding
as compared to the dissimilarity given in the input data. This is a satisfying
formulation, but usually intractable to exact optimization. The third category of
techniques uses linear transformations to reduce the number of dimensions, and
some of these approximately but provably preserve important properties related
to interdocument similarity.

90 C H A P T E R 4 Similarity and Clustering

In all these cases, the ability to reduce the data to points in a 2D or 3D space
that can be visualized directly is very valuable. The human eye is great at detecting
clusters in low dimensions, and techniques that transform the data to such a format
without losing important similarity information from the original data are very
useful for analyzing text collections.

4.3.1 Self-Organizing Maps (SOMs)
Self-organizing, or Kohonen, maps are a close cousin to k-means, except that
unlike k-means, which is concerned only with determining the association
between clusters and documents, the SOM algorithm also embeds the clusters
in a low-dimensional space right from the beginning and proceeds in a way that
places related clusters close together in that space.

As in “soft” k-means, the SOM is built by associating a representative vector
µc with each cluster c, and iteratively refining these representative vectors. Unlike
k-means, each cluster is also represented as a point in a low-dimensional space.
Clusters might be represented by nodes in a triangular or square grid, for example.
Figure 4.5 shows a triangular grid. A large number of clusters can be initialized
even if many regions are to remain devoid of documents in the end. In Figure 4.5,
the background intensity shows the local density of documents assigned to each
grid point. By extracting frequent words and phrases from the documents assigned
to each cluster, we can “name” regions of the map as shown in Figure 4.5.

Based on the low-dimensional embedding, a neighborhood N (c) is defined for
each cluster c; for the square grid, N (c) might be chosen as all nodes within two
hops of c. We also design a proximity function h(γ , c), which tells us how close a
node γ is to the node c. h(c, c)= 1, and h decays with distance (e.g., the number
of links on the shortest path connecting γ and c in the grid). In fact, we don’t
really need N (c); we can simply let h(γ , c) be 0 for γ �∈N (c).

The update rule for an SOM will be generalized straight from Equation (4.5)
by adding one new feature: if document d matches cluster cd best, the update
contribution from d should apply not only to cd but to all γ ∈ N (cd) as well.
SOMs are a kind of neural network where data item d “activates” the neuron
cd and some other closely neighboring neurons. The overall algorithm initializes
all µ to random vectors and repeatedly picks a random document d from the
collection and updates the model at each neuron until the model vectors stop
changing significantly. The update rule for node γ under the influence of d is
thus written as

µγ ← µγ + ηh(γ , cd)(d − µγ) (4.7)

4.3 Clustering and Visualization via Embeddings 91

F I G U R E 4 . 5 SOM computed from over a million documents taken from 80 Usenet news groups.
Light areas have a high density of documents. The region shown is near groups pc.chips and
pc.video, and closer inspection shows a number of URLs in this region that are about PC
videocards.

Here, as before, η is a learning rate, which may be folded into h. An example of
an SOM of over a million documents from 80 Usenet news groups is shown in
Figure 4.5, together with the result of drilling down into the collection. Another
example involving Web documents is shown in Figure 4.6, where the regions
chalked out by SOM are in broad agreement with the human catalogers working
on the Open Directory Project (http://dmoz.org/). The topic names in Figure 4.6
were generated manually once the correspondence with named DMoz.org topics
was clear.

4.3.2 Multidimensional Scaling (MDS) and FastMap
In the case of k-means and SOM, documents have a specified internal represen-
tation, namely, the vector-space representation. In other applications, documents
may be characterized only by a distance to other documents. Even in cases where
an internal representation is available, one may use it for generating pairwise dis-
tances. Doing this may help in incorporating coarse-grained user feedback in
clustering, such as “documents i and j are quite dissimilar” or “document i is
more similar to j than k.” These can be translated into a distance measure that

92 C H A P T E R 4 Similarity and Clustering

(b)(a)

F I G U R E 4 . 6 Another example of SOM at work: the sites listed in the Open Directory Project
have been organized within a map of Antarctica, at antarcti.ca/ (a). Clicking on a region maintains
context (inset) and zooms in on more specific topics (b). Documents are located at the cluster to
which they are most similar.

overrides that computed from internal representations as the user provides more
feedback.

The goal of MDS is to represent documents as points in a low-dimensional
space (often 2D to 3D) such that the Euclidean distance between any pair of points
is as close as possible to the distance between them specified by the input. Let
di,j be a (symmetric) user-defined measure of distance or dissimilarity between
documents i and j, and let d̂i,j be the Euclidean distance between the point
representations of documents i and j picked by our MDS algorithm. The stress of
the embedding is given by

stress=
∑

i,j(d̂i,j − di,j)
2∑

i,j d2
i,j

(4.8)

We would like to minimize the stress.
This formulation is very appealing but is not easy to optimize. Iterative stress

relaxation, that is, hill climbing, is the most used strategy to minimize the stress.
Here I shall talk about documents and points interchangeably. Initially, all points
are assigned coordinates randomly or by some external heuristic. Then, each point
in turn is moved by a small distance in a direction that locally reduces its stress.

With n points to start with, this procedure involves O(n) distance computa-
tions for moving each point, and so O(n2) distance computations per relaxation

TE
AM
FL
Y

Team-Fly®

4.3 Clustering and Visualization via Embeddings 93

step. A much faster approach called FastMap, due to Faloutsos and Lin [76],
pretends that the original documents are indeed points in some unknown high-
dimensional space, and finds a projection to a space with a smaller number k of
dimensions. The heart of the FastMap algorithm is to find a carefully selected line
onto which the points are projected to obtain their first dimension, then project
the points to a hyperplane perpendicular to the line, and recursively find the re-
maining k− 1 coordinates. There are thus three key subproblems: (1) how to find
a good direction or line, (2) how to “project” the original points onto the line
(given that we have no internal representation of the documents), and (3) how to
project the points to the hyperplane.

Because there is no internal representation available, the only way in which a
direction or line can be specified is via a pair of points. Let a and b be two points
defining the line, called the pivots. We can arbitrarily let a be the origin. Consider
another point x for which we wish to compute the first coordinate x1. Using the
cosine law, we get

d2
b,x = d2

a,x + d2
a,b − 2x1da,b

⇒ x1=
d2

a,x + d2
a,b − d2

b,x

2 da,b
(4.9)

This 1D projection does preserve some distance information: all points x close to
a will have small x1 and hence be close to each other in the projected space, and
vice versa. This also gives a clue to finding a good line: informally, a line is good
if projecting onto it helps spread out the points, that is, the point set has high
variance in the direction of the line. This is difficult to ensure without exhaustive
checking, so Faloutsos and Lin pick pivots that are far apart as a heuristic.

The next step is to project all points to the hyperplane perpendicular to the
pivot line. Again, this “projection” cannot give us an internal representation of
the original points, because we have not started with any. The only purpose of
the “projection” is to correct interpoint distances by taking into account the
component already accounted for by the first pivot line. Consider points x and y
with distance dx,y, first coordinates x1 and y1, and projections x′, y′ (with unknown
internal properties) on the hyperplane. By the Pythagorean theorem, it is easy to
see that the new distance d′ on the hyperplane is

d′x′,y′ =
√

d2
x,y − (x1− y1)

2 (4.10)

94 C H A P T E R 4 Similarity and Clustering

x

(a) (b)

x1
da,b

db,xda,x

b

a

b

x

d2
x,y – (x1 – y1)2

|x1 – y1|
90˚

y

a

dx,y

√

F I G U R E 4 . 7 FastMap: projecting onto the pivot line (a), and projecting to a subspace with one
less dimension (b).

At this point, we have derived the first dimension of all points and reduced
the problem to one exactly like the original problem, except k − 1 additional
dimensions remain to be computed. Therefore, we can simply call the routine
recursively, until we go down to 1D space where the problem is trivially solved.
The end product is a vector (x1, . . . , xk) for each point x in the original data set. It
can be verified that FastMap runs in O(nk) time. For visualization tasks, k is usually
a small constant. Therefore, FastMap is effectively linear in the size of the point set.
Figure 4.8 shows a fly-through 2D rendering of a 3D embedding of documents
returned by a search engine in response to the query “tony bennett,” which are
clearly separated into two clusters. Closer inspection shows those clusters are about
“country” and “jazz” music.

4.3.3 Projections and Subspaces
In many of the clustering algorithms we have discussed so far, including HAC
and k-means style clustering, a significant fraction of the running time is spent
in computing (dis-)similarities between documents and clusters. The time taken
for one similarity calculation is proportional to the total number of nonzero
components of the two vectors involved. One simple technique to speed up
HAC or k-means is to truncate the document vectors to retain only some of the
largest components. (We can retain either a fixed number of components or the
smallest number of components that make up, say, at least 90% of the original
vector’s norm.) Truncation was introduced earlier, in Section 4.2.1; it has been

4.3 Clustering and Visualization via Embeddings 95

Country

Jazz

F I G U R E 4 . 8 FastMap in action: clustering documents about country and jazz music.

experimentally evaluated by Schutze and Silverstein [191]. For the clustering task,
it turns out that cutting down from tens of thousands to barely 50 dimensions has
no significant negative impact on the quality of clusters generated by a clustering
algorithm. Truncation to 50 axes per vector was comparable even to a more
sophisticated global projection algorithm, discussed in Section 4.3.4.

One problem with orthogonal subspace projection is that one does not know
if 50 or 100 coordinates are enough except by judging the outcome of clustering.
Certain non-orthogonal projections have provable guarantees that the distortion
that they force on inter-document distances are mild [168, 9]. Specifically, for any
0 < ε > 1 and any integer n > 0, choose any

k ≥ 4

ε2/2− ε3/3
ln n.

Then for any set V of n vectors in R
d, there is a map f : Rd→ R

k, computable
in randomized polynomial time, such that for all pairs �x, �y ∈ V ,

(1− ε)||�x − �y||2 ≤ ||f (�x)− f (�y)||2 ≤ (1+ ε)||�x − �y||2.
While this represents a powerful theoretical property, the mapping f involves

random rotations in the original space, which may destroy sparseness: docu-
ment vectors which were very sparse in the original space may be mapped to
dense vectors by f , reducing the performance gain from the apparently simpler

96 C H A P T E R 4 Similarity and Clustering

1: select, say, k3 documents out of n uniformly at random
2: use HAC or move-to-nearest to cluster these to k2 clusters
3: note the k2 centroid vectors
4: for each document d, find the projection of �d onto each of the centroid vectors
5: use this vector of k2 real numbers as a representaton of d
6: with the new k2-dimensional representation of all d, run a conventional

clustering algorithm

F I G U R E 4 . 9 Data-sensitive random projections.

representation. For example, with ε = 1/2 and n= 100000, which could be quite
typical in an application, we need k ≥ 32 ln 100000≈ 368. If the average docu-
ment has fewer than 368 terms, projection may not really simplify our document
representation and therefore may not speed up clustering substantially. An ef-
fective heuristic to retain sparsity (at the cost of losing the theoretical distortion
guarantee) is shown in Figure 4.9.

Hopefully, if the average document density is more than k2, the second-round
clustering will be much faster because of the speedup in distance computation.
Note that this transformation is not linear. The intuition is that a uniform random
selection will pick more documents from dense regions and few from unpopulated
ones, with the result that fewer directions for projections will be needed to keep
the clusters apart.

4.3.4 Latent Semantic Indexing (LSI)
Projections to orthogonal subspaces, that is, a subset of dimensions, may not
reveal clustering structure in the best possible way. For example, the clusters may
be formed by multiple correlated attributes. In this section I will characterize
attribute redundancy more systematically in terms of linear algebraic operations
on the term-document matrix.

Let the term-document matrix be A where the entry A[t, d] may be a 0/1
value denoting the occurrence or otherwise of term t in document d. More
commonly, documents are transformed into TFIDF vectors and each column of
A is a document vector.

In the vector-space model, we allocated a distinct orthogonal direction
for each token. The obvious intuition is that there is no need for so many
(tens of thousands) of orthogonal directions because there are all sorts of latent
relationships between the corresponding tokens. Car and automobile are likely to
occur in similar documents, as are cows and sheep. Thus, documents as points in

4.3 Clustering and Visualization via Embeddings 97

this space are not likely to nearly “use up” all possible regions, but are likely to
occupy semantically meaningful subspaces of it. Another way of saying this is that
A has a much lower rank than min{|D|, |T |}. (See the standard text by Golub and
van Loan [91] for definitions of rank and matrix factoring and decomposition.)

One way to reveal the rank of A is to compute its singular value decomposition
(SVD). Without going into the details of how the SVD is computed, which is
standard, I will write down the decomposed form of A as

A|T |×|D| = U|T |×r

 σ1 · · · 0

...
. . .

...
0 · · · σr

 V T

r×|D| (4.11)

where r is the rank of A, U and V are column-orthonormal (UTU =V TV = I,
the identity matrix), and the diagonal matrix � in the middle can be organized
(by modifying U and V) such that σ1≥ . . .≥ σr > 0.

The standard cosine measure of similarity between documents can be applied
to the A matrix: the entries of (ATA)|D|×|D| may be interpreted as the pairwise
document similarities in vector space. The situation is completely symmetric with
regard to terms, and we can regard the entries of (AAT)|T |×|T | as the pairwise
term, similarity based on their co-occurrence in documents. (In Chapter 7, I will
return to defining similarity using such matrix products, where the matrices will
be node adjacency matrices of hyperlink graphs.)

The tth row of A may therefore be regarded as a |D|-dimensional represen-
tation of term t, just as the dth column of A is the |T |-dimensional vector-space
representation of document d. Because A has redundancy revealed by the SVD op-
eration, we can now use a “better” way to compute document-to-document sim-
ilarities as (V �2V T)|D|×|D| and term-to-term similarities as (U�2UT)|T |×|T |.
In other words, the tth row of U is a refined representation of term t, and the dth
row of V is a refined representation of document d. Interestingly, both represen-
tations are vectors in an r-dimensional subspace, and we can therefore talk about
the similarity of a term with a document in this subspace.

In latent semantic indexing (LSI), the corpus is first used to precompute the
matrices U , �, and V . A query is regarded as a document. When a query
“q” is submitted, it is first projected to the r-dimensional “LSI space” using the
transformation

q̂=�−1
r×rU

T
r×|T |q|T | (4.12)

98 C H A P T E R 4 Similarity and Clustering

At this point q̂ becomes comparable with the r-dimensional document repre-
sentations in LSI space. Now one can look for document vectors close to the
transformed query vector.

In LSI implementations, not all r singular values are retained. A smaller
number k, roughly 200 to 300, of the top singular values are retained—that is, A
is approximated as

Ak =
∑

1≤i≤k

�uiσi�vT
i (4.13)

where �ui and �vi are the ith columns of U and V . How good an approximation is
Ak? The Frobenius norm of A is given by

|A|F =
√∑

t,d

A[t, d]2 (4.14)

It can be shown that

|A|2F = σ 2
1 + · · · + σ 2

r , (4.15)

and

min
rank(B)=k

|A− B|2F = |A− Ak|2F = σ 2
k+1+ · · · + σ 2

r (4.16)

That is, Ak is the best rank-k approximation to A under the Frobenius norm.
The above results may explain why retrieval based on LSI may be close to

vector-space quality, despite reduced space and perhaps query time requirements
(although the preprocessing involved is quite time-consuming). Interestingly,
in practice, LSI does better, in terms of recall/precision, than TFIDF retrieval.
Heuristic explanations may be sought in signal-processing practice, where SVD
has been used for decades, with the experience that the dominating singular values
capture the “signal” in A, leaving the smaller singular values to account for the
“noise.” In IR terms, LSI maps synonymous and related words to similar vectors,
potentially bridging the “syntax gap” in traditional IR and thus improving recall.
Although a complete discussion is outside our scope here, LSI may also be able
to exploit correlations between terms to resolve polysemy in some situations,
improving precision as well.

More rigorous theories seeking to explain the improved accuracy of LSI have
been proposed by Papadimitriou et al. [170] and by Azar et al. [9]. Papadimitriou
et al. assume that documents are generated from a set of topics with disjoint

4.4 Probabilistic Approaches to Clustering 99

vocabularies, and after the resulting low-rank block matrix A is slightly perturbed,
LSI can recover the block structure and hence the topic information. Azar et al.
generalized this result to the case where A is not necessarily close to a block matrix
but is approximated well by some low-rank matrix.

Thus far, we have discussed LSI/SVD as a device for dimensionality reduction,
noise filtering, and ad hoc retrieval. But it can also be used for visualization
(choose k = 2 or 3) or clustering, by using any of the other algorithms in this
chapter after applying SVD. An example of a 2D embedding via LSI is shown in
Figure 4.10. LSI can run in minutes to hours on corpora in the rough range of
103 to 104 documents, but is not very practical at the scale of the Web. At the
time of this writing, I know of no public-domain SVD package that can work
efficiently without storing the whole input matrix in memory. This can lead to
an unacceptable memory footprint for a large collection.

4.4 Probabil istic Approaches to Clustering
Although the vector-space representation has been very successful for ad hoc re-
trieval, using it for clustering leaves a few unresolved issues. Consider HAC as
discussed in Section 4.2.1. The document and group profile vectors were deter-
mined by a single IDF computation before the agglomerative process. Perhaps
it makes more sense to compute IDF with regard to � ∪�, not the entire cor-
pus, when evaluating the self-similarity of � ∪�. However, such a policy would
interfere with the optimizations I have described.

Given a corpus with various salient topics, documents are likely to include
terms highly indicative of one or relatively few topics, together with noise terms
selected from a common set. A major function of IDF is to downplay noise-words,
but we may get the same effect by identifying that a document is composed of these
separate distributions, and attribute similarity only to overlap in terms generated
from distributions other than the noise distribution. Continuing on this line of
thought, documents assigned to some node c in a topic taxonomy such as Yahoo!
may be thought of as picking up vocabulary from distributions associated with
nodes on the path from the root up to c, inclusive. Note that the notion of a
noise-word becomes context-dependent in the hierarchical setting: the word can,
used largely as a verb, has low information content at the root node of Yahoo!,
but in the subtree rooted at /Environment/Recycling, can is used mostly as a noun
and should not be attributed to the noise distribution.

100 C H A P T E R 4 Similarity and Clustering

A Course on Integral Equations
Attractors for Semigroups and Evolution Equations
Automatic Differentiation of Algorithms: Theory, Implementation, and Application
Geometrical Aspects of Partial Differential Equations
Ideals, Varieties, and Algorithms –An Introduction to Computational Algebraic
Geometry and Commutative Algebra
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
Knapsack Problems: Algorithms and Computer Implementations
Methods of Solving Singular Systems of Ordinary Differential Equations
Nonlinear Systems
Ordinary Differential Equations
Oscillation Theory for Neutral Differential Equations with Delay
Oscillation Theory of Delay Differential Equations
Pseudodifferential Operators and Nonlinear Partial Differential Equations
Sync Methods for Quadrature and Differential Equations
Stability of Stochastic Differential Equations with Respect to Semi-Martingales
The Boundary Integral Approach to Static and Dynamic Contact Problems
The Double Mellin-Barnes Type Integrals and Their Applications to Convolution Theory

B1
B2
B3
B4
B5

B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17

Titles

(a)

Label

F I G U R E 4 . 1 0 Subtopics are clearly separated by LSI in this collection of mathematical abstracts (a).
The query “application theory” and a cone around it is shown shaded on page 101 (b). (Image
courtesy Berry et al. [15].)

In this section, we are interested in proposing and validating generative models
of documents that move away from the paradigm of assigning importance to terms,
or defining similarity or distance measures, by fiat. Instead, we propose random
processes that generate documents, and characterize clustering as discovering the
random processes and associated parameters that are (most) likely to have generated
a given collection of documents. Several desirable ramifications will follow:

� There will be no need for IDF to determine the importance of a term.
� Some of the models we will study can directly and naturally capture the notion

of stopwords vs. content-bearing words.
� There is no need to define distances or similarities between entities.
� Assignment of entities to clusters need not be “hard”; it is probabilistic.

4.4 Probabilistic Approaches to Clustering 101

0.0 0.2 0.4

(b)

0.6 0.8 1.0

0.1

0.2

-0.2

-0.5

Algorithms

Application

Delay

Differential
Equations

Implementation

Integral

Introduction

Methods

Nonlinear

Ordinary

Oscillation

Partial

Problem

Systems

Theory

B1
B2

B3

B4

B5

B6

B7

B8

B9

B10

B11
B12

B13

B14
B15

B16

B17

Query

F I G U R E 4 . 1 0 (continued)

4.4.1 Generative Distributions for Documents
Statistical pattern recognition and IR algorithms are built on the premise that the
patterns (documents, images, audio) that we observe are generated by random
processes that follow specific distributions. The observations let us estimate various

102 C H A P T E R 4 Similarity and Clustering

parameters pertaining to those distributions, which in turn let us design strategies
for analyzing the patterns, by way of clustering, indexing, or classification.

This may sound clean and appealing, but proposing credible distributions that
can generate natural language is very difficult. Even if some limited success can be
achieved in this quest, the computation involved is usually heavy-duty. We must
be content to model only a few aspects of the observed data, hoping that they
will suffice for the application at hand.

The aspects that are almost always axed by the need for simplicity and ef-
ficiency are dependencies and ordering between terms. To appreciate why depen-
dencies are difficult to capture, consider the Reuters collection [139], which has
about 22,000 news articles, using over 30,000 unique tokens. Even if each at-
tribute (axis) in the vector space had just two possible values (0/1), there would
be 230,000≈ 1010,000 possible documents. Clustering is intimately tied to estimat-
ing the density of the distribution being sampled, so the chances of finding a
decent estimate in a space this size with only 22,000 documents is out of the
question.

In a bid to reduce the severity of the problem, we can make the drastic
assumption that term occurrences are independent events. To start with, let us
make the further assumption that term counts are unimportant, that is, the event
associated with a term and a document is a 0/1 random variable. This is called
the multivariate binary model, or the binary model for short. A document event is
just a bit-vector with a 0/1 slot for each term in the vocabulary W, and the bit
corresponding to a term t is flipped on with probability φt, and off with probability
1− φt. All the φts are collected into the parameter set for this model, called �.
Given �, the probability of generating document d is given by

Pr(d|�)=
∏
t∈d

φc,t

∏
t∈W ,t �∈d

(1− φc,t) (4.17)

Since typically |W | � |d|, short documents are discouraged by this model. Also,
the second product makes strong independence assumptions and is likely to greatly
underestimate Pr(d|�) for many not-so-unlikely documents. On the other hand,
assuming all φt > 0 and φt < 1, all the 2|W | possible documents, some of them
essentially impossible in real life, have positive probability. Thus, this model
smooths out the probability over too large a space, depriving the more likely
regions.

In our second attempt, we will model term counts. The modified generative
process is as follows: the writer first decides the total term count (including

TE
AM
FL
Y

Team-Fly®

4.4 Probabilistic Approaches to Clustering 103

repetitions) of the document d to be generated by drawing a random positive
integer L from a suitable distribution Pr(�); suppose the instantiated event is
�d. Next, the writer gets a die: it has |W | faces, one face for each term in
the vocabulary. When tossed, the face corresponding to term t comes up with
probability θt (

∑
t θt = 1). We represent by 	 all parameters needed to capture

the length distribution and all θts. The author tosses this die �d times and writes
down the terms that come up. Suppose term t turns up n(d, t) times, with∑

τ n(d, τ) = �d. The document event in this case comprises �d and the set of
counts {n(d, t)}. The probability of this compound event is given by

Pr(�d, {n(d, t)}|)= Pr(L = �d|) Pr({n(d, t)}|�d,)

= Pr(L = �d|)

(
�d

{n(d, t)}
) ∏

t∈d

θn(d,t)
t

(4.18)

where
(�d{n(d,t)}

)= �d!
n(d,t1)! n(d,t2)!··· is the multinomial coefficient. We will abbreviate

the compound event on the lhs by Pr(d|). This is called the multinomial model.
The length distribution is vital; without it, the empty document would have
probability 1.

The multinomial model does not fix the term-independence assumption. In
fact, it assumes that occurrences of a given term are also independent of each other,
which is another assumption that is clearly wrong. Reading a document from left
to right, if you see the word Pentium five times, you are not really surprised to see
it a sixth time, unlike what the additional factor of θt in Equation (4.18) suggests.
Even so, the multinomial model, in preserving term count information, turns out
to be somewhat superior for most text mining tasks.

From a linguist’s perspective, such models are insufferably crude: there is not a
shade of grammar or semantic sense in these characterizations; there is not even a
hint of the strong short-range dependence that is commonly seen between terms.
(For example, the word spite is quite likely to follow the word in and precede the
word of .) We offer no defense, but note that these models are approximations
to physical reality, make parameter estimation tractable, and produce acceptable
experimental results for machine learning tasks in the text domain.

4.4.2 Mixture Models and Expectation Maximization (EM)
The notion of generative distributions makes it easy and elegant to express the
clustering problem, perhaps a little more elegantly than the formulations in
Section 4.1. Consider a given collection of documents, for example, a set of

104 C H A P T E R 4 Similarity and Clustering

pages crawled from the Web. It is possible to estimate 	Web for this collection,
and then calculate the probability Pr(d|	Web) of all Web documents d with regard
to 	Web. But we may not really believe that a single multinomial model suffices
for the whole Web. Suppose a set of topics, such as arts, science, and politics,
were given to us ahead of time, and we can identify which topic a document
talks about. (Until Section 4.4.3 we will assume that a document is about exactly
one topic.) We can estimate, in lieu of a single 	Web, specialized parameter sets
	arts, 	science, 	politics, and so on, and for a document belonging to a topic y,
evaluate Pr(d|	y). Intuitively, we would expect this to be generally much larger
than Pr(d|	Web), because 	y may correctly capture that some terms are rare or
frequent in documents about topic y, compared to a random document from the
Web at large.

The preceding discussion reveals the essence of the clustering problem and
leads us to the following mixture model for document generation. Suppose there are
m topics (also called components or clusters). The author of a page has to first decide
what topic he wishes to write about. This may be done using a multinomial m-
way selector distribution with probabilities α1, . . . , αm, where α1+ · · · + αm = 1.
Once a topic y is decided upon, the author uses 	y, the distribution for that topic,
to generate the document. For example, we can use the binary or the multinomial
distribution for each component. We can even use different distributions for
different components.

In preparation for the rest of this section, I will simplify the notation. For
each component y, there are many parameters θy,t, one for each term t. I collect
all these parameters, all the αis, as well as the number of clusters m, into a global
parameter space. I reuse 	 to name this parameter space:

	= (m; α1, . . . , αm; {θy,t ∀y, t})
It is conventional to denote the data points as x rather than d, which I will follow
for the rest of this section. Lastly, I will illustrate the EM algorithm not with the
multinomial component distribution but with a simple distribution characterized
by just one parameter per component: the Poisson distribution with mean µ

characterized by Pr(X = x) = e−µµx/x!, for x = 0, 1, 2, Accordingly, we
will have m parameters µ1, . . . , µm, and our simplified parameter space will be

	= (m; α1, . . . , αm; µ1, . . . , µm)

4.4 Probabilistic Approaches to Clustering 105

With the setup as described so far, we see that

Pr(x|)=
m∑

j=1

αj Pr(x|µj) (4.19)

Note that x is multivariate in general—certainly for text—although for the Poisson
distribution, it is just a real number.

For the clustering task, we are given n independent, identically distributed
(iid.) observations X = {x1, . . . , xn}, and we need to estimate 	—that is, we
would like to find 	 so as to maximize

Pr(X |)=
n∏

i=1

Pr(xi|) �= L(|X) (4.20)

and thus

log L(|X)=
∑

i

log

∑

j

αj Pr(xi|µj)

 (4.21)

For the moment we will assume that m is provided as an input. Our estimation
of 	 will therefore concern the α and µ parameters.

If the component yi (1≤ yi ≤ m) from which each observation xi has been
generated were known, this would be a trivial problem. The challenge is that
Y = {yi} is a set of hidden random variables. The component distributions define
the clusters, and Y indicates the cluster to which each data point belongs.

Since Y is unknown, it must be modeled as a random variable, and we can
assign data points to clusters only in a probabilistic sense. The classic approach to
solving the problem is to maximize L (see Equation (4.21)) explicitly with regard
to both X and Y : L(|X , Y)= Pr(X , Y |). Since we do not know Y , we must
take the expectation of L over Y . Unfortunately, estimating the distribution of Y
requires knowledge of 	. To break the cycle, we start with a suitable guess 	g.
Let the “complete data likelihood” be

106 C H A P T E R 4 Similarity and Clustering

Q(, 	g)= EY
(
log L(|X , Y)

∣∣X , 	g) (4.22)

=
∑

Y

{Pr(Y |X , 	g)}{log Pr(X , Y |)} (4.23)

=
∑

Y

{Pr(Y |X , 	g)}{log(Pr(Y |) Pr(X |Y ,))} (4.24)

=
m∑

y1=1

· · ·
m∑

yn=1

{
n∏

j=1

Pr(yj|xj, 	
g)

} {
n∑

i=1

log(αyi
Pr(xi|µyi

))

}
(4.25)

The last expression can be simplified to

Q(, 	g)=
m∑

�=1

n∑
i=1

Pr(�|xi, 	
g) log

(
α� Pr(xi|µ�)

)
(4.26)

Because Q is an expectation over Y , this step is called the expectation, or E, step.
How should we pick a refined value of 	? It seems reasonable to choose

the next estimate of 	 so as to maximize Q(, 	g). This step is called the
maximization, or M , step. There is one constraint to the maximization, namely,∑

i αi = 1, and we perform a standard Lagrangian optimization:

∂

∂αk

[
m∑

�=1

n∑
i=1

{log αi + · · ·} Pr(�|xi, 	g)− λ
∑

i

αi

]
= 0 (4.27)

which yields

αk = 1

λ

n∑
i=1

Pr(k|xi, 	
g) (4.28)

From the constraint we can now show that λ= n.
We must also find the new values of µi, i = 1, . . . , m. For concreteness I

have picked a specific one-parameter distribution, a Poisson distribution with
mean µi for the ith component. (It is not necessary for all components to follow
the same distribution for the algorithm to work.) The Poisson distribution is
characterized as Pr(x|µ)= e−µµx/x! for integer x= 0, 1, 2,Thus, our second
set of derivatives is

∂

∂µk

[
m∑

�=1

n∑
i=1

Pr(�|xi, 	
g)

(−µ� + xi log µ�

)]= 0 (4.29)

4.4 Probabilistic Approaches to Clustering 107

which yields

n∑
i=1

(
−1+ xi

µk

)
Pr(k|xi, 	

g)= 0 (4.30)

Simplifying,

µk =
∑n

i=1 xi Pr(k|xi, 	
g)∑n

i=1 Pr(k|xi, 	g)
(4.31)

The complete algorithm, called expectation maximization (EM), is shown in
Figure 4.11. It can be shown that the maximization step guarantees that L()

never decreases, and must therefore reach a local maximum.
In general, finding a suitable value of m is a nontrivial task. For some appli-

cations, m may be known, and in addition, for some documents i, yi (the cluster
to which that document belongs) may also be specified. A common example
would be the assignment of Web documents to Yahoo!-like clusters, where a few
documents have been manually assigned to clusters but most documents are not
assigned. This is an instance of a semisupervised learning problem, which we will
study in Chapter 6. Completely supervised learning or classification is the topic
of Chapter 5. There the classifier is given a fixed set of labels or classes and sample
documents with each class.

When m is not specified, there are two broad techniques to estimate it.
The first is to hold out some of the data, build the mixture model on the rest,
then find the likelihood of the held-out data given the mixture parameters. This
process is repeated while increasing the number of clusters until the likelihood
ceases to increase. (Note that this would not work without the held-out data; if
training data were used, the system would prefer an inordinately large value of
m, a phenomenon called overfitting, discussed in Section 5.5.) This approach has
been proposed by Smyth [197].

1: Initialize 	(0), i = 0
2: while L(|X , Y) can be increased do
3: Estimate �α(i+1) using (4.28)
4: Estimate �µ(i+1) using (4.31)
5: i← i + 1
6: end while

F I G U R E 4 . 1 1 The EM algorithm.

108 C H A P T E R 4 Similarity and Clustering

A different approach is to constrain the model complexity using a prior
distribution over the model parameters that makes complex models unlikely (see
Sections 4.4.5 and 5.6.1 for more details on prior distributions). This is the
approach adopted in the well-known AutoClass clustering package by Cheeseman
and others [47].

A criticism of the standard mixture model as applied to text is that many
documents are relevant to multiple topics. In fact, the term mixture model may
be misleading in this context, because after a generating distribution is selected
probabilistically, a data point is generated from only one distribution after all.
Operationally, this means that each distribution has to “compete on its own”
with other distributions for a share of α, that is, they cannot collude to generate
documents. In the next two sections, I will discuss two approaches to address this
limitation.

4.4.3 Multiple Cause Mixture Model (MCMM)
If a document is (partially or wholly) about a topic, the topic causes certain words
to become more likely to appear in the document. Let c be the topics or clusters
and t be terms. Let γc,t (0 ≤ γc,t ≤ 1) denote a normalized measure (not to be
interpreted as a probability) of causation of t by c. Suppose the extent to which
topic c is “activated” in writing a given document d is ad,c (0≤ ad,c ≤ 1). Then
the belief that term t will appear in the document d is given by a soft disjunction,
also called a noisy OR:

bd,t = 1−
∏

c

(1− ad,c γc,t), (4.32)

That is, the term does not appear only if it is not activated by any of the classes
under consideration. Let the document d be represented by the binary model
where n(d, t), the number of times term t appears in it, is either zero or one.
Then the goodness of the beliefs in various term activations is defined as a log
likelihood:

g(d)= log

∏

t∈d

bd,t

∏
t �∈d

(1− bd,t)

=
∑

t

log
(
n(d, t) bd,t + (1− n(d, t))(1− bd,t)

)
(4.33)

For a document collection {d} the aggregate goodness is
∑

d g(d).

4.4 Probabilistic Approaches to Clustering 109

Like other iterative clustering algorithms, we somehow set a number of
clusters, and the iterations proceed in pairs of half-steps. In each iteration, the first
half-step fixes γc,t and improves on the choice of ad,c. The second half-step fixes
ad,t and improves on the choice of γc,t. In both half-steps, the search for improved
parameter values is done by local hill climbing, that is, finding ∂

∑
d g(d)/∂ad,c

or ∂
∑

d g(d)/∂γc,t and taking a short step along the gradient.
MCMMs can be used in a supervised learning setting, too (see Chapter 5);

in that case, the activations ad,c are provided for documents d in the training set,
and the system needs to estimate only the coupling matrix γc,t. When given a
new document q, the coupling matrix is kept fixed and aq,c estimated so as to
maximize g(q). This information can be used to tag documents with labels from
a predefined set of labels with examples that have been used to train or supervise
the system.

MCMMs are thus a very flexible and simple model, useful for both unsuper-
vised and supervised learning. Their only drawback is speed. The representation
of the coupling matrix is dense, and hill climbing is slow. With a few hundred
terms, a thousand documents, and about 10 clusters, supervised runs take a few
minutes and unsupervised runs take a few hours on stock hardware. For larger
document collections with tens of thousands of terms, aggressive elimination of
terms (see Section 5.5) is required.

4.4.4 Aspect Models and Probabil istic LSI
Hofmann has proposed a new generative model for multitopic documents [109,
110]. We start with the raw term counts in a given document collection, in
the form of a matrix in which entry n(d, t) denotes the frequency of term t
in document d. Put another way, each pair (d, t) has a binary event associated
with it. The number of times this event occurs is the observed data n(d, t). Note
the subtle distinction between this model and the multinomial model discussed
in Section 4.4.1. In the multinomial model, given a document length, the
frequencies of individual terms apportion this quota of total count. Here the total
event count over all (d, t) is set in advance, and the (d, t) events must apportion
this total count. This means that the corpus must be fixed in advance and that
analyzing a new document from outside the corpus takes some special steps, unlike
the multinomial model.

When an author starts composing a document, she induces a probability
distribution Pr(c) over topics or clusters. For example, she may set a probability
of 0.3 for writing (using terms) about politics and 0.7 for petroleum. Different

110 C H A P T E R 4 Similarity and Clustering

clusters cause event (d, t) with different probabilities. To find the overall Pr(d, t),
we condition and sum over clusters:

Pr(d, t)=
∑

c

Pr(c) Pr(d, t|c) (4.34)

The main approximation in the aspect model is to assume conditional indepen-
dence between d and t given c, which gives us

Pr(d, t)=
∑

c

Pr(c) Pr(d|c) Pr(t|c) (4.35)

The important parameters of this characterization are Pr(c), Pr(d|c), and
Pr(t|c). An EM-like procedure can be used to estimate these parameters, together
with the E-step parameter Pr(c|d, t), which may be interpreted as a grade of
evidence that event (d, t) was caused by cluster c.

Pr(c|d, t)= Pr(c, d, t)

Pr(d, t)

= Pr(c) Pr(d, t|c)∑
γ Pr(γ , d, t)

= Pr(c) Pr(d|c) Pr(t|c)∑
γ Pr(γ) Pr(d|γ) Pr(t|γ)

(4.36)

Pr(c)=
∑

d,t n(d, t) Pr(c|d, t)∑
γ

∑
d,t n(d, t) Pr(γ |d, t)

(4.37)

Pr(d|c)=
∑

t n(d, t) Pr(c|d, t)∑
δ

∑
t n(δ, t) Pr(c|δ, t)

(4.38)

Pr(t|c)=
∑

d n(d, t) Pr(c|d, t)∑
τ

∑
d n(d, τ) Pr(c|d, τ)

(4.39)

As in EM, the user has to fix the number of clusters ahead of time or
use validation with a held-out set. Hofmann also describes an enhanced EM
procedure. The number of clusters is akin to the number of singular values retained
in the LSI (SVD) decomposition discussed in Section 4.3.4; we may use held-out
data for cross-validation to determine a suitable number of clusters.

The factor model can be used as a probabilistic version of LSI, dubbed
probabilistic LSI, or PLSI . A text collection is first subjected to the PLSI analysis

4.4 Probabilistic Approaches to Clustering 111

and the four sets of parameters estimated as specified. Now for each document d
and each cluster c, we precompute

Pr(c|d)= Pr(c) Pr(d|c)∑
γ Pr(γ) Pr(d|γ)

(4.40)

where all the quantities on the right-hand side are estimated parameters. A query
q (regarded as a bag of words, like documents) has to be folded into the system.
The precalculated parameters are frozen, and new parameters Pr(c|q, t) for all c, t,
Pr(q|c) for all c are estimated as

Pr(c|q, t)= Pr(c)Pr(q|c) Pr(t|c)∑
γ Pr(γ)Pr(q|γ) Pr(t|γ)

(4.41)

Pr(q|c)=
∑

t n(q, t)Pr(c|q, t)∑
t n(q, t)Pr(c|q, t)+∑

d
∑

t n(d, t) Pr(c|d, t)
(4.42)

This is itself an iterative procedure with the coupling shown by the underlined
variables.

Once Pr(c|q) and Pr(c|d) are known for all d, one may use the vector of
posterior class probabilities as a surrogate representation, just as the projection
via U or V T is used in LSI. That is, the similarity between q and d may be
defined in a number of reasonable ways, for example,

∑
c Pr(c|q) Pr(c|d), or∑

c Pr(c) Pr(d|c) Pr(q|c), for both of which the similarity-finding operations
remains a dot-product of vectors.

PLSI has been evaluated using four standard IR collections: MED (1033 ab-
stracts from medical journals), CRAN (1400 documents on aeronautics), CACM
(3204 abstracts from a computer science periodical), and CISI (1460 abstracts
related to library science). As shown in Figure 4.12, PLSI compares favorably
in terms of recall precision with standard TFIDF cosine-based ranking. The
vector-space ranking used in comparison is a simple one-shot process. The best
vector-space–based contenders today use two enhancements. First, it is a two-
shot process: some number of top-ranking results are assumed to be relevant,
and a second query is generated including certain words from those top-ranking
documents; the final response set is the result of this second query. Second, the
TFIDF weights are adjusted to reflect diverse document lengths; this may lead to
favorable scoring of documents that match a query in only a few local regions.

112 C H A P T E R 4 Similarity and Clustering

MED

Pr
ec

isi
on

 (
%

)

CRAN CACM CISI

0
0 50

Recall (%)
100

10

20

30

40

50

60

70

80

90

cos
LSI
PLSI*

0

10

20

30

40

50

60

70

0 50
Recall (%)

100

cos
LSI
PLSI*

0

10

20

30

40

50

60

0 50
Recall (%)

100

cos
LSI
PLSI*

0

5

10

15

20

25

30

35

40

45

50

0 50
Recall (%)

100

cos
LSI
PLSI*

F I G U R E 4 . 1 2 PLSI shows a significant improvement beyond standard one-shot TFIDF vector-
space retrieval as well as standard LSI for several well-known data sets.

It would be interesting to compare PLSI with the length-adjusted, two-round
variants of TFIDF search engines.

4.4.5 Model and Feature Selection
Clustering is also called unsupervised learning because topic-based clusters emerge
as a result of the learning process, and are not specified ahead of time. As we
have seen, (dis-)similarity measures are central to many forms of unsupervised
learning. With a large number of dimensions where many dimensions are noisy
and correlated, the similarity measure gets distorted rather easily. For example,
noise-words or stopwords are integral to any language. A precompiled list of
stopwords, or even a corpus-dependent IDF weighting, may fail to capture
semantic emptiness in certain terms. Failing to eliminate or play down these

TE
AM
FL
Y

Team-Fly®

4.4 Probabilistic Approaches to Clustering 113

dimensions sufficiently results in all similarity scores being inflated by some
random, noisy amount. In bottom-up clustering, this noise often manifests itself
in unbalanced, stringy dendrograms—once a cluster becomes large, there is no
stopping it from gathering more mass.

A possible approach is to launch a search for a subset of terms that appears to
be “noisy” in the sense that the clusters found all share a common distribution
over these terms, together with per-cluster distribution over useful “signal” terms.
Let D be the set of documents and DT , DN , and DS be the representation
of documents in the entire term space T , a noisy subset of term N , and the
complement signal space S = T \N . Using standard independence assumptions,
we can approximate

Pr(DT |)= Pr(DN |) Pr(DS|) (4.43)

=
∏
d∈D

Pr(dN |	N) Pr(dS|	S)

=
∏
d∈D

Pr(dN |	N) Pr(dS|	S
c(d)

) (4.44)

where 	S is composed of per-cluster parameters 	S
c for a set of clusters {c}, c(d) is

the cluster to which d belongs, and dN (respectively, dS) are documents projected
to the noise (respectively, signal) attributes.

If |T | ranges into tens of thousands, it can be daunting to partition it every
way into N and S. An obvious technique is to cluster the terms in T according
to their occurrence in documents, the process being called distributional clustering.
(One can use the U matrix in LSI for doing this, for instance.) The hope is to
collect the term set into a manageable number of groups, each of which is then
tested for membership or otherwise in S as a whole.

MCMM and PLSI may achieve the same effect via a slightly different route.
In MCMM, we can designate one cluster node to take care of the noise terms, and
we can do likewise with one factor in PLSI. We can seed these clusters suitably
(with, say, known stopwords) so that they gravitate toward becoming a generator
of noise terms. It would be interesting to compare how well MCMM and PLSI
achieve signal and noise separation compared to the feature subset search approach.

There is another useful way to look at the search for S and N in Equation
(4.43): we would like to maximize Pr(DT |), while at the same time share the
cost of the parameters for the N subspace over all clusters—there is only one set

114 C H A P T E R 4 Similarity and Clustering

of parameters 	N , whereas the 	S is diversified over each cluster. In other words,
we wish to factor out 	N from all the clusters. Why is this desirable?

The medieval English philosopher and Franciscan monk William of Ockham
(c. 1285–1349) proposed that “plurality should not be posited without necessity”
(“pluralitas non est ponenda sine neccesitate”). This utterance has since been called
Occam’s razor , the principle of parsimony, and the principle of simplicity, and it has had
profound influence on statistical analysis of noisy data.

In data analysis, Occam’s razor would favor the simplest model that “explains”
the data as well as any other. More formally, if under some assumptions about the
space of generative models, two models generate the data with equal probability,
then we should prefer the simpler model. This is not merely a normative stand.
As we shall see in Chapter 5, picking simple models helps us generalize what we
have learned from limited samples to yet-unseen data. If we do not control the
complexity of the models we accept, we are in danger of learning chance artifacts
from our sample data, a phenomenon called overfitting.

The Minimum Description Length (MDL) principle [182] is a ramification
of Occam’s razor that helps us control model complexity. MDL expresses the
goodness of fit of models to data by composing a cost measure that has two
components: model cost and data cost. The model cost is the number of bits L()

needed to express an efficient encoding of the model 	. The data cost L(x|)

is the number of bits needed to express the data x with regard to a specified
model (not necessarily a mixture model). Shannon’s classic work on information
and coding theory [57] lets us approximate L(x|)≈− log Pr(x|), the entropy
lower bound, in most cases. Clustering thus amounts to finding

	∗ = arg min
	
{L()+ L(x|)}

= arg	 min
{
L()− log Pr(x|)

} (4.45)

L() is the coding cost for the model and its parameters. The coding
cost of parameters that take values from finite, discrete sets is easily determined
by assuming a prior distribution over the parameters. For example, we may
assume a prior distribution for m, the number of components in a mixture
model (see Section 4.4.2) of the form Pr(M = m) = 2−m for m ≥ 1. Now we
can use Shannon’s theorem again to encode the parameter with regard to the
prior distribution with a cost close to the entropy of the prior distribution. For
continuous-valued parameters, some form of discretization is needed. A complete
description of continuous parameter spaces is beyond this book’s scope.

4.5 Collaborative Filtering 115

4.5 Collaborative Filtering
Throughout this chapter, we have studied how to cluster documents based on the
terms they contain. However, the relation between documents and terms may be
used, for example, in the opposite direction as well: we may wish to cluster terms
based on documents in which they appear. In general terms, whenever we have a
source of data that is bipartite or dyadic, coupling two kinds of entities, techniques
similar to EM, LSI, or PLSI may be employed to build models fitting the data.
One interesting form of dyadic data is user preferences for Web pages, books,
songs, and the like. People form one set of entities, and the items of their likes
and dislikes (Web pages, books, songs) form the other. The relation “document
contains term” is replaced by “person likes item.”

4.5.1 Probabil istic Models
The input to the system is a sparse, incomplete matrix Y where rows correspond
to people and columns correspond to items, say, movies. Most entries are missing,
because most people have not seen most movies. The few entries that are filled in
may represent preferences in some simple graded manner; Yij = 1 if person i liked
movie j, and 0 otherwise. (There is a semantic distinction between not seeing a
movie and disliking it, but I will ignore this to keep the current discussion simple.)

The central question in collaborative filtering (CF) is, Given a new row (person)
with only a few entries available, can we accurately and efficiently estimate the
missing columns for that person, using the collective experience of other people
recorded in the rest of the preference matrix? This will let us propose movies that
the person is very likely to enjoy.

Some early CF systems represented each person as a vector over their prefer-
ence for movies, then clustered people using this vector representation using any
of the methods studied so far (k-means is commonly used). The early systems did
not use the symmetry in the relationship between people and items.

Here is an elegant generative model for CF that extends mixture models to
two kinds of entities:

� Let the input matrix Y have m people and n movies. We assume that people
can be clustered into m′ clusters and movies can be clustered into n′ clusters.
The properties of these clusters are a priori unknown.

� The probability that a random person belongs to people-cluster i′ is pi′.

116 C H A P T E R 4 Similarity and Clustering

1: guess m′ and n′, the number of clusters
2: start with an arbitrary hard assignment of people and movies to clusters
3: repeat
4: pick a person (movie) at random
5: find the probability πi→i′ (πj→j′) of it belonging to each person- (movie-)

cluster i′ (j′)
6: make a new hard assignment of the person (movie) to a person- (movie-)

cluster i′ (j′) with probability proportional to πi→i′ (πj→j′)
7: based on all the current hard assignments, reestimate the maximum

likelihood values of all pi′, pj′, and pi′j′
8: until parameter estimates are satisfactory

F I G U R E 4 . 1 3 Estimation of collaborative filtering parameters using Gibbs sampling.

� The probability that a random movie belongs to movie-cluster j′ is pj′.

� The probability that a person belonging to people-cluster i′ will like a movie
in movie-cluster j′ is pi′j′.

These parameters can be estimated from the preference matrix using the EM-like
Monte Carlo estimation procedure shown in Figure 4.13, called Gibbs sampling.

The estimates of πi→i′ (πj→j′) depend on the current estimates of pi′, pj′, pi′j′
and the row (column) corresponding to the selected entity. Consider the case
where person i has been picked at random, corresponding to the ith row of Y .
Consider the movie corresponding to column j in this row. Suppose movie j is
currently assigned to movie-cluster �(j). Then πi→i′ can be estimated as

πi→i′ = pi′
∏

j

{
pi′�(j) if Yij = 1
1− pi′�(j) if Yij = 0 (4.46)

This is basically the same binary model as described in Section 4.4.1. A symmetric
formula is used if a movie is selected at random instead of a person. Using the
current assignment of people and movies to clusters, it is relatively straightforward
to refine the estimates of p′i, p′j, and pi′j′ for all i′, j′.

Note that the model discussed above has two kinds of clusters (also called two-
sided clustering), unlike the basic aspect model studied in Section 4.4.4 where
the assumption is that one kind of clustering induces a joint distribution on
documents and terms. This is why a standard EM procedure cannot be used for
this formulation.

4.5 Collaborative Filtering 117

4.5.2 Combining Content-Based and Collaborative Features
Recommender systems may suffer from the cold-start syndrome: there is scant user
preference data available when a system is first deployed, possibly leading to poor
recommendations, which may keep potential users away. This problem is usually
countered by supplementing preference data with attributes of the items (books,
songs, movies, or Web pages).

Web pages provide an especially interesting scenario because of the rich
variety of features that can be extracted from them. A few kinds of reasonable
features are listed below; many others are possible.

� The set of users who visited each page (this is the standard preference input).
� The set of terms that appear on each page, possibly with term counts.
� The hostname and/or domain where the page is hosted, for example,

www.mit.edu.
� The set of users who have visited at least one page on these hosts.
� The URLs, hostnames, and text on pages that belong to the hyperlink

neighborhood of pages rated by users.

Text and markup on pages may be regarded as content-based input, and
user visits are collaborative inputs. Links embedded in pages may be regarded as
both content-based and collaborative input. As you can see, the space of possible
features is essentially boundless. Alexa Internet (info.alexa.com/) distributes a Web
browser “toolbar” that can send the user’s click-trail to a server to enable a number
of useful services, one of which is a “find related pages” service, which depends
on unpublished combinations of clues from hyperlink structure, click data, and
text on the pages.

Clustering in traditional, structured data domains enjoys a certain simplicity
lacking in hypertext. In the former case, the entities being clustered may be
modeled as rows or tuples in a single relational table. Each row is self-contained
and has a set of values corresponding to the attributes or columns of the table.
In the simplest cases, the attributes are continuous, and clustering has a simple
geometric interpretation. It is more difficult to define a notion of distance or
similarity involving categorical or set-valued attributes. The traditional vector-
space representation, as well as associated clustering algorithms, seeks to reduce
textual entities into (sparse) relational ones. As we have seen in this chapter, this
reduction works reasonably well if clustering flat text is our goal.

118 C H A P T E R 4 Similarity and Clustering

We will consider two examples to illustrate the issues involved in clustering
hypertext with collaborative information. In the first example, the collaborative
information is in the form of hyperlinks. In the second example, the collab-
orative information is presented as the organization of URLs into topic-based
bookmark folders by multiple users, each possibly using a custom, personalized
topic structure.

Hyperlinks as similarity indicators

Consider clustering hypertext documents that are connected using hyperlinks,
which hint that documents at the endpoint of a hyperlink are somehow related.
This information should influence clustering decisions.

If hypertext were modeled using only the link graph, a variety of classic graph
clustering and partitioning techniques could be brought to bear [104]. However,
we would like to exploit textual similarity in conjunction with graph proximity.
HyPursuit [211] is a “content-link” clustering system that is prototypical of most
known approaches to scenarios involving diverse feature types. It uses a hybrid
similarity function between any pair of documents d1, d2 that is sensitive to the
following factors:

� The length of the shortest path between d1 and d2 following hyperlinks. The
specific similarity function is 1/2|d1�d2| + 1/2|d2�d1|, where |u� v| denotes
the number of links on the shortest path from u to v.

� The existence of common ancestors x of d1 and d2, which is a generaliza-
tion of co-citation (a single other document citing d1 and d2 directly, see
Section 7.1.3). In particular, HyPursuit uses the factor

∑
x 1/2|x�d1|+|x�d2|,

where the shortest paths must not include d1 or d2 as intermediate nodes.
� Common descendants reachable from d1 and d2 in a symmetric fashion.
� Textual similarity between d1 and d2 measured in conventional TFIDF simi-

larity.

The overall similarity is the maximum of textual similarity and a weighted
sum of link-based similarity. While HyPursuit has performed satisfactorily on
some data sets, acceptable performance is clearly dependent on careful tuning.

Topic-based collaborative input

As a second example, Web users often maintain bookmarks of URLs useful to them.
Popular browsers have utilities to maintain bookmarks in user-defined folders,

4.5 Collaborative Filtering 119

which are usually delineated along topics. However, individuals differ greatly in
their delineation of topics and agree on neither the naming nor the contents of
their folders. Folders contain documents (in the form of URLs). This is a many-to-
many relation: a folder usually contains a number of documents, and a document
may be included in many folders. Furthermore, documents contain terms; this is
also a many-to-many relation. Thus the two relations involved here are

includes(f , d)

contains(d, t)

where f is a folder, d is a document, and t is a term. Traditional document
clustering uses only the contains relation, whereas there is valuable information
also in the includes relation, which we seek to use. There are now many sources
of clues regarding similarity:

� If folders f1 and f2 both include a common document, they are similar.
� If documents d1 and d2 belong to the same folder, they are similar.
� If two documents share terms, they are similar.
� If two terms are contained in the same document, they are similar. (This notion

of similarity is statistical, not necessarily semantic.)

Of course, these similarity cues reinforce each other, for example, documents
belonging to similar folders are similar and terms belonging to similar documents
are similar. The data may be pictured as a tripartite graph with layers F (folders),
D (documents), and T (terms). Figure 4.14(a) shows the F and D layers.

The problem is to cluster documents in this setting, combining all the sources
of information regarding similarity in a suitable manner. (One may end up
clustering folders and terms as side effects.)

Given the clustering algorithms we have studied thus far, at this stage it
is quite unclear how best to enhance or design the entity (document, folders)
representation to reflect the many sources of information about similarity. A
simple strategy is to mark each folder using a unique token (distinct from any
term occurring in the documents) and pretend that the folder tokens are included
in the documents like other terms (i.e., the includes relation is encoded in the
contains relation). Such a representation is unlikely to succeed: if the documents
have many ordinary terms, these may crowd out the information in the includes
relation. Intuitively, the event of a user including a document in a folder should
carry more importance than a page author using a term in a document.

120 C H A P T E R 4 Similarity and Clustering

miramax.com

lucasfilms.com

foxmovies.com

kcbs.com

channel4.com

kron.com

bbc.co.uk

kpfa.org

Studios

Entertainment

Broadcasting

Media

Documents
Share documents

Share folders

Share terms

Folders

(a)

miramax.com

lucasfilms.com

foxmovies.com

kcbs.com

channel4.com

kron.com

bbc.co.uk

kpfa.org

DocumentsFolders

TV

Movies

Themes

(b)

Radio

Entertainment

Broadcasting

Studios

Media

F I G U R E 4 . 1 4 Algorithms for clustering the documents D should pay attention to the folder layer
F as well as the text contained in documents (a). The goal of clustering is to interpose a third layer
of themes or clusters C to simplify the graph while distorting the folder-to-document mappings
minimally (b).

We characterize the clustering task as interposing a layer C of theme nodes
and mapping F to D through the C layer (see Figure 4.14(b)). The C layer is
supposed to “simplify” the graph [35]. For example, if two folders contain the
exact same set of x URLs, these can be collected under a single theme node, which
is shared between the two folders, using x + 2 edges rather than 2x. Obviously,
simplifying the graph is not the only goal. While doing this we must also ensure

4.6 Bibliographic Notes 121

that the document set included in each folder does not change too much. When
we must do so, we should ensure that the textual contents of the new folder are
“close” to the original one. In Figure 4.14(a), the folder called Studios includes
lucasfilms.com and miramax.com. Introducing the middle layer of theme nodes also
includes foxmovies.com.

The MDL principle can be applied in this setting, too. Given the initial
mapping between folders and documents, each folder f maps to a set of documents
Df . Documents in Df induce a distribution 	f in term space. Choosing the
maximum likelihood (ML) estimate for 	f (that is, that 	f that maximizes
Pr(Df |	f)) lets us encode documents in Df most efficiently. The clustering
process builds a potentially worse model with regard to which Df needs to be
encoded. Let the graph after introducing a suitable C layer be G′. In the new
graph, folder f maps to document set D′f , whose corresponding ML parameter
set is 	′f . Encoding Df with regard to 	′f may not be as efficient as encoding Df

with regard to 	f . Specifically, we will need about − log Pr(Df |	′f) bits instead
of − log Pr(Df |	f) bits, the minimum possible. We call (− log Pr(Df |	′f)) −
(− log Pr(Df |	f)) the distortion. Such a sacrifice in encoding documents may be
worthwhile if the graph G′ that maps from folders to documents through C is
much simpler than the original graph G. Summarizing, we seek

G∗ = arg min
G′

{
L(G′)−

∑
f

log Pr(Df |	′f)
}

(4.47)

The complexity of G may be measured by considering the degree of nodes to
design an efficient code (popular link endpoints get smaller codes). Figure 4.15
shows the clear trade-off between L(G′) and text coding distortion for some
real-life data from bookmark files.

4.6 Bibliographic Notes
Clustering is a classic area of pattern recognition, statistics, machine learning,
and data mining. I cannot hope to do justice to the entire field of unsupervised
structure discovery from data, so I have focused on issues that are specific to text
and hypertext. The comprehensive introductory text by Jain and Dubes [114]
has a wealth of information on applications, models, and algorithms, although
scalability issues are not often in the forefront. Han and Kamber [96] and Hand,
Manilla, and Smyth [97] also describe classic data clustering in some detail.

122 C H A P T E R 4 Similarity and Clustering

720
600

725 730

D
ist

or
tio

n

Total mapping cost
735 740 745

650

700

750

800

850

900

F I G U R E 4 . 1 5 Trade-off between describing G′ and distortion of folder term distributions (in
relative number of bits). The simpler the mapping graph, the greater the term distribution distortion.
Clustering seeks to minimize the sum of these two costs.

The database community has been concerned with high-performance clus-
tering algorithms for large disk-resident data sets that do not fit in memory. The
k-means paradigm is amenable to scalable implementations because it involves
sequential scans over the point set. BIRCH is a well-known scalable clustering
algorithm that collects cluster statistics on a cleverly adjusted number of clusters
given limited main memory [220]. Bradley and others have also considered how
to collect sufficient statistics for clustering tasks using few sequential passes over in-
put data [23]. The density-based, bottom-up algorithm to detect dense subspaces
(see Section 4.1.2) is by Agrawal and others [2].

Willet [213] and Rasmussen [180] survey a variety of algorithms suitable
for text clustering, and Macskassy and others evaluate human performance on
clustering tasks [142]. Maarek et al. [141] propose the use of HAC for organizing
browser bookmarks. They propose using correlated word bigrams rather than
single words as features to reduce noise in the similarity comparisons. HAC and
k-means have been used in conjunction in the well-known Scatter/Gather system
built by Cutting and others [59, 60]. Another clustering/visualization tool suitable
for text is CViz (www.alphaworks.ibm.com/tech/cviz/).

SVD is a standard operation in linear algebra; see, for example, the classic
text by Golub and van Loan [91]. Deerwester et al. [66] and Berry, Dumais, and
O’Brien [15] give a detailed account of LSI. The treatment of EM is standard;
see, for example, Mitchell’s standard text [153]. The AutoClass system builds

TE
AM
FL
Y

Team-Fly®

4.6 Bibliographic Notes 123

upon EM and adds heuristics for searching for and constraining the complexity of
proposed models [47]. For an extensive treatment of self-organizing maps together
with applications to Web and news group data see Kohonen et al. [125] and visit
http://websom.hut.fi/websom/. Partitioning features into noisy and useful sets has
been proposed by Dom et al. [207]. The application of MCMM to text is by Saund
and others [184, 187]. The application of aspect models to text and collaborative
dyadic data is by Hofmann and others [109, 110, 111]. The dyadic framework
has been extended to handle content-based and collaborative analysis by Popescul
and others [178].

c h a p t e r 5
S U P E R V I S E D L E A R N I N G

Organizing human knowledge into related areas is nearly as old as human knowl-
edge itself, as is evident in writings from many ancient civilizations. In modern
times, the task of organizing knowledge into systematic structures is studied by
ontologists and library scientists, resulting in such well-known structures as the
Dewey decimal system, the Library of Congress catalog, the AMS Mathematics
Subject Classification, and the U.S. Patent Office subject classification [11, 68].
Subject-based organization routinely permeates our personal lives as we organize
books, CDs, videos, and email.

The evolution of the Web has followed this familiar history. Around the same
time as ad hoc keyword search engines like AltaVista became popular, the Yahoo!
(www.yahoo.com) topic directory was launched. Since then, many other Web
catalogs have appeared. The Open Directory Project (dmoz.org) and About.com
are some of the best known at present.

Topic directories are some of the most popular sites on the Web. There is a
wealth of information in the manner in which humans have assigned structure
to an otherwise haphazard collection of Web pages. Earlier, directories were
used mainly for browsing, assisted with some simple search capability on the
few lines of description associated with resource links, not the contents of the
external pages themselves. Of late, well-known search portals such as Google
(www.google.com/) return with search responses the “topic path” of a response
(such as /Arts/Painting), if the response URL has been associated with one or
more topics in the Open Directory. Because the Open Directory is manually

125

126 C H A P T E R 5 Supervised Learning

maintained, it does not capture all URLs; therefore only a fraction of Google
responses are tagged with topics.1

Topic tagging improves the search experience in many ways. They are a great
warning for queries gone astray or ambiguous queries [48], and they are an indirect
means for finding similar documents. Whereas most “find-similar” utilities look
for pairwise syntactic similarities with the query document (see Section 3.3.1), a
topic-based search first maps the query document to a class (or a few classes), thus
greatly enhancing the vocabulary. Then it finds similar documents with respect
to this enhanced vocabulary. Topic tagging can also be used to assist hierarchical
visualization and browsing aids [101].

News tracking provides another example of the utility of detecting predefined
topics in text. Most online news sites provide tools to customize “front pages” as
per reader taste. URL- or keyword-based selection is often inadequate, for the
same reasons that make keyword-based searching imperfect. Systems have been
built to capture URL clicks and to use them to report similar pages. Further
applications to topic tagging can be found in organizing email [1] and bookmarks
by content [140, 141].

Assigning topic labels to documents is but one of many general uses of
supervised learning for text. Text classification has been used to narrow down
authors of anonymous documents by learning the writing style (stylometry), as
with the Federalist Papers written by Alexander Hamilton, John Jay, and James
Madison and published anonymously under the pen name Publius [156]. The
Flesch-Kincaid index is a hand-tuned “classifier” of sorts, combining the number
of syllables per word and number of words per sentence into an index of difficulty
of reading technical documents [78]. Yet another application is to classify the
purpose of hyperlinks. Documents are connected via hyperlinks and citations
for a variety of reasons, including elaboration, citation of supporting material,
critique, and so on. Machine learning can be used to guess the (main) purpose of
creating a hyperlink.

5.1 The Supervised Learning Scenario
Library scientists undergo extensive training to be able to tag publications with
correct and comprehensive topic labels. Can a computer program attain even a
fraction of their learning capability? This is an important question in view of the

1. It is possible that Google also uses automatic classification to some extent.

5.1 The Supervised Learning Scenario 127

Raw
statistics

Classifier

Statistics
collection

Model
validation

Cleaned
models

Class
labels

Test
documents

Held-out portion
for model validation

Model construction
portion

Training documents

F I G U R E 5 . 1 A typical supervised text-learning scenario.

growing volume of the Web, together with its vastly reduced editorial control and
resulting diversity. Learning to assign objects to classes given examples is called
classification or supervised learning, and is the subject of this chapter.

In supervised learning, the learner (also called the classifier) first receives
training data in which each item (document or Web page, in our setting) is
marked with a label or class from a discrete finite set. (Sometimes these labels
may be related through a taxonomic structure, such as a hierarchical topic catalog.
Except in Section 5.7, we will be largely concerned with “flat” sets of class labels.)
The learning algorithm is trained using this data. It is common to “hold out” part
of the labeled data to tune various parameters used in the classifier. Once the
classifier is trained, it is given unlabeled “test” data and has to guess the label.
Figure 5.1 illustrates the process at a high level.

Supervised learning has been intensively studied for several decades in AI,
machine learning, and pattern recognition, and of late in data warehousing and
mining. In those domains, the data is usually more “structured” than text or
hypertext. Structured data usually comes in relational tables with well-defined
data types for a moderate number of columns. For example, many data sets in
the well-known U.C. Irvine repository [20] have between 5 and 50 features.
Furthermore, the semantic connection between these columns and the class label
is often well understood, at least qualitatively; for example, smoking and cancer
risk, age and rash driving, or income and credit card fraud.

In this chapter, our goal is to study supervised learning specifically for text
and hypertext documents. Text, as compared to structured data, has a very large
number of potential features, of which many are irrelevant. If the vector-space
model is used, each term is a potential feature. Furthermore, there are many
features that show little information content individually, but in conjunction are
vital inputs for learning.

128 C H A P T E R 5 Supervised Learning

Unlike structured tables with a uniform number of columns2 per instance,
documents can have a diverse number of features. There is little hope of precisely
characterizing the joint distribution of the relevant features, owing to sparsity of
data as well as computational limitations. The number of distinct class labels is
much larger than structured learning scenarios. Finally, the classes may be related
by hierarchical relationships, commonly seen in topic directories on the Web.

The models that we shall study in this chapter, although mostly restricted to
text alone, will form building blocks for more complex models that couple hyper-
link structure with topics, discussed in Chapters 6 and 7. Hypertext classification
is at the core of many resource discovery systems that start from pages related to a
specified topic and locate additional relevant pages. We will study such systems in
Chapters 7 and 8. Supervised learning and its variants are also used for extracting
structured snippets of information from unstructured text, which we will discuss
in Chapter 9.

5.2 Overview of Classification Strategies
I will present a number of techniques for text classification and comment on their
features, strengths, and weaknesses.

Given a typical IR system based on vector-space similarity (see Chapter 3), it
is very easy to build a nearest neighbor (NN) classifier. An NN classifier (Section 5.4)
simply indexes all the training set documents, remembering their class labels. A
test document is submitted as a query to the IR system, and the distribution of
labels on the training documents most similar to it are used to make a decision.

The vector-space model assigns large weights to rare terms, without regard
to the frequency with which terms occur across documents from different classes.
The process of feature selection (Section 5.5) removes terms in the training doc-
uments that are statistically uncorrelated with the class labels, leaving behind a
reduced subset of terms to be used for classification. Feature selection can improve
both speed and accuracy.

Next we study Bayesian classifiers (Section 5.6), which fit a generative term
distribution Pr(d|c) (see Section 4.4.1) to each class c of documents {d}. While
testing, the distribution most likely to have generated a test document is used to
label it. This is measured as Pr(c|d) and derived from Pr(d|c) using Bayes’s rule.

2. To be sure, structured tabular data may have entries such as “null,” “unknown,” or “not applicable,”
but these are usually modeled as categorical attribute values.

5.3 Evaluating Text Classifiers 129

Another approach is to estimate a direct distribution Pr(c|d) from term space
to the probability of various classes. Maximum entropy classifiers (Section 5.8) are an
example of this approach. We may even represent classes by numbers (for a two-
class problem, −1 and +1, say) and construct a direct function from term space
to the class variable. Support vector machines (Section 5.9.2) are an example of this
approach.

For hypertext applications, it is sometimes necessary to assemble features of
many different kinds into a document representation. We may wish to combine
information from ordinary terms, terms in titles, headers and anchor text, the
structure of the HTML tag-tree in which terms are embedded, terms in pages
that are link neighbors of the test page, and citation to or from a page with a
known class label, to name a few. We will discuss rule induction over such diverse
features in Section 5.10.2.

As with ad hoc query processing in IR systems, care with tokenization and
feature extraction may be important for classification tasks. For example, replacing
monetary amounts, four-digit years, and time in the form “hh:mm” by a special
token for each type of string has been known to improve accuracy. For words that
can be associated with multiple senses or parts of speech, we have seen part-of-
speech or sense disambiguation improve accuracy slightly. In another application,
abbreviation of phrases was key: for example, some documents mentioned “mild
steel” while others used “M.S.” or “M/S.” In a different context, “M.S.” may be
mistaken for an academic degree. Clearly, designing a suitable token representation
for a specific classification task is a practiced art. Automating feature extraction
and representation for specific tasks is an interesting area of research.

5.3 Evaluating Text Classifiers
There are several criteria to evaluate classification systems:

� Accuracy, the ability to predict the correct class labels most of the time. This is
based on comparing the classifier-assigned labels with human-assigned labels.

� Speed and scalability for training and applying/testing in batch mode.
� Simplicity, speed, and scalability for document insertion, deletion, and modi-

fication, as well as moving large sets of documents from one class to another.
� Ease of diagnosis, interpretation of results, and adding human judgment and

feedback to improve the classifier.

130 C H A P T E R 5 Supervised Learning

Ideally, I would like to compare classifiers with regard to all of these criteria, but
simplicity and ease of use are subjective factors, and speed and scalability change
with evolving hardware. Therefore, I will mainly focus on the issue of accuracy,
with some comments on performance where appropriate.

5.3.1 Benchmarks
The research community has relied on a few labeled collections, some of which
have by now become de facto benchmarks. I describe a few of them below.

Reuters: The Reuters corpus has roughly 10,700 labeled documents with 30,000
terms and 135 categories. The raw text takes about 21 MB. There is a prede-
fined division of the labeled documents into roughly 7700 training and 3000
test documents. About 10% of the documents have multiple class labels. It ap-
pears that a document’s membership in some of the classes is predicated simply
on the occurrence of a small, well-defined set of keywords in the document.

OHSUMED: This corpus comprises 348,566 abstracts from medical journals,
having in all around 230,000 terms and occupying 400 MB. It is mostly
used to benchmark IR systems on ad hoc queries, but it can also be used
for classification. Each document is tagged with one or more Medical Subject
Headings (MeSH) terms from a set of over 19,000 MeSH terms, which may
be regarded as labels.

20NG: This corpus has about 18,800 labeled Usenet postings organized in a
directory structure with 20 topics. There are about 94,000 terms. The raw
concatenated text takes up 25 MB. The labeled set is usually split randomly
into training and test sets, with, say, 75% chosen as training documents. The
class labels are in a shallow hierarchy with five classes at the first level and 20
leaf classes.

WebKB: The WebKB corpus has about 8300 documents in 7 categories. About
4300 pages on 7 categories (faculty, project, and the like) were collected from
four universities, and about 4000 miscellaneous pages were collected from
other universities. For each classification task, any one of the four university
pages are selected as test documents and the rest as training documents. The
raw text is about 26 MB.

Industry: This is a collection of about 10,000 home pages of companies from 105
industry sectors (e.g., advertising, coal, railroad, semiconductors, etc.). The
industry sector names are the class labels. There is a shallow hierarchy over

5.3 Evaluating Text Classifiers 131

the labels. The first level has about 80 classes, and there are 105 leaves. The
labeling is published on www.marketguide.com.

5.3.2 Measures of Accuracy
Depending on the application, one of the following assumptions is made:

� Each document is associated with exactly one class.
� Each document is associated with a subset of classes.

For most topic-based applications, the total number of classes is usually more
than two. This is not a problem in the “exactly one” scenario. In this setting,
a confusion matrix M can be used to show the classifier’s accuracy. Entry M [i, j]
gives the number of test documents belonging to class i that were assigned to
class j by the classifier. If the classifier were perfect, only diagonal elements M [i, i]
would be nonzero. If M is large, it is difficult to evaluate a classifier at a glance,
so sometimes the ratio of the sum of diagonals to the sum of all elements in the
matrix is reported as an accuracy score. The closer this ratio is to 1 the better the
classifier.

To avoid searching over the power set of class labels in the “subset” scenario,
many systems create a two-class problem for every class. For example, if the
original data specified a class Sports, a classifier with classes Sports and Not-sports
would be created. Documents labeled Sports would be examples of the positive
class; all other documents would be examples of the negative class Not-sports. A
test document would be submitted to all these classifiers to get a class subset. This
is also called the two-way ensemble or the one-vs.-rest technique.

Ensemble classifiers are evaluated on the basis of recall and precision, similar
to ad hoc retrieval (see Chapter 3). Let test document d be hand tagged3 with a
set of classes Cd, and suppose the classifier outputs its estimated set of classes C ′d.
Here Cd, C ′d ⊆ C, the universe of class labels.

The recall for class c is the fraction of test documents hand tagged with c that
were also tagged with c by the classifier. The precision for class c is the fraction of
test documents tagged with c by the classifier that were also hand tagged with c.
As in ad hoc retrieval, there is a trade-off between recall and precision.

3. By “hand tagged,” I mean that these labels are the “ground truth” against which the classifier is
evaluated.

132 C H A P T E R 5 Supervised Learning

Classifier for c1 Classifier for c2 Classifier for c3
Guess Guess Guess

c̄1 c1 c̄2 c2 c̄3 c3
True c̄1 70 10 True c̄2 40 20 True c̄3 61 9

c1 5 15 c2 14 26 c3 19 11

Precision P1= 15/(15+ 10) P2 = 26/(26+ 20) P3= 11/(11+ 9)
Recall R1= 15/(15+ 5) R2 = 26/(26+ 14) R3= 11/(11+ 19)

Microaveraged precision: 15+26+11
(15+10)+(26+20)+(11+9)

Microaveraged recall: 15+26+11
(15+5)+(26+14)+(11+19)

Macroaveraged precision: 1
3(P1+ P2 + P3)

Macroaveraged recall: 1
3(R1+ R2 + R3)

F I G U R E 5 . 2 How to evaluate the accuracy of classifiers. “True” is the hand-assigned class label
any; “Guess” is the classifier output. See text for details.

Here is a simple notation to understand recall and precision in a precise
manner. For each c and each d, we define a 2× 2 contingency matrix Md,c,
as follows (the expression [E] means 1 if the predicate E is true and 0 otherwise):

Md,c[0, 0]= [c ∈ Cd and classifier outputs c]

Md,c[0, 1]= [c ∈ Cd and classifier does not output c] (loss of recall)

Md,c[1, 0]= [c �∈ Cd and classifier outputs c] (loss of precision)

Md,c[1, 1]= [c �∈ Cd and classifier does not output c]

(5.1)

Thus for each (d, c), Md,c has exactly one nonzero entry out of four.
The microaveraged contingency matrix is defined as Mµ =

∑
d,c Md,c. The

microaveraged recall is defined as
Mµ[0,0]

Mµ[0,0]+Mµ[0,1]. The microaveraged precision
is defined as

Mµ[0,0]
Mµ[0,0]+Mµ[1,0]. All this is exactly analogous to ad hoc recall and

precision. Consider a three-class problem. For each class c = c1, c2, c3, we train
one classifier with classes c and c̄. Let the total number of test documents be 100,
and suppose the three classifiers perform as shown Figure 5.2. The micro- and
macroaveraged recall and precision are shown in the same figure.

Microaveraging makes the overall precision and recall depend most on the ac-
curacy observed for the classes with the largest number of (positive) documents:
the accuracy can be poor for classes with few positive examples without affecting

TE
AM
FL
Y

Team-Fly®

5.4 Nearest Neighbor Learners 133

the overall numbers much. One may also look at the data aggregated by specific
classes, Mc =

∑
d Mc,d. This will give the recall and precision for each class sep-

arately. Suppose Mc is scaled so the four entries add up to one, giving M ′c . The
macroaveraged contingency matrix can be defined as (1/|C|) ∑

c M ′c . The macroav-
eraged recall and precision can then be defined in the usual way. Macroaveraged
measures pay equal importance to each class, whereas microaveraged measures
pay equal importance to each document.

For most classifiers, various parameters can be tuned so that the set of classes
returned for a test document may be made to trade off recall for precision or
vice versa. It is common to report classifier performance by plotting a graph of
(micro- or macroaveraged) precision against recall. A better classifier has a higher
curve (see Figure 5.14 for an example). One may also plot the line y = x on this
graph and note where this intersects the recall-precision plot. This point is called
the break-even point. Also used is the so-called F1 score, which is defined as the
harmonic mean of recall and precision:

F1= 2× recall × precision

recall + precision

where recall and precision may be defined in the various ways mentioned above.
The harmonic mean discourages classifiers that sacrifice one measure for another
too drastically.

5.4 Nearest Neighbor Learners
The basic intuition behind nearest neighbor (NN) classifiers is that similar docu-
ments are expected to be assigned the same class label. The vector-space model
introduced in Chapter 3 and the cosine measure for similarity lets us formalize
the intuition.

At training time, we simply index each document (as described in Chapter 3)
and remember its class label. Given a test document dq, we use it as a query and
let the IR system fetch us the k training documents most similar to dq (k is a tuned
constant). The class that occurs the largest number of times among these k training
documents is reported as the class of the test document dq (see Figure 5.3).

As a refinement, rather than accumulate raw counts of classes, we can accu-
mulate weighted counts. If training document d has label cd, cd accumulates a score
of s(dq, d), the vector-space similarity between dq and d, on account of d. The
class with the maximum score wins. Yet another refinement is to use a per-class

134 C H A P T E R 5 Supervised Learning

"the"
Test document

Training
documents

"model" "markov"

Documents about skiing

Documents not about skiing

Test document

F I G U R E 5 . 3 Nearest neighbor classification.

offset bc, which is tuned by testing the classifier on a portion of training data held
out for this purpose. Combining these ideas, the score of class c for test document
dq is given as

score(c, dq)= bc +
∑

d∈kNN(dq)

s(dq, d) (5.2)

where kNN(dq) is the set of k training documents most similar to dq.
Because NN classifiers do very little at training time, they are also called lazy

learners. Like bc, the parameter k can be tuned by setting aside a portion of the
labeled documents for validation (see Figure 5.1) and trying out various values
of k, a process called cross-validation. Another approach would be to cluster the
training set using some technique from Chapter 4 and choosing a value of k that
is related to the size of small clusters.

5.4.1 Pros and Cons
An NN learner has several advantages and disadvantages. The biggest advantage
is that very often it comes for free; there may already be an inverted index on the
collection to support full-text searching that can be reused for classification. This
also makes collection updates trivial to handle (because the classifier is “lazy” and
does nothing but indexing at training time). With properly tuned values of k and

5.4 Nearest Neighbor Learners 135

bc for each label c, k-NN classifiers are comparable in accuracy to the best-known
classifiers.

On the other hand, classifying a test document dq involves as many inverted
index lookups as there are distinct terms in dq, followed by scoring the (possibly
large number of) candidate documents that overlap with dq in at least one word,
sorting by overall similarity, and picking the best k documents, where k could be
very small compared to the number of candidates. Such queries are called iceberg
queries (because the user is looking for the tip of the iceberg) and are difficult to
answer in time that is comparable to output size. In contrast, in the case of naive
Bayesian classifiers (introduced in Section 5.6.1), each inverted list has length
related to the number of classes, which is much smaller than the number of training
documents.

A related problem with NN classifiers is the space overhead and redundancy
in storing the training information, which is recorded at the level of individual
documents. The classifier, being “lazy,” does not distill this data into simpler “class
models,” unlike many of the more sophisticated classifiers we will study later on.

In practice, to reduce space requirements, as well as speed up classification,
lazy learners are made to work a little harder at training time. For example, we may
find clusters in the data (see Chapter 4) and store only a few statistical parameters
per cluster. A test document is first compared with a few cluster representatives
and then with the documents in only the most promising clusters. Unfortunately
this strategy often leads to various ad hoc choices, for example, number and size
of clusters and parameters. In addition, choosing k is a practiced art and the best
choice can be sensitive to the specific corpus at hand.

5.4.2 Is TFIDF Appropriate?
Recall that in the computation of similarity s in Equation (5.2), each dimension
or term was assigned an inverse document frequency with respect to the whole
corpus. This may fail to exploit correlations between class labels and the term
frequencies. An example with two classes, each having 100 training documents,
will make this clear. Consider two terms. One term t1 occurs in 10 documents
in each class, that is, in 10% of the overall corpus. The other term t2 occurs in
40 documents in the first class but none in the second class, that is, in 20% of the
corpus. Thus, t1 is “rarer,” and IDF scoring will downplay the role of t2 in the
distance measure.

Clearly, class labels on training documents should play a central role in making
judgments about how well a term can help discriminate between documents from

136 C H A P T E R 5 Supervised Learning

different classes. Terms that occur relatively frequently in some classes compared
to others should have higher importance; overall rarity in the corpus is not as
important. In the next section, I shall introduce several techniques for estimating
the importance of features.

5.5 Feature Selection
We can make a reasonable estimate of a distribution over features when the
number of training instances is substantially larger than the number of features.
Unfortunately, this is not the case with text. Let us revisit the binary document
model where word counts are ignored (see Section 4.4.1). With a vocabulary set
W , there are 2|W | possible documents. For the Reuters data set, that number
would be 230,000 ≈ 1010,000, whereas there are only about 10,300 documents
available. In any set of training documents, we will witness a very tiny fraction
of these possible documents. Therefore, any estimate of the joint probability
distribution over all terms will be very crude.

If we abandon trying to estimate the joint distribution of all terms and restrict
ourselves, as in Section 4.4.1, to estimating the marginal distribution of each term
(in each class), the situation improves drastically. However, it may still be nontrivial
to judge, from a limited training collection, whether a given term appears more
frequently in one class compared to another.

We clarify the issue using a simple two-class example. Let there be N training
documents sampled from each class, and fix a term t. Drawing a document and
checking if it contains t is like tossing a coin. For the two classes, we can imagine
two coins, with Pr(head)= φ1 and φ2, each of which has been tossed N times
and produced k1 and k2 heads, respectively. It is possible that φ1 < φ2 but k1 > k2,
especially if N is small. If N is too small for us to believe that φ1 < φ2 or φ1 > φ2
with sufficient confidence, it may be better not to use t for classification rather than
build an unreliable model, which may lead us to wrong decisions on an ulimited
number of test documents. Building an unreliable model that fits limited training
data closely, but fails to generalize to unforeseen test data is called overfitting.

Feature selection can be heuristic, guided by linguistic and domain knowl-
edge, or statistical. Many classifiers eliminate standard stopwords like a, an, the, and
so on. We have seen this to improve classification accuracy a little, even though
some stopwords appear to be correlated with the class label. Some classifiers also
perform quick-and-dirty approximations to feature selection by ignoring terms
that are “too frequent” or “too rare” according to empirically chosen thresholds,
which may be corpus- and task-sensitive.

5.5 Feature Selection 137

As data sets become larger and more complex, these simple heuristics may
not suffice. The challenge looms large especially for hierarchical topic directories,
because as one surfs down into detailed topics, terms that would be excellent
discriminators with respect to English start resembling stopwords with respect to
the specialized collection. Furthermore, in settings such as the Web, jargon and
multilingual content makes stopwording difficult.

Feature selection is desirable not only to avoid overfitting and thus improve
accuracy but also to maintain accuracy while discarding as many features as possible,
because a great deal of space for storing statistics is saved in this manner. The
reduction in space usually results in better classification performance. Sometimes,
the reduced class models fit in main memory; even if they don’t, caching becomes
more effective.

The “perfect” algorithm for feature selection would be goal-directed: it would
pick all possible subsets of features, and for each subset train and test a classifier,
and retain that subset that resulted in the highest accuracy. For common text
collections this is a computational impossibility. Therefore, the search for feature
subsets has to be limited to a more manageable extent.

In this section we will study two basic strategies for feature selection. One
starts with the empty set and includes good features; the other starts from the
complete feature set and excludes irrelevant features.

5.5.1 Greedy Inclusion Algorithms
The most commonly used class of algorithms for feature selection in the text
domain share the following outline:

1. Compute, for each term, a measure of discrimination among classes.

2. Arrange the terms in decreasing order of this measure.

3. Retain a number of the best terms or features for use by the classifier.

Often, the measure of discrimination of a term is computed independently
of other terms—this is what makes the procedure “greedy.” It may result in some
terms appearing to be useful that actually add little value given certain other
terms that have already been included. In practice, this overinclusion often has
mild effects on accuracy.

Several measures of discrimination have been used. The choice depends on
the model of documents used by the classifier, the desired speed of training
(feature selection is usually considered a part of training), and the ease of updates
to documents and class assignments. Although different measures will result in

138 C H A P T E R 5 Supervised Learning

somewhat different term ranks, the sets included for acceptable accuracy will tend
to have large overlap. Therefore, most classifiers will tend to be insensitive to
the specific choice of discrimination measures. I describe a few commonly used
discrimination measures next.

The χ2χ2 test

Classic statistics provides some standard tools for testing if the class label and a
single term are “significantly” correlated with each other. For simplicity, let us
consider a two-class classification problem and use the binary document model
(see Section 4.4.1). Fix a term t, let the class labels be 0 and 1, and let

ki,0 = number of documents in class i not containing term t

ki,1= number of documents in class i containing term t

This gives us a 2× 2 contingency matrix

It
0 1

C 0 k00 k01

1 k10 k11

where C and It denote Boolean random variables and k�m denotes the number
of observations where C = � and It = m. We would like to test if these random
variables are independent or not. Let n = k00+ k01+ k10+ k11. We can estimate
the marginal distributions as

Pr C = 0= (k00 + k01)/n,
Pr(C = 1)= 1− Pr(C = 0)= (k10 + k11)/n,
Pr(It = 0)= (k00 + k10)/n, and
Pr(It = 1)= 1− Pr(It = 0)= (k01+ k11)/n

If C and It were independent we would expect Pr(C = 0, It = 0) = Pr(C =
0) Pr(It = 0). Our empirical estimate of Pr(C = 0, It = 0) is k00/n. The same
holds for the three other cells in the table. We expect cell (�, m) to have value
n Pr(C = �, It = m), and its observed value is k�m. The χ2 measure aggregates
the deviations of observed values from expected values (under the independence
hypothesis), as follows:

χ2 =
∑
�,m

(
k�m − n Pr(C = �) Pr(It = m)

)2

n Pr(C = �) Pr(It = m)

5.5 Feature Selection 139

This can be simplified to

χ2 = n(k11k00 − k10k01)
2

(k11+ k10)(k01+ k00)(k11+ k01)(k10 + k00)
(5.3)

The larger the value of χ2, the lower is our belief that the independence as-
sumption is upheld by the observed data. Statisticians use precompiled tables to
determine the confidence with which the independence assumption is refuted.
This test is similar to the likelihood ratio test, described in Section 3.2.5, for
detecting phrases.

For feature selection, it is adequate to sort terms in decreasing order of their
χ2 values, train several classifiers with a varying number of features (picking the
best ones from the ranked list), and stopping at the point of maximum accuracy.
See Figures 5.4 and 5.5 for details.

Mutual information

This measure from information theory is useful when the multinomial document
model (see Section 4.4.1) is used, term occurrences are regarded as discrete events,
documents are of diverse length (as is usual), and no length scaling is performed.

If X and Y are discrete random variables taking specific values denoted x, y,
then the mutual information (MI) between them is defined as

MI(X , Y)=
∑

x

∑
y

Pr(x, y) log
Pr(x, y)

Pr(x) Pr(y)
(5.4)

where the marginal distributions are denoted Pr(x) and Pr(y), shorthand for
Pr(X = x) and Pr(Y = y) as usual.

MI measures the extent of dependence between random variables, that is,
the extent to which Pr(x, y) deviates from Pr(x) Pr(y) (which represents the
independence assumption), suitably weighted with the distribution mass at (x, y).
(Therefore, deviations from independence at rare values of (x, y) are played down
in the measure.) If X and Y are independent, then Pr(x, y)/Pr(x) Pr(y)= 1 for
all x, y and therefore MI(X , Y)= 0. It can also be shown that MI(X , Y) is zero
only if X and Y are independent. The more positive it is, the more correlated X
and Y are.

There are several instructive ways to interpret MI. One interpretation is
that it is the reduction in the entropy of X if we are told the value of Y , or
equivalently, the reduction in the entropy of Y given X . The entropy of a
random variable X taking on values from a discrete set of symbols {x} is given

140 C H A P T E R 5 Supervised Learning

by H(X)=−∑
x Pr(x) log Pr(x). The conditional entropy H(X |Y) is given by

−∑
x,y Pr(x, y) log Pr(x|y)=−∑

x,y log Pr(x,y)
Pr(y) . It is easy to verify that

MI(X , Y)=H(X)−H(X |Y)=H(Y)−H(Y |X) (5.5)

If the difference in entropy is large, the value of X tells us a lot about the
conditional distribution of Y and vice versa.

Another interpretation of MI uses the Kullback-Leibler (KL) distance [57]
between distributions. The KL distance from distribution 	1 to 	2, each defined
over a random variable Z taking values from the domain {z}, is defined as

KL(1‖	2)=
∑

z

Pr	1
(z) log

Pr	1
(z)

Pr	2
(z)

The KL distance gives the average number of bits wasted by encoding events from
the “correct” distribution 	1 using a code based on a not-quite-right distribution
	2. In our case, Z = (X , Y), z = (x, y), and the model 	2 = 	independent
corresponds to the hypothesis that X and Y are independent, that means that
Pr(x, y)= Pr(x) Pr(y), whereas 	1=	true makes no such assumption. Thus,

KL(true‖	independent)=
∑
x,y

Pr(x, y) log
Pr(x, y)

Pr(x) Pr(y)
=MI(X , Y) (5.6)

If MI(X , Y) turns out to be zero, 	independent was a perfectly accurate approxi-
mation to 	true. To the extent MI(X , Y) is large, X and Y are dependent.

To apply MI to feature selection, we will map the above definition to
document models in a natural way. Fix a term t and let It be an event associated
with that term. The definition of the event will vary depending on the document
model. For the binary model, it ∈ {0, 1}, whereas for the multinomial model, it is
a nonnegative integer. Pr(it) is the empirical fraction of documents in the training
set in which event it occurred. For example, in the multinomial model, Pr(It = 2)
is the empirical fraction of documents in which term t occurred twice. Let c range
over the set of classes. Pr(it, c) is the empirical fraction of training documents that
are in class c with It = it. Pr(c) is the fraction of training documents belonging to
class c.

For the binary document model and two classes (as in the case of the χ2 test),
the MI of term t with regard to the two classes can be written as

MI(It, C)=
∑

�,m∈{0,1}

k�,m

n
log

k�,m/n

(k�,0 + k�,1)(k0,m + k1,m)/n2
(5.7)

5.5 Feature Selection 141

A possible problem with this approach is that document lengths are not
normalized. If a term occurs roughly at the same rate (say, five times per 10,000
words) in two classes, but one class has longer documents than the other, the
term may appear to be a good feature using this measure. For this reason, length-
normalized feature selection algorithms are sometimes preferred.

Fisher’s discrimination index

This measure is useful when documents are scaled to constant length, and there-
fore, term occurrences are regarded as fractional real numbers. For simplicity let us
again consider a two-class learning problem. Let X and Y be the sets of document
vectors corresponding to the two classes. The components of these document vec-
tors may be raw term counts scaled to make each document vector unit length,
or we may already have applied some term-weighting scheme.

Let µX = (
∑

X x)/|X | and µY = (
∑

Y y)/|Y | be the mean vectors, or
centroids, for each class. Each document vector and these mean vectors are
column vectors in R

m, say. Further, let the respective covariance matrices be SX =
(1/|X |) ∑

X(x−µX)(x−µX)T and SY = (1/|Y |) ∑
Y (y−µY)(y−µY)T . The

covariance matrices are m× m in size.
Fisher’s discriminant seeks to find a column vector α ∈ R

m such that the
ratio of the square of the difference in mean vectors projected onto it, that
is, (αT (µX − µY))2, to the average projected variance 1

2α
T (SX + SY)α, is

maximized. Noting that both the numerator and denominator are scalar numbers,
and that αTSXα is a simple way of writing (1/|X |) ∑

X αT (x−µX)(x−µX)Tα,
we can write

α∗ = arg max
α

J(α)= arg max
α

(αT (µX − µY))2

αT (SX + SY)α
(5.8)

Informally, Fisher’s discriminant finds a projection of the data sets X and Y onto
a line such that the two projected centroids are far apart compared to the spread
of the point sets projected onto the same line.

With S = (SX + SY)/2, it can be shown that α = S−1(µX − µY) achieves
the extremum when S−1 exists. (We will omit the “2” where it won’t affect the
optimization.) Also, if X and Y for both the training and test data are generated
from multivariate Gaussian distributions with SX = SY , this value of α induces
the optimal (minimum error) classifier by suitable thresholding on αTq for a test
point q.

142 C H A P T E R 5 Supervised Learning

Fisher’s discriminant in the above form has been used in signal-processing
applications, in which the number of dimensions in the x and y vectors is on
the order of hundreds at most. Inverting S would be unacceptably slow for tens
of thousands of dimensions. To make matters worse, although the raw data set is
sparse (most words occur in few documents), the linear transformations would
destroy sparsity. In any case, our goal in feature selection is not to arrive at linear
projections involving multiple terms but to eliminate terms from consideration.

Therefore, instead of looking for the best single direction α, we will regard
each term t as providing a candidate direction αt, which is parallel to the corre-
sponding axis in the vector-space model. That is, αt = (0, . . . , 1, . . . , 0)T , with
a 1 in the tth position alone. We will then compute the Fisher’s index (FI) of t,
defined as

FI(t)= J(αt)=
(αT

t (µX − µY))2

αT
t Sαt

(5.9)

Because of the special form of αt, the expression above can be greatly simplified.
αT

t µX = µX ,t, the tth component of µX , and αT
t µY = µY ,t, the tth component

of µY . αTSXα can also be simplified to (1/|X |) ∑
X(xt − µX ,t)

2, and αTSYα

can be simplified to (1/|Y |) ∑
Y (yt − µY ,t)

2. Thus we can write

FI(t)= (µX ,t − µY ,t)
2

(1/|X |) ∑
X(xt − µX ,t)

2 + (1/|Y |) ∑
Y (yt − µY ,t)

2
(5.10)

This measure can be generalized to a set {c} of more than two classes to yield the
form

FI(t)=
∑

c1,c2
(µc1,t − µc2,t)

2∑
c

1
|Dc|

∑
d∈Dc

(xd,t − µc,t)
2

(5.11)

where Dc is the set of training documents labeled with class c. Terms are sorted
in decreasing order of FI(t) and the best ones chosen as features.

Validation

Merely ranking the terms does not complete the process; we have to decide a
cutoff rank such that only terms that pass the bar are included in the feature set. We
can do this by validation or cross-validation. In the validation approach, a portion
of the training documents are held out, the rest being used to do term ranking.
Then the held-out set is used as a test set. Various cutoff ranks can be tested using

TE
AM
FL
Y

Team-Fly®

5.5 Feature Selection 143

Project
to FValidation

set

Training
set

Project
to F

Accuracy

F

Feature
subset
search

heuristic

Learn

Test on
validation

set

Class
models

F I G U R E 5 . 4 A general illustration of wrapping for feature selection.

the same held-out set. In leave-one-out cross-validation, for each document d in
the training set D, a classifier is trained over D \ {d} and then tested on d. If this
takes too much time, a simpler form of cross-validation can be used. The training
set is partitioned into a few parts. In turn, one part is taken to be the test set,
and the remaining parts together form the training set. An aggregate accuracy is
computed over all these trials.

The training and test sets, derived using any of the approaches described above,
may be used with a wrapper , shown in Figure 5.4, to search for the set of features
that yield the highest accuracy. A simple “search heuristic” shown in the diagram
is to keep adding one feature at every step until the classifier’s accuracy ceases to
improve. For certain kinds of classifiers (e.g., maximum entropy classifiers, see
Section 5.8, or support vector machines, see Section 5.9.2), such a search would
be very inefficient: it would essentially involve training a classifier from scratch
for each choice of the cutoff rank. Luckily, some other classifiers (like the naive
Bayesian classifier, see Section 5.6) can be evaluated on many choices of feature
sets at once.

Figure 5.5 shows the effect of feature selection on the accuracy of Bayesian
classifiers, which I will discuss in detail in Section 5.6. The corpus is a selection of
9600 patents sampled from the U.S. Patent database. The terms were ordered using
Fisher’s discriminant. The classifiers use the binary and multinomial document
models, discussed in Section 4.4.1. Only 140 out of about 20,000 raw features

144 C H A P T E R 5 Supervised Learning

0.7

0.6

0.5

0.4

0.3A
cc

ur
ac

y

0.2

0.1

0
0 100 200

Number of features

300 400

Multinomial
Binary

F I G U R E 5 . 5 Effect of feature selection on Bayesian classifiers.

suffice for the best feasible accuracy, which cuts down statistics storage and access
costs dramatically. For reasons given later, Bayesian classifiers cannot overfit much,
although there is a visible degradation in accuracy beyond the best choice of the
number of features. The accuracy varies quite smoothly in the vicinity of the
maximum. Barring minor fluctuations, the accuracy increases sharply as the very
best features are included one by one, then fluctuates slightly near the crest (which
is quite wide) before showing a small drop-off.

5.5.2 Truncation Algorithms
Another approach to feature selection is to start from the complete set of terms
T and drop terms from consideration, ending up with a feature subset F ⊆ T .
What is the desirable property relating F to T ?

Most probabilistic classifiers must, one way or another, derive a conditional
probability distribution of class labels given data, which we denote as Pr(C|T),
where C is the class label and T is the multivariate term vector. As a result of
restricting the training data to F , the distribution changes to Pr(C|F). We would
like to keep the distorted distribution Pr(C|F) as similar as possible to the original
Pr(C|T) while minimizing the size of F . The similarity or distance between two
distributions can be measured in various ways; a well-known measure is the KL
distance discussed above.

5.5 Feature Selection 145

1: while truncated Pr(C|F) is reasonably close to original Pr(C|T) do
2: for each remaining feature X do
3: Identify a candidate Markov blanket M:
4: For some tuned constant k, find the set M of k variables in F \ X that are

most strongly correlated with X
5: Estimate how good a blanket M is:
6: Estimate∑

Pr(XM = xM , X = x)KL
(
Pr(C|XM = xM , X = x),

xM ,x Pr(C|XM = xM)
)

7: end for
8: Eliminate the feature having the best surviving Markov blanket
9: end while

F I G U R E 5 . 6 Pseudocode for a heuristic algorithm for feature truncation.

Two random variables P and Q are said to be conditionally independent given R,
if for any value assignments p, q, r , Pr(P = p|Q = q|R = r)= Pr(P = p|R = r).
Thus, Q gives no information about P over and above that which we gain by
knowing the value of R.

Let X be a feature in T . Let M ⊆ T \ {X}. M is called a Markov blanket
for X ∈ T if X is conditionally independent of (T ∪ C) \ (M ∪ {X}), given M .
Intuitively, the presence of M renders the presence of X unnecessary as a feature. It
can be shown that eliminating a variable because it has a Markov blanket contained
in other existing features does not increase the KL distance between Pr(C|T) and
Pr(C|F). In practice, there may not be a perfect Markov blanket for any variable,
but only an approximate one, and finding it may be difficult. To control the
computational cost, we may limit our search for Markov blankets M to those
with at most k features. As another cost-cutting heuristic, given feature X , we
may restrict our search for the members of M to those features that are most
strongly correlated (using tests similar to the χ2 or MI tests) with X . A sample
pseudocode is shown in Figure 5.6. In experiments with the Reuters data set,
over two-thirds of T could be discarded while increasing classification accuracy by
a few percentage points.

5.5.3 Comparison and Discussion
I have presented a variety of measures of association between terms and class
labels, and two generic approaches to selecting features. The preferred choice of

146 C H A P T E R 5 Supervised Learning

association measure and selection algorithm depends on the nature and difficulty
of the classification task.

In my experience with several kinds of classifiers and standard benchmarks,
I have found that the choice of association measures does not make a dramatic
difference, provided the issue of document length is addressed properly. Although
different association measures induce different orderings on the terms, by the time
we have included enough terms for acceptable accuracy, the set of terms included
under all the orderings show significant overlap.

Greedy inclusion algorithms scale nearly linearly with the number of features,
whereas the Markov blanket technique is much more elaborate and general, taking
time proportional to at least |T |k. Markov blankets seek to improve upon greedy
inclusion in two important ways, illustrated by these simplified examples:

� The correlation between C and X1, and between C and X2, may be individ-
ually strong, while X1’s power to predict C may render X2 unnecessary as a
feature, or vice versa. A greedy inclusion algorithm may include them both.

� The correlation between C and X1, and between C and X2, may be individ-
ually weak, but collectively, X1, X2 may be an excellent predictor of C. This
might happen if X1, X2 are associated with phrases whose constituent term(s)
also appear in other contexts. A greedy inclusion approach might discard both
X1 and X2.

The first concern is primarily one of efficiency. Greedy inclusion may over-
estimate the number of features required. If the classifier has high quality, feature
redundancy does not affect accuracy; it is purely a performance issue. Even for
crude classifiers, the effect on accuracy is generally quite small (see, e.g., Fig-
ure 5.5).

The second concern is potentially more serious, but practical experience
[138] seems to indicate that there is enough natural redundancy among features
in text that we need not be too concerned with missing weak signals. In particular,
it is rare to find X1 and X2 weakly correlated with C but jointly predicting C much
better than other single features.

In my experience, the binary view of a feature being either useful or not is not
the best possible, especially for hypertext applications where artificial features need
to be synthesized out of markup or hyperlinks. As Joachims [119] and others point
out, textual features are many in number, each being of low quality. Most have
tiny amounts of information for predicting C, but these tiny amounts vary a great
deal from one feature to another. To accommodate that view, a classifier might

5.6 Bayesian Learners 147

transform and combine features into fewer, simpler ones, rather than just discard
a large number of features. A common technique is to represent the documents
in vector space (see Chapter 3) and then project the document vectors to a lower-
dimensional space using a variety of approaches (see Chapter 4). Investigating the
effect of such transformations on classification accuracy can be an interesting area
of research.

5.6 Bayesian Learners
Once feature selection is performed, nonfeature terms are removed from the
training documents, and the resulting “clean” documents are used to train the
learner. In this section we will study Bayesian learners, a practical and popular kind
of statistical learner. In spite of their crude approximations, Bayesian classifiers
remain some of the most practical text classifiers used in applications.

We will assume, for simplicity of exposition, that a document can belong to
exactly one of a set of classes or topics. Document creation is modeled as the
following process:

1. Each topic or class c has an associated prior probability Pr(c), with
∑

c Pr(c)=
1. The author of a document first picks a topic at random with its correspond-
ing probability.

2. There is a class-conditional document distribution Pr(d|c) for each class.
Having earlier fixed a class c, its document distribution is used to generate
the document.

Thus the overall probability of generating the document from class c is
Pr(c) Pr(d|c). Finally, given the document d, the posterior probability that d was
generated from class c is seen, using Bayes’s rule, to be

Pr(c|d)= Pr(c) Pr(d|c)∑
γ Pr(γ) Pr(d|γ)

(5.12)

γ ranges over all classes so that Pr(c|d) becomes a proper probability measure.
Pr(d|c) is estimated by modeling the class-conditional term distribution in

terms of a set of parameters that we can collectively call 	. Our estimate of 	 is
based on two sources of information:

� Prior knowledge that exists before seeing any training documents for the
current problem. This is characterized by a distribution on 	 itself.

� Terms in the training documents D.

148 C H A P T E R 5 Supervised Learning

After observing the training data D, our posterior distribution for 	 is written as
Pr(|D). Based on this discussion we can elaborate

Pr(c|d)=
∑
	

Pr(c|d,) Pr(|D)

=
∑
	

Pr(c|) Pr(d|c,)∑
γ Pr(γ |) Pr(d|γ ,)

Pr(|D) (5.13)

The sum may be taken to an integral in the limit for a continuous parameter
space, which is the common case. In effect, because we only know the training
data for sure and are not sure of the parameter values, we are summing over all
possible parameter values. Such a classification framework is called Bayes optimal.
In practice, taking the expectation over Pr(|D) is computationally infeasible
for all but the smallest number of dimensions. A common practice is to replace
the integral above with the value of the integrand (Pr(c|d,)) for one specific
value of 	. For example, we can choose arg max	 Pr(|D), called the maximum
likelihood estimate (MLE). MLE turns out not to work well for text classification;
alternatives are suggested shortly.

5.6.1 Naive Bayes Learners
A statistical learner that is widely used for its simplicity and speed of training,
applying, and updating is the naive Bayes learner. The epithet “naive” signifies
the assumption of independence between terms—that is, that the joint term
distribution is the product of the marginals. The models for the marginals depend
on the document model being used. Here I will use the binary and multinomial
models first introduced in Section 4.4.1.

In the binary model, the parameters are φc,t, which indicates the probability
that a document in class c will mention term t at least once. With this definition,

Pr(d|c)=
∏
t∈d

φc,t

∏
t∈W,t �∈d

(1− φc,t) (5.14)

W being the set of features. We do not wish to calculate
∏

t∈W,t �∈d(1− φc,t) for
every test document, so we rewrite Equation (5.14) as

Pr(d|c)=
∏
t∈d

φc,t

1− φc,t

∏
t∈W

(1− φc,t)

precompute and store
∏

t∈W (1− φc,t) for all c, and only compute the first product
at testing time.

5.6 Bayesian Learners 149

In the multinomial model, each class has an associated die with |W | faces. The
φc,t parameters are replaced with θc,t, the probability of the face t ∈W turning up
on tossing the die. Let term t occur n(d, t) times in document d, which is said to
have length �d =

∑
t n(d, t). The document length is a random variable denoted

L and assumed to follow a suitable distribution for each class. For this model,

Pr(d|c)= Pr(L = �d|c) Pr(d|�d, c)

= Pr(L = �d|c)
(

�d

{n(d, t)}
) ∏

t∈d

θn(d,t)
t

(5.15)

where
(�d{n(d,t)}

) = �d!
n(d,t1)! n(d,t2)!··· is the multinomial coefficient, which can be

dropped if we are just ranking classes, because it is the same for all c. It is also
common (but questionable) to assume that the length distribution is the same for
all classes and thus drop the Pr(L = �d|c) term as well.

Both forms of naive Bayes classifiers multiply together a large number of small
probabilities, resulting in extremely tiny probabilities as answers. Care is needed to
store all numbers as logarithms and guard against unwanted underflow. Another
effect of multiplying many tiny φ or θ values is that the class that comes out at
the top wins by a huge margin, with a score very close to 1, whereas all other
classes have negligible probability. The extreme score skew can be unintuitive in
case two or more classes are reasonable candidates.

For two-class problems, a logit function is sometimes used to sanitize the scores.
Let the classes be +1 and −1. The logit function is defined as

logit(d)= 1

1+ e−LR(d)
(5.16)

where

LR(d)= Pr(C =+1|d)

Pr(C =−1|d)

is the likelihood ratio. Note that as LR(d) stretches from 0 to∞, logit(d) ranges
from 1

2 to 1. The logit(x) function has a steep slope near x = 0 and levels off
rapidly for large x. Finding a suitable threshold on the logit function may reduce
the problem of score skew [175].

Parameter smoothing

MLE cannot be used directly in the naive Bayes classifier. For example, in the
binary model, if a test document dq contains a term t that never occurred in any

150 C H A P T E R 5 Supervised Learning

training document in class c, φMLE
c,t = 0. As a result Pr(c|dq) will be zero, even if

a number of other terms clearly hint at a high likelihood of class c generating the
document. Unfortunately, such “accidents” are not rare at all.

There is a rich literature, dating back to Bayes in the 18th century and Laplace
in the 19th century, on the issue of estimating probability from insufficient data.
We can start delving into this issue by posing the following question: If you toss
a coin n times and it always comes up heads, what is the probability that the
(n + 1)st toss will also come up heads? Although MLE leads to the answer 1, it
is not appealing from real-life experience. Furthermore, we certainly expect the
answer to change with n: if n = 1, we are still quite agnostic about the fairness of
the coin; if n = 1000, we have a firmer belief. MLE cannot distinguish between
these two cases.

In our setting, each coin toss is analogous to inspecting a document (in some
fixed class c) to see if term t appears in it. The MLE estimate of φc,t is simply
the fraction of documents in class c containing the term t. When c and/or t are
omitted, they are assumed to be fixed for the rest of this section. Also for this
section let k out of n documents contain the term; we denote this event by the
notation 〈k, n〉.

The Bayesian approach to parameter smoothing is to posit a prior distribution
on φ, called π(φ), before any training data is inspected. An example of π is the
uniform distribution U(0, 1). The posterior distribution of φ is denoted by

π(φ|〈k, n〉)= π(φ) Pr(〈k, n〉|φ)∫ 1
0 dp π(p) Pr(〈k, n〉|p) (5.17)

Usually, the smoothed estimate φ̃ is some property of the posterior distribution
π(φ|〈k, n〉). There is a loss function L(φ, φ̃), which characterizes the penalty for
picking a smoothed value φ̃ as against the “true” value. Often, the loss is taken
as the square error, L(φ, φ̃)= (φ − φ̃)2. For this choice of loss, the best choice
of the smoothed parameter is simply the expectation of the posterior distribution
on φ having observed the data

φ̃ = E(π(φ|〈k, n〉))=
∫ 1

0 p dp π(p) Pr(〈k, n〉|p)∫ 1
0 dp π(p) Pr(〈k, n〉|p) =

∫ 1
0 pk+1(1− p)n−kdp∫ 1

0 pk(1− p)n−kdp

= B(k + 2, n − k + 1)

B(k + 1, n − k + 1)
= �(k + 2)

�(k + 1)

�(n + 2)

�(n + 3)
= k + 1

n + 2
(5.18)

5.6 Bayesian Learners 151

where B and � are the standard beta and gamma functions. Although the deri-
vation is nontrivial, the end result is simple in a misleading way: just “combine”
a prior belief of fairness (1

2) with observed data (k
n). This is called Laplace’s law

of succession. Heuristic alternatives exist; one example is Lidstone’s law of succession,
which sets φ = (k+ λ)/(n+ 2λ), where λ is a tuned constant trading off between
prior belief and data. (In Laplace’s law, they have equal say.)

The derivation for the multinomial document model is quite similar, except
that instead of two possible events in the binary model discussed above, there are
|W | possible events, where W is the vocabulary. Thus

θ̃c,t =
1+∑d∈Dc

n(d, t)

|W | +∑d∈Dc ,τ∈d n(d, τ)
(5.19)

Comments on accuracy and performance

The multinomial naive Bayes classifier generally outperforms the binary variant
for most text-learning tasks. Figure 5.5 shows an example. A well-tuned k-NN
classifier may outperform a multinomial naive Bayes classifier [217], although the
naive Bayes classifier is expected to produce far more compact models and take
less time to classifiy test instances.

Any Bayesian classifier partitions the multidimensional term space into regions
separated by what are called decision boundaries. Within each region, the probability
(or probability density, if continuous random variables are modeled) of one class
is higher than others; on the boundaries, the probabilities of two or more classes
are exactly equal. Two or more classes have comparable probabilities near the
boundaries, that are therefore the regions of potential confusion. Little confusion
is expected in those parts of a region that have a dense collection of examples, all
from the associated class.

To make this more concrete, consider a two-class problem with training data
{(di, ci), i= 1, . . . , n}, where ci ∈ {−1, 1}. As we have seen before, the multinomial
naive Bayes model assumes that a document is a bag or multiset of terms, and
the term counts are generated from a multinomial distribution after fixing the
document length
d, which, being fixed for a given document, lets us write

Pr(d|c,
d)=
(

d

{n(d, t)}
)∏

t∈d

θn(d,t)
c,t (5.20)

where n(d, t) is the number of times t occurs in d, and θc,t are suitably estimated
multinomial probability parameters with

∑
t θc,t = 1 for each c (see Section 4.4.1).

152 C H A P T E R 5 Supervised Learning

For the two-class scenario, we only need to compare Pr(c =−1|d) against Pr(c =
1|d), or equivalently, log Pr(c =−1|d) against log Pr(c = 1|d), which simplifies
to a comparison between

log Pr(c = 1)+
∑
t∈d

n(d, t) log θ1,t (5.21)

and

log Pr(c =−1)+
∑
t∈d

n(d, t) log θ−1,t

where Pr(c = . . .), called the class priors, are the fractions of training instances in
the respective classes. Simplifying (5.21), we see that NB is a linear classifier: it
makes a decision between c = 1and c =−1by thresholding the value of αNB · d+ b
for a suitable vector αNB (which depends on the parameters θc,t) and a constant b
depending on the priors. Here d is overloaded to denote the vector of n(d, t) term
counts and “·” denotes a dot-product.

One notable problem with naive Bayes classifiers is their strong bias. A
machine learning algorithm is biased if it restricts the space of possible hypotheses
from which it picks a hypothesis to fit the data, before assessing the data itself.
Although a naive Bayes classifier picks linear discriminants, it cannot pick from the
entire set of possible linear discriminants, because it fixes the policy that αNB(t),
the tth component of the discriminant, depends only on the statistics of term t
in the corpus. In Sections 5.8 and 5.9, you shall see other classifiers that do not
suffer from this form of bias.

5.6.2 Small-Degree Bayesian Networks
The naive Bayes model asserts that fixing the class label of a document imposes a
class-conditional distribution on the terms that occur in the document, but that
there are no other statistical dependencies between the terms themselves (which
is a gross approximation). This simple dependency structure can be represented
as a simple hub-and-spoke graph, shown in Figure 5.7(a). Each random variable,
including the class label and each term, is a node, and dependency edges are drawn
from c to t for each t. If we wish to represent additional dependencies between
terms, more edges have to be introduced as shown in Figure 5.7(b), creating a
Bayesian network.

A Bayesian network is a directed acyclic graph that represents dependencies
between a set of random variables and models their joint distribution. Each node

TE
AM
FL
Y

Team-Fly®

5.6 Bayesian Learners 153

clickhtml

. . .

the

c

Pr(click = 1|c = painting) = 0.02
Pr(click = 1|c = e-commerce) = 0.4
Pr(click = 1|c = physics) = 0.05

(a) (b)

Pr(c = 'painting') = 0.3
Pr(c = 'e-commerce') = 0.5
Pr(c = 'physics') = 0.02

clickhtml

. . .

the

c

Pr(click = 1|html = 1,c = painting) = ...
Pr(click = 1|html = 1,c = e-commerce) = ...
Pr(click = 1|html = 1,c = physics) = ...

Pr(click = 1|html = 0,c = painting) = ...
Pr(click = 1|html = 0,c = e-commerce) = ...
Pr(click = 1|html = 0,c = physics) = ...

F I G U R E 5 . 7 Bayesian networks. For the naive Bayes assumption, the only edges are from the class
variable to individual terms (a). Toward better approximations to the joint distribution over terms,
the probability of a term occurring may now depend on observations about other terms as well as
the class variable (b).

in the graph represents a random variable. The set of nodes that are connected by
directed edges to a node X are called the parents of X , denoted Pa(X). A specific
set of values for these parents is denoted pa(X). Fixing the values of the parent
variables completely determines the conditional distribution of X in the sense
that information about any other variable would not affect this distribution. For
discrete variables, the distribution data for X can be stored in the obvious way as
a table with each row showing a set of values of the parents, the value of X , and
a conditional probability.

Unlike in the naive models expressed by Equations (5.14) and (5.15), Pr(d|c)
is not a simple product over all terms. Instead it is expressed as a product of
conditional probabilities:

Pr(x)=
∏

x

Pr(x|pa(X)) (5.22)

154 C H A P T E R 5 Supervised Learning

1: Compute mutual information MI(Xt, C) between class labels C and each
feature Xt

2: For each pair of distinct variables Xi and Xj, calculate MI(Xi, Xj|C)

3: Initialize the network with class node C
4: while all Xt has not been added to the network do
5: Find Xj with maximum MI(Xj, C)

6: Add Xj to the network
7: Add directed edge (C, Xj)

8: while in-degree of Xj is less than k + 1 and there is an Xi not connected
to Xj do

9: Find an Xi with highest MI(Xi, Xj|C)

10: Add directed edge (Xi, Xj)

11: end while
12: end while

F I G U R E 5 . 8 Inducing limited-dependence Bayesian networks.

Using Bayesian networks for text classification addresses the clearly crude
approximations made by naive Bayes classifiers regarding term independence.

Given the graph structure of the network and training data, it is in principle
simple to derive the probability tables. What is difficult is to derive the structure
itself, especially if the number of nodes is large. One way to limit the complexity
is to limit the number of parents that each node can have. In our context of text
classification, a k-dependence Bayesian network has one node for the class variable
C and a node Xt for each term t. There is a directed edge from C to each Xt. In
addition, each Xt is permitted to have up to k incident edges from other Xt′s.

Figure 5.8 shows the pseudocode for constructing such a limited-degree
Bayesian network. Generally speaking, the difficult part is to get a good network
structure. For a specified network, estimating the parameters is relatively straight-
forward. To enumerate all pairs of features, the algorithm takes at least quadratic
time, which makes it difficult to apply this algorithm to large text corpora unless
some preelimination of features is performed.

We only know of Bayesian networks designed for the binary document model;
the size of the conditional probability tables (see Figure 5.7) can be prohibitive
for the multinomial model. While accuracy improvements for structured machine
learning data sets (from the U.C. Irvine repository) have been clearly visible, they
are surprisingly mild for text data (Reuters). There is room to suspect that the test

5.7 Exploiting Hierarchy among Topics 155

problems were too simple, and Bayesian network induction will shine in the face
of more complex data sets, where it is harder to discriminate between the classes.

5.7 Exploiting Hierarchy among Topics
In standard classification problems that arise in the structured data scenario, such
as data warehouses, the class labels form a discrete set. For example, credit card
transactions may be classified as “normal” or “fraudulent.” Sometimes there is a
mild ordering between the class labels, such as high, medium, or low cancer-
risk patients. In contrast, for text classification, the class labels themselves are
related by a large and complex class hierarchy, sometimes called a taxonomy
(although the term “taxonomy” is sometimes reserved for single-word or concept
interrelationships). In this section, we will restrict ourselves to hierarchies that are
trees. Tree-structured hierarchies are widely used in directory browsing, provide
an intuitive interface for representing refinements and generalizations, and are
often the output of clustering algorithms. The usual semantics of tree-structured
hierarchies is inheritance: if class c0 is the parent of class c1, any training document
that belongs to c1 also belongs to c0.

5.7.1 Feature Selection
An important issue that needs to be revisited is feature selection. The discrimi-
nating ability of a term is obviously influenced by the set of training documents
involved, and therefore the ability should also be quite sensitive to the node (or
class) in the hierarchy at which it is evaluated. Note that the measure of dis-
crimination of a term can be evaluated with respect only to internal nodes of the
hierarchy. To cite a simple example, the (ambiguous) word “can” may be a noisy
word at the root node of Yahoo!, but may be a great help in classifying documents
under the subtree of /Science/Environment/Recycling. (In this particular example,
a part-of-speech analysis might have helped, but that is not true in general.)

5.7.2 Enhanced Parameter Estimation
The “uniform prior assumption” made in Section 5.6.1 is unrealistic. For example,
in the binary model, the minimum loss parameter value would be φ = 1

2 for all
terms in the absence of data, whereas experience with languages tells us that words
are rare and differ greatly in how rare they are. I also introduced one technique
toward better smoothing by exploiting document-length distributions.

156 C H A P T E R 5 Supervised Learning

Why should we expect that a class hierarchy might help in further improve-
ments to parameter estimates? In part because our inheritance model ensures that
there are more document samples at shallow classes than classes at or near the
leaves. If a parameter estimate is unreliable at a node with few training docu-
ments, perhaps we can impose a strong prior from a well-trained parent to repair
the estimates.

This intuition has been formalized into a procedure called shrinkage [147].
Consider a path c1, c2, . . . , cn in the taxonomy, starting from the root c1. Since
there are many more training documents associated with c1 than cn, parameter
estimates of c1 are more reliable, but less specific to a topic, compared with
cn. Since shrinkage seeks to improve estimates of descendants using data from
ancestors, parameter smoothing can be built naturally into the framework by
simply introducing a dummy class c0 as the parent of the root c1, where all terms are
equally likely. (Henceforth in this section, we will only consider the multinomial
model.)

Fix a specific path c0, c1, . . . , cn. Before applying shrinkage, MLEs are com-
puted for θci,t for i = 1, . . . , n. (θc0,t is set to 1/|W |.) There is no need for Laplace

or any other type of smoothing at this stage. The “shrunk” estimate θ̃cn,t is deter-
mined by a linear interpolation of the MLE parameters at the ancestor nodes up
through c0, that is,

θ̃ci,t = λiθ
MLE
ci,t
+ · · · + λ1θ

MLE
c1,t
+ λ0θ

MLE
c0,t (5.23)

where
∑

i λi is scaled to 1. The best values of the mixing weights λi are determined
empirically, by iteratively maximizing the probability of a held-out portion Hn
of the training set for node cn. (Note that this setup gives us the parameter only
for class cn. To compute the parameters for cn−1, for example, we need to set up
a new system and solve it.) Figure 5.9 shows the pseudocode for shrinkage. It is
actually a simple form of the expectation maximization algorithm discussed in
Chapter 4.

Shrinkage has been tested on the Industry and 20NG data sets, as well as
a partial download of the Yahoo! science subtree with 264 leaves. Shrinkage
improves accuracy beyond hierarchical naive Bayes, in one case from 59% to 64%,
in another from 66% to 76%. The improvement is high when data is sparse, which
is expected. Models generated using shrinkage also appear capable of utilizing
many more features than naive Bayes without overfitting.

5.7 Exploiting Hierarchy among Topics 157

1: hold out some portion Hn of the training set for class cn
2: using the remaining data find θMLE

ci,t
for i = 1, . . . , n

3: initialize all λi to some positive value so that
∑

i λi = 1
4: while Pr(Hn|{θcn,t ∀t}) increases do
5: for i = 0, 1, . . . , n do

6: Calculate βi =
∑

t∈Hn

λiθ
MLE
ci,t∑

j λjθ
MLE
ci,t

, the degree to that the current estimate

of class i predicts terms in the held-out set
7: end for
8: readjust the mixing weights λi← βi/

∑
j βj for i = 0, 1, . . . , n

9: recompute θ̃cn,t for all t using equation (5.23)
10: end while

F I G U R E 5 . 9 Pseudocode for the shrinkage algorithm.

5.7.3 Training and Search Strategies
Topic trees are generally interpreted as “is-a” hierarchies; for example, a document
belonging to /Arts/Photography automatically belongs to /Arts. All documents are
relevant to the root “topic” by definition. A training document d may be marked
with one or more nodes in the hierarchy. All these nodes and their ancestors up
to the root node are trained with d.

Given a test document d, the goal is usually to find one or more of the most
likely leaf nodes in the hierarchy. The root represents the universe of documents,
so by convention, Pr(root|d)= 1. In our hierarchy model, a document cannot
belong to more than one path, so if {ci}, i = 1, . . . , m is the set of children of c0,
then∑

i

Pr(ci|d)= Pr(c0|d) (5.24)

Several search strategies are possible; I mention two obvious ones.

Greedy search

When a test document has to be classified, the search starts at the root and decisions
are made greedily. The learner regards each internal node as a stand-alone flat
classification problem, picks the highest probability class, and continues at that
class. The obvious shortcoming is that if a classification error is made early on in
a shallow level of the tree, it can never be revoked. There is thus a guaranteed

158 C H A P T E R 5 Supervised Learning

compounding of error with the depth of the tree, and deep trees are likely to yield
poor accuracy.

Best-first search

Apart from the property expressed in Equation (5.24), we can write the following
chain rule:

Pr(ci|d)= Pr(c0|d) Pr(ci|c0, d) (5.25)

Finding the leaf c∗ with maximum Pr(c∗|d) is equivalent to finding the leaf with
the minimum value of − log Pr(c∗|d), that leads us to rewrite Equation (5.25) as

− log Pr(ci|d)= (− log Pr(c0|d))+ (− log Pr(ci|c0, d)) (5.26)

Suppose the edge (c0, ci) is assigned a (nonnegative) edge weight of − log
Pr(ci|c0, d). The reader can verify that locating the most probable leaf is the same
as finding the weighted shortest path from the root to a leaf. The pseudocode for
finding some number m of most likely leaf classes is given in Figure 5.10.

For the best-first search to make a difference from greedy search, we need to
rescale the raw probabilities generated by the naive Bayes classifier as suggested
at the end of Section 5.6.1. Otherwise the best-first search may degenerate to a
greedy search because the best class at each level will tend to absorb most of the
probability of the parent, crowding out the competition.

1: Initialize frontier min-heap F to {〈root, 0〉}
2: Initialize output leaf set L to the empty set
3: while |L|< m and F is not empty do
4: Remove 〈c0,
0〉 from F with smallest

5: if c0 is a leaf node then
6: Insert c0 into L
7: else
8: for each child ci of c0 do
9: Evaluate Pr(ci|c0, d)

10: Insert 〈ci,
0 − log Pr(ci|c0, d)〉 into F
11: end for
12: end if
13: end while
14: Return L

F I G U R E 5 . 1 0 Best-first search for the m most probable leaf class.

5.7 Exploiting Hierarchy among Topics 159

Antenna
Modulator
Demodulator
Telephony
Transmission
Motors
Regulation
Heating
Oscillator
Amplifier
Resistor
System

Communication
(200)

Electricity
(400)

Patents
(950)

Electronics
(800)

Classifier Flat Best-First

Number of features 250 Shown in parentheses
Approximate total number of parameters 2651 2649
Accuracy 0.60 0.63
Time/document 15 ms 6 ms

F I G U R E 5 . 1 1 Using best-first search on a hierarchy can improve both accuracy and speed. The
number of features for each internal node is tuned so that the total number of features for both
flat and best-first are roughly the same (and thus the model complexity is comparable). Because
each document belonged to exactly one leaf node, recall equals precision in this case and is called
“accuracy.”

I have experimented with a three-level U.S. Patent taxonomy with the root
on level 1, three internal nodes that are fairly difficult to separate (communication,
electricity, electronics) at level 2, and four subclasses for each of those three classes,
for a total of 12 leaves. For this data set, improvements were noted in both accuracy
and speed when a hierarchical best-first classifier was used against flattening the
taxonomy (see Figure 5.11).

The semantics of hierarchical classification

There is a noticeable asymmetry in the scenario discussed in this section: a training
document can be associated with any node, be it an internal or a leaf node, but
a test document must be routed to a leaf, because it makes no sense to compare
the probability scores of a parent with a child. There are many different reasons
why we might want the classifier to assign a test document to an internal node.
The classifier may find that none of the children matches the document, or that
many children match the document, or that the chances of making a mistake

160 C H A P T E R 5 Supervised Learning

while pushing down the test document one more level may be too high. Not all
hierarchies may represent the is-a relation. Modeling a variety of relations between
class labels and developing algorithms for such relations is an interesting area of
research.

5.8 Maximum Entropy Learners
In the Bayesian framework, Pr(c|d) is determined indirectly by first modeling
Pr(d|c) at training time and then appealing to Bayes’s rule, Equation (5.12), at
testing time. The Bayesian approach has at least two (related) problems: First,
because d is represented in a high-dimensional term space, Pr(d|c) cannot be
estimated accurately from a training set of limited size. Second, it is potentially
dangerous to add synthesized features (e.g., phrases, or a part-of-speech or sense
tag for ambiguous words) to the multinomial naive Bayes feature set. Synthesized
features can be highly correlated and may “crowd out” other useful features. In this
section we will study an alternative probabilistic framework that directly models
Pr(c|d) from training data.

Suppose we are given training data {(di, ci), i = 1, . . . , n}. Here each di is a
multivariate feature vector and ci is a discrete class label. Our model for Pr(c|d)

will involve a number of indicator functions4 fj(d, c), indexed by j, that flag certain
conditions relating d and c. The expectation of each indicator fj is

E(fj)=
∑
d,c

Pr(d, c)fj(d, c) (5.27)

But we can also express E(fj) in another way, using Bayes’s rule:

E(fj)=
∑
d,c

Pr(d) Pr(c|d)fj(d, c)

=
∑

d

Pr(d)
∑

c

Pr(c|d)fj(d, c) (5.28)

For any indicator, we naturally insist that Equation (5.27) equals Equa-
tion (5.28). We can approximate Pr(d, c) and Pr(d) with their empirical estimates
from the training data, P̃r(d, c) and P̃r(d). Assuming that the training data has

4. Indicator functions are commonly called features in the literature, but I wish to avoid confusion
with features as defined earlier.

5.8 Maximum Entropy Learners 161

no duplicate documents and that each document has only one class label, we can
write our constraint for index j as∑

i

P̃r(di, ci)fj(di, ci)=
∑

i

P̃r(di)
∑

c

Pr(c|di)fj(di, c),

or ∑
i

1

n
fj(di, ci)=

∑
i

1

n

∑
c

Pr(c|di)fj(di, c) (5.29)

because a random draw from the training data will bring up document di with
uniform probability 1/n.

These constraints will generally not determine Pr(c|d) in a unique way. If
all the constraints together still leave some slack, how should we choose Pr(c|d)?
In the extreme situation that the training set is empty, according to the principle
of maximum entropy [94, 116], we should consider all classes to be equally likely,
because that choice will maximize the entropy (see Section 5.5.1) of Pr(c|d).
The rationale behind the maximum entropy principle is the same as that behind
Occam’s razor (see Section 4.4.5)—both prefer the simplest model to explain
observed data.

We can perform a constrained maximization in general, maximizing the
entropy of the model distribution Pr(c|d) while obeying the constraint, Equa-
tion (5.29), for all j. Using a Lagrangian variable λj for each indicator constraint,
collectively called �, we wish to optimize

G(Pr(c|d), �)=−
∑
d,c

Pr(d) Pr(c|d) log Pr(c|d)

+
∑

j

λj

(∑
i
fj(di, ci)−

∑
i,c

Pr(c|di)fj(di, c)

)
(5.30)

By differentiating G with regard to Pr(c|d), we can show [173] that Pr(c|d) has
the parametric form

Pr(c|d)= 1

Z(d)
exp

(∑
j
λjfj(d, c)

)

= 1

Z(d)

∏
j

µ
fj(d,c)
j (5.31)

where µj = eλj simplifies the expression and Z(d) is a scale factor to make sure
that

∑
c Pr(c|d)= 1.

162 C H A P T E R 5 Supervised Learning

Fitting the distribution to the data involves two steps:

1. From prior knowledge, or trial and error, identify a set of indicator functions.
Each indicator will correspond to one parameter variable to be estimated and
one constraint equation.

2. Iteratively arrive at values for the parameters that satisfy the constraints while
maximizing the entropy of the distribution being modeled.

A significant result is that maximizing the entropy subject to the above constraints
is equivalent to maximizing

∑
d∈D log Pr(cd|d), that is, the probability of the class

observations given the document. This result is significant in that it changes our
goal from constrained optimization to a (simpler) case of likelihood maximization.
A host of nonlinear techniques are available to perform the maximization [173].

As in Bayesian classifiers, it is common to pick an indicator for each (class,
term) combination. The indicator function takes as input a document and a class,
since Pr(c|d) is a function of those two things. Thus one may define, for the binary
document model,

fc ′,t(d, c)=
{

1 if c = c ′ and t ∈ d
0 otherwise

(5.32)

where the subscript (c ′, t) is used to index the indicators. However, it is more
common to use term frequency information, as in the multinomial model:

fc ′,t(d, c)=
{

0 if c �= c ′
n(d,t)∑
τ

n(d,τ)
otherwise (5.33)

The promise of the maximum entropy approach is that even though its feature
space has a one-to-one correspondence with naive Bayes learners, it does not suffer
from the independence assumptions inherent in those methods. For example, if
the terms t1= machine and t2 = learning are often found together in class c, λc,t1
and λc,t2 would be suitably discounted.

The maximum entropy method outperforms naive Bayes in accuracy, but not
consistently. For the WebKB data set comprising classes such as faculty, student,
course, and project pages from universities, the accuracy increased from 87% to
92%. However, for the industry sector data set, accuracy dropped from 80.23%
to 80.02%, and for the news group data set, accuracy dropped from 85.8% to
84.6%. The maximum entropy optimization is complex and somewhat prone
to overfitting. The real promise of the maximum entropy technique seems to

TE
AM
FL
Y

Team-Fly®

5.9 Discriminative Classification 163

be in dealing with a large number of synthesized, possibly redundant features.
Surprisingly, we have not seen extensive studies on the maximum entropy classifier
in such applications. Some of the discriminative classifiers in the next section
outperform maximum entropy classifiers by a modest margin, as we shall see
later on.

5.9 Discriminative Classification
So far we have studied a number of classifiers based on probabilistic generative
models. Bayesian classifiers estimate the Pr(d|c) distribution and use Bayes’s rule
to “invert” it to Pr(c|d), whereas maximum entropy classifiers directly estimate
Pr(c|d). The training set was used to estimate the parameters of the models. We
saw in Section 5.6.1 that naive Bayes classifiers induce hyperplanar (linear) decision
boundaries between classes in the term space. Equation (5.31) for maximum
entropy classification can be rewritten as

log Pr(c|d)=− log Zd +
∑
t∈d

fc,t(d, c) log µc,t (5.34)

which shows that log Pr(c|d) is predicted as a linear function of d’s feature vector.
I will now extend these observations to introduce two kinds of discriminative
classifiers, where the goal is to directly map the feature space to class labels,
encoded as numbers (e.g., +1 and −1 for a two-class problem). For example,
we may encode document d as a suitable feature vector and try to find a vector
α in feature space such that sign(α · d + b) predicts the class, where b is a suitable
constant and “·” is the dot-product. Discriminative classifiers remain completely
agnostic about any distributions generating the data. They are some of the most
accurate classifiers designed for text to date.

5.9.1 Linear Least-Square Regression
As we have just discussed, there is no inherent reason for going through the
modeling step as in Bayesian or maximum entropy classifiers to get a linear
discriminant. In fact, we can look for some arbitrary α such that α · di + b directly
predicts the label ci of document di. This would be a linear regression problem. A
common objective in linear regression is to minimize the square error between
the observed and predicted class variable:

∑
i(α · di + b − ci)

2. The least-square
optimization frequently uses gradient-descent methods, such as the Widrow-Hoff
(WH) update rule. The WH approach starts with some rough estimate α(0),

164 C H A P T E R 5 Supervised Learning

considers (di, ci) one by one, and updates α(i−1) to α(i) as follows:

α(i) = α(i−1) + 2η(α(i−1) · di − ci)di (5.35)

Here η is a tuned constant called the learning rate that prevents α from swinging
around too much. The final α used for classification is usually the average of all
αs found along the way. When applying the linear classifier to a test document d,
we can threshold the real number output by the classifier, predicting the class to
be sign(α · d + b) ∈ {−1, 1}.

With no loss of generality, we can scale α so that ‖α‖ = 1, in which case we
can interpret the classifier in two equivalent ways:

� The classifier is a hyperplane that separates positive (c = 1) and negative (c =−1)
instances as best as it can, ideally keeping only positive instances on one side
and negative instances on the other.

� Documents are projected onto a direction α (perpendicular to the hyperplane),
giving each a scalar representation. On this line, positive and negative instances
are well separated.

Discriminants obtained by minimizing square error perform quite well on text
data [217], outperforming naive Bayes and comparing favorably with k-NN,
although still a little short of support vector machines, discussed next.

5.9.2 Support Vector Machines
With the usual assumption that the training and test population are drawn from
the same distribution, a hyperplane that is close to many training data points has
a greater chance of misclassifying test instances compared to a hyperplane that
passes through a no-man’s land clear of any training instances. This is the basic
intuition behind support vector machines (SVMs), which are currently the most
accurate classifiers for text.

Like naive Bayes classifiers, linear SVMs also make a decision by thresholding
αSVM · d + b (the estimated class is+1 or−1 according to whether the quantity is
greater or less than 0) for a suitable vector αSVM and constant b. However, αSVM
is chosen far more carefully than in naive Bayes classifiers. Initially, let us assume
that the n training documents (represented as vectors in R

m) from the two classes
are linearly separable by a hyperplane perpendicular to a suitable α. SVM seeks

5.9 Discriminative Classification 165

α · d + b = 1

α · d + b = 0α · d + b = -1

α

0

c = 1

c = –1

F I G U R E 5 . 1 2 Illustration of the SVM optimization problem.

an α that maximizes the distance of any training point from the hyperplane; this
can be written as

Minimize 1
2 α · α (= 1

2
‖α‖2)

subject to ci(α · di + b)≥ 1 ∀i = 1, . . . , n
(5.36)

where {d1, . . . , dn} are the training document vectors and {c1, . . . , cn} their
corresponding classes.

The optimal separator is orthogonal to the shortest line connecting the convex
hull of the two classes, and intersects it halfway (see Figure 5.12). Since all ci ∈
{−1, 1}, α and b can be scaled so that for all training documents d,

ci(α · di + b)≥ 1 (5.37)

If d1 and d2 are points touching the separator slab on opposite sides, it follows that

α · (d1− d2)= 2 (5.38)

and therefore
α

‖α‖ · (d1− d2)= 2

‖α‖ (5.39)

166 C H A P T E R 5 Supervised Learning

The distance of any training point from the optimized hyperplane (called the
margin) will be at least 1/‖α‖.

In real life, the classes in the training data are sometimes, but not always,
separable. To handle the general case where a single hyperplane may not be able
to correctly separate all training points, fudge variables {ξ1, . . . , ξn} are introduced,
and Equation (5.36) is enhanced as

Minimize 1
2α · α + C

∑
i
ξi (5.40)

subject to ci(α · di + b)≥ 1− ξi∀i = 1, . . . , n
and ξi ≥ 0 ∀i = 1, . . . , n

If di is misclassified, then ξi ≥ 1, so
∑

i ξi bounds from above the number of training
errors, which is traded off against the margin using the tuned constant C. SVM
packages solve the dual of Equation (5.40), involving scalars λ1, . . . , λn, given by

Maximize
∑

i
λi − 1

2

∑
i,j

λiλjcicj(di · dj) (5.41)

subject to
∑

i
ciλi = 0

and 0≤ λi ≤ C ∀i = 1, . . . , n

Formula (5.41) represents a quadratic optimization problem. SVM packages
iteratively refine a few λs at a time (called the working set), holding the others fixed.
For all but very small training sets, we cannot precompute and store all the inner
products di · dj. As a scaled-down example, if an average document costs 400 bytes
in RAM, and there are only n= 1000 documents, the corpus size is 400,000 bytes,
and the inner products, stored as 4-byte floats, occupy 4× 1000× 1000 bytes, 10
times the corpus size. Therefore, the inner products are computed on demand,
with an LRU (least recently used) cache of recent values to reduce recomputation.

For n documents, the time taken to train an SVM is proportional to na, where
a typically ranges between 1.7 and 2.1. The scaling of SVM for a sample from the
Open Directory Project (dmoz.org) is shown in Figure 5.13. Recent versions of
public-domain SVM packages, such as SVM light [117], have edged much closer
to linear training time using clever selection of working sets.

SVMs are some of the most accurate classifiers for text; no other kind of
classifier has been known to outperform it across the board over a large number
of document collections. In one set of experiments with a subset of classes from
the Reuters data set, the linear support vector machine (LSVM) has shown better
accuracy than naive Bayes and decision tree classifiers, as shown in Figure 5.14.

5.9 Discriminative Classification 167

0.1
10

100

1000

10,000

1

y = 17834x 1.9077

y = 5120.3x 1.6077

SVM + I/O cost
SVM-in-memory

Fraction of corpus

T
im

e(
s)

F I G U R E 5 . 1 3 SVM training time variations as the training set size is increased, with and without
sufficient memory to hold the training set. In the latter case, the memory is set to about a quarter
of that needed by the training set.

0
0

0.2

0.4

0.6

0.8

1.0

0.2 0.4
Recall

Pr
ec

isi
on

0.6 0.8 1.0

LSVM
Bayes
k-NN

F I G U R E 5 . 1 4 Comparison of LSVM with previous classifiers on the Reuters data set (data taken
from Dumais [73]). (The naive Bayes classifier used binary features, so its accuracy can be improved.
Also, the k-NN classifier does not use a per-class bc, as described in Section 5.4.)

168 C H A P T E R 5 Supervised Learning

90

80

70

60

50

A
cc

ur
ac

y
(%

)

Naive Bayes
Maximum entropy
LSVM

WebKB 20NG

Data set

DMozRec

F I G U R E 5 . 1 5 Comparison of accuracy across three classifiers: naive Bayes, maximum entropy and
LSVM, using three data sets: 20 news groups, the Recreation subtree of the Open Directory, and
university Web pages from WebKB.

In another set of experiments, SVM outperformed naive Bayes and maximum
entropy classifiers, as shown in Figure 5.15.

Yang and Liu [217] have made comparisons between SVMs, k-NN, linear
least-square, and naive Bayes classifiers using the Reuters data set under carefully
standardized conditions. Some of their findings are shown in Table 5.1.

An interesting revelation made by SVMs is that many standard text classifica-
tion tasks have classes that are perfectly or near perfectly separable using a hy-
perplane in feature space [118]. Therefore, linear SVMs are generally considered
adequate for text classification tasks. We do not know of significant benefits from
using more complex nonlinear SVMs [190].

5.10 Hypertext Classification 169

T A B L E 5 . 1 Comparison between several classifiers discussed in this chapter, using the Reuters
collection.

Microaveraged Microaveraged Microaveraged Macroaveraged
Method recall precision F1 F1

Linear SVM 0.81 0.91 0.86 0.53
k-NN 0.83 0.88 0.86 0.52
Least square 0.85 0.85 0.85 0.50
Naive Bayes 0.77 0.82 0.80 0.39

5.10 Hypertext Classification
Thus far in this chapter, we have studied text classifiers without any discussion of
hypertextual features. Finally, we turn to a discussion of techniques to address su-
pervised learning for hypertext. Apart from plain text, HTML, the dominant form
of hypertext on the Web, contains many different kinds of features. A well-formed
HTML document is a properly nested hierarchy of regions that is represented by
a tree-structured Document Object Model or DOM (www.w3.org/DOM/).

In a DOM tree, internal nodes are elements (such as the list-building con-
structs UL or LI in HTML), and some of the leaf nodes are segments of text. Some
other nodes are hyperlinks to other Web pages, which can in turn be represented
by DOM trees.

In this section we will discuss how to encode diverse hypertextual features in
forms suitable for supervised learning. Often we will want to represent features
from hypertext in the form of relations. None of the classification techniques we
have covered so far can deal with relational training data effectively, so I will
introduce the last kind of learning, called inductive learning, near the end of this
section.

5.10.1 Representing Hypertext for Supervised Learning
In our study of keyword-based search technology, we have seen that search engines
assign heuristic weights to terms that occur in specific HTML tags, such as TITLE,
H1, STRONG, EM, and so on. General semistructured data, as might be transmitted
in XML, can also be represented as a DOM tree (suitable cross-links are added if
necessary). Paying special attention to tags can help with supervised learning as
well. The following example, somewhat contrived, shows how markup context

170 C H A P T E R 5 Supervised Learning

should qualify ordinary terms. A resume, written in an XML-like format, may
contain the following marked-up text:

<resume>
<publication>

<title>Statistical models for Web-surfing</title>
</publication>
<hobbies>

<item>Wind-surfing</item>
</hobbies>

</resume>

Depending on the classification task, it could be really important to distinguish
between the two occurrences of the word “surfing,” a task easily achieved by
prefixing each term by the sequence of tags that we need to follow from the
DOM root to get to the term, such as resume.publication.title.surfing and
resume.hobbies.item.surfing. We cannot really take this technique to the extreme,
especially if a repeated term in different sections should reinforce belief in a class
label (unlike in the example above).

If we intend to use an SVM or a maximum entropy classifier, we may
maintain both forms of a term: plain text and prefixed as above. The general
situation is far more complex, however. We may want to accumulate evidence
from resume.publication.journal.surfing and resume.publication.title.surfing; one
(imperfect) way to achieve this is to create many versions of each term, each with a
prefix of the DOM paths, for example., resume.surfing, resume.publication.surfing,
and so on.

Sometimes these simple tricks suffice to boost accuracy beyond classifiers
depending on plain text alone. In an experiment conducted by Yi and Sundaresan
[219] with 10,705 patents from the U.S. Patent Office, a plain-text classifier gave
70% errors, whereas using path-tagged terms gave only 24% errors. When they
used path prefixes, the errors reduced to 17%. For a collection of 1700 resumes
collected from the Web, Yi and Sundaresan report that a naive Bayes classifier
applied on flattened HTML showed 53% errors, whereas using prefix-tagged
terms showed 40% errors.

Notwithstanding empirical success, these representations are fairly ad hoc and
somewhat inflexible. For example, the recipe does not extend easily if we also wish
to add features derived from hyperlinks. Relations provide a uniform way to codify

5.10 Hypertext Classification 171

hypertextual features. I provide some examples below; their meanings should be
clear from the names used for the relation and attribute names.

contains-text(domNode, term)
part-of(domNode1, domNode2)
tagged(domNode, tagName)
links-to(srcDomNode, dstDomNode)
contains-anchor-text(srcDomNode, dstDomNode, term)
classified(domNode, label)

In the rest of this section we will study inductive classifiers that can discover
rules from a collection of relations. For example, the system might be able to
come up with a rule of the form

classified(A, facultyPage) :-
contains-text(A, professor), contains-text(A, phd),
links-to(B, A), contains-text(B, faculty).

I use Prolog notation, where :- is read “if,” and a comma implies conjunction.

5.10.2 Rule Induction
For simplicity I will focus on a two-class setting, with positive examples D+ and
negative examples D−. The rule finder returns a set of predicate rules. If on a test
instance any of these rules returns true, then the test instance is positive; otherwise
it is negative. Each rule is a conjunction of (possibly negated) predicates.

Figure 5.16 shows a basic rule-induction pseudocode resembling a well-
known rule learner called FOIL (for first-order inductive logic). The outer loop
learns new (disjunctive) rules one at a time, removing positive examples covered
by any rule generated thus far. When a new empty rule is initialized, its free
variables can be bound in all possible ways, which may lead to covering many
(remaining) positive and negative instances. The inner loop adds conjunctive
literals to the new rule until no negative example is covered by the new rule.
As we add literals, we wish to uncover all negative bindings while uncovering
as few positive bindings as possible. Therefore, a reasonable heuristic is to pick a
literal that rapidly increases the ratio of surviving positive to negative bindings.

172 C H A P T E R 5 Supervised Learning

(a) Rule induction:

1: Let R be the set of rules learned, initially empty
2: while D+ �= ∅ do
3: Learn a new rule
4: Let r ≡ true be the new rule
5: while some d ∈D− satisfies r do
6: Add a new (possibly negated) literal to r to specialize it
7: Add “best possible” literal p as a conjunct to r
8: end while
9: R← R ∪ {r}

10: Remove from D+ all instances for which r evaluates to true
11: end while
12: Return R

(b) Types of literals explored:

� Xi = Xj, Xi = c, Xi > Xj, Xi ≥ Xj, and so on, where Xi, Xj are variables and c
is a constant.

� Q(X1, . . . , Xk), where Q is a relation and Xi are variables, at least one of which
must be already bound.

� not(L), where L is a literal of the above forms.

(c) Best literal selection:

1: Suppose we are considering the addition of literal p to rule r . Let r ′ be the
resulting rule after adding p to r .

2: Let f ′ be the fraction of variable bindings that make r ′ true, f the fraction of
variable bindings that make r true, and s the number of variable bindings that
satisfy both r and r ′.

3: Pick that p with maximum s(log f ′ − log f).

F I G U R E 5 . 1 6 A rule learning system called FOIL. The overall pseudocode (a). Choice of
literals (b). Ranking candidate literals (c).

TE
AM
FL
Y

Team-Fly®

5.11 Bibliographic Notes 173

This justifies the literal selection in Figure 5.16, but many other ordering heurstics
are in use.5

An important advantage of relational learning is that just as we can learn class
labels for individual pages, we can also learn relationships between them. For
example, we can encode training data of the form

member(homePage, department)
teaches(homePage, coursePage)
advises(homePage, homePage)
writes(homePage, paper)

in a straightforward manner, and identify additional examples of these relations
from portions of the Web graph.

Another interesting possibility is to integrate decisions made by a statistical
classifier (such as naive Bayes) into the rule-learning system. This can be done
by a more complex search for literals, which may involve running a naive Bayes
classifier and comparing the estimated probabilities of various classes.

The labeling relation classified(page, label) may best be modeled as recur-
sive. For example, the following rule

classified(A, facultyPage) :-
links-to(A, B), classified(B, studentPage),
links-to(A, C), classified(C, coursePage),
links-to(A, D), classified(D, publicationsPage).

relates the label of page A in terms of the known labels of neighboring pages
B, C, and D. It may be argued that the transfer of label information is not really
directed: there may have been a mistake in estimating the label of page B, and an
accurate guess at the label of A may help us fix the label of B in turn. I will discuss
semisupervised learning strategies in Chapter 6, which will address this issue.

5.11 Bibliographic Notes
Whereas classifiers for text are relatively recent, classifiers for structured data are
very well researched. Those of you unfamiliar with machine learning as a broad

5. FOIL’s literal selection policy requires us to encode contains-text(domNode, term) as contains-
text-term(domNode), with one relation for each term, but I avoid this technicality to keep the
discussion simple.

174 C H A P T E R 5 Supervised Learning

area should refer to Mitchell’s classic text [153]. Learning algorithms often draw
from the field of information theory. For a more detailed treatise of important
concepts such as entropy and mutual information, you are encouraged to refer to
the authoritative textbook by Cover and Thomas [57].

Some of the well-known early text classifiers such as the Apte-Damerau-Weiss
system used a decision rule–based approach [7]. At the heart of such systems is a
rule inducer such as Swap-1 [212], FOIL [58], or RIPPER [53]. One advantage of
rule-based systems is noise rejection in the test document: once the system “tunes
in” to the promising patterns, all other features in the test documents are simply
ignored (which is not the case with statistical learners that have to smooth their
term distribution parameters). Rule-based systems can even perform context-
sensitive classification where the presence of some words is qualified by other
words in the vicinity, as shown by Cohen and Singer [54]. Some disadvantages
are that the complexity of rule induction tends to be high and updates are not
simple.

Yang and Pedersen [218] and Mladenic [155] compare a variety of feature
selection algorithms for text. I have reported on a scalable system for simultaneous
feature selection for all nodes in a taxonomy elsewhere [37]. Sahami and Koller
have studied the effect of more sophisticated feature selection and reduced the
naive attribute independence assumption [126, 127]. Whereas this resulted in
significantly improved accuracy for many data sets from the UCI repository, the
effect on text classification accuracy was slight. Their system, as well as scalable
naive learners, seems to indicate that once feature selection is made hierarchical,
each decision point in the hierarchy needs very few terms as features.

Bayesian classifiers have been in use for at least several decades in other
areas such as pattern recognition and signal processing. Heckerman presents an
authoritative tutorial on the general subject of Bayesian networks [102, 103].
Applications of Bayesian learners to text are surprisingly recent. The CMU
WebKB project and the TAPER system have used naive Bayes classifiers [37, 145].
Both have compared different document models such as binary and multinomial
and arrived at similar conclusions. Lewis presents comprehensive metrics on which
to evaluate classifiers [137]. Yang and Liu [217] present extensive comparisons
between k-NN, naive Bayes, SVM, and least-square classifiers.

In spite of making crude independence assumptions, and therefore underesti-
mating Pr(d|c) severely, naive Bayesian classifiers have acceptable accuracy [138].
The insight here is that classification error does not directly depend on the pre-

5.11 Bibliographic Notes 175

cision of Pr(d|c) but on the shape of the decision boundaries separating the
favorable class density regions in term space, because a classifier has to merely
pick arg maxc Pr(c|d). For such discrete regression settings, it is possible to have
highly biased and yet effective classifiers if their variance is low, as explained by
Friedman, Domingos, and Pazzani [71, 85]. Whereas their effect on classification
accuracy appears to be mild, better approximations to Pr(d|c) are useful for other
applications, such as clustering (see Chapter 4). “Repairing” naive estimates with
a manageable number of joint distributions on highly correlated terms may be a
potential solution, as proposed by Meretakis and Wuthrich [150].

Parameter estimation using shrinkage has been studied by McCallum and
others [147]. Shrinkage as a general statistical tool has been discussed by Carlin,
Louis, James, and Stein [32, 115, 201]. Mitchell has shown that a hierarchical naive
Bayes classifier will give the same result as one that flattens the hierarchy [152].
However, it is assumed that MLE parameters are used. If the feature set is diverse
across internal nodes and smoothing is performed, experimental evidence suggests
that mild improvements in accuracy are possible [37]. The work on learning
markup hierarchies is by Yi and Sundaresan [219].

Maximum entropy methods have been extensively used in signal processing
and natural language analysis for some time. The proof of equivalence between
constrained entropy maximization and likelihood maximization is by Della Pietra,
Della Pietra, and Lafferty [173]. The application of this method to text learning
has been made recently by Nigam, Lafferty, and McCallum [167].

As with maximum entropy, support vector machines [209] have been used
in other domains before text. The application of LSVMs to text classification is
by Dumais, Platt, Heckerman, and Sahami [74]. There are excellent texts and
tutorial articles on SVMs: if interested, you can visit www.kernel-machines.org for
many resources relevant to SVMs. Shashua established that the decision surface
found by a linear SVM is the same as Fisher’s discriminant for only the support
vectors found by an SVM [194]. The fast sequential minimum optimization (SMO)
algorithm is due to Platt [176]. Other optimizations, incorporated into the popular
SVM light system, are described by Joachims [117]. However, the scaling behavior
is roughly n1.7–n2.1, where n is the number of training instances. Ongoing work
is reducing the time to be nearly linear in n, which is important to extend LSVMs
to Web-scale data.

Given the excellent accuracy of k-NN, least-square, and SVM classifiers,
it is natural to question the wide acceptance of naive Bayes classifiers. Naive

176 C H A P T E R 5 Supervised Learning

Bayes classifiers are very simple to understand and code, involve no iterative
optimization, and can adapt essentially instantly to new or modified documents.
Because they depend strongly on instances near interclass boundaries to determine
separators, SVMs can be sensitive to small modifications to the training set, which
may make fast document updates complicated.

c h a p t e r 6
S E M I S U P E R V I S E D L E A R N I N G

We have seen two extreme learning paradigms so far. The setting in Chapter 4 was
unsupervised: only a collection of documents was provided without any labels,
and the system was supposed to propose a grouping of the documents based on
similarity. In contrast, Chapter 5 considered the completely supervised setting
where each object was tagged with a class. Real-life applications are somewhere
in between. It is generally easy to collect unsupervised data: every time Google
completes a crawl, a collection of over a billion documents is created. On the
other hand, labeling is a laborious job, which explains why the size and reach of
Yahoo! and the Open Directory lag behind the size of the Web.

Consider a document collection D in which a subset DK ⊂D (with |DK | �
|D|) has known labels, and our goal is to label the rest of the collection. The
simplest approach would be to train a supervised learner or classifier using the
labeled subset DK , and apply the trained learner on the remaining documents.
But will this necessarily lead to the highest accuracy?

Qualitatively, it is easy to see that there could be information in D \DK that
could be harnessed to enable better learning. Document d1∈DK may be labeled
with class c1, and document d2 may share a number of terms with document d3,
although there may be no term overlap between d1 and d3. If d2 is classified into
c1 with high confidence, we have reason to believe that d3 may also be assigned
class c1 with low risk. Basically, the unsupervised portion of the corpus, D \DK ,
adds to our vocabulary, our knowledge about the joint distribution of terms, and
unsupervised measures of interdocument similarity.

177

178 C H A P T E R 6 Semisupervised Learning

For hypertext, the situation gets more interesting. Clues about similarity and
class membership come from diverse sources, such as site name, directory path,
and, very importantly, hyperlinks. The fact that thousands of Web pages have
HREF citations to www.toyota.com/ and www.honda.com/ offer ample evidence that
these two pages are strongly related, and we can use this knowledge to classify one
page if the other were known to be a Japanese car manufacturer’s site. As another
example, if u links to v, and v and w have large textual similarity, we may venture
that u and w have similar topics.

The challenge is to put together multiple sources of evidence of similarity and
class membership into a label-learning system. In this chapter we will study several
algorithms that combine different features with partial supervision to estimate
labels of unlabeled instances better than simple supervised learning.

6.1 Expectation Maximization
One simple way to make use of D \DK is to first train a supervised learner on
DK , then label all documents in D \DK , pretend that all or some of them (the
ones where the classifier was most confident, say) have been correctly labeled,
retrain the classifer using these new labels, and continue until labels do not change
anymore. If the classifier makes too many mistakes, the simple algorithm above
may lead the term distributions of classes to drift arbitrarily badly.

A better option is to use a “soft” classification, as in the EM algorithm (see
Section 4.4.2). When we used EM for clustering, we set up a fixed number of
clusters with some arbitrary initial distributions, and then alternately iterated the
following steps:

1. Reestimate, for each cluster c and each document d, the quantity Pr(c|d),
based on the current parameters of the distribution that characterizes c.

2. Recompute the parameters of the distribution for each cluster. As in Sec-
tion 4.4.2, we will use a multinomial distribution over terms.

In clustering, none of the Pr(c|d) values were known ahead of time, and each
had to be estimated repeatedly. In a semisupervised scenario, the documents in
DK are labeled, and we should exploit that information. The simplest way is to
set up one cluster for each class label (although this may not be the best choice;
see Section 6.1.3) and estimate a class-conditional distribution that includes infor-
mation from D \ DK , simultaneously estimating the class (equivalently, cluster)
memberships of these unlabeled documents.

6.1 Expectation Maximization 179

We can combine the EM procedure (Section 4.4.2) with the multinomial
naive Bayes text classifier (see Sections 4.4.1 and 5.6.1) [168]. Recall that in
the multinomial naive Bayes text classifier, the key parameters were θc,t, which
represented, roughly speaking, the “rate” at which term t occurred in documents
belonging to class c. Using Laplace’s law, these parameters were estimated as in
Equation (5.19)

θ̃c,t =
1+∑d∈DK

c
n(d, t)

|W | +∑d∈DK
c ,τ∈d n(d, τ)

where DK
c is the set of training documents labeled with class c, n(d, t) is the

number of times term t occurs in document d, and W is the vocabulary (after a
feature selection step, if any).

For semisupervised learning, we cannot say “d ∈ DK
c ” with certainty, but

only have a current probability value Pr(c|d). We have to use this probability to
weight the contribution of term counts from the documents to the classes. A
straightforward way to do this is to modify Equation (5.19) to

θ̃c,t =
1+∑d∈D Pr(c|d) n(d, t)

|W | +∑d∈D
∑

τ Pr(c|d) n(d, τ)
(6.1)

where the sum is now over all documents. Likewise, we modify the class prior
for c from |DK

c |/|D| to
Pr(c)= 1

|D|
∑
d∈D

Pr(c|d) (6.2)

For each document d in the labeled set DK , we know the class label cd, and
therefore we can set Pr(cd|d)= 1 and Pr(c ′|d)= 0 ∀c ′ �= cd. Alternatively, we can
set these values before the first iteration, but then let the class probabilities of the
labeled documents “smear” over other classes just like unlabeled documents. The
choice depends on the faith we have in the labeling process.

The modified EM-like procedure is shown in Figure 6.1. Strictly speaking,
this is not EM, because the M-step, Equation (6.1), uses a Laplace estimate, not
a maximum likelihood estimate. In practice, convergence is not a problem.

6.1.1 Experimental Results
To study the semisupervised EM algorithm, we take a completely labeled (assume
single label per document) corpus D and randomly select a subset as DK . The

180 C H A P T E R 6 Semisupervised Learning

1: fix a set of unlabeled documents DU ⊆D \DK for use in the EM-like steps
2: using DK alone, build the initial model �0
3: for i = 0, 1, 2, . . . while results are not satisfactory do
4: for each document d ∈DU do
5: E-step: estimate Pr(c|d, �i) using a naive Bayes classifier

(Section 5.6.1, Equation (5.15))
6: end for
7: for each c and t do
8: M-like step: estimate θc,t using Equation (6.1) to build the next

model �i+1
9: end for

10: end for

F I G U R E 6 . 1 A semisupervised learning algorithm using ideas from EM and naive Bayes
classification.

algorithm can only see the labels of DK . The algorithm is also permitted to use
a set DU ⊆ D \ DK of unlabeled documents in the EM procedure. At the end,
the algorithm must label all documents in D \ DK (e.g., assign them the most
likely class label). A document is said to be correctly classified if the class with the
largest probability matches its concealed class label. The accuracy of the learner
is the fraction of documents with concealed labels that are correctly classified.

A completely supervised learner can use only DK to train itself, that is,
DU = ∅. The lower curve in Figure 6.2 shows the effect of increasing the size
of DK while holding DU = ∅. As |DK | increases, the accuracy improves, which
is quite intuitive. More interestingly, the upper curve shows the same variation
for a nonempty DU , which clearly illustrates the value of exploiting information
from unlabeled documents. Another set of numbers showing EM’s superiority
over naive Bayes is shown in Table 6.1.

In Figure 6.3, DK is held fixed and accuracy is plotted against |DU |. Clearly,
accuracy benefits from larger collections of unlabeled documents, because these
expose more details about document-to-document similarity, increase the vo-
cabulary of the classes, and make estimates of term distributions more dense and
accurate.

As expected, the largest boost to accuracy is observed in Figure 6.2 when DK

is small, because the supervised learner is then placed at maximum disadvantage
compared to the semisupervised learner. For large sizes of DK , the completely

6.1 Expectation Maximization 181

0
0 20 50 100 200

Number of labeled documents

10,000 unlabeled documents
No unlabeled documents

A
cc

ur
ac

y
(%

)

500 1000 2000 5000

10

20

30

40

50

60

70

80

90

100

F I G U R E 6 . 2 When DK is small, a semisupervised learner can boost accuracy significantly by
exploiting latent information about term distributions in a pool DU of unlabeled documents taken
from D \DK .

supervised learner is comparable to the semisupervised learner; indeed, for some
data sets, it edges past the semisupervised learner.

6.1.2 Reducing the Belief in Unlabeled Documents
There can be a great deal of noise in the term distribution of documents in DU ,
and the E-step in Figure 6.1 also makes mistakes. To reduce such distraction from
DU , we can attenuate the contribution from documents in DU by an additional

Algorithm |DK | |DU | Error

Naive Bayes 788 0 3.3%
Naive Bayes 12 0 13.0%
EM 12 776 4.3%

T A B L E 6 . 1 EM beats naive Bayes with the same DK ,
provided it is given a large DU . |D| = 788 throughout.

182 C H A P T E R 6 Semisupervised Learning

0
0 1000 3000 5000 7000 9000 11,000 13,000

Number of unlabeled documents (α)

3000
600
300
140
40

Labeled documentsA
cc

ur
ac

y
(%

)

10

20

30

40

50

60

70

80

90

100

F I G U R E 6 . 3 Increasing DU while holding DK fixed also shows the advantage of using large
unlabeled sets in the EM-like algorithm.

factor 0 < α < 1 in Equation (6.1), turning it into

θc,t =
1+∑d∈DK [c = cd] n(d, t)+∑d∈DU α Pr(c|d) n(d, t)

|W | +∑d∈DK,τ [c = cd] n(d, τ)+∑d∈DU α Pr(c|d) n(d, τ)
(6.3)

where cd is the supervised class label of d, and [c = cd] is 1 if c = cd and 0 otherwise.
Although this expression of relative distrust in unlabeled documents has no formal
underpinnings, experiments show that accuracy is indeed influenced by the choice
of α (see Figure 6.4).

Unfortunately, there is no lesson about the best values to pick for α. For small
|DK |, paying more attention to DU by raising α closer to 1 seems to help, whereas
for a larger number of labeled documents, it seems best to drive α down toward 0.
This is an intuitive recipe but not a quantitative one; empirical evaluation seems
inevitable.

TE
AM
FL
Y

Team-Fly®

6.1 Expectation Maximization 183

68
0

70

72

74

76

78

80

82

0.2 0.4 0.6 0.8 1
Weight of unlabeled data

200 labeled documents
80 labeled documents
40 labeled documents

A
cc

ur
ac

y
(%

)

F I G U R E 6 . 4 Attenuating the influence of unlabeled documents by a factor 0 < α < 1 leads to a
boost in accuracy.

6.1.3 Modeling Labels Using Many Mixture Components
Another issue that warrants care when using the EM-like algorithm is that
there need not be a one-to-one correspondence between the EM clusters and
the supervised class labels. Term distributions of some classes or topics are best
expressed as a mixture of a few simple distributions. In particular, when text
classifiers are set up with a positive and a negative class, the negative class is
often best modeled as a mixture. (Documents about “football” may fit a simple
multinomial distribution, but documents not about “football” are actually about
a variety of other things; an author rarely sets out to write a document merely to
not write about something!)

Varying the number of clusters used by the EM-like algorithm shows that
although the EM-like algorithm has lower accuracy with one mixture component
per label compared to a naive Bayes classifier, increasing the number of clusters
pushes EM accuracy beyond naive Bayes (see Figure 6.5). Eventually, increasing
the number of clusters leads to overfitting and lowers accuracy.

184 C H A P T E R 6 Semisupervised Learning

0
0

10 20
Number of EM clusters

A
cc

ur
ac

y
(%

)

30 40

20

40

60

80

100

Acq
Corn
Crude
Earn
Grain
Interest
Money-fx
Ship
Trade
Wheat

F I G U R E 6 . 5 Allowing more clusters in the EM-like algorithm than there are class labels often
helps to capture term distributions for composite or complex topics, and boosts the accuracy of
the semisupervised learner beyond that of a naive Bayes classifier.

6.2 Labeling Hypertext Graphs
In the hypertext setting, there is more to unlabeled documents than exploited by
the EM-like procedure described earlier. Consider the following scenarios:

� A test document is cited directly by a training document, or cites a training
document.

� More generally, there is a short path between the test document and one or
more training documents.

� The test document is cited by a named category in a Web directory such as
Yahoo! or the Open Directory, even if our target category system is somewhat
different from those of Yahoo! or the Open Directory.

� Some category of a Web directory co-cites one or more training documents
along with the test document.

Consider a snapshot of the Web graph and a set of topics, for example, all
the leaf nodes of a topic directory like Yahoo! or the Open Directory. Assume
that through human supervision, a (small) subset of nodes V K (extending DK

used before to the graph setting) in the Web graph have been labeled with topics
taken from the predefined set. We may wish to use the supervision to label some

6.2 Labeling Hypertext Graphs 185

or all nodes in V \ V K . We could submit the documents in V K to any of the
text classifiers described in Chapter 5, as if they were isolated documents, but, as
noted before, this may discard valuable information in hyperlinks.

6.2.1 Absorbing Features from Neighboring Pages
Often, a page u may have little text on it to train or apply a text classifier. Many
important, exemplary sites about broad topics create and optimize an intensely
graphic presentation, using images, text rendered as images, clickable image maps,
JavaScript, and HTML frames. Such “features” make it impossible for a text
classifier to extract tokens from which it can learn term distributions. Often,
some second-level pages on these sites that u cites have usable quantities of text,
but how can these features be used to characterize u to a text classifier?

Absorbing textual features

We compare a simple, text-based naive Bayes classifier with two obvious methods
for absorbing text from neighboring pages:

Local+Nbr: Absorb all text from immediate neighbors (for both in- and outlinks)
into the training or testing document.

Local+TagNbr: A term t absorbed from an out-neighbor is prefixed with a dis-
tinctive tag O: to become O:t, and a term t absorbed from an in-neighbor is
prefixed with a distinctive tag I: to become I:t. No ordinary token starts with
these special prefixes, and therefore there are three isolated token spaces that
do not share counts.

Absorption of neighboring text was found to be ineffective for a collection
of topic-labeled, hyperlinked patents, as well as a collection of labeled Web pages
from Yahoo! Figure 6.6 shows that, at best, accuracy is unaffected; at worst, it
may go down slightly. Why does adding extra information not help?

Implicit in all the variants of “absorbing neighboring text” is the assumption
that the topic of a page u is likely to be the same as the topic of a page cited by
u. This is not always true; the topics may be related but not identical. There can
also be some topics (“free speech online” or “download Netscape”) that crop up
everywhere without regard to the desired set of class labels.

Consider, for instance, a university homepage that has relatively little text
but several links. The distribution of topics of the pages cited by these first-
level links could be quite distorted compared to the totality of contents available
from the university site; for example, “how to get to our campus” or “recent

186 C H A P T E R 6 Semisupervised Learning

0
0

0

5

10

15

20

25

30

35

10

20

30

40

50

60

70

500 1000
Features

Local+Nbr

Local+TagNbr

E
rr

or
 (

%
)

E
rr

or
 (

%
)

1500 2000 Local Local+Nbr Local+TagNbr

40

36%
38.3% 38.2%

F I G U R E 6 . 6 Absorbing text from neighboring pages in an indiscriminate manner does not help
classify hyperlinked patent documents any better than a purely text-based naive Bayes classifier.

sports prowess” may figure high on the front page. If we carelessly use textual
features from such pages in representing the homepage, a text-based classifier may
(deservedly, you might argue) think the university is a gym or a transportation
company.

Absorbing link-derived features

Given enough samples, we should be able to learn that university homepages tend
to link to pages about athletic prowess, and that pages pertaining to all topics tend
to link to pages about Web browsers. We can even use the fact that u points to a
page about athletics to raise our belief that u is a university homepage, and learn
to systematically reduce the attention we pay to the fact that a page links to the
Netscape download site.

The key insight is that the classes of hyperlinked neighbors, rather than the
text they contain, is a better representation of hyperlinks. Assume for the moment
that all neighbors of u (which can be either a training or a test document)
have been classified correctly. For example, they may have been assigned classes
like /Sports/Basketball or /Computers/Software/OperatingSystems/Linux. As in the
section above, these strings can be named apart from ordinary tokens by using
a unique prefix (say, L@), and included as if they were terms in the document.
Depending on the accuracy of classifying the neighbors (in practice, they cannot

6.2 Labeling Hypertext Graphs 187

all be classified manually and perfectly), some of these link-derived features may
be far more useful for classification than even the best ordinary tokens.

Another interesting issue is the representation of link-derived features for the
common case where class labels are from an is-a hierarchy. The contribution of
a link-derived feature may depend strongly on the level of detail at which the
feature is represented. Returning to the college homepage example, we may find
College A’s homepage linked to a page about /Sports/Basketball and College B’s
homepage linked to a page about /Sports/Hockey/IceHockey. (Even a single college
homepage can do this at different times.) Rather than encode the whole topic
path, we may choose to include L@/Sports or L@/Computers/Software. Why might
we expect this to work better? The evidence at the detailed topic level may be too
noisy, and coarsening the topic helps collect more reliable data on the dependence
between the class of the homepage and the link-derived feature.

We should not go overboard pruning these paths: as an extreme example, L@/
is not likely to be of any use as a link-derived feature, and for specific topics, even
L@/Computers/Software may be far too general. There is no need for guesswork
here; we can throw all prefixes of the class path into the feature pool

L@/
L@/Computers/
L@/Computers/Software
L@/Computers/Software/OperatingSystems
L@/Computers/Software/OperatingSystems/Linux

and leave the feature selection algorithm (see Section 5.5) to do its job in selecting
those levels of representation from the above list that best assist classification.
In my experiments, I saw that many link-derived features came out at the top
after feature selection. In fact, adding too many textual features led to quick
degradation of accuracy as the document model was now a single multinomial
model over textual and link-derived features. As I noted in the beginning of
Section 5.8, the degradation is due to redundant features with poor information
content “crowding out” good features in the multinomial model.

My experiments [39] with a corpus of U.S. patents show that the prefix trick
indeed pays off. This corpus has three first-level classes, each of which has four
children. Each leaf topic has 800 documents, for a total of 9600 documents, shown
in Figure 6.7(a). In Figure 6.7(b) Text is a purely text-based classifer, Link uses
the whole (two-level) class path as link-derived features, and Prefix uses the prefix
trick. In all cases, separate multinomial models are used for text and link-derived

188 C H A P T E R 6 Semisupervised Learning

features. In Text+Prefix, these two distributions are assumed to be conditionally
independent given the class of the current document.

Figure 6.7(b) shows that the prefix trick can reduce errors from 36% to 21%
for this corpus, whereas a full-path encoding of link-derived features barely makes
a 2% dent on the error rate of text-based classification.

6.2.2 A Relaxation Labeling Algorithm
The main limitation with features synthesized from class labels of linked neighbors
is that, in practice, hardly any neighbors of a node (page) to be classified will be
linked to any prelabeled node, because |V K | � |V |. In this section I extend
the EM approach to a graph, using labeled and unlabeled nodes in the link
neighborhood of a page to be classified.

The basic strategy will be to start with a labeling of reasonable quality (using
a text classifier, say) and refine it using a coupled distribution of text and labels of
neighbors, until the labeling stabilizes.

Given a hypertext graph G(V , E), where each vertex u is associated with
text uT , we seek a labeling f of all (unlabeled) vertices so as to maximize

Pr(f (V)|E, {uT , u ∈ V })= Pr(f (V)) Pr(E, {uT , u ∈ V }|f (V))

Pr(E, {uT , u ∈ V }) (6.4)

where

Pr(E, {uT , u ∈ V })=
∑
φ

Pr(φ) Pr(E, {uT , u ∈ V }|φ) (6.5)

is a scaling constant that is not a function of f because it sums over all possible
label assignments φ. This is fortunate, because we do not need to evaluate it.
Here E means “the event that edges were generated as per the edge list E,”
and the notation {uT , u ∈ V } denotes the event that the nodes in G have the
respective textual contents. It is extremely unlikely that we can obtain a known
function for Pr(E, {uT , u ∈ V }|f (V)), so we will need to approximate it using
heuristic assumptions. Note that the text-based probabilistic classifiers discussed
in Chapter 5 were concerned with estimating Pr({uT , u ∈ V }|f (V)); that is, the
event E was not considered. Because the term space {uT , u ∈ V } had thousands
of dimensions, it was impractical to accurately represent the joint distribution
between terms, and therefore inter-term independence was assumed.

For the same concerns of complexity, we will find it easier to assume indepen-
dence between events E and {uT , u ∈ V }, as well as within their components. In

6.2 Labeling Hypertext Graphs 189

343 Antenna

329 Modulator
Communication

332 Demodulator

379 Telephony

307 Transmission

318 Motive

323 Regulator

219 Heating

331 Oscillator

330 Amplifier

338 Resistor

361 System

(a)

Electricity

Pa
te

nt

Electronics

Class code

0

5

10

15

20

25

30

35

40

Text Link

E
rr

or
 (

%
)

(b)
Prefix Text+Prefix

36%
34%

22.1% 21%

F I G U R E 6 . 7 A two-level topic hierarchy of selected U.S. patents (a). Using prefix-encoded link
features in conjunction with text can significantly reduce classification errors (b).

190 C H A P T E R 6 Semisupervised Learning

other words, we will assume that term occurrences are independent, link-derived
features are independent, and, moreover, there is no dependence between a term
and a link-derived feature. Obviously, these are flagrant departures from reality,
but, as in Chapter 5, we hope that decision boundaries will remain relatively
immune to errors in the probability estimates.

Extending DK from Section 6.1, let V K be the subset of nodes whose labels
are known, and let these label assignments be denoted f (V K). To reiterate, we
know the edge set E, the text representation of all nodes (which we will denote
V T = {uT , u ∈ V }), and f (V K). Fix a node v whose class probabilities we wish
to estimate. Let N (v) be the immediate neighbors of v and N U(v)⊆ N (v) be
the unlabeled neighbors. We can write

Pr(f (v) | E, V T, f (V K))=
∑

f (NU (v))∈�v

Pr
(
f (v), f (N U(v))

∣∣∣ E, V T, f (V K)
)

=
∑

f (NU (v))∈�v

Pr
(
f (N U(v))

∣∣∣ E, V T, f (V K)
)

(6.6)

Pr
(
f (v)

∣∣∣ f (N U(v)), E, V T, f (V K)
)

where f (N U(v)) ranges over �v, the set of all possible class assignments to
unlabeled neighbors of v. If there are m class labels and v has k neighbors,
then |�v| = mk. Similar to naive Bayes text classifiers, we approximate the joint
probability of neighbor classes by the product of the marginals:

Pr(f (N U(v)) | E, V T, f (V K))≈
∏

w∈NU (v)

Pr
(
f (w)

∣∣∣ E, V T, f (V K)
)

(6.7)

Equation (6.7) reflects that the class probabilities of neighboring nodes are coupled
through this system of equations, which must be solved simultaneously for f (v).
Chances are, we will need to estimate some other f (w)s for w ∈ V U as well.

Instead of attempting a global optimization, which obtains a unique f for
all nodes in V U , we can start with greedy labeling, which pays attention only
to the node-labeling cost L(u, c), and then iteratively “correct” neighborhoods
where the presence of edges leads to a very high penalty in terms of the edge
costs. In the context of hypertext classification, the relaxation labeling algorithm
first uses a text classifier to assign class probabilities to each node (page). Then it
considers each page in turn and reevaluates its class probabilities in light of the

6.2 Labeling Hypertext Graphs 191

latest estimates of the class probabilities of its neighbors. (This means that, similar
to EM, nodes are always given a “soft” classification, not a “hard” one.)

We write the estimated class probabilities in the rth round as Pr(r)(f (v) |
E, V T, f (V K)). For r = 0, the probabilities are estimated using an ordinary text
classifier. Thereafter, we estimate, using Equations (6.6) and (6.7),

Pr(r+1)(f (v) | E, V T, f (V K))

≈
∑

f (NU (v))∈�v

 ∏

w∈NU (v)

Pr(r)
(
f (w)

∣∣∣ E, V T, f (V K)
)

Pr
(
f (v)

∣∣∣ f (N U(v)), E, V T, f (V K)
)

(6.8)

Here the underlined parts show the induction on timestep that is used to break
the circular definition. The theory of Markov Random Fields (MRFs), of which
this is a special case, suggests that the above recurrences will converge provided
the seed values Pr(0)(f (v) | E, V T, f (V K)) are reasonably accurate [49, 171, 173].
The product in Equation (6.8) can also be quite large, but it turns out that only
few configurations from �v have any significant probability mass to contribute to
the sum [39].

The last piece to fill in is Pr
(
f (v) | f (N U(v)), E, V T, f (V K)

)
. To make the

above expression more manageable, we invoke the assumption of a “limited range
of influence.” Thus, we approximate

Pr
(
f (v)

∣∣∣ f (N U(v)), E, V T, f (V K)
)
≈ Pr

(
f (v)

∣∣∣ f (N U(v)), E, V T, f (N K(v))
)

= Pr
(
f (v)

∣∣∣ f (N (v)), V T
)

(6.9)

where N K(v)=N (v) ∩ V K . E is dropped because “it has already done its job”
in providing information about N (v). Because we have already taken the graph
structure into account via E and N (v), we can assume that the text of nodes other
than v contain no information about f (v), so we can further simplify

Pr
(
f (v)

∣∣∣ f (N (v)), V T
)
≈ Pr

(
f (v)

∣∣∣ f (N (v)), vT
)

(6.10)

Summarizing, we need to estimate the class (probabilities) of v given the text
vT on that page and the classes of the neighbors of v. We can use Bayes’s rule to
invert that goal to building distributions for (f (N (v)), vT) conditioned on f (v).

192 C H A P T E R 6 Semisupervised Learning

1: Input: Test node v
2: construct a suitably large vicinity graph around and containing v
3: for each w in the vicinity graph do
4: assign Pr(0)(f (v) | E, V T , f (V K)) using a text classifier
5: end for
6: while label probabilities do not stabilize (r = 1, 2, . . .) do
7: for each node w in the vicinity graph do
8: update to Pr(r+1)(f (v) | E, V T , f (V K)) using Equation (6.8)
9: end for

10: end while

F I G U R E 6 . 8 The HyperClass algorithm.

(The probabilistic text classifiers in Chapter 5 estimated Pr(vT | f (v)) alone.) We
have already solved this estimation problem (albeit crudely, using the ubiquitous
independence assumptions that plague naive Bayes classifiers) in Section 6.2.1.
Now we have all the pieces we need to propose the complete testing algorithm
in Figure 6.8.

I experimented with the U.S. patent corpus mentioned before and two ver-
sions of HyperClass. In one version (dubbed Link), the update step only used
the coupling between f (v) and f (N (v)). In the other version, called Text+Link,
the joint distribution of f (N (v)) and vT was used. I randomly elided the la-
bels of a fraction of nodes in the 9600-node graph, ran the relaxation algo-
rithm shown in Figure 6.8, and checked the fraction of nodes w for which
arg maxf (w) Pr(f (w)| . . .) was the “true” label.

The results are shown in Figure 6.9. The text-based classifer has V U = ∅, so
its error is fixed. Adding semisupervised hyperlink information cuts down errors
by as much as 42%. More important, the benefits are seen even when only a small
fraction of the neighborhood of a test page has known labels, and the accuracy
varies gracefully as the extent of supervision changes. The most interesting feature
in the graph is the small gap between Link and the text-based classifier when the
test neighborhood is completely unlabeled. What extra information does Link
tap to achieve a lower error? The gain is from the implicit bias in our model that
“pages tend to link to pages with a related class label.”

TE
AM
FL
Y

Team-Fly®

6.2 Labeling Hypertext Graphs 193

0
0 20 40

Fraction of neighborhood with known labels (%)
60 80 100

20

E
rr

or
 (

%
)

25

30

35

40

Text
Link
Text+Link

F I G U R E 6 . 9 Semisupervised learning using relaxation labeling. The x-axis shows the fraction of
nodes whose labels were not concealed. The y-axis shows accuracy for three classifiers: Text, which
uses text alone, Link, which uses the coupling between f (v) and f (N (v)), and Text+Link, which
combines vT and f (N (v)) assuming feature independence.

6.2.3 A Metric Graph-Labeling Problem
It turns out that relaxation labeling is an approximate procedure to optimize a
global objective function on the hypertext graph whose nodes are being labeled
or colored. I will describe the graph-coloring framework in this section. In
principle, what a learner can infer about the topic of page u depends not only on
immediate neighbors of u but possibly on the entire Web. However, no reasonable
computational procedure can take into account the entire Web to process one
page. It is also unclear if such far-flung influences are significant or whether
capturing them is useful.

Most Web surfers know that, starting at a page with a specific topic, it is very
easy to lose one’s way among pages of diverse topics within very few clicks (see
Section 8.3). Therefore, we would expect significant clues regarding the topic of a
page u to be limited to a neighborhood of limited radius around u. As an extreme
simplification, we can assume that the only direct clue or influence is limited to a
radius of just one link.

To simplify the discussion, let us consider a hypertext graph where nodes
(documents) can belong to exactly one of two topics or classes, which we can call

194 C H A P T E R 6 Semisupervised Learning

? ?
?

?

?

?

0.6

Citation matrix

0.4
0.25 0.75

.25 black

.75 gray

F I G U R E 6 . 1 0 Semisupervised hypertext classification represented as a problem of completing a
partially colored graph subject to a given set of cost constraints.

black and gray. We are given a graph where a (typically small) subset of nodes have
known colors (i.e., topics). We are also given two other items of information:

� The marginal distribution of topics, that is, what the probability is of a
randomly picked node being black or gray.

� A 2× 2 topic citation matrix, which gives the probability of a black (respectively,
gray) node linking to a black (respectively gray) node.

The goal is to find a maximally likely coloring f of the uncolored nodes in the
graph (nodes marked with “?” in Figure 6.10). The model generalizes naturally
to the multitopic scenario.

Maximizing Pr(f (V \ V K)) is equivalent to minimizing − log Pr(f (V \
V K)). Assuming node labels/colors are picked as iid random variables from the
label distribution, the cost of assigning label f (u) to node u is − log Pr(f (u)|u),
which we can rewrite as L(u, f (u)). Generally, if c is a label, then labeling a node u
with color or topic c has a specified cost L(u, c). This part of the cost may be based
on text alone. Similarly, the probability of assigning a specific pair of labels across
an edge can be turned into a cost. Let an affinity A(c1, c2) be defined between
all pairs of colors. Labeling the endpoints of a link (u, v) with colors cu, cv has an

6.3 Co-training 195

associated cost A(cu, cv). The goal is to find a labeling f (u) for all unlabeled u so
as to minimize

Q(f)=
∑

u

L(u, f (u))+
∑

(u,v)∈E

A(f (u), f (v)) (6.11)

Kleinberg and Tardos [124] show that this problem is NP-complete and give
approximation algorithms (involving rounding the results of linear programs) with
a cost that is within a O(log k log log k) multiplicative factor of the minimal cost,
where k is the number of distinct class labels.

6.3 Co-training
A problem that arises in practice while applying metric or relaxation labeling
is the possible imbalance of power between the two parts of the cost function
in Equation (6.11): the node part and the edge part. As discussed in Chapters
4 and 5, representing accurate joint distributions over thousands of terms is not
practical in terms of space, time, and availability of training data; it is difficult
also for several hundred classes. Naive models, which assume class-conditional
attribute independence, are therefore used widely. We have seen an example in
the relaxation labeling algorithm discussed in Section 6.2.2.

The main problem with naive models is that although the feature probabilities
Pr(d|c) may be correctly ordered over the classes, their absolute values may be
quite noisy and arbitrary. This would not be a problem for ordinary classification,
but two such probability values (one, Pr(vT |f (v)), from a text-based classifier
and the other, Pr(f (N (v))|f (v)), from a link-based classifier) may have widely
different ranges of values. Generally, because the dimensionality for the textual
subproblem is higher than the link subproblem, Pr(vT |f (v)) tends to be lower in
magnitude than Pr(f (N (v))|f (v)). Care must be taken to ensure that one com-
ponent does not overwhelm the overall score. This is usually done by aggressive
pruning of textual features.

Co-training, a new semisupervised learning method proposed by Blum and
Mitchell [22], avoids the above problem by letting the classifiers maintain disjoint
feature spaces. The classifiers are isolated so that their scores are never directly
compared or compounded. Instead, the scores are used by each classifer to train
the other, hence the name of the algorithm. Figure 6.11 shows the pseudocode.
In practice, you need not limit the recommendation from one classifier to another
to just one document per class, but can instead pick small batches.

196 C H A P T E R 6 Semisupervised Learning

1: partition the feature space F into two disjoint subsets FA and FB
2: initialize two supervised learners LA and LB
3: for each document d do
4: project d to the two subspaces forming dA and dB
5: train LA with dA and LB with dB
6: end for
7: while accuracy improves do
8: LA teaches LB:
9: for each class label c do

10: LA picks that unlabeled document dA that best classifies as label c
11: LB adds dB to the training set for class c
12: end for
13: LB teaches LA:
14: for each class label c do
15: LB picks that unlabeled document dB that best classifies as label c
16: LA adds dA to the training set for class c
17: end for
18: retrain LA and LB with new training sets
19: end while

F I G U R E 6 . 1 1 Outline of the co-training algorithm.

At the beginning of Section 6.1, I proposed a “hard” variant to EM, in which
the classifier can be trained on DK and used to classify documents in D \ DK ,
which will then join the training set for subsequent iterations. I noted that if
the classifier made too many errors, the term distributions could drift and get
progressively worse. Co-training is similar to this simple scheme, except for the
important distinction that it uses two classifiers. Why would we expect co-training
to compare favorably with “hard” or regular EM?

Blum and Mitchell made a few assumptions about the data. Suppose LA (LB)
is trying to learn a target function fA (fB). First, there must be no instance d for
which fA(dA) �= fB(dB). Second, dA is conditionally independent of dB (and vice
versa) given the label of d. The intuition is that when LA is used to generate in-
stances for LB, these instances appear randomly distributed to LB (and vice versa,
owing to the conditional independence assumption). If LA and LB can each learn
in the presence of some noise in the training data, their accuracy should improve.

A natural way to test co-training is to represent each document d with two
sets of features: dA is the usual bag of words generated from the text on d, and dB

6.3 Co-training 197

Error % LA LB Combined

DU = ∅ 12.9 12.4 11.1
Co-training 6.2 11.6 5.0

(a)

0
0

10

20

30

E
rr

or
s

on
 t

es
t

da
ta

40

50

60

5 10 15 20
Co-training iterations

(b)

25 30 35 40

Hyperlink based
Page-based
Default

F I G U R E 6 . 1 2 Co-training reduces classification error (a). Reduction in error against the number
of mutual training rounds (b).

is another bag of words generated from all the available anchor text from HREF tags
that target d. These are not really independent, and yet the co-training algorithm
does well, reducing the error below the levels of both LA and LB individually, as
shown in Figure 6.12. For DU = ∅, the “combined” classifier picks a class c by
maximizing Pr(c|dA, dB), which is assumed to be Pr(c|dA) Pr(c|dB).

198 C H A P T E R 6 Semisupervised Learning

6.4 Bibliographic Notes
The application of EM to semisupervised text topic learning is by Nigam et
al. [168]. The semisupervised HyperClass algorithm has been tested only on
patents. It would be of interest to implement a practical version of it for Web
data and compare its accuracy and performance with simpler heuristics, such
as absorbing terms from targets of same-site links. I know of no attempt to
apply the Kleinberg and Tardos algorithm to real-life hypertext data; it would
be interesting to know if and by what margin the global optimization improves
beyond iterative relaxation labeling heuristics. It would also be of interest, for Web
topic directories, to measure the benefits from unsupervised text against the use
of link-derived features—which is more valuable?

All the hypertext-oriented algorithms assume, correctly, that link structure
and content are highly correlated and that there is a great deal of topical locality in
hypertext and the Web. See Section 8.3 for a more detailed discussion of content-
based locality in hypertext, as well as recent measurements of such properties by
Davison [61] and Menczer [148].

A first-order Markov Random Field (MRF) has been used throughout this
chapter for both ease of exposition and efficiency of implementation. However,
learning higher-order MRFs may be useful in some situations. For example, it
is useful to know that “computer science department homepages often link to a
list of faculty homepages, that in turn list papers, some of which could be about
robotics.” There may even be backward links involved, such as “homepages of oil
and energy-producing companies are often cited by pages about environmental
awareness, which in turn cite articles about the ozone hole.” Learning such higher-
order patterns while preventing combinatorial blowup would be valuable.

The alert reader would have noticed in Section 6.2.1 that the tokens synthe-
sized using the prefix trick were all thrown into a multinomial bag-of-words model
(see Section 4.4.1), which will share and distort the probability of events, because
events subsuming one another (L@/Computers subsumes L@/) are definitely not in-
dependent. The binary model is better at handling synthesized features, but losing
term frequency information usually makes it less accurate than a classifier based on
the multinomial model. The maximum entropy classifier (see Section 5.8) could
combine the robustness of the binary model to synthesized features with the better
accuracy of the multinomial model, and needs further study in this context.

The aspect model proposed by Hofmann [109, 110] and discussed in Sec-
tion 4.4.4 uses a few cluster or aspect variables to “bottleneck” the dependence

6.4 Bibliographic Notes 199

among terms. Similar aspect variables can be used to model the dependence be-
tween text- and link-based features. As mentioned in Section 6.1.3, it will be
important to adapt the aspect model to supervised learning by mapping between
aspects and class labels.

Blum and Mitchell conduct a detailed analysis of the conditions under which
co-training performs well, in the PAC (probabilistically approximately correct)
setting first proposed by Valiant [208]. Similar to the situation with naive Bayes
assumptions, co-training seems to work well even when the assumptions required
for accuracy boost are not met. Nigam and Ghani [166] perform further extensive
experiments to reveal the importance of various assumptions, as well as to compare
co-training with EM.

p a r t i i i
A P P L I C A T I O N S

TE
AM
FL
Y

Team-Fly®

c h a p t e r 7
S O C I A L N E T W O R K A N A L Y S I S

The size of the Web and the reach of search engines were both increasing rapidly
by late 1996, but there was growing frustration with traditional IR systems applied
to Web data. IR systems work with finite document collections, and the worth
of a document with regard to a query is intrinsic to the document. Documents
are self-contained units, and are generally descriptive and truthful about their
contents.

In contrast, the Web resembles an indefinitely growing and shifting universe.
Recall, an important notion in classic IR (see Section 3.2.1), has relatively
little meaning for the Web; in fact, we cannot even measure recall because we
can never collect a complete snapshot of the Web. Most Web search engines
present the best 10 to 20 responses on the first page, most users stop looking
after the second page, and all that seems to matter is the number of relevant
“hits” within the first 20 to 40 responses—in other words, the precision at low
recall.

Focusing on precision is not a great help, either. On one hand, Web docu-
ments are not always descriptive or truthful. Site designers use nontextual content
such as images and Flash (www.macromedia.com/) to project the desired look and
feel. Entire businesses are built on stuffing pages with invisible keywords to lure
search engines to index pages under common queries. Often, the match between
a query and a Web page can be evaluated only by looking at the link graph
neighborhood of the page. On the other hand, the Web is also afflicted with

203

204 C H A P T E R 7 Social Network Analysis

the “abundance problem.” For most short queries (such as “Java”) there are mil-
lions of relevant responses. Most Web queries are two words long. How can we
hope to identify the best 40 documents matching a query from among a million
documents if documents are not self-complete and truthful?

Apart from the sheer flux and populist involvement, the most important
features that distinguish hypertext from a text collection for IR research are
hyperlinks. Hyperlinks address the needs of amplification, elaboration, critique,
contradiction, and navigation, among others. The hyperlink graph of the Web
evolves organically, without any central coordination, and yet shows rich global
and local properties. Hyperlink graph information is a rich supplement to text,
sometimes even beating text in terms of information quality.

Starting around 1996, a frenzy of research efforts has sought to understand the
structure of the Web and to exploit that understanding for better IR. Research
has proceeded in a few major directions:

� Hyperlinks were used in conjunction with text for better topic classification.
We have seen examples of such efforts in Chapter 6.

� For broad queries that elicited large response sets from keyword search engines,
hyperlinks were used to estimate popularity or authority of the responses.
Google is a prime example of such techniques. This chapter in large part deals
with such techniques.

� Independent of specific applications, researchers made comprehensive mea-
surements on the Web and on the reach of search engines. They formulated
models of creation, modification, and destruction of nodes and links that
closely predicted observed data. The last part of this chapter deals with this
area.

This chapter deals with a variety of link-based techniques for analyzing social
networks that enhance text-based retrieval and ranking strategies. As we shall
see, social network analysis was well established long before the Web, in fact,
long before graph theory and algorithms became mainstream computer science.
Therefore, later developments in evolution models and properties of random
walks, mixing rates, and eigen systems [157] may make valuable contributions
to social network analysis, especially in the context of the Web.

7.1 Social Sciences and Bibliometry 205

7.1 Social Sciences and Bibliometry
The Web is an example of a social network. Social networks have been extensively
researched long before the advent of the Web. Perhaps coincidentally, between
1950 and 1980, around the same time that Vannevar Bush’s proposed hyper-
medium called Memex [29] was gaining acceptance, social sciences made great
strides in measuring and analyzing social networks. (See the authoritative text by
Wasserman and Faust [210] for details.)

Networks of social interaction are formed between academics by co-
authoring, advising, and serving on committees; between movie personnel by
directing and acting; between musicians, football stars, friends, and relatives;
between people by making phone calls and transmitting infections; between
countries via trading relations; between papers through citation; and between
Web pages by hyperlinking to other Web pages.

Social network theory is concerned with properties related to connectivity
and distances in graphs, with diverse applications like epidemiology, espionage,
citation indexing, and the like. In the first two examples, one might be interested
in identifying a few nodes to be removed to significantly increase average path
length between pairs of nodes. In citation analysis, one may wish to identify
influential or central papers.

7.1.1 Prestige
Using edge-weighted, directed graphs to model social networks has been quite
common. With this model, it has been clear that in-degree is a good first-order
indicator of status or prestige. More interestingly, as early as 1949, Seeley realized
the recursive nature of prestige in a social network [192, pages 234–35]:

. . . we are involved in an “infinite regress”: [an actor’s status] is a function of
the status of those who choose him; and their [status] is a function of those
who choose them, and so ad infinitum.

Consider the node (vertex) adjacency matrix E of the document citation graph,
where E[i, j]= 1 if document i cites document j, and zero otherwise. Every node
v has a notion of prestige p[v] associated with it, which is simply a positive real
number. Over all nodes, we represent the prestige score as a vector p. Suppose

206 C H A P T E R 7 Social Network Analysis

we want to confer to each node v the sum total of prestige of all u that links to
v, thus computing a new prestige vector p′. This is easily written in matrix nota-
tion as

p′ = ETp (7.1)

because

p′[v]=
∑

u

ET [v, u] p[u]

=
∑

u

E[u, v] p[u]

To reach a fixpoint for the prestige vector, one can simply start with p=
(1, . . . , 1)T and turn Equation (7.1) into an iterative assignment p← ETp, inter-
leaved with normalizing ‖p‖1=

∑
u p[u] to 1, to avoid numeric overflow. This

process will lead to a convergent solution for p and is called power iteration in lin-
ear algebra [91]. The convergent value of p, the fixpoint, is called the principal
eigenvector (i.e., the eigenvector associated with the eigenvalue having the largest
magnitude) of the matrix ET . Clearly, work by Seeley and others between 1949
and 1970 firmly established this eigen analysis paradigm. Enhancements such as
an attenuation factor (p′ = αETp) are also known.

7.1.2 Centrality
Various graph-based notions of centrality have been proposed in the social net-
work literature. The distance d(u, v) between two nodes u and v in a graph without
edge weights is the smallest number of links via which one can go from u to v.
(One can add up the edge weights in the case of a weighted graph to derive the
path length.) The radius of node u is r(u)=maxv d(u, v). The center of the graph is
arg minu r(u), the node that has the smallest radius. One may look for influential
papers in an area of research by looking for papers u with small r(u), which means
that most papers in that research community have a short citation path to u.

For other applications, different notions of centrality are useful. In the case of
trading partners and cartels, or in the study of epidemics, espionage, or suspected
terrorist communication on telephone networks, it is often useful to identify cuts:

7.1 Social Sciences and Bibliometry 207

a (small) number of edges that, when removed, disconnect a given pair of vertices.
Or one may look for a small set of vertices that, when removed (together with
edges incident with them), will decompose the graph into two or more connected
components.

The variations of graph-based formulations and measures that have been used
in the social sciences are too numerous to cover in detail; I will conclude this
section with the observation that no single measure is suited for all applications
and that the repertoire of measures is already quite mature.

7.1.3 Co-citation
If document u cites documents v and w, then v and w are said to be co-cited by
u. Documents v and w being co-cited by many documents like u is evidence
that v and w are somehow related to each other. Consider again the node (vertex)
adjacency matrix E of the document citation graph, where E[i, j]= 1 if document
i cites document j, and zero otherwise. Then

(ETE)[v, w]=
∑

u

ET [v, u]E[u, w]

=
∑

u

E[u, v]E[u, w]

= |{u : (u, v) ∈ E, (u, w) ∈ E}| (7.2)

The entry (v, w) in the (ETE) matrix is the co-citation index of v and w
and an indicator of relatedness between v and w. One may use this pairwise
relatedness measure in a clustering algorithm, such as multidimensional scaling
(MDS), discussed in Chapter 4. MDS uses the document-to-document simi-
larity (or distance) matrix to embed the documents represented as points in a
low-dimensional Euclidean space (such as the 2D plane) while “distorting” in-
terpoint distances as little as possible. Visualizing clusters based on co-citation
reveals important social structures between and within link communities. Such
studies have been performed on academic publications several years back [144]
and later by Larson on a small collection from the Web [132] concerning geo-
physics, climate, remote sensing, and ecology. A sample MDS map is shown in
Figure 7.1.

208 C H A P T E R 7 Social Network Analysis

-3

-2

-1

0

1

2

3

-2-3 -1 0

MDS map of Web co-citations

Geography/GIS

Geophysics

Remote
sensing

Weather/Climate

Ecology/
Environment

1 2
Dimension 1

D
im

en
sio

n
2

R

F T

C G

L

H

Q

I

J
O

D

B

K
P

A

E
S

U

M

N

S1: A.P.S.
S11: Global Chan
S13: ICE
S15: Xerox Map V
S17: SeaWiFS
S19: Planet Eart
S20: GeoWeb
S22: ESRG
S24: NASA-MTPE
S26: NCGIA
S28: NOAA-NODC
S3: EOS
S31: NCAR
S33: Weather Map
S4: WeatherNet
S6: CRSSA
S8: EROS

SITE

B
D
F
H
J
L
N
P
R
T

D
F
H
J
L
N
P
R
T

D
F
H
J
L
N
P
R
T

BB

S10: Climate Dat
S12: Earth Scien
S14: Climate Pre
S16: Public Use
S18: USGS Data
S2: NSF IEIS
S21: Earthquake
S23: EOS Volcano
S25: Global Warm
S27: NGDC
S29: NOHRSC
S30: NOAA-E1 N
S32: USGS
S34: AVHRR
S5: NASA-GCRB
S7: EcoWeb
S9: EnviroWeb

C
E
G
I
K
M
O
Q
S
U

E
G
I
K
M
O
Q
S
U

E
G
I
K
M
O
Q
S
U

CC
AAA

F I G U R E 7 . 1 Social structure of Web communities concerning geophysics, climate, remote sensing,
and ecology. The cluster labels are generated manually. This image is taken from Larson [132].

7.2 PageRank and HITS 209

7.2 PageRank and HITS
Two algorithms for ranking Web pages based on links, PageRank and HITS
(hyperlink induced topic search), were developed around the fall of 1996 at
Stanford University by Larry Page1 and Sergey Brin, and at IBM Almaden by
Jon Kleinberg. Both sought to remedy the “abundance problem” inherent in
broad queries, supplementing precision with notions related to prestige in social
network analysis.

In PageRank, each page on the Web has a measure of prestige that is indepen-
dent of any information need or query. Roughly speaking, the prestige of a page
is proportional to the sum of the prestige scores of pages linking to it. In HITS, a
query is used to select a subgraph from the Web. From this subgraph, two kinds of
nodes are identified: authoritative pages to which many pages link, and hub pages
that consist of comprehensive collections of links to valuable pages on the subject.

Although there are technical differences, all three measures are defined recur-
sively: prestige of a node depends on the prestige of other nodes, and the measure
of being a good hub depends on how good neighboring nodes are as author-
ities (and vice versa). Both procedures involve computing eigenvectors for the
adjacency matrix, or a matrix derived thereof, of the Web or a suitably relevant
subgraph of the Web. In this section we will study these algorithms and take a
careful look at their strengths and weaknesses.

7.2.1 PageRank
Assume for the moment that the Web graph is strongly connected—that is, from
any node u there is a directed path to node v. (It is not; we come back to this
issue a little later.) Consider a Web surfer clicking on hyperlinks forever, picking
a link uniformly at random on each page to move on to the next page. Suppose
the surfer starts from a random node in accordance with a distribution 	p0, with
probability p0[u] of starting from node u, where

∑
u p0[u]= 1. Let the adjacency

matrix of the Web be E, where E[u, v]= 1 if there is a hyperlink (u, v) ∈ E, and
zero otherwise. We overload E to denote both the edge set and its corresponding
matrix.

After clicking once, what is the probability p1[v] that the surfer is on page v?
To get to v, the surfer must have been at some node u with a link to v in the
previous step, and then clicked on the specific link that took her from u to v.

1. PageRank is named after Larry Page, a founder of Google.

210 C H A P T E R 7 Social Network Analysis

Given E, the out-degree of node u is given simply by

Nu =
∑

v

E[u, v] (7.3)

or the sum of the uth row of E. Assuming parallel edges (multiple links from u to
v) are disallowed, the probability of the latter event given the former (i.e., being
at u) is just 1/Nu. Combining,

p1[v]=
∑

(u,v)∈E

p0[u]

Nu
(7.4)

Let us derive a matrix L from E by normalizing all row-sums to one, that is,

L[u, v]= E[u, v]∑
β E[u, β]

= E[u, v]

Nu
(7.5)

With L defined as above, Equation (7.4) can be recast as

p1[v]=
∑

u

L[u, v]p0[u] (7.6)

or

p1= LTp0 (7.7)

The form of Equation (7.7) is identical to that of Equation (7.1) except for the
edge weights used to normalize the degree. After the ith step, we will get

pi+1= LTpi (7.8)

We will initially assume that nodes with no outlinks have been removed a
priori. If E and therefore L are irreducible (i.e., there is a directed path from every
node to every other node) and aperiodic (i.e., for all u, v, there are paths with
all possible number of links on them, except for a finite set of path lengths that
may be missing), the sequence (pi), i = 0, 1, 2, . . . will converge to the principal
eigenvector of LT , that is, a solution to the matrix equation p= LTp, also called
the stationary distribution of L. The prestige of node u, denoted p[u], is also called
its PageRank. Note that the stationary distribution is independent of p0.

For an infinitely long trip made by the surfer, the converged value of p
is simply the relative rate at that the surfer hits each page. There is a close
correspondence to the result of the “aimless surfer” model above and the notion
of prestige in bibliometry: a page v has high prestige if the visit rate is high, which
happens if there are many neighbors u with high visit rates leading to v.

7.2 PageRank and HITS 211

The simple surfing model above does not quite suffice, because the Web graph
is not strongly connected and aperiodic. An analysis of a significant portion of the
Web graph (a few hundred million nodes) in 2000 showed that it is not strongly
connected as a whole [28]. Only a fourth of the graph is strongly connected.
Obviously, there are many pages without any outlinks, as well as directed paths
leading into a cycle, where the walk could get trapped.

A simple fix is to insert fake, low-probability transitions all over the place. In
the new graph, the surfer first makes a two-way choice at each node:

1. With probability d, the surfer jumps to a random page on the Web.

2. With probability 1− d, the surfer decides to choose, uniformly at random,
an out-neighbor of the current node as before.

d is a tuned constant, usually chosen between 0.1 and 0.2. Because of the random
jump, Equation(7.7) changes to

pi+1= (1− d)LTpi + d

1/N · · · 1/N
...

. . .
...

1/N · · · 1/N

 pi

=
(

(1− d)LT + d

N
1N

)
pi

simplifying notation,

= (1− d)LTpi + d

N
(1, . . . , 1)T (7.9)

where N is the number of nodes in the graph. p[u] is the PageRank of node u.
Given the large number of edges in E, direct solution of the eigen system is usually
not feasible. A common approach is to use power iterations [91], which involves
picking an arbitrary nonzero p0 (often with all components set to 1/N), repeated
multiplication by (1− d)LT + d

N 1N , and intermittent scaling |pi| to one. Since
notions of popularity and prestige are at best noisy, numeric convergence is usually
not necessary in practice, and the iterations can be terminated as soon as there is
relative stability in the ordering of the set of prestige scores.

There are two ways to handle nodes with no outlink. You can jump with
probability one in such cases, or you can first preprocess the graph, iteratively
removing all nodes with an out-degree of zero (removing some nodes may lead
to the removal of more nodes), computing the PageRanks of surviving nodes,
and propagating the scores to the nodes eliminated during the preprocessing step.

212 C H A P T E R 7 Social Network Analysis

In this application, the exact values of pi are not as important as the ranking
they induce on the pages. This means that we can stop the iterations fairly quickly.
Page et al. [169] report acceptable convergence ranks in 52 iterations for a crawl
with 322 million links.

In Google, the crawled graph is first used to precompute and store the
PageRank of each page. Note that the PageRank is independent of any query
or textual content. When a query is submitted, a text index is used to first make
a selection of possible response pages. Then an undisclosed ranking scheme that
combines PageRank with textual match is used to produce a final ordering of
response URLs. All this makes Google comparable in speed, at query time, to
conventional text-based search engines.

PageRank is an important ranking mechanism at the heart of Google, but it is
not the only one: keywords, phrase matches, and match proximity are also taken
into account, as is anchor text on pages linking to a given page. Search Engine
Watch (www.searchenginewatch.com/) reports that during some weeks in 1999,
Google’s top hit to the query “more evil than Satan” returned www.microsoft.com/,
probably because of anchor text spamming. This embarrassment was fixed within
a few weeks. The next incident occurred around November 2000, when Google’s
top response to a rather offensive query was www.georgewbushstore.com/. This was
traced to www.hugedisk.com/, which hosted a page that had the offensive query
words as anchor text for a hyperlink to www.georgewbushstore.com/.

Although the details of Google’s combined ranking strategy are unpublished,
such anecdotes suggest that the combined ranking strategy is tuned using many
empirical parameters and checked for problems using human effort and regression
testing. The strongest criticism of PageRank is that it defines prestige via a single
random walk uninfluenced by a specific query. A related criticism is of the artificial
decoupling between relevance and quality, and the ad hoc manner in which the
two are brought together at query time, for the sake of efficiency.

7.2.2 HITS
In hyperlink induced topic search (HITS), proposed by Kleinberg [122], a query-
dependent graph is chosen for analysis, in contrast to PageRank. Specifically, the
query q is sent to a standard IR system to collect what is called a root set R of
nodes in the Web graph. For reasons to be explained shortly, any node u that
neighbors any r ∈ R via an inbound or outbound edge—that is, (u, r) ∈ E or
(r , u) ∈ E—is included as well (E is the edge set for the Web). The additional

TE
AM
FL
Y

Team-Fly®

7.2 PageRank and HITS 213

Keyword query
u1

u2 v

a(v) = h(u1) + h(u2) + h(u3)

u3Search
engine

Root set

Expanded set

v1

v2u

h(u) = a(v1) + a(v2) + a(v3)

v3

→
a ← (1, . . . ,1)T,

→
h ← (1, . . . ,1)T

while
→
h and

→
a change "significantly" do

→
h ← E

→
a

 h ←
→
h1 = Σwh[w]

h ← h/ h
→
a ← ETh0 = ETE

→
a0

 a ←
→
a1 = Σwa[w]

→
a ←

→
a/ a

end while

F I G U R E 7 . 2 The HITS algorithm. �h and �a are L1 vector norms.

nodes constitute the expanded set and, together with the root set, form the base set
Vq. Edges that connect nodes from the same host are now eliminated because they
are considered “navigational” or “nepotistic” (also see Section 7.3.1). Let us call
the remaining edges Eq. We thus construct the query-specific graph Gq= (Vq, Eq)

(see Figure 7.2). (I will drop the subscript q where clear from context.)
Kleinberg observed that as in academic literature, where some publications

(typically in conferences) initiate new ideas and others consolidate and survey
significant research (typically in journals or books), the Web includes two flavors
of prominent or popular pages: authorities, which contain definitive high-quality
information, and hubs, which are comprehensive lists of links to authorities. Every
page is, to an extent, both a hub and an authority, but these properties are graded.
Thus, every page u has two distinct measures of merit, its hub score h[u] and its
authority score a[u]. Collectively, the scores over all the nodes in Gq are written

as vectors 	a and 	h, with the uth vector component giving the score for node u.
As in the case of PageRank, the quantitative definitions of hub and authority

scores are recursive. The authority score of a page is proportional to the sum of
hub scores of pages linking to it, and conversely, its hub score is proportional
to the authority scores of the pages to which it links. In matrix notation, this
translates to the following pair of equations:

	a = ET 	h (7.10)
	h = E	a (7.11)

Again, power iterations may be used to solve this system of equations iteratively,
as shown in the pseudocode in Figure 7.2. When 	a attains convergence, it will be

214 C H A P T E R 7 Social Network Analysis

the principal eigenvector of ETE. 	h will converge to the principal eigenvector of
EET . Typically, runs with several thousand nodes and links “converge” in 20 to
30 iterations, in the sense that the rankings of hubs and authorities stabilize.

Summarizing, the main steps in HITS are

1. Send query to a text-based IR system and obtain the root set.

2. Expand the root set by radius one to obtain an expanded graph.

3. Run power iterations on the hub and authority scores together.

4. Report top-ranking authorities and hubs.

The entire process is generically called topic distillation. User studies [40] have
shown that reporting hubs is useful over and above reporting authorities, because
they provide useful annotations and starting points for users to start exploring a
topic.

HITS cannot precompute hub and authority scores because the graph Gq
can only be computed after query “q” is known. This is both a strength and a
weakness. The model of conferring authority through linkage clearly makes more
sense when restricted to a subgraph of the Web that is relevant to a query, and
therefore we expect HITS to need fewer ranking tweaks than PageRank once the
scores are computed. Haveliwala [98] has proposed to precompute a few topic-
specific PageRanks to address this limitation. The flip side is that HITS has to
undertake an eigenvector computation per query.

Bipartite subgraphs are key to the reinforcement process in HITS. Consider
Figure 7.2. If in some transfer step node v1 collects a large authority score, in the
next reverse transfer, the hub u will collect a large hub score, which will then
diffuse to siblings v2 and v3 of node v1. Many times, such diffusion is crucial to the
success of HITS, but it can be overdone. Some causes and remedies are discussed
in Sections 7.3 and 7.4.

The key distinction of HITS from PageRank is the modeling of hubs. Page-
Rank has no notion of a hub, but (Google) users seem not to regard this as a major
handicap to searching, probably because on the Web, great hubs soon accumulate
inlinks and thereby high prestige, thus becoming good authorities as well.

Higher-order eigenvectors and clustering

If the query is ambiguous (e.g., “Java” or “jaguar”) or polarized (e.g., “abortion”
or “cold fusion”), the expanded set will contain a few, almost disconnected, link
communities. In each community there may be dense bipartite subgraphs. In

7.2 PageRank and HITS 215

1: while X does not converge do
2: X ←MX
3: for i = 1, 2, . . . do
4: for j = 1, 2, . . . , i − 1 do
5: X(i)← X(i)− (X(i) · X(j))X(i)

{orthogonalize X(i) with regard to column X(j)}
6: end for
7: normalize X(i) to unit L2 norm
8: end for
9: end while

F I G U R E 7 . 3 Finding higher-order eigenvectors in HITS using power iterations.

such cases, the highest-order eigenvectors found by HITS will reveal hubs and
authorities in the largest near-bipartite component. One can tease out the struc-
ture and ranking within smaller components by calculating not only the principal
eigenvector but also a few more. The iterations expressed in Equation (7.10) find
the principal eigenvectors of EET and ETE. Other eigenvectors can also be found
using the iterative method. Given an n × n matrix M (= ETE, say) for which
we wish to find k eigenvectors, we initialize an n × k matrix X (generalizing the
n × 1 vector before) with positive entries. Let X(i) be the ith column of X . The
iterations are generalized to the steps shown in Figure 7.3 [91].

Similar to Larson’s study (Figure 7.1), higher-order eigenvectors can reveal
clusters in the graph structure. In the a or h vector, each graph node had only
one number as a representation. Thanks to using X , each node now has k hub
scores and k authority scores. These should not be interpreted as just more scores
for ranking but as a multidimensional geometric embedding of the nodes. For
example, if k= 2, one can plot each node as a point in the plane using its authority
(or hub) score row-vector. For a polarized issue like “abortion,” there are two
densely linked communities on the Web, with sparse connections in between,
mostly set up via eclectic hubs. A low-dimensional embedding and visualization
may bring out community clustering graphically in case a query matches multiple
link communities.

The connection between HITS and LSI/SVD

There is a direct mapping between finding the singular value decomposition
(SVD) of E, as described in Section 4.3.4, and the eigensystem of EET or ETE.
Let the SVD of E be U�V T , where UTU = I and V TV = I and � is a diagonal

216 C H A P T E R 7 Social Network Analysis

matrix diag(σ1, . . . , σr) of singular values, where r is the rank of E, and I is an
identity matrix of suitable size. Then EET = U�V TV �UT = U�I�UT =
U�2UT , which implies that EETU =U�2. Here if E is n× n with rank r , then
U is n× r ; � and �2 are r × r . Specifically, �2= diag(σ 2

1 , . . . , σ 2
r). U�2 is n× r

as well. If U (j) is the jth column of U , we can write EETU (j)= σ 2
j U (j), which

means that U (j) is an eigenvector of EET with corresponding eigenvalue σ 2
j , for

j = 1, . . . , r . If �2 is arranged such that σ 2
1 ≥ . . . σ 2

r , it turns out that finding the
hub scores for E is the same as finding U (1), and more generally, finding multiple
hubs/authorities corresponds to finding many singular values of EET and ETE.

Thus, the HITS algorithm is equivalent to running SVD on the hyperlink
relation (source,target) rather than the (term,document) relation to which SVD
is usually applied. Recall that SVD finds us vector representations for terms and
documents in “latent semantic space.” As a consequence of the equivalence shown
above, a HITS procedure that finds multiple hub and authority vectors also finds
a multidimensional representation for nodes in a hypertext graph. We can either
present the SVD representation visually to aid clustering, or use one of the many
clustering algorithms discussed in Chapter 4 on this representation of documents.

7.2.3 Stochastic HITS and Other Variants
Several subsequent studies have provided deeper analysis and comparison of HITS
and PageRank. I provide here several observations that improve our understanding
of how these algorithms work.

HITS is sensitive to local topology. The two graphs in Figure 7.4(a) differ
only in the insertion of one node (5) to turn a single edge into a chain of two
edges, something that frequently happens on the Web owing to a redirection or
reorganization of a site. You can verify that this edge splitting upsets the scores for
HITS quite significantly, whereas it leaves PageRanks relatively unaffected. More
specifically, the update equations for authorities change from the system

a2← 2a2 + a4 (7.12)
a4← a2 + a4 (7.13)

to the new system

a2← 2a2 + a4 (7.14)
a4← a4 (7.15)
a5← a2 + a5 (7.16)

7.2 PageRank and HITS 217

1

2 4

3

1 5

42

(a) (b)

3

0 1 0 0
0 0 0 0
0

E =
1 0 1

0 0 0 0

0 0 0 0
0 2 0 1
0

 ; ETE =
0 0 0

0 1 0 1

0 1 0 0
0 0 0 0
0E = 1 0 0
0 0 0 0

0 0 0 0
0 2 0 0
0; TE = 0 0 0
0 0 0 1

0 0 0 1 1 0 0

0
0
1
0

0
1
0
0

0 10

F I G U R E 7 . 4 Minor perturbations in the graph may have dramatic effects on HITS scores (a). The
principal eigenvector found by HITS favors larger bipartite cores (b).

Thus, node 5 takes the place of node 4, the mutual reinforcement between the
authority scores of nodes 2 and 4 is lost, and node 4’s authority score vanishes to
zero compared to those of nodes 2 and 5.

HITS needs bipartite cores in the score reinforcement process. Consider the
graph in Figure 7.4(b): it has two connected components, each of which is a
complete bipartite graph, with 2× 2 and 2× 3 nodes. Let us assign all hub scores
to 1 and start HITS iterations. After the first iteration, each authority score in the
smaller component will be 2 and each authority score in the larger component
will be 3. The scores will progress as follows:

Iteration hsmall asmall hlarge alarge

0 1 0 1 0
1a 1 2 1 3
1h 4 2 9 3
2a 4 8 9 27
2h 16 8 81 27

Here I ignore score scaling, because the relative magnitude of the scores illustrates
the point. In general, after i > 0 full iterations, we can show that asmall = 22i−1 and
alarge = 32i−1. Thus their ratio is alarge/asmall = (3/2)2i−1, which grows without
bound as i increases. Thus, in the principal eigenvector, the smaller component
finds absolutely no representation. In contrast, it can be verified that PageRank

218 C H A P T E R 7 Social Network Analysis

will not be so drastic; the random jump will ensure some positive scores for the
prestige of all nodes.

Many researchers have sought to improve HITS by removing some of these
anomalies. Lempel and Moran [135] proposed SALSA, a stochastic algorithm for
link structure analysis. The goal of SALSA was to cast bipartite reinforcement in
the random surfer framework. They proposed and analyzed the following random
surfer specification while maintaining the essential bipartite nature of HITS:

1. At a node v, the random surfer chooses an inlink (that is, an incoming edge
(u, v)) uniformly at random and moves to u.

2. Then, from u, the surfer takes a random forward link (u, w) uniformly at
random.

Thus, the transition probability from v to w is

p(v, w)= 1

InDegree(v)

∑
(u,v),(u,w)∈E

1

OutDegree(u)
(7.17)

This may be regarded as the authority-to-authority transition; a symmetric
formulation (follow an outlink and then an inlink) handles hub-to-hub transitions.

SALSA does not succumb to tightly knit communities to the same extent as
HITS. In fact, the steady-state node probabilities of the authority-to-authority
transition (assuming it is irreducible and ergodic) have a very simple form:

πv ∝ InDegree(v) (7.18)

That is, the SALSA authority score is proportional to the in-degree. Although
the sum in Equation (7.17) suggests a kind of sibling link reinforcement, the
probabilities are chosen such that the steady-state node probabilities do not reflect
any nonlocal prestige diffusion. It might be argued that a total absence of long-
range diffusion is at the opposite extreme from HITS, and an intermediate level
of reinforcement is better than either extreme.

A recent study by Ng et al. [162] shows that HITS’s long-range reinforcement
is bad for stability: random erasure of a small fraction (say, 10%) of nodes or edges
can seriously alter the ranks of hubs and authorities. It turns out that PageRank
is much more stable to such perturbations, essentially because of its random jump
step. Ng et al. propose to recast HITS as a bidirectional random walk by a “random
surfer” similar to PageRank: Every timestep, with probability d, the surfer jumps

7.3 Shortcomings of the Coarse-Grained Graph Model 219

to a node in the base set uniformly at random. With the remaining probability
1− d:

� If it is an odd timestep, the surfer takes a random outlink from the current
node.

� If it is an even timestep, the surfer goes backward on a random inlink leading
to the current node.

Ng et al. showed that this variant of HITS with random jumps has much better
stability in the face of small changes in the hyperlink graph, and that the stability
improves as d is increased. (They also showed this to be the case with PageRank.)
Obviously, d = 1would be most stable but useless for ranking: scores would diffuse
all over. There is no recipe known for setting d based on the graph structure alone.
It is clear that, at some stage, page content must be reconciled into graph models
of the Web to complete the design of Web IR systems [98].

7.3 Shortcomings of the Coarse-Grained Graph Model
Both HITS and PageRank use a coarse-grained model of the Web, where each
page is a node in a graph with a few scores associated with it. The model takes
no notice of either the text or the markup structure on each page. (HITS leaves
the selection of the base set to an external IR algorithm.)

In real life, Web pages are more complex than the coarse-grained model
suggests. An HTML page sports a tag-tree structure, which is rendered by browsers
as roughly rectangular regions with embedded text and hyperlinks. Unlike HITS
or PageRank, human readers do not pay equal attention to all the links on a page.
They use the position of text and links (and their interpretation of the text, of
course) to carefully judge where to click to continue on their (hardly random)
surfing.

Algorithms that do not model the behavior of human information foragers
may fall prey to many artifacts of Web authorship, which I illustrate in this
section. In the next section, I will describe several enhancements to the model
and algorithms that avoid such pitfalls.

7.3.1 Artifacts of Web Authorship
The central assumption in PageRank and HITS is that a hyperlink confers
authority. Obviously, this holds only if the hyperlink was created as a result of
editorial judgment based on the contents of the source and target pages, as is

220 C H A P T E R 7 Social Network Analysis

largely the case with social networks in academic publications. Unfortunately,
that central assumption is increasingly being violated on the Web.

Much has changed about authoring Web pages ever since those algorithms
were proposed. HTML is increasingly generated by programs, not typed in by
hand. Pages are often generated from templates and/or dynamically from relational
and semistructured databases (e.g., Zope; zope.org/). There are sites designed by
companies whose mission is to increase the number of search engine hits for their
customers. Their common strategies include stuffing irrelevant words in pages and
linking up their customers in densely connected cliques, even if those customers
have nothing in common. The creation and dissemination of hypertext happens
at an unprecedented scale today and is inexorably coupled with commerce and
advertising. I will describe three related ways in that these authoring idioms
manifest themselves.

Nepotistic links

Kleinberg summarily discarded links connecting pages on the same host, because
these links, largely authored by the same person, did not confer authority in
the same sense as an academic citation, and could therefore be regarded as
“nepotistic.”2

Soon after HITS was published, Bharat and Henzinger [18] found that the
threat of nepotism was not necessarily limited to same-site links. Two-site nepo-
tism (a pair of Web sites endorsing each other) was on the rise. In many trials with
HITS, they found two distinct sites h1 and h2, where h1 hosted a number of pages
u linking to a page v on h2, driving up a(v) beyond what may be considered fair.

Two-host nepotism can also happen because of Web infrastructure issues,
for example, in a site hosted on multiple servers such as www.yahoo.com and
dir12.yahoo.com, or the use of the relative URLs with regard to a base URL
specified with the HTML construct. If it is a simple case of mirroring,
the algorithms in Section 3.3.2 will generally fix the problem, but deliberate
nepotism also exists on the Web.

Clique attacks

Over time, two-host nepotism evolved into multihost nepotism, thanks to the
culture of professional Web-hosting and “portal” development companies. It is
now surprisingly common to encounter query response pages with elaborate

2. Page et al. do not discuss nepotistic links in their paper.

7.3 Shortcomings of the Coarse-Grained Graph Model 221

F I G U R E 7 . 5 Hyperlinks generated from templates in navigation bars do not reflect content-based
editorial judgment and often implement “clique attacks” that foil HITS-like algorithms. There are
only a handful of links related to cheese on this page, but over 60 nepotistic links going to different
hosts from ads.qaz.com/ through women.qaz.com/.

navigation bars having links to other sites with no semantic connection, just
because these sites are all hosted by a common business. I show one example
in Figure 7.5, but the Web has plenty of such pages and sites.3 These sites form a
densely connected graph, sometimes even a completely connected graph, which

3. Although these sites might disappear with time, I will give some more examples: www.411web.com/,
www.depalma-enterprises.com/, www.cyprus-domains.com/, and www.usa.worldweb.com/.

222 C H A P T E R 7 Social Network Analysis

shop.qaz.com

art.qaz.com

Expanded set

cheese.qaz.com

Root set

ski.qaz.com

F I G U R E 7 . 6 How a clique attack takes over link-based rankings.

led to my naming the phenomenon a “clique attack.” Sometimes members of the
clique have URLs sharing substrings, but they may map to different IP addresses.
It is not easy to judge from the graph alone whether the clique is a bona fide,
content-inspired link community or has been created deliberately. An example of
a clique attack is shown in Figure 7.6. Both HITS and PageRank can fall prey to
clique attacks, although by tuning d in PageRank, the effect can be reduced.

Mixed hubs

Another problem with decoupling the user’s query from the link-based ranking
strategy is that some hubs may be mixed without any attempt on the part of the hub
writer to confound a search engine. Technically, this is hard to distinguish from a
clique attack, but probably happens even more frequently than clique attacks. For
example, a hub u containing links relevant to the query “movie awards” may also
have some links to movie production companies. If a node v1 relevant to movie
awards gains authority score, the HITS algorithm (see Figure 7.2) would diffuse
the score through u to a node v2, which could be a movie production company
homepage. Another example, in the form of a section of links about “Shakespeare”
embedded in a page about British and Irish literary figures in general, is shown in
Figure 7.7. Mixed hubs can be a problem for both HITS and PageRank, because
neither algorithm discriminates between outlinks on a page. However, a system
(such as Google) using PageRank may succeed at suppressing the ill effects by
filtering on keywords at query time.

TE
AM
FL
Y

Team-Fly®

7.3 Shortcomings of the Coarse-Grained Graph Model 223

F I G U R E 7 . 7 A mixed hub on British and Irish authors with one section dedicated to Shakespeare.
(The horizontal line has been added by hand to demarcate the section.)

7.3.2 Topic Contamination and Drift
The expansion step in HITS was meant to increase recall and capture a larger
graph Gq, which was subjected to eigen analysis. Why was this needed? Here is
one reason. As of late 1996, the query “browser” would fail to include Netscape’s
Navigator and Communicator pages, as well as Microsoft’s Internet Explorer page
in the root set, because at that time these sites avoided a boring description like
“browser” for their products. However, millions of pages included blurbs such as
“this page is best viewed with a frames-capable browser such as . . .” and linked to
these authoritative browser pages.

224 C H A P T E R 7 Social Network Analysis

Conversely, sometimes good authorities would get included in the root set,
but hubs linking to them might not be adequately represented in the root set for
HITS to be able to estimate reliable authority scores for the former pages. The
radius-1 expansion step of HITS would include nodes of both categories into
the expanded graph Gq. Thus, the expansion step in HITS is primarily a recall-
enhancing device. However, this boost in recall sometimes comes at the price of
precision.

Consider a set of topics such as proposed by Yahoo!, and for simplicity assume
that each Web page belongs to exactly one topic. Experimental evidence [45, 61]
suggests that there is locality of content on the Web, that is, if a page is about
cycling, following an outlink is more likely to lead to a page about cycling as
well, compared to sampling a page uniformly at random from the Web. (The
probability that the latter action will get us a page with a specific topic c is the
fraction of pages in the Web belonging to topic c.)

This locality works in a very short radius, however. The probability of a page
linking to another page of the same topic falls short of one for nontrivial topics,
and the more specific the topic is, the smaller is this probability. Within a small
number of links, the probability that all nodes have the same topic as the starting
point vanishes rapidly.

Expansion by a single link was the maximum that could usually be tolerated
by HITS; at radius two, most of the pages would be off-topic and the output
of HITS would be largely unsatisfactory. (Indefinite graph expansion with HITS
would make it degenerate to a PageRank-like scoring system with no connection
to any specific query.) Even at radius one, severe contamination of the root set
may occur, especially if pages relevant to the query are often linked to a broader,
more densely linked topic. For example, at one time4 the graph Gq corresponding
to the query “movie awards” included a large number of movie company pages
such as MGM and Fox, together with a number of hubs linking to them more
densely than the subgraph that contained pages related to Oscar, Cannes, and so
on. As a result, the hub and authority vectors have large components concentrated
in nodes about movies rather than movie awards.

The above example is one of topic generalization. Another possible problem
is that of topic drift. For example, pages on many topics are within a couple of

4. Both the Web and HITS have undergone significant evolution, so these specific anecdotes may
be transient, although similar examples abound.

7.4 Enhanced Models and Techniques 225

links of sites like Netscape, Internet Explorer, and Free Speech Online. Given the
popularity of these sites, HITS (and PageRank) runs the danger of raising these
sites to the top once they enter the expanded graph. Drift and contamination can
sometimes be purposefully engineered, as in Figure 7.5. In effect, a Trojan horse
page connected to a large clique can overwhelm any purely graph-based analysis
(as in Figure 7.6).

An ad hoc fix is to list known stop-sites that would be removed from the ex-
panded graph, but this could have undesirable effects as the notion of a “stop-site”
is often context-dependent. For example, for the query “java,” www.java.sun.com/
is a highly desirable site, whereas for a narrower query like “swing,” it may be
considered too general.

Topic contamination may affect both HITS and PageRank. The top results
from HITS may drift away from the query. The PageRank of irrelevant nodes may
become unduly large because of membership or proximity to dense subgraphs.
Again, a system (such as Google) using PageRank as one of many scores in ranking
may be able to avoid problems by using a suitable relative weighting of scores.

7.4 Enhanced Models and Techniques
In this section we will consider hyperlink information in conjunction with text
and markup information, model HTML pages at a finer level of detail, and propose
enhanced prestige ranking algorithms.

The models that we have discussed thus far offer very simple and elegant
representations for hypertext on the Web. Consequently, the mature fields of
graph theory and matrix algebra can then be brought to bear. As we have seen in
the previous section, such simple graph models break down in a variety of ways.
This section offers solutions to some of the problems with the simplistic models.

7.4.1 Avoiding Two-Party Nepotism
Bharat and Henzinger [18] invented a simple and effective fix for two-site nepo-
tism (the B&H algorithm). They observed that ascribing one unit of voting power
to each page pointing to a given target may be too extreme, especially if those
source pages are all on the same Web site. They proposed that a site, not a page,
should be the unit of voting power. Therefore, if it is found that k pages on a
single host link to a target page, these edges are assigned a weight of 1/k. This is
unlike HITS, where all edges have unit weight.

226 C H A P T E R 7 Social Network Analysis

This modification changes E from a zero-one matrix to one with zeros and
positive real numbers. However, EET and ETE remain symmetric, and the rest of
the HITS computation goes through as before. In particular, all eigenvectors are
guaranteed to be real, and higher-order vectors can be used to identify clusters and
link-based communities. Bharat and Henzinger evaluated the weighted scheme
with the help of volunteers, who judged the output to be superior to unweighted
HITS.

Although it is easy to modify the PageRank formulation to take edge weights
into account, it is not publicly known if the implementation of PageRank in
Google uses edge weights to avoid two-party (or other forms of) nepotism.
Another idea worth experimenting with is to model pages as getting endorsed by
sites, not single pages, and compute prestige for sites as well, represented by some
sort of aggregated supernodes.

Although the B&H edge-weighting scheme reduces the problems of two-host
nepotism, multihost nepotism is harder to isolate from a genuinely authoritative
Web community. We shall study one approach to reducing that problem in
Section 7.4.4.

7.4.2 Outlier Elimination
Bharat and Henzinger [18] observed that keyword search engine responses are
largely relevant to the query (even if they are not of the highest quality or
popularity). It is the indiscriminate expansion of links that is mostly responsible for
contaminating the expanded graph. They devised a content-based mechanism to
reduce contamination and resulting drift. Before performing the link expansion,
they computed the term vectors of the documents in the root set (using the TFIDF
model described in Section 3.2.2) and the centroid µ of these vectors. When the
link expansion was performed, any page v that was “too dissimilar” to the centroid
µ (i.e., the cosine between the vector representation of v and µ was too small)
was discarded, and HITS-like iterations were performed only over the surviving
pages.

In HITS, expansion to a radius more than one could be disastrous. Outlier
elimination in the B&H algorithm has quite a stabilizing effect on graph expan-
sion, especially if the relevant root set is large. One may envisage a system that
continues indefinite expansion and keeps pruning outliers in the vector space.
However, the centroid will gradually drift, even if much more slowly than in
HITS, and eventually the expanded set will bear little relevance to the query. In
Chapter 8 we will study techniques to control the expansion of the graph by using
supervised learning and other ideas.

7.4 Enhanced Models and Techniques 227

Keyword query =
set of words {q}

One
response

document

Hash table
mapping
URLs to

score,
initialized
to zero

Another
page

Hyperlink

Look up
HREF target
in hash table
and increment
score

Activation sliding
window width 2K

A query term q

Response
documents

Search engine

F I G U R E 7 . 8 A simple ranking scheme based on evidence from words near anchors.

7.4.3 Exploiting Anchor Text
There is a simple if crude way in which the initial mapping from a keyword query
to a root set followed by the graph expansion can be folded into a single step, in
fact, one that does not involve power iterations. Consider each page in the root set
not as a single node in a graph, but as a nested graph that is a chain of “micronodes.”
Each micronode is either a textual token or an outbound hyperlink. Tokens that
appear in the query are called activated. (Assume for simplicity that the query has
no negated token and a phrase is a compound token.)

Prepare a map from URLs to integer counters, initialized to all zeros. Pick
a positive integer k. Consider all outbound URLs that are within a distance of
k links of any activated node. Increment the counter associated with the URL
once for every activated node encountered. Finally, sort the URLs in decreasing
order of their counter values and report the top-rated URLs. The procedure,
called Rank-and-File [36], is illustrated in Figure 7.8. Note that only the root set
is required for the analysis.

With some tuning of k, the answers from Rank-and-File are astonishingly
good for many broad queries. Note that although pages outside the root set are
not fetched (and this makes the method substantially faster than HITS or B&H),
URLs outside the root set are being rated. In effect, this method is like spreading
an activation from terms to neighboring links.

228 C H A P T E R 7 Social Network Analysis

Just like HITS may return better results than those obtained by sorting by in-
degree, the simple one-step procedure above can be improved by bringing power
iterations back into it. The simplest way to do this is to tweak the edge weights in
the graph on which power iterations are performed. In HITS, all edges have unit
weight. Taking the cue from Rank-and-File, we can increase the weights of those
hyperlinks whose source micronodes are “close” to query tokens. This is how the
Clever5 project and search system [40] combined HITS and Rank-and-File.

Another modification is to change the shape of the activation window. In
Rank-and-File, the activation window used to be a zero-one or rectangular win-
dow of width 2k. Instead, we can make the activation window decay continuously
on either side of a query token.6 The activation level of a URL v from page u can
be the sum of contributions from all query terms near the HREF to v on u.

The decay is an attempt to reduce authority diffusion, which works reasonably
well, even though mixed hubs often have sharp section boundaries. For example, a
personal bookmark hub may have a series of sections, each with a list of URLs with
corresponding annotations. A query term matching terms in the first annotation
of section i may activate the last few URLs in section (i − 1). The heuristics
in Clever work reasonably well, partly because not all multisegment hubs will
encourage systematic drift toward a fixed topic different from the query topic.

A stock of queries with preranked answers and a great deal of human effort is
necessary to make the best choices and tune all the parameters. This was indeed
the case with the Clever project; three or four researchers spent a few hours per
week over a year running experiments and inspecting results for anomalies.

7.4.4 Exploiting Document Markup Structure
I sketch below the key transitions in modeling Web content that characterize the
discussion thus far in this chapter:

HITS: Each page is a node without any textual properties. Each hyperlink is
an edge connecting two nodes with possibly only a positive edge weight
property. Some preprocessing procedure outside the scope of HITS chooses
what subgraph of the Web to analyze in response to a query.

5. Clever was intended to be an acronym for client-side eigen vector enhanced retrieval.

6. Negated terms can be used for the keyword search, but there seems to be no clear way to use them
in the activation step.

7.4 Enhanced Models and Techniques 229

B&H algorithm: The graph model is as in HITS, except that nodes have additional
properties. Each node is associated with a vector-space representation of the
text on the corresponding page. After the initial subgraph selection, the B&H
algorithm eliminates nodes whose corresponding vectors are far from the
typical vector computed from the root set.

Rank-and-File: This replaced the hubs-and-authorities model with a simpler one.
Each document is a linear sequence of tokens. Most are terms, some are
outgoing hyperlinks. Query terms activate nearby hyperlinks. No iterations
are involved.

Clever: A page is modeled at two levels. The coarse-grained model is the same
as in HITS. At a finer grain, a page is a linear sequence of tokens as in Rank-
and-File. Proximity between a query term on page u and an outbound link
to page v is represented by increasing the weight of the edge (u, v) in the
coarse-grained graph.

All these models are approximations to what HTML-based hypermedia really
is. A more faithful view is shown in Figure 7.9. HTML pages are characterized by
tag-trees, also called the document object model (DOM). DOM trees are intercon-
nected by regular HREFs. (For simplicity, I remove location markers indicated by a #
sign from URLs, which occurs in a very small fraction of search engine responses.
Therefore, all HREF targets are DOM tree roots.) I will call this the fine-grained model.

Segmenting DOM trees

Upon encountering the pages shown in Figures 7.5 or 7.7, a human surfer will
have no problem in focusing on links appearing in zone(s) relevant to his interest
and avoiding links in other zones. For uniformity, clique attack and mixed hubs
will be collectively called multitopic pages in this section.

We can name at least two kinds of clues that help users identify relevant zones
on a multitopic page. An obvious one is text. In Figure 7.5, the term “cheese”
occurs in only a limited area, and likewise for “Shakespeare” in Figure 7.7. The
other clue to a zone’s promise is its density of links to relevant sites known to the
user. I will focus on textual clues for the rest of this discussion.

Perhaps the first idea that comes to mind is to give preferential treatment to
DOM subtrees where query terms occur frequently. This scheme will not work
very well for some queries, even if we could somehow define what “frequently”
means. For example, for the query “Japanese car maker,” DOM subtrees with

230 C H A P T E R 7 Social Network Analysis

<html> ... <body> ...
<table ...>
<tr><td>

<table ...>
<tr><td>art</td></tr>
<tr><td>ski</td></tr>...
</table>

</td></tr>
<tr><td>

Fromages.com
French cheese ...
Teddington...
Buy online...
...

</td></tr>
</table>...
</body></html>

Relevant
subtree

teddingtoncheese.co.ukwww.fromages.comski.qaz.com

Html

head body

art.qaz.com

table

table

Irrelevent
subtree

tr tr td

tr tr

ul

td

tr li lili

a atd tdtd

a a

Frontier of
differentiation

F I G U R E 7 . 9 Characterization of hypertext as a collection of interconnected trees. The HTML
tag-tree of a multitopic hub can be segmented into relevant and irrelevant subtrees.

7.4 Enhanced Models and Techniques 231

sushi: sushi, japanese, restaurant, page, bar, rice, roll
gardening: garden, home, plants, information, organic, click
bicycling: bike, bicycle, page, site, ride, tour, new, sports
alcoholism: alcohol, treatment, drug, addiction, recovery, abuse
blues: blues, site, festival, jazz, music, new, society

F I G U R E 7 . 1 0 Despite a few Web-specific words (“click,” “site”) and mild generalizations (“drug”),
the largest components of root set centroid vectors are extremely intuitive.

links to www.honda.com/ and www.toyota.com/ rarely use any of the three query
words; they instead use just the names of the companies, such as “Honda” and
“Toyota.” Therefore, depending on direct syntactic matches between query terms
and the text in DOM subtrees can be unreliable.

One idea from the B&H algorithm comes to our aid. Even though query
terms are difficult to find near good links, the centroid of the root set features
“Honda” and “Toyota” with large weights. Other similar examples are shown in
Figure 7.10. Therefore, to estimate the relevance of a DOM subtree rooted at
node u with regard to a query, we can simply measure the vector-space similarity
(like B&H) between the root set centroid and the text in the DOM subtree,
associating u with this score.

For a multitopic page (such as the one in Figure 7.5, shown as a DOM in
Figure 7.9), what kind of pattern can we expect to see in these scores? If we
already knew the frontier of differentiation in Figure 7.9, we would expect the
irrelevant subtree (containing the clique attack or nepotistic links) to have a small
score and the subtree related to cheese to have a larger score. Above the frontier,
these scores would be averaged out somewhat because of the cosine measure (the
Jaccard measure described in Section 3.3.1 may do the same). The score at the
root of the page in Figure 7.9 would be in between the scores at the relevant
subtree root and irrelevant subtree root. By the same token, descendants of the
relevant subtree root will also have scores distributed both above and below the
subtree root score. So what is special about the frontier?

To answer this question, we need a generative model for the text embedded
in the DOM tree. Atomic blocks of text occur only at some leaves in the DOM
tree (e.g., between <A> and or between <P> and </P>). We consider these
microdocuments. Each internal node represents a collection of microdocuments,
those that appear as leaves in the subtree rooted at that internal node. We can
use any of the generative models discussed in Section 4.4.1 to characterize the

232 C H A P T E R 7 Social Network Analysis

1: Input: DOM tree of an HTML page
2: initialize frontier F to the DOM root node
3: while local improvement to code length possible do
4: pick from F an internal node u with children {v}
5: find the cost of pruning at u (see text)
6: find the cost of expanding u to all v (see text)
7: if expanding is better then
8: remove u from F
9: insert all v into F

10: end if
11: end while

F I G U R E 7 . 1 1 Greedy DOM segmentation using MDL.

distribution of terms in a collection of microdocuments. I will represent such a
generic term distribution as .

Let the term distribution over all microdocuments over all Web pages in
Vq be 0. One may imagine a “superroot” node whose children are the DOM
roots of all Web pages in Vq. Then 0 is the term distribution associated with
this superroot. Smaller sets of microdocuments about specific topics will have
term distributions different from 0. Subtrees concerning different topics in a
multitopic page are expected to have somewhat different term distributions.

Given a DOM subtree with root node u, we can greedily decide if it is “pure”
or “mixed” by comparing some cost measure for the following two options:

� The tree Tu rooted at u is pure, and a single term distribution u suffices to
generate the microdocuments in Tu with large probability. In this case we prune
the tree at u.

� u is a point of differentiation (see Figure 7.9), and each child v of u has a different
term distribution v from which the microdocuments in their corresponding
subtrees were generated. In this case we expand the tree at u.

We can start this process at the root and continue expansion until no further
expansion is profitable as per the cost measure, as shown in Figure 7.11.

As with applications of the Minimum Description Length (MDL) principle (see
Section 4.4.5), we can devise a model cost and data cost to drive the search
for the frontier. The model cost at DOM node u is the number of bits needed
to represent the parameters of u, denoted L(u), which is encoded with
regard to some prior distribution � on the parameters (similar to Section 5.6.1),

TE
AM
FL
Y

Team-Fly®

7.4 Enhanced Models and Techniques 233

approximately − log Pr(u|�). The data cost at node u is the cost of encoding
all the microdocuments in the subtree Tu rooted at u with regard to the model
u at u, approximately −∑

d∈Tu
log Pr(d|u).

Fine-grained topic disti l lation

We will now integrate the segmentation step described before into a HITS/B&H-
style topic-distillation algorithm.

There is a certain asymmetry between how people interpret hubs and au-
thorities, despite the symmetric formulation of HITS. A good authority page is
expected to be dedicated in its entirety to the topic of interest, whereas a hub is
acceptable if it has a reasonable number of links relevant to the topic of interest,
even if there are some irrelevant links on the page. The asymmetry is reflected
in hyperlinks: unless used as navigational aids, hyperlinks to a remote host almost
always point to the DOM root of the target page.7

We will use DOM segmentation to contain the extent of authority diffusion
between co-cited pages (like v1 and v2 in Figure 7.2) through a multitopic hub u. If
we believe that u should be segmented into unrelated regions, we should represent
u not as a single node but with one node for each segmented subtree of u, which
will have the desirable effect of disaggregating the hub score of u, preventing the
relevant portion of hub scores from reinforcing the putative authorities linked
from irrelevant regions of the hub DOM tree. For example, in Figure 7.9, two
nodes would be created, one for the unwanted subtree and one for the favored
subtree. We expect that the latter will take an active role in reinforcing good
authorities, whereas the former’s score will dwindle in comparison. Figure 7.12
illustrates this step.

The complete algorithm is given in Figure 7.13. We allow only the DOM
tree roots of root set nodes to have a nonzero authority score when we start, unlike
HITS and B&H, which set all scores to positive numbers. We believe that positive
authority scores should diffuse out from the root set only if the connecting hub
regions are trusted to be relevant to the query. Accordingly, the first half-iteration
implements the h← Ea transfer.

For the transfer steps, the graph represented by E does not include any internal
nodes of DOM trees. The new steps segment and aggregate are the only steps

7. To be fair, authors avoid linking to internal regions of pages also because the HREF will break if
the author of the target pages removes the <a name...> marker.

234 C H A P T E R 7 Social Network Analysis

0.
10

0.
20

0.
01

0.
06

0.
05

0.
13

0.
10

0.
20

0.
12

0.
12

0.
12

0.
13

0.
10

0.
12

0.
20

0.
13

(a) (b)

(c) (d)

F I G U R E 7 . 1 2 To prevent unwanted authority diffusion, we aggregate hub scores along the frontier
nodes (no complete aggregation up to the DOM root) followed by propagation to the leaves. Initial
values of leaf hub scores are indicated (a). Must-prune nodes are marked (b). Frontier microhubs
accumulate scores (c). Aggregate hub scores are copied to leaves (d).

that involve internal DOM nodes. Therefore, only DOM roots have positive
authority scores, and only DOM leaves (corresponding to HREFs) have positive
hub scores.

I have focused on text-based DOM segmentation, but I said near the begin-
ning of Section 7.4.4 that outlinks to known authorities can also help us segment
a hub. Specifically, if all large leaf hub scores are concentrated in one subtree of a
hub DOM, we may want to limit authority reinforcement to this subtree. At the
end of an h← Ea transfer step, we could use only the leaf hub scores (instead of
text) to segment the hub DOMs. The general approach to DOM segmentation
remains unchanged; we only have to propose a different and �. When only
hub score–based segmentation is used in Figure 7.13, let us call the resulting algo-
rithm DOMHITS. We can also combine clues from text and hub scores [42]. For
example, we can pick the shallowest frontier or we can design a joint distribution
combining text and hub scores. Let us call such an algorithm DOMTextHITS. We
discuss the performance of DOMHITS and DOMTextHITS in the next section.

7.5 Evaluation of Topic Distillation 235

1: collect Gq for the query q
2: construct the fine-grained graph from Gq
3: set all hub and authority scores to zero
4: for each page u in the root set do
5: locate the DOM root ru of u
6: set aru = 1
7: end for
8: while scores have not stabilized do
9: perform the h← Ea transfer

10: segment hubs into “microhubs”
11: aggregate and redistribute hub scores
12: perform the a← ETh transfer
13: normalize |a|
14: end while

F I G U R E 7 . 1 3 Fine-grained topic distillation. Note that the vertex set involved in E includes only
DOM roots and leaves and not other internal nodes. Internal DOM nodes are involved only in the
steps marked segment and aggregate.

7.5 Evaluation of Topic Disti l lation
The huge success of Google speaks for itself, but then, Google today is much
more than just PageRank alone. From the perspective of controlled, reproducible
research experiments, it is extremely difficult to evaluate HITS, PageRank, and
other similar algorithms in quantitative terms, at least until benchmarks with the
extent, detail, and maturity of IR benchmarks are constructed. Currently the
evaluation seems largely based on an empirical and subjective notion of authority.
As one example of the subjective nature of the formulation, there is no up-front
reason why conferral of authority ought to be linear, or even compoundable. In
this section I will discuss a few papers that have sought to measure, using human
effort and/or machine learning techniques, the efficacy of various algorithms for
social network analysis applied to the Web.

7.5.1 HITS and Related Algorithms
Kleinberg’s original paper [122] and a follow-up experience report [89] describe
a number of experiments with HITS. HITS has been found reasonably insensitive
to the exact choice of the root set. This property was tested by picking a root set
with 200 nodes and iterating HITS 50 times to derive the “ground truth” set of
10 hubs and 10 authorities, which we may call C10(200, 50), in general, C10(r , i)
for r root set pages and i iterations. Figure 7.14 shows the size of intersections

25

5

10

15

20

50 100

O
ve

rl
ap

 w
ith

 fu
ll

co
m

m
un

ity

(a)
200

1
3
10
50

Iterations
1
3
10
50

Iterations

25

10

5

15

20

1
3
10
50

Iterations
1
3
10
50

Iterations

10

5

15

20

50 100
(b)

200

25 50 100

O
ve

rl
ap

 w
ith

 fu
ll

co
m

m
un

ity

(c)
200

1
3
10
50

Iterations
1
3
10
50

Iterations

25

5

10

15

20

50 100
(d)

“Harvard” “Cryptography”

“English literature” “Skiing”

“Optimization” “Operations research”

200

25

5

10

15

20

50 100

O
ve

rl
ap

 w
ith

 fu
ll

co
m

m
un

ity

Root set size
(e)

200 25

5

10

15

20

50 100
Root set size

(f)

200

F I G U R E 7 . 1 4 For six test topics HITS shows relative insensitivity to the root-set size r and the
number of iterations i. In each case, the y-axis shows the overlap between the top 10 hubs and
top 10 authorities (20 pages total) and the “ground truth” obtained by using r = 200 and i = 50.

7.5 Evaluation of Topic Distillation 237

between C10(200, 50) and C10(r , i) for r = 25, 50, 100, 200 and i = 1, 3, 10, 50
for six topics.

One may also use different search engines to generate the root set. A 1998
study by Bharat and Bröder [16] showed that the portions of the Web covered
by major search engines have small overlap. When seeded from different search
engines (AltaVista, Infoseek, and Excite) the principal communities (i.e., the
communities corresponding to the largest eigenvalue) discovered by HITS were
different. Ng et al.’s study [162] of the stability of HITS corroborates this obser-
vation. However, the principal community found using one search engine was
often found as a nonprincipal community (corresponding to some other eigen-
value) using another search engine. Another way to perturb the root set is to ask
the query in different languages, for example, “astrophysics” and “astrophysique.”
The top authorities in the principal community for the query “astrophysics” were
found to largely overlap with the top authorities in a nonprincipal community
for the query “astrophysique.”

There are two recent careful empirical evaluations of the efficacy of various
link-based ranking strategies. Amento et al. [5] chose five queries that corre-
sponded to broad topics in Yahoo! They used Yahoo! to assemble the root set.
Some of the rank orderings used were

PR: PageRank as computed over the expanded graph (not large crawls of the
Web).

HITS: HITS with B&H edge weights, as described in Section 7.4.1.

IN: The number of sites that link to this site, computed on a coarse site-level
graph.

Forty volunteers ranked URLs, which were then used to judge the quality of
these orderings. Amento et al. first confirmed that there were large, significant
correlations (in the range of 0.6 to 0.8) between the rankings produced by the
volunteers, indicating that consistent notions of quality exist. (Otherwise the other
measurements would have been pointless.)

From volunteer input, it was found that about a 0.32 fraction of all documents
were of high quality, the precision at rank 5 is about 0.75, and the precision at
rank 10 about 0.55 using the various link-based rankings, which were all com-
parable in performance. The correlation between the various ranking methods
is shown in Table 7.1. Of course, these numbers do not mean that the no-
tion of “all links are not equal” underlying the HITS family of algorithms is

238 C H A P T E R 7 Social Network Analysis

Topic IN and HITS IN and PR HITS and PR

Babylon 5 0.97 0.93 0.90
Buffy 0.92 0.85 0.70
Simpsons 0.97 0.99 0.95
Smashing Pumpkins 0.95 0.98 0.92
Tori Amos 0.97 0.92 0.88

Spearman average 0.96 0.93 0.87

Kendall average 0.86 0.83 0.75

T A B L E 7 . 1 Authority rank correlation across different ranking strategies shows broad agreement.

invalidated. The queries and communities experimented with were quite differ-
ent (compare the topics in Figure 7.14 with those in Table 7.1), as were the times
of experimentation (1997 and 2000).

Surprisingly, a very simple scoring heuristic called NumPages performed quite
close to the link-based strategies. NumPages simply set the score of page u to the
number of pages published on the host serving the page u, which is a rough
indication of how extensive the site is on the topic of the query. This measure
was surprisingly strongly correlated with authority scores.

The second user study has been conducted by Singhal and Kaszkiel [195].
The National Institute of Standards and Technology (trec.nist.gov/) organizes an
annual IR competition called the Text REtrieval Conference (TREC). Since
1998, TREC has added a “Web Track” featuring 500,000 to 700,000 pages from
a 1997 Web crawl collected by the Internet Archive [99] and real-life queries
collected from commercial search engine logs. The top 1000 results returned by
competition participants are assessed by TREC personnel to generate precision
scores (see Section 3.2.1). The goal in this competition is not to compile a
collection of high-quality links about a topic, but to locate the obvious page/site
from a keyword description. Although this task is not directly comparable to topic
distillation, the results of the study are quite instructive, the main result being that
link-based ranking strategies decisively beat a state-of-the-art IR system on Web
workloads (see Figure 7.15).

7.5.2 Effect of Exploiting Other Hypertext Features
Clever [40] was evaluated using 26 queries first used in the Automatic Resource
Compilation (ARC) system [38] and later by Bharat and Henzinger [18]. Clever,

7.5 Evaluation of Topic Distillation 239

1
0

10

20

30

40

50

60

70

80

90

100

2 3 4 5

Rank of relevant page

Q
ue

ri
es

 s
at

isf
ie

d
at

 r
an

k
(%

)

6 7 8 9 10

TFIDF

SE1

SE2

SE3

SE4

F I G U R E 7 . 1 5 Link-based ranking beats a traditional text-based IR system by a clear margin for
Web workloads. One hundred queries were evaluated. The x-axis shows the smallest rank where
a relevant page was found, and the y-axis shows how many out of the 100 queries were satisfied
at that rank. A standard TFIDF ranking engine is compared with four well-known Web search
engines (Raging Search, Lycos, Google, and Excite). Their respective identities have been withheld
in this chart by Singhal and Kaszkiel [195].

Yahoo!, and AltaVista were compared. AltaVista and Clever directly used the
query as shown in Figure 7.16. For Yahoo!, the query was mapped manually to
the best-matching leaf category. The top 10 pages were picked from AltaVista,
the top 5 hubs and authorities were picked using Clever, and 10 random URLs
were picked from Yahoo!. These were rated as bad, fair, good, and fantastic by
37 volunteers, with good and fantastic ratings regarded as relevant. Clever won in
50% of the queries; Clever and Yahoo! tied in 38% of the queries; Yahoo! won
in 19% of the queries; and AltaVista never beat the others.8

8. Results today are likely to differ; since our experiments, most search engines appear to have
incorporated some link-based ranking strategy.

240 C H A P T E R 7 Social Network Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

“A
ffi

rm
at

iv
e

ac
tio

n”

R
el

at
iv

e
pr

ec
isi

on

“A
lc

oh
ol

ism
”

“A
m

us
em

en
t

pa
rk

”
“B

ic
yc

lin
g”

“B
lu

es
”

“C
he

es
e”

“C
la

ss
ic

al
 g

ui
ta

r”
“C

om
pu

te
r

vi
sio

n”
“C

ru
ise

s”
“F

ie
ld

 h
oc

ke
y”

“G
ar

de
ni

ng
”

“G
ra

ph
ic

 d
es

ig
n”

“G
ul

f W
ar

”
“H

IV
/A

ID
S”

“L
ym

e
di

se
as

e”
“M

ut
ua

l f
un

ds
”

“P
ar

al
le

l a
rc

hi
te

ct
ur

e”
“R

ec
yc

lin
g

ca
ns

”
“R

oc
k

cl
im

bi
ng

”
“S

ha
ke

sp
ea

re
”

“S
ta

m
p

co
lle

ct
in

g”
“S

us
hi

”
“T

ab
le

 t
en

ni
s”

“T
el

ec
om

m
ut

in
g”

“T
ha

ila
nd

 t
ou

ri
sm

”
“V

in
ta

ge
 c

ar
”

A
ve

ra
ge

Alta Vista
Yahoo!
Clever

F I G U R E 7 . 1 6 In studies conducted in 1998 over 26 queries and 37 volunteers, Clever reported
better authorities than Yahoo!, which in turn was better than AltaVista. Since then, most search
engines have incorporated some notion of link-based ranking.

Experiments based on the same query collection were also used for evaluating
the B&H topic system, again using volunteer input. Results shown in Figure 7.17
show relative precision for HITS, HITS enhanced with edge weights to fight two-
host nepotism, and this in turn enhanced with outlier elimination (documents
with similarity better than median to the centroid of the base set were retained).
Significant improvements are seen in the precision judgments.

DOMHITS and DOMTextHITS show visible resistance to topic drift as
compared to HITS [42]. These experiments did not depend on volunteers.
Instead, the following strategy was used:

1. The Open Directory from dmoz.org (a topic taxonomy like Yahoo!) was
massaged to form a classification system with about 250 classes covering
most major topics on the Web, together with at least 1000 sample URLs
per topic.

2. A text classifier called Rainbow (see Chapter 5) was trained on these classes.

7.5 Evaluation of Topic Distillation 241

Auth5
0

0.1
0.2
0.3
0.4
0.5

R
el

at
iv

e
pr

ec
isi

on

0.6
0.7
0.8
0.9

1

Hubs5 Auth10

HITS
+Edge weighting
+Outlier

Hubs10

F I G U R E 7 . 1 7 B&H improves visibly beyond the precision offered by HITS. (“Auth5” means the
top five authorities were evaluated.) Edge weighting against two-site nepotism already helps, and
outlier elimination improves the results further.

3. A few topics (/Arts/Music/Styles/classical/Composers, /Arts/Visual_Arts,
/Business/Human_Resources, and /Computers/Security) were chosen from the
complete set of topics for experimentation. For each chosen topic, 200 URLs
were sampled at random from the available examples to form the root set.

4. HITS, DOMHITS, and DOMTextHITS were run starting from each of these
root sets.

5. For each class/topic c, the top 40 authorities, excluding pages already in the
root set, were submitted to the Rainbow classifier. For each such document
d, Rainbow returned a Bayesian estimate of Pr(c|d), the posterior probability
that document d was generated from (i.e., is relevant to) topic c.

6. By linearity of expectation,
∑

d Pr(c|d)=∑
d E([d ∈ c])= E(

∑
d[d ∈ c]) is

the expected number of authorities relevant to c, which is a measure of
“staying on topic.”

Figure 7.18 shows that across the topic, DOMTextHITS is more resistant
to topic drift than DOMHITS, which is more resistant than HITS. How do
DOMHITS and DOMTextHITS resist drift? Figure 7.19 shows the number of
DOM nodes pruned (that is, judged to be on the frontier) and expanded in
the first few iterations of the while-loop in Figure 7.13 (using DOMHITS).
Two queries are shown. For the first query, “bicycling,” there is no danger of
drift, and the number of pruned nodes increases quickly, while the number of

242 C H A P T E R 7 Social Network Analysis

“Music”
0
5

10
15
20

Su
m

 o
f r

oo
t

cl
as

s
pr

ob
ab

ili
tie

s

25
30
35
40

“Visual arts” “HR”

HITS
DOMHITS
DOMTextHITS

“Security”

F I G U R E 7 . 1 8 Top authorities reported by DOMTextHITS have the highest probability of being
relevant to the Open Directory topic whose samples were used as the root set, followed by
DOMHITS and finally HITS. This means that topic drift is smallest in DOMTextHITS.

expanded nodes falls. This means that DOMHITS accepts a large number of
pages as pure hubs. For the other query, “affirmative action,” there is a clique
attack from popular software sites owing to a shareware of that name. In this
case, the number of expanded nodes keeps increasing with subsequent iterations,
meaning that DOMHITS rightly suspects mixed hubs and expands the frontier
until they reach leaf DOM nodes, suppressing unwanted reinforcement.

0
0

1 2 3 4 5
“Bicycling”

6 7 8 9 10

500
1000
1500
2000
2500
3000
3500
4000

0
0

1 2 3 4 5
“Affirmative action”

6 7 8 9 10

200

400

600

800

1000

1200

Data

prune
expand

F I G U R E 7 . 1 9 The number of nodes pruned vs. expanded may change significantly across iterations
of DOMHITS, but stabilizes within 10–20 iterations. For base sets where there is no danger of
drift, there is a controlled induction of new nodes into the response set owing to authority diffusion
via relevant DOM subtrees. In contrast, for queries that led HITS/B&H to drift, DOMHITS
continued to expand a relatively larger number of nodes in an attempt to suppress drift.

TE
AM
FL
Y

Team-Fly®

7.6 Measuring and Modeling the Web 243

7.6 Measuring and Modeling the Web
So far in this chapter we have discussed a variety of techniques for analyzing
the Web graph and exploiting it for better searches. Most of these techniques
depend implicitly on locality in various guises, for example, textual similarity, link
neighborhoods, and page structure. Furthermore, although actions such as adding
or removing pages, terms, and links are local, they can be characterized by very
robust global properties.

Early works on the theory of random graphs (with a fixed number of nodes n)
have studied various properties such as the number of connected components and
vertex connectivity under very simple edge creation models, a common one being
that each of the n(n− 1) potential edges is materialized with a fixed probability p.
It is hardly surprising that these models are not very suitable for the Web: the Web
graph was obviously not created by materializing edges independently at random.

7.6.1 Power-Law Degree Distributions
One of the earliest regularities in Web structure to be measured and modeled
has been the degree distribution of pages, both in-degree and out-degree. To a first
approximation, Web page degree follows the power-law distribution:

Pr(out-degree is k)∝ 1/kaout (7.19)
Pr(in-degree is k)∝ 1/kain (7.20)

This property has been preserved modulo small changes in aout and ain as the Web
has grown, and this has been experimentally verified by a number of people.

It is easy to fit data to these power-law distributions, but that does not explain
how largely autonomous page and link creation processes can end up producing
such a distribution. An early success in this direction came from the work of
Barabási and Albert [13]. They proposed that the graph (let it be undirected to
simplify the following discussion) continually adds nodes to increase in size, as
is eminently the case with the Web. They also proposed a key property in their
model called preferential attachment, which dictates that a new node is linked to
existing nodes not uniformly at random, but with higher probability to existing
nodes that already have large degree, a “winners take all” scenario that is not far
removed from reality in most social networks.

The graph starts with m0 nodes. Time proceeds in discrete steps. In each step,
one node is added. This new node u comes with a fixed number of m edges
(m ≤ m0), which connect to nodes already existing in the graph. Suppose at this
timestep an existing node v is incident on dv existing edges. Associate v with a

244 C H A P T E R 7 Social Network Analysis

probability pv = dv/
∑

w dw, where w ranges over all existing nodes. Node u makes
m choices for neighbors. For each trial, node v is chosen with probability pv.

If this system evolves for t timesteps, the resulting graph has m0+ t nodes and
mt edges, and therefore the total degree over all nodes is 2mt. Let us approximate
the degree ki(t) of node i at timestep t as a continuous random variable. Let κi(t)
be shorthand for E(ki(t)). At time t, the infinitesimal expected growth rate of κi
is m × κi

2mt = κi
2t , by linearity of expectation. Thus we can write ∂κi/∂ t = κi/2t,

which leads to the solution

κi(t)= m
√

t

ti
(7.21)

by enforcing the boundary condition κi(ti)= m.
Next let us find the number of nodes i at time t that have κi(t) > k for some

fixed k. For κi(t) > k to be true, we need ti < m2t/k2, and therefore the fraction
of nodes that satisfies this condition is m2t

(m0+t)k2 because the total number of nodes
is m0 + t at this time. Approximating k to be a continuous variable as well, and
differentiating with regard to k, we get that the fraction of nodes having expected
degree k is roughly

− ∂

∂k

m2t

(m0 + t)k2
= 2m2t

(m0 + t)k3
(7.22)

This establishes the power law with an exponent of three. If the system runs
for a long time (t→∞), the degree distribution of the resulting graph becomes
independent of m0, the only arbitrary parameter in the model.

Exponents from Web measurements differ from 3; they range between 2.1
and 2.5 (see Figure 7.20). One reason could be that the simple linear model for
probability of attachment may not be very accurate. Power-law degree distribu-
tions have been confirmed by a number of other measurements, such as by Bröder
and others [28].

Closer inspection of additional data showed that the pure power-law model
does not fit well for low values of k. It appeared that winners did not quite
take all—the degree distribution actually has a peak at a modest value of k. The
preferential attachment model above does not explain this phenomenon.

A refinement that has been found to improve the fit is the following two-
choice behavior in generating links: With some probability d, the newly generated
node will link uniformly at random to an existing node. With probability (1− d),
the earlier preferential attachment rule would be followed. Basically, the mixing
parameter d gives as-yet unpopular pages a chance to eventually attain prominence.

7.6 Measuring and Modeling the Web 245

100

N
um

be
r

of
 p

ag
es

In-degree
100 100000

1

10

100

1000

10,000

100,000

1e+06

1e+07

1e+08

1e+09

1e+10

Total in-degree
Power law, exponent 2.09

Remote-only in-degree
Power law, exponent 2.1

In-degree (total, remote-only) distribution

100

N
um

be
r

of
 p

ag
es

Out-degree

Out-degree (total, remote-only) distribution

100 1000
1

10

100

1000

10,000

100,000

1e+06

1e+07

1e+08

1e+09

1e+10

Total in-degree
Power law, exponent 2.09

Remote-only in-degree
Power law, exponent 2.1

F I G U R E 7 . 2 0 The in- and out-degree of Web nodes closely follow power-law distributions,
except at low degrees.

246 C H A P T E R 7 Social Network Analysis

7.6.2 The “Bow Tie” Structure and Bipartite Cores
In November 1999, Bröder et al. [28] mapped a large Web crawl containing over
200 million nodes to expose the large-scale structure of the Web graph as having
a central, strongly connected core (SCC); a subgraph (IN) with directed paths
leading into the SCC, a component (OUT) leading away from the SCC, and
relatively isolated tendrils attached to one of the three large subgraphs. These
four regions were each about a fourth the size of the Web, which led the authors
to call this the “bow tie” model of the Web (see Figure 7.21). They also measured
interesting properties like the average path lengths between connected nodes and
the distribution of in- and out-degree. Follow-up work by Dill et al. [70] showed
that subgraphs selected from the Web as per specific criteria (domain restriction,
occurrence of keyword, etc.) also appear to often be bow tie–like, although the
ratio of component sizes varies somewhat. There are no theories predicting the
formation of a bow tie in a social network, unlike power-law degree distributions.
We do not even know if the bow tie will be the most prominent structure in the
Web graph 10 years from now.

Kumar et al. [128] wrote programs to search a large crawl of the Web for
bipartite cores (e.g., those that take an active role in topic-distillation algorithms).
They discovered tens of thousands of bipartite cores and empirically observed
that a large fraction are in fact topically coherent. A small bipartite core is often
an indicator of an emerging topic that may be too fine-grained to be cataloged
manually into Web directories.

7.6.3 Sampling Web Pages at Random
Many of the measurements discussed in this section involve sampling the Web. The
precision of some of the estimated parameters clearly depends on the uniformity
of the sample obtained.

We must be careful how we define “sampling from the Web,” because the
Web has dynamic pages generated in response to an unlimited number of possible
queries, or an unlimited variety of browser cookies. The Web also has malicious
or accidental “spider traps,” which are infinite chains and trees of pages generated
by a combination of soft links, CGI scripts, and Web server mappings. Clearly,
we need to settle on a finite graph before we can measure the quality of a sample.

As a result of an ongoing race, Web crawlers do a good job of avoiding such
pitfalls while collecting pages to index, although this may mean that they leave
out some safely indexable pages (see Chapter 2). We may use this notion of a

7.6 Measuring and Modeling the Web 247

IN
44 million nodes

OUT
44 million nodes

SCC
56 million nodes

Tendrils
44 million nodes

Tubes

Disconnected components

Region: SCC IN OUT Tendrils Disconnected Total

Size: 56,463,993 43,343,168 43,166,185 43,797,944 16,777,756 203,549,046

F I G U R E 7 . 2 1 The Web as a bow tie [28].

public, indexable subset of the Web as our universe and consider sampling in the
context of this universe. This is not a precise characterization either, because the
Web is not strongly connected, and therefore what ground a crawler can cover
depends on the starting point.

To make progress without getting bogged down by the above technicalities,
let us set up the problem from a perspective of a fixed crawling strategy, starting
from a fixed set of pages. Assume for simplicity that the Web does not change
while the crawl completes. At the end of the crawl, the crawler may output the
set of all URLs crawled. From this set, a URL may be readily sampled uniformly

248 C H A P T E R 7 Social Network Analysis

at random. The key question is: Can a URL be sampled uniformly at random without
undertaking a full crawl?

Why is uniform sampling of URLs from the Web of interest? I will propose
a few applications. Sampling may be used to quickly and approximately answer
aggregate queries about the Web, such as “What fraction of Web pages are in the
.co.jp domain?” Answering such a question may help balance crawling load across
a distributed team of crawlers. Assuming one has a reasonably reliable classifier for
a given topic taxonomy such as Yahoo!, one may ask what fraction of Web pages
belongs to each of the topics. This may be useful for channeling effort toward
cataloging topics for that the taxonomy is underrepresented in proportion to the
Web. Such measurements can be extended to links. One may sample links and
classify the two endpoints to estimate how often a page related to one topic links
to a page on another topic. Clusters of densely connected topics may be used to
redesign or reorganize topic taxonomies. In the rest of this section, we will study
a progression of ideas for uniform sampling from the Web.

PageRank-like random walk

One way to approximate a random sample is to implement a suitable random
walk on the graph to be crawled. If the graph satisfies certain properties, a
random walk is guaranteed to visit nodes at a rate that quickly approaches the
stationary distribution of prestige given in Equation (7.7), forgetting any effects
of the starting point with high probability.

Henzinger and others [105] propose to use the “random surfer” notion
underlying PageRank (see Section 7.2.1) directly to derive random samples.
Recall the transition matrix L used there, and also recall the uniform jump to
avoid getting trapped somewhere in the Web graph. The uniform jump can be
modeled as a simple jump matrix J = 1

N 1N , where N = |V |. As we discussed
before, the random surfer uses J with probability d and L with the remaining
probability 1− d. Thus, as in Equation 7.9,

pi+1=
(
dJ + (1− d)LT

)
pi (7.23)

or

pi+1[v]= d

|V | + (1− d)
∑

(u,v)∈E

pi[u]

Nu

7.6 Measuring and Modeling the Web 249

Because all elements of J are positive and 0 < d < 1, (dJ + (1− d)LT) represents
an irreducible and aperiodic Markovian transition process with a unique, well-
defined stationary distribution that is the principal eigenvector of (dJ + (1−
d)LT).

Unfortunately, in an actual implementation of the random surfer, there is no
way to jump to a random node in V , because that is the problem we are trying
to solve! Henzinger et al. approximate the jump by running 1000 walks at the
same time that use a pooled collection of URLs visited thus far to implement the
jump. This introduces what is called the initial bias, which tends to keep the surfer
closer to the starting set of URLs than would be the case if a truly random jump
were possible.

The basic approach here is to first run a random walk for some time, then
sample from the page set thus collected. For any page v,

Pr(v is sampled)= Pr(v is crawled) Pr(v is sampled|v is crawled) (7.24)

We must set Pr(v is sampled|v is crawled) in a way such that Pr(v is sampled) is
the same for all v. To do this, we need to first estimate Pr(v is crawled).

Let the steady-state PageRank vector corresponding to Equation (7.23) be
p∗. In a sufficiently long walk that visits w nodes in all, we would expect node v to
be visited w p∗[v] times. Even much shorter walks of about

√|V | hops, if limited
to the SCC of the Web, are also expected to suffice. Most nodes will appear at
most once in short walks of length at most

√|V |. (This is similar to the claim that
you need about

√
365 people in a party before you get 2 people with the same

birthday.) Under this assumption, we can approximate

Pr(v is crawled)= E(number of times v is visited) (7.25)

= w p∗[v]

From Equations (7.24) and (7.25), it is clear that we must set

Pr(v is sampled|v is crawled)∝ 1/p∗[v] (7.26)

Again, we cannot know p∗ and must approximate it. The simple solution is to
use the actual visit ratio of each page, that is, the number of visits to each page
divided by the walk length. This is not perfect, because the visit ratio is discrete
and has large jumps compared to the smallest PageRank values.

Given the approximations and biases involved, how can we evaluate the quality
of such sampling algorithms? Since we cannot hope to “know” the whole Web
graph, it is best to generate a finite, unchanging, artificial graph that resembles the

250 C H A P T E R 7 Social Network Analysis

Web graph in some important properties (such as degree distribution). Now one
can sample from this graph and thus generate, say, a sampled degree distribution.
Comparing this with the true degree distribution will give an indication of the
uniformity of the algorithm. In fact, any property can be arbitrarily assigned to
each node (such as two colors, red and blue) and the sample properties compared
with the global properties (e.g., fraction of red nodes).

Henzinger et al. generated synthetic graphs with controlled in- and out-
degree distributions and compared the true degree distributions with those de-
rived from their sampling algorithms. The results, shown in Figure 7.22, show
negligible deviations for out-degree distribution and small deviations for in-
degree distribution. They also explore a number of applications of random sam-
pling, such as estimating the fraction of URLs in various top-level domains and
estimating search engine coverage.

Random walk on a regular graph

The probability “inversion,” Equation (7.26), is problematic with a large number
of nodes that are never visited during short walks. In an attempt to reduce this

5 8 11 14 17 20
0

5

10

15

Pe
rc

en
t

20

25

30

Out-degree

Original graph
PageRank sample
Random sample

F I G U R E 7 . 2 2 Random walks based on PageRank give sample distributions that are close to the
true distribution used to generate the graph data, in terms of out-degree, in-degree, and PageRank.

7.6 Measuring and Modeling the Web 251

4
0

5

10

15

Pe
rc

en
t

20

25

30

6 8 10 12

In-degree

14 16 18

Original graph
PageRank sample
Random sample

0.6 .08 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

Pe
rc

en
t

20

25

30

PageRank factor

Original graph
PageRank sample
Random sample

F I G U R E 7 . 2 2 (continued)

252 C H A P T E R 7 Social Network Analysis

problem, Bar-Yossef and others [12] seek to alter the graph in such a way that a
sufficiently long random walk leads directly to a uniform sample.

It is easy to see that a vector with all elements set to 1/|V | is an eigenvector
for the adjacency matrix of an undirected graph where every node has the same
degree. It also turns out that this is the principal eigenvector [91]. Therefore, if
only the Web graph were undirected and regular (i.e., all nodes have the same
degree), we would be done.

Bar-Yossef et al. force these two properties to roughly hold for the graph they
walk, in the following manner. First, when making a transition from one node u
to the next, candidates are considered not only from out-neighbors of u but also
in-neighbors of u. (This can be done by a “backlink” query interface, provided
by many search engines.) Thus the Web graph is in effect rendered undirected.
Second, the degree of all nodes is equalized by adding Nmax − Nv self-loops to
node v, where Nmax is the maximum degree.

You may immediately protest that using a search engine to find backlinks
voids our goal stated on page 248. This criticism is valid, but for many appli-
cations, including crawling, an older crawl is available to approximately answer
the backlink queries. That the backlink database is incomplete and out of date
introduces yet other biases into the strategy, requiring empirical checks that
their effects are mild. The “ideal” walk (if the backlink database were complete
and up to date) and the realistic implementation WebWalker are shown in Fig-
ure 7.23. The key modification is that WebWalker maintains its own in- and
out-neighbor list for each node, and this must not be modified once created,
even if new paths are found to nodes as the crawl proceeds. It turns out that,
like Henzinger’s random walk, WebWalker also needs a random jump to take it
out of tight cycles and cliques [14], but this is not shown in the pseudocode for
simplicity.

As with the PageRank-based random walk, one can stage sampling problems
where the answer is known. Bar-Yossef et al. used a real Web crawl with between
100 and 200 million nodes collected by Alexa Internet (www.alexa.com) in 1996.
They sorted the nodes in that crawl by degree and computed the deciles of
the degree distribution. Next they performed a random walk on this graph and
collected the samples into buckets according to the same deciles. If the sample is
unbiased, each bucket should have about one-tenth of the pages in the sample.
Figure 7.24 shows that this is the case except for some bias toward high-degree
nodes, which is expected.

TE
AM
FL
Y

Team-Fly®

1: Ideal Random Walk:
2: pick starting node
3: for given walk length do
4: consider current node v on the walk
5: self-loop at v a random number of times,

which is distributed geometrically with mean 1− Nv
Nmax

6: pick the next node uniformly at random from in- and out-neighbors of v
7: end for

1: WebWalker:
2: pick start node u and set Iu = Ou = ∅
3: for given walk length do
4: consider current node v on the walk
5: if v has not been visited before then
6: get in-neighbors of v using a search engine
7: get out-neighbors of v by scanning for HREFs
8: add new neighbors w to Iv and Ov only if w has not been visited already
9: end if

10: self-loop at v as in the Ideal Random Walk
11: pick the next node uniformly at random from Iv ∪ Ov
12: end for

F I G U R E 7 . 2 3 Random walks on regular graphs derived from the Web graph.

10 20 30 40 50
Deciles of nodes ordered by degree (%)

60 70 80 90 100
0

5

10

15

20

N
od

es
 fr

om
 w

al
k

(%
)

25

30

35

40

0
3

Incoming links from search engines per page

F I G U R E 7 . 2 4 Random walks performed by WebWalker give reasonably unbiased URL samples;
when sampled URLs are bucketed along degree deciles in the complete data source, close to 10%
of the sampled URLs fall into each bucket.

254 C H A P T E R 7 Social Network Analysis

7.7 Bibliographic Notes
An in-depth treatment of social network theory dating from the 1950s and prior
to the growth of the Web can be found in the classic text by Wasserman and Faust
[210]. Larson [132] and Pirolli and Pitkow [174] discuss document clustering
based on combinations of text and link attributes. In the context of the Web,
hyperlink-based authority rating systems were first reported by Page and Brin
[26, 169] and Kleinberg [122]. Carriere and Kazman proposed an early system for
visual searching and ranking using hyperlinks [33]. Kleinberg’s HITS system was
improved by a number of research efforts such as Clever [40] and topic distillation
[18]. Gibson and others studied convergence properties of HITS, as well as graph
clusters identified by multiple eigenvectors output by HITS [89]. Barabási and
Albert were among the first to analyze the degree distribution of the Web graph
and propose models to explain it [13]. Later work by Pennock and others [172]
showed that winners do not take all; a slight modification to the model of Barabási
and Albert shows a much better fit to Web data. Alternative models that explain
the power-law degree distribution have been proposed by Kumar and others
[128]. Bharat and Bröder were among the first to consider sampling Web pages
systematically in order to find the sizes of and overlaps in the crawl graphs collected
by major search engines [16]. The PageRank-based sampling technique is due to
Henzinger and others [105]. The regular graph sampling idea is due to Bar-Yossef
and others [12].

c h a p t e r 8
R E S O U R C E D I S C O V E R Y

General-purpose crawlers take a centralized, snapshot view of what is essentially
a completely distributed hypermedium in uncontrolled flux. They seek to collect
and process the entire contents of the Web in a centralized location, where it can
be indexed in advance to be able to respond to any possible query. Meanwhile,
the Web, already having two billion pages, keeps growing and changing to
make centralized processing more difficult. An estimated 600 GB worth of pages
changed per month in 1997 alone [120].

In its initial days, most of the Web could be collected by small- to medium-
scale crawlers. From 1996 to 1999, coverage was a very stiff challenge: from an
estimated coverage of 35% in 1997 [16], crawlers dropped to a coverage of only
18% in 1999 [131]. After 1999, the growth of the Web slackened and wide-area
network connectivity improved, resulting in a 45% to 55% coverage by Google
by 2000.

As we have seen in Chapter 2, hardware and software are not significant
issues for Web-scale crawling. The bulk of the cost is in high-speed network
access, reliable and scalable storage, and system administration. These costs have
taken Web-scale crawling out of the reach of amateurs and individual researchers.
Although the Internet Archive (www.archive.org) fetches hundreds of gigabytes a
day and makes the collection available in the public domain, researchers still need
to get the data shipped and arrange for local storage of several terabytes.

It has also been clear for some time that crawlers need not cover all corners of
the Web to be effective. In fact, Chapter 7 indicates otherwise: when there is an
abundance of information, we can afford to be choosy about which pages to index

255

256 C H A P T E R 8 Resource Discovery

and how to rank them. In particular, for Google/PageRank, pages with very low
prestige are largely useless in responding to queries. If we consider Google’s most
frequent queries, and compile the set of response URLs actually viewed by the
users (or even the top ten responses presented to the user), this set might be a
small fraction of Google’s crawled collection.

Therefore, a natural question is, given finite crawling resources (time, network
bandwidth, storage), is it possible to prioritize the crawl frontier to preferentially
collect and/or refresh pages? A variety of goals may guide the priority assignment:

� We may prefer to crawl pages with high prestige, which would be the case
with most modern search engines.

� Pages that change frequently may be preferable for some applications, like news
portals.

� For a so-called vertical portal that intends to cater to queries pertaining to one
or a few broad topics, we may wish to build only an index of pages relevant
to these topics.

A general way of thinking about these settings is that we are given a few
starting nodes in the Web graph, and our goal is to seek out and collect other
nodes that satisfy some specific requirement of the form given in the list above.
The computation required to figure out whether a page satisfies the requirement,
or which links to follow next, may be centralized or distributed. If the system is
centralized, it may still be considered in the same league as crawlers. A distributed
design will generally be described as a federation of agents.

In this chapter, we will discuss some of the distinct paradigms for locating
desired resources in distributed hypertext. We will not make a precise distinction
between architecture choices, such as crawlers and agents. Our emphasis will be on
the application of techniques from previous chapters to solve resource discovery
problems. This chapter is mostly about synthesizing the basic ideas in previous
chapters into working systems for resource discovery.

Notwithstanding the fact that the largest crawlers cover over half the public
Web, recent years have seen a spate of research in resource discovery. This is
partly because the statistics above tell an incomplete story. Three interrelated
factors decide the efficacy of a search engine: the extent of coverage, the ability
to react to rapid flux, and the depth of analysis of the collected contents for query
processing. A crawler can have large coverage but rarely refresh its crawls. At
the time of writing, Google refreshes its crawl at least once a month, but pages

8.1 Collecting Important Pages Preferentially 257

are generally refreshed at most as often as once every four hours. A crawler can
have good coverage and fast refresh rates, but not have good ranking functions
or support advanced query capabilities that need more processing power. Search
engines do not reveal their ranking function, let alone allow advanced users to
plug in personalized, experimental ranking functions. As vector-space ranking
yields to link-assisted ranking, which in turn adds on more linguistic processing
and feature extraction, researchers are increasingly turning to resource discovery
systems to build custom document collections to evaluate their ideas.

8.1 Collecting Important Pages Preferentially
Search engines increasingly use link-based prestige measures to rank responses.
Link-based ranking is central to Google’s success. Other search engines do not
publicize if and how their ranking strategies depend on links, but their ranking
quality has clearly improved in similar ways. For a crawler that collects Web pages
for such a search engine, it is more valuable to crawl a page that is likely to
have a large PageRank as compared to an obscure page. More generally, one
may want to collect Web pages with large in-degree (indicating authority), out-
degree (generally indicating large coverage, although this may be useless for mixed
hubs; see Section 7.4.4), PageRank (had the whole Web graph been available),
or similarity to a driving query. The importance of a page u, which could be any
of the above notions, is denoted I (u).

8.1.1 Crawling as Guided Search in a Graph
A crawler may be modeled as starting from one page u0, crawling K pages, and
stopping. A perfect crawler would crawl those K pages with the largest importance
reachable from u0, called u1, . . . , uK with I (u1) ≥ . . . ≥ I (uK). An imperfect
crawler will also crawl K pages, but only M out of those will have importance of
at least I (uK). Then the measure of merit of the imperfect crawler will be defined
as M/K . An alternative model may fix an importance threshold τ instead. Any
page u with I (u) > τ is hot. If there are H hot pages and a crawler fetches K of
them, the measure of merit is K/H . If a perfect crawler fetched at least H pages,
its measure of merit will be one.

Some measures of importance (such as in-degree, out-degree, or PageRank)
can be evaluated only after the page and some significant neighborhood has been
fetched. Therefore, practical crawlers have to use heuristic guidance to decide
what page to fetch next. In-degree can be approximated by the current number

258 C H A P T E R 8 Resource Discovery

1: enqueue starting URL into the URL frontier queue F
2: while F �= ∅ do
3: dequeue unvisited URL u from F
4: fetch the page corresponding to u and scan for outlinks
5: for each outlink URL v found do
6: add (u, v) to link database unless already there
7: if v is not already visited then
8: enqueue v into F
9: end if

10: end for
11: reorganize F according to priority ordering
12: end while

F I G U R E 8 . 1 The generic template used by Cho et al., with different ordering policies used in the
reorganization of F .

of links known by the crawler to lead to the page, and PageRank can likewise
be computed using the graph known by the crawler at the current moment. But
out-degree or similarity to a driving query cannot be determined before fetching
the page. (However, one can make intelligent guesses about the term distribution;
see Section 8.3.)

Cho et al. [50] empirically studied the effect of various URL prioritization
strategies on the measures of merit defined above. To perform controlled, re-
peatable experiments, they precrawled all Stanford University Web servers and
collected roughly 200,000 pages in a hypertext repository as their “universe.” This
permitted them to compute the importance attributes and later quickly evaluate
crawlers with various priority choices (see Figure 8.1).

Because many page/node properties cannot be determined before a page
is fetched, approximations based on the graph fetched by the crawler must be
used. The effects of approximate priorities on the quality of crawls is complex
and sometimes unintuitive. Let us set our importance measure to in-degree. The
crawler may use a number of approximate priority schemes to order page fetches:

� The number I ′(u) of inlinks to the target URL u currently known to the
crawler.

� The PageRank R′(u) of the target URL u computed using the graph collected
so far by the crawler.

8.1 Collecting Important Pages Preferentially 259

0 20 40

Pages crawled (K) (% of full crawl)

60 80 100
0

20

40

60

M
er

it
(M

/K
)

(%
)

80

100

PageRank
In-degree
Breadth-first
Random

Ordering O (u):

F I G U R E 8 . 2 An approximate PageRank priority ordering helps the crawler find large in-degree
nodes faster than an approximate in-degree priority ordering. Breadth-first or random priority are
understandably worse. The importance threshold measure is used here.

As shown in Figure 8.2, I ′ and R′ both collect hot pages faster than breadth-first
crawling or random crawling, but surprisingly, R′ performs better than I ′.

More recently, Najork and Weiner [158] ran a crawler with a simple breadth-
first prioritization to collect over 328 million pages from the entire Web, covering
more than 7 million distinct hosts. They used PageRank as the importance
measure and found that pages with the highest PageRank are found very quickly
upon starting a breadth-first crawler from www.yahoo.com. A plot of normalized
average PageRank per days of crawl is shown in Figure 8.3.

8.1.2 Keyword-Based Graph Search
The priority heuristics discussed so far used graph properties of pages, but one may
also use IR-based properties of the pages, such as keywords that occur on the pages
crawled. One may point to a specific page and look for pages in “the vicinity”
(suitably defined) that contain a specified word. One may wish to preferentially
collect and display a graph of the vicinity to highlight nodes matching the specified
keywords.

260 C H A P T E R 8 Resource Discovery

0
0

2

4

A
ve

ra
ge

 P
ag

eR
an

k

6

8

5 10 15 20 25 30
Day of crawl

(a)

35 40 45 50 55

0 10 100 1000 10,000 100,000 1e+06 1e+07 1e+08
0

5

10

15

20

25

A
ve

ra
ge

 d
ay

 t
op

 N
 p

ag
es

 w
er

e
cr

aw
le

d

Top N

(b)

F I G U R E 8 . 3 Pages fetched early by a breadth-first crawler have high PageRank. Average PageRank
of each page is scaled to one, and daily average PageRank is plotted against the age of the crawl
(a). The average day by which the N most important pages (with largest PageRank) were crawled
is plotted against N (b).

8.1 Collecting Important Pages Preferentially 261

A very early system for hypertext graph exploration driven by a query was
the FishSearch system designed by De Bra and Post [63, 64]. It can be run as a
client-side search tool or provided as a central service similar to search engines.1

The user provides a starting URL and a match condition, which could be a set
of keywords or a regular expression (external page filters can also be installed).
Instead of a user-provided start URL, a search engine may be used to obtain the
start URL(s). The FishSearch system simulates a school of fish, breeding and
searching for food. Each page corresponds to a fish. If the page has “food,” that
is, it matches the search condition, the fish “breeds” and creates offsprings, which
explore the neighborhood, breeding in turn if the neighborhood matches the
driving query.

FishSearch simulates the fish using a priority queue of unvisited URLs; at
each step the first URL on the queue is fetched. As the text of a page becomes
available, a scoring module decides whether to expand unvisited links from that
page. A global depth bound is specified by the user. If a page u survives the scoring
check, its outlinks are inserted into the priority queue with the same depth as u;
otherwise, the outlink depth is set to one less than the depth of u. If the depth
reaches zero, the outlink is discarded. FishSearch capitalizes on the intuition that
relevant documents often have relevant neighbors, an intuition I will formalize
and use in Section 8.3.

Hersovici et al. [107] improved the FishSearch algorithm to propose a
more aggressive variant, the SharkSearch algorithm. Rather than assign priority
scores from a small set of discrete values, SharkSearch used a standard TFIDF-
and cosine-based relevance score (see Chapter 3), which is a continuous score
between zero and one. Instead of using a discrete depth cutoff, SharkSearch
uses a continuous fading or decay factor 0 < δ < 1, which let an unvisited URL
v “inherit” δ times the relevance of nodes u linking to v, δ2 times the relevance
of node w with a length-2 path to v, and so on. Figure 8.4 shows samples of
FishSearch and SharkSearch in action.

Cho et al. [50] also experimented with keyword-sensitive crawling strategies.
For the purpose of their application, they defined the following notion of impor-
tance: a page is hot if the word computer occurs in the title or at least 10 times in
the text of the page. They argued that the earlier approach (see Figure 8.1) was

1. For bounded-depth keyword searches at a specific Web server, one can also use Webglimpse
(webglimpse.org/).

262 C H A P T E R 8 Resource Discovery

F I G U R E 8 . 4 FishSearch and SharkSearch in action: Web graphs explored starting from CNN/SI
with query “San Francisco 49ers.” Relevant pages are shaded; highly relevant pages have a heavy
border. (Images taken from [107].)

TE
AM
FL
Y

Team-Fly®

8.1 Collecting Important Pages Preferentially 263

1: enqueue the start URL into the cold queue C
2: while at least one of C and the hot queue H is nonempty do
3: if H is nonempty then
4: obtain the new URL u to fetch by dequeuing from H
5: else
6: obtain the new URL u to fetch by dequeuing from C
7: end if
8: fetch u and scan for text and outlinks
9: for each outlink URL v found do

10: add (u, v) to link database unless already there
11: if v is not already visited then
12: if the anchor text on the (u, v) link contains “computer”

or the URL v contains the string “computer” then
13: enqueue v into H
14: else
15: enqueue v into C
16: end if
17: end if
18: end for
19: reorganize H and C according to priority ordering
20: end while

F I G U R E 8 . 5 A modified crawler driven by a keyword query, looking for pages related to computers.

clearly unsuited to deal with textual content2 and proposed a modified algorithm
where two separate queues were used (see Figure 8.5): a hot queue held URLs
v such that some HREF targeting v had the word computer in its anchor text. The
two queues were kept ordered individually, and the next page to fetch was taken
from the hot queue in preference to the regular URL queue.

Again, a variety of reorganization priorities can be used in Figure 8.5.
Interestingly, as Figure 8.6 shows, a breadth-first reorganization acquires hot pages
faster than PageRank- or in-degree–based reorganization. (A breadth-first policy
is implemented by using a FIFO queue and doing nothing in the reorganization
step.) Under FIFO ordering of the hot queue, if a computer-related page is crawled
earlier, then the crawler discovers and visits its outlinks earlier as well. These pages
have a tendency to also be computer related, so the acquisition rate is higher.

2. A comparison might still be useful.

264 C H A P T E R 8 Resource Discovery

0 20 40

Fraction of full crawl (%)

60 80 100
0

20

40

M
er

it
(M

/K
)

(%
)

60

80

100

PageRank
Backlink
Breadth
Random

Ordering O (u):

F I G U R E 8 . 6 Breadth-first queue organization lets the crawler collect relevant pages at the fastest
pace.

The experiments above show that mild variations in crawl prioritization,
imposed on top of the basic crawler discussed in Chapter 3, can make a significant
difference to targeted acquisition of pages with specific properties. The approaches
proposed by Cho, De Bra, Hersovici and others, which I have discussed above,
could be brittle in the same sense that simple IR systems deal poorly with
synonymy. Relying on the anchor of a link to a computer science department to
contain the word computer will let us down if “CS Division” is another common
idiom used by anchor text writers. In Section 8.3 we will study more general
and robust techniques based on machine learning that remove the brittleness of
syntactic matching.

8.2 Similarity Search Using Link Topology
Links in social networks do not merely confer authority; they also hint at semantic
connections between entities. A typical Web link is created because the link
endpoints are about related concepts. Co-citations expose a slightly longer-range
relation: two nodes frequently cited together from other nodes are most likely

8.2 Similarity Search Using Link Topology 265

related. As we discussed in Chapter 7, analysis of the co-citation matrix brings
out the structure of link-based communities.

For a number of years, many major search engines have supported a “find
similar pages” function, which could be invoked on one Web page as argument
and would return a set of similar or related pages. Early search engines used IR
techniques to implement this feature. For example, they might find TFIDF doc-
ument vectors having large cosine similarity with the page provided as argument,
and eliminate mirrors before presenting the answers (see Section 3.3.2).

As with ad hoc searching, clustering, and classification, it gradually became
clear that the “find-similar” operation, too, could benefit from paying attention to
static hyperlink structure as well as dynamic click streams. Alexa (www.alexa.com)
uses all these sources of information to derive a list of pages similar to a given page,
but their exact algorithm is not published yet, to my knowledge. The Netscape
browser (www.netscape.com) uses the Alexa system as a plug-in to provide the find-
similar service.

The HITS family of algorithms has also been used successfully for find-
similar searches. HITS, as discussed in Chapter 7, uses a keyword search engine
to assemble its root set, but this is not the only way to do so; in principle, any
subgraph of the Web can be used as a root set, although only specific root sets
make semantic sense and produce coherent results when processed by HITS.

For some queries, a good set of examples is enough to bootstrap, even without
running HITS at all. For example, at the time of writing, the query

link:http://www.lufthansa.com link:http://www.iberia.com

returns the page shown in Figure 8.7 as the second best response. It is an excellent
hub on European airlines.

The example above explains why the following “query-by-example” style
works quite well with HITS. We put the examples in the root set and invoke
HITS. While constructing the base set (see Section 7.2.2), HITS uses a backlink
query on each page u in the root set, that is, it fetches pages that link to u. Many
search engines provide this service through the link:u query syntax. During this
process, we expect several hubs, such as the one shown in Figure 8.7, to enter
the base set. During the HITS iterations, such good hubs will rapidly accumulate
large hub scores. The outlinks of some of the top hubs can be accumulated and
presented as the answer to the query-by-example.

266 C H A P T E R 8 Resource Discovery

A

AB AIRLINES

AERO LLOYD

AIR ATLANTA

AIR DOLOMITO

AIR EUROPA LINEAS

AIR GREECE

AIR LIBERTE

AIR MARIN

AIR ONE

AIRE OYLE

AOM MINERVE FRENCH AIRLINES

AUSTRIAN AIRLINES

B

BALKAN - BULGARIAN AIRLINES

BRITANNIA AIRWAYS

EUROPEAN AIRLINES

ADRIA AIRWAYS

AEROFLOT

AIR BALTIC

AIR ENGIADINA

AIR FRANCE

AIR ICELAND

AIR LITTORAL

AIR MOLDOVA

AIR OSTRAVA

AIRUK

ARMENIAN AIRLINES

AVIO EXPRESS

BINTER CANARIAS

BRITISH AIRWAYS

AER LINGUS

AEROSWEET

AIR BERLIN

AIR EUROPE

AIR GEORGIA

AIR JET

AIR MALTA

AIR NOSTRUM

AIR SEYCHELLES

ALITALIA

AURIGNY AIR SERVICES

AVIOIMPEX AIR COMPANY

BRAATHENS

BRITISH MIDLANDS AIRWAYS

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

F I G U R E 8 . 7 Good hubs are easy to find using backlink search alone, provided some sample
authorities are known. This is a view of www.marsit.com/folders/usenm/airlines/european_airlines.htm,
titled European Airlines.

Dean and Henzinger [65] made this process more sophisticated by proposing
two effective link-based, find-similar procedures, which they call the Co-citation
and Companion algorithms. These algorithms use not only the coarse-grained
graph structure but also proximity of outlinks on a page.

The degree of co-citation of nodes u and v is the number of nodes x that link
to both u and v. Given seed node u, Co-citation picks up to B arbitrary nodes
x that link to u, then for each such node x, up to BF children v other than u
itself. The outlinks on x are arranged as a linear sequence, in that one outlink is
the x → u link. Up to BF/2 outlinks before and BF/2 outlinks after the x → u
outlink are chosen to select the nodes v. B = 2000 and BF = 8 were used by Dean
and Henzinger. Co-citation assumes that links lexically close on x are more likely
to be semantically related, a hunch we have seen confirmed in Section 6.2.2 as
well as Section 7.4.4 (see Figure 8.8). Once all v have been collected thus, they
are ordered in decreasing degree of co-citation and the best vs returned. Other
minor details of the algorithm can be found in [65].

8.2 Similarity Search Using Link Topology 267

x

u

BF/2

BF/2

v

u

v

x

x

x

x

x Degree of
co-citation = 5

F I G U R E 8 . 8 Exploiting link proximity in the Co-citation and Companion algorithms.

The Companion algorithm first builds a vicinity graph Gu from the given URL
u. It assumes that four integer parameters, B, F , BF , and FB, have been defined.
Up to B inlinks of u are included in Gu. For each of the inlinks, up to BF outlinks
(different from u) are included in Gu as well (with a link proximity judgment, as in
Co-citation). Up to F outlinks of u are included in Gu. For each of the outlinks,
up to FB inlinks (excluding u) are included in Gu.

The next step is to collapse duplicates and near duplicates. If two nodes in
the vicinity graph have at least 10 outlinks each and at least 95% of the links
are common, these nodes are collapsed into one. These parameters were likely
tuned by trial and error. Collapsing mirrored and aliased URLs makes the hub and
authority scores denser and more reliable. Once the graph has been fixed, edge
weights are assigned as in the B&H topic-distillation algorithm (see Section 7.4.1)
[18]. Finally, the B&H iterative algorithm is run and the top several authorities
reported.

Dean and Henzinger conducted a user study with 18 volunteers and 69 runs of
the Companion and Co-citation algorithms, each starting from one distinct URL
to find others similar to it. For each run, the top r authorities were reported to
the volunteers in random order. For comparison, Netscape’s “find-similar” feature
(implemented by Alexa) was also invoked for each URL. The results, in Figure 8.9,
show that of the top 10 responses provided by the three algorithms, Companion
and Co-citation perform better than Netscape/Alexa. Since the Netscape/Alexa

268 C H A P T E R 8 Resource Discovery

0.0

0.2

0.4

0.6

Pr
ec

isi
on

0.8

1.0

1
r

10
0

0.1

0.2

0.3

0.4

0.5

0.6
Companion
Co-citation
Netscape

Average
precision

Precision at
recall rank 10

Companion
Co-citation
Netscape/Alexa

F I G U R E 8 . 9 The Companion algorithm has higher precision than Co-citation, which has higher
precision than Netscape/Alexa. Average precision and precision at recall rank 10 are shown.

algorithm is not published, it is not possible to perform a detailed analysis of the
difference in performance.

8.3 Topical Locality and Focused Crawling
Suppose we sample two Web pages uniformly at random (see Section 7.6.3 on how
to sample pages from the Web) and compute their vector-space cosine similarity.
(We assume that a global IDF vector is available.) This expected pairwise similarity
would be quite low, only noise-words making a contribution to the cosine. Now
consider a slightly different experiment: sample one page at random, let the other
page be a random out-neighbor from the first page, and measure the cosine
similarity between these two pages. Suppose we repeat each experiment a number
of times.

The Web graph was not constructed by connecting pairs of nodes selected
at random, and therefore, we would naturally expect the second similarity to be
higher than the first on average. Davison [61] conducted a scaled-down approxi-
mation of this experiment using 100,000 pages sampled from the repository of a
research search engine called DiscoWeb. The following quantities were measured
(the global IDF was approximated with one computed over these 100,000 pages).

Random: TFIDF cosine similarity between two pages sampled uniformly at
random from the collection was measured.

8.3 Topical Locality and Focused Crawling 269

0
0.05
0.10
0.15
0.20

M
ea

n
T

FI
D

F
co

sin
e

0.25
0.30
0.35

Random Sibling SameDomain DiffDomain

F I G U R E 8 . 1 0 Cited or co-cited page pairs show about an order of magnitude more similarity
(vector-space cosine) than randomly selected page pairs.

Sibling: Two random outlinks u and v were fetched from a random page in the
collection and the TFIDF cosine similarity between u and v measured.

SameDomain: A random page u was sampled from the collection. A random
outlink v was chosen such that u and v were from the same host (identified by
name).

DiffDomain: A random page u was sampled from the collection. A random
outlink v was chosen such that u and v were from different hosts (identified
by name).

Figure 8.10 shows the results. SameDomain pairs showed the highest sim-
ilarity, followed by Sibling, DiffDomain, and Random, in that order. Random
similarity is an order of magnitude less than even DiffDomain similarity. The
observations are quite intuitive, and reaffirm our faith that the Web network is
topically clustered.

The notion of a vicinity graph is an important one, so let me quickly retrace
how this notion evolved between 1996 and 1999.

1. In traditional IR, there is no notion of “vicinity” because there are no links.
you may think of it as a vicinity graph of radius zero.

2. In PageRank there is no nontrivial notion of “vicinity” either; the whole
Web graph (or whatever could be crawled) is used. (This is the opposite
extreme: the radius is unlimited.)

3. In HITS, the notion of “vicinity” is limited to the Web subgraph within a
single link of the IR notion of responses to the query.

270 C H A P T E R 8 Resource Discovery

4. In B&H, the vicinity graph is a subgraph of that in HITS; nodes that are
textually dissimilar from the IR responses are discarded.

5. On the other hand, Companion enlarges the vicinity graph of HITS and B&H
to include neighbors at distance two.

All the graph expansion strategies above are quite reticent about exploring out
from the root set. They depend completely and implicitly on the locality property
“DiffDomain” measured by Davison. Unfortunately, DiffDomain locality decays
rapidly with distance: a random walk starting from a node related to bicycling
rapidly loses its way amid pages pertaining to many different topics. This is what
prevents all the algorithms above from aggressively growing the vicinity graph
using DiffDomain locality alone. (A combination of DiffDomain, SameDomain,
and Sibling would meet the same fate sooner or later, because every time a link is
followed, there is a positive and not-too-small probability of “losing” the topic.)
The algorithms are thus “passive beneficiaries” of locality.

Another way to interpret the observations presented so far is that a random
walk over the Web graph may mix topics quite fast, but this does not rule out the
existence of moderately long paths that are topic-coherent, that is, pertaining to
one topic or a few strongly related topics.3 The key question is, can one substitute
the passive expansion by a possibly indefinite active expansion?

8.3.1 Focused Crawling
Figure 8.11 shows a simple modification to a crawler to implement active expan-
sion. First, we collect a suitable sample of pages from the Web (using, say, the
methods discussed in Section 7.6.3). Through human effort, we mark some of
these samples “positive” and the rest “negative.” In what follows, we will assume
that the positive class shows locality of the form discussed before; in other words,

The radius-1 hypothesis: If page u is positive and u links to v, then the probability
that v is positive is higher than the probability that a randomly chosen Web
page is positive.

We will train a supervised classifier ahead of time with the positive and
negative examples. When the crawler fetches a new page u, it will be submitted to
the classifier as a test case. If the classifier judges that u is positive, outlinks from u

3. I have not defined topics yet, but a working definition may be a directory such as The Open
Directory (http://dmoz.org) or Yahoo! (www.yahoo.com).

8.3 Topical Locality and Focused Crawling 271

Frontier URLs
priority queue

Newly fetched
page u

Seed URLs

Pick best

Crawler

Baseline learner

Submit page for classification

(a)

If Pr(c*|u) is large enough,
then enqueue all outlinks v of u

with priority Pr(c*|u).

Crawl
database

Class models
consisting of

term stats

Open
Directory

topic
taxonomy

Radius-1 expansion

Seed set
of URLs

Seed set
of URLs

Radius-1 expansion

Irrelevant
pages pruned

Radius-2
expansion

Seed set
of URLs

Seed set
of URLs

(b)

F I G U R E 8 . 1 1 Block diagram of a focused crawler with a supervised learner guiding it (a). An
operational view (b).

are added to the work pool as with standard crawlers (see Figure 2.2). Otherwise
u is pruned, that is, its outlinks are not considered for further crawling. Such a
system is called a focused crawler .

A “hard” binary decision regarding relevance may be somewhat draconian.
Suppose a Bayesian classifier (described in Chapter 5) is used. There are two
classes c+ and c−. Given a test page d just crawled, the classifier emits Pr(c+|d) and
Pr(c−|d) = 1− Pr(c+|d). A negative decision is taken whenever Pr(c+|d) < 1/2.
This threshold of 1/2 may be too severe; there may well be topics (the more
specific ones) for which following a link “loses” the topic with a probability of
more than half. One possible fix would be to reduce the acceptance threshold.

A better idea is to control the priority of the crawl frontier directly, using the
probability scores. Let us call Pr(c+|d) the relevance of d, written R(d). Suppose

272 C H A P T E R 8 Resource Discovery

page u links to page v. Page u has been fetched and classified, with relevance R(u),
but page v has not been fetched yet. Lacking any further information about v, we
will assume, for the moment, that the relevance of v is the same as R(u).

Thus, we add all4 unvisited links to the work pool, but the work pool
is prioritized by the guessed relevance of the unseen pages. This is a form of
gambling, banking on the radius-1 hypothesis. When v comes to the head of the
work pool and is finally fetched, we can evaluate the “true” relevance of v. At
that time we know if our gamble paid off or not. This is the basic form of “soft”
focused crawling first proposed by me [45]; we call this the radius-1 crawler. The
average relevance of pages fetched in the recent past reflects the current health of
the focused crawl; let us call this the harvest rate.

It is laborious to mark positive and negative examples from a Web sample
for each focused crawling task. For most topics, the negative sets will have broad
overlap: most Web pages are uninteresting to most of us. Furthermore, rare topics
may be poorly represented in the sample. Can one reuse others’ classification
efforts and streamline the process of “seeding” a focused crawl?

I propose to use hierarchical topic directories like Yahoo! or the Open
Directory, which I model as topic trees5 under the obvious is-a relation: a page
about /Arts/Painting and a page about /Arts/Photography are both about /Arts as
well. All pages are “about” /, which represents “the whole Web.” Sample data
collected for all classes can be used to train a hierarchical classifier, as discussed in
Section 5.7.

The user’s focused crawling needs are communicated to the system by marking
one or more nodes (classes) in the topic tree as good. A good node cannot be
a descendant of another good node. Given that Pr(root|d) = 1 by definition
and Equation (5.24), which says that the probability of children adds up to the
probability of the parent (i.e., a document belongs to exactly one leaf class), we
can write

R(d) =
∑

c is good

Pr(c|d) (8.1)

We allow multiple nodes to be marked “good” so that user interests can be
expressed as a union of topics. If the user’s information need is not adequately

4. Other standard elimination criteria can be used.

5. Some directories have cross-links connecting similar topics across subtrees; I will ignore these links
for simplicity.

TE
AM
FL
Y

Team-Fly®

8.3 Topical Locality and Focused Crawling 273

represented in the topic hierarchy, we assume that the user first alters the directory
suitably. Most often, this will constitute adding additional sample URLs to existing
classes and specializing existing topics to finer topics.

Based on the preceding discussion, we can formalize the goal of focused
crawling as follows. We are given a directed hypertext graph G whose nodes
are physically distributed. In our context, G is potentially the entire Web. There
is a cost for visiting any vertex (Web page) of G. There is also a tree-shaped
hierarchical topic directory C such as Yahoo!. Each topic node c ∈ C refers to
some pages in G as examples. We denote the sample documents associated with
topic c as D(c). These pages can be preprocessed as desired by the system. The
user’s interest is characterized by a subset of topics C∗ ⊂ C that is marked “good.”
No good topic is an ancestor of another good topic. Given a Web page q, a measure
of relevance RC∗(q) of q with regard to C∗, together with a method for computing
it, must be specified to the system. (Usually, this would be a supervised learner, as
in Chapter 5.) For a Bayesian classifier, or a TFIDF-cosine measure, 0 ≤ R(q) ≤ 1.
The system starts by visiting all the seed pages in D(C∗). In each step, the system
can inspect its current set V of visited pages and then choose to visit an unvisited
page from the crawl frontier, corresponding to a hyperlink on one or more visited
pages. Informally, the goal is to visit as many relevant pages and as few irrelevant
pages as possible, that is, to maximize average relevance. Therefore, we seek to
find a vertex set V ⊃ D(C∗), where V is reachable from D(C∗), such that the
mean relevance

(∑
v∈V R(v)

)
/|V | is maximized.

There are a variety of performance indicators that reflect the health of a
focused crawl. By far the most important is the harvest rate, or the “true” relevance
of fetched pages at any given time. The “true” relevance of a page can only be
evaluated with human input, if at all. However, to evaluate a focused crawler,
it would be nearly impossible to obtain human judgment on millions of pages.
Instead, we can use the same classifier that guides the crawler in the first place. This
may sound fishy, but there is really nothing wrong in using the same classifier. The
crawler is basically gambling on a link (u, v) when u is very relevant, and, when v
is fetched, we get to know if the gamble paid off. Note that the gambling exercise
may well have been performed by a human, who also has a certain probability of
classification error. As long as the classifier’s errors are not somehow correlated
with the local graph structure of v, evaluating a focused crawler using an automatic
classifier is reasonable.

I measured the harvest rate of our focused crawler for over 20 topics selected
from Yahoo!. Figure 8.12 shows a running average of the harvest rate for two

274
C

H
AP

TER
8

R
esource

D
iscovery

0
0 5000

Harvest rate (“Cycling,” unfocused)

10,000

0.1
0.2
0.3
0.4
0.5

A
ve

ra
ge

 r
el

ev
an

ce
0.6
0.7
0.8
0.9

1

Average over 100

0
0 5000 10,000 15,000 2000 4000 6000

Harvest rate (“Cycling,” hard focus)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Average over 100
Average over 1000

0
0

Harvest rate (“Cycling,” soft focus)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0

Number of URLs fetched

Harvest rate (“HIV/AIDS,” unfocused)

0.1
0.2
0.3
0.4
0.5

A
ve

ra
ge

 r
el

ev
an

ce

0.6
0.7
0.8
0.9

1

Average over 100

0
0 2000 4000 6000 8000 10,000 1000 2000 3000 4000 50002000 4000 6000

Number of URLs fetched

Harvest rate (“HIV/AIDS,” hard focus)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Average over 100
Average over 1000

0
0

Number of URLs fetched

Harvest rate (“HIV/AIDS,” soft focus)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Average over 100
Average over 1000

Average over 100
Average over 1000

F I G U R E 8 . 1 2 Focused crawlers can maintain a reasonable harvest rate for broad topics while unfocused crawlers completely lose their
way, even though they start from the same set of URLs. The x-axis represents the number of URLs fetched (discrete time), and the
y-axis plots a smoothed value for the relevance of fetched pages.

8.3 Topical Locality and Focused Crawling 275

0.98
0

0.1

0.2

0.3

0.4

Fr
ac

tio
n

of
 p

ag
es

 a
cq

ui
re

d

0.5

0.6

0.7

0.985 0.99
Relevance

Fraction of acquired pages vs. relevance Fraction of acquired pages vs. relevance

0.995 1 1.005

Focused (soft)
Focused (hard)
Unfocused

Subject = “cycling”

0.98
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
.04

0.45
0.5

0.55

0.985 0.99
Relevance

0.995 1 1.005

Focused (soft)
Focused (hard)
Unfocused

Subject = “HIV/AIDS”

F I G U R E 8 . 1 3 The distribution of relevance scores of pages collected by focused crawlers is sharply
concentrated around one, whereas the relevance of pages fetched by the unfocused crawlers is not.

topics (“cycling” and “HIV/AIDS”) and three crawlers: a standard (unfocused)
crawler that picks a random frontier page for fetching, a hard-focused crawler,
and a soft-focused crawler.

The unfocused crawler starts out from the same set of dozens of highly relevant
links as the focused crawler, but is completely lost within the next 100 page fetches:
the relevance goes quickly to zero. In contrast, the hard-focused crawls keep up
a healthy pace of acquiring relevant pages over thousands of fetches, in spite of
some short-range rate fluctuations, which is expected. On an average, between a
third and a half of all page fetches result in success over the first several thousand
fetches, and there seems to be no sign of stagnation. Given that none of the crawls
approached stagnation, it is difficult to compare between hard and soft focusing;
they both do very well. For the topic “cycling,” the hard crawler takes a little while
to warm up because it loses some good opportunities to expand near-match pages.
Figure 8.13 shows that the distribution of relevance of pages collected by the soft-
focused crawler is sharply peaked at the high end of the zero-to-one scale, the
hard-focused crawler is mildly inferior, and the distribution for the unfocused
crawler has no peak at one; in fact, it is concentrated near zero (not shown).

Improving recall by restricting scope is a key rationale for focused crawling,
but it is rather difficult to evaluate focused crawlers for recall. One can follow Cho
et al.’s strategy to collect and define a hypertext graph and the “universe” from
that different crawlers collect subgraphs, but no single crawl is likely to collect

276 C H A P T E R 8 Resource Discovery

0
0

0.1
0.2
0.3
0.4
0.5

U
R

L
ov

er
la

p

0.6
0.7
0.8
0.9

1000
Number of URLs crawled

Crawl robustness (“cycling”)

2000 3000 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000
Number of URLs crawled

Crawl robustness (“mutual funds”)

2000 3000

F I G U R E 8 . 1 4 A large overlap is quickly developed in URLs between two instances of the focused
crawler started from disjoint sets of seed URLs pertaining to the same topic.

a reasonable universe, given that the coverage of even the largest commercial
crawlers is modest [16, 134].

We can get some indirect evidence of recall or coverage by evaluating the
robustness in acquiring relevant pages, starting from different seed URLs. The idea
is to collect (say, two) disjoint sets of sample URLs for a topic, and start distinct
focused crawls A and B, which collect vertex sets VA(t) and VB(t) after fetching
t pages each (|VA(t)| = |VB(t)| = t). Now we can measure |VA(t) ∩ VB(t)|/t as
an indicator of overlap or consensus between the two crawlers. Figure 8.14 shows
that overlap grows rapidly within a few thousand page fetches.

The large overlap is good news: it indicates that broad topics stake out a well-
defined link community on the Web, and as long as this community is reachable
from the seed URLs, a focused crawler guided by a supervised learner will reach
it irrespective of the specific seed URLs used.

Discovering stable link communities pertaining to a query or topic is also im-
portant for topic distillation, discussed in Section 7.2. Researchers experimenting
with the HITS family of algorithms have noted that the results are often sensitive
to the construction of the base graph.

We also established that nontrivial graph exploration is involved in the dis-
covery tasks that were undertaken. After fetching several tens of thousands of
relevant pages, we ran the B&H edge-weighted version of topic distillation (see

8.3 Topical Locality and Focused Crawling 277

1
0

2

4

6

8

10

N
um

be
r

of
 s

er
ve

rs
 in

 t
op

 1
00

12

14

16

18

2 3 4 5 6
Minimum distance from crawl seed

(number of links)

Resource distance (“cycling”)

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

Minimum distance from crawl seed
(number of links)

Resource distance (“mutual funds”)

F I G U R E 8 . 1 5 The best authorities are found several links away from the seed URLs; there are
millions of accessible pages within such distances of the seed URLs. Goal-directed pruning and
prioritization enables the crawler to ignore most of these pages and zoom in on the relevant
subgraph.

Section 7.4.1) on the collected graph to determine the top 100 authorities. Next,
the number of links that the crawler traversed to reach each authority, starting
at some seed URL, was determined. (There may exist shorter paths from a seed
to some of these nodes.) Finally, histograms of these link distances were plotted.
Figure 8.15 shows two samples, for the topics “cycling” and “mutual funds.”

The seed URLs were collected using AltaVista and HITS. Hence, the discov-
ery of excellent resources as far as 10 to 12 links from the seeds also establishes the
need to explore aggressively from the keyword-based root set and the limited-
radius expansion to the base set. This resolves, at least empirically, the graph
collection problem raised in the beginning of Section 8.3.

8.3.2 Identifying and Exploiting Hubs
Hubs are not treated well by the radius-1 focused crawler. They often contain
relatively little descriptive text, making a perfect classification by the algorithms
described in Chapter 5 less likely. Moreover, hubs may pertain to multiple topics
(see Section 7.4.4), in that case a classifier may correctly claim that the hub has
small relevance. This is unfortunate, because a great authority with no outlinks

278 C H A P T E R 8 Resource Discovery

0
0

30

60

90

120

O
n-

to
pi

c
re

tr
ie

ve
d

do
cu

m
en

ts

150

180

210

240

1000 2000
Downloads

3000 4000 5000

Context-focused crawler
Context-focused crawler
with backlinks

F I G U R E 8 . 1 6 Assisting a focused crawler with backlinks from a standard search engine effectively
increases the connectivity of the Web graph and increases the harvest rate.

may be a great catch for a focused crawler, but good hubs are critical to sustaining
a healthy rate of collecting authorities.

The true worth of hubs is better recognized by

The radius-2 (co-citation) hypothesis: If u points to many pages v with large R(v),
then u is a good hub; an unvisited out-neighbor w of u is expected to have a
higher relevance than a random sample from the Web.

When the harvest rate of a radius-1 crawler drops, we can try to shore it up by
raising the priority of unvisited nodes pointed to by good hubs. We can find good
hubs by running some variant of the HITS algorithm (Section 7.2.2) once in a
while. We call this a radius-2 crawler .

For topics that are well represented on the Web, with large clustered sub-
graphs, the focused crawler described so far works quite well. Eventually, however,
the typical relevance of newly fetched pages drops toward zero. Either the crawler
has exhausted all that there is to collect from the Web (unlikely, and we will never
know for sure), or it has collected a relevant subgraph that is hemmed in on all
sides with pages of low relevance, separating the crawler from additional relevant
clusters that ought to be collected.

As can be seen from Figure 8.16, the harvest rate generally improves if
backlinks are used. This is not surprising, as the undirected connectivity of the

8.3 Topical Locality and Focused Crawling 279

Web graph is expected to be better than the directed connectivity, a hunch
empirically confirmed later by Bröder et al. [28]. However, since the effective
degree of each node increases upon using backlinks, care must be taken to choose
promising backlinks, as discussed in the next section.

8.3.3 Learning Context Graphs
Although they differ in cosmetic details, the positive-negative as well as the topic-
hierarchy paradigms of focused crawling exploit the fact that pages pertaining to a
topic tend to cite pages pertaining to the same topic. As we have seen in Chapter 6,
relations between topics can be more complex. For example, if the crawler’s goal
is to collect papers about robotics, a page about a computer science department
is likely to be useful; it is likely to point to faculty homepages, some of which are
likely to point to papers, some of which could be about robotics. Trained to treat
robotics papers as positive and everything else as negative, a classifier may rate a
computer science department homepage as poorly as a page on philately.

How can we learn to distinguish between such situations? Given the seed
URLs, we assume are all relevant, we can trace back various paths that lead to
the relevant pages and try to learn features that indicate if relevant pages are a
short link distance away. We can also do this for pages with high relevance scores
found later in the crawl. As with random sampling (see Section 7.6.3), one may
complain that depending on a standard crawler for backlink queries amounts to
cheating, but various research proposals [41] as well as upcoming standards such
as XLink (www.w3.org/TR/xlink/) make limited forms of bidirectional hyperlinks
more likely to be implemented in the future.

Diligenti et al. [69] propose supervised learning on the structure of paths
leading to relevant pages to enhance the focused crawlers discussed so far. The
seed document is said to be at layer 0. Pages linking to documents at level zero
are at layer 1, and so on. For simplicity, we will assume that pages with paths
to multiple seeds are “named apart” so that they become distinct pages for the
purpose of the following discussion.

A supervised learning problem (see Chapter 5) is set up as follows. The objects
being classified are the pages (nodes in the context graph). The attributes of a page
are the terms that occur in it. The novelty is in the class variable to be predicted;
the class variable is the layer number of the page. That is, looking at the text on
the page, the supervised learner tries to predict the number of hops at which a
relevant page may be found. If the layers in the training set are 0, 1, . . . , N , we
add a class called other to reflect that a page does not seem to fit any of the

280 C H A P T E R 8 Resource Discovery

existing layers. Diligenti et al. preprocess the training documents using a TFIDF
representation to perform a kind of feature selection. Then they use a naive Bayes
classifier (see Section 5.6.1) trained with N + 1 classes. It is not easy to train the
other class directly. Instead, when the winning class c∗ is determined from the
N + 1 candidates, the classifier compares Pr(c∗|d) against a tuned threshold; if
Pr(c∗|d) is too small, d is placed in the other class.

A block diagram of the complete context-focused crawler is shown in Figure 8.17.
Rather than the single priority queue in the standard focused crawler, the context-
focused crawler maintains N + 1 different pools of pages whose URLs need to be
expanded, one pool for each class or layer. The pool numbered 0 corresponds to
layer 0, the harvested output of the crawler. The pool for a lower layer (closer to
zero) has priority over the pool of a higher layer. When out of work, the crawler
picks (fetches) a page from the lowest positive layer possible, scans it for outlinks,
and adds the outlinks to the to do list.

The context-focused crawler outperforms the “standard” focused crawler by
a visible margin, especially when a page about the desired topic tends not to
link directly to another page on that same topic, but takes a path through nodes
pertaining to related topics. The paths may even follow some backward edges. For
example, pages within the site www.toyota.com are unlikely to cite www.mazda.com,
so following forward links alone would be quite restrictive. But there are thousands
of pages co-citing them. Figure 8.18 shows examples of the superior harvest rate
of the context-focused crawler.

8.3.4 Reinforcement Learning
Another technique that generalizes the radius-1 and radius-2 rules is reinforcement
learning (RL), proposed by Rennie and McCallum [181]. Like context graphs,
a focused crawler using RL has to be trained using paths leading to relevant
goal nodes. For example, to collect papers on robotics, one may locate electrical,
mechanical, and computer engineering departments, follow links to homepages
of faculty and students, check them for evident involvement in robotics research,
and then follow links on promising homepages to robotics papers. Such paths
form the input to an RL crawler.

The RL crawler seeks to predict the total benefit from following a link (u, v)
from page u. Different links on the same page u may lead to very different measures
of benefit. In this respect the RL crawler is an improvement over the context-
focused crawler, which estimates the distance to a goal but not which outlinks to
follow to reach these goals. For the system administrator or user, the RL crawler’s
biggest attraction is that there is no need to spend time collecting or training the

Layer 1

Layer 2
Representation of the target document

Document representations of layer 1

Document representations of layer 2

Target example

Actual analyzed
document

New
document

Class decision

C2 C3C1

Crawl
engineWeb

Queue 1 Queue 2 Queue 3 Queue 4

Back crawl stage

Learning stage

Crawling stage

Context
graph

Set of classifiers

F I G U R E 8 . 1 7 A context-focused crawler.

282 C H A P T E R 8 Resource Discovery

0 2000 4000 6000
Number of downloads

8000 10,00012,000
0

50

100

150

200

N
um

be
r

of
 r

et
ri

ev
ed

 t
ar

ge
t

do
cu

m
en

ts

250

300

350

400

Context-focused crawler
Focused crawler
Breadth-first crawler

F I G U R E 8 . 1 8 The context-focused crawler yields a higher harvest rate of relevant pages.

system with negative instances. However, more effort is needed to collect paths
than simple page instances as with the first-generation focused crawlers.

Care is required to specify the total benefit. If v is itself a relevant goal node, then
following (u, v) pays off immediately. This may not always be the case. Sometimes
v may not be very relevant in itself, but may lead through short paths to many goal
nodes. As with the context-focused crawler, links leading to immediate rewards
should be rewarded (i.e., regarded with higher priority by the crawler) more than
links leading to distant goals. In other words, we should discount the worth of
distant goals while training. Rennie and McCallum set the reward for following
(u, v) to 1 if v was relevant. A goal node 	 links from v additively contributes 1/γ 	

to the reward for crossing (u, v), where 0 < γ < 1
2 was a geometric discounting

factor. This is reminiscent of hypertext search systems (e.g., by Savoy [188]) that
score pages in the link vicinity of pages matching query keywords.

Using this notion of reward, Rennie and McCallum trained a classifier with
the following characteristics:

� An instance was a single HREF link like (u, v).
� The features were terms from the title and headers (<h1>...</h1>, etc.) of

u, together with the text in and “near” the anchor (u, v). Directories and
pathnames were also used. (Their paper does not provide a precise definition
of “near,” or how these features were encoded and combined.)

TE
AM
FL
Y

Team-Fly®

8.3 Topical Locality and Focused Crawling 283

0 10 20 30 40 50
Hyperlinks followed (%)

60 70 80 90 100
0

10
20
30
40
50

R
es

ea
rc

h
pa

pe
rs

 fo
un

d
(%

)

60
70
80
90

100

Optimal
RL future (3 bins)
RL immediate (2 bins)
Breadth-first

0 20 40
Hyperlinks followed (%)

Crawling computer science department
sites for papers Crawling company sites for officer pages

60 80 100
0

10
20
30
40
50

O
ffi

ce
r

pa
ge

s
fo

un
d

(%
)

60
70
80
90

100

Optimal
RL future (4 bins)
RL future (3 bins)
RL immediate (2 bins)
Breadth-first

F I G U R E 8 . 1 9 Reinforcement learning helps a crawler quickly locate goal nodes. Training on
discounted rewards is essential to develop this capability.

� The prediction was a discretized estimate of the reward for following (u, v).

Although the learner really needs a regression from the discrete features to a
continuous “promise” estimate, it is often simpler and faster to use a classification
(rather than a regression) strategy by suitably discretizing the predicted variable
into a few bins. They used a simple naive Bayes classifier (see Section 5.6.1).

Rennie and McCallum experimented with a few crawl specifications. One
of them was to find research papers within a handful of computer science
department Web sites, starting from the departmental homepages. Another was to
find pages listing the executive officers of companies, starting with their respective
homepages. Because of the precisely defined crawling domains, it was possible
for them to exhaustively mark all relevant pages. For research papers they wrote
a script that checked for an abstract and reference section. For the second task,
26 company homepages were identified as the starting points, and one page for
each company was manually identified as a goal node.

Figure 8.19 shows some of their results. As with the focused crawlers discussed
before, the RL crawler acquires goal nodes much faster than a breadth-first
crawler. More interesting, the discounted reward scheme for distant goals pays
off, especially for the task of finding company officer pages. Finding computer
science papers might have been easier because most of them are PostScript or PDF
files, a “feature” that would show up in the URL. Therefore, a goal at distance
one is easy to find.

284 C H A P T E R 8 Resource Discovery

8.4 Discovering Communities
I have discussed a number of related approaches to topic-specific resource dis-
covery. An administrator needs to “seed” all of these systems with a fixed set or
taxonomy of topics, together with examples for all the topics. Although broad
topics evolve only slowly, more specific topics may be quite ephemeral on the
Web. (At least, the fastest rate of growth in the number of relevant pages is often
a spike on the time line, even if old pages on specialized topics may linger beyond
the time of maximum general interest.)

The previous sections have characterized communities as a phenomenon
characterized by both link proximity and content coherence, but there has been
significant success in detecting communities on the basis of link structure alone. I
will discuss two such techniques in this section. The first one, inspired by HITS
(see Section 7.2.2), searches for small, complete, bipartite subgraphs (called cores).
The second approach is inspired by notions of network separability and graph
clustering: it finds a densely connected subgraph isolated from the remainder of
the Web by a sparse cut.

8.4.1 Bipartite Cores as Communities
Random graph models materialize edges independently with a fixed probability. If
the Web were a random graph, large, densely connected components and bipartite
cores would be extremely unlikely. The Web is not random, and such subgraphs
abound on it.

In particular, the success of HITS-like algorithms for many broad topics
suggests that bipartite cores relevant to these topics grow in an organic manner
on the Web (see Section 7.2.3). A small bipartite core is often an indicator of an
emerging topic, which may be too specific at the moment to draw the attention
of human catalogers on the Web.

An interesting question is, can we hunt for bipartite cores efficiently from a Web
crawl? Finding large bipartite cores amid a graph with billions of nodes is clearly
impractical. Large cores represent communities that are already well established.
Small, emerging cores may represent communities that are most novel.

The search for cores will proceed by identifying and/or eliminating fans and
centers. In a bipartite graph (L, R, E) where directed edges go from L to R, nodes
in L are fans and nodes in R are centers. An (i, j) core has |L| = i and |R| = j.

Duplicate and near duplicate hubs (see Section 3.3.2) must be eliminated
before we get started. Otherwise many cores will have near duplicate hubs as
fans. We already know from Section 3.3.3 how to weed out pages with nearly

8.4 Discovering Communities 285

identical outlink sequences. Kumar et al. [128] observed a 60% reduction in graph
size using shingling on the link sequence as described in Section 3.3.3; some pages
from Yahoo! were duplicated as many as 50 times.

Based on the preceding discussion, we may also want to eliminate fans with
very large degree. Pruning fans with large out-degree will also make it easier to
report nonoverlapping cores (otherwise, they could be subgraphs of larger dense
cores). What should be the threshold degree above which we eliminate fans? One
crude heuristic to set this policy is to note that well-known (therefore, likely to
be largest) communities indexed by Web directories cover (as a rough ballpark
estimate) 1/200 to 1/100 of the Web [128]. We can pick a degree k from the
power-law graphs in Figure 7.20 such that the fraction of nodes with degree
larger than k is 1/200. This threshold k turns out to be around 40 to 80.

No fan with out-degree less than j can belong to an (i, j) core, and no center
with in-degree less than i can belong to an (i, j) core. Eliminating a fan or center
may reduce the degree of a center or fan below these thresholds and help prune
the latter in cascade. We sort the edge list by source, then scan the data eliminating
fans that have out-degree less than j. Next we sort the result by destination and
eliminate centers that have in-degree less than i. We continue this process until
the rate of elimination slows down. A host of other pruning techniques can be
used.

After pruning away as many candidates as we can, we can directly search for
(i, j) cores in the surviving graph in a bottom-up fashion. We start with all (1, j)
cores, which is simply the set of all nodes with out-degree at least j. Next we
construct all (2, j) cores by checking every fan that also cites any center in a (1, j)
core. We find all (3, j) cores by checking every fan that cites any center in a (2, j)
core, and so on.

Kumar et al. [128] discovered tens of thousands of (3, 3) to (3, 5) bipartite
cores and observed (through manual inspection) that a large fraction of the cores
were, in fact, topically coherent (the definition of “topic” was left informal). In
some cases, an emerging community found from an old crawl was found to be
well established in the Web graph at a later date.

8.4.2 Network Flow/Cut-Based Notions of Communities
Dense bipartite subgraphs are an important indicator of community formation,
but they may not be the only one. In this section, we will study a general definition
(due to Flake et al. [77]) of a community as a subgraph whose internal link density
exceeds the density of connection to nodes outside it by some margin.

286 C H A P T E R 8 Resource Discovery

Formally, we can define a community as a vertex subset C ⊂ V such that each
v ∈ C has at least as many neighbors in C as in V − C. This problem is NP-
complete owing to reductions from various graph-partitioning problems. Hence
we will come up with a less stringent definition, based on network flows.

The max-flow/min-cut problem [56] is posed as follows. We are given a graph
G = (V , E) with a source node s ∈ V and a target node t ∈ V . Each edge (u, v)
is like a water pipe with a positive integer maximum flow capacity c(u, v) ∈ Z

+.
The max-flow algorithm finds the maximum rate of flow from s to t without
exceeding the capacity constraints on any edge. It is known that this maximum
flow is the same as a minimum-capacity cut (min-cut) separating s and t.

Suppose we are given the Web graph G = (V , E) with a node subset S ⊂ V
identified as seed URLs, which are examples of the community the user wishes
to discover. We create an artificial source s and connect it to all seed nodes u ∈ S,
setting c(s, u) = ∞. We connect all v ∈ V − S − {s, t} to an artificial target t with
c(v, t) = 1. Each original edge is made undirected and heuristically assigned a
capacity of k (I will discuss k shortly). Now we run an s → t max-flow algorithm
and define all nodes on the s-side of the min-cut as being part of the community
C. Thanks to all c(s, u) being infinite, we are guaranteed that S ⊆ C as well.

In reality, we are not given the whole Web graph and must collect necessary
portions of it by crawling. We are only given S and, if the community found using
the whole Web graph is C ⊇ S, then we wish to collect as few nodes outside C as
possible while computing C. To this end, we will do a different form of focused
crawling that is driven not by textual content but purely by hyperlink (density)
considerations.

The crawler begins with the seed set S, shown as (b) in Figure 8.20, and finds
all in-6 and out-neighbors of the seed nodes (layer (c)). It can continue to any
fixed depth; the figure shows two such steps. Once we have collected layers (c)
and (d), say, we can set up a max-flow problem as described above by connecting
all nodes in (c) and (d) (in general, V − S − {s, t}) to a virtual sink t, creating s,
and assigning edge capacities. Let C be the community found by this procedure.

If S is too small, C may turn out to be too close to S, that is, bring in very
few new example nodes. In that case, we can consider some nodes in C with the
largest number of neighbors in C as new seeds and repeat the process. There is
no guarantee that C (after each round of crawling followed by max-flow) will not

6. Using the “link:. . .” query on most search engines.

8.4 Discovering Communities 287

(d) (e)

t

(c)(b)(a)

F I G U R E 8 . 2 0 Flow-based definition of a community. The artificial source (a) is connected with
infinite capacity edges to the source nodes (b). The next two levels of the crawl are represented by
(c) and (d). An artificial sink node helps compute max-flow (e).

grow without bound. In practice, for many trials, C stabilized once the collected
graph grew beyond a certain size.

k is set empirically. If k is very large, the min-cut will be pushed out to the
periphery of the crawled graph, where the unit-capacity (v, t) links are to be
found. If k is too small, we will discover a small cut close to S. Since we believe
that nodes close to S are more likely to be on-topic than nodes far away in the
link graph, k can be used to tune a recall-precision–like trade-off. In practice, the
simple choice k = |S| seems to work well.

Table 8.1 shows the most popular nodes found by crawling out from the
homepage of Ronald Rivest, inventor of the RSA cryptosystem and coauthor of
a well-known textbook on algorithms with Thomas Cormen.

Defining a focused community in terms of network flows makes the focused
crawler much simpler to operate, compared to content-based focused crawlers. In

Degree in C URL, Title or Description

86 Ronald L. Rivest: Homepage
29 Chaffing and Winnowing: Confidentiality without Encryption
20 Thomas H. Cormen’s homepage at Dartmouth
9 The Mathematical Guts of RSA Encryption
8 German News Story on Cryptography

T A B L E 8 . 1 The highest-degree members of C after crawling out from S set to a single
URL: Ronald Rivest’s homepage.

288 C H A P T E R 8 Resource Discovery

particular, it is not necessary to collect negative examples or to train a classification
system. However, we cannot claim that either the content-based system or the
link-based system finds the “right” answer in all cases. It would be interesting to
compare communities found by these systems, as well as evolve a formal evaluation
procedure for systems that collect community graphs.

8.5 Bibliographic Notes
The need for decentralized searching that integrates link proximity and textual
content has been felt for a number of years. The Webglimpse system (web-
glimpse.org/) lets the user specify a seed page, a depth bound, and a keyword
query and will return hypertext nodes within the specified link distance of the
seed that satisfy the query. FishSearch and SharkSearch [63, 64, 107] are client-
side tools with similar goals. The “distributed agents” literature provides similar
approaches to resource discovery. A well-known and representative system of that
flavor is InfoSpiders by Menczer and Belew [149].

By 1998, commercial crawlers were very sophisticated, but their queuing
discipline and priority strategies remained unpublished. Cho et al.’s work [50] is
an early public report on the effect of various crawling strategies on the acquisition
rate of “desirable” pages, defined in a variety of ways. Najork and Weiner [158]
report on more extensive experiments of a similar nature over much larger crawls
of the Web at large.

Although co-citation has been used in bibliometry for a long time to find
related publications [132], Dean and Henzinger’s work [65] is an early and
influential application to the Web. In the entire lineage of topic-distillation
research, from Kleinberg’s HITS algorithm [122] to the D&H algorithm, the
issue of collecting a suitable graph for distillation has been left to radius-1 or
radius-2 expansion heuristics. The subsequent research on focused crawling by
van den Berg, Dom, and me, as well as by Diligenti et al. [45, 69], provide some
solutions to this issue.

Focused crawlers produce what are sometimes called vertical portals because
they address the information needs related to just one or a few topics. Focused re-
source discovery seems to be at the heart of many new information management
companies, where its output feeds into custom search engines and informa-
tion extractors. CoRA (cora.whizbang.com/ [146]) and CiteSeer/ResearchIndex
(citeseer.nj.nec.com/) are examples of vertical portals collected by semiautomatic
resource discovery in various forms.

c h a p t e r 9
T H E F U T U R E O F W E B M I N I N G

The Web continues to grow, but the pace has slackened since the early years (1994–
1999). There is a relatively steady flux and turnover. Search engines started from
their IR ancestors but made a substantial technological leap, as we have seen in this
book. Other operations on hypertextual documents, such as crawling, clustering,
and classification, have also been enhanced by the research described here.

Information foraging on the Web is now vastly easier than in the initial
years of crawlers and search engines, but it is running up against the “syntactic
search” barrier. Large search engines rarely get into in-depth linguistic analysis of
document collections because many processes in automatic language processing
are much more complex and therefore somewhat slower than regular crawling
and indexing. Many components of automatic language processing have been
intensely researched for decades [4, 55], and I predict increasing adoption of
these components for Web searching and analysis. I will discuss some techniques
to exploit “ankle-deep semantics” in this chapter.

The macroscopic structures and idioms on the Web are well entrenched and
already exploited to a great extent in searching and pattern discovery. We are seeing
a steady migration of research effort to disassembling pages and page regions into
finer structures until we can deal with phrases and sentences, taking them apart
into finer linguistic units. The extracted information is being integrated with
other knowledge bases, such as dictionaries and domain-specific catalogs, and
data extracted from multiple sources is being combined to address information
needs. Uniform description and interchange formats are being designed using

289

290 C H A P T E R 9 The Future of Web Mining

XML and its associated metadata description standards to exchange and combine
knowledge bases more easily.

In this chapter, I will describe a few techniques for analyzing documents at the
level of tokens, their proximity, and their relationships with each other. For some
applications, understanding the relationships between tokens at a syntactic level
suffices. For example, we may be interested in populating a standardized database
of academic citations from the bibliography found in online research papers (e.g.,
www.citeseer.com/), which are typeset in a variety of styles, the fields appearing
in many orders, some abbreviated and some missing. For other applications, a
deeper understanding of language is involved, which may include assigning parts
of speech to tokens, attempting a parse, and generating a parsed graph of entities
and relationships. Although these sound like disparate techniques, we shall see
that they are often based on ideas explored in the previous chapters. Finally I will
discuss the drive toward profiling Web users and tuning their Web experience to
their interests.

9.1 Information Extraction
Suppose an analyst needs to keep an up-to-date database of corporate acquisitions
in the format “A acquired B for x dollars, of which y percent was in the
form of equity.” It would be difficult to express such an information need as
a keyword query. Keyword search engines work best for the class of queries that
seek information about an entity specified using a noun or noun phrase, not for
queries that seek to match a template of relationships between entities whose names
are to be extracted from documents. Here are some more examples.

� An HR firm may wish to monitor the Web sites of businesses in a specific
sector for available job positions with salaries and locations, and build and
maintain a structured database containing this data to help design their pay
packages.

� A market analyst may wish to monitor management changes in companies
from a specified sector and get updates of the form “X replaced Y in position
P of company C.”

� A researcher may wish to monitor a set of university and journal Web sites for
articles that claim to improve on a specific technique and to be notified with
the title, authors, and a URL where the article is available online.

9.1 Information Extraction 291

� An academic department may wish to monitor other universities for promising
doctoral candidates to hire in specified areas, with related faculty being notified
about significant publications by the candidates.

� A small company that assembles PCs may wish to monitor online catalogs from
wholesalers of system boards, cabinets, and CPUs to detect any significant
change in prices from current suppliers and bidders.

These are all information extraction (IE) problems. Clearly, applications of IE
abound. Generally speaking, IE problems are specified as long-standing or con-
tinuous queries in the face of a growing and changing corpus. Each “query” is
like a template with empty slots that must be filled by matching the template to
(new) documents.

The difficulty of IE tasks varies a great deal depending on how well behaved
the input is, as do techniques that are brought to bear. I shall informally name
IE tasks as screen scraping, record extracting, and message understanding, in order of
increasing difficulty.

A trivial IE problem is solved routinely by metasearch engines (see Sec-
tion 3.2.5) using ad hoc means: they have to extract the query responses (URL,
title, blurb with query terms highlighted, and possibly a score) from the pages
returned by a fixed set of search engines, an activity befittingly called screen scrap-
ing. Here there is a reliable record structure that is very regular and predictable;
markup tags are also a great help in this task.

Record extraction tasks are more difficult than screen scraping. Academic
citations provide an example: a typical citation may contain author names, editor
names, article title, book title, page numbers, volume number, and year. Written
in BibTeX, these fields are labeled explicitly, but in a formatted paper, the fields
may be reordered or dropped and names abbreviated. Fonts and punctuation may
be used to delimit fields. There is no single standard for choosing field orders, fonts,
punctuation, or abbreviations. International mailing addresses provide another
challenging example.

Message understanding is the more difficult task of populating slots from
a diversity of sources of completely free-format text. A common application
is to extract structured “stories” of a specific genre from news articles. An
insurance company may wish to collect multiple accounts of tornado damage
or auto accidents, or a security agency may wish to file away crime incidents in a
manner amenable to structured queries and statistics collection. There is an entire

292 C H A P T E R 9 The Future of Web Mining

conference, the Message Understanding Conference1 (MUC), dedicated to IE of
this genre.

It has been argued that the easier IE tasks amount to reverse engineering,
which has been made necessary by a lack of authoring formats and standards,
a “transient” problem that will be readily remedied as semistructured data (e.g.,
XML) and metadata (e.g., RDF) standards become mainstream. While format
standardization will be driven by commercial motives in specific vertical sectors,
I believe that there will always be a need to perform IE in domains that are not
standardized.

IE techniques can be based on rule induction (see Section 5.10.2) [30, 84,
198] or statistical learning, generally using hidden Markov models (HMMs). I
will cover the latter briefly. An HMM is a finite-state machine with probabilistic
transitions between a set of states Q. The machine starts from an initial state qI ,
moves randomly from state to state, and finishes at the final state qF . In any state,
it tosses a biased multiway coin (i.e., invokes a multinomial distribution) to decide
which outlink to follow out of the current state. Pr(q → q′) gives the probability
of moving from state q to q′. There is also a multinomial term distribution (see
Section 4.4.1) associated with each node over a global set � of output symbols.
Pr(q ↑ σ) is the probability of emitting symbol σ ∈ � while in state q. Let the
output string of symbols emitted by the HMM be called x = x1x2 . . . x	$ (“$” is an
end-of-string marker that is emitted with probability one by the final state qF). A
sample state transition diagram for the masthead of a research paper, comprising
the title, authors, their affiliations, their emails, and the abstract, is shown in
Figure 9.1.

There are two steps for using HMMs for IE. First, we induce an HMM from
training data. Next, given new text, we apply the HMM to the text to estimate
the state transition sequence for that text. Generally, HMM states correspond to
fields or slots to be extracted in some natural way, as Figure 9.1 shows.

Given a string x, our task is to recover the state sequence that is most likely
to emit x, written as

argmax
(q1,...,q)∈Q	

	+1∏

i=1

Pr(qi−1 → qi) Pr(qi ↑ xi) (9.1)

1. See, for example, www.itl.nist.gov/iaui/894.02/related_projects/muc/.

TE
AM
FL
Y

Team-Fly®

9.1
In

fo
rm

atio
n

E
xtractio

n
293

Start Title

Note

0.93

Pubnum

0.6

0.86

0.88
0.11

0.03 0.4

0.07

Author Date

Email

0.93

Affiliation

0.88

Pubnum

0.61

0.02

Address

0.87

0.01 0.19

0.12

0.04

0.70.03
0.09

0.24

0.84

0.12

0.01

0.11

0.07
0.11

0.08

0.01

End

Note

0.97

0.96

0.73

0.04

0.1 0.03

0.17

Abstract

Keyword

F I G U R E 9 . 1 A hidden Markov model (HMM) for the title page of a research paper [193].

294 C H A P T E R 9 The Future of Web Mining

where q0 = qI and q	+1 = qF . The Viterbi algorithm [81] can be used to estimate
the most likely state sequence q = qI , q1, . . . , q	, qF given an HMM M (charac-
terized by Q, Pr(q → q′), �, and Pr(q ↑ σ)) and x. I will describe the Viterbi
algorithm briefly. Let us define

L(q) = −
	+1∑

i=1

log
(
Pr(qi−1 → qi) Pr(qi ↑ xi)

)
(9.2)

Then Pr(x, q|M) = e−L(q), so our goal of maximizing Pr(x, q|M) is the same as
minimizing L(q). We can now think of

− log Pr(q → q′) − log Pr(q′ ↑ xi) (9.3)

as the cost of making a transition from q to q′ and emitting xi. Because we would like
to consider all possible state pairs for q and q′ for each timestep i, we construct
the layered graph shown in Figure 9.2. It is possible that not all transitions are
possible in all timesteps. With edge weights set as indicated above, the best state
sequence can be estimated by finding the shortest path from qI in the topmost
layer to qF in the bottom-most layer. (I have simplified the example by magically
claiming that multitoken substrings are emitted from one state. In practice, these
states need self-loops to generate more than one token, and/or we must use some
notion of a “mini”-HMM within these states.)

We return to estimating M from training data. If the structure of the HMM
is known and all lexical units are manually labeled with states, it is simple, in
principle, to estimate the parameters Pr(q → q′) and Pr(q ↑ σ). Some smoothing
of parameters may be useful, as described in Section 5.6.1.

It is more difficult to design which state transitions q → q′ are at all possible
(i.e., with Pr(q → q′) > 0). A simple approach is to initialize one state for each
token, with a transition to the following token. Next, a variety of state-merging
steps are applied. For example, if q1 → q2 and the labels of q1 and q2 are the
same, we merge them. This will introduce self-loops. Another transformation is
to merge q1 and q2 if some q → q1 and q → q2 (or q1 → q and q2 → q) and the
labels on q1 and q2 are the same.

HMM-based IE is fairly accurate; for the model shown in Figure 9.1 the
accuracy was over 90%. Obviously, the performance depends on the problem
domain.

9.2 Natural Language Processing 295

qI Author

AddressAuthor

0.8

0.5

0.8
0.2

0.5
0.2

1

Ronald Rosenfeld

roni@cs.cmu.edu

Andrew McCallum

Mccallum@justresearch.com

Pittsburgh, PA 15213

$

Email Address qF

qI Author Email Address qF

qI Author Email Address qF

qI Author Email Address qF

qI Author Email Address qF

qI Author Email Address qF

qI Author Email Address qF

x1 Ronald Rosenfeld
x2 roni@cs.cmu.edu
x3 Andrew McCallum
x4 mccallum@justresearch.com
x5 Pittsburgh, PA 15213
x6 $EmailqI qF

F I G U R E 9 . 2 State sequence estimation is equivalent to a shortest-path problem.

9.2 Natural Language Processing
In the long run, hypertext information retrieval and mining must embrace
and extend natural language (NL) representation and analysis, which have been
researched intensively by a large body of computational linguists for several
decades. NL techniques can now parse relatively well-formed sentences in many
languages [80, 95, 203, 214], disambiguate words with multiple senses with

296 C H A P T E R 9 The Future of Web Mining

high accuracy [4, 31, 185], tag words in running text with part-of-speech
information [4, 88], represent NL documents in a canonical machine-usable
form [205, 189, 199], and perform NL translation [8, 10, 113]. A combination of
NL and IR techniques have been used for creating hyperlinks automatically [3,
21, 34, 93, 129] and expanding brief queries with related words for enhanced
searches.

9.2.1 Lexical Networks and Ontologies
Humans acquire language understanding skills through constant learning during
the first several years of their lives. Two key elements of language acquisition
are building a lexicon and relating entries in the lexicon through a lexical network
and/or an ontology. These initial steps of human language acquisition have now
been captured digitally.

WordNet [151] is an English dictionary and an associated lexical network.
Unique concepts are represented by nodes called synsets (synonym sets) in a
number of graphs, one for each part of speech. In each graph, synsets are
connected by a variety of labeled, generally directed edges. The noun graph has
the richest link structure, featuring relations such as is a kind of (hyponymy) and
is a part of (meronymy). For example, we can start from the noun bronco and walk
up the hyponymy relation to find the path

bronco, mustang, pony, horse, equine, odd-toed ungulate, placental mam-
mal, mammal, vertebrate, chordate, animal, organism, entity

Interestingly, the opposite of (antonymy) relation is not between synsets but
between words. Although

watery, damp, moist, humid, soggy

are similar to wet and

parched, arid, anhydrous, sere

are similar to dry, only dry and wet are antonyms.
Lexical networks, specifically the noun hierarchy of WordNet, are useful for a

number of applications. They have been used for query expansion: padding a query
with words in the same or closely related synsets to improve recall, as well as to
better match the query to candidate answers in question answering (QA) systems
(see Section 9.3). An ambiguous query term can be recognized using a dictionary

9.2 Natural Language Processing 297

or a lexical network, and it can be disambiguated by either asking the user or
automatically from the context information in the query.

An ontology is a kind of schema describing specific roles of entities with
regard to each other. Although there are large, general-purpose ontologies like
CYC and OpenCYC [136], it is usually easier to design custom ontologies for
specific applications. For example, a PC troubleshooting site may use a custom
ontology where concepts like a hard disk, PCI bus, CPU, CPU fan, SCSI cables,
jumper settings, device drivers, CD-ROMs, software, installation, and so on are
represented and interconnected carefully through relations (e.g., the CPU fan
is attached to the CPU to keep it cool). As another example, we can design an
ontology for a university department comprising entities like faculty, student,
administrative staff, research project, sponsor organization, research paper, journal,
conference, and the like, together with relations like “a faculty advises a student,”
“a research project is sponsored by an organization,” “a paper appears in a journal,”
and so on.

Deep knowledge of language, detailed design considerations, and a great deal
of manual labor are needed to build lexical networks and ontologies. But the
benefits of this investment are cumulative, and the process seems unavoidable for
automatic language processing. Software and tools for maintaining, extending,
and merging such knowledge bases are an attractive area of research.

9.2.2 Part-of-Speech and Sense Tagging
The extent of ambiguity in common words may surprise even a native speaker of a
language. The word run has at least 11 senses as a noun (score, trial, sequence, trip,
rivulet, etc.) and at least 42 senses as a verb (operate, flow, campaign, hunt, etc.)!
Delimiting regions of sentences with part-of-speech (POS) and sense information
for each token or token sequence is clearly the first step toward processing language
with computers.

POS tagging can be done in a supervised or unsupervised fashion. A manually
designed tag set and a collection of hand-tagged documents are needed for training
a supervised tagger. Some sample tags are article, noun, verb, adverb, past-tense
verb, object pronoun, and possessive pronoun. Since manual tagging is laborious,
we can also use unsupervised techniques to cluster tokens that are likely to have
similar functions in sentences, but unsupervised POS tagging may not have the
precision needed to support subsequent linguistic operations such as parsing. Let
us concentrate on supervised POS tagging.

298 C H A P T E R 9 The Future of Web Mining

Approaches to IE and supervised POS tagging are very similar because they
both exploit proximity between tokens and labeling with token classes. Consider
the following example by DeRose [67].

Word Possible POS

The article
man noun, verb
still noun, verb, adjective, adverb
saw noun, past-tense verb
her object pronoun, possessive pronoun

Similar to IE tasks, HMMs can be used for POS tagging. (In fact, HMMs
were used for POS tagging before they were widely applied to IE scenarios.) The
states of the HMM correspond to parts of speech. There are over 130 POS used
regularly (see www.comp.lancs.ac.uk/ucrel/claws1tags.html). From a manually tagged
training corpus, we estimate

� The matrix of transition probabilities from one POS state to another
� For each POS, a multinomial distribution over terms that can occur with that

POS

We can now apply the Viterbi algorithm to find the best-state (POS) sequence
for the sentence. Accuracy of 96% to 99% is not uncommon in statistical POS
tagging. Once the model has been estimated, tagging can be performed at
hundreds of megabytes per hour. Brill’s tagger [25] and the CLAWS tagger [87]
are two very well-known POS taggers.

Word sense disambiguation (WSD) is initiated after POS tagging is completed,
which mostly limits ambiguity to within the correct POS. Much ambiguity may
remain even after POS resolution. For example, the noun interest has at least six
senses, the more frequent being

Usage Sense

53% money paid for use of money
21% a share in a business or company
18% readiness to give attention

Similar to the topic-distillation techniques we studied in Section 7.4, where
anchor text and terms in nearby DOM nodes were used to qualify a hyperlink,

9.2 Natural Language Processing 299

most WSD techniques are based on learning from tokens near a target token. The
training set consists of a sequence of sentences. Ambiguous tokens are tagged with
a sense identifier , which can be a node ID from the WordNet graph. Consider a
word w in the training text, which may be represented using a set of features
extracted from

� The POS of words surrounding w within some window
� The stemmed form of w (see Section 3.1.1)
� Words that frequently co-occur with w in the same sentence

Each sense ID, which may be regarded as a class label (see Chapter 5), is thus
associated with a number of instances, each being a suitable feature vector. At this
point, a variety of supervised learning techniques can be used. Variants of NN
classifiers are reported to perform very well [163]. I believe WSD would be a
great feature for all but the most trivial queries, but WSD is not common in Web
search engines. The only reason I can offer is that training a WSD system requires
manual labeling and considerably more processing than inverted indexing.

9.2.3 Parsing and Knowledge Representation
Morphological and syntactic analyses are only the initial steps of the long path to
parsing the input and then representing natural language in a form that can be
manipulated and searched by a computer. For example, we would ideally like to
map the sentences

Raja broke the window. I saw him running away.

into the graph structure shown in Figure 9.3. The sentences are quite simple, but it
is nontrivial (and uncertain) to infer that him refers to Raja in the passage. Pronoun
resolution is a special case of general resolution of references in sentences (“On
the other hand, . . .”). Pragmatics also play an important role in correct parsing, as
this (somewhat contrived) example shows:

Raja ate bread with jam.
Raja ate bread with Ravi.

Syntactic analysis can offer clues but not completely resolve such ambiguity.
Current parsing technology suitable for the Web can deal with single-sentence

parses for restricted forms of sentences. Most grammar for natural language is am-
biguous (e.g., “He saw the actor with a telescope”). The parsers are not always

300 C H A P T E R 9 The Future of Web Mining

Away

Window

Raja

See
Agent

Agent

Agent

Object

Object

Manner

Break

Run

Raja broke the window.
I saw him running away.

I

F I G U R E 9 . 3 A passage and its parsed graph.

context-free, and some might backtrack in the source. The “tree-adjoining gram-
mar” (see www.cis.upenn.edu/~xtag/) approach [216] has succeeded in capturing a
large subset of English in common usage. A detailed study of NL parsing is beyond
the scope here, but I will touch upon the Link Parser by Sleator and Temper-
ley [196]. The Link Parser has a dictionary that stores terms associated with one
or more linking requirements or constraints, shown as polarized connectors in
Figure 9.4. A successful parse introduces links among the terms in the sentence
so three properties hold:

Satisfaction: Each linking requirement for each term in the sentence needs to be
satisfied by some connector of the opposite polarity emerging from some other
word in the sentence.

Connectivity: The links introduced should be able to connect all the terms in the
sentence.

Planarity: The links introduced by the parser cannot cross when drawn above the
sentence written on a line.

If a connector points to the right, its mate must point to the left. Exactly one
connector wired to a black dot must be satisfied. The linking requirements are
designed from linguistic considerations such as subject (S), object (O), determiner
(D), modifier (M), preposition (J), and adverb (EV).

The parses produced by the Link Parser or some other parser can be a
foundation for representing textual content in a uniform graph formalism (as in

9.2 Natural Language Processing 301

chased

O OSS SD D

ran

S

Mary

O

cat
snake

a
the

O S

D

chased

O

S

Mary

S

D O

catthe

D D

D S

Sp

D
O

a

O

chased

the cat chased a snake

I had a party for my brother at our house on Tuesday

(a)

(b)

(c)

(d)

(e)

S S

O

snakecatthe

D D

Os
Ds Mp Ds Ds J

JJ
Mp

EV

F I G U R E 9 . 4 Examples of the Link Parser at work [196]. A set of words from the dictionary, each
with one or more linking requirements (a). An illegal sentence and its unsuccessful parse (b). A
legal sentence and its successful parse (c). A simpler way to show a legal parse graph (d). A relatively
complex sentence parsed by the Link Parser (e).

302 C H A P T E R 9 The Future of Web Mining

Figure 9.3). Once this is accomplished, the challenge would be in matching parse
graphs to query graphs and ranking the responses. Suitably annotated parse graphs
can also be used as an interlingua for translation between many languages. The
Universal Networking Language (www.unl.ias.unu.edu/) [206], being developed
by the United Nations University in cooperation with a number of countries,
is a promising step toward universal knowledge representation, translation, and
searching.

9.3 Question Answering
IR systems and Web search engines return lists of documents in response to
queries. Sometimes these queries are well-formed natural language questions that
deserve short, accurate replies. Some examples of such queries are

� What is the height of Mount Everest?
� After which animal is the Canary Island named?
� What chemicals are used in the surface of writable compact disks?
� How many liters are there to a gallon?

The following questions also fall within the scope of QA systems, provided the
answer appears directly in some document:

� How many people have set foot on the moon? (A QA system usually cannot
make a list of all such people and return the length of the list.)

� Who was the most frequent coauthor with Gerald Salton? (A QA system
cannot aggregate paper counts with each coauthor.)

� Is the distance between Tokyo and Rome more than 6000 miles? (Even
if a document mentions the distance, a QA system generally will not do
arithmetic.)

QA systems can be classified into the following grades of sophistication.

Slot-filling: The easiest kinds of questions, like “Who was the first human to
set foot on the moon?,” can be answered in the same way as slot-filling IE
systems. There is a difference in the mode of operation: IE systems can use
very sophisticated extraction logic because the set of queries is relatively static,
whereas QA systems must take on ad hoc queries.

TE
AM
FL
Y

Team-Fly®

9.3 Question Answering 303

Question

Parse and classify
question

Generate
keyword query

Retrieve
documents

from IR system

Segment
responses

Rank
segments

Match segment
with question

Parse top
segments

Rank and prepare
answer

Answers

Parse tree,
question class

WordNet expansion,
verb transformation,
noun phrase identification

PC-Kimmo,
MEI parser,
Link Parser,
CONTEX

PC-Kimmo,
MEI parser,
Link Parser,
CONTEX

Question taxonomy
and supervised learner

Identification of
sentence and paragraph
boundaries, finding
density of query terms
in segment, TextTiling

F I G U R E 9 . 5 Typical architecture of a QA system.

Limited-domain: One way to retain the sophistication of the scanners is to limit
the scope of the QA system to specific domains with handcrafted dictionaries
and ontologies. The restriction lets the QA system do better knowledge
representation and inferencing, and therefore answer deeper questions.

Open-domain: Without the luxury of domain restriction, QA systems have to
be very sophisticated, bringing together IR, IE, NL parsing, and inferencing.
This is still an intensely researched area.

START (www.ai.mit.edu/projects/infolab/) [121], Ask Jeeves (www.ask.com/, Mul-
der [131], Webclopedia [112], and MURAX [130] are some well-known QA
systems.

The broad architecture of a typical QA system is shown in Figure 9.5.
(The diagram follows the Webclopedia and Mulder systems.) Initially, documents
are indexed using an IR system as usual. Using corpus knowledge, the system

304 C H A P T E R 9 The Future of Web Mining

designers also compile a set of answer types and a (usually supervised) means
of classifying a question into the most likely answer type(s). This step is called
question classification. For example, answer types may include date (When was
television invented?), city name (What is the capital of Uganda?), definition (What
is a solenoid?), countable number (How many players form a football team?), relative
time (How long does it take to fly from Rome to Tokyo?), and so on.

The main steps in processing a question are as follows. A question is generally
assumed to be a coherent sentence that can be properly parsed. A variety of parsers,
for example, MEI [46], the Link Parser [196], or CONTEX [106], may be used.
Additional morphological analysis to guess the POS of unknown words may also
help in open-domain QA systems (e.g., PC-Kimmo [6]).

The parsed question is first used for question classification. The question class
and the original question are combined to generate a keyword query for the IR
system. For example, if we know that the answer to the question “How long
does it take to fly from Rome to Tokyo?” is a relative time, we can pad the IR
query with terms preassociated with the concept of relative time, such as “hours,”
“weeks,” and “months.”

A basic premise in QA systems is that answers are contained within relatively
small segments of single documents. Accordingly, once the IR system returns with
response documents, the QA system has to segment the documents and score
each segment with regard to the query. The segmenting approach stems from
the fact that a short query and short segments can be subjected to sophisticated
parsing, but it would be too time-consuming to subject the entire corpus, much
of which may never be required by queries, to detailed parsing. The high speed of
syntactic IR, compared to parsing, induces this basic asymmetry in the treatment
of documents and queries in QA systems, compared to the largely symmetric
treatment in vector-space IR systems.

Segments are initially chosen to contain all/most of the query terms within
sentence or paragraph boundaries, and then scored, typically by computing some
measure of the density with which query terms appear in them. Once the most
promising segments are identified, they must be scored off with regard to the
query for their final presentation to the user. Matching and scoring could be done
through purely syntactic means, as in traditional IR, but increasingly, linguistic
techniques are being brought to bear. The necessity of better matching becomes
clear from the following question and answer:

Q: What is the color of grass?
A: Green.

9.4 Profiles, Personalization, and Collaboration 305

The answer may come from a document that simply says “grass is green” without
mentioning color . However, the hypernym hierarchy for green in WordNet reads

green, chromatic color, color, visual property, property

Therefore, we need to integrate proximity search in lexical networks into the
answer segment–matching step.

The highest-scoring segments are parsed to extract the specific information
need expressed in the question. For example, for a question starting with “who,”
we should look for proper nouns (person names) in the parsed segments. If a
question seeks a number, we should look for quantities, and so on. One advantage
of QA on the Web (as opposed to QA on traditional IR corpora) is that many
pages may contain the same information in slightly different linguistic forms, and
the aggregation of data from different pages can weed out noise from erroneous
parsing through majority voting. Finally, the matched lexical units are presented
to the user.

9.4 Profiles, Personalization, and Collaboration
Despite their increasing sophistication, the most popular Web search engines
remain impersonal. They definitely make use of aggregated query logs to improve
indexing and ranking, but most do not keep track of users or sessions, which might
help them build some representation of a user profile and use it for later searches
by the same user, or implement some sort of collaborative searching by users with
related information needs.

Personalization sounds appealing in principle, but is challenged with a number
of issues, privacy being an important concern. Even if we overlooked the privacy
issue for the time being, it is unclear how to represent user profiles or how to use
them for subsequent searches. In terms of the data that can be collected easily from
a user, the browsing history and bookmark files from a Web browser seem like
a reasonable starting point. Bookmark files are sometimes organized into topic-
based folders: these folders reflect the users’ views of topics on the Web that are
important to them.

Profiles can be used in at least two ways: to modify the behavior of search
engines to ad hoc queries and to implement collaborative recommendation. For
both applications, it will be useful to represent interest profiles as mixtures of topics
(see Sections 4.4.2 and 4.5.2). Mixture modeling will help us compare people at a
finer grain than aggregates, enabling better collaborative recommendations [44].

306 C H A P T E R 9 The Future of Web Mining

FreeNet (freenet.sourceforge.net/), Gnutella (www.gnutella.com/), and Napster
(www.napster.com/) have hit the headlines by designing Web-enabled, large-scale,
peer-to-peer systems for robust, decentralized file sharing. These systems are
highly survivable. They pool storage from peer computers around the world to
provide a repository of shared files. There is no central point of control, making
it virtually impossible for an attacker to destroy information or take control of the
system. These systems dynamically replicate and move information in response
to demand, protecting the integrity of copies using strong cryptography against
malicious tampering or counterfeiting. Some of these systems also provide private,
anonymous access.

Just as the hyperlink graph of the Web is an overlay on the Internet graph,
peer networks are an overlay on the Internet and the Web. To date, peer overlays
have been used largely for file sharing, with no “deep” matching of information
needs to content over the peer network. I envisage more content analysis (using
techniques described in this book) to be integrated into peer networks.

R E F E R E N C E S

To make references as accessible as possible, we have included URLs where
possible. Unfortunately, over time, Web sites disappear, accounts are reorganized,
and hyperlinks break. If you find a broken link, you may be able to find the
paper by pasting the title and author names into a general search engine such as
www.google.com or an academic paper collection such as citeseer.com, or pasting the
broken URL into the Wayback Machine at www.archive.org.

[1] R. Agrawal, R. J. Bayardo, and R. Srikant. Athena: Mining-based interactive manage-
ment of text databases. In 7th International Conference on Extending Database Technology
(EDBT), Konstanz, Germany, March 2000. www.almaden.ibm.com/cs/people/ragrawal
/papers/athena.ps.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering
of high dimensional data for data mining applications. In SIGMOD Conference on Man-
agement of Data, Seattle, WA, June 1998. www.almaden.ibm.com/cs/quest/papers/sigmod98
_clique.pdf .

[3] J. Allan. Automatic hypertext link typing. In 7th ACM Conference on Hypertext, Hypertext
’96 , pages 42–51, 1996.

[4] J. Allen. Natural Language Understanding. Benjamin Cummings, 1987, 1995.

[5] B. Amento, L. G. Terveen, and W. C. Hill. Does “authority” mean quality? Predicting
expert quality ratings of Web documents. In SIGIR, pages 296–303. ACM, 2000.
citeseer.nj.nec.com/417258.html.

[6] E. L. Antworth. PC-KIMMO: A two-level processor for morphological analysis.
Summer Institute of Linguistics, International Academic Bookstore, Dallas, 1990.
www.sil.org/pckimmo/pc-kimmo.html.

[7] C. Apte, F. Damerau, and S. M. Weiss. Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems, 1994. Also published as IBM
Research Report RC18879.

307

308 References

[8] D. J. Arnold, L. Balkan, R. L. Humphreys, S. Meijer, and L. Sadler. Machine
translation: An introductory guide, 1995. clwww.essex.ac.uk/~doug/book/book.html,
clwww.essex.ac.uk/MTbook/, www.essex.ac.uk/linguistics/clmt/MTbook/.

[9] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis for data Mining.
In STOC, vol. 33, pages 619–626, 2001.

[10] Babelfish Language Translation Service. www.altavista.com, 1998.

[11] F. Bacon. The Advancement of Learning. Clarendon Press, 1873.

[12] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz. Approximating
aggregate queries about Web pages via random walks. In Proceedings of the 26th
International Conference on Very Large Databases (VLDB), pages 535–544, 2000.
www.cs.berkeley.edu/~zivi/papers/webwalker/webwalker.ps.gz.

[13] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286,
pages 509–512, 1999.

[14] A. Berg. Random jumps in WebWalker. Personal communication, April 2001.

[15] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for
intelligent information retrieval. SIAM Review, 37(4), pages 573–595, 1995.
www.cs.utk.edu/~library/TechReports/1994/ut-cs-94-270.ps.Z .

[16] K. Bharat and A. Bröder. A technique for measuring the relative size and over-
lap of public Web search engines. In 7th World Wide Web Conference (WWW7),
1998. www7.scu.edu.au/programme/fullpapers/1937/com1937.htm; also see update at
www.research.digital.com/SRC/whatsnew/sem.html.

[17] K. Bharat, A. Z. Bröder, J. Dean, and M. R. Henzinger. A comparison of techniques to
find mirrored hosts on the WWW. Journal of the American Society for Information Science
and Technology, 51(12), pages 1114–1122, 2000. www.research.digital.com/SRC/personal
/monika/papers/wows.ps.gz.

[18] K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation in
a hyperlinked environment. In 21st International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 104–111, August 1998.
www.henzinger.com/monika/mpapers/sigir98_ps.ps.

[19] S. Blackmore. The Meme Machine. Oxford University Press, 1999.

References 309

[20] C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.
www.ics.uci.edu/~mlearn/MLRepository.html.

[21] W. J. Bluestein. Hypertext versions of journal articles: Computer aided linking and
realistic human evaluation. Ph.D. thesis, University of Western Ontario, 1999.

[22] A. Blum and T. M. Mitchell. Combining labeled and unlabeled data with co-training.
Computational Learning Theory, pages 92–100, 1998.

[23] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large databases.
In 4th International Conference on Knowledge Discovery and Data Mining, August 1998.
www.ece.nwu.edu/~harsha/Clustering/scaleKM.ps.

[24] B. E. Brewington and G. Cybenko. Keeping up with the changing Web. IEEE
Computer , 33(5), pages 52–58, 2000.

[25] E. Brill. A simple rule-based part of speech tagger. In Proceedings of the 3rd Conference on
Applied Natural Language Processing, pages 152–155, 1992. www.cs.jhu.edu/~brill/acadpubs
.html and citeseer.nj.nec.com/brill92simple.html.

[26] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. In Proceedings of the 7th World Wide Web Conference (WWW7), 1998.
decweb.ethz.ch/WWW7/1921/com1921.htm.

[27] A. Bröder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of
the Web. In Proceedings of the 6th International World Wide Web Conference, pages
391–404, April 1997. Also appeared as SRC Technical Note 1997-015; see re-
search.compaq.com/SRC/WebArcheology/syntactic.html.

[28] A. Bröder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,
and J. Wiener. Graph structure in the Web: Experiments and models. In WWW9, pages
309–320, Amsterdam, May 2000. Elsevier Science. www9.org/w9cdrom/160/160.html.

[29] V. Bush. As we may think. The Atlantic Monthly, July 1945. www.theatlantic.com/unbound
/flashbks/computer/bushf.htm.

[30] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for
information extraction. In Proceedings of the 16th National Conference on Artificial
Intelligence (AAAI-99), pages 328–334, July 1999.

[31] C. Cardie and D. Pierce. The role of lexicalization and pruning for base noun phrase
grammars. In AAA1 99, pages 423–430, July 1999.

310 References

[32] B. Carlin and T. Louis. Bayes and Empirical Bayes Methods for Data Analysis. Chapman
and Hall, 1996.

[33] J. Carriere and R. Kazman. WebQuery: Searching and visualizing the Web through
connectivity. In WWW6 , pages 701-7-11, 1997. www.cgl.uwaterloo.ca/Projects/Vanish
/webquery-1.html.

[34] N. Catenazzi and F. Gibb. The publishing process: The hyperbook approach. Journal of
Information Science, 21(3), pages 161–172, 1995.

[35] S. Chakrabarti and Y. Batterywala. Mining themes from bookmarks. In ACM SIGKDD
Workshop on Text Mining, Boston, August 2000. www.cse.iitb.ac.in/~soumen/doc/kdd2000
/theme2.ps.

[36] S. Chakrabarti and B. E. Dom. Feature diffusion across hyperlinks. U.S. Patent
No. 6,125,361, April 1998. IBM Corp.

[37] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Scalable feature selection,
classification and signature generation for organizing large text databases into hierar-
chical topic taxonomies. VLDB Journal, August 1998. www.cse.iitb.ac.in/~soumen/doc
/vldbj1998/.

[38] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan.
Automatic resource compilation by analyzing hyperlink structure and associated text. In
7th World Wide Web Conference (WWW7), 1998. www7.scu.edu.au/programme/fullpapers
/1898/com1898.html.

[39] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyper-
links. In SIGMOD Conference. ACM, 1998. www.cse.iitb.ac.in/~soumen/doc/sigmod98/.

[40] S. Chakrabarti, B. E. Dom, S. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins,
D. Gibson, and J. Kleinberg. Mining the Web’s link structure. IEEE Computer , 32(8),
pages 60–67, August 1999.

[41] S. Chakrabarti, D. A. Gibson, and K. S. McCurley. Surfing the Web backwards. In
WWW, vol. 8, Toronto, May 1999.

[42] S. Chakrabarti, M. M. Joshi, and V. B. Tawde. Enhanced topic distillation using text,
markup tags, and hyperlinks. In SIGIR, vol. 24. ACM, New Orleans, September 2001.

References 311

[43] S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated focused crawling
through online reference feedback. WWW, pages 148–159. ACM, Honolulu, May
2002. www2002.org/CDROM/refereed/336/index.html.

[44] S. Chakrabarti, S. Srivastava, M. Subramanyam, and M. Tiwari. Using Memex to
archive and mine community Web browsing experience. Computer Networks, 33(1–6),
pages 669–684, May 2000. www9.org/w9cdrom/98/98.html.

[45] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to
topic-specific Web resource discovery. Computer Networks, 31, pages 1623–1640, 1999.
First appeared in the 8th International World Wide Web Conference, Toronto, May
1999. www8.org/w8-papers/5a-search-query/crawling/.

[46] E. Charniak. A maximum-entropy-inspired parser. Computer Science Technical
Report CS-99-12, Brown University, August 1999. www.cs.brown.edu/people/ec/.

[47] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and results.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press, 1996.
ic.arc.nasa.gov/ic/projects/bayes-group/images/kdd-95.ps.

[48] C. Chekuri, M. Goldwasser, P. Raghavan, and E. Upfal. Web search using automatic
classification. In 6th World Wide Web Conference, San Jose, CA, 1996.

[49] R. Chellappa and A. Jain. Markov random fields: Theory and applications. Academic Press,
1993.

[50] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through URL or-
dering. In 7th World Wide Web Conference, Brisbane, Australia, April 1998.
www7.scu.edu.au/programme/fullpapers/1919/com1919.htm.

[51] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding replicated Web collections.
In ACM International Conference on Management of Data (SIGMOD), May 2000. www-
db.stanford.edu/~cho/papers/cho-mirror.pdf .

[52] E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern recognition
tasks. Journal of Algorithms, 30, pages 211–252, 1999. Special issue of selected papers
from SODA’97. www.research.att.com/~edith/publications.html.

[53] W. W. Cohen. Fast effective rule induction. In 12th International Conference on Machine
Learning, Lake Tahoe, CA, 1995. www.research.att.com/~wcohen/postscript/ml-95-ripper.ps
and www.research.att.com/~wcohen/ripperd.html.

312 References

[54] W. W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization.
In SIGIR. ACM, 1996.

[55] R. A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, V. Z. G. B. Varile, A. Zampolli,
et al., editors. Survey of the State of the Art in Human Language Technology. Cambridge
University Press, National Science Foundation and European Commission, 1996.
cslu.cse.ogi.edu/HLTsurvey/.

[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
second edition. McGraw-Hill, 2002.

[57] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons,
1991.

[58] M. Craven, S. Slattery, and K. Nigam. First-order learning for (Web) min-
ing. 10th European Conference on Machine Learning, pages 250–255, 1998. cite-
seer.nj.nec.com/craven98firstorder.html.

[59] D. R. Cutting, D. R. Karger, and J. O. Pedersen. Constant interaction-time
scatter/gather browsing of very large document collections. In Annual International
Conference on Research and Development in Information Retrieval (SIGIR), 1993.

[60] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/gather: A
cluster-based approach to browsing large document collections. In Annual International
Conference on Research and Development in Information Retrieval (SIGIR), Denmark, 1992.

[61] B. D. Davison. Topical locality in the Web. In Proceedings of the 23rd Annual International
Conference on Research and Development in Information Retrieval (SIGIR 2000), pages
272–279. ACM, Athens, July 2000. www.cs.rutgers.edu/~davison/pubs/2000/sigir/.

[62] R. Dawkins. The Selfish Gene, second ed. Oxford University Press, 1989.

[63] P. M. E. De Bra and R. D. J. Post. Information retrieval in the World Wide Web:
Making client-based searching feasible. In Proceedings of the 1st International World Wide
Web Conference, Geneva, 1994. www1.cern.ch/PapersWWW94/reinpost.ps.

[64] P. M. E. De Bra and R. D. J. Post. Searching for arbitrary information in the WWW:
The fish search for Mosaic. In 2nd World Wide Web Conference ’94: Mosaic and the Web,
Chicago, October 1994. archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Searching/debra
/article.html and citeseer.nj.nec.com/172936.html.

TE
AM
FL
Y

Team-Fly®

References 313

[65] J. Dean and M. R. Henzinger. Finding related pages in the World Wide Web. 8th World
Wide Web Conference, Toronto, May 1999.

[66] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman.
Indexing by latent semantic analysis. Journal of the Society for Information Science, 41(6),
pages 391–407, 1990. superbook.telcordia.com/~remde/lsi/papers/JASIS90.ps.

[67] S. J. DeRose. Grammatical category disambiguation by statistical optimization.
Computational Linguistics, 14(1), pages 31–39, 1988.

[68] M. Dewey. Dewey Decimal Classification and Relative Index, 16th edition. Forest Press,
1958.

[69] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused crawling using
context graphs. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, editors, Proceedings of 26th International Conference on
Very Large Data Bases (VLDB), September 10–14, 2000, Cairo, pages 527–534. Morgan
Kaufmann, 2000. www.neci.nec.com/~lawrence/papers/focus-vldb00/focus-vldb00.pdf .

[70] S. Dill, S. R. Kumar, K. S. McCurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins.
Self-similarity in the Web. In VLDB, pages 69–78, Rome, September 2001.
www.almaden.ibm.com/cs/k53/fractal.ps.

[71] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29, pages 103–130, 1997.

[72] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, 1973.

[73] S. T. Dumais. Using SVMs for text categorization. IEEE Intelligent Systems, 13(4), pages
21–23, July 1998.

[74] S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. In 7th Conference on Information and Knowledge
Management, 1998. www.research.microsoft.com/~jplatt/cikm98.pdf .

[75] T. E. Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics, 19(1), pages 61–174, 1993.

[76] C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In M. J. Carey and D. A. Schneider,
editors, Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, pages 163–74, San Jose, CA, 1995.

314 References

[77] G. W. Flake, S. Lawrence, C. Lee Giles, and F. M. Coetzee. Self-organization and
identification of Web communities. IEEE Computer , 35(3), pages 66–71, 2002.
www.neci.nec.com/~lawrence/papers/web-computer02/bib.html.

[78] R. Flesch. A new readability yardstick. Journal of Applied Psychology, 32, pages 221–233,
1948.

[79] D. Florescu, D. Kossman, and I. Manolescu. Integrating keyword searches into XML
query processing. In WWW , vol. 9, pages 119–135, Amsterdam, May 2000. Elsevier
Science. www9.org/w9cdrom/324/324.html.

[80] S. Fong and R. Berwick. Parsing with Principles and Parameters. The MIT Press, 1992.

[81] G. D. Forney, Jr. The Viterbi algorithm. In Proceedings of IEEE, 61(3), pages 263–278,
March 1973.

[82] W. B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and Algorithms.
Prentice Hall, 1992.

[83] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity of
some graphs. Journal of Combinatorial Theory, B 44, pages 355–362, 1988.

[84] D. Freitag. Information extraction from HTML: Application of a general machine
learning approach. In Proceedings of the 15th National Conference on Artificial Intelligence,
pages 517–523, 1998.

[85] J. H. Friedman. On bias, variance, 0/1 loss, and the curse of dimensionality. Data
Mining and Knowledge Discovery, 1(1), pages 55–77, 1997. Stanford University Technical
Report. ftp://playfair.stanford.edu/pub/friedman/curse.ps.Z .

[86] N. Fuhr and C. Buckley. A Probabilistic Learning Approach for Document Indexing.
ACM Transactions on Information Systems, 9(3), pages 223–248, 1991.

[87] R. Garside and N. Smith. A hybrid grammatical tagger: CLAWS4. In R. Garside,
G. Leech, and A. McEnery, editors, Corpus Annotation: Linguistic Information from
Computer Text Corpora, pages 102–121. Longman, 1997. www.comp.lancs.ac.uk/computing
/research/ucrel/claws/.

[88] G. Gazder and C. Mellish. Natural Language Processing in LISP. Addison-Wesley, 1989.

[89] D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring Web communities from link
topology. In ACM Conference on Hypertext, pages 225–234, 1998.

References 315

[90] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing.
In VLDB, pages 518-529, 1999. citeseer.nj.nec.com/gionis97similarity.html.

[91] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,
1989.

[92] N. Govert, M. Lalmas, and N. Fuhr. A Probabilistic Description-Oriented Ap-
proach for Categorizing Web Documents. In CIKM , pages 475–482, 1999.
citeseer.nj.nec.com/govert99probabilistic.html.

[93] S. G. Green. Building newspaper links in newspaper articles using semantic sim-
ilarity. In Natural Language and Data Bases Conference, pages 178–190, 1997.
citeseer.nj.nec.com/Stephen97building.html.

[94] S. Guiasu and A. Shenitzer. The principle of maximum entropy. The Mathematical
Intelligencer , 7(1), pages 42–48, 1985.

[95] L. Haegeman. Introduction to Government and Binding Theory. Basil Blackwell Ltd., 1991.

[96] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

[97] D. Hand, H. Manilla, and P. Smyth. Principles of Data Mining. The MIT Press, 2001.

[98] T. H. Haveliwala. Topic-sensitive PageRank, WWW, pages 517–526. ACM, Honolulu,
May 2002. www2002.org/CDROM/refereed/127/index.html.

[99] D. Hawking, E. Voorhees, N. Craswell, and P. Bailey. Overview of the TREC-8 Web
track. In E. Voorhees and D. Harman, editors, Proceedings of the 8th Text REtrieval
Conference (TREC-8), NIST Special Publication 500-246, pages 131–150, 2000.

[100] M. Hearst. Multi-paragraph segmentation of expository text. In Proceedings of the 32nd
Annual Meeting of the Association for Computational Linguistics, Las Cruces, NM, June
1994. www.sims.berkeley.edu/~hearst/publications.shtml.

[101] M. Hearst and C. Karadi. Cat-a-Cone: An interactive interface for specifying
searches and viewing retrieval results using a large category hierarchy. In Proceedings
of the 20th Annual International ACM/SIGIR Conference, Philadelphia, July 1997.
ftp://parcftp.xerox.com/pub/hearst/sigir97.ps.

[102] D. Heckerman. A tutorial on learning with Bayesian networks. In 12th International
Conference on Machine Learning, Tahoe City, CA. July 1995. ftp://ftp.research.microsoft.com
/pub/dtg/david/tutorial.PS and ftp://ftp.research.microsoft.com/pub/tr/TR-95-06.PS.

316 References

[103] D. Heckerman. Bayesian networds for data mining. Data Mining and Knowledge
Discovery, 1(1), 1997. ftp://ftp.research.microsoft.com/pub/dtg/david/tutorial.PS and
ftp://ftp.research.microsoft.com/pub/tr/TR-95-06.PS.

[104] B. Hendrickson and R. W. Leland. A multi-level algorithm for partitioning graphs. In
Supercomputing, 1995.

[105] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On near-uniform
URL sampling. In WWW9, Amsterdam, May 2000. www9.org/w9cdrom/88/88.html.

[106] U. Hermjakob and R. J. Mooney. Learning parse and translation decisions from
examples with rich context. In P. R. Cohen and W. Wahlster, editors, In Proceedings of
the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference
of the European Chapter of the Association for Computational Linguistics, pages 482–489,
Somerset, NJ, 1997.

[107] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and S. Ur. The shark-
search algorithm—an application: Tailored Web site mapping. In WWW7, 1998.
www7.scu.edu.au/programme/fullpapers/1849/com1849.htm.

[108] A. Heydon and M. Najork. Mercator: A scalable, extensible Web crawler. World Wide
Web Conference, 2(4), pages 219–229, 1999.

[109] T. Hofmann. Probabilistic latent semantic analysis. In Uncertainty in Artifical Intelligence,
1999. www.cs.brown.edu/people/th/publications.html.

[110] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, 1999. www.cs.brown.edu
/people/th/publications.html.

[111] T. Hofmann and J. Puzicha. Unsupervised learning from dyadic data. Technical Report
TR-98-042, University of California, Berkeley, 1998.

[112] E. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C.-Y. Lin. Question answering in
Webclopedia. In Proceedings of the 9th Text REtrieval Conference (TREC-9). NIST, 2001.
trec.nist.gov/pubs/trec9/papers/webclopedia.pdf .

[113] W. J. Hutchins and H. L. Somers. An Introduction to Machine Translation. Academic
Press, 1992.

[114] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

References 317

[115] W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the 4th Berkeley
Symposium on Mathematical Statistics and Probability, vol. 1, pages 361–379. University
of California Press, 1961.

[116] E. T. Jaynes. Notes on present status and future prospects. In W. T. Grandy and L. H.
Schick, editors, Maximum Entropy and Bayesian Methods, pages 1–13. Kluwer, 1990.

[117] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning. The MIT
Press, 1999. www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.pdf .

[118] T. Joachims. A statistical learning model of text classification for support vector
machines. In W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors, International
Conference on Research and Development in Information Retrieval, vol. 24, pages 128–136.
SIGIR, ACM, New Orleans, September 2001.

[119] T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. In C. Nédellec and C. Rouveirol, editors, Proceedings of ECML-98,
10th European Conference on Machine Learning, no. 1398 in LNCS, pages 137–142,
Chemnitz, Germany, 1998. Springer-Verlag.

[120] B. Kahle. Preserving the Internet. Scientific American, 276(3), pages 82–83, March 1997.
www.sciam.com/0397issue/0397kahle.html and www.alexa.com/~brewster/essays/sciam_
article.html.

[121] B. Katz. From sentence processing to information access on the World Wide Web. In
AAAI Spring Symposium on Natural Language Processing for the World Wide Web, pages
77–94, Stanford, CA, 1997. Stanford University. www.ai.mit.edu/people/boris/webaccess/.

[122] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of
ACM-SIAM Symposium on Discrete Algorithms, 1998. Also appears as IBM Research
Report RJ10076(91892). www.cs.cornell.edu/home/kleinber/auth.ps.

[123] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In
ACM Symposium on Theory of Computing, pages 599–608, 1997.

[124] J. M. Kleinberg and E. Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and Markov random fields. In IEEE
Symposium on Foundations of Computer Science, pages 14–23, 1999.

[125] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, V. Paatero, and A. Saarela. Self organization
of a massive document collection. IEEE Transactions on Neural Networks (Special Issue on

318 References

Neural Networks for Data Mining and Knowledge Discovery), 11(3), pages 574–585, May
2000. websom.hut.fi/websom/doc/publications.html.

[126] D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In
L. Saitta, editor, International Conference on Machine Learning, vol. 14. Morgan Kaufmann,
1997. robotics.stanford.edu/users/sahami/papers-dir/ml97-hier.ps.

[127] D. Koller and M. Sahami. Toward optimal feature selection. In L. Saitta, editor,
International Conference on Machine Learning, vol. 13. Morgan Kaufmann, 1996.

[128] S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the Web
for emerging cyber-communities. WWW8 / Computer Networks, 31(11–16), pages
1481–1493, 1999. www8.org/w8-papers/4a-search-mining/trawling/trawling.html.

[129] K. S. Kumarvel. Automatic hypertext creation. M.Tech thesis, Computer Science and
Engineering Department, IIT Bombay, 1997.

[130] J. Kupiec. MURAX: A robust linguistic approach for question answering using an on-
line encyclopedia. In R. Korfhage, E. M. Rasmussen, and P. Willett, editors, SIGIR,
pages 181–190. ACM, 1993.

[131] C. Kwok, O. Etzioni, and D. S. Weld. Scaling question answering to the Web.
In WWW , vol. 10, pages 150–161, Hong Kong, May 2001. IW3C2 and ACM.
www10.org/cdrom/papers/120/.

[132] R. Larson. Bibliometrics of the World Wide Web: An exploratory analysis of the
intellectual structure of cyberspace. In Annual Meeting of the American Society for
Information Science, 1996. sherlock.berkeley.edu/asis96/asis96.html.

[133] S. Lawrence and C. Lee Giles. Accessibility of information on the Web. Nature, 400,
pages 107–109, July 1999.

[134] S. Lawrence and C. Lee Giles. Searching the World Wide Web. Science, 280, pages
98–100, April 1998.

[135] R. Lempel and S. Moran. SALSA: The stochastic approach for link-structure analysis.
ACM Transactions on Information Systems (TOIS), 19(2), pages 131–160, April 2001.
www.cs.technion.ac.il/~moran/r/PS/lm-feb01.ps.

[136] D. B. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Communications
of the ACM , 38(11), pages 32–38, November 1995. www.cyc.com/ and www.opencyc.org/.

References 319

[137] D. D. Lewis. Evaluating text categorization. In Proceedings of the Speech and Natural
Language Workshop, pages 312–318. Morgan Kaufmann, 1991.

[138] D. D. Lewis. Naive (Bayes) at forty: The independence assumption in information
retrieval. In C. Nedellec and C. Rouveirol, editors, 10th European Conference on
Machine Learning, pages 4–15, Chemnitz, Germany, April 1998. Springer.

[139] D. D. Lewis. The Reuters-21578 text categorization test collection, 1997. www.research
.att.com/lewis/reuters21578.html.

[140] W.-S. Li, Q. Vu, D. Agrawal, Y. Hara, and H. Takano. PowerBookmarks: A system for
personalizable Web information organization, sharing and management. Computer
Networks, 31, May 1999. First appeared in the 8th International World Wide Web
Conference, Toronto, May 1999. www8.org/w8-papers/3b-web-doc/power/power.pdf .

[141] Y. S. Maarek and I. Z. Ben Shaul. Automatically organizing bookmarks per content.
In 5th International World Wide Web Conference, Paris, May 1996.

[142] S. Macskassy, A. Banerjee, B. Davidson, and H. Hirsh. Human performance on
clustering Web pages: A performance study. In Knowledge Discovery and Data Mining,
vol. 4, pages 264–268, 1998.

[143] O. A. McBryan. GENVL and WWWW: Tools for taming the Web. In Proceedings of
the First International World Wide Web Conference, pages 79–90, 1994.

[144] K. W. McCain. Core journal networks and cocitation maps in the marine sciences:
Tools for information management in interdisciplinary research. In D. Shaw, editor,
ASIS’92: Proceedings of the 55th ASIS Annual Meeting, pages 3–7, Medford, NJ, 1992.
American Society for Information Science.

[145] A. McCallum and K. Nigam. A comparison of event models for naive Bayes
text classification. In AAAI/ICML-98 Workshop on Learning for Text Categoriza-
tion, pages 41–48. AAAI Press, 1998. Also Technical Report WS-98-05, CMU.
www.cs.cmu.edu/~knigam/papers/multinomial-aaaiws98.pdf .

[146] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Building domain-specific search
engines with machine learning techniques. In AAAI-99 Spring Symposium, 1999.
www.cs.cmu.edu/~mccallum/papers/cora-aaaiss99.ps.gz.

320 References

[147] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng. Improving text clas-
sification by shrinkage in a hierarchy of classes. In 15th International Confer-
ence on Machine Learning, pages 350–367, 1998. www.cs.cmu.edu/~mccallum/papers
/hier-icml98.ps.gz.

[148] F. Menczer. Links tell us about lexical and semantic Web content. Technical
Report Computer Science Abstract CS.IR/0108004, arXiv.org, August 2001.
arxiv.org/abs/cs.IR/0108004.

[149] F. Menczer and R. K. Belew. Adaptive retrieval agents: Internalizing local context
and scaling up to the Web. Machine Learning, 39(2/3), pages 203–242, 2000. Longer
version available as Technical Report CS98-579, University of California, San Diego,
dollar.biz.uiowa.edu/~fil/Papers/MLJ.ps.

[150] D. Meretakis and B. Wuthrich. Extending naive Bayes classifiers using long itemsets.
In 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, August 1999.

[151] G. Miller, R. Beckwith, C. FellBaum, D. Gross, K. Miller, and R. Tengi. Five papers on
WordNet. Princeton University, August 1993. ftp://ftp.cogsci.princeton.edu/pub/wordnet
/5papers.pdf .

[152] T. M. Mitchell. Conditions for the equivalence of hierarchical and flat Bayesian
classifiers. Technical note, 1998. www.cs.cmu.edu/~tom/hierproof.ps.

[153] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[154] M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An analysis of statistical and
syntactic phrases. In Proceedings of RIAO-97, 5th International Conference “Recherche
d’Information Assistee par Ordinateur,” pages 200–214, Montreal, Quebec, 1997.

[155] D. Mladenic. Feature subset selection in text-learning. In 10th European Conference on
Machine Learning, vol. 1398, pages 95–100, 1998.

[156] F. Mosteller and D. L. Wallace. Inference and Disputed Authorship: The Federalist. Addison-
Wesley, 1964.

[157] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[158] M. Najork and J. Weiner. Breadth-first search crawling yields high-quality pages. In
WWW 10, Hong Kong, May 2001. www10.org/cdrom/papers/208.

References 321

[159] National Archives and Records Administration. Using the census soundex. Gen-
eral information leaflet 55. Washington, DC, 1995. Free brochure available from
inquire@nara.gov.

[160] T. Nelson. A file structure for the complex, the changing, and the indeterminate. In
Proceedings of the ACM National Conference, pages 84–100, 1965.

[161] T. H. Nelson. Literary Machines. Mindful Press, 1982.

[162] A. Ng, A. Zheng, and M. Jordan. Stable algorithms for link analysis. In 24th
Annual International ACM SIGIR Conference. ACM, New Orleans, September 2001.
www.cs.berkeley.edu/~ang/.

[163] H. T. Ng and H. B. Lee. Integrating multiple knowledge sources to disambiguate word
sense: An exemplar-based approach. In A. Joshi and M. Palmer, editors, Proceedings of
the 34th Annual Meeting of the Association for Computational Linguistics, San Francisco,
pages 40–47. Morgan Kaufmann, 1996.

[164] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Programming. O’Reilly and Associates,
1996.

[165] J. Nielsen. Multimedia and Hypertext: The Internet and Beyond. Morgan Kaufmann, 1995.
(Originally published by AP Professional.)

[166] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training.
In 9th International Conference on Information and Knowledge Management (CIKM), 2000.
www.cs.cmu.edu/~knigam.

[167] K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classification.
In IJCAI’99 Workshop on Information Filtering, 1999. www.cs.cmu.edu/~mccallum/papers
/maxent-ijcaiws99.ps.gz.

[168] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled
and unlabeled documents using EM. Machine Learning, 39(2/3), pages 103–134, 2000.
www-2.cs.cmu.edu/~mccallum/papers/emcat-mlj2000.ps.gz.

[169] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bring-
ing order to the Web. Unpublished manuscript. google.stanford.edu/~backrub/pageranksub
.ps, 1998.

322 References

[170] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic
indexing: A probabilistic analysis. JCSS, 61(2), pages 217–235, 2000. A preliminary
version appeared in ACM PODS, pages 159–168, 1998.

[171] L. Pelkowitz. A continuous relaxation labeling algorithm for Markov random fields.
IEEE Transactions on Systems, Man and Cybernetics, 20(3), pages 709–715, May 1990.

[172] D. M. Pennock, G. W. Flake, S. Lawrence, C. L. Giles, and E. J. Glover. Winners don’t
take all: Characterizing the competition for links on the Web. Proceedings of the National
Academy of Sciences, 2002. Preprint available: www.neci.nec.com/homepages/dpennock
/publications.html.

[173] S. D. Pietra, V. D. Pietra, and J. Laferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4), pages 380–393, April
1997.

[174] P. Pirolli, J. Pitkow, and R. Rao. Silk from a Sow’s Ear: Extracting Usable Structures
from the Web. In ACM CHI , 1996.

[175] J. Platt. Probabilities for SV machines. In A. Smola, P. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–74. The MIT
Press, 1999. research.microsoft.com/~jplatt/SVMprob.ps.gz.

[176] J. Platt. Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998.
www.research.microsoft.com/users/jplatt/smoTR.pdf .

[177] J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval.
In SIGIR, pages 275–281. ACM, 1998. cobar.cs.umass.edu/pubfiles/ir-120.ps.

[178] A. Popescul, L. H. Ungar, D. M. Pennock, and S. Lawrence. Probabilistic models for
unified collaborative and content-based recommendation in sparse-data environments.
In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI-2001), Seat-
tle, WA, August 2001, pages 437–444. www.neci.nec.com/homepages/dpennock/publications
.html.

[179] M. F. Porter. An algorithm for suffic stripping. Program, 14(3), pages 130–137, 1980.

[180] E. Rasmussen. Clustering algorithms. In W. B. Frakes and R. Baeza-Yates, editors,
Information Retrieval: Data Structure and Algorithms, Chap. 16. Prentice Hall, 1992.

TE
AM
FL
Y

Team-Fly®

References 323

[181] J. Rennie and A. McCallum. Using reinforcement learning to spider the Web
efficiently. In 16th International Conference on Machine Learning, pages 335–343, 1999.
www.cs.cmu.edu/~mccallum/papers/rlspider-icml99s.ps.gz.

[182] J. Rissanen. Stochastic complexity in statistical inquiry. In World Scientific Series in
Computer Science, vol. 15. World Scientific, 1989.

[183] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In SIGIR, pages 232–241, 1994.

[184] M. Sahami, M. Hearst, and E. Saund. Applying the multiple cause mixture model to text
categorization. In L. Saitta, editor, International Conference on Machine Learning, vol. 13,
pages 435–443. Morgan Kaufmann, 1996. robotics.stanford.edu/users/sahami/papers-
dir/ml96-mcmm.ps.

[185] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[186] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
1983.

[187] E. Saund. A multiple cause mixture model for unsupervised learning. Neural
Computation, 7(1), pages 51–71, 1995.

[188] J. Savoy. An extended vector processing scheme for searching information in hypertext
systems. Information Processing and Management, 32(2), pages 155–170, March 1996.

[189] R. G. Schank and C. J. Rieger. Inference and computer understanding of natural
language. In R. J. Brachman and H. J. Levesque (editors), Readings in Knowledge
Representation, Morgan Kaufmann, 1985.

[190] B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, 2002.

[191] H. Schütze and C. Silverstein. A comparison of projections for efficient doc-
ument clustering. In Proceedings of the 20th Annual ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 74–81, July 1997. www-cs-
students.stanford.edu/~csilvers/papers/metrics-sigir.ps.

[192] J. R. Seeley. The net of reciprocal influence: A problem in treating sociometric data.
Canadian Journal of Psychology, 3, pages 234–240, 1949.

[193] K. Seymore, A. McCallum, and R. Rosenfeld. Learning Hidden Markov Model struc-
ture for information extraction. In Papers from the AAAI-99 Workshop on Machine Learning

324 References

for Information Extraction, pages 37–42, 1999. www-2.cs.cmu.edu/~kseymore/papers/ie_
aaai99.ps.gz.

[194] A. Shashua. On the equivalence between the support vector machine for classification
and sparsified Fisher’s linear discriminant. Neural Processing Letters, 9(2), pages 129–139,
1999. www.cs.huji.ac.il/~shashua/papers/fisher-NPL.pdf .

[195] A. Singhal and M. Kaszkiel. A case study in Web search using TREC algorithms. In
WWW 10, Hong Kong, May 2001. www10.org/cdrom/papers/317.

[196] D. Sleator and D. Temperley. Parsing English with a link grammar. Computer Science
Technical Report CMU-CS-91-196, Carnegie Mellon University, October 1991.
www.link.cs.cmu.edu/link/papers/index.html.

[197] P. Smyth. Clustering using Monte Carlo cross-validation. In Second International
Conference on Knowledge Discovery and Data Mining (KDD-96), pages 126–133, Portland,
OR, August 1996. AAAI Press.

[198] S. Soderland. Learning information extraction rules for semi-structured and free text.
Machine Learning, 34(1–3), pages 233–272, 1999. www.cs.washington.edu/homes/soderlan
/WHISK.ps.

[199] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machines. Addison-
Wesley, 1984.

[200] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of information
retrieval: Development and comparative experiments. Information Processing and
Management, 36(1–2):1, pages 779–808, and 2, pages 809–840, 2000.

[201] C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal
distribution. In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, pages 197–206. University of California Press, 1955.

[202] W. R. Stevens. TCP/IP Illustrated: TCP for Transactions, HTTP, NNTP, and the UNIX
Domain Protocols, vol.3. Addison-Wesley, 1996.

[203] D. Temperley. An introduction to link grammar parser. Technical report, April 1999.
www.link.cs.cmu.edu/link/dict/introduction.html.

[204] H. R. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval
model. ACM Transactions on Information Systems, 9(3), pages 187–222, 1991.

References 325

[205] U. N. U. Institute of Advanced Studies. The Universal Networking Language:
Specification document. Internal Technical Document, 1999. www.unl.ias.unu.edu/.

[206] H. Uchida, M. Zhu, and T. D. Senta. The UNL: A gift for a millennium. Institute of
Advanced Studies, United Nations University, pages 53–67, Tokyo, November 1999.
www.unl.ias.unu.edu/.

[207] S. Vaithyanathan and B. Dom. Generalized model selection for unsupervised learning
in high dimensions. In Neural Information Processing Systems (NIPS), Denver, CO, 1999.
www.almaden.ibm.com/cs/k53/papers/nips99.ps.

[208] L. G. Valiant. A theory of the learnable. Communications of the ACM , 27(11), pages
1134–1142, 1984.

[209] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[210] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge
University Press, 1994.

[211] R. Weiss, B. Velez, M. A. Sheldon, C. Nemprempre, P. Szilagyi, A. Duda, and D. K.
Gifford. HyPursuit: A hierarchical network search engine that exploits content-link
hypertext clustering. In Proceedings of the 7th ACM Conference on Hypertext, Washington,
DC, March 1996.

[212] S. Weiss and N. Indurkhya. Optimized rule induction. IEEE Expert, 8(6), pages 61–69,
1993.

[213] P. Willett. Recent trends in hierarchic document clustering: A critical review. Information
Processing and Management, 24(5), 1988.

[214] T. Winograd. Language as a Cognitive Process, Vol. 1: Syntax. Addison-Wesley, 1983.

[215] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Multimedia Information and Systems. Morgan Kaufmann, 1999.

[216] XTAG Research Group. A lexicalized tree adjoining grammar for English. Technical
Report IRCS-01-03. IRCS, University of Pennsylvania, 2001.

[217] Y. Yang and X. Liu. A re-examination of text categorization methods. In Annual
International Conference on Research and Development in Information Retrieval (SIGIR),
pages 42–49. ACM, 1999. www-2.cs.cmu.edu/~yiming/publications.html.

326 References

[218] Y. Yang and J. Pedersen. A comparative study on feature selection in text categorization.
In International Conference on Machine Learning, pages 412–420, 1997.

[219] J. Yi and N. Sundaresan. A classifier for semi-structured documents. In KDD 2000,
pages 340–344. ACM SIGKDD, Boston, August 2000.

[220] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering
method for very large databases. In SIGMOD, pages 103–114. ACM, 1996.
www.ece.nwu.edu/~harsha/Clustering/sigmodpaper.ps.

I N D E X

numbers
20NG

defined, 130
shrinkage testing, 156

A
About.com, 125
absolute URLs, 26
absorbing features, 185–188

link-derived, 186–187
from neighboring pages, 185–188
textual, 185–186

address resolution, 22
agglomerative clustering. See bottom-up

clustering
Alexa Internet, 117
AltaVista, 6–7, 45, 239

Clever comparison, 239–240
Mercator, 20

anchor text, 63, 227–228
“ankle-deep semantics,” 289
approximate string matching, 66
Apte-Damerau-Weiss system, 174
Ask Jeeves, 303
aspect models, 109–112, 198–199
authorities

defined, 213
diffusion, unwanted, 234
multiple vectors, 216
rank correlation, 238
score, 213
score, precomputing and, 214
See also hubs

Automatic Resource Compilation (ARC)
system, 238

average precision, 54

B
B&H algorithm, 225–226

edge-weighting scheme, 226
HITS and, 241
key transitions, 229
Outlier elimination, 226

backlinks, 278
Backrub, 10
batch indexing, 49–51
Bayes optimal, 148
Bayesian classifiers, 128, 147–155, 273

accuracy effect of feature selection on, 144
decision boundaries, 151
defined, 147
distribution estimation, 163
naive, 148–151
overfitting and, 144
partitions, 151
use of, 174

Bayesian interference network, 60
Bayesian networks

for binary document model, 154
defined, 152
graph structure, 154
illustrated, 153
inducing limited-dependence, 154
induction, 155
small-degree, 152–155
structure, 154

benchmarks, 130–131

327

328 Index

Berkeley DB, 31, 48
defined, 31
for dynamic corpora, 48

best-first search, 158–159
greedy search vs., 158
for m most probable leaf class, 158
on hierarchy, 159
See also search strategies

bibliometry
co-citation in, 288
defined, 10
social sciences and, 205–208

binary model, 102, 138
Bayesian networks for, 154
defined, 102

bipartite cores, 217
“bow tie” structure and, 246
as communities, 284–285
defined, 284
hunting, from Web crawl, 284

bipartite subgraphs, 214, 284
dense, 285
in reinforcement process, 214

BIRCH, 122
blocking, system calls, 24
Boolean queries, 53–54
Boolean variables, 61
bots. See crawlers
bottom-up clustering, 82, 84–87

defined, 84
noise manifestation, 113
template, 84
use of, 89
See also clustering

bow tie structure
defined, 246
illustrated, 247

bread-first queue organization, 263, 264
break-even point, 133
Brill’s tagger, 298
browsing, 18
B-trees, 76

buckets, 52–53
defined, 52
IDs, 52–53

C
canonical URLs, 26, 27
centrality, 206–207
CERN, 2, 3
CGI (common gateway interface) scripts, 28
chain rule, 158
checksums, 71
citation analysis, 205
CiteSeer/ResearchIndex, 288
class labels, 135, 161, 170

clusters for, 178
discrete, 160
distinct, number of, 195
modeling, using mixture components,

183–184
modeling relations between, 160
naive Bayes model and, 152
supervised, 182

classes
of hyperlinked neighbors, 186
neighbor, 190
number of, 135
paths, prefixes, 187
recall, 131
related by hierarchical relationships, 128
subset of, 131

classification, 9
defined, 9
discriminative, 163–168
evaluation criteria, 129
hierarchical, semantics of, 159–160
hypertext, 169–173
“soft,” 178
strategies overview, 128–129
text, 126

classifiers
accuracy, 131–133
accuracy comparison, 168

Index 329

Bayesian, 128, 143–144, 147–155
benchmarks, 130–131
co-training, 195
discriminative, 163–168
ensemble, 131
evaluating, 129–133
harmonic mean and, 133
hyperplane, 164
maximum entropy, 129, 160–163, 198
nearest neighbor (NN), 128, 133–136
with positive and negative class, 183
probabilistic, 188
quick-and-dirty approximations, 136
stopword estimation, 136
SVM, 164–168

CLAWS tagger, 298
Clever, 239

key transitions, 229
Yahoo! and AltaVista comparison, 238–240

clique attacks, 220–222
defined, 222
illustrated, 222

cluster hypothesis, 80
clustering, 8, 9

agglomerative, 84–87
algorithms, 90–94
benefits, 79
bottom-up, 82, 84–89
coarse-grained user feedback in, 91
collaborative filtering and, 81
defined, 8, 79
distributional, 113
EM for, 178
in fast similarity search, 79
formulations and approaches, 81–84
fuzzy, 82
geometric embedding approaches, 82–83
HITS and, 214–215
k-means, 87–89
partitioning, 81–82
precomputed, 79
probabilistic approaches, 99–114

Scatter/Gather, 80
soft, 82
top-down, 82, 84–89
two-sided, 116
utility, 80

clusters, 104
in EM-like algorithm, 184
factoring out from, 114
initial, 84
neighborhoods, 90
one per class label, 178
setting number of, 109, 110
varying number of, 183

coarse-grained graph model
defined, 219
real-life Web pages and, 219
shortcomings, 219–225

co-citation, 207–208, 264
cluster visualization based on, 207
defined, 207
degree of, 266
index, 207
MDS map of, 208

Co-citation algorithm, 266, 267
defined, 267
lexically close links, 266
link proximity in, 267
Netscape/Alexa vs., 267–268

collaborative filtering (CF), 115–121
content-based features combined with,

117–121
defined, 81
early systems, 115
estimation, with Gibbs sampling, 116
generative model, 115–116
probabilistic models, 115–116

collections
20NG, 130
aggregate goodness, 108
Industry, 130–131
OHSUMED, 130
partitioning, 81–82

330 Index

collections (continued)
Reuters, 86–87, 102, 130
WebKB, 130

communities
bipartite cores as, 284–285
characterization, 284
cut-based notions of, 285–288
defined, 286
discovering, 284–288
flow-based definition of, 287

Companion algorithm, 266, 267
defined, 266
link proximity in, 267
Netscape/Alexa vs., 267–268

conflation. See stemming
confusion matrix, 131
context-focused crawlers, 280

harvest rate, 282
illustrated, 281
RL crawlers vs., 280
See also crawlers

contingency matrix, 138
CoRA, 288
co-training, 195–197, 199

algorithm outline, 196
classification error and, 197
classifiers, 195
defined, 195
pseudocode, 196
testing, 196–197
See also semisupervised learning

crawled pages
expiration date, 34
refreshing, 33–34

Crawler, 35, 36, 38–39
crawlers, 6, 246–247, 256

AltaVista Mercator, 20
anatomy illustration, 21
central function, 20
defined, 17
focused, 270–277
Google, 20
heuristic guidance, 257

as Http clients, 30
large-scale, engineering, 21–34
putting together, 35–40
ranking functions, 257
research-scale, 23
Web-scale, 33
well-written, 30
writing, 20
See also specific Web crawlers

crawling, 17–43
basics, 19–21
costs, 255
defined, 6
focused, 270–277
as guided search in graphs, 257–259
policy design, 31
round of, 33
technology, 20

cross-validation, 134, 142
defined, 134
leave-one-out, 143

CViz, 122
CYC, 297

D
data mining

structured vs. unstructured, 11–12
traditional, 12

decision boundaries, 151
delta coding, 51–52
dendrograms

computing, 86
defined, 85
illustrated, 85

denial of service (DoS) attacks, 30
dense regions, identifying, 83
density-based clusters, 83
description-oriented approach, 76
DiffDomain similarity, 269, 270
discrete regression, 175
discriminative classifiers, 163–168

distributions and, 163
linear least-square regression, 163–164

Index 331

support vector machines, 164–168
types of, 163
See also classifiers

distortion, 121
distributional clustering, 113
distribution(s)

class-conditional, 178
document-length, 155
folder term, 122
generative, 101–103
joint, 136
marginal, 136
Poisson, 105, 106
posterior, 150
power-law degree, 243–245
prior, 108
probability, 109
stationary, 210
term, 183

document IDs
index space, 51
inter-ID gap, 52
storing, 51–52

Document Object Model. See DOM tree
document pairs, 69
document-length distributions, 155
documents

folder, 119
generative distributions for, 83, 101–103
labeled, 182
microdocuments, 231
nearest, precomputing, 68
nodes, 60, 61
ranking, 59
resemblance between, 72
sets of, 53
training, 179
truncating, 87
unlabeled, 181–183
vector space representation, 147

DOM segmentation
authority diffusion and, 233
greedy, with MDL, 232

hub, 234
DOM tree

hub, 233
internal nodes, 169
leaves, 234
roots, 233
segmenting, 229–233
semistructured data represented as, 169
subtrees, 229, 231

Domain Name Service (DNS), 18
cache, 22
caching server, 22
client library, 23
resolution, 22, 23

DOMHITS, 241–242
DOMTextHITS, 241–242
DoS. See denial of service (DoS) attacks
duplicates

detecting with sketches, 69
detection, 29
near, eliminating via shingling, 71–72

dynamic collections, 50

E
edge weights, 294

B&H algorithm and, 226
Google and, 226
PageRank information and, 226

edit distance, 72
embedding, 81, 90
event handlers, 24–25
Excite, 7
expectation maximization (EM), 103–108,

178–184
for clustering, 178
defined, 107
experimental results, 179–181
illustrated, 107
superiority over naive Bayes, 180

F
fans

eliminating, 284, 285

332 Index

fans (continued)
identifying, 284
pruning, 285

FastMap
algorithm, 93
clustering documents about country and jazz

music, 95
defined, 93
illustrated, 94, 95
point set size, 94
projecting onto pivot line, 94
projecting to subspace, 94

feature selection, 136–147
comparison, 145–147
defined, 128
greedy inclusion algorithms, 137–144
heuristic, 136
hierarchy and, 155
MI application to, 140
term sorting, 139
truncation algorithms, 144–145
wrapping for, 143

fetches
multiple concurrent, 23–25
simultaneous, 22
single-page, 22

FIFO ordering, 263
File Transfer Protocol (FTP), 45
fine-grained model

defined, 229
topic distillation, 233–235

Fisher’s discrimination index, 141–142
FishSearch system, 261, 288

in action, 262
defined, 261

Flesch-Kincaid index, 126
focused crawlers, 270–277

assisting, with backlinks, 278
block diagram, 271
context, 280–282
defined, 271
harvest rate, 273, 274
relevance scores distribution, 275

restricting scope and, 275
with RL, 280–283
unfocused vs., 275
See also crawlers; crawling

FOIL (first-order inductive logic), 171, 172
folders

documents, 119
layer, 120
user-defined, 118–119

FreeNet, 306
future, 289–306

information extraction, 290–295
natural language (NL) processing, 295–302
personalization, 305
profiles, 305
question answering, 302–305

fuzzy clustering, 82

G
gaps, 51–52

average inter-ID, 52
defined, 51

generative distributions, 83, 101–103
geometric embedding approaches, 82–83
Gibbs sampling, 116
Glimpse system, 75
Google, 10, 20

crawled graph, 212
edge weights and, 226
PageRank in, 212
ranking strategy, 212
topic-tagged responses, 125–126
variant spellings, 66

graph-coloring framework, 193
greedy inclusion algorithms, 137–144

defined, 137
discrimination, 137–138
Fisher’s discrimination index, 141–142
Markov blanket improvement over, 146
mutual information (MI), 139–141
overestimation, 146
scaling, 146

TE
AM
FL
Y

Team-Fly®

Index 333

validation, 142–144
X2 test, 138–139

greedy search, 157–158
“hard” assignment, 87
harvest rate, 272

backlinks and, 278
context-focused crawler, 282
defined, 272
focused crawlers, 273, 274

hidden Markov models (HMMs), 292–294
accuracy, 294
defined, 292
illustrated example, 293
for POS tagging, 298
structure, known, 294
use steps, 292

hierarchical agglomerative clustering (HAC).
See bottom-up clustering

hierarchical merging, 85
hierarchy

best-first search on, 159
exploiting among topics, 155–160
feature selection and, 155
internal nodes, 155
“is-a,” 157
two-level topic, 189

HITS, 10, 212–219
algorithm illustration, 213
authoritative pages, 209
authorities, 213
authority rank correlation, 238
B&H and, 241
bipartite cores, 217
bipartite subgraphs, 214
clique attacks and, 222
clustering and, 214–215
convergence properties of, 254
defined, 209, 212
development, 209
hub pages, 209
hubs, 213
indefinite graph expansion with, 224

key transitions, 228
local topology sensitivity, 216
long-range reinforcement, 218
LSI/SVD and, 215–216
nodes expanded set, 213
nodes root set, 212
PageRank vs., 214
query-by-example style, 265
with random jumps, 219
ranking tweaks, 214
SALSA and, 218
scores, 217
stability, 237
steps, 214
stochastic, 216–219
test topics, 236
topic distillation and, 235–238
See also PageRank

hostnames, 25
HotBot, 7
HTML

anchor tags, 18
defined, 18
generation, 220
page contents, 31
scanners, 28
tag-tree, 230

Http, 17
for checking page changes, 33
clients, 30
setup overhead, 30

hubs
defined, 213
DOM tree, 233
exploiting, 277–279
good, finding, 266
identifying, 277–279
mixed, 222–223
modeling, 214
multiple topics, 277
multiple vectors, 216
scores, 213

334 Index

hubs (continued)
scores, disaggregating, 233
scores, precomputing and, 214
true worth of, 278
See also authorities

HyperClass algorithm, 192
hyperlink induced topic search. See HITS
hyperlinks, 17

analysis, 9–10
communities, 73
extraction, 25–26
generated from templates in navigation bars,

221
nepotistic, 220
repeated expansion of, avoiding, 29
scanning for, 19
as similarity indicators, 118

hyperplane, 165–166
defined, 164
optimized, 166

hypertext, 1, 17
data structure, 5
defined, 1
features, 9
supervised learning for, 169–173
Xanadu system, 1

hypertext graph labeling, 184–195
absorbing features, 185–188
metric graph-labeling problem, 193–195
relaxation algorithm, 188–192

hypertext markup language. See HTML
hypertext transport protocol. See Http
hypothesis

cluster, 80
likelihood ratio, 64–65
null, 65
observations, 64
parameters, 64

HyPursuit, 118

I
iceberg queries, 135

If-modified-since request header, 33
index (indices)

compression techniques, 51–53
Fisher’s discrimination, 141–143
Flesch-Kincaid, 126
inverted, 46, 47, 48, 51
main, 50, 51
maintenance over dynamic collections, 50
stop-press, 51

index space
document IDs in, 51
reducing, 49

indexing
defined, 18
high-dimensional data, 76
large-scale systems, 49
latent semantic (LSI), 96–99
metatags and, 63
semantic, 83

indicator functions, 160, 162
inductive learning, 169
Industry, 130–131

defined, 130–131
shrinkage testing, 156

information extraction (IE), 290–295
HMM-based, 292–294
problems, 291
tasks, 291–292
techniques, 292

information retrieval (IR) systems, 45
accuracy, 53
behavior, 59
fast, 75
mature, 61
performance of, 75
Search97, 61
SMART, 75
TFIDF-based, 57, 111, 135–136, 273
vector-space, 60–61

inheritance, 155
initial bias, 249
Inktomi, 7

Index 335

interdocument similarity, 89
internal nodes, 155, 169
Internet Archive, 43, 255
inverse document frequency (IDF), 56–57

computation, 99
corpus-dependent weighting, 112
noise-words and, 99

inverted index, 46
data structure variants, 48
defined, 47
position information, 51

IP addresses, 25
isUrlVisited? module, 26–27

J
Jaccard coefficient, 68, 69

defined, 68
random permutation for estimating, 71

joint distribution, estimating, 136
jump matrix, 248

K
kd-trees, 76
keyword queries, 49

precision and, 53
processing, 79

keyword-based graph search, 259–264
k-means algorithm, 87–89

defined, 87
forms, 87
with “hard” assignment, 87
illustrated, 88
with “soft” assignment, 87–89
speeding up, 94

knowledge representation, 302
Kohonen maps. See self-organizing maps

(SOMs)
Kullback-Leibler (KL) distance, 140, 144

L
Lagrangian optimization, 106
Laplace’s law of succession, 151

large-scale crawlers, 21–34
latent semantic indexing (LSI), 96–99

accuracy, 98
defined, 97
HITS and, 215–216
implementation, 98
probabilistic (PLSI), 109–112
recall/precision, 98
subtopics separated by, 100, 101

lazy learners, 134
learning

context graphs, 279–280
inductive, 169
machine, 126, 173
rate, 88, 164
reinforcement, 280–283
semisupervised, 173, 177–199
unsupervised. See clustering

lexical networks, 296–297
build requirements, 297
proximity search in, 305
WordNet, 296

Lidstone’s law of succession, 151
likelihood ratio test, 64–65
limited-domain QA systems, 303
linear least-square regression, 163–164

defined, 163
learning rate, 164

linear SVM (LSVM), 166–167
accuracy, 166
classifier comparison, 167
use of, 175
See also support vector machines (SVMs)

link communities, 276
Link Parser, 300–301

dictionary, 300
examples, 301
successful parse, 300
See also parsing

link-based ranking, 239
link-derived features

absorbing, 186–188

336 Index

link-derived features (continued)
full-path encoding of, 188
independence, 190
multimodal model for, 187–188
representation of, 187

links. See hyperlinks
load manager, 30
load monitor, 29–30
logit function, 149
loss function, 150
low-dimensional embedding, 90
LRU (least recently used), 166
Lycos, 6

M
machine learning, 126, 173
macroaveraged contingency matrix, 133
macroscopic information, 289
marginal distribution, estimating, 136
Markov blanket

defined, 145
improvement over greedy inclusion, 146

Markov Random Fields (MRFs), 191
first-order, 198
higher-order, 198

maximum entropy classifiers, 129, 160–163,
198

defined, 161
organization complexity, 162
promise of, 162–163
rationale, 161
result, 162
use of, 175
See also classifiers

maximum likelihood estimation (MLE), 121
defined, 148
naive Bayes learner and, 149–150

MD5 algorithm, 27
message understanding, 291

applications, 291–292
defined, 291

Message Understanding Conference (MUC),
292

metadata, 31
metasearch systems, 66–67

defined, 67
popularity, 67
rank ordering and, 67

metatags, 62–63
metric graph-labeling problem, 193–195
microaveraged contingency matrix, 132
microdocuments, 231
MIME header, 18
Minimum Description Length (MDL), 114,

121, 232
data cost, 114
defined, 114
greedy DOM segmentation with, 232
model cost, 114

mirroring, 67
mixed hubs, 222–223
mixture model, 103–108, 305

defined, 104
misleading, 108
multiple cause (MCMM), 108–109

Mosaic, 2
Mulder, 303
multidimensional scaling (MDS), 89, 91–94

algorithm, 92
defined, 82
document-to-document similarity, 207
goal, 92
map of Web co-citations, 208

multinomial model
class associated die with faces, 149
defined, 103
for text and link-derived features, 187–188

multiple cause mixture models (MCMMs),
108–109

application to text, 123
flexibility, 109
noise term cluster node, 113
signal and noise separation, 113
use of, 109

multithreading, 24
multivariate binary model, 102

Index 337

MURAX, 303
mutual information (MI), 139–141

applying, 140
defined, 139
interpretations, 139–140
measurement, 139
See also feature selection

N
naive Bayes learner, 148–152

accuracy, 151–152
applied on flattened HTML, 170
class labels and, 152
defined, 148
EM superiority over, 180
forms, 149
logit function, 149
MLE and, 149–150
multinomial, 179
parameter smoothing, 149–151
performance, 151–152
problem, 152
use of, 174
See also Bayesian classifiers

Napster, 306
natural language (NL)

lexical networks, 296–297
ontologies, 297
parsing and knowledge representation,

299–302
POS tagging, 297–298
processing, 295–302
techniques, 295
translation, 296
word sense disambiguation (WSD), 298–299

nearest neighbor (NN) classifiers, 128,
133–136

cross-validation, 134
illustrated, 134
intuition behind, 133
k-, 135
as lazy learners, 134
pros/cons, 134–135

at training time, 133, 134
See also classifiers

neighboring text absorption, 185–186
nepotistic links, 220
news tracking, 126
nodes

class probability assignment, 190
distance between, 206
expanded set, 213
internal, 155, 169
irrelevant, 225
known colors, 194
labeled, 188
labels/colors, 194
out-of-degree, 210
prelabeled, 188
prestige, 209
pruned and expanded, 242
radius of, 206
root set of, 212
theme, 120
unlabeled, 188

noisy OR, 108
nonblocking sockets, 24
normalization, 25–26
null hypothesis, 65
NumPages, 238

O
observations, 64
Occam’s razor, 114
odds ratio, 59
OHSUMED, 130
one-vs.-rest technique, 131
ontologies, 297
Open CYC, 297
Open Directory, 79, 125, 184
open-domain QA systems, 303
Outlier elimination, 226
overfitting

accuracy and, 183
Bayesian classifiers and, 144
defined, 107, 136

338 Index

P
PAC (probabilistic approximately correct), 199
PageRank, 209–212

approximate priority ordering, 259
authority rank correlation, 238
average, 260
clique attacks and, 222
criticism, 212
development, 209
edge weights and, 226
in Google, 212
HITS vs., 214
independence, 212
irrelevant nodes, 225
prestige, 209
rank computation, 211
See also HITS

PageRank-like random walk, 248–250
parameters, 64

estimation of, 175
smoothing, 149–151

parents, 153
parse graphs, 300, 302
parsing, 299–302

current technology, 299
Link Parser, 300–301

partitioning, 81–82
part-of-speech (POS) tagging, 297–298

HMMs for, 298
statistical, 298
supervised, 297–298
unsupervised, 297

permutations
constructing, 70
random, for estimating Jaccard coefficient,

71
random, for similarity search, 70–71

personalization, 305
phase dictionary, 64
Poisson distribution, 105, 106
posterior distribution, 150
power iterations, 211

power-law degree distributions, 243–245
defined, 243
in-/out-degree of Web nodes, 245
preferential attachment, 243

precision, 54–56
average, 54
defined, 54
ensemble classifiers based on, 131
interpolating, 55
limitations, 56
LSI, 98
microaveraged, 132
values, combining, 55

preferential attachment, 243
prestige, 205–206

fixpoint for, 206
indicator, 205
node, 209
PageRank, 209

principal eigenvector, 206
probabilistic approach, 83–84
probabilistic LSI (PLSI), 109–112

analysis, 110–111
defined, 110
evaluation, 111
improvements, 112
recall precision, 111
signal and noise separation, 113
See also latent semantic indexing (LSI)

probabilistic retrieval models, 61
probability distribution, 109
profiles, 305
projections

data-sensitive random, 96
directions for, 96
to orthogonal subspaces, 96
subspace, 95

proximity
function, 90
queries, 46

proxy pass, 25
pseudo-relevance feedback (PRF), 58

Index 339

Q
q-gram techniques, 66, 72
queries

ambiguous, 49
average size, 57
belief of, 61
Boolean, 53–54
continuous, 291
“find-similar,” 68–71
forwarding, 67
iceberg, 135
keyword, 49, 53, 79
not involving term position, 47
proximity, 46
refinement process, 58
stock, with preranked answers, 228
types of, 45–46
user, 51
user modification of, 57–58
warning, 126
Web page match, 203

query expansion, 296
query-by-example, 265
query-neutral attribute synthesis, 76
question answering (QA) systems, 296,

302–305
advantage, 305
answer types, 304
architecture illustration, 303
basic premise, 304
document segments, 304
examples, 303
grades of sophistication, 302–303
limited-domain, 303
matching/scoring, 304
open-domain, 303
question processing steps, 304
segment scoring, 305
slot-filling, 302

R
radius-2 crawler, 278
Random similarity, 268, 269

random walk, 248–253
PageRank-like, 248–250
preformed by WebWalker, 252–253
on regular graphs, 250–253

Rank-and-File, 227–228
activation window, 228
answers, 227
defined, 227
key transitions, 229

RDF (Resource Description Framework), 12
recall, 131
record extraction, 291
reinforcement learning (RL), 280–283

crawler, 280–283
defined, 280
goal node location, 283

relations, 169, 170–171
defined, 169
labeling, 173
names, 171

relative URLs, 26
relaxation labeling algorithm, 188–192, 195

as approximate procedure, 192–193
HyperClass, 192
semisupervised learning using, 193
text classifier, 190

relevance feedback
defined, 58
probabilistic models, 58–61
search engines and, 58

relevance ranking, 53–67
advanced issues, 61–67
Bayesian interference network for, 60
probabilistic models, 58–61
recall and precision, 53–56
Rocchio’s method and, 57–58
vector-space model, 56–57

replicated pages, 71, 72
replication, 67, 72
resolution

address, 22
DNS, 22, 23
requests, 23

340 Index

resource discovery, 11, 255–288
communities, 284–288
focused crawling, 270–277
goal-driven, 11
with hubs, 277–279
learning context graphs, 279–280
preferential, 257–264
with RL crawlers, 280–283
similarity search, 264–268

Reuters collection, 86–87, 102, 130, 169
RL crawler, 280–283

context-focused crawler vs., 280
goal nodes acquisition, 283
paths, 280
total benefit prediction, 280
See also reinforcement learning (RL)

robots. See crawlers
robots.txt file, 26
Rocchio’s method, 57–58
rule induction, 129, 171–173

defined, 172
FOIL example, 171, 172

S
SALSA (stochastic algorithm for link structure

analysis), 218
SameDomain similarity, 269
Scatter/Gather text clustering system, 80, 122
schemas, 5
screen scraping, 291
Search Engine Watch, 76
search engines

index, fresh, 33
keyword, 290
optimization, 5
relevance feedback and, 58
search engines, 5
spamming and, 62
stopwords and, 48–49
vector-space ranking, 64
See also specific search engines

search strategies, 157–160
best-first search, 158–159

greedy search, 157–158
semantics, 159–160

self-organizing maps (SOMs), 90–91
algorithm, 90
defined, 82, 90
examples, 91, 92
illustrated, 91, 92
update rule, 90

self-similarity, 85
semantic indexing, 83
semisupervised learning, 173, 177–199

accuracy, 181
co-training, 195–197
current probability value, 179
expectation maximization, 178–184
hypertext classification, 194
hypertext graph labeling, 184–195
with ideas form EM and naive Bayes

classification, 180
with relaxation labeling, 193
supervised learner vs., 180–181

sequential minimum optimization (SMO), 175
Shannon’s theorem, 114
SharkSearch algorithm, 261, 288

in action, 262
defined, 261

shingling, 29
defined, 72
near duplicate elimination with, 71–72

shortest-path problem, 294, 295
shrinkage

algorithm pseudocode, 157
application, 156
defined, 156
parameter settings using, 175
testing, 156

Sibling similarity, 69
similarity, 79

clues, 178
cues, 119
DiffDomain, 269, 270
document-to-document, 207
hyperlink indicators, 118

Index 341

interdocument, 89
link-based, 118
multiple sources of evidence, 178
overall, 118
Random, 268, 269
SameDomain, 269
search using link topology, 264–268
Sibling, 269
term-to-term, 97
textual, 118

similarity search, 67–74
clustering in, 79
on graph structure, 73–74
preprocessing, 68
random permutations for, 71

singular value decomposition (SVD), 97
as algebraic operation, 122
HITS and, 215–216
public-domain packages, 99
use of, 98
See also latent semantic indexing (LSI)

slot-filling QA systems, 302
SMART IR system, 75
social networks

analysis, 203–254
centrality, 206–207
co-citation, 207–208
defined, 205
links in, 264
prestige, 205–206
theory, 205

sockets
active, 25
nonblocking, 24

soft classification, 178
soft clustering, 82
soft disjunction, 108
“soft” k-means, 87–89

close ties and, 89
defined, 87
goal, 88
variants, 89

spamming, 61–62
anchor text and, 63
defined, 61–62
search engines and, 62
setback phase, 62

spider traps, 28–29
spiders. See crawlers
SQL, 53
START, 303
state sequence estimation, 294, 295
stationary distribution, 210
stemming, 49
stochastic HITS, 216–219
stop sites, 225
stop-press index, 51
stopwords

defined, 48
eliminating, 49
search engines and, 48–49

strongly connected core (SCC), 246
structured query language. See SQL
subscripts, 46
subspace projection, 95
supervised learning, 125–176

Bayesian learners, 147–155
classifier evaluation, 129–133
defined, 127
feature selection, 136–147
for hypertext, 169–173
illustration, 127
learner, 127
NN classifiers, 133–136
in other areas, 127
scenario, 126–128
for structured snippet extraction, 128
for text/hypertext documents, 127

support vector machines (SVMs), 129,
164–168

accuracy, 166
decisions, 164
intuition behind, 164
linear (LSVM), 166–167
nonlinear, 168

342 Index

support vector machines (SVMs) (continued)
performance comparison, 168
training time variations, 167
use of, 175

surfing model, 211

T
tag-trees, 12
TAPER system, 174
taxonomy, 155
term-document matrix, 96
testing

co-training, 196–197
shrinkage, 196

text classification, 126
Text REtrieval Conference (TREC), 238
TFIDF-based IR system, 57

Bayesian classifier, 273
NN classifiers and, 135–136
PLSI comparison, 111
weights, 111
See also information retrieval (IR) systems

theme nodes, 120
threads

generation, 24
page fetching, 25

time frequency (TF), 56
tokenization, 129
tokenized documents, 46
top-down clustering, 82, 84–89
topic citation matrix, 194
topic directories, 7–8

defined, 7
popularity, 125
value, 8
Yahoo!, 7–8, 79, 184, 239

topic distillation
defined, 10
evaluation of, 235–742
fine-grain, 233–235
HITS and, 235–238

topic-based collaborative input, 118–121

topic(s), 83
contamination, 223–224
drift, 224–225
emerging, 284
exploiting hierarchy among, 155–160
generalization, 224
Google and, 125–126
labels, 126
mixture of, 183, 305
tagging, 125–126
test, 236
trees as “is-a” hierarchies, 157
user-defined folder, 118–119

transport control protocol (TCP), 17
traps, 28–29
truncation, 94–95

algorithms, 144–145
feature, 144–145

two-party nepotism, 225–226
two-sided clustering, 116
two-way ensemble, 131

U
uniform resource locators (URLs), 18

absolute, 26
aliased, collapsing, 267
already-visited, eliminating, 26–28
canonical, 26, 27
collecting, 19
extracting, 22, 25
hash values, 27
mirrored, collapsing, 267
qualifying, 28
relative, 26
seed, 277
strings, regularity in, 74
tokenizing, 74
uniform sampling of, 248

Universal Networking Language, 302
universal resource identifiers. See URIs
unlabeled documents, 181–183

attenuating influence of, 183

TE
AM
FL
Y

Team-Fly®

Index 343

reducing belief in, 181–183
See also documents

unsupervised learning. See clustering
URIs, 73
user callback function, 39
user datagram protocol (UDP), 23

V
validation

cross-validation, 142, 143
greedy inclusion algorithms, 142–144

vector-space model, 53, 56–57, 96
corresponding axis in, 142
inverse document frequency (IDF), 56–57
search engines and, 64
term frequency (TF), 56

Verity Search97, 61
vertical portals, 11, 288
vicinity graph, 267
virtual hosting, 25
visit ratio, 249
Viterbi algorithm, 294, 298

W
w3c-libwww
Crawler class, 35, 36
defined, 35
DNS class, 36, 39
Fetch class, 36, 38
fetchDone function, 39, 40
flexibility, 40
handler triggered by, 42
main routine, 41
page fetch completion handler, 42
response processing, 40
ReturnCodes, 37
using, 40

Wayback Machine, 43
Web

“abundance problem,” 204
adversarial aspect, 5
content richness, 4

crawling, 17–43
crisis of abundance and diversity, 4–5
early days, 2, 3
as infinitely growing/shifting universe, 203
locally similar subgraph detection, 73–74
lowest common denominator, 4–5
macroscopic information, 289
measuring/modeling, 243–253
as populist, participatory medium, 2–4
as social network, 205
Worm system, 63

Web graphs, 209
collapsing similar regions of, 73
connected, 221–222
directed connectivity, 279
labeling, 184–195
strongly connected core (SCC), 246
undirected connectivity, 278–279

Web pages
authoritative, 209
authorities, 213
coarse-grained model and, 219
defined, 17
duplicate, avoiding, 29
fetching, 19
hubs, 209, 213
importance, 257
internal tag structure, 45
mirroring, 29
query match, 203
ranking algorithms, 209–219
replicated, 71, 72
sampling, at random, 246–253
total citations of, 73
URLs, 18
visit ratio, 249

Webclopedia, 303
WebCrawler, 6
Webglimse system, 288
WebKB, 130, 174
WebWalker, 252–253
Widrow-Hoff (WH) update rule, 163

344 Index

word sense disambiguation (WSD), 298–299
initiation, 298
system training, 299
techniques, 299

WordNet, 296
working set, 166
World Wide Web. See Web
World Wide Web Consortium (W2C), 2, 35
wrapping, for feature selection, 143

X
Xanadu hypertext system, 1
XML, 12

Y
Yahoo!, 7–8, 79, 184, 239

Clever comparison, 239–240
root node, 155
See also topic directories

A B O U T T H E A U T H O R

Soumen Chakrabarti is assistant professor in Computer Science and Engineering
at the Indian Institute of Technology, Bombay. Prior to joining IIT, he worked on
hypertext information retrieval and mining at IBM Almaden Research Center.
He has developed several systems for Web mining, published extensively, and
acquired eight U.S. patents on his inventions to date. Chakrabarti has served as
a vice-chair or program committee member for many conferences, including
WWW, SIGIR, ICDE, VLDB, KDD, and SODA, and was a guest editor of the
IEEE TKDE special issue on mining and searching the Web. His work on focused
crawling received the Best Paper award at the 1999 WWW Conference. He holds
a Ph.D. from the University of California, Berkeley.

345

	sample.pdf
	sterling.com
	Welcome to Sterling Software

