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P R E F A C E

This book introduces the concepts of how computer hardware works from a 
programmer’s point of view. The hardware is controlled by a set of machine 
instructions. The way in which these instructions control the hardware is 
called the instruction set architecture (ISA). A programmer’s job is to design 
a sequence of these instructions that will cause the hardware to perform 
operations to solve a problem. 

Nearly all computer programs are written in a high-level language. Some 
of these languages are general purpose, and others are geared toward a spe-
cific type of application. But they are all intended to provide a programmer 
with a set of programming constructs more suitable for solving problems in 
human terms than working directly with the instruction set architecture and 
the details of the hardware.

Who This Book Is For
Have you ever wondered what’s going on “under the hood” when you write 
a program in a high-level language? You know that computers can be pro-
grammed to make decisions, but how do they do that? You probably know 
that data is stored in bits, but what does that mean when storing a decimal 
number? My goal in this book is to answer these and many other questions 
about how computers work. We’ll be looking at both the hardware compo-
nents and the machine-level instructions used to control the hardware.



xvi   Preface

I’m assuming that you know the basics of how to program in a high-
level language, but you don’t need to be an expert programmer. After dis-
cussing the hardware components, we’ll look at and write lots of programs 
in assembly language, the language that translates directly into the machine 
instructions.

Unlike most assembly language books, we won’t emphasize writing 
applications in assembly language. Higher-level languages—like C++, Java, 
and Python—are much more efficient for creating applications. Writing in 
assembly language is a tedious, error-prone, time-consuming process, so it 
should be avoided whenever possible. Our goal here is to study program-
ming concepts, not to create applications.

About This Book
The guidelines I followed in creating this book are as follows:

Learning is easier if it builds on concepts you already know.

Real-world hardware and software make a more interesting platform 
for learning theoretical concepts.

The tools used for learning should be inexpensive and readily available.

The Programming in the Book
This book is based on the x86-64 instruction set architecture, which is 
the 64-bit version of the x86 (32-bit) instruction set architecture. It is also 
known by the names AMD64, x86_64, x64, and Intel 64. All the program-
ming in the book was done using the GNU programming environment run-
ning under the Ubuntu Linux operating system. The programs should work 
with most common Linux distributions with few, if any, modifications.

We’re using C as our high-level language, with some C++ in a later chap-
ter. Don’t worry if you don’t know C/C++. All our C/C++ programming will 
be very simple, and I’ll explain what you need to know as we go.

An important issue that arises when learning assembly language is using 
the keyboard and terminal screen in an application. Programming input 
from a keyboard and output to a screen is complex, well beyond the expertise 
of a beginner. The GNU programming environment includes the C standard 
library. Keeping with the “real-world” criterion of this book, we’ll use the 
functions in that library, which are easily called from assembly language, for 
using the keyboard and screen in our applications.

The x86-64 instruction set architecture includes some 1,500 instruc-
tions. The exact number depends on what you consider to be a different 
instruction, but there are far too many to memorize. Some assembly lan-
guage books deal with this issue by inventing an “idealized” instruction set 
architecture to illustrate the concepts. Again, keeping with the “real-world” 
nature of this book, we’ll use the standard x86-64 instruction set but only a 
small subset of the instructions that will be sufficient to illustrate the basic 
concepts.
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Why Read This Book?
Given that there are many excellent high-level languages that allow you to 
write programs without being concerned with how machine instructions con-
trol the hardware, you may wonder why you should learn the material in this 
book. All high-level languages are ultimately translated into machine instruc-
tions that control the hardware. Understanding what the hardware does and 
how the instructions control it helps you to understand the capabilities and 
limitations of the computer. I believe that this understanding can make you a 
better programmer, even when you’re working with a high-level language.

If your primary interest is in the hardware, I think it’s important to 
understand how the hardware will be used by a program. 

You might enjoy assembly language programming and want to carry 
on. For example, if your interests take you into systems programming—writing 
parts of an operating system, writing a compiler, or even designing another 
higher-level language—these endeavors typically require an understanding 
at the assembly language level.

Many challenging opportunities also exist in programming embedded 
systems, systems in which the computer has a dedicated task. Examples are an 
integral part of our daily life: cell phones; home appliances; automobiles; heat-
ing, ventilation, and air conditioning (HVAC) systems; medical devices; and 
so forth. Embedded systems comprise an essential component of enabling 
Internet of Things (IoT) technology. Programming them often requires an 
understanding of how the computer interacts with various hardware devices 
at the assembly language level. 

If you already know assembly language for another processor, this book 
could serve as a primer for reading the manuals.

Chapter Organization
The book is roughly organized into three parts: mathematics and logic, 
hardware, and software. The mathematics part is intended to give you the 
necessary language to discuss the concepts. The hardware part is an intro-
duction to the components used to construct a computer.

These two parts provide a background for discussing how software 
controls the hardware. We’ll look at each of the basic programming con-
structs in the C programming language, with some C++ toward the end of 
the book. Then we’ll look at how the compiler translates the C/C++ code 
into assembly language, a language that directly accesses the instruction set 
architecture. I also show you how a programmer might program the same 
construct directly in assembly language.

Chapter 1: Setting the Stage     Describes the three overall subsystems 
of a computer and how they’re connected. It also discusses setting up 
the programming tools used in the book.

Chapter 2: Data Storage Formats     Shows how unsigned integers are 
stored using the binary and hexadecimal number systems and how 
characters are stored in the ASCII code. We’ll write our first C program 
and use the gdb debugger to explore these concepts.
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Chapter 3: Computer Arithmetic     Describes the addition and subtrac-
tion of unsigned and signed integers and explains the limits of using a 
fixed number of bits to represent integers.

Chapter 4: Boolean Algebra     Describes Boolean algebra operators 
and functions, and function minimization using algebraic tools and 
Karnaugh maps.

Chapter 5: Logic Gates     Begins with an introduction to electron-
ics. It then discusses logic gates and how they’re built using CMOS 
transistors.

Chapter 6: Combinational Logic Circuits     Discusses logic circuits 
that have no memory, including adders, decoders, multiplexers, and 
programmable logic devices.

Chapter 7: Sequential Logic Circuits     Discusses clocked and unclocked 
logic circuits that maintain a memory, as well as circuit design using state 
transition tables and state diagrams.

Chapter 8: Memory     Describes memory hierarchy: cloud, mass stor-
age, main memory, cache, and CPU registers. It also discusses memory 
hardware designs for registers, SRAM, and DRAM.

Chapter 9: Central Processing Unit     Gives an overview of CPU subsys-
tems. The chapter also explains the instruction execution cycle and the 
main x86-64 registers and shows how to view register contents in the gdb 
debugger.

Chapter 10: Programming in Assembly Language     Looks at the 
minimal C function, both compiler-generated assembly language and as 
written directly in assembly language. The chapter covers assembler 
directives and first instructions. I give an example of using the text 
user interface of gdb as a learning tool. It includes a brief description 
of AT&T syntax.

Chapter 11: Inside the main Function     Describes passing arguments 
in registers, position-independent code, and use of the call stack for 
passing the return address and creating automatic variables.

Chapter 12: Instruction Details     Looks at how instructions are coded 
at the bit level. It also covers addressing modes and conditional jumps, 
as well as algorithms of assembler and linker programs.

Chapter 13: Control Flow Constructs     Covers assembly language 
implementation of controlling program flow with while, do-while, for, 
if-else, and switch constructs.

Chapter 14: Inside Subfunctions     Describes how functions access 
external variables: global, pass by value, pass by pointer, and pass by 
reference. The chapter summarizes the structure of the stack frame.

Chapter 15: Special Uses of Subfunctions     Shows how recursion 
works. The chapter also discusses using assembly language to access 
CPU hardware features that are not directly accessible in high-level 
language, using a separate function or inline assembly.
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Chapter 16: Computing with Bitwise Logic, Multiplication, and 
Division Instructions     Describes bit masking, shifting bits, and the 
multiplication and division instructions.

Chapter 17: Data Structures     Explains how arrays and records 
(structs) are implemented and accessed in a program at the assembly 
language level.

Chapter 18: Object-Oriented Programming     Shows how structs are 
used as objects in C++.

Chapter 19: Fractional Numbers     Describes fixed-point and floating-
point numbers, the IEEE 754 standard, and a few SSE2 floating-point 
instructions.

Chapter 20: Input/Output     Compares I/O with memory and bus tim-
ing. Describes isolated and memory-mapped I/O. This chapter gives 
a rough sketch of polled I/O programming and discusses interrupt-
driven and direct memory access I/O.

Chapter 21: Interrupts and Exceptions     Briefly describes how the  
x86-64 handles interrupts and exceptions. The chapter includes examples 
of using int 0x80 and syscall to do system calls without using the C run-
time environment.

Appendix A: Using GNU make to Build Programs     Gives a brief tuto-
rial on using the GNU make program.

Efficient Use of This Book
Because of the way I have organized this book, you will learn the material 
more efficiently if you follow a few simple guidelines.

Many sections have exercises at the end that give you the opportunity to 
practice working with the material presented in the main body of the section. 
These are intended as exercises, not tests. In fact, I have provided answers 
and my solutions to most of these exercises online at https://rgplantz.github.io.

If you are an instructor using this book, sorry, but you will have to make 
up your own exam questions. Many exercises have fairly obvious extensions 
that instructors could make to create class assignments.

To make efficient use of these exercises, I recommend an iterative 
process:

	1.	 Try to solve the problem on your own. Spend some time on it, but do 
not let yourself get stuck for too long.

	2.	 If the answer does not come to you, peek at my solution. In some cases, 
I give a hint before providing the full solution.

	3.	 Return to step 1, armed with some knowledge of how an experienced 
assembly language programmer might approach the solution.

https://rgplantz.github.io.
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One thing I strongly urge you to do is to type code in by yourself. I 
believe this physical activity will help you to learn the material faster. If 
nothing else, it forces you to read every character in the code. And I do not 
see any advantage to copying and pasting code from my online solutions. 
Frankly, none of the programs in this book have any real-world usefulness. 
The code is provided for your own exercising, so please use it in that spirit.

This hands-on approach also applies to the mathematics in the first few 
chapters, which includes converting numbers between several number bases. 
Any good calculator will do that easily, but the actual conversion is not the 
point. The point is to learn about how data values can be represented in bit 
patterns. I believe that using paper and pencil to work through the arithme-
tic will help you to get a feel for these patterns.

In the first chapter, we’ll start by taking a high-level overview of the major 
subsystems of a computer. Then I’ll describe how I set up the programming 
environment on my computer to create and run the programs in this book.
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1
S E T T I N G  T H E  S T A G E

We’ll start with a brief overview of how 
computer hardware can be thought of as 

organized into three subsystems. The goal is 
to make sure we have a common framework for 

discussing how things are organized and how they fit 
together. Working within this framework, you’ll learn 
how a program is created and then executed.

This book contains a fair amount of programming. To help you prepare 
for doing the programming, this chapter ends with a section describing how 
to set up a programming environment, using my system as an example.

Computer Subsystems
You can think of computer hardware as consisting of three separate subsys-
tems: central processing unit (CPU), memory, and input/output (I/O). They are 
connected with buses, as shown in Figure 1-1.
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Data bus

CPU Memory I/O

Address bus
Control bus

Figure 1-1: Subsystems of a computer. The CPU, memory,  
and I/O subsystems communicate with one another via  
the three buses.

Let’s take each of these pieces in turn:

Central processing unit (CPU)    Controls the flow of data to and from 
memory and I/O devices. The CPU performs arithmetic and logical 
operations on the data. The CPU can decide the order of operations 
based on the results of arithmetic and logic operations. It contains a 
small amount of very fast memory.

Memory    Provides storage that is readily accessible to the CPU and I/O 
devices for the instructions to the CPU and the data they manipulate.

Input/output (I/O)    Communicates with the outside world and with 
mass storage devices (for example, the disk, network, USB, and printer).

Bus    A physical communication pathway with a protocol specifying 
exactly how the pathway is used.

As indicated by the arrows in Figure 1-1, signals can flow in either direc-
tion on the buses. The address bus is used to specify a specific memory loca-
tion or an I/O device. Program data and program instructions flow on the 
data bus. The control bus carries signals that specify how each of the subsys-
tems should be using the signals on the other buses.

The buses shown in Figure 1-1 indicate logical groupings of the signals 
that must pass between the three subsystems. A given bus implementation 
might not have physically separate paths for each of the three types of sig-
nals. For example, if you have ever installed a graphics card in a computer, 
it probably used the Peripheral Component Interconnect Express (PCI-E) 
bus. The same physical connections on the PCI-E bus carry addresses and 
data, but at different times.

Program Execution
A program consists of a sequence of instructions stored in memory. When 
you create a new program, you use an editor to write the source code for your 
new program, usually in a high-level language (for example, C, C++, or Java). 
The editor program sees the source code for your new program as data, which 
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is typically stored in a file on the disk. Then you use a compiler to translate the 
high-level language statements into machine code instructions that are stored 
in a disk file. Just as with the editor program, the compiler program sees 
both your source code and the resulting machine instructions as data.

When it comes time to execute the program, the CPU loads the instruc-
tions from the machine code disk file into memory. Most programs include 
some constant data that is also read into memory. The CPU executes the 
program by reading, often called fetching, each instruction from memory 
and executing it. The data is also fetched as needed by the program.

When the CPU is ready to execute the next instruction in the program, 
the location of that instruction in memory is placed on the address bus. 
The CPU also places a read signal on the control bus. The memory subsys-
tem responds by placing the instruction on the data bus, where the CPU 
can then copy it. If the CPU is instructed to read data from memory, the 
same sequence of events takes place.

If the CPU is instructed to store data in memory, it places the data on 
the data bus, places the location in memory where the data is to be stored 
on the address bus, and places a write signal on the control bus. The 
memory subsystem responds by copying the data on the data bus into the 
specified memory location.

There are variations on this edit-compile-execute scheme. An interpreter is 
a program that translates the programming language into machine instruc-
tions, but instead of saving the instructions in a file, they are immediately 
executed. Another variation is for a compiler to translate the programming 
language into an intermediate shorthand language that is stored in a file that 
can be executed by an interpreter.

Most programs also access I/O devices. Some are meant to interact 
with humans, for example, a keyboard, a mouse, or a screen. Others are 
meant for machine-readable I/O, for example, a disk. I/O devices are 
very slow compared to the CPU and memory, and they vary widely in their 
timing characteristics. Because of their timing characteristics, data trans-
fers between I/O devices and the CPU and memory must be explicitly 
programmed.

Programming an I/O device requires a thorough understanding of 
how the device works and how it interacts with the CPU and memory. We’ll 
look at some of the general concepts near the end of the book. Meanwhile, 
nearly every program we write in the book will use at least the terminal 
screen, which is an output device. The operating system includes functions 
to perform I/O, and the C runtime environment provides a library of appli-
cation-oriented functions to access the operating system I/O functions. 
We’ll use these C library functions to perform most of our I/O operations 
and leave I/O programming to more advanced books.

These few paragraphs are intended to provide you with a general over-
all view of how computer hardware is organized. Before exploring many of 
these concepts in more depth, the next section will help you to set up the 
tools you’ll need for the programming covered in the rest of the book.
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The Programming Environment
In this section, I’ll describe how I set up my computer to do all the pro-
gramming described in this book. You may choose to do things differently, 
depending on the Linux distribution you are using and your personal 
preferences.

I used the GNU programming tools that are included with Ubuntu 
20.04 LTS running on a desktop computer, both as the primary operating 
system and running under Windows Subsystem for Linux (https://docs 
.microsoft.com/en-us/windows/wsl/install-win10/), to create and execute the 
programs in this book. You can download a free copy of Ubuntu at https://
ubuntu.com/. The installed compilers, gcc and g++, are version 9.3.0, and the 
assembler, as, is version 2.34.

You may be new to using the Linux command line. As we go through 
the programs, I’ll show you the commands I used to create them, but this 
will give you just the basics. You’ll be much more productive if you take the 
time to become familiar with using the command line. I found William 
Shotts’s The Linux Command Line, Second Edition (No Starch Press, 2019), 
to be an excellent resource.

You should also become familiar with the documentation provided in 
Linux for the programming tools we’ll be using. The simplest is the help 
system built into most programs. You access help by typing the name of the 
program with only the --help option. For example, gcc --help brings up a 
list of the command line options you can use with gcc with a brief descrip-
tion of what each does.

Most Linux programs include a manual, usually called a man page, that 
provides more complete documentation than the help facility. It can be 
read by using the man command followed by the name of the program. For 
example, man man brings up the man page for the man program.

GNU programs come with even more complete documentation that 
can be read with the info command followed by the name of the program. 
For example, info info brings up the manual for using info, shown here:

Next: Stand-alone Info,  Up: (dir)

Stand-alone GNU Info
********************

This documentation describes the stand-alone Info reader which you can
use to read Info documentation.

   If you are new to the Info reader, then you can get started by typing
'H' for a list of basic key bindings.  You can read through the rest of
this manual by typing <SPC> and <DEL> (or <Space> and <Backspace>) to
move forwards and backwards in it.

* Menu:

* Stand-alone Info::            What is Info?
* Invoking Info::               Options you can pass on the command line.

https://docs.microsoft.com/en-us/windows/wsl/install-win10/
https://docs.microsoft.com/en-us/windows/wsl/install-win10/
https://ubuntu.com/
https://ubuntu.com/
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* Cursor Commands::             Commands which move the cursor within a node.
* Scrolling Commands::          Commands for reading the text within a node.
* Node Commands::               Commands for selecting a new node.
* Searching Commands::          Commands for searching an Info file.
* Index Commands::              Commands for looking up in indices.
* Xref Commands::               Commands for selecting cross-references.
* Window Commands::             Commands which manipulate multiple windows.
* Printing Nodes::              How to print out the contents of a node.
* Miscellaneous Commands::      A few commands that defy categorization.
* Variables::                   How to change the default behavior of Info.
* Colors and Styles::           Customize the colors used by Info.
* Custom Key Bindings::         How to define your own key-to-command bindings.
* Index::                       Global index.

-----Info: (info-stnd)Top, 31 lines --All-------------------------------------------
Welcome to Info version 6.7.  Type H for help, h for tutorial.

Items that begin with * and end with :: are hyperlinks to other pages 
in the manual. Use the arrow keys on your keyboard to put the cursor any 
place within such an item and press ENTER to bring up that page.

To get the info documentation, I had to install the following Ubuntu 
packages:

binutils-doc    Adds useful documentation for the GNU assembler as 
(sometimes called gas)

gcc-doc    Adds useful documentation for the GNU gcc compiler

The packages you need to get these features may differ depending on 
the Linux distribution you are using. I have even had to change this list for 
different releases of Ubuntu over the years.

In most cases, I compiled programs using no optimization (-O0 
option) because the goal is to study concepts, not to create the most effi-
cient code. The examples should work in any x86-64 GNU development 
environment with gcc, g++, and as installed. However, the machine code 
generated by the compiler may differ depending on its specific configu-
ration and version. You will begin seeing compiler-generated assembly 
language about halfway through the book. Any differences should be 
consistent as you continue through the rest of the book.

You will also use a text editor for all your programming. Do not use a 
word processor. Word processors add a lot of hidden control characters to 
format the text. These hidden characters confuse compilers and assem-
blers, causing them not to work.

Several excellent text editors exist for Linux, each with its own person-
ality. My favorite changes from time to time. I recommend trying several 
that are available to you and deciding which one you prefer.

These are text editors I have used:

nano    A simple text editor that is included with most Linux installa-
tions. It uses a command line user interface. Text is inserted directly. 
The CTRL and “meta” keys are used to specify keyboard sequences for 
manipulating text.
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vi    Supposed to be installed on all Linux (and Unix) systems. It pro-
vides a command line user interface that is mode oriented. Text is 
manipulated through keyboard commands. Several commands place vi 
in text-insert mode. The ESC key is used to return to command mode. 
Most Linux installations include vim (Vi IMproved), which has addi-
tional features helpful in editing program source code.

emacs    Uses a command line user interface. Text is inserted directly. 
The CTRL and meta keys are used to specify keyboard sequences for 
manipulating text.

gedit    Probably installed if you are using the GNOME desktop. It uses a 
graphical user interface that will likely be familiar to you if you’re used 
to using a word processor.

kate    Probably installed if you are using the KDE desktop. It uses a 
graphical user interface that will likely be familiar to you if you’re used 
to using a word processor.

Visual Studio Code    A free editor from Microsoft that runs on 
Windows 7/8/10, Linux, and macOS (https://code.visualstudio.com/). It 
uses a graphical user interface and can be used to edit text files on 
remote servers and a Windows Subsystem for Linux installation. It 
also allows you to open a terminal pane for commands. 

Graphical user interfaces are also available for both vi and emacs.
Any of these, and many other, text editors would be an excellent choice 

for the programming covered in this book. Don’t spend too much time try-
ing to pick the “best” one.

YOUR T UR N

Make sure that you understand the computer you’ll be using for the program-
ming in this book. What CPU does it use? How much memory does it have? 
What are the I/O devices connected to it? Which editor will you be using?

What You’ve Learned

Central processing unit (CPU)    The subsystem that controls most of 
the activities of the computer. It also contains a small amount of very 
fast memory.

Memory    The subsystem that provides storage for programs and data.

Input/output (I/O)    The subsystem that provides a means of commu-
nication with the outside world and with mass storage devices.

Bus    A communication pathway between the CPU, memory, and I/O.

https://code.visualstudio.com/
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Program execution    An overview of how the three subsystems and the 
buses are used when a program is run.

Programming environment    An example of how to set up the tools 
needed to do the programming in this book.

In the next chapter, you will start learning how data is stored in a com-
puter, get an introduction to programming in C, and start learning how to 
use the debugger as a learning tool.





2
D A T A  S T O R A G E  F O R M A T S

In this book, we’re going to look at com-
puters in a different way: instead of seeing 

computers as a collection of programs and 
files and graphics, we’re going to see them as 

billions of two-state switches and one or more control 
units, devices that can both detect and change the 
states of the switches. In Chapter 1, we discussed com-
municating with the world outside the computer by 
using input and output. In this chapter, we’ll begin 
exploring how computers encode data for storage in 
memory; then we’ll write some programs in C that 
explore these concepts.
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Describing Switches and Groups of Switches
Everything that happens on your computer—the code you write, the data 
you use, the images on your screen—is controlled by a series of two-state 
switches. Each combination of switches represents a possible state the 
computer is in. If you wanted to describe what was happening on your com-
puter, you could list a combination of switches. In plain English, this would 
be something like “The first switch is on, the second one is also on, but 
the third is off, while the fourth is on.” But describing the computer this 
way would be difficult, especially since modern computers use billions of 
switches. Instead, we’ll use a more concise, numeric notation.

Representing Switches with Bits
You’re probably familiar with the decimal system, which uses 10 digits, 0 to 9, 
to write numbers. We want a way to represent switches numerically, but our 
switches have only 2 states, not 10. Here, the binary system—a two-digit sys-
tem that uses 0 and 1—is going to prove useful. 

We’ll use a binary digit, commonly shortened to bit, to represent the 
state of a switch. A bit can have two values: 0, which represents that a switch 
is “off,” and 1, which represents that it’s “on.” If we wanted, we could assign 
the opposite values to these digits—all that matters is that we’re consistent. 
Let’s use bits to simplify our statement about switches. In our previous 
example, we had a computer in which the first switch is on, the second 
switch is on, the third is off, and the fourth is on. In binary, we would repre-
sent this as 1101.

Representing Groups of Bits
Even with binary, sometimes we have so many bits that the number is unread-
able. In those cases, we use hexadecimal digits to specify bit patterns. The hexa-
decimal system has 16 digits, each of which can represent one group of 4 bits. 

Table 2-1 shows all 16 possible combinations of 4 bits and the correspond-
ing hexadecimal digit for each combination. After using hexadecimal for a 
while, you will probably memorize this table, but if you forget it, an online 
search will quickly bring up a hexadecimal-to-binary converter.

Table 2-1: Hexadecimal Representation of Four Bits

One hexadecimal digit Four binary digits (bits)

0 0000

1 0001

2 0010

3 0011
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One hexadecimal digit Four binary digits (bits)

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

a 1010

b 1011

c 1100

d 1101

e 1110

f 1111

Using hexadecimal, we can write 1101, or “on, on, off, on,” with a single 
digit: d16 = 11012.

N O T E 	 When it isn’t clear from the context, I will indicate the base of a number in this text 
with a subscript. For example, 10010 is in decimal, 10016 is in hexadecimal, and 1002 
is in binary.

The octal system, based on the number eight, is less common, but you 
will encounter it occasionally. The eight octal digits span from 0 to 7, and 
each one represents a group of three bits. Table 2-2 shows the correspon-
dence between each possible group of three bits and its corresponding one 
octal digit. If we want, for example, to briefly represent the first three bits in 
the example we’ve been using, then we can simply use 68, which is equivalent 
to 1102.

Table 2-2: Octal Representation of Three Bits

One octal digit Three binary digits (bits)

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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Using Hexadecimal Digits
Hexadecimal digits are especially convenient when we need to specify the 
state of a group of, say, 16 or 32 switches. In place of each group of four bits, 
we can write one hexadecimal digit. Here are two examples:

6c2a16 = 01101100001010102

and 

0123abcd16 = 000000010010001110101011110011012

A single bit isn’t usually useful for storing data. The smallest number of 
bits that can be accessed at a time in a computer is defined as a byte. In most 
modern computers, a byte consists of eight bits, but there are exceptions to 
the eight-bit byte. For example, the CDC 6000 series of scientific mainframe 
computers used a six-bit byte.

In the C and C++ programming languages, prefixing a number with 
0x—that’s a zero and a lowercase x—specifies that the number is expressed 
in hexadecimal, and prefixing a number with only a 0 specifies octal. C++ 
allows us to specify a value in binary by prefixing the number with 0b. 
Although the 0b notation for specifying binary is not part of standard C, 
our compiler, gcc, allows it. Thus, when writing C or C++ code in this book, 
these all mean the same thing:

100 = 0x64 = 0144 = 0b01100100

But if you’re using another C compiler, you may not be able to use the 0b 
syntax to specify binary.

YOUR T UR N

1.	 Express the following bit patterns in hexadecimal:

a.	 0100 0101 0110 0111
b.	 1000 1001 1010 1011
c.	 1111 1110 1101 1100
d.	 0000 0010 0101 0010

2.	 Express the following hexadecimal patterns in binary:

a.	 83af
b.	 9001
c.	 aaaa
d.	 5555



Data Storage Formats   13

3.	 How many bits are represented by each of the following?

a.	 ffffffff
b.	 7fff58b7def0
c.	 11112

d.	 111116

4.	 How many hexadecimal digits are required to represent each of the 
following?

a.	 8 bits
b.	 32 bits
c.	 64 bits
d.	 10 bits
e.	 20 bits
f.	 7 bits

The Mathematical Equivalence of Binary and Decimal
In the previous section, you saw that binary digits are a natural way to show 
the states of switches within the computer. You also saw that we can use 
hexadecimal to show the state of four switches with a single character. In 
this section, I’ll go through some of the mathematical properties of the 
binary number system and show how it translates to and from the more famil-
iar decimal (base 10) number system. 

Getting to Know Positional Notation
By convention, we use a positional notation when writing numbers. This 
means that the value of a symbol depends on its position within a group of 
symbols. In the familiar decimal number system, we use the symbols 0, 1, 
…, 9 to represent numbers. 

In the number 50, the value of the symbol 5 is 50 because it’s in the tens 
position, where any number in that position is multiplied by 10. In the num-
ber 500, the value of the symbol 5 is 500 because it’s in the hundreds position. 
The symbol 5 is the same in any position, but its value depends on the posi-
tion it occupies within the number.

Taking this a bit further, in the decimal number system, the integer 123 
is taken to mean

1 × 100 + 2 × 10 + 3

or

1 × 102 + 2 × 101 + 3 × 100



14   Chapter 2

In this example, the rightmost digit, 3, is the least significant digit 
because its value contributes the least to the number’s total value. The 
leftmost digit, 1, is the most significant digit because it contributes the most 
value.

A NOT HER NUMBER S YS T EM

Before positional notations were invented, people used counting systems to 
keep track of numerical quantities. The Roman numeral system is a well-known 
example of a counting system. It uses the symbols I for 1, V for 5, X for 10, L  
for 50, and so on. To represent the value 2, you simply use two Is: II. The value 
20 is written as XX.

The two main rules of the Roman numeral system are that symbols that rep-
resent larger values come first, and if a symbol representing a smaller value is 
placed before a larger one, then the value of the smaller one is subtracted from 
the immediately following larger one. For example, IV represents 4 because I 
(1) is less than V (5), so it is subtracted from the value represented by V.

There is no symbol for 0 in the Roman numeral system because it isn’t 
needed in counting systems. In a positional system, we need a symbol to mark 
the fact that there is no value in that position, but the position still counts toward 
the value being represented. For example, the zeros in 500 tell us that there are 
no values in the tens position or in the ones position. There is just a value of 5 in 
the hundreds place.

The invention of positional notations greatly simplified arithmetic and led 
to the mathematics we know today. If you need to convince yourself, divide 60 
(LX) by 3 (III) in the Roman numeral system. (Answer: XX.)

The base, or radix, of the decimal number system—the number of 
unique digits—is 10. This means there are 10 symbols for representing the 
digits 0 through 9. Moving a digit one place to the left increases its value by a 
factor of 10. Moving it one place to the right decreases its value by a factor of 
10. The positional notation generalizes to any radix r like so:

dn–1 × rn–1 + dn–2 × rn–2 + … + d1 × r1 + d0 × r0

where there are n digits in the number, and each di is a single digit with  
0 ≤ di < r.

This expression tells us how to determine the value of each digit in the 
number. We determine the position of each digit in the number by count-
ing from the right, starting with zero. At each position, we raise the radix, 
r, to the power of its position and then multiply that number by the value 
of the digit. Adding all the results gives us the value represented by the 
number.
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The radix in the binary number system is 2, so there are only two sym-
bols for representing the digits; this means that di = 0, 1, and we can write 
this expression as follows:

dn–1 × 2n–1 + dn–2 × 2n–2 + … + d1 × 21 + d0 × 20

where there are n digits in the number, and each di = 0 or 1.
In the next section, we’ll convert binary numbers to and from unsigned 

decimals. Signed numbers can be either positive or negative, but unsigned 
numbers have no sign. We’ll discuss signed numbers in Chapter 3.

Converting Binary to Unsigned Decimal
You can easily convert from binary to decimal by computing the value of 2 
raised to the power of the position it is in and then multiplying that by the 
value of the bit in that position. Here’s an example:

100101012	   = 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 
	   = 128 + 16 + 4 + 1 
	   = 14910

The following algorithm summarizes the procedure for converting 
binary to decimal:

Let result = 0
1 Repeat for each i = 0,...,(n - 1) 
    add 2di x 32i to result 

At each bit position 1, this algorithm computes the power of 2 3 and 
then multiplies by the respective bit value, either 0 or 1 2. 

N O T E 	 Although we’re considering only integers at this point, this algorithm does generalize 
to fractional values. Simply continue the exponents of the radix, r, on to negative 
values, that is, rn−1, rn−2, …, r1, r0, r−1, r−2, .... This will be covered in detail in 
Chapter 19.

YOUR T UR N

1.	 Looking at the generalized equation in this section, what are the values of 
r, n, and each di for the decimal number 29458254 and the hexadecimal 
number 29458254?

2.	 Convert the following 8-bit binary numbers to decimal:

a.	 1010 1010
b.	 0101 0101
c.	 1111 0000

(continued)
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d.	 0000 1111
e.	 1000 0000
f.	 0110 0011
g.	 0111 1011
h.	 1111 1111

3.	 Convert the following 16-bit binary numbers to decimal:

a.	 1010 1011 1100 1101
b.	 0001 0011 0011 0100 
c.	 1111 1110 1101 1100
d.	 0000 0111 1101 1111
e.	 1000 0000 0000 0000
f.	 0000 0100 0000 0000
g.	 0111 1011 1010 1010
h.	 0011 0000 0011 1001

4.	 Develop an algorithm to convert hexadecimal to decimal and then convert 
the following 16-bit numbers to decimal:

a.	 a000
b.	 ffff
c.	 0400
d.	 1111
e.	 8888
f.	 0190
g.	 abcd
h.	 5555

Converting Unsigned Decimal to Binary
If we want to convert an unsigned decimal integer, N, to binary, we set it 
equal to the previous expression for binary numbers to give this equation:

N = dn–1 × 2n–1 + dn–2 × 2n–2 + … + d1 × 21 + d0 × 20

where each di = 0 or 1. We divide both sides of this equation by 2, and 
the exponent of each 2 term on the right side decreases by 1, giving the 
following:

2

r
0N

1
 +     = (dn–1 

× 2n–2 × dn–2 
× 2n–3 + … + d

1 
× 20) + d

0 
× 2–1

where N1 is the integer part, and the remainder, r0, is 0 for even numbers 
and 1 for odd numbers. Doing a little rewriting, we have the equivalent 
equation: 

2

d
0N

1
 +     = (dn–1 × 2n–2 + dn–2 

× 2n–3 + ⋯ + d
1 
× 20) + 

2

r
0

N1+r02=dn-1×2n-2×dn-2×2n-3+…+d1×20+d0×2-1

N1+r02=(dn-1×2n-2+dn-2×2n-3+⋯+d1×20)+d02
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All the terms within the parentheses on the right side are integers. The 
integer part of both sides of an equation must be equal, and the fractional 
parts must also be equal. That is:

N1 = dn–1 × 2n–2 + dn–2 × 2n–3 + … + d1 × 20

and

2

r
0

=

2

d
0

Thus, we see that d0 = r0. Subtracting r0 /2 (which equals d0/2) from 
both sides of our expanded equation gives this:

N1 = dn–1 × 2n–2 + dn–2 × 2n–3 + … + d1 × 20

Again, we divide both sides by 2:

2

r
1N

2
+     = dn–1

 × 2n–3 + dn–2
 × 2n–4 + … + d

2
 × 20 + d

1
 × 2–1

2

d
1= (dn–1

 × 2n–3 + dn–2
 × 2n–4 + … + d

2
 × 20) + 

Using the same reasoning as earlier, d1 = r1. We can produce the binary 
representation of a number by working from right to left, repeatedly divid-
ing by 2, and using the remainder as the value of the respective bit. This is 
summarized in the following algorithm, where the forward slash (/) is the 
integer division operator and the percent sign (%) is the modulo operator:

quotient = N
i = 0
di = quotient % 2 
quotient = quotient / 2 
While quotient != 0 
    i = i + 1 
    di = quotient % 2 
    quotient = quotient / 2

Some programming tasks require a specific bit pattern, for example, 
programming a hardware device. In these cases, specifying a bit pattern—
rather than a numerical value—is more natural. We can think of the bits 
in groups of four and use hexadecimal to specify each group. For example, 
if our algorithm required the use of zeros alternating with ones, 0101 0101 
0101 0101 0101 0101 0101 0101, we could convert this to the decimal value 
431655765, or we could express it in hexadecimal as 0x55555555 (shown here 
in C/C++ syntax). Once you’ve memorized Table 2-1, you’ll find that it’s 
much easier to work with hexadecimal for bit patterns.

The discussion in these two sections has dealt only with unsigned inte-
gers. The representation of signed integers depends upon some architectural 
features of the CPU that we’ll discuss in Chapter 3.
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YOUR T UR N

1.	 Convert the following unsigned decimal integers to an 8-bit hexadecimal 
representation:

a.	 100

b.	 123

c.	 10

d.	 88

e.	 255

f.	 16

g.	 32

h.	 128

2.	 Convert the following unsigned decimal integers to 16-bit hexadecimal 
representation:

a.	 1024
b.	 1000
c.	 32768
d.	 32767
e.	 256
f.	 65535
g.	 4660
h.	 43981

3.	 Invent a code that would allow us to store letter grades with a plus or 
minus (that is, the grades A, A–, B+, B, B-, …, D, D–, F). How many bits 
are required for your code? 

Storing Data in Memory
We now have the language necessary to begin discussing how data is stored 
in computer memory. You’ll first learn how memory is organized. There are 
two general kinds of memory used for storing program instructions and 
data in a computer:

Random access memory (RAM)

Once a bit (switch) is set to either 0 or 1, it stays in that state until the 
control unit actively changes it or the power is turned off. The control 
unit can both read the state of a bit and change it.

The name random access memory is misleading. Here random access means 
that it takes the same amount of time to access any byte in the memory, 
not that any randomness is involved when reading the byte. We contrast 
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RAM with sequential access memory (SAM), where the amount of time it 
takes to access a byte depends on its position in some sequence. You 
can think of SAM like tape: the length of time it takes to access a byte 
depends on the physical location of the byte with respect to the current 
position of the tape.

Read-only memory (ROM)

ROM is also called nonvolatile memory (NVM). The control unit can read 
the state of each bit but can’t change it. You can reprogram some types 
of ROM with specialized hardware, but the bits remain in the new state 
when the power is turned off.

Expressing Memory Addresses 
Each byte in memory has a location, or address, much like the room num-
ber in an office building. The address of a specific byte never changes. That 
is, the 957th byte from the beginning of memory will always remain the 
957th byte. However, the state (content) of each of the bits—either 0 or 1—
in any given byte can be changed.

Computer scientists typically express the address of each byte in mem-
ory in hexadecimal, starting the numbering at zero. Thus, we would say that 
the 957th byte is at address 0x3bc (= 956 in decimal).

The first 16 bytes in memory have the addresses 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, 
b, c, d, e, and f. Using the notation

<address>: <content>

we can show the content of each of the first 16 bytes of memory like in 
Table 2-3 (the contents here are arbitrary).

Table 2-3: Arbitrary Contents of the First 16 Bytes of Memory

Address Content Address Content

0x00000000: 0x6a 0x00000008: 0xf0

0x00000001: 0xf0 0x00000009: 0x02

0x00000002: 0x5e 0x0000000a: 0x33

0x00000003: 0x00 0x0000000b: 0x3c

0x00000004: 0xff 0x0000000c: 0xc3

0x00000005: 0x51 0x0000000d: 0x3c

0x00000006: 0xcf 0x0000000e: 0x55

0x00000007: 0x18 0x0000000f: 0xaa

The content of each byte is represented by two hexadecimal digits, 
which specify the exact state of the byte’s eight bits.
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But what can the state of the byte’s eight bits tell us? There are two 
issues that a programmer needs to consider when storing data in memory:

How many bits are needed to store the data?    To answer this question, 
we need to know how many different values are allowed for the particu-
lar data item. Look at the number of different values we can represent 
in Table 2-1 (four bits) and Table 2-2 (three bits). We can see that we can 
represent up to 2n different values in n bits. Notice, too, that we might 
not use all the possible bit patterns we have within an allocated space.

What is the code for storing the data?    Most of the data we deal with 
in everyday life is not expressed in terms of zeros and ones. To store it 
in computer memory, the programmer must decide how to encode the 
data in zeros and ones.

In the remaining part of this chapter, we’ll see how we can store char-
acters and unsigned integers in memory by using the state of the bits in one 
or more bytes.

Characters
When you’re programming, you will almost always be manipulating text 
strings, which are arrays of characters. The first program you ever wrote 
was probably a “Hello, World!” program. If you wrote it in C, you used a 
statement like this:

printf("Hello, World!\n");

or like this in C++:

cout << "Hello, World!" << endl;

When translating either of these statements into machine code, the 
compiler must do two things:

•	 Store each of the characters in a location in memory where the control 
unit can access them

•	 Generate the machine instructions to write the characters on the screen

We’ll start by considering how a single character is stored in memory.

Character Encoding

The most common standard for encoding characters for computer storage 
is Unicode UTF-8. It uses from one to four bytes for storing a number called 
a code point, which represents a character. A Unicode code point is written 
as U+h, where h is four to six hexadecimal digits. The operating system and 
display hardware associate one or more code points with a glyph, which is 
what we see on the screen or on paper. For example, U+0041 is the code 
point for the Latin capital letter A, which has the glyph A in the font used 
for this book.
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UTF-8 is backward compatible with an older standard, the American 
Standard Code for Information Interchange (ASCII—pronounced “ask-ee”). 
ASCII uses seven bits to specify each code point in a 128-character set, 
which contains the English alphabet (uppercase and lowercase), numerals, 
special characters, and control characters. In this book, we will use only the 
characters from the ASCII subset of UTF-8, U+0000 to U+007F, in all our 
programming.

Table 2-4 shows the Unicode code points for the characters used to rep-
resent hexadecimal numbers and the corresponding 8-bit patterns that are 
stored in memory in our programming environment. You’ll have a chance 
to use this table later in the book, when you learn how to convert from the 
character representation of an integer to its binary representation. For now, 
notice that while the numeric characters are organized in a contiguous bit 
pattern sequence, there is a gap between them and the alphabetic characters. 

Table 2-4: UTF-8 for the Hexadecimal Characters

Code point Character description Character glyph Bit pattern

U+0030 Digit zero 0 0x30

U+0031 Digit one 1 0x31

U+0032 Digit two 2 0x32

U+0033 Digit three 3 0x33

U+0034 Digit four 4 0x34

U+0035 Digit five 5 0x35

U+0036 Digit six 6 0x36

U+0037 Digit seven 7 0x37

U+0038 Digit eight 8 0x38

U+0039 Digit nine 9 0x39

U+0061 Latin small letter a a 0x61

U+0062 Latin small letter b b 0x62

U+0063 Latin small letter c c 0x63

U+0064 Latin small letter d d 0x64

U+0065 Latin small letter e e 0x65

U+0066 Latin small letter f f 0x66

Although the hexadecimal numerical portion is the same as the bit pat-
tern for the code points U+0000 to U+007F, this does not necessarily hold 
true for other characters. For example, U+00B5 is the code point for the 
micro sign, which is stored in memory as the 16-bit pattern 0xc2b5 and has 
the glyph µ in the font used for this book.

UTF-8 uses one byte per character to store code points U+0000 to 
U+007F. Bits 6 and 5 in the byte (recall that bits are numbered from right 
to left, starting with 0) specify the four groups of characters, shown in 
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Table 2-5. The special characters are mostly punctuation. For example, the 
space character is U+0020, and the ; character is U+003B.

Table 2-5: Character Groups in Code Points U+0000  
to U+007F

Bit 6 Bit 5 Type of character

0 0 Control

0 1 Numeric and special

1 0 Uppercase alphabetic and special

1 1 Lowercase alphabetic and special

You can generate a table of the code points that coincide with ASCII 
characters by typing the command man ascii in a Linux terminal window. 
(You may need to install the ascii program on your computer.) It is quite 
large and not the sort of thing that you would want to memorize, but it can 
be helpful to understand roughly how it’s organized.

You can learn more about Unicode at https://www.unicode.org/releases/. 
For a more informal discussion of how Unicode came to be, I recommend 
“The Absolute Minimum Every Software Developer Absolutely, Positively 
Must Know About Unicode and Character Sets (No Excuses!)” at https://
www.joelonsoftware.com/.

YOUR T UR N

1.	 Many people use uppercase for the alphabetic hexadecimal charac-
ters. Every programming language I know about accepts either case. 
Redo Table 2-4, showing the bit patterns for the uppercase hexadecimal 
characters.

2.	 Create an ASCII table for the lowercase alphabetic characters.

3.	 Create an ASCII table for the uppercase alphabetic characters.

4.	 Create an ASCII table for the punctuation marks.

Storing a Text String

Getting back to Hello, World!\n, the compiler stores this text string as a con-
stant array of characters. To specify the extent of this array, a C-style string 
uses the code point U+0000 (ASCII NUL) at the end of the string as a sentinel 
value, a unique value that indicates the end of a sequence of characters. 
Thus, the compiler must allocate 13 bytes for this string: 11 for Hello, World!, 

https://www.unicode.org/releases/
https://www.joelonsoftware.com/
https://www.joelonsoftware.com/
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1 for the newline \n, and 1 for the NUL. For example, Table 2-6 shows how this 
text string would be stored starting at location 0x4004a1 in memory.

Table 2-6:  “Hello, World!” Stored in Memory

Address Content Address Content

0x4004a1: 0x48 0x4004a9: 0x6f

0x4004a2: 0x65 0x4004aa: 0x72

0x4004a3: 0x6c 0x4004ab: 0x6c

0x4004a4: 0x6c 0x4004ac: 0x64

0x4004a5: 0x6f 0x4004ad: 0x21

0x4004a6: 0x2c 0x4004ae: 0x0a

0x4004a7: 0x20 0x4004af: 0x00

C uses U+000A (ASCII LF) as a single newline character (at address 
0x4004ae in this example) even though the C syntax requires that the pro-
grammer write two characters, \n. The text string ends with the NUL  
character at 0x4004af. 

In Pascal (another programming language), the length of the string 
is specified by the first byte in the string, which is taken to be an eight-bit 
unsigned integer. (This is the reason for the 256-character limit on text 
strings in Pascal.) The C++ string class has additional features, but the actual 
text string is stored as a C-style text string within the C++ string instance.

Unsigned Integers
Since an unsigned integer can be expressed in any radix, probably the most 
obvious way to store it is to use the binary number system. If we number the 
bits in a byte from right to left, then the lowest-order bit would be stored in 
bit 0, the next in bit 1, and so forth. For example, the integer 12310 = 7b16, so 
the state of the byte where it is stored would be 011110112.

Using only one byte restricts the range of unsigned integers to be from 
0 to 25510, since ff16 = 25510. The default size for an unsigned integer in our 
programming environment is four bytes, which allows for a range of 0 to 
4,294,967,29510.

One limitation of using the binary number system is that you need to 
convert a decimal number from a character string to the binary number 
system before performing arithmetic operations on it. For example, the 
decimal number 123 would be stored in character string format as the four 
bytes 0x31, 0x32, 0x33, and 0x00, while in unsigned integer format it would be 
stored as the four-byte binary number 0x0000007b. On the other end, binary 
numbers need to be converted to their decimal character representations 
for most real-world display purposes.

Binary Coded Decimal (BCD) is another code for storing integers. It uses 
four bits for each decimal digit, as shown in Table 2-7.
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Table 2-7: Binary Coded Decimal

Decimal digit BCD code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

For example, in a 16-bit storage location, the decimal number 1234 
would be stored in BCD as 0001 0010 0011 0100 (in the binary number sys-
tem, it would be 0000 0100 1101 0010).

With only 10 of the possible 16 combinations being used, we can see 
that six bit patterns are wasted. This means that a 16-bit storage location 
has a range of 0 to 9,999 for values if we use BCD, compared to a range of 
0 to 65,535 if we use binary, so this is a less efficient use of memory. On the 
other hand, the conversions between a character format and an integer for-
mat are simpler with BCD, as you will see in Chapter 16. 

BCD is important in specialized systems that deal primarily with 
numerical business data, because they tend to print numbers more often 
than perform mathematical operations on them. COBOL, a programming 
language intended for business applications, supports a packed BCD for-
mat where two digits (in BCD code) are stored in each eight-bit byte. Here, 
the last (four-bit) digit is used to store the sign of the number, as shown in 
Table 2-8. The specific codes used depend upon the implementation.

Table 2-8: Example Sign  
Codes for COBOL Packed  
BCD Format

Sign Sign code

+ 1010

− 1011

+ 1100

− 1101

+ 1110

unsigned 1111
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For example, 0001 0010 0011 1010 represents +123, 0001 0010 0011 1011 
represents −123, and 0001 0010 0011 1111 represents 123.

Next, we’ll explore some of these concepts using the C programming 
language. If you’re new to C, this discussion will provide an introduction to 
the language.

Exploring Data Formats with C
In this section, we’ll write our first programs with the C programming lan-
guage. These particular programs illustrate the differences between how 
numbers are stored in memory and how we humans read them. C allows us 
to get close enough to the hardware to understand the core concepts, while 
taking care of many of the low-level details. You shouldn’t find the simple C 
programs used in this book too difficult, especially if you already know how 
to program in another language.

If you learned how to program in a higher-level language, like C++, 
Java, or Python, chances are that you learned object-oriented program-
ming. C doesn’t support the object-oriented paradigm. C is a procedural 
programming language. C programs are divided into functions. A function is a 
named group of programming statements. Other programming languages 
also use the terms procedure and subprogram, with some minor distinctions 
between them, depending on the language.

C and C++ I/O Libraries
Most high-level programming languages include a standard library that can 
be thought of as part of the language. A standard library contains functions 
and data structures that can be used in the language for doing common 
things like terminal I/O—writing to the screen and reading from the key-
board. C includes the C standard library, and C++ includes the C++ standard 
library.

C programmers use functions in the stdio library, and C++ program-
mers use functions in the iostream library for terminal I/O. For example, 
the C code sequence for reading an integer from the keyboard, adding 100 
to it, and writing the result to the screen looks like this:

int x;
scanf("%i", &x);
x += 100;
printf("%i", x);

The C++ code sequence looks something like this:

int x;
cin >> x;
x +=100;
cout << x;
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In both examples, the code reads characters, each as a separate char 
from the keyboard, and converts the char sequence into the corresponding 
int format. Then it adds 100 to the int. Finally, the code converts the result-
ing int into a char sequence and displays it on the screen. The C or C++ I/O 
library functions in the previous code do the necessary conversions between 
char sequences and the int storage format.

Figure 2-1 shows the relationship between a C application program, the 
I/O libraries, and the operating system.

Application

printf scanf

write read

Operating system

C standard library

Screen/keyboard

Figure 2-1: Relationship of I/O libraries to application and operating system

When reading from the keyboard, the scanf library function first calls 
the read system call function, a function in the operating system, to read 
characters from the keyboard. The input on the keyboard is in the form of 
a string of characters, each in the char data type. The scanf library function 
performs the conversion of this string to the int data type for the applica-
tion program. The printf library function converts from the int data type 
to the corresponding string of characters in the char data type and calls the 
write system call function to write each character to the screen.

As you can see in Figure 2-1, an application program can call the read 
and write functions directly to transfer characters. We’ll be exploring 
this in Chapter 16, where we’ll be writing our own conversion functions. 
Although the C/C++ library functions do a much better job of this, the 
exercise of doing it yourself will give you a better understanding of how 
data is stored in memory and manipulated by software.

N O T E 	 If you are not familiar with the GNU make program, I urge you to learn how to use it 
to build your programs. It may seem like overkill at this point, but it’s much easier to 
learn with simple programs. The manual is available in several formats at https://
www.gnu.org/software/make/manual/, and I have some comments about using 
it on my website, https://rgplantz.github.io/.

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
https://rgplantz.github.io/
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Writing and Executing Your First C Program
Most programming books start with a simple program that just prints 
“Hello, world” to a computer screen, but we’ll start with a program that 
reads a hexadecimal value, both as an unsigned integer and as a text string 
(see Listing 2-1).

1 /* intAndString.c
 * Read and display an integer and a text string.
 */

2 #include <stdio.h>

3 int main(void)
{
4 unsigned int anInt;
  char aString[10];

5 printf("Enter a number in hexadecimal: ");
6 scanf("%x", &anInt);
  printf("Enter it again: ");
7 scanf("%s", aString);
8 printf("The integer is %u and the string is %s\n", anInt, aString);

9 return 0;
}

Listing 2-1: Program showing the difference between an integer and a text string

We start our code with some documentation that gives the name of the 
file 1 and a brief description of what the program does. When writing your 
own source files, you should also include your name and the date it was 
written as part of the documentation (I’ve omitted them in the example 
programs in this book to save paper). Everything between the /* and */ is a 
comment. It is there for the human reader and has no effect on the program 
itself.

The first operation that actually affects the program is the inclusion of 
another file 2, the stdio.h header file. As you will learn, the C compiler needs 
to know the type of each data item that is passed to or from a function. A 
header file is used to provide a prototype statement for each function, which 
specifies these data types. The stdio.h header file defines the interface to 
many of the functions in the C standard library, which allows the compiler 
to know what to do when calls to any of these functions are encountered 
in our source code. The stdio.h header file is already installed on your com-
puter in a location that the compiler knows.

Next you see the definition of a C main function 3. All C programs are 
made up of functions, which have this general format:

return_data_type function_name(parameter_list)
{
  function_body
}
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When a C program is executed, the operating system first sets up a C 
runtime environment, which sets up the resources on your computer to run the 
program. The C runtime environment then calls the main function, meaning 
that the program you write must include a function whose function_name is 
main. The main function can call other functions, which in turn can call other 
functions. But program control normally ends up back in the main function, 
which then returns to the C runtime environment.

When a function is called in C, the calling function can include a list of 
arguments in the call as inputs to the called function. These inputs serve as 
parameters in the computation performed by the called function. For exam-
ple, in Listing 2-1, when the program first starts, the main function calls the 
printf function with one argument, a text string 5. The printf function 
uses the text string to determine what to display on the screen. We’ll look 
closely at how arguments get passed to functions, and how they’re used as 
parameters in the function, in Chapter 14. The main function in Listing 2-1 
does not need any data from the C runtime environment, which we show in 
its definition by using void for the parameter_list.

Upon completing execution, a function normally returns to the calling 
function. The called function can pass a data item to the calling function 
when returning. A main function should return a single integer to the C 
runtime environment indicating whether the program detected any errors 
in its execution. Thus, the return_data_type for main is int. The main function 
in Listing 2-1 returns the integer 0 to the C runtime environment 9, which 
passes this value to the operating system. The value 0 tells the operating 
system that everything went smoothly.  

In Listing 2-1, we define two variables in the main function at the begin-
ning of the function_body 4, an unsigned integer named anInt and a text 
string named aString. Most modern programming languages allow us to 
introduce new variables anywhere in the code, but C requires that they be 
listed at the beginning of the function. (This rule has some exceptions, 
but they are beyond the scope of this book.) Think of it as listing the ingre-
dients for a cooking recipe before giving the instructions on how to use 
them. We define a variable by introducing its name and specifying its data 
type. The [10] notation tells the compiler to allocate an array of 10 chars for 
the aString variable, which will allow us to store a C-style text string up to 
9 characters long. (The 10th char would be the terminating NUL character.) 
We’ll look at arrays in detail in Chapter 17.

The program uses the printf function from the C standard library to 
display text on the screen. The first argument in the call to printf is a format 
string, which is a text string made up of ordinary characters (except %) to 
display on the screen. 

The simplest format string for printf is just the text that you want 
printed without any variables to print 5. If you want to print the values of 
variables, the format string acts as a template of the text that you want to be 
printed. The place in the text string where you want the value of a variable 
to be printed is marked with a conversion specifier. Each conversion specifier 
begins with the % character 8. The names of the variables are listed after 
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the format string in the same order that their respective conversion speci-
fier appears in the template. 

The % character that begins a conversion specifier is immediately  
followed by one or more conversion code characters to tell printf how to 
display the value of the variable. Table 2-9 shows some common conver-
sion specifiers. 

Table 2-9: Common Conversion Specifiers for  
printf and scanf Format String

Conversion specifier Representation

%u Unsigned decimal integer

%d or %i Signed decimal integer

%f Float

%x Hexadecimal

%s Text string

The conversion specifiers can include other characters that specify 
properties like the field width of the display, whether the value is left or 
right justified within the field, and more. We won’t go into detail here. You 
can read man page 3 for printf to learn more (do this by typing man 3 printf 
into your shell).

The first argument in the call to the C standard library function, scanf, 
is also a format string. We use the same conversion specifiers in the format 
string to tell the scanf function how to interpret the characters typed on 
the keyboard 6. We need to tell scanf where to store the input integer by 
using the address of operator on the variable name, &anInt. When passing 
the name of an array to a function, C sends the address of the array, so we 
don’t use the & operator when calling scanf to read a text string from the 
keyboard 7.

Any other character included in the format string for scanf besides 
these conversion specifiers must be matched exactly by the keyboard input. 
For example,

scanf("1 %i and 2 %i", &oneInt, &twoInt);

requires in input like

1 123 and 2 456

which would read the integers 123 and 456 from the keyboard. You can 
read man page 3 for scanf to learn more (do this by typing man 3 scanf into 
your shell).

Finally, the main function returns 0 to the C runtime environment 9, 
which passes this value to the operating system. The value 0 tells the operat-
ing system that everything went smoothly. 
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Compiling and running the program in Listing 2-1 on my computer 
gave the following output:

$ gcc -Wall -masm=intel -o intAndString intAndString.c
$ ./intAndString
Enter a hexadecimal value: 123abc
Enter it again: 123abc
The integer is 1194684 and the string is 123abc 
$

The program in Listing 2-1 demonstrates an important concept—hexa-
decimal is used as a human convenience for stating bit patterns. A number 
is not inherently binary, decimal, or hexadecimal. It’s simply a value. And a 
specific value can be expressed equivalently in each of these three number 
bases. For that matter, it can be expressed equivalently in any number base 
(2, 16, 285). But since a computer consists of binary switches, it makes sense 
to think of numerical values stored in a computer in terms of the binary 
number base. 

YOUR T UR N

1.	 Write a hexadecimal-to-decimal converter program in C. Your program 
will allow a user to enter a number in hexadecimal and print the decimal 
equivalent. The output should look like this: 0x7b = 123.

2.	 Write a decimal-to-hexadecimal converter program in C. Your program 
will allow a user to enter a number in decimal and print the hexadecimal 
equivalent. The output should look like this: 123 = 0x7b.

3.	 Change %u to %i in the last printf statement in the program in Listing 2-1. 
What does the program print if you enter ffffffff?

Examining Memory with a Debugger
Now that we’ve started writing programs, you’ll need to learn how to use 
the GNU debugger, gdb. A debugger is a program that allows you to run your 
program while you observe and control its behavior. When you use a debug-
ger, it’s a little like you’re a puppeteer, and your program is a carefully con-
trolled puppet. Your main instrument of control is the breakpoint; when you 
set a breakpoint and your program reaches it while running, the program 
will pause and return control to the debugger program. When control is 
with the debugger, you can look at the values stored in your program’s vari-
ables, which can help you figure out where any bugs are.

If all this seems premature—our programs so far are simple and don’t 
seem to require debugging—I promise that it’s much better to learn how to 
use a debugger on a simple example than on a complicated program that 
does not work. 
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gdb is also a valuable tool for learning the material in this book, even 
when you write bug-free programs. For example, in the following gdb session 
dialog, I’ll show you how to determine where a variable is stored in memory 
and how to see what is stored there, both in decimal and in hexadecimal. 
You will see how to use gdb on a live program to illustrate the concepts dis-
cussed on the previous pages.

The gdb commands listed here should be enough to get you started. 
You’ll see more in Chapter 10.

b source_filename:line_number    Set a breakpoint at the specified line_
number in the source file, source_filename. The code will stop running at 
the breakpoint, when line_number is encountered, and return control to 
gdb, allowing you to test various elements of the code. 

c    Continue program execution from the current location.

h command      Help on how to use command.

i r    Show the contents of the CPU registers (info registers). (You’ll learn 
about CPU registers in Chapter 9.)

l line_number    List 10 lines of the source code, centered at the specified 
line-number.

print expression    Evaluate expression and print the value.

printf "format", var1, var2, ...     Display the values of var1, var2, ... in 
a given format. The "format" string follows the same rules as printf in the 
C standard library.

r    Begin execution of a program that has been loaded under control 
of gdb.

x/nfs memory_address    Display (examine) n values in memory in format f 
of size s starting at memory_address.

Using Your Debugger
Let’s walk through the program in Listing 2-1 using gdb to explore some of 
the concepts covered thus far. I recommend that you get on your computer 
and follow along as you read this: it’s much easier to understand gdb when 
you’re using it. Note that the addresses you see on your computer will prob-
ably be different than those in this example.

Start by compiling the program using the gcc command:

$ gcc -g -Wall -masm=intel -o intAndString intAndString.c

The -g option tells the compiler to include debugger information in the 
executable program. The -Wall option tells the compiler to issue warnings 
about things in your code that are correct C code but still might not be what 
you intended to write. For example, it will warn you about declaring a vari-
able in your function that is never used, which could mean that you have 
forgotten something.

Later in the book, when we write assembly language, we’ll use the syntax 
specified in the Intel and AMD documentation, and we’ll tell the compiler 
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to use the same syntax with the masm=intel option. You don’t need this option 
yet, but I recommend getting used to using it since you’ll need it later.

The o option specifies the name of the output file, which is the execut-
able program.

Having compiled the program, we can run it under the control of gdb 
using this command:

$ gdb ./intAndString
--snip-- 
Reading symbols from ./intAndString…
(gdb)  l
1	 /* intAndString.c
2	  * Using printf to display an integer and a text string.
3	  */
4	
5	 #include <stdio.h>
6	
7	 int main(void)
8	 {
9	   unsigned int anInt;
10	   char aString[10];
(gdb) 
11	
12	   printf("Enter a number in hexadecimal: ");
13	   scanf("%x", &anInt);
14	   printf("Enter it again: ");
15	   scanf("%s", aString);
16	   
17	   printf("The integer is %u and the string is %s\n", anInt, aString);
18	
19	   return 0;
20	 }
(gdb)

The gdb startup message, which I’ve removed from the previous output 
to save space, contains information about your debugger and refers you to 
its usage documentation.

The l command lists 10 lines of source code and then returns control 
to the gdb program, as shown by the (gdb) prompt. Press ENTER to repeat 
the previous command, and l displays the next (up to) 10 lines.

A breakpoint is used to stop the program and return control to the debug-
ger. I like to set breakpoints where a function is about to call another function 
so I can examine the values in the argument variables before they are passed 
on to the called function. This main function calls printf on line 17, so I set a 
breakpoint there. Since I’m already looking at the source code in the function 
where I want to set a breakpoint, I don’t need to specify the filename:

(gdb)b 17
Breakpoint 1 at 0x11f6: file intAndString.c, line 17.

If gdb ever gets to this statement while executing the program, it will 
pause before the statement is executed and return control to the debugger.
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Having set my breakpoint, I run the program:

(gdb) r
Starting program: /home/bob/progs/chapter_02/intAndString/intAndString
Enter a hexadecimal value: 123abc
Enter it again: 123abc

Breakpoint 1, main () at intAndString.c:17
1 17	   printf("The integer is %u and the string is %s\n", anInt, aString);

The r command starts executing the program from the beginning. 
When the program reaches our breakpoint, control returns to gdb, which 
displays the next program statement that is ready to be executed 1. Before 
continuing execution, I’ll display the content of the two variables that are 
being passed to the printf function:

(gdb) print anInt
$1 = 1194684
(gdb) print aString
$2 = "123abc\000\177\000> 

We can use the print command to display the value currently stored in 
a variable. gdb knows the data type of each variable from the source code. 
It displays int variables in decimal. When displaying char variables, gdb will 
do its best to display the character glyph corresponding to the code point 
value. When there is no corresponding character glyph, gdb shows the code 
point as a \ followed by three octal digits. (Refer to Table 2-2.) For example, 
there is no character glyph for NUL, so gdb shows \000 at the end of the text 
string we entered.

The printf command can format the displayed values. The formatting 
string is the same as for the printf function in the C standard library:

(gdb) printf "anInt = %u = %#x\n", anInt, anInt
anInt = 1194684 = 0x123abc
(gdb) printf "aString = 0x%s\n", aString
aString = 0x123abc

gdb provides another command for examining the content of memory 
directly—that is, for examining the actual bit patterns—x. Its help message 
is brief, but it tells you everything you need to know:

 (gdb) h x
Examine memory: x/FMT ADDRESS.
ADDRESS is an expression for the memory address to examine.
FMT is a repeat count followed by a format letter and a size letter.
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),
 t(binary), f(float), a(address), i(instruction), c(char) and s(string).
Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).
The specified number of objects of the specified size are printed
according to the format.
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Defaults for format and size letters are those previously used.
Default count is 1.  Default address is following last thing printed
with this command or "print".

The x command needs the address of the area of memory to show. We 
can use the print command to find the address of a variable:

(gdb) print &anInt
$3 = (unsigned int *) 0x7fffffffde88

We’ll use the x command to display the content of anInt three different 
ways: one decimal word (1dw), one hexadecimal word (1xw), and four hexa-
decimal bytes (4xb).

(gdb) x/1dw 0x7fffffffde88
0x7fffffffde88: 1194684 
(gdb) x/1xw 0x7fffffffde88
0x7fffffffde88: 0x00123abc
(gdb) x/4xb 0x7fffffffde88
0x7fffffffde88: 10xbc  0x3a     0x12    0x00 

N O T E 	 The size of a word depends upon the computer environment you are using. In our 
environment, it’s four bytes.

The display of the four bytes may look out of order to you. The first byte 1 
is located at the address shown on the left of the row. The next byte in the 
row is at the subsequent address, 0x7fffffffde89. So, this row displays each of 
the bytes stored at the four memory addresses 0x7fffffffde88, 0x7fffffffde89, 
0x7fffffffde8a, and 0x7fffffffde8b, reading from left to right, that make up the 
variable, anInt. When displaying these same four bytes separately, the least sig-
nificant byte appears first in memory. This is called little-endian storage order; 
I’ll explain further after this tour of gdb.

Similarly, we’ll display the content of the aString variable by first getting 
its address:

(gdb) print &aString
$4 = (char (*)[50]) 0x7fffffffde8e

Next, we’ll look at the content of aString in two ways: 10 characters (10c) 
and 10 hexadecimal bytes (10xb):

(gdb) x/10c 0x7fffffffde8e
0x7fffffffde8e: 49 '1'   50 '2'  51 '3'  97 'a'  98 'b'  99 'c'   0 '\000'     
127 '\177'
0x7fffffffde96: 0 '\000'	 0 '\000' 
(gdb) x/10xb 0x7fffffffde8e
0x7fffffffde8e: 0x31     0x32    0x33    0x61    0x62    0x63     0x00     
0x7f
0x7fffffffde96: 0x00     0x00
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The character display shows the code point in decimal and the charac-
ter glyph for each character. The hexadecimal byte display shows only the 
code point in hexadecimal for each byte. Both displays show the NUL charac-
ter that marks the end of the six-character string that we entered. Since we 
asked for a 10-byte display, the remaining 3 bytes have random values not 
related to our text string, often called garbage values.

Finally, I continue execution of the program and quit gdb:

(gdb)c
Continuing.
The integer is 1194684 and the string is 123abc 
[Inferior 1 (process 3165) exited normally]
(gdb)q
$

Understanding Byte Storage Order in Memory
The difference between the full four-byte display and the single-byte display 
of the integer value at 0x7fffffffde88 in memory illustrates a concept known 
as endianness, or byte storage order. We usually read numbers from left to 
right. The digits to the left have more significance (count for more) than 
the digits to the right.

Little-Endian

Data is stored in memory with the least significant byte in a multiple-byte 
value in the lowest-numbered address. That is, the “littlest” byte (counts the 
least) comes first in memory.

When we examine memory one byte at a time, each byte is displayed in 
numerically ascending addresses:

0x7fffffffde88: 0xbc
0x7fffffffde89: 0x3a
0x7fffffffde8a: 0x12
0x7fffffffde8b: 0x00

At first glance, the value appears to be stored backward, because the 
least significant (“little end”) byte of the value is stored first in memory. 
When we command gdb to display the entire four-byte value, it knows that 
ours is a little-endian environment, and it rearranges the display of the 
bytes in proper order:

7fffffffde88: 000123abc

Big-Endian

Data is stored in memory with the most significant byte in a multiple-byte 
value in the lowest-numbered address. That is, the “biggest” byte (counts 
the most) comes first in memory.
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In big-endian storage, the most significant (“biggest”) byte is stored 
in the first (lowest-numbered) memory address. If we ran the previous 
program on a big-endian computer, such as one using the PowerPC archi-
tecture, we would see the following (assuming the variable is located at the 
same address):

(gdb) x/1xw 0x7fffffffde88
0x7fffffffde88: 0x00123abc 
(gdb) x/4xb 0x7fffffffde88          [BIG-ENDIAN COMPUTER, NOT OURS!]
0x7fffffffde88: 0x00    0x12    0x3a    0xbc

That is, the four bytes in a big-endian computer would be stored as 
follows:

0x7fffffffde88: 0x00
0x7fffffffde89: 0x12
0x7fffffffde8a: 0x3a
0x7fffffffde8b: 0xbc

Again, gdb would know that this is a big-endian computer so would dis-
play the full four-byte value in proper order.

In the vast majority of programming situations, endianness is not an 
issue. However, you need to know about it because it can be confusing when 
examining memory in the debugger. Endianness is also an issue when differ-
ent computers are communicating with each other. For example, Transport 
Control Protocol/Internet Protocol (TCP/IP) is defined to be big-endian, some-
times called network byte order. The x86-64 architecture is little-endian. 
The operating system reorders the bytes for internet communication. But 
if you’re writing communications software for an operating system itself or 
for an embedded system that may not have an operating system, you need to 
know about byte order.

YOUR T UR N

Enter the program in Listing 2-1. Follow through the program with gdb. Using the 
numbers you get, explain where the variables anInt and aString are stored in 
memory and what is stored in each location.

What You’ve Learned 

Bits    A computer is a collection of on/off switches that we can repre-
sent with bits.

Hexadecimal    A number system based on 16. Each hexadecimal digit, 
0 to f, represents four bits.
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Byte    A group of eight bits. The bit pattern can be expressed as two 
hexadecimal digits.

Converting between decimal and binary    The two number systems are 
mathematically equivalent.

Memory addressing    Bytes in memory are numbered (addressed) 
sequentially. The byte’s address is usually expressed in hexadecimal.

Endianness    An integer that is more than one byte can be stored with 
the highest-order byte in the lowest byte address (big-endian) or with 
the lowest-order byte in the lowest byte address (little-endian). The x86-
64 architecture is little-endian.

UTF-8 encoding    A code for storing characters in memory.

String    This C-style string is an array of characters terminated by the 
NUL character.

printf    This C library function is used to write formatted data on the 
monitor screen.

scanf    This C library function is used to read formatted data from the 
keyboard.

Debugging    We used the gdb debugger as a learning tool.

In the next chapter, you’ll learn about addition and subtraction in the 
binary number system, for both unsigned and signed integers. Doing so will 
illuminate some of the potential errors inherent in using a fixed number of 
bits to represent numerical values.





3
C O M P U T E R  A R I T H M E T I C

The reality of computing is that we have a 
finite number of bits. In the previous chap-

ter, you learned that each data item must fit 
within a fixed number of bits, depending on its 

data type. This chapter will show that this limit com-
plicates even our most basic mathematical operations. 
For both signed and unsigned numbers, a limited 
number of bits is a constraint we don’t normally think 
about when doing math on paper or in our heads. 

Fortunately, the carry flag (CF) and overflow flag (OF) in the status flags 
portion of the CPU’s rflags register allow us to detect when adding and sub-
tracting binary numbers yields results that exceed the allocated number 
of bits for the data type. We’ll take a closer look at the carry flag and the 
overflow flag in subsequent chapters, but for now, let’s take a look at how 
addition and subtraction affect them. 



40   Chapter 3

Adding and Subtracting Unsigned Integers
When computers do arithmetic, they do it in the binary number system. 
The operations may seem difficult at first, but if you remember the details 
of performing decimal arithmetic by hand, binary arithmetic becomes 
much easier. Since most people do addition on a calculator these days, 
let’s review all the steps required to do it by hand. After the review, you’ll 
develop the algorithms to do addition and subtraction in both binary and 
hexadecimal.

N O T E 	 Most computer architectures provide arithmetic instructions in other number systems, 
but these are somewhat specialized. We will not consider them in this book.

Adding in the Decimal Number System
Let’s start by restricting ourselves to two-digit decimal numbers. Consider 
two two-digit numbers, x = 67 and y = 79. Adding these by hand on paper 
would look like this:

1 ← Carry

6 7 ← x

+ 7 9 ← y

6 ← Sum

We start by working from the right, adding the two decimal digits in 
the ones place. 7 + 9 = 16, which exceeds 10 by 6. We show this by placing a 
6 in the ones place in the sum and carrying a 1 to the tens place.

1 1 ← Carries

6 7 ← x

+ 7 9 ← y

4 6 ← Sum

Next, we add the three decimal digits in the tens place: 1 (the carry 
from the ones place) + 6 + 7. The sum of these three digits exceeds 10 by 4, 
which we show by placing a 4 in the sum’s tens place and then recording the 
fact that there is an ultimate carry of 1. Because we’re using only two digits, 
there is no hundreds place.

The following algorithm shows the procedure of adding two decimal 
integers, x and y. In this algorithm, xi and yi are the i th digits of x and y, 
respectively, numbering from right to left:

Let carry = 0
Repeat for each i = 0,...,(n - 1)  // starting in ones place
    sumi = (xi + yi) % 10           // remainder
    carry = (xi + yi) / 10          // integer division
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This algorithm works because we use positional notation when writ-
ing numbers—a digit one place to the left counts 10 times more. The carry 
from the current position one place to the left is always 0 or 1.

We use 10 in the / and % operations because there are exactly 10 digits 
in the decimal number system: 0, 1, 2, …, 9. Since we are working in an 
N -digit system, we restrict our result to N digits. The ultimate carry is either 
0 or 1 and is part of the result, along with the N -digit sum.

Subtracting in the Decimal Number System
Let’s turn to the subtraction operation. As you remember from subtrac-
tion in the decimal number system, you sometimes have to borrow from 
the next higher-order digit in the minuend (the number being subtracted 
from). We’ll do the subtraction with the same numbers we used earlier (67 
and 79). We’ll go through this in steps so you can see the process. “Scratch” 
work will be in the borrows row above the two numbers.

6 7 ← x

− 7 9 ← y

← Difference

First, we need to borrow 1 from the 6 in the tens place and add it to the 
7 in the ones place; then we can subtract 9 from 17 and get 8:

5 17 ← Borrowing

6 7 ← x

− 7 9 ← y

8 ← Difference

Next, we need to borrow from beyond the two digits, which we mark by 
placing a 1 in the “carry” position, making 15 in the tens place, from which 
we subtract 7:

1 15 ← Borrowing

5

6 7 ← x

− 7 9 ← y

8 8 ← Difference

This is shown in in the following algorithm, where x is the minuend 
and y is the number being subtracted from it (the subtrahend). If borrow is 1 
at the end of this algorithm, it shows that you had to borrow from beyond 
the N digits of the two values, so the N -digit result is incorrect. Although it’s 
called the carry flag, its purpose is to show when the operation gives a result 
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that will not fit within the number of bits for the data type. Thus, the carry 
flag shows the value of borrow (from beyond the size of the data type) at the 
completion of the subtraction operation.

Let borrow = 0 
Repeat for i = 0,···,(N − 1) 
  1 If yi ≤ xi 
        Let differencei = xi − yi 
    Else 
      2 Let j = i + 1 
      3 While (xj = 0) and (j < N) 
            Add 1 to j 
      4 If j = N 
          5 Let borrow = 1 
            Subtract 1 from j 
            Add 10 to xj 
      6 While j > i 
            Subtract 1 from xj 
            Subtract 1 from j 
            Add 10 to xj 
                7 Let differencei = xi – yi

This algorithm isn’t nearly as complicated as it first looks (but it took 
me a long time to figure it out!). If the digit we’re subtracting from is the 
same or larger than the one we’re subtracting 1, we’re done with that place 
in the number. Otherwise, we need to borrow from the next place to the 
left 2. If the next digit we’re trying to borrow from is 0, then we need to 
continue moving to the left until we find a nonzero digit or until we reach 
the leftmost end of the number 3. If we do reach the number of digits allo-
cated for the number 4, we indicate that by setting borrow to 1 5. 

After we have borrowed from positions to the left, we work our way back 
to the position we’re dealing with 6 and perform the subtraction 7. When 
you do subtraction on paper, you do all these things automatically, in your 
head, but that probably won’t be as intuitive for you in the binary and hexa-
decimal systems. (I cheat and write my intermediate borrows in decimal.)

If you’re having trouble, don’t worry. You don’t need a thorough under-
standing of this algorithm to understand the material in this book. But I 
think that working through it can help you learn how to develop algorithms 
for other computing problems. Translating everyday procedures into the 
logical statements used by programming languages is often a difficult task.

YOUR T UR N

1.	 How many bits are required to store a single decimal digit? Invent a code 
for storing eight decimal digits in 32 bits. Using this code, does binary 
addition produce the correct results? You’ll see such a code later in the 
book and some reasons for its usefulness.
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2.	 Develop an algorithm for adding fixed-width integers in the binary number 
system.

3.	 Develop an algorithm for adding fixed-width integers in the hexadecimal 
number system.

4.	 Develop an algorithm for subtracting fixed-width integers in the binary 
number system.

5.	 Develop an algorithm for subtracting fixed-width integers in the hexadeci-
mal number system.

Adding and Subtracting Unsigned Integers in Binary
In this section, you’ll learn how to perform addition and subtraction opera-
tions on unsigned binary integers, but before going any further, look carefully 
at Table 3-1, especially the binary bit patterns. You probably won’t memorize 
this table at first, but after you work with the binary and hexadecimal num-
ber systems for a while, it will become natural to think of, say, 10, a, or 1010 as 
being the same numbers, just in different number systems. 

Table 3-1: Corresponding Bit Patterns and Unsigned Decimal Values  
for the Hexadecimal Digits

One hexadecimal digit Four binary digits (bits) Unsigned decimal

0 0000  0

1 0001  1

2 0010  2

3 0011  3

4 0100  4

5 0101  5

6 0110  6

7 0111  7

8 1000  8

9 1001  9

a 1010 10

b 1011 11

c 1100 12

d 1101 13

e 1110 14

f 1111 15
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Now that you’ve familiarized yourself with Table 3-1, let’s discuss 
unsigned integers. As we do so, don’t forget that as far as the value of the 
number goes, it doesn’t matter whether we think of the integers as being in 
decimal, hexadecimal, or binary—they are all mathematically equivalent. 
However, we might wonder whether a computer performing arithmetic in 
binary gets the same results we do when doing the same calculation using 
decimal arithmetic. Let’s take a closer look at some specific operations. 

Adding in the Binary Number System

In the following examples, we use four-bit values. First, consider adding the 
two unsigned integers, 2 and 4:

0 000 ← Carries

00102 = 216 = 210

+ 01002 = 416 = 410

01102 = 616 = 610

The decimal 2 is represented in binary as 0010, and decimal 4 is repre-
sented by 0100. The carry flag, or CF, is equal to 0, because the result of the 
addition operation is also four bits long. We add the digits (shown both in 
binary and hex here, though the carries are shown only in binary) in the 
same relative positions, as we do in decimal.

Next, consider two larger integers, keeping our four-bit storage space. 
We’ll add the two unsigned integers, 4 and 14:

1 100 ← Carries

01002 = 416 =  410

+ 11102 = e16 = 1410

00102 = 216 ≠ 1810

In this case, the carry flag equals 1, because the result of the operation 
exceeded the four bits that we allocated for storing the integers, and our 
result is incorrect. If we included the carry flag in the result, we would get 
a five-bit value, and the result would be 100102 = 1810, which is correct. We’d 
have to account for the carry flag in software.

Subtracting in the Binary Number System

Now, let’s subtract 14 from 4, or 0110 from 0100:

1 110 ← Borrows

01002 =   410

− 11102 = 1410

01102 =   610 ≠ −1010
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The CPU indicates that we had to borrow from beyond the four bits by 
setting the carry flag to 1, which means that the four-bit result in this sub-
traction is incorrect.

These four-bit arithmetic examples generalize to any size arithmetic 
performed by the computer. After adding two numbers, the carry flag will 
always be either set to 0 if there is no ultimate (or final) carry or set to 1 if 
there is ultimate carry. Subtraction will set the carry flag to 0 if no borrow 
from the “outside” is required, or 1 if a borrow is required. The CPU always 
sets the CF flag in the rflags register to the appropriate value, 0 or 1, each 
time there is an addition or subtraction. When there is no carry, the CPU 
actively sets CF to 0, regardless of its previously held value.

The results are correct as long as they fit within the allocated number 
of bits for the data type being used for the computation. The CPU indicates 
the correctness by setting the carry flag to 0. When the results are incorrect, 
either because addition would require another bit or subtraction would 
need to borrow from a higher-order bit, the error is recorded by setting the 
carry flag to 1.

Adding and Subtracting Signed Integers
When representing nonzero signed decimal integers, there are two possibil-
ities: positive or negative. With only two options, we just need to use one bit 
for the sign. We could use a sign-magnitude code by simply using the highest-
order bit (let’s say that 0 means + and 1 means −) for signed numbers, but 
we’ll run into some problems. As an example, consider adding +2 and −2:

00102 = +210

+ 10102 = −210

11002 ≠   010

The result, 11002, is equal to −410 in our code, which is arithmetically 
incorrect. The simple addition we used for unsigned numbers will not work 
correctly for signed numbers when using a sign-magnitude code.

Some computer architectures do use one bit for the sign when using 
signed decimal integers. They have a special signed add instruction that 
handles cases like this. (A fun aside: such computers have both a +0 and a 
−0!) But most computers employ a different encoding for signed numbers 
that allows the use of a simple add instruction.

Two’s Complement
In mathematics, the complement of a quantity is the amount that must be 
added to make it “whole.” When applying this concept to numbers, the 
definition of whole depends on the radix (or base) you’re working in and the 
number of digits that you allow to represent the numbers. If x is an  
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n -digit number in radix r, its radix complement, ¬x, is defined such that  
x + ¬x = radixn, where radixn is 1 followed by n 0s. For example, if we’re 
working with two-digit decimal numbers, then the radix complement of 
37 is 63, because 37 + 63 = 102 = 100. Another way of saying this is that 
adding a number to its radix complement results in 0 with a carry beyond 
the n digits.

Another useful concept is the diminished radix complement, which is defined 
such that x + diminished_radix_complement = radixn – 1. For example, the dimin-
ished radix complement of 37 is 62, because 37 + 62 = 102 – 1 = 99. If you add 
a number to its diminished radix complement, the result is n of the largest 
digits in the radix—two 9s in this example of two digits in radix 10.

To see how the radix complement can be used to represent negative 
numbers, say you have an audiotape cassette player. Many cassette players 
have a four-digit counter that represents tape position. You can insert a 
tape cassette and push a reset button to set the counter to 0. As you move 
the tape forward and backward, the counter registers the movement. These 
counters provide a “coded” representation of the tape position in arbitrary 
units. Now, assume we can insert a cassette, somehow move it to its center, 
and push the reset button. Moving the tape forward—in the positive direc-
tion—will cause the counter to increment. Moving the tape backward—in 
the negative direction—will cause the counter to decrement. In particular, 
if we start at 0 and move to +1, the “code” on the tape counter will show 
0001. On the other hand, if we start at 0 and move to −1, the “code” on the 
tape counter will show 9999.

We can use our tape system to perform the arithmetic in the previous 
example, (+2) + (−2):

1.	 Move the tape forward to (+2); the counter shows 0002.

2.	 Add (−2) by moving the tape backward two steps on the counter; the 
counter shows 0000, which is 0 according to our code.

Next, we’ll perform the same arithmetic starting with (−2) and then 
adding (+2):

3.	 Move the tape backward to (−2); the counter shows 9998.

4.	 Add (+2) by moving the tape forward two steps on the counter; the coun-
ter shows 0000, but there is a carry (9998 + 2 = 0000 with carry = 1). 

If we ignore the carry, the answer is correct. 9998 is the 10’s complement 
(the radix is 10) of 0002. When adding two signed integers using radix com-
plement notation, the carry is irrelevant. Adding two signed numbers can 
give a result that will not fit within the number of bits allocated for storing 
the result, just as with unsigned numbers. But our tape example just showed 
that the carry flag will probably not show us that the result will not fit. We 
will discuss this issue in the next section.

Computers work in the binary number system, where the radix is 2. So 
let’s look at the two’s complement notation for representing signed inte-
gers. It uses the same general pattern as the tape counter for representing 
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signed decimal integers in bit patterns. Table 3-2 shows the correspondence 
between hexadecimal, binary, and signed decimal (in two’s complement 
notation) for four-bit values. In binary, moving the “tape” one place back 
(negative) from 0 would go from 0000 to 1111.

Table 3-2: Four-Bit Two’s Complement Notation

One hexadecimal digit Four binary digits (bits) Signed decimal

8 1000 −8

9 1001 −7

a 1010 −6

b 1011 −5

c 1100 −4

d 1101 −3

e 1110 −2

f 1111 −1

0 0000   0

1 0001 +1

2 0010 +2

3 0011 +3

4 0100 +4

5 0101 +5

6 0110 +6

7 0111 +7

Here are some important observations about this table:

•	 The high-order bit of each positive number is 0, and the high-order bit 
of each negative number is 1.

•	 Although changing the sign of (negating) a number is more complicated 
than simply changing the high-order bit, it is common to call the high-
order bit the sign bit.

•	 The notation allows for one more negative number than positive 
numbers.

•	 The range of integers, x, that can be represented in this notation (with 
four bits) is

–810 ≤ x ≤ +710

or

–2(4–1) ≤ x ≤ + (2(4–1) – 1)
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The last observation can be generalized for n bits to the following:

–2(n–1) ≤ x ≤ +(2(n–1) – 1)

When using two’s complement notation, the negative of any n-bit inte-
ger, x, is defined as

x + (–x) = 2n

Notice that 2n written in binary is 1 followed by n zeros. In other words, 
in the n-bit two’s complement notation, adding a number to its negative 
produces n zeros and a carry equal to 1.

Computing Two’s Complement
Now we’ll derive a way to compute the negative of a number by using two’s 
complement notation. Solving the defining equation for −x, we get

–x = 2n – x

This may look odd to a mathematician, but keep in mind that x in this 
equation is restricted to n bits, while 2n has n + 1 bits (1 followed by n 0s).

For example, if we want to compute −123 in binary (using two’s comple-
ment notation) in eight bits, we perform the arithmetic:

–12310 	  = 1000000002 – 011110112  
	   = 100001012

or in hexadecimal:

–12310 	  = 10016 – 7b16  
	   = 8516

This subtraction operation is error prone, so let’s do a bit of algebra on 
our equation for computing −x. Subtract 1 from both sides and rearrange a 
little:

–x – 1 	  = 2n – x – 1  
	   =  (2n–1) – x

which gives this:

–x = ((2n–1) – x) + 1

If this looks more complicated than our first equation, don’t worry. 
Let’s consider the quantity (2n − 1). Since 2n is written in binary as 1 fol-
lowed by n 0s, (2n − 1) is written as n 1s. For example, for n = 8:

28 – 1 = 111111112
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Thus, we can say:

(2n – 1) – x = 11...12 – x

where 11...12 designates n 1s.
Though it may not be immediately obvious, you’ll see how easy this sub-

traction is when you consider the previous example of computing −123 in 
eight-bit binary. Let x = 123, giving this:

11111111 ← (2n – 1)

− 01111011 ← x

= 10000100 ← One’s complement

or in hexadecimal giving this:

ff ← (2n – 1)

− 7b ← x

= 84 ← One’s complement

Since all the quantities here have n bits, this computation is easy— 
simply flip all the bits, giving the diminished radix complement, also called 
the one’s complement in the binary number system. A 1 becomes 0, and a 0 
becomes a 1, in the result.

All that remains to compute the negative is to add 1 to the result. 
Finally, we have the following:

–12310 	  = 8416+ 116 
	   = 8516 
	   = 100001012

H I N T 	 To double-check your arithmetic, pay attention to whether the value you are convert-
ing is even or odd. It will be the same in all number bases.

YOUR T UR N

1.	 Develop an algorithm to convert signed decimal integers to two’s comple-
ment binary.

2.	 Develop an algorithm to convert integers in two’s complement binary nota-
tion to signed decimal.

(continued)
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3.	 The following 16-bit hexadecimal values are stored in two’s complement 
notation. What are the equivalent signed decimal numbers?

a. 1234

b. ffff

c. 8000

d. 7fff

4.	 Show how each of the following signed, decimal integers would be stored 
in 16-bit two’s complement notation. Give your answer in hexadecimal.

a. +1024

b. –1024

c. –256

d. –32767

Adding and Subtracting Signed Integers in Binary
The number of bits used to represent a value is determined at the time a 
program is written by the computer architecture and programming lan-
guage being used. This is why you can’t just add more digits (bits) if the 
result is too large, as you would on paper. For unsigned integers, the solu-
tion to this problem is the carry flag, which indicates when the sum of two 
unsigned integers exceeds the number of bits allocated for it. In this sec-
tion, you’ll see that adding two signed numbers can also produce a result 
that exceeds the range of values that can be represented by the allocated 
number of bits, but the carry flag is not used to indicate the error.

The CPU registers when the sum of signed numbers has gotten too big 
for its bits by using the overflow flag, OF, in the flags register, rflags. The value 
of the overflow flag is given by an operation that may not seem intuitive at 
first: the exclusive or (XOR) of the penultimate and ultimate carries. As an 
example, let’s say we’re adding the two eight-bit numbers, 1516 and 6f16:

Ultimate carry → 0 1 ← Penultimate carry

0001 0101 ← x

+ 0110 1111 ← y

1000 0100 ← Sum

In this example, the carry is 0, and the penultimate carry is 1. The OF 
flag is equal to the XOR of the ultimate carry and penultimate carry, OF 
= CF ⊻ (penultimate carry), where ⊻ is the XOR operator. In the previous 
example, OF = 0 ⊻ 1 = 1.
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Case by case, we’ll see why the OF flag indicates the validity of adding 
two signed integers in the two’s complement representation. In the next 
three sections, we’ll discuss the three possible cases: the two numbers can 
have opposite signs, both be positive, or both be negative.

Two Numbers of the Opposite Sign

Let x be the negative number and y the positive number. Then we can 
express x and y in binary as follows:

x = 1…, y = 0…

That is, the high-order (sign) bit of one number is 1, and the high-order 
(sign) bit of the other is 0, regardless of what the other bits are.

x + y always remains within the range of the two’s complement 
representation:

–2(n–1) ≤ x < 0
0 ≤ y ≤ +(2(n–1) – 1) 

–2(n–1) ≤ x + y ≤ +(2(n–1) – 1)

Now, if we add x and y, there are two possible carry results:

•	 If the penultimate carry is 0:

Carry → 0 0   ← Penultimate carry

1… ← x

+ 0… ← y

1… ← Sum

This addition produces OF = 0 ⊻ 0 = 0.

•	 If the penultimate carry is 1:

Carry → 1 1   ← Penultimate carry

1… ← x

+ 0… ← y

0… ← Sum

This addition produces OF = 1 ⊻ 1 = 0.

Adding two integers of opposite signs always yields 0 for the overflow 
flag, so the sum is always within the allocated range.

Two Positive Numbers

Since both are positive, we can express x and y in binary as follows:

x = 0…, y = 0…
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Here the high-order (sign) bit of both numbers is 0, regardless of what 
the other bits are. Now, if we add x and y, there are two possible carry 
results:

•	 If the penultimate carry is 0:

Carry → 0 0   ← Penultimate carry

0… ← x

+ 0… ← y

0… ← Sum

We’d have OF = 0 ⊻ 0 = 0. The high-order bit of the sum is 0, so it’s a 
positive number, and the sum is in range.

•	 If the penultimate carry is 1:

Carry → 0 1   ← Penultimate carry

0… ← x

+ 0… ← y

1… ← Sum

Then we’d have OF = 0 ⊻ 1 = 1. The high-order bit of the sum is 1, so it’s 
a negative number. Adding two positive numbers cannot give a negative 
sum, so the sum must have exceeded the allocated range.

Two Negative Numbers

Since both are negative, we can express x and y in binary as follows:

x = 1…, y = 1…

Because the numbers are negative, the high-order (sign) bit of both 
numbers is 1, regardless of what the other bits are. Now, if we add x and y, 
there are two possible carry results:

•	 If the penultimate carry is 0:

Carry → 1 0   ← Penultimate carry

1… ← x

+ 1… ← y

0… ← Sum

This gives OF = 1 ⊻ 0 = 1. The high-order bit of this sum is 0, so it’s a 
positive number. But adding two negative numbers cannot give a posi-
tive sum, so the sum has exceeded the allocated range.
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•	 If the penultimate carry is 1:

Carry → 1 1   ← Penultimate carry

1… ← x

+ 1… ← y

1… ← Sum

This addition produces OF = 1 ⊻ 1 = 0. The high-order bit of the sum is 
1, so it is a negative number, and the sum is within range.

We won’t go into subtraction here. The same rules apply there, and I 
invite you to explore them on your own! 

Let’s take what we just learned, and what we did in “Adding and 
Subtracting Unsigned Integers in Binary” on page 43, and state some 
rules for adding or subtracting two n -bit numbers:

•	 When the program treats the result as unsigned, the carry flag, CF, is 0 
if and only if the result is within the n-bit range; OF is irrelevant.

•	 When the program treats the result as signed, the overflow flag, OF, is 0 
if and only if the result is within the n-bit range; CF is irrelevant.

NOTE	 Using two’s complement notation means that the CPU does not need additional 
instructions for signed addition and subtraction, thus simplifying the hardware. 
The CPU just sees bit patterns. Both CF and OF are set according to the rules of 
binary arithmetic by each arithmetic operation, regardless of how the program 
treats the numbers. The distinction between signed and unsigned is completely 
determined by the program. After each addition or subtraction operation, the pro-
gram should check the state of CF for unsigned integers or OF for signed integers 
and at least indicate when the sum is in error. Many high-level languages do not 
perform this check, which can lead to some obscure program bugs.

Circular Nature of Integer Codes
The notations used for both unsigned integers and signed integers are 
circular in nature—that is, for a given number of bits, each code “wraps 
around.” You can see this visually in the “decoder ring” for three-bit num-
bers shown in Figure 3-1.

To use this decoder ring to add or subtract two integers, follow these 
steps:

1.	 Pick the ring corresponding to the type of integer you’re using (signed 
or unsigned).

2.	 Move to the location on that ring corresponding to the first integer.

3.	 Move along the ring, moving the number of “spokes” equal to the 
second integer. Move clockwise to add, and move counterclockwise to 
subtract.
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Signed
integers Unsigned

integers

CF

OF

Bit
patterns

0

0 +1

+2

+3

-4

-3

-2

-1

1

2

3

4

5

6

7 000

001

010

011

100

101

110

111

Figure 3-1:  “Decoder ring” for three-bit signed and unsigned integers 

The result is correct if you do not cross the top for unsigned integers or 
cross the bottom for signed integers.

YOUR T UR N

1.	 Use the decoder ring in Figure 3-1 to perform the following arithmetic. 
Indicate whether the result is “right” or “wrong.”

a.	 Unsigned integers: 1 + 3
b.	 Unsigned integers: 3 + 4
c.	 Unsigned integers: 5 + 6
d.	 Signed integers: (+1) + (+3)
e.	 Signed integers: (−3) − (+3)
f.	 Signed integers: (+3) + (–4)

2.	 Add the following pairs of eight-bit numbers (shown in hexadecimal) 
and indicate whether your result is “right” or “wrong.” First treat them as 
unsigned values and then as signed values (stored in two’s complement).

a.	 55 + aa
b.	 55 + f0
c.	 80 + 7b
d.	 63 + 7b
e.	 0f + ff
f.	 80 + 80
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3.	 Add the following pairs of 16-bit numbers (shown in hexadecimal) and 
indicate whether your result is “right” or “wrong.” First treat them as 
unsigned values and then as signed values (stored in two’s complement).

a.	 1234 + edcc
b.	 1234 + fedc
c.	 8000 + 8000
d.	 0400 + ffff
e.	 07d0 + 782f
f.	 8000 + ffff

What You’ve Learned

Binary arithmetic    Computers perform addition and subtraction in 
the binary number system. Addition of two numbers may yield a result 
that is one bit wider than each of the two numbers. Subtraction of one 
number from another may require borrowing from one bit beyond the 
width of the two numbers.

Representing signed/unsigned    Bit patterns can be treated as repre-
senting either signed or unsigned integers. Two’s complement notation 
is commonly used to represent signed integers.

Carry flag    The CPU includes a one-bit carry flag that shows whether 
the result of addition or subtraction exceeds the number of bits allowed 
for an unsigned integer. 

Overflow flag    The CPU includes a one-bit overflow flag that shows 
whether the result of addition or subtraction exceeds the number of 
bits allowed for a signed integer using the two’s complement notation.

In the next chapter, you’ll learn Boolean algebra. Although it may seem 
a bit strange at first, once we get going, you’ll see that it’s actually easier than 
elementary algebra. For one thing, everything evaluates to either 0 or 1!





4
B O O L E A N  A L G E B R A

Boolean algebra was developed in the 19th 
century by an English mathematician, 

George Boole, who was working on ways to 
use mathematical rigor to solve logic problems. 

He formalized a mathematical system for manipulating 
logical values in which the only possible values for the 
variables are true and false, usually designated 1 and 0, 
respectively. 

The basic operations in Boolean algebra are conjunction (AND), disjunc-
tion (OR), and negation (NOT). This distinguishes it from elementary algebra, 
which includes the infinite set of real numbers and uses the arithmetic opera-
tions addition, subtraction, multiplication, and division. (Exponentiation is a 
simplified notation for repeated multiplication.)
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As mathematicians and logicians were expanding the field of Boolean 
algebra in increasingly complex and abstract ways, engineers were learn-
ing to harness electrical flows using switches in circuits to perform logic 
operations. The two fields developed in parallel until the mid-1930s, when 
a graduate student named Claude Shannon proved that electrical switches 
could be used to implement the full range of Boolean algebraic expressions. 
(When used to describe switching circuits, Boolean algebra is sometimes 
called switching algebra.) With Shannon’s discovery, a world of possibilities 
was opened, and Boolean algebra became the mathematical foundation of 
the computer.

This chapter starts with descriptions of the basic Boolean operators. 
Then you’ll learn about their logical rules, which form the basis of Boolean 
algebra. Next, I’ll explain ways to combine Boolean variables and opera-
tors into algebraic expressions to form Boolean logic functions. Finally, I’ll 
discuss techniques for simplifying Boolean functions. In subsequent chap-
ters, you’ll learn how electronic on/off switches can be used to implement 
logic functions that can be connected together in logic circuits to perform 
the primary functions of a computer—arithmetic and logic operations and 
memory storage.

Basic Boolean Operators
There are several symbols used to denote each Boolean operator, which I’ll 
include in the description of each of the operators. In this book, I’ll present 
the symbols used by logicians. A Boolean operator acts on a value, or pair 
of values, called the operands.

I’ll use truth tables to show the results of each operation. A truth table 
shows the results for all possible combinations of the operands. For example, 
consider the addition of two bits, x and y. There are four possible combina-
tions of the values. Addition will give a sum and a possible carry. Table 4-1 
shows how to express this in a truth table.

Table 4-1: Truth Table  
Showing Addition of  
Two Bits

x y Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

I’ll also provide the electronic circuit representations for the gates, the 
electronic devices that implement the Boolean operators. You’ll learn more 
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about these devices in Chapters 5 through 8, where you’ll also see that the 
real-world behavior of the physical devices varies slightly from the ideal 
mathematical behavior shown in the truth tables.

As with elementary algebra, you can combine these basic operators to 
define secondary operators. You’ll see an example of this when we define 
the XOR operator near the end of this chapter.

AND

AND is a binary operator, meaning it acts on two operands. The result  
of AND is 1 if and only if both operands are 1; otherwise, the result is 0. 
In logic, the operation is known as conjunction. I’ll use ∧ to designate 
the AND operation. It’s also common to use the ⋅ symbol or simply 
AND. Figure 4-1 shows the circuit symbol for an AND gate and a truth 
table defining the output, with operands x and y.

x y x ⋀ y

0 0 0

0 1 0

1 0 0

1 1 1

Figure 4-1: The AND gate acting on two  
variables, x and y 

As you can see from the truth table, the AND operator has properties 
similar to multiplication in elementary algebra, which is why some use 
the ⋅ symbol to represent it.

OR

OR is also a binary operator. The result of OR is 1 if at least one of 
the operands is 1; otherwise, the result is 0. In logic, the operation is 
known as disjunction. I’ll use ∨ to designate the OR operation. It’s also 
common to use the + symbol or simply OR. Figure 4-2 shows the cir-
cuit symbol for an OR gate and a truth table defining the output, with 
operands x and y.

x y x ⋁ y

0 0 0

0 1 1

1 0 1

1 1 1

Figure 4-2: The OR gate acting on two  
variables, x and y 

The truth table shows that the OR operator follows rules somewhat 
similar to addition in elementary algebra, which is why some use the + 
symbol to represent it.

x
y x ∧ y 

x
y x ∨ y 
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NOT

NOT is a unary operator, which acts on only one operand. The result 
of NOT is 1 if the operand is 0, and it is 0 if the operand is 1. Other 
names for the NOT operation are complement and invert. I’ll use ¬ to 
designate the NOT operation. It’s also common to use the ' symbol, 
an overscore above the variable, or simply NOT. Figure 4-3 shows the 
circuit symbol for a NOT gate, and a truth table defining the output, 
with the operand x.

x ¬x

0 1

1 0

Figure 4-3: The NOT gate acting on one variable, x 

As you’ll see, NOT has some properties of the arithmetic negation used 
in elementary algebra, but there are some significant differences.

It’s no accident that AND is multiplicative and OR additive. When 
George Boole was developing his algebra, he was looking for a way to apply 
mathematical rigor to logic and use addition and multiplication to manipu-
late logical statements. Boole developed the rules for his algebra based on 
using AND for multiplication and OR for addition. In the next section, 
you’ll see how to use these operators, together with NOT, to represent logical 
statements.

Boolean Expressions
Just as you can use elementary algebra operators to combine variables into 
expressions like (x + y), you can use Boolean operators to combine variables 
into expressions. 

There is a significant difference, though. A Boolean expression is 
created from values (0 and 1) and literals. In Boolean algebra, a literal is 
a single instance of a variable or its complement that’s being used in an 
expression. In the expression

x ∧ y ∨ ¬x ∧ z ∨ ¬x ∧ ¬y ∧ ¬z

there are three variables (x, y, and z) and seven literals. In a Boolean 
expression, you can see a variable in both its complemented form and  
its uncomplemented form because each form is a separate literal.

We can combine literals by using either the ∧ or ∨ operator. Like in ele-
mentary algebra, Boolean algebra expressions are made up of terms, groups 
of literals that are acted upon by operators, like (x ∨ y) or (a ∧ b). And just 
like elementary algebra, operation precedence (or order of operations) specifies 
how these operators are applied when evaluating the expression. Table 4-2 
lists the precedence rules for the Boolean operators. As with elementary 
algebra, expressions in parentheses are evaluated first, following the prece-
dence rules.

x ¬x
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Table 4-2: Precedence Rules of Boolean  
Algebra Operators

Operation Notation Precedence

NOT ¬x Highest

AND x ∧ y Middle

OR x ∨ y Lowest

Now that you know how the three fundamental Boolean operators 
work, we’ll look at some of the rules they obey when used in algebraic 
expressions. As you’ll see later in the chapter, we can use the rules to sim-
plify Boolean expressions, which will allow us, in turn, to simplify the way 
we implement those expressions in the hardware.

Knowing how to simplify Boolean expressions is an important tool for 
both those making hardware and those writing software. A computer is 
just a physical manifestation of Boolean logic. Even if your only interest is 
in programming, every programming statement you write is ultimately car-
ried out by hardware that is completely described by the system of Boolean 
algebra. Our programming languages tend to hide much of this through 
abstraction, but they still use Boolean expressions to implement program-
ming logic. 

Boolean Algebra Rules
When comparing AND and OR in Boolean algebra to multiplication and 
addition in elementary algebra, you’ll find that some of the rules of Boolean 
algebra are familiar, but some are significantly different. Let’s start with the 
rules that are the same, followed by the rules that differ.

Boolean Algebra Rules That Are the Same as Elementary Algebra

AND and OR are associative. 
We say that an operator is associative if, when there are two or more 
occurrences of the operator in an expression, the order of applying the 
operator does not change the value of the expression. Mathematically:

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (y ∨ z) = (x ∨ y) ∨ z

To prove the associative rule for AND and OR, let’s use exhaustive 
truth tables, as shown in Tables 4-3 and 4-4. Table 4-3 lists all possible 
values of the three variables x, y, and z, as well as the intermediate com-
putations of the terms (y ∧ z) and (x ∧ y). In the last two columns, we 
can compute the values of each expression on both sides of the previ-
ous equations, which shows that the two equalities hold.
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Table 4-3: Associativity of the AND Operation

x y z (y ∧ z) (x ∧ y) x ∧ (y ∧ z) (x ∧ y) ∧ z

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 1 0 0

1 1 1 1 1 1 1

Table 4-4 lists all possible values of the three variables x, y, and z, as well 
as the intermediate computations of the terms (y ∨ z) and (x ∨ y). In 
the last two columns, we can compute the values of each expression on 
both sides of the previous equations, which shows that the two equali-
ties hold.

Table 4-4: Associativity of the OR Operation

x y z (y ∨ z) (x ∨ y) x ∨ (y ∨ z) (x ∨ y) ∨ z

0 0 0 0 0 0 0

0 0 1 1 0 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 0 1 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

This strategy will work for each of the rules shown in this section, but 
I’ll go through only the truth table for the associative rule here. You’ll 
do this for the other rules when it’s Your Turn at the end of this section.

AND and OR have identity values. 

An identity value is a value specific to an operation such that using that 
operation on a quantity with the identity value yields the value of the 
original quantity. For AND and OR, the identity values are 1 and 0, 
respectively:

x ∧ 1 = x

x ∨ 0 = x
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AND and OR are commutative. 

We can say that an operator is commutative if we can reverse the order of 
its operands: 

x ∧ y = y ∧ x

x ∨ y = y ∨ x

AND is distributive over OR. 

The AND operator applied to quantities OR-ed together can be distrib-
uted to apply to each of the OR-ed quantities, like so:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Unlike in elementary algebra, the additive OR is distributive over the 
multiplicative AND. You’ll see this in the next section.

AND has an annulment (also called annihilation) value. 

Operating on a value with the operator’s annulment value yields the 
annulment value. The annulment value for AND is 0: 

x ∧ 0 = 0

We’re used to 0 being the annulment value for multiplication in ele-
mentary algebra, but addition has no concept of annulment. You’ll learn 
about the annulment value for OR in the next section.

NOT shows involution. 

An operator shows involution if applying it to a quantity twice yields the 
original quantity: 

¬(¬x) = x

Involution is simply the application of a double complement: NOT(NOT 
true) = true. This is similar to double negation in elementary algebra. 

Boolean Algebra Rules That Differ from Elementary Algebra
Although AND is multiplicative and OR is additive, there are significant 
differences between these logical operations and the arithmetic ones. The 
differences stem from the fact that Boolean algebra deals with logic expres-
sions that evaluate to either true or false, while elementary algebra deals 
with the infinite set of real numbers. In this section, you’ll see expressions 
that might remind you of elementary algebra, but the Boolean algebra rules 
are different.
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OR is distributive over AND. 

The OR operator applied to quantities AND-ed together can be distrib-
uted to apply to each of the AND-ed quantities:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Because addition is not distributive over multiplication in elementary 
algebra, you may miss this way of manipulating Boolean expressions.

First, let’s look at elementary algebra. Using addition for OR and multi-
plication for AND in the previous equation, we have this:

x + (y ⋅ z) ≠ (x + y) ⋅ (x + z)

We can see this by plugging in the numbers x = 1, y = 2, and z = 3. The 
left-hand side gives

1 + (2 ⋅ 3) = 7

 and the right-hand side gives

(1 + 2) ⋅ (1 + 3) = 12

Thus, addition is not distributive over multiplication in elementary 
algebra.

The best way to show that OR is distributive over AND in Boolean alge-
bra is to use a truth table, as shown in Table 4-5.

Table 4-5: OR Distributes over AND

x y z x ∨ (y ∧ z) (x ∨ y) ∧ (x ∨ z)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Comparing the two right-hand columns, you can see that the variable 
that is common to the two OR terms, x, can be factored out, and thus 
the distributive property holds.
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OR has an annulment (also called annihilation) value. 

An annulment value is a value such that operating on a quantity with the 
annulment value yields the annulment value. There is no annulment 
value for addition in elementary algebra, but in Boolean algebra, the 
annulment value for OR is 1: 

x ∨ 1 = 1

AND and OR both have a complement value. 

The complement value is the diminished radix complement of the vari-
able. You saw in Chapter 3 that the sum of a quantity and that quantity’s 
diminished radix complement is equal to (radix – 1). Since the radix in 
Boolean algebra is 2, the complement of 0 is 1, and the complement of 
1 is 0. So, the complement of a Boolean quantity is simply the NOT of 
that quantity, which gives 

x ∧ ¬x = 0

x ∨ ¬x = 1

The complement value illustrates one of the differences between the 
AND and OR logical operations and the multiplication and addition 
arithmetic operations. In elementary algebra:

x ⋅ (–x)   = –x2 
x + (–x)   = 0

Even if we restrict x to be 0 or 1, in elementary algebra 1 ⋅ (–1) = –1, and 
1 + (–1) = 0.

AND and OR are idempotent. 

If an operator is idempotent, applying it to two of the same operands 
results in that operand. In other words:

x ∧ x = x

x ∨ x = x

This looks different than in elementary algebra, where repeatedly mul-
tiplying a number by itself is exponentiation, and repeatedly adding a 
number to itself is equivalent to multiplication.

De Morgan’s law applies. 

In Boolean algebra, the special relationship between the AND and OR 
operations is captured by De Morgan’s law, which states

¬(x ∧ y) = ¬x ∨ ¬y

¬(x ∨ y) = ¬x ∧ ¬y



66   Chapter 4

The first equation states that the NOT of the AND of two Boolean 
quantities is equal to the OR of the NOT of the two quantities. 
Likewise, the second equation states that the NOT of the OR of 
two Boolean quantities is equal to the AND of the NOT of the two 
quantities. 

This relationship is an example of the principle of duality, which in 
Boolean algebra states that if you replace every 0 with a 1, every 1 with 
a 0, every AND with an OR, and every OR with an AND, the equation 
is still true. Look back over the rules just given and you’ll see that all of 
them except involution have dual operations. De Morgan’s law is one 
of the best examples of duality. Please, when it’s Your Turn, prove De 
Morgan’s law so you can see the principle of duality in play.

YOUR T UR N

1.	 Use truth tables to prove the Boolean algebra rules given in this section.

2.	 Prove De Morgan’s law.

Boolean Functions
The functionality of a computer is based on Boolean logic, which means 
the various operations of a computer are specified by Boolean functions. 
A Boolean function looks somewhat like a function in elementary algebra, 
but the variables can appear in either uncomplemented or complemented 
form. The variables and constants are connected by Boolean operators. A 
Boolean function evaluates to either 1 or 0 (true or false).

In “Adding in the Binary Number System” on page 44, you saw that 
when adding two bits, x and y, in a binary number, we have to include a pos-
sible carry into their bit position in the number. The conditions that cause 
carry to be 1 are

x = 1, y = 1, and there’s no carry into the current bit position, or 

x = 0, y = 1, and there’s carry into the current bit position, or 

x = 1, y = 0, and there’s carry into the current bit position, or 

x = 1, y = 1, and there’s carry into the current bit position.

We can express this more concisely with this Boolean function:

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)
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where x is one bit, y is the other bit, cin is the carry in from the next-
lower-order bit position, and Cout(cin, x, y) is the carry resulting from the 
addition in the current bit position. We’ll use this equation throughout 
this section, but first, let’s think about the differences between Boolean and 
elementary functions.

Like an elementary algebra function, a Boolean algebra function can 
be manipulated mathematically, but the mathematical operations are dif-
ferent. Operations in elementary algebra are performed on the infinite set 
of real numbers, but Boolean functions work on only two possible values, 
0 or 1. Elementary algebra functions can evaluate to any real number, but 
Boolean functions can evaluate only to 0 or 1.

This difference means we have to think differently about Boolean func-
tions. For example, look at this elementary algebra function:

F(x , y) = x ⋅ (–y)

You probably read it as, “If I multiply the value of x by the negative 
of the value of y, I’ll get the value of F(x, y).” However, if you look at the 
Boolean function

F(x , y) = x ∧ (¬y)

there are only four possibilities. If x = 1 and y = 0, then F(x, y) = 1. For the 
other three possibilities, F(x, y) = 0. Whereas you can plug in any numbers 
in an elementary algebra function, a Boolean algebra function shows you 
what the values of the variables are that cause the function to evaluate to 
1. I think of elementary algebra functions as asking me to plug in values for 
the variables for evaluation, while Boolean algebra functions tell me what 
values of the variables cause the function to evaluate to 1.

There are simpler ways to express the conditions for carry. And those 
simplifications lead to being able to implement this function in hardware 
with fewer logic gates, thus lowering the cost and power usage. In this and 
the following sections, you’ll learn how the mathematical nature of Boolean 
algebra makes function simplification easier and more concise.

Canonical Sum or Sum of Minterms
A canonical form of a Boolean function explicitly shows whether each vari-
able in the problem is complemented or not in each term that defines the 
function, just as we did with our English statement of the conditions that 
produce a carry of 1 earlier. This ensures that you have taken all possible 
combinations into account in the function definition. The truth table, 
shown in Table 4-6, for the carry equation we saw earlier

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)

should help to clarify this.
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Table 4-6: Conditions That Cause Carry to Be 1

Minterm cin x y (¬cin ∧ x ∧ y) (cin ∧ ¬x ∧ y) (cin ∧ x ∧ ¬y) (cin ∧ x ∧ y) Cout(cin, x, y)

m0 0 0 0 0 0 0 0 0

m1 0 0 1 0 0 0 0 0

m2 0 1 0 0 0 0 0 0

m3 0 1 1 1 0 0 0 1

m4 1 0 0 0 0 0 0 0

m5 1 0 1 0 1 0 0 1

m6 1 1 0 0 0 1 0 1

m7 1 1 1 0 0 0 1 1

Although the parentheses in the equation are not required, I’ve added 
them to help you see the form of the equation. The parentheses show four 
product terms, terms where all the literals are operated on only by AND. The 
four product terms are then OR-ed together. Since the OR operation is like 
addition, the right-hand side is called a sum of products. It’s also said to be in 
disjunctive normal form. 

Now let’s look more closely at the product terms. Each of them 
includes all the variables in this equation in the form of a literal (uncom-
plemented or complemented). An equation that has n variables has 2n 
permutations of the values for the variables; a minterm is a product term 
that specifies exactly one of the permutations. Since there are four com-
binations of values for cin, x, and y that produce a carry of 1, the previous 
equation has four out of the possible eight minterms. A Boolean function 
that is defined by summing (OR-ing) all the minterms that evaluate to 1 
is said to be a canonical sum, a sum of minterms, or in full disjunctive normal 
form. A function defined by a sum of minterms evaluates to 1 when at least 
one of the minterms evaluates to 1.

For every minterm, exactly one set of values for the variables makes the 
minterm evaluate to 1. For example, the minterm (cin ∧ x ∧ ¬y) in the pre-
vious equation evaluates to 1 only when cin = 1, x = 1, y = 0. A product term 
that does not contain all the variables in the problem, either in uncomple-
mented or in complemented form, will always evaluate to 1 for more sets of 
values for the variables than a minterm. For example, (cin ∧ x) evaluates to 1 
for cin = 1, x = 1, y = 0, and cin = 1, x = 1, y = 1. Because they minimize the num-
ber of cases that evaluate to 1, we call them minterms.

Rather than write out all the literals in a function, logic designers com-
monly use the notation mi to specify the i th minterm, where i is the integer 
represented by the values of the literals in the problem if the values are 
placed in order and treated as binary numbers. For example, cin = 1, x = 1, 
y = 0 gives 110, which is the (base 10) number 6; thus, that minterm is m6. 
Table 4-6 shows all eight possible minterms for a three-variable equation, 
and the minterm, m6 = (cin ∧ x ∧ ¬y), in the four-term equation shown ear-
lier evaluates to 1 when cin = 1, x = 1, y = 0.
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Using this notation to write Boolean equations as a canonical sum 
and using the ∑ symbol to denote summation, we can restate the function 
for carry:

C out(cin, x , y)	  = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y) 
	   = m3 ∨ m5 ∨ m6 ∨ m7 
	   = ∑(3,5,6,7)

We are looking at a simple example here. For more complicated func-
tions, writing all the minterms out is error-prone. The simplified notation is 
easier to work with and helps to avoid making errors.

Canonical Product or Product of Maxterms
Depending on factors like available components and personal choice, a 
designer may prefer to work with the cases where a function evaluates to 0 
instead of 1. In our example, that means a design that specifies when carry 
is 0. To see how this works, let’s take the complement of both sides of the 
equation for specifying carry, using De Morgan’s law:

¬C out(cin, x , y) = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y)

Because we complemented both sides of the equation, we now have the 
Boolean equation for ¬Cout, the complement of carry. Thus, we are looking 
for conditions that cause ¬Cout to evaluate to 0, not 1. These are shown in 
the truth table, Table 4-7.

Table 4-7: Conditions That Cause the Complement of Carry to Be 0

Maxterm cin x y (cin ∨ ¬x ∨ ¬y) (¬cin ∨ x ∨ ¬y) (¬cin ∨ ¬x ∨ y) (¬cin ∨ ¬x ∨ ¬y) ¬Cout(cin, x, y)

M0 0 0 0 1 1 1 1 1

M1 0 0 1 1 1 1 1 1

M2 0 1 0 1 1 1 1 1

M3 0 1 1 0 1 1 1 0

M4 1 0 0 1 1 1 1 1

M5 1 0 1 1 0 1 1 0

M6 1 1 0 1 1 0 1 0

M7 1 1 1 1 1 1 0 0

In this equation, the parentheses are required due to the precedence 
rules of Boolean operators. The parentheses show four sum terms, terms 
where all the literals are operated on only by OR. The four sum terms are 
then AND-ed together. Since the AND operation is like multiplication, the 
right-hand side is called a product of sums. It’s also said to be in conjunctive 
normal form. 
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Each of the sum terms includes all the variables in this equation in the 
form of literals (uncomplemented or complemented). Where a minterm 
was a product term that specified a single permutation of the 2n permuta-
tions of possible values for the variables, a maxterm is a sum term specifying 
exactly one of those permutations. A Boolean function that is defined by 
multiplying (AND-ing) all the maxterms that evaluate to 0 is said to be a 
canonical product, a product of maxterms, or in full conjunctive normal form. 

Each maxterm identifies exactly one set of values for the variables in a 
function that evaluates to 0 when OR-ed together. For example, the max-
term (¬cin ∨ ¬x ∨ y) in the previous equation evaluates to 0 only when cin = 1,  
x = 1, y = 0. But a sum term that does not contain all the variables in the 
problem, either in uncomplemented or complemented form, will always 
evaluate to 0 for more than one set of values. For example, the sum term 
(¬cin ∨ ¬x) evaluates to 0 for two sets of values for the three variables in this 
example, cin = 1, x = 1, y = 0 and cin = 1, x = 1, and y = 1. Because they mini-
mize the number of cases that evaluate to 0 and thus maximize the number 
of cases that evaluate to 1, we call them maxterms.

Rather than write out all the literals in a function, logic designers com-
monly use the notation Mi to specify the i th maxterm, where i is the integer 
value of the base 2 number created by concatenating the values of the liter-
als in the problem. For example, stringing together cin = 1, x = 1, y = 0 gives 
110, which is the maxterm M6. The truth table, Table 4-7, shows the max-
terms that cause carry = 0. Notice that maxterm M6 = (¬cin ∨ ¬x ∨ y) evaluates 
to 0 when cin = 1, x = 1, y = 0.

Using this notation to write Boolean equations as a canonical sum and 
using the ∏ symbol to denote multiplication, we can restate the function for 
the complement of carry as follows:

¬C out(cin, x , y)	  = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y) 
	   = M3 ∧ M5 ∧ M6 ∧ M7 
	   = ∏ (3,5,6,7)

If you look back at Table 4-7, you’ll see that these are the conditions 
that cause the complement of carry to be 0 and hence carry to be 1. This 
shows that using either minterms or maxterms is equivalent. The one you 
use can depend on factors such as what hardware components you have 
available to implement the function and personal preference.

Comparison of Canonical Boolean Forms
Table 4-8 shows all the minterms and maxterms for a three-variable prob-
lem. If you compare corresponding minterms and maxterms, you can see 
the duality of minterms and maxterms: one can be formed from the other 
using De Morgan’s law by complementing each variable and interchanging 
OR and AND.
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Table 4-8: Canonical Terms for a Three-Variable Problem

Minterm = 1 x y z Maxterm = 0

m0 ¬x ∧ ¬y ∧ ¬z 0 0 0 M0 x ∨ y ∨ z

m1 ¬x ∧ ¬y ∧ z 0 0 1 M1 x ∨ y ∨ ¬z

m2 ¬x ∧ y ∧ ¬z 0 1 0 M2 x ∨ ¬y ∨ z

m3 ¬x ∧ y ∧ z 0 1 1 M3 x ∨ ¬y ∨ ¬z

m4 x ∧ ¬y ∧ ¬z 1 0 0 M4 ¬x ∨ y ∨ z

m5 x ∧ ¬y ∧ z 1 0 1 M5 ¬x ∨ y ∨ ¬z

m6 x ∧ y ∧ ¬z 1 1 0 M6 ¬x ∨ ¬y ∨ z

m7 x ∧ y ∧ z 1 1 1 M7 ¬x ∨ ¬y ∨ ¬z

…

The canonical forms give you a complete, and unique, statement of the 
function because they take all possible combinations of the values of the 
variables into account. However, there often are simpler solutions to the prob-
lem. The remainder of this chapter is devoted to methods of simplifying 
Boolean functions.

Boolean Expression Minimization
When implementing a Boolean function in hardware, each ∧ operator 
becomes an AND gate, each ∨ operator an OR gate, and each ¬ opera-
tor a NOT gate. In general, the complexity of the hardware is related to 
the number of AND and OR gates used (NOT gates are simple and tend 
not to contribute significantly to the complexity). Simpler hardware uses 
fewer components, thus saving cost and space, and uses less power. Cost, 
space, and power savings are especially important with handheld and wear-
able devices. In this section, you’ll learn how you can manipulate Boolean 
expressions to reduce the number of ANDs and ORs, thus simplifying their 
hardware implementation.

Minimal Expressions
When simplifying a function, start with one of the canonical forms to 
ensure that you have taken all possible cases into account. To translate a 
problem into a canonical form, create a truth table that lists all possible 
combinations of the variables in the problem. From the truth table, it will 
be easy to list the minterms or maxterms that define the function. 

Armed with a canonical statement, the next step is to look for a func-
tionally equivalent minimal expression, an expression that does the same 
thing as the canonical one, but with a minimum number of literals and 
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Boolean operators. To minimize an expression, we apply the rules of Boolean 
algebra to reduce the number of terms and the number of literals in each 
term, without changing the logical meaning of the expression.

There are two types of minimal expressions, depending on whether you 
use minterms or maxterms:

Minimal Sum of Products

When starting with a minterms description of the problem, the mini-
mal expression is called a minimal sum of products, which is a sum of 
products expression where all other mathematically equivalent sum  
of products expressions have at least as many product terms, and 
those with the same number of product terms have at least as many 
literals.

As an example of a minimal sum of products, consider these equations:

 S(x , y, z) 	 = (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) 
S1(x , y, z)	 = (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y) 
S2(x , y, z)	 = (x ∧ ¬y ∧ z) ∨ (¬y ∧ ¬z) 
S3(x , y, z)	 = (x ∧ ¬y) ∨ (¬y ∧ ¬z)

S is in canonical form as each of the product terms explicitly shows the 
contribution of all three variables. The other three functions are sim-
plifications of S. Although all three have the same number of product 
terms, S3 is a minimal sum of products for S because it has fewer literals 
in its product terms than S1 and S2.

Minimal Product of Sums

When starting with a maxterms description of the problem, the mini-
mal expression is called a minimal product of sums, which is a product of 
sums expression where all other mathematically equivalent product  
of sums expressions have at least as many sum terms, and those with 
the same number of sum terms have at least as many literals.

For an example of a minimal product of sums, consider these 
equations:

P(x , y, z) 	  = (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) 
P1(x , y, z)	 = (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) 
P2(x , y, z)	 = (¬x ∨ y ∨ z) ∧ (¬y ∨ z) 
P3(x , y, z)	 = (¬x ∨ z) ∧ (¬y ∨ z)

P is in canonical form, and the other three functions are simplifications 
of P. Although all three have the same number of sum terms as P, P3 is a 
minimal product of sums for P because it has fewer literals in its product 
terms than P1 and P2.

A problem may have more than one minimal solution. Good hard-
ware design typically involves finding several minimal solutions and then 
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assessing each one within the context of the available hardware. This means 
more than using fewer gates. For example, as you’ll learn when we discuss 
the actual hardware implementations, adding judiciously placed NOT gates 
can actually reduce hardware complexity.

In the following two sections, you’ll see two ways to find minimal 
expressions.

Minimization Using Algebraic Manipulations
To illustrate the importance of reducing the complexity of a Boolean func-
tion, let’s return to the function for carry:

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)

The expression on the right-hand side of the equation is a sum of min-
terms. Figure 4-4 shows the circuit to implement this function. It requires 
four AND gates and one OR gate. The small circles at the inputs to the AND 
gates indicate a NOT gate at that input. 

cin

x
y

Cout(cin, x, y)

Figure 4-4: Hardware implementation of a function to generate  
the value of carry when adding two numbers

Now let’s try to simplify the Boolean expression implemented in 
Figure 4-4 to see whether we can reduce the hardware requirements. Note 
that there may not be a single path to a solution, and there may be more 
than one correct solution. I’m presenting only one way here. 

First, we’ll do something that might look strange. We’ll use the idempo-
tency rule to duplicate the fourth term twice:

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)  
∨ (cin ∧ x ∧ y)  ∨ (cin ∧ x ∧ y)

Next, rearrange the product terms slightly to OR each of the three 
original terms with (cin ∧ x ∧ y):

C out(cin, x , y) = ((¬cin ∧ x ∧ y) ∨ (cin ∧ x ∧ y)) ∨ ((cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y))  
∨ ((cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ y))
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Now we can use the rule for distribution of AND over OR to factor out 
terms that OR to 1:

C out(cin, x , y)	   =  (x ∧ y ∧ (¬cin ∨ cin)) ∨ (cin ∧ x ∧ (¬y ∨ y)) ∨ (cin ∧ y ∧ (¬x ∨ x)) 
	    =  (x ∧ y ∧ 1) ∨ (cin ∧ x ∧ 1) ∨ (cin ∧ y ∧ 1) 
	    =  (x ∧ y) ∨ (cin ∧ x) ∨ (cin ∧ y)

Figure 4-5 shows the circuit for this function. Not only have we elimi-
nated an AND gate, but also all the AND gates and the OR gate have one 
fewer inputs.

x
y

cin
Cout(cin, x, y)

Figure 4-5: Simplified hardware implementation generating carry  
when adding two numbers

Comparing the circuits in Figures 4-5 and 4-4, Boolean algebra has 
helped you to simplify the hardware implementation. You can see this sim-
plification from stating the conditions that result in a carry of 1 in English: 
the original, canonical form of the equation stated that carry, Cout(cin, x, y), 
will be 1 in any of these four cases:

if cin = 0, x = 1, and y = 1

if cin = 1, x = 0, and y = 1

if cin = 1, x = 1, and y = 0

if cin = 1, x = 1, and y = 1

The minimization can be stated much simpler: carry is 1 if at least two 
of cin, x, and y are 1.

We arrived at the solution in Figure 4-5 by starting with the sum of 
minterms; in other words, we were working with the values of cin, x, and y 
that generate a 1 for carry. As you saw in “Canonical Product or Product of 
Maxterms” on page 69, since carry must be either 1 or 0, it’s equally as valid 
to start with the values of cin, x, and y that generate a 0 for the complement of 
carry and to write the equation as a product of maxterms:

¬C out(cin, x , y) = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y)

To simplify this equation, we’ll take the same approach we took with 
the sum of minterms and start by duplicating the last term twice:

¬C out(cin, x , y) = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y)  
∧ (¬cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y)
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Adding some parentheses helps to clarify the simplification process:

¬C out(cin, x , y) = ((cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y)) ∧ ((¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y))  
∧ ((¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y))

Next, use the distribution of OR over AND. Because this is tricky, I’ll 
go over the steps to simplify the first grouping of product terms in this 
equation—the steps for the other two groupings are similar to this one. 
Distribution of OR over AND has this generic form:

(X ∨ Y ) ∧ (X ∨ Z) = X ∨ (Y ∧ Z)

Looking at the sum terms in our first grouping, you can see they both 
share a (¬x ∨ ¬y). So, we’ll make these substitutions into the generic form:

X 	 = (¬x ∨ ¬y) 
Y 	 = cin 
Z 	 = ¬cin

Making the substitutions and using the complement rule for AND, we get

(cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y)   = (¬x ∨ ¬y) ∨ (cin ∧ ¬cin) 
	    = (¬x ∨ ¬y)

Applying these same manipulations to other two groupings, we get

¬C out(cin, x , y) = (¬x ∨ ¬y) ∧ (¬cin ∨ ¬x) ∧ (¬cin ∨ ¬y)

Figure 4-6 shows the circuit implementation of this function. This cir-
cuit produces the complement of carry. We would need to complement the 
output, ¬Cout(cin, x, y), to get the value of carry.

x
y

cin
¬Cout(cin, x, y)

Figure 4-6: Simplified hardware implementation generating the  
complement of carry when adding two numbers

Compare Figure 4-6 with Figure 4-5, and you can graphically see De 
Morgan’s law: the ORs have become ANDs with complemented values as 
inputs.

The circuit in Figure 4-5 might look simpler to you because the cir-
cuit in Figure 4-6 requires NOT gates at the six inputs to the OR gates. 
But as you will see in the next chapter, this may not be the case because of 
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the inherent electronic properties of the devices used to construct logic 
gates. The important point to understand here is that there is more than 
one way to solve the problem. One of the jobs of the hardware engineer is 
to decide which solution is best, based on things such as cost, availability of 
components, and so on.

Minimization Using Karnaugh Maps
The algebraic manipulations used to minimize Boolean functions may not 
always be obvious. You may find it easier to work with a graphic representa-
tion of the logical statements.

A commonly used graphic tool for working with Boolean functions 
is the Karnaugh map, also called a K-map. Invented in 1953 by Maurice 
Karnaugh, a telecommunications engineer at Bell Labs, the Karnaugh 
map gives a way to visually find the same simplifications you can find alge-
braically. They can be used either with a sum of products, using minterms, 
or a product of sums, using maxterms. To illustrate how they work, we’ll 
start with minterms.

Simplifying Sums of Products Using Karnaugh Maps

The Karnaugh map is a rectangular grid with a cell for each minterm. 
There are 2n cells for n variables. Figure 4-7 is a Karnaugh map showing all 
four possible minterms for two variables, x and y. The vertical axis is used 
for plotting x, and the horizontal for y. The value of x for each row is shown 
by the number (0 or 1) immediately to the left of the row, and the value of y 
for each column appears at the top of the column.

F(x, y)

x

y

m0 m1

m2 m3

0 1

1

0

Figure 4-7: Mapping of  
two-variable minterms on  
a Karnaugh map

To illustrate how to use a Karnaugh map, let’s look at an arbitrary func-
tion of two variables:

F(x , y) = (x ∧ ¬y) ∨ (¬x ∧ y) ∨ (x ∧ y)

Start by placing a 1 in each cell corresponding to a minterm that appears 
in the equation, as shown in Figure 4-8. 
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F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-8: Karnaugh  
map of the arbitrary  
function, F(x, y)

By placing a 1 in the cell corresponding to each minterm that evaluates 
to 1, we can see graphically when the equation evaluates to 1. The two cells 
on the right side correspond to the minterms m1 and m3, (¬x ∧ y) and (x ∧ y). 
Since these terms are OR-ed together, F(x, y) evaluates to 1 if either of 
these minterms evaluates to 1. Using the distributive and complement rules, 
we can see that

(¬x ∧ y) ∨ (x ∧ y)	   =  (¬x ∨ x) ∧ y 
	    =  y

This shows algebraically that F(x, y) evaluates to 1 whenever y is 1, which 
you’ll see next by simplifying this Karnaugh map.

The only difference between the two minterms, (¬x ∧ y) and (x ∧ y), is 
the change from x to ¬x. Karnaugh maps are arranged such that only one 
variable changes between two cells that share an edge, a requirement called 
the adjacency rule. 

To use a Karnaugh map to perform simplification, you group two adja-
cent cells in a sum of products Karnaugh map that have 1s in them. Then 
you eliminate the variable that differs between them and coalesce the two 
product terms. Repeating this process allows you to simplify the equation. 
Each grouping eliminates a product term in the final sum of products. This 
can be extended to equations with more than two variables, but the num-
ber of cells that are grouped together must be a multiple of 2, and you can 
group only adjacent cells. The adjacency wraps around from side to side 
and from top to bottom. You’ll see an example of that in a few pages.

To see how all this works, consider the grouping in the Karnaugh map 
in Figure 4-9. 

F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-9: Two of  
the minterms in F(x, y)  
grouped

This grouping is a graphical representation of the algebraic manipula-
tion we did earlier. You can see that F(x, y) evaluates to 1 whenever y = 1, 
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regardless of the value of x. Thus, the grouping coalesces two minterms 
into one product term by eliminating x. 

From the last grouping, we know our final simplified function will have 
a y term. Let’s do another grouping to find the next term. First, we’ll sim-
plify the equation algebraically. Returning to the original equation for  
F(x, y), we can use idempotency to duplicate one of the minterms:

F(x , y) = (x ∧ ¬y) ∨ (¬x ∧ y) ∨ (x ∧ y) ∨ (x ∧ y)

Now we’ll do some algebraic manipulation on the first product term 
and the one we just added:

(x ∧ ¬y) ∨ (x ∧ y)	   = (¬y ∨ y) ∧ x 
	    =  x

Instead of using algebraic manipulations, we can do this directly on 
our Karnaugh map, as shown in Figure 4-10. This map shows that separate 
groups can include the same cell (minterm).

F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-10: A Karnaugh  
map grouping showing  
that (x ∧ ¬y) ∨ (¬x ∧ y)  
∨ (x ∧ y) = (x ∨ y)

The group in the bottom row represents the product term x, and 
the one in the right-hand column represents y, giving us the following 
minimization:

F(x , y) = x ∨ y

Note that the cell that is included in both groupings, (x ∧ y), is the term 
that we duplicated using the idempotent rule in our algebraic solution pre-
viously. You can think of including a cell in more than one group as adding 
a duplicate copy of the cell, like using the idempotent rule in our algebraic 
manipulation earlier, and then coalescing it with the other cell(s) in the 
group, thus removing it.

The adjacency rule is automatically satisfied when there are only two 
variables in the function. But when we add another variable, we need to 
think about how to order the cells of a Karnaugh map such that we can use 
the adjacency rule to simplify Boolean expressions.

Karnaugh Map Cell Order

One of the problems with both the binary and BCD codes is that the dif-
ference between two adjacent values often involves more than one bit being 
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changed. In 1943 Frank Gray introduced a code, the Gray code, in which 
adjacent values differ by only one bit. The Gray code was invented because 
the switching technology of that time was more prone to errors. If one bit 
was in error, the value represented by a group of bits was off by only one in 
the Gray code. That’s seldom a problem these days, but this property shows 
us how to order the cells in a Karnaugh map.

Constructing the Gray code is quite easy. Start with one bit:

Decimal Gray code

0 0

1 1

To add a bit, first write the mirror image of the existing pattern:

Gray code

0

1

1

0

Then add a 0 to the beginning of each of the original bit patterns and 
add a 1 to the beginning of each of the mirror image set to give the Gray 
code for two bits, as shown in Table 4-9.

Table 4-9: Gray Code for  
Two Bits

Decimal Gray code

0 00

1 01

2 11

3 10

This is the reason the Gray code is sometimes called reflected binary code 
(RBC). Table 4-10 shows the Gray code for four bits. 

Table 4-10: Gray Code for Four Bits

Decimal Gray code Binary

0 0000 0000

1 0001 0001

2 0011 0010

(continued)
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Decimal Gray code Binary

3 0010 0011

4 0110 0100

5 0111 0101

6 0101 0110

7 0100 0111

8 1100 1000

9 1101 1001

10 1111 1010

11 1110 1011

12 1010 1100

13 1011 1101

14 1001 1110

15 1000 1111

Let’s compare the binary codes with the Gray codes for the decimal 
values 7 and 8 in Table 4-10. The binary codes for 7 and 8 are 0111 and 1000, 
respectively; all four bits change when stepping only 1 in decimal value. But 
comparing the Gray codes for 7 and 8, 0100 and 1100, respectively, only one 
bit changes, thus satisfying the adjacency rule for a Karnaugh map.

Notice that the pattern of changing only one bit between adjacent values 
also holds when the bit pattern wraps around. Only one bit is changed when 
going from the highest value (15 for four bits) to the lowest (0).

Karnaugh Map for Three Variables

To see how the adjacency property is important, let’s consider a more com-
plicated function. We’ll use a Karnaugh map to simplify our function for 
carry, which has three variables. Adding another variable means that we 
need to double the number of cells to hold the minterms. To keep the map 
two-dimensional, we add the new variable to an existing variable on one side 
of the map. We need a total of eight cells (23), so we’ll draw it four cells wide 
and two high. We’ll add z to the y-axis and draw our Karnaugh map with y 
and z on the horizontal axis, and x on the vertical, as shown in Figure 4-11.

F(x, y, z) yz

x
m0 m1 m3 m2

m4 m5 m7 m6

0

1

00 01 11 10

Figure 4-11: Mapping of three-variable  
minterms on a Karnaugh map

Table  4-10: Gray Code for Four Bits (continued)
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The order of the bit patterns along the top of the three-variable 
Karnaugh map is 00, 01, 11, 10, which is the Gray code order in Table 4-9, 
as opposed to 00, 01, 10, 11. The adjacency rule also holds when wrapping 
around the edges of the Karnaugh map—that is, going from m2 to m0 or 
going from m6 to m4—which means that groups can wrap around the edges 
of the map. (Other axis labeling schemes will also work, as you’ll see when  
it’s Your Turn at the end of this section.)

You saw earlier in this chapter that carry can be expressed as the sum of 
four minterms:

C out(cin, x , y)	  = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y) 
	   =  m3 ∨ m5 ∨ m6 ∨ m7 
	   =  ∑ (3,5,6,7)

Figure 4-12 shows these four minterms on the Karnaugh map.

yz
00 01 11 10

0

1
cin

Cout(cin, x, y)

1

11 1

Figure 4-12: Karnaugh map of the  
function for carry

We look for adjacent cells that can be grouped together to eliminate 
one variable from the product term. As noted, the groups can overlap, giv-
ing the three groups shown in Figure 4-13.

yz
00 01 11 10

0

1
cin

Cout(cin, x, y)

1

11 1

Figure 4-13: A minimum sum of products  
of the function for carry = 1

Using the three groups in the Karnaugh map in Figure 4-13, we end up 
with the same equation we got through algebraic manipulations:

C out(cin, x , y) = (x ∧ y) ∨ (cin ∧ x) ∨ (cin ∧ y)

Simplifying Products of Sums Using Karnaugh Maps

It’s equally valid to work with a function that shows when the complement 
of carry is 0. We did that using maxterms:

¬C max(cin, x , y)	   = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y) 
	    =  M7 ∧ M6 ∧ M5 ∧ M3 
	    =  ∏(3,5,6,7)
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Figure 4-14 shows the arrangement of maxterms on a three-variable 
Karnaugh map.

¬F(x, y, z) yz

x
0

1

00 01 11 10

M0 M1 M3 M2

M4 M5 M7 M6

Figure 4-14: Mapping of three-variable  
maxterms on a Karnaugh map

When working with a maxterm statement of the solution, you mark the 
cells that evaluate to 0. The minimization process is the same as when work-
ing with minterms, except that you group the cells with 0s in them.

Figure 4-15 shows a minimization of ¬Cout(cin, x, y) , the complement of 
carry.

yz
00 01 11 10

0

1
cin

¬Cout(cin, x, y)

0

00 0

Figure 4-15: A minimum product of sums  
of the function for NOT carry = 0

The Karnaugh map in Figure 4-15 leads to the same product of sums 
we got algebraically for the complement of carry = 0:

¬C out(cin, x , y) = (¬x ∨ ¬y) ∧ (¬cin ∨ ¬x) ∧ (¬cin ∨ ¬y)

If you compare Figures 4-13 and 4-15, you can see a graphic view of  
De Morgan’s law. When making this comparison, keep in mind that 
Figure 4-13 shows the product terms that get added, and Figure 4-15 
shows the sum terms that get multiplied, and the result is complemented. 
Thus, we exchange 0 and 1 and exchange AND and OR to go from one 
Karnaugh map to the other.

To further emphasize the duality of minterm and maxterm, compare 
(a) and (b) in Figure 4-16. 

F(x, y, z) ¬F(x, y, z)
yz

x

00 01 11 10

(a) (b)

01

000

0

0

0 00

1

1

1

1 1

11 1
x

yz

0

1

00 01 11 10

Figure 4-16: Comparison of (a) one minterm and (b) one maxterm
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Figure 4-16(a) shows the following function:

F(x , y, z) = ¬x ∧ ¬y ∧ ¬z

Although it’s not necessary and usually not done, we have placed a 0 in 
each of the cells representing minterms not included in this function.

Similarly, in Figure 4-16(b), we have placed a 0 for the maxterm and a 1 
in each of the cells representing the maxterms that are not included in the 
function:

¬F(x , y, z) = x ∨ y ∨ z

This comparison graphically shows how a minterm specifies the mini-
mum number of 1s in a Karnaugh map, while a maxterm specifies the 
maximum number of 1s.

Larger Groupings on a Karnaugh Map

Thus far, we have grouped only two cells together on our Karnaugh maps. 
Let’s look at an example of larger groups. Consider a function that outputs 
1 when a three-bit number is even. Table 4-11 shows the truth table. It uses 1 
to indicate that the number is even and uses 0 to indicate odd.

Table 4-11: Even Values of an Eight-Bit Number

Minterm x y z Number Even(x, y, z)

m0 0 0 0 0 1

m1 0 0 1 1 0

m2 0 1 0 2 1

m3 0 1 1 3 0

m4 1 0 0 4 1

m5 1 0 1 5 0

m6 1 1 0 6 1

m7 1 1 1 7 0

The canonical sum of products for this function is

Even(x , y, z) = ∑(0,2,4,6)

Figure 4-17 shows these minterms on a Karnaugh map with these four 
terms grouped together. You can group all four together because they all 
have adjacent edges.

From the Karnaugh map in Figure 4-17, we can write the equation for 
showing when a three-bit number is even:

Even(x , y, z) = ¬z
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Even(x, y, z)
00 01 11 10

10

1
x

yz

1 1

1

Figure 4-17: Karnaugh map showing  
even values of a three-bit number

The Karnaugh map shows that it does not matter what the values of x 
and y are, only that z = 0. 

Adding More Variables to a Karnaugh Map

Each time you add another variable to a Karnaugh map, you need to double 
the number of cells. The only requirement for the Karnaugh map to work 
is that you arrange the minterms, or maxterms, according to the adjacency 
rule. Figure 4-18 shows a four-variable Karnaugh map for minterms. The y 
and z variables are on the horizontal axis, and w and x are on the vertical. 

00 01 11 10
F(w, x, y, z) yz

wx

m000

01

11

10

m1 m3

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

m2

Figure 4-18: Mapping of four-variable  
minterms on a Karnaugh map

So far we have assumed that every minterm (or maxterm) is accounted 
for in our functions. But design does not take place in a vacuum. We might 
have knowledge about other components of the overall design telling us 
that some combinations of variable values can never occur. Next, we’ll see 
how to take this knowledge into account in your function simplification 
process. The Karnaugh map provides an especially clear way to visualize 
the situation. 

Don’t Care Cells

Sometimes, you have information about the values that the variables can 
have. If you know which combinations of values will never occur, the min-
terms (or maxterms) that represent those combination are irrelevant. For 
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example, you may want a function that indicates whether one of two pos-
sible events has occurred, but you know that the two events cannot occur 
simultaneously. Let’s name the events x and y, and let 0 indicate that the 
event has not occurred and 1 indicate that it has. Table 4-12 shows the truth 
table for our function, F(x, y).

Table 4-12: Truth Table  
for x or y Occurring,  
but Not Both

x y F(x, y)

0 0 0

0 1 1

1 0 1

1 1 X

We can show that both events cannot occur simultaneously by placing an 
X in that row. We can draw a Karnaugh map with an X for the minterm that 
can’t exist in the system, as shown in Figure 4-19. The X represents a don’t 
care cell—we don’t care whether this cell is grouped with other cells or not.

F(x, y) y

x
0

1 X

0 1

1

1

Figure 4-19: Karnaugh  
map for F(x, y), showing  
a “don’t care” cell

Since the cell that represents the minterm (x ∧ y) is a “don’t care” cell, 
we can include it, or not, in our minimization groupings, leading to the 
two groupings shown. The Karnaugh map in Figure 4-19 leads us to the 
solution:

F(x , y) = x ∨ y

which is a simple OR gate. You probably guessed this solution without hav-
ing to use a Karnaugh map. You’ll see a more interesting use of “don’t care” 
cells when you learn about the design of two digital logic circuits at the end 
of Chapter 7. 
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Combining Basic Boolean Operators
As mentioned earlier in this chapter, we can combine basic Boolean opera-
tors to implement more-complex Boolean operators. Now that you know 
how to work with Boolean functions, we’ll design one of the more common 
operators, the exclusive or, often called XOR, using the three basic operators, 
AND, OR, and NOT. It’s so commonly used that it has its own circuit symbol.

XOR

The XOR is a binary operator. The result is 1 if one, and only one, of 
the two operands is 1; otherwise, the result is 0. We’ll use ⊻ to designate 
the XOR operation. It’s also common to use the ⊕ symbol. Figure 4-20 
shows the XOR gate operation with inputs x and y.

x y x ⊻ y

0 0 0

0 1 1

1 0 1

1 1 0

Figure 4-20: The XOR gate acting on two variables, x and y

The minterm implementation of this operation is

x ⊻ y = (x ∧ ¬y) ∨ (¬x ∧ y)

The XOR operator can be implemented with two AND gates, two NOT 
gates, and one OR gate, as shown in Figure 4-21.

x ⊻ y

x

y

Figure 4-21: XOR gate made from AND, OR, and  
NOT gates

We can, of course, design many more Boolean operators. But we’re 
going to move on in the next few chapters and see how these operators can 
be implemented in hardware. It’s all done with simple on/off switches.

x
y x ⊻ y
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YOUR T UR N

1.	 Design a function that will detect all the four-bit integers that are even.

2.	 Find a minimal sum-of-products expression for this function:

F(x, y, z)  =  (¬x  ∧  ¬y  ∧ ¬z)  ∨  (¬x  ∧  ¬y  ∧  z)  ∨  (¬x  ∧  y  ∧  ¬z)  ∨  (x ∧  ¬y  ∧  ¬z)   
∨  (x  ∧  y  ∧  ¬z)  ∨  (x  ∧  y  ∧  z)

3.	 Find a minimal product-of-sums expression for this function:

F(x, y, z)  =  (x  ∨  y  ∨  z)  ∧  (x  ∨  y  ∨  ¬z)  ∧  (x  ∨  ¬y  ∨  ¬z)   
∧  (¬x  ∨  y   ∨  z)  ∧  (¬x  ∨  ¬y  ∨  ¬z)

4.	 The arrangement of the variables for a Karnaugh map is arbitrary, but 
the minterms (or maxterms) need to be consistent with the labeling. Show 
where each minterm is located with this Karnaugh map axis labeling using 
the notation of Figure 4-11.

F(x, y, z) xy

z
0

1

00 01 11 10

5.	 The arrangement of the variables for a Karnaugh map is arbitrary, but 
the minterms (or maxterms) need to be consistent with the labeling. Show 
where each minterm is located with this Karnaugh map axis labeling using 
the notation of Figure 4-11.

F(x, y, z) xz

y
0

1

00 01 11 10

6.	 Create a Karnaugh map for five variables. You’ll probably need to review 
the Gray code in Table 4-10 and increase it to five bits.

Design a logic function that detects the single-digit prime numbers. Assume 
that the numbers are coded in four-bit BCD (see Table 2-7 in Chapter 2). 
The function is 1 for each prime number.
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What You’ve Learned

Boolean operators    The basic Boolean operators are AND, OR, and 
NOT.

Rules of Boolean algebra    Boolean algebra provides a mathematical 
way to work with the rules of logic. AND works like multiplication, and 
OR is similar to addition in elementary algebra.

Simplifying Boolean algebra expressions    Boolean functions specify 
the functionality of a computer. Simplifying these functions leads to a 
simpler hardware implementation.

Karnaugh maps    These provide a graphical way to simplify Boolean 
expressions.

Gray code    This shows how to order the cells in a Karnaugh map.

Combining basic Boolean operators    XOR can be created from AND, 
OR, and NOT.

The next chapter starts with an introduction to basic electronics that 
will provide a basis for understanding how transistors can be used to imple-
ment switches. From there, we’ll look at how transistor switches are used to 
implement logic gates.



5
L O G I C  G A T E S

In the previous chapter, you learned about 
Boolean algebra expressions and how to 

implement them using logic gates. In this 
chapter, you’ll learn how to implement logic 

gates in hardware by using transistors, the solid-state 
electronic devices used to implement the on/off 
switches we’ve been discussing throughout this book.

To help you to understand how transistors operate, we’ll start with a sim-
ple introduction to electronics. From there, you’ll see how transistors can be 
connected in pairs to switch faster and use less electrical power. We’ll end the 
chapter with some practical considerations regarding the use of transistors to 
construct logic gates. 
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Crash Course in Electronics
You don’t need to be an electrical engineer to understand how logic gates 
work, but some understanding of the basic concepts can help. This section 
provides a brief overview of the fundamental concepts of electronic circuits. 
We’ll begin with two definitions.

Current refers to the movement of electrical charge. Electrical charge is 
measured in coulombs. A flow of one coulomb per second is defined as one 
ampere, often abbreviated as amp. Current flows through an electrical circuit 
only if there is a completely connected path from one side of the power source 
to the other side.

Voltage refers to the difference in electrical energy per unit charge, also 
called potential difference, between two points in an electrical circuit. One volt 
is defined as the electrical difference between two points on a conductor (the 
medium the current flows through) when one ampere of current flowing 
through the conductor dissipates one watt of power.

A computer is constructed from the following electronic components:

•	 Power source that provides the electrical power

•	 Passive components that affect current flow and voltage levels, 
but whose characteristics cannot be altered by another electronic 
component

•	 Active components that switch between various combinations of the 
power source, passive components, and other active components under 
the control of one or more other electronic components

•	 Conductors that connect the other components together

Let’s look at how each of these electronic components works.

Power Supplies and Batteries
In almost all countries, electrical power comes in the form of alternating cur-
rent (AC). For AC, a plot of the magnitude of the voltage versus time shows 
a sinusoidal wave shape. Computer circuits use direct current (DC) power, 
which, unlike AC, does not vary over time. A power supply is used to convert 
AC power to DC, as shown in Figure 5-1.

Voltage

+

− AC

Power
supply

DC
Time

Voltage

+

−
Time

Figure 5-1: AC/DC power supply

Batteries also provide DC electrical power. When drawing circuits, we’ll 
use the symbol for a battery (Figure 5-2) to designate a DC power supply. 
The power supply in Figure 5-2 provides 5 volts DC.
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5.0 V

Figure 5-2: Circuit  
symbol for a 5-volt  
DC power source

Throughout this book, you’ve seen that everything that goes on in a 
computer is based on a system of 1s and 0s. But how are these 1s and 0s phys-
ically represented? Computer circuits distinguish between two different 
voltage levels to provide logical 0 and 1. For example, logical 0 may be rep-
resented by 0 volts DC and logical 1 by 5 volts DC. The reverse could also be 
implemented: 5 volts as logical 0 and 0 volts as logical 1. The only require-
ment is that the hardware design be consistent. Luckily, programmers don’t 
need to worry about the actual voltages used—that’s best left to the computer 
hardware engineers. 

N O T E 	 Electronic devices are designed to operate reliably within a range of voltages. For 
example, a device designed to operate at a nominal 5 volts typically has a tolerance  
of ±5%, or 4.75 to 5.25 volts.

Because computer circuits are constantly switching between the two volt-
age levels, when the voltage is suddenly switched from one level to another, 
computer hardware engineers need to consider the time-dependent char-
acteristics of the circuit elements. We’ll look at these characteristics in the 
following section.

Passive Components
All electrical circuits have resistance, capacitance, and inductance. These 
electromagnetic properties are distributed throughout any electronic 
circuit:

Resistance     Impedes current flow, thus dissipating energy. The elec-
trical energy is transformed into heat.

Capacitance     Stores energy in an electric field. Voltage across a capac-
itance cannot change instantaneously.

Inductance     Stores energy in a magnetic field. Current through an 
inductance cannot change instantaneously.

It takes time for energy to be stored as an electric field in capacitance, 
or as a magnetic field in inductance, so these two properties impede changes 
in voltage and current. These two properties are lumped together with 
resistance and called impedance. The impedance to changes slows down the 
switching that takes place in a computer, and the resistance consumes elec-
trical power. We’ll be looking at the general timing characteristics of these 
properties in the remaining part of this section but will leave a discussion of 
power consumption to more advanced books on the topic.
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To get a feel for the effects of each of these properties, we’ll consider the 
discrete electronic devices that are used to place these properties in a specific 
location in a circuit: resistors, capacitors, and inductors. They are part of a 
broader class of electronic components called passive components, which can-
not be controlled electronically. They simply consume or store the energy. 

Figure 5-3 shows the circuit symbols for the passive electronic devices 
we’ll be discussing. Each is described next.

(a) Resistor (b) Capacitor

(c) Inductor (d) Switch

1.0 kΩ 1.0 μF

1.0 μH

Figure 5-3: Circuit symbols for  
passive devices

Switches

A switch can be in one of two positions—open or closed. In the open posi-
tion, there is no connection between the two ends. When closed, the con-
nection between the two ends is complete, thus conducting electricity. 
The symbol in Figure 5-3 (d) typically indicates a switch that is activated 
manually. In “Transistors” on page 100, you’ll learn that a computer uses 
transistors for open/closed switches, which are controlled electronically, thus 
implementing the on/off logic that forms the basis of a computer.

Resistors

A resistor is used to limit the amount of current in a specific location in a 
circuit. By limiting the current flow into a capacitor or inductor, a resistor 
affects the time it takes for these other devices to build up their energy 
storage. The amount of resistance is usually chosen in conjunction with the 
amount of capacitance or inductance to provide specific timing character-
istics. Resistors are also used to limit current flowing through a device to 
nondestructive levels. 

As it limits current flow, a resistor irreversibly transforms the electri-
cal energy into heat. A resistor doesn’t store energy, unlike a capacitor or 
inductor, which can return the stored energy to the circuit at a later time.

The relationship between voltage and current for a single resistor is 
given by Ohm’s law,

V(t) = I(t) × R

where V(t) is the voltage difference across the resistor at time t, I(t) is the cur-
rent flowing through it at time t, and R is the value of the resistor. Resistor 
values are specified in ohms.
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The circuit shown in Figure 5-4 shows two resistors connected through 
a switch to a power supply, which supplies 5 volts. The Greek letter Ω is used 
to indicate ohms, and kΩ indicates 103 ohms. Since current can flow only 
in a closed path, no current flows until the switch is closed.

5.0 V

1.0 kΩ

1.5 kΩ

B

C

A

+

−

I

Figure 5-4: Two resistors in series with a power  
supply and switch

In Figure 5-4, both resistors are in the same path, so when the switch is 
closed, the same current, I, flows through each of them. Resistors that are 
in the same current flow path are said to be connected in series. To determine 
the amount of current flowing from the battery, we need to compute the 
total resistance in the current path.

The total resistance in the path of the current is the sum of the two 
resistors:

R	 = 1.0 kΩ + 1.5 kΩ 
 	  = 2.5 kΩ

Thus, the voltage, 5 volts, is applied across a total of 2.5 kΩ. Solving for 
I, and leaving out t because the power supply voltage doesn’t vary with time,

I =     
R
V

2.5 × 103 ohms

5.0 volts
=

= 2.0 × 10–3 ohms

= 2.0 ma

where ma means milliamps.
We can now determine the voltage difference between points A and B 

in the circuit in Figure 5-4 by multiplying the resistor value and current:

VAB	   = 1.0 kΩ × 2.0 ma  
	    = 2.0 volts

Similarly, the voltage difference between points B and C is

VBC	   = 1.5 kΩ × 2.0 ma  
	    = 3.0 volts

Thus, connecting the resistors in series serves as a voltage divider, divid-
ing the 5 volts between the two resistors—2.0 volts across the 1.0 kΩ resistor 
and 3.0 volts across the 1.5 kΩ resistor.

I	  thinsp=VR 
	  thinsp=5.0 volts2.5 × 103 ohms  
	  thinsp=2.0×10-3amps 

= 2.0 ma
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Figure 5-5 shows the same two resistors connected in parallel.

5.0 V 1.0 kΩ 1.5 kΩ

A

C

IT

I1 I2
+

−

Figure 5-5: Two resistors in parallel

In Figure 5-5, the full voltage of the power supply, 5 volts, is applied 
across points A and C when the switch is closed. Thus, each resistor has  
5 volts applied across it, and we can use Ohm’s law to compute the current 
through each:

I
1 
=    

R
1

V

1.0 kΩ

5.0 volts
=

= 5.0 × 10–3 amps

= 5.0 ma

and

I2 =    
R

2

V

1.5 kΩ

5.0 volts
=

= 3.3 ma

The total current, IT = I1 + I2, supplied by the power supply when the 
switch is closed is divided at point A to supply both the resistors. It must 
equal the sum of the two currents through the resistors:

IT	   = I1 + I2 
 
	    = 5.0 ma + 3.3 ma 
	    = 8.3 ma

Capacitors

A capacitor stores energy in the form of an electric field, which is essentially 
the electric charge at rest. A capacitor initially allows current to flow into 
the capacitor. Instead of providing a continuous path for the current flow, a 
capacitor stores the electric charge, creating an electric field and thus caus-
ing the current flow to decrease over time.

Since it takes time for the electric field to build up, capacitors are 
often used to smooth out rapid changes in voltage. When there is a sudden 
increase in current flow into the capacitor, the capacitor tends to absorb  

I1	  thinsp=VR1 
	  thinsp= 5.0 volts1.0 

kΩ 
	  thinsp=5.0×10-3 

amps  
= 5.0 ma

I2	  thinsp=VR 2 
	  thinsp= 5.0 

volts1.5 kΩ 
	  thinsp= 3.3 

ma
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the electric charge. Then when the current flow suddenly decreases, the 
stored electric charge is released from the capacitor.

The voltage across a capacitor changes with time according to 

V(t) =    
C
1
∫  

t

I(t)dt
o

where V(t) is the voltage difference across the resistor at time t, I(t) is the 
current flowing through it at time t, and C is the value of the capacitor in 
farads; the symbol for farads is F.

N O T E 	 In case you haven’t studied calculus, the ∫ symbol represents integration, which can 
be thought of as “infinitesimal summation.” This equation says that the voltage sums 
up as time increases from 0 to the current time, t. You’ll see a graphic view of this in 
Figure 5-7.

Figure 5-6 shows a 1.0 μF (microfarad) capacitor being charged 
through a 1.0 kΩ resistor.

5.0 V
+

−

1.0 kΩ BA I(t)

C

1.0 μF

Figure 5-6: Capacitor in series with a resistor.  
VAB is the voltage across the resistor, and VBC is  
the voltage across the capacitor.

As you will see later in the chapter, this circuit is a rough simulation of the 
output of one transistor connected to the input of another. The output of the 
first transistor has resistance, and the input to the second transistor has capac-
itance. The switching behavior of the second transistor depends upon the volt-
age across the (equivalent) capacitor, VBC(t), reaching a threshold value.

Let’s look at the time it takes for the voltage across the capacitor to 
charge up to a threshold value. Assuming the voltage across the capacitor, 
VBC, is 0 volts when the switch is first closed, current flows through the resis-
tor and into the capacitor. The voltage across the resistor plus the voltage 
across the capacitor must be equal to the voltage available from the power 
supply. That is,

5.0 = I(t)R + VBC(t)

Starting with the voltage across the capacitor, VBC, at 0 volts, when the 
switch is first closed, the full voltage of the power supply, 5 volts, will appear 
across the resistor. Thus, the initial current flow in the circuit will be

Iinitial  =    
1.0 kΩ

= 5.0 ma

5.0 volts

V(t)=1C0
tI(t)dt

I initial	  thinsp=5.0 
volts1.0 kΩ 

	  thinsp= 5.0 ma
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This initial surge of current into the capacitor causes the voltage across 
the capacitor to build up toward the power supply voltage. The previous 
integral equation shows that this buildup exponentially decreases as the 
voltage across the capacitor approaches its final value. As the voltage across 
the capacitor, VBC(t), increases, the voltage across the resistor, VAB(t), must 
decrease. When the voltage across the capacitor finally equals the voltage 
of the power supply, the voltage across the resistor is 0 volts, and current 
flow in the circuit becomes zero. The rate of the exponential decrease in 
current flow is given by the product of the resistor value and the capacitor 
value, RC, called the time constant.

For the values of R and C in this example, we get

RC	  = 1.0 × 103 ohms × 1.0 × 10–6 farads 
	   = 1.0 × 10–3 seconds 
	   = 1.0 msec

Assuming the capacitor in Figure 5-6 has 0 volts across it when the 
switch is closed, the voltage that develops across the capacitor over time is 
given by

−t
10-3VBC(t) = 5.0 × (1 – e   )

You can see this graphically in Figure 5-7. The left y -axis shows voltage 
across the capacitor, while the right-side voltage is across the resistor. Note 
that the scales go in opposite directions.
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Figure 5-7: Capacitor charging over time  
in the circuit in Figure 5-6

At the time t = 1.0 millisecond (one time constant), the voltage across 
the capacitor is

VBC  =    

= 5.0 (1 − e−1)

5.0 1 − e
−10−3

10−3( (

= 5.0 × 0.63

= 3.15 volts

VBC(t) = 5.0 × (1 
– e-t1.0)

VBC	  thinsp=5.0(1-e-10-310-3) 
	  thinsp= 5.0(1-e -1) 
	  thinsp=5.0×0.63 
	  thinsp= 3.15 volts
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which is more than the threshold voltage of the typical transistors used in a 
computer. Again, you’ll learn more about this later in the chapter.

After six constants of time have passed, the voltage across the capacitor 
has reached 

VBC  =    

= 5.0 (1 − e−1)

5.0 1 − e
−6 × 10−3

10−3( (

= 5.0 × 0.63

= 3.15 volts

At this time, the voltage across the resistor is essentially 0 volts, and cur-
rent flow is very low.

Inductors

An inductor stores energy in the form of a magnetic field, which is created by 
electric charge in motion. An inductor initially prevents the flow of electri-
cal charge, requiring time for the magnetic field to build. By providing a 
continuous path for the flow of electrical charge (current), an inductor cre-
ates the magnetic field. 

In a computer, inductors are mainly used in the power supply and the 
circuitry that connects the power supply to the CPU. If you have access to the 
inside of a computer, you can probably see a small (about 1 cm in diameter) 
donut-shaped device with wire wrapped around it on the motherboard near 
the CPU. This is an inductor used to smooth the power supplied to the CPU.

Although either an inductor or a capacitor can be used to smooth the 
power, the inductor does it by resisting current changes, and the capacitor 
does it by resisting voltage changes. The choice of which one, or even both, 
to use for smoothing would take us into a much more complicated discus-
sion of electronics.

The relationship between voltage V(t) at time t across an inductor and 
current flow through it, I(t), is given by the equation

dt
dI(t)

V(t) = L

where L is the value of the inductor in henrys; the symbol for henrys is H.

N O T E 	 Again, we’re using some calculus here. The dI(t)/dt notation represents differentia-
tion, which is the rate of change of I(t) with respect to time, t. This equation says that 
the voltage at time, t, is proportional to the rate of change of I at that time. (You’ll see 
a graphic view of this later in Figure 5-9.)

Figure 5-8 shows a 1.0 μH inductor connected in series with a 1.0 kΩ 
resistor.

VBC	  thinsp=5.0(1-e-6×10-310-3) 
	  thinsp=5.0(1-e -6) 
	  thinsp= 5.0×0.997 
	  thinsp=4.99 volts

V(t)=LdI(t)dt
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5.0 V
+

−

1.0 μH BA I(t)

C

1.0 kΩ

Figure 5-8: Inductor in series with a resistor

When the switch is open, no current flows through this circuit. Upon 
closing the switch, the inductor initially impedes the flow of current, tak-
ing time for a magnetic field to be built up in the inductor. Before the 
switch is closed, no current is flowing through the resistor, so the volt-
age across it, VBC, is 0 volts. The full voltage of the power supply, 5 volts, 
appears across the inductor, VAB. As current begins to flow through the 
inductor, the voltage across the resistor, VBC(t), grows. This results in an 
exponentially decreasing voltage across the inductor. When the voltage 
across the inductor finally reaches 0 volts, the voltage across the resistor is  
5 volts, and current flow in the circuit is 5.0 ma.

The rate of the exponential voltage decrease is given by the time con-
stant L/R. Using the values of R and L in Figure 5-8, we get

1.0 × 103 ohms

1.0 × 10–6 henrys
=    

R

L

= 1.0 × 10–9 seconds

= 1.0 nanoseconds

When the switch is closed, the voltage that develops across the inductor 
over time is given by

−t

10−9V
AB

(t) = 5.0 × e

as shown in Figure 5-9. The left y -axis shows voltage across the resistor, with 
the right-side voltage across the inductor. Note that the scales go in oppo-
site directions.
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Figure 5-9: Inductor building a magnetic  
field over time in the circuit in Figure 5-8

LR	  thinsp=1.0×10-6 hen-
rys1.0×103 ohms 

	  thinsp=1.0×10-9 sec-
onds 

=1.0 nanoseconds

VAB(t)=5.0×e-t10-9
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At time t = 1.0 nanoseconds (one time constant), the voltage across the 
inductor is

VAB =    

= 5.0 (1 − e−1)

5.0 1 − e
−10−9

10−9

= 5.0 × 0.63

= 3.15 volts

After about 6 nanoseconds (six time constants), the voltage across the 
inductor is essentially equal to 0 volts. At this time, the full voltage of the 
power supply is across the resistor, and a steady current of 5.0 ma flows.

This circuit in Figure 5-8 shows how inductors can be used in a CPU 
power supply. The power supply in this circuit simulates the computer power 
supply, and the resistor simulates the CPU, which is consuming the electri-
cal energy from the power supply. The voltage produced by a power supply 
includes noise, which consists of small, high-frequency fluctuations added to 
the DC level. As shown in Figure 5-9, the voltage supplied to the CPU, VBC(t), 
changes little over short periods of time. The inductor connected in series 
between the power supply and the CPU acts to smooth out the voltage that 
powers the CPU.

Power Consumption

An important part of hardware design is power consumption, especially in 
battery-powered devices. Of the three electromagnetic properties we’ve dis-
cussed here, resistance is the primary consumer of power.

Energy is the ability to cause change, and power is a measure of how fast 
energy can be used to make the change. The basic unit of energy is a joule. 
The basic unit of power is a watt, which is defined as expending one joule 
per second. For example, I have a backup battery that can store 240 WH. 
That means it can store enough energy to provide 240 watts for one hour or 
120 watts for two hours. It can store 240 WH × 360 seconds/hour = 864,000 
joules. The units for volt and ampere are defined such that 1 watt = 1 volt × 
1 ampere. This gives rise to the formula for power,

P = V × I

where P is the power used, V is the voltage across the component, and I is 
the current flowing through it.

After a brief charging time, a capacitor prevents current flow, so the 
amount of power used by a capacitor goes to zero. It simply stores energy in the 
form of an electrical field. And after a brief field buildup time, the voltage 
across an inductor goes to zero, so the amount of power used by an inductor 
goes to zero. An inductor stores energy in the form of a magnetic field.

However, a resistor doesn’t store energy. As long as there is a voltage 
difference across a resistor, current flows through it. The power used by a 
resistor, R, is given by

P 	 = V × I 
	  = I × R × I 
	  = I2 × R

VAB=5.0(1-e-10-910-9) 
= 5.0(1-e -1) 
=5.0×0.63 
=3.15 volts
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This power is converted to heat in the resistor. Since the power con-
sumption increases by the square of the current, a common hardware 
design goal is to reduce the amount of current flow.

This section has been an idealized discussion of the passive compo-
nents that computer engineers include in their designs. In the real world, 
each component includes elements of all three characteristics—resistance, 
capacitance, and inductance—that the hardware design engineer needs 
to take into account. These secondary effects are subtle and often trouble-
some in the design.

The rest of this chapter is devoted to discussing the active components, 
those controlled electronically, that are used to implement the switches 
that are the basis for a computer. As you will see, the active components 
include resistance and capacitance, which affect the design of the circuit 
they’re used in.

Transistors
We have already described a computer as a collection of two-state switches. 
In previous chapters, we discussed how data can be represented by the set-
tings, 0 or 1, of these switches. Then we moved on to look at how 0s and 1s 
can be combined using logic gates to implement logical functions. In this 
section, we’ll see how transistors can be used to implement the two-state 
switches that make up a computer.

A transistor is a device whose resistance can be controlled electronically, 
thus making it an active component. The ability to be controlled electronically 
is what distinguishes the switches made from transistors from the simple 
on/off switches you saw earlier in the chapter, which could be controlled 
mechanically. Before describing how a transistor can be used as a switch, 
let’s look at how we’d implement a logic gate using mechanical on/off 
switches. We’ll use the NOT gate for this example.

Figure 5-10 shows two push-button switches connected in series between 
5 volts and 0 volts. The top switch is normally closed. When its button is 
pushed (from the left side), the connection between the two small circles is 
broken, thus opening the circuit at this point. The bottom switch is normally 
open. When its button is pushed, a connection is made between the two 
small circles, thus completing the circuit at this point.

Now we’ll let 5 volts represent a 1 and 0 volts a 0. The input to this NOT 
gate, x, pushes the two buttons simultaneously. We will control x in the 
following way: when x = 1, we’ll push the two buttons, and when x = 0, we 
will not push the buttons. When the button is not pushed, x = 0, the 5 volts 
are connected to the output, ¬x, which represents 1. When the button is 
pushed, x = 1, the 5 volts are disconnected, and the 0 volts, which represent 
0, are connected to the output. Thus, an input of 1 gets an output of 0, and 
an input of 0 gets an output of 1—a NOT gate.

Early computing devices did use mechanical switches to implement 
their logic, but the results were very slow by today’s standards. Modern 
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computers use transistors, which are electronic devices made from semicon-
ductor materials that can be switched between their conducting and non-
conducting states quickly under electronic control.

5 V

0 V

x ¬x

Figure 5-10: NOT gate made  
from two push-button switches

Just as with the mechanically controlled push-button example, we use 
two different voltages to represent 1 and 0. For example, we might use a 
high voltage, say +5 volts, to represent 1, and a low voltage, say 0 volts, to 
represent 0. But transistors can be switched on or off electronically, which 
makes them much faster than the mechanical switches used in the original 
computers. Transistors take up much less space and consume much less 
electrical power.

In the following sections, we’ll look at two transistors commonly used in 
modern computers.

MOSFET Switch
The most commonly used switching transistor in today’s computer logic 
circuits is the metal-oxide-semiconductor field-effect transistor (MOSFET). There 
are several types of MOSFET that use different voltage levels and polarities. 
I’ll describe the behavior of the most common type, the enhancement-mode 
MOSFET, and leave the details of the other variations to more advanced 
books on the topic. The brief discussion here should help you to under-
stand the basics of how they work.

The basic material in a MOSFET is typically silicon, which is a semicon-
ductor, meaning it conducts electricity, but not very well. Its conductivity is 
improved by adding an impurity, a process called doping. Depending on the 
type of impurity, the electrical conductivity can be either the flow of electrons 
or the flow of lack of electrons (called holes). Since electrons have a negative 
electrical charge, the type that conducts electrons is called N-type, and the 
type that conducts holes is called P-type. The main conduction path through 
a MOSFET is the channel, which is connected between the source and the drain 
terminals on the MOSFET. The gate is made from the opposite type of semi-
conductor. The gate controls the conductivity through the channel.
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Figure 5-11 (a) and (b) shows the two basic types of MOSFET, N-channel 
and P-channel, respectively. I’ve shown each MOSFET connected to a 5-volt 
power source through a resistor. 

5 V

0 V

(a) N-channel (b) P-channel

Gate

Drain

Source

5 V

0 V

Gate

Drain

Source

R

R

Figure 5-11: Two basic types of MOSFETs

These are simplified circuits so we can discuss how MOSFETs work. 
Each MOSFET has three connection points, or terminals. The gate is used 
as the input terminal. Voltage applied to the gate, relative to the volt-
age applied to the source, controls current flow through the MOSFET. 
The drain is used as the output. The source of an N-channel MOSFET is 
connected to the lower voltage of the power supply, and the source of a 
P-channel is connected to the higher voltage.

After learning about complements in Boolean algebra, it probably 
does not surprise you that the two types of MOSFETs have complementary 
behavior. You’ll see in the following sections how we can connect them in 
complementary pairs that make for faster, more efficient switches than 
using only one.

First, we’ll look at how each works as a single switching device, starting 
with the N-channel MOSFET. 

N-Channel MOSFET

In Figure 5-11 (a), the drain of the N-channel MOSFET is connected to the 
5-volt side of the power supply through the resistor, R, and the source to the 
0-volt side. 

When the voltage applied to the gate is positive with respect to the 
source, the resistance between the drain and the source of the N-channel 
MOSFET decreases. When this voltage reaches a threshold value, typically 
in the range of 1 volt, the resistance becomes very low, thus providing a 
good conduction path for current between the drain and the source. The 
resulting circuit is equivalent to Figure 5-12 (a).

In this circuit, Figure 5-12 (a), current flows from the 5-volt connection 
of the power supply to the 0-volt connection through the resistor R. The 
voltage at the drain will be 0 volts. A problem with this current flow is that 
the resistor consumes power, simply converting it to heat. In a moment, 
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we’ll see the reason we don’t want to increase the amount of resistance to 
limit the current flow to reduce power consumption.

5 V

0 V
Source

Drain

R

Gate = 5 V

(a) N-channel MOSFET on

5 V

0 V
Source

Drain

R

Gate = 0 V

(b) N-channel MOSFET off

Figure 5-12: N-channel MOSFET switch equivalent circuit: (a) switch  
closed, (b) switch open

If the voltage applied to the gate is switched to be nearly the same as 
the voltage applied to the source, 0 volts in this example, the MOSFET 
turns off, resulting in the equivalent circuit shown in Figure 5-12 (b). The 
drain is typically connected to another MOSFET’s gate, which draws cur-
rent only briefly as it switches from one state to the other. After this brief 
switching of state, the connection of the drain to another MOSFET’s gate 
does not draw current. Since no current flows through the resistor, R, there 
is no voltage difference across it. Thus, the voltage at the drain will be at  
5 volts, and the resistor is said to be acting as the pull-up device, because when 
the MOSFET is turned off, the circuit is completed through the resistor, 
which acts to pull the voltage on the drain up to the higher voltage of the 
power supply.

P-channel MOSFET

Now, let’s look at the P-channel MOSFET, shown in Figure 5-11 (b). Here 
the drain is connected to the lower voltage (0 V) through a resistor, and 
the source is connected to the higher-voltage power supply (5 V). When the 
voltage applied to the gate is switched to be nearly the same as the voltage 
applied to the source, the MOSFET turns off. In this case, the resistor, R, 
acts as a pull-down device, to pull the voltage on the drain down to 0 volts. 
Figure 5-13 (a) shows the equivalent circuit.

When the voltage applied to the gate is negative with respect to 
the source, the resistance between the drain and source of the P-channel 
MOSFET decreases. When this voltage reaches a threshold value, typically 
in the range of –1 volt, the resistance becomes very low, thus providing 
a good conduction path for current between the drain and the source. 
Figure 5-13 (b) shows the resulting equivalent circuit when the gate is –5 
volts with respect to the source.

There are a couple of problems with both MOSFET types. Looking at 
the equivalent circuits in Figure 5-12 (a) and 5-13 (b), you can see that the 
respective MOSFET in its on state acts like a closed switch, thus causing 
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current to flow through the pull-up or pull-down resistor. The current flow 
through the resistor when the MOSFET is in its on state consumes power 
that is simply converted to heat.

5 V

0 V

Source

Drain

R

Gate = 5 V

(a) P-channel MOSFET off

5 V

0 V

Source

Drain

R

Gate = 0 V

(b) P-channel MOSFET on

Figure 5-13: P-channel MOSFET switch equivalent circuit: (a) switch  
closed, (b) switch open

In addition to the pull-up and pull-down resistors using power when 
a MOSFET is in its on state, there’s another problem with this hardware 
design. Although the gate of a MOSFET draws essentially no current to 
remain in either an on or off state, a brief burst of current into the gate is 
required to change the MOSFET’s state. That current is supplied by the 
device connected to the gate, probably from the drain of another MOSFET. 
We won’t go into the details in this book, but the amount of current that 
can be supplied at the drain from this other MOSFET is largely limited by 
its pull-up or pull-down resistor. The situation is essentially the same as that 
in Figures 5-6 and 5-7, where you saw that the time it takes to charge a capaci-
tor is longer for higher-resistance values. 

So, there’s a trade-off here: the larger the resistors, the lower the cur-
rent flow, which reduces power consumption when the MOSFET is in the on 
state. But a larger resistor also reduces the amount of current available at 
the drain, thus increasing the amount of time it takes to switch a MOSFET 
connected to the drain. We’re left with a dilemma: small pull-up and pull-
down resistors increase power consumption, but large resistors slow down 
the computer. 

CMOS Switch
We can solve this dilemma with complementary metal-oxide semiconductor 
(CMOS) technology. To see how this works, let’s eliminate the pull-up and 
pull-down resistors and connect the drains of a P-channel and an N-channel 
together. The P-channel will replace the pull-up resistor in the N-channel cir-
cuit, and the N-channel will replace the pull-down resistor in the P-channel 
circuit. We’ll also connect the two gates together, giving the circuit shown in 
Figure 5-14.
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5 V
P source

Drains

N source
0 V

Gates

Figure 5-14: CMOS inverter  
(NOT) circuit

Figure 5-15 (a) shows the equivalent circuit with the gates at the higher 
power supply voltage, 5 volts. The pull-up MOSFET (a P-channel) is off, 
and the pull-down MOSFET (an N-channel) is on, so the drains are pulled 
down to the lower power supply voltage, 0 volts. In Figure 5-15 (b) the gates 
are at the lower power supply voltage, 0 volts, which turns the P-channel 
MOSFET on and the N-channel MOSFET off. The P-channel MOSFET 
pulls the drains up to the higher power supply voltage, 5 volts.

5 V
P source

N source

Drains

0 V

(a) N-channel on

Gates = 5 V

5 V
P source

N source

Drains

0 V

(b) P-channel on

Gates = 0 V

Figure 5-15: CMOS inverter equivalent circuit: (a) pull-up open and  
pull-down closed, (b) pull-up closed and pull-down open

We can summarize this behavior in Table 5-1. 

Table 5-1: Truth Table  
for a Single CMOS

Gates Drains

0 V 5 V

5 V 0 V

If we use the gates connection as the input, we use the drains connec-
tion as the output, and we let 5 volts be logical 1 and 0 volts logical 0, then 
the CMOS implements a NOT gate.
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The two main advantages of using CMOS circuits are

•	 They consume very little power. Because of the switching speed differ-
ence between N-channel and P-channel MOSFETs, only a small amount 
of current flows during the switching period. Less current means less 
heat, which is often the limiting factor in chip design.

•	 The circuit responds much faster. A MOSFET can supply the current 
at its output faster than a resistor, charging the gate of the following 
MOSFET. This allows us to build faster computers.

Figure 5-16 shows an AND gate implemented with three CMOSs. 

5 V

5 V

0 V

0 V

x

y

A x  ∧  y

Figure 5-16: AND gate from three CMOS transistors

The truth table, Table 5-2, shows the intermediate output from the first 
two CMOSs, point A in Figure 5-16.

Table 5-2: Truth Table  
for the AND Gate of  
Figure 5-16

x y A x ∧ y

0 0 1 0

0 1 1 0

1 0 1 0

1 1 0 1

From the truth table, we see that the signal at point A is ¬(x ∧ y). The 
circuit from point A to the output is a NOT gate. The result at point A is 
called the NAND operation. It requires two fewer transistors than the AND 
operation. We’ll look at the implications of this result in the next section.
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NAND and NOR Gates
As we saw in the previous section, the inherent design of transistors means 
that most circuits invert the signal. That is, for most circuits, a high voltage 
at the input produces a low voltage at the output, and vice versa. As a result, 
an AND gate will typically require a NOT gate at the output to achieve a 
true AND operation.

You also learned that it takes fewer transistors to produce NOT(AND) 
than a regular AND. The combination is so common that it has been given 
the name NAND gate. And, of course, we have an equivalent with the OR 
gate, called the NOR gate. 

NAND    A binary operator that gives a result of 0 if and only if both 
operands are 1 and gives 1 otherwise. We’ll use ¬(x ∧ x) to designate the 
NAND operation. Figure 5-17 shows the hardware symbol for the NAND 
gate along with a truth table showing its operation on inputs x and y. 

x y ¬(x ∧ y)

0 0 1

0 1 1

1 0 1

1 1 0

Figure 5-17: The NAND gate acting on two variables, x and y

NOR    A binary operator that gives a result of 0 if at least one of the two 
operands is 1 and gives 1 otherwise. We’ll use ¬(x ∨ y) to designate the 
NOR operation. Figure 5-18 shows the hardware symbol for the NOR 
gate along with a truth table showing its operation on inputs x and y.

x y ¬(x ∨ y)

0 0 1

0 1 0

1 0 0

1 1 0

Figure 5-18: The NOR gate acting on two variables, x and y

Notice the small circle at the output of the NAND and NOR gates in 
Figure 5-18. This signifies NOT, just as with the NOT gate (Figure 4-3).

x
y ¬(x  ∧   y)

x
y ¬(x ∨ y)
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Although in the previous chapter we explicitly showed NOT gates when 
inputs to gates are complemented, it’s common to simply use these small 
circles at the input to signify the complement. For example, Figure 5-19 
shows an OR gate with both inputs complemented. 

x y (¬x ∨ ¬y) ¬(x ∧ y)

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

Figure 5-19: An alternate way to draw a NAND gate

As the truth table shows, this is another way to implement a NAND 
gate. As you learned in Chapter 4, De Morgan’s law confirms this:

¬(x ∧ y) = (¬x ∨ ¬y)

NAND as a Universal Gate
One of the interesting properties about NAND gates is that they can be 
used to build AND, OR, and NOT gates. This means the NAND gate can 
be used to implement any Boolean function. In this sense, you can think of 
the NAND gate as a universal gate. Recalling De Morgan’s law, it probably 
won’t surprise you that a NOR gate can also be used as a universal gate. But 
the physics of CMOS transistors is such that NAND gates are faster and take 
less space, so they are almost always the preferred solution.

Let’s go through how to use a NAND gate to build AND, OR, and NOT 
gates. To build a NOT gate using NAND, simply connect the signal to both 
inputs of a NAND gate, as shown in Figure 5-20.

x ¬(x ∧ x) = ¬x

Figure 5-20: A NOT gate built  
from a NAND gate

To make an AND gate, we can observe that the first NAND gate in 
Figure 5-21 produces ¬(x ∧ y) and connect it to a NOT gate to produce (x ∧ y).

We can use De Morgan’s law to derive an OR gate. Consider the 
following:

¬(¬x ∧ ¬y)	 = ¬(¬x) ∨ ¬(¬y) 
	  = x ∨ y

x
y ¬x  ∨ ¬y
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x
y x ∧ y

¬(x ∧ y)

Figure 5-21: An AND gate built  
from two NAND gates

So to implement OR, we need three NAND gates, as shown in 
Figure 5-22. The two NAND gates at the x and y inputs are connected at  
NOT gates to produce ¬x and ¬y, which gives ¬((¬x) ∨ (¬y)) at the output  
of the third NAND gate.

x

y
x ∨ y

Figure 5-22: An OR gate built from  
three NAND gates

It looks like we are creating more complexity to build circuits from 
NAND gates, but consider this function:

F(w, x , y, z) = (w ∧ x) ∨ (y ∧ z)

Without knowing how logic gates are constructed, it would be reason-
able to implement this function with the circuit shown in Figure 5-23.

(w ∧ x) ∨ (y ∧ z)

w

z

x

y

Figure 5-23: F(w, x, y, z) using two AND  
gates and one OR gate

The involution property states that ¬(¬x) = x, so we can add two NOT 
gates in each path, as shown in Figure 5-24.

(w ∧ x) ∨ (y ∧ z)

w

z

x

y

Figure 5-24: F(w, x, y, z) using two AND gates, one  
OR gate, and four NOT gates

Comparing the two AND-gate/NOT-gate combinations that operate on 
the w, x, y, and z inputs with Figure 5-17, we see that each is simply a NAND 
gate. They will produce ¬(w ∧ x) and ¬(y ∧ z) at the outputs of the two left-
most NOT gates.
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We saw from the application of De Morgan’s law in Figure 5-19 that (¬a) 
∨ (¬b) = ¬(a ∧ b). In other words, we can replace the combination of the two 
rightmost NOT gates and OR gate with a single NAND gate.

¬(¬(w ∧ x) ∧ ¬(y ∧ z)) = (w ∧ x) ∨ (y ∧ z)

The resulting circuit in Figure 5-25 uses three NAND gates.

w

z

x

y
(w ∧ x) ∨ (y ∧ z)

Figure 5-25: F(w, x, y, z) using only three  
NAND gates

From simply viewing the logic circuit diagrams in Figures 5-23 and 5-25, 
it may seem that we haven’t gained anything in this circuit transformation. 
But we saw in the previous section that a NAND gate (point A in Figure 5-16) 
requires two fewer transistors than an AND gate. Thus, the NAND gate 
implementation is less power intensive and faster. Although we don’t show it 
here, the same is true of an OR gate. 

The conversion from an AND/OR/NOT gate design to one that uses 
only NAND gates is straightforward:

1.	 Express the function as a minimal sum of products.

2.	 Convert the products (AND terms) and the final sum (OR) to NANDs.

3.	 Add a NAND gate for any product with only a single literal.

Everything I’ve said about NAND gates here applies to NOR gates. You 
simply apply DeMorgan’s law to find the complement of everything. But as 
mentioned, NAND gates are typically faster and take less space than NOR 
gates, so they are almost always the preferred solution.

As with software, hardware design is an iterative process. Most prob-
lems do not have a unique solution, and you often need to develop several 
designs and analyze each one within the context of the available hardware. 
As the previous example shows, two solutions that look the same on paper 
may be very different at the hardware level. 

YOUR T UR N

1.	 Design a NOT gate, AND gate, and OR gate using NOR gates.

2.	 Design a circuit using NAND gates that detects the “below” condition for 
two two-bit integers, x and y, F(x, y) = 1. It’s common to use below/above 
for unsigned integer comparisons and less-than/greater-than for signed 
integer comparisons.
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What You’ve Learned

Basic electronics concepts    Resistance, capacitance, and inductance 
affect the voltages and current flow in an electronic circuit.

Transistors    Semiconductor devices that can be used as electronically 
controlled switches.

MOSFET    Metal-oxide-semiconductor field-effect transistors are the 
most commonly used switching device for implementing logic gates in 
computers. They come in both N-channel and P-channel types.

CMOS    N-channel and P-channel MOSFETs are paired in a comple-
mentary configuration to increase switching speed and reduce power 
consumption.

NAND and NOR gates    These require fewer transistors than AND 
and OR gates because of the inherent electronic characteristics of 
transistors.

In the next chapter, you’ll see how simple logic gates are connected in 
circuits to implement the complex operations needed to build a computer.
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C O M B I N A T I O N A L  
L O G I C  C I R C U I T S

In the previous chapter, you learned about 
a computer’s basic component, the logic 

gate. Computers are constructed from assem-
blages of logic gates, called logic circuits, that 

process digital information. In this and the following 
two chapters, we’ll look at how to build some of the 
logic circuits that make up CPUs, memory, and other 
devices. We won’t describe any of these units in their 
entirety; instead, we’ll look at a few small parts and dis-
cuss the concepts behind them. The goal is to provide 
an introductory overview of the ideas that underlie these 
logic circuits. 
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The Two Classes of Logic Circuits
Logic circuits come in two classes:

Combinational    A combinational logic circuit has output that depends 
only on the inputs given at any specific time and not on any previous 
inputs.

Sequential    A sequential logic circuit has outputs that depend both on 
previous and current inputs.

To elucidate these two types, let’s consider a TV remote. You can select 
a specific channel by entering a number on the remote. The channel selec-
tion depends only on the number you entered and ignores the channels 
you were viewing before. Thus, the relationship between the input and the 
output is combinational.

The remote control also has an input for going up or down one chan-
nel. This input depends on the previously selected channel and the previous 
sequence of up/down button pushes. The channel up/down buttons illus-
trate a sequential input/output relationship. 

We’ll explore sequential logic circuits in the next chapter. In this chap-
ter, we’ll go through several examples of combinational logic circuits to see 
how they function. 

SIGN A L VOLTAGE L E V EL S

Electronic logic circuits represent 1s and 0s with either a high or low voltage. 
We call the voltage that represents 1 the active voltage. If we use a higher volt-
age to represent 1, then the signal is called active-high. If we use a lower voltage 
to represent 1, then the signal is called active-low.

An active-high signal can be connected to an active-low input, but the 
hardware designer must take the difference into account. For example, say 
that the required logical input to an active-low input is 1. Since it is active-
low, that means the required voltage is the lower of the two. If the signal to 
be connected to this input is active-high, then a logical 1 is the higher of the 
two voltages, and the signal must first be complemented to be interpreted as 
a 1 at the active-low input.

I will use only logic levels—0 and 1—in the discussions of logic circuits in 
this book and avoid the actual voltage levels being used in the hardware. But 
you should know about the terminology because it can come up when talking 
to others or reading specifications sheets for components.
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Adders
We’ll start with one of the most fundamental operations performed in 
the CPU: adding two bits. Our eventual goal is to add two n -bit numbers.

Remember from Chapter 2 that the bits in a binary number are num-
bered from right (the least significant bit) to left (the most significant bit), 
starting with 0. We will start by showing how to add two bits in the ith bit 
position and complete the discussion showing how to add two four-bit num-
bers, taking into account the carry from each bit position.

Half Adder
Addition can be done with several kinds of circuits. We’ll start with the half 
adder, which simply adds the two bits in the current bit position of a number 
(expressed in binary). This is shown by the truth table, Table 6-1. In this 
table, xi is the i th bit of the number x. The values in the yi column repre-
sent the i th bit of the number y. Sumi is the i th bit of the number, Sum, and 
Carryi+1 is the carry from adding bits xi and yi.

Table 6-1: Adding Two Bits,  
Half-Adder

xi yi Carryi+1 Sumi

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The sum is the XOR of the two inputs, and the carry is the AND of the 
two inputs. Figure 6-1 shows the logic circuit for a half adder.

xi

yi
Sumi

Carryi+1

Figure 6-1: A half adder circuit

But there’s a flaw here: the half adder works with only two input bits. It 
can be used to add the two bits from the same bit position of two numbers, 
but it doesn’t take into account a possible carry from the next lower-order 
bit position. To allow for the carry, we’ll have to add a third input.
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Full Adder
Unlike the half adder, a full adder circuit has three one-bit inputs, Carryi, xi, 
and yi. Carryi is the carry that resulted when you added the two bits in the 
previous bit position (the bit to the right). For example, if we’re adding the 
two bits in bit position 5, the inputs to the full adder are the two bits in posi-
tion 5 plus the carry from adding the bits in bit position 4. Table 6-2 shows 
the results.

Table 6-2: Adding Two Bits, Full Adder

Carryi xi yi Carryi+1 Sumi

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

To design a full adder circuit, we start with the function that specifies 
when Sumi is 1 as a sum of product terms from Table 6-2.

Sumi(Carryi, xi, yi) = (¬ Carryi ∧ ¬ xi ∧ yi) ∨ (¬ Carryi ∧ xi ∧ ¬ yi)  
∨ (Carryi ∧ ¬ xi ∧ ¬ yi) ∨ (Carryi ∧ xi ∧ yi)

There are no obvious simplifications in this equation, so let’s look at the 
Karnaugh map for Sumi (Figure 6-2).

00 01 11 10

0

1

1 1

11

Sumi(Carryi, xi, yi)

Carryi

xiyi

Figure 6-2: A Karnaugh map for sum  
of three bits, Carryi, xi, and yi

There are no obvious groupings in Figure 6-2, so we are left with the 
four product terms to compute Sumi in the previous equation.

We saw in Chapter 4 that Carryi+1 can be expressed by this equation:

Carryi+1(Carryi, xi, yi) = (xi ∧ yi) ∨ (Carryi ∧ xi) ∨ (Carryi ∧ yi)
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Together, these two functions give the circuit for a full adder in Figure 6-3.

xi
yi

Carryi

Sumi

Carryi+1

Figure 6-3: A full adder circuit

As you can see, the full adder uses nine logic gates. In the next section, 
we’ll see if we can find a simpler circuit. 

Full Adder from Two Half Adders
To see if we can find a simpler solution for adding two bits and the carry 
from the next lower-order bit position, let’s go back to the equation for 
Sumi. Using the distribution rule, we can rearrange:

Sumi(Carryi, xi, yi)  = ¬ Carryi ∧ ((¬ xi ∧ yi) ∨ (xi ∧ ¬ yi))  
∨ Carryi ∧ ((¬ xi ∧ ¬ yi) ∨ (xi ∧ yi))

In Chapter 4, you learned that the quantity in the parentheses in the 
first product term is the XOR of xi and yi:

(¬ xi ∧ yi) ∨ (xi ∧ ¬ yi) = xi ⊻ yi

Thus, we have this:

Sumi(Carryi, xi, yi) = ¬ Carryi ∧ (xi ⊻ yi) ∨ Carryi ∧ ((¬ xi ∧ ¬ yi) ∨ (xi ∧ yi))

Now let’s manipulate the quantity in the parentheses in the second 
product term. Recall that in Boolean algebra x ∧ ¬ x = 0, so we can write 
the following:

(¬ xi ∧ ¬ yi) ∨ (xi ∧ yi)	  = (xi ∧ ¬ xi) ∨ (¬ xi ∧ ¬ yi) ∨ (xi ∧ yi) ∨ (yi ∧ ¬ yi) 
	   = xi ∧ (¬ xi ∨ yi) ∨ ¬ yi ∧ (¬ xi ∨ yi) 
	   = (xi ∨ ¬ yi) ∧ (¬ x ∨ yi) 
	   = xi ⊻ yi
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Thus,

Sumi(Carryi, xi, yi)	  = Carryi ∧ (xi ⊻ yi) ∨ Carryi ∧ ¬ (xi ⊻ yi) 
	   = Carryi ∨ (xi ⊻ yi)

We’ll do something to develop a Boolean function for Carryi+1 that will 
probably seem counterintuitive. Let’s start with the Karnaugh map for carry 
when adding three bits, Figure 4-13 from Chapter 4, but remove two of the 
groupings, as shown by the dotted lines in Figure 6-4.

xiyi

00 01 11 10

0

1
Carryi

Carryi+1(Carryi, xi, yi)

1

11 1

Figure 6-4: The Karnaugh map for carry  
from Figure 4-13, redrawn without two  
overlapping groupings (dotted lines)

This will give us the following equation:

Carryi+1	  = (xi ∧ yi) ∨ (Carryi ∧ ¬ xi ∧ yi) ∨ (Carryi ∧ xi ∧ ¬ yi) 
	   = (xi ∧ yi) ∨ Carryi ∧ ((¬ xi ∧ yi) ∨ (xi ∧ ¬ yi)) 
	   = (xi ∧ yi) ∨ (Carryi ∧ (xi ⊻ yi))

Notice that two of the terms in this equation, (xi ∧ yi) and (xi ⊻ yi) 
are already generated by a half adder (see Figure 6-1). So with a second 
half adder and an OR gate, we can implement a full adder, as shown in 
Figure 6-5.

xi
yi

Carryi

Sumi

Carryi+1

Figure 6-5: Full adder using two half adders

Now you can see where the terms half adder and full adder come from.
A simple circuit is not always better. In truth, we cannot say which of 

the two full adder circuits, Figure 6-3 or Figure 6-5, is better just from 
looking at the logic circuits. Good engineering design depends on many 
factors, such as how each logic gate is implemented, the cost of the logic 
gates and their availability, and so forth. The two designs are given here 
to show that different approaches can lead to different, but functionally 
equivalent, designs.
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Ripple-Carry Addition and Subtraction Circuits
Now we know how to add the two bits in a given bit position, plus a carry 
from the next lower-order bit position. But most values that a program 
works with have many bits, so we need a way to add the corresponding bits 
in each bit position of two n-bit numbers. This can be done with an n-bit 
adder, which can be implemented with n full adders. Figure 6-6 shows a 
four-bit adder.

x3 y3 x2 y2 x1 y1 x0 y0

Full adder

c4 s3

c3

s2

c2 

s1

c1

s0

0

s = x + y
CF = c4
OF = c3 ⩡ c4

Full adder Full adder Full adder

Figure 6-6: Four-bit adder

Addition begins with the full adder on the right receiving the two  
lowest-order bits, x0 and y0. Since this is the lowest-order bit, there is no 
carry, and c0 = 0. The bit sum is s0, and the carry from this addition, c1, 
is connected to the carry input of the next full adder to the left, where it is 
added to x1 and y1.

Thus, the i th full adder adds the two i th bits of the operands, plus the 
carry (which is either 0 or 1) from the (i – 1)th full adder. Each full adder 
handles one bit (often referred to as a slice) of the total width of the values 
being added. The carry from each bit position is added to the bits in the 
next higher-order bit position. The addition process flows from the lowest-
order bit to the highest-order in a sort of rippling effect, which gives this 
method of adding the name ripple-carry addition. 

Notice that in Figure 6-6, we have CF and OF, the carry flag and overflow 
flag. You learned about carry and overflow in Chapter 3. Whenever the CPU 
performs an arithmetic operation, addition in this case, it records whether 
carry and overflow occurred in the rflags register. You will learn about this 
register in Chapter 9.

Now let’s see how we can use a similar idea to implement subtraction. 
Recall that in two’s complement, a number is negated by taking its two’s 
complement, flipping all the bits, and adding 1. Thus, we can subtract y 
from x by doing this:

x – y	  = x + (two's complement of y) 
	   = x + ((y's bits f lipped) + 1)
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Subtraction can be performed with our adder in Figure 6-5 if we 
complement each yi and set the initial carry in to 1 instead of 0. Each yi can 
be complemented by XORing it with 1. This leads to the four-bit circuit in 
Figure 6-7, which will add two four-bit numbers when func = 0 and subtract 
them when func = 1.

x3 y3 x2 y2 x1 y1 x0 y0

func

if (func == 0)
  s = s + y
else    // func is 1
  s = x – y
CF = c4
OF = c3 ⊻ c4

c4 s3

c3

s2

c2

s1

c1

s0

Full adder Full adder Full adder Full adder

Figure 6-7: Four-bit adder/subtractor

There is, of course, a time delay as the sum is computed from right to 
left. The computation time can be significantly reduced through more com-
plex circuit designs that precompute the values of CF carry and OF, but we 
won’t go into such details in this book. Let’s turn to our next type of circuit.

YOUR T UR N

You learned about the carry flag (CF) and overflow flag (OF) in the rflags regis-
ter in Chapter 3. The rflags register also contains a zero flag (ZF) and a nega-
tive flag (NF). The ZF is 1 when the result of an arithmetic operation is zero, and 
the NF is 1 when the result is a negative number if the number is considered to 
be in two’s complement notation. Design a circuit that uses the outputs of the full 
adders in Figure 6-7, s0, s1, s2, s3, c3, and c4, and outputs the CF, OF, NF, and ZF.
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Decoders
Many places in a computer require selecting one of several connections 
based on a number. For example, as you will see in a few chapters, the CPU 
has a small amount of memory organized in registers, which are used for 
computations. The x86-64 architecture has sixteen 64-bit registers. If an 
instruction uses one of the registers, four bits in the instruction must be 
used to select which of the sixteen registers should be used.

This selection can be done with a decoder. The input to the decoder is 
the four-bit number of the register, and the output is one of sixteen possible 
connections to the specified register.

A decoder has n binary inputs that can produce up to 2n binary out-
puts. The most common type of decoder, sometimes called a line decoder, 
selects only one of the output lines to set to 1 for each input bit pattern. It’s 
also common for a decoder to include an Enable input. The truth table for 
a 3 × 8 (3 inputs, 8 outputs) decoder with an enabling input in Table 6-3 
shows how this works. When Enable = 0, all the output lines are 0. When 
Enable = 1, the three-bit number at the input, x = x2x1x0, selects which 
output line is set to 1. So this decoder could be used to select one of eight 
registers with a three-bit number. (I’m not using the sixteen registers in the 
x86-64 architecture to keep the table a reasonable size here.)

Table 6-3: 3 × 8 Decoder with Enable

Input Output

Enable x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0
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The 3 × 8 line decoder specified in Table 6-3 can be implemented with 
four-input AND gates, as shown in Figure 6-8.

x1x2 x0Enable

y1

y0

y2

y3

y4

y5

y6

y7

Figure 6-8: Circuit for a 3 × 8 decoder with Enable

Decoders are more versatile than they might seem at first glance. Each 
possible input can be seen as a minterm (for a refresher on minterms, see 
Chapter 4). The line decoder in Table 6-3 shows that only a single output 
is 1 when a minterm evaluates to 1 and Enable is 1. Thus, a decoder can be 
viewed as a “minterm generator.” We know from earlier in the book that any 
logical expression can be represented as the OR of minterms, so it follows 
that we can implement any logical expression by ORing the output(s) of a 
decoder.

For example, if you look back at the Karnaugh maps for the full adder 
(Figures 6-2 and 6-4), you might see that Sum and Carry can be expressed as 
the OR of minterms,

Sumi(Carryi, xi, yi)	  = m1 ∨ m2 ∨ m4 ∨ m7
Carryi+1(Carryi, xi, yi)	  = m3 ∨ m5 ∨ m6 ∨ m7

where the subscript, i, on x, y, and Carry refers to the bit slice, and the sub-
scripts on m are part of the minterm notation. We can implement each bit 
slice of a full adder with a 3 × 8 decoder and two four-input OR gates, as 
shown in Figure 6-9.
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The decoder circuit in Figure 6-8 requires eight AND gates and three 
NOT gates. The full adder in Figure 6-9 adds two OR gates, for a total of 
thirteen logic gates. Comparing this with the full adder design in Figure 6-5, 
which requires only five logic gates (two XOR, two AND, and one OR), it 
would seem that using a decoder to construct a full adder increases the com-
plexity of the circuit. But keep in mind that designs are often based on other 
factors, such as availability of components, cost of components, and so forth.

  3 x 8
decoder

xi
yi

Carryi

Enable

Sumi

Carryi+1

m0
m1
m2
m3
m4
m5
m6
m7

Figure 6-9: One bit slice of a full adder implemented  
with 3 × 8 decoder. An n-bit adder would require n  
of these circuits.

YOUR T UR N

You have probably seen seven-segment displays, which are used to display 
numerals (Figure 6-10).

a

b

c

d

e

f

g

dp

Figure 6-10: Seven-segment display

(continued)
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Each segment in a seven-segment display is lit by applying a 1 to the input 
pin connected to the corresponding segment. I have a seven-segment display 
with an eight-bit input that lights the segments and the decimal point, as shown 
in Table 6-4.

Table 6-4: Input Bit  
Assignments for the  
Seven-Segment Display  
in Figure 6-10

Bit Segment

0 a

1 b

2 c

3 d

4 e

5 f

6 g

7 dp

For example, we could display a 5 with the bit pattern 0110 1101. However, it 
would be more convenient for us to write our program to use BCD for individual 
numerals. Design a decoder that transforms numerals in BCD to segment pat-
terns on our seven-segment display.

Multiplexers
In the previous section, you learned how an n -bit number can be used to 
select which one of 2n output lines should be set to 1. The opposite situa-
tion also occurs, where we need to select which of several inputs should be 
passed on. For example, when performing arithmetic operations, like addi-
tion, the numbers can come from different locations within the CPU. (You 
will learn more about this in the next few chapters.) The operation itself will 
be performed by one arithmetic unit, and the CPU needs to select the inputs 
to the operation from all the possible locations.

A device that can make this selection is called a multiplexer (MUX). 
It can switch between 2n input lines by using n selection lines. Figure 6-11 
shows a circuit for a four-way multiplexer.

The output is given by this:

Output = (¬ s0 ∧ ¬ s1 ∧ w) ∨ (¬ s0 ∧ s1 ∧ x)  
∨ (s0 ∧ ¬ s1 ∧ y) ∨ (s0 ∧ s1 ∧ z)
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w
x
y

z

s0 s1

Output

Figure 6-11: A four-way multiplexer

When using AND and OR gates, the number of transistors required to 
implement a multiplexer gets large as the number of inputs grows. A three-
input AND gate is required for each input to the multiplexer, and the num-
ber of inputs to the OR gate equals the number of multiplexer inputs. The 
AND gates are being used to feed only one of the multiplexer inputs to the 
OR gate. Next we’ll see a device that can accomplish the same functionality 
of the AND and OR gate combination by simply disconnecting the input 
signal from the output.

Tristate Buffer
The logic device called a tristate buffer has three possible outputs: 0, 1, and 
“no connection.” The “no connection” output is actually a high impedance 
connection, also called high Z or open. The “no connection” output lets us 
physically connect the outputs of many tristate buffers together but select 
only one to pass its input to the common output line.

A tristate buffer has both a data input and an enabling feature, which 
behave as shown Table 6-5.

Table 6-5: Tristate Buffer  
Truth Table

Enable In Out

0 0 High Z

0 1 High Z

1 0 0

1 1 1
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Figure 6-12 shows the circuit symbol for a tristate buffer.

Enable

In Out

Figure 6-12: Tristate buffer

When Enable = 1, the output, which is equal to the input, is connected 
to whatever circuit element follows the tristate buffer. But when Enable = 0, 
the output is essentially disconnected. This is different from 0; being 
disconnected means it has no effect on the circuit element to which it is 
connected.

To illustrate how tristate buffers can be used, look back at the four-way 
multiplexer in “Multiplexers” on page 124. It required four AND gates, two 
NOT gates, and a four-input OR gate. If we try to scale this up, the n-input 
OR gate will present some technical electronic problems for a large n. The 
use of an n -input OR gate can be avoided by using n tristate buffers, as 
shown by the four-way multiplexer in Figure 6-13. 

w

x

y

z

s0

s1

Output

  2 x 4
decoder

Figure 6-13: Four-way multiplexer built  
from decoder and tristate buffers

The multiplexer in Figure 6-13 uses a 2 × 4 decoder and four tristate 
buffers. The 2 × 4 decoder selects which of the tristate buffers connects one 
of the inputs, w, x, y, or z, to the output.

Figure 6-14 shows the circuit symbol used for a multiplexer, and Table 6-6 
shows its behavior.

w

x

y

z

s0, s1

Output

0

2

3

1 4x1
MUX

Figure 6-14: Circuit symbol  
for a four-way multiplexer
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Table 6-6: Truth Table  
for a Four-Way  
Multiplexer

s1 s0 Output

0 0 w

0 1 x

1 0 y

1 1 z

As an example of where we might use the four-way multiplexer in 
Figure 6-14, consider a computer with four registers and one adder. Let’s 
name the registers w, x, y, and z. If we connect the bits in the corresponding 
bit position from each register to a multiplexer, then we can use the two-bit 
selector, s0s1, to choose which register will provide the input to the adder. 
For example, each bit in position 5, w5, x5, y5, and z5, would be connected 
one of the inputs in multiplexer 5. If s0s1 = 10, the input to the adder would 
be y5. 

Programmable Logic Devices
So far, we’ve been discussing hardware designs that use individual logic 
gates. If the design changes, the logic gate configuration changes. This 
almost always means that the circuit board that holds the logic gates and 
connects them will need to be redesigned. A change also often means order-
ing a different kind of logic gate, which can be expensive and take time. 
These problems can be reduced by using programmable logic devices (PLDs)  
to implement the required logic function.

PLDs contain many AND gates and OR gates, which can be programmed 
to implement Boolean functions. The inputs, and their complemented value, 
are connected to the AND gates. The AND gates, taken together, are referred 
to as the AND plane, or AND array. The outputs from the AND gates are con-
nected to OR gates, which taken together are referred to as the OR plane, or 
OR array. Depending on the type, one or both planes can be programmed to 
implement combinational logic. When using a PLD, a design change means 
only changing how the device is programmed, not buying different devices, 
meaning the circuit board does not need to be redesigned.

PLDs come in several types. Most can be programmed by a user. Some 
are preprogrammed at the time of manufacture, and some can even be 
erased and reprogrammed by the user. Programming technologies range 
from specifying the manufacturing mask (for the preprogrammed devices) 
to inexpensive electronic programming systems.

There are three general categories of PLDs.
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Programmable Logic Array 
In a programmable logic array (PLA), both the AND and OR planes are pro-
grammable. PLAs are used to implement logic functions. Figure 6-15 gives 
the general idea for a PLA that has two input variables and two possible out-
put functions of these variables.

x y

F1(x, y) F
2
(x, y)

Figure 6-15: Simplified circuit for a programmable logic array

Each input variable, in both its uncomplemented and complemented 
form, is an input to the AND gates through fuses. A fuse is a thin piece of 
conductor used to protect an electrical circuit. If the current flowing through 
it is high enough, the conductor melts, thus opening the circuit and stop-
ping current flow. PLDs can be programmed by breaking (or blowing) the 
appropriate fuses, thus removing the input to the logic gate. Some devices 
use antifuses instead of fuses. These are normally open, and programming 
them consists of completing the connection instead of removing it. Devices 
that can be reprogrammed have fuses that can be broken and then remade.

In Figure 6-15, the S -shaped lines in the circuit diagram represent the 
fuses. The fuses can be blown or left in place so as to program each AND 
gate to output a product of the inputs, x, ¬ x, y, and ¬ y. Since every input, 
plus its complement, is input to each AND gate, any of the AND gates can 
be programmed to output a minterm.

The products produced by the AND gate plane are all connected to 
the inputs of the OR gates, also through fuses. Thus, depending on which 
OR-gate fuses are left in place, the output of each OR gate is a sum of prod-
ucts. There may be additional logic circuitry to select between the different 
outputs. We have already seen that any Boolean function can be expressed 
as a sum of products, so this logic device can be programmed to implement 
any Boolean function by blowing the fuses.



Combinational Logic Circuits    129

A PLA is typically larger than the one shown in Figure 6-15, which is 
already complicated to draw. To simplify the drawing, it is typical to use a 
diagram similar to Figure 6-16 to specify the design.

w x y z

F1 F2 F3

Figure 6-16: Diagram for a programmable logic array. The dots  
represent connections.

This diagram can be a little tricky to understand. In Figure 6-15, each 
AND gate has multiple inputs—one for each variable and one for its comple-
ment. In Figure 6-16, we use one horizontal line leading to the input of each  
AND gate to represent multiple wires (variable and complement). So,  
each AND gate in Figure 6-16 has eight inputs even though we draw only 
one line.

The dots at the intersections of the vertical and horizontal line repre-
sent places where the fuses have been left intact, thus creating a connec-
tion. For example, the three dots on the topmost horizontal line indicate 
that there are three inputs left connected to that AND gate. The output of 
the topmost AND gate is as follows:

¬ w ∧ y ∧ z

Referring again to Figure 6-15, we see that the output from each AND 
gate is connected to each of the OR gates (through fuses). Therefore, the 
OR gates also have multiple inputs—one for each AND gate—and the verti-
cal lines leading to the OR gate inputs represent multiple wires. The PLA in 
Figure 6-16 has been programmed to provide these three functions:

F1(w, x , y, z)	 = (¬ w ∧ y ∧ z) ∨ (w ∧ x ∧ ¬ z) 
F2(w, x , y, z)	 = ¬ w ∧ ¬ x ∧ ¬ y ∧ ¬ z
F3(w, x , y, z)	 = (¬ w ∧ y ∧ z) ∨ (w ∧ x ∧ ¬ z)
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Since the AND plane can produce all possible minterms and the OR 
plane can provide any sum of the minterms, a PLA can be used to imple-
ment any possible logical function. If we want to change the function, it’s a 
simple matter of programming another PLA and replacing the old one.

Read-Only Memory 
Although PLDs have no memory (meaning the current state isn’t affected 
by previous states of the inputs), they can be used to make nonvolatile 
memory—memory whose contents remain intact when the power is turned 
off. Read-only memory (ROM) is used to store bit patterns that can represent 
data or program instructions. A program can only read the data or pro-
gram stored in ROM, but the contents of the ROM cannot be changed by 
writing new data or program instructions to it. ROM is commonly used in 
devices that have a fixed set of functionalities, like watches, automobile 
engine control units, and appliances. In fact, our lives are surrounded by 
devices that are controlled by programs stored in ROM.

ROM can be implemented as a programmable logic device where only the 
OR gate plane can be programmed. The AND gate plane remains wired to 
provide all the minterms. We can think of the inputs to the ROM as addresses. 
Then the OR gate plane is programmed to provide the bit pattern at each 
address. For example, the ROM diagrammed in Figure 6-17 has two inputs, a1 
and a0, which provide a two-bit address.

a1 a0

d7 d6 d5 d4 d3 d2 d1 d0

Figure 6-17: Four-byte ROM
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The “×” connections in Figure 6-17 represent permanent connections, 
showing that the AND gate plane is fixed. Each AND gate produces a 
minterm at each address in this ROM. The OR gate plane produces up to 
2n eight-bit bytes, where n is the width, in number of bits, of the address 
input to the AND gate plane. The connections (dots) to the OR gates rep-
resent the bit pattern stored at the corresponding address. Table 6-7 shows 
a ROM in which the OR gate plane has been programmed to store the four 
characters, A, B, C, and D (in ASCII code).

Table 6-7: A ROM Holding Four ASCII Characters

Minterm Address Contents ASCII character

¬ a1¬ a0 00 01000001 A

¬ a1a0 01 01000010 B

a1¬ a0 10 01000011 C

a1a0 11 01000100 D

Although we have stored only data in this example, computer instruc-
tions are bit patterns, so we could just as easily store an entire program in 
ROM. As with a programmable logic array, if you need to change the pro-
gram, just program another ROM and replace the old one.

There are several types of ROM. While the bit pattern is set in a ROM 
during manufacturing, a programmable read-only memory (PROM) device is 
programmed by the person who uses it. There are also erasable programmable 
read-only memory (EPROM) devices that can be erased with an ultraviolet 
light and then reprogrammed.

Programmable Array Logic 
In a programmable array logic (PAL) device, each OR gate is permanently 
wired to a group of AND gates. Only the AND gate plane is programmable. 
The PAL diagrammed in Figure 6-18 has four inputs. It provides two outputs, 
each of which can be the sum of up to four products. The “×” connections in 
the OR gate plane show that the top four AND gates are OR-ed to produce 
F1(w, x, y, z) and the lower four OR-ed to produce F2(w, x, y, z). The AND gate 
plane in this figure has been programmed to produce these two functions:

F1(w, x , y, z)	  = (w ∧ ¬ x ∧ z) ∨ (¬ w ∧ x) ∨ (w ∧ x ∧ ¬ y) ∨ (¬ w ∧ ¬ x ∧ ¬ y ∧ ¬ z) 
F2(w, x , y, z)	  = (¬ w ∧ y ∧ z) ∨ (x ∧ y ∧ ¬ z) ∨ (w ∧ x ∧ y ∧ z) ∨ (w ∧ x ∧ ¬ y ∧ ¬ z)

Of the three types of PLD presented here, the PLA is the most flex-
ible, since we can program both the OR and the AND plane, but it is the 
most expensive of the three devices. The ROM is less flexible. It can be 
programmed to produce any combination of minterms, which are then 
OR-ed together. We know that any function can be implemented as the OR 
of minterms, so we can produce any function with a ROM. However, a ROM 
doesn’t allow us to minimize the function since all the product terms must 
be minterms.
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w x y z

F1 F2

Figure 6-18: Two-function programmable array logic 

The PAL is the least flexible, because all the product terms programmed 
in the AND plane will be ORed together. So, we cannot select which min-
terms are in the function by programming the OR plane. However, PALs 
allow us to do some Boolean function minimization. If the required func-
tion can be implemented in a PAL, it is less expensive than a ROM or PLA.

YOUR T UR N

Comparing two values to determine which is larger, or whether they are the 
same, is a common operation in computing. The hardware device to perform 
such a comparison is called a comparator. Use a programmable logic device 
to design a comparator that compares two two-bit values. Your comparator will 
have three outputs: equal, greater than, and less than.
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What You’ve Learned

Combinational logic circuits    These depend only on their input at any 
point in time. They have no memory of previous effects of the inputs. 
Examples include adders, decoders, multiplexers, and programmable 
logic devices.

Half adder    This circuit has two one-bit inputs. It produces two one-bit 
outputs: the sum of the inputs and the carry from that sum.

Full adder    This circuit has three one-bit inputs. It produces two  
one-bit outputs: the sum of the inputs and the carry from that sum.

Ripple-carry adder    Uses n full adders to add n -bit numbers. The 
carry output from each full adder is one of the three inputs to the full 
adders in the next higher-order bit position.

Decoder    A device used to select one of n outputs based on 2n inputs.

Multiplexer (MUX)    A device used to select one of 2n inputs based on 
an n-bit selector signal.

Programmable logic array (PLA)    A device used to generate an OR-ed 
combination of minterms to implement Boolean functions in hardware.

Read-only memory (ROM)    Provides nonvolatile memory with the input 
being the address of the data or instruction.

Programmable array logic (PAL)    A device used to implement Boolean 
functions in hardware. It’s less flexible than a PLA or ROM, but it is less 
expensive.

In the next chapter, you will learn about sequential logic circuits, which 
use feedback to maintain a memory of their activity.





7
S E Q U E N T I A L  L O G I C  C I R C U I T S

In the previous chapter, you learned about 
combinational logic circuits, circuits that depend 

only on their current input. Another way 
of thinking about this is that combinational 

logic circuits are instantaneous (except for the time 
required for the electronics to settle): their output 
depends only on the input at the time the output is 
observed. Sequential logic circuits, on the other hand, 
depend on both the current and past inputs. They 
have a time history, which can be summarized by the 
current state of the circuit.

Formally, the system state is a description of the system such that know-
ing the state at time t0 and the inputs from time t0 through time t1, uniquely 
determines the state at time t1 and the outputs from time t0 through time t1. 
In other words, the system state provides a summary of everything that has 
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affected the system. Knowing the state of a system at any given time, t, tells 
you everything you need to know to specify the system’s behavior from that 
time on. How it got into this state is irrelevant.

The concept of system state is captured in a finite state machine, a math-
ematical model of computation that can exist in any one of a finite number 
of states. External inputs to a finite state machine cause it to transition from 
one state to another or to the same state, while possibly producing an output. 
Sequential logic circuits are used to implement finite state machines. If a 
sequential logic circuit is designed such that its output depends only on the 
state it’s in, it’s called a Moore state machine. If the output also depends on 
the input causing a transition to a state, it’s called a Mealy state machine.

In this chapter, we’ll look at how feedback is used in a logic circuit to 
keep the gates in a particular state over time, thus implementing memory. 
We’ll use state diagrams to show how inputs cause a sequential logic circuit 
to transition between states and what the corresponding outputs are. You’ll 
also learn how sequential logic circuits can be synchronized with a clock to 
provide reliable results.

Latches
The first sequential logic circuit we’ll look at is a latch, a one-bit storage 
device that can be in one of two states, depending on its input. A latch can 
be constructed by connecting two or more logic gates such that the output 
from one gate is fed back into the input of another gate; this keeps the out-
put of both gates in the same state as long as power is applied. The state of 
a latch does not depend on time. (The term latch is also used for a multiple-
bit storage device that behaves like the one-bit device described here.)

SR Latch Using NOR Gates
The most basic latch is the Set-Reset (SR). It has two inputs (S and R) and two 
states, called Set and Reset. The state is used as the primary output, Q. It’s 
common to also provide the complemented output, ¬Q. The SR latch is said 
to be in the Set state when the outputs Q = 1 and ¬Q = 0. It’s in a Reset state 
when Q = 0 and ¬Q = 1.

Figure 7-1 shows a simple implementation of an SR latch using NOR 
gates. The output of each NOR gate is fed into the input of the other. As we 
describe the behavior of the circuit in this chapter, you’ll see that this feed-
back is what keeps the latch in one state.

¬QS

R Q

Figure 7-1: NOR gate implementation of an SR latch
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There are four possible input combinations for an SR. Let’s go through 
them here:

S = 0, R = 0: Keep current state
If the latch is in the Set state (Q = 1 and ¬Q = 0), an input of S = 0 and 
R = 0 will cause ¬Q, the output of the upper NOR gate, to yield ¬(0 ∨ 
1) = 0, and Q, the output of the lower NOR gate, to yield ¬(0 ∨ 0) = 1. 
Conversely, if the latch is in a Reset state (Q = 0 and ¬Q = 1), then the 
output of the upper NOT gate yields ¬(0 ∨ 0) = 1, and the lower NOR 
gate yields ¬(1 ∨ 0) = 0. Thus, the cross feedback between the two NOR 
gates maintains the current state of the latch.

S = 1, R = 0: Set (Q = 1)
If the latch is in the Reset state, these inputs cause the output of the 
upper NOR gate to be ¬(1 ∨ 0) = 0, thus changing ¬Q to 0. This is fed 
back to the input of the lower NOR gate to yield ¬(0 ∨ 0) = 1. The feed-
back from the output of the lower NOR gate to the input of the upper 
keeps the output of the upper NOR gate at ¬(1 ∨ 1) = 0. The latch has 
then moved into the Set state (Q = 1 and ¬Q = 0).

If the latch is in the Set state, the upper NOR gate yields ¬(1 ∨ 1) = 0, 
and the output of the lower NOR gate is ¬(0 ∨ 0) = 1. The latch thus 
remains in the Set state.

S = 0, R = 1: Reset (Q = 0)
If the latch is in the Set state, the lower NOR gate yields ¬(0 ∨ 1) = 0, 
thus changing Q to be 0. This is fed back to the input of the upper NOR 
gate to yield ¬(0 ∨ 0) = 1. The feedback from the output of the upper 
NOR gate to the input of the lower keeps the output of the lower NOR 
gate at ¬(1 ∨ 1) = 0. The latch has then moved into the Reset state (Q = 0 
and ¬Q = 1).

If the latch is already in the Reset state, the lower NOR gate yields ¬(1 ∨ 
1) = 0, and the output of the upper NOR gate is ¬(0 ∨ 0) = 1, so the latch 
remains in the Reset state.

S = 1, R = 1: Not allowed
If Q = 0 and ¬Q = 1, the upper NOR gate yields ¬(1 ∨ 0) = 0. This is fed 
back to the input of the lower NOR gate to yield ¬(0 ∨ 1) = 0. This would 
give Q = ¬Q, which is inconsistent with the laws of Boolean algebra.

If Q = 1 and ¬Q = 0, the lower NOR gate yields ¬(0 ∨ 1) = 0. This is fed 
back to the input of the upper NOR gate to yield ¬(1 ∨ 0) = 0. This 
would give Q = ¬Q, which is inconsistent.

Circuits must be designed to prevent this input combination.

To simplify things, we can represent this logic visually. Figure 7-2 intro-
duces a graphic way to show the behavior of a NOR gate SR latch: the state 
diagram. In this state diagram, the current state is shown in the bubbles, 
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with the corresponding primary output below the state. The lines with 
arrows show the possible transitions between the states and are labeled with 
the inputs that cause the transition to the next state.

Reset SetSR = 00

SR = 01 0

SR = 10

1

SR = 01

SR = 00

SR = 10

Figure 7-2: State diagram for NOR-gate SR latch

The two circles in Figure 7-2 show the two possible states of the SR 
latch—Set or Reset. The labels on the lines show the combination of inputs, 
SR, that causes each state transition. For example, when the latch is in the 
Reset state, there are two possible inputs, SR = 00 and SR = 01, that cause it 
to remain in that state. The input SR = 10 causes it to transition to the Set 
state. Since the output is dependent only on the state, and not on the input, 
a latch is a Moore state machine.

Those familiar with graph theory will recognize that a state diagram 
is a directed graph: the states are the vertices, and the inputs that cause 
transitions are the edges. Although they are beyond the scope of this book, 
tools from graph theory can be useful in the design process.

As in graph theory, we can also show the same behavior in a tabular 
form with a state transition table, as in Table 7-1. Here S and R are the inputs, 
Q is the output in the current state, and Qnext shows the output in the state 
that results from the corresponding input. The X in the bottom two rows 
indicates an impossible condition.

Table 7-1: NOR Gate  
SR Latch

S R Q Qnext

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

Both inputs to a NOR gate SR latch are normally held at 0, which main-
tains the current state, giving the output Q. Momentarily changing only R 



Sequential Logic Circuits   139

to 1 causes the state to go to Reset, which changes the output to Q = 0, as 
shown in the Qnext column of the state transition table. And momentarily 
changing only S to 1 causes the state to go to Set, giving the output Q = 1.

As described earlier, the input combination S = R = 1 is not allowed 
because that would cause an inconsistent state for the SR latch. We show 
this in the state transition table by placing an X in the Qnext column in the 
rows that are prohibited.

SR Latch Using NAND Gates
The physics of their construction tends to make NAND gates faster than 
NOR gates. Recalling that NAND and NOR have complementary proper-
ties, it probably doesn’t surprise you that it’s possible to build an SR latch 
from NAND gates. Since a NAND gate is the logical complement of a NOR 
gate, we’ll use ¬S and ¬R as the inputs, as shown in Figure 7-3. To empha-
size the logical duality of the two designs, NAND and NOR, I have drawn 
the circuit with the output Q at the top and ¬Q on the bottom.

¬S

¬R ¬Q

Q

Figure 7-3: NAND gate  
implementation of an  
SR latch

Like the NOR gate SR latch, the NAND gate SR latch is said to be in 
the Set state when the outputs are Q = 1 and ¬Q = 0, and in a Reset state 
when Q = 0 and ¬Q = 1. There are four possible input combinations:

¬S = 1, ¬R = 1: Keep current state
If the latch is in the Set state (Q = 1 and ¬Q = 0), the upper NAND gate 
yields ¬(1 ∧ 0) = 1, and the lower NAND gate ¬(1 ∧ 1) = 0. If Q = 0 and 
¬Q = 1, the latch is in the Reset state, the upper NAND gate yields ¬(1 ∧ 
1) = 0, and the lower NAND gate ¬(0 ∧ 1) = 1. Thus, the cross feedback 
between the two NAND gates maintains the state of the latch.

¬S = 0, ¬R = 1: Set (Q = 1)
If the latch is in the Reset state, the upper NAND gate yields ¬(0 ∧ 1) 
= 1, thus changing Q to be 1. This is fed back to the input of the lower 
NAND gate to yield ¬(1 ∧ 1) = 0. The feedback from the output of the 
lower NAND gate to the input of the upper keeps the output of the 
upper NAND gate at ¬(0 ∧ 0) = 1. The latch has moved into the Set state 
(Q = 1 and ¬Q = 0).
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If the latch is already in the Set state, then the upper NAND gate yields 
¬(0 ∧ 0) = 1, and the output of the lower NAND gate is ¬(1 ∧ 1) = 0. The 
latch thus remains in the Set state.

¬S = 1, ¬R = 0: Reset (Q = 0)
If the latch is in the Set state, the lower NAND gate yields ¬(1 ∧ 0) = 1. 
This is fed back to the input of the upper N gate, making Q = ¬(1 ∧ 1) = 
0. The feedback from the output of the upper NAND gate to the input 
of the lower keeps the output of the lower NAND gate at ¬(0 ∧ 0) = 1, so 
the latch moves into the Reset state (Q = 0 and ¬Q = 1).

If the latch is already in the Reset state, the lower NAND gate yields ¬(0 
∧ 0) = 1, and the output of the upper NAND gate is ¬(1 ∧ 1) = 0. The 
latch remains in the Reset state.

¬S = 0, ¬R = 0: Not allowed
If the latch is in the Reset state, the upper NAND gate yields ¬(0 ∧ 1) = 1. 
This is fed back to the input of the lower NAND gate to yield ¬(1 ∧ 0) = 1. 
This would give Q = ¬Q, which is inconsistent.

If the latch is in the Set state, the lower NAND gate yields ¬(1 ∧ 0) = 1. 
This is fed back to the input of the upper NAND gate to yield ¬(0 ∧ 1) = 1. 
This would also give Q = ¬Q, which is also inconsistent.

Circuits must be designed to prevent this input combination.

Figure 7-4 shows the behavior of a NAND gate SR latch using a state 
diagram.

¬S¬R = 01

¬S¬R = 11 ¬S¬R = 11
¬S¬R = 10 ¬S¬R = 01

¬S¬R = 10

Set Reset
0 1

Figure 7-4: NAND gate SR latch

Comparing this with the NOR gate SR latch in Figure 7-2, you can see 
that they both describe the same behavior. For example, an input of SR = 10  
to the NOR gate SR latch will place it in the Set state, while an input of 
¬S¬R = 01 to the NAND gate SR latch will also place it in the Set state. I find 
that I have to think carefully about this when analyzing circuits. An off-by-
one error when there are only two choices can cause behavior opposite to 
what I want.

Table 7-2 is a state transition table for a NAND gate SR latch. Placing 0 
on both inputs at the same time causes a problem—namely, that the outputs 
of both NAND gates would become 1. In other words, Q = ¬Q = 1, which is 
logically impossible. The circuit design must be such to prevent this input 
combination. The X in two rows indicates an impossible condition.
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Table 7-2: NAND-Gate  
SR Latch

¬S ¬R Q Qnext

1 1 0 0

1 1 1 1

1 0 0 0

1 0 1 0

0 1 0 1

0 1 1 1

0 0 0 X

0 0 1 X

The SR latch implemented with two NAND gates can be thought of as 
the complement of the NOR gate SR latch. The state is maintained by holding 
both ¬S and ¬R at 1. Momentarily changing ¬S to 0 causes the state to be Set 
with the output Q = 1, and ¬R = 0 causes it to be Reset with the output Q = 0.

Thus far, we have been looking at a single latch. The problem here is 
that the state of the latch, and its output, will change whenever the input 
changes. In a computer, it would be interconnected with many other devices, 
each changing state with new inputs. It takes time for each device to change 
state and for its output(s) to propagate to the next device(s), and the precise 
timing depends on slight manufacturing differences in the devices. The 
results can be unreliable. We need a means for synchronizing the activity to 
bring some order to the operations. We’ll start by adding an Enable input to 
the SR latch, which will allow us to control more precisely when the inputs 
will be allowed to affect the state.

SR Latch with Enable
We can get better control over the SR latch by adding two NAND gates 
to provide an Enable input. Connecting the outputs of these two NAND 
gates to the inputs of an ¬S¬R latch gives us a gated SR latch, as shown in 
Figure 7-5.

S

R

Q

¬Q

Enable

Figure 7-5: Gated SR latch

In this circuit, the outputs of both the control NAND gates remain at 1 
as long as Enable = 0. This sends ¬S = 1 and ¬R = 1 to the inputs of the ¬S¬R 
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latch portion of this circuit, which causes the state to remain the same. By 
AND-ing the additional Enable input with the S and R input lines, we can 
control the time when the state should be changed to the next value. 

Table 7-3 shows the state behavior of the SR latch with the Enable control. 

Table 7-3: Gated SR Latch

Enable S R Q Qnext

0 – – 0 0

0 – – 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 X

1 1 1 1 X

In this table, – indicates that an input does not matter, and X indicates 
a prohibited result. As explained, the design must prevent input combina-
tions that would produce prohibited results. The state of the latch changes 
only when Enable = 1 and S and R have the opposite values. In the next sec-
tion, we’ll use this observation to simplify the gated SR latch and create a 
latch that takes a single data input, D, with control over the time when this 
input will affect the state of the latch.

The D Latch
A D latch allows us to store the value of one bit. We start with the truth 
table, Table 7-4, which includes the rows from Table 7-3 where Enable = 1 
and R = ¬S. We’re looking for a design that will have two inputs—one for 
Enable, the other for D (short for data). We want D = 1 to set the state, giv-
ing the output Q = 1, and D = 0 to reset it, giving the output Q = 0, when the 
Enable line becomes 1. This design is known as a D latch.

Table 7-4: D Latch with Enable

Enable S R D Q Qnext

0 – – – 0 0

0 – – – 1 1

1 0 1 0 0 0

1 0 1 0 1 0

1 1 0 1 0 1

1 1 0 1 1 1
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We can construct a gated D latch from a gated SR latch by adding a D 
input and a NOT gate, as shown in Figure 7-6.

D

Enable

S

R

¬S

¬R

Q

¬Q

Figure 7-6: Gated D latch constructed from an SR latch

The one data input, D, is fed to the S side of the SR latch; the comple-
ment of the data value is fed to the R side. 

Now we have a circuit that can store one bit of data using the D input 
and can be synchronized with other operations using the Enable input. 
However, there are some problems with the D latch. Mainly, there are issues 
with its reliability when connected with other circuit elements. After the 
D input has been applied and the circuit has been enabled, it takes a brief 
period of time for all the electronics to reach the new voltage levels, called 
the settling time. Even after the settling time, the state of a D latch can be 
affected by the input while the D latch is enabled. Thus, its output can 
change, making it difficult to synchronize reliably with other devices.

However, this scheme works well when the latch should remain in 
one state for a long period of time. In general, latches work for opera-
tions where we want to select a state and leave it for a period of time that 
is beyond the control of the computer. An example is an I/O port, where 
the timing is dependent on the behavior of the device connected to the 
I/O port. For example, a running program cannot know when the user will 
press a key on the keyboard. When a key is pressed, the program may not 
be ready for the character, so the binary code for the character should be 
latched at the input port. Once the character is stored, the latch would 
be disabled until the program reads the character code from the latch. 

But most of the computing operations within the CPU and main mem-
ory must be coordinated in time. You’re about to see how sequential logic 
circuits can be controlled by a clock. Connecting many circuits to the same 
clock allows us to synchronize their operations.

Let’s consider how we might synchronize a D latch connected in a circuit. 
We feed an input to this D latch and enable it. Even after a brief settling time, 
its output can change if the input changes, making its output unreliable dur-
ing the time it is enabled. If the output from our D latch is connected to the 
input of another device, the input to this second device is unreliable while 
our D latch is enabled. There is also a propagation delay for the output of our 
D latch to reach the input of the second device due to the physics of the con-
nections. This second device should be disabled until the input to our D latch 
is reliable and we have allowed for the propagation delay. Once our D latch 
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has settled, it’s disabled. After allowing for the propagation delay, the device 
our D latch is connected to can be enabled.

While the device our D latch is connected to is waiting for a reliable 
input from our D latch, it is disabled, and its output (from the previous clock 
cycle) is reliable. So if it’s connected to the input of yet another device, this 
third device can be enabled. This leads to a scheme where every other device 
is enabled while the alternate devices are disabled. After waiting for a period 
equal to the sum of the longest settling time and propagation delay time of 
all the devices connected together, the disabled devices are enabled, and the 
enabled devices are disabled. The digital 1s and 0s are propagated through 
this circuit of devices by means of this alternating enable/disable cycle.

As you can probably imagine, coordinating this flipping back and forth 
between enable and disable can be difficult. We’ll give a solution to this 
problem in the next section.

Flip-Flops
While a latch could be controlled by a clock signal, its output would be 
affected by any changes in the input during the portion of time when the 
clock signal enables the latch. A flip-flop circuit is a one-bit storage device 
designed to accept an input during one portion of the clock signal and 
then lock the output to a single value throughout the duration of the other 
portion of the clock signal. This provides the reliability needed to connect 
many flip-flops in a circuit and synchronize their operations with one clock. 
We’ll start this section with a discussion of clocks and then look at a few 
examples of flip-flops.

N O T E 	 The terminology varies. Some people also call latches flip-flops. I will use the term 
latch to mean a device that stores one bit, with no timing considerations, and 
flip-flop to mean a device that stores one bit during one-half of a clock cycle and 
then presents it as an output during the other half of the clock cycle.

Clocks
Sequential logic circuits have a time history, summarized in their state. We 
keep track of time with a clock, a device that provides an electronic clock 
signal, typically a square wave that alternates between the 0 and 1 levels, as 
shown in Figure 7-7. This signal is used as the enabling/disabling input to 
devices that need to be synchronized.

Time

Figure 7-7: Typical clock  
signal to synchronize  
sequential logic circuits



Sequential Logic Circuits   145

The amount of time spent at each level is usually equal. To achieve reli-
able behavior, most circuits are designed such that a transition of the clock 
signal triggers the circuit elements to start their respective operations. 
Either the positive-going (0 to 1) or negative-going (1 to 0) transition may 
be used. The clock frequency must be slow enough such that all the circuit 
elements have time to complete their operations before the next clock transi-
tion (in the same direction) occurs.

Let’s look at a few examples of flip-flop circuits that can be controlled 
by a clock.

D Flip-Flop
We’ll begin by connecting a clock signal to the Enable input of the gated D 
latch in Figure 7-6. Here the input affects the output as long as Enable = 1. 
The problem is that if the input changes while Enable = 1, the output will 
also change, leading to an unreliable design. 

One way to isolate the output from input changes is to connect the 
outputs of a D latch to the inputs of another D latch in a primary/second-
ary configuration. The primary portion of the circuit processes the input 
and stores the state, and then it passes its output to the secondary portion 
for final output. This creates a D flip-flop, as shown in Figure 7-8. The 
uncomplemented output of the Primary D latch is fed to the S input, and 
its complemented output is fed to the R input of the Secondary SR latch, 
effectively making the Secondary a D latch without requiring a NOT gate 
at the R input.

D

CK

Primary

S

Secondary

R

Q

¬Q

Figure 7-8: D flip-flop, positive-edge triggering

In the D flip-flop in Figure 7-8, the bit we want to store, 0 or 1, is fed to 
the D input of the Primary D latch. The clock signal is fed to the CK input.

Let’s walk through how this circuit works, starting with CK = 0. The CK 
signal passes through a NOT gate, inverting it from 0 to 1 and thus enabling 
the Primary D latch, placing it in write mode. This latch will either Reset or 
Set, following a D input of 0 or 1, respectively.

While the CK input remains at the 0 level, the second NOT gate inverts 
the CK signal again, thus presenting the original signal, an enable signal 
of 0, to the Secondary D latch. This in turn disables it and places it in read 
mode. Any changes in the input to the Primary D latch will affect its output 
but will have no effect on the Secondary D latch. Therefore, the overall 
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output of this D flip-flop, Q, will be a reliable signal during the entire half-
cycle of the clock signal that the secondary portion is in read mode. 

When the CK input transitions to the 1 level, the control signal to the 
Primary D latch becomes 0, disabling it and placing it in read mode. At the 
same time, the enable input to the Secondary D latch goes to 1, thus placing 
it in write mode. The output of the Primary D latch is now reliable, provid-
ing a reliable input to the Secondary D latch during this entire clock half-
cycle. After a brief settling time (in practice, negligible), the output of the 
Secondary D latch provides a reliable output. Thus, the flip-flop provides a 
time separation of one-half clock cycle between accepting an input and pro-
viding an output. Since the output is available at the 0 to 1 transition, this is 
called positive-edge triggering.

If the first NOT gate connected to the CK signal in Figure 7-8 is 
removed, that would create a D flip-flop with negative-edge triggering.

Sometimes a flip-flop must be set to a known value before the clocking 
begins—for example, when a computer is first starting up. These known 
values are input independent of the clock process; hence, they are asynchro-
nous input. Figure 7-9 shows a D flip-flop with an asynchronous preset input 
added to it.

D

CK

S

R

PR

Q

¬Q

Figure 7-9: D flip-flop, positive-edge triggering with asynchronous preset

When a 1 is applied to the PR input, Q becomes 1 and ¬Q becomes 0, 
regardless of what the other inputs are, even CLK. It is also common to 
have an asynchronous clear input that sets the state (and output) to 0.

There are more efficient circuits for implementing edge-triggered D 
flip-flops, but this discussion shows that they can be constructed from ordi-
nary logic gates. They are economical and efficient, so they are widely used 
in very-large-scale integration (VLSI) circuits—circuits that include billions 
of billions of transistor gates on a single semiconductor microchip. Rather 
than draw the implementation details for each D flip-flop, circuit designers 
use the symbols shown in Figure 7-10.

The various inputs and outputs are labeled in this figure. Hardware 
designers typically use Q instead of ¬Q. It’s common to label the flip-flop as 
Qn where n = 1, 2, ..., which is used to identify the flip-flop within the over-
all circuit. The small circle at the clock input in Figure 7-10 (b) means that 
this D flip-flop is triggered by a negative-going clock transition.
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D

CK
PR

(a)

Q
CLR

Q1 Q2

(b)

Q

D
CLR

Q

QCK
PR

Figure 7-10: Symbols for D flip-flops, including  
asynchronous clear (CLR) and preset (PR).  
(a) Positive-edge triggering; (b) negative-edge  
triggering.

T Flip-Flop
You’re probably familiar with switches that toggle between two states each 
time you activate them. The CAPS LOCK key on your computer is a good 
example. If the alphabetic keys are in the lowercase mode, pressing the 
CAPS LOCK key switches to uppercase mode. Press it again, and you’re 
back in lowercase mode. Unlike a set/reset flip-flop, a toggle takes a single 
input that reverses (or complements) the current state.

We can implement toggleable switches using a flip-flop that simply 
complements its state, called a T flip-flop. To construct a T flip-flop from a 
D flip-flop, we need to feed the output back and combine it with the input 
to the D flip-flop. Next, we’ll determine exactly how to combine it. 

Before tackling the design of the T flip-flop, let’s do some Boolean alge-
bra manipulation to get a sense of what direction our design might take. 
First, take a look at the state diagram for a T flip-flop, in Figure 7-11, and 
the state transition table, in Table 7-5.

T = 0 

T = 1 

0
Off On

1 T = 0

T = 1

Figure 7-11: T flip-flop state diagram

Table 7-5: T Flip-Flop  
State Transition Table

T Q Qnext

0 0 0

0 1 1

1 0 1

1 1 0
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Referring to Table 7-4 for a D flip-flop, let’s add a column to the state 
transition table for the T flip-flop, giving Table 7-6, which shows the D val-
ues that would cause the same state transitions as T.

Table 7-6: D Values  
That Have the Same  
Effect as a T Flip-Flop

T Q Qnext D

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

From Table 7-6, it’s easy to write the equation for D:

D	  = (¬T ∧ Q) ∨ (T ∧ ¬Q) 
	   = T ⊻ Q

Thus, we need to add only a single XOR gate, giving us the design for 
the T flip-flop shown in Figure 7-12.

D Q Q

Q QCK CKCK

Q1 Q2

(b)(a)

T TQ

¬Q

Figure 7-12: T flip-flop. (a) Circuit using a D flip-flop. (b) Symbol for a T flip-flop.

You have seen how we can use a D flip-flop to store one bit in either 
its 1 (set) or 0 (reset) state, keep the state the same, or, by adding a logic 
gate, toggle the bit. In the next section, you’ll see how we can modify an SR 
flip-flop to implement all four actions—set, reset, keep, toggle—in a single 
device.

JK Flip-Flop
Implementing all four possible actions—set, reset, keep, toggle—requires 
two inputs, J and K, giving us the JK flip-flop. As with the T flip-flop, we’ll 
see if the state diagram and transition table can give us some insight into 
the design we want. Figure 7-13 shows the state diagram for a JK flip-flop, 
and Table 7-7 shows its state transition table. The leftmost column in 
Table 7-7 shows which of the four functions the JK flip-flop performs for 
each value of JK.
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JK = 10

JK = 00

JK = 01

JK = 11

Reset Set
0 1

JK = 11

JK = 00
JK = 10JK = 01

Figure 7-13: JK flip-flop state diagram

Table 7-7: JK Flip-Flop State  
Transition Table

J K Q Qnext

Keep 0 0 0 0

Keep 0 0 1 1

Reset 0 1 0 0

Reset 0 1 1 0

Set 1 0 0 1

Set 1 0 1 1

Toggle 1 1 0 1

Toggle 1 1 1 0

The first six rows of the JK flip-flop state transition table are the same 
as the first six rows on the enabled portion of the SR latch state transition 
table (Table 7-3). We saw when discussing the SR latch that the condition 
S = R = 1 is not allowed. Perhaps we can add some logic circuitry so we can 
use the J = K = 1 condition to implement the toggle function in our JK flip-
flop. We’ll start with a circuit for an SR flip-flop and add another signal to 
each of the input NAND gates, as shown in Figure 7-14. The points ¬S and 
¬R are labeled to show the inputs to the part of the Primary ¬S¬R latch that 
is the same, as shown in Figure 7-3.

Primary Secondary

Q

¬Q

¬S

¬R

Ja

Ka

CK

K

J

Figure 7-14: SR flip-flop with additional inputs added, leading to JK flip-flop
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The Primary SR latch in Figure 7-14 is in its write mode when CK = 0. 
We want it to toggle the output, Q, when J = K = 1. Given these conditions, 
Table 7-8 shows how ¬S and ¬R depend on Ja and Ka for the two possible 
values of Q. We saw how these values of ¬S and ¬R affect Q in Table 7-2, 
which are copied here into Table 7-8.

Table 7-8: Additional Inputs to Add  
Toggle Function to SR Flip-Flop

Ja Ka ¬S ¬R Q Qnext

0 0 1 1 0 0

0 1 1 0 0 0

1 0 0 1 0 1

1 1 0 0 0 X

0 0 1 1 1 1

0 1 1 0 1 0

1 0 0 1 1 1

1 1 0 0 1 X

The third and sixth rows of Table 7-8 show that JaKa = 10 toggles the 
state, Q, from 0 to 1, and JaKa = 01 toggles the state from 1 to 0. The leads us 
to the design in Figure 7-15, with Ja = ¬Q and Ka = Q.

Primary Secondary

J

K

CK

¬S

¬R

Q

¬Q

Figure 7-15: JK flip-flop

We should check that the feedback connections made in this circuit 
preserve the behavior of the other functions of the JK flop-flop. Table 7-9 
shows the state transition table for the JK flip-flop in Figure 7-15 with ¬S, 
¬R, and ¬Q added. Refer to Table 7-2 for the relationship between ¬S, ¬R, 
and Qnext.



Sequential Logic Circuits   151

Table 7-9: JK Flip-Flop State Table for the  
Circuit in Figure 7-15

J K Q ¬Q ¬S ¬R Qnext

Keep 0 0 0 1 1 1 0

Keep 0 0 1 0 1 1 1

Reset 0 1 0 1 1 1 0

Reset 0 1 1 0 1 0 0

Set 1 0 0 1 0 1 1

Set 1 0 1 0 1 1 1

Toggle 1 1 0 1 0 1 1

Toggle 1 1 1 0 1 0 0

Using three-input NAND gates at the input to this JK flip-flop does add 
some complexity to the circuit. The additional complexity is about the same 
as adding an XOR gate to a D flip-flop to get a T flip-flop (see Figure 7-12). 
Although an SR flip-flop is a little less complex than a JK flip-flop if the 
toggle function is not needed, there are manufacturing cost advantages to 
having only one design. The JK flip-flop, by providing all four functions, 
also allows more flexibility, and hence cost savings, in design.

Designing Sequential Logic Circuits
Now we’ll consider a more general set of steps for designing sequential logic 
circuits. Design in any field is usually iterative, as you have no doubt learned 
from your programming experience. 

You start with a design, analyze it, and then refine the design to make 
it faster, less expensive, and so forth. After gaining some experience, the 
design process usually requires fewer iterations. The following steps are a 
good method for building a first working design:

1.	 From the word description of the problem, create a state transition 
table and state diagram showing what the circuit must do. These form 
the basic technical specifications for the circuit you will be designing.

2.	 Choose a binary code for the states and create a binary-coded version 
of the state table and/or state diagram. For N states, the code will need 
log2N bits. Any code will work, but some codes may lead to simpler com-
binational logic in the circuit.

3.	 Choose a type of flip-flop. This choice is often dictated by the compo-
nents you have on hand.

4.	 Add columns to the state table that show the input required to each 
flip-flop to cause each of the required transitions.
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5.	 Simplify the inputs to each flip-flop. Karnaugh maps or algebraic meth-
ods are good tools for the simplification process.

6.	 Draw the circuit.

The simplification step may cause you to rethink your choice of type 
of flip-flop. These three steps—flip-flop choice, determining inputs, sim-
plification—may need to be repeated several times to get a good design. 
The following two examples illustrate this process.

Designing a Counter
Rather than asking you to do all the work at this point, I’ll go through two 
examples. If you have access to a digital circuit simulator, or the required 
hardware, I suggest that you use those resources to follow along. This is like 
a guided “Your Turn.”

In this example, we want to design a counter that has an Enable input. 
When Enable = 1, it increments through the sequence 0, 1, 2, 3, 0, 1, ..., 
incrementing each clock tick. Enable = 0 causes the counter to remain in its 
current state. The output is the sequence number in two-bit binary.

Step 1: Create a State Transition Table and State Diagram

At each clock tick, the counter increments by 1 if Enable = 1. If Enable = 0, 
it remains in the current state. Figure 7-16 shows the four states—0, 1, 2, 
3—and the corresponding two-bit output for each state. 

1
01 10

00

0 3
11

Enable = 1
Enable = 0

Enable = 1

Enable = 1Enable = 1

Enable = 0

Enable = 0

Enable = 0

2

Figure 7-16: State diagram for a counter that cycles through 0, 1, 2, 3, 0, …

Table 7-10 shows the state transition table.

Table 7-10: State Transition Table for  
a Counter that Cycles Through 0, 1,  
2, 3, 0, …

Enable = 0 Enable = 1

Current n Next n Next n

0 0 1

1 1 2
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Enable = 0 Enable = 1

Current n Next n Next n

2 2 3

3 3 0

When Enable = 0, the counter is essentially turned off, and when 
Enable = 1, the counter automatically increments by 1, wrapping around  
to 0 when it reaches its limit of 3.

Step 2: Create a Binary-Coded Version of the State Table and/or State Diagram

With four states, we need two bits. We will let n be the state, which we rep-
resent with the two-bit binary number n1n0. The behavior of the counter is 
shown in the state transition table, Table 7-11.

Table 7-11: State Transition Table  
for Two-Bit Counter

Current Next

Enable n1 n0 n1 n0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

Step 3: Select a Flip-Flop

JK flip-flops are a good place to start because they provide all the functions. 
After going through the design, we may learn that a simpler flip-flop would 
work. We could then come back to this step and go through the remaining 
steps again. An experienced designer may have some insight into the prob-
lem that would suggest starting with another type of flip-flop. Often, any 
potential savings in cost or power consumption do not justify changing to 
another type of flip-flop.

Step 4: Add Columns to the State Transition Table Showing the Required Inputs

We need two flip-flops, one for each bit. The columns added to the state 
transition table show the inputs—Enable, n1, n0—required to each JK flip-
flop to cause the correct state transition. From the description of the JK 
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flip-flop earlier in the chapter, we know that JK = 00 keeps the current state, 
JK = 01 resets it (to 0), JK = 10 sets it (to 1), and JK = 11 toggles the state. We 
use X when the input can be either 0 or 1, or “don’t care.” Table 7-12 shows 
the required JK inputs.

Table 7-12: Two-Bit Counter Implemented with JK Flip-Flops

Current Next

Enable n1 n0 n1 n0 J1 K1 J0 K0

0 0 0 0 0 0 X 0 X

0 0 1 0 1 0 X X 0

0 1 0 1 0 X 0 0 X

0 1 1 1 1 X 0 X 0

1 0 0 0 1 0 X 1 X

1 0 1 1 0 1 X X 1

1 1 0 1 1 X 0 1 X

1 1 1 0 0 X 1 X 1

There are quite a few “don’t care” entries for both JK flip-flops in this 
table. This suggests that we can do quite a bit of simplification. It also sug-
gests that Karnaugh maps will be a good approach, since their graphic 
presentation tends to make it easier to visualize the effects of “don’t care” 
entries.

Step 5: Simplify the Required Inputs

We’ll use Karnaugh maps to find a simpler solution, using E for Enable, as 
shown in Figure 7-17.

J0(E, n1, n0) n
1
n

0
K0(E, n1, n0)

E
0

1

00 01 11 10

X

n1n0
00 01 11 10

X

X X

X

X

X

X

0
E

1 1 1 1 1

n
1
n

0
00 01 11 10

n1n0
00 01 11 10

E
0

1
E

0

1

X X

X X

X X

X X1 1

J1(E, n1, n0) K1(E, n1, n0)

Figure 7-17: Karnaugh maps for two-bit counter implemented with JK flip-flops
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We can easily write the equations from the Karnaugh maps to solve this 
problem, as shown here:

J0(E, n1, n0)	  = E 
K0(E, n1, n0)	  = E 
J1(E, n1, n0)	   = E ∧ n0 
K1(E, n1, n0)	  = E ∧ n0

J = K = 1 causes a JK flip-flop to toggle between states. These equations 
show that the low-order JK flip-flop toggles with each clock cycle. When it’s 
enabled, its output, n0, changes between 0 and 1 with each clock cycle. That 
is AND-ed with the Enable input to the high-order JK flip-flop, causing it to 
toggle between 0 and 1 every two clock cycles. (You will see this timing later 
in Figure 7-19 in the following step.)

Step 6: Draw the Circuit

Figure 7-18 shows a circuit to implement this counter. Referring to Table 7-8, 
we see that both JK flip-flops are being used as toggles in this design.

J
Q0

QCK n0

n1

CLK

Enable

K

J
Q1

QCK

K

Figure 7-18: Two-bit counter implemented with two JK flip-flops

Figure 7-19 shows the timing of the binary counter when counting 
through the sequence 3, 0, 1, 2, 3 (11, 00, 01, 10, 11).

Qi.JK is the input to the i th JK flip-flop, and ni is its output. (Recall that 
J = K in this design.) When the i th input, Qi.JK, is applied to its JK flip-flop, 
remember that the output of the flip-flop does not change until the second 
half of the clock cycle. This can be seen when comparing the trace for the 
corresponding output, ni, in the figure.

The short delay after a clock transition before the value of each output 
actually changes represents the time required for the electronics to com-
pletely settle to the new values.
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n1

Q1.JK

n0

Q0.JK

CLK

n1n0 11 00 01 10 11

1

0

1

1

1

1

0

0

0

0

Figure 7-19: Timing of two-bit counter, implemented with JK flip-flops

Designing a Branch Predictor
Let’s do another guided “Your Turn” here. This example is a bit more com-
plicated than the previous one.

Except for very inexpensive microcontrollers, most modern CPUs exe-
cute instructions in stages. Each stage consists of hardware that is specialized 
to perform the operations in that stage. An instruction passes through each 
stage in an assembly-line fashion. For example, if you were to create an assem-
bly line to manufacture wooden chairs, you could do it in three stages: saw 
the wood to make the parts for the chair, assemble the parts, paint the chair. 
The hardware needed at each stage would be saw, hammer and screwdriver, 
and paintbrush.

The arrangement of specialized hardware in the CPU is called a pipe-
line. The hardware in the first stage is designed to fetch an instruction from 
memory, as you’ll see in Chapter 9. After an instruction is fetched from 
memory, it passes onto the next stage of the pipeline, where the instruc-
tions are decoded. Simultaneously, the first stage of the pipeline fetches 
the next instruction from memory. The result is that the CPU is working on 
several instructions at the same time. This provides some parallelism, thus 
improving execution speed.

Almost all programs contain conditional branch points—places where the 
next instruction to be fetched can be in one of two different memory loca-
tions. Unfortunately, there is no way to know which of the two instructions 
to fetch until the decision-making instruction has moved several stages into 
the pipeline. To maintain execution speed, as soon as a conditional branch 
instruction has passed on from the fetch stage, it’s helpful if the CPU can 
predict where to fetch the next instruction from. Then the CPU can go 
ahead and fetch the predicted instruction. If the prediction was wrong, the 
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CPU simply ignores the work it has done on the predicted instruction by 
flushing out the pipeline and fetching the other instruction, which enters 
the beginning of the pipeline.

In this example, we’ll design a circuit that predicts whether a condi-
tional branch will be taken. The predictor continues to predict the same 
outcome, and the branch will be taken, or not taken, until it makes two mis-
takes in a row.

Step 1: Create a State Table and State Diagram

We use Yes to indicate when the branch is taken and No to indicate when 
it’s not. The state diagram in Figure 7-20 shows the four possible states.

Actual = Not Taken

Actual = Taken

Yes-error

Take

No

Don’t take

No-error

Don’t take

Actual = Not Taken

Actual = Not Taken

Actual = Not Taken

Actual = Taken

Actual = Taken

Actual = Taken

Yes

Take

Figure 7-20: Branch predictor

Let’s begin in the No state. Here, the branch was not taken at least 
the last two times this instruction was executed. The output is to predict 
that it will also not be taken this time. The input to the circuit is whether 
the branch has actually been taken when the instruction has completed 
execution. 

The arc labeled Actual = Not Taken loops back to the No state, with 
the prediction (the output) that the branch will not be taken the next time. 
If the branch is taken, the Actual = Taken arc shows that the circuit moves 
into the No-error state to indicate one error in the prediction. But because 
it must be wrong twice in a row to change our prediction, the circuit is still 
predicting “Don’t take” as the output.
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From the No-error state, if the branch is not taken (the prediction is 
correct), the circuit returns back to the No state. However, if the branch is 
taken, the circuit predicted incorrectly twice in a row, so the circuit moves 
to the Yes state, and the output is Take.

I’ll leave tracing through the remainder of this state diagram as an 
exercise for you. Once you’re satisfied with how it works, take a look at 
Table 7-13, which provides the technical specifications for our circuit.

Table 7-13: Branch Predictor State Table

Actual = Not Taken Actual = Taken

Current state Prediction Next state Prediction Next state Prediction

No Don’t take No Don’t take No-error Don’t take

No-error Don’t take No Don’t take Yes Take

Yes-error Take No Don’t take Yes Take

Yes Take Yes-error Take Yes Take

When the result of the conditional branch is determined in the pipeline, 
taken or not taken, Table 7-13 shows the next state and the corresponding 
prediction. This prediction would be used to determine which of the two 
possible addresses—the address of the next instruction or the address of the 
branch target—to store for use the next time this instruction is encountered 
in the program.

Step 2: Represent the States

For this problem, we’ll choose a binary code for the state, s1s0, as shown in 
Table 7-14.

Table 7-14: States of Branch Predictor

State s1 s0 Prediction

No 0 0 Don’t take

No-error 0 1 Don’t take

Yes-error 1 0 Take

Yes 1 1 Take

The Prediction is one bit, s1, which is 0 if the prediction is “Don’t take” 
and 1 if the prediction is Take.

Letting the input, Actual, be 0 when the branch is not taken and 1 when 
it is taken and using the state notation of Table 7-14, we get the state transi-
tion table, Table 7-15.
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Table 7-15: State Transition Table for Branch Predictor

Current Next

Actual s1 s0 s1 s0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

When the conditional branch instruction reaches a point in the pipe-
line where it is determined whether the branch should be taken or not, 
this information is used as the input, Actual, to the predictor circuit, which 
transforms the state from Current to Next for the next time this instruction 
is encountered.

Step 3: Select a Flip-Flop

For the same reasons as in the counter example, we’ll use a JK flip-flop here.

Step 4: Add Columns to the State Table Showing the Required Inputs

Table 7-16 shows the JK flip-flop inputs required to implement the state 
transitions in Table 7-15.

Table 7-16: JK Flip-Flop Inputs for Branch Predictor

Current Next

Actual s1 s0 s1 s0 J1 K1 J0 K0

0 0 0 0 0 0 X 0 X

0 0 1 0 0 0 X X 1

0 1 0 0 0 X 1 0 X

0 1 1 1 0 X 0 X 1

1 0 0 0 1 0 X 1 X

1 0 1 1 1 1 X X 0

1 1 0 1 1 X 0 1 X

1 1 1 1 1 X 0 X 0
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Step 5: Simplify the Required Inputs

We’ll use Karnaugh maps, Figure 7-21, to find a minimal solution. The 
input is whether the branch was taken: Actual = 0 means it was not taken; 
Actual = 1 means it was taken.

J0(Actual, s1, s0) s
1
s
0

00 01 11 10

0

1
Actual

K0(Actual, s1, s0) s1s0

Actual
1

0

00 01 11 10

X X

XX

X X

XX

1 1

1 1

J1(Actual, s1, s0) s1s0

00 01 11 10

K1(Actual, s1, s0) s1s0

00 01 11 10

Actual Actual
0 0

1 1 1

1X X

XX

X X

XX

Figure 7-21: Karnaugh maps for branch predictor

We can write the equations directly from these Karnaugh maps:

J0(Actual, s1, s0)	   = Actual 
K0(Actual, s1, s0)	  = ¬Actual 
J1(Actual, s1, s0)	   = Actual ∧ s0 
K1(Actual, s1, s0)	  = ¬Actual ∧ ¬s0

For this circuit, then, we’ll need two JK flip-flops, two AND gates, and 
one NOT gate. 

Step 6: Draw the Circuit

In this circuit, the input is Actual = 0 if the branch was not taken the last 
time, and Actual = 1 if it was taken. We need to add two AND gates and one 
NOT gate to the inputs of the JK flip-flops, as shown in Figure 7-22.

This example shows the simplest method of branch prediction. More 
complex methods exist. There is ongoing research into the effectiveness 
of branch prediction. Although it can speed up some algorithms, the addi-
tional hardware required for branch prediction consumes more electrical 
power, which is of concern in battery-powered devices.
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Figure 7-22: Branch predictor circuit using JK flip-flops

What You’ve Learned 

SR latch    The state of an SR latch depends on its input, either set or 
reset. It can include an Enable input.

D flip-flop    A D flip-flop stores one bit of data. By connecting two latches 
in a primary-secondary configuration, the output is isolated from the 
input, allowing a flip-flop to be synchronized with a clock signal. The out-
put of a D flip-flop can be changed only once per clock cycle.

T flip-flop    The state of a T flip-flop toggles between 0 and 1 with each 
clock cycle when it is enabled.

JK flip-flop    The JK flip-flop is called the universal flip-flop because 
it provides the four primary functions—keep current state, set, reset, 
toggle.

You also saw two examples of designing sequential logic circuits with JK 
flip-flops. In the next chapter, you’ll learn about some of the various mem-
ory structures used in a computer system.





8
M E M O R Y

In the previous three chapters, we looked 
at some of the hardware used to implement 

logical functions. Now we’ll look at how this 
functionality can be used to implement the sub-

systems that make up a computer, starting with memory.
Every computer user wants lots of memory and fast computing. However, 

faster memory costs more money, so there are some trade-offs. We’ll begin 
this chapter with a discussion of how different types of memory are used to 
provide a reasonable compromise between speed and cost. Then we’ll dis-
cuss a few different ways of implementing memory in hardware. 

The Memory Hierarchy
In general, the closer memory is to the CPU, the faster and more expen-
sive it is. The slowest memory is the cloud. It’s also the least expensive. 
My email account provides 15GB of storage in the cloud and doesn’t cost 
me any money (if I ignore the “cost” of seeing a few advertisements). But 
its speed is limited by my internet connection. At the other extreme, the 
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memory within the CPU runs at the same speed as the CPU but is relatively 
expensive. In the x86-64 architecture, there’s only about 1KB of memory 
in the CPU available to the programmer. 

Figure 8-1 shows this general hierarchy. As we get closer to the CPU 
(the top of this figure), memory is faster and costs more money, so there’s 
less of it.

CPU
registers

Level 1 cache

Level 2 cache

Main memory

Disk
DVD, memory stick

Cloud

Size

C
os

t

Sp
ee

d
Figure 8-1: Computer memory hierarchy

The top three layers in Figure 8-1 are typically included in the CPU 
chip in modern computers. There may be one or two more levels of cache 
before getting to main memory. The main memory and disk are usually in 
the same enclosure with the CPU, which may include more than one disk.

The next layer away from the CPU represents offline data storage 
devices. DVDs and memory sticks are only two examples. You may also have 
an external USB disk, a tape drive, and so forth. These are devices that you 
usually need to take some physical action, such as inserting a DVD in the 
player or plugging a memory stick into a USB port, before they are acces-
sible to the computer.

The final layer in this hierarchy is the storage in the cloud. Although 
most of us set up our computers to log on automatically, it may not always 
be available.

In this chapter, we’ll start with the two layers just above the cloud layer, 
offline storage and disk, and work our way in to the CPU registers. Then 
we’ll describe the hardware used to build registers and work our way back 
out to main memory. We’ll leave discussion of implementation of the three 
outermost layers to other books.

Mass Storage
Mass storage is used for keeping programs and large amounts of data in 
a machine-readable format. This includes hard disks, solid-state drives, 
memory sticks, optical disks, and so forth. Their contents are nonvolatile, 
meaning that when the power is turned off, the contents remain. They also 
are slow compared to the CPU. Accessing their contents requires explicit 
programming.
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In Figure 8-2, the input/output (I/O) block includes specialized cir-
cuitry that interfaces with mass storage devices.

Data bus

CPU Memory I/O

Address bus
Control bus

Figure 8-2: Subsystems of a computer. The CPU, memory, and  
I/O subsystems communicate with one another via the three  
buses. (Repeat of Figure 1-1.)

For example, my computer has circuitry that implements the Serial 
Advanced Technology Attachment (SATA) interface protocol. I have 
an SSD card plugged into one of the SATA ports. The operating system 
includes software (a device driver) that applications call to access the data 
and applications on my SSD card through the SATA port. We’ll discuss I/O 
programming in Chapter 20, but the specifics of device drivers are beyond 
the scope of this book.

For the rest of this chapter, we’ll look at volatile memory, which loses its 
contents when power is turned off.

Main Memory
Next, we have main memory. This is the RAM that you see in the specifica-
tions when you buy a computer. As shown in Figure 8-2, main memory 
communicates with the CPU using the data, address, and control buses. 
We’ll discuss how these buses work in Chapter 9. Main memory is synchro-
nized in the hardware with the CPU. Thus, a programmer can access items 
in memory by simply specifying the address and whether to read the item 
from memory or store a new value there.

Usually, the entire program and dataset are not loaded into main mem-
ory. Only the portion currently being worked on is loaded by the operating 
system from mass storage into main memory. Most mass storage devices in 
modern computers can be accessed only in blocks of predetermined size. 
For example, the disk block size in my Ubuntu installation is 4KB. When 
a needed instruction or data item is loaded into main memory, the com-
puter loads the whole block of instructions or data that includes the needed 
item into memory. Chances are good that the nearby parts of the program 
(instructions or data) will be needed soon. Since they’re already in main 
memory, the operating system doesn’t need to access the mass storage 
device again, thus speeding up program execution.
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The most common organization of main memory is to store both the 
program instructions and data in main memory. This is referred to as the 
von Neumann architecture, and it was described by John von Neumann (“First 
Draft of a Report on the EDVAC,” Moore School of Electrical Engineering, 
University of Pennsylvania, 1945), although other computer science pioneers 
of the day were working with the same concepts.

A downside of the von Neumann architecture is that if an instruction 
calls for reading data from, or writing data to, memory, the next instruc-
tion in the program sequence cannot be read from memory over the same 
bus until the current instruction has completed the data transfer—this is 
known as the von Neumann bottleneck. This conflict slows program execution, 
giving rise to another stored-program architecture, the Harvard architecture, 
in which the program and data are stored in different memories, each with 
its own bus connected to the CPU. This makes it possible for the CPU to 
access both program instructions and data simultaneously. This specializa-
tion reduces the memory usage flexibility that generally increases the total 
amount of memory needed. It also requires additional memory access hard-
ware. The additional memory and access hardware increase the cost.

Another downside of the von Neumann architecture is that a pro-
gram can be written to view itself as data, thus enabling a self-modifying 
program, which is generally a bad idea. GNU/Linux, like most modern, 
general-purpose operating systems, prohibits applications from modify-
ing themselves.

Cache Memory
Most of the programs I use take up tens or hundreds of megabytes in main 
memory. But most of the execution time is taken up by loops, which execute 
the same few instructions repetitively, access the same few variables, and 
occupy only tens or hundreds of bytes. Most modern computers include 
very fast cache memory between the main memory and the CPU, which pro-
vides a much faster location for the instructions and variables currently 
being processed by the program.

Cache memory is organized in levels, with Level 1 being the closest 
to the CPU, and the smallest. The computer I’m using has three levels of 
cache: 64KB of Level 1, 256KB of Level 2, and 8MB of Level 3. When a pro-
gram needs to access an instruction or data item, the hardware first checks to 
see if it’s located in the Level 1 cache. If not, it checks the Level 2 cache. If it’s 
in the Level 2 cache, the hardware copies a block of memory that includes 
the needed instruction or data into the Level 1 cache and then into the 
CPU, where it stays until the program needs it again, or the Level 1 cache 
needs to reuse that location for other instructions or data from the Level 2 
cache. The amount of memory copied into a cache at a time, called a line, is 
much less than that copied from a mass storage device.

If the required instruction or data is not in the Level 2 cache, the hard-
ware checks the Level 3 cache. If it finds what it needs, it copies the line 
containing the needed instruction or data into Level 2, then Level 1, and 
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from there into the CPU. If the data is not in Level 3, the hardware checks 
main memory. In this way, the hardware makes a copy of the portion of the 
program it’s currently working within the Level 3 cache, a smaller portion 
of what it’s working on in the Level 2 cache, and an even smaller portion 
in the Level 1 cache. It’s common for the Level 1 cache to have a Harvard 
architecture, thus providing separate paths to the CPU for the instructions 
and the data. The Level 1 cache on my computer has a Harvard archi-
tecture with 32KB devoted to instructions and 32KB for data. My Level 1 
instruction cache has a line size of 32 bytes, while all the others have a line 
size of 64 bytes.

When data is written to main memory, it starts with Level 1 cache, 
then the next cache levels, and finally into main memory. There are many 
schemes for using caches, which can become rather complex. I’ll leave 
further discussion of caches for more advanced treatments, for example: 
https://en.wikibooks.org/wiki/Microprocessor_Design/Cache.

The time to access the Level 1 cache is close to the speed of the CPU. 
Level 2 is about 10 times slower, Level 3 about 100 times slower, and main 
memory about 1,000 times slower. These values are approximate and differ 
widely among implementations. Modern processors include cache memory 
in the same chip as the CPU, and some have more than three levels of 
cache.

Computer performance is usually limited by the time it takes for the CPU 
to read instructions and data into the CPU, not by the speed of the CPU 
itself. Having the instructions and data in Level 1 cache reduces this time. 
Of course, if they are not in Level 1 cache, and the hardware needs to copy 
other instructions or data from Level 2, or Level 3, or main memory into 
Level 3, then Level 2, and finally Level 1, access will take longer than simply 
getting the instructions or data directly from main memory. The effective-
ness of cache depends on the locality of reference, which is the tendency of a 
program to reference nearby memory addresses in a short period of time. 
This is one of the reasons good programmers break a program, especially 
repetitive sections, into small units. A small program unit is more likely 
to fit within a few lines of a cache, where it would be available for succeed-
ing repetitions.

YOUR T UR N

1.	 Determine the cache size(s) on your computer. On my Ubuntu 20.04 LTS 
system, the command is lscpu. You may need to use another command on 
your computer.

2.	 Determine the line size of each of the caches on your computer. On my 
Ubuntu 20.04 LTS system, the command is getconf -a| grep CACHE. You 
may need to use another command on your computer.

https://en.wikibooks.org/wiki/Microprocessor_Design/Cache
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Registers
The fastest memory is within the CPU itself: the registers. Registers typically 
provide about 1KB of storage and are accessed at the same speed as the 
CPU. They’re mainly used for numerical computations, logical operations, 
temporary data storage, and similar short-term operations—somewhat like 
how we use scratch paper for hand computation. Many registers are directly 
accessible by the programmer, while others are hidden. Some are used in 
the hardware that serves to interface between the CPU and I/O devices. 
The organization of registers in the CPU is very specific to the particular 
CPU architecture, and it’s one of the most important aspects of program-
ming a computer at the assembly language level. You’ll learn about the 
main registers that a programmer works with in the x86-64 architecture in  
the next chapter. 

But first, let’s look at how memory can be implemented in hardware 
using the logic devices discussed in previous chapters. We’ll start with the 
CPU registers, the top layer in Figure 8-1, and work our way out to main 
memory. As we work through this hierarchy, you’ll learn why faster memory 
is more expensive, which is the reason for organizing memory in this hier-
archical way. We won’t cover the implementation of mass storage systems in 
this book.

Implementing Memory in Hardware
Now that we’re at the top of the hierarchy in Figure 8-1, let’s see how we 
implement the memory in the CPU registers. We’ll then work our way back 
out from the CPU, and you’ll see some of the limitations when applying 
these designs to larger memory systems, like cache and main memory. We’ll 
end the section with designs for the memory in these larger systems.

Four-Bit Register
Let’s begin with a design for a simple four-bit register, which might be found 
in inexpensive CPUs used in price-sensitive consumer products, like coffee 
makers, remote controls, and so forth. Figure 8-3 shows a design for imple-
menting a four-bit register using a D flip-flop for each bit. Each time the 
clock does a positive transition, the state (contents) of the register, r = r3r2r1r0, 
is set to the input, d = d3d2d1d0.

The problem with this circuit is that any changes in any di will change 
the state of the corresponding stored bit, ri, in the next clock cycle, so the 
contents of the register are essentially valid for only one clock cycle. One-
cycle buffering of a bit pattern is sufficient for some applications, but we 
also need registers that will store a value until it is explicitly changed, per-
haps billions of clock cycles later.

Let’s add a Store signal and feedback from the output, ri, of each bit. We 
want each ri to remain unchanged when Store = 0 and to follow the input, di, 
when Store = 1, as shown in Table 8-1.
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Figure 8-3: A four-bit register using a 
D flip-flop for each bit

Table 8-1: One-Bit  
Storage Using a D  
Flip-Flop with Store 
Signal

Store di ri D

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1
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Table 8-1 leads to the Boolean equation for D:

 D(Store, di, ri) = ¬(¬(¬Store ∧ ri) ∧ ¬(Store ∧ di))

This equation can be implemented with three NAND gates at the input 
of each D flip-flop, as shown in Figure 8-4.
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d3 d2 d1 d0
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Figure 8-4: A four-bit register with Store signal

This design has another important feature that follows from the  
primary/secondary property of the D flip-flops. The state of the secondary 
portion does not change until the second half of the clock cycle. So the  
circuit connected to the output of this register can read the current state 
during the first half of the clock cycle, while the primary portion is prepar-
ing to possibly change the state to the new contents.
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We now have a way to store, for example, the results from an adder 
circuit. The output from the register could be used as the input to another 
circuit that performs arithmetic or logical operations on the data. 

Registers can also be designed to perform simple operations on the 
data stored in them. We’ll look next at a register design that can convert 
serial data to a parallel format.

Shift Register
We can use a shift register as a serial-in parallel-out (SIPO) device. A shift 
register uses a sequence of D flip-flops, like the simple storage register in 
Figure 8-4, but the output of each flip-flop is connected to the input of the 
next flip-flop in the sequence, as shown in Figure 8-5.
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Figure 8-5: Four-bit serial-to-parallel 
shift register

In the shift register in Figure 8-5, a serial stream of bits is input at si. At 
each clock tick, the output of Q0 is applied to the input of Q1, thus copying 
the previous value of r0 to the new r1. The state of Q0 changes to the value 
of the new si, thus copying this to be the new value of r0. The serial stream 
of bits continues to ripple through the four bits of the shift register. At any 
time, the last four bits in the serial stream are available in parallel at the 
four outputs, r3, r2, r1, r0, with r3 being the oldest in time.
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The same circuit could be used to provide a time delay of four clock 
ticks in a serial bit stream. Simply use r3 as the serial output.

Register File
The registers in the CPU that are used for similar operations are grouped 
together into a register file. For example, as you’ll see in the next chapter, the 
x86-64 architecture includes sixteen 64-bit general-purpose registers that are 
used for integer computations, temporary storage of addresses, and so forth. 
We need a mechanism for addressing each of the registers in the register file.

Consider a register file composed of eight four-bit registers, r0–r7, 
implemented using eight copies of the four-bit register circuit shown in 
Figure 8-4. To read the four bits of data in one of these eight registers 
(for example, r53, r52, r51, and r50 in register r5), we need to specify one of 
the eight registers using three bits. You learned in Chapter 7 that a multi-
plexer can select one of several inputs. We can connect a 3 × 8 multiplexer 
to each corresponding bit of the eight registers, as shown in Figure 8-6. 
The inputs to the multiplexer, r0i–r7i, are the i th bits from each of eight reg-
isters, r0–r7. The slash through the RegSel line with a 3 next to it is the nota-
tion used to show that there are three lines here.

RegOuti

RegSel

3

0
1
2
3
4
5
6
7

r0i

r1i

r2i

r3i

r4i

r5i

r6i

r7i

Figure 8-6: Eight-way mux used to  
select output of register file. This only  
shows the output of the ith bit; n muxes  
are required for n-bit registers.

A four-bit register would need four of these multiplexer output circuits. 
The same RegSel would be applied to all four multiplexers simultaneously to 
output all four bits of the same register. Larger registers would, of course, 
require correspondingly more multiplexers.

Read-Write Memory
You saw how to build a four-bit register to store values from D flip-flops in 
Figure 8-3. We now need to be able to select when to read the value that’s 
stored in the register and disconnect the output when we’re not reading it. A 
tristate buffer allows us to do that, as shown in Figure 8-7. This circuit is for 
only one four-bit register. We need one of these for each register in the com-
puter. The addrj line comes from a decoder and selects one of the registers.
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Figure 8-7: Four-bit read-write register

Write = 1 causes the four-bit data, d3d2d1d0, to be stored in the D flip-flops 
Q3, Q2, Q1, and Q0. The four-bit output, r3r2r1r0, remains disconnected from 
the D flip-flops when Read = 0. Setting Read = 1 connects the outputs.

We’ll continue down the memory hierarchy in Figure 8-1 to cache mem-
ory, which is typically constructed from flip-flops, similar to a register file.

Static Random-Access Memory 
The memory we’ve been discussing that uses flip-flops is called static random- 
access memory (SRAM). It’s called static because it maintains its values so 
long as power is maintained. As we saw in Chapter 2, it’s called random 
because it takes the same amount of time to access any (random) byte in 
this memory. SRAM is commonly used for cache memory, which can range 
in size up to several megabytes.

Let’s look at ways to address individual bytes in a large memory. Selecting 
one byte in 1MB of memory requires a 20-bit address. This requires a 20 × 220 
address decoder, as shown in Figure 8-8.
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Write
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Figure 8-8: Addressing 1MB of memory with one 20 × 220 address decoder

Recall that an n × 2n decoder requires 2n AND gates. So a 20 × 220 
decoder requires 1,048,576 AND gates. We can simplify the circuitry by 
organizing memory into a grid of 1,024 rows and 1,024 columns, as shown 
in Figure 8-9. We can then select a byte by selecting a row and a column, 
each using a 10 × 210 decoder.

1 MB Mem.10 × 210

Decoder

10 × 210

Decoder

10

20

10 210

Read

Data

Address

Write

210

Figure 8-9: Addressing 1MB of memory with two 10 × 210 address decoders
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Although two decoders are required, each requires 2n/2 AND gates, for 
a total of 2 × 2n/2 = 2(n/2)+1 = 2,048 AND gates for each of the two decoders. 
Of course, accessing individual bytes in memory is slightly more complex, 
and some complexity is added to split the 20-bit address into two 10-bit 
portions, but this example should give you an idea of how engineers can 
simplify designs.

Continuing down the memory hierarchy, we get to main memory, the 
largest memory unit that is internal to the computer.

Dynamic Random-Access Memory 
Each bit in SRAM requires about six transistors for its implementation. 
Dynamic random-access memory (DRAM), which is used for main memory, is 
less expensive.

A bit in DRAM is commonly implemented by a charging a capacitor to 
one of two voltages. The circuit requires only one transistor to charge the 
capacitor, as shown in Figure 8-10. These circuits are arranged in a rectan-
gular array.

Row Select

Bit Read/Write

d

Capacitor

Sense Amplifier/Latch

Figure 8-10: One DRAM bit

When the Row Select line is set to 1, all the transistors in that row are 
turned on, thus connecting the respective capacitor to the Sense Amplifier/
Latch. The value stored in the capacitor, high voltage or low voltage, is 
amplified and stored in the latch. There, it’s available to be read. Since this 
action tends to discharge the capacitors, they must be refreshed from the 
values stored in the latch. Separate circuitry is provided to do the refresh.

When data is to be stored in DRAM, the new bit value, 0 or 1, is first 
stored in the latch. Then Row Select is set to 1, and the Sense Amplifier/
Latch circuitry applies the voltage corresponding to the logical 0 or 1 to the 
capacitor. The capacitor is either charged or discharged appropriately.

These operations take more time than simply switching flip-flops, so 
DRAM is appreciably slower than SRAM. In addition, capacitors lose their 
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charge over time, so each row of capacitors must be read and refreshed in 
the order of every 60 msec. This requires additional circuitry and further 
slows memory access. 

Now we have a clear picture of how the hierarchical arrangement of 
memory in a modern computer allows fast program execution while keep-
ing hardware costs at a reasonable level. Although DRAM is much slower 
than the CPU, its low cost per bit makes it a good choice for main memory. 
As we move closer to the CPU in the memory hierarchy, the much faster 
SRAM is used for the cache(s). Since cache is much smaller compared to 
main memory, the higher cost per bit of SRAM is tolerable. And since the 
instructions and data needed by the program being executed by the CPU 
are often in the cache, we see the benefits of the higher speed of the SRAM 
in program execution.

YOUR T UR N

Derive the equation for D(Store, di, ri) from Table 8-1.

What You’ve Learned 

Memory hierarchy    Computer storage is organized such that smaller 
amounts of faster, more costly memory are located closer to the CPU. 
Smaller amounts of program instructions and data are copied to the suc-
cessively faster memory levels as a program executes. This works because 
there is a very high probability that the next memory location needed by 
a program will be at an address that is close to the current one.

Registers    A few thousand bytes of memory located in the CPU that 
are accessed at the same speed as the CPU. Implemented in flip-flops.

Cache    Thousands to millions of bytes of memory outside the CPU, 
but often on the same chip. Cache memory is slower than the CPU but 
synchronized with it. It is often organized in levels, with faster, smaller 
amounts closer to the CPU. This is usually implemented in SRAM.

Main memory    Hundreds of millions to billions of bytes of memory 
separate from the CPU. It’s much slower than the CPU, but synchro-
nized with it. This is usually implemented in DRAM.

Static random-access memory (SRAM)    Uses flip-flops to store bits. 
SRAM is fast, but expensive.

Dynamic random-access memory (DRAM)    Uses capacitors to store 
bits. DRAM is slow, but has a much lower cost.

In the next chapter, you will learn how the x86-64 CPU is organized 
from a programmer’s point of view.
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C E N T R A L  P R O C E S S I N G  U N I T 

Now that you’ve learned about the elec-
tronic components used to build a central 

processing unit (CPU), it’s time to learn 
about some of the specifics of the x86-64 CPU. 

The two major manufacturers of these CPUs are Intel 
and AMD. An x86-64 CPU can be run in either 32-bit 
or 64-bit mode. The 32-bit mode is called the compati-
bility mode, which allows you to run programs that were 
compiled for either a 32-bit or 16-bit environment. 

In this book, we’ll focus on the 64-bit mode, which is called IA-32e in 
the Intel manuals and long mode in the AMD manuals. I’ll refer to it as the 
64-bit mode. I’ll point out some of the major differences of the compatibility 
mode, which I’ll refer to as the 32-bit mode. You cannot mix the two modes 
in the same program, but most 64-bit operating systems allow you to run 
either a 32-bit program or a 64-bit program. 
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We’ll begin the chapter with an overview of a typical CPU. Next, we’ll 
look at the registers in the x86-64 CPU and how a programmer accesses 
them. The chapter concludes with an example of using the gdb debugger to 
view the contents of the registers.

CPU Overview
As you probably already know, the CPU is the heart of the computer. It fol-
lows the execution path that you specify in your program and performs 
all the arithmetic and logic operations. It also fetches the instructions and 
data from memory as they are needed by your program.

We’ll begin with a look at the major subsystems of a typical CPU. This 
will be followed by a description of how the CPU fetches instructions from 
memory as it executes a program.

CPU Subsystems
Figure 9-1 shows an overall block diagram of the major subsystems of a 
typical CPU. The subsystems are connected through internal buses, which 
include the hardware pathways and the software protocols that control the 
communications. Keep in mind that this is a highly simplified diagram. 
Actual CPUs are much more complicated, but the general concepts dis-
cussed in this chapter apply to most of them. 

Instruction pointer

Instruction register

Control unit

Arithmetic 
logic unit

Status register

Cache
memory

Register file

Bus interface

to Address, Data, and Control buses

Figure 9-1: Major subsystems of a CPU

Let’s briefly look at each of the subsystems in Figure 9-1. The descrip-
tions provided here are generic and apply to most CPUs. After this brief 
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introduction, we’ll look at the subsystems that a programmer will be most 
interested in and how they’re used in the x86-64 architecture. 

Instruction pointer    This register always contains the memory address 
of the next instruction to be executed.

Cache memory    Although it could be argued that this is not part of 
the CPU, most modern CPUs include very fast cache memory on the 
CPU chip. As you’ll see later in this chapter, the CPU fetches each 
instruction from memory as it executes a program. The CPU can exe-
cute instructions much faster than it can fetch them from main mem-
ory through the bus interface. The interface with main memory makes 
it more efficient to fetch several instructions at one time, storing them 
in cache memory where the CPU has fast access to them.

Instruction register    This register contains the instruction currently 
being executed. Its bit pattern determines what the control unit is 
causing the CPU to do. Once that action has been completed, the bit 
pattern in the instruction register will be changed to that of the next 
instruction, and the CPU will perform the operation specified by this 
new bit pattern. 

Register file    A register file is a group of registers used in similar ways. 
Most CPUs have several register files. For example, the x86-64 CPU has 
a register file for integer operations and another register file for floating-
point operations. Compilers and assemblers have names for each register. 
Almost all arithmetic and logic operations and data movement opera-
tions involve at least one register in a register file.

Control unit    The bits in the instruction register are decoded in the 
control unit. To carry out the action(s) specified by the instruction, the 
control unit generates the signals that control the other subsystems in 
the CPU. It’s typically implemented as a finite-state machine and con-
tains decoders, multiplexers, and other logic components. 

Arithmetic logic unit (ALU)    The ALU is used to perform the arith-
metic and logic operations you specify in your program. It’s also used 
by the CPU when it needs to do its own arithmetic (for example, add 
two values to compute a memory address).

Status register    Each operation performed by the ALU results in vari-
ous conditions that must be recorded for possible use by the program. 
For example, addition can produce a carry. One bit in the status regis-
ter will be set to either 0 (no carry) or 1 (carry) after the ALU has com-
pleted any operation that may produce a carry.

Bus interface    This is how the CPU communicates with the other com-
puter subsystems—the memory and input/output (I/O) in Figure 1-1 
(see Chapter 1). It contains circuitry to place addresses on the address 
bus, read and write data on the data bus, and read and write signals  
on the control bus. The bus interface on many CPUs interfaces with  
external bus control units that in turn interface with memory and with 
different types of I/O buses (for example, USB, SATA, or PCI-E).



180   Chapter 9

Instruction Execution Cycle
In this section, we’ll go into more detail about how the CPU executes a pro-
gram stored in main memory. It does this by fetching the instructions from 
main memory using the three buses that you learned about in Chapter 1—
address, data, and control—through the bus interface. 

The address in the instruction pointer register, rip, always points to (has 
the memory address of) the next instruction in a program to be executed. 
The CPU works its way through a program by fetching the instruction from 
the memory address in the instruction pointer. When an instruction is 
fetched, the CPU starts to decode it. The first byte or two, depending on 
the instruction, tell the CPU the number of bytes in the instruction. The 
CPU then increments the rip register by this number, causing the rip to 
contain the address of the next instruction in the program. Thus, the rip 
marks the current location in a program.

There are instructions that change the address in the rip, thus causing 
a jump from one place in the program to another. In this case, the address 
of the next instruction is not known until the instruction that causes the 
jump is actually executed.

The x86-64 architecture also supports rip-relative addressing, which 
allows the program to access memory locations that are a fixed displace-
ment away from the current address in the rip. This allows us to create a 
program that can be loaded anywhere in memory for execution, which 
allows for better security. You’ll learn more about this in Chapter 11, as we 
look into the assembly language details of a function.

When the CPU fetches an instruction from memory, it loads that instruc-
tion into the instruction register. The bit pattern in the instruction register 
causes the CPU to perform the operations specified in the instruction. 
Once that action has been completed, another instruction is automatically 
loaded into the instruction register, and the CPU will perform the operation 
specified by this next bit pattern. 

Most modern CPUs use an instruction queue. Several instructions are 
waiting in the queue, ready to be executed. Separate electronic circuitry 
keeps the instruction queue full while the regular control unit is executing 
the instructions. But this is simply an implementation detail that allows the 
control unit to run faster. The essence of how the control unit executes a 
program can be represented by the single instruction register model, which 
is what I’ll describe here. 

The steps to fetch each instruction from memory, and thus to execute a 
program, are as follows: 

1.	 A sequence of instructions is stored in memory. 

2.	 The memory address where the first instruction is located is copied to 
the instruction pointer. 

3.	 The CPU sends the address in the instruction pointer to memory on 
the address bus. 

4.	 The CPU sends a “read” signal on the control bus. 
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5.	 The memory responds by sending a copy of the state of the bits at that 
memory location on the data bus, which the CPU then copies into its 
instruction register. 

6.	 The instruction pointer is automatically incremented to contain the 
address of the next instruction in memory. 

7.	 The CPU executes the instruction in the instruction register. 

8.	 Go back to step 3.

Steps 3, 4, and 5 are called an instruction fetch. Notice that steps 3–8 
constitute a cycle, the instruction execution cycle. It’s shown graphically in 
Figure 9-2.

Stop CPU

Fetch the
instruction

pointed to by
instruction pointer

Add number of
bytes in the
instruction to

instruction pointer

Execute the
instruction

Is it the hlt
instruction?

No

Yes

Figure 9-2: The instruction  
execution cycle

Most instructions in a program use at least one register in at least one 
of the register files. A program typically loads data from memory into a reg-
ister, operates on the data, and stores the result in memory. Registers are 
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also used to hold addresses of items that are stored in memory, thus serving 
as pointers to data or other addresses.

The remainder of this chapter is mostly devoted to describing the general-
purpose registers in the x86-64 architecture. You’ll learn how to view their 
contents in the gdb debugger. Then in the next chapter, you’ll learn how to 
start using them in assembly language.

x86-64 Registers
A portion of the memory in the CPU is organized into registers. Machine 
instructions access CPU registers by their addresses, just like they access 
main memory. Of course, the register addressing space is separate from 
the main memory addressing space. Register addresses are placed on the 
internal CPU bus, not on the address portion of the bus interface, since the 
registers are in the CPU. The difference from a programmer’s point of view 
is that the assembler has predefined names for the registers, whereas the 
programmer creates symbolic names for memory addresses. Thus, in each 
program that you write in assembly language, the following happens: 

•	 CPU registers are accessed by using the names that are predefined in 
the assembler. 

•	 Memory is accessed by the programmer providing a name for the mem-
ory location and using that name in the user program.

Table 9-1 lists the x86-64 architecture registers, which groups them 
according to their general usage in a program. Within each general cat-
egory, the columns in the table show the number of registers, the size of 
each register, and the usage of each register in a program.

Table 9-1: The x86-64 Registers

Basic programming registers

16 64-bit General-purpose

1 64-bit Flags

1 64-bit Instruction pointer

6 16-bit Segment

Floating-point registers

8 80-bit Floating-point data

1 16-bit Control

1 16-bit Status

1 16-bit Tag

1 11-bit Opcode

1 64-bit FPU instruction pointer

1 64-bit FPU data pointer
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MMX registers

8 64-bit MMX

XMM registers

16 128-bit XMM

1 32-bit MXCR

Model-specific registers (MSRs)

Vary depending on implementation. Used 
only by operating system.

I’ve already described the instruction pointer register. Most of the pro-
gramming concepts presented in this book use only the general-purpose 
registers. These are used for integral data types, such as int and char integer 
values (signed and unsigned), character representations, Boolean values, 
and addresses. In the remainder of this section, we’ll look at the general-
purpose registers and the flags register. We’ll discuss the floating-point reg-
isters near the end of the book. The MMX and XMM registers are used for 
more advanced programming techniques that we won’t cover.

General-Purpose Registers
As mentioned, the general-purpose registers deal with integral data types 
and memory addresses. Each bit in each register is numbered from right to 
left, beginning with 0. So, the rightmost bit is number 0, the next one to the 
left is 1, and so on. Since there are 64 bits in each general-purpose register, 
the leftmost bit is 63. 

Each instruction in a computer treats a group of bits as a single unit. 
In the early days, that unit was called a word. Each CPU architecture had a 
word size. In modern CPU architectures, different instructions operate on 
different numbers of bits, but the terminology has carried over from the 
early days of the Intel 8086 instruction set architecture to the current 64-bit 
instruction set architecture, x86-64. Hence, 16 bits is called a word, 32 bits a 
doubleword, and 64 bits a quadword.

You can access the bits in each general-purpose register by using the 
following groupings in your programs: 

Quadword    All 64 bits (63–0)

Doubleword    The low-order 32 bits (31–0)

Word    The low-order 16 bits (15–0)

Byte    The low-order 8 bits (7–0), and in four registers bits (15–8)

The assembler uses a different name for each group of bits in a register. 
Table 9-2 lists the assembler names for the groups of the bits. Each row in 
the table represents one register, and each column represents the name for 
that grouping of bits in the register. 
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Table 9-2: Assembly Language Names for Portions of the  
General-Purpose CPU Registers

Bits 63–0 Bits 31–0 Bits 15–0 Bits 15–8 Bits 7–0

rax eax ax ah al

rbx ebx bx bh bl

rcx ecx cx ch cl

rdx edx dx dh dl

rsi esi si sil

rdi edi di dil

rbp ebp bp bpl

rsp esp sp spl

r8 r8d r8w r8b

r9 r9d r9w r9b

r10 r10d r10w r10b

r11 r11d r11w r11b

r12 r12d r12w r12b

r13 r13d r13w r13b

r14 r14d r14w r14b

r15 r15d r15w r15b

In 64-bit mode, writing to an 8-bit or 16-bit portion of a register doesn’t 
affect the other 56 or 48 bits in the register. However, when writing to the 
low-order 32 bits, the high-order 32 bits are set to 0. (I don’t know why the 
CPU designers chose this behavior, which seems odd to me.) Programs run-
ning in 32-bit mode can use only the registers above the line in Table 9-2. 
64-bit mode can use of all the registers. The ah, bh, ch, and dh registers (bits 
15–8) can’t be used in the same instruction with any of the registers below 
the line. For example, you cannot copy the 8-bit value in the ah register to the 
sil register with a single instruction, but you could copy it to the dl register.

Most CPU architectures name their registers r0, r1, and so on. When Intel 
introduced the 8086/8088 instruction set architecture, it used the names 
above the line in the columns for bits 15–0, 15–8, and 7–0 in Table 9-2. The 
four 16-bit registers, ax, bx, cx, and dx, were more general-purpose than the 
other four and were used for most of the computations in the CPU. The pro-
grammer could access either the entire register or one-half of each register. 
The low-order bytes were named al, bl, cl, and dl, and the high-order bytes 
named ah, bh, ch, and dh. 

Access to these 8-bit and 16-bit registers has been maintained in 32-bit 
mode for backward compatibility but is limited in 64-bit mode. Access to 
the 8-bit low-order portions of the rsi, rdi, rsp, and rbp registers was added 
along with the move to 64 bits in the x86-64 architecture but cannot be 
used in the same instruction with the 8-bit register portions of the ah, bh, ch, 
or dh registers. 
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The e prefix on the 32-bit portion of each register name comes from 
the history of the x86 architecture. The introduction of the 80386 in 1986 
brought an increase of register size from 16 bits to 32 bits. There were no 
new registers; the old ones were simply “extended.” In addition to increas-
ing the register size to 64 bits, the introduction of the x86-64 architecture 
added eight more registers, named r8–r15. Rather than change the names 
of the first eight registers, I assume that the designers decided to use the r 
prefix on the historical names.

When using fewer than the entire 64 bits in a register, it’s generally bad 
practice to write code that assumes the remaining portion is in any particu-
lar state. Such code is difficult to read and leads to errors during the pro-
gram’s maintenance phase. 

Figure 9-3 shows a pictorial representation of the naming of each por-
tion of the general-purpose registers. The three registers shown here are 
representative of the pattern of all the general-purpose registers.

rax
eax

ax
ah al

rsi
esi

si
sil

r8
r8d

r8w
r8b

Figure 9-3: General-purpose register naming

Although they’re called general-purpose, some instructions use several 
of these registers in special ways. We’ll mostly treat all the general-purpose 
registers like variables in a high-level language. The important exceptions 
are the rsp and rbp registers, which hold memory addresses that are key for 
the proper functioning of a program that’s executing.

Special Pointer Registers

Let’s look at two general-purpose registers that are important in a program. 
The rsp register is used as a stack pointer, and the rbp register is used as a 
frame pointer. They are used to keep track of the locations of items in an 
area of memory used as the call stack. The call stack is used for temporary 
storage and passing information between functions when a program is 
running. Several machine instructions use the rsp register implicitly. 

The usage of the rsp and rbp registers must follow a very strict protocol, 
which I’ll describe in detail in subsequent chapters. You need to follow the 
protocol carefully when writing assembly language.
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Other Restrictions on General-Purpose Registers

Several instructions work only with specific general-purpose registers. For 
example, the unsigned multiplication and division instructions use the rax 
and rdx registers. In addition, each operating system and programming 
environment has a set of rules for using the general-purpose registers. In 
our programming environment (C under 64-bit GNU/Linux), the first 
argument to a function is passed in the rdi register, but when using C under 
64-bit Windows, the first argument is passed in the rcx register.

You’ll learn about these restrictions and conventions (for GNU/Linux, 
not Windows) in Chapter 11.

Status Register
Another specialized register in the CPU is the status register, which you saw 
in Figure 9-1. It’s given the name rflags. We will be concerned with several 
bits in this register that are used as status flags, which indicate some side 
effects of many instructions.

Most arithmetic and logical operations affect the status flags. For 
example, the carry flag, CF, and overflow flag, OF, are in the rflags register. 
Figure 9-4 shows the bits that are affected. The high-order 32 bits (63–32) 
are reserved for other use and are not shown here. We also don’t show bits 
31–12, which are for system flags.

OF SF ZF AF PF CF
11 10 9 8 7 6 5 4 3 2 1 0

Figure 9-4: Status flags portion of the rflags register

Table 9-3 shows the status flags.

Table 9-3: Status Flags in the rflags Register

Name Function Condition that sets flag to 1

OF Overflow flag Overflow of signed-integer (two’s complement) 
arithmetic

SF Sign flag Copy of most significant bit of result

ZF Zero flag Result is 0

AF Auxiliary carry flag Shows carry or borrow in binary-coded decimal 
arithmetic

PF Parity flag Least significant byte of result has an even number of 1 
bits

CF Carry flag Carry or borrow beyond most significant bit of result

There are machine instructions for testing the state of the status flags. 
For example, there’s an instruction that will branch to another place in the 
program if the ZF status flag is 1.

Next, we’ll look at some C/C++ data types as they relate to the sizes of 
the general-purpose registers.
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C/C++ Integral Data Types and Register Sizes
Every piece of data in a computer program has a data type, which specifies 
the following: the possible values for the data type, the bit patterns used to 
represent those values, operations that can be performed on the data, and 
the data’s semantic usage in the program.

Some programming languages like C, C++, and Java require the pro-
grammer to explicitly state the data types of values used in the program. 
Other languages like Python, BASIC, and JavaScript can determine a data 
type from the way the value is used. CPU manufacturers specify machine-
level data types specific to the CPU architecture, often including special-
ized data types that are unique to the design.

The C and C++ language specifications provide ranges for values that 
can be stored in a variable of each data type. For example, an int must be 
able to store a value in the range –32,767 to + 32,767; thus, it must be at least 
16 bits in size. An unsigned int must be at least 0 to 65,525, so it also must be 
at least 16 bits. Compiler designers are free to exceed the minimums speci-
fied in the language specifications. 

Table 9-4 gives x86-64 register sizes for C/C++ data types you can expect 
from our compilers, gcc and g++, but you should be careful not to count on 
these sizes to always be the same. The *any notation means a pointer (mem-
ory address) to any data type. 

Table 9-4: Sizes of Some C/C++ Data Types in the  
x86-64 Architecture

Data type Size in 32-bit mode Size in 64-bit mode

char Byte Byte

int Doubleword Doubleword

long Doubleword Quadword

long long Quadword Quadword

float Doubleword Doubleword

double Quadword Quadword

*any Doubleword Quadword

N O T E 	 If your solution to a problem depends on data sizes, C standard libraries often define 
specific sizes. For example, the GNU C libraries define int16_t to be a 16-bit signed 
integer and u_int16_t to be an unsigned 16-bit integer. In rare cases, you may want 
to use assembly language to ensure correctness.

A value can usually be represented with more than one data type. For 
example, most people would think of 123 as representing the integer one 
hundred twenty-three, but this value could be stored in a computer either 
as an int or as a char[] (a char array where each element of the array holds 
one code point for a character). 



188   Chapter 9

As you can see in Table 9-4, an int in our C/C++ environment is stored 
in a doubleword, so 123 would be stored with the bit pattern 0x0000007b. As a 
C-style text string, we’d also need four bytes of memory, but the bit patterns 
would be 0x31, 0x32, 0x33, and 0x00—that is, the characters 1, 2, 3, and NUL. 
(Recall that a C-style string is terminated with a NUL character.)

You can learn a lot about how the CPU works by viewing what takes 
place in the registers. In the next section, you’ll learn how to view the regis-
ters by using the gdb debugger.

Using gdb to View the CPU Registers
We’ll use the program in Listing 9-1 to show how to use gdb to view the con-
tents of the CPU registers.

/* inches2feet.c
 * Converts inches to feet and inches.
 */

#include <stdio.h>
#define inchesPerFoot 12

int main(void)
{
1   register int feet;
  register int inchesRem;
2   int inches;
  int *ptr;

  ptr = &inches;

  printf("Enter inches: ");
3   scanf("%i", ptr);
  
  feet = inches / inchesPerFoot;
  inchesRem = inches % inchesPerFoot;
  printf("%i\" = %i' %i\"\n", inches, feet, inchesRem);

  return 0;
}

Listing 9-1: Simple program to illustrate the use of gdb to view CPU registers

I’ve used the register storage class modifier 1 to request that the com-
piler use a CPU register for the feet and inchesRem variables. The register 
modifier is advisory only. The C language standard doesn’t require the 
compiler to honor the request. But notice that I didn’t request the compiler 
use a CPU register for the inches variable 2. The inches variable must be 
placed in memory since scanf needs a pointer to the location of inches 3 to 
store the value read from the keyboard. 

You’ve already seen some gdb commands earlier in the book (review 
Chapter 2 for a refresher). When you hit a breakpoint in a program that has 
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been running, here are some additional commands that you may find useful 
for moving through the program under your control and viewing informa-
tion about the program: 

n (next) executes the current source code statement; if it’s a call to a 
function, the entire function is executed. 

s (step) executes the current source code statement; if it’s a call to a 
function, step into the function, arriving at the first instruction of the 
called function. 

si (step instruction) executes the current machine instruction; if it’s a 
call to a function, step into the function. 

i r (info registers) displays the contents of the registers, except the 
floating-point and vector registers.

Here’s how I used gdb to control the execution of the program and observe 
the register contents. Note that you’ll probably see different addresses if you 
replicate this example on your own, which you’re asked to do when it’s Your 
Turn. 

1 $ gcc -g -O0 -Wall -masm=intel -o inches2feet inches2feet.c
2 $ gdb ./inches2feet 
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2
  --snip--
Reading symbols from ./inches2feet...done.
3 (gdb) l
1       /* inches2feet.c
2       * Converts inches to feet and inches.
3       */
4      
5      #include <stdio.h>
6      #define inchesPerFoot 12
7      
8      int main(void)
9      {
10       register int feet;
(gdb) ENTER
11       register int inchesRem;
12       int inches;
13       int *ptr;
14     
15       ptr = &inches;
16     
17       printf("Enter inches: ");
18       scanf("%i", ptr);
19       
20       feet = inches / inchesPerFoot;
(gdb) ENTER
21       inchesRem = inches % inchesPerFoot;
22       printf("%i\" = %i' %i\"\n", inches, feet, inchesRem);
23     
24       return 0;
25     }
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We first compile the program 1, load it with gdb 2, and then list the 
source code so we can see where to set breakpoints. Using the ENTER 
key 3 (RETURN on some keyboards) repeats the previous command. The 
debugger starts by printing information about itself, which I have cut out of 
my display to save space.

We want to follow along as the program processes the data by setting 
breakpoints at strategic points in the program:

(gdb) b 17
Breakpoint 1 at 0x11af: file inches2feet.c, line 17.
(gdb) b 20
Breakpoint 2 at 0x11d8: file inches2feet.c, line 20.

We set the first breakpoint where the program is about to prompt the 
user to enter the input data, line 17, and a second at the statement where 
the program’s computations begin, line 20.

When we run the program, it breaks at the first breakpoint it 
encounters: 

(gdb) r
Starting program: /home/progs/chapter_09/inches2feet/inches2feet  

Breakpoint 1, main () at inches2feet.c:17
17       printf("Enter inches: ");

The program stops at line 17 of the source code, and control returns to 
gdb. We can see the contents of the registers with the i r command. (Be sure 
to type a space between i and r.)

(gdb) i r
rax            0x7fffffffdeac      140737488346796
rbx            0x555555555260      93824992236128
rcx            0x555555555260      93824992236128
rdx            0x7fffffffdfd8      140737488347096
rsi            0x7fffffffdfc8      140737488347080
rdi            0x1                 1
rbp            0x7fffffffded0      0x7fffffffded0
rsp            0x7fffffffdea0      0x7fffffffdea0
r8             0x0                 0
r9             0x7ffff7fe0d50      140737354009936
r10            0x7                 7
r11            0x2                 2
r12            0x5555555550a0      93824992235680
r13            0x7fffffffdfc0      140737488347072
r14            0x0                 0
r15            0x0                 0
rip            0x5555555551af      0x5555555551af <main+38>
eflags         0x246 [ PF ZF IF ]
cs             0x33  51
ss             0x2b  43
ds             0x0   0
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es             0x0   0
fs             0x0   0
gs             0x0   0

This display tells us the contents of the registers before the user enters 
data (you’ll see different numbers). We might want to know if the compiler 
honored our request to use registers for the feet and inchesRem variables. 
And if it did, which registers did it use?

We’d like to know this information so we can look at the contents of the 
registers before and after they’re used by the program so we can see if the 
program is storing the correct values in them. We can answer this question 
by asking gdb to print the addresses of these two variables:

(gdb) print &feet
Address requested for identifier "feet" which is in register $r12
(gdb) print &inchesRem
Address requested for identifier "inchesRem" which is in register $rbx

When we ask for the address of a variable, gdb will give the memory 
address associated with a programmer-supplied identifier. But in this pro-
gram we asked the compiler to use registers, and gdb tells us which register 
the compiler chose for each variable.

We didn’t ask the compiler to use registers for the inches and ptr vari-
ables, so gdb should tell us where they are located in memory:

(gdb) print &inches
$1 = (int *) 0x7fffffffdeac
(gdb) print &ptr
$2 = (int **) 0x7fffffffdeb0

Now that we know r12 is being used for feet and rbx for inchesRem, we can 
see what’s currently stored in these two registers and continue running the 
program:

1 (gdb) i r rbx r12
rbx            0x555555555260      93824992236128
r12            0x5555555550a0      93824992235680
2 (gdb) c
Continuing.
Enter inches: 123 3

Rather than display all the registers, we can specify the two we want to 
look at 1. Continuing program’s execution 2, the program asks the user 
to enter the number of inches, and I responded with 123 3. It then breaks 
back into gdb at the next breakpoint it encounters:

Breakpoint 2, main () at inches2feet.c:20
20       feet = inches / inchesPerFoot;
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Before starting the computations, let’s make sure the user’s input is 
stored in the right place:

(gdb) print inches
$3 = 123

The program is about to compute the number of feet, and then it will 
compute the remainder of inches. So I’ll execute two statements using n:

(gdb) n
21       inchesRem = inches % inchesPerFoot;
(gdb) ENTER 
22       printf("%i\" = %i' %i\"\n", inches, feet, inchesRem);

The program is now ready to print out the results of the computations. 
I’ll check to make sure all the computations were performed correctly and 
the results are in the proper variables, which we’ve already determined are 
in rbx and r12:

(gdb) i r rbx r12
rbx            0x3   3
r12            0xa   10

There are other ways to see what’s stored in feet and inchesRem:

(gdb) print $rbx
$4 = 3
(gdb) print $r12
$5 = 10
(gdb) print feet
$6 = 10
(gdb) print inchesRem
$7 = 3

When using gdb’s print command, you can print only one variable at a 
time, even if a register is being used to store the variable. The $ prefix on 
the register name isn’t required for the i r command, but it is for the print 
command.

Before completing execution of the program, I’ll take a final look at all 
the registers:

(gdb) i r
rax            0x78  120
rbx            0x3   3
rcx            0xa                 10
rdx            0x7b                123
rsi            0x0                 0
rdi            0x7fffffffd960      140737488345440
rbp            0x7fffffffded0      0x7fffffffded0
rsp            0x7fffffffdea0      0x7fffffffdea0
r8             0xa                 10
r9             0x0                 0
r10            0x7ffff7f5bac0      140737353464512
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r11            0x0                 0
r12            0xa                 10
r13            0x7fffffffdfc0      140737488347072
r14            0x0                 0
r15            0x0                 0
rip            0x55555555521e      0x55555555521e <main+149> 
eflags         0x206 [ PF IF ]
cs             0x33  51
ss             0x2b  43
ds             0x0   0
es             0x0   0
fs             0x0   0
gs             0x0   0

There’s nothing remarkable in this display, but after you gain some 
experience looking at such displays, you’ll learn to sometimes spot that 
something is not right. Now that I’m satisfied that the program performed 
all the computations correctly, I’ll continue to the end of the program by 
using cont and then exit with q:

(gdb) c
Continuing.
123" = 10' 3"
[Inferior 1 (process 3874) exited normally]
(gdb) q
$  

The program continues to execute, printing the result and returning 
control to gdb. Of course, the last thing to do is to exit from gdb.  

YOUR T UR N

1.	 Modify the program in Listing 9-1 such that registers are used for the vari-
ables inches and ptr. Did the compiler allow you to do that? If not, why?

2.	 Write a program in C that allows you to determine the endianess of your 
computer.

3.	 Modify the program in the previous exercise so that you can demonstrate, 
using gdb, that endianess is a property of the CPU. That is, even though a 
32-bit int is stored little endian in memory, it will be read into a register in 
the “proper” order.

What You’ve Learned

General-purpose registers    Sixteen 64-bit registers in the x86-64 pro-
vide a small amount of memory for computations in the CPU. 

Status register    This register contains flags that show whether arithme-
tic/logic operations produce carry, overflow, or 0.
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Instruction pointer     This pointer always has the address of the next 
instruction to be executed.

Instruction register    This register holds the instruction currently 
being executed.

Arithmetic logic unit    Performs the arithmetic and logic operations.

Control unit    Controls the activity in the CPU.

Bus interface    Responsible for interfacing the CPU with the main 
memory and I/O devices.

Cache memory    Cache memory is faster than main memory. It holds 
portions of the program, both instructions and data, that are currently 
being worked on by the CPU.

Instruction execution cycle    Details how the CPU works its way 
through a list of instructions.

C/C++ data type sizes     Data sizes are closely related to register sizes.

Debugger    In addition to helping you find bugs, gdb is useful to help 
you learn the concepts.

In the next chapter, you’ll start programming your computer in assem-
bly language.



10
P R O G R A M M I N G  I N  

A S S E M B LY  L A N G U A G E

In the previous chapters, you saw how 
computers can be programmed using 1s 

and 0s to represent the operations and the 
data, the machine language. Now we’ll move on 

to programming at the machine level, but instead of 
using machine language, we’ll use assembly language. 
Assembly language uses a short mnemonic for each  
machine language instruction. We’ll use an assembler program to trans-
late the assembly language into the machine language instructions that 
control the computer.

Creating a program in assembly language is similar to creating one in 
a higher-level compiled language like C, C++, Java, or FORTRAN. We’ll use 
C as our programming model to explore the primary programming con-
structs and data structures that are common to essentially all higher-level 
programming languages. The compiler we’re using, gcc, allows us to look at 
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the assembly language it generates. From there, I will show you how I would 
implement the programming constructs and data structures directly in 
assembly language.

We’ll begin the chapter by looking at the steps the compiler takes to 
create an executable program from C source code. Next, we’ll look at which 
of these steps apply to assembly language programming and create our 
own program directly in assembly language that will run in the C runtime 
environment. You’ll also learn about a gdb mode that’s useful for learning 
assembly language.

While reading this chapter, you should also consult the man and info 
documentation resources available in most GNU/Linux installations for the 
programs discussed here. (You may need to install the info documentation 
on your computer as described in Chapter 1.)

Compiling a Program Written in C
We’ll use the GNU compiler, gcc, which creates an executable program from 
one or more source files by performing several distinct steps. Each step 
results in an intermediate file that serves as input to the next step. The 
description of each step here assumes a single C source file, filename.c.

Preprocessing
Preprocessing is the first step. This step resolves compiler directives 
such as #include (file inclusion), #define (macro definition), and #if (con-
ditional compilation) by invoking the program cpp. The compilation 
process can be stopped at the end of the preprocessing phase with the 
-E option, which writes the resulting C source code to standard out.

Standard out is usually the terminal window. You can redirect the out-
put to a file with the > operator, like this:

$ gcc -Wall -O0 -masm=intel -E filename.c > filename.i

The .i file extension denotes a file that does not require preprocessing.

Compilation
Next, the compiler translates the source code that results from pre-
processing into assembly language. The compilation process can be 
stopped at the end of the compilation phase with the -S option (upper-
case S), which writes the assembly language source code to filename.s.

Assembly
After the compiler generates the assembly language that implements 
the C source code, the assembler program, as, translates the assembly 
language into machine code. The process can be stopped at the end of 
the assembly phase with the -c option, which writes the machine code 
to an object file, named filename.o. Some call this assembler gas, for GNU 
assembler.
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Linking
The ld program determines where each function and data item will be 
located in memory when the program is executed. It then replaces the 
programmer’s symbolic names where each of these items is referenced 
with the memory address of the item. The result of this linking is writ-
ten to an executable file. The default name of the executable file is a.out, 
but you can specify another name with the -o option. 

If the called function is in an external library, this is noted where the 
function is called, and the address of the external function is determined 
during program execution. The compiler directs the ld program to add 
the computer code to the executable file that sets up the C runtime envi-
ronment. This includes operations such as opening paths to standard out 
(the screen) and standard in (the keyboard) for use by your program.

As you might know, if you don’t use any of the gcc options to stop the 
process at the end of one of these steps (-E, -S, -c), the compiler will per-
form all four steps and automatically delete the intermediate files, leaving 
only the executable program as the final result. You can direct gcc to keep 
all the intermediate files with the -save-temps option.

The complement of being able to stop gcc along the way is that we can 
supply files that have effectively gone through the earlier steps, and gcc will 
incorporate those files into the remaining steps. For example, if we write a 
file in assembly language, gcc will skip the preprocessing and compilation 
steps and perform the assembly and linking steps. If we supply only object 
files (.o), gcc will go directly to the linking step. An implicit benefit of this 
is that we can write programs in assembly language that call functions in 
the C standard library (which are already in object file format), and gcc will 
automatically link our assembly language with those library functions.

Be careful to use the filename extensions that are specified in the GNU 
programming environment when naming a file. The default action of the 
compiler at each step depends upon the filename extension appropriate 
to that step. To see these naming conventions, type info gcc into the com-
mand line, select Invoking GCC, and then select Overall Options. If you don’t 
use the specified filename extension, the compiler might not do what you 
want or even overwrite a required file.

From C to Assembly Language
Programs written in C are organized into functions. Each function has a 
name that is unique within the program. After the C runtime environment 
is set up, the main function is called, so our program starts with main.

Since we can easily look at the assembly language that the compiler gen-
erates, that is a good place to start. We’ll start off by looking at the assembly 
language that gcc generates for the minimum C program in Listing 10-1. 
The program does nothing except return 0 to the operating system. A pro-
gram can return various numerical error codes to the operating system; 0 
indicates that the program did not detect any errors.
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N O T E 	 If you are not familiar with the GNU make program, I urge you to learn how to use it 
to build your programs. It may seem like overkill at this point, but it’s much easier to 
learn with simple programs. The manual is available in several formats at https://
www.gnu.org/software/make/manual/, and I have some comments about using 
it on my website, https://rgplantz.github.io/.

/* doNothingProg.c
 * Minimum components of a C program.
 */

int main(void)
{
  return 0;	
}

Listing 10-1: Minimum C program

Even though this program accomplishes very little, some instructions 
need to be executed just to return 0. To see what takes place, we first trans-
late this program from C to assembly language with the following GNU/
Linux command:

$ gcc -O0 -Wall -masm=intel -S doNothingProg.c

Before showing the result of this command, I’ll explain the options I’ve 
used. The -O0 (uppercase O and zero) option tells the compiler not to use 
any optimization. The goal of this book is to show what’s taking place at the 
machine level. Asking the compiler to optimize the code may obscure some 
important details.

You’ve already learned that the -Wall option asks the compiler to warn you 
about questionable constructions in your code. It’s not likely in this simple pro-
gram, but it’s a good habit to get into.

The -masm=intel option directs the compiler to generate assembly lan-
guage using the Intel syntax instead of the default AT&T syntax. I’ll explain 
why we use Intel syntax later in this chapter.

The -S option directs the compiler to stop after the compilation phase 
and write the assembly language resulting from the compilation to a file 
with the same name as the C source code file, but with the .s extension 
instead of .c. The previous compiler command generates the assembly lan-
guage shown in Listing 10-2, which is saved in the file doNothingProg.s.

        .file   "doNothingProg.c"
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
main:
.LFB0:
      1 .cfi_startproc
        endbr64

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
https://rgplantz.github.io/
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        push    rbp
        .cfi_def_cfa_offset 16
        .cfi_offset 6, -16
        mov     rbp, rsp
        .cfi_def_cfa_register 6
        mov     eax, 0
        pop     rbp
        .cfi_def_cfa 7, 8
        ret
        .cfi_endproc
.LFE0:
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits
        .section        .note.gnu.property,"a"
        .align 8
        .long    1f - 0f
        .long    4f - 1f
        .long    5
0:
        .string  "GNU"
1:
        .align 8
        .long    0xc0000002
        .long    3f - 2f
2:
        .long    0x3
3:
        .align 8
4:

Listing 10-2: Minimum C program, assembly language generated by compiler

The first thing you might notice in Listing 10-2 is that many of the iden-
tifiers begin with a . character. All of them, except the ones followed by a :, 
are assembler directives, also known as pseudo-ops. They are instructions to the 
assembler program itself, not computer instructions. We won’t need all of 
them for the material in this book. The identifiers that are followed by a : 
are labels on memory locations, which we’ll discuss in a few pages.

Assembler Directives That We Won’t Use
The assembler directives in Listing 10-2 that begin with .cfi 1 tell the 
assembler to generate information that can be used for debugging and 
certain error situations. The identifiers beginning with .LF mark places in 
the code used to generate this information. A discussion of this is beyond 
the scope of this book, but their appearance in the listing can be confusing. 
So, we’ll tell the compiler not to include them in the assembly language file 
with the -fno-asynchronous-unwind-tables option:

$ gcc -O0 -Wall -masm=intel -S -fno-asynchronous-unwind-tables doNothingProg.c
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This produces the file doNothingProg.s shown in Listing 10-3.

        .file   "doNothingProg.c"
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
main:
      1 endbr64
        push    rbp
        mov     rbp, rsp
        mov     eax, 0
        pop     rbp
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits
      2 .section        .note.gnu.property,"a"
        .align 8
        .long    1f - 0f
        .long    4f - 1f
        .long    5
0:
        .string  "GNU"
1:
        .align 8
        .long    0xc0000002
        .long    3f - 2f
2:
        .long    0x3
3:
        .align 8
4:

Listing 10-3: Minimum C program, assembly language generated by compiler, without 
.cfi directives

Even without the .cfi directives, the assembly language still includes an 
instruction and several directives that we won’t use for now. Intel has devel-
oped a technique, Control-flow Enforcement Technology (CET), for providing 
better defense against types of security attacks of computer programs that 
hijack a program’s flow. The technology is supposed to be included in Intel 
CPUs starting in the second half of 2020. AMD has said they will include an 
equivalent technology in their CPUs at a later date.

The technology includes a new instruction, endbr64, which is used as the 
first instruction in a function to check whether program flow gets there 1. 
The instruction has no effect if the CPU does not include CET.

The compiler also needs to include some information for the linker 
to use CET. This information is placed in a special section of the file that 
the assembler will create, denoted with the .section  .note.gnu.property,"a" 
assembler directive 2, after the actual program code.
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The version of gcc used in this book includes the CET feature by default 
in anticipation of the new CPUs. The details of using CET are beyond the 
scope of this book. If you’re curious, you can read about it at https://www.intel 
.com/content/www/us/en/developer/articles/technical/technical-look-control-flow 
-enforcement-technology.html. The programs we’re writing in this book are 
not intended for production use, so we won’t be concerned about security 
issues in our programs. We’ll use the -fcf-protection=none option to tell the 
compiler not to include CET, and we won’t use it when writing directly in 
assembly language.

To keep our discussion focused on the fundamentals of how a computer 
works, we’ll tell the compiler to generate assembly language with the follow-
ing command: 

$ gcc -O0 -Wall -masm=intel -S -fno-asynchronous-unwind-tables \
> -fcf-protection=none doNothingProg1.c

This command yields the assembly language file shown in Listing 10-4.

     1 .file   "doNothingProg.c"
     2 .intel_syntax noprefix
     3 .text
     4 .globl  main
     5 .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        mov     eax, 0
        pop     rbp
        ret
     6 .size   main, .-main
     7 .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
     8 .section  .note.GNU-stack,"",@progbits

Listing 10-4: Minimum C program, assembly language generated by compiler, without 
.cfi directives and CET code

Now that we’ve stripped away the advanced features, I’ll discuss the 
assembler directives remaining in Listing 10-4 that we won’t need when 
writing our own assembly language. The .file directive 1 is used by gcc 
to specify the name of the C source file that this assembly language came 
from. When writing directly in assembly language, this isn’t used. The .size 
directive 6 computes the size of the machine code, in bytes, that results 
from assembling this file, and assigns the name of this function, main, to this 
value. This can be useful information in systems with limited memory but is 
of no concern in our programs.

I honestly don’t know the reasons for using the .ident and .section 
directives 7 8. I’m guessing from their arguments that they’re being used 
to provide information to the developers of gcc when users report bugs. Yes, 
even compilers have bugs! But we won’t use these directives in our assembly 
language.

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
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Assembler Directives That We Will Use
Now we’ll look at the directives that will be required when we write in 
assembly language. The .text assembler directive 3 in Listing 10-4 tells the 
assembler to place whatever follows in the text section. What does text section 
mean?

In GNU/Linux, the object files produced by the assembler are in the 
Executable and Linking Format (ELF). The ELF standard specifies many 
types of sections, each specifying the type of information stored in it. We 
use assembler directives to tell the assembler in which section to place 
the code.

The GNU/Linux operating system also divides memory into segments 
for specific purposes when a program is loaded from the disk. The linker 
gathers all the sections that belong in each segment together and outputs 
an executable ELF file that’s organized by segment to make it easier for the 
operating system to load the program into memory. The four general types 
of segments are as follows:

Text (also called code)    The text segment is where program instruc-
tions and constant data are stored. The operating system prevents a 
program from changing anything stored in the text segment, making 
it read-only.

Data    Global variables and static local variables are stored in the data 
segment. Global variables can be accessed by any of the functions in a 
program. A static local variable can be accessed only by the function it’s 
defined in, but its value remains the same between calls to its function. 
Programs can both read from and write to variables in the data seg-
ment. These variables remain in place for the duration of the program.

Stack    Automatic local variables and the information that links func-
tions are stored on the call stack. Automatic local variables are created 
when a function is called, and deleted when the function returns to its 
calling function. Memory on the stack can be both read from and writ-
ten to by the program. It’s allocated and deallocated dynamically as the 
program executes.

Heap    The heap is a pool of memory that’s available for a program to 
use when running. A C program calls the malloc function (C++ calls 
new) to get a chunk of memory from the heap. It can be both read from 
and written to by the program. It’s used to store data and is explicitly 
deallocated by calling free (delete in C++) in the program.

This has been a simplistic overview of ELF sections and segments. 
You can find further details by reading the man page for ELF and reading 
sources like “ELF-64 Object File Format,” which can be downloaded at 
https://uclibc.org/docs/elf-64-gen.pdf, and John R. Levine’s Linkers & Loaders 
(Morgan Kaufmann, 1999). The readelf program is also useful for learning 
about ELF files.

Now look back at Listing 10-4. The .globl directive 4 has one argu-
ment, the identifier main. The .globl directive makes the name globally 

https://uclibc.org/docs/elf-64-gen.pdf
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known so functions that are defined in other files can refer to this name. 
The code that sets up the C runtime environment was written to call the 
function named main, so the name must be global in scope. All C/C++ pro-
grams start with a main function. In this book, we’ll also start our assembly 
language programs with a main function and execute them within the C 
runtime environment.

You can write stand-alone assembly language programs that don’t 
depend on the C runtime environment, in which case you can create your 
own name for the first function in the program. You need to stop the com-
pilation process at the end of the assembly step with the -c option. You then 
link the object (.o) files using the ld command by itself, not as part of gcc. 
I’ll describe this in more detail in Chapter 20.

The assembler directive, .type, 5 has two arguments, main and @function. 
This causes the identifier main to be recorded in the object file as the name 
of a function.

None of these three directives gets translated into actual machine instruc-
tions, and none of them occupies any memory in the finished program. 
Rather, they’re used to describe the characteristics of the statements that 
follow.

You may have noticed that I haven’t yet described the purpose of the 
.intel_syntax noprefix directive 2. It specifies the syntax of the assembly lan-
guage we’ll use. You can probably guess that we’ll be using the Intel syntax, 
but that will be easier to understand after I explain the assembly language 
instructions. We’ll do this using the same function from Listing 10-1 but 
written directly in assembly language.

Creating a Program in Assembly Language
Listing 10-5 was written in assembly language by a programmer, rather 
than by a compiler. Naturally, the programmer has added comments to 
improve readability.

1 # doNothingProg.s
# Minimum components of a C program, in assembly language.
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
2 main:
        3 push    rbp         # save caller's frame pointer
        4 mov     rbp, rsp    # establish our frame pointer
5

        6 mov     eax, 0      # return 0 to caller

          mov     rsp, rbp    # restore stack pointer
          pop     rbp         # restore caller's frame pointer
          ret                 # back to caller

Listing 10-5: Minimum C-style program written in assembly language
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Assembly Language in General
The first thing to notice in Listing 10-5 is that assembly language is orga-
nized by lines. Only one assembly language statement is on each line, and 
none of the statements spans more than one line. This differs from the 
free-form nature of many high-level languages where the line structure is 
irrelevant. In fact, good programmers use the ability to write program state-
ments across multiple lines and indentation to emphasize the structure of 
their code. Good assembly language programmers use blank lines to help 
separate parts of an algorithm, and they comment almost every line.

Next, notice that the first two lines begin with the # character 1. The 
rest of the line is written in English and is easily read. Everything after the 
# character is a comment. Just as with a high-level language, comments are 
intended solely for the human reader and have no effect on the program. 
The comments at the top are followed by the assembler directives we dis-
cussed earlier.

Blank lines 5 are intended to improve readability. Well, they improve 
readability once you learn how to read assembly language.

The remaining lines are organized roughly into columns. They prob-
ably do not make much sense to you at this point because they’re written in 
assembly language, but if you look carefully, each of the assembly language 
lines is organized into four possible fields:

label:   operation   operand(s)   # comment

Not all the lines will have entries in all the fields. The assembler requires 
at least one space or tab character to separate the fields. When writing 
assembly language, your program will be much easier to read if you use the 
Tab key to move from one field to the next so that the columns line up.

Let’s look at each field in some detail:

Label    Allows us to give a symbolic name to any line in the program. 
Each line corresponds to a memory location in the program, so other 
parts of the program can then refer to the memory location by name.

A label consists of an identifier immediately followed by the : character. 
You, as the programmer, must make up these identifiers. We’ll look at 
the rules for creating an identifier soon. Only the lines we need to refer 
to are labeled.

Operation    Contains either an instruction operation code (opcode) or 
an assembler directive (pseudo op). The assembler translates the opcode, 
along with its operands, into machine instructions, which are copied 
into memory when the program is to be executed.

Operand    Specifies the arguments to be used in the operation. The 
arguments can be explicit values, names of registers, or programmer-
created identifiers. The number of operands can be zero, one, two, or 
three, depending on the operation.
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Comment    Everything on a line following a # character is ignored by 
the assembler, thus providing a way for the programmer to provide 
human-readable comments. Since assembly language is not as easy to 
read as higher-level languages, good programmers will place a com-
ment on almost every line.

A word about program comments here. Beginners often comment on 
what the programming statement does, not its purpose relative to solving 
the problem. For example, a comment like

counter = 1;  /* let x = 1 */

in C is not very useful. But a comment like

counter = 1;  /* need to start at 1 */

could be very helpful. Your comments should describe what you are doing, 
not what the computer is doing.

The rules for creating an identifier are similar to those for C/C++. Each 
identifier consists of a sequence of alphanumeric characters and may include 
other printable characters such as ., _, and $. The first character must not be 
a numeral. An identifier may be any length, and all characters are significant. 
Although the letter case of keyword identifiers (operators, operands, direc-
tives) is not significant, it is significant for labels. For example, myLabel and 
MyLabel are different. Compiler-generated labels begin with the . character, 
and many system-related names begin with the _ character. It’s a good idea 
to avoid beginning your own labels with the . or the _ character so that you 
don’t inadvertently create one that’s already being used by the system.

It’s common to place a label on its own line 2, in which case it applies 
to the address of the next assembly language statement that takes up 
memory 3. This allows you to create longer, more meaningful labels while 
maintaining the column organization of your code.

Integers can be used as labels, but they have a special meaning. They’re 
used as local labels, which are sometimes useful in advanced assembly lan-
guage programming techniques. We won’t be using them in this book.

First Assembly Language Instructions
Rather than list all the x86-64 instructions (there are more than 2,000, 
depending on how you count), I will introduce a few at a time, and only the 
ones that will be needed to illustrate the programming concept at hand. I 
will also give only the commonly used variants of the instructions I introduce.

For a detailed description of the instructions and all their variants, 
you’ll need a copy of Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume Two, which can be downloaded at https://software.intel.com/
en-us/articles/intel-sdm/, or AMD64 Architecture Programmer’s Manual, Volume 3: 
General-Purpose and System Instructions, which can be downloaded at https://
developer.amd.com/resources/developer-guides-manuals/. These are the instruc-
tion set reference manuals from the two major manufacturers of x86-64 
CPUs. They can be a little difficult to read, but going back and forth 

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
/
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/
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between my descriptions of the instructions in this book and the descrip-
tions in the manuals should help you to learn how to read the manuals.

Assembly language provides a set of mnemonics that correspond directly 
to the machine language instructions. A mnemonic is a short, English-like 
group of characters that suggests the action of the instruction. For example, 
mov is used to represent the instruction that copies (moves) a value from 
one place to another; the machine instruction 0x4889e5 copies the entire 
64-bit value in the rsp register to the rbp register. Even if you’ve never seen 
assembly language before, the mnemonic representation of this instruc-
tion in Listing 10-5 4 probably makes much more sense to you than the 
machine code.

N O T E 	 Strictly speaking, the mnemonics are completely arbitrary, as long as you have an 
assembler program that will translate them into the desired machine instructions. 
However, most assembler programs follow the mnemonics used in the manuals pro-
vided by CPU vendors.

The general format of an assembly language instruction in our usage of 
the assembler (Intel syntax) is

operation destination, source1, source2

where destination is the location where the result of the operation will be 
stored, and source1 and source2 are the locations where the input(s) to the 
operation are located. There can be from zero to two sources, and some 
instructions don’t require that you specify a destination. The destination 
can be a register or memory. A source value can be in a register, in memory, 
or immediate data. Immediate data is stored as part of the machine code 
implementation of the instruction and is hence a constant value in the 
program. You’ll see how this works in Chapter 12, when we look at how 
instructions are encoded in the 1s and 0s of machine code.

When describing instructions, I use reg, reg1, or reg2 to mean one of the 
names of a general-purpose register from Table 9-2 in Chapter 9. I use mem 
to mean a label of a memory location and imm to mean a literal data value. 
In most cases, the values specified by the operands must be the same. There 
are instructions for explicitly converting from one size to another.

Let’s start with the most commonly used assembly language instruction, 
mov. In fact, in Listing 10-5 half the instructions are mov.

mov—Move

Copies a value from a source to a destination.

mov reg1, reg2 moves the value in reg2 to reg1.

mov reg, mem moves the value in mem to reg.

mov mem, reg moves the value in reg to mem.

mov reg, imm moves imm to reg.

mov mem, imm moves imm to mem.

The mov instruction does not affect the status flags in the rflags register.
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The size (number of bits) of the value moved must be the same for 
the source and the destination. When the assembler program translates 
the assembly language instruction to machine code, it can figure out the 
size from the register name. For example, the mov eax, 0 instruction 6 in 
Listing 10-5 will cause the 32-bit integer, 0, to be stored in the eax register, 
which is the 32-bit portion of the rax register. Recall (from Chapter 9) that 
when the destination is the 32-bit portion of a register, the high-order 32 
bits of that register are set to 0. If I had used mov al, 0, then only an 8-bit 
representation of 0 would be stored in the al portion of the rax register, and 
the other bits in the register would not be affected. For 8-bit and 16-bit opera-
tions, you should assume that the portion of any register that isn’t explicitly 
modified by an instruction contains an unknown value.

You may have noticed that the variant that moves an immediate value to 
memory, mov mem, imm, doesn’t use a register. In this case, you have to tell the 
assembler the data size with a size directive placed before the mem operand. 
Table 10-1 lists the size directives for each data size.

Table 10-1: Data Size Directives

Directive Data type Number of bits

byte ptr Byte 8

word ptr Word 16

dword ptr Doubleword 32

qword ptr Quadword 64

The size directive includes ptr because it specifies how many bytes the 
memory address points to. For immediate data, this address is in the rip 
register. For example, 

        mov     byte ptr x[ebp], 123
        mov     qword ptr y[ebp], 123

would store 123 in the one-byte variable, x, and 123 in the four-byte vari-
able, y. (This syntax for specifying the memory locations is explained in 
the next chapter.)

Notice that you can’t move data from one memory location directly to 
another memory location. You have to first move the data into a register 
from memory and then move it from that register to the other memory 
location.

The other three instructions used in Listing 10-5 are push, pop, and ret. 
These three instructions use the call stack. We’ll discuss the call stack in 
detail in the next chapter. For now, you can think of it as a place in memory 
where you can stack data items one on top of another and then remove 
them in reverse order. (Think of stacking dinner plates, one at a time, on 
a shelf and then removing each one as it’s needed.) The rsp register always 
contains the address of the item on the top of the call stack; hence, it’s 
called the stack pointer.
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push—Push onto stack

Moves a 64-bit source value to the top of the call stack.

push reg places the 64-bit value in reg on the call stack, changing the 
rsp register such that it has the memory address of this new item on 
the stack.

push mem places the 64-bit value in mem on the call stack, changing the 
rsp register such that it has the memory address of this new item on 
the stack.

The push instruction does not affect the status flags in the rflags 
register.

pop—Pop from stack

Moves a 64-bit value from the top of the call stack to a destination.

pop reg copies the 64-bit value at the top of the stack to reg, changing 
the rsp register such that it has the memory address of the next item 
on the stack.

pop mem copies the 64-bit value at the top of the stack to mem, changing 
the rsp register such that it has the memory address of the next item 
on the stack.

The pop instruction does not affect the status flags in the rflags register.

ret—Return from function

Returns from a function call.

ret has no operands. It pops the 64-bit value at the top of the stack 
into the instruction pointer, rip, thus transferring program control to 
that memory address.

The ret instruction does not affect the status flags in the rflags register.

Now that you have an idea of how each of the instructions in Listing 10-5 
works, let’s see what they’re doing in this program. As we walk through this 
code, keep in mind that this program doesn’t do anything for a user. The code 
here forms a sort of infrastructure for any C-style function that you write. You’ll 
see variations as you continue through the book, but you should take the time 
to become familiar with the basic structure of this program.

Minimal Processing in a Function
Aside from the data processing that a function does, it needs to perform 
some processing just so it can be called and return to the calling function. 
For example, the function needs to keep track of the address from where it 
was called so it can return to the correct place when the function has com-
pleted. Since there are a limited number of registers, the function needs a 
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place in memory for storing the return address. After completion, the func-
tion returns to the calling place and no longer needs the return address, so 
it can release the memory where the return address was stored.

As you’ll learn in the next chapter, the call stack is a great place for 
functions to temporarily store information. Each function uses a portion of 
the call stack for storage, which is called a stack frame. The function needs 
a reference to its stack frame, and this address is stored in the rbp register, 
usually called the frame pointer.

Let’s walk through the actual processing that takes place in the pro-
gram in Listing 10-5. I’ll repeat the listing here to save you some page 
flipping (Listing 10-6).

# doNothingProg.s
# Minimum components of a C program, in assembly language.
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
main:
      1 push    rbp         # save caller's frame pointer
      2 mov     rbp, rsp    # establish our frame pointer

      3 mov     eax, 0      # return 0 to caller

      4 mov     rsp, rbp    # restore stack pointer
      5 pop     rbp         # restore caller's frame pointer
      6 ret                 # back to caller

Listing 10-6: Code repeated for your convenience

The first thing a function must do is to save the calling function’s frame 
pointer so the calling function can use rbp for its own frame pointer and 
then restore the calling function’s frame pointer before returning. It does 
this by pushing the value onto the call stack 1. Now that we’ve saved the 
calling function’s frame pointer, we can use the rbp register as the frame 
pointer for the current function. The frame pointer is set to the current 
location of the stack pointer 2.

N O T E 	 Remember that we are telling the compiler not to use any code optimization in this book 
with the -O0 option to gcc. If you tell gcc to optimize the code, it may determine that 
these values may not need to be saved, so you wouldn’t see some of these instructions. 
After you understand the concepts presented in this book, you can start thinking about 
how to optimize your code.

This probably sounds confusing at this point. Don’t worry, we’ll go into 
this mechanism in detail in the next chapter. For now, make sure that every 
function you write in assembly language begins with these two instructions, 
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in this order. Together, they make up the beginning of the function prologue 
that prepares the call stack and the registers for the actual computational 
work that will be done by the function.

C functions can return values to the calling function. This is the main 
function, and the operating system expects it to return the 32-bit integer 0 
if the function ran without errors. The rax register is used to return up to a 
64-bit value, so we store 0 in the eax register 3 just before returning.

The function prologue prepared the call stack and registers for this 
function, and we need to follow a strict protocol for preparing the call stack 
and registers for return to the calling function. This is accomplished with 
the function epilogue. The function epilogue is essentially the mirror image 
of the function prologue. The first thing to do is to make sure the stack 
pointer is restored to where it was at the beginning of the prologue 4. 
Although we can see that the stack pointer was not changed in this simple 
function, it will be changed in most functions, so you should get in the 
habit of restoring it. Restoring the stack pointer is essential for the next 
step to work.

Now that we’ve restored the stack pointer from the rbp register, we 
need to restore the calling function’s value in the rbp register. That value 
was pushed onto the stack in the prologue, so we’ll pop it off the top of 
the stack back into the rbp register 5. Finally, we can return to the calling 
function 6. Since this is the main function, this will return to the operating 
system.

One of the most valuable uses of gdb is as a learning tool. It has a 
mode that is especially helpful in learning what each assembly language 
instruction does. I’ll show you how to do this in the next section, using the 
program in Listing 10-5. This will also help you to become more familiar 
with using gdb, which is an important skill to have when debugging your 
programs.

Using gdb to Learn Assembly Language
This would be a good place for you to run the program in Listing 10-5 so 
you can follow along with the discussion. It can be assembled, linked, and 
executed with the following commands:

$ as -–gstabs -o doNothingProg.o doNothingProg.s
$ gcc -o doNothingProg doNothingProg.o
$ ./doNothingProg

The --gstabs option (note the two dashes here) tells the assembler to 
include debugging information with the object file. The gcc program rec-
ognizes that the only input file is already an object file, so it goes directly 
to the linking stage. There is no need to tell gcc to include the debug-
ging information because it was already included in the object file by the 
assembler.
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As you might guess from the name, you won’t see anything on the 
screen from running this program. We’ll need this for later in the chapter 
when we use gdb to walk through the execution of this program. Then you’ll 
see that this program actually does something.

The gdb debugger has a mode that’s useful for seeing the effects of each 
assembly language instruction as it’s executed one step at a time. The text 
user interface (TUI) mode splits the terminal window into a display area at 
the top and the usual command area at the bottom. The display area can 
be further split into two display areas.

Each display area can show either the source code (src), the registers 
(regs), or the disassembled machine code (asm). Disassembly is the process of 
translating the machine code (1s and 0s) into the corresponding assembly 
language. The disassembly process does not know the programmer-defined 
names, so you will see only the numerical values that were generated by the 
assembly and linking processes. The asm display will probably be more use-
ful when we look at the details of instructions in Chapter 12.

The documentation for using the TUI mode is in info for gdb. I’ll 
give a simple introduction here of using the TUI mode with the program 
doNothingProg.s, from Listing 10-5. I’ll step through most of the instructions. 
You’ll get a chance to single-step through each of them when it’s Your Turn.

N O T E 	 My example here shows gdb being run from the command line. I’ve been told that this 
doesn’t work well if you try to run gdb under the Emacs editor.

$ gdb ./doNothingProg
--snip--
Reading symbols from ./doNothingProg...
1 (gdb) set disassembly-flavor intel
2 (gdb) b main
Breakpoint 1 at 0x1129: file doNothingProg.s, line 8.
(gdb) r
Starting program: /home/bob/progs/chap11/doNothingProg_asm/doNothingProg 

Breakpoint 1, main () at doNothingProg.s:8
8	         push    rbp        	 # save caller's frame pointer
3 (gdb) tui enable

We start the program under gdb the usual way. The default assembly 
language syntax that gdb uses for disassembly under GNU/Linux is AT&T, 
so we need to set it to Intel 1. This syntax issue will be explained at the end 
of this chapter. It matters if you use the asm display.

Then we set a breakpoint at the beginning of the program 2. We used 
source code line numbers for setting breakpoints in C code. But each C 
statement typically translates into several assembly language instructions, 
so we can’t be sure that gdb will break at a specific instruction.  The label 
syntax gives us a way to ensure that gdb will break at a specific instruction if 
it is labeled.
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When we run the program, it breaks at the main label, which is on the 
first instruction of the function. Next, we enable the TUI mode 3, which 
shows the source code, as shown in Figure 10-1.

Figure 10-1: gdb in TUI mode with src display

The bottom section of the terminal window shows the usual (gdb) 
prompt, which is where you enter gdb commands and examine memory con-
tents. The top section shows the source code for this function with the line 
about to be executed shown in reverse video to highlight it.  There’s also 
an indication on the left side that there’s a breakpoint at this line (B+) and 
that the instruction pointer, rip, currently points to this line, >. The display 
also shows the current address in the rip register, using the name PC, in the 
lower-right margin of the source display section. (Program counter is another 
name for instruction pointer.) 

The layout regs command splits the display area of the terminal window 
and displays the registers, as shown in Figure 10-2. We’re about to execute 
the first instruction in the main function.
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Figure 10-2: gdb in TUI mode with the source and registers windows

The s command executes the current instruction and moves on to the 
next instruction, which becomes highlighted, as shown in Figure 10-3.

Figure 10-3: Executing an instruction causes any registers that have changed  
to be highlighted.
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Executing the first instruction, push rbp, has caused gdb to highlight 
the rsp register and its contents in the registers display window shown in 
Figure 10-3. This instruction has pushed the contents of the rbp register 
onto the call stack and changed the stack pointer, rsp, accordingly. Pushing 
a 64-bit register onto the call stack has changed the stack pointer from 
0x7fffffffde98 (Figure 10-2) to 0x7fffffffde90; that is, it decremented the 
stack pointer by the number of bytes (8) pushed onto the stack. You’ll learn 
more about the call stack and its usage in the next chapter.

In Figure 10-3, you can also see that the current location within the 
program has moved to the next instruction. This instruction is now high-
lighted; the instruction pointer character, >, has moved to this instruction; 
and the address in the rip register (PC in lower right) has changed from 
0x555555555129 to 0x55555555512a. This change in rip shows that the instruc-
tion that was just executed, push rbp, occupies only one byte in memory. 
You’ll learn more about this in Chapter 12.

The TUI enhancement does not provide a data or address view of mem-
ory, only a disassembly view. We need to view data and addresses that are 
stored in memory in the command area. For example, if we want to see what 
the push rbp instruction stored in memory, we need to use the x command to 
view the memory pointed to by the stack pointer, rsp. Figure 10-4 shows the 
giant (64-bit) contents in hexadecimal at the memory address in rsp.

Figure 10-4: Examining memory in TUI mode is done in the command area.

Executing two more instructions shows that the mov rax, 0 instruction 
stores 0 in the rax register, as shown in Figure 10-5. Comparing Figures 10-4 
and 10-5, you can also see the effects of the mov rbp, rsp instruction.
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Figure 10-5: Effects of the mov eax, 0 instruction

Another step takes us to the ret instruction, shown in Figure 10-6, 
ready to return to the calling function.

Figure 10-6: Ready to return to the calling function
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Comparing Figure 10-6 with Figure 10-2 shows us that the frame 
pointer, rbp, has been restored to the calling function’s value. We can also 
see that the stack pointer, rsp, has been moved back to the same location it 
was at when our function first started. If both the frame pointer and stack 
pointer are not restored before returning to the calling function, it’s almost 
certain that your program will crash. For this reason, I often set a break-
point at the ret instruction so I can check that my function restored both 
these registers properly, highlighted in Figure 10-7.

Figure 10-7: The program has completed.

All that remains is to quit gdb.

YOUR T UR N

1.	 Enter the program in Listing 10-5 and use gdb to single-step through the 
code. Notice that when you execute the mov rsp, rbp instruction in the 
epilogue, TUI does not highlight the registers. Explain. Next, change the 
program so that it returns the integer 123. Run it with gdb. What number 
base does gdb use to display the exit code?
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2.	 Enter the program in Listing 10-1 and compile it with debugging turned 
on (-g option). Set a breakpoint at main. Does gdb break at the entry to 
the function? Can you follow the actions of the prologue by using the s 
command? Can you continue through the program and step through the 
epilogue?

3.	 Write the following C function in assembly language:

/* f.c */
  int f(void) {
  return 0;
}

Make sure that it assembles with no errors. Use the -S option to compile f.c 
and compare gcc's assembly language with yours. Write a main function 
in C that tests your assembly language function, f, and prints out the func-
tion’s return value.

4.	 Write three assembly language functions that do nothing but return an 
integer. They should each return a different, nonzero integer. Write a main 
function in C that tests your assembly language functions and prints out the 
functions’ return values by using printf.

5.	 Write three assembly language functions that do nothing but return a char-
acter. Each should return a different character. Write a main function in C 
that tests your assembly language functions and prints out the functions’ 
return values by using printf.

In the next chapter, we’ll take a more detailed look inside the main 
function. I’ll describe how to use the call stack in detail. This will include 
how to create local variables in a function. But first, I’ll give a brief sum-
mary of the AT&T assembly language syntax. If you look at any assembly 
language in a Linux or Unix environment, you’ll probably see the AT&T 
syntax being used.

AT&T Syntax
I am using the Intel syntax for the assembly language in this book, but for 
those who might prefer the AT&T syntax, I’ll briefly describe it here. AT&T 
syntax is the default in most Linux distributions.

Listing 10-7 is a repeat of the program in Listing 10-5 but written using 
the AT&T syntax.

# doNothingProg_att.s
# Minimum components of a C program, in assembly language.
        .text
        .globl  main
        .type   main, @function
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main:
      1 pushq 2 %rbp        # save caller's frame pointer
        movq  3 %rsp, %rbp  # establish our frame pointer

        movq  4 $0, %rax    # return 0;

        movq    %rbp, %rsp  # restore stack pointer
        popq    %rbp        # restore caller's frame pointer
        ret                 # back to caller

Listing 10-7: Minimum C program written in assembly language using AT&T syntax

The first difference that you probably notice is that a character specifying 
the size of the operand is added as a suffix to most instruction mnemonics 1. 
Table 10-2 lists the size letters. (Yes, this is redundant in the cases where one 
of the operands is a register, but it’s part of the syntax.) The next difference 
you probably see is that each register is prefixed with the % character 2. 

The most significant difference is that the order of the operands is 
reversed 3. Instead of placing the destination first, it’s last. If you move 
between the two syntaxes, Intel and AT&T, it’s easy to get the operands in 
the wrong order, especially with instructions that use two registers. You 
also need to prefix an immediate data value with the $ character 4 in 
the AT&T syntax.

Table 10-2: Data Size Suffix for AT&T Syntax

Suffix letter Data type Number of bits

b Byte 8

w Word 16

l Doubleword 32

q Quadword 64

As stated in the preface, I chose to use the Intel syntax in this book to 
be consistent with the Intel and AMD manuals. As far as I know, the GNU 
assembler, as, is the only one that defaults to the AT&T syntax. All other 
assemblers use the Intel syntax, and as offers that as an option.

What You’ve Learned

Editor     A program used to write the source code for a program in the 
chosen programming language.

Preprocessor    The first stage of compilation. It brings other files into 
the source, defines macros, and so forth, in preparation for actual 
compilation.

Compilation    Translates from the chosen programming language into 
assembly language.

Assembly    Translates assembly language into machine language.
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Linking     Links separate object code modules and libraries together to 
produce the final executable program.

Assembler directives    Guide the assembler program during the assem-
bly process.

mov instruction     Moves values between memory and the CPU and 
within the CPU.

push instruction     Places values on the call stack.

pop instruction     Retrieves values from the call stack. 

ret instruction    Returns program flow to the calling function.

gdb TUI mode    Displays changes in registers in real time as you step 
through a program. It’s an excellent learning tool.

Prologue    Sets up the call stack for the called function.

Epilogue    Restores the call stack for the calling function.

In the next chapter, you’ll learn the details about how to pass arguments 
to functions, how the call stack works, and how to create local variables in 
functions.





11
I N S I D E  T H E  M A I N  F U N C T I O N

As you know, every C program begins by 
executing a function named main, which is 

called from a startup function in the C run-
time environment. The main function will call 

other functions (subfunctions) to do most of the process-
ing. Even a simple “Hello, World!” program needs to call 
another function to write the message on the screen.

Most subfunctions need data to be passed to them as arguments from 
the calling function, and they often pass a result back to the calling func-
tion. Arguments to a function can be data or memory addresses. When 
the function is called, it performs its operations and then returns to the 
calling function. The calling function needs to send the called function 
the address to return to. In the x86-64 architecture, the return address is 
passed on the call stack.

Adding a little more complexity, most functions need their own local 
variables for storing data and addresses. Registers can be used for variables, 
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but they are global, and we would quickly run out of registers to use. The 
stack provides a good place to allocate space for local variables in memory.

In this chapter, we’ll break down this process. We’ll do this by discussing 
how to write characters on the screen and read characters from the keyboard 
in our main function. Starting with this chapter, we’ll usually bypass the C 
standard library functions, printf and scanf, and use the system call functions 
write to output to the screen and read to input from the keyboard.

We’ll start by discussing the write and read functions. Then we’ll look 
at how arguments are passed to a function in the CPU registers. We’ll next 
look at how the CPU can determine an address to pass to a function when 
that’s needed. Then we’ll look at how a data structure called the call stack is 
used for creating local variables within a function.

The write and read System Call Functions
In Chapter 2 we used printf and scanf, from the C standard library, for writ-
ing to the screen and reading from the keyboard. As shown in Figure 2-1 
(in Chapter 2), printf converts data from its memory storage format to a 
character format and calls the write system call function to display the char-
acters on the screen. When reading characters from the keyboard, scanf 
calls the read system call function and converts the characters to a memory 
storage format.

Linux sees the screen and keyboard as files. When a program is first 
launched, the operating system opens three files—standard in, standard 
out, and standard error—and assigns an integer to each file that is called a 
file descriptor. The program interacts with each file by using the file descrip-
tor. The C interfaces for calling read and write are specified in the Portable 
Operating System Interface (POSIX) standard. The general formats for calling 
these two functions are

int write(int fd, char *buf, int n);
int read(int fd, char *buf, int n);

where fd is a file descriptor, buf is the address of the character storage, and n 
is the number of characters to read or write. You can see more details in the 
man pages for write and read:

man 2 write
man 2 read

Table 11-1 shows the file descriptors we’ll use and the device each is 
normally associated with.

Table 11-1: File Descriptors for write and read System Call Functions

Name Number Use

STDIN_FILENO 0 Read characters from keyboard

STDOUT_FILENO 1 Write characters to screen

STDERR_FILENO 2 Write error messages to screen
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These names are defined in the system header file, unistd.h, which is 
located at /usr/include/unistd.h on my Ubuntu system. (The location on your 
system may be different.)

Let’s look at how to pass the appropriate arguments to the write func-
tion to write text on the screen.

Passing Arguments in Registers
Up to six arguments can be passed in registers from one function to another 
in our environment. We’ll look at how to pass more than six arguments in 
Chapter 14, and I’ll note here that the Windows C environment allows only 
four arguments to be passed in registers.

Let’s start with a program that does something very simple. We’ll 
write “Hello, World!” on the screen by using the write system call function 
(Listing 11-1). 

/* helloWorld.c
 * Hello World program using the write() system call.
 */

#include <unistd.h>

int main(void)
{

  write(STDOUT_FILENO, "Hello, World!\n", 14);

  return 0;
}

Listing 11-1:  “Hello, World!” program using the write system call function

This function passes three arguments to write. In principle, the C 
compiler—or you, when you’re writing in assembly language—could use 
any of the 16 general-purpose registers, except rsp, to pass arguments from 
one function to another. (The reason you can’t use rsp will be explained in 
a moment.) Just store the arguments in the registers and call the desired 
function. Of course, the compiler, or a person writing in assembly lan-
guage, needs to know exactly which register each argument is in when it 
comes to the called function.

The best way to avoid making mistakes is to develop a standard set of rules 
and follow them. This is especially important if more than one person is writ-
ing code for a program. Other people have realized the importance of having 
such standards and have given a good set of standards for passing arguments 
in System V Application Binary Interface AMD64 Architecture Processor Supplement 
(with LP64 and ILP32 Programming Models) Version 1.0. I found the January 28, 
2018, version in PDF format at https://github.com/hjl-tools/x86-psABI/wiki/x86-64 
-psABI-1.0.pdf. (The latest version is maintained in LaTeX source at https://gitlab 
.com/x86-psABIs/x86-64-ABI/, but you need pdflatex to build a PDF version.) The 
compiler we’re using, gcc, follows the rules in the System V standards, and we’ll 
do the same for the assembly language we write.

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI
https://gitlab.com/x86-psABIs/x86-64-ABI
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Table 11-2 summarizes the System V standards for using registers.

Table 11-2: General-Purpose Register Usage

Register Special usage Save?

rax Return first value from function No

rbx General-purpose Yes

rcx Pass fourth argument to function No

rdx Pass third argument to function; return second value from function No

rsp Stack pointer Yes

rbp Optional frame pointer Yes

rdi Pass first argument to function No

rsi Pass second argument to function No

r8 Pass fifth argument to function No

r9 Pass sixth argument to function No

r10 Pass function’s static chain pointer No

r11 None No

r12 None Yes

r13 None Yes

r14 None Yes

r15 None Yes

The Save? column shows whether a called function needs to preserve 
the value in that register for the calling function. You’ll learn how to do this 
in the next few sections.

The first six arguments are passed in registers rdi, rsi, rdx, rcx, r8, and 
r9, reading from left to right in a C function. Listing 11-2 shows the assem-
bly language generated by gcc for the C function in Listing 11-1. This illus-
trates how to pass the three required arguments to the write function. 

N O T E 	 The compiler did not comment the assembly language code in this listing. I’ve added 
my own comments, using ##, to help you to see the relationships with the C source code. 
I’ll do this with most of the compiler-generated assembly language I show in this book.

        .file   "helloWorld.c"
        .intel_syntax noprefix
        .text
      1 .section  .rodata
2 .LC0:
        .string "Hello, World!\n"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
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        mov     rbp, rsp
        mov     edx, 314         ## number of chars
        lea     rsi, 4.LC0[rip]  ## address of string
        mov     edi, 51          ## STDOUT_FILENO
        call  6 write@PLT
        mov     eax, 0
        pop     rbp
        ret
        .size   main, .-main
        .ident  " GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section  .note.GNU-stack,"",@progbits

Listing 11-2: Assembly language generated by gcc for program in Listing 11-1

When programming in assembly language, it’s common to store the 
arguments in the registers starting with the last argument in the argument 
list, working your way to the first argument. In Listing 11-2, the third argu-
ment to write, the number of characters 3, is stored first in the register for 
the third argument, edx. The second argument is the address of the first 
character in the string 4, which goes in rsi. The first argument, the device 
to write to 5, is stored in edi just before the call to write 6.

This program also introduces two more instructions, lea and call, and 
some rather odd-looking syntax associated with these instructions. The lea 
instruction loads the memory address of .LC0 into the rsi register, and the 
call instruction transfers program control to the address of the write func-
tion. Before describing the details of these instructions, we need to look at 
where the various components of a program are located in memory.

Position-Independent Code
The job of the linker is to decide where each program component should 
be located in memory and then fill in the addresses in the program code 
where the component is referenced. The linker could decide where each 
component should be located in memory and include these addresses 
in the executable file, but it’s more secure to allow the operating system 
to decide where to load each component. Let’s look at how the assembly 
language generated by gcc allows the program to be loaded anywhere in 
memory.

For the program to run correctly when the operating system is given 
the responsibility to decide where to load it, the linker needs to create a 
position-independent executable. For this to work, each function in the pro-
gram must consist of position-independent code, code that will work correctly 
no matter where it is loaded into memory. The default for the gcc compiler 
is usually set to produce position-independent code, and the linking phase 
produces a position-independent executable.

Linking the functions and global data items in the source code files 
that we write for our program is straightforward. The linker knows how 
many bytes are in each function and global data item, so it can compute 
where each begins relative to the beginning of the program. From there, 
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the linker can compute the number of bytes from where a component is 
referenced to the relative location of the referenced component, giving  
an offset value. The linker inserts this offset value into the code at the place 
where the component is referenced.

You’ve already learned about the execution cycle and how the instruc-
tion pointer works its way through the program as it’s executed. The result 
is that at any given point in the program, the current address is in the 
instruction pointer, rip, regardless of where the program was loaded into 
memory. During program execution, when the CPU comes to an instruc-
tion that references another component, it adds the offset value to the 
address in the instruction pointer to result in an effective address of the ref-
erenced component. The effective address is used by both the lea and call 
instructions.

lea—Load effective address

Computes an effective address and loads it into a register.

lea reg, mem loads the effective address of mem into reg.

The lea instruction does not affect the status flags in the rflags register.

call—Call procedure

Saves linking information on the stack and jumps to a procedure.

call function_name pushes the address of the next instruction onto the 
call stack and then transfers control to function_name.

The call instruction does not affect the status flags in the rflags 
register.

In Listing 11-2, the memory location of the text string is labeled .LC0 2. 
The syntax to specify that we need this address relative to the instruction 
pointer is .LC0[rip] 4. You can think of this as “.LC0 off of rip.” During 
the linking phase, the linker computes the memory distance between the 
lea instruction and the .LC0 label, and it uses that value as the offset. To 
be more precise, the linker uses the memory distance of the instruction 
immediately following the lea instruction. Recall that during program 
execution when the CPU fetches an instruction, it increments the address 
in the rip register to that of the next instruction. So the action of the lea 
rsi, .LC0[rip] instruction is to add the offset that the linker computed to 
the address in the rip register, which has now updated to the address of the 
next instruction, and load that address into the rsi register.

The label .LC0 is in the .rodata section 1, which is typically loaded 
into the .text segment by the operating system. Most of what is stored in 
the .text segment are CPU instructions, so the operating system treats it 
as a read-only area of memory. The .rodata section contains constant data, 
which is also read-only.

You’ll learn about pushing things onto the stack in the next section, 
but you can see that the call instruction in Listing 11-2 has @PLT appended 
to the name of the function being called, write 6. PLT stands for procedure 
linkage table. The write function is in a C shared library, not in one of source 
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code files that we wrote. The linker has no idea where it will be located 
relative to our main function, so it includes a procedure linkage table and a 
global offset table (GOT) in the executable file. 

The first time our program calls the write function, the dynamic loader 
in the operating system loads the function into memory (if it has not 
already been loaded by another program), puts the address of the function  
in the global offset table, and adjusts the procedure linkage table accord-
ingly. If our program calls the write function again, the procedure linkage 
table uses the value in the global offset table to directly call it. The syntax, 
write@PLT, says to call the write function, whose address can be found in the 
procedure linkage table. When we’re calling functions that are included 
when linking our program, we don’t need to use the procedure linkage 
table because the linker can compute the relative address of the function 
being called.

The Call Stack
The call stack, or simply the stack, is used extensively for the interface 
between a calling function and called function, creating local variables 
within a function, and saving items within a function. Before describing 
how these things are done, we need to understand what stacks are and how 
they are used.

Stacks in General
A stack is a data structure created in memory for storing data items that 
includes a pointer to the “top” of the stack. Informally, you can think of a 
stack as being organized very much like a stack of dinner plates on a shelf. 
We need to be able to access only the item at the top of the stack. (And, yes, 
if you pull out a plate from somewhere within the stack, you will probably 
break something.) There are two fundamental operations on a stack:

push data_item    Places the data_item on the top of the stack and moves 
the stack pointer to point to this latest item.

pop location    The data item on the top of the stack is moved to location, 
and the stack pointer is moved to point to the next item left on the stack.

The stack is a last in, first out (LIFO) data structure. The last thing to be 
pushed onto the stack is the first thing to be popped off.

To illustrate the stack concept, let’s continue with our dinner plate 
example. Say we have three differently colored dinner plates, a red one on 
the dining table, a green one on the kitchen counter, and a blue one on 
the bedside table. Now we’ll stack them on the shelf in the following way:

1.	 Push red plate.

2.	 Push green plate.

3.	 Push blue plate.

At this point, our stack of plates looks like Figure 11-1.
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Blue plate

Green plate

Red plate

Figure 11-1: Three dinner  
plates in a stack

4.	 Now perform the operation: pop kitchen counter.

We’ll have a blue plate on our kitchen counter (recall that the blue plate 
was on the bedside table) and our stack of dinner plates will be left as 
shown in Figure 11-2.

Green plate

Red plate

Figure 11-2: One dinner  
plate has been popped  
from the stack.

If you have guessed that it’s easy to really mess up a stack, you’re right. 
A stack must be used according to a strict discipline. Within any function:

•	 Always push an item onto the stack before popping anything off.

•	 Never pop more things off than you have pushed on.

•	 Always pop everything off the stack.

If you have no use for the item(s) to be popped off, you may simply 
adjust the stack pointer. This is equivalent to discarding the items that are 
popped off. (Our dinner plate analogy breaks down here.)

A good way to maintain this discipline is to think of the use of paren-
theses in an algebraic expression. A push is analogous to a left parenthesis, 
and a pop is analogous to a right parenthesis. The pairs of parentheses can 
be nested, but they have to match. An attempt to push too many items onto 
a stack is called stack overflow. An attempt to pop items off the stack beyond 
the bottom is called stack underflow.

We have looked only at the essential operations on a stack here. It’s 
common to add other operations in an implementation of a stack. For 
example, a peek operation allows you to look at the item on the top of the 
stack without removing it. And as you’ll see in subsequent chapters, items 
not on the top of the stack are often accessed directly without pushing and 
popping, but in a very well-controlled way.

A stack is implemented by dedicating a contiguous area of main 
memory to it. Stacks can grow in either direction in memory, into higher 
addresses or lower. An ascending stack grows into higher addresses, and a 
descending stack grows into lower addresses. The stack pointer can point 
to the top item on the stack, a full stack, or to the memory location where 
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the next item will be pushed onto the stack, an empty stack. These four pos-
sible stack implementations are shown in Figure 11-3 with the integers 1, 2, 
and 3 pushed onto the stack in that order. Be sure to notice that memory 
addresses are increasing downward in this figure, which is the way we usually 
view them in the gdb debugger.
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descending
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2

3
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Empty
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si
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dd
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Figure 11-3: Four ways to implement a stack

x86-64 instructions use the stack as a full-descending stack. To under-
stand this choice, think about how you might organize things in memory. 
Recall that the control unit automatically increments the program counter 
as your program is executed. Programs come in vastly different sizes, so 
storing the program instructions at low memory addresses allows maximum 
flexibility with respect to program size.

The stack is a dynamic structure. You do not know ahead of time how 
much stack space will be required by any given program as it executes. It’s 
impossible to know how much space to allocate for the stack. You would 
like to allocate as much space as possible, while preventing it from colliding 
with program instructions. The solution is to start the stack at the highest 
address and have it grow toward lower addresses.

This is a highly simplified rationalization for implementing stacks such 
that they grow “downward” in memory. The organization of various program 
elements in memory is much more complex than the simple description 
given here. But this may help you to understand that there are some good 
reasons for what may seem to be a rather odd implementation.

The important point is that we need to write our assembly language 
accordingly. We’ll next look at the details of how the stack is used in the 
function prologue and epilogue and how arguments to another function in 
registers, by writing our own “Hello, World!” program directly in assembly 
language.

Inside the Function Prologue and Epilogue
My assembly language version of the “Hello, World!” program, Listing 11-3, 
closely follows the assembly language generated from the C version by the 
compiler in Listing 11-2, but I’ve added comments and used a more mean-
ingful label for the string constant. This should make it a little easier to 
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understand how the program uses the stack and passes arguments to the 
write function.

# helloWorld.s
# Hello World program using the write() system call

        .intel_syntax noprefix
# Useful constant
      1 .equ    STDOUT, 1
        
# Constant data
      2 .section  .rodata
message:
        .string "Hello, World!\n"
        .equ   3 msgLength, .-message-1

# Code
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp             # save caller's frame pointer
        mov     rbp, rsp        # our frame pointer

        mov     edx, MsgLength  # message length       
        lea     rsi, message[rip]  # message address
        mov     edi, STDOUT     # the screen
        call    write@plt       # write message

        mov     eax, 0          # return 0

        pop     rbp             # restore caller frame pointer
        ret                     # back to caller

Listing 11-3: “Hello, World!” program written in assembly language

Before we get to a discussion of the prologue, notice that I’ve used 
another assembler directive, .equ, in Listing 11-3 1. The format is

.equ symbol, expression

Note that we don’t need to specify the .text segment for the .rodata sec-
tion 2. The assembler and linker produce an .rodata section, and it’s up to 
the operating system to determine where to load it.

The expression must evaluate to an integer, and the assembler sets 
symbol equal to that value. You can then use the symbol in your code, mak-
ing it much easier to read, and the assembler will plug in the value of the 
expression. The expression is often just an integer. In this program, I have 
equated the symbol STDOUT to the integer 1.

The . character in an expression means here in memory location. Thus, 
when the assembler gets to the expression 3, it computes the current loca-
tion in memory, which is the end of the C-style text string; subtracts the 
beginning location of the string, the location that the programmer labeled 
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message, and then subtracts 1 for the terminating NUL character. The net 
result is that MsgLength is equated with the number of printable characters in 
the text string.

You’ve learned in Chapter 10 how the caller’s frame pointer is saved on 
the call stack and a new frame pointer is established for this function. But 
now that you know more about how the call stack works, let’s walk through 
the prologue of this function with gdb.

The first thing we need to do is to set a breakpoint at the beginning of 
the function:

(gdb) b main
Breakpoint 1 at 0x1139: file helloWorld.s, line 18.

You can use either the label, main, or the line number. We saw how to 
use the li command to see the line numbers in Chapter 2. Using the line 
number may cause gdb to execute the prologue and break after it. (I’ve seen 
different behavior in different versions of gdb.)

After setting the breakpoint, when we run the program, it breaks at the 
first instruction, and we can inspect the contents of the rbp and rsp registers:

(gdb) r
Starting program: /home/bob/progs/chap11/helloWorld_asm/helloWorld 

Breakpoint 1, main () at helloWorld.s:18
18             push    rbp                 # save caller's frame pointer
(gdb) i r rbp rsp
rbp            0x0                 0x0
rsp            0x7fffffffde88      0x7fffffffde88

The i r command gives us the current location of the stack pointer, rsp. 
The instruction about to be executed will push the eight bytes in the rbp 
register onto the call stack. To see the effects in memory, we’ll examine the 
current contents of the stack. Since the call stack is full descending, we’ll 
subtract 8 from the current address in the stack pointer for our display so 
we can get a view of the area of memory that this instruction will change 
before it’s changed:

(gdb) x/2xg 0x7fffffffde80
0x7fffffffde80: 0x0000555555555160      0x00007ffff7de70b3

The stack pointer is currently pointing to the value 0x00007ffff7de70b3, 
which is the return address that the call instruction in the calling function 
(in the C runtime environment, since this is the main function) pushed onto 
the stack. The rbp register contains 0x0000000000000000. This value is about 
to be pushed onto the stack at location 0x7fffffffde80, which currently con-
tains 0x0000555555555160.

Next, we execute the two instructions in the function prologue, which 
will take us to the first instruction after the prologue:

(gdb) si
19             mov     rbp, rsp            # our frame pointer
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(gdb) si
21             mov     edx, MsgLength      # message length

We’ll inspect the values in the rsp and rbp registers:

(gdb) i r rbp rsp
rbp            0x7fffffffde80      0x7fffffffde80
rsp            0x7fffffffde80      0x7fffffffde80

We can see that the stack pointer has been decremented by 8, and the 
frame pointer has been set to the top of the stack. Let’s look at how the 
stack has changed by examining the same memory area that we examined 
earlier:

(gdb) x/2xg 0x7fffffffde80
0x7fffffffde80: 0x0000000000000000      0x00007ffff7de70b3
(gdb)

We see that the value in the rbp register, 0x0000000000000000, has been 
nicely saved at the top of the call stack. Next, we’ll set a breakpoint at the 
call write@PLT instruction so we can make sure that the registers have been 
set up correctly for write:

(gdb) b 24
Breakpoint 2 at 0x55555555514e: file helloWorld.s, line 24.
(gdb) c
Continuing.

Breakpoint 2, main () at helloWorld.s:24
24             call    write@plt           # write message
(gdb) i r rdx rsi rdi
rdx            0xe                 14
rsi            0x555555556004      93824992239620
rdi            0x1                 1

The rdx register contains the number of characters to be written on 
the screen, and the rsi register contains the address of the first character. 
Recall that a C-style text string is terminated with a NUL character, so we’ll 
examine 15 characters at this address:

(gdb) x/15c 0x555555556004
0x555555556004: 72 'H'  101 'e' 108 'l' 108 'l' 111 'o' 44 ','  32 ' '  87 'W'
0x55555555600c: 111 'o' 114 'r' 108 'l' 100 'd' 33 '!'  10 '\n' 0 '\000' 

Next, we’ll set a breakpoint at the ret instruction to make sure that the 
stack pointer and frame pointer have been restored to the caller’s values:

(gdb) b 29
Breakpoint 3 at 0x555555555159: file helloWorld.s, line 29.
 (gdb) c
Continuing.
Hello, World!
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Breakpoint 3, main () at helloWorld.s:29
29	         ret                         # back to caller
(gdb) i r rbp rsp rip
rbp            0x0                 0x0
rsp            0x7fffffffde88      0x7fffffffde88
rip            0x555555555159      0x555555555159 <main+32>

I’ve included the rip register in this display to show the effects of the ret 
instruction. Executing the ret instruction shows that it pops the value from 
the top of the stack into the rip register, thus returning to the C runtime 
environment:

(gdb) si
__libc_start_main (main=0x555555555139 <main>, argc=1, argv=0x7fffffffdf78, 
    init=<optimized out>, fini=<optimized out>, rtld_fini=<optimized out>, 
    stack_end=0x7fffffffdf68) at ../csu/libc-start.c:342
342     ../csu/libc-start.c: No such file or directory.
(gdb) i r rbp rsp rip
rbp            0x0                 0x0
rsp            0x7fffffffde90      0x7fffffffde90
rip            0x7ffff7de70b3      0x7ffff7de70b3 <__libc_start_main+243>

Looking back at the displays of the stack shown, we can see that the 
address that was pushed onto the stack by the function in the C runtime 
environment that called our main function has been popped back into the 
rip register.

The protocol that specifies the interaction between functions needs to 
be followed very precisely, or the program will usually crash.

In the next section, we’ll look at how we can create local variables on 
the stack. You’ll see the importance of the frame pointer.

YOUR T UR N

Modify the assembly language program in Listing 11-3 so that it prints Hello, 
your_name! on the screen. Remember to change the documentation so it accu-
rately describes your program.

Local Variables in a Function
Variables that are defined in a C function can be used in the function only 
where they’re defined, making them local variables. They are created when 
the function is called and deleted when the function returns to the calling 
function, so they are also called automatic variables.

You learned in Chapter 9 that CPU registers can be used as variables, 
but if we were to use CPU registers to hold all of our variables, we’d soon 
run out of registers in even a small program, so we need to allocate space in 
memory for variables. 
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We also saw earlier that a function needs to preserve the contents of 
some registers (the Save? column in Table 11-2) for the calling function. If 
we want to use such a register in our function, we need to save its content in 
memory and restore it before returning to the calling function.

We’ll next look at how to use the call stack for these two purposes: cre-
ating and removing automatic variables and saving and restoring register 
content.

Variables on the Stack
From the description of the call stack shown previously, you might guess 
that it’s a good place for saving a register’s content—simply push it onto the 
stack before using the register for something else and then pop the content 
off into the register before returning to the calling function.

Creating variables on the call stack is more complicated. If we restrict 
our usage of the stack to pushing and popping, keeping track of where 
each variable is located on the stack would quickly become messy, if not 
impossible.

There is, however, an easy way to use the stack for variables. As part of 
the function prologue, we’ll allocate enough memory for the variables on 
the stack by moving the stack pointer, thus increasing the size of the stack 
frame for the function. We can use the same addressing technique to access 
our variables in the stack frame that was used to access the message address 
in Listing 11-3, except we’ll use the frame pointer, rbp, for the address base. 
We need to be careful not to change rbp so we can use it as a reference 
point in the stack frame, leaving the stack pointer free to push and pop 
items as needed.

To illustrate how to use the stack frame for automatic local variables, 
we’ll start with the C program in Listing 11-4, which reads one character 
from the keyboard and echoes it on the screen.

/* echoChar.c
 * Echoes a character entered by the user.
 */

#include <unistd.h>

int main(void)
{
  char aLetter;

  write(STDOUT_FILENO, "Enter one character: ", 21); /* prompt user   */
  read(STDIN_FILENO, &aLetter, 1);                   /* one character */
  write(STDOUT_FILENO, "You entered: ", 13);         /* message       */
  write(STDOUT_FILENO, &aLetter, 1);

  return 0;
}

Listing 11-4: Program to echo a single character entered by a user
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Listing 11-5 shows the way our compiler does this, which is the assembly 
language that gcc generates for the C program in Listing 11-4.

        .file   "echoChar.c"
        .intel_syntax noprefix
        .text
        .section .rodata
.LC0:
        .string "Enter one character: "
.LC1:
        .string "You entered: "
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
      1 sub     rsp, 16
      2 mov     rax, QWORD PTR fs:40
      3 mov     QWORD PTR -8[rbp], rax
        xor     eax, eax
        mov     edx, 21           ## prompt message
        lea     rsi, .LC0[rip]
        mov     edi, 1
        call    write@PLT
      4 lea     rax, -9[rbp]      ## &aLetter
        mov     edx, 1
        mov     rsi, rax
        mov     edi, 0
        call    read@PLT
        mov     edx, 13           ## response message
        lea     rsi, .LC1[rip]
        mov     edi, 1
        call    write@PLT
        lea     rax, -9[rbp]
        mov     edx, 1
        mov     rsi, rax
        mov     edi, 1
        call    write@PLT
        mov     eax, 0
      5 mov     rcx, QWORD PTR -8[rbp]
        xor     rcx, QWORD PTR fs:40
        je      .L3
        call    __stack_chk_fail@PLT
.L3:
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section .note.GNU-stack,"",@progbits

Listing 11-5: Assembly language generated by the compiler for the echoChar program  
in Listing 11-4
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The C program defines a local char variable, aLetter, which requires 
only one byte. However, the compiler allocated 16 bytes on the call stack by 
simply moving the stack pointer 1. The x86-64 architecture includes a set 
of sixteen 128-bit registers that are used by some floating-point and vector 
instructions. You’ll learn more about them in Chapter 18. The stack pointer 
needs to be aligned at 16-byte address boundaries for these instructions, so 
most protocol standards specify that the stack pointer be aligned at 16-byte 
boundaries. This is less error-prone than aligning the stack pointer only 
where it’s needed.

The instruction to move the stack pointer introduces the subtraction 
instruction, sub. While we’re here, we’ll also describe the addition and nega-
tion instructions, add and neg.

sub—Subtract

Subtracts source value from destination value, leaving result in 
destination.

sub reg1, reg2 subtracts the value in reg2 from the value in reg1, leaving 
the result in reg1.

sub reg, mem subtracts the value in mem from the value in reg, leaving the 
result in reg.

sub mem, reg subtracts the value in reg from the value in mem, leaving the 
result in mem.

sub reg, imm subtracts imm from the value in reg, leaving the result in reg.

sub mem, imm subtracts imm from the value in mem, leaving the result in mem.

The sub instruction sets the OF, SF, ZF, AF, PF, and CF status flags in the 
rflags register according to the result.

add—Add

Adds source value to destination value, leaving result in destination.

add reg1, reg2 adds the value in reg2 to the value in reg1, leaving the 
result in reg1.

add reg, mem adds the value in mem to the value in reg, leaving the result 
in reg.

add mem, reg adds the value in reg to the value in mem, leaving the result 
in mem.

add reg, imm adds imm to the value in reg, leaving the result in reg.

add mem, imm adds imm to the value in mem, leaving the result in mem.

The add instruction sets the OF, SF, ZF, AF, PF, and CF status flags in the 
rflags register according to the result.
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neg—Negate

Performs the two’s complement negation of a value.

neg reg negates the value in reg.

neg mem negates the value in mem.

The neg instruction sets the OF, SF, ZF, AF, PF, and CF status flags in the 
rflags register according to the result.

The instructions to multiply and divide are more complex and are 
described in Chapter 16.

We need to pass the address of the local char variable to the read func-
tion so it can store the character entered by the user there. We can do this 
with the lea (load effective address) instruction 4. As you can see, the com-
piler has chosen the byte that’s located 9 bytes inside the 16 bytes allocated 
on the stack. Figure 11-4 shows the location of this variable.

rbp

rsp

Return address

Caller’s rbp
-8

-16

0

Unused memory (7 bytes)

1 byte for aLetter
Stack canary

Memory for
stack growth

Figure 11-4: Stack frame for program in Listing 11-5

One of the items in the stack frame of Figure 11-4 is a stack canary, 
which is used to help detect stack corruption.

Stack Corruption
The function epilogue restores the caller’s frame pointer in the rbp register 
and returns the stack pointer to point to the return address. However, if 
either of these values has been changed on the stack, the program will not 
behave properly. A stack canary can help detect whether either of these val-
ues has been changed.

When a program starts, the operating system stores a 64-bit random 
number in a special place in memory labeled fs:40, which only the operat-
ing system can change. We read this value from memory 2 and store it in 
the stack frame immediately after the caller’s value of rbp 3. Then, before 
executing the function epilogue, we check to see if the value of the stack 
canary has been changed 5.

N O T E 	 Using a stack canary is an optional feature. In my version of gcc, it’s used by default. 
You can override the default behavior with one of the command line options -fstack 
-protector, -fstack-protector-strong, or -fstack-protector-all to use a stack canary, 
and -fno-stack-protector not to use one.
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The code to perform this check introduces two more instructions.

xor—Exclusive OR

Performs a bitwise exclusive OR between the source value and destina-
tion value, leaving the result in the destination.

xor reg1, reg2 performs bitwise exclusive OR between the values in reg1 
and reg2, which can be the same or different registers. The result is left 
in reg1.

xor reg, mem performs bitwise exclusive OR between the values in reg 
and mem, leaving the result in reg.

xor mem, reg performs bitwise exclusive OR between the values in mem 
and reg, leaving the result in mem.

xor reg, imm performs bitwise exclusive OR between a value in reg and 
imm, leaving the result in reg.

xor mem, imm performs bitwise exclusive OR between a value in memory 
and the constant imm, leaving the result in memory. 

The xor instruction sets the SF, ZF, and PF status flags in the rflags reg-
ister according to the result. The OF and CF status flags are cleared to 0, 
and the value of the AF status flag is undefined.

je—Jump if equal

Jumps if the zero flag is true, which typically shows equality of two 
values.

je label jumps to the memory location label if the ZF is 1 (true).

The je instruction is one of several conditional jump instructions, which 
will be explained in Chapter 13 when we talk about program flow con-
structs. The conditional jump instructions test the status flags in the 
rflags register and transfer program flow accordingly. The je instruc-
tion tests the zero status flag and jumps to label in the function if the 
flag is true.

In Listing 11-5, the code to check for a corrupt stack 5 first retrieves 
the value that was saved on the stack, the stack canary, and then performs 
a bitwise exclusive OR with the original value that was generated when the 
program first started, at memory location fs:40. If the two values are identi-
cal, the exclusive OR results in 0, which sets the zero status flag, ZF, to 1 
(true), causing the je .L3 instruction to transfer program flow to the leave 
instruction, thus skipping over the call to the __stack_chk_fail@PLT function. 
If the exclusive OR operation does not produce a 0, the jump will not occur, 
and the program will call the __stack_chk_fail@PLT function, which will report 
the stack corruption error and terminate the program.

You see another new instruction in this program, leave.
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leave—Leave function

Deletes the stack frame.

leave restores the caller’s frame pointer and places the stack pointer at 
the return address.

The leave instruction performs the same operations as the two 
instructions:

        mov     rsp, rbp
        pop     rbp

Referring to Figure 11-4, you can see that this moves the stack pointer 
to the place where the caller’s rbp is stored and then pops this back into 
the rbp register, leaving the stack pointer at the return address. 

The assembly language generated by gcc in Listing 11-5 includes some 
additional notation, QWORD PTR 25. In most cases, the assembler can figure 
out the size of the operand—byte, word, double word, or quadword—from 
the context of the instruction. If one of the operands is a register, the reg-
ister name dictates the size of the operand. But if one of the operands is 
a memory address and the other is a literal constant, the operand size is 
undeterminable. For example, in Listing 11-5, if the instruction at 3 had 
been the following,

        mov     -8[rbp], 123

the integer 123 could be stored in any size from one byte and larger. In this 
case, you need to tell the assembler the size of the data item, using the nota-
tion in Table 10-1 in Chapter 10 (replicated here as Table 11-3).

Table 11-3: Assembler Data  
Item Size Notations

Modifier Data type Number of bits

byte ptr Byte 8

word ptr Word 16

dword ptr Doubleword 32

qword ptr Quadword 64

Thus, the instruction

        mov     byte ptr -8[rbp], 123

would store 123 as an 8-bit value, while the instruction

        mov     qword ptr -8[rbp], 123
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would store 123 as a 64-bit value. I don’t know why the compiler writer 
chose to use this notation in Listing 11-5 since the assembler can figure out 
the data item size from the names of the register being used, rax, but the 
redundancy isn’t harmful.

Let’s put this stuff together and write the echoChar program directly in 
assembly language. We’ll use more meaningful names for the labels, let the 
assembler compute the length of the text strings, and comment our code, as 
shown in Listing 11-6.

# echoChar.s
# Prompts user to enter a character, then echoes the response
        .intel_syntax noprefix
# Useful constants
        .equ    STDIN,0
        .equ    STDOUT,1
# Stack frame
        .equ    aLetter,-1
        .equ    localSize,-16

# Constant data
        .section  .rodata
prompt:
        .string "Enter one character: "
        .equ    promptSz,.-prompt-1
msg:
        .string "You entered: "
        .equ    msgSz,.-msg-1
        .text
# Code 
        .globl  main
        .type   main, @function
main:
        push    rbp           # save caller's frame pointer
        mov     rbp, rsp      # establish our frame pointer
        add     rsp, localSize # for local var.

        mov     rax, fs:40    # get stack canary
        mov     -8[rbp], rax  # and save it

        mov     edx, promptSz # prompt size
        lea     rsi, prompt[rip] # address of prompt text string
        mov     edi, STDOUT   # standard out
        call    write@plt     # invoke write function

        mov     edx, 1        # 1 character
        lea     rsi, 1aLetter[rbp] # place to store character
        mov     edi, STDOUT   # standard out
        call    write@plt     # invoke write function
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        mov     edx, 1        # 1 character
        lea     rsi, aLetter[rbp] # place to store character
        mov     edi, STDIN    # standard in
        call    read@plt      # invoke read function

        mov     edx, msgSz    # message size
        lea     rsi, msg[rip] # address of message text string
        mov     edi, STDOUT   # standard out
        call    write@plt     # invoke write function

        mov     edx, 1        # 1 character
        lea     rsi, aLetter[rbp] # place where character stored
        mov     edi, STDOUT   # standard out
        call    write@plt     # invoke write function

        mov     eax, 0        # return 0

        mov     rcx, -8[rbp]  # retrieve saved canary
        xor     rcx, fs:40    # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT    # bad canary
goodCanary:
      2 mov     rsp, rbp      # delete local variables
        pop     rbp           # restore caller's frame pointer
        ret                   # back to calling function

Listing 11-6: Program to echo a single character, written directly in assembly language

When reading the code in Listing 11-6, I think you’ll find that giving 
names to the offsets for variables in the stack frame makes the code much 
easier to read 1. I also explicitly undo the stack frame instead of using the 
leave instruction to emphasize what is taking place 2.

In subsequent chapters, you’ll learn how to use the stack frame for larger 
and more complex variables. You’ll also learn how to use the stack for passing 
arguments beyond the six that can be passed in registers. 

Not Using the C Runtime Environment
The main purpose of this book is to show what is going on at the instruc-
tion set level when writing in higher-level languages, so we’ll continue using 
the C (and later the C++) runtime environment and the POSIX write and 
read system call functions for the remainder of this book.

Of course, it’s possible to write stand-alone programs that do not use 
the C runtime environment. You’ll see how this is done in Chapter 20.
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YOUR T UR N

1.	 Enter the program in Listing 11-6 and get it to work. Why do you get the 
extra system prompt when the program ends? Here’s an example:

$ ./echoChar
Enter one character: a
You entered: a$ 
$

2.	 Modify the program to eliminate the extra system prompt. Here’s an example:

$ ./echoChar
Enter one character: a
You entered: a 
$

Did your modification cause an error? If so, what do you need to do to fix it?

3.	 The following subfunction stores a text string at a memory address passed 
to it and returns the number of characters stored there:

/* theMessage.c
 * Stores "Hello" for caller and returns
 * number of characters stored.
 */

int theMessage(char *aMessage)
{

  int nChars = 0;
  char *messagePtr = "Hello.\n";
  
  while (*messagePtr != 0)
  {
    *aMessage = *messagePtr;
    nChars++;
    messagePtr++;
    aMessage++;
  }

  return nChars;
}

Write a main function in assembly language that calls this subfunction and 
displays the text string that was stored. Use a stack canary. Change the 
message in the subfunction to Greetings.\n. What happens?
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What You’ve Learned

write and read functions     System call functions that bypass the C 
standard library.

Passing arguments to a subfunction     Up to six arguments are passed 
in registers.

Position-independent executable     The operating system can load the 
program any place in memory, and it will execute correctly.

Call stack     An area of memory used for storing program data and 
addresses that grows and shrinks as needed.

Function prologue    Sets up the call stack for the transition from the 
calling function to the called function.

Function epilogue    The complement to the function prologue that 
restores the call stack to the state it was in when the function was 
called.

Automatic variables    Created anew each time the function is called. 
They can be easily created on the call stack.

Stack canary     A random number is placed at the beginning of the stack 
area for the current function that can show when important information 
on the call stack was changed.

In the next chapter, we’ll step back from writing programs and look at 
the translation into machine code performed by the assembler program.





12
I N S T R U C T I O N  D E T A I L S

In Chapters 2 and 3 you learned how bit 
patterns can be used to represent data, and 

in Chapters 4–8 you learned how bits can 
be implemented in hardware and used to per-

form computations. In this chapter, we’ll look at a few 
details of how instructions are encoded in bit patterns 
that perform the computations and specify the loca-
tions of the data they operate on. 

The primary goal of this chapter is to give an overall view of how com-
puter instructions know where the data they operate on is located. The 
details of machine code for each instruction are not the sort of thing that 
people memorize. You’ll need to consult the manuals for the details. The 
details have helped me to debug my programs in some cases.

Another reason for learning about how instructions are encoded is that 
the information is included in the manual’s description of each instruction. 
Having some knowledge about instruction encoding can help you to read 
the manuals.
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We’ll examine two of the most common operations in most programs: 
moving data and branching. We’ll look at how the CPU locates the oper-
ands of an instruction, what data or addresses it operates on, and how the 
CPU knows where to branch to when it executes a branching instruction.

Looking at Machine Code
We can look at the machine code, the 0s and 1s that make up a program, 
by producing an assembly listing, which shows the machine code correspond-
ing to each instruction. We can produce assembly listings by passing the -al 
options to the assembler. This causes the listing to be written to standard 
out, which defaults to the screen. We can capture this with the redirec-
tion operator. For example, I used this:

$ as –gstabs -al -o adressing.o addressing.s > addressing.lst

to produce the file shown in Listing 12-1.

GAS LISTING register.s                    page 1

   1                 # register.s
   2                 # Some instructions to illustrate machine code.
   3                         .intel_syntax noprefix
   4                         .text
   5                         .globl  main
   6                         .type   main, @function
   7                 main:
   8 0000 155                push    rbp         # save caller's frame pointer
   9 0001 4889E5              mov     rbp, rsp    # establish our frame pointer
  10                         
  11 0004 289C8              mov     eax, ecx    # 32 bits, low reg codes
  12 0006 389F7              mov     edi, esi    # highest reg codes
  13 0008 46689C8            mov     ax, cx      # 16 bits
  14 000b 588C8              mov     al, cl      # 8 bits
  15 000d 64489C7            mov     edi, r8d    # 32 bits, 64-bit register
  16 0010 74889C8            mov     rax, rcx    # 64 bits
  17              
  18 0013 B8000000            mov     eax, 0      # return 0 to os
  18      00
  19 0018 4889EC              mov     rsp, rbp    # restore stack pointer
  20 001b 85D                pop     rbp         # restore caller's frame pointer
  21 001c 9C3                ret                 # back to caller

Listing 12-1: Machine code for some sample instructions

This program doesn’t do anything. It’s just a collection of instructions 
that we’ll use to illustrate how instructions are encoded in machine lan-
guage. I’ve included a prologue and epilogue so you can assemble and link 
the program and run it under gdb if you want to see what each instruction 
does (which you’re asked to do when it’s Your Turn).
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The first column in the assembly listing is the line number in decimal. 
The next column shows the address, in hexadecimal, of each instruction rel-
ative to the beginning of the function. The third column shows the machine 
code, also in hexadecimal. The remaining part of this listing is the assembly 
language source code. Since the listing file includes line numbers, we’ll refer 
to them when discussing how the instructions are coded in machine code.

Instruction Bytes
Both the operation and its operands need to be coded in binary. The num-
ber of bytes needed for this encoding dictates the number of possible opera-
tion/operand combinations in the computer’s instruction set. In the x86-64 
architecture, the number of bytes varies, while some other architectures use 
the same number of bytes for each instruction. We’ll consider only x86-64 
instructions in this book.

The location of each operand needs to be specified in the machine code 
for the instruction. An operand could be located in a register, in memory, or 
in an I/O port. Programming I/O ports is more complicated, so we’ll leave 
that for Chapter 19. The way we specify the location of an operand is called 
the addressing mode. We’ll look at several addressing modes and how they’re 
encoded in the instruction.

To give some context to how an x86-64 instruction is encoded, 
Figure 12-1 shows the general layout of the bytes in an instruction. We’ll 
look at the meaning of each byte afterward.

Prefix Opcode ModR/M SIB Offset Immediate

Figure 12-1: General arrangement of an x86-64 machine instruction

At least one byte is needed for each instruction to specify the opera-
tion, usually called the opcode. There can be one, two, or three bytes in the 
opcode.

In the simplest addressing mode, the operand is located in a register. 
Some instruction opcodes leave enough extra bits in the opcode byte to 
include the code for a register, but most require an additional byte for this. 
When an operand is located in memory, the addressing is more complex. 
These more complex addressing modes necessitate additional bytes in the 
instruction, shown by the dashed lines in Figure 12-1.

Before getting to operands in memory, let’s look at the case when they’re 
located in registers. We’ll use the instructions in Listing 12-1 to show how 
the CPU knows which register(s) to use.

Opcode Bytes
The ret instruction on line 21 of Listing 12-1 does not explicitly have any 
operands, but it has two implicit ones—the rsp and rip registers. Since it 
always affects only these two registers, the instruction doesn’t need to spec-
ify them and can be encoded in only one opcode byte 9.
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The push and pop instructions on lines 8 and 20 specify a register, rbp, as 
their operand. The opcode for push is 01010rrr 1, and for pop it’s 01011rrr 8, 
where the three bits rrr are used to encode the register. There are only 
three bits in this single byte available for encoding the register, which limits 
us to the eight registers rax to rdi. The number of bytes to push or pop is 
determined by how the operating system sets up the call stack when a pro-
gram is first loaded into memory. We’re working in a 64-bit environment, so 
these instructions operate on 64-bit values. If we use either of these instruc-
tions with one of the registers r8 to r15, the assembler adds a prefix byte that 
contains the fourth bit, which I’ll explain in “REX Prefix Byte” on page 250.

Next, we’ll look at the instruction on line 11, which moves the 32-bit 
value in ecx to eax. The opcode is 0x89 2. The mov instruction can move data 
from register to register, from memory to register, and from register to 
memory. There are too many permutations to code up in a single byte, so 
the assembler adds a ModR/M byte to the instruction.

ModR/M Byte
The ModR/M byte is used to extend the possible combinations of operator 
and operands. Figure 12-2 shows the format of the ModR/M byte.

Reg/
OpcodeMod R/M

7 6 5 3 2 04 1

Figure 12-2: ModR/M byte

The two Mod bits specify one of four possible addressing modes. The 
Reg/Opcode bits specify a register or additional bits of the opcode. The 
R/M bits specify a register that is used by the instruction in different ways, 
depending on the addressing mode specified in the Mod bits.

I won’t give all the possible cases for the ModR/M byte in this book, 
since that information is available in the manuals. We’ll look at how they’re 
coded in several instructions, which should help you to figure out how to 
read the manuals.

Tables 12-1 and 12-2 give the codes that are used for the registers in any 
part of an instruction. Table 12-1 shows the codes used to specify 8-, 16-, 
and 32-bit portions of the first eight registers, rax–rdi.

Table 12-1: 8-, 16-, and 32-Bit Register Codes

8-bit register 16-bit register 32-bit register Code

al ax eax 000

cl cx ecx 001

dl dx edx 010

bl bx ebx 011

ah sp esp 100



Instruction Details   249

8-bit register 16-bit register 32-bit register Code

ch bp ebp 101

dh si esi 110

bh di edi 111

You may wonder how the CPU can distinguish between the three sizes 
of a registers with the same code. The default operand size is 32 bits. If 
you use a 16-bit register, the assembler inserts the 0x66 prefix byte before 
the opcode, which overrides the default and causes that instruction to use 
16-bit operands. The distinction between 8-bit and 32-bit operations is 
made by using different opcodes.

Table 12-2 shows the register codes for the full set of 64-bit registers. As 
you’ll see next section, most 64-bit operations are accomplished by adding a 
REX prefix byte before the opcode.

Table 12-2: 64-Bit Register Codes

Register Code Register Code

rax 0000 r8 1000

rcx 0001 r9 1001

rdx 0010 r10 1010

rbx 0011 r11 1011

rsp 0100 r12 1100

rbp 0101 r13 1101

rsi 0110 r14 1110

rdi 0111 r15 1111

The first thing you probably notice about the register codes in Table 12-2 
is that they are four bits, but the ModR/M byte allows only three bits for the 
codes. If the instruction uses only the 32-bit portions of the first eight regis-
ters, eax to edi, the high-order bit is 0 and not needed. The remaining three 
bits fit within the ModR/M byte. You’ll see in a moment where the fourth bit 
is located when an instruction uses any portion of the r8–r15 registers or the 
full 64 bits of any of the 16 registers, rax–r15.

The instruction on line 12 of Listing 12-1 is another example of using 
only 32-bit registers. It has the same opcode, 0x89 3, as the instruction on 
line 11 2, but they operate on different general-purpose registers. The 
registers are specified in the ModR/M byte: 11 001 000 for moving from ecx 
to eax, and 11 110 111 for moving from esi to edi. I inserted spaces in the bit 
patterns here so you can see the three fields corresponding to Figure 12-2 
in each byte. The Mod field, 11, specifies the register-to-register mode for 
the move. Consulting Table 12-1, we can see that the three bits in the Reg/
Opcode field of line 12, 110, specify the source register, esi, and the three 
bits in the R/M field, 111, specify the destination register, edi.



250   Chapter 12

The instruction on line 13 moves only 16 bits from cx to ax. Instead of 
using a different opcode, this variance from the 32-bit move is indicated 
with the prefix byte 0x66 4. On line 14, we’re moving only 8 bits from cl to 
al, which uses a different opcode, 0x88 5.

Line 15 shows a 32-bit move, but this time we’re using one of the reg-
isters, r8d, that was added when upgrading from a 32-bit to a 64-bit CPU 
design. Now we need four bits to specify the r8 register, which requires the 
assembler to modify the instruction with a REX prefix 6.

REX Prefix Byte
A REX prefix byte is required for most instructions that involve a 64-bit oper-
and or one of the registers r8 to r15. Figure 12-3 shows the format of the 
REX prefix.

7 6 5 3 2 04 1

0 1 0 0 W R X B

Figure 12-3: REX prefix format

The REX prefix byte starts with the high-order four bits 0100. The W 
bit is set to 1 for a 64-bit operand or 0 for any other size. If the instruction 
uses any of the 64-bit registers r8 to r15, the high-order bit for each register 
(see Table 12-2) is stored in the R, X, or B bits, depending on how the reg-
ister is used in the instruction. (The remaining three bits are stored in the 
ModR/M byte, as described earlier.)

We can see the use of the W bit by comparing the instructions on lines 
11 2 and 16 7. They both move from the rcx register to the rax register, 
but the instruction on line 11 moves 32 bits, while the one on line 16 moves 
64 bits. The only difference between the instructions is the addition of the 
REX prefix byte, 01001000 (W = 1), to the 64-bit instruction 7.

The instruction on line 15 moves only 32 bits, but the source is one of the 
registers added for the 64-bit upgrade from the 32-bit CPU. So, the assembler 
adds the REX prefix, 01000100 6. The W bit is 0, indicating a 32-bit move, but 
the R bit is 1. When executing this instruction, the CPU uses this 1 as the 
high-order bit of the source register field in the ModR/M byte, 11 000 111, to 
give 1000, or r8 (see Table 12-2). Since W = 0, the instruction moves only 32 bits.

So far, we’ve considered only instruction addressing modes used to 
move a value from one CPU register to another. Of course, there needs to 
be a way to move a value into a register in the first place. We’ll next look at 
an addressing mode that can be used to move a constant value into a regis-
ter or memory.

Immediate Addressing Mode
A single data item up to 64 bits can be stored as part of the instruction. 
The instruction accesses it using the immediate addressing mode (immediate 
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because the data item is located at the address immediately after the opera-
tion part of the instruction). The data value can be moved into a register 
or into a memory location. We’ll look only at moving into a register here. 
Listing 12-2 provides some examples of using the immediate addressing 
mode for storing constants in registers.

GAS LISTING immediate.s                   page 1

   1                 # immediate.s
   2                 # Some instructions to illustrate machine code.
   3                         .intel_syntax noprefix
   4                         .text
   5                         .globl  main
   6                         .type   main, @function
   7                 main:
   8 0000 55                 push    rbp         # save caller's frame pointer
   9 0001 4889E5             mov     rbp, rsp    # establish our frame pointer
  10                         
  11 0004 1B0AB             mov     al, 0xab    # 8-bit immediate
  12 0006 266B8CDAB         mov     ax, 0xabcd  # 16-bit immediate
  13 000a 3B812EFCD         mov     eax, 0xabcdef12  # 32-bit immediate
  13      AB
  14 000f 448B812EF         mov     rax, 0xabcdef12  # to 64-bit reg
  14      CDAB0000 
  14      0000
  15 0019 548B88967         mov     rax, 0xabcdef0123456789  # 64-bit immed.
  15      452301EF 
  15      CDAB
  16                
  17 0023 6B8000000         mov     eax, 0      # return 0 to os
  17      00
  18 0028 4889EC             mov     rsp, rbp    # restore stack pointer
  19 002b 5D                 pop     rbp         # and frame pointer
  20 002c C3                 ret                 # back to caller

Listing 12-2: Examples of immediate data

The two opcodes for moving immediate data into a register are 11010rrr 
and 11011rrr, where rrr is the register number (see Table 12-1). The data 
itself is stored immediately after the opcode, thus forming part of the 
instruction. The instruction on line 11 in Listing 12-2 shows an example of 
moving the value 0xab into the al register 1. The opcode, 0xb0, includes the 
coding of the eax register, 000. The byte immediately following the opcode 
is the data, 0xab, which is stored at the end of the instruction, as shown in 
Figure 12-1.

Line 13 shows the instruction to move a 32-bit value 3. It uses the 
opcode 10111rrr, where rrr = 000, the same as the 8-bit instruction on line 
11. Notice that the constant value, 0xabcdef12, is stored in little-endian for-
mat. When reading assembly language listings, it’s important to remember 
that the instruction itself is stored by byte, but any constant data is stored in 
little-endian format.
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Next, let’s look at the instruction on line 12. It uses the same opcode 
as the 32-bit instruction on line 13, but the 0x66 prefix byte tells the CPU to 
use the other operand size, 16 bits, instead of the default size of 32 bits 2.

Moving on to line 14, we can see that the assembler inserted a REX 
prefix, 01001000, with W = 1 to indicate that this is a 64-bit move 4. The 
constant value, 0xabcdef12, written in assembly language is only 32 bits, but 
the assembler filled in the leading zeros to make it a full 64 bits for storage 
as part of the machine code. The assembly language instruction on line 15 
specifies a full 64-bit constant, which can be seen in the machine code 5.

Now you’re able to read the machine code for the instruction on line 
17 6, mov eax, 0, which we’ve been using from the beginning of writing 
assembly language to set the return value from main. Notice that the assem-
bler codes the constant, 0, in 32 bits. Compare this instruction, 0xb800000000, 
with the instruction on line 13, 0xb812efcdab. They both move a 32-bit 
constant, which is stored immediately after the opcode, 0xb8, into the eax 
register.

We can now move on to the addressing modes that direct the CPU to 
access values stored elsewhere in memory.

Memory Addressing Modes
Almost any useful program needs to use memory for storing data. In this 
section, we’ll look at the machine code of the addressing modes used to 
determine a memory address. We’ll look only at instructions that read 
from memory, but the same addressing modes work for writing to memory 
(which you are asked to do when it’s Your Turn). 

The x86-64 architecture allows only one of the operands, either the 
source or the destination, to be a memory location. The simplest case is to 
move directly to or from memory.

Direct Memory Addressing
In assembly language, we could label the memory location and simply use 
that label as an operand to a mov instruction. For example, if my program 
included a memory location labeled x, the following instruction would store 
the 32 bits located at location x in the rax register:

        mov     eax, x

The assembler translates this into the machine code, where I have used 
spaces to separate the different parts of the instruction:

8B 04 25 00000000

The 0x8b opcode tells the CPU to move a 32-bit value from memory 
into a register. This is followed by the ModR/M byte, 00 000 100. The Reg/
Opcode bits are 000, which designates the eax register. The Mod bits are 00, 
and the R/M bits are 100, which is a special case telling the CPU to look at 
the SIB byte (see Figure 12-1) for further details. The format of the SIB byte 
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will be described in a moment, but the 0x25 value in the SIB byte does not 
follow the usual format. It’s another special case telling the CPU that the 
address of the data is the 32-bit value immediately following this instruc-
tion, which is 0x00000000. 

This 0x00000000 is simply a placeholder put there by the assembler. The 
assembler also makes a note in the object file of the location of this place-
holder and the name of the memory location it refers to. It’s the job of the 
linker to find this label, determine its address, and insert this address into 
the placeholder location in the final executable file. In the 64-bit mode, 
when the CPU executes the instruction, it extends this 32-bit address with 
leading zeros to be 64 bits.

Since the linker fills in an address here, this instruction is not position-
independent code. To make it position independent, we would need to use 
x relative to the instruction pointer:

        mov     eax, x[rip]

We’ll be using position-independent code throughout this book, so all 
our memory reads and writes will use a register indirect addressing mode, 
using either the rip or another register as our reference address. 

Register Indirect with Offset
When the CPU is executing an instruction that references memory based 
on a register, it starts by computing the effective address. You’ve already seen 
this with the lea instruction, which simply loads the effective address into a 
register. The mov instruction goes a step further and moves the data stored 
at the effective address into a register. If the memory address is the destina-
tion operand, then the mov instruction stores the data in the register at the 
effective address.

The simplest indirect addressing mode is just using an address in a reg-
ister. For example, in the instruction on line 13 of Listing 12-3, the effective 
address is the address in the rbp register 2. This instruction moves the four 
bytes from that memory location into the eax register.

GAS LISTING memory.s                      page 1

   1                 # memory.s
   2                 # Some instructions to illustrate machine code.
   3                         .intel_syntax noprefix
   4                         .text
   5                         .globl  main
   6                         .type   main, @function
   7                 main:
   8 0000 55                 push    rbp         # save caller's frame pointer
   9 0001 4889E5             mov     rbp, rsp    # establish our frame pointer
  10 0004 4883EC30           sub     rsp, 48     # local variables
  11                         
  12 0008 48C7C105           mov     rcx, 5      # for indexing
  12      000000
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  13 000f 18B4500           mov     eax, 2[rbp]          # indirect
  14 0012 38B45D0           mov     eax, 4-48[rbp]       # indirect + offset  
  15 0015 8B440DD0           mov     eax, -48[rbp+5rcx]   # indirect + offset and index 
  16 0019 8B448DD0           mov     eax, -48[rbp+64*rcx] # and scaled index 
  17                         
  18 001d B8000000           mov     eax, 0      # return 0 to os
  18      00
  19 0022 4889EC             mov     rsp, rbp    # restore stack pointer
  20 0025 5D                 pop     rbp         # and frame pointer
  21 0026 C3                 ret                 # back to caller

Listing 12-3: Register indirect memory addressing

The next instruction, on line 14, computes the effective address by 
adding an offset, -48, to the address in the rbp register 4. The CPU does 
this computation internally and does not change the contents of rbp. For 
example, if rbp contained 0x00007fffffffdf60, the effective address would be 
0x00007fffffffdf60 + 0xffffffffffffffd0 = 0x00007fffffffdf30. The instruction 
would move the four bytes at 0x00007fffffffdf30 into eax.

Let’s compare the machine code for the instructions on lines 13 and 14:

000f 8B4500
0012 8B45D0

They both use the opcode 0x8b, which tells the CPU to compute an 
effective address and move 32 bits from that address to the eax register. 
They both use the same ModR/M byte, 01 000 101 (45 in hexadecimal). 
The 01 in the Mod field tells the CPU to compute an effective address by 
adding an 8-bit offset to the value in the base register. The offset value is 
in two’s complement and can be negative 3. The CPU extends the 8 bits 
to 64 bits, preserving the sign by copying the highest-order bit of the 8-bit 
value into the 56 higher-order bits of the 64-bit value (called sign extension), 
before adding it to the value in the base register. The offset byte is stored 
at the offset field of the instruction, before any immediate data, as shown 
in Figure 12-1.

Rather than creating a separate opcode for mov without offset (line 13), 
the CPU designers chose to simply set the offset to 0 1. The base register 
for this operation is coded in the R/M field—101 in these instructions. The 
default address size is 64 bits in the x86-64 architecture, so the CPU uses 
the entire rbp register, and there is no need for a REX prefix byte here.

If this is starting to look complicated to you, don’t panic. As you saw 
in Chapter 11, you’ll use the .equ assembler directive to provide meaning-
ful names for these offsets. Then this instruction would look something 
like this:

        mov     eax, numberOfItems[rbp]

The assembler will substitute the value of numberOfItems for you, and the 
CPU will do the arithmetic.
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Register Indirect with Indexing
On line 15, we’ve added in the indexing register, rcx 5. The effective address 
is the sum of the values in rcx and rbp plus -48. This addressing mode is use-
ful for working through an array one byte at a time. Notice that both the 
indexing and base registers must be the same size even though the value 
in the register you use for indexing would fit into a smaller portion of the 
register. Thus, on line 15, we’ve stored a 64-bit value in rcx to ensure that 
the high-order bits are 0, even though the value would fit within 8 bits. The 
CPU will add the full 64 bits of the index register to the base register when 
computing the effective address.

The ModR/M byte of this instruction is 01 000 100. The 01 in the Mod 
field indicates an 8-bit offset, and the 000 in the Reg/Opcode field specifies 
that the destination register is eax. The 100 in the R/M field is the number 
for the stack pointer register, which would never be used for this type of 
operation. So the CPU designers chose to use this code to indicate that 
another special byte, the SIB byte, is needed for encoding the rest of this 
instruction.

SIB Byte
Figure 12-4 shows the format of the SIB byte.

IndexScale Base reg

7 6 5 3 2 04 1

Figure 12-4: Format of the SIB byte

The SIB byte has fields for the Scale, Index register, and Base register. 
The Scale can be 1, 2, 4, or 8.

The SIB byte in the instruction on line 15 is 00 001 101, which indicates 
a scale of 1, rcx as the index register, and rbp as the base register. As men-
tioned, the CPU assumes 64-bit addressing, so three bits are sufficient for 
encoding the first eight registers, rax to rdi. If we were to use any of r8 to r15, 
the assembler would need to prefix this instruction with a REX prefix byte 
so it could use four bits to encode these registers.

Often, the size of the data items in an array is larger than one byte. 
The instruction on line 16 shows that the value in the index register can be 
scaled 6. In this example code, increasing the index value by 1 adds 4 to 
the effective address. The SIB byte is 10 001 101, showing the same base and 
index registers but a scale factor of 4.

So far, we’ve been looking at moving data. Moving data is probably the 
most common operation in a program. The next most common operation 
is probably jumping from one place in the program to another.
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Jump Instructions
Nearly every program has multiple branches in its flow of execution. Almost 
all the jumps are conditional, based on some settings in the status flag. In 
this section, we’ll look at how the jump instruction is coded so that pro-
gram flow goes to the right location when the jump is taken.

There are some 30 conditional jump instructions that can do either a 
short jump or a near jump. The short jump is limited to a distance that can be 
represented as an 8-bit signed integer (–128 – +127 bytes), whereas a near 
jump uses a 16-bit or 32-bit signed integer. Most programs are written such 
that short jumps are sufficient.

A long jump (greater than –2,147,483,648 – +2,147,483,647 bytes) requires 
the use of the jmp (unconditional jump) instruction. We can do this using a 
conditional jump to jump over the unconditional jump. It’s basically a dou-
ble-negative construct. For example, to do a long jump based on the equal 
condition, you could use the jne instruction like this:

        jne     skip    # skip the jump if equal
        jmp     FarAway # not not equal, so jump
skip:   next instruction

We’ll look only at the short conditional jump here, whose instruction 
format is shown in Figure 12-5.

7 6 5 3 2 04 1

0 1 1 1 Condition

7 6 5 3 2 04 1

Signed offset

Figure 12-5: Format of short conditional jump instruction

The four condition bits in Figure 12-5 direct the CPU to check various 
combinations of the status flags in the status register. The assembler uses 
mnemonics for the conditions that suggest what you want to do. The condi-
tional jump instruction should follow immediately after the operation that 
causes the conditions you want to check, because an intermediate instruc-
tion might change the conditions of the status flags.

Listing 12-4 is an example of two short conditional jump instructions 
that jump based on the results of an xor instruction.

GAS LISTING jumps.s                        page 1

   1                 # jumps.s
   2                 # Some instructions to illustrate machine code.
   3                         .intel_syntax noprefix
   4                         .text
   5                         .globl  main
   6                         .type   main, @function
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   7                 main:
   8 0000 55                 push    rbp         # save caller's frame pointer
   9 0001 4889E5             mov     rbp, rsp    # establish our frame pointer
  10                
  11 0004 4831D8             xor     rax, rbx    # sets status flags
  12 0007 17506             jne   2forward     # test ZF
  13                 back:
  14 0009 4D89C8             mov     r8, r9      # stuff to jump over
  15 000c 4889CB             mov     rbx, rcx
  16                 forward:
  17 000f 4831D8             xor     rax, rbx    # sets status flags
  18 0012 374F5             je      back        # test ZF
  19                 
  20 0014 B8000000           mov     eax, 0      # return 0 to os
  20      00
  21 0019 4889EC             mov     rsp, rbp    # restore stack pointer
  22 001c 5D                 pop     rbp         # and frame pointer
  23 001d C3                 ret                 # back to caller

Listing 12-4: Machine code for short jump instructions

The instruction on line 12 should be read, “Jump to forward if the values 
in rax and rbx are not equal.” The jne instruction checks the ZF in the status 
register. The results of the xor instruction will be 0 only if the two values in 
rax and rbx are equal, which would produce ZF = 1 (true). The jne instruc-
tion takes the jump when ZF = 0 (false).

The assembler also provides a jnz mnemonic for the same machine 
instruction. Looking at Figure 12-5, you can see that there are only 16 (four 
bits) possible conditions that can be tested by a short jump, but there are 
more than 30 such assembly language instructions. There’s usually more 
than one assembler mnemonic for each conditional jump instruction. You 
should use the mnemonic that most clearly conveys your intent in the algo-
rithm. We’ll discuss the conditional jump instructions when we look at con-
trolling program flow in Chapter 13.

Returning to line 12, the offset byte contains 0x06 1. When this instruc-
tion is being executed, the instruction pointer has already been incremented 
to have the address of the next instruction, 0x0009, relative to the beginning 
of this function. If ZF = 0, this instruction simply adds the offset to the cur-
rent value in the instruction pointer, giving 0x000f relative to the beginning 
of this function. If ZF = 1, program execution continues with the instruction 
at 0x0009 relative to the beginning of this function.

Next, we’ll look at the je instruction on line 18. It takes the jump (adds 
the offset value to the instruction pointer) when ZF = 1 (true). Note that the 
value of the offset, 0xf5, is a negative number 3. The CPU sign-extends 
the offset to 64 bits before adding it to the 64-bit address in the instruction 
pointer. The result is that it subtracts 0x0b from the instruction pointer, giv-
ing 0x0014 – 0x000b = 0x0009 relative to the beginning of this function.
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YOUR T UR N

1.	 Enter the program in Listing 12-1 and change the registers to see the effects 
on the machine code. Run your program under gdb to see the effects on the 
register contents.

2.	 Enter the program in Listing 12-3 and change the order of each instruction 
so that it stores the contents of the respective register in memory, except 
that you should not store anything at [rbp]. Why? Run your program under 
gdb to see the effects on the memory contents.

3.	 Enter the program in Listing 12-3 and change it so that it stores a constant 
in each of the memory locations, except that you should not store anything 
at [rbp]. Don’t forget that you need to tell the assembler the size of the 
data item to store (see Table 10-1 in Chapter 10). Run your program under 
gdb to see the effects on the memory contents.

This discussion should give you a brief idea of how these conditional 
jump instructions work. You will see much more about them, including a 
list of the commonly used ones, when we talk about some program flow 
constructs in Chapter 13. But before we move on to more programming, 
we’ll take a quick look at how assembler and linker programs work.

Assemblers and Linkers
Now that you have an idea of what machine code looks like, let’s look at how 
an assembler program translates assembly language into machine code. 
The general algorithm is similar for linking functions together, so we’ll also 
look at that. The presentation here is just an overview. It ignores most of the 
details. My intent is to give you only a rough idea of how an assembler trans-
lates the source code into machine language and how a linker connects the 
different modules that make up an entire program.

The Assembler
The assembler needs to translate the assembly language into machine code. 
Since there is a one-to-one correspondence between the two, the simplest 
approach would be to go through the assembly language source one line at 
a time, translating that line. This would work fine, except for situations like 
line 12 in Listing 12-4. This instruction, jne forward 2, refers to a label that 
the assembler has not yet encountered. The assembler would have no idea 
of what the offset is from this instruction to the forward label. As you saw in 
Figure 12-5, the offset is part of the instruction.

One solution to this problem is to use a two-pass assembler. The assem-
bler creates a local symbol table associating each symbol with a numerical 



Instruction Details   259

value during the first pass. Those symbols defined with an .equ directive 
are entered directly on the table. For the labeled locations in the code, 
the assembler needs to determine the location of each label relative to the 
beginning of the module being assembled and then enter that value and 
the label to the table. A separate local symbol table is created for each .text 
and .data segment in the file. Algorithm 12-1 gives an overview of creating a 
local symbol table.

Let LocationCounter = 0
do
    Read a line of source code
    if (.equ directive)
        LocalSymbolTable.Symbol = symbol
        LocalSymbolTable.Value = expression value
    else if (line has a label)
        LocalSymbolTable.Symbol = label
        LocalSymbolTable.Value = LocationCounter
    Determine NumberOfBytes required by line when assembled
    LocationCounter = LocationCounter + NumberOfBytes
while(more lines of source code)

Algorithm 12-1: First pass of a two-pass assembler

Once the local symbol table is created, the assembler does a second 
pass through the source code file. It uses a built-in opcode table to deter-
mine the machine code, and when a symbol is used in an instruction, it 
looks up the value of the symbol on the local symbol table. If it does not 
find the symbol in the local symbol table, it leaves space in the instruction 
for a number and records the symbol and its location in the object file. 
Algorithm 12-2 shows this process.

Let LocationCounter = 0
do
    Read a line of source code
    Find machine code from opcode table
    if (symbol is used in instruction)
        if (symbol found in LocalSymbolTable)
            get value of symbol
        else
            Let value = 0
            Write symbol and LocationCounter to object file
        Add symbol value to instruction
    Write assembled instruction to object file
    Determine NumberOfBytes used by the assembled instruction
    LocationCounter = LocationCounter + NumberOfBytes
while(more lines of source code)

Algorithm 12-2: Second pass of a two-pass assembler

Algorithm 12-1 and Algorithm 12-2 are highly simplified. They ignore 
many details but are intended to show you the general idea of how an 
assembler works. As an alternative, we could create a one-pass assembler. It 
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would need to maintain a list of the location of each forward reference and, 
then when the label is found, use the table to go back and fill in the appro-
priate value.

This has been a brief overview of the assembly process. Chapter 7 in 
Structured Computer Organization, Sixth Edition, by Andrew S. Tanenbaum 
and Todd Austin (Pearson, 2012) has a section that provides more details 
about the assembly process. There is a thorough discussion of the design 
of assembler programs in Chapter 2 in Leland Beck’s System Software: An 
Introduction to Systems Programming, Third Edition (Pearson, 1997). 

Most functions will contain references to .text segments defined in other 
files, which cannot be resolved by the assembler. The same is true of any .data 
segments if they’re used. The job of the linker is to resolve these references.

The Linker
A linker works in much the same way as an assembler, except the basic unit 
is a block of machine code instead of a line of assembly language. A typi-
cal program is made up of many object files, each of which often has more 
than one .text segment and may have .data segments, all of which must be 
linked together. As with an assembler, two passes can be used to resolve for-
ward references.

An object file created by the assembler includes the size of each segment 
in the file together with a list of all the global symbols and where they are 
used in the segment. During the first pass, the linker reads each object file 
and creates a global symbol table, which contains the relative location of 
each global symbol from the beginning of the program. In the second pass, 
the linker creates an executable file that includes all the machine code from 
the object files with the relative location values from the global symbol table 
plugged into the locations where they are referenced.

This process will resolve all the references to symbols that are defined 
in the program, but it will leave references to externally defined references 
unresolved (for example, names of functions or variables that are defined 
in libraries). The linker enters these references to external names into the 
global offset table. If the external reference is a function call, the linker 
also enters this information into the procedure linkage table (you first saw 
these two tables in Chapter 11) along with the location in the machine code 
where the reference is made.

When the program runs, the operating system also loads the global off-
set table and the procedure linkage table for the program. During execu-
tion, if the program accesses an external variable, the operating system 
loads the library module where the variable is defined and enters its relative 
address in the global offset table. When the program calls one of the func-
tions in the procedure linkage table, if the function has not already been 
loaded, the operating system loads it, inserts its address into the program’s 
global offset table, and adjusts the corresponding entry in the procedure 
linkage table accordingly. 
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I want to emphasize that this has been a sketchy overview of how 
assemblers and linkers work. I’ve omitted the details and given only a 
rough overview of what is involved. If you would like to learn more about 
linkers, I recommend John R. Levine’s Linkers & Loaders (1999).

What You’ve Learned

Assembler listings    Show the machine code for each instruction.

Nonuniform instruction length    x86-64 instructions can be as short as 
one byte but can have many more bytes, depending on the instruction.

Instruction prefix bytes    You will often see the REX prefix byte in a 
64-bit instruction.

ModR/M byte    Used to specify a register or addressing mode.

SIB byte    Used to specify the registers used to index through an array 
in memory.

Immediate addressing mode    Constant data can be stored as part of 
the instruction.

Register indirect with offset addressing mode    The memory location 
is specified as a fixed offset from the address in a base register.

Register indirect with indexing addressing mode    In addition to 
using an offset from a base register, a second register can be used as an 
index into a specific location in memory.

Conditional jumps    A set of jump instructions can be used to test the 
status codes and jump to another place in the program depending on 
the state of status codes.

Assembler    A program that translates assembly language to machine 
code and creates a global symbol table.

Linker    This program resolves cross-references between the segments 
in the program and creates a procedure linkage table that is used by 
the operating system.

In the next chapter, we’ll return to programming and look at the two 
most common program flow constructs: repetition and two-way branching.
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C O N T R O L  F L O W  C O N S T R U C T S

When writing a program in C or assembly 
language, we specify the order in which each 

statement or instruction is executed. This 
order is called the control flow. Programming 

by specifying the control flow is known as imperative 
programming. This is in contrast to declarative program-
ming, where we state the logic of the computation 
and another program figures out the control flow to 
perform it. 

If you have been using make to build your programs, as we recommended 
in Chapter 2, the statements in a makefile are an example of declarative pro-
gramming. You specify the logic of the results, and the make program figures 
out the control flow to produce the results.
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There are three fundamental control flow constructs: sequence, itera-
tion, and selection. You’ve already seen sequence in the programs thus 
far: each instruction, or subfunction, is executed in the order in which 
it’s written. In this chapter, we’ll look at how to alter the control flow 
from the written order to iterate the same block of written instructions 
or to select between several blocks of written instructions. We’ll look at 
how each of these control flow constructs is implemented at the assem-
bly language level. (We’ll look at the details of higher-level control flow 
actions, calling functions, in Chapter 14.)

Both iteration and selection depend on altering control flow based on 
a true/false condition, using a conditional jump. Since they’ll be used in 
the rest of the chapter, we’ll start by looking at the jumps, conditional and 
unconditional, that are available.

Jumps
A jump instruction transfers control flow from one memory location to 
another. When implementing the iteration and selection flow constructs, 
we’ll need to use conditional jumps and sometimes unconditional jumps.

Unconditional Jumps
As you learned in Chapter 9, when an instruction is fetched from memory, the 
CPU automatically increments the instruction pointer to have the address 
of the next instruction in memory. The unconditional jump instruction 
changes the instruction pointer, which causes the CPU to continue program 
execution in some other location.

jmp—Jump

Unconditionally transfers program control flow to a memory location.

jmp label transfers control flow to label.

jmp reg transfers control flow to the address in reg.

The label can be on any memory location within –2,147,483,648 to 
+2,147,483,647 bytes. The CPU sign extends the offset between the jmp 
instruction and label to 64 bits and adds this signed number to the 
instruction pointer, rip. The reg form simply copies the 64 bits in reg to 
the rip register.

The assembler’s computation of the offset in the label form of the jmp 
instruction takes into account that the value in the rip register will point to 
the next instruction following the jmp during program execution. This off-
set is simply added to the rip to cause the transfer of control.

The jmp instruction is commonly used together with a conditional jump 
instruction to skip over blocks of code or to go back to the beginning of a 
block of code and execute it again.
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Conditional Jumps
There are two groups of conditional jump instructions. The first group 
works by evaluating a logical combination of some of the status flags in the 
rflags register. If the logical expression evaluates to true, the instruction 
changes the value in the instruction pointer, rip. Otherwise, the instruction 
pointer does not change, and control flow continues with the instruction 
immediately after the conditional jump instruction.

The general form for this group of conditional jump instructions is as 
follows:

jcc—Jump if condition

Transfers control flow to a memory location if the condition cc is met.

jcc label transfers control flow to label when cc is true.

The jcc instruction reads the status flags in the rflags register. None 
of the conditional jump instructions changes the status flags. The 
distance from the jcc instruction, after the CPU fetches the instruction, to 
label must be within –2,147,483,648 to +2,147,483,647 bytes.

The second group of conditional jump instructions have the same 
behavior as those in the jcc group, but they are based on the content of the 
rcx register instead of the rflags register:

jcxz—Jump if cx is zero

Transfers control flow to a memory location if the content of the cx 
register is 0.

jcxz label transfers control flow to label when the content of the cx 
register is 0.

jecxz—Jump if ecx is zero

Transfers control flow to a memory location if the content of the ecx 
register is 0.

jecxz label transfers control flow to label when the content of the ecx 
register is 0.

jrcxz—Jump if rcx is zero

Transfers control flow to a memory location if the content of the rcx 
register is 0.

jrcxz label transfers control flow to label when the content of the rcx 
register is 0.

The jcxz, jecxz, and jrcxz instructions evaluate only the respective bits 
in the rcx register, not the status flags. They jump to label, which must 
be within –128 to +127 bytes of the instruction, relative to the current 
value of the instruction pointer after the CPU fetches the instruction, if the 
bits are 0.
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There are 16 condition combinations of the cc portion of the jcc 
instruction. Some of the conditions have more than one assembly lan-
guage mnemonic, giving 30 different jcc instructions. They are listed in 
Table 13-1, along with the status flags that each tests.

Table 13-1: Conditional Jumps

cc Condition Status flags cc Condition Status flags

jz Zero ZF je Equal ZF 

jnz Not zero ¬ZF jne Not equal ¬ZF

ja Above ¬CF ∧ ¬ZF jg Greater than ¬SF ∧ ¬ZF

jae Above or equal ¬CF jge Greater than or equal SF = OF

jna Not above CF ∨ ZF jng Not greater than ZF ∧ SF ≠ OF

jnae Not above or equal CF jnge Not greater than or equal SF ≠ OF

jb Below CF jl Less than SF ≠ OF

jbe Below or equal CF ∨ ZF jle Less than or equal ZF ∧ SF ≠ OF

jnb Not below ¬CF jnl Not less than SF = OF

jnbe Not below or equal ¬CF ∧ ¬ZF jnle Not less than or equal ¬SF ∧ ¬ZF

jc Carry CF jo Overflow OF

jnc No carry ¬CF jno No overflow ¬OF

jp Parity PF js Sign SF

jnp No parity ¬PF jns No sign ¬SF

jpe Parity even PF jno Parity odd ¬PF

I have arranged the codes in Table 13-1 in the order you are likely to 
use them. The codes on the left apply roughly to unsigned values, and 
those on the right to signed. Make special note of the difference between 
above and greater than, and between below and less than. Above and below 
refer to unsigned values, and greater than and less than refer to signed values. 
For example, 0xffffffff is above 0x00000001 with respect to the bit patterns. 
But if these bit patterns represent signed integers, then 0xffffffff = –1 and 
0x00000001 = +1 and thus 0xffffffff is less than 0x00000001.

It’s important to use the conditional jump instructions immediately 
after the instruction whose result you want to base the jump on. An interven-
ing instruction might change the states of the status flags, thus introducing a 
bug into your program.

Before moving on to the flow constructs that use conditional jumps, I’ll 
share a hint with you. When using a relational conditional jump like jg or 
jl, I usually forget the order of the test—source compared to destination, 
or destination compared to source. So when testing my program, I almost 
always start by using gdb and putting a breakpoint at the conditional jump 
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instruction. When the program breaks, I check the values. Then I use the  
s step command to see which way the jump went.

Iteration
Many algorithms use iteration, also called looping, which is the repeated 
execution of a block of instructions until the value(s) of the loop control 
variable(s) meet a termination condition. There are two ways to implement 
controlled repetition: looping and recursion. With a looping construct, the 
value(s) of the loop control variable(s) must be changed within the block of 
instructions. In recursion, the block of instructions is repeatedly invoked 
with differing values of the control variable(s). Recursion is implemented 
using a separate function, which we’ll discuss in Chapter 15 when we talk 
about subfunctions. In this chapter, we’ll look at looping constructs within 
a function.

N O T E 	 Although the loop termination condition can be dependent on more than one vari-
able, I’ll use just one loop control variable to clarify the discussion.

while Loop
The while loop is a fundamental form of looping. Here is the form in C:

initialize loop control variable
while (expression)
{
  body
  change loop control variable
}
next_statement

Before entering the while loop, you need to initialize the loop control 
variable. At the beginning of the while loop, the expression is evaluated in a 
Boolean context. If it evaluates to false, 0 in C, control flow continues to the 
next_statement. If the expression evaluates to true, nonzero in C, the body is 
executed, the loop control variable is changed, and control flow continues 
at the top with the reevaluation of the expression. Figure 13-1 shows the flow 
graphically.

We used the write system call function in Chapter 11 to write a text 
message on the screen (Listing 11-1). In that program, we explicitly told the 
write function how many characters were in the text string. In this chapter, 
we’ll see how to use looping to avoid having to determine the number of 
characters in the text string. We’ll use the write function to write one char-
acter at a time on the screen, looping until we reach the NUL character that 
terminates a C-style text string.
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Initialize loop
control variable

Evaluate
Boolean

expression

false

true

Execute body
of while loop

Next instruction
after while 

loop construct

Figure 13-1: Control flow of the  
while loop

We’ll start with a C while loop, shown in Listing 13-1.

/* helloWorld.c
 * Hello World program using the write() system call
 * one character at a time.
 */
#include <unistd.h>
1 #define NUL '\0'

int main(void)
{
2 char *stringPtr = 3 "Hello, World!\n";

  while 4 (*stringPtr != NUL) 
  {
  5 write(STDOUT_FILENO, stringPtr, 1);
  6 stringPtr++;
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  }

  return 0;
}

Listing 13-1: Writing a text string to the terminal window one character at a time

We use the #define directive to give a symbolic name to the NUL charac-
ter 1. The stringPtr variable is defined to be a pointer to a char type 2. As 
you’ll see when we look at the assembly language, the compiler will store 
the text string 3 in a read-only part of memory and store the address of the 
first character in that text string in the stringPtr pointer variable.

The while statement first checks to see if the pointer variable, stringPtr, 
is pointing to the NUL character 4. If it’s not the NUL character, program flow 
enters the while loop body and writes the character pointed to by stringPtr 
on the screen 5. The pointer variable is then incremented to point to the 
next character in the text string 6. Program flow returns to the top of the 
loop where this next character is checked to see if it’s the NUL character 4. 
This loop terminates when the character pointer, stringPtr, is pointing to 
the NUL character. By testing for this condition first, we wouldn’t even enter 
the body of the while loop if stringPtr were to point to an empty string, 
because there would be nothing to do.

The compiler generated the assembly language shown in Listing 13-2 
for this program.

        .file   "helloWorld.c"
        .intel_syntax noprefix
        .text
        .section        .rodata
.LC0:
        .string "Hello, World!\n"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16
        lea     rax, .LC0[rip]          ## address of text string
        mov     QWORD PTR -8[rbp], rax
      1 jmp     .L2                     ## jump to bottom
2 .L3:
        mov     rax, QWORD PTR -8[rbp]  ## address of current character
        mov     edx, 1                  ## one character
        mov     rsi, rax                ## pass address
        mov     edi, 1                  ## STDOUT_FILENO
        call    write@PLT
        add     QWORD PTR -8[rbp], 1    ## increment pointer
.L2:
        mov     rax, QWORD PTR -8[rbp]  ## address of current character
        movzx   eax, BYTE PTR [rax]     ## load character
      3 test    al, al                  ## NUL character?
        jne     .L3                     ## no, continue looping
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        mov     eax, 0                  ## yes, all done
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 13-2: Assembly language for the C program in Listing 13-1

Although this assembly language seems to be testing for the termina-
tion condition at the end of the loop, it follows the logical flow shown in 
Figure 13-1. It jumps down to .L2 1 and tests for the terminating condi-
tion 3 before jumping up to .L3 2 to start execution of the body of the 
while loop.

This code introduces two more instructions:

movzx—Move with zero-extend
Copies (moves) a source value from memory or a register to a wider reg-
ister and zero-extends the value in the destination register.

movzx reg, reg moves from a register to a register.

movzx reg, mem moves from a memory location to a register.

An 8-bit source value can be extended to 16, 32, or 64 bits, and a 16-bit 
value can be extended to 32 or 64 bits. The additional high-order bits 
in the destination are all 0. If the extension is to 32 bits, the high-order 
32-bit portion of the destination register is also all 0. Recall (from 
Chapter 9) that a mov of 32 bits into a register will zero the high-order 
32 bits of the register, thus zero-extending 32 bits to 64 bits. The movzx 
instruction does not affect the status flags in the rflags register.

test—Test bits
Performs a bitwise AND between the source and destination operands, 
without changing either and sets status flags accordingly.

test reg, reg tests between two registers.

test mem, reg tests between a register and a memory location.

test reg, imm tests between an explicit number and a register.

test mem, imm tests between an explicit number and a memory location.

The test instruction sets the status flags in the rflags register to show 
the result of AND-ing the source and destination operands. Neither 
operand is changed.

In my assembly language version of this program, Listing 13-3, I’ve 
organized the code so that the conditional test is at the top of the while 
loop 1.

# helloWorld.s
# Hello World program using the write() system call
# one character at a time.
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        .intel_syntax noprefix
# Useful constants
        .equ    STDOUT,1
# Stack frame
        .equ    aString,-8
        .equ    localSize,-16
# Read only data
        .section  .rodata
theString:
        .string "Hello, World!\n"
# Code
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
        add     rsp, localSize      # for local var.

        lea     rax, theString[rip]
        mov     aString[rbp], rax   # *aString = "Hello World.\n";
whileLoop:
        mov     rsi, aString[rbp]   # current char in string
      1 cmp     byte ptr [rsi], 0   # null character?
      2 je      allDone             # yes, all done

        mov     edx, 1              # one character
        mov     edi, STDOUT         # to standard out
        call    write@plt
        
      3 inc     qword ptr aString[rbp]  # aString++;
      4 jmp     whileLoop           # back to top
allDone:
        mov     eax, 0              # return 0;
        mov     rsp, rbp            # restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 13-3: Writing one character at a time to the screen, in assembly language

I have also used two more new instructions, cmp 1 and inc 3, which are 
detailed next.

cmp—Compare
Compares first operand with second operand and, without changing 
either, sets the status flags accordingly.

cmp reg, reg compares the value in a first register with the value in a 
second register.

cmp mem, reg compares the value in memory with the value in a register.

cmp reg, imm compares the value in a register with the explicit number.

cmp mem, imm compares the value in memory with the explicit number.
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The cmp instruction sets the status flags in the rflags register to show 
the result of subtracting the first operand from the second operand. 
Neither operand is changed.

inc—Increment
Adds 1 to a variable.

inc reg adds 1 to the value in a register.

inc mem adds 1 to the value in memory.

The inc instruction does set the status flags in the rflags register 
according to the result.

It might seem that my assembly language solution is less efficient than 
what the compiler generated (Listing 13-2) because the jmp instruction 4 is 
executed in addition to the conditional je instruction 2 with each iteration 
of the loop. Most modern CPUs use a technique known as branch prediction, 
in which they assume that a conditional jump will always go one way. We 
won’t go into the details in this book, but the technique greatly speeds up 
the execution of the conditional jump instruction when the jump is not 
taken.

A while loop works well when a sentinel value, a unique value that 
marks the end of a data sequence, is used as the termination condition. 
For example, the while loop in Listing 13-1 works for any length of text 
string. The loop continues writing one character at a time on the screen 
until it reaches the sentinel value, a NUL character. C has another looping 
construct, the for loop, that many programmers find to be more natural 
in some algorithms.

for Loop
Although their C syntax differs, the two looping constructs, while and for, 
are semantically equivalent. The syntactical difference is that the for loop 
allows you to group all three control elements—loop control variable ini-
tialization, checking, and changing—within the parentheses. The general 
form of a for loop is as follows:

for (initialize loop control variable; expression; change loop control 
variable)
{
  body
}
next_statement

But placing all the control elements within the parentheses is not 
required. In fact, we could also write the for loop as follows:

initialize loop control variable
for (; expression;)
{
  body
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  change loop control variable
}
next_statement

The for loop syntax does require both semicolons in the parentheses.
We could rewrite the program in Listing 13-1 using a for loop, as shown 

in Listing 13-4.

/* helloWorld-for.c
 * Hello World program using the write() system call
 * one character at a time.
 */
#include <unistd.h>
#define NUL '\x00'

int main(void)
{
  char *stringPtr;

  for (stringPtr = "Hello, World!\n"; *stringPtr != NUL; stringPtr++)
  {
    write(STDOUT_FILENO, stringPtr, 1);
  }

  return 0;
}

Listing 13-4: Using a for loop to write a text string in the terminal window one character 
at a time

You may wonder if either looping construct is better than the other. 
Here’s where your knowledge of assembly language becomes useful. When I 
used gcc to generate the assembly language for Listing 13-4, I got the same 
assembly language code as for the while loop version in Listing 13-1. Since 
the assembly language for the for loop is shown in Listing 13-2, I won’t 
repeat it here.

N O T E 	 Since the for statement in this program controls only one C statement, you really don’t 
need the curly brackets around that statement. But I usually include them because if 
I later modify the program and add another statement, I often forget that I then need 
the curly brackets.

A for loop is often used for a count-controlled loop, in which the number 
of iterations is known before the loop is started. You’ll see an example of 
this usage in a moment when we look at the selection constructs.

The conclusion we can reach from this comparison of a for loop with a 
while loop is that you should use the high-level language looping construct 
that feels natural for the problem you’re solving. And, yes, this is usually a 
subjective choice.
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The third looping construct in C does provide a different behavior. 
Both the while loop and for loop constructs will skip the body of the loop if 
the termination conditions are met by the initial value of the loop control 
variable. The do-while loop will always execute the loop body at least once.

do-while Loop
In some situations, the algorithm will execute the body of the loop at least 
once. In these cases, the do-while loop may be more natural. It has this gen-
eral form:

initialize loop control variable
do
{
  body
  change loop control variable
} while (expression)
next_statement

In the do-while looping construct, the value of the expression is com-
puted at the end of executing the loop body. Looping continues until this 
evaluation results in a Boolean false. We can rewrite our “Hello, World!” 
program using a do-while loop, as shown in Listing 13-5.

/* helloWorld-do.c
 * Hello World program using the write() system call
 * one character at a time.
 */
#include <unistd.h>
#define NUL '\x00'

int main(void)
{
  char *stringPtr = "Hello, World!\n";

  do
  {
    write(STDOUT_FILENO, stringPtr, 1);
    stringPtr++;
  }
  while (*stringPtr != NUL);

  return 0;
}

Listing 13-5: Writing one character at a time on the screen with a do-while loop

The assembly language generated by gcc, Listing 13-6, shows the differ-
ence between the do-while and the while and for constructs.
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        .file   "helloWorld-do.c"
        .intel_syntax noprefix
        .text
        .section  .rodata
.LC0:
        .string "Hello, World!\n"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16
        mov     QWORD PTR -8[rbp], 0
        lea     rax, .LC0[rip]          ## address of text string
        mov     QWORD PTR -8[rbp], rax
1 .L2:
        mov     rax, QWORD PTR -8[rbp]  ## address of current character
        mov     edx, 1                  ## one character
        mov     rsi, rax                ## pass address
        mov     edi, 1                  ## STDOUT_FILENO
        call    write@PLT
        add     QWORD PTR -8[rbp], 1    ## increment pointer
        mov     rax, QWORD PTR -8[rbp]  ## address of current characte
        movzx   eax, BYTE PTR [rax]     ## load character
      2 test    al, al                  ## NUL character?
        jne     .L2                     ## no, continue looping
        mov     eax, 0
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section  .note.GNU-stack,"",@progbits

Listing 13-6: Assembly language for the do-while loop in Listing 13-5

Comparing the assembly language in Listing 13-6 with that in 
Listing 13-2 (the while and for loops), the only difference is that the do-while 
doesn’t jump down to perform the loop control check 2 before executing 
the loop the first time 1. It may seem that do-while is more efficient, but 
looking at the assembly language, we can see the only savings is a single 
jump the first time the loop is executed.

W A R N I N G 	 The do-while loop construct will always execute the body of the loop at least once. 
Make sure this is the correct algorithm to solve the problem. For example, the algorithm 
in Listing 13-5 is incorrect for an empty text string: it would write the NUL character to 
the screen and then check the byte in memory immediately following the NUL character, 
which is unspecified in this program.

Next, we’ll look at how to select whether to execute a block of code. 
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YOUR T UR N

1.	 Enter the three C programs in Listings 13-1, 13-4, and 13-5, and use the 
compiler to generate the assembly language for each of them. Compare 
the assembly language for the three looping constructs. Compilers change 
with version changes, so you should look at what your version of the com-
piler does.

2.	 Write a program in assembly language that (a) prompts the user to enter 
some text, (b) uses the read function to read the entered text, and (c) echoes 
the user’s entered text in the terminal window. You will need to allocate 
space on the stack for storing the characters entered by the user.

Selection
Another common flow construct is selection, where we determine whether 
to execute a block of code. We’ll start with the simplest case—determining 
whether to execute a single block based on a Boolean conditional state-
ment. Then we’ll look at using a Boolean conditional statement to select 
one of two blocks. We’ll end the chapter by discussing ways to select 
between several blocks based on an integral value.

if Conditional
The general form of an if conditional in C is as follows:

if (expression)
{
  block
}
next_statement

The expression is evaluated in a Boolean context. If it evaluates to false, 
0 in C, control flow continues to the next_statement. If the expression evalu-
ates to true, nonzero in C, the block of code is executed, and control flow 
continues to the next_statement.

Listing 13-7 shows an example of an if statement that simulates flipping 
a coin 10 times and showing when it comes up heads.

/* coinFlips1.c
 * Flips a coin, heads.
 */

#include <stdio.h>
#include <stdlib.h>

int main()
{
  register int randomNumber;
  register int i;
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1 for (i = 0; i < 10; i++)
  {
    randomNumber = 2 random();
    if 3 (randomNumber < RAND_MAX/2)
    {
    4 puts("heads");
    }
  }

  return 0;
}

Listing 13-7: Flipping a coin, showing when it comes up heads

This program uses a count-controlled for loop to simulate flipping a 
coin 10 times 1. The simulation involves calling the random function in the 
C standard library 2. If the random number is in the lower half of all pos-
sible values from the random function 3, we call that heads. We use the puts 
function in the C standard library, which prints a simple text string on the 
screen with an appended newline character 4. The compiler generated the 
assembly language shown in Listing 13-8.

        .file   "coinFlips1.c"
        .intel_syntax noprefix
        .text
        .section  .rodata
.LC0:
        .string "heads"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        push    r12
        push    rbx
        mov     ebx, 0
        jmp     .L2               ## jump to bottom of for loop
.L4:
        call    random@PLT        ## get random number
        mov     r12d, eax         ## save random number
        cmp     r12d, 1073741822  ## compare with half max
      1 jg      .L3               ## greater, skip block
        lea     rdi, .LC0[rip]    ## less or equal, execute block
        call    puts@PLT
2 .L3:
        add     ebx, 1
.L2:
        cmp     ebx, 9
        jle     .L4
        mov     eax, 0
        pop     rbx
        pop     r12
        pop     rbp
        ret
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        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section    .note.GNU-stack,"",@progbits

Listing 13-8: Assembly language for a simple if statement

The if statement is implemented with a simple conditional jump 1. If 
the condition is true (in this case, greater than), program flow jumps over 
the block of code that is controlled by the if statement 2.

We often need to select between two different blocks of code, which 
we’ll discuss next.

if-then-else Conditional
The general form of an if-then-else conditional in C is as follows (C does not 
use a then keyword):

if (expression)
{
  then-block
}
else
{
  else-block
}
next_statement

The expression is evaluated in a Boolean context. If the expression  
evaluates to true, nonzero in C, the then-block is executed, and control flow 
jumps to the next_statement. If it evaluates to false, 0 in C, control flow jumps 
to the else-block and then continues to the next_statement. Figure 13-2 shows 
the control flow of the if-then-else conditional.

Evaluate
Boolean

expression

Execute then
block

Execute else
block

Next instruction
after if-then-else

construct

true false

Figure 13-2: Control flow of an if-then-else conditional
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One of the problems with the coin-flipping program in Listing 13-7 is 
that the user doesn’t know the total number of times the coin was flipped. 
We can improve the program by using an if-then-else conditional to print a 
message stating when the coin came up tails, as shown in Listing 13-9.

/* coinFlips2.c
 * Flips a coin, heads or tails.
 */

#include <stdio.h>
#include <stdlib.h>

int main()
{
  register int randomNumber;
  register int i;

  for (i = 0; i < 10; i++)
  {
    randomNumber = random();
    if (randomNumber < RAND_MAX/2)
    {
      puts("heads");
    }
    else
    {
      puts("tails");
    }
  }

  return 0;
}

Listing 13-9: Flipping a coin, heads or tails

Listing 13-10 shows the compiler-generated assembly language.

        .file   "coinFlips2.c"
        .intel_syntax noprefix
        .text
        .section        .rodata
.LC0:
        .string "heads"
.LC1:
        .string "tails"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        push    r12
        push    rbx
        mov     ebx, 0
        jmp     .L2
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.L5:
        call    random@PLT        ## get random number
        mov     r12d, eax         ## save random number
        cmp     r12d, 1073741822  ## less than half max?
        jg      .L3               ## no, else block
        lea     rdi, .LC0[rip]    ## yes, then block
        lea     rdi, .LC0[rip]
        call    puts@PLT
      1 jmp     .L4
 .L3:
        lea     rdi, .LC1[rip]    ## else block
        call    puts@PLT

 2 .L4:
        add     ebx, 1
.L2:
        cmp     ebx, 9
        jle     .L5
        mov     eax, 0
        pop     rbx
        pop     r12
        pop     rbp
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 13-10: Assembly language that implements if-else construct

When writing in assembly language, you need an unconditional jump 
at the end of the then-block 1 to jump over the else-block 2.

My assembly language design of the coin-flipping program differs 
slightly, as shown in Listing 13-11.

# coinFlips2.s
# flips a coin, heads/tails
        .intel_syntax noprefix

# Useful constants
        .equ    MIDDLE, 1073741823  # half of RAND_MAX
        .equ    STACK_ALIGN, 8

# Constant data
        .section .rodata
headsMsg:
        .string "heads"
tailsMsg:
        .string "tails"

# The code
        .text
        .globl  main
        .type   main, @function
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main:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
      1 push    r12                 # save, use for i
      2 sub     rsp, STACK_ALIGN
        
        mov     r12, 0              # i = 0;
for:
        cmp     r12, 10             # any more?
        jae     done                # no, all done
        
        call    random@plt          # get a random number
        cmp     eax, MIDDLE         # which half?
        jg      tails
        lea     rdi, headsMsg[rip]  # it was heads
        call    puts@plt
        jmp     next                # jump over else block
tails:
        lea     rdi, tailsMsg[rip]  # it was tails
        call    puts@plt
next:   inc     r12                 # i++;
        jmp     for
done:
      3 add     rsp, STACK_ALIGN    # realign stack ptr
      4 pop     r12                 # restore for caller
        mov     rsp, rbp            # restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 13-11: An assembly language design for the coin-flipping program

The primary difference between my design and what the compiler 
generated is that I use only the r12 register for the variable i, while the 
compiler used both rbx and r12. When deciding which registers to use for 
variables in a function, it’s important that you check the rules in Table 11-1 
in Chapter 11. That table says that a function must preserve the value in r12 
for the calling function. A good way to do this is to push it onto the stack 
after setting up the stack frame 1 and then pop it back off before undoing 
the stack frame 4. You can probably see the importance of having agreed-
upon rules here. Not only must our function return to the calling function 
with its value in r12 preserved, but we can assume that the functions our 
function calls also preserve our value in r12. So, it’s safe to assume that the 
value remains the same through a function call.

One of the stack-handling rules that’s easy to violate when saving regis-
ters on the stack is keeping the stack pointer on 16-byte addressing bound-
aries between function calls. The registers are 8 bytes wide, so I’ve followed 
this rule by subtracting 8 from the stack pointer 2 after saving r12 by push-
ing it onto the stack. It’s important to remember to add the same value back 
before popping the value of r12 off the stack 3, thus restoring the register’s 
value for the calling function.
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I won’t go into the details here, but if you need to select one of several 
blocks of code to execute, you can use the if-else statement in a ladder con-
struct. The general form is as follows:

if (expression1)
{
  block1
}
else if (expression2)
{
  block2
}
⋮
else (expression_n)
{
  block_n
}
next_statement

The if-then-else selection is based on a Boolean evaluation of the con-
trolling expression, but as you’ll see next section, there are algorithms in 
which the selection is based on a discrete value, which is used to select one 
of several cases.

switch Conditional
C provides a switch conditional, where control flow jumps to a place in a list 
of code blocks depending on the value of an expression. The general form 
of the switch is as follows:

switch (selector)
{
  case selector_1:
    block_1
  case selector_2:
    block_2
  ⋮
  case selector_n:
    block_n
  default:
    default_block
}

The selector variable must evaluate to an integral value. If the value 
equals one of the integral values specified by case—selector_1, selector_2, 
. . . , or selector_n—control flow jumps to that location in the list of code 
blocks, and all the remaining code blocks in the list of cases will be exe-
cuted. Since we often want to execute only one block of code, it’s common 
to use a break statement at the end of each block, which causes control flow 
to exit the switch statement. If the value of the selector does not match any 
case values, control flow exits the switch statement or jumps to the optional 
default case if it exists.
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Listing 13-12 gives a simple example of using a switch to show whether 
the index of a for loop is 1, 2, 3, or greater than 3.

/* switch.c
 * Three-way selection.
 */

#include <stdio.h>

int main(void)
{
  register int selector;
  register int i;

  for (i = 1; i <= 10; i++)
  {
    selector = i;
    switch (selector)
    {
      case 1:
        puts("i = 1");
        break;
      case 2:
        puts("i = 2");
        break;
      case 3:
        puts("i = 3");
        break;
      default:
        puts("i > 3");
    }
  }

  return 0;
}

Listing 13-12: Selecting one of three cases

The compiler implemented this switch statement in assembly language 
as a ladder of if-else statements. I’ll let you run the compiler to look at it on 
your own. As you might guess, it consists of code sequences like this:

        cmp     r12d, 2
        je      .L4
        ⋮
.L4:
        lea     rdi, .LC1[rip]
        call    puts@PLT
        jmp     .L7

where .L7 is a label at the end of the switch construct.
Instead, I’ll show you another way to implement a switch, using a jump 

table, as shown in Listing 13-13.
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# switch.s
# Three-way switch using jump table
        .intel_syntax noprefix
# Useful constants
        .equ    LIMIT, 10
# Constant data
        .section  .rodata
oneMsg:
        .string "i = 1"
twoMsg:
        .string "i = 2"
threeMsg:
        .string "i = 3"
overMsg:
        .string "i > 3"
# Jump table
        .align  8
jumpTable:
        .quad 1 one         # addresses where messages are
        .quad   two         # printed
        .quad   three
        .quad   over
        .quad   over
        .quad   over
        .quad   over
        .quad   over
        .quad   over        # need an entry for
        .quad   over        # each possibility
# Program code
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp         # save frame pointer
        mov     rbp, rsp    # set new frame pointer
        push    rbx
        push    r12         # save, use for i

        mov     r12, 1      # i = 1;
for:
        cmp     r12, LIMIT  # at limit?
        je      done        # yes, all done
# List of cases
      2 lea     rax, jumpTable[rip]
        mov     rbx, r12    # current location in loop
      3 sub     rbx, 1      # count from 0
      4 shl     rbx, 3      # multiply by 8
        add     rax, rbx    # location in jumpTable
      5 mov     rax, [rax]  # get address from jumpTable
        jmp     rax         # jump there
one:
        lea     rdi, oneMsg[rip]
        call    puts@plt    # display message
        jmp     endSwitch
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two:
        lea     rdi, twoMsg[rip]
        call    puts@PLT
        jmp     endSwitch
three:
        lea     rdi, threeMsg[rip]
        call    puts@plt
        jmp     endSwitch
over:
        lea     rdi, overMsg[rip]
        call    puts@plt
endSwitch:
        inc     r12         # i++;
        jmp     for         # loop back
done:
        mov     eax, 0      # return 0;
        pop     r12         # restore regs
        pop     rbx
        mov     rsp, rbp    # restore stack pointer
        pop     rbp         # and caller frame pointer
        ret

Listing 13-13: Jump table

Each entry in the jump table is the address of the code block to execute 
for the corresponding value of the selector variable 1. The .quad directive 
allocates 8 bytes, the proper space for an address.

In the program code, we need to compute which of the addresses in the 
jump table to use. I start by loading the beginning address of the table 2. I 
make a copy of the index variable so I can perform some arithmetic opera-
tions without disrupting the index. To start, I subtract 1 because the first 
address on the table is zero bytes from the beginning 3. We’ll look at shift 
instructions in more detail in Chapter 16, but the shl rbx, 3 instruction 4 
shifts the value in the rbx register three bits to the left, thus multiplying it 
by 8, the number of bytes in each address on our jump table.

The rbx register now contains the relative location of the address of 
the selected code block from the beginning of the table. Adding rax to rbx 
gives the location in the table where the address we want is stored. The mov 
rax, [rax] instruction 5 may look strange to you, but it simply replaces the 
address in rax with the address that’s stored in the table. Now all I need to 
do is to jump to the address in the rax register.

You need to be careful that there is an entry in the jump table for every 
possible read from the table. When the CPU executes the mov rax, [rax] 
instruction, it will fetch the 8 bytes located at whatever address is in rax. 
The jmp rax instruction will jump to wherever this new value is. You’ll get a 
chance to explore this when it’s Your Turn.

It’s difficult to say whether a jump table is more efficient than an if-else 
ladder. The efficiency depends on several factors, like cache usage and the 
internal CPU design. This could vary among different CPU implementations 
that use the same instruction set. But now you know two ways to implement a 
switch construct.
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YOUR T UR N

1.	 Change the assembly language program in Listing 13-11 so that it sees the 
lowest one-fourth and highest one-fourth of the random numbers (0 – RAND_
MAX/4 and 3*RAND_MAX/4 – RAND_MAX) as heads. The program will see the 
middle half of the random numbers (RAND_MAX/4 – 3*RAND_MAX/4) as tails.

2.	 Use the compiler to generate the assembly language for the program in 
Listing 13-12. Now make a copy of the C program, using a different name 
for the file, and change this copy so that it executes the loop 15 times. 
What did you need to change? Also generate the assembly language for 
the changed copy. What changed at the assembly language level?

3.	 Change the assembly language program in Listing 13-13 so that it executes 
the loop 15 times. What did you need to change? How does this compare 
with the changes made in the previous exercise?

What You’ve Learned

Unconditional jump    Changes the instruction pointer to alter control 
flow.

Conditional jump    Evaluates Boolean combinations of the status flags 
in the rflags register and alter control flow if the combination evaluates 
to true.

while loop    Checks for a Boolean condition and then iterates a block of 
code until the condition becomes false.

for loop    Checks for a Boolean condition and then iterates a block of 
code until the condition becomes false.

do-while loop    Executes a block of code once and iterates it until a 
Boolean condition becomes false.

if conditional    Checks for a Boolean condition and then executes a 
block of code if the condition is true.

if-else conditional     Checks for a Boolean condition and then exe-
cutes one of two blocks of code depending on whether the condition is 
true or false.

switch conditional    Evaluates an expression and then jumps to a loca-
tion in a list of blocks of code depending on the integral value of the 
expression.

Now that you know about control flow constructs, we’ll move on to a 
discussion of how to write your own subfunctions. You’ll learn how to pass 
arguments and how to access those arguments in the subfunction.



14
I N S I D E  S U B F U N C T I O N S

Good engineering practice generally 
includes breaking problems down into 

functionally distinct subproblems. In soft-
ware, this approach leads to programs with 

many functions, each of which solves a subproblem. 
This “divide and conquer” approach has distinct 
advantages:

It’s easier to solve a small subproblem.

Previous solutions to subproblems are often reusable.

Several people can be working on different parts of the overall problem 
simultaneously.

When breaking down a problem like this, it’s important to coordinate 
the many partial solutions so that they work together to provide a correct 
overall solution. In software, this translates to making sure that the data 
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interface between a calling function and a called function works correctly. 
To ensure correct operation of the interface, it must be specified in an 
explicit way.

We’ll first discuss how to place data items in a global location so that 
all the functions in the program can have direct access to them. Then we’ll 
look at restricting the passage of data items as arguments to a function, 
which gives us better control over the data that the function works with. 

In the previous chapters, you learned how to pass arguments to a func-
tion in registers. In this chapter, you’ll learn how to store these arguments 
in memory so that the registers can be reused inside the called function. 
You’ll also learn how to pass more arguments to a function than can be 
done with the six registers specified in Table 11-2 in Chapter 11.

We’ll also look in more detail at the creation of variables within a func-
tion. Our discussion will include variables that exist only when program 
flow is in the function, as well as variables that stay in memory for the dura-
tion of the program but are accessible only within their defining function.

Before discussing the inner workings of functions, let’s take a look at 
some of the rules that govern the use of variable names in C.

Scope of Variable Names in C
This is not a book on C, so I’m not going to cover all the rules here, but 
enough to help us to see how programs are organized. Scope refers to the 
places in our code where the name is visible, meaning where we can use the 
name. There are four kinds of scope in C: file, function, block, and function 
prototype.

In C, a declaration of a variable introduces its name and data type into 
the current scope. A definition of a variable is a declaration that also allo-
cates memory for the variable. A variable can be defined in only one place 
in a program, but as we’ll see in the “Global Variables” section, it might be 
declared in more than one scope.

Variables that are defined inside a function definition, including its 
parameter list, have function scope and are called local variables. Their 
scope extends from the point of definition to the end of the function.

A block in C is a group of C statements enclosed in a matched pair of 
curly brackets, {…}. The scope of variables defined inside a block extends 
from the point of definition to the end of that block, including any enclosed 
blocks.

A function prototype is only a declaration of the function, not its defi-
nition. The scope of variables defined in a function prototype is limited to 
their own prototype. This limit allows us to use the same names in different 
function prototypes. For example, the C standard library includes functions 
for computing sine and cosine, whose prototypes are as follows:

double sin(double x);
double cos(double x);



Inside Subfunctions   289

We can use both function prototypes in the same function without having 
to use different names for the arguments.

We’ll look at file scope after a brief overview of the reasons for passing 
arguments to a function.

Overview of Passing Arguments
As you read through this section, be careful to distinguish between data 
input/output from a called function and data input/output by a user. User 
input typically comes from an input device, such as the keyboard or touch 
screen, and user output is typically sent to an output device, such as the 
screen or speaker.

To illustrate the difference, consider the C program statement from 
Listing 2-1 in Chapter 2.

scanf("%x", &anInt);

The scanf function has one data input from the main function, the 
address of the formatting text string, "%x". The scanf function reads user 
data that is input from the keyboard and outputs data, an unsigned inte-
ger, to anInt variable in the main function. In this chapter, we’ll discuss the 
inputs and outputs between functions within a program, not the inputs 
from and outputs to the user of the program.

Functions can interact with the data in other parts of the program in 
four ways:

Global    The data is directly accessible from any function in the 
program.

Input    The data comes from another part of the program and is used 
by the function, but the original copy is not modified.

Output     The function provides new data to another part of the 
program.

Update    The function modifies a data item that is held by another part 
of the program. The new value is based on the value before the func-
tion was called.

All four interactions can be performed if the called function also 
knows the location of the data item, but this exposes the original copy of 
the data and allows it to be changed even if it’s intended only as input to a 
called function.

We can output data from a function by placing the output in a globally 
known location, like a register or globally known address. We can also pass 
the called function the address of the place to store the output. Updates 
require the called function to know the address of the data being updated.

We’ll start the discussion by looking at how global variables are created 
and how they are accessed in a subfunction.
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Global Variables
Global variables are those that are defined outside any functions and have file 
scope. They can be accessed from the point of their definition to the end of 
the file. Global variables can also be accessed from another file by declar-
ing them with the extern modifier. This only introduces the name and data 
type of the variable into the scope of the declaration, without allocating 
memory.

Listing 14-1 shows how to define global variables.

/* sumIntsGlobal.c
 * Adds two integers using global variables
 */

#include <stdio.h>
#include "addTwoGlobal.h"

/* Define global variables. */
int x = 0, y = 0, z;

int main(void)
{
  printf("Enter an integer: ");
  scanf("%i", &x);
  printf("Enter an integer: ");
  scanf("%i", &y);
  addTwo();
  printf("%i + %i = %i\n", x, y, z);

  return 0;
}

Listing 14-1: A main function that defines three global variables

This program defines the variables x and y, both initialized to 0, and 
also defines z for the result. Note we initialized the first two of the variables 
and not the third; this is simply so we can show two different ways to define 
global variables in the following assembly language.

Placing the definitions outside the function body makes the variables 
global. This main function calls the addTwo function, which will add x and y 
and store the sum in z. Listing 14-2 shows the assembly language produced 
by the compiler for this main function.        

.file   "sumIntsGlobal.c"
        .intel_syntax noprefix
      1 .text
        .globl  x
      2 .bss            ## bss section
      3 .align 4
      4 .type   x, @object
        .size   x, 4    ## 4 bytes
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x:
      5 .zero   4       ## initialize to 0
        .globl   y
        .align 4
        .type   y, @object
        .size   y, 4
y:
        .zero   4       ## initialize to 0
      6 .comm   z,4,4
        .section .rodata
.LC0:
        .string "Enter an integer: "
.LC1:
        .string "%i"
.LC2:
        .string "%i + %i = %i\n"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
      7 lea     rsi, x[rip]     ## globals are relative to rip
        lea     rdi, .LC1[rip]  ## format string
        mov     eax, 0
        call    __isoc99_scanf@PLT
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
        lea     rsi, y[rip]
        lea     rdi, .LC1[rip]
        mov     eax, 0
        call    __isoc99_scanf@PLT
        call    addTwo@PLT
        mov     ecx, DWORD PTR z[rip] ## load globals
        mov     edx, DWORD PTR y[rip]
        mov     eax, DWORD PTR x[rip]
        mov     esi, eax
        lea     rdi, .LC2[rip]
        mov     eax, 0
        call    printf@PLT
        mov     eax, 0
        pop     rbp
        ret     .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section .note.GNU-stack,"",@progbits

Listing 14-2: Compiler-generated assembly language for the function in Listing 14-1

I don’t know the reason the compiler added the first .text directive 1, but 
it’s not needed. Its effect is immediately overridden by the .bss directive 2. 
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The .bss directive designates a data segment that is uninitialized by the 
program source code but is initialized to 0 when the program is loaded into 
memory for execution. This program aligns the beginning of its bss segment 
at a multiple of four using the .align directive 3. The program then defines 
the label, x, to be an object of size four bytes using the .type and .size direc-
tives 4. The .zero directive here says to skip four bytes and make sure they are 
set to 0 when the program is loaded 5. It’s probably redundant since we’re in a 
bss section. The y variable is defined in the same way.

Since the z variable is not initialized, it is defined with the .comm direc-
tive 6. The first argument to .comm is the name of the variable, z. The second 
argument is the number of bytes to allocate in the data segment for this vari-
able, and the third argument specifies the address alignment of the beginning 
of the variable. In this case, four bytes will be allocated for z, and the address 
of the first byte will be a multiple of four.

The compiler has generated position-independent code for the main 
function, which accesses the global variables relative to the instruction 
pointer 7. This works because the loader will locate the data and bss seg-
ments adjacent to the text segment when running a position-independent 
executable. 

Next, let’s look at how the subfunction accesses the global variables in 
this program. Listing 14-3 shows the header file for this function.

/* addTwoGlobal.h
 * Adds two integers and determines overflow.
 */

#ifndef ADDTWOGLOBAL_H
#define ADDTWOGLOBAL_H
void addTwo(void);
#endif

Listing 14-3: Header file for the addTwo function version that uses global variables

The header file has the function prototype statement for the addTwo func-
tion, which declares the function. It gives the name of the function and tells 
the compiler the data types for any arguments and the return value. In this 
case, there are no arguments, nor is there a return value.

You need a prototype statement for each function you’ll call in a file, 
but you can have only one prototype statement for each function. When 
you include this file in another file using #include, the C compiler directive 
#ifndef ADDTWOGLOBAL_H will cause the compiler preprocessor to skip down to 
the #endif if ADDTWOGLOBAL_H has already been defined during this compila-
tion. Otherwise, the preprocessor will execute the #define ADDTWOGLOBAL_H 
statement, which defines it. It’s common to use #include to include other 
header files in header files, and the #ifndef technique protects against 
duplicating prototype statements. Using the uppercase of the header file-
name gives us a unique identifier to #define.

Listing 14-4 gives the C code for defining the addTwo function.
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/* addTwoGlobal.c
 * Adds two integers and determines overflow.
 */

1 #include "addTwoGlobal.h"

/* Declare global variables defined elsewhere. */
2 extern int x, y, z;

void addTwo(void)
{
  z = x + y;
}

Listing 14-4: The addTwo subfunction using global variables

The header file for a function should be included with (#include 1) in 
the file where the function is defined to make sure that the function pro-
totype in the header file matches the definition. The global variables are 
defined in only one place, but they need to be declared in any other file 
that uses them 2. 

Listing 14-5 shows the assembly language generated by the compiler.

        .file   "addTwoGlobal.c"
        .intel_syntax noprefix
        .text
        .globl  addTwo
        .type   addTwo, @function
addTwo:
        push    rbp
        mov     rbp, rsp
        mov     edx, DWORD PTR 1x[rip] ## names are global
        mov     eax, DWORD PTR   y[rip] ## relative to rip
        add     eax, edx
        mov     DWORD PTR z[rip], eax
        nop
        pop     rbp
        ret
        .size   addTwo, .-addTwo
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section  .note.GNU-stack,"",@progbits

Listing 14-5: Assembly language generated by the compiler for the subfunction  
in Listing 14-4

Just as in the main function, the global variables are accessed relative to 
the instruction pointer 1. 

Although global variables are simple to work with in small programs, 
managing them quickly becomes unwieldly in large programs. You need 
to keep track of exactly what each function in the program is doing with 
the variables. Managing variables is much easier if you define them within 
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a function and pass only what is needed to each subfunction. In the next 
section, we’ll look at how to maintain good control over what gets passed to 
and from a subfunction.

Explicitly Passing Arguments
When we restrict each function to using only those variables it needs, it’s 
much easier to isolate the inner workings of a function from other func-
tions, a principle called information hiding. You, the programmer, need to 
deal only with those variables and constants that the subfunction needs in 
order to do its specific job. Of course, most subfunctions will need to inter-
act with some of the variables in its calling function as inputs, outputs, or 
updates. In this section, we’ll look at how the arguments explicitly passed 
to a function are used by that function to accept input, produce output, or 
update a variable.

When a value serves only as input to the called function, we can pass a 
copy of the value to the called function; this is called pass by value. Passing 
by value prevents the called function from possibly changing the value in 
the calling function.

Receiving output from the called function is a bit more complex. One 
way is to use a return value, which in our environment is placed in the eax 
register. Using the eax register assumes the return value is an int; there are 
other rules for returning larger values, which we won’t go into in this book. 
You’ve seen this technique used in most of the example programs in this 
book. The main function almost always returns a 0 to the function in the 
operating system that called it.

The other techniques for the called function to receive an output from 
the calling function require that the calling function pass the called func-
tion the address of the place to store the output. This can be implemented 
in the higher-level language as either pass by pointer or pass by reference. The 
difference is that with pass by pointer, the program can change the pointer 
to point to another object, while in pass by reference, the pointer cannot 
be changed by the program. C and C++ both support pass by pointer, but 
only C++ supports pass by reference. These are the same at the assembly 
language level—the address of the place to store the output is passed to the 
called function. The difference is enforced by the high-level language.  

Passing Arguments in C
We’ll write the same program as in Listings 14-1, 14-3, and 14-4, but this 
time we’ll define the variables as locals in the main function and pass them 
as arguments to the subfunction, as in Listing 14-6.

/* sumInts.c
 * Adds two integers using local variables
 */

#include <stdio.h>
#include "addTwo.h"
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int main(void)
{
1 int x = 0, y = 0, z;
  
  printf("Enter an integer: ");
  scanf("%i", &x);
  printf("Enter an integer: ");
  scanf("%i", &y);
  addTwo(x, y, 2&z);
  printf("%i + %i = %i\n", x, y, z);

  return 0;
}

Listing 14-6: Sum two integers, local variables

Defining the variables inside the body of the function 1 makes them 
visible only to this function. The values of the x and y variables are inputs to 
the addTwo function, so we pass copies of these variables. The addTwo function 
will store its result at the address we pass in as the third argument, &z 2. 

Listing 14-7 shows the header file for the addTwo function.

/* addTwo.h
 * Adds two integers and outputs sum.
 */

#ifndef ADDTWO_H
#define ADDTWO_H
void addTwo(int a, int b, int *c);
#endif

Listing 14-7: Header file for the addTwo function

Listing 14-8 shows the definition of the function.

/* addTwo.c
 * Adds two integers and outputs sum.
 */

#include "addTwo.h"

void addTwo(int a, int b, int *c)
{
  int temp;
  
  temp = a + b;
  *c = temp;
}

Listing 14-8: The addTwo function

The third argument to this function, c, is a pointer to an int. We need 
to dereference the variable, *c, to store the result of the computation at the 
address passed in c. 
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What’s Going On in Assembly Language
Listing 14-9 shows the assembly language by the compiler for the main func-
tion in sumInts.

        .file   "sumInts.c"
        .intel_syntax noprefix
        .text
        .section        .rodata
.LC0:
        .string "Enter an integer: "
.LC1:
        .string "%i"
.LC2:
        .string "%i + %i = %i\n"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 32
        mov     rax, QWORD PTR fs:40
        mov     QWORD PTR -8[rbp], rax
        xor     eax, eax
        mov     DWORD PTR -20[rbp], 0   ## x = 0;
        mov     DWORD PTR -16[rbp], 0   ## y = 0;
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
        lea     rax, -20[rbp]           ## address of x
        mov     rsi, rax
        lea     rdi, .LC1[rip]
        mov     eax, 0
        call    __isoc99_scanf@PLT
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
        lea     rax, -16[rbp]           ## address of y
        mov     rsi, rax
        lea     rdi, .LC1[rip]
        mov     eax, 0
        call    __isoc99_scanf@PLT
        mov     ecx, DWORD PTR -16[rbp] ## load y
        mov     eax, DWORD PTR -20[rbp] ## load x
        lea   1 rdx, -12[rbp]           ## address of z
        mov     esi, ecx                ## y
        mov     edi, eax                ## x
        call    addTwo@PLT
        mov     ecx, DWORD PTR -12[rbp] ## z
        mov     edx, DWORD PTR -16[rbp] ## y
        mov     eax, DWORD PTR -20[rbp] ## x
        mov     esi, eax
        lea     rdi, .LC2[rip]
        mov     eax, 0
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        call    printf@PLT
        mov     eax, 0
        mov     rsi, QWORD PTR -8[rbp]
        xor     rsi, QWORD PTR fs:40
        je      .L3
        call    __stack_chk_fail@PLT
.L3:
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 14-9: Assembly language generated by compiler for the main function in sumInts

From Table 11-2 in Chapter 11, we learned that the third argument is 
passed in register rdx. We can see that the compiler has allocated space at 
–12 off of rbp when it loads this address into rdx 1. 

Next, we’ll look at the compiler-generated assembly language for the 
addTwo function, as shown in Listing 14-10.

        .file   "addTwo.c"
        .intel_syntax noprefix
        .text
        .globl  addTwo
        .type   addTwo, @function
addTwo:
        push    rbp
        mov     rbp, rsp
      1 mov     DWORD PTR -20[rbp], edi   ## store a
        mov     DWORD PTR -24[rbp], esi   ## store b
        mov     QWORD PTR -32[rbp], rdx   ## address of c
        mov     edx, DWORD PTR -20[rbp]
        mov     eax, DWORD PTR -24[rbp]
        add     eax, edx                  ## a + b
        mov     DWORD PTR -4[rbp], eax    ## sum = a + b;
      2 mov     rax, QWORD PTR -32[rbp]   ## address of c
        mov     edx, DWORD PTR -4[rbp]    ## load sum
      3 mov     DWORD PTR [rax], edx      ## *c = sum;
      4 nop
        pop     rbp
        ret
        .size   addTwo, .-addTwo
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 14-10: Assembly language generated by compiler for the addTwo function

The first thing you might notice about this function is that it does not 
allocate space on the stack for local variables, but it is using an area on 
the stack for the sum local variable. In addition, it’s storing the three input 
arguments in the stack area where local variables are usually placed 1. The 
System V Application Binary Interface defines the 128 bytes beyond the stack 
pointer—that is, the 128 bytes at addresses lower than the one in the rsp 
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register—as a red zone. The operating system is not allowed to use this area, 
so the function can use it for temporary storage of values that do not need 
to be saved when another function is called. In particular, leaf functions, 
functions that do not call other functions, can store local variables in this 
area without moving the stack pointer.

Figure 14-1 gives a pictorial view of addTwo’s stack frame.

Caller’s rbp

?

?

?

?

Return address

Address

Value

Value

b = [rbp] − 24

a = [rbp] − 20

[rbp] − 16

[rbp] − 12

[rbp] −  8

 *c = [rbp] − 32

rsp

rbp
[rbp] +  8

[rsp] − 128

temp = [rbp] −  4

Local variable area

Argument save
area

Red zone

Figure 14-1: Stack frame for the C version of the addTwo function

The address of each item in the stack frame is given on the left side. 
For example, the temp local variable is stored at the address in rbp minus 4. 
Although the rules in the System V Application Binary Interface specify 
only that the stack pointer must be at a 16-byte address boundary, the com-
piler has followed that rule for separating the local variable area from the 
argument save area. Notice that the red zone is defined relative to the stack 
pointer, rsp, while the variables and saved arguments are accessed relative 
to the frame pointer, rbp.

After performing the computation using the input data, the function 
loads the address of the place to store the result from where it was stored in 
the stack area 2. It then stores the result at that address 3. 

The compiler has inserted another instruction, nop, after the instruc-
tion that stores the result 4. 

nop—No operation
Performs no operation, but uses one byte.

The nop instruction is used to fine-tune hardware implementation details 
to improve efficiency. It has no effect on the logic of the program.

The nop instruction does not affect the status flags in the rflags register.

Most functions take fewer than the six arguments we can pass in regis-
ters, but sometimes you want to pass more arguments. In the next section, 
you’ll see how the stack comes to our rescue.
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Handling More Than Six Arguments
When a calling function needs to pass more than six arguments to another 
function, the additional arguments beyond the first six in registers are 
passed on the call stack. They are pushed onto the stack in 8-byte chunks 
before the call. Because the return address will be pushed onto the stack 
after the arguments when the subfunction is called, the arguments are read 
directly from the stack instead of popping them off.

Pushing Arguments onto the Stack
The order of pushing is from right to left in the C argument list. Since 
these arguments are on the call stack, they are within the called function’s 
stack frame, so the called function can access them.

We’ll use the main function in Listing 14-11 to show how this works.

/* sum9Ints.c
 * Sums the integers 1 - 9.
 */
#include <stdio.h>
#include "addNine.h"

int main(void)
{
  int total;
  int a = 1;
  int b = 2;
  int c = 3;
  int d = 4;
  int e = 5;
  int f = 6;
  int g = 7;
  int h = 8;
  int i = 9;
   
  total = addNine(a, b, c, d, e, f, g, h, i);
  printf("The sum is %i\n", total);
  return 0;
}

Listing 14-11: Passing more than six arguments to a subfunction

The values of the first six arguments—a, b, c, d, e, and f—will be passed 
in the registers edi, esi, edx, ecx, r8d, and r9d. The remaining three argu-
ments will be pushed onto the stack. Listing 14-12 shows the treatment of 
the variables.

        .file   "sum9Ints.c"
        .intel_syntax noprefix
        .text
        .section        .rodata
.LC0:
        .string "The sum is %i\n"
        .text
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        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 48
        mov     DWORD PTR -40[rbp], 1   ## a = 1
        mov     DWORD PTR -36[rbp], 2   ## b = 2
        mov     DWORD PTR -32[rbp], 3   ## c = 3
        mov     DWORD PTR -28[rbp], 4   ## d = 4
        mov     DWORD PTR -24[rbp], 5   ## e = 5
        mov     DWORD PTR -20[rbp], 6   ## f = 6
        mov     DWORD PTR -16[rbp], 7   ## g = 7
        mov     DWORD PTR -12[rbp], 8   ## h = 8
        mov     DWORD PTR -8[rbp], 9    ## i = 9
        mov     r9d, DWORD PTR -20[rbp] ## load f
        mov     r8d, DWORD PTR -24[rbp] ## load e
        mov     ecx, DWORD PTR -28[rbp] ## load d
        mov     edx, DWORD PTR -32[rbp] ## load c
        mov     esi, DWORD PTR -36[rbp] ## load b
      1 mov     eax, DWORD PTR -40[rbp] ## load a
      2 sub     rsp, 8                  ## for stack alignment
        mov     edi, DWORD PTR -8[rbp]
      3 push    rdi                     ## push i
        mov     edi, DWORD PTR -12[rbp]
        push    rdi                     ## push h
        mov     edi, DWORD PTR -16[rbp]
        push    rdi                     ## push g
      4 mov     edi, eax
        call    addNine@PLT
      5 add     rsp, 32                 ## remove 3 ints and alignment
        mov     DWORD PTR -4[rbp], eax
        mov     eax, DWORD PTR -4[rbp]
        mov     esi, eax
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
        mov     eax, 0
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 14-12: Pushing three arguments onto the stack for the call to addNine

The first argument, a, is stored at -40[rbp] and must be placed in edi 
before calling the subfunction. This algorithm temporarily stores the value 
of a in eax 1, uses rdi for pushing the three values of i, h, and g onto the 
stack 3, and then places the value of the first argument, a, in edi 4, where 
it is needed at the first argument to addNine. I do not know why the compiler 
didn’t place the value of a in edi and then use rax for the pushing opera-
tions, which would have made this mov instruction unnecessary.
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You may notice that when the values are passed in the registers, only the 
32-bit portions of the registers are used, but when passed on the stack, the full 
64 bits are used. The size of an int in our C environment is 32 bits. But the 
stack is 64 bits wide, so a push or pop moves a 64-bit value. Recall that moving a 
32-bit value into a register zeros the high-order 32 bits in the register; thus, the 
original 32 bits are preserved in the 64-bit push operations in this function.

Recall that our protocol for using the stack is to make sure that the stack 
pointer is on a 16-byte address boundary before calling a function. Three 
8-byte values will be pushed onto the stack, so the algorithm subtracts 8 
from the stack pointer before pushing the three values 2. After returning 
from the call to the subfunction, all 32 bytes are effectively removed from 
the stack by adjusting the stack pointer 5. Figure 14-2 shows the argument 
area of the stack just before the call to addNine.

7

8

9g = [rsp] + 16

h = [rsp] + 8

i = [rsp]

rsp

Argument
area

?

Figure 14-2: Arguments pushed on stack by the main function

Next, let’s turn our attention to the addNine function. Listing 14-13 
shows the header file.

/* addNine.h
 * Returns sum of nine integers.
 */
#ifndef ADDNINE_H
#define ADDNINE_H
int addNine(int one, int two, int three, int four, int five,
           int six, int seven, int eight, int nine);
#endif

Listing 14-13: Header file for the addNine function

Listing 14-14 shows the C source code defining the function.

/* addNine.c
 * Sums nine integers and returns the sum.
 */
 
#include <stdio.h>
#include "addNine.h"

int addNine(int one, int two, int three, int four, int five,
           int six, int seven, int eight, int nine)
{
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  int sum;

  sum = one + two + three + four + five + six
          + seven + eight + nine;
  return sum;
}

Listing 14-14: The addNine function, in C

The compiler generated the assembly language shown in Listing 14-15 
for the addNine function.

        .file   "addNine.c"
        .intel_syntax noprefix
        .text
        .globl  addNine
        .type   addNine, @function
addNine:
        push    rbp
      1 mov     rbp, rsp
      2 mov     DWORD PTR -20[rbp], edi   ## store a locally
        mov     DWORD PTR -24[rbp], esi   ## store b locally
        mov     DWORD PTR -28[rbp], edx   ## store c locally
        mov     DWORD PTR -32[rbp], ecx   ## store d locally
        mov     DWORD PTR -36[rbp], r8d   ## store e locally
        mov     DWORD PTR -40[rbp], r9d   ## store f locally
        mov     edx, DWORD PTR -20[rbp]   ## sum = a
        mov     eax, DWORD PTR -24[rbp]
        add     edx, eax                  ## sum += b
        mov     eax, DWORD PTR -28[rbp]
        add     edx, eax                  ## sum += c
        mov     eax, DWORD PTR -32[rbp]
        add     edx, eax                  ## sum += d
        mov     eax, DWORD PTR -36[rbp]
        add     edx, eax                  ## sum += e
        mov     eax, DWORD PTR -40[rbp]
        add     edx, eax                  ## sum += f
      3 mov     eax, DWORD PTR 16[rbp]    ## from arg list
        add     edx, eax                  ## sum += g
        mov     eax, DWORD PTR 24[rbp]
        add     edx, eax                  ## sum += h
        mov     eax, DWORD PTR 32[rbp]
        add     eax, edx                  ## sum += i
        mov     DWORD PTR -4[rbp], eax
        mov     eax, DWORD PTR -4[rbp]
        pop     rbp
        ret
        .size   addNine, .-addNine
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 14-15: Compiler-generated assembly language for the addNine function

After the prologue for the addNine function establishes its frame 
pointer 1, its stack frame is in the state shown in Figure 14-3.
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Figure 14-3: Stack frame for addNine function

The addNine function stores the arguments passed in registers in the red 
zone of the stack 2. Then it starts its computation of the sum. When it gets 
to the arguments that were passed on the stack, it loads each one into the 
eax register as needed 3. The offsets from the rbp register for each stack 
argument are obtained from the drawing in Figure 14-3.

W A R N I N G 	 Knowing the exact location of each argument passed on the stack is essential when 
designing a subfunction. I learned many years ago that I need to draw diagrams like 
the ones in Figures 14-2 and 14-3 to get this right.

You have seen that the subfunction accesses arguments directly on the 
stack instead of popping them off. They can be placed directly on the stack by 
the calling function instead of pushing them. In the next section, I’ll show how 
this is done when I write the sumNine program directly in assembly language.

Storing Arguments Directly on the Stack
The push operation is somewhat inefficient. It performs two operations: sub-
tract 8 from the rsp register and store a value at the address in the updated 
rsp register. When placing several values on the stack, it’s a little more effi-
cient to subtract enough from the stack pointer to make room for all the 
values and then store each value directly on the stack. We’ll use this tech-
nique when writing the sumNine program directly in assembly language.

Listing 14-16 shows the main function for our assembly language version 
of the sumNine program.

# sum9Ints.s
# Sums the integers 1 - 9.
        .intel_syntax noprefix
        
# Stack frame
#   passing arguments on stack (rsp)
#     need 3x8 = 24 -> 32 bytes
      1 .equ    seventh,0
        .equ    eighth,8
        .equ    ninth,16
        .equ    argSize,-32
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#   local vars (rbp)
#     need 10x4 = 40 -> 48 bytes for alignment
        .equ    i,-4
        .equ    h,-8
        .equ    g,-12
        .equ    f,-16
        .equ    e,-20
        .equ    d,-24
        .equ    c,-28
        .equ    b,-32
        .equ    a,-36
        .equ    total,-40
        .equ    localSize,-48
# Read only data
        .section  .rodata
format:
        .string "The sum is %i\n"
# Code
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
        add     rsp, localSize      # for local var.
        
        mov     dword ptr a[rbp], 1 # initialize values
        mov     dword ptr b[rbp], 2 #     etc...
        mov     dword ptr c[rbp], 3
        mov     dword ptr d[rbp], 4
        mov     dword ptr e[rbp], 5
        mov     dword ptr f[rbp], 6
        mov     dword ptr g[rbp], 7
        mov     dword ptr h[rbp], 8
        mov     dword ptr i[rbp], 9

      2 add     rsp, argSize        # space for arguments
        mov     eax, i[rbp]         # load i
      3 mov     ninth[rsp], rax     #   9th argument
        mov     eax, h[rbp]         # load h
        mov     eighth[rsp], rax    #   8th argument
        mov     eax, g[rbp]         # load g
        mov     seventh[rsp], rax   #   7th argument
        mov     r9d, f[rbp]         # f is 6th
        mov     r8d, e[rbp]         # e is 5th
        mov     ecx, d[rbp]         # d is 4th
        mov     edx, c[rbp]         # c is 3rd
        mov     esi, b[rbp]         # b is 2nd
        mov     edi, a[rbp]         # a is 1st
        call    addNine
      4 sub     rsp, argSize        # remove arguments
        mov     total[rbp], eax     # total = sumNine(...)

        mov     esi, total[rbp]     # show result
        lea     rdi, format[rip]
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        mov     eax, 0
        call    printf@plt

        mov     eax, 0              # return 0;
        mov     rsp, rbp            # restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 14-16: The main function for the sumNine program written directly in assembly 
language

We’ll start the design by using the diagram of the stack in Figure 14-2 to 
figure out the values of the identifiers for the seventh, eighth, and ninth argu-
ments 1. It’s also convenient to create an identifier for the amount of space 
we’ll need on the stack for the arguments, making sure that it’s a multiple of 16.

We start the call to addNine by first allocating space on the stack for the 
three arguments beyond the six we’ll pass on registers by subtracting the 
appropriate amount from rsp 2. Having created identifiers for each argu-
ment, it’s then a simple matter to directly store each of the three arguments 
in the area we’ve just allocated 3. Then when the addNine subfunction returns 
to our function, we need to effectively delete the argument area from the top 
of the stack by adding the same amount that we subtracted from rsp when 
starting the call sequence 4. 

Next, let’s look at how the addNine function, Listing 14-17, accesses the 
arguments passed on the stack.

# addNine.s
# Sums nine integer arguments and returns the total.
        .intel_syntax noprefix
# Calling sequence:
#       edi <- one, 32-bit int
#       esi <- two
#       ecx <- three
#       edx <- four
#       r8d <- five
#       r9d <- six
#       push seven
#       push eight
#       push nine
#       returns sum
# Stack frame
#    arguments in stack frame
      1 .equ    seven,16
        .equ    eight,24
        .equ    nine,32
#    local variables
        .equ    total,-4
        .equ    localSize,-16

# Code
        .text
        .globl  addNine
        .type   addNine, @function
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addNine:
        push    rbp             # save frame pointer
        mov     rbp, rsp        # set new frame pointer
        add     rsp, localSize  # for local var.

        add     edi, esi        # add two to one
        add     edi, ecx        # plus three
        add     edi, edx        # plus four
        add     edi, r8d        # plus five
        add     edi, r9d        # plus six
      2 add     edi, seven[rbp] # plus seven
        add     edi, eight[rbp] # plus eight
        add     edi, nine[rbp]  # plus nine
        mov     total[rbp], edi # save total

        mov     eax, total[rbp] # return total;
        mov     rsp, rbp        # restore stack pointer
        pop     rbp             # and caller frame pointer
        ret

Listing 14-17: The addNine function written directly in assembly language

The offsets of the arguments seven, eight, and nine are defined using the 
diagram in Figure 14-3 1. Using these identifiers, adding the values passed 
to the addNine function is straightforward 2. 

Summary of Stack Frame Usage
When calling a function, it’s essential that you follow the register usage and 
argument passing disciplines precisely. Any deviation can cause errors that 
are difficult to debug. The rules are as follows.

In the calling function:

1.	 Assume that the values in the rax, rcx, rdx, rsi, rdi, and r8–r11 registers 
will be changed by the called function.

2.	 The first six arguments are passed in the rdi, rsi, rdx, rcx, r8, and r9 
registers in left-to-right order.

3.	 Arguments beyond argument 6 are stored on the stack as though they 
had been pushed onto the stack in right-to-left order.

4.	 Use the call instruction to invoke the function you want to call.

Upon entering the called function:

5.	 Save the caller’s frame pointer by pushing rbp onto the stack.

6.	 Establish a frame pointer for the called function at the current top of 
the stack by copying rsp to rbp.

7.	 Allocate space on the stack for all the local variables, plus any required 
register save space, by subtracting the number of bytes required from 
rsp; this value must be a multiple of 16.

8.	 If a called function changes any of the values in the rbx, rbp, rsp, or 
r12–r15 registers, they must be saved in the register save area and then 
restored before returning to the calling function.
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9.	 If the function calls another function, save the arguments passed in 
registers on the stack.

Within the called function:

10.	 The rsp register is pointing to the current bottom of the stack that is 
accessible to this function. Observe the usual stack discipline; do not 
use the stack pointer to access arguments or local variables.

11.	 Arguments passed in registers to the function and saved on the stack 
are accessed by negative offsets from the frame pointer, rbp.

12.	Arguments passed on the stack to the function are accessed by posi-
tive offsets from the frame pointer, rbp. Local variables are accessed by 
negative offsets from the frame pointer, rbp.

When leaving the called function:

13.	 Place the return value, if any, in eax.

14.	 Restore the values in the rbx, rbp, rsp, and r12–r15 registers from the reg-
ister save area in the stack frame.

15.	 Delete the local variable space and register save area by copying rbp to rsp.

16.	 Restore the caller’s frame pointer by popping rbp off the stack save area.

17.	 Return to the calling function with ret.

Figure 14-4 shows what the stack frame looks like.

rsp

rbp [rbp] − 8

[rbp] + 8

Arguments
passed on

stack

Return address

Caller’s rbp 

Local variables
and saved

register
contents

Memory available
for use as stack
by this function

Figure 14-4: Overall pattern of a stack frame

As explained, a stack frame may not include all these parts. If no more 
than six arguments are passed to the function, then the lower box in this 
diagram does not exist. And some functions may not have any local vari-
ables or saved register contents. In certain cases, the function may not 
even need to save the caller’s rbp. The only box in this diagram that will 
always exist is the return address.
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In the next section, we’ll look at how to create a local variable that 
keeps its value between calls to its defining subfunction.

YOUR T UR N

1.	 Modify the assembly language program in Listings 14-16 and 14-17 so 
that all nine arguments are passed on the stack.

2.	 Write a program in assembly language that sums all the integers between 
two integers entered by the user.

3.	 Write the two functions, writeStr and readLn, in assembly language. You 
will use these functions in exercises later in the book.

a.	 writeStr writes text in the terminal window using the write system 
call. It takes one argument and returns the number of characters 
written.

b.	 readLn reads characters from the keyboard using the read system 
call and stores them in memory as a C-style text string. It takes two 
arguments, a pointer to the memory location to store the text and the 
number of bytes available in that location. If the number of characters 
entered exceeds the available storage space, it reads the remaining 
input but does not store it. It returns the number of characters entered, 
less the NUL terminating character.

c.	 Test your functions with the following C main function. Don’t forget to 
write the C header files for your assembly language functions. Hint: 
Use a much smaller number for MAX when testing your readLn function.

/* echo.c
 * Prompts user to enter text and echoes it.
 */

#include "writeStr.h"
#include "readLn.h"
#define MAX 50

int main(void)
{
  char text[MAX];
  
  writeStr("Enter some text: ");
  readLn(text, MAX);
  writeStr("You entered: ");
  writeStr(text);
  writeStr("\n");
  
  return 0;
}
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Static Local Variables
We learned in Chapter 11 (also see Figures 14-1 and 14-4) that automatic 
local variables are created in a function’s prologue and get deleted in the 
function’s epilogue. This means the value stored in an automatic local 
variable will be lost in subsequent calls to a subfunction. We might want to 
keep the value of a variable between function calls while still providing the 
information-hiding advantage of a local variable. For example, we might have 
a function that is called from several other functions and want to maintain a 
count of how many times it’s called. We could use a global variable, but a 
global variable doesn’t provide the information-hiding properties of a local 
variable.

A local variable in a program has one of two possible lifetimes in memory. 
An automatic local variable is created in memory during the prologue of 
the function it’s defined in, and it’s deleted in the epilogue of the function. 
A static local variable also has local scope like an automatic local variable, but 
like a global variable, it remains in memory throughout the lifetime of the 
entire program.

We’ll see where static local variables are created in memory when we 
discuss the program in Listings 14-18, 14-20, and 14-21, which illustrates the 
differences between the visibility and persistence of an automatic local vari-
able, a static local variable, and a global variable.

/* varLife.c
 * Compares scope and lifetime of automatic, static,
 * and global variables.
 */

#include <stdio.h>
#include "addConst.h"
#define INITx 12
#define INITy 34
#define INITz 56

1 int z = INITz;

int main(void)
{
2 int x = INITx;
  int y = INITy;

  printf("           automatic   static   global\n");
  printf("                   x        y        z\n");
  printf("In main:%12i %8i %8i\n", x, y, z);
3 addConst();
  addConst();
  printf("In main: %12i %8i %8i\n", x, y, z);
  return 0;
}

Listing 14-18: Program to compare automatic local, static local, and global variables
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The main function for this program first initializes a global variable 1 
and then two local variables 2. It then calls a function to add a constant 
value to each of three variables 3. As you will see, even though the vari-
ables in addConst have the same names as the ones in main, only the global 
variable is the same physical object. Thus, this program has five variables: x 
and y in main, x and y in addConst, and z, which is accessible by both main and 
addConst.

The compiler generates a little different assembly language for the 
global variable, z, in this program than it generated for the global variables 
in Listing 14-2. Let’s look at the compiler-generated assembly language for 
main; see Listing 14-19.

        .file   "varLife.c"
        .intel_syntax noprefix
        .text
        .globl  z
      1 .data
        .align 4
        .type   z, @object
        .size   z, 4
z:
      2 .long   56                      ## int z = INITz;
        .section        .rodata
        .align 8
.LC0:
        .string "           automatic   static   global"
        .align 8
.LC1:
        .string "                   x        y        z"
.LC2:
        .string "In main:%12i %8i %8i\n"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16
        mov     DWORD PTR -8[rbp], 12   ## int x = INITx;
        mov     DWORD PTR -4[rbp], 34   ## int y = INITy;
        lea     rdi, .LC0[rip]
        call    puts@PLT
        lea     rdi, .LC1[rip]
        call    puts@PLT
        mov     ecx, DWORD PTR z[rip]
        mov     edx, DWORD PTR -4[rbp]
        mov     eax, DWORD PTR -8[rbp]
        mov     esi, eax
        lea     rdi, .LC2[rip]
        mov     eax, 0
        call    printf@PLT
        call    addConst@PLT
        call    addConst@PLT
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        mov     ecx, DWORD PTR z[rip]
        mov     edx, DWORD PTR -4[rbp]
        mov     eax, DWORD PTR -8[rbp]
        mov     esi, eax
        lea     rdi, .LC2[rip]
        mov     eax, 0
        call    printf@PLT
        mov     eax, 0
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 14-19: Compiler-generated assembly language for the main function in Listing 14-1

Most of the assembly language in Listing 14-19 is probably familiar to 
you, but the implementation of the global variable, z, differs from the way 
we saw for the x and y global variables in the program in Listing 14-2, which 
were both placed in the data segment and initialized to 0.

In Listing 14-19, we see that the global variable in this program, z, is 
placed in the .data section 1, so it will also be placed in the data segment 
when the program is executed. But the nonzero value for the global vari-
able in this program must be stored in the executable program file. The 
compiler has used the .long assembler directive to specify this value 2. An 
advantage of using .bss for memory that should be initialized to 0 in a pro-
gram is that it doesn’t require space in the program file, which would be 
needed to store nonzero values.

The header file for the addConst function, Listing 14-20, shows that it 
takes no arguments and does not return a value.

/* addConst.h
 * Adds constant to automatic, static, global variables.
 */

#ifndef ADDCONST_H
#define ADDCONST_H
void addConst(void);
#endif

Listing 14-20: Header file for addConst function

Listing 14-21 shows the addConst function.

/* addConst.c
 * Adds constant to automatic, static, global variables.
 */

#include <stdio.h>
#include "addConst.h"
1 #define INITx 78
#define INITy 90
#define ADDITION 1000
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2 extern int z;          /* global */

void addConst(void)
{
3 int x = INITx;         /* every call */
4 static int y = INITy;  /* first call only */
   
  x += ADDITION;    /* add to each */
  y += ADDITION;
  z += ADDITION;

  printf("In addConst: %8i %8i %8i\n", x, y, z);
}

Listing 14-21: Function to add a constant value to three variables

We’ll use different constants in addConst so we can clearly see the differ-
ences in scope and persistence of the five variables in this program when we 
run it 1.

The x variable in addConst is defined to be an automatic local variable 3. 
It gets created and assigned an initial value, INITx, each time this function 
is called. This x variable is different from the variable also named x in the 
main function because each is defined within its respective function, making 
them local variables. Changing the value of this x does not affect the x vari-
able in main.

The y variable in addConst is defined to be static 4. A static local vari-
able can be given an initial value when it is defined, as I’ve done here. If no 
value is given, it’s initialized to numerical zero by the operating system. A 
local static variable has this initial value the first time the function where 
it’s defined is called. If the variable is changed in the function, the new value 
persists for the next time the function is called, effectively skipping the ini-
tialization. Like x, the y variable is also local, so it is different from the 
variable also named y in the main function. Changing the value of this y 
does not affect the y variable in main.

The z variable was defined outside the main function. But because it 
was defined in another file, we need to declare it as extern in this file so we 
can access it 2. As you learned in Chapter 14, changing it in this function 
changes the only copy in this program, so main will also see the changes to z 
in addConst.

Listing 14-22 shows the assembly language that the compiler generated 
for the addConst function.

        .file   "addConst.c"
        .intel_syntax noprefix
        .text
        .section        .rodata
.LC0:
        .string "In addConst:%8i %8i %8i\n"
        .text
        .globl  addConst
        .type   addConst, @function
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addConst:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16
        mov     DWORD PTR 1-4[rbp], 78      ## int x = INITx;
        add     DWORD PTR -4[rbp], 1000      ## x += ADDITION;
        mov     eax, DWORD PTR 2y.2319[rip] ## load y
        add     eax, 1000                    ## y += ADDITION;
        mov     DWORD PTR y.2319[rip], eax   ## store new y
        mov     eax, DWORD PTR 3z[rip]      ## load z
        add     eax, 1000                    ## z += ADDITION;
        mov     DWORD PTR z[rip], eax        ## store new z
        mov     ecx, DWORD PTR z[rip]
        mov     edx, DWORD PTR y.2319[rip]
        mov     eax, DWORD PTR -4[rbp]
        mov     esi, eax
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
        nop
        leave
        ret
        .size   addConst, .-addConst
      4 .data
        .align 4
        .type   y.2319, @object
        .size   y.2319, 4
5 y.2319:
        .long   90                    ## static int y = INITy;
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 14-22: Assembly language generated by the compiler for the addConst function  
in Listing 14-21

From the assembly language in Listing 14-22, we can see that automatic 
local variables are allocated in the stack frame. The compiler accesses them 
using an offset from the frame pointer, rbp 1. And as we saw earlier in this 
chapter, global variables are accessed by their global name relative to rip 3.

Static local variable are also accessed by name relative to rip, but the 
name is not specified as .global. Furthermore, the compiler adds a num-
ber to the name, separated by a . character 2. This embellishment of our 
given name for the variable is called name mangling. The compiler needs 
to do name mangling to distinguish this static local variable from possibly 
another static local variable with the same given name in another function 
defined in the same file.

As you probably already guessed, a static local variable cannot exist in 
the stack frame. Like the global variable, z, defined in the main function (see 
Listing 14-2), the static local variable, y, is allocated in the .data section and 
initialized with a .long assembler directive 4. It is labeled with the mangled 
name so it can be accessed only by its function 5.

Figure 14-5 shows a run of this program.
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 Automatic Static Global
 x y z
In main: 12 34 56
In addConst: 1078 1090 1056
In addConst: 1078 2090 2056
In main: 12 34 2056

Figure 14-5: Scope and lifetime of three classes  
of C variables

The program shows that the x and y variables in main are different from 
the x and y variables in addConst. We can also see that the x in addConst is newly 
initialized each time the function is called. But the y variable in addConst is 
given its initial value only the first time the function is called, and the addi-
tion of 1,000 to the variable persists between the two calls to the function. We 
can also see that both main and addConst are using the same (global) z.

My assembly language solution to the varLife program, Listings 14-23 
and 14-24, is similar to what the compiler generated, but I use more mean-
ingful labels and names to make the code easier for a human to read.

# varLife.s
# Compares scope and lifetime of automatic, static, and global variables.
        .intel_syntax noprefix

# Stack frame
        .equ    x,-8
        .equ    y,-4
        .equ    localSize,-16
# Useful constants
        .equ    INITx,12
        .equ    INITy,34
        .equ    INITz,56
        .section    .rodata
        .align  8
tableHead1:
        .string "           automatic   static   global"
tableHead2:
        .string "                   x        y        z"
format:
        .string "In main:%12i %8i %8i\n"
# Define global variable
        .data
        .align  4
        .globl  z
        .type   z, @object
z:
      1 .int    INITz   # initialize the global
# Code
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp                     # save frame pointer
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        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.

        mov   2 dword ptr x[rbp], INITx # initialize locals
        mov     dword ptr y[rbp], INITy

        lea     rdi, tableHead1[rip]    # print heading
        call    puts@plt
        lea     rdi, tableHead2[rip]
        call    puts@plt
        mov   3 ecx, z[rip]             # print variables
        mov     edx, y[rbp]
        mov     esi, x[rbp]
        lea     rdi, format[rip]
        mov     eax, 0
        call    printf@plt

        call    addConst                # add to variables
        call    addConst

        mov     ecx, z[rip]             # print variables
        mov     edx, y[rbp]
        mov     esi, x[rbp]
        lea     rdi, format[rip]
        mov     eax, 0
        call    printf@plt

        mov     eax, 0                  # return 0;
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 14-23: Assembly language version of the main function for the varLife program

The .int directive is the same as the .long used by the compiler. In our 
environment, both emit a 32-bit integer in little endian order. I prefer using 
the .int directive rather than .long to specify an int value 1, but this is just 
personal style.

Since x and y in this function are automatic local variables, they are in 
the stack frame and accessed relative to the frame pointer 2, while z is a 
global so accessed relative to the instruction pointer 3.

When we write the addConst function in assembly language, we’ll use a 
more meaningful identifier to mangle the static local variable, as shown in 
Listing 14-24.

# addConst.s
# Adds constant to automatic, static, global variables.
        .intel_syntax noprefix

# Stack frame
        .equ  1 x,-4
        .equ    localSize,-16
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# Useful constants
        .equ    ADDITION,1000
        .equ    INITx,78
        .equ    INITy,90
# Constant data
        .section  .rodata
        .align  8
format:
        .string "In addConst:%8i %8i %8i\n"
# Define static variable
        .data
        .align  4
        .type 2 y_addConst, @object
y_addConst:
      3 .int    INITy

# Code
        .text
        .globl  addConst
        .type   addConst, @function
addConst:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.
        mov     dword ptr x[rbp], INITx # initialize

        add     dword ptr x[rbp], ADDITION # add to vars
        add   4 dword ptr y_addConst[rip], ADDITION
        add     dword ptr z[rip], ADDITION

        mov     ecx, z[rip]             # print variables
        mov     edx, y_addConst[rip]
        mov     esi, x[rbp]
        lea     rdi, format[rip]
        mov     eax, 0                  # no floats
        call    printf@plt

        mov     eax, 0                  # return 0;
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 14-24: Assembly language version of the addConst function

Be careful to notice that the automatic local variable, x, here is created 
in the stack frame for addConst 1 so is different from the x that was created in 
the stack frame for main. I have chosen to mangle the static local variable, y, 
by appending the function name to the name of the variable, thus assuring 
a unique name to the variable 2. Since y is static, it’s placed in the .data sec-
tion 3 and accessed relative to the instruction pointer 4.

Table 14-1 summarizes the memory characteristics of some of the most 
common components for a program.
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Table 14-1: Memory Characteristics of Some Components of a Program

Role in the program Memory segment Access Lifetime

Automatic local variable Stack Read and write Function

Constant Text Read only Program

Instruction Text Read only Program

Static local variable Data Read and write Program

Global variable Data Read and write Program

The memory segment in Table 14-1 refers to the segments created by the 
operating system. Constants are placed in a text segment because the oper-
ating system prohibits a program from writing to a text segment. Variables 
need to be in a segment that can be both read from and written to.

Table 14-2 summarizes some of the more common assembler directives 
used to control where program components go in memory.

Table 14-2: Some Common Assembler Memory Directives

Directive Memory segment Effect

.text Text Instructions follow

.rodata Text Constant data follows

.string "string",  … Text Arrays of characters, each terminated 
by NUL

.ascii "string",  … Text Arrays of characters

.asciz "string", … Text Arrays of characters, each terminated 
by NUL

.data Data Variable data follows

.bss Data Following data memory initialized to 
zero

.comm label, size Data Allocates size bytes of uninitialized 
data memory

.byte expression, … Data Initialize memory, one byte for each 
expression

.int expression, … Data Initialize memory, one int for each 
expression

.long expression, … Data Initialize memory, one int for each 
expression

The .string, .ascii, and .asciz directives can allocate more than one 
text string, each separated by a comma. The .string and .asciz directives 
add a NUL character to the end of the text string, while .ascii does not.

The first byte of memory allocated by the .comm directive is named label, 
which has global scope in the program. The operating system zeros the size 
bytes of memory associated with label when the program is first loaded.
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The .int and .long directives do the same thing—allocate 32 bits in our 
environment set to the value of expression, which must be an integral value. 
The .byte directive must also evaluate to an integral value. These directives 
can allocate multiple expressions, each separated by a comma. 

This is only a summary of these directives. You need to consult the info 
page for as to read the details.

YOUR T UR N

1.	 Modify the program in Listings 14-23 and 14-24 so that the addConst func-
tion prints the number of times it has been called.

2.	 Modify the program in Listings 14-23 and 14-24 so that there are two func-
tions in the same file, addConst0 and addConst1, that add different constants 
to the variables. Each of these two subfunctions will print the number of 
times it has been called.

What You’ve Learned

Global variables    Accessible from any function in the program and 
persist during the entire life of the program.

Automatic local variables    Accessible only from within the function 
where they are defined and last only during the execution of their 
function.

Static local variables    Accessible only from within the function where 
they are defined and persist between calls to their function.

Passing arguments    The first six are passed in registers. Any addi-
tional arguments are passed on the stack.

Pass by value    A copy of the value is passed.

Pass by pointer    The address of the variable is passed. The address 
can be changed.

Pass by reference    The address of the variable is passed. The address 
cannot be changed.

Stack frame    Creation of the stack frame begins in the calling func-
tion and is completed in the called function.

Frame pointer    Items placed in the stack frame by the calling function 
are accessed using positive offset from the frame pointer. Items placed 
in the stack frame by the called function are accessed using negative 
offsets.

Now that you know how to write functions, we’ll look at a couple of spe-
cialized uses of subfunctions in the next chapter.



15
S P E C I A L  U S E S  O F  S U B F U N C T I O N S

As we saw in Chapter 14, the most common 
use of a subfunction is to break a problem 

into smaller, easier-to-solve subproblems. 
This is the foundation of recursion, the subject 

of the first half of this chapter. After we cover recur-
sion, we’ll take a look at another use of subfunctions: 
directly accessing hardware features in assembly  
language that may not be easily accessible in a higher-
level language.

Recursion
Many computer solutions involve repetitive actions. We saw how to use 
iteration—while, for, and do-while loops—to perform repetitive actions in 
Chapter 14. While iteration can be used to solve any repetitive problem, 
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some solutions are described more succinctly using recursion. A recursive 
algorithm is an algorithm that calls itself to compute a simpler case of the 
problem and uses that result to compute the more complex case at hand. 
The recursive calls continue until the simpler case reaches a base case. At 
this point, the recursive algorithm returns the base case value to the next 
more complex case where the value is used in that computation. This 
return/compute process continues, performing the increasingly complex 
computations along the way, until we’re back at the original case.

Let’s look at an example. In mathematics, we denote the factorial oper-
ation on positive integers with an !, which can be defined recursively:

n!	  = n × (n – 1)!
0!	  = 1

The first equation shows that n! is defined by computing a simpler case 
of itself, (n – 1)!. This computation is performed repetitively until we reach 
the base case of n = 0. Then we work our way back out, computing each n! 
along the way.

For comparison, the iterative definition of the factorial operation is as 
follows:

n! 	 = n × (n – 1) × (n – 2) × ⋯ 1 
0! 	 = 1

Although both forms of defining the factorial operation involve the 
same number of computations, the recursive form is more concise and per-
haps more intuitive to some people.

Listings 15-1, 15-2, and 15-3 show a program that uses a function, factorial, 
to compute 3!. You’ll see the reason for using a small, fixed value when we use 
gdb to examine the behavior of the following function:

/* threeFactorial.c
 */
#include <stdio.h>
#include "factorial.h"

int main(void)
{
  unsigned int x = 3;
  unsigned int y;
  
  y = factorial(x);
  printf("%u! = %u\n", x, y);
  return 0;
}

Listing 15-1: Program to compute 3!

The mathematical factorial function is defined for non-negative inte-
gers, so we use unsigned ints.

There is nothing remarkable about the header file for the factorial 
function, shown in Listing 15-2.
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/* factorial.h
 */
 
#ifndef FACTORIAL_H
#define FACTORIAL_H
unsigned int factorial(unsigned int n);
#endif

Listing 15-2: Header file for factorial function

Listing 15-3 shows that the factorial function calls itself to perform a 
simpler computation, (n – 1), so it can easily compute n!.

/* factorial.c
 */
#include "factorial.h"

unsigned int factorial(unsigned int n)
{
  unsigned int current = 1; /* assume base case */
  if 1(n != 0)
  {
    current = 2n * factorial(n - 1);
  }
  return current;
}

Listing 15-3: Function to compute n!

The factorial function first checks for the base case of n = 0 1. If we’re 
at the base case, the current result is 1. If we’re not at the base case, the 
factorial function calls the factorial function to compute (n – 1)! and multi-
plies that by n to get n! 2.

The assembly language for the main function is unremarkable, but let’s 
look at the assembly language the compiler generated for the factorial 
function; see Listing 15-4.

        .file   "factorial.c"
        .intel_syntax noprefix
        .text
        .globl  factorial
        .type   factorial, @function
factorial:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 32
      1 mov     DWORD PTR -20[rbp], edi ## store n
        mov     DWORD PTR -4[rbp], 1    ## current = 1;
        cmp     DWORD PTR -20[rbp], 0   ## base case?
        je      .L2                     ## yes, current good
        mov     eax, DWORD PTR -20[rbp] ## no, compute n - 1
        sub     eax, 1
      2 mov     edi, eax
        call    factorial               ## compute (n - 1)! 
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        mov     edx, DWORD PTR -20[rbp] ## load n
      3 imul    eax, edx                ## n * (n - 1)!
        mov     DWORD PTR -4[rbp], eax  ## store in current
.L2
        mov     eax, DWORD PTR -4[rbp]  ## load current
        leave
        ret
        .size   factorial, .-factorial
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 15-4: Compiler-generated assembly language for the factorial function in Listing 15-3

The algorithm used in the factorial function is a simple if-then construct 
that we learned about in Chapter 13. The important part of a recursive func-
tion is that we need to save any arguments that are passed to it in registers 
so that the registers can be reused to pass arguments in the recursive call to 
the function.

For example, the factorial function takes one argument, n, which is 
passed in the rdi register. (Only the edi portion of the register is used 
because an int in our environment is 32 bits.) In Table 11-2 in Chapter 11, we 
see that we don’t need to save the content of rdi in our function, but we need 
to use rdi for the recursive call with the new value, (n - 1) 2. And when 
the recursive call returns, we need the original value of n. The compiler 
has allocated space in the stack frame for saving n 1.

We haven’t discussed the imul instruction 3. As you might guess, the 
instruction here multiplies the integer in eax by the one in edx, leaving the 
product in eax. The details of multiplication instructions are somewhat com-
plex. We’ll discuss them in Chapter 16.

We can simplify the factorial function a bit by writing it directly in 
assembly language, as shown in Listing 15-5.

# factorial.s
# Computes n! recursively.        
# Calling sequence:
#       edi <- n
#       call    readLn
# returns n!
        .intel_syntax noprefix
# Stack frame
        .equ    n,-4
        .equ    localSize,-16

        .text
        .globl  factorial
        .type   factorial, @function
factorial:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
        add     rsp, localSize      # for local var.

      1 mov     n[rbp], edi         # save n
      2 mov     eax, 1              # assume at base case
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        cmp     dword ptr n[rbp], 0 # at base case?
      3 je      done                # yes, done
        mov     edi, n[rbp]         # no,
      4 sub     edi, 1              # compute (n - 1)!
        call    factorial
      5 mul     dword ptr n[rbp]    # n! = n * (n - 1)!
done:
        mov     rsp, rbp            # restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 15-5: Assembly language version of factorial function

One of the simplifications in our assembly language version of factorial 
is to use eax as the local variable for storing the current result 2. We also 
start by assuming that we’re at the base case. If this is true, the result is in eax, 
where it should be for the return 3. If not, then we call factorial recursively, 
passing (n – 1) as the argument 4. Since the input argument is needed after 
the return from the recursive call for the n * (n – 1)! computation 5, we 
need to save the input argument on the stack 1.

Instead of the signed multiply instruction, imul, used by the compiler, 
since all the numbers in this function are unsigned, I chose to use the 
unsigned multiplication instruction, mul 5. The mul instruction assumes that 
the multiplicand is already in eax, which it is upon the return from the recur-
sive call to factorial. After the multiplication operation, the mul instruction 
replaces the multiplicand in eax with the product, where it needs to be for 
the return. Again, the details of using both the mul and imul instructions are 
explained in Chapter 16.

Recursive algorithms can be simple and elegant, but they make heavy 
use of the stack. I used the assembly language version of factorial (and the 
C header file in Listing 15-2) with the main function of Listing 15-1 and ran 
the program under gdb so we can take a look at stack usage.

(gdb) li factorial
11     
12             .text
13             .globl  factorial
14             .type   factorial, @function
15     factorial:
16             push    rbp                   # save frame pointer
17             mov     rbp, rsp              # set new frame pointer
18             add     rsp, localSize        # for local var.
19     
20             mov     n[rbp], edi           # save n
(gdb) 
21             mov     eax, 1                # assume at base case
22             cmp     dword ptr n[rbp], 0   # at base case?
23             je      done                  # yes, done
24             mov     edi, n[rbp]           # no,
25             sub     edi, 1                # compute (n - 1)!
26           1 call    factorial
27             imul    eax, n[rbp]           # n! = n * (n - 1)!
28     done:
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29           2 mov     rsp, rbp        # restore stack pointer
30             pop     rbp             # and caller frame pointer
(gdb) b 26
Breakpoint 1 at 0x118c: file factorial.s, line 26.
(gdb) b 29
Breakpoint 2 at 0x1195: file factorial.s, line 29.
(gdb) r
Starting program: /home/bob/chap15/factorial_asm/threeFactorial 

Breakpoint 2, factorial () at factorial.s:26
26             call    factorial

I set two breakpoints, one at the recursive call to factorial 1 and the 
second at the point where the function returns 2. When the program 
breaks back into gdb, let’s look at the input value and stack frame for the 
first recursive call to factorial.

(gdb) i r rax rdi rbp rsp
rax            0x1                 1
rdi          1 0x2                 2
rbp            0x7fffffffde40      0x7fffffffde40
rsp            0x7fffffffde30      0x7fffffffde30
(gdb) x/4xg 0x7fffffffde30
0x7fffffffde30: 0x00007ffff7fb1fc8   20x00000003555551b0
0x7fffffffde40: 0x00007fffffffde60   30x0000555555555156

We see that the first recursive call to factorial is passing 2 as the argu-
ment 1, which is (n – 1) in this program. The stack frame for factorial is 
32 bytes, which I’m displaying in 8-byte groups here. The first value that 
was pushed onto the stack when factorial was called from main is the return 
address to main 3.

Keep in mind that memory storage in our environment is little endian, 
so we need to be careful when reading the value of n stored in the stack 
frame. The code in Listing 15-5 shows that the variable n is stored −4 
from rbp, or at memory location 0x7fffffffde3c in my run of the program 
here. Since our environment is little endian and we’re displaying 8-byte val-
ues, the 8 bytes that include memory location 0x7fffffffde3c are displayed 
with the byte at 0x7fffffffde38 in the rightmost position, and the byte at 
0x7fffffffde3f in the leftmost position. So the variable n is the fifth byte 
from the right of this 8-byte display, 0x03 2.

Since the input to factorial is 3 (see Listing 15-1), the function will be 
recursively called two more times before reaching the base case:

(gdb) c
Continuing.

Breakpoint 1, factorial () at factorial.s:26
26             call    factorial
(gdb) c
Continuing.

Breakpoint 1, factorial () at factorial.s:26
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26             call    factorial
(gdb) i r rax rdi rbp rsp
rax            0x1                 1
rdi          1 0x0                 0
rbp            0x7fffffffde00      0x7fffffffde00
rsp            0x7fffffffddf0      0x7fffffffddf0
(gdb) x/12xg 0x7fffffffddf0
0x7fffffffddf0: 0x0000000000000000     0x0000000100000000
0x7fffffffde00: 0x00007fffffffde20   20x000055555555519a
0x7fffffffde10: 0x00000000000000c2     0x00000002ffffde47
0x7fffffffde20: 0x00007fffffffde40   30x000055555555519a
0x7fffffffde30: 0x00007ffff7fb1fc8     0x00000003555551b0
0x7fffffffde40: 0x00007fffffffde60   40x0000555555555156

Now we’re at the point where the recursive call to factorial passes in 
the base case value, 0 1. We can see that factorial has created three stack 
frames, one above the other. The two most recent stack frames show the 
return address is to the same place 23, which is in factorial. The oldest 
stack frame shows the return address to main 4.

Continuing four more times unwinds the stack frames and takes us 
back to the first one created when main called factorial.

(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29             mov     rsp, rbp            # restore stack pointer
(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29             mov     rsp, rbp            # restore stack pointer
(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29             mov     rsp, rbp            # restore stack pointer 
(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29             mov     rsp, rbp            # restore stack pointer
(gdb) i r rax rdi rbp rsp
rax            0x6               16
rdi          2 0x0                 0
rbp            0x7fffffffde40      0x7fffffffde40
rsp            0x7fffffffde30      0x7fffffffde30
(gdb) x/4xg 0x7fffffffde30
0x7fffffffde30: 0x00007ffff7fb1fc8   0x00000003555551b0
0x7fffffffde40: 0x00007fffffffde60   0x0000555555555156
(gdb) c
Continuing.
3! = 6
[Inferior 1 (process 2373) exited normally]
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Now that we’re back in the first call to factorial, the call that will return 
to main, the argument to this call is the base case, 0 2, and it’s returning the 
result, 6 1.

As you can see, recursive function calls use a lot of stack space. And since 
they call a function in each repetition, they can be time-consuming. Every 
recursive solution has an equivalent iterative solution, which is usually more 
efficient, both in time and stack usage. The iterative algorithm to compute 
the factorial of an integer, for example, is simple. But although it doesn’t 
show in this simple example, many problems (for example, some sorting 
algorithms) lend themselves more naturally to a recursive solution. In such 
problems, the simplicity of the code is often worth the costs of recursion.

Now that we know how to store data items in a function and move data 
back and forth between functions in assembly language, we’ll look at using 
assembly language to access hardware features that might not be accessible 
in the high-level language we’re using.

YOUR T UR N

Run the C program in Listings 15-1, 15-2, and 15-3 under gdb. Set a breakpoint 
at the statement that calls factorial recursively, current = n * factorial(n - 1);, 
and another breakpoint at the next line, }. You can find the line numbers for set-
ting these breakpoints in factorial by first using the li factorial command in 
gdb. When the program reaches the call with n = 1, identify the three stack 
frames. Hint: Use the compiler-generated assembly language in Listing 15-4 to 
determine the size of a stack frame.

Accessing CPU Features in Assembly Language
In Chapter 14, it may have seemed a bit silly to create a whole subfunction 
just to add two integers (see Listing 14-8), which can be done with a single 
instruction. But as we saw in Chapter 3, even simple addition can produce 
carry or overflow, which is indicated by flags in the rflags register in the CPU.

C and C++ do not provide a way to check the overflow or carry flags in 
the rflags register. In this section, we’ll look at two ways to tell our C func-
tion whether there is overflow from addition: we can either write a separate 
function in assembly language that is callable from our C code or embed 
assembly language within our C code.

A Separate Function Written in Assembly Language
We’ll start by rewriting the sumInts program in C so that it warns the user if the 
addition produces overflow. We’ll check for overflow in the subfunction, addTwo, 
and pass the result back to the main function by using the return mechanism.

Listing 15-6 shows our modified main function that checks the return 
value for overflow.
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/* sumInts.c
 * Adds two integers using local variables
 * Checks for overflow
 */

#include <stdio.h>
#include "addTwo.h"

int main(void)
{
  int x = 0, y = 0, z;
  int overflow;
  
  printf("Enter an integer: ");
  scanf("%i", &x);
  printf("Enter an integer: ");
  scanf("%i", &y);
1 overflow = addTwo(x, y, &z);
  printf("%i + %i = %i\n", x, y, z);
  if 2(overflow)
  {
    printf("    *** Overflow occurred ***\n");
  }  

  return 0;
}

Listing 15-6: Program to sum two integers and check for overflow

We’ll rewrite the addTwo function such that it returns 0 if there’s no over-
flow and 1 if there is overflow, which we assign to the variable, overflow 1. 
In C, zero is logically false, while nonzero is true 2.

Listing 15-7 shows our header file for our new addTwo function.

/* addTwo.h
 * Adds two integers and determines overflow.
 */

#ifndef ADDTWO_H
#define ADDTWO_H
int addTwo(int a, int b, int *c);
#endif

Listing 15-7: Header file for addTwo function that checks for overflow

The only change in the function declaration is returning an int instead 
of void. We need to add a check for overflow in the definition of the addTwo 
function, as shown in Listing 15-8.

/* addTwo.c
 * Adds two integers and determines overflow.
 */

#include "addTwo.h"
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int addTwo(int a, int b, int *c)
{
  int temp;
  int overflow = 0;   /* assume no overflow */
  
  temp = a + b;
  if 1(((a > 0) && (b > 0) && (temp < 0)) ||
        ((a < 0) && (b < 0) && (temp > 0)))
  {
    overflow = 1;
  }
  *c = temp;
  return overflow;
}

Listing 15-8: Adds two integers and checks for overflow

We learned in Chapter 3 that if adding two integers of the same sign 
gives a result of the opposite sign, we have overflow, so we use this logic as 
the check for overflow 1. Listing 15-9 shows the assembly language gener-
ated by the compiler from this C source.

        .file   "addTwo.c"
        .intel_syntax noprefix
        .text
        .globl  addTwo
        .type   addTwo, @function
addTwo:
        push    rbp
        mov     rbp, rsp
        mov     DWORD PTR -20[rbp], edi   ## store a
        mov     DWORD PTR -24[rbp], esi   ## store b
        mov     QWORD PTR -32[rbp], rdx   ## address of c
      1 mov     DWORD PTR -8[rbp], 0      ## overflow = 0;
        mov     edx, DWORD PTR -20[rbp]
        mov     eax, DWORD PTR -24[rbp]
        add     eax, edx                  ## a + b
        mov     DWORD PTR -4[rbp], eax    ## temp = a + b;
      2 cmp     DWORD PTR -20[rbp], 0     ## a <= 0?
        jle     .L2                       ## yes
        cmp     DWORD PTR -24[rbp], 0     ## b <= 0?
        jle     .L2                       ## yes
        cmp     DWORD PTR -4[rbp], 0      ## temp < 0?
        js      .L3                       ## yes, overflow
.L2:
        cmp     DWORD PTR -20[rbp], 0     ## a == 0?
      3 jns     .L4                       ## yes, no overflow
        cmp     DWORD PTR -24[rbp], 0     ## b == 0?
        jns     .L4                       ## yes, no overflow
        cmp     DWORD PTR -4[rbp], 0      ## temp == 0?
        jle     .L4                       ## yes, no overflow
.L3:
      4 mov     DWORD PTR -8[rbp], 1
.L4:
        mov     rax, QWORD PTR -32[rbp]   ## address of c
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        mov     edx, DWORD PTR -4[rbp]    ## temp
        mov     DWORD PTR [rax], edx      ## *c = temp;
        mov     eax, DWORD PTR -8[rbp]    ## return overflow;
        pop     rbp
        ret
        .size   addTwo, .-addTwo
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 15-9: Assembly language generated by the compiler for addTwo in Listing 15-8

The algorithm starts by assuming there will not be overflow 1. After 
adding the two integers, it checks to see if a ≤ 0 2. If it is, it then checks to 
see a is negative by comparing a to 0 and checking the sign flag in the rflags 
register 3. If it is 0, there is no overflow, so the algorithm jumps past the 
instruction that would change the overflow variable to 1 4.

The algorithm for determining overflow in C (Listing 15-8) is some-
what complicated, so we’ll take advantage of the fact that the CPU makes 
that determination during addition and sets the status flags in the rflags 
register accordingly. We can use the results in the rflags register by writing 
addTwo directly in assembly language, as shown in Listing 15-10.

# addTwo.s
# Adds two integers and returns OF
# Calling sequence:
#       edi <- x, 32-bit int
#       esi <- y, 32-bit int
#       rdx <- &z, place to store sum
#       returns value of OF
        .intel_syntax noprefix
# Stack frame
        .equ    temp,-4
        .equ    overflow,-8
        .equ    localSize,-16
# Code
        .text
        .globl  addTwo
        .type   addTwo, @function
addTwo:
        push    rbp         # save frame pointer
        mov     rbp, rsp    # set new frame pointer
        add     rsp, localSize  # for local var.

        add     edi, esi    # x + y
      1 seto    al          # OF T or F
        movzx   eax, al     # convert to int for return
        mov     [rdx] , edi # *c = sum
        
        mov     rsp, rbp    # restore stack pointer
        pop     rbp         # and caller frame pointer
        ret

Listing 15-10: Assembly language version of addTwo returns the value of the OF flag
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We’re using another instruction in Listing 15-10, seto 1. The setcc 
instructions are used to tell when various conditions, as shown in the condi-
tion codes, are true or false:

setcc—Byte on Condition

Sets an 8-bit register to 0 or 1 depending on the condition cc.

setcc reg stores 1 in 8-bit reg when cc is true, 0 when cc is false.

The setcc instructions use the same cc codes as those in the jcc group, 
as shown in Table 13-1 in Chapter 13. reg is an 8-bit register, except ah, 
bh, ch, and dh cannot be used in 64-bit mode. C treats 1 as true and 0 as 
false.

Another difference in our assembly language version of addTwo is that 
we won’t use the red zone for local variables. It’s a matter of personal pro-
gramming style, but I prefer to create a full stack frame so I don’t have to 
worry about using the stack if I change the function. I also have not saved 
the input arguments. The values in the registers used for passing argu-
ments do not need to be preserved for the calling function (see Table 11-2 
in Chapter 11).

If we use the C version of the main function (Listing 15-6) to call our 
assembly language version of addTwo, we still need to #include the C header 
file (Listing 15-7) to tell the compiler how to call addTwo.

Comparing our assembly language solution (Listing 15-10) with what 
the compiler did (Listing 15-9) shows that we used about half as many 
instructions.

N O T E 	 We need to be careful about such comparisons. The speed of program execution depends 
as much on the internal CPU architecture as on the number of instructions. I think the 
real savings in this example comes from not having to use somewhat complex C code to 
tell us about overflow.

Our assembly language version of the main function for this program, as 
shown in Listing 15-11, is similar to what the compiler generates from the 
C version, but our use of symbolic names for offsets in the stack frame and 
labels makes it easier to read.

# sumInts.s
# Adds two integers using local variables
# Checks for overflow
        .intel_syntax noprefix
        
# Stack frame
        .equ    x,-24
        .equ    y,-20
        .equ    z,-16
        .equ    overflow,-12
        .equ    canary,-8
        .equ    localSize,-32
# Read only data
        .section  .rodata
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askMsg:
        .string "Enter an integer: "
readFormat:
        .string "%i"
resultFormat:
        .string "%i + %i = %i\n"
overMsg:
        .string "    *** Overflow occurred ***\n"
# Code
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
        add     rsp, localSize      # for local var.
        mov     rax, fs:40          # get stack canary
        mov     canary[rbp], rax    # and save it
        
        mov     dword ptr x[rbp], 0 # x = 0
        mov     dword ptr y[rbp], 0 # y = 0

        lea     rdi, askMsg[rip]    # ask for integer
        mov     eax, 0
        call    printf@plt
        lea     rsi, x[rbp]         # place to store x
        lea     rdi, readFormat[rip]
        mov     eax, 0
        call    __isoc99_scanf@plt
        
        lea     rdi, askMsg[rip]    # ask for integer
        mov     eax, 0
        call    printf@plt
        lea     rsi, y[rbp]         # place to store y
        lea     rdi, readFormat[rip]
        mov     eax, 0
        call    __isoc99_scanf@plt
        
        lea     rdx, z[rbp]         # place to store sum
        mov     esi, x[rbp]         # load x
        mov     edi, y[rbp]         # load y
        call    addTwo
        mov     overflow[rbp], eax  # save overflow
        mov     ecx, z[rbp]         # load z
        mov     edx, y[rbp]         # load y
        mov     esi, x[rbp]         # load x
        lea     rdi, resultFormat[rip]
        mov     eax, 0              # no floating point
        call    printf@plt
        
        cmp     dword ptr overflow[rbp], 0 # overflow?
        je      noOverflow
        lea     rdi, overMsg[rip]   # yes, print message
        mov     eax, 0
        call    printf@plt
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noOverflow:
        mov     eax, 0              # return 0

        mov     rcx, canary[rbp]    # retrieve saved canary
        xor     rcx, fs:40          # and check it
        je      goodCanary
        call    __stack_chk_fail@plt  # bad canary
goodCanary:
        mov     rsp, rbp            # restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 15-11: Assembly language version of the main function for the sumIntegers program

This example shows one of the reasons for writing a subfunction in 
assembly language—we were able to access a feature of the CPU, the OF in 
the rflags register, which is not accessible in the higher-level language we’re 
using, C. And we needed to check for overflow immediately after the opera-
tion that we are checking is performed (addition, in this example).

This example also illustrates a common use of the return value. Inputs 
and outputs are often passed in the argument list, with supplemental infor-
mation about the computation carried in the return value.

That said, calling a function to simply add two numbers is inefficient. 
In the next section, we’ll look at a common extension to C that allows us to 
insert assembly language directly in our C code.

Inline Assembly Language
Like many C compilers, gcc includes an extension to the standard C lan-
guage that allows us to embed assembly language in our C code, inline 
assembly. Doing so can be complex. We’ll look at a simple case here. You can 
read the details at https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language 
-with-C.html, or you can use the info gcc shell command and select C 
ExtensionsUsing Assembly Language with CExtended Asm.

The general form for embedding assembly language in C is as follows:

asm asm-qualifiers (assembly language statements
                  : output operands
                  : input operands
                  : clobbers);

The asm-qualifiers are used to help the compiler optimize the C code, 
a topic that is beyond the scope of this book. We’re not asking the compiler 
to optimize our C code, so we won’t use asm-qualifiers.

The output operands are the C variables that could be changed by the 
assembly language statements, thus acting as outputs from the assembly  
language statements. The input operands are the C variables that are used by 
the assembly language statements but are not changed, thus acting as inputs 
to the assembly language statements. The clobbers are the registers that get 
explicitly changed by the assembly language statements, thus telling the com-
piler about the possible changes in these registers.

https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
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In Listing 15-12, we use inline assembly language to check for overflow 
in our addition.

/* sumInts.c
 * Adds two integers
 */

#include <stdio.h>

int main(void)
{
  int x = 0, y = 0, z, overflow;
  
  printf("Enter an integer: ");
  scanf("%i", &x);
  printf("Enter an integer: ");
  scanf("%i", &y);

  asm("mov edi, 1%22\n"
      "3add edi, %3\n"
      "seto al\n"
      "movzx eax, al\n"
      "mov %1, eax\n"
      "mov %0, edi"
      : 4"=rm" (z), "=rm" (overflow)
      : 5"rm" (x), "rm" (y)
      : "rax", "rdx", 6"cc");

  printf("%i + %i = %i\n", x, y, z);
  if (overflow)
    printf("*** Overflow occurred ***\n");

  return 0;
}

Listing 15-12: Using inline assembly language to check for overflow when adding

The first thing to note about our code here is that it’s important to 
place the add instruction in the assembly language 3 so that we can check 
for overflow immediately after the instruction is executed. If we were to 
do the addition in C and then just check for overflow in our assembly  
language, the compiler might insert an instruction before our assembly lan-
guage that might change the overflow flag.

We need to specify the constraints on each of our C variables. The "=rm" 
(z) 4 says that our assembly language will assign a value to the z C variable 
(=) and that the compiler can use either a register (r) or memory (m) for z. 
We would use "+rm" if the value of the variable is updated in our assembly 
language. Our inline assembly language code only reads the values in 
the x and y C variables, so the constraints on them are "rm" 5.

We specify the C variables in our assembly language by using the syntax 
%n 1, where n is the relative position in the ouputs:inputs list, starting from 
0. In our program, z is in position 0, overflow in 1, x in 2, and y in 3. So the 
instruction mov edi, %2 loads the value in the C variable y into the edi register.
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Remember that assembly language source code is line-oriented, so 
it’s important to place a newline character at the end of each assembly 
language statement 2. The newline is not needed at the end of the last 
assembly language statement.

We need to be careful when using inline assembly language. The com-
piler could generate assembly language for our C code that does not work 
well with our assembly language. It’s a good idea to generate the assembly 
language for the entire function (using the -S compiler option) and read it 
carefully to make sure the function is doing what you intend.

YOUR T UR N

1.	 Modify the functions in Listings 15-6, 15-7, and 15-10 to use unsigned ints 
and tell the user when the addition produces carry. Write the main function 
in C. It will declare the variables as follows:

unsigned int x = 0, y = 0, z;

The formatting code for reading and printing the values of the unsigned 
ints is %u. Here’s an example:

scanf("%u", &x);

2.	 Modify the program in Listing 15-12 to use unsigned ints and tell the user 
when the addition produces carry. 

What You’ve Learned

Recursion    Allows for simple and elegant solutions to some problems, 
but uses lots of stack space.

Accessing hardware features.     Most programming languages do 
not allow direct access to all the hardware features in a computer. An 
assembly language subfunction, or inline assembly language, may be 
the best solution.

Inline assembly    Allows us to embed assembly language in our C code.

Now that you know some common ways to use functions in a program, 
we’ll move on to multiplication, division, and logic operations. You’ll learn 
how to convert a string of numerals in ASCII code to the integer they 
represent.
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C O M P U T I N G  W I T H  B I T W I S E 

L O G I C ,  M U L T I P L I C A T I O N ,  A N D 
D I V I S I O N  I N S T R U C T I O N S

Now that we’ve learned about program 
organization, let’s turn our attention to 

computation. We’ll start by looking at the 
logic operators, which can be used to change 

individual bits in a value by using a technique called 
masking. Then we’ll move on to shift operations, which 
provide a way to multiply or divide by powers of two. In 
the last two sections of this chapter, we’ll cover arith-
metic multiplication and division by arbitrary integers.

Bit Masking
It’s often better to think of data items as patterns of bits rather than numer-
ical entities. For example, if you look back at Table 2-5 in Chapter 2, you’ll 
see that the only difference between uppercase and lowercase alphabetic 
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characters in the ASCII code is bit number 5. It’s 1 for lowercase and 0 for 
uppercase. For example, the ASCII code for m is 0x6d, and for M it’s 0x4d. If 
you wanted to write a function that changed the case of a string of alpha-
betic characters from lowercase to uppercase, you could view this as a 
numerical difference of 32. You would need to determine the current case 
of the character and then decide whether to change it by subtracting 32.

But there’s a faster way. We can change bit patterns by using logical bit-
wise operations and a mask, or bitmask. A mask is a specific pattern of bits that 
can be used to make specified bits in a variable either 1 or 0, or to invert them. 
For example, to make sure an alphabetic character is uppercase, we need to 
make sure its bit number 5 is 0, giving the mask 11011111 = 0xdf. Then, using 
the previous example of m, 0x6d ∧ 0xdf = 0x4d, which is M. And if the character 
is already uppercase, then 0x4d ∧ 0xdf = 0x4d, leaving it as uppercase. This solu-
tion avoids checking for the case before the conversion.

We can use similar logic for other operations. If you want to make a 
bit 1, you place a 1 in the appropriate bit position in the mask and use the 
bitwise OR operation. To produce a 0 in a bit position, place a 0 in that 
position and a 1 in each of the other bit positions in the mask and then use 
the bitwise AND operation. You can invert bits by placing a 1 in each bit 
position you want to invert, placing 0 in all other positions, and using the 
bitwise XOR operation. 

Bit Masking in C
As you saw earlier, uppercase and lowercase alphabetic characters in the 
ASCII code are distinguished by bit 5, which is 0 for uppercase and 1 for low-
ercase. The program in Listings 16-1, 16-2, and 16-3 shows how to use a mask 
to convert all lowercase alphabetic characters in a text string to uppercase.

N O T E 	 This program, and many that follow in the book, use the readLn and writeStr func-
tions that you were asked to write in “Your Turn” at the end of Chapter 14. If you 
want, you could use the gets and puts functions, respectively, in the C standard 
library, but you would need to make the appropriate changes in the book’s functions 
that call them because their behavior is a little different.

/* upperCase.c
 * Converts alphabetic characters to uppercase
 */

#include <stdio.h>
#include "toUpper.h"
#include "writeStr.h"
#include "readLn.h"
1 #define MAX 50

int main()
{
2 char myString[MAX];
   
  writeStr("Enter up to 50 alphabetic characters: ");
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3 readLn(myString, MAX);

4 toUpper(myString, myString);
  writeStr("All upper: ");
  writeStr(myString);
  writeStr("\n");
   
  return 0;
}

Listing 16-1: Program to convert lowercase alpha characters to uppercase

The main function in this program allocates a char array 2 to hold user 
input. We use #define to give a symbolic name to the length of the array 1, 
which allows us to easily change the length in one place and make sure the 
correct value gets passed to the readLn function 3. 

Passing the name of an array in C passes the address of the beginning 
of the array, so we don’t use the & (address of) operator 4. You’ll learn more 
about how arrays are implemented in Chapter 17. Nothing else is new in 
this main function, so we’ll move on to the subfunction, toUpper.

Since we’re passing the same array as both the source and destination 
arrays to toUpper, it will replace the characters stored in the array with the 
new values.

/* toUpper.h
 * Converts alphabetic letters in a C string to uppercase.
 */
 
#ifndef TOUPPER_H
#define TOUPPER_H
int toUpper(char *srcPtr, char *destPtr);
#endif

Listing 16-2: Header file for the toUpper function

/* toUpper.c
 * Converts alphabetic letters in a C string to uppercase.
 */
 
#include "toUpper.h"
#define UPMASK 10xdf
#define NUL '\0'

int toUpper(char *srcPtr, char *destPtr)
{
  int count = 0;
  while (*srcPtr != NUL)
  {
    *destPtr = 2*srcPtr & UPMASK;
    srcPtr++;
    destPtr++;
    count++;
  }
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3 *destPtr = *srcPtr;
  
4 return count;
}

Listing 16-3:  The toUpper function

To make sure that bit 5 is 0, we use a mask that has 0 in bit position 5 
and 1 elsewhere 1.  While it’s not the NUL character, we perform a bitwise AND 
with the character, which masks out bit 5 and allows all the other bits to 
remain the same in the result 2. Don’t forget to include the NUL character 
from the input text string 3! Forgetting to do so is a common program-
ming error that often does not show up during testing, because the byte in 
memory following where the output is being stored just happens to be 0x00 
(the NUL character). Then if you change the length of the input text string, 
the next byte in memory may not be 0x00. The error might show up in a 
seemingly random way.

Although this function returns a count of the number of characters 
processed 4, our main function does nothing with the value. A calling 
function doesn’t need to use a returned value. I usually include a count-
ing algorithm in functions like this for debugging purposes if needed.

Listing 16-4 shows the assembly language the compiler generates for 
the toUpper function.

        .file   "toUpper.c"
        .intel_syntax noprefix
        .text
        .globl  toUpper
        .type   toUpper, @function
toUpper:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -24[rbp], rdi ## save srcPtr
        mov     QWORD PTR -32[rbp], rsi ## save destPtr
        mov     DWORD PTR -4[rbp], 0    ## count = 0;
        jmp     .L2
.L3:
      1 mov     rax, QWORD PTR -24[rbp] ## load srcPtr
      2 movzx   eax, BYTE PTR [rax]     ## and char there
      3 and     eax, -33                ## and with 0xdf
        mov     edx, eax
        mov     rax, QWORD PTR -32[rbp] ## load destPtr
        mov     BYTE PTR [rax], dl      ## store new char
        add     QWORD PTR -24[rbp], 1   ## srcPtr++;
        add     QWORD PTR -32[rbp], 1   ## destPtr++;
        add     DWORD PTR -4[rbp], 1    ## count++;
.L2:
      4 mov     rax, QWORD PTR -24[rbp] ## load srcPtr
      5 movzx   eax, BYTE PTR [rax]     ## and char there
      6 test    al, al                  ## NUL char?
        jne     .L3                     ## no, loop back
        mov     rax, QWORD PTR -24[rbp] ## yes, load srcPtr
        movzx   edx, BYTE PTR [rax]     ## and char there
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        mov     rax, QWORD PTR -32[rbp] ## load destPtr
        mov     BYTE PTR [rax], dl      ## store NUL
        mov     eax, DWORD PTR -4[rbp]  ## return count;
        pop     rbp
        ret
        .size   toUpper, .-toUpper
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 "
        .section        .note.GNU-stack,"",@progbits

Listing 16-4: Compiler-generated assembly language for the toUpper function

Before entering the while loop, toUpper loads the address of the source 
text string into rax 14. The movzx instruction overwrites the address in rax 
with the byte stored at that address (BYTE PTR) and zeros the upper 56 bits of 
the register 25. The and instruction 3 uses the immediate data -33 = 0xdf, 
which is the mask to turn bit 5 to 0, thus making sure that the character is 
uppercase. This code sequence is repeated within the while loop for each 
character in the input text string that is not the NUL character 6.

As explained, treating the characters as bit patterns rather than as 
numerical values works for both converting lowercase to uppercase and let-
ting uppercase remain unchanged.

Listing 16-4 introduces another logic instruction, and  3. We already 
saw the xor instruction in Chapter 11. Let’s look at two more logical instruc-
tions, and and or.

Logic Instructions
Logic instructions work bitwise. That is, they operate on the individual bits in 
the corresponding bit positions of the two operands. Two of the most com-
mon logic instructions are AND and OR.

and—Logical AND

Performs a bitwise AND between two values.

and reg1, reg2 performs bitwise AND between values in registers, reg1 
and reg2, which can be the same or different registers. The result is left 
in reg1.

and reg, mem performs bitwise AND between a value in a register and a 
value in memory, leaving the result in the register.

and mem, reg performs bitwise AND between a value in memory and a 
value in a register, leaving the result in memory.

and reg, imm performs bitwise AND between a value in a register and the 
constant imm, leaving the result in the register.

and mem, imm performs bitwise AND between a value in memory and the 
constant imm, leaving the result in memory. 

The and instruction performs a bitwise AND between the source and 
destination values, leaving the result in the destination. The SF, ZF,  
and PF flags in the rflags register are set according to the result, the OF and 
CF flags are set to 0, and the AF flag is undefined.
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or—Logical Inclusive OR

Performs a bitwise inclusive OR between two values.

or reg1, reg2 performs bitwise inclusive OR between values in registers, 
reg1 and reg2, which can be the same or different registers. The result is 
left in reg1.

or reg, mem performs bitwise inclusive OR between a value in a register 
and a value in memory, leaving the result in the register.

or mem, reg performs bitwise inclusive OR between a value in memory 
and a value in a register, leaving the result in memory.

or reg, imm performs bitwise inclusive OR between a value in a register 
and the constant imm, leaving the result in the register.

or mem, imm performs bitwise inclusive OR between a value in memory 
and the constant imm, leaving the result in memory. 

The or instruction performs a bitwise inclusive OR between the 
source and destination values, leaving the result in the destination. 
The SF, ZF, and PF flags in the rflags register are set according to the 
result, the OF and CF flags are set to 0, and the AF flag is undefined.

Next, we’ll look at a way to write this same program directly in assembly 
language.

Bit Masking in Assembly Language
We’ll use the same masking algorithm in our assembly language version, 
but we’ll use identifiers that make it easier to see what is taking place. 
Listing 16-5 shows the main function written in assembly language.

# upperCase.s
# Makes user alphabetic text string all upper case
        .intel_syntax noprefix
# Stack frame
        .equ    myString,-64
        .equ    canary,-8
        .equ  1 localSize,-64
# Useful constants
        .equ    upperMask,0xdf
        .equ  2 MAX,50                # character buffer limit
        .equ    NUL,0
# Constant data
        .section  .rodata
        .align  8
prompt:
        .string "Enter up to 50 alphabetic characters: "
message:
        .string "All upper: "
newLine:
        .string "\n"
# Code
        .text
        .globl	 main
        .type	   main, @function
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main:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
        add     rsp, localSize        # for local var.
        mov     rax, qword ptr fs:40  # get canary
        mov     qword ptr canary[rbp], rax

        lea     rdi, prompt[rip]      # prompt user
        call    writeStr
        
        mov     esi, MAX              # limit user input
        lea     rdi, myString[rbp]    # place to store input
        call    readLn

        lea     rsi, myString[rbp]    # destination string
        lea     rdi, myString[rbp]    # source string
        call    toUpper
        
        lea     rdi, message[rip]     # tell user
        call    writeStr

      3 lea     rdi, myString[rbp]    # result
        call    writeStr
        lea     rdi, newLine[rip]     # some formatting
        call    writeStr

        mov     eax, 0                # return 0;
        mov     rcx, canary[rbp]      # retrieve saved canary
        xor     rcx, fs:40            # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT  # bad canary
goodCanary:
        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 16-5: Assembly language version of the main function to convert lowercase alpha-
betic characters to uppercase

We’re allowing enough memory space for 50 characters 2. Allowing 
another 8 bytes for the canary value totals 58 bytes, but we need to keep 
the stack pointer at a multiple of 16, so we allocate 64 bytes for our local 
variables 1. We’re passing the address of the char array as both the source 
and the destination to the toUpper function 3, so it will replace the original 
values in the array with the new ones.

We’ll use the same masking algorithm as the compiler when writing 
toUpper in assembly language but will structure the function differently. See 
Listing 16-6 for the code.

# toUpper.s
# Converts alphabetic characters in a C string to upper case.
# Calling sequence:
#   rdi <- pointer to source string
#   rsi <- pointer to destination string
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#   returns number of characters processed.
        .intel_syntax noprefix

# Stack frame
        .equ    count,-4
        .equ    localSize,-16
# Useful constants
        .equ    upperMask,0xdf
        .equ    NUL,0
# Code
        .text
        .globl  toUpper
        .type   toUpper, @function
toUpper:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
      1 add     rsp, localSize        # for local var.
        
        mov     dword ptr count[rbp], 0
whileLoop:
        mov   2 al, byte ptr [rdi]    # char from source
        and     al, upperMask         # no, make sure it's upper
        mov     byte ptr [rsi], al    # char to destination
      3 cmp     al, NUL               # was it the end?
        je      allDone               # yes, all done
        inc     rdi                   # increment
        inc     rsi                   #      pointers
        inc     dword ptr count[rbp]  #      and counter
        jmp     whileLoop             # continue loop
allDone:
      4 mov     byte ptr [rsi], al    # finish with NUL
        mov     eax, dword ptr count[rbp] # return count

        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 16-6: The toUpper function, written in assembly language

The compiler used the red zone on the stack for local variables, but I 
prefer creating an explicit stack frame 1. Instead of saving the source and 
destination addresses that were passed to this function in the local variable 
area of the stack, we can simply use the registers that the addresses were 
passed in.

The compiler used the movzx instruction to zero the portion of the rax 
register that was not used for processing each character. I prefer using a 
byte portion of the rax register, al, to process a character since that’s the 
correct size 2. Keep in mind that this leaves the 56 high-order bits in rax 
as they were, but if we are consistent in using only al when processing the 
character in the algorithm, that will be irrelevant. It also seems more 
natural to me to use the cmp instruction instead of test to check for the 
termination character, NUL 3. And, as explained earlier, don’t forget to 
include the NUL character 4.
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N O T E 	 I do not know whether my assembly language solution is more, or less, efficient than 
what the compiler produced. In most cases, code readability is far more important 
than efficiency.

YOUR T UR N

1.	 Write a program in assembly language that converts all alphabetic char-
acters to lowercase.

2.	 Write a program in assembly language that changes the case of all alpha-
betic characters to the opposite case.

3.	 Write a program in assembly language that converts all alphabetic char-
acters to uppercase and to lowercase. Your program should also show the 
user’s original input string after displaying both the uppercase and lower-
case conversions.

Shifting Bits
It’s sometimes useful to be able to shift all the bits in a variable to the left 
or to the right. If the variable is an integer, shifting all the bits to the left 
one position effectively multiplies the integer by two, and shifting them one 
position to the right effectively divides it by two. Using left/right shifts to do 
multiplication/division by powers of two is very efficient. 

Shifting Bits in C
We’ll discuss shifts by looking at a program that reads integers entered in 
hexadecimal from the keyboard and stores it as a long int. The program 
reads up to eight characters: '0'…'f'. Each character is in 8-bit ASCII code 
and represents a 4-bit integer, 0–15. Our program starts with a 64-bit inte-
ger that is 0. Starting with the most significant hexadecimal character, the 
first one entered by the user, the program converts the 8-bit ASCII code 
to its corresponding 4-bit integer. We’ll shift the accumulated value of our 
64-bit integer four bits to the left to make room for the next 4-bit integer 
and then add the new 4-bit integer value to the accumulated value.

Listings 16-7, 16-8, and 16-9 show the program.

/* convertHex.c
 * Gets hex number from user and stores it as a long int.
 */
#include <stdio.h>
#include "writeStr.h"
#include "readLn.h"
#include "hexToInt.h"

#define MAX 20
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int main()
{
  char theString[MAX];
  long int theInt;
   
  writeStr("Enter up to 16 hex characters: ");
  readLn(theString, MAX);

  hexToInt(theString, &theInt);
  printf("%lx = %li\n", theInt, theInt);
  return 0;
}

Listing 16-7: Program to convert hexadecimal to a long int

The program allocates a char array for storing the user input charac-
ter string and a long int to hold the converted value. The size of the long 
int data type depends on the operating system and hardware it’s running 
on. In our environment, it’s 64 bits. After reading the user’s input string, 
the main function calls hexToInt to do the actual conversion, passing the 
addresses of the input text string and the variable where the result will 
be stored.

The printf function converts theInt back to character format for display 
on the screen. The %lx formatting code tells printf to display the entire long 
int (64 bits in our environment) in hexadecimal. The %li formatting code 
displays the long int in decimal.

/* hexToInt.h
 * Converts hex character string to long int.
 * Returns number of characters converted.
 */
 
#ifndef HEXTOINT_H
#define HEXTOINT_H
int hexToInt(char *stringPtr, long int *intPtr);
#endif

Listing 16-8: Header file for the hexToInt function

The header file declares the hexToInt function, which takes two point-
ers. The char pointer is the input, and the long int pointer is the location for 
the primary output. The hexToInt function also returns the number of char-
acters that it converted as an int as a secondary output.

/* hexToInt.c
 * Converts hex character string to int.
 * Returns number of characters.
 */
 
#include "hexToInt.h"
#define GAP 0x07
#define INTPART 0x0f /* also works for lowercase */
#define NUL '\0'
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int hexToInt(char *stringPtr, long int *intPtr)
{
  *intPtr = 0;
  char current;
  int count = 0;

  current = *stringPtr;
  while (current != NUL)
  {
    if (current > '9')
    {
    1 current -= GAP;
    }
  2 current = current & INTPART;
  3 *intPtr = *intPtr  4;
  4 *intPtr |= current;
    stringPtr++;
    count++;
    current = *stringPtr;
  }
  return count;
}

Listing 16-9: Converting a string of hexadecimal characters to a long int

First, we need to convert the hexadecimal character to a 4-bit integer. 
The ASCII code for the numeric characters ranges from 0x30 to 0x39, and for 
the uppercase alphabetic characters from 0x41 to 0x46. Subtracting this 0x07 
gap from the alphabetic characters 1 gives us the bit patterns 0x30, 0x31, …, 
0x39, 0x3a, …, 0x3f for the characters entered. Of course, the user may enter 
lowercase alphabetic characters, in which case subtracting 0x07 gives 0x30, 
0x31, …, 0x39, 0x5a, …, 0x5f. Each hexadecimal character represents four bits, 
and if we look at the low-order four bits after subtracting 0x07, they are the 
same whether the user enters lowercase or uppercase alphabetic characters. 
We can convert to a 4-bit integer by masking off the upper four bits with the 
bit pattern 0x0f using the C bitwise AND operator, & 2.

Next, we shift all the bits in the accumulated value four bits to the left 
to make room for the next four bits represented by the hexadecimal char-
acter 3. The left shift leaves 0s in the four least significant bit positions, so 
we can copy the four bits in current into these positions with the bitwise OR 
operation, | 4.

Now let’s look at the assembly language the compiler generates for the 
hexToInt function, as shown in Listing 16-10.

        .file   "hexToInt.c"
        .intel_syntax noprefix
        .text
        .globl  hexToInt
        .type   hexToInt, @function
hexToInt:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -24[rbp], rdi ## save stringPtr
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        mov     QWORD PTR -32[rbp], rsi ## save intPtr
        mov     rax, QWORD PTR -32[rbp]
        mov     QWORD PTR [rax], 0      ## *intPtr = 0;
        mov     DWORD PTR -4[rbp], 0    ## count = 0;
        mov     rax, QWORD PTR -24[rbp] ## load stringPtr
        movzx   eax, BYTE PTR [rax]     ## current = *stringPtr
        mov     BYTE PTR -5[rbp], al
        jmp     .L2
.L4:
        cmp     BYTE PTR -5[rbp], 57    ## current <= '9'?
        jle     .L3                     ## yes, skip
        movzx   eax, BYTE PTR -5[rbp]   ## no, load current
        sub     eax, 7                  ## subtract gap
        mov     BYTE PTR -5[rbp], al    ## store current
.L3:
      1 and     BYTE PTR -5[rbp], 15    ## current & 0x0f
        mov     rax, QWORD PTR -32[rbp] ## load intPtr
        mov     rax, QWORD PTR [rax]    ## load *intPtr
      2 sal     rax, 4                  ## make room for 4 bits
        mov     rdx, rax
        mov     rax, QWORD PTR -32[rbp]
        mov     QWORD PTR [rax], rdx    ## store shifted value
        mov     rax, QWORD PTR -32[rbp]
        mov     rdx, QWORD PTR [rax]    ## load shifted value
      3 movsx   rax, BYTE PTR -5[rbp]   ## load new 4 bits
      4 or      rdx, rax                ## add them
        mov     rax, QWORD PTR -32[rbp]
        mov     QWORD PTR [rax], rdx    ## store updated value
        add     QWORD PTR -24[rbp], 1   ## stringPtr++;
        add     DWORD PTR -4[rbp], 1    ## count++;
        mov     rax, QWORD PTR -24[rbp]
        movzx   eax, BYTE PTR [rax]     ## load next character
        mov     BYTE PTR -5[rbp], al    ## and store it
.L2:
        cmp     BYTE PTR -5[rbp], 0     ## NUL character?
        jne     .L4                     ## no, continue looping
        mov     eax, DWORD PTR -4[rbp]  ## yes, return count
        pop     rbp
        ret
        .size   hexToInt, .-hexToInt
        .size   hexToInt, .-hexToInt
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 16-10: Compiler-generated assembly language for the hexToInt function

After subtracting the gap between the numeric and alphabetic charac-
ters, if necessary, the character is converted to a 4-bit integer with a masking 
operation, leaving the result in the current variable in the stack frame 1. 
The accumulated value is then shifted four bit positions to the left to make 
room for the new 4-bit integer value 2.

These four bits are inserted into the vacated location in the accumu-
lated value with an or instruction 4, but like most arithmetic and logic 
operations, it can be performed only on same-sized values. The accumulated 
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value is a 64-bit long int, so the 4-bit integer must be type cast to a 64-bit long 
int before inserting it into the 64-bit accumulated value. If the C compiler 
can figure out what type casting is needed from the C statement, it will do it 
automatically. Indeed, the compiler used the movsx instruction to extend the 
8-bit value at -5[rbp] to a 64-bit value in rax 3. The movsx instruction does 
sign extension, but since the masking operation made the high-order four 
bits of the 8-bit value all 0, the sign extension copies the 0 in bit number 7 
into the 56 high-order bits of rax.

movsx—Move with Sign-Extension

Copies (moves) an 8-bit or 16-bit value from memory or a register to a 
larger register width and copies the sign bit into the high-order bits in 
the destination register.

movsx reg1, reg2 moves the value in reg2 to reg1.

movsx reg, mem moves from a memory location to a register.

The movsx instruction extends the number of bits occupied by a value. 
The extension can be from 8 bits to 16, 32, or 64 bits, or from 16 bits to 
32 or 64 bits. The movsx instruction does not affect the status flags in the 
rflags register.

movsxd—Move with Sign-Extension Doubleword

Copies (moves) a 32-bit value from the memory 64-bit register and cop-
ies the sign bit into the high-order bits in the destination register.

movsxd reg1, reg2 moves the value in reg2 to reg1.

movsxd reg, mem moves from a memory location to a register.

The movsxd instruction extends the number of bits occupied by a value 
from 32 to 64 bits. The movsxd instruction does not affect the status flags 
in the rflags register.

Next, we’ll look at the most common shift instructions.

Shift Instructions
The shift instructions move all the bits in the destination location right or 
left. The number of bit places to shift is loaded into the cl register before 
the shift or expressed as an immediate value in the shift instruction. The 
CPU uses only the low-order five bits of the shift operand when shifting a 
32-bit value, and it uses only the low-order six bits of the shift operand when 
shifting a 64-bit value.

sal—Shift Arithmetic Left

Shifts bits logically to the left.

sal reg, cl shifts the bits in reg left by the number of places specified 
in cl.

sal mem, cl shifts the bits at the mem location left by the number of places 
specified in cl.
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sal reg, imm shifts the bits in reg left by the number of places specified 
by imm.

sal mem, imm shifts the bits in reg left by the number of places specified 
by imm. 

The bits on the right that are vacated by the left shift are filled with 0s. 
The last bit shifted out of the left (most significant) side of the destina-
tion operand is stored in CF in the rflags register. When the shift operand 
is 1, the OF is set to the exclusive OR of the CF and the bit that is shifted 
into the highest-order bit in the destination operand result; for larger 
shifts, the state of the OF is undefined.

sar—Shift Arithmetic Right

Shifts bits arithmetically to the right.

sar reg, cl shifts the bits in reg right by the number of places specified 
in cl.

sar mem, cl shifts the bits at the mem location right by the number of 
places specified in cl.

sar reg, imm shifts the bits in reg right by the number of places specified 
by imm.

sar mem, imm shifts the bits in reg right by the number of places specified 
by imm. 

The bits on the left that are vacated by the right shift are filled with a 
copy of the highest-order bit, thus preserving the sign of the value. The 
last bit shifted out of the right (least significant) side of the destination 
operand is stored in the CF flag. 

B E  C A R E F U L ! 	 Since the sar instruction copies the highest-order bit into the vacated bits, the 
result of shifting a negative value (in two’s complement notation) can never be 
zero. For example, shifting –1 any number of bits to the right is still –1, but you 
might expect it to be 0.

shr —Shift Logical Right

Shifts bits logically to the right.

shr reg, cl shifts the bits in reg right by the number of places specified 
in cl.

shr mem, cl shifts the bits at the mem location right by the number of places 
specified in cl.

shr reg, imm shifts the bits in reg right by the number of places specified 
by imm.

shr mem, imm shifts the bits in reg right by the number of places specified 
by imm. 
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The bits on the left that are vacated by the right shift are filled with 0s. 
The last bit shifted out of the right (least significant) side of the destina-
tion operand is stored in the CF flag.

The manuals also define a shift logical left, shl, but this is just another 
name for the sal instruction.

Next, we’ll take a similar approach to writing the hexadecimal-to-integer 
conversion program in assembly language as we did for the earlier case con-
version C program. We’ll use only the 8-bit portions of registers for converting 
each character.

Shifting Bits in Assembly Language
Listing 16-11 shows the main function for the hexadecimal-to-integer conver-
sion program written in assembly language.

# convertHex.s
        .intel_syntax noprefix
# Stack frame
        .equ    myString,-48
        .equ    myInt, -16
        .equ    canary,-8
        .equ    localSize,-48
# Useful constants
        .equ    MAX,20                # character buffer limit
# Constant data
        .section	.rodata
        .align  8
prompt:
        .string "Enter up to 16 hex characters: "
format:
        .string "%lx = %li\n"
# Code
        .text
        .globl	 main
        .type	   main, @function
main:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
        add     rsp, localSize        # for local var.
        mov     rax, qword ptr fs:40  # get canary
        mov     qword ptr canary[rbp], rax

        lea     rdi, prompt[rip]      # prompt user
        call    writeStr
        
        mov     esi, MAX              # get user input
        lea     rdi, myString[rbp]
        call    readLn

        lea     rsi, myInt[rbp]       # for result
        lea     rdi, myString[rbp]    # convert to int
        call    hexToInt
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        mov     rdx, myInt[rbp]       # converted value
        mov     rsi, myInt[rbp]
        lea     rdi, format[rip]      # printf format string
        mov     eax, 0
        call    printf
        
        mov     eax, 0                # return 0;
        mov     rcx, canary[rbp]      # retrieve saved canary
        xor     rcx, fs:40            # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT  # bad canary
goodCanary:
        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 16-11: The main function for the program converting hexadecimal to long int in 
assembly language

There isn’t anything new in the main function here, but we’re using 
more meaningful labels and added comments to make it easier to read. As 
mentioned earlier, rather than type cast the char variables, we’ll use the 
8-bit portion of a register for our assembly language version of hexToInt, as  
in Listing 16-12.

# hexToInt.s
# Converts hex characters in a C string to int.
# Calling sequence:
#   rdi <- pointer to source string
#   rsi <- pointer to long int result
#   returns number of chars converted
        .intel_syntax noprefix

# Stack frame
        .equ    count,-4
        .equ    localSize,-16
# Useful constants
        .equ    GAP,0x07
        .equ    NUMMASK,0x0f            # also works for lowercase
        .equ    NUL,0
        .equ    NINE,0x39               # ASCII for '9'
# Code
        .text
        .globl  hexToInt
        .type   hexToInt, @function
hexToInt:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.

      1 mov     dword ptr count[rbp], 0 # count = 0
      2 mov     qword ptr [rsi], 0      # initialize to 0
      3 mov     al, byte ptr [rdi]      # get a char
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whileLoop:
        cmp     al, NUL                 # end of string?
        je      allDone                 # yes, all done
        cmp     al, NINE                # no, is it alpha?
        jbe     numeral                 # no, nothing else to do
        sub     al, GAP                 # yes, numeral to alpha gap
numeral:
      4 and     al, NUMMASK             # convert to 4-bit int
        sal     qword ptr [rsi], 4      # make room
      5 or      byte ptr [rsi], al      # insert the 4 bits
        inc     dword ptr count[rbp]    # count++
        inc     rdi                     # increment string ptr
        mov     al, byte ptr [rdi]      # next char
        jmp     whileLoop               # and continue
allDone:
        mov     eax, dword ptr count[rbp] # return count

        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 16-12: Assembly language version of hexToInt function

We’re using three different sized variables in this function. The count 
variable, which shows the number of characters converted, is a 32-bit int 1. 
Although our main function doesn’t use this value, you’ll get a chance to use 
it when it’s Your Turn. Our conversion results in a 64-bit long int 2. Both 
these variables are in memory, so we need to specify their size whenever we 
use them (dword ptr and qword ptr, respectively).

The character we are converting fits into a single byte, so we use the al 
portion of the rax register 3. When doing this, the high-order 56 bits of 
the rax register can hold any bit pattern, but none of our operations on al 
will involve these high-order bits. The bit mask we’re using will set the high-
order four bits of the al register to 0 4, so the or instruction will insert only 
the four low-order bits of the al register into the low-order 4-bit portion  
of the result 5.

Shifts are good for multiplying and dividing by powers of two, but we 
also need to be able to multiply and divide by any numbers. We’ll look at 
multiplication and division of any integers in the next two sections, defer-
ring fractional and floating-point values until Chapter 19.

YOUR T UR N

1.	 Modify the C main function in Listing 16-7 so it displays the number of 
hexadecimal characters converted. Use the assembly language hexToInt 
function in Listing 16-12 for the conversion.

2.	 Write a program in assembly language that converts octal input to a long int.
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Multiplication
Of course, we need to be able to multiply arbitrary integers, not just by pow-
ers of two. It could be done using loops, but most general-purpose CPUs 
include multiply instructions.

Multiplication in C
Let’s modify the C program in Listings 16-7, 16-8, and 16-9 to convert numeric 
text strings into decimal integers. When converting from hexadecimal text 
strings, we shifted the accumulated value four bits to the left, thus multiply-
ing it by 16. We’ll use the same algorithm for converting decimal text strings 
but multiply by 10 instead of 16. Listings 16-13, 16-14, and 16-15 show the C 
program.

/* convertDec.c
 * Reads decimal number from keyboad and displays how
 * it's stored in hexadecimal.
 */

#include <stdio.h>
#include "writeStr.h"
#include "readLn.h"
#include "decToUInt.h"
#define MAX 20
int main()
{
  char theString[MAX];
  unsigned int theInt;
   
  writeStr("Enter an unsigned integer: ");
  readLn(theString, MAX);

  decToUInt(theString, &theInt);
1 printf("\"%s\" is stored as 0x%x\n", theString, theInt);
   
  return 0;
}

Listing 16-13: Program to convert a numeric text string into an unsigned decimal integer

The main function for this decimal conversion program is almost the 
same as for the hexadecimal conversion program in the previous sec-
tion. The primary difference is that we display the original text string 
entered by the user and show how the resulting unsigned int is stored in 
hexadecimal 1.

The function to do the conversion, decToUInt, takes a pointer to the text 
string and a pointer to the variable for the primary output, and it returns 
the number of characters that were converted (Listing 16-14).

/* decToUInt.h
 * Converts decimal character string to unsigned int.
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 * Returns number of characters.
 */
 
#ifndef DECTOUINT_H
#define DECTOUINT_H
int decToUInt(char *stringPtr, unsigned int *intPtr);
#endif

Listing 16-14: Header file for the decToUInt function

Listing 16-15 shows the implementation of the decToUInt function.

/* decToUInt.c
 * Converts decimal character string to unsigned int.
 * Returns number of characters.
 */

#include <stdio.h>
#include "decToUInt.h"
#define INTMASK0xf

int decToUInt(char *stringPtr, unsigned int *intPtr)
{
  int radix = 10;
  char current;
  int count = 0;
  
  *intPtr = 0;
  current = *stringPtr;
  while (current != '\0')
  {
  1 current = current & INTMASK;
  2 *intPtr = *intPtr * radix;
  3 *intPtr += current;
    stringPtr++;
    count++;
    current = *stringPtr;
  }
  return count;
}

Listing 16-15:  The decToUInt function

The first difference between this algorithm and the one for hexa-
decimal is that we don’t need to check for alphabetic characters because 
the ASCII code for the numeric characters is contiguous from 0 to 9. 
Since the low-order four bits of the ASCII code for the numerals is the 
same as the integer value it represents, we can simply mask off the high-
order four bits 1.

As we saw, when working with hexadecimal, we can easily make room 
for the new value by shifting the accumulating result, but this works only 
when the maximum of the new value is a power of two. When working with 
decimal, we need to multiply the accumulating result by 10 2, and then we 
need to add the new value 3.
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The compiler generates the assembly language for the decToUInt func-
tion, shown in Listing 16-16.

        .file   "decToUInt.c"
        .intel_syntax noprefix
        .text
        .globl  decToUInt
        .type   decToUInt, @function
decToUInt:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -24[rbp], rdi ## save stringPtr
        mov     QWORD PTR -32[rbp], rsi ## save intPtr
        mov     DWORD PTR -4[rbp], 10   ## radix = 10;
        mov     DWORD PTR -8[rbp], 0    ## count = 0;
        mov     rax, QWORD PTR -32[rbp]
        mov     DWORD PTR [rax], 0      ## *intPtr = 0;
        mov     rax, QWORD PTR -24[rbp]
        movzx   eax, BYTE PTR [rax]
        mov     BYTE PTR -9[rbp], al    ## load character
        jmp     .L2                     ## go to bottom
.L3:
        and     BYTE PTR -9[rbp], 15    ## convert to int
        mov     rax, QWORD PTR -32[rbp]
        mov     edx, DWORD PTR [rax]    ## load current value
        mov     eax, DWORD PTR -4[rbp]  ## load radix
      1 imul    edx, eax                ## times 10
        mov     rax, QWORD PTR -32[rbp]
        mov     DWORD PTR [rax], edx    ## store 10 times current
        mov     rax, QWORD PTR -32[rbp]
        mov     edx, DWORD PTR [rax]    ## load 10 times current
      2 movsx   eax, BYTE PTR -9[rbp]   ## byte to 32 bits
      3 add     edx, eax                ## add in latest value
        mov     rax, QWORD PTR -32[rbp]
        mov     DWORD PTR [rax], edx    ## *intPtr += current;
        add     QWORD PTR -24[rbp], 1   ## stringPtr++;
        add     DWORD PTR -8[rbp], 1    ## count++;
        mov     rax, QWORD PTR -24[rbp]
        movzx   eax, BYTE PTR [rax]
        mov     BYTE PTR -9[rbp], al    ## load next character
.L2:
        cmp     BYTE PTR -9[rbp], 0     ## NUL?
        jne     .L3                     ## no, keep going
        mov     eax, DWORD PTR -8[rbp]  ## yes, return count;
        pop     rbp
        ret
        .size   decToUInt, .-decToUInt
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 16-16: Compiler-generated assembly language for the decToUInt function
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The assembly language for the decToUInt function is similar to the 
assembly language for the hexToInt function shown in Listing 16-12. The pri-
mary differences are that the accumulated result is multiplied by the radix 
we’re converting to, 10 for decimal, using the imul instruction 1, and that 
the new value is type cast to be a 32-bit int 2 before it’s added to the accu-
mulated result 3.

The x86-64 instruction set includes both an unsigned multiply instruc-
tion, mul, and a signed one, imul. It may seem odd that the compiler is using 
the signed multiply instruction to convert the numeric text string to an 
unsigned int. We’ll see the reason after looking at the details of the two 
instructions.

Multiply Instructions
The signed multiply instruction can have one, two, or three operands:

imul—Signed Multiply

Performs a signed multiply.

imul reg multiplies the integer in al, ax, eax, or rax by the integer in reg, 
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

imul mem multiplies the integer in al, ax, eax, or rax by the integer in mem, 
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

imul reg1, reg2 multiplies the integer in reg1 by the integer in reg2, leav-
ing the result in reg1. reg1 and reg2 can be the same register.

imul reg, mem multiplies the integer in reg by the integer in mem, leaving 
the result in reg.

imul reg1, reg2, imm multiplies the integer in reg2 by the integer imm, 
leaving the result in the destination reg1. reg1 and reg2 can be the same 
register.

imul reg, mem, imm multiplies the integer in mem by the integer imm, leav-
ing the result in reg.

The width of the integers in registers or in memory must be the same. 
In the first form, the width of the result will be twice that of the integers 
being multiplied and will be sign-extended in the high-order portion. 
In the second and third forms, the n-bit destination is multiplied by the 
n -bit source and n low-order bits left in the destination. In the last two 
forms –128 ≤ imm ≤ +127, which is sign-extended to the same width as the 
source and destination registers before multiplying it by the n-bit source, 
leaving the n low-order bits in the destination register.

In all but the first two forms, if the width of the result does not exceed 
the width or the two integers being multiplied, both the CF and OF in the 
rflags register are set to 0. If the width of the result exceeds the width 
of the two integers being multiplied, the high-order portion is lost, and 
both the CF and OF in the rflags register are set to 1.
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mul—Unsigned Multiply

Performs an unsigned multiply.

mul reg multiplies the integer in al, ax, eax, or rax by the integer in reg, 
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

mul mem multiplies the integer in al, ax, eax, or rax by the integer in mem, 
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

The width of the integers in registers or in memory must be the same. 
The width of the result will be twice that of the integers being multi-
plied and will not be sign-extended in the high-order portion.

When multiplying two n-bit integers, the product can be up to 2n bits 
wide. Without offering a formal proof here, you can probably be convinced 
by considering the largest 3-bit number, 111. Add 1 to get 1000. From 1000 × 

1000 = 1000000, we can conclude that 111 × 111 ≤ 111111. More precisely, 111 × 111 

= 110001.

The mul instruction and the single-operand forms of the imul instruc-
tion allow for the possibility of the full width of 2n for the product when 
multiplying two n -bit integers. When multiplying the 8-bit integer in al 
by an 8-bit integer, the 16-bit result is left in ax. For multiplying two 16-bit 
integers, the notation dx:ax means that the high-order 16 bits of the 32-bit 
result is stored in the dx register, and the low-order 16 bits in the ax register. 
Similarly, edx:eax means the high-order 32 bits of the 64-bit result are in edx 
and the low-order 32 bits in eax, and rdx:rax means the high-order 64 bits 
of the 128-bit result are in rdx and the low-order 64 bits in rdx. The 32-bit 
multiply, which uses edx:eax for the 64-bit result, also zeros the high-order 
32 bits of both the rdx and rax registers, like most arithmetic instructions, so 
any data that might be in those parts of the registers would be lost.

It’s important to remember that the portions of the rax and rdx registers 
(only rax for 8-bit multiply) used by the mul instruction and the single-operand 
forms of the imul instruction never appear as operands in the instruction. We 
can summarize the use of the mul and single-operand forms of the imul instruc-
tions in Table 16-1.

Table 16-1: Register Usage of mul and Single-Operand imul 

Multiplier Multiplicand Product

Reg or mem size Low-order High-order Low-order

8 bits al ah al

16 bits ax dx ax

32 bits eax edx eax

64 bits rax rdx rax

The two’s complement notation implies a fixed number of bits, but the 
mul instruction and the single-operand forms of the imul instruction extend 
the number of bits in the result. When we allow for a wider result, we need 
to distinguish between sign extension or not. For example, if 1111 is meant 
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to represent 15 in a program and we convert it to eight bits, it should be 
00001111. On the other hand, if it is meant to represent –1, then the 8-bit 
representation should be 11111111. The mul instruction doubles the width of 
the result with no sign extension, and the single-operand forms of the imul 
instruction that double the width of the result do extend the sign bit into 
the high-order bit positions.

In many cases, we know that the product will always fit within the same 
n-bit width of the multiplicand and multiplier. In these cases, the other four 
forms of imul provide more flexibility. But if we made a mistake and the 
product exceeds the n bits allowed for it, the high-order bits are lost. The 
n-bit product is, of course, incorrect, which is noted by the CPU by setting 
both the OF and CF in the rflags register to 1.

In the two-operand forms of the imul instruction, if the result does not 
exceed the size of the two values being multiplied, it is correct whether it 
represents a signed integer (in two’s complement notation) or an unsigned 
integer. With the three-operand forms of imul, the 8-bit immediate value is 
sign-extended to the same width as the other two operands before the mul-
tiplication, so the result is correct, both signed and unsigned, if it does not 
exceed the width of the other integer being multiplied.

Returning to the use of the imul instruction when converting to an 
unsigned integer in Listing 16-16 1, the result of the multiplication will be 
correct for both signed and unsigned integers as long as the result remains 
within 32 bits. As explained, a result exceeding 32 bits would be an error, 
and the compiler does not check for that possibility. What makes the result 
an unsigned integer is the way the integer is used in the program. In this 
program, the main function (Listing 16-13) treats it as an unsigned integer.

Next, we’ll look at using multiplication in assembly language.

Multiplication in Assembly Language
Our assembly language version of the main function for converting a deci-
mal text string to an int, as shown in Listing 16-17, is similar to the C 
version.

# convertDec.s
        .intel_syntax noprefix
# Stack frame
        .equ    myString,-48
        .equ    myInt, -12
        .equ    canary,-8
        .equ    localSize,-48
# Useful constants
        .equ    MAX,11                # character buffer limit
# Constant data
        .section  .rodata
        .align  8
prompt:
        .string "Enter an unsigned integer: "
format:
        .string "\"%s\" is stored as 0x%x\n"
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# Code
        .text
        .globl	 main
        .type	   main, @function
main:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
        add     rsp, localSize        # for local var.
        mov     rax, qword ptr fs:40  # get canary
        mov     qword ptr canary[rbp], rax

        lea     rdi, prompt[rip]      # prompt user
        call    writeStr
        
        mov     esi, MAX              # get user input
        lea     rdi, myString[rbp]
      1 call    readLn

        lea     rsi, myInt[rbp]       # for result
        lea     rdi, myString[rbp]    # convert to int
      2 call    decToUInt

        mov     edx, myInt[rbp]       # converted value
        lea     rsi, myString[rbp]    # echo user input
        lea     rdi, format[rip]      # printf format string
        mov     eax, 0
        call	   printf
        
        mov     eax, 0                # return 0;
        mov     rcx, canary[rbp]      # retrieve saved canary
        xor     rcx, fs:40            # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT  # bad canary
goodCanary:
        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 16-17: Assembly language version of the main function to convert a decimal num-
ber from a text string to an int

After reading the user’s input text string 1, the main function calls the 
decToUInt function 2, which converts the text string to the unsigned int that 
the string represents, as shown in Listing 16-18.

# decToUInt.s
# Converts decimal character string to unsigned 32-bit int.
# Calling sequence:
#   rdi <- pointer to source string
#   rsi <- pointer to int result
#   returns 0
        .intel_syntax noprefix
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# Useful constants
        .equ    DECIMAL,10
        .equ    NUMMASK,0x0f
        .equ    NUL,0

# Code
        .text
        .globl  decToUInt
        .type   decToUInt, @function
decToUInt:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer

        mov   1 dword ptr [rsi], 0    # result = 0
        mov     al, byte ptr [rdi]    # get a char
whileLoop:
        cmp     al, NUL               # end of string?
        je      allDone               # yes, all done
      2 and     eax, NUMMASK          # no, 4-bit -> 32-bit int
      3 mov     ecx, dword ptr [rsi]  # current result
        imul  4 ecx, ecx, DECIMAL     # next base position
      5 add     ecx, eax              # add the new value
      6 mov     dword ptr [rsi], ecx  # update result
        inc     rdi                   # increment string ptr
        mov     al, byte ptr [rdi]    # next char
        jmp     whileLoop             # and continue
allDone:
        mov     dword ptr [rsi], ecx  # output result
        mov     eax, 0                # return 0

        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 16-18: Assembly language version of decToUInt function

Instead of creating a local variable to hold the converted int, we’ll 
use the memory location in the calling function, accessing it from the 
passed-in address 1. We read the characters into the al register. Masking 
off all but the low-order four bits of the eax register type casts the 4-bit 
integer from the character in al to a 32-bit int 2 so it can be added to 
the result 5.

The destination operand of the imul instruction must be a register, so 
we need to load the result into a register for the multiplication operation 3. 
Using the same register for one source operand and the destination operand 
multiplies the value in the register by the immediate value 4. After adding in 
the new value in the ecx register, we store the new value back in the location 
of the result 6.

Next, we’ll discuss the inverse of multiplication, division.
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YOUR T UR N

1.	 Write the function decToSInt in assembly language that converts a signed 
decimal number from its text string format to its int format, using two’s 
complement notation. Your function should interpret numbers with no sign 
prefix, or with a + prefix, as positive. Negative numbers will have a - pre-
fix. Hint: Your function could call the decToUInt function in Listing 16-18 to 
do most of the conversion.

2.	 Modify the decToUInt function in Listing 16-18 so that it doesn’t use a multi-
ply instruction. You will need to use shifting and addition to do this. 

Division
When multiplying two n -bit numbers, we were concerned about the result 
being 2n bits wide. In division, the quotient will usually be narrower than 
the dividend. But division is complicated by the existence of a remainder, 
which needs to be stored someplace. When we describe the division instruc-
tions, you’ll see that they start with a 2n-bit-wide dividend and an n-bit-wide 
divisor and are limited to an n-bit quotient and an n-bit remainder.

We’ll start with a C function that converts an int to the numerical text 
string it represents, the inverse of the earlier decToUInt function.

Division in C
Our main function will read an unsigned integer from the user, add 123 to it, 
and show the sum.  Our subfunction, intToUDec, will use a division algorithm 
to convert a 32-bit int to the text string that represents it so that the main func-
tion can display the sum. Listings 16-19, 16-20, and 16-21 show the program.

/* add123.c
 * Reads an unsigned int from user, adds 123,
 * and displays the result.
 */

#include "writeStr.h"
#include "readLn.h"
#include "decToUInt.h"
#include "intToUDec.h"
#define MAX 11
int main()
{
  char theString[MAX];
  unsigned int theInt;
   
  writeStr("Enter an unsigned integer: ");
  readLn(theString, MAX);
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1 decToUInt(theString, &theInt);
  theInt += 123;
  intToUDec(theString, theInt);
   
  writeStr("The result is: ");
  writeStr(theString);
  writeStr("\n");
   
  return 0;
}

Listing 16-19: Program to add 123 to an unsigned integer

The main function for this program is quite simple. We’ll use the decToUInt 
function from earlier, either the C version (Listing 16-15) or assembly lan-
guage version (Listing 16-18), to convert the user’s input to an int 1.

/* intToUDec.h
 * Converts an int to corresponding unsigned text
 * string representation.
 */

#ifndef INTTOUDEC_H
#define INTTOUDEC_H
void intToUDec(char *decString, unsigned int theInt);
#endif

Listing 16-20: Header file for the intToUDec function

The header file for the intToUDec function shows that the output, 
decString, is passed by pointer, and the input, theInt, is passed by value. 
Listing 16-21 shows the implementation of intToUDec.

/* intToUDec.c
 * Converts an int to corresponding unsigned text
 * string representation.
 */

#include "intToUDec.h"
#define ASCII 0x30
#define MAX 12
#define NUL '\0'

void intToUDec(char *decString, unsigned int theInt)
{
  int base = 10;
  char reverseArray[MAX];
  char digit;
  char *ptr = reverseArray;
   
1 *ptr = NUL;  // start with termination char
  ptr++;
  do
  {
  2 digit = theInt % base;
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  3 digit = ASCII | digit;
    *ptr = digit;
  4 theInt = theInt / base;
    ptr++;
  } while (theInt > 0);
5 do           // reverse the string
  {
    ptr--;
    *decString = *ptr;
    decString++;
  } while 6 (*ptr != NUL);
}

Listing 16-21: Function to convert a 32-bit unsigned int to its corresponding text string for 
display

The algorithm we’re using to find the characters that represent the 
unsigned int involves the repeated integer division of the unsigned int by the 
number base, 10 in this function. The % operator computes the remainder 
from the division, which will be the value of the low-order digit 2. We convert 
this single digit to its ASCII character with an OR operation 3 and append 
it the string we’re creating. Now that we’ve converted the low-order digit, 
the / operator will perform an integer divide, effectively removing the 
low-order digit from theInt 4.

Since this algorithm works from right to left, the characters are stored 
in reverse order. We need to reverse the order of the text string for the call-
ing function 5. Storing the NUL character first 1 provides a way to know 
when the entire text string has been completely copied in reverse order 6.

Next, we’ll look at the assembly language generated by the compiler; 
see Listing 16-22.

        .file   "intToUDec.c"
        .intel_syntax noprefix
        .text
        .globl  intToUDec
        .type   intToUDec, @function
intToUDec:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 64
        mov     QWORD PTR -56[rbp], rdi
        mov     DWORD PTR -60[rbp], esi
        mov     rax, QWORD PTR fs:40
        mov     QWORD PTR -8[rbp], rax
        xor     eax, eax
        mov     DWORD PTR -36[rbp], 10  ## base = 10;
        lea     rax, -20[rbp]           ## place to store string
        mov     QWORD PTR -32[rbp], rax
        mov     rax, QWORD PTR -32[rbp]
        mov     BYTE PTR [rax], 0
        add     QWORD PTR -32[rbp], 1
.L2:
        mov     ecx, DWORD PTR -36[rbp] ## load base
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        mov     eax, DWORD PTR -60[rbp] ## load the int
      1 mov     edx, 0                  ## clear high-order
        div     ecx
      2 mov     eax, edx                ## remainder
      3 mov     BYTE PTR -37[rbp], al   ## store char portion
      4 or      BYTE PTR -37[rbp], 48   ## convert to char
        mov     rax, QWORD PTR -32[rbp] ## pointer to string
        movzx   edx, BYTE PTR -37[rbp]  ## load the char
        mov     BYTE PTR [rax], dl      ## store the char
        mov     esi, DWORD PTR -36[rbp] ## load base
        mov     eax, DWORD PTR -60[rbp] ## load the int
      5 mov     edx, 0                  ## clear high-order
        div     esi
        mov     DWORD PTR -60[rbp], eax ## store quotient
        add     QWORD PTR -32[rbp], 1   ## ptr++;
        cmp     DWORD PTR -60[rbp], 0   ## quotient > 0?
        jne     .L2                     ## yes, continue
.L3:
        sub     QWORD PTR -32[rbp], 1   ## no, reverse string
        mov     rax, QWORD PTR -32[rbp]
        movzx   edx, BYTE PTR [rax]
        mov     rax, QWORD PTR -56[rbp]
        mov     BYTE PTR [rax], dl
        add     QWORD PTR -56[rbp], 1
        mov     rax, QWORD PTR -32[rbp]
        movzx   eax, BYTE PTR [rax]
        test    al, al
        jne     .L3
        nop
        mov     rax, QWORD PTR -8[rbp]
        xor     rax, QWORD PTR fs:40
        je      .L4
        call    __stack_chk_fail@PLT
.L4:
        leave
        ret
        .size   intToUDec, .-intToUDec
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 16-22: Compiler-generated assembly language for the intToUDec function

As you will see in the more detailed description of the div instruction 
coming up, we can divide a 2n-bit number by an n-bit number. In our envi-
ronment, an int is 32 bits. The div instruction assumes that we are dividing 
a 64-bit long int by a 32-bit int. The high-order 32 bits of the long int must 
be placed in edx, and the low-order 32 bits in eax, before the division. In 
many cases, the dividend is within the low-order 32 bits, but we need to be 
careful to fill in the full 64 bits of edx:eax by storing 0 in edx 1.

After we have set up edx:eax, the div instruction will divide that 64-bit 
integer by the 32-bit integer in div’s single operand, ecx in this example. 
The division will leave the remainder in the edx register 2. By storing only 
the al portion of the rax register, the remainder is type cast as it’s stored in 
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the local char variable 3 and then converted to an ASCII character 4. We 
still need to divide the integer we’re converting by 10 to effectively remove 
the low-order decimal digit. Before performing this division, we need to 
remember to zero edx 5.

Division Instructions
The x86-64 architecture provides two integer-divide instructions, signed 
and unsigned:

idiv—Signed Divide

Performs a signed divide.

idiv reg divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer 
in reg, leaving the quotient in al, ax, eax, or rax, and the remainder in ah, 
dx, edx, or rdx, respectively.

idiv mem divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer 
in mem, leaving the quotient in al, ax, eax, or rax, and the remainder in ah, 
dx, edx, or rdx, respectively.

The division yields a signed integer quotient, truncated toward zero, 
and a remainder. The sign of the remainder is the same as the sign of 
the dividend. The states of the OF, SF, ZF, AF, PF, and CF flags in the rflags 
register are all undefined (can be either 0 or 1) after the idiv instruc-
tion is executed. If the quotient won’t fit within the respective register 
(al, ax, eax, or rax), the instruction causes a system error.

div—Unsigned Divide

Performs an unsigned divide.

div reg divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer 
in reg, leaving the quotient in al, ax, eax, or rax, and the remainder in ah, 
dx, edx, or rdx, respectively.

div mem divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer 
in mem, leaving the quotient in al, ax, eax, or rax, and the remainder in ah, 
dx, edx, or rdx, respectively.

The division yields an unsigned integer quotient, truncated toward 
zero, and a remainder. The states of the OF, SF, ZF, AF, PF, and CF flags in 
the rflags register are all undefined (can be either 0 or 1) after the idiv 
instruction is executed. If the quotient won’t fit within the respective 
register (al, ax, eax, or rax), the instruction causes a system error.

If the divisor is 0 or the quotient is too large to fit into the destination 
register, the idiv and div instructions cause a type of system error called an 
exception. We’ll look at exceptions in Chapter 21. For now, exceptions are 
handled by the operating system, which typically terminates the application 
with a somewhat cryptic error message.

It’s important to remember that the portions of the rax and rdx registers 
(only rax for 8-bit divide) used by the divide instructions never appear as 
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operands in the instruction. We can summarize register use of the div or 
idiv instruction in Table 16-2.

Table 16-2: Register Use of the div and idiv Instructions

Divisor Dividend Results

Reg or mem size High-order Low-order Remainder Quotient

8 bits ah al ah al

16 bits dx ax dx ax

32 bits edx eax edx eax

64 bits rdx rax rdx rax

Since the register names in Table 16-2 don’t appear as part of the 
instruction’s operands, a common programming error is to forget to set the 
high-order portion of the dividend to the correct value before executing a 
division instruction. For the div instruction, this usually means setting ah, 
dx, edx, or rdx to 0.

For the idiv instruction, you need to be careful to preserve the sign of the 
dividend before executing the instruction. For example, if you’re using 32-bit 
integers and the dividend is –10 (= 0xfffffff6), you need to set edx to 0xffffffff 
to create –10 in 64 bits. The x86-64 instruction set includes four instructions 
that do not take any operands but extend the sign to the registers used in divi-
sion, as shown in Table 16-3. When the dividend and divisor are the same size 
in your program, which is common, you should use the corresponding instruc-
tion from Table 16-3 immediately before an idiv instruction.

Table 16-3: Instructions to Sign-Extend an Integer  
for Signed Division

Instruction From To, high-order To, low-order

cbw al ah al

cwd ax dx ax

cdq eax edx eax

cqo rax rdx rax

The / and % division operators in C and C++ follow the same rules for 
integers as the x86-64 div and idiv instructions: the quotient is truncated 
toward zero. This is not the case for all programming languages, which can 
create confusion when using signed division of integers.

For example, in Python the / operator computes the floating-point 
result. To get the integer part of a quotient, we need to use the floor divi-
sion operator, //, which causes Python to apply the floor operation to the 
floating-point result. The floor of a real number, x, is the greatest integer 
that is less than or equal to x. So when the quotient is negative, the value in 
Python is one less than the value in C and C++. The % operator in Python 
gives a remainder value based on floor division for the quotient.
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N O T E 	 The remarks here apply to Python 3. As of January 1, 2020, Python 2 is no longer 
supported.

With signed division, the sign of the quotient is positive if both the 
dividend and divisor are of the same sign, and it’s negative if they are of the 
opposite sign, like multiplication. But the sign of the remainder depends 
on how the quotient is truncated—toward zero as in C or toward the next 
lower signed integer as in Python. In all cases, when dividing a by b,

r = a – b × q

where r is the remainder, and q is the quotient. With truncation toward 
zero, the sign of the remainder is the same as the sign of the dividend, but 
with truncation toward the lower signed integer, the sign of the remainder 
is the same as that of the divisor. Proving it from this equation is a bit tricky, 
but you can probably be convinced if you plug in the values from Table 16-4 
that I got for C and Python, where a is the dividend, b the divisor, q the quo-
tient, and r the remainder.

Table 16-4: Dividing a by b,  
C vs. Python 3

C Python 3

a b q r q r

27 4 6 3 6 3

27 –4 –6 3 –7 –1

–27 4 –6 –3 –7 1

–27 –4 6 –3 6 –3

As you can see from this discussion, signed division can yield unex-
pected results. I try to design my algorithms to avoid signed division and 
adjust the sign after the result is computed.

The / and % are two separate operators in C, and the compiler generated 
a div instruction for the use of each C operation, as shown in Listing 16-22. 
Since the div instruction performs both operations, our assembly language 
version of intToUDec will use this fact.

Division in Assembly Language
We didn’t look at the compiler-generated assembly language for the C version 
of our add123 program, as shown in Listing 16-19. It’s similar to the assembly 
language version in Listing 16-23.

# add123.s
# Adds 123 to an int.
        .intel_syntax noprefix
# Stack frame
        .equ    myString,-32
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        .equ    myInt, -12
        .equ    canary,-8
        .equ    localSize,-32
# Useful constants
      1 .equ    MAX,11                # character buffer limit
# Constant data
        .section  .rodata
        .align  8
prompt:
        .string "Enter an unsigned integer: "
message:
        .string "The result is: "
endl:
        .string "\n"
# Code
        .text
        .globl	 main
        .type	   main, @function
main:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
        add     rsp, localSize        # for local var.
        mov     rax, qword ptr fs:40  # get canary
        mov     qword ptr canary[rbp], rax

        lea     rdi, prompt[rip]      # prompt user
        call    writeStr
        
        mov     esi, MAX              # get user input
        lea     rdi, myString[rbp]
        call    readLn

        lea     rsi, myInt[rbp]       # for result
        lea     rdi, myString[rbp]    # convert to int
      2 call    decToUInt

        mov     eax, dword ptr myInt[rbp]
      3 add     eax, 123
        mov     dword ptr myInt[rbp], eax

      4 mov     esi, myInt[rbp]       # the number
      5 lea     rdi, myString[rbp]    # place for string
        call    intToUDec
        
        lea     rdi, message[rip]     # message for user
        call    writeStr
        
        lea     rdi, myString[rbp]    # number in text
        call    writeStr
        
        lea     rdi, endl[rip]
        call    writeStr

        mov     eax, 0                # return 0;
        mov     rcx, canary[rbp]      # retrieve saved canary
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        xor     rcx, fs:40            # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT  # bad canary
goodCanary:
        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 16-23: Assembly language version of main function of program to add 123 to an 
unsigned integer

The main function for our program is probably familiar to you by now. 
Since unsigned integers can be as large as 4,294,967,295, we’ll allow up to 
11 characters as user input 1, which includes the terminating NUL character. 
Before adding 123 to it, we need to convert the input integer from a text 
string to an unsigned int 2.

The addition itself is a single instruction 3. The sum is passed to the 
intToUDec function by value 4, and the address of the input string is passed 
by pointer 5.

We’ll use the same algorithm in our assembly language version of 
intToUDec, as shown in Listing 16-24, but our implementation differs quite a 
bit from the compiler’s version. 

# intToUDec.s
# Creates character string that represents unsigned 32-bit int.
# Calling sequence:
#   rdi <- pointer to resulting string
#   esi <- unsigned int
        .intel_syntax noprefix

# Stack frame
        .equ    reverseArray,-32
        .equ    canary,-8
        .equ    localSize,-32
# Useful constants
        .equ    DECIMAL,10
        .equ    ASCII,0x30
        .equ    NUL,0

# Code
        .text
        .globl  intToUDec
        .type   intToUDec, @function
intToUDec:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.
        mov     rax, qword ptr fs:40    # get canary
        mov     qword ptr canary[rbp], rax

        lea     rcx, reverseArray[rbp]  # pointer
        mov     byte ptr [rcx], NUL     # string terminator
        inc     rcx                     # a char was stored
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        mov     eax, esi                # int to represent
        mov     r8d, DECIMAL            # base we're in
convertLoop:
      1 mov     edx, 0                  # for remainder
        div     r8d                     # quotient and remainder
      2 or      dl, ASCII               # convert to char
      3 mov     byte ptr [rcx], dl      # append to string
        inc     rcx                     # next place for char
        cmp     eax, 0                  # all done?
        ja      convertLoop             # no, continue
reverseLoop:        
        dec     rcx                     # yes, reverse string
        mov     dl, byte ptr [rcx]      # one char at a time
        mov     byte ptr [rdi], dl
        inc     rdi                     # pointer to dest. string
        cmp     dl, NUL                 # was it NUL?
        jne     reverseLoop             # no, continue
        
        mov     eax, 0                  # return 0;
        mov     rcx, canary[rbp]        # retrieve saved canary
        xor     rcx, fs:40              # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT    # bad canary
goodCanary:
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 16-24: Assembly language version of intToUDec function

The primary difference in our assembly language version is that we take 
advantage of knowing that the div instruction leaves the quotient in eax and 
the remainder in edx 2. Since the conversion is base 10, we know that the 
remainder will always be in the range 0–9. Thus, the remainder can be easily 
converted to its corresponding numerical ASCII code 2. Having appended 
the newly converted character to the text string we’re creating 3, the edx 
register is zeroed before the next time the div instruction is executed 1.

Division takes more time than multiplication. People have invented algo-
rithms for determining the low-order decimal digit without using division. 
One technique when dividing by a constant is to use the fact that shifting is 
much faster than division. For example, in our intToUDec function, we’re divid-
ing by 10. When dividing a number, x, by 10, consider the following equation:

10

2n

( (
10

x
=

2n
x

×

10

2n
= × x \2n

Now, if we compute the constant 2n/10, we can multiply x by this new 
constant and then do the division by shifting the result of the multiplica-
tion n bit positions to the right. The details are beyond the scope of this 
book, but you can see how this works by looking at the assembly language 
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generated by the compiler, using the -O1 optimization option for the 
intToUDec function in Listing 16-21.

YOUR T UR N

1.	 Write the function intToSDec in assembly language that converts a 32-bit 
int to its text string representation. Your function should prepend nega-
tive numbers that have a negative sign but not prepend positive number 
with a plus sign. Hint: Your function could call the intToUDec function in 
Listing 16-24 to do most of the conversion.

2.	 Write the two functions, putInt and getInt, in assembly language. putInt 
takes one argument, a 32-bit signed integer, and displays it on the screen. 
getInt takes one argument, a pointer to a place for storing a 32-bit signed 
integer, which it reads from keyboard input. putInt should call your 
intToSDec function, and getInt should call your decToSInt function. Note: 
putInt and getInt will be used in subsequent chapters for displaying and 
reading integers.

3.	 Write a program in assembly language that allows a user to enter two 
signed decimal integers. The program will add, subtract, multiply, and 
divide the two integers. It will display the sum, difference, product, and 
quotient and remainder resulting from these operations.

What You’ve Learned

Bit masking    We can use bitwise logic instructions to directly change 
bit patterns in variables.

Bit shifting    Bits in variables can be shifted left or right, effectively 
multiplying or dividing by multiples of 2.

Mutliplication    The signed multiply instruction has several forms, 
making it more flexible than the unsigned multiply instruction, which 
has only one form.

Division    Both the signed and unsigned divide instructions pro-
duce a quotient and a remainder. Signed integer division is somewhat 
complicated.

Converting numbers between binary storage and character display     
Arithmetic operations are easier when numbers are stored in the binary 
system, but keyboard input and screen display use the corresponding 
character format.

We’ve covered ways to organize program flow and perform arithmetic 
or logic operations on data items. Organizing the data is another important 
part of designing computing algorithms. In the next chapter, we’ll look at 
two of the most fundamental ways to organize data: arrays and records. 
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An essential part of programming is deter-
mining how to organize data. In this chapter, 

we’ll look at two of the most fundamental 
ways of organizing data: arrays, which can be 

used for grouping only data items of the same data 
type; and records, which can be used for grouping 
data items of different data types. 

As you will see, these ways of organizing data determine how we access the 
individual data items in each. Both require two addressing items to locate a 
data item. Since the data items are all the same type in an array, we can access 
an individual data item from knowing the name of the array plus the index 
number of the item. Accessing an individual data item in a record requires the 
name of the record and the name of the data item located in the record.
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Arrays
An array is a collection of data elements of the same data type, arranged in 
a sequence. We can access a single element in an array by using the name 
of the array together with an index value, which specifies the number of the 
element relative to the beginning of the array. We have used char arrays in 
previous chapters to store ASCII characters as text strings. Each element in 
the array was the same type, a char, which is one byte. In our applications, 
we were accessing each character in order, so we started with a pointer to 
the first char and simply incremented it by 1 to access each subsequent char. 
We didn’t need an index to locate each char within the text string array.

In this chapter, we’ll look at int arrays, which use four bytes for each 
data element in the array. If we started with a pointer to the first element, 
we would need to increment it by 4 to access each subsequent element. But 
it’s much easier to use the array index number to access each individual 
element. You’ll see how the index number is converted to an address offset 
to access an array element relative to the beginning of the array. You’ll also 
see that C passes arrays to other functions differently from other data items.

Arrays in C
We define an array in C by stating the element data type, giving the array a 
name, and specifying the number of elements in the array. Let’s start with 
the example in Listing 17-1.

/* fill2XIndex.c
 * Allocates an int array, stores 2 X element number
 * in each element and prints array contents.
 */
#include <stdio.h>
#include "twiceIndex.h"
#include "displayArray.h"
#define N 10

int main(void)
{
1 int intArray[N];

  twiceIndex(2intArray, N);
  displayArray(intArray, N);
  return 0;
} 

Listing 17-1: Filling an array with integers and then displaying the contents

As stated, we define an array by giving the data type of each element 
(int), a name for the array (intArray), and the number of elements in the 
array (N) 1. This main function calls the twiceIndex function, which sets each 
element in the array to twice its index. For example, it stores the int 8 in 
array element number 4. It then calls displayArray, which prints the contents 
of the entire array in the terminal window.
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One of the first things you might notice about the arguments we’re pass-
ing to the functions is that it appears the array is being passed by value, since 
we give only its name in the argument list 2. But since twiceIndex stores val-
ues in the array, it needs to know where the array is located in memory. 

Usually, a programmer passes an input value to a function by value. But 
if the input consists of a large number of data items, copying them all into 
registers and onto the stack would be very inefficient, in which case it makes 
more sense to pass by pointer. Arrays almost always have many data items, 
so the designers of the C language decided to always pass them by pointer. 
When you give the name of the array as an argument to a function call, C 
will pass the address of the first element of the array.

We can see this explicitly by looking at the compiler-generated assem-
bly language for this main function, as shown in Listing 17-2.

        .file   "fill2XIndex.c"
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 48         ## memory for array
        mov     rax, QWORD PTR fs:40
        mov     QWORD PTR -8[rbp], rax
        xor     eax, eax
      1 lea     rax, -48[rbp]   ## load address of array
        mov     esi, 10         ## number of elements
        mov     rdi, rax        ## pass address
        call    twiceIndex@PLT
      2 lea     rax, -48[rbp]   ## load address of array
        mov     esi, 10
        mov     rdi, rax        ## pass address
        call    displayArray@PLT
        mov     eax, 0
        mov     rdx, QWORD PTR -8[rbp]
        xor     rdx, QWORD PTR fs:40
        je      .L3
        call    __stack_chk_fail@PLT
.L3:
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 17-2: Compiler-generated assembly language showing an array passed by pointer

In the assembly language, we can see the address of the array passed 
first to the twiceIndex function 1 and then to the displayArray function 2. 
The elements of the array are inputs to the displayArray function, so it does 
not need to know the address of the array, but it’s much more efficient to 
pass the address than a copy of each of the array elements.
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 Next, we’ll look at the subfunctions that store values in the array and dis-
play the contents of the array, as shown in Listings 17-3, 17-4, 17-6, and 17-7.

/* twiceIndex.h
 * Stores 2 X element number in each element.
 */

#ifndef TWICEINDEX_H
#define TWICEINDEX_H
void twiceIndex(int theArray[], int nElements);
#endif

Listing 17-3: Header file for the twiceIndex function

The int theArray[] syntax is equivalent to int *theArray, a pointer to an 
int. Using either syntax, C will pass the address of the first element of the 
array to the function. We need to pass the number of elements in the array 
separately. 

/* twiceIndex.c
 * Stores 2 X element number in each array element.
 */
#include "twiceIndex.h"

void twiceIndex(int theArray[], int nElements)
{
  int i;
   
  for (i = 0; i < nElements; i++)
  {
    theArray[i] = 2 * i;
  }
}

Listing 17-4: Function to store two times the index number in each element of an array

The twiceIndex function uses a for loop to process the array, storing two 
times the index value in each element of the array. Let’s look at the assem-
bly language generated by the compiler for this function; see Listing 17-5.

        .file   "twiceIndex.c"
        .intel_syntax noprefix
        .text
        .globl  twiceIndex
        .type   twiceIndex, @function
twiceIndex:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -24[rbp], rdi ## save array address
        mov     DWORD PTR -28[rbp], esi ## and num of elements
        mov     DWORD PTR -4[rbp], 0    ## i = 0
        jmp     .L2
.L3:
        mov     eax, DWORD PTR -4[rbp]
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      1 cdqe                            ## to 64 bits
        lea     rdx, 20[0+rax*4]       ## element offset
      3 mov     rax, QWORD PTR -24[rbp] ## array address
        add     rax, rdx                ## element address
        mov     edx, DWORD PTR -4[rbp]  ## current i
        add     edx, edx                ## 2 times i
        mov     DWORD PTR [rax], edx    ## store 2 times i
        add     DWORD PTR -4[rbp], 1    ## i++
.L2:
        mov     eax, DWORD PTR -4[rbp]
        cmp     eax, DWORD PTR -28[rbp]
        jl      .L3
        nop
        pop     rbp
        ret
        .size   twiceIndex, .-twiceIndex
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 17-5: Compiler-generated assembly language for the twiceIndex function

The algorithm used by the compiler to access an array element is as 
follows: compute the offset of the element from the beginning of the array 
and then add that offset to the address of the beginning. This is an array of 
ints, so each element is four bytes. The compiler uses the register indirect 
with indexing addressing mode (described in Chapter 12) to compute the 
address offset of the int element 2.

This addressing mode requires that all the registers be the same size. 
Since we’re using 64-bit addressing in our environment, the 32-bit index 
value in eax must be extended to 64 bits before it can be used to compute 
the address offset. The compiler chose to do this with the cdge instruc-
tion 1 because the index variable, i, was declared as an int, which is signed 
by default.

The cdqe instruction doubles the size of the value in the eax register 
from 32 bits to the full 64 bits in the rax register. It copies the sign bit in 
eax into all the high-order 32 bits of rax, thus preserving the sign in the 
extended value. There are three such instructions like this, each of which 
operates on portions of the rax register:

cbw, cwde, cdqe—Convert Byte to Word, Convert Word to Doubleword, 
Convert Doubleword to Quadword

Doubles the size of the source operand using sign extension.

cbw copies bit number 7 in the al register into bits 15–8, doubling the 
size from al to ax and preserving the sign. Bits 63–16 are unaffected. 

cwde copies bit number 15 in the ax register into bits 31–16, doubling the 
size from ax to eax and preserving the sign. Bits 63–32 are zeroed.

cdqe copies bit number 31 in the eax register into bits 63–32, doubling 
the size from eax to rax and preserving the sign. 

These instructions work only on the rax register and do not affect the 
rflags register.



376   Chapter 17

Once we have computed the 64-bit offset of the array element, we can get 
the address of the beginning of the array 3 and add this offset to it to get the 
address of the array element. The algorithm used by the compiler doubles 
the value of the index by adding it to itself. It then stores this at the computed 
address of the array element.

After the array has been filled with data, the contents are displayed 
with the displayArray function, as shown in Listings 17-6 and 17-7.

/* displayArray.h
 * Prints array contents.
 */
#ifndef DISPLAYARRAY_H
#define DISPLAYARRAY_H
void displayArray(int theArray[], int nElements);
#endif

Listing 17-6: Header file for the displayArray function

/* displayArray.c
 * Prints array contents.
 */
#include "displayArray.h"
#include "writeStr.h"
#include "putInt.h"
void displayArray(int theArray[], int nElements)
{
  int i;
 
  for (i = 0; i < nElements; i++)
  {
    writeStr("intArray[");
    putInt(i);
    writeStr("] = ");
    putInt(theArray[i]);
    writeStr("\n");
  }
}

Listing 17-7: Function to display the contents of an int array

The displayArray function also uses a for loop to process each element 
of the array. We’ll skip the compiler-generated assembly language for the 
displayArray function since it accesses the individual array elements using 
the same algorithm as twiceIndex (Listing 17-5).

We’ll do things a little differently when writing this program directly in 
assembly language.

Arrays in Assembly Language
Now we’ll write our own assembly language function that fills an array 
with values. Our approach will be similar to the compiler’s, but we’ll use 
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instructions that are a little more intuitive. Listing 17-8 shows our main func-
tion. It’s similar to what the compiler generated (Listing 17-2) except that I 
have used meaningful names for the constants.

# fill2XIndex.s
# Allocates an int array, stores 2 X element number
# in each element and prints array contents.
        .intel_syntax noprefix
# Stack frame
        .equ    intArray,-48
        .equ    canary,-8
        .equ    localSize,-48
# Constant
        .equ    N,10
# Code
        .text
        .globl	 main
        .type	   main, @function
main:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
        add     rsp, localSize        # for local var.
        mov     rax, qword ptr fs:40  # get canary
        mov     qword ptr canary[rbp], rax

        mov     esi, N                # number of elements
        lea     rdi, intArray[rbp]    # our array
        call    twiceIndex

        mov     esi, N                # number of elements
        lea     rdi, intArray[rbp]    # our array
        call    displayArray
        
        mov     eax, 0                # return 0;
        mov     rcx, canary[rbp]      # retrieve saved canary
        xor     rcx, fs:40            # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT  # bad canary
goodCanary:
        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 17-8: Filling an array and displaying its contents in assembly language

The main function here simply passes the address of the array and  
the number of elements in the array to the two functions, twiceIndex and 
displayArray, for processing the array.

Our assembly language version of twiceIndex, as shown in Listing 17-9, uses 
instructions that seem a little more intuitive than what the compiler used.
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# twiceIndex.s
# Stores 2 X element number in each array element.
# Calling sequence:
#   rdi <- pointer to array
#   esi <- number of elements
        .intel_syntax noprefix

# Code
        .text
        .globl  twiceIndex
        .type   twiceIndex, @function
twiceIndex:
        push    rbp               # save frame pointer
        mov     rbp, rsp          # set new frame pointer

        mov   1 ecx, 0            # index = 0
storeLoop:
        mov     eax, ecx          # current index
      2 shl     eax, 1            # times 2
      3 mov     [rdi+rcx*4], eax  # store result
        inc     ecx               # increment index
        cmp     ecx, esi          # end of array?
        jl      storeLoop         # no, loop back
        
        mov     rsp, rbp          # restore stack pointer
        pop     rbp               # and caller frame pointer
        ret

Listing 17-9: Assembly language function to store twice the index value in each array 
element

We are using a register for the indexing variable 1. Recall that when 
we are in 64-bit mode, storing a 32-bit value in a register zeros the entire 
high-order 32 bits of the register, so we don’t need to extend the index 
value to 64 bits when using it as an address offset 3. We also use a shift to 
multiply the index by 2 2 instead of adding it to itself.

Our assembly language version of displayArray, as shown in Listing 17-10, 
uses the same approach to access the array elements as twiceIndex.

# displayArray.s
# Prints array contents.
# Calling sequence:
#   rdi <- pointer to array
#   esi <- number of elements
        .intel_syntax noprefix

# Stack frame
        .equ    nElements,-8
        .equ    localSize,-16
# Constant data
        .section  .rodata
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        .align  8
format1:
        .string "intArray["
format2:
        .string "] = "
endl:
        .string "\n"
# Code
        .text
        .globl  displayArray
        .type   displayArray, @function
displayArray:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
        add     rsp, localSize      # local variables
        push    rbx                 # save, use for i
        push    r12                 # save, use for array pointer

        mov     r12, rdi            # pointer to array
        mov     nElements[rbp], esi # number of elements
        
        mov     ebx, 0              # index = 0
printLoop:
        lea     rdi, format1[rip]   # start of formatting
        call    writeStr
        mov     edi, ebx            # index
        call  1 putInt
        lea     rdi, format2[rip]   # more formatting
        call    writeStr
        mov     edi, [r12+rbx*4]    # array element
        call    putInt              # print on screen
        lea     rdi, endl[rip]      # next line
        call    writeStr

        inc     ebx                 # increment index
        cmp     ebx, nElements[rbp] # end of array?
        jl      printLoop           # no, loop back
        
        pop     r12                 # restore registers
        pop     rbx
        mov     rsp, rbp            # yes, restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 17-10: Displaying the elements of an int array in assembly language

Instead of using printf to display the contents of the array, we’re 
using the putInt function that was developed in the last “Your Turn” in 
Chapter 16 1.

In the next section, we’ll look at how to group items of different data 
types.
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YOUR T UR N

1.	 Modify the assembly language program in Listings 17-8, 17-9, and 17-10 to 
store the element index number in each element of the array and then store 
123 in the fifth element before displaying the results.

2.	 In the C program in Listings 17-4, 17-6, and 17-7, we defined the index 
variable to be an int, which caused the compiler to use the cdqe instruc-
tion to sign-extend the value when doubling its size for use in the register 
indirect with indexing addressing mode. But index will always have a posi-
tive value, so we could have used an unsigned int. Change the definition 
of index in that program to an unsigned int. How does this change affect 
the assembly language generated by the compiler?

Records
A record (or structure) allows a programmer to group several data items of 
possibly different data types together into a new programmer-defined data 
type. Each individual data item in a record is called a field or element. A field 
is often called a member, especially in object-oriented programming. We’ll 
discuss C++ objects in the next chapter.

Since the fields in a record can have different sizes, accessing them is a 
bit more complex than accessing the data items in an array. We’ll start with 
looking at how this is done, and then we’ll look at how records are passed to 
other functions.

Records in C
Let’s start by looking at a program that defines a record, stores data in the 
fields of each record, and then displays the values, as shown in Listing 17-11.

/* recordField.c
 * Allocates a record and assigns a value to each field.
 */

#include <stdio.h>

int main(void)
{
1 struct
  {
    char aChar;
    int anInt;
    char anotherChar;
2} x;

3 x.aChar = 'a';
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  x.anInt = 123;
  x.anotherChar = 'b';

  printf("x: %c, %i, %c\n",
          x.aChar, x.anInt, x.anotherChar);
  return 0;
}

#endif

Listing 17-11: A single record using a struct variable in C

We use the struct keyword to declare a record in C 1. We define the 
fields of the record by using the usual C syntax: a data type followed by 
the field name. We can define a record by following its declaration with a 
name for the record 2. We access the individual fields of a record by using 
the dot operator 3.

We can learn how the record is stored in memory by looking at the 
compiler-generated assembly language for this function in Listing 17-12.

        .file   "recordField.c"
        .intel_syntax noprefix
        .text
        .section        .rodata
.LC0:
        .string "x: %c, %i, %c\n"
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16                 ## memory for record
        mov     BYTE PTR 1-12[rbp], 97 ## x.aChar = 'a';
        mov     DWORD PTR -8[rbp], 123  ## x.anInt = 123;
        mov     BYTE PTR -4[rbp], 98    ## x.anotherChar = 'b';
        movzx   eax, BYTE PTR -4[rbp]   ## load x.anotherChar
        movsx   ecx, al                 ## to 32 bits
        mov     edx, DWORD PTR -8[rbp]  ## load x.anInt
        movzx   eax, BYTE PTR -12[rbp]  ## load x.aChar
        movsx   eax, al                 ## to 32 bits
        mov     esi, eax
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
        mov     eax, 0
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 17-12: Accessing the fields of a C struct variable in memory
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Like other local variables, the record is allocated in the function’s stack 
frame, so its fields are accessed relative to the stack frame pointer, rbp. The 
compiler computes the offset from the address in rbp to each field in the 
record 1.

We show the layout in memory for the record in Figure 17-1, which 
shows the record after the values have been assigned to the three fields.

x.aChar = −12

x.anInt =  −8

x.anotherChar =  −4

Caller’s rsp

Caller’s rbp

 

rsp

rbp

′a′

′b′

123

Figure 17-1: Stack frame showing one record implemented as a C struct

An int in our environment takes four bytes and must be aligned on a 
four-byte memory address. Although both the two char fields in this record 
take only one byte, the alignment requirement for the int field leads to the 
six “wasted” bytes, as shown in Figure 17-1. There are also four extra bytes 
in the stack frame to create proper stack pointer alignment, as described in 
“Variables on the Stack” in Chapter 11.

Records in Assembly Language
Rather than compute the offset from rbp, we’ll use a different technique in 
our assembly language version of accessing the fields of a record, as shown 
in Listing 17-13.

# recordField.s
# Allocates a record and assigns a value to each field.
        .intel_syntax noprefix
# Stack frame
        .equ    x,-12
        .equ    localSize,-16
# record offsets
      1 .equ    aChar,0
        .equ    anInt,4
        .equ    anotherChar,8
        .equ    recordSize,12
# Constant data
        .section  .rodata
        .align  8
message:
        .string "x: %c, %i, %c\n"
# Code
        .text
        .globl	 main
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        .type	   main, @function
main:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
        add     rsp, localSize      # for local var.

      2 lea     rax, x[rbp]         # fill record
        mov     byte ptr aChar[rax], 'a'
        mov     dword ptr anInt[rax], 123
        mov     byte ptr anotherChar[rax], 'c'
        
        lea     rax, x[rbp]         # print record
        movzx   ecx, byte ptr anotherChar[rax]
        mov     edx, dword ptr anInt[rax]
        movzx   esi, byte ptr aChar[rax]
        lea     rdi, message[rip]
        mov     eax, 0
        call    printf@plt

        mov     eax, 0              # return 0;
        mov     rsp, rbp            # restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 17-13: Accessing record fields in assembly language.

In our assembly language version, we first equate the field names with 
their respective offsets from the beginning of the record 1. The diagram 
is Figure 17-1 is useful in coming up with these numbers. Then we can load 
the address of the beginning of the record 2 and directly access the fields 
using their names.

Passing a record to another function raises additional issues. As you 
have seen, we need to specify the type of data that we are passing, but a 
record can have many fields, each of which can have a different data type. 
In the next section, we’ll see how C solves this problem.

Passing Records to Other Functions in C
Defining the fields every time we define another instance of a record is 
cumbersome. C allows us to define our own struct types using a structure tag 
(or simply tag), which serves as a synonym for the field definitions. Not only 
is this useful for defining multiple records of the same field composition, 
but it’s necessary for passing records to other functions.

For example, we defined the struct variable x in Listing 17-11:

struct
  {
    char aChar;
    int anInt;
    char anotherChar;
} x;
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Instead, if we create a tag for the fields in the struct like this,

struct aTag
  {
    char aChar;
    int anInt;
    char anotherChar;
  };

then we have created a new programmer-defined data type, struct aTag. We 
can then define variables of our new data type in the usual way:

struct aTag x;

We’ll start by declaring our new struct  data type in a separate header 
file, as shown in Listing 17-14, so that it can be included in each file where it 
is used.

/* aRecord.h
 * Declaration of a record.
 */

#ifndef ARECORD_H
#define ARECORD_H
struct 1aTag
{
  char aChar;
  int anInt;
  char anotherChar;
};
#endif

Listing 17-14: Declaration of a programmer-defined record data type in C

The tag for a record in C is a programmer-defined identifier placed 
immediately after the struct keyword in the record’s declaration 1. We 
can then use aTag to represent the record fields declared in Listing 17-14. 
Listing 17-15 shows how we can use the tag to define two records in a 
program.

/* records.c
 * Allocates two records, assigns a value to each field
 * in each record, and displays the contents.
 */

#include "aRecord.h"
#include "loadRecord.h"
#include "displayRecord.h"

int main(void)
{
1 struct aTag x;
  struct aTag y;
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  loadRecord(2&x, 'a', 123, 'b');
  loadRecord(&y, '1', 456, '2');
  
  displayRecord(3x);
  displayRecord(y);
  
  return 0;
}

Listing 17-15: Program to load data into two records and then display the contents

When defining a record variable, we need to follow the struct C  
keyword with our tag for the type of struct we’re defining 1. Since the 
loadRecord function will store data values in the record, we need to pass  
the address of the record 2. We can use pass by value to pass a copy of the 
record to the displayRecord 3 since it doesn’t change the data values. But 
you’ll see as we go through the details that it’s common for programmers  
to use pass by pointer for records to avoid copying large amounts of data.

Both x and y are local variables in Listing 17-15, so they will be created 
on the stack, as shown in Listing 17-16.

        .file   "records.c"
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 32           ## memory for 2 records
        mov     rax, QWORD PTR fs:40
        mov     QWORD PTR -8[rbp], rax
        xor     eax, eax
      1 lea     rax, -32[rbp]     ## address of x record
        mov     ecx, 98           ## data to store in it
        mov     edx, 123
        mov     esi, 97
        mov     rdi, rax
        call    loadRecord@PLT
        lea     rax, -20[rbp]     ## address of y record
        mov     ecx, 50           ## data to store in it
        mov     edx, 456
        mov     esi, 49
        mov     rdi, rax
        call    loadRecord@PLT
      2 mov     rdx, QWORD PTR -32[rbp] ## 8 bytes of x
        mov     eax, DWORD PTR -24[rbp] ## 4 more bytes of x
        mov     rdi, rdx
        mov     esi, eax
        call    displayRecord@PLT
        mov     rdx, QWORD PTR -20[rbp] ## 8 bytes of y
        mov     eax, DWORD PTR -12[rbp] ## 4 more bytes of y
        mov     rdi, rdx
        mov     esi, eax
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        call    displayRecord@PLT
        mov     eax, 0
        mov     rcx, QWORD PTR -8[rbp]
        xor     rcx, QWORD PTR fs:40
        je      .L3
        call    __stack_chk_fail@PLT
.L3:
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 17-16: Compiler-generated assembly language for the program that stores values in 
two records

As we specified, the compiler passes the address of each record to the 
loadRecord function 1. However, the records are passed by value to the 
displayRecord function, so the compiler passes a copy of all 12 bytes in the 
record, including the unused bytes, to the function 2.

Listings 17-17 and 17-18 show the loadRecord function header file and 
definition.

/* loadRecord.h
 * Loads record with data.
 */

#ifndef LOADRECORD_H
#define LOADRECORD_H
1 #include "aRecord.h"
int loadRecord(struct aTag *aStruct, char x, int y, char z);
#endif

Listing 17-17: Header file for the loadRecord function

The argument list in Listing 17-17 shows how to use the tag for passing 
arguments to a function. The struct aTag syntax means that the data type 
of this argument is the C struct that has been declared with the tag, aTag. 
We need to #include the file where this tag is declared before using it in this 
file 1.

The loadStruct function, as shown in Listing 17-18, introduces a useful C 
syntax for dealing with pointers to records.

/* loadRecord.c
 * Loads record with data.
 */

#include "loadRecord.h"

int loadRecord(struct aTag *aRecord, char x, int y, char z)
{
1 (*aRecord).aChar = x;
2 aRecord->anInt = y;     /* equivalent syntax */
  aRecord->anotherChar = z;



Data Structures   387

  return 0;
}

Listing 17-18: The loadRecord function

The argument passed to this function is a pointer to the record. We 
need to dereference this pointer before accessing the individual fields in 
the record it points to. Since the dot operator (.) has higher precedence 
than the dereferencing operator (*), we need to use parentheses to do the 
dereferencing before the field access 1.

This pair of operations—dereference and then select a field—is so com-
mon and the syntax so cumbersome, the C language designers created an 
alternative syntax, -> 2. This performs exactly the same operations as the 
other syntax but is more succinct.

Listing 17-19 shows the compiler-generated assembly language for 
loadRecord.

        .file   "loadRecord.c"
        .intel_syntax noprefix
        .text
        .globl  loadRecord
        .type   loadRecord, @function
loadRecord:
        push    rbp
        mov     rbp, rsp
      1 mov     QWORD PTR -8[rbp], rdi  ## save address of record
        mov     DWORD PTR -16[rbp], edx ## save y
        mov     eax, ecx
        mov     edx, esi
        mov     BYTE PTR -12[rbp], dl   ## save x
        mov     BYTE PTR -20[rbp], al   ## save z
      2 mov     rax, QWORD PTR -8[rbp]  ## load address of record
        movzx   edx, BYTE PTR -12[rbp]  ## load x
        mov     BYTE PTR [rax], dl      ## store x
        mov     rax, QWORD PTR -8[rbp]  ## load address of record
        mov     edx, DWORD PTR -16[rbp] ## load y
        mov     DWORD PTR 4[rax], edx   ## store y
        mov     rax, QWORD PTR -8[rbp]  ## load address of record
        movzx   edx, BYTE PTR -20[rbp]  ## load z
        mov     BYTE PTR 8[rax], dl     ## store z
        mov     eax, 0
        pop     rbp
        ret
        .size   loadRecord, .-loadRecord
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 17-19: Compiler-generated assembly language for the loadRecord function

For the loadRecord function, the compiler uses an algorithm for storing 
data in the record fields that is essentially the same as it used in the main 
function for storing data in Listing 17-11. It first saves the address of the 
record in the red zone on the stack 1. Then it retrieves this address before 
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storing the data in each field 2, using the address offset from the declara-
tion of the record in the aRecord.h file, Listing 17-14. Figure 17-1 shows these 
address offsets.

The displayRecord function is different because the record is passed by 
value, as shown in Listings 17-20 and 17-21.

/* displayRecord.h
 * Display contents of a record.
 */

#ifndef DISPLAYRECORD_H
#define DISPLAYRECORD_H
#include "aRecord.h"
void displayRecord(struct aTag aRecord);
#endif

Listing 17-20: Header file for the displayRecord function

/* displayRecord.c
 * Display contents of a struct.
 */

#include <stdio.h>
#include "displayRecord.h"

void displayRecord(struct aTag aRecord)
{
  printf("%c, %i, %c\n", aRecord.aChar,
         aRecord.anInt, aRecord.anotherChar);
}

Listing 17-21: Function to display a record

The algorithm that displays the contents of the fields in the record is 
straightforward. We simply pass the value in each field to the printf func-
tion. But when we look at the compiler-generated assembly language, as 
shown in Listing 17-22, we see that the algorithm requires a reconstruction 
of the record in the stack frame of the displayRecord function.

        .file   "displayRecord.c"
        .intel_syntax noprefix
        .text
        .section        .rodata
.LC0:
        .string "%c, %i, %c\n"
        .text
        .globl  displayRecord
        .type   displayRecord, @function
displayRecord:
        push    rbp
        mov     rbp, rsp
      1 sub     rsp, 16         ## memory for a record
        mov     rdx, rdi
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        mov     eax, esi
      2 mov     QWORD PTR -16[rbp], rdx ## 8 bytes of record
        mov     DWORD PTR -8[rbp], eax  ## another 4 bytes
      3 movzx   eax, BYTE PTR -8[rbp]   ## load anotherChar
        movsx   ecx, al                 ## extend to 32 bits
        mov     edx, DWORD PTR -12[rbp] ## load anInt
        movzx   eax, BYTE PTR -16[rbp]  ## load aChar
        movsx   eax, al                 ## extend to 32 bits
        mov     esi, eax
        lea     rdi, .LC0[rip]
        mov     eax, 0
        call    printf@PLT
        nop
        leave
        ret
        .size   displayRecord, .-displayRecord
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 17-22: Compiler-generated assembly language for the displayRecord function

For the displayRecord function, the compiler chose to create a stack 
frame 1. It then copies the 12 bytes that make up the record from the reg-
isters they were passed in to the stack frame 2. Once the record has been 
reconstructed in the local stack frame, the data in the individual fields is 
passed to the printf function for display on the screen 3.

In the next section, we’ll rewrite this program in assembly language and 
show the advantage of passing a record by pointer, even when it’s an input.

Passing Records to Other Functions in Assembly Language
Our approach to accessing the record fields in the loadRecord function will 
be similar to the compiler’s. We’ll use the address of the record (pass by 
pointer) in a register and use the field address offset to access it.

But we’ll pass the record by pointer, instead of by value, to the  
displayRecord function. Although you could also do this in C, our assembly  
language version will clearly show the advantage of doing it this way.

We’ll start with the main function in Listing 17-23.

# records.s
# Allocates two records, assigns a value to each field
# in each record, and displays the contents.
        .intel_syntax noprefix
# Stack frame
        .equ    x,-32
        .equ    y, -20
        .equ    canary,-8
        .equ    localSize,-32
# Constant data
        .section  .rodata
        .align  8
endl:
        .string "\n"
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# Code
        .text
        .globl	 main
        .type	   main, @function
main:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
        add     rsp, localSize        # for local var.
        mov     rax, qword ptr fs:40  # get canary
        mov     qword ptr canary[rbp], rax

        mov     ecx, 'b'              # data to store in record
        mov     edx, 123
        mov     esi, 'a'
        lea     rdi, x[rbp]           # x record
        call    loadRecord
        
        mov     ecx, '2'              # data to store in record
        mov     edx, 456
        mov     esi, '1'
        lea     rdi, y[rbp]           # y record
        call    loadRecord

      1 lea     rdi, x[rbp]           # display x record
        call    displayRecord

        lea     rdi, y[rbp]           # display y record
        call    displayRecord
        
        mov     eax, 0                # return 0;
        mov     rcx, canary[rbp]      # retrieve saved canary
        xor     rcx, fs:40            # and check it
        je      goodCanary
        call    __stack_chk_fail@PLT  # bad canary
goodCanary:
        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 17-23: Assembly language program to store data in two records and display their 
contents

Our assembly language version of the main function is similar to the 
compiler-generated assembly language for our C version (Listing 17-16), 
except that we are passing the records to the displayRecord function by 
pointer 1 instead of by value.

Next, we’ll place the equates for the offsets of the fields in the record 
in a separate file, as shown in Listing 17-24, to make sure we use the same 
equates in all the files where the fields are accessed.

# aRecord
# Declaration of a record.
1 # This record takes 12 bytes.
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        .equ    aChar,0
        .equ    anInt,4
        .equ    anotherChar,8

Listing 17-24: Record field offsets

We’re using the same offsets for the fields as the C version, as shown 
in Figure 17-1. Since the main function does not access the record fields 
directly, we didn’t need the offsets in this file there. But we did need to 
know the total number of bytes used by the record 1 when allocating 
space on the stack for each record.

The standard for the C language specifies some rules for the memory 
alignment of the fields in a struct, but the rules allow different compilers to 
use different values for the offsets to the fields. To help us interface assem-
bly language functions with C functions, the standard specifies a macro in 
the stddef.h header file, offsetof, that will show the values that our compiler 
chose for the offsets in the C code. For example, this code

#include <stddef.h>
#include "aRecord.h"
--snip--
offsetof(struct aTag, anInt);

will return the value of the offset of anInt from the beginning of the struct. 
The man page for offsetof includes a more complete example of how to use it. 
I used both the offsetof macro and the assembly language generated by the 
compiler (Listing 17-19) to determine the values of the offsets.

The assembly language function to store data in a record (Listing 17-25) 
is similar to what the compiler generated from the C version (Listing 17-19).

# loadRecord.s
# Loads record with data.
# Calling sequence:
#   rdi <- pointer to record
#   esi <- 1st char
#   edx <- int
#   ecx <- 2nd char
        .intel_syntax noprefix
# Record field offsets
      1 .include  "aRecord"
# Code
        .text
        .globl  loadRecord
        .type   loadRecord, @function
loadRecord:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer

      2 mov     aChar[rdi], esi       # 1st char field
        mov     anInt[rdi], edx       # int field
        mov     anotherChar[rdi], ecx # 2nd char field
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        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 17-25: Assembly language version of the loadRecord function

We’re using the .include assembler directive to bring the record field 
names and their respective offsets into this function 1. The .include assem-
bler directive works like the #include C directive—it copies the text from the 
specified file into this source file before assembling the code.

Since this function does not call any other functions, we know that 
the address of the record that was passed to this function in rdi will not be 
changed. We can simply access each field using the field name with rdi as 
the base register 2.

Passing a record by pointer to the displayRecord function, as shown in 
Listing 17-26, simplifies the function.

# displayRecord.s
# Displays contents of a record.
# Calling sequence:
#   rdi <- pointer to record
        .intel_syntax noprefix
# Record field offsets
        .include  "aRecord"
# Stack frame
        .equ    recordPtr,-16
        .equ    localSize,-16
# Useful constant
        .equ    STDOUT,1
# Constant data
        .section  .rodata
        .align  8
endl:
        .string "\n"
# Code
        .text
        .globl  displayRecord
        .type   displayRecord, @function
displayRecord:
        push    rbp                   # save frame pointer
        mov     rbp, rsp              # set new frame pointer
        add     rsp, localSize        # for local var.
       
      1 mov     recordPtr[rbp], rdi   # save record address

        mov     edx, 1                # write one character
        mov     rax, recordPtr[rbp]   # address of record
        lea     rsi, aChar[rax]       # character located here
        mov     edi, STDOUT           # to screen
      2 call    write@plt
        lea     rdi, endl[rip]        # new line
        call    writeStr
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        mov     rax, recordPtr[rbp]   # address of record
        mov     edi,anInt[rax]        # get the integer
        call    putInt                # write to screen
        lea     rdi, endl[rip]
        call    writeStr
        
        mov     edx, 1                # second character
        mov     rax, recordPtr[rbp]   # address of record
        lea     rsi, anotherChar[rax]
        mov     edi, STDOUT
        call    write@plt
        lea     rdi, endl[rip]
        call    writeStr

        mov     rsp, rbp              # restore stack pointer
        pop     rbp                   # and caller frame pointer
        ret

Listing 17-26: Assembly language version of displayRecord function

This function calls other functions, which can change the contents of 
rdi, so we need to save the address of the record in our stack frame 1 for 
accessing the individual record fields later in the function. Since the char 
fields hold a single character, we use the write function to display the con-
tents of these fields 2.

YOUR T UR N

1.	 Modify the record declaration in Listing 17-14 so that the two char fields 
are adjacent to each other. Generate the assembly language for the 
main, loadRecord, and displayRecord functions in Listings 17-15, 17-18, 
and 17-21. Draw a diagram of the records in the stack frame similar to 
Figure 17-1.

2.	 Modify the C displayRecord function in Listings 17-20 and 17-21 to pass 
the record by pointer. Generate the assembly language file. How does this 
compare to the assembly language version in Listing 17-25?



394   Chapter 17

What You’ve Learned

Arrays    Collections of data items of the same data type, stored contigu-
ously in memory.

Processing arrays    The CPU has an addressing mode for accessing an 
array element using an index value.

Passing arrays    In C, arrays are passed by pointer rather than by value.

Records    Collections of data items, possibly of different data 
types, stored together in memory, possibly with padding for address 
alignment.

Accessing record fields    The address with offset addressing mode can 
be used to access a record field.

Passing records    It’s often more efficient to pass a record by pointer, 
even when it’s an input.

In the next chapter, we’ll discuss how C++ uses records to implement 
the object-oriented programming paradigm.



18
O B J E C T - O R I E N T E D 

P R O G R A M M I N G

So far in this book, we have been using the 
procedural programming paradigm (see 

“Exploring Data Formats with C” on page 25). 
In this chapter, we’ll take an introductory look 

at how object-oriented programming is implemented 
at the assembly language level.

In object-oriented programming, an object has a set of attributes, the data 
items that define the state of the object. These attributes can be changed 
or queried by a set of methods that are part of the object. A software solution 
typically consists of constructing instances of objects and then programming 
the sending of messages to the objects, which use the methods to act on the 
attributes.

We’ll use C++, an object-oriented extension of C, to illustrate some of 
these concepts. Our discussion will show how a record can be used to store 
the attributes of an object and how methods are implemented as functions 
that are associated with the record.



396   Chapter 18

Many other features of C++ are important for creating good object-oriented 
programming solutions, but we won’t go into them in this book. For readers 
of this book, I think Josh Lospinoso’s C++ Crash Course (No Starch Press, 2019) 
would be a good way to learn C++. If you want to dig into the design of C++  
after learning how to use it, I recommend Bjarne Stroustrup’s (the creator of 
C++) book, The Design and Evolution of C++ (Addison-Wesley, 1994).

As usual, we’ll start with looking at some assembly language generated 
by the C++ compiler.

Objects in C++
A C++ object is declared by specifying a class, which adds a programmer-
defined type to the program. A C++ class is very much like a C record, but 
in addition to the data members that define the attributes of the object, it can 
include functions as members of the class. In C++, we send a message to an 
object telling it to perform a method by calling a class member function.

We instantiate (create an instance of) an object by giving the class name 
along with a name for the object, just like defining a variable. For example, 
in the program we’ll look at shortly, the C++ statement

fraction x;

instantiates an object named x that belongs to the fraction class.
C++ allows us to write two special member functions. The first is a con-

structor function for initializing an object to place it in a known state before 
sending messages to the object. The C++ compiler generates the code to 
call our constructor function automatically at the point where we instanti-
ate an object. A constructor function has the same name as the class. It 
cannot have a return value, not even void. The default constructor takes no 
arguments, but we can also write constructors that take arguments, which 
allows us to have more than one constructor in a class.

We can also write a destructor function to release any resources that were 
allocated by a constructor. For example, a constructor might allocate mem-
ory from the heap, which the destructor would deallocate. (The heap is 
described in Chapter 10.) There can be only one destructor function, which 
has the same name as the class preceded by the ~ character. The destructor 
cannot have a return value and takes no arguments. The C++ compiler will 
generate the code to call the destructor automatically when program flow 
leaves the scope of the object.

We’ll first look at a simple fraction class, whose attributes are a numera-
tor and a denominator, that includes a constructor and destructor. If we 
don’t supply constructor or destructor member functions, a C++ compiler 
will supply appropriate code to perform the construction and destruction 
of an object. Later in this chapter, we’ll explore what our compiler does for 
us when we don’t supply them.

We’ll start with the declaration of our fraction class, which we’ll place 
in a header file so it can be included in any file that uses the class, as shown 
in Listing 18-1.



Object-Oriented Programming   397

1 // fraction.hpp
// Simple fraction class.

#ifndef FRACTION_HPP
#define FRACTION_HPP
// Uses the following C functions
2 extern "C" int writeStr(char *);
extern "C" int getInt(int *);
extern "C" int putInt(int);

3 class fraction
{
  4 int num;        // numerator
    int den;        // denominator
5 public:
  6 fraction();     // default constructor
    ~fraction();    // default destructor
    void get();     // gets user's values
    void display(); // displays fraction
    void add(int);  // adds integer
};
#endif

Listing 18-1: A simple fraction class

Being an extension of C, nearly everything that can be done in C can 
also be done in C++. One of the additions in C++ is the // syntax for com-
ments 1. Like the # syntax in our assembly language, the remainder of the 
line is a comment, intended only for the human reader.

We’ll be using some assembly language functions that we wrote earlier 
in the book, which follow the C calling conventions. As you’ll see, the con-
ventions for calling a function in C++ differ from C, so we need to tell the 
C++ compiler that we’ll call these functions using the C conventions 2.

The overall syntax of a class declaration 3 is similar to a record dec-
laration but includes the capability to include the methods of the class as 
member functions 6. By default, data members and member functions 
declared within a class are in the private scope 4: they can be accessed only  
by member functions of the same class. We’ll place the attributes of our 
fraction class, num and den, in the private scope where they are defined as 
variables 4. They can be accessed only by the member functions.

A class can also have a public scope for items that are to be accessed by 
entities outside the class 5. We’ll declare our member functions in the 
public scope so they can be called from outside the class 6. C++ classes can 
have other levels of access, but we won’t cover them in this book.

The struct keyword can also be used to declare a C++ class, but it does 
not have a default scope access protection. We would need to explicitly 
declare a private scope, as shown in Listing 18-2.

struct fraction
{
  private:
    int num;        // numerator
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    int den;        // denominator
  public:
    fraction();     // constructor
    ~fraction();    // destructor
    void get();     // gets user's values
    void display(); // displays fraction
    void add(int);  // adds integer
};

Listing 18-2: Our fraction class declared using the struct keyword

I prefer using the class keyword because that emphasizes that there is 
more to it than a simple C record, but it’s a personal choice. Next, we’ll look 
at how to create objects and how to send messages to them.

Using Objects in C++
To illustrate how to create an object and send messages to it, we’ll use a simple 
program that allows a user to enter the numerator and denominator values 
of a fraction and then adds 1 to the fraction, shown in Listing 18-3. The 
program displays the state of the fraction before getting user input values 
and then again after adding 1 to the user’s fraction.

// incFraction.cpp
// Gets a fraction from user and increments by 1.

#include "fraction.hpp"
int main(void)
{
1 fraction x;

2 x.display();
  x.get();
  x.add(1);
  x.display();
  return 0;
} 

Listing 18-3: Program to add 1 to a fraction

An object is instantiated by using the class name and providing a name 
for the object, just like defining a variable 1. The dot operator (.) is used 
to send a message to a method in the class 2, which calls the respective 
member function in the class the object belongs to.

Next, we’ll look at the assembly language generated by the C++ com-
piler to implement the main function in Listing 18-3. The C++ compiler is 
named g++. I used the following command to generate the assembly lan-
guage in Listing 18-4:

g++ -fno-asynchronous-unwind-tables -fno-exceptions -fcf-protection=none -S \
-masm=intel incFraction.cc

This is the same as the command we’ve been using for C code except 
we’ve added the -fno-exceptions option. C++ provides an exception mechanism 
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for dealing with runtime errors when they’re detected. The compiler pro-
vides the information for this feature through assembler directives, which 
would tend to obscure the discussion here of how objects are implemented. 
The -fno-exceptions option turns off this feature.

        .file   "incFraction.cpp"
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
        push    rbx
      1 sub     rsp, 24
        mov     rax, QWORD PTR fs:40
        mov     QWORD PTR -24[rbp], rax
        xor     eax, eax
      2 lea     rax, -32[rbp]     ## address of object
        mov     rdi, rax
        call    _ZN8fractionC1Ev@PLT  ## construct
        lea     rax, -32[rbp]     ## address of object
        mov     rdi, rax
        call    _ZN8fraction7displayEv@PLT
        lea     rax, -32[rbp]     ## address of object
        mov     rdi, rax
        call    _ZN8fraction3getEv@PLT
        lea     rax, -32[rbp]     ## address of object
        mov     esi, 1            ## integer to add
        mov     rdi, rax
        call    _ZN8fraction3addEi@PLT
        lea     rax, -32[rbp]     ## address of object
        mov     rdi, rax
        call    _ZN8fraction7displayEv@PLT
        mov     ebx, 0            ## return value
        lea     rax, -32[rbp]     ## address of object
        mov     rdi, rax
      3 call    _ZN8fractionD1Ev@PLT
        mov     eax, ebx          ## return 0;
        mov     rdx, QWORD PTR -24[rbp]
        xor     rdx, QWORD PTR fs:40
        je      .L3
        call    __stack_chk_fail@PLT
.L3:
        add     rsp, 24
        pop     rbx
        pop     rbp
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 18-4: Compiler-generated assembly language showing the construction of an 
object, sending messages to it, and its destruction
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The first thing to note is that x is an automatic local variable 
(Listing 18-3), so memory space is allocated on the stack for this fraction 
object in the function’s prologue 1. Then the address of this memory  
area 2 is passed to a function, _ZN8fractionC1Ev, at the point where the  
object is instantiated. (Notice that rbx was pushed onto the stack before  
allocating the 24 bytes for the fraction object, making the correct offset  
here –32.)

If you look back at Listing 18-1, you can see that the C++ compiler  
has mangled the name of our constructor function, fraction, to be  
_ZN8fractionC1Ev. We saw the C compiler doing name mangling of a static 
local variable in Chapter 15. The purpose there was to distinguish between 
different static local variables with the same name in different functions 
defined in the same file.

C++ does name mangling to associate member functions with their 
class. If you look at the calls to the class member functions in Listing 18-4, 
you can see that they all begin with _ZN8fraction. Since function names are 
global in scope, including the class name allows us to define other classes in 
the program that have the same names for member functions. For example, 
we might have more than one class in a program that has a display member 
function. Name mangling identifies each display member function with the 
class it belongs to. 

C++ name mangling also allows function overloading. If you look closely 
at how the compiler mangled our add member function, _ZN8fraction3addEi, 
you can probably figure out that the compiler’s name mangling includes 
the number and types of arguments. In this example, the i at the end of the 
mangled name shows that the function takes a single int argument. This 
allows us to have more than one class member function with the same name 
but that differ in their number of arguments and their types, which is called 
function overloading. You’ll get a chance to overload the default constructor 
when it’s Your Turn.

There is no standard for how name mangling is done, so it could be dif-
ferent for each compiler. This means that all C++ code in a program must 
be compiled and linked using compatible compilers and linkers.

Next, look at the two instructions just before each call to a member 
function 2. We can see that the address of the object is passed to each of 
them. This is a hidden argument that doesn’t show up in the C++ code. We’ll 
see how to access this address in a member function when we look inside 
the member functions later in the chapter.

Although it doesn’t show in the C++ code that we write, the compiler 
generates a call to our destructor function at the point where program flow 
leaves the scope of the object 3. In some more advanced programming tech-
niques, we would call the destructor explicitly, but we won’t cover them in the 
book. Most of time we let the compiler decide when to call the destructor.

We’ll next look at the constructor and destructor and the other mem-
ber functions of this fraction class.
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Defining Class Member Functions
 Although it’s common to put each C function in its own file, C++ source files 
are commonly organized to include all the functions in a class. Listing 18-5 
shows the definitions of the member functions for our fraction class.

// fraction.cpp
// Simple fraction class.

#include "fraction.hpp"
// Use char arrays because writeStr is C-style function.
1 char numMsg[] = "Enter numerator: ";
char denMsg[] = "Enter denominator: ";
char over[] = "/";
char endl[] = "\n";

2 fraction::fraction()
{
  num = 0;
  den = 1;
}

fraction::~fraction()
{
  // Nothing to do for this object
}

void fraction::get()
{
  writeStr(numMsg);   
  getInt(&num);
   
  writeStr(denMsg);
  getInt(&den);
}

void fraction::display()
{
  putInt(num);
  writeStr(over);
  putInt(den);
  writeStr(endl);
}

void fraction::add(int theValue)
{
  num += theValue * den;
}

Listing 18-5: Member function definitions for fraction class
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Although C++ includes library functions for writing to the screen, the 
assembly language to call them is somewhat complex. Instead, we’ll use 
our assembly language writeStr function, which follows C calling conven-
tions. It works with C-style text strings, which we’ll place in the global 
area 1. This will allow us to concentrate on how objects are implemented 
in C++.

Membership in a class is specified by giving the name of the class fol-
lowed by two colons (::) 2. Constructors have the same name as the class 
and are used to do any initialization that may be required. For example, 
our constructor initializes the fraction object to be 0/1. In some designs 
they may need to do other things, such as allocate memory from the heap 
or open a file. They cannot have a return value. 

Let’s look at the assembly language generated by the C++ compiler for 
these member functions, as shown in Listing 18-6.

        .file   "fraction.cpp"
        .intel_syntax noprefix
        .text
        .globl  numMsg
        .data
        .align 16
        .type   numMsg, @object
        .size   numMsg, 18
numMsg:
        .string "Enter numerator: "
        .globl  denMsg
        .align 16
        .type   denMsg, @object
        .size   denMsg, 20
denMsg:
        .string "Enter denominator: "
        .globl  over
        .type   over, @object
        .size   over, 2
over:
        .string "/"
        .globl  endl
        .type   endl, @object
        .size   endl, 2
endl:
        .string "\n"
        .text
        .align 2
      1 .globl  _ZN8fractionC2Ev
        .type   _ZN8fractionC2Ev, @function
_ZN8fractionC2Ev:                         ## constructor
        push    rbp
        mov     rbp, rsp
      2 mov     QWORD PTR -8[rbp], rdi    ## this pointer
        mov     rax, QWORD PTR -8[rbp]    ## load addr of object
        mov     DWORD PTR [rax], 0        ## num= 0;
        mov     rax, QWORD PTR -8[rbp]
        mov     DWORD PTR 4[rax], 1       ## den = 1;
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        nop
        pop     rbp
        ret
        .size   _ZN8fractionC2Ev, .-_ZN8fractionC2Ev
        .globl  _ZN8fractionC1Ev
      3 .set    _ZN8fractionC1Ev,_ZN8fractionC2Ev
        .align 2
      4 .globl  _ZN8fractionD2Ev
        .type   _ZN8fractionD2Ev, @function
_ZN8fractionD2Ev:                         ## destructor
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -8[rbp], rdi    ## this pointer
        nop
        pop     rbp
        ret
        .size   _ZN8fractionD2Ev, .-_ZN8fractionD2Ev
        .globl  _ZN8fractionD1Ev
        .set    _ZN8fractionD1Ev,_ZN8fractionD2Ev
        .align 2
        .globl  _ZN8fraction3getEv
        .type   _ZN8fraction3getEv, @function
_ZN8fraction3getEv:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16
        mov     QWORD PTR -8[rbp], rdi    ## this pointer
        lea     rdi, numMsg[rip]
        call    writeStr@PLT
        mov     rax, QWORD PTR -8[rbp]
        mov     rdi, rax
        call    getInt@PLT
        lea     rdi, denMsg[rip]
        call    writeStr@PLT
        mov     rax, QWORD PTR -8[rbp]
        add     rax, 4
        mov     rdi, rax
        call    getInt@PLT
        nop
        leave
        ret
        .size   _ZN8fraction3getEv, .-_ZN8fraction3getEv
        .align 2
        .globl  _ZN8fraction7displayEv
        .type   _ZN8fraction7displayEv, @function
_ZN8fraction7displayEv:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 16
        mov     QWORD PTR -8[rbp], rdi    ## this pointer
        mov     rax, QWORD PTR -8[rbp]
        mov     eax, DWORD PTR [rax]
        mov     edi, eax
        call    putInt@PLT
        lea     rdi, over[rip]
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        call    writeStr@PLT
        mov     rax, QWORD PTR -8[rbp]
        mov     eax, DWORD PTR 4[rax]
        mov     edi, eax
        call    putInt@PLT
        lea     rdi, endl[rip]
        call    writeStr@PLT
        nop
        leave
        ret
        .size   _ZN8fraction7displayEv, .-_ZN8fraction7displayEv
        .align 2
        .globl  _ZN8fraction3addEi
        .type   _ZN8fraction3addEi, @function
_ZN8fraction3addEi:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -8[rbp], rdi    ## this pointer
        mov     DWORD PTR -12[rbp], esi
        mov     rax, QWORD PTR -8[rbp]
        mov     edx, DWORD PTR [rax]
        mov     rax, QWORD PTR -8[rbp]
        mov     eax, DWORD PTR 4[rax]
        imul    eax, DWORD PTR -12[rbp]
        add     edx, eax
        mov     rax, QWORD PTR -8[rbp]
        mov     DWORD PTR [rax], edx
        nop
        pop     rbp
        ret
        .size   _ZN8fraction3addEi, .-_ZN8fraction3addEi
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 18-6: Assembly language generated by the compiler for the fraction class mem-
ber functions

The main function calls _ZN8fractionC1Ev as the constructor for the fraction 
object (Listing 18-4), but the compiler names it _ZN8fractionC2Ev 1. Then 
the compiler sets the _ZN8fractionC1Ev as equal to _ZN8fractionC2Ev 3. (The 
.set assembler directive is the same as .equ.) The two different construc-
tors are used to implement more advanced features of C++. In our simple 
example, they are the same.

Our main function calls _ZN8fractionD1Ev as the destructor. Similar to the 
constructor, the compiler named our destructor _ZN8fractionD2Ev and then 
made _ZN8fractionD2Ev equal to _ZN8fractionD2Ev 4. Again, this allows for 
more complex destructors.

I said earlier that we can access the address of an object in a member 
function. C++ provides a special pointer variable named this that contains 
the object’s address 2. Most of the time we don’t need to explicitly use the 
this pointer. When we use an object’s data member in a member function, 
the compiler assumes that we mean the current object and uses the this 
pointer implicitly. This assumption also holds if we call another member 
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function from within a member function. Some more advanced C++ pro-
gramming techniques require the explicit use of the this pointer, but they 
are beyond the scope of this book.

The rest of the code in Listing 18-6 should be familiar to you, so we’ll 
move on to show when we don’t need to write a constructor or destructor.

YOUR T UR N

Add another constructor to the C++ program in Listings 18-1, 18-3, and 18-5 
that takes two integer arguments for initializing the fraction. Add an object 
that uses your second constructor. For example, fraction y(1,2); would create 
the fraction object initialized to 1/2. Modify the main function to display this 
second fraction object, get a new value for it, add an integer to the second 
object, and display it again.

Letting the Compiler Write a Constructor and Destructor
If all we need is a default constructor to initialize data members, we don’t 
even need to write a constructor or destructor. Bjarne Stroustrup and 
Herb Sutter maintain an excellent list of recommendations for writing 
C++. Their recommendation C.45 (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#Rc-default/) states: “Don’t define a default constructor that 
only initializes data members; use in-class member initializers instead.” They 
point out that the compiler will “generate the function” for us, which “can be 
more efficient.” Most C++ books I’ve read give essentially the same advice.

In this section, we’ll follow this advice. We’ll modify the code from 
Listings 18-1, 18-3, and 18-5 by deleting our constructor and destructor. 
Then we’ll use our knowledge of assembly language to see what the com-
piler has generated for us. Listing 18-7 shows our fraction class without a 
constructor or destructor, using in-class member initializers instead.

// fraction.hpp
// Simple fraction class.

#ifndef FRACTION_HPP
#define FRACTION_HPP
// Uses the following C functions
extern "C" int writeStr(char *);
extern "C" int getInt(int *);
extern "C" int putInt(int);

class fraction
{
  1 int num{0};              // numerator
    int den{1};              // denominator
  public:
    void get();              // gets user's values

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default/
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    void display();           // displays fraction
    void add(int theValue);   // adds integer
};
#endif

Listing 18-7: fraction class from Listing 18-1 with the constructor and destructor removed

Instead of using a constructor to initialize the data members in a 
fraction object, we’ll initialize them using the brace initialization syn-
tax of C++ 1. C++ also allows the following syntaxes for data member 
initialization: 

int num = 0;
int num = {0};

I like the brace initialization syntax because it conveys the message 
that the actual assignment to the variable doesn’t take place until an object 
is instantiated, as we’ll see shortly. The differences are discussed in Josh 
Lospinoso’s book, cited at the beginning of this chapter.

We won’t change the code in Listing 18-3, and we’ll remove the con-
structor and destructor (fraction() and ~fraction()) from Listing 18-5. 
These changes give us the compiler-generated assembly language for the 
main function shown in Listing 18-8.

        .file   "incFraction.cpp"
        .intel_syntax noprefix
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp
        mov     rbp, rsp
      1 sub     rsp, 16
        mov     rax, QWORD PTR fs:40
        mov     QWORD PTR -8[rbp], rax
        xor     eax, eax
      2 mov     DWORD PTR -16[rbp], 0     ## num = 0;
        mov     DWORD PTR -12[rbp], 1     ## den = 1;
        lea     rax, -16[rbp]
        mov     rdi, rax
        call    _ZN8fraction7displayEv@PLT
        lea     rax, -16[rbp]
        mov     rdi, rax
        call    _ZN8fraction3getEv@PLT
        lea     rax, -16[rbp]
        mov     esi, 1
        mov     rdi, rax
        call    _ZN8fraction3addEi@PLT
        lea     rax, -16[rbp]
        mov     rdi, rax
        call    _ZN8fraction7displayEv@PLT
        mov     eax, 0                    ## return 0;
      3 mov     rdx, QWORD PTR -8[rbp]
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        xor     rdx, QWORD PTR fs:40
        je      .L3
        call    __stack_chk_fail@PLT
.L3:
        leave
        ret
        .size   main, .-main
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 18-8: Assembly language showing how the g++ compiler generates a constructor 
for our fraction object

C++ creates the object in the stack frame, as it did when we wrote our 
own constructor 1. But the compiler does not write a separate constructor 
function. Instead, it initializes the data members directly in the function 
where the object is instantiated 2.

Since the only resource used by a fraction object is memory on the 
stack, the normal stack cleanup in the function epilogue deletes the object. 
Thus, the compiler doesn’t need to do anything special to destruct our 
fraction object 3. 

Comparing the code in Listing 18-8 with that in Listing 18-4, we can 
see that the compiler has saved eight instructions, including two function 
calls. So it really did create a more efficient constructor for us. But the 
assembly language also shows us that it’s more correct to say that the com-
piler generated an inline constructor rather than a constructor function. Of 
course, the C++ language specifications allow for other compilers to do this 
differently.

Finally, I’ll point out that if we need another constructor that takes 
arguments, then we’ll have to also supply our own default constructor. The 
compiler won’t take care of the default construction for us. 

The rest of the code in Listing 18-8 should be familiar to you, so we’ll 
move on to looking at how we might implement objects directly in assembly 
language.

YOUR T UR N

Remove the initialization of the num and den member functions from Listing 18-7. 
What effect does this have on the program? Hint: Look at the compiler-generated 
assembly language for the main function.

Objects in Assembly Language
We probably would not be using assembly language for object-oriented 
programming, but the discussion in this section will help to ensure that we 
have a clear picture of how C++ implements objects.
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We start with the offsets of the data members in a fraction object, as 
shown in Listing 18-9.

# fraction
# Declaration of fraction attributes.
# This object takes 8 bytes.
        .equ    num,0
        .equ    den,4

Listing 18-9: Offsets of the attribute values in the fraction class

The attributes of an object are implemented as a record, so the offsets 
to the object’s data members are declared the same way as field offsets in 
a record. There are no assembler directives to make them private. The dis-
tinction between private and public is made by the high-level language, C++ 
in our case. It will be up to us to write our assembly language such that only 
class member functions access the data members.

Listing 18-10 shows the assembly language version of our main function.

# incFraction.s
# Gets numerator and denominator of a fraction
# from user and adds 1 to the fraction.
        .intel_syntax noprefix
# Stack frame
        .equ    x,-16
        .equ    canary,-8
        .equ    localSize,-16
# Constant data
        .section	.rodata
        .align 8
# Code
        .text
        .globl  main
        .type   main, @function
main:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.
        mov     rax, qword ptr fs:40    # get canary
        mov     canary[rbp], rax

        lea     rdi, x[rbp]             # address of object
      1 call    fraction_construct      # construct it
        
        lea     rdi, x[rbp]             # address of object
        call    fraction_display        # display fraction
        
        lea     rdi, x[rbp]             # address of object
        call    fraction_get            # get fraction values
        
        mov     esi, 1                  # amount to add
        lea     rdi, x[rbp]             # address of object
        call    fraction_add            # add it
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        lea     rdi, x[rbp]             # address of object
        call    fraction_display        # display fraction
        
        lea     rdi, x[rbp]             # address of object
        call    fraction_destruct       # delete fraction
        
        mov     eax, 0                  # return 0;
      2 mov     rcx, canary[rbp]
        xor     rcx, qword ptr fs:40
        je      goodCanary
        call    __stack_chk_fail@plt
goodCanary:
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 18-10: Assembly language program to add 1 to a fraction

When writing in C++, the constructor and destructor are called implic-
itly, but in assembly language we have to do it explicitly 1. We won’t mangle 
the names as much as the compiler. We’ll simply prepend each member 
function name with fraction_.

Aside from the function name mangling, there’s nothing unusual about 
this main function. Notice that we check the stack canary after calling the 
destructor since that call uses the stack 2.

Next, we’ll write the assembly language for the member functions, 
starting with the constructor in Listing 18-11.

# fraction_construct.s
# Initializes fraction to 0/1.
# Calling sequence:
#   rdi <- address of object
        .intel_syntax noprefix
        .include    "fraction"
# Code
        .text
        .globl  fraction_construct
        .type   fraction_construct, @function
fraction_construct:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
      1 mov     dword ptr num[rdi], 0   # initialize
        mov     dword ptr den[rdi], 1   #     fraction
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 18-11: Assembly language implementation of a constructor for our fraction class

Since we don’t call any other functions from this function, we can use the 
rdi register as the this pointer for accessing the data members in the object 1.

The destructor doesn’t do anything in our fraction class, but we’ll write 
one anyway for the sake of completeness, as shown in Listing 18-12.
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# fraction_destruct.s
# Nothing to do here.
# Calling sequence:
#   rdi <- address of object
        .intel_syntax noprefix
        .include    "fraction"
# Code
        .text
        .globl  fraction_destruct
        .type   fraction_destruct, @function
fraction_destruct:
        push    rbp         # save frame pointer
        mov     rbp, rsp    # set new frame pointer
# Has nothing to do
        mov     rsp, rbp    # restore stack pointer
        pop     rbp         # and caller frame pointer
        ret

Listing 18-12: A destructor for our fraction class

Next, we’ll write the fraction_display function, as shown in Listing 18-13.

# fraction_display.s
# Displays fraction.
# Calling sequence:
#   rdi <- address of object
        .intel_syntax noprefix
        .include    "fraction"
# Text for fraction_display
        .data
over:
        .string "/"
endl:
        .string "\n"
# Stack frame
      1 .equ    this,-16
        .equ    localSize,-16
# Code
        .text
        .globl  fraction_display
        .type   fraction_display, @function
fraction_display:
        push    rbp               # save frame pointer
        mov     rbp, rsp          # set new frame pointer
        add     rsp, localSize    # for local var.
        mov     this[rbp], rdi    # this pointer

        mov     rax, this[rbp]    # load this pointer
        mov     edi, num[rax]
        call    putInt
        
        lea     rdi, over[rip]    # slash
        call    writeStr
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        mov     rax, this[rbp]    # load this pointer
        mov     edi, den[rax]
        call    putInt
        
        lea     rdi, endl[rip]    # newline
        call    writeStr

        mov     rsp, rbp          # restore stack pointer
        pop     rbp               # and caller frame pointer
        ret

Listing 18-13: The fraction_display function for our fraction class

The fraction_display function calls other functions, any of which may 
change the content of rdi, so we need to save the this pointer in our stack 
frame 1.

Listing 18-13 illustrates one of the reasons we’re following the usual 
custom of having a separate file for each function in assembly language. An 
identifier defined by an .equ directive has file scope. Depending on what 
other things need to go in the stack frame, the this pointer might need to 
be in a different relative location in different functions. If we were to place 
all the member functions in a single file, we would need to do some name 
mangling to associate each this offset with its respective member function. 
The C++ compiler figures out the numerical offset for the this pointer for 
each member function separately, so the this name isn’t used in the assem-
bly language it generates.

Listings 18-14 and 18-15 show the fraction_get and fraction_add functions.

# fraction_get.s
# Gets numerator and denominator from keyboard.
# Calling sequence:
#   rdi <- address of object
        .intel_syntax noprefix
        .include    "fraction"
# Messages
        .data
numMsg:
        .string "Enter numerator: "
denMsg:
        .string "Enter denominator: "
# Stack frame
        .equ    this,-16
        .equ    localSize,-16
# Code
        .text
        .globl  fraction_get
        .type   fraction_get, @function
fraction_get:
        push    rbp               # save frame pointer
        mov     rbp, rsp          # set new frame pointer
        add     rsp, localSize    # for local var.
        mov     this[rbp], rdi    # this pointer
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        lea     rdi, numMsg[rip]  # prompt message
        call    writeStr
        mov     rax, this[rbp]    # load this pointer
        lea     rdi, num[rax]
        call    getInt
        
        lea     rdi, denMsg[rip]
        call    writeStr
        mov     rax, this[rbp]    # load this pointer
        lea     rdi, den[rax]
        call    getInt
        mov     rsp, rbp          # restore stack pointer
        pop     rbp               # and caller frame pointer
        ret

Listing 18-14: The fraction_get function for our fraction class

# fraction_add.s
# Adds integer to fraction
# Calling sequence:
#   rdi <- pointer to object
#   esi <- int to add
        .intel_syntax noprefix
        .include    "fraction"
# Code
        .text
        .globl  fraction_add
        .type   fraction_add, @function
fraction_add:
        push    rbp             # save frame pointer
        mov     rbp, rsp        # set new frame pointer
        mov     eax, den[rdi]   # load denominator 
        imul    eax, esi        # denominator X int to add
        add     num[rdi], eax   # add to numerator
        mov     rsp, rbp        # restore stack pointer
        pop     rbp             # and caller frame pointer
        ret

Listing 18-15: The fraction_add function for our fraction class

There is nothing remarkable about fraction_get or fraction_add. The 
fraction_get function calls other functions, so we need to place the this 
pointer in the stack frame. The rdi register is safe to use as the this pointer 
in fraction_add because it doesn’t call any other functions. 

YOUR T UR N

Modify the assembly language program in Listings 18-9 through 18-15 so that it 
displays the fraction in “integer & fraction” format, where “fraction” is less than 
1. For example, 3/2 would be displayed as 1 & 1/2.
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What You’ve Learned

Class    The declaration of the data members that define the state of 
an object along with any member functions used to access these data 
members.

Object in C++    A named area of memory that contains the data mem-
bers declared in a class.

Methods or member functions    The member functions declared in a 
class can be called to access the state of an object of the same class.

Name mangling    The compiler creates member function names that 
include the function name, the class it belongs to, and the number and 
types of any arguments to the function.

Constructor    A member function used to initialize an object.

Destructor    A member function used to clean up resources that are no 
longer needed.

This has been a brief introduction to the way that C++ implements the 
basic object-oriented programming features.

So far in this book we have been using only integral values in our pro-
grams. In the next chapter, we’ll look at how fractional values are repre-
sented in memory and some of the CPU instructions to manipulate them.
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F R A C T I O N A L  N U M B E R S

We have been using only integral values—
integers and characters—in our programs. 

In this chapter, we’ll look at how computers 
represent fractional numbers. We’ll look at 

two ways to represent fraction values, fixed-point and 
floating-point.

We’ll start by looking at fixed-point numbers, which will show how frac-
tional values are represented in binary. As you will see, the number of bits 
we use for the integral part of the number limits the range of numbers we 
can represent. Using some bits for the fractional part simply allows us to 
divide that range into smaller portions.

This limitation on the range will lead us to a discussion of floating-point 
numbers, which allow for a much larger range but introduce other limita-
tions. We’ll discuss the format and properties of floating-point representation 
and then discuss the most common floating-point binary standard, IEEE 754. 
We’ll end the chapter with a brief look at how floating-point numbers are 
processed in the x86-64 architecture.
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Fractional Values in Binary
Let’s start by looking at the mathematics of fractional values. Recall from 
Chapter 2 that a decimal integer, N, is expressed in binary as follows:

N = dn–1 × 2n–1 + dn–2 × 2n–2 + … + d1 × 21 + d0 × 20

where each di = 0 or 1.
We can extend this to include a fractional part, F:

N.F�� = dn–1 × 2n–1 + dn–2 × 2n–2 + … + d0 × 20  +  d–1 × 2–1  +  d–2  ×  2–2  +  ⋯ 
 = dn–1dn–2…d0.d–1d–2…

where each di = 0 or 1. Be careful to note the binary point between d0 and 
d–1 on the right side of this equation. All the terms to the right of the binary 
point are inverse powers of 2, so this portion of the number sums to a frac-
tional value. Like the decimal point on the left side, the binary point sepa-
rates the fractional part from the integral part of the number. Here’s an 
example:

1.687510 	  = 1.010 + 0.510 + 0.12510 + 0.063510 
	   = 1 × 20 + 1 × 2–1 + 0 × 2–2 + 1 × 2–3 + 1 × 2–4 
	   = 1.10112

Although any integer can be represented as a sum of powers of two, 
an exact representation of fractional values in binary is limited to sums of 
inverse powers of two. For example, consider an 8-bit representation of the 
fractional value 0.9. From

0.111001102 = 0.8984375010 
0.111001112 = 0.9023437510

we can see the following:

0.111001102 < 0.910 < 0.111001112

In fact,

0.910 = 0.1110011002

where 1100 means this bit pattern repeats indefinitely. 
Rounding fractional values in binary is simple. If the next bit to the 

right is 1, add 1 to the bit position where rounding. Let’s round 0.9 to eight 
bits. From earlier, we see that the ninth bit to the right of the binary point is 
0, so we do not add 1 in the eighth bit position. Thus, we use

0.910 ≈ 0.111001102

which gives a rounding error as follows:

0.910 – 0.111001102 	  = 0.910 – 0.898437510 
	   = 0.001562510
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Fixed-Point Numbers
A fixed-point number is essentially a scaled integer representation, where the 
scaling is shown by the location of the radix point. The radix point separates 
the fractional part of a number from the integral part. We call it the decimal 
point in decimal numbers and the binary point in binary numbers. English-
speaking countries commonly use a period; other regions typically use a 
comma.

For example, 1234.510 represents 1234510 scaled by 1/10; 10011010010.12 
is 1001101001012 scaled by a factor of 1/2. When performing computations 
with fixed-point numbers, we need to be mindful of the location of the 
radix point.

Next, we’ll look at scaling numbers with a fractional part that is an 
inverse power of two, in which case the fractional part can be represented 
exactly. Then we’ll look at scaling fractional numbers in decimal to avoid 
the rounding errors described earlier.

When the Fractional Part Is a Sum of Inverse Powers of Two
We’ll start with a program that adds two measurements that are specified in 
inches. The fractional parts of inches are typically specified in inverse pow-
ers of 2: 1/2, 1/4, 1/8, and so forth, which can be represented exactly in the 
binary system.

Our program will add two measurements that are specified to the near-
est 1/16 of an inch. We’ll need four bits to store the fractional part, leaving 
28 bits for the integral part.

When adding two numbers, we need to align their radix points. Listing 19-1 
shows how we’ll do this alignment when reading numbers from the keyboard.

# getLength.s
# Gets length in inches and 1/16s.
# Outputs 32-bit value, high 28 bits hold inches,
# low 4 bits hold fractional value in 1/16s.
# Calling sequence:
#   rdi <- pointer to length
        .intel_syntax noprefix
# Useful constant
        .equ    fractionMask, 0xf
# Stack frame
        .equ    lengthPtr,-16
      1 .equ    inches,-8
        .equ    fraction,-4
        .equ    localSize,-16
# Constant data
        .section	.rodata
        .align  8
prompt:
        .string "Enter inches and 1/16s\n"
inchesPrompt:
        .string "        Inches: "
fractionPrompt:
        .string "    Sixteenths: "
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# Code
        .text
        .globl  getLength
        .type   getLength, @function
getLength:
        push    rbp                           # save frame pointer
        mov     rbp, rsp                      # set new frame pointer
        add     rsp, localSize                # for local var.
        
        mov     lengthPtr[rbp], rdi           # save pointer to output

        lea     rdi, prompt[rip]              # prompt user
        call    writeStr

        lea     rdi, inchesPrompt[rip]        # ask for inches
        call    writeStr
        lea     rdi, inches[rbp]              # get inches
        call  2 getUInt
        lea     rdi, fractionPrompt[rip]      # ask for 1/16's
        call    writeStr
        lea     rdi, fraction[rbp]            # get fraction
        call    getUInt
        
        mov     eax, dword ptr inches[rbp]    # retrieve inches
      3 sal     eax, 4                        # make room for fraction
        mov     ecx, dword ptr fraction[rbp]  # retrieve frac
      4 and     ecx, fractionMask             # make sure < 16
        add     eax, ecx                      # add in fraction
        mov     rcx, lengthPtr[rbp]           # load pointer to output
        mov     [rcx], eax                    # output

        mov     rsp, rbp                      # restore stack pointer
        pop     rbp                           # and caller frame pointer
        ret

Listing 19-1: Function to read a number in inches and sixteenths of an inch from keyboard

We allocate 32 bits for both the number of inches, and the number of 
sixteenths of an inch, each to be read as integers from the keyboard 1. 
Notice that we’re using the getUInt function to read each unsigned int 2. 
This is a simple modification of the getInt function, which reads a signed 
int; we wrote getInt in Chapter 15.

We’re using the four low-order bits to store the fractional part, so we 
shift the integral part four bits to the left to make room for adding in the 
fractional part 3. Before adding the fractional part, we’ll make sure that 
the user didn’t enter a number that exceeds four bits 4.

The scaling leaves 28 bits for the integral part. This limits the range of 
our numbers to be 0 to 268435455 15/16. This is sixteen times less than the 
0 to 4294967295 range of a 32-bit integer, but the resolution is to the near-
est 1/16.

Our function to display these measurements, as shown in Listing 19-2, 
shows both the integral and fractional parts.
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# displayLength.s
# Displays length in inches and 1/16s.
# Calling sequence:
#   edi <- value with 1/16s in low-order 4 bits
        .intel_syntax noprefix
# Useful constant
        .equ  1 fractionMask, 0xf
# Stack frame
        .equ    length,-16
        .equ    localSize,-16
# Constant data
        .section	.rodata
        .align  8
link:
        .string " "
over:
        .string "/16"
msg:
        .string "Total = "
endl:
        .string "\n"
# Code
        .text
        .globl  displayLength
        .type   displayLength, @function
displayLength:
        push    rbp                 # save frame pointer
        mov     rbp, rsp            # set new frame pointer
        add     rsp, localSize      # for local var.
        
        mov     length[rbp], rdi    # save input length
        lea     rdi, msg[rip]       # nice message
        call    writeStr
        
        mov     edi, length[rbp]    # original value
      2 shr     edi, 4              # integer part
        call    putUInt             # write to screen
        lea     rdi, link[rip]
        call    writeStr
        
        mov     edi, length[rbp]    # original value
      3 and     edi, fractionMask   # fraction part
        call    putUInt             # write to screen
      4 lea     rdi, over[rip]
        call    writeStr

        lea     rdi, endl[rip]
        call    writeStr

        mov     rsp, rbp            # restore stack pointer
        pop     rbp                 # and caller frame pointer
        ret

Listing 19-2: Function to display measurements in inches and sixteenths of an inch
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We shift the number four bits to the right so that we can display the 
integral part as an integer 2. Using a four-bit mask 1, we mask off the inte-
gral part and display the fractional part as another integer 3. And we add 
some text to show that this second integer is the fractional part 4.

Listing 19-3 shows the main function.

# rulerAdd.s
# Adds two ruler measurements, to nearest 1/16 inch.
        .intel_syntax noprefix
# Stack frame
        .equ    x,-16
        .equ    y, -12
        .equ    canary,-8
        .equ    localSize,-16
# Constant data
        .section	.rodata
        .align  8
endl:
        .string "\n"
# Code
        .text
        .globl	 main
        .type	 main, @function
main:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.
        mov     rax, qword ptr fs:40    # get canary
        mov     qword ptr canary[rbp], rax

        lea     rdi, x[rbp]             # x length
        call    getLength
        
        lea     rdi, y[rbp]             # y length
        call    getLength

        mov     edi, x[rbp]             # retrieve x length
      1 add     edi, y[rbp]             # add y length
        call    displayLength

        mov     eax, 0                  # return 0;
        mov     rcx, qword ptr canary[rbp]
        xor     rcx, qword ptr fs:40
        je      goodCanary
        call    __stack_chk_fail@plt
goodCanary:
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 19-3: Program to add two measurements in inches and sixteenths of an inch

If you look at the equation for representing fractional values in binary in 
the previous section, you can probably convince yourself that the integer add 
instruction will work for the entire number, including the fractional part 1.
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This example works nicely with binary numbers, but we mostly use 
decimal numbers in computations. As we saw earlier in this chapter, most 
fractional decimal numbers can’t be converted to a finite number of bits and 
need to be rounded. In the next section, we’ll discuss how to avoid rounding 
errors when using fractional decimal numbers.

When the Fractional Part Is in Decimal
Let’s think about how we’ve handled the fractional part in our fixed-point 
format here. When we read the integral part from the keyboard, we shifted 
it four bit positions to the left, leaving room to add the number of sixteenths 
to this int. We’ve effectively created a 32-bit number with the binary point 
between the fifth and fourth bits (bits numbered 4 and 3). This works 
because the fractional part is a sum of inverse powers of two.

Another way to think about how we handled fractions previously is that 
the four-bit shift multiplied the number by 16. We’ll take this approach 
when working in decimal: multiply the numbers by multiples of 10 such that 
the smallest value becomes an integer.

We’ll explore this approach with a program that adds two US dollar 
values to the nearest 1/100th of a dollar. As with the ruler measurement pro-
gram in Listings 19-1, 19-2, and 19-3, we’ll start with the function to read 
money values from the keyboard, getMoney, as shown in Listing 19-4.

# getMoney.s
# Gets money in dollars and cents.
# Outputs 32-bit value, money in cents.
# Calling sequence:
#   rdi <- pointer to length
        .intel_syntax noprefix
# Useful constant
        .equ  1 dollar2cents, 100
# Stack frame
        .equ    moneyPtr,-16
        .equ    dollars,-8
        .equ    cents,-4
        .equ    localSize,-16
# Constant data
        .section	.rodata
        .align  8
prompt:
        .string "Enter amount\n"
dollarsPrompt:
        .string "    Dollars: "
centsPrompt:
        .string "      Cents: "
# Code
        .text
        .globl  getMoney
        .type   getMoney, @function
getMoney:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
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        add     rsp, localSize          # for local var.
        
        mov     moneyPtr[rbp], rdi      # save pointer to output

        lea     rdi, prompt[rip]        # prompt user
        call    writeStr

        lea     rdi, dollarsPrompt[rip] # ask for dollars
        call    writeStr
        lea     rdi, dollars[rbp]       # get dollars
      2 call    getUInt
        lea     rdi, centsPrompt[rip]   # ask for cents
        call    writeStr
        lea     rdi, cents[rbp]         # get cents
      3 call    getUInt
        
        mov     eax, dword ptr dollars[rbp] # retrieve dollars
        mov     ecx, dollar2cents           # scale dollars to cents
      4 mul     ecx
        mov     ecx, dword ptr cents[rbp]   # retrieve cents
        add     eax, ecx                    # add in cents
        mov     rcx, moneyPtr[rbp]          # load pointer to output
        mov     [rcx], eax                  # output

        mov     rsp, rbp                    # restore stack pointer
        pop     rbp                         # and caller frame pointer
        ret

Listing 19-4: Function to read dollars and cents from the keyboard and convert to cents

As with the ruler measurement program, we’ll read the integral part 2 
and fractional part 3 as integers. As explained, since the scaling is a mul-
tiple of 10, we need to multiply the integral part 4 by the scaling factor 1 
instead of just shifting it.

The function to display the scaled numbers needs to invert the process 
to separate the integral and fractional parts. We’ll do that in the displayMoney 
function, as shown in Listing 19-5.

# displayMoney.s
# Displays money in dollars and cents.
# Calling sequence:
#   edi <- money in cents
        .intel_syntax noprefix
# Useful constant
        .equ  1 cent2dollars, 100
# Stack frame
        .equ    money,-16
        .equ    localSize,-16
# Constant data
        .section	.rodata
        .align 8
decimal:
        .string "."
msg:
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        .string "Total = $"
zero:
        .string "0"
endl:
        .string "\n"
# Code
        .text
        .globl  displayMoney
        .type   displayMoney, @function
displayMoney:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.
        
        mov     money[rbp], rdi         # save input money
        lea     rdi, msg[rip]           # nice message
        call    writeStr
        
        mov     edx, 0                  # clear high order
        mov     eax, money[rbp]         # convert money amount
        mov     ecx, cent2dollars       #     to dollars and cents
      2 div     ecx
      3 mov     money[rbp], edx         # save cents
        mov     edi, eax                # dollars
        call    putUInt                 # write to screen
      4 lea     rdi, decimal[rip]
        call    writeStr
        
        cmp     dword ptr money[rbp], 10  # 2 decimal places?
        jae     twoDecimal                # yes
        lea     rdi, zero[rip]            # no, 0 in tenths place
        call    writeStr
twoDecimal:
        mov     edi, money[rbp]           # load cents
        call    putUInt                   # write to screen

        lea     rdi, endl[rip]
        call    writeStr

        mov     rsp, rbp                  # restore stack pointer
        pop     rbp                       # and caller frame pointer
        ret

Listing 19-5: Function that displays cents as dollars and cents

We used a scaling factor to move the decimal point two places to the 
right when reading the money values. Now we need to move the decimal 
point two places to the left to recover the fractional part. So we need to use 
the same scaling factor, 100 1.

Then the div instruction will leave the integral part in eax and the remain-
der (the fractional part) in edi 2. We’ll temporarily save the fractional part 
while we print the integral part 3. As with the ruler measurement program, 
we print text to indicate the fractional part 4.

Listing 19-6 shows the main function that adds two money amounts.
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# moneyAdd.s
# Adds two money amounts in dollars and cents.
        .intel_syntax noprefix
# Stack frame
        .equ    x,-16
        .equ    y, -12
        .equ    canary,-8
        .equ    localSize,-16
# Constant data
        .section	.rodata
        .align 8
endl:
        .string "\n"
# Code
        .text
        .globl	 main
        .type	 main, @function
main:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.
        mov     rax, qword ptr fs:40    # get canary
        mov     qword ptr canary[rbp], rax

        lea     rdi, x[rbp]             # x amount
        call    getMoney
        
        lea     rdi, y[rbp]             # y amount
        call    getMoney

        mov     edi, x[rbp]             # retrieve x amount
      1 add     edi, y[rbp]             # add y amount
        call    displayMoney

        mov     eax, 0                  # return 0;
        mov     rcx, qword ptr canary[rbp]
        xor     rcx, qword ptr fs:40
        je      goodCanary
        call    __stack_chk_fail@plt
goodCanary:
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 19-6: Program to add money amounts using fixed-point numbers

The money amounts we’re using in the main function have been scaled 
to be integers, so we can use a simple add instruction to add them 1.

Although fixed-point arithmetic allows us to preserve the full resolution 
of the numbers, the range of values is limited by the number of bits in the 
integral data type, 32 in this program. We’ve limited the range of the num-
bers in our program to be 0 to 42949672.95 but increased resolution to the 
nearest 0.01.
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We have a more convenient notation for representing very large and 
very small numbers, which we’ll explore next.

YOUR T UR N

1.	 Enter the program in Listings 19-1, 19-2, and 19-3. Using the gdb debugger, 
examine the numbers stored in the x and y variables in main. Identify the 
integral and fractional parts.

2.	 Enter the program in Listings 19-4, 19-5, and 19-6. Using the gdb debug-
ger, examine the numbers stored in the x and y variables in main. Identify 
the integral and fractional parts.

3.	 Enter the program in Listings 19-4, 19-5, and 19-6. Run the program, enter-
ing $42949672.95 for one amount and $0.01 for the other. What total 
does the program give?

4.	 Modify the program in Listings 19-4, 19-5, and 19-6 so it will work with 
both positive and negative values. You might need the getSInt and putSInt 
functions from Chapter 15. For a negative value, you’ll need to enter both 
the dollars and cents amounts as negative numbers. What is the range of 
totals for this modification?

Floating-Point Numbers
Let’s begin with the most important concept in this section: floating-point 
numbers are not real numbers. Real numbers include the continuum of all 
numbers from −∞ to +∞. You already know that computers are finite, so 
there is certainly a limit on the largest values that can be represented, but 
the problem is worse than simply a limit on the magnitude.

As you will see in this section, floating-point numbers comprise a 
small subset of real numbers. There are significant gaps between adjacent 
floating-point numbers. These gaps can produce several types of errors. To 
make matters worse, these errors can occur in intermediate results, where 
they are difficult to debug.

Floating-Point Representation
Floating-point representation is based on scientific notation. In floating-point 
representation, we have a sign and two numbers to completely specify a 
value: a significand and an exponent. A decimal floating-point number is writ-
ten as a significand times 10 raised to an exponent. For example, consider 
these two numbers:

0.0010123    = 1.0123 × 10–3 
–456.78 	 = –4.5678 × 102
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Notice that in floating-point representation, the number is normalized 
such that only one digit appears to the left of the decimal point. The expo-
nent of 10 is adjusted accordingly. If we agree that each number is normal-
ized and that we are working in base 10, then each floating-point number is 
completely specified by three items: significand, exponent, and sign. In the 
previous two examples:

10123, –3, and + represent +1.0123 × 10–3

45678, +2, and – represent –4.5678 × 10+2

The advantage of using floating-point representation is that, for a given 
number of digits, we can represent a larger range of values.

Let’s look at how floating-point numbers are stored in a computer.

IEEE 754 Floating-Point Standard
The most commonly used standard for storing floating-point numbers is 
IEEE 754 (https://standards.ieee.org/standard/754-2019.html). Figure 19-1 shows 
the general pattern.

SignificandExponentS

Figure 19-1: General pattern for storing  
floating-point numbers

Here, S is the sign of the number.
Like all storage formats, floating-point formats involve trade-offs 

between resolution, rounding errors, size, and range. The IEEE 754 stan-
dard specifies sizes from 4 to 16 bytes. The most common sizes used in C/C++ 
are float (four bytes) and double (eight bytes). The x86-64 architecture sup-
ports both sizes plus a 10-byte extended version that is similar to, but not part 
of, the IEEE 754 standard.

Figure 19-2 shows the number of bits specified for each of these three sizes.
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Figure 19-2: Number of bits for (a) C float, (b) C double, and (c) x86-64 extended version

The values in Figure 19-2 represent a floating-point number, N, stored 
in the normalized form.

N = (–1)s × 1.f × 2e

The first bit, s, is the sign bit, 0 for positive and 1 for negative.

https://standards.ieee.org/standard/754-2019.html


Fractional Numbers   427

As in decimal, the exponent is adjusted such that there is only one non-
zero digit to the left of the binary point. In binary, though, this digit is always 
1, giving 1.f as the significand. Since it’s always 1, the integer part (1) is not 
stored in the IEEE 754 four- and eight-byte versions. It’s called the hidden bit. 
Only the fraction part of the significand, f, is stored. The integer part, i, is 
included in the x86-64 extended 10-byte version.

The formats need to allow for negative exponents. Your first thought 
might be to use two’s complement. However, the IEEE standard was developed 
in the 1970s, when floating-point computations took a lot of CPU time. Many 
algorithms in programs depend upon only the comparison of two numbers, 
and the computer scientists of the day realized that a format that allowed 
integer comparison instructions would result in faster execution times. So 
they decided to add an amount, a bias, to the exponent before storing it such 
that the most negative allowable exponent would be stored as 0. The result, 
a biased exponent, can then be stored as an unsigned int. As you can see in 
Figure 19-2, the bias is 127 for the 4-byte standard, 1023 for the 8-byte, and 
16383 for the 10-byte.

The hidden bit scheme presents a problem—there is no way to represent 
0. To address this and other issues, the IEEE 754 standard has several spe-
cial cases:

Zero value    All the biased exponent bits and fraction bits are 0, allow-
ing for both –0 and +0. This preserves the sign of a computation that 
converges to 0.

Denormalized    If the value to be represented is smaller than can be 
represented with all the biased exponent bits being 0, meaning that 
e has the most negative value possible, the hidden bit is no longer 
assumed. In this case, the amount of bias is reduced by 1.

Infinity    Infinity is represented by setting all the biased exponent bits 
to 1 and all the fraction bits to 0. Notice that this allows the sign bit to 
designate both +∞ and −∞, allowing us to still compare numbers that are 
out of range.
Not a number (NaN)     If the biased exponent bits are all 1 but the 
fraction bits are not all 0, this represents a value that is in error. This 
might be used to indicate that a floating-point variable doesn’t yet have 
a value. A NaN should be treated as a program error.

An example of an operation that gives infinity is dividing a nonzero 
value by 0. An example that produces NaN is an operation that has an 
undefined result, like dividing 0 by 0. 

Next, we’ll discuss the x86-64 hardware used to work with floating-
point numbers.

SSE2 Floating-Point Hardware
Until the introduction of the Intel 486DX in April 1989, the x87 floating-
point unit was on a separate chip, a coprocessor. It is now included on the 
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CPU chip, although it uses a somewhat different execution architecture 
than the integer unit in the CPU. It uses the 10-byte floating standard in 
Figure 19-2(c).

In 1997, Intel added Multimedia Extensions (MMX) to its processors, which 
include instructions that operate on multiple data items simultaneously—
single instruction, multiple data (SIMD). Operations on single data items  
are called scalar operations. Operations on multiple data items in parallel are 
called vector operations, which are useful for many multimedia and scientific 
applications. We’ll discuss only scalar operations in this book.

Originally, MMX performed only integer computations, but in 1998 
AMD added the 3DNow! extension to MMX, which includes floating-point 
instructions. Intel soon followed suit with the Streaming SIMD Extension 
(SSE) on the Pentium III in 1999, and AMD soon added SSE to give us 
3DNow! Professional. Several versions have evolved over the years—SSE, 
SSE2, SSE3, and SSE4. In 2011 Intel and AMD added Advanced Vector 
Extensions (AVX) for SIMD and floating-point operations.

The x86-64 architecture includes at least SSE2. Higher versions are 
available only on higher-level CPU chips. We’ll discuss SSE2 in this book 
since it is the most common, and chips with more advanced versions still 
support SSE2. The only CPU chips that don’t include at least SSE are some 
inexpensive 32-bit microcontrollers (for example, the Intel Quark), so we 
won’t discuss the x87 architecture in this book.

Most of the SSE2 instructions operate on multiple data items simulta-
neously. There are SSE2 instructions for both integer and floating-point 
operations. Integer instructions operate on up to sixteen 8-bit, eight 16-bit, 
four 32-bit, two 64-bit, or one 128-bit integers at a time.

Vector floating-point instructions operate on all four 32-bit or both 
64-bit floats in a register simultaneously. Each data item is treated inde-
pendently. These instructions are useful for algorithms that do things like 
process arrays. One SSE2 instruction can operate on several array elements 
in parallel, resulting in considerable speed gains. Such algorithms are com-
mon in multimedia and scientific applications. 

In this book we will consider only a few of the scalar floating-point instruc-
tions, which operate on only single data items. These instructions operate on 
either 32-bit (single-precision) or 64-bit (double-precision) values. The scalar 
instructions operate on only the low-order portion of the 128-bit xmm registers, 
with the high-order 64 or 96 bits remaining unchanged. 

xmm Registers
The SSE architecture added eight 128-bit registers to the CPU, which are 
separate from the general-purpose integer registers we’ve been using thus 
far in the book. SSE2 added a 64-bit mode, which adds eight more 128-bit 
registers with the register names xmm0, xmm1, …, xmm15. AVX extensions add 
wider registers, the 256-bit ymm0, ymm1, …, ymm15 and 512-bit zmm0, zmm1, …, 
zmm15 registers. In the AVX architecture, the register names xmm0, xmm1, …, 
xmm15 refer to the low-order 128 bits of the 256-bit ymm0, ymm1, …, ymm15 and 
512-bit zmm0, zmm1, …, zmm15 registers.
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Figure 19-3 shows a single xmm register and how its contents are arranged 
when copied into or from memory.

00
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float0

float0

float1
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0313263649596127

Relative
memory
address

xmm register

Figure 19-3: A single xmm register and its mapping into memory

SSE also includes its own 32-bit status and control register, mxcsr. 
Table 19-1 shows the meanings of the bits in this register, and the default 
setting of each bit when the CPU is first powered on.

Table 19-1: The Bits in the mxcsr Register

Bits Mnemonic Meaning Default

31:16 Reserved

15 FZ Flush to zero 0

14:13 RC Rounding control 00

12 PM Precision mask 1

11 UM Underflow mask 1

10 OM Overflow mask 1

9 ZM Divide-by-zero mask 1

8 DM Denormals operation 
mask

1

7 IM Invalid operation mask 1

6 DAZ Denormals are zero 0

5 PE Precision flag 0

4 UE Underflow flag 0

3 OE Overflow flag 0

2 ZE Divide-by-zero flag 0

1 DE Denormal flag 0

0 IE Invalid operation flag 0

Bits 0–5 are set by SSE operations that result in the respective condition. 
They can cause exceptions, which are typically handled by the operating sys-
tem. (You’ll learn more about exceptions in Chapter 21.) Bits 7–12 are used 
to control whether the respective exception will occur in a process called 
masking. The RC bits are set to control the way a number is rounded, as shown 
in Table 19-2.
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Table 19-2: Rounding Mode of Floating-Point Numbers

RC Rounding mode

00 Round to nearest value. If tied, choose even value. Default mode.

01 Round down, toward −∞.

10 Round up, toward +∞.

11 Truncate.

A detailed description of each condition is beyond the scope of this 
book, but we’ll look at one example to give you an idea of how they’re used. 
A precision error is caused when a floating-point operation yields a result 
that cannot be represented exactly—for example, 1.0 divided by 3.0. The 
SSE unit rounds the result and sets the PE bit in the mxcsr register. In most 
cases, the precision error is acceptable, and we don’t want the exception to 
occur. Setting the PM bit to 1 masks out this exception, and the program con-
tinues without involving the operating system in this error.

As you can see in Table 19-1, masking out a precision error is the default 
condition. If such an error is important in the program you’re writing, you 
would need to unmask the PE error. The C standard library includes func-
tions to work with the mxcsr register, which you can read about by using the 
man fenv command in a Linux terminal window. You’ll get a chance to work 
with a divide-by-zero situation in assembly language when it’s Your Turn.

Unlike the status flags set by integer instructions in the rflags register, 
there are no instructions to test the condition bits in the mxcsr register. 
Although most SSE instruction don’t affect it, four comparison instructions, 
comisd, comiss, ucomisd, and ucomiss, do set the status flags in the rflags register. 
We’re not using these instructions in this book, but they would allow us to use 
the conditional jump instructions based on floating-point comparisons. 

Let’s look at using the SSE hardware to perform floating-point 
computations.

Programming with Floating-Point Numbers
The program in Listing 19-7 adds two floats and prints their sum. We’ll 
use assembly language to make it easier for us to see what’s going on and to 
examine numbers in the debugger.

# addFloats.s
# Adds two floats.
        .intel_syntax noprefix
# Stack frame
      1 .equ    x,-20
        .equ    y,-16
        .equ    z,-12
        .equ    canary,-8
        .equ    localSize,-32
# Constant data
        .section	.rodata
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prompt:
        .string "Enter a number: "
scanFormat:
        .string "%f"
printFormat:
        .string "%f + %f = %f\n"
# Code
        .text
        .globl	 main
        .type	 main, @function
main:
        push    rbp                     # save frame pointer
        mov     rbp, rsp                # set new frame pointer
        add     rsp, localSize          # for local var.
        mov     rax, qword ptr fs:40    # get canary
        mov     qword ptr canary[rbp], rax

        lea     rdi, prompt[rip]        # prompt for input
        mov     eax, 0
        call    printf@plt
        lea     rsi, x[rbp]             # read x
        lea     rdi, scanFormat[rip]
        mov     eax, 0
        call    __isoc99_scanf@plt
        
        lea     rdi, prompt[rip]        # prompt for input
        mov     eax, 0
        call    printf@plt
        lea     rsi, y[rbp]             # read y
        lea     rdi, scanFormat[rip]
        mov     eax, 0
        call    __isoc99_scanf@plt
        
      2 movss   xmm2, x[rbp]            # load x
        addss   xmm2, y[rbp]            # compute x + y
        movss   z[rbp], xmm2
      3 cvtss2sd   xmm0, x[rbp]         # convert to double
        cvtss2sd   xmm1, y[rbp]         # convert to double
        cvtss2sd   xmm2, z[rbp]         # convert to double
        lea     rdi, printFormat[rip]
        mov     eax, 3                  # 3 xmm regs.
        call    printf@plt

        mov     eax, 0                  # return 0;
        mov     rcx, qword ptr canary[rbp]
        xor     rcx, qword ptr fs:40
        je      goodCanary
        call    __stack_chk_fail@plt
goodCanary:
        mov     rsp, rbp                # restore stack pointer
        pop     rbp                     # and caller frame pointer
        ret

Listing 19-7: Program to add two numbers using floating-point variables
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The float data type is 32 bits 1. All the computations using floating-
point numbers are performed in the xmm registers 2. The floating-point 
arguments to printf are also passed in xmm registers, but printf requires that 
they be passed as doubles 3.

We see some SSE instructions in Listing 19-7, movss 1, addss 2, and 
cvtss2sd 3:

movss—Move Scalar Single-Precision Floating-Point

Copies (moves) a scalar single-precision 32-bit floating-point value from 
one location to another.

movss xmmreg1, xmmreg2 moves from xmmreg2 register to xmmreg1 register.

movss xmmreg, mem moves from a memory location to an xmm register.

movss mem, xmmreg moves from xmmreg register to a memory location.

The movss instruction moves 32 bits using the low-order 32 bits of the 
specified xmm register(s). When the destination is an xmm register, the 
high-order 96 bits are not affected, except when moving from memory 
they are zeroed.

addss—Add Scalar Single-Precision Floating-Point

Adds a scalar single-precision 32-bit floating-point value to another.

addss xmmreg1, xmmreg2 adds the floating-point value in xmmreg2 to the 
floating-point value in xmmreg1, leaving the result in xmmreg1.

addss xmmreg, mem adds the floating-point value in a memory location to 
the floating-point value in an xmm register.

addss mem, xmmreg adds the floating-point value in an xmm register to add 
the floating-point value in a memory location.

The result of the addition can cause an OE, UE, IE, PE, or DE exception. 
The addss instruction affects only the low-order 32 bits of the destina-
tion xmm register.

cvtss2sd—Convert Scalar Single-Precision Floating-Point to Scalar Double-
Precision

Converts a scalar single-precision 32-bit floating-point value to a  
double-precision 64-bit floating-point value.

cvtss2sd xmmreg1, xmmreg2 converts the single-precision floating-point 
value in xmmreg2 to the equivalent double-precision floating-point value, 
leaving the result in xmmreg1.

cvtss2sd xmmreg, mem converts the single-precision floating-point value 
in a memory location to the equivalent double-precision floating-point 
value, leaving the result in xmmreg.

The result of the conversion can cause an IE or DE exception. The 
cvtss2sd instruction affects only the low-order 64 bits of the destination 
xmm register.
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Floating-Point Arithmetic Errors
Most of the arithmetic errors we’ll discuss here also exist with fixed-point arith-
metic. Probably the most common arithmetic error is rounding error. This can 
occur for two reasons: either the number of bits available for storage is limited 
or the fractional values cannot be precisely represented in all number bases.

Both these limitations also apply to fixed-point representation. The dif-
ference with floating-point is that the CPU hardware can shift the significand 
of an arithmetic result, adjusting the exponent accordingly, causing bits to be 
lost. With integer arithmetic, any shifting of bits is explicit in the program.

It’s easy to think of floating-point numbers as real numbers, but they’re 
not. Most floating-point numbers are rounded approximations of the real 
numbers they represent. When using floating-point arithmetic, we need to 
be aware of the effects of rounding on our computations. If we don’t pay 
close attention to the rounding effects, we might not notice any errors that 
could creep into our computations.

When computing with integers, we need to be aware of errors in the 
most significant places of the results: carry for unsigned integers and over-
flow for signed. With floating-point numbers, the radix point is adjusted 
to maintain the integrity of the most significant places. Most errors in 
floating-point are the result of any rounding in the low-order places that 
is needed to fit the value within the allocated number of bits. The errors 
in floating-point arithmetic are more subtle, but they can have important 
effects on the accuracy of our programs.

Let’s run the program in Listing 19-7:

$ ./addFloats 
Enter a number: 123.4
Enter a number: 567.8
123.400002 + 567.799988 = 691.200012

The arithmetic here doesn’t look accurate. Before you go back to look 
for the bugs in Listing 19-7, let’s bring in the debugger to see if we can fig-
ure out what’s happening:

--snip--
(gdb) b 53
Breakpoint 1 at 0x11e4: file addFloats.s, line 53.
(gdb) r
Starting program: /home/bob/progs/chapter_19/addFloats_asm/addFloats 
Enter a number: 123.4
Enter a number: 567.8

Breakpoint 1, main () at addFloats.s:53
53               call    printf@plt

I set a breakpoint at the call to printf and then ran the program, entering 
the same numbers we used earlier. Next, let’s look at the numbers stored in 
the three variables, x, y, and z:

(gdb) i r rbp
rbp            0x7fffffffdee0      0x7fffffffdee0
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(gdb) x/3xw 0x7fffffffdecc
0x7fffffffdecc: 0x42f6cccd       0x440df333       0x442ccccd

The x variable is located at 0x7fffffffdecc: 0x42f6cccd. From the IEEE 754 
format shown previously, we see that the exponent is stored as 8516 = 13310, 
giving e = 6. Thus, x is stored as (writing the significand, including the hid-
den bit, in binary and the exponent part in decimal) 1.11101101100110011001101 
× 26 = 1111011.01100110011001101 = 123.40000152587890625. The f formatting 
character in the examine memory command shows us the memory contents 
in floating-point format:

(gdb) x/3fw 0x7fffffffdecc
0x7fffffffdecc: 123.400002       567.799988       691.200012

The display here is not as accurate as our hand computations, but it 
clearly shows that there is rounding error in all three numbers.

At this point in the program, x, y, and z have been loaded into the xmm0, 
xmm1, and xmm2 registers and converted to doubles. Let’s look at those registers. 
Since the x86-84 uses little-endian order, the low-order values are displayed 
first in each {...} grouping:

(gdb) i r xmm0
xmm0           {v4_float = {0x0, 0x3, 0x0, 0x0}, v2_double = {0x7b, 0x0}, v16_
int8 = {0x0, 0x0, 0x0, 0xa0, 0x99, 0xd9, 0x5e, 0x40, 0x0, 0x0, 0x0, 0x0, 0x0, 
0x0, 0x0, 0x0}, v8_int16 = {0x0, 0xa000, 0xd999, 0x405e, 0x0, 0x0, 0x0, 0x0}, 
v4_int32 = {0xa0000000, 0x405ed999, 0x0, 0x0}, v2_int64 = {0x405ed999a0000000, 
0x0}, uint128 = 0x405ed999a0000000}

When using the info registers command, gdb shows us all possible uses of 
the xmm registers, but we can use the print command to tell gdb which usage to 
display. In our case, we’re using the xmm registers to hold two doubles:

(gdb) p $xmm0.v2_double
$1 = {123.40000152587891, 0}
(gdb) p $xmm1.v2_double
$2 = {567.79998779296875, 0}
(gdb) p $xmm2.v2_double
$3 = {691.20001220703125, 0}

The print command displays more decimal places than the x command. 
We can also tell print to display the values as 64-bit ints.

(gdb) p/x $xmm0.v2_int64
$4 = {0x405ed999a0000000, 0x0}
(gdb) p/x $xmm1.v2_int64
$5 = {0x4081be6660000000, 0x0}
(gdb) p/x $xmm2.v2_int64
$6 = {0x40859999a0000000, 0x0}

Notice that the conversion from float to double simply adds 0s in the 
additional 28 bits in the low-order part of the significand. The conversion 
does not increase the number of significant bits.
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Finally, we execute the rest of the program:

(gdb) cont
Continuing.
123.400002 + 567.799988 = 691.200012
[Inferior 1 (process 2547) exited normally]
(gdb)

The errors that occur from computing with rounded numbers can be 
subtle. We’ll use our addFloats program in Listing 19-7 to illustrate some 
common errors.

YOUR T UR N

1.	 Modify the assembly language program in Listing 19-7 so that it performs 
the addition using doubles. Run it with the same numbers in my example. 
Does it give a more accurate result? Explain.

2.	 Modify the assembly language program in Listing 19-7 so that it divides 
instead of adding. Try dividing by 0.0. The SSE instruction to divide floats 
is divss. What happens when you run it?

3.	 Now, if your program in the previous exercise gave a result for the divi-
sion, that means the divide-by-zero exception was masked out; modify 
the program so that ZE is no longer masked out. If it gave a core dump, 
ZE was not masked out; modify the program so that ZE is masked out. To 
modify the ZM bit in the mxcsr register, you need two instructions: stmxcsr 
mem stores a copy of the 32-bit mxcsr register in the memory location, mem, 
and ldmxcsr mem loads the 32-bit value at the memory location mem into the 
mxcsr register.

Absorption

Absorption results from adding (or subtracting) two numbers of widely differ-
ent magnitude. The value of the smaller number gets lost in the computation. 
Let’s run our addFloats program under gdb to see how this occurs.

We’ll set a breakpoint at the call to printf and run the program:

(gdb) run
Enter a number: 16777215.0
Enter a number: 0.1

Starting program: /home/bob/progs/chapter_19/addFloats_asm/addFloats
Breakpoint 1, main () at addFloats.s:53
53              call    printf@plt

The significand in a 32-bit float is 24 bits (don’t forget the hidden bit), 
so I used 16777215.0 as one of the numbers. Then I used 0.1 as the fraction 
to be added to it.
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Next, let’s look at the numbers stored in the three variables, x, y, and z:

(gdb) i r rbp
rbp            0x7fffffffdee0      0x7fffffffdee0
(gdb) x/3xw 0x7fffffffdecc
0x7fffffffdecc: 0x4b7fffff       0x3dcccccd       0x4b7fffff

Let’s look at the hexadecimal number in x, which is located at 0x7fffffff 
decc: 0x4b7fffff. From the IEEE 754 format shown earlier, we see that the 
exponent is stored as 9616 = 15010, giving e = 13. Thus, x is stored as 1.11111 
111111111111111111 × 213 = 111111111111111111111111.0 = 16777215.010. Similarly, 
y is stored as 1.10011001100110011001101 × 2–4 = 0.000110011001100110011001101 ≅ 
0.10000000143710. Adding these two binary numbers gives 11111111111111111
1111111.000110011001100110011001101. The floating-point hardware in the CPU 
will round this to 24 bits to fit it into the IEEE 754 format, which cuts off 
the entire fractional portion. The small number in this example, 0.1, has 
been absorbed in this floating-point addition.

The absorption may not be obvious if we look at the numbers in gdb’s 
floating-point format:

(gdb) x/3fw 0x7fffffffdecc
0x7fffffffdecc: 16777215        0.100000001      16777215

Cancellation

Another type of error, cancellation, can occur when subtracting two num-
bers that differ by a small amount. Since floating-point notation preserves 
the integrity of the high-order portions, the subtraction will give 0 in 
the high-order portion of the result. If either of the numbers has been 
rounded, its low-order portion is not exact, which means that the result will 
be in error.

We’ll use our addFloats program in Listing 19-7 to subtract by entering a 
negative number. Here’s an example using two close numbers:

$ ./addFloats 
Enter a number: 1677721.5
Enter a number: -1677721.4
1677721.500000 + -1677721.375000 = 0.125000 

The relative error in this subtraction is (0.125 – 0.1) / 0.1 = 0.25 = 25%. 
We can see that the second number has been rounded from –1677721.4 to 
–1677721.375, which led to the error in the arithmetic.

Let’s look at how these numbers are treated as floats:
x = 1.10011001100110011001100 × 220

y = 1.10011001100110011001011 × 220

z = 1.00000000000000000000000 × 2–3

Subtraction has caused the high-order 20 bits of x and y to cancel, leav-
ing only three bits of significance for z. The rounding error in y carries 
through to cause an error in z.
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Let’s use two values that will not give a rounding error:

$ ./addFloats 
Enter a number: 1677721.5
Enter a number: -1677721.25
1677721.500000 + -1677721.250000 = 0.250000 

In this case, the three numbers are stored exactly:
x = 1.10011001100110011001100 × 220

y = 1.10011001100110011001010 × 220

z = 1.00000000000000000000000 × 2–2

The subtraction has still caused the high-order 20 bits of x and y to can-
cel and left only three bits of significance for z, but z is correct.

Catastrophic cancellation occurs when at least one of the floating-point 
numbers has a rounding error that causes an error in the difference. If 
both numbers are stored exactly, we get benign cancellation. Both types of 
cancellation cause a loss of significance in the result.

Associativity

Probably the most insidious effects of floating-point errors are those that 
occur in intermediate results. They can show up in some sets of data but 
not in others. Errors in intermediate results even cause floating-point addi-
tion not to be associative: there are some values of the floats x, y, and z for 
which (x + y) + z is not equal to x + (y + z).

Let’s write a simple C program to test for associativity, as shown in 
Listing 19-8.

/* threeFloats.c
 * Associativity of floats.
 */

#include <stdio.h>

int main()
{
  float x, y, z, sum1, sum2;

  printf("Enter a number: ");
  scanf("%f", &x);
  printf("Enter a number: ");
  scanf("%f", &y);
  printf("Enter a number: ");
  scanf("%f", &z);
  
1 sum1 = x + y;
  sum1 += z;      /* sum1 = (x + y) + z */
  sum2 = y + z;
  sum2 += x;      /* sum2 = x + (y + z) */

  if (sum1 == sum2)
    printf("%f is the same as %f\n", sum1, sum2);
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  else
    printf("%f is not the same as %f\n", sum1, sum2);

  return 0;
}

Listing 19-8: Program to show that floating-point arithmetic is not associative

Most programmers would do the addition in one statement, sum1 = 
(x + y) + z, but doing it in separate stages will allow us to look at the 
intermediate results in the debugger 1. We’ll start with some simple 
numbers:

$ ./threeFloats 
Enter a number: 1.0
Enter a number: 2.0
Enter a number: 3.0
6.000000 is the same as 6.000000

The result seems reasonable. Let’s try some slightly more interesting 
numbers:

$ ./threeFloats 
Enter a number: 1.1
Enter a number: 1.2
Enter a number: 1.3
3.600000 is not the same as 3.600000

We’ll use gdb to see if we can figure out what’s going on here:

$ gdb ./threeFloats 
--snip--

(gdb) b 18
Breakpoint 1 at 0x121f: file threeFloats.c, line 18.
(gdb) r
Starting program: /home/bob/progs/chapter_19/threeFloats_C/threeFloats
Enter a number: 1.1
Enter a number: 1.2
Enter a number: 1.3

Breakpoint 1, main () at threeFloats.c:18
18	   sum1 = x + y;
(gdb) p x
$1 = 1.10000002
(gdb) p y
$2 = 1.20000005
(gdb) p z
$3 = 1.29999995
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We can see that there is a rounding error in each number as it’s stored. 
Let’s step through each statement one at a time and look at how the sums 
build up:

(gdb) n
19	   sum1 += z;
(gdb) p sum1
$4 = 2.30000019

Both x and y have rounding errors, and adding them introduces even 
more rounding error in their sum:

(gdb) n
20	   sum2 = y + z;
(gdb) p sum1
$5 = 3.60000014

Next, we’ll follow the buildup of sum2:

(gdb) n
21	   sum2 += x;
(gdb) p sum2
$6 = 2.5
(gdb) n
22	   if (sum1 == sum2)
(gdb) p sum2
$7 = 3.5999999
(gdb) cont
Continuing.
3.600000 is not the same as 3.600000
[Inferior 1 (process 2406) exited normally]
(gdb)

Using the debugger to look at the storage of each number and watch-
ing the sums build up allows us to see the effects of rounding errors in the 
float storage format. The %f format tells printf to display six decimal places, 
rounded as needed. So our program correctly tells us that 3.60000014 ≠ 
3.5999999, but printf rounds both numbers to 3.600000.

YOUR T UR N

Modify the C program in Listing 19-8 to use doubles. Does this make addition 
associative?
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Comments About Numerical Accuracy
Beginning programmers often see floating-point numbers as real numbers 
and thus think they are more accurate than integers. It’s true that using 
integers carries its own set of problems: even adding two large integers can 
cause overflow. Multiplying integers is even more likely to produce a result 
that will overflow. And we need to take into account that integer division 
results in two values, the quotient and the remainder, instead of the one 
value that floating-point division gives us.

But floating-point numbers are not real numbers. As you’ve seen in 
this chapter, floating-point representations extend the range of numerical 
values but have their own set of potential inaccuracies. Arithmetically accu-
rate results require a thorough analysis of your algorithm. These are some 
points to consider: 

Try to scale the data such that integer arithmetic can be used. 

Using doubles instead of floats improves accuracy and may actually 
increase the speed of execution. Most C and C++ library routines 
take doubles as arguments, so the compiler converts floats to doubles 
when passing them as arguments, as we saw in the call to printf in 
Listing 19-7. 

Try to arrange the order of computations so that similarly sized num-
bers are added or subtracted. 

Avoid complex arithmetic statements, which may obscure incorrect 
intermediate results. 

Choose test data that stresses your algorithm. If your program 
processes fractional values, include data that has no exact binary 
equivalent.

The good news is that with today’s prevalence of 64-bit computers, the 
range of integers is –9,223,372,036,854,775,808 ≤ N ≤ +9,223,372,036,854, 
775,807. And there are libraries available in many programming languages 
that allow us to use arbitrary-precision arithmetic in our programs. A good 
resource for finding one to use is https://en.wikipedia.org/wiki/List_of_arbitrary 
-precision_arithmetic_software.

We’ve looked at the primary causes of numerical errors when using 
floating-point numbers. For a more rigorous mathematical treatment of the 
topic, good starting points would be David Goldberg’s paper, “What Every 
Computer Scientist Should Know About Floating-Point Arithmetic,” ACM 
Computing Surveys, Vol 23, No 1, March 1991, and https://en.wikipedia.org/
wiki/Floating-point_arithmetic. For an example of a programming technique 
to reduce rounding errors, you can read about the Kahan summation algo-
rithm at https://en.wikipedia.org/wiki/Kahan_summation_algorithm.

https://en.wikipedia.org/wiki/List_of_arbitrary -precision_arithmetic_software
https://en.wikipedia.org/wiki/List_of_arbitrary -precision_arithmetic_software
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
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What You’ve Learned

Binary representation of fractional values    Fractional values in binary 
are equal to sums of inverse powers of two.

Fixed point in binary    The binary point is assumed to be between two 
specific bits.

Floating-point numbers are not real numbers    The gap between adja-
cent floating-point numbers varies according to the exponent.

Floating-point is usually less accurate than fixed-point    Rounding 
errors are commonly obscured by floating-point format normalization 
and can accumulate through multiple computations.

IEEE 754    The most common standard for representing floating-point 
values in a computer program. The integer part is always 1. The expo-
nent specifies the number of bits included in, or excluded from, the 
integer part.

SSE floating-point hardware    A separate set of hardware in the CPU, 
with its own registers and instruction set, for working with floating-
point numbers.

So far in this book, we have discussed programs that follow a step-by-
step order of execution of instructions. But in some instances, an instruc-
tion cannot do anything meaningful with its operands—for example, when 
we divide by 0. As you saw earlier in this chapter, that can trigger an excep-
tion to the intended order of program execution. And we may want to 
allow outside events, like typing a key on the keyboard, to interrupt the 
ongoing program execution. After discussing input/output in Chapter 20, 
we’ll look at interrupts and exceptions in Chapter 21.





20
I N P U T/O U T P U T

We’ll look at the I/O subsystem in this 
chapter. The I/O subsystem is what programs 

use to communicate with the outside world, 
meaning devices other than the CPU and mem-

ory. Most programs read data from one or more input 
devices, process the data, and then write the results to 
one or more output devices.

Keyboards and mice are typical input devices; display screens and print-
ers are typical output devices. Although most people don’t think of them 
this way, devices such as magnetic disks, solid-state drives, USB sticks, and 
so forth, are also I/O devices.

We’ll start the chapter by looking at some of the timing characteristics 
of I/O devices and how they compare to memory. Then we’ll look at the 
interface between the CPU and I/O devices that we use to deal with the tim-
ing issues. Finally, we’ll take a cursory look at how to program I/O devices.
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Timing Considerations
Since the CPU accesses memory and I/O over the same buses (see Figure 1-1, 
Chapter 1), it might seem that a program could access the I/O devices in the 
same way as memory. That is, it might seem that I/O could be performed by 
using the mov instruction to transfer bytes of data between the CPU and the 
specific I/O device. This can be done, but other issues must be taken into 
account in order to make it work correctly. One of the main issues lies in the 
timing differences between memory and I/O. Before tackling I/O timing, 
let’s consider memory timing characteristics.

N O T E 	 As I’ve pointed out, the three-bus description given in this book shows the logical 
interaction between the CPU and I/O. Most modern computers employ several types of 
buses. The way in which the CPU connects to the various buses is handled in hardware. 
A programmer generally deals only with the logical view.

Memory Timing
An important characteristic of memory is that its timing is relatively uniform 
and not dependent on external events. This means that memory timing can 
be handled by the hardware, so a programmer doesn’t need to be concerned 
about memory timing. We can simply move data to and from memory with 
CPU instructions.

Comparing the two types of memory commonly used in computers, the 
access time for SRAM is 5–10 times as fast as DRAM, but SRAM costs more 
and takes up more physical space. As you learned in Chapter 8, DRAM is 
commonly used for the main memory, with SRAM used for the smaller cache 
memory. The combination of SRAM cache with DRAM main memory works 
well to ensure minimal time delays when the CPU accesses memory.

It’s worth noting here that CPU speeds are still faster than memory, 
especially DRAM. Accessing memory—fetching an instruction, loading data, 
storing data—is typically the most important factor that slows program 
execution. There are techniques for improving cache performance, which 
improves memory access times. But employing such techniques requires a 
thorough understanding of the CPU and memory configuration of the sys-
tem you’re using, which is beyond the scope of this book.

I/O Device Timing
Almost all I/O devices are much slower than memory. Consider a common 
input device, the keyboard. Typing at 120 words per minute is equivalent to 
10 characters per second, or 100 milliseconds between each character. A CPU 
running at 2 GHz can execute approximately 200 million instructions during 
that time. This is to say nothing of the fact that the time intervals between 
keystrokes are very inconsistent. Many will be much longer than this.

Even a solid-state drive is slow compared to memory. For example, data 
can be transferred to and from a typical SSD at about 500 MBps. The trans-
fer rate for DDR4 memory (commonly used for main memory) is around 20 
GBps, some 40 times faster.
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In addition to being much slower, I/O devices exhibit much more vari-
ance in their timing. Some people type very fast on a keyboard, some very 
slow. The required data on a magnetic disk might be just coming up to the 
read/write head, or it may have just passed by and we have to wait for nearly 
a full revolution of the disk for it to come under the head again.

Before discussing how to deal with I/O device timing, we’ll look at 
some bus timing issues.

Bus Timing
Although our overall view of the three major subsystems in Figure 1-1 shows 
only three buses connecting the subsystems, the large differences in timing 
between memory and the various I/O devices have led to different buses for 
accessing memory and I/O devices. Each bus design carries address, data, and 
control information, but they use different protocols and physical connections 
that are better matched to the speeds of the devices they connect to.

Most computers use a hierarchical bus structure that allows memory and 
other fast subsystems to be connected to the CPU through a fast bus, while 
connecting slower subsystems through slower buses. We can discuss the con-
cepts by looking at a common arrangement for PCs up until around 2005, as 
shown in Figure 20-1.

CPU

PCI-E

Audio

Ethernet

PCIUSB

SATA

IDE

RAM
Memory
controller

hub

I/O
controller

hub

Front-side bus

Figure 20-1: Typical bus control in a PC

The memory controller hub is often called the northbridge; it provides a fast 
communication pathway to the CPU through the front-side bus. In addition 
to providing a fast connection to main memory, the memory controller hub 
connects to fast I/O buses, like the PCI-E bus. The PCI-E bus provides a fast 
interface to devices like a graphics card. The I/O controller hub is often called 
the southbridge. It connects to slower I/O buses, like SATA, USB, and so forth.
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As chip technology improves over the years, manufacturers are able to add 
more functionality to the CPU chip, which reduces cost and saves space and 
power. Intel included the functionality of the memory controller hub on the 
same chip as the CPU in 2008, and AMD included it in 2011. Manufacturers 
continue to move bus control hardware onto the same chip with the CPU.

These days, both Intel and AMD sell system on a chip (SoC) devices that 
use the x86-64 instruction set and include both memory control and I/O 
control on the same chip as the CPU. Of course, SoC devices provide a 
fixed set of I/O buses. Essentially all our mobile devices use an SoC for 
their computing power.

Accessing I/O Devices
The CPU works with an I/O device through a device controller, the hardware 
that does the actual work of controlling the I/O device. For example, a key-
board controller detects which keys are pressed and converts this to a bit 
pattern that represents the key. It also detects whether a modifier key, like 
SHIFT or CTRL, is pressed and sets bits accordingly.

The device controller interfaces with the CPU through a set of registers. 
In general, the device controller provides the following types of I/O registers:

Transmit    Allows data to be written to an output device

Receive    Allows data to be read from an input device

Status    Provides information about the current state of the device, 
including the controller itself

Control    Allows a program to send commands to the controller to 
change the settings of the device and the controller

It’s common for a device controller interface to have more than one 
register of the same type, especially control registers and status registers.

Writing data to an output device is very much like storing data in 
memory: you move the data from the CPU to the device controller transmit 
register. Where the output device differs is the timing. As discussed, memory 
timing is taken care of by the hardware, so a programmer doesn’t need to 
be concerned about the timing when storing data in memory. However, an 
output device may not be ready to accept new data—it may be working on 
previously written data. This is where the status register comes into play. The 
program needs to check the status register of the device controller to see if 
it’s ready to accept new data.

Reading data from an input device is like loading data from memory 
into the CPU: you move the data from the device controller receive register. 
Again, the difference is that an input device may not have new data, so the 
program needs to check the status register of the input device controller to 
see if it has new data.

Most I/O devices also need to be told what to do by sending commands 
to the control register. For example, after waiting for an output device control-
ler to become ready for new data and then moving the data to the transmit 



Input/Output   447

register, some device controllers require that you tell them to output the 
data to the actual device. Or if you want to get data from an input device, 
some device controllers require that you request them to get an input. You 
can send such commands to the control register.

There are two ways that the CPU can access the I/O registers on a device 
controller: port-mapped I/O and memory-mapped I/O. The x86-64 architec-
ture supports both techniques.

Port-Mapped I/O
The x86-64 architecture includes a set of I/O ports that are numbered from 
0x0000 to 0xffff. This port address space is separate from the memory address 
space. Using the I/O ports for input and output is called port-mapped I/O, or 
isolated I/O.

There are special instructions for accessing the I/O address space, in 
and out:

in—Input from Port

Read from an I/O port.

in reg, imm reads byte(s) from I/O port number imm. reg can be al, ax, or 
eax.

in reg, dx reads byte(s) from the I/O port number specified in dx. reg 
can be al, ax, or eax.

The number of bytes read is one for al, two for ax, and four for eax. The 
in instruction does not affect the status flags in the rflags register.

out—Output to Port

Write to an I/O port.

out imm, reg writes byte(s) to I/O port number imm. reg can be al, ax, or 
eax.

out dx, reg writes byte(s) to the I/O port number specified in dx. reg can 
be al, ax, or eax.

The number of bytes written is one for al, two for ax, and four for eax. 
The out instruction does not affect the status flags in the rflags register.

When using the in and out instructions, the CPU places the port num-
ber on the address bus, and a control signal on the control bus that selects 
the port address space instead of the program address space. This leaves the 
entire program address space available for programs. However, the x86-64 
architecture’s 64-bit addressing space provides plenty of room for us to use 
some of the addresses for I/O devices.

Memory-Mapped I/O
It’ll be easier to understand memory-mapped I/O if we first look at how memory 
is managed by Linux, and most other operating systems, when executing a 
program.
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Programs run in a virtual memory address space, a technique that simu-
lates a large memory with contiguous addressing from 0 to some maximum 
value. These are the addresses you see when using gdb—for example, the 
addresses in the rip and rsp registers. Although the x86-64 architecture 
allows 64-bit addressing, current CPU hardware implementations use only 
48 bits for the address. This allows a maximum address of 248 bytes (256 
tebibytes) to execute programs in this virtual address space. But most com-
puters have only around 4 to 16 gigabytes (or gibibytes) of physical memory, 
the actual RAM installed in the computer, and a program needs to be in 
physical memory to be executed.

N O T E 	 We commonly use the metric naming convention for specifying multiple-byte quanti-
ties that is based on powers of 10: kilobyte, megabyte, gigabyte, and so forth. The 
International Electrotechnical Commission (IEC) has also defined a naming conven-
tion that is based on powers of two: kibibyte, mebibyte, gibibyte, and so forth. For 
example, a kilobyte is 1,000 bytes, and a kibibyte is 1,024 bytes. You can read more 
about the naming conventions at https://en.wikipedia.org/wiki/Byte.

The operating system manages the placement of programs in physi-
cal memory by dividing each program into pages. A typical page size is 4 
kilobytes (or kibibytes). Physical memory is divided into the same size page 
frames. The page of the program that contains the code currently being exe-
cuted by the CPU is loaded from the place where it’s stored (for example, 
disk, DVD, USB stick) into a page frame of physical memory.

The operating system maintains a page map table, which shows where the 
page of the program is currently loaded in physical memory. Figure 20-2 
shows the relationship between virtual memory and physical memory using 
the page map table.

page 1

page 0

page n

page n − 1

page frame 1

page frame 0

page frame m

page frame m − 1

Program in
virtual memory

Page map
table Physical memory

(RAM)

Figure 20-2: Relationship between virtual memory and physical memory

The CPU includes a memory mapping unit. When the CPU needs to access 
an item in memory, it uses the virtual address of the item. The memory map-
ping unit uses the virtual address as an index into the page map table to 
locate the page in physical memory, and from there, the item. If the requested 
page is not currently loaded into physical memory, the memory mapping unit 
generates a page fault exception, which calls a function in the operating system 
to load the page into physical memory and enter its location in the page map 
table. (You’ll learn about exceptions in Chapter 21.)

https://en.wikipedia.org/wiki/Byte
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Similar to mapping virtual memory to physical memory, virtual mem-
ory addresses can be mapped to I/O ports, giving us memory-mapped 
I/O. Once an I/O port has been associated with a memory address, the 
CPU instructions that access memory can be used to access the I/O port. 
One advantage is that you can usually write the I/O functions in a higher-
level language like C. Using the in and out instructions requires you to use 
assembly language because compilers typically don’t use these instructions.

Next, we’ll take a look at how to approach I/O programming.

YOUR T UR N

Pick two programs that you have written. Start each program with gdb in sepa-
rate terminal windows. Set a breakpoint near the beginning of each program 
and run the program. When the program breaks, look at the addresses in the 
rip and rsp registers. Do the two programs appear to share the same memory 
space? Explain.

I/O Programming
I/O devices differ widely in the amount of data they process and the speed 
with which they process it. For example, input from a keyboard is one byte 
at human typing speed, while input from a disk is several hundred mega-
bytes per second. Depending on their inherent characteristics, I/O devices 
use different techniques for communicating with the CPU, and thus we 
need to program each of them accordingly.

Polled I/O
Polling is the simplest way to do I/O and is often a sufficient method for 
small amounts of data. We first check the status register of the I/O device 
controller to determine the device’s state. If the device is in a ready state, 
then we can read data from an input device or write data to an output 
device. Polling typically involves a loop that iterates, checking the device’s 
status register in each iteration of the loop, until the device is in a ready 
state. This way of doing I/O is known as polled I/O, or programmed I/O.

The downside of polled I/O is that the CPU can be tied up for long peri-
ods of time while it waits for the device to become ready. This would probably 
be acceptable if the CPU were dedicated to running only one program on the 
system (for example, controlling your microwave oven). But it’s not acceptable 
in the multiprogram environments of our laptop and desktop computers.

Interrupt-Driven I/O
We could get more work out of the CPU if we could tell an I/O device to 
let us know when it’s ready for data input or output and then use the CPU 
for something else. Many I/O devices include an interrupt controller that can 
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send an interrupt signal to the CPU when the device has completed an 
operation or is ready to take on another operation.

An interrupt from an external device causes the CPU to call an interrupt 
handler, a function within the operating system that deals with the input or 
output from the interrupting device. We’ll discuss the CPU features that 
allow it to call interrupt handlers in Chapter 21.

Direct Memory Access
I/O devices that transfer large amounts of data at high speed often have the 
capability of direct memory access (DMA). They have DMA controllers that can 
access main memory directly without the CPU. For example, when reading 
from a disk, the DMA controller accepts a memory address and a com-
mand to read data from the disk. When the DMA controller has read the 
data from the disk into its own buffer memory, it writes that data directly to 
main memory. When the DMA data transfer has completed, the controller 
sends an interrupt to the CPU, thus invoking the disk handler that notifies 
the operating system that the data is now available in memory.

Next, we’ll look at some examples of how polling I/O might be done.

Polled I/O Programming Algorithms
The operating system has complete control over the I/O devices on our 
computer, so it will not allow us to write applications that directly access an 
I/O device. The programs we’re writing here are meant only to show the 
concepts, not to do anything useful. In fact, running them will elicit an 
error message from the operating system.

We’ll look at some simple polling algorithms that show how we might 
program a universal asynchronous receiver/transmitter (UART) for I/O. This 
device performs parallel-to-serial conversion to transmit a byte of data one 
bit at a time. The output of a UART requires only one transmission line, 
which is placed at one of two voltage levels. A transmitting UART sends a 
string of bits by switching between the two voltage levels at a fixed rate. The 
receiving UART reads the bits one at a time and performs serial-to-parallel 
conversion to reassemble the byte that was sent to it. Both UARTs must be 
set at the same bit rate.

In the idle state, the transmitting UART places the high voltage on the 
transmission line. When a program outputs a byte to the UART, the transmit-
ting UART switches the transmission line to the low voltage for the amount of 
time corresponding to the agreed-upon rate, thus sending a start bit.

The UART then uses a shift register to shift the byte one bit at a time, 
setting the voltage on the output line accordingly. Most UARTs start with 
the low-order bit. When the entire byte has been sent, the UART returns the 
output line to the idle state for at least one bit time, thus sending at least one 
stop bit.

Figure 20-3 shows how a UART with typical settings would send the two 
characters m and n that are encoded in ASCII.
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Figure 20-3: UART output to send the characters m and n

The receiving UART watches the transmission line, looking for a start 
bit. When it detects a start bit, it uses a shift register to reassemble the indi-
vidual bits into a byte, which is provided to the receiving program as input.

We’ll use the 16550 UART, a common type, for our programming 
example. The 16550 UART has 12 eight-bit registers, shown in Table 20-1.

Table 20-1: Registers of the 16550 UART

Name Address DLAB Purpose

RBR 000 0 Receiver buffer—input byte

THR 000 0 Transmitter holding—output byte

IER 001 0 Interrupt enable—set type of interrupt

IIR 010 x Interrupt identification—show type of interrupt

FCR 010 x FIFO control—set FIFO parameters

LCR 011 x Line control—set communications format

MCR 100 x Modem control—set interface with modem

LSR 101 x Line status—show status of data transfers

MSR 110 x Modem status—show status of modem

SCR 111 x Scratch

DLL 000 1 Divisor latch, low-order byte

DLM 001 1 Divisor latch, high-order byte

The addresses in Table 20-1 are offsets from the UART’s base address. 
You probably noticed that some of the registers have the same offset. The 
address specifies a port to a register. The specific register being accessed 
through that port depends on what the program is doing with that port. For 
example, if the program reads from port 000, it’s reading from the receiver 
buffer register (RBR). But if the program writes to port 000, it’s writing to the 
transmitter holding register (THR).

The divisor latch access bit (DLAB) is a bit number 7 in the line control 
register (LCR). When it is set to 1, port 000 connects to the low-order byte of 
the 16-bit divisor latch value, and port 001 connects to the high-order byte 
of the divisor latch value.

The 16550 UART can be programmed for interrupt-driven I/O and 
direct memory access. It includes 16-byte first-in, first-out (FIFO) buffers on 
both the transmitter and the receiver ports. It can also be programmed to 
control a serial modem.
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Older PCs typically connected the UART to a COM port. In past years, 
COM ports were often used to connect devices like a printer and a modem 
to the computer, but most PCs these days use USB ports for serial I/O. The 
16550 UART on my desktop computer has a set of internal connection pins 
but no external connection port.

We’ll assume that our UART is installed in a computer that uses memory-
mapped I/O so that we can show the algorithms in C. To keep things simple, 
we’ll do only polled I/O here, which requires these three functions:

init_io    Initializes the UART. This includes setting the parameters in 
the hardware such as speed, communications protocol, and so forth.

charin    Reads one character that was received by the UART.

charout    Writes one character to transmitted by the UART.

W A R N I N G 	 The code we’ll discuss here is incomplete and does not run on any known computer. 
It’s meant only to illustrate some basic concepts.

UART Memory-Mapped I/O in C
We will explore only a few features of the UART. Let’s start with a file that 
provides symbolic names for the registers and some numbers we’ll be using 
in our example program, as shown in Listing 20-1.

/* UART_defs.h
 * Definitions for a 16550 UART.
 * WARNING: This code does not run on any known
 *          device. It is meant to sketch some
 *          general I/O concepts only.
 */
#ifndef UART_DEFS_H
#define UART_DEFS_H
1 /* register offsets */
#define RBR 0x00    /* receive buffer register    */
#define THR 0x00    /* transmit holding register  */
#define IER 0x01    /* interrupt enable register  */
#define FCR 0x02    /* FIFO control register      */
#define LCR 0x03    /* line control register      */
#define LSR 0x05    /* line status register       */
#define DLL 0x00    /* divisor latch LSB          */
#define DLM 0x01    /* divisor latch MSB          */

/* status bits */
#define RxRDY 0x01  /* receiver ready */
#define TxRDY 0x20  /* transmitter ready */

/* commands */
#define NOFIFO        0x00    /* don't use FIFO   */
#define NOINTERRUPT   0x00    /* polling mode     */
#define MSB38400      0x00    /* 2 bytes used to  */
#define LSB38400      0x03    /* set baud 38400   */
#define NBITS         0x03    /* 8 bits           */
#define STOPBIT       0x00    /* 1 stop bit       */
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#define NOPARITY      0x00
2 #define SETCOM        NBITS | STOPBIT | NOPARITY
3 #define SETBAUD       0x80 | SETCOM
#endif

Listing 20-1: Definitions for a 16550 UART

The ports to the registers are at fixed positions relative to the start 
of the mapped memory address of the UART. The UART might be used 
in another computer, where the mapping might begin at another base 
address, so we just define the offsets here 1. These offsets, and the status 
and control bit settings, are taken from a 16550 datasheet. You can down-
load one at https://www.ti.com/product/TL16C550D/.

Let’s look at how I arrived at the value for the SETCOM control 2. The 
communication parameters are set by writing a byte to the line status reg-
ister. The number of bits in each data frame can range from 5 to 8. The 
datasheet tells us that setting bits 1 and 0 to 11 will specify 8 bits. Hence, I 
set NBITS to 0x03. Setting bit 2 to 0 specifies one stop bit, so STOPBIT = 0x00. We 
won’t use parity, which is bit 3, so NOPARITY = 0x00. I OR these together to cre-
ate the byte that sets the communication parameters. Of course, we really 
don’t need the two 0 values, but specifying them makes our intent explicit.

Baud is a measure of the speed of communication, defined as the num-
ber of symbols per second. A UART uses only two voltage levels for commu-
nication, symbolically 0 or 1, or one bit. So for a UART, baud is equivalent 
to the number of bits transmitted or received per second. We need to set 
the DLAB bit to 1 to place our UART in the mode that allows us to set the 
baud 3.

Next, we need a header file for declaring the functions, as shown in 
Listing 20-2.

/* UART_functions.h
 * Initialize, read, and write functions for an abstract UART.
 * WARNING: This code does not run on any known
 *          device. It is meant to sketch some
 *          general I/O concepts only.
 */
#ifndef UART_FUNCTIONS_H
#define UART_FUNCTIONS_H
void UART_init(unsigned char* UART);       /* initialize UART  */
unsigned char UART_in(unsigned char* UART);          /* input  */
void UART_out(unsigned char* UART, unsigned char c); /* output */
#endif

Listing 20-2: Declarations of UART functions

The header file in Listing 20-2 declares the three basic functions for 
using our UART. We won’t cover the more advanced features of a UART in 
this book.

We’ll place the definitions of these three functions in one file, as shown 
in Listing 20-3, because they would typically be used together.

https://www.ti.com/product/TL16C550D/
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/* UART_functions.c
 * Initialize, read, and write functions for an abstract UART.
 * WARNING: This code does not run on any known
 *          device. It is meant to sketch some
 *          general I/O concepts only.
 */

#include "UART_defs.h"
#include "UART_functions.h"

/* UART_init initializes the UART. */
1 void UART_init(unsigned char* UART)
{
  unsigned char* port = UART;

2 *(port+IER) = NOINTERRUPT;  /* no interrupts        */
  *(port+FCR) = NOFIFO;       /* no fifo              */
  *(port+LCR) = SETBAUD;      /* set frequency mode   */
  *(port+DLM) = MSB38400;     /* set to 38400 baud    */
  *(port+DLL) = LSB38400;     /*    with 2 bytes      */
  *(port+LCR) = SETCOM;       /* communications mode  */
}

/* UART_in waits until UART has a character then reads it */
unsigned char UART_in(unsigned char* UART)
{
  unsigned char* port = UART;
  unsigned char character;
  
3 while ((*(port+LSR) & RxRDY) != 0)
  {
  }
  character = *(port+RBR);
  return character;
}

/* UART_out waits until UART is ready then writes a character */
void UART_out(unsigned char* UART, unsigned char character )
{
  unsigned char* port = UART;
  unsigned char status;
  while ((*(port+LSR) & TxRDY) != 0)
  {
  }
  *(port+THR) = character;
}

Listing 20-3: UART memory-mapped I/O function definitions in C

We pass each of the functions in Listing 20-3 a pointer to the UART 
port 1. We then access each of the UART registers through an offset from this 
pointer 2. Both the input and output functions wait until the UART is ready 
for their respective action 3. These functions illustrate an important advan-
tage of memory-mapped I/O: they can be written in a high-level language.
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We can see a potential downside of writing these functions in a high-level 
language by looking at the assembly language generated by the compiler, as 
shown in Listing 20-4.

        .file   "UART_functions.c"
        .intel_syntax noprefix
        .text
        .globl  UART_init
        .type   UART_init, @function
UART_init:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -24[rbp], rdi
        mov     rax, QWORD PTR -24[rbp] ## UART base address
        mov     QWORD PTR -8[rbp], rax
      1 mov     rax, QWORD PTR -8[rbp]  ## UART base address
        add     rax, 1                  ## IER offset
        mov     BYTE PTR [rax], 0       ## no interrupts
        mov     rax, QWORD PTR -8[rbp]
        add     rax, 2                  ## FCR offset
        mov     BYTE PTR [rax], 0       ## no FIFO
        mov     rax, QWORD PTR -8[rbp]
        add     rax, 3                  ## LCR offset
        mov     BYTE PTR [rax], -125    ## set baud mode
        mov     rax, QWORD PTR -8[rbp]
        add     rax, 1                  ## DLM offset
        mov     BYTE PTR [rax], 0       ## high byte
        mov     rax, QWORD PTR -8[rbp]  ## DLL offset = 0
        mov     BYTE PTR [rax], 3       ## low byte
        mov     rax, QWORD PTR -8[rbp]
        add     rax, 3                  ## LCR offset
        mov     BYTE PTR [rax], 3       ## communications mode
        nop
        pop     rbp
        ret
        .size   UART_init, .-UART_init
        .globl  UART_in
        .type   UART_in, @function
UART_in:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -24[rbp], rdi
        mov     rax, QWORD PTR -24[rbp]
        mov     QWORD PTR -8[rbp], rax
        nop
.L3:
        mov     rax, QWORD PTR -8[rbp]  ## UART base address
        add     rax, 5                  ## LSR offset
        movzx   eax, BYTE PTR [rax]
        movzx   eax, al                 ## load LSR
        and     eax, 1                  ## (*(port+LSR) & RxRDY)
      2 test    eax, eax
        jne     .L3
        mov     rax, QWORD PTR -8[rbp]
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        movzx   eax, BYTE PTR [rax]     ## input character
        mov     BYTE PTR -9[rbp], al
        movzx   eax, BYTE PTR -9[rbp]   ## return character
        pop     rbp
        ret
        .size   UART_in, .-UART_in
        .globl  UART_out
        .type   UART_out, @function
UART_out:
        push    rbp
        mov     rbp, rsp
        mov     QWORD PTR -24[rbp], rdi
        mov     eax, esi
        mov     BYTE PTR -28[rbp], al
        mov     rax, QWORD PTR -24[rbp]
        mov     QWORD PTR -8[rbp], rax
        nop
.L6:
        mov     rax, QWORD PTR -8[rbp]  ## UART base address
        add     rax, 5                  ## LSR offset
        movzx   eax, BYTE PTR [rax]
        movzx   eax, al                 ## load LSR
        and     eax, 32                 ## (*(port+LSR) & TxRDY)
        test    eax, eax
        jne     .L6
        mov     rax, QWORD PTR -8[rbp]
        lea     rdx, 7[rax]
        movzx   eax, BYTE PTR -28[rbp]  ## load character
        mov     BYTE PTR [rdx], al      ## output character
        nop
        pop     rbp
        ret
        .size   UART_out, .-UART_out
        .ident  "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
        .section        .note.GNU-stack,"",@progbits

Listing 20-4: Assembly language generated by the compiler for our UART functions

We can see some inefficiencies in the code that the compiler generates. 
The initialization function, UART_init, sends several commands to the UART’s 
control registers. The compiler computes the effective address of each con-
trol register 1, and then it repeats this computation for each command.

Another inefficiency can be seen in the input function, UART_in. The algo-
rithm uses the and instruction to check the receiver ready bit. The compiler 
has then used the test instruction to determine if the result of the and instruc-
tion was 0 2. But the test instruction performs an AND operation to set the 
status flags in the rflags register, which were already set by the and instruction. 
In other words, the test instruction is redundant in this algorithm.

I stated earlier in this book that we won’t be concerned about code 
efficiency, and it may seem that saving a few CPU cycles when accessing 
a slow I/O device is unimportant. But the algorithms we’re looking at 
here are often used within a device handler. Other I/O devices may inter-
rupt the handler currently being executed, causing delays. Since it’s not 
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possible to know the timing of external devices, it’s a good idea to minimize 
the amount of time spent within a device handler. When writing a device 
handler, I often start with C. Then I generate the corresponding assembly 
language and check that for inefficiencies and inaccuracies.

More often, I write device handlers directly in assembly language. 
We’ll look now at how these functions could be written directly in assembly 
language.

UART Memory-Mapped I/O in Assembly Language
Having learned what the compiler generates for these three UART I/O 
functions, we can now try to do a better job directly in assembly language. 
This starts with the definitions of symbolic names for use in our assembly 
language functions, as shown in Listing 20-5.

# UART_defs
# Definitions for a 16550 UART.
# WARNING: This code does not run on any known
#          device. It is meant to sketch some
#          general I/O concepts only.

# register offsets
        .equ    RBR,0x00    # receive buffer register
        .equ    THR,0x00    # transmit holding register
        .equ    IER,0x01    # interrupt enable register
        .equ    FCR,0x02    # FIFO control register
        .equ    LCR,0x03    # line control register
        .equ    LSR,0x05    # line status register
        .equ    DLL,0x00    # divisor latch LSB
        .equ    DLM,0x01    # divisor latch MSB

# status bits
        .equ    RxRDY,0x01  # receiver ready
        .equ    TxRDY,0x20  # transmitter ready

# commands
        .equ    NOFIFO,0x00       # don't use FIFO
        .equ    NOINTERRUPT,0x00  # polling mode
        .equ    MSB38400,0x00     # 2 bytes used to
        .equ    LSB38400,0x03     # set baud 38400
        .equ    NBITS,0x03        # 8 bits
        .equ    STOPBIT,0x00      # 1 stop bit
        .equ    NOPARITY,0x00
        .equ    SETCOM,NBITS | STOPBIT | NOPARITY
        .equ    SETBAUD,0x80 | SETCOM

Listing 20-5: Assembly language symbolic names for UART functions

Listing 20-6 shows our assembly language version of the three UART 
I/O functions.

# UART_functions.s
# Initialize, read, and write functions for a 16550 UART.
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# WARNING: This code does not run on any known
#          device. It is meant to sketch some
#          general I/O concepts only.
        .intel_syntax noprefix

        .include "UART_defs"

# Intialize the UART
# Calling sequence:
#   rdi <- base address of UART
        .text
        .globl  UART_init
        .type   UART_init, @function
UART_init:
        push    rbp                       # save frame pointer
        mov     rbp, rsp                  # set new frame pointer

    # no interrupts, don't use FIFO queue
      1 mov     byte ptr IER[rdi], NOINTERRUPT
        mov     byte ptr FCR[rdi], NOFIFO
    # set divisor latch access bit = 1 to set baud
        mov     byte ptr LCR[rdi], SETBAUD
        mov     byte ptr DLM[rdi], MSB38400
        mov     byte ptr DLL[rdi], LSB38400
    # divisor latch access bit = 0 for communications mode
        mov     byte ptr LCR[rdi], SETCOM
        
        mov     rsp, rbp                  # yes, restore stack pointer
        pop     rbp                       # and caller frame pointer
        ret

# Input a single character
# Calling sequence:
#   rdi <- base address of UART
#   returns character in al register
        .globl  UART_in
        .type   UART_in, @function
UART_in:
        push    rbp                       # save frame pointer
        mov     rbp, rsp                  # set new frame pointer

inWaitLoop:
      2 and     byte ptr LSR[rdi], RxRDY  # character available?
        jne     inWaitLoop                # no, wait
        movzx   eax, byte ptr RBR[rdi]    # yes, get it
        mov     rsp, rbp                  # restore stack pointer
        pop     rbp                       # and caller frame pointer
        ret
	
# Output a single character in sil register
        .globl	 UART_out
        .type	 UART_out, @function
UART_out:
        push    rbp                       # save frame pointer
        mov     rbp, rsp                  # set new frame pointer
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outWaitLoop:
        and     byte ptr LSR[rdi], TxRDY  # ready for character?
        jne     outWaitLoop               # no, wait
        mov     THR[rdi], sil             # yes, send it
        mov     rsp, rbp                  # restore stack pointer
        pop     rbp                       # and caller frame pointer
        ret

Listing 20-6: Assembly language versions of UART I/O functions

The functions are called with a pointer to the base address of the UART, 
so we can access the UART registers by using the register-indirect-with-offset 
addressing mode 1. The compiler chose to use an add instruction to add the 
offset for each UART register access, which is less efficient.

Since we are using memory-mapped I/O here, we can use the and 
instruction to check the ready status without loading the contents of the 
UART’s status register into a CPU general-purpose register 2, which is 
what the compiler does. Our assembly language solution here may not 
be more efficient because the contents still must be loaded into the CPU 
(using a hidden register) before the and operation can be performed.

At the beginning of the chapter, I described I/O programming as 
being complex, but the code I’ve presented is fairly straightforward. The 
complexity comes when interfacing the I/O programming with the operat-
ing system, which is responsible for managing all the system resources. For 
example, we could have several programs running concurrently, all using 
the same keyboard. The operating system needs to keep track of which pro-
gram gets the input from the keyboard at any moment in time.

The algorithms I’ve presented here are only a small part of the entire 
picture of I/O, but they should give you an introduction to the sorts of 
issues involved. Although memory-mapped I/O is the more common tech-
nique, the x86-64 also support port-mapped I/O, which we’ll explore in the 
next section.

YOUR T UR N

1.	 Use the -c option to create object files from the code in Listings 20-3 and 20-7:

gcc -c -masm=intel -Wall -g UART_echo.c
gcc -c -masm=intel -Wall -g UART_functions.c

Link the two object files with this command:

ld -e myProg -o UART_echo UART_echo.o UART_functions.o

(continued)
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The UART address I give in this program is arbitrary. If you run the result-
ing program, the operating system should give you an error message. This 
exercise will only show whether all the functions fit together correctly.

/* UART_echo.c
 * Use a UART to echo a single character.
 * WARNING: This code does not run on any known
 *          device. It is meant to sketch some
 *          general I/O concepts only.
 */

#include "UART_functions.h"
#define UART0 (unsigned char *)0xfe200040 /* address of UART */

int myProg() {
  unsigned char aCharacter;

  UART_init(UART0);
  aCharacter = UART_in(UART0);
  UART_out(UART0, aCharacter);
   
  return 0;
}

Listing 20-7:  Program to check UART I/O functions. (Do not try to run this 
program.)

2.	 Enter the code in Listings 20-5 and 20-6. Assemble it and check for cor-
rectness by linking the resulting object file with the UART_echo.o object file 
from the previous “Your Turn” exercise.

UART Port-Mapped I/O
Unlike memory-mapped I/O, we cannot treat the I/O port numbers as 
memory addresses. The arguments to the functions are numbers, not point-
ers, as shown in Listing 20-8.

/* UART_functions.c
 * Initialize, read, and write functions for a 16550 UART.
 * WARNING: This code does not run on any known
 *          device. It is meant to sketch some
 *          general I/O concepts only.
 */

#include <sys/io.h>
#include "UART_defs.h"
#include "UART_functions.h"

/* UART_init intializes the UART and enables it. */
void UART_init(unsigned short int UART)
{
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1 unsigned short int port = UART;

2 outb(NOINTERRUPT, port+IER);  /* no interrupts        */
  outb(NOFIFO, port+FCR);       /* no fifo              */
  outb(SETBAUD, port+LCR);      /* set frequency mode   */
  outb(MSB38400, port+DLM);     /* set to 38400 baud    */
  outb(LSB38400, port+DLL);     /* 2 regs to set        */
  outb(SETCOM, port+LCR);       /* communications mode  */
}

/* UART_in waits until UART has a character then reads it */
unsigned char UART_in(unsigned short int UART)
{
  unsigned short int port = UART;
  unsigned char character;
  
  while ((inb(port+LSR) & RxRDY) != 0)
  {
  }
  character = inb(port+RBR);
  return character;
}

/* UART_out waits until UART is ready then writes a character */
void UART_out(unsigned short int UART, unsigned char character )
{
  unsigned short int port = UART;

  while ((inb(port+LSR) & TxRDY) != 0)
  {
  }
  outb(character, port+THR);
}

Listing 20-8: UART port-mapped I/O function definitions in C

The Linux programming environment provides a header file, io.h, that 
includes functions to use the I/O ports. The interface with our UART takes 
bytes, so we’ll use inb and outb. You can read about these functions on their 
man page: man inb.

The algorithms for port-mapped I/O are the same as for memory 
mapped. But instead of accessing the port as a memory address, we use a 
number 1. And we need to call the appropriate function to transfer bytes 
to and from the UART 2. 

When I tried to compile the file in Listing 20-8 by using the -masm=intel 
option, I got the following error messages:

$ gcc -c -masm=intel -Wall -g UART_functions.c
/usr/include/x86_64-linux-gnu/sys/io.h: Assembler messages:
/usr/include/x86_64-linux-gnu/sys/io.h:47: Error: operand type mismatch for 
`in'
/usr/include/x86_64-linux-gnu/sys/io.h:98: Error: operand type mismatch for 
`out'
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I was puzzled so decided to look at the compiler-generated assembly 
language by changing the -c option to -S. I won’t go through the entire file, 
but let’s look at the first part of the compiler-generated assembly language, 
as shown in Listing 20-9.

        .file   "UART_functions.c"
        .intel_syntax noprefix
        .text
        .type   inb, @function
1 inb:
        push    rbp
        mov     rbp, rsp
        mov     eax, edi
        mov     WORD PTR -20[rbp], ax
        movzx   eax, WORD PTR -20[rbp]
        mov     edx, eax
2 #APP
# 47 "/usr/include/x86_64-linux-gnu/sys/io.h" 1
        inb dx,al
# 0 "" 2
#NO_APP
        mov     BYTE PTR -1[rbp], al
        movzx   eax, BYTE PTR -1[rbp]
        pop     rbp
        ret
        .size   inb, .-inb
        .type   outb, @function
outb:
        push    rbp
        mov     rbp, rsp
        mov     edx, edi
        mov     eax, esi
        mov     BYTE PTR -4[rbp], dl
        mov     WORD PTR -8[rbp], ax
        movzx   eax, BYTE PTR -4[rbp]
        movzx   edx, WORD PTR -8[rbp]
#APP
# 98 "/usr/include/x86_64-linux-gnu/sys/io.h" 1
        outb al,dx
# 0 "" 2
#NO_APP
        nop
        pop     rbp
        ret
        .size   outb, .-outb
        .globl  UART_init
        .type   UART_init, @function
UART_init:
        push    rbp
        mov     rbp, rsp
        sub     rsp, 24
        mov     eax, edi
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        mov     WORD PTR -20[rbp], ax
        movzx   eax, WORD PTR -20[rbp]
        mov     WORD PTR -2[rbp], ax
        movzx   eax, WORD PTR -2[rbp]
        add     eax, 1
        movzx   eax, ax
        mov     esi, eax
        mov     edi, 0
        call    outb
        movzx   eax, WORD PTR -2[rbp]
        add     eax, 2
--snip--

Listing 20-9: Some compiler-generated assembly language for the functions in Listing 20-8

The first thing to note is that the compiler has included the assembly 
language for the inb and outb functions 1. These functions are not part of 
the C standard library. They are meant to be used in the operating system 
code, not in applications programs. They are specific to the Linux kernel 
running on an x86-64 computer.

Next, we see that the actual in and out instructions are inserted into the 
code by macros 2. The macros insert these two instructions in AT&T syn-
tax (see AT&T Syntax at the end of Chapter 10):

        inb     dx, al        ## at&t syntax
        outb    al, dx

As we saw earlier in this chapter, the instructions are written in Intel 
syntax as follows:

        in      al, dx        ## intel syntax
        out     dx, al

The problem here is that the assembly language used in the Linux ker-
nel is written using the AT&T syntax, whereas we’re using the Intel syntax 
for assembly language. If we were to generate the assembly language with-
out the -masm=intel option, all the assembly language would be in the AT&T 
syntax. If we use the C functions in io.h for port-mapped I/O, we cannot use 
the -masm=intel compiler option.

YOUR T UR N

Rewrite the UART I/O functions in Listing 20-6 to use port-mapped I/O instead of 
memory-mapped I/O and assemble them. Modify UART_echo.c in Listing 20-7 
to use your port-mapped I/O functions. The base port number on most PCs is 
0x3f8. Compile UART_echo.c and link the two resulting object files to check for 
correctness.
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What You’ve Learned

Memory timing    Memory access is synchronized with the timing of  
the CPU.

I/O timing    I/O devices are much slower than the CPU and have a 
wide range of characteristics, so we need to program their access.

Bus timing    Buses are often arranged in a hierarchical manner to better 
match the differences in timing between various I/O devices.

Port-mapped I/O    In this technique, I/O ports have their own 
address space.

Memory-mapped I/O    In this technique, I/O ports are given a  
portion of the main memory address space.

Polled I/O    The program waits in a loop until the I/O device is ready  
to transfer data.

Interrupt-driven I/O    The I/O device interrupts the CPU when it is 
ready to transfer data.

Direct memory access    The I/O device can transfer data to and from 
main memory without using the CPU.

In the next chapter, you’ll learn about the CPU features that allow it to 
maintain control over the I/O hardware and prevent application programs 
from accessing the hardware without going through the operating system.



21
I N T E R R U P T S  A N D  E X C E P T I O N S

Thus far, we’ve viewed each application as 
having exclusive use of the computer. But 

like most operating systems, Linux allows 
multiple applications to be executing concur-

rently. The operating system manages the hardware 
in an interleaved fashion, providing each application, 
and the operating system itself, with the use of the 
hardware components it needs at any given time.

There are two issues here. First, for the operating system to carry out its 
management tasks, it needs to maintain control over the interaction between 
applications and hardware. It does this by using a system of privilege levels 
in the CPU that allows the operating system to control a gateway between 
applications and the operating system. Second, we saw near the end of the 
previous chapter that most I/O devices can interrupt the ongoing activity of 
the CPU when they are ready with input or ready to accept output. The CPU 
has a mechanism to direct I/O interruptions through this gateway and call 
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functions that are under the control of the operating system, thus allowing 
the operating system to maintain its control over the I/O devices.

We’ll start by looking at how the CPU uses privilege levels to enforce its 
control. Then we’ll look at how the CPU reacts to an interrupt or exception, 
including the three ways to notify the CPU that its services are needed by 
an I/O device or an application: external interrupt, exception, or software inter-
rupt. We’ll end the chapter by discussing how applications can directly call 
upon services of the operating system by using a software interrupt.

Privilege Levels
For the operating system to carry out its management tasks, it needs to 
maintain control over the interaction between applications and hardware. 
It does this by using a system of privilege levels in the CPU that the operating 
system uses to maintain a gateway between applications and the hardware. 
At any given time, the CPU is running in one of four possible privilege lev-
els. Table 21-1 shows the levels, from most privileged to least.

Table 21-1: CPU Privilege Levels

Level Usage

0 Provides direct access to all hardware resources. Restricted to the lowest-level 
operating system functions, such as I/O devices and memory management. 

1 Somewhat restricted access to hardware resources. Might be used by some 
library routines and software that control I/O devices not requiring full access 
to the hardware. 

2 More restricted access to hardware resources. Might be used by some library 
routines and software that control I/O devices not requiring less access than 
level 1. 

3 No direct access to hardware resources. Applications run at this level. 

Most operating systems use only levels 0 and 3, often called supervisor 
mode and user mode, respectively. The operating system, including hardware 
device drivers, runs in supervisor mode, and applications, including the 
library routines they call, run in user mode. Levels 1 and 2 are seldom used. 
Be careful not to confuse CPU privilege levels, a hardware feature, with 
operating system file permissions, a software feature.

Whenever the CPU accesses memory, it does so through a gate descrip-
tor. This 16-byte record includes the privilege level for the page of memory 
being accessed. The CPU is allowed to access memory that is at a privilege 
level equal to or below the current privilege level of the CPU.

When the operating system first boots up, the memory allocated to it is 
at the highest privilege level, 0, and the CPU is running at privilege level 0. 
Memory allocated for I/O devices is also at privilege level 0.

When the operating system loads an application, it first allocates 
memory for the program at the lowest privilege level, 3. After the applica-
tion is loaded, the operating system passes use of the CPU to the application 
while simultaneously changing the CPU to privilege level 3. With the CPU 
running at the lowest privilege level, the application cannot directly access 
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any memory that belongs to the operating system or the I/O devices. The 
instructions that allow you to directly change privilege levels can be exe-
cuted only at level 0. Applications can access operating system services only 
through a gate descriptor.

Next, we’ll look at what the CPU does when an interrupt or exception 
occurs, including how gate descriptors are used.

CPU Response to an Interrupt or Exception
An interrupt or exception is an event that causes the CPU to pause the 
execution of the current instruction stream and call a function, called an 
interrupt handler, exception handler, or simply handler. Handlers are part of 
the operating system. In Linux they can be either built into the kernel or 
loaded as separate modules as needed.

This transfer of control is similar to a function call but with some addi-
tional actions. In addition to pushing the contents of the rip register (the 
return address) onto the stack when responding to an interrupt or excep-
tion, the CPU also pushes the contents of the rflags register onto the stack. 
Handlers almost always need to be executed at a high privilege level—most 
often level 0 in Table 21-1—so there’s also a mechanism for placing the 
CPU at the proper privilege level.

The calling address and privilege level of a handler, along with other 
information, are stored in a gate descriptor (also called a vector) by the 
operating system. Gate descriptors for interrupts and exceptions are stored 
in an array, the interrupt descriptor table (IDT), or vector table, at the location 
corresponding to their interrupt number. The x86-64 architecture supports 
256 possible interrupts or exceptions, numbered 0–255. The first 32 (0–31) 
are pre-assigned in the CPU hardware for specific uses. For example, the 
first gate descriptor in the interrupt descriptor table, location 0, is for a 
divide-by-zero exception. The remaining 224 are available for the operating 
system to use for external interrupts and software interrupts.

In addition to transferring control to the hander-calling address, the 
CPU also switches to the privilege level specified in the gate descriptor for 
the interrupt or exception. The gate descriptor can tell the operating sys-
tem to use a different stack than the application. Under certain conditions, 
the CPU will also push the application’s stack pointer onto the operating 
system’s stack. The CPU then moves the address of the interrupt handler 
from the gate descriptor into the rip, and execution continues from there.

Here’s a summary of the actions taken by the CPU in response to an 
interrupt or exception:

1.	 Push the contents of the rflags register onto the stack.

2.	 Push the contents of the rip register onto the stack. Depending on the 
nature of an exception, the handler may or may not return to the cur-
rent program after it has handled the exception.

3.	 Set the privilege level of the CPU to the level specified in the corre-
sponding gate descriptor.

4.	 Load the address of the handler from the corresponding gate descrip-
tor into the rip register.
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A simple ret instruction at the end of the handler will not work correctly. 
There is another instruction, iret, that first restores the rflags register, the 
privilege level, and the stack pointer (if it was saved) being used by the code 
that was interrupted, and then restores the rip.

In some situations, it’s not possible to continue the interrupted code. 
In such cases, the handler may be able to display an error message and pass 
control to the operating system. In other cases, the operating system itself 
stops running.

There is no universal agreement on how the two terms, interrupt or 
exception, are used. I’ll follow the usage in the Intel and AMD manuals to 
describe the three ways to notify the CPU that the services of the operating 
system are needed by an I/O device or an application program: external 
interrupt, exception, or software interrupt.

External Interrupts
An external interrupt is caused by hardware that is outside the CPU. The 
interrupt signal is sent to the CPU via the control bus. An external inter-
rupt is asynchronous with CPU timing—it can occur while the CPU is in the 
middle of executing an instruction.

Keyboard input is an example of an external interrupt. It’s impossible 
to know exactly when someone will press a key on the keyboard or how soon 
the next key will be pressed. For example, say a key is pressed in the middle 
of executing the first of the following two instructions:

        cmp     byte ptr [ebx], 0
        je      allDone

The operating system needs to use the CPU to read the character from 
the keyboard as soon as possible to prevent the character from being overwrit-
ten by the next key press, but first, the CPU needs to complete the execution 
of the currently executing instruction.

The CPU will acknowledge an interrupt only between the execution of 
instructions. In our example, the CPU will acknowledge the external inter-
rupt after it has executed the cmp instruction. In “Instruction Execution 
Cycle” on page 180, you learned that the rip register gets updated to con-
tain the address of the je instruction while the CPU is executing the cmp 
instruction. This is the address that gets pushed onto the stack so that the 
CPU can return to the je instruction in our program after the interruption 
has been handled.

The CPU then calls the keyboard handler to read the character from 
the keyboard. It’s almost certain that the handler will change the rflags 
register. The action of the je instruction needs to be based on the results 
of the cmp instruction, not on whatever might have happened to the rflags 
register in the handler. Now we see why the CPU needs to save a copy of the 
rflags register when responding to an external interrupt.
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Exceptions
The next way to interrupt the CPU we’ll consider is with an exception. 
Exceptions are typically the result of a number that the CPU cannot deal 
with. Examples include dividing by 0, accessing an invalid address, or 
attempting to execute an invalid instruction. In a perfect world, the applica-
tion software would include all the checks that would prevent these errors 
from occurring. The reality is that no program is perfect, so some of these 
errors will occur.

When one of these errors does occur, it’s the operating system’s respon-
sibility to take the appropriate action. Often, the best the operating system 
can do is to exit the application program and print an error message. For 
example, when I made an error in how I treated the call stack in one of my 
assembly language programs, I got the following message:

Segmentation fault (core dumped)

Like an external interrupt, a handler in the operating system needs to 
be called to deal with an exception. The more the handler knows about the 
state of the CPU when an exception occurs, the better it can determine the 
cause. So it’s helpful to have the values in the rip and rflags registers passed 
to the exception handler. And, of course, the CPU needs to be placed in 
the highest privilege level since the handler is part of the operating system.

Not all exceptions are due to actual program errors. For example, when 
a program references an address in another part of the program that has 
not yet been loaded into memory, it causes a page fault exception. The operat-
ing system provides a handler that loads the appropriate part of the program 
from the disk into memory and then continues with normal program exe-
cution without the user even being aware of this event. In this case, the 
handler requires the values in the rip and rflags registers when the page 
fault occurs so they can be restored when control returns to the program.

Software Interrupts
A software interrupt happens when we use an instruction to have the CPU 
act as though there were an external interrupt or exception. Why would a 
programmer want to purposely interrupt the program? The answer is to 
request the services of the operating system.

Applications are running at the lowest privilege level, so they can’t 
directly call functions in the operating system. The interrupt/exception 
mechanism in the CPU includes the means for switching the privilege level 
of the CPU while calling a function. Thus, a software interrupt allows an 
application running at the lowest privilege level, 3, to call the functions 
within the operating system kernel, while simultaneously switching the CPU 
to the higher privilege level of the operating system. This mechanism allows 
the operating system to maintain control.
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Programming interrupt and exception handlers is beyond the scope of 
this book, but we can look at how to use software interrupts in applications, 
which are running at the lowest privilege level, to call functions in the oper-
ating system, which can be run only at a higher privilege level.

System Calls
A system call, often called a syscall, allows an application to directly invoke 
Linux kernel system tasks, such as performing I/O functions. Thus far in 
the book, we have used C wrapper functions in the C standard library (for 
example, write and read) to do system calls. These C wrapper functions 
take care of the privilege-level transition from application to operating 
system and back. In this section, we’ll see how to use assembly language 
instructions to make system calls directly without using the C runtime 
environment.

We’ll look at two mechanisms, int 0x80 and syscall. The int 0x80 instruc-
tion causes a software interrupt that uses the interrupt descriptor table. The 
syscall instruction was added as part of the 64-bit instruction set and is avail-
able only in 64-bit mode. It causes a somewhat different set of actions in the 
CPU, as we’ll see shortly.

The int 0x80 Software Interrupt
We can call any of the interrupt handlers installed in the interrupt descrip-
tor table with the int instruction:

int—Call to Interrupt Procedure

Call an interrupt handler.

int n calls interrupt handler n.

n can be any number in the range 0 to 255. The details of how int calls 
the specified interrupt handler depend on the state of the CPU and 
are beyond the scope of this book, but the overall result is the same as 
though an external device had interrupted.

Although we won’t write any interrupt handlers here, you probably real-
ize that a handler needs to perform several actions to restore the CPU state 
before returning. All this is done with the iret instruction.

iret—Interrupt Return

Return from interrupt handler.

iret returns from interrupt handler.

The iret instruction restores the rflags register, the rip register, and 
CPU privilege level from the stack.

Linux uses interrupt descriptor number 12810 (= 8016) in the interrupt 
descriptor table to specify a handler that will direct the operating system 
to perform one of more than 300 functions. The specific operating system 
function is specified by a number in the eax register.
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Most of these operating system functions take arguments. We pass 
in the arguments to an int 0x80 system call using registers, as shown in 
Table 21-2. Notice that the register usage for int 0x80 differs from that of 
function calls.

Table 21-2: Register Usage for int 0x80 System Call

Syscall # Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6

eax ebx ecx edx esi edi ebp

The system call numbers are listed in the Linux file unistd_32.h. On my 
version of Ubuntu (20.04 LTS), I found the file at /usr/include/x86_64-linux 
-gnu/asm/unistd_32.h. Table 21-3 shows three commonly used system call 
numbers, along with any required arguments.

Table 21-3: Some Linux Operations for the int 0x80 Instruction

Operation eax ebx ecx edx

read 3 File descriptor Address of place to 
store input

Number of bytes to read

write 4 File descriptor Address of first byte to 
output

Number of bytes to 
write

exit 1

Many of the system calls have C wrapper functions, which allows you to 
determine the arguments from the man page for the function. If you look 
back at Listing 13-2 in Chapter 13, you’ll see that the arguments to the write 
system call using int 0x80 are the same as the write C wrapper function.

Listing 21-1 provides an example of using the int 0x80 software interrupt 
to directly access operating system services.

# helloWorld-int80.s
# Hello World program
# ld -e myStart -o helloWorld3-int80 helloWorld3-int80.o

        .intel_syntax noprefix
# Useful constants
        .equ    STDOUT, 1           # screen
        .equ    WRITE, 4            # write system call
        .equ    EXIT, 1             # exit system call
        
        .text
        .section  .rodata           # read-only data
message:
        .string "Hello, World!\n"
        .equ    msgLength, .-message-1

# Code
        .text                       # code
        .globl  myStart
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1 myStart:
      2 mov     edx, msgLength      # message length       
        lea     ecx, message[rip]   # message address
        mov     ebx, STDOUT         # the screen
      3 mov     eax, WRITE          # write the message
        int     0x80                # tell OS to do it

        mov     eax, EXIT           # exit program
        int     0x80

Listing 21-1: “Hello, World!” program using int 0x80 software interrupt.

The C runtime environment requires that the first function in a pro-
gram be named main. If you want to write a program that executes on its 
own, without using any of the C library routines, you’re free to choose any 
name you want 1. But instead of using gcc to link your program, you need 
to use ld explicitly and provide the name of your function with the -e option. 
For example, to assemble and link the program in Listing 21-1, use this:

$ as --gstabs -o helloWorld_int80.o helloWorld-int80.s
$ ld -e myStart -o helloWorld-int80 helloWorld-int80.o

We pass the number of the write system call to the int 0x80 handler in the 
eax register 3. The arguments to the write system call are the same as those we 
used when we called the write C wrapper function in Listing 13-2 (Chapter 13),  
but we need to pass them in the registers specified in Table 21-2 2.

You might notice that we use only the 32-bit portions of the registers 
when calling the int 0x80 handler. This mechanism was designed for a 
32-bit environment. Although it also works in our 64-bit environment, the 
64-bit enhancement to the x86 architecture added an instruction for mak-
ing a fast system call, which we’ll discuss in the next section.

The syscall Instruction
Besides adding more registers, the 64-bit enhancement to the x86 archi-
tecture added some instructions, one of which is the fast system call, syscall. 
The syscall instruction bypasses the interrupt descriptor table. It’s the pre-
ferred method for making a system call in 64-bit mode:

syscall—Fast System Call
syscall moves contents of rip to rcx and then moves contents of the 
LSTAR register to rip. Moves rflags to r11. Switches to privilege level 0.

The LSTAR register is a special CPU register where the operating system 
stores the address of the syscall handler.

Unlike the int 0x80 instruction, syscall does not use the interrupt 
descriptor table or save information on the stack, thus saving several 
memory accesses. All its actions occur with registers in the CPU. That’s 
why it’s called fast system call. Of course, this means the syscall handler 
must save the contents of the rcx and r11 registers if it uses them, and 
then it restores them to their original values before returning.
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Returning from a syscall handler is done with a sysret instruction, which 
moves r11 to rflags, moves rcx to rip, and sets the CPU privilege level to 3.

You must pass the arguments to the syscall system call in Linux in 
registers, as shown in Table 21-4. Be careful to note that the arguments are 
passed in different registers than with the int 0x80 system call.

Table 21-4: Register Usage for syscall System Call Instruction

Syscall # Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6

rax rdi rsi rdx r10 r8 r9

The system call numbers for syscall are listed in the Linux file unistd_64.h. 
On my version of Ubuntu (20.04 LTS), I found the file at /usr/include/x86_64 
-linux-gnu/asm/unistd_64.h. Table 21-5 shows several commonly used system call 
numbers.

Table 21-5: Some Linux Operations for the syscall Instruction

Operation rax rdi rsi rdx

read 0 File descriptor Address of place to 
store input

Number of bytes to read

write 1 File descriptor Address of first byte to 
output

Number of bytes to write

exit 60

As with the int 0x80 instruction, you can determine the arguments for 
most system calls from the man page for their C wrapper function.

Listing 21-2 shows our “Hello, World!” program using the syscall 
instruction.

# helloWorld-syscall.s
# Hello World program
# ld -e myStart -o helloWorld3_int80 helloWorld3_int80.o
        .intel_syntax noprefix
# Useful constants
        .equ    STDOUT, 1           # screen
      1 .equ    WRITE, 1            # write system call
        .equ    EXIT, 60            # exit system call
        
        .text
        .section  .rodata           # read-only data
message:
        .string "Hello, World!\n"
        .equ    msgLength, .-message-1

# Code
        .text                       # code
        .globl  myStart
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myStart:
      2 mov     rdx, msgLength      # message length
        lea     rsi, message[rip]   # message address
        mov     rdi, STDOUT         # the screen
        mov     rax, WRITE          # write the message
        syscall                     # tell OS to do it

        mov     rax, EXIT           # exit program
        syscall

Listing 21-2: “Hello, World!” program using syscall instruction

The commands to assemble and link the program in Listing 21-2 are as 
follows:

$ as --gstabs -o helloWorld_syscall.o helloWorld-syscall.s
$ ld -e myStart -o helloWorld-syscall helloWorld-syscall.o

This program performs only the write and exit operations, which are 
given symbolic names at the beginning of the code for readability 1. It 
stores the arguments to the write operation in the correct registers before 
executing the syscall instruction 2.

YOUR T UR N

Write a program in assembly language that reads one character at a time from 
the keyboard and echoes that character on the screen. Your program should 
continue echoing characters until it reads a newline character. You may see 
your typed text displayed twice. If so, why?

What You’ve Learned

Privilege levels    The operating system maintains control of the hard-
ware by running applications at a lower CPU privilege level.

Gate descriptor    A record that contains the address of an interrupt 
handler and the CPU privilege settings for running the interrupt 
handler.

Interrupt descriptor table    An array of gate descriptors. The interrupt 
or exception number is the index into the array.

External interrupts    Other hardware devices can interrupt the regular 
execution cycle of the CPU.

Exceptions    Certain conditions in the CPU can cause the CPU to 
interrupt its regular execution cycle.
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Software interrupts    Specific instructions that cause the CPU to inter-
rupt its regular execution cycle.

Interrupt handler    A function in the operating system that gets called 
by the CPU when an interrupt or exception occurs.

int 0x80    The software interrupt used to perform a system call in 
Linux.

syscall    The instruction used to perform a fast system call in 64-bit 
Linux.

This has been a brief overview of interrupts and exceptions. The details 
are complex and require a thorough knowledge of the specific model of 
CPU you’re working with.

This concludes my introduction to computer organization. I hope that 
it has provided you with the tools to further pursue any of the topics that 
interest you.
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circuit symbols

adder  119
AND gate  59
decoder  122
MOSFET  102
multiplexer  126
NAND gate  107
NOR gate  107
NOT gate  60
OR gate  59
PLA  129, 132
resistor  92
ROM  131
tristate buffer  126
XOR gate  86

clock  144
clock signal  144
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CMOS (complementary metal-oxide 
semiconductor)  104

NAND gate  106
power consumption  106
switching time  106

CMOS switch  104–106
code segment  202
comparing values  271

signed  266
unsigned  266

comparison of canonical Boolean 
forms  70

compiler  3
assembly language from  198–201

compiler steps
assembly  196
compilation  196
linking  197
preprocessing  196

complement  45, 60
diminished radix  46
radix  46

complementary metal-oxide 
semiconductor (CMOS)  104

COM port  452
computer subsystems  1–2
conditional branch point  156
conditional jumps

offset  256
table of  266

conductor  90
conjunction  57, 59
connected in parallel  94
connected in series  93
control flow

declarative programming  263
fundamental constructs  264
imperative programming  263

Control-flow Enforcement Technology 
(CET)  200

control unit  9
conversion

hexadecimal to integer  344, 350
integer to signed decimal  370
integer to unsigned decimal   

361, 368

signed decimal to integer  360
to uppercase  338, 341
unsigned decimal to integer  353, 

358
converting

binary to unsigned decimal  15
unsigned decimal to binary  16

coprocessor, floating-point  427
coulomb  90
count-controlled loop  273
C preprocessor directives

#define  292, 337
#endif  292
#ifndef  292
#include  292

C programming  25
comments in  27
first program  27

CPU  178–179
32-bit mode  177
64-bit mode  177
internal bus  178, 182
registers  182

CPU features, accessing in assembly 
language  326–332

C runtime environment  28, 196
C standard library  25, 27

functions
gets  336
offsetof  391
printf  28
puts  277, 336
scanf  29

not using  470–474
relationship to operating  

system  26
stdio.h header file  27

C-style string  22
C variable

declaration  288
definition  288
global  290
local  288
name scope  288
scope and lifetime  314
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D
data segment  202
data size

byte  183, 187
doubleword  183, 187
instruction for extending  270
quadword  183, 187
word  183

data types, integral  187–188
DC (direct current)  90
debugger, examining memory  30
decimal number system  10
decimal point  417
decimal system  10
decoder  173, 121–123
decoder ring  53
decToSInt  360
decToUInt  358
De Morgan’s law  65
Design and Evolution of C++, The 

(Stroustrup, Bjarne)  396
device controller  446
D flip-flop  168, 170–171
direct current (DC)  90
direct memory access (DMA)  450
disjunction  57, 59
division, integer  360–369

avoiding  369
by powers of two  351
quotient  365, 369
register usage  365
remainder  365, 369
signed versus unsigned  365

DMA (direct memory access)  450
controller  450

do-while loop  274
compared to while and for  275

DRAM (dynamic random-access 
memory)  175

duality  66
dynamic random-access memory 

(DRAM)  175

E
editors  2, 5
effective address  226, 253
electric field  94
electronics  90–100
ELF (Executable and Linking  

Format)  202
endianness  35
energy  99
erasable programmable read-only 

memory (EPROM)  131
exception  466, 469

CPU response to  467–469
handler  467
page fault  448
terminology  468

executable file  197
Executable and Linking Format  

(ELF)  202
external interrupt  466, 468

F
farads  95
fast system call  472
fetching  3
file descriptors

STDERR_FILENO  222
STDIN_FILENO  222
STDOUT_FILENO  222

filename extensions  197
finite state machine  136
fixed-point numbers  417–424

fraction in decimal  421
fraction in powers of two  417

flip-flop,  144–152
asynchronous input  146
D  145
JK  148, 155, 160
primary portion  145, 149
negative-edge triggering  146
positive-edge triggering  146
secondary portion  145, 149
T  147
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floating-point arithmetic error  433–440
absorption  435
associativity  437
cancellation  436
man fenv  430
rounding  433

floating-point numbers  425–427
not real numbers  425
programming with  430
rounding mode  430

floating-point representation  425
biased exponent  427
double  426
exponent  425
float  426
hidden bit  427
significand  425
x86-64 extended version  426

floor division, in Python  365
for loop  272
fractional values in binary  416
frame pointer  185, 209, 216, 298, 307
front-side bus  445
function

epilogue  210
epilogue, inside  232
input to  289
minimal processing  208–210
output from  289
prologue  210
prologue, inside  231
return value  294, 338

function arguments  289
more than six  299–306
pass by pointer  294
pass by reference  294
pass by value  294
passing in C  294–303
pass in registers  223–224
pushing onto the stack  299
in registers  296–298
return value  294
storing directly on the stack  303

G
gate

AND  59
NOT  60

OR  59
XOR  86

gate descriptor  466
gcc options

-c  196
-E  196
-fcf-protection=none  201
-fno-asynchronous-unwind 

-tables  199
-masm=intel  198
-o  197
-O0  198
-S  196, 198

gdb  30
as a learning tool  31
breakpoint  32
commands

b  31
c  31
h  31
i r  31
l  31
layout regs  212
n  189
q  35
r  31
s  189
set disassembly-flavor  211
si  189
tui enable  212
x  31

gdb debugger
learning assembly  

language  210–216
TUI mode  211–217
viewing registers  188–193
viewing stack frame  231–233

getInt  370
global offset table (GOT)  227, 260
global variables  290–293
Goldberg, David (“What Every 

Computer Scientist Should 
Know About Floating-Point 
Arithmetic”)  440

GOT (global offset table)  227, 260
Gray code and Karnugh maps  79
Gray, Frank  79
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H
handler  467
Harvard architecture  166

in cache  167
header file  27, 292
heap segment  202
henrys  97
hexadecimal  10

C syntax  12
hexadecimal characters, UTF-8 code 

for  21
hexadecimal digit  10

four bits  10, 43
signed decimal  47
two’s complement  47
unsigned decimal  43
using  12

I
IDT (interrupt descriptor table)  467
IEEE 754 floating-point standard  426

biased exponent  427
hidden bit  427
link to  426
normalized form  426

if conditional  276–278
if-else ladder  282
if-then-else conditional  278
inb function  463
inductor  97–99
information hiding  294
inline assembly language  332–334
instruction

execution cycle  180–181
fetch  181
general format  206
operation code (opcode)  204
pointer  180
queue  180
register  180

instruction bytes. See machine code
instructions

add  236
addss  432
and  339
call  226
cbw  375
cdge  375

cmp  271
cvtss2sd  432
cwde  375
div  364
endbr64  200
idiv  364
imul  355
in  447
inc  272
int  470
iret  470
jcc  265
jcxz  265
je  238
jecxz  265
jmp  264
jrcxz  265
lea  226
leave  239
mov  206
movss  432
movsx  347
movsxd  347
movzx  270
mul  356
neg  237
nop  298
or  340
out  447
pop  208
push  208
ret  208
sal  347
sar  348
setcc  330
shl  349
shr  348
sign-extend for signed division  365
sub  236
syscall  472
test  270
xor  238

int 0x80
Linux operations  471
register usage  471
software interrupt  470

integer codes, circular nature of  53
integer unit  428
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integral data types  183
integral values  415
interpreter  3
interrupt controller  449
interrupt descriptor table (IDT)  467
interrupt-driven I/O  449
interrupt handler  450, 467
interrupt

CPU response to  467–469
handler  450, 467
terminology  468

intToSDec  370
intToUDec  368
invert  60
I/O controller hub  445
I/O controller register

control  446
receive  446
status  446
transmit  446

I/O devices  443
accessing  446–449

I/O functions
decToSInt  360
decToUInt  358
hexToInt  360
getInt  370
intToSDec  370
intToUDec  368
putInt  370
readLn  308
writeStr  308

io.h header file  461
I/O, memory-mapped  447
I/O, port-mapped  447
I/O ports  447
I/O programming  449
isolated I/O  447
iteration  264, 267–275

versus recursion  267, 320

J
joule  99
jump

conditional  265–267
long  256

near  256
short  256
unconditional  264

jump instructions  256–257
jump table  283

K
Kahan summation algorithm, link to  440
Karnaugh, Maurice  76
Karnaugh map  76–86, 154, 160

L
latch  136–144

D  142
feedback in  136
SR, gated  141
SR using NAND gates  139
SR using NOR gates  136
SR with Enable  141

ld options
-e  472
-o  472

leaf functions  298
least significant digit  14
linker

algorithm  260
global symbol table  260

listing file, assembler  246
little-endian  34
locality of reference  167
logic circuit  113

combinational  114
sequential  114

loop control variable  267
looping  267–275
Lospinoso, Josh (C++ Crash Course)  

396, 406

M
machine code

looking at  246
ModR/M byte  248
opcode bytes  247
operands  247
REX prefix byte  250
SIB byte  255
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magnetic field  97
main function  28, 221
main memory  165–166, 175

organization  166
mask  336
mass storage  164–165
Mealy state machine  136
memory

addresses  19
cache  164
cost  164
data storage  18–23
hardware  168–176
hierarchy  163–164
layers  164
main  164–166, 175
nonvolatile  164
offline  164
page  448
page frame  448
page map table  448
physical  448
random access

dynamic  175–176
static  173–175

read-write  172–173
speed  164
timing  444
virtual  448
volatile  165

memory controller hub  445
memory-mapped I/O  447

in assembly language  457–459
in C  452–457

memory mapping unit  448
memory segments

bss  292
characteristics  317
data  202
heap  202
stack  202
text  202

metal-oxide-semiconductor field-effect 
transistor (MOSFET)  101

minimum function
assembly language  208
C  197

Moore state machine  136
MOSFET (metal-oxide-semiconductor 

field-effect transistor)  101
channel  101
drain  101
gate  101
N-channel  102
P-channel  103
power consumption  104
source  101
switch  101–104
switching time  104

most significant digit  14
multiplexer (MUX)  124–127, 172
multiplication, integer  352–359

by powers of two  351
register usage  356
signed versus unsigned  356

MUX (multiplexer)  124–127, 172
mxcsr register  429

N
name mangling  313, 400
NAND gate, universal  108–110
negation  48, 57
newline character  23
NOR gate, universal  110
northbridge  445
NOT gate  105
numerical accuracy  440

O
object

attribute  395
instance  395
instantiate  396
message  395
method  395
using in C++  398–400

object file  196, 202, 210
objects in assembly language  407–412
octal  11

C syntax  12
octal digit, three bits  12
ohms  92
Ohm’s law  92
one’s complement  49
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organizing data  371
outb function  463
overflow flag (OF)  39, 50–53, 186

P
page fault exception  448, 469
PAL (programmable array logic)  131
Pascal  23
passive component  92
permissions, file  466
pipeline  156
PLA (programmable logic array)  128
PLD (programmable logic  

device)  127–132
PLT (procedure linkage table)  226
polled I/O  449

programming algorithms  450
port-mapped I/O  447, 460–461
positional notation  13
position-independent code  225
position-independent executable  225
potential difference  90
power  99–100
power supply  90
principle of duality  66
printf, conversion specifiers  29
privilege levels, CPU  466
procedure linkage table (PLT)  226, 260
program execution  2–3
programmable array logic (PAL)  131
programmable logic array (PLA)  128
programmable logic device  

(PLD)  127–132
programmable read-only memory 

(PROM)  131
programmed I/O  449
programming documentation

info  4
man page  4

programming environment  4–6
PROM (programmable read-only 

memory)  131
propagation delay  143
pseudo op  204
pull-down device  103
pull-up device  103
putInt  370

R
radix  14
radix point  417
RAM (random access memory)  18, 165
rbp register  185
read-only memory (ROM)  19, 130
real numbers  425
record  380

in assembly language  382
in C  380–382
element  380
field  380
layout in memory  382
member  380
pass by pointer advantage  389–393
pass by value in C  386
pass in assembly language  389–393
passing in C  383–389

recursion  319–326
base case  320
compared to iteration  267, 320
save registers  322
stack usage  323–326

register  168, 182–186
32-bit  184, 207
64-bit mode  184
bit numbering  183
file  172
general purpose  183–186
general purpose, naming  183, 185
general purpose, usage  224
hardware implementation  

168–170
mxcsr  429
passing arguments in  224
rbp  307
rflags  39, 186
rsp  307
shift  171–172
sizes  183
status  186
xmm  428
ymm  428
zmm  428

register content, saving  224
resistor  92–94
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rflags register,  186, 467–468
status flags  39, 265

rip register  180
rip-relative addressing  180
ROM (read-only memory)  19, 130
Roman numerals  14
rsp register  185

S
SAM (sequential access memory)  19
scanf  29

conversion specifiers  29
scientific notation  425
selection  264, 276–285
semiconductor  101

doping  101
holes  101
N-type  101
P-type  101

sentinel character  22
sentinel value  22

loop control  272
sequential access memory (SAM)  19
sequential logic circuit, designing  151

branch predictor  156
counter  152

settling time  143
Shannon, Claude  58
shifting bits  343

in assembly language  349–351
in C  343–347

shift instructions  347
signal voltage levels, active-high and 

active-low  114
sign bit  47
signed integers  15

addition  50–53
subtraction  50–53

sign flag (SF)  186
sign-magnitude code  45
SIMD (single instruction, multiple 

data)  428
SoC (system on a chip)  446
software interrupt  466, 469
source code  2
southbridge  445

SRAM  173
SSE (Streaming SIMD Extension)  428
SSE2 floating-point hardware  427–430

rounding mode  430
status and control register  429

stack
ascending  228
corruption  237
data structure  227–229
descending  228
empty  229
full  228
red zone  298, 303, 342
segment  202

stack canary  237–238
stack frame  209, 234–237, 298

usage  306–307
stack pointer  185, 207, 216, 307

address boundary  298, 301
addressing boundary  281
alignment  236
local variables  236
moving  303

standard error  222
standard in  222
standard out  222
state diagram  136, 140, 152, 157
state, system  135
state transition table  138, 140, 142, 

152, 159
static random-access memory  

(SRAM)  173
status flags

carry flag (CF)  39, 44, 119, 186
overflow flag (OF)  39, 50, 119, 186
sign flag (SF)  186
zero flag (ZF)  186

status register  186
STDIN_FILENO  222
STDOUT_FILENO  222
STDERR_FILENO  222
storage blocks

data  165
instructions  165

Streaming SIMD Extension (SSE)  428
Stroustrup, Bjarne (Design and 

Evolution of C++, The)  396, 405
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struct
accessing field in C  381
declaring new data type of  384
defining in C  381
defining with tag in C  385
field memory alignment  391
pass by value in C  386, 388
tag  383–386
tag for passing as argument  386

structure  380
subfunctions  221
subtraction

binary  44
borrow in  41
decimal  41

subtractor  120
supervisor mode  466
Sutter, Herb  405
switch  92
switch conditional  282–285
switches, representing  10–12
switching algebra  58
syscall (system call)  470, 472

Linux operations  473
register usage  473

system call. See syscall
system call functions

read  222
write  222, 267

system on a chip (SoC)  446

T
testing bits  270
text segment  202
text string  22
this pointer  404, 409, 411
time constant  96, 98
timing considerations  444

bus  445
I/O device  444
memory  444

toggle  147
transistor  100–106

switching time  106

tristate buffer  125, 172
truth table  58

AND  59
NOT  60
OR  59
XOR  86

two’s complement  45–49
computing  48

type casting  347, 350, 355, 359, 363

U
UART (universal asynchronous 

receiver/transmitter)  450
16550 data sheet, link to  453
16550 registers  451
data bits  450
port-mapped  460
programming in assembly 

language  457
programming in C  452
start bit  450
stop bit  450

Unicode UTF-8  20
universal asynchronous receiver/

transmitter (UART)  450
unsigned integers  15, 23

addition  40–45
subtraction  40–45

uppercase versus lowercase, ASCII  336
user mode  466
UTF-8  20

V
variable

automatic  233
local  233–237, 316
static local  309–316

vector  467
vector table  467
very-large-scale integration (VLSI)  146
volt  90
von Neumann

architecture  166
bottleneck  166

von Neumann, John  166
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watt  99
“What Every Computer Scientist 

Should Know About Floating-
Point Arithmetic” (Goldberg,  
David)  440

while loop  267–272

X
x87 floating point unit  427

Z
zero flag (ZF)  186



NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

HOW LINUX WORKS, 3RD EDITION
What Every Superuser Should Know
by brian ward
464 pp., $49.99
isbn 978-1-7185-0040-2

ALGORITHMIC THINKING
A PROBLEM-BASED INTRODUCTION
by daniel zingaro
408 pp., $49.95
isbn 978-1-7185-0080-8

EFFECTIVE C
AN INTRODUCTION TO PROFESSIONAL  
C PROGRAMMING
by robert seacord
272 pp., $49.95
isbn 978-1-7185-0104-1

THE ART OF 64-BIT ASSEMBLY, 
VOLUME 1
X86-64 MACHINE ORGANIZATION  
AND PROGRAMMING
by randall hyde
1032 pp., $79.99
isbn 978-1-7185-0108-9

C++ CRASH COURSE
A FAST-PACED INTRODUCTION
by josh lospinoso
792 pp., $59.95
isbn 978-1-59327-888-5

THE LINUX COMMAND LINE,  
2ND EDITION
A COMPLETE INTRODUCTION
by william shotts
504 pp., $39.95
isbn 978-1-59327-952-3

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/introcomporg/ for errata and more information.



THE  F INEST  IN  GEEK  ENTERTA INMENT ™

www.nostarch.com

Introduction to Computer Organization gives 
programmers a practical understanding of what 
happens in a computer when you execute your code. 
Working from the ground up, the book starts with 
fundamental concepts like memory organization, 
digital circuit design, and computer arithmetic. It 
then uses C/C++ to explore how familiar high-level 
coding concepts—like control flow, input/output, and 
functions—are implemented in assembly language. 
The goal isn’t to make you an assembly language 
programmer, but to help you understand what happens 
behind the scenes when you run your programs.

Classroom-tested for over a decade, this book will 
also demystify topics like:

•	How data is encoded in memory

•	How the operating system manages hardware 
resources with exceptions and interrupts

•	How Boolean algebra is used to implement the 
circuits that process digital information

•	How a CPU is structured, and how it uses buses to 
execute a program stored in main memory

•	How recursion is implemented in assembly, and 
how it can be used to solve repetitive problems

•	How program code gets transformed into machine 
code the computer understands

You may never have to write x86-64 assembly 
language or design hardware yourself, but knowing 
how the hardware and software works will make you 
a better, more confident programmer.

A B O U T  T H E  A U T H O R

Robert G. Plantz started his career designing 
electronics for the horizon scanners on the Gemini 
spacecraft and Apollo Lunar Module. He earned 
his PhD in electrical engineering at the University 
of California Berkeley and worked as a software 
engineer for eight years before becoming an 
educator. He was a professor at Sonoma State 
University for 21 years. 

B U I LT  W I T H 
x 8 6 - 6 4  A S S E M B LY 

L A N G U A G E

S E E  H O W  T H E 
M A G I C  H A P P E N S

$59.99 ($78.99 CDN)


	Brief Contents
	Contents in Detail
	Preface
	Who This Book Is For
	About This Book
	The Programming in the Book
	Why Read This Book?
	Chapter Organization

	Efficient Use of This Book

	Acknowledgments
	Chapter 1: Setting the Stage
	Computer Subsystems
	Program Execution
	The Programming Environment
	What You’ve Learned

	Chapter 2: Data Storage Formats
	Describing Switches and Groups of Switches
	Representing Switches with Bits
	Representing Groups of Bits
	Using Hexadecimal Digits

	The Mathematical Equivalence of Binary and Decimal
	Getting to Know Positional Notation
	Converting Binary to Unsigned Decimal
	Converting Unsigned Decimal to Binary

	Storing Data in Memory
	Expressing Memory Addresses 
	Characters
	Unsigned Integers

	Exploring Data Formats with C
	C and C++ I/O Libraries
	Writing and Executing Your First C Program

	Examining Memory with a Debugger
	Using Your Debugger
	Understanding Byte Storage Order in Memory

	What You’ve Learned 

	Chapter 3: Computer Arithmetic
	Adding and Subtracting Unsigned Integers
	Adding in the Decimal Number System
	Subtracting in the Decimal Number System
	Adding and Subtracting Unsigned Integers in Binary

	Adding and Subtracting Signed Integers
	Two’s Complement
	Computing Two’s Complement
	Adding and Subtracting Signed Integers in Binary
	Circular Nature of Integer Codes

	What You’ve Learned

	Chapter 4: Boolean Algebra
	Basic Boolean Operators
	Boolean Expressions
	Boolean Algebra Rules
	Boolean Algebra Rules That Are the Same as Elementary Algebra
	Boolean Algebra Rules That Differ from Elementary Algebra

	Boolean Functions
	Canonical Sum or Sum of Minterms
	Canonical Product or Product of Maxterms
	Comparison of Canonical Boolean Forms

	Boolean Expression Minimization
	Minimal Expressions
	Minimization Using Algebraic Manipulations
	Minimization Using Karnaugh Maps

	Combining Basic Boolean Operators
	What You’ve Learned

	Chapter 5: Logic Gates
	Crash Course in Electronics
	Power Supplies and Batteries
	Passive Components

	Transistors
	MOSFET Switch
	CMOS Switch

	NAND and NOR Gates
	NAND as a Universal Gate
	What You’ve Learned

	Chapter 6: Combinational Logic Circuits
	The Two Classes of Logic Circuits
	Adders
	Half Adder
	Full Adder
	Full Adder from Two Half Adders
	Ripple-Carry Addition and Subtraction Circuits

	Decoders
	Multiplexers
	Tristate Buffer

	Programmable Logic Devices
	Programmable Logic Array 
	Read-Only Memory 
	Programmable Array Logic 

	What You’ve Learned

	Chapter 7: Sequential Logic Circuits
	Latches
	SR Latch Using NOR Gates
	SR Latch Using NAND Gates
	SR Latch with Enable
	The D Latch

	Flip-Flops
	Clocks
	D Flip-Flop
	T Flip-Flop
	JK Flip-Flop

	Designing Sequential Logic Circuits
	Designing a Counter
	Designing a Branch Predictor

	What You’ve Learned 

	Chapter 8: Memory
	The Memory Hierarchy
	Mass Storage
	Main Memory
	Cache Memory
	Registers

	Implementing Memory in Hardware
	Four-Bit Register
	Shift Register
	Register File
	Read-Write Memory
	Static Random-Access Memory 
	Dynamic Random-Access Memory 

	What You’ve Learned 

	Chapter 9: Central Processing Unit 
	CPU Overview
	CPU Subsystems
	Instruction Execution Cycle

	x86-64 Registers
	General-Purpose Registers
	Status Register

	C/C++ Integral Data Types and Register Sizes
	Using gdb to View the CPU Registers
	What You’ve Learned

	Chapter 10: Programming in Assembly Language
	Compiling a Program Written in C
	From C to Assembly Language
	Assembler Directives That We Won’t Use
	Assembler Directives That We Will Use

	Creating a Program in Assembly Language
	Assembly Language in General
	First Assembly Language Instructions
	Minimal Processing in a Function
	Using gdb to Learn Assembly Language

	AT&T Syntax
	What You’ve Learned

	Chapter 11: Inside the main Function
	The write and read System Call Functions
	Passing Arguments in Registers
	Position-Independent Code
	The Call Stack
	Stacks in General
	Inside the Function Prologue and Epilogue

	Local Variables in a Function
	Variables on the Stack
	Stack Corruption

	Not Using the C Runtime Environment
	What You’ve Learned

	Chapter 12: Instruction Details
	Looking at Machine Code
	Instruction Bytes
	Opcode Bytes
	ModR/M Byte
	REX Prefix Byte

	Immediate Addressing Mode
	Memory Addressing Modes
	Direct Memory Addressing
	Register Indirect with Offset
	Register Indirect with Indexing
	SIB Byte

	Jump Instructions
	Assemblers and Linkers
	The Assembler
	The Linker

	What You’ve Learned

	Chapter 13: Control Flow Constructs
	Jumps
	Unconditional Jumps
	Conditional Jumps

	Iteration
	while Loop
	for Loop
	do-while Loop

	Selection
	if Conditional
	if-then-else Conditional
	switch Conditional

	What You’ve Learned

	Chapter 14: Inside Subfunctions
	Scope of Variable Names in C
	Overview of Passing Arguments
	Global Variables
	Explicitly Passing Arguments
	Passing Arguments in C
	What’s Going On in Assembly Language

	Handling More Than Six Arguments
	Pushing Arguments onto the Stack
	Storing Arguments Directly on the Stack
	Summary of Stack Frame Usage

	Static Local Variables
	What You’ve Learned

	Chapter 15: Special Uses of Subfunctions
	Recursion
	Accessing CPU Features in Assembly Language
	A Separate Function Written in Assembly Language
	Inline Assembly Language

	What You’ve Learned

	Chapter 16: Computing with Bitwise Logic, Multiplication, and Division Instructions
	Bit Masking
	Bit Masking in C
	Logic Instructions
	Bit Masking in Assembly Language

	Shifting Bits
	Shifting Bits in C
	Shift Instructions
	Shifting Bits in Assembly Language

	Multiplication
	Multiplication in C
	Multiply Instructions
	Multiplication in Assembly Language

	Division
	Division in C
	Division Instructions
	Division in Assembly Language

	What You’ve Learned

	Chapter 17: Data Structures
	Arrays
	Arrays in C
	Arrays in Assembly Language

	Records
	Records in C
	Records in Assembly Language
	Passing Records to Other Functions in C
	Passing Records to Other Functions in Assembly Language

	What You’ve Learned

	Chapter 18: Object-Oriented Programming
	Objects in C++
	Using Objects in C++
	Defining Class Member Functions
	Letting the Compiler Write a Constructor and Destructor

	Objects in Assembly Language
	What You’ve Learned

	Chapter 19: Fractional Numbers
	Fractional Values in Binary
	Fixed-Point Numbers
	When the Fractional Part Is a Sum of Inverse Powers of Two
	When the Fractional Part Is in Decimal

	Floating-Point Numbers
	Floating-Point Representation
	IEEE 754 Floating-Point Standard
	SSE2 Floating-Point Hardware
	xmm Registers
	Programming with Floating-Point Numbers
	Floating-Point Arithmetic Errors

	Comments About Numerical Accuracy
	What You’ve Learned

	Chapter 20: Input/Output
	Timing Considerations
	Memory Timing
	I/O Device Timing
	Bus Timing

	Accessing I/O Devices
	Port-Mapped I/O
	Memory-Mapped I/O

	I/O Programming
	Polled I/O
	Interrupt-Driven I/O
	Direct Memory Access

	Polled I/O Programming Algorithms
	UART Memory-Mapped I/O in C
	UART Memory-Mapped I/O in Assembly Language
	UART Port-Mapped I/O

	What You’ve Learned

	Chapter 21: Interrupts and Exceptions
	Privilege Levels
	CPU Response to an Interrupt or Exception
	External Interrupts
	Exceptions
	Software Interrupts

	System Calls
	The int 0x80 Software Interrupt
	The syscall Instruction

	What You’ve Learned

	Index



