
R O B E R T G . P L A N T Z

I N T R O D U C T I O N
T O C O M P U T E R

O R G A N I Z A T I O N
A N U N D E R T H E H O O D L O O K A T

H A R D W A R E A N D X 8 6 - 6 4 A S S E M B L Y

San Francisco

I N T R O D U C T I O N
T O C O M P U T E R

O R G A N I Z AT I O N

A n U n d e r - t h e - H o o d
L o o k a t H a r d w a r e a n d

x 8 6 - 6 4 A s s e m b l y

by Rober t G. Plantz

[S]

INTRODUCTION TO COMPUTER ORGANIZATION. Copyright © 2022 by Robert G. Plantz.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

25 24 23 22 21 1 2 3 4 5 6 7 8 9

ISBN-13: 978-1-7185-0009-9 (print)
ISBN-13: 978-1-7185-0010-5 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Rachel Monaghan
Production Editor: Paula Williamson
Developmental Editor: Alex Freed
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewers: William Young and Mike Lyle
Copyeditor: Kim Wimpsett
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Sharon Wilkey

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Library of Congress Control Number: 2021950164

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Author
After obtaining his PhD in electrical engineering from UC Berkeley, Bob
Plantz took a position in a physiology research lab at UC San Francisco
where he programmed a Data General minicomputer. Following that, he
spent several years in industry where he wrote assembly language on half
a dozen different architectures at the software/hardware interface level.
He then transitioned into a 21-year university teaching career in computer
science.

About the Technical Reviewers
Dr. William Young is Associate Professor of Instruction in the Department
of Computer Science at the University of Texas at Austin. Prior to joining
the UT faculty in 2001, he had 20 years of experience in industry. He spe-
cializes in formal methods and computer security, but often teaches com-
puter architecture, among other courses.

Mike Lyle got his start designing computers for Hughes Aircraft (which
only built one plane) to control radar and sonar systems, and then with
Sperry-Univac designing operating systems for telecommunication comput-
ers. He then taught computer design at UC Berkeley for seven years, and at
Sonoma State University for 15 years.

B R I E F C O N T E N T S

Preface . xv

Acknowledgments . xxi

Chapter 1: Setting the Stage . 1

Chapter 2: Data Storage Formats . 9

Chapter 3: Computer Arithmetic . 39

Chapter 4: Boolean Algebra . 57

Chapter 5: Logic Gates . 89

Chapter 6: Combinational Logic Circuits . 113

Chapter 7: Sequential Logic Circuits . 135

Chapter 8: Memory . 163

Chapter 9: Central Processing Unit . . 177

Chapter 10: Programming in Assembly Language . . 195

Chapter 11: Inside the main Function . 221

Chapter 12: Instruction Details . 245

Chapter 13: Control Flow Constructs . 263

Chapter 14: Inside Subfunctions . 287

Chapter 15: Special Uses of Subfunctions . 319

Chapter 16: Computing with Bitwise Logic, Multiplication, and Division Instructions 335

Chapter 17: Data Structures . 371

Chapter 18: Object-Oriented Programming . 395

vi Brief Contents

Chapter 19: Fractional Numbers . . 415

Chapter 20: Input/Output . 443

Chapter 21: Interrupts and Exceptions . 465

Index . . 477

C O N T E N T S I N D E T A I L

PREFACE	 XV
Who This Book Is For . xv
About This Book . xvi

The Programming in the Book . xvi
Why Read This Book? . xvii
Chapter Organization . xvii

Efficient Use of This Book . xix

ACKNOWLEDGMENTS	 XXI

CHAPTER 1: SETTING THE STAGE	 1
Computer Subsystems . 1
Program Execution . 2
The Programming Environment . 4
What You’ve Learned . 6

CHAPTER 2: DATA STORAGE FORMATS	 9
Describing Switches and Groups of Switches . 10

Representing Switches with Bits . 10
Representing Groups of Bits . . 10
Using Hexadecimal Digits . 12

The Mathematical Equivalence of Binary and Decimal . 13
Getting to Know Positional Notation . . 13
Converting Binary to Unsigned Decimal . 15
Converting Unsigned Decimal to Binary . 16

Storing Data in Memory . . 18
Expressing Memory Addresses . 19
Characters . 20
Unsigned Integers . 23

Exploring Data Formats with C . 25
C and C++ I/O Libraries . 25
Writing and Executing Your First C Program . 27

Examining Memory with a Debugger . 30
Using Your Debugger . 31
Understanding Byte Storage Order in Memory . 35

What You’ve Learned . 36

CHAPTER 3: COMPUTER ARITHMETIC	 39
Adding and Subtracting Unsigned Integers . . 40

Adding in the Decimal Number System . . 40
Subtracting in the Decimal Number System . 41
Adding and Subtracting Unsigned Integers in Binary 43

viii Contents in Detail

Adding and Subtracting Signed Integers . 45
Two’s Complement . 45
Computing Two’s Complement . . 48
Adding and Subtracting Signed Integers in Binary . 50
Circular Nature of Integer Codes . 53

What You’ve Learned . 55

CHAPTER 4: BOOLEAN ALGEBRA	 57
Basic Boolean Operators . 58
Boolean Expressions . 60
Boolean Algebra Rules . 61

Boolean Algebra Rules That Are the Same as Elementary Algebra 61
Boolean Algebra Rules That Differ from Elementary Algebra 63

Boolean Functions . 66
Canonical Sum or Sum of Minterms . 67
Canonical Product or Product of Maxterms . 69
Comparison of Canonical Boolean Forms . 70

Boolean Expression Minimization . 71
Minimal Expressions . . 71
Minimization Using Algebraic Manipulations . 73
Minimization Using Karnaugh Maps . 76

Combining Basic Boolean Operators . . 86
What You’ve Learned . 88

CHAPTER 5: LOGIC GATES	 89
Crash Course in Electronics . 90

Power Supplies and Batteries . . 90
Passive Components . 91

Transistors . 100
MOSFET Switch . 101
CMOS Switch . 104

NAND and NOR Gates . . 107
NAND as a Universal Gate . 108
What You’ve Learned . 111

CHAPTER 6: COMBINATIONAL LOGIC CIRCUITS	 113
The Two Classes of Logic Circuits . 114
Adders . 115

Half Adder . 115
Full Adder . 116
Full Adder from Two Half Adders . 117
Ripple-Carry Addition and Subtraction Circuits . 119

Decoders . 121
Multiplexers . 124

Tristate Buffer . . 125
Programmable Logic Devices . 127

Programmable Logic Array . . 128
Read-Only Memory . 130
Programmable Array Logic . . 131

What You’ve Learned . 133

Contents in Detail ix

CHAPTER 7: SEQUENTIAL LOGIC CIRCUITS	 135
Latches . 136

SR Latch Using NOR Gates . 136
SR Latch Using NAND Gates . . 139
SR Latch with Enable . 141
The D Latch . 142

Flip-Flops . 144
Clocks . 144
D Flip-Flop . . 145
T Flip-Flop . 147
JK Flip-Flop . 148

Designing Sequential Logic Circuits . 151
Designing a Counter . 152
Designing a Branch Predictor . 156

What You’ve Learned . 161

CHAPTER 8: MEMORY	 163
The Memory Hierarchy . 163

Mass Storage . 164
Main Memory . 165
Cache Memory . 166
Registers . 168

Implementing Memory in Hardware . 168
Four-Bit Register . 168
Shift Register . 171
Register File . . 172
Read-Write Memory . 172
Static Random-Access Memory . 173
Dynamic Random-Access Memory . . 175

What You’ve Learned . 176

CHAPTER 9: CENTRAL PROCESSING UNIT 	 177
CPU Overview . 178

CPU Subsystems . . 178
Instruction Execution Cycle . 180

x86-64 Registers . 182
General-Purpose Registers . 183
Status Register . 186

C/C++ Integral Data Types and Register Sizes . 187
Using gdb to View the CPU Registers . . 188
What You’ve Learned . 193

CHAPTER 10: PROGRAMMING IN ASSEMBLY LANGUAGE	 195
Compiling a Program Written in C . 196
From C to Assembly Language . 197

Assembler Directives That We Won’t Use . 199
Assembler Directives That We Will Use . . 202

Creating a Program in Assembly Language . 203
Assembly Language in General . 204
First Assembly Language Instructions . . 205

x Contents in Detail

Minimal Processing in a Function . 208
Using gdb to Learn Assembly Language . 210

AT&T Syntax . . 217
What You’ve Learned . 218

CHAPTER 11: INSIDE THE MAIN FUNCTION	 221
The write and read System Call Functions . 222
Passing Arguments in Registers . 223
Position-Independent Code . 225
The Call Stack . 227

Stacks in General . . 227
Inside the Function Prologue and Epilogue . 229

Local Variables in a Function . 233
Variables on the Stack . 234
Stack Corruption . 237

Not Using the C Runtime Environment . 241
What You’ve Learned . 243

CHAPTER 12: INSTRUCTION DETAILS	 245
Looking at Machine Code . 246
Instruction Bytes . 247

Opcode Bytes . 247
ModR/M Byte . 248
REX Prefix Byte . . 250

Immediate Addressing Mode . 250
Memory Addressing Modes . 252

Direct Memory Addressing . 252
Register Indirect with Offset . 253
Register Indirect with Indexing . 255
SIB Byte . 255

Jump Instructions . 256
Assemblers and Linkers . 258

The Assembler . 258
The Linker . 260

What You’ve Learned . 261

CHAPTER 13: CONTROL FLOW CONSTRUCTS	 263
Jumps . 264

Unconditional Jumps . . 264
Conditional Jumps . 265

Iteration . 267
while Loop . 267
for Loop . 272
do-while Loop . 274

Selection . 276
if Conditional . 276
if-then-else Conditional . 278
switch Conditional . 282

What You’ve Learned . 286

Contents in Detail xi

CHAPTER 14: INSIDE SUBFUNCTIONS	 287
Scope of Variable Names in C . 288
Overview of Passing Arguments . 289
Global Variables . . 290
Explicitly Passing Arguments . . 294

Passing Arguments in C . 294
What’s Going On in Assembly Language . 296

Handling More Than Six Arguments . 299
Pushing Arguments onto the Stack . 299
Storing Arguments Directly on the Stack . 303
Summary of Stack Frame Usage . 306

Static Local Variables . . 309
What You’ve Learned . 318

CHAPTER 15: SPECIAL USES OF SUBFUNCTIONS	 319
Recursion . 319
Accessing CPU Features in Assembly Language . 326

A Separate Function Written in Assembly Language 326
Inline Assembly Language . 332

What You’ve Learned . 334

CHAPTER 16: COMPUTING WITH BITWISE LOGIC, MULTIPLICATION, AND
DIVISION INSTRUCTIONS	 335
Bit Masking . 335

Bit Masking in C . 336
Logic Instructions . 339
Bit Masking in Assembly Language . 340

Shifting Bits . 343
Shifting Bits in C . 343
Shift Instructions . 347
Shifting Bits in Assembly Language . . 349

Multiplication . 352
Multiplication in C . 352
Multiply Instructions . 355
Multiplication in Assembly Language . 357

Division . 360
Division in C . 360
Division Instructions . 364
Division in Assembly Language . 366

What You’ve Learned . 370

CHAPTER 17: DATA STRUCTURES	 371
Arrays . 372

Arrays in C . 372
Arrays in Assembly Language . 376

Records . 380
Records in C . 380
Records in Assembly Language . 382

xii Contents in Detail

Passing Records to Other Functions in C . 383
Passing Records to Other Functions in Assembly Language 389

What You’ve Learned . 394

CHAPTER 18: OBJECT-ORIENTED PROGRAMMING	 395
Objects in C++ . . 396

Using Objects in C++ . . 398
Defining Class Member Functions . . 401
Letting the Compiler Write a Constructor and Destructor 405

Objects in Assembly Language . 407
What You’ve Learned . 413

CHAPTER 19: FRACTIONAL NUMBERS	 415
Fractional Values in Binary . 416
Fixed-Point Numbers . 417

When the Fractional Part Is a Sum of Inverse Powers of Two 417
When the Fractional Part Is in Decimal . 421

Floating-Point Numbers . 425
Floating-Point Representation . 425
IEEE 754 Floating-Point Standard . 426
SSE2 Floating-Point Hardware . 427
xmm Registers . 428
Programming with Floating-Point Numbers . 430
Floating-Point Arithmetic Errors . . 433

Comments About Numerical Accuracy . . 440
What You’ve Learned . 441

CHAPTER 20: INPUT/OUTPUT	 443
Timing Considerations . 444

Memory Timing . 444
I/O Device Timing . 444
Bus Timing . 445

Accessing I/O Devices . 446
Port-Mapped I/O . 447
Memory-Mapped I/O . . 447

I/O Programming . 449
Polled I/O . . 449
Interrupt-Driven I/O . 449
Direct Memory Access . 450

Polled I/O Programming Algorithms . 450
UART Memory-Mapped I/O in C . 452
UART Memory-Mapped I/O in Assembly Language 457
UART Port-Mapped I/O . 460

What You’ve Learned . 464

Contents in Detail xiii

CHAPTER 21: INTERRUPTS AND EXCEPTIONS	 465
Privilege Levels . 466
CPU Response to an Interrupt or Exception . 467

External Interrupts . . 468
Exceptions . . 469
Software Interrupts . 469

System Calls . 470
The int 0x80 Software Interrupt . 470
The syscall Instruction . 472

What You’ve Learned . 474

INDEX	 477

P R E F A C E

This book introduces the concepts of how computer hardware works from a
programmer’s point of view. The hardware is controlled by a set of machine
instructions. The way in which these instructions control the hardware is
called the instruction set architecture (ISA). A programmer’s job is to design
a sequence of these instructions that will cause the hardware to perform
operations to solve a problem.

Nearly all computer programs are written in a high-level language. Some
of these languages are general purpose, and others are geared toward a spe-
cific type of application. But they are all intended to provide a programmer
with a set of programming constructs more suitable for solving problems in
human terms than working directly with the instruction set architecture and
the details of the hardware.

Who This Book Is For
Have you ever wondered what’s going on “under the hood” when you write
a program in a high-level language? You know that computers can be pro-
grammed to make decisions, but how do they do that? You probably know
that data is stored in bits, but what does that mean when storing a decimal
number? My goal in this book is to answer these and many other questions
about how computers work. We’ll be looking at both the hardware compo-
nents and the machine-level instructions used to control the hardware.

xvi Preface

I’m assuming that you know the basics of how to program in a high-
level language, but you don’t need to be an expert programmer. After dis-
cussing the hardware components, we’ll look at and write lots of programs
in assembly language, the language that translates directly into the machine
instructions.

Unlike most assembly language books, we won’t emphasize writing
applications in assembly language. Higher-level languages—like C++, Java,
and Python—are much more efficient for creating applications. Writing in
assembly language is a tedious, error-prone, time-consuming process, so it
should be avoided whenever possible. Our goal here is to study program-
ming concepts, not to create applications.

About This Book
The guidelines I followed in creating this book are as follows:

Learning is easier if it builds on concepts you already know.

Real-world hardware and software make a more interesting platform
for learning theoretical concepts.

The tools used for learning should be inexpensive and readily available.

The Programming in the Book
This book is based on the x86-64 instruction set architecture, which is
the 64-bit version of the x86 (32-bit) instruction set architecture. It is also
known by the names AMD64, x86_64, x64, and Intel 64. All the program-
ming in the book was done using the GNU programming environment run-
ning under the Ubuntu Linux operating system. The programs should work
with most common Linux distributions with few, if any, modifications.

We’re using C as our high-level language, with some C++ in a later chap-
ter. Don’t worry if you don’t know C/C++. All our C/C++ programming will
be very simple, and I’ll explain what you need to know as we go.

An important issue that arises when learning assembly language is using
the keyboard and terminal screen in an application. Programming input
from a keyboard and output to a screen is complex, well beyond the expertise
of a beginner. The GNU programming environment includes the C standard
library. Keeping with the “real-world” criterion of this book, we’ll use the
functions in that library, which are easily called from assembly language, for
using the keyboard and screen in our applications.

The x86-64 instruction set architecture includes some 1,500 instruc-
tions. The exact number depends on what you consider to be a different
instruction, but there are far too many to memorize. Some assembly lan-
guage books deal with this issue by inventing an “idealized” instruction set
architecture to illustrate the concepts. Again, keeping with the “real-world”
nature of this book, we’ll use the standard x86-64 instruction set but only a
small subset of the instructions that will be sufficient to illustrate the basic
concepts.

Preface xvii

Why Read This Book?
Given that there are many excellent high-level languages that allow you to
write programs without being concerned with how machine instructions con-
trol the hardware, you may wonder why you should learn the material in this
book. All high-level languages are ultimately translated into machine instruc-
tions that control the hardware. Understanding what the hardware does and
how the instructions control it helps you to understand the capabilities and
limitations of the computer. I believe that this understanding can make you a
better programmer, even when you’re working with a high-level language.

If your primary interest is in the hardware, I think it’s important to
understand how the hardware will be used by a program.

You might enjoy assembly language programming and want to carry
on. For example, if your interests take you into systems programming—writing
parts of an operating system, writing a compiler, or even designing another
higher-level language—these endeavors typically require an understanding
at the assembly language level.

Many challenging opportunities also exist in programming embedded
systems, systems in which the computer has a dedicated task. Examples are an
integral part of our daily life: cell phones; home appliances; automobiles; heat-
ing, ventilation, and air conditioning (HVAC) systems; medical devices; and
so forth. Embedded systems comprise an essential component of enabling
Internet of Things (IoT) technology. Programming them often requires an
understanding of how the computer interacts with various hardware devices
at the assembly language level.

If you already know assembly language for another processor, this book
could serve as a primer for reading the manuals.

Chapter Organization
The book is roughly organized into three parts: mathematics and logic,
hardware, and software. The mathematics part is intended to give you the
necessary language to discuss the concepts. The hardware part is an intro-
duction to the components used to construct a computer.

These two parts provide a background for discussing how software
controls the hardware. We’ll look at each of the basic programming con-
structs in the C programming language, with some C++ toward the end of
the book. Then we’ll look at how the compiler translates the C/C++ code
into assembly language, a language that directly accesses the instruction set
architecture. I also show you how a programmer might program the same
construct directly in assembly language.

Chapter 1: Setting the Stage    Describes the three overall subsystems
of a computer and how they’re connected. It also discusses setting up
the programming tools used in the book.

Chapter 2: Data Storage Formats    Shows how unsigned integers are
stored using the binary and hexadecimal number systems and how
characters are stored in the ASCII code. We’ll write our first C program
and use the gdb debugger to explore these concepts.

xviii Preface

Chapter 3: Computer Arithmetic    Describes the addition and subtrac-
tion of unsigned and signed integers and explains the limits of using a
fixed number of bits to represent integers.

Chapter 4: Boolean Algebra    Describes Boolean algebra operators
and functions, and function minimization using algebraic tools and
Karnaugh maps.

Chapter 5: Logic Gates    Begins with an introduction to electron-
ics. It then discusses logic gates and how they’re built using CMOS
transistors.

Chapter 6: Combinational Logic Circuits    Discusses logic circuits
that have no memory, including adders, decoders, multiplexers, and
programmable logic devices.

Chapter 7: Sequential Logic Circuits    Discusses clocked and unclocked
logic circuits that maintain a memory, as well as circuit design using state
transition tables and state diagrams.

Chapter 8: Memory    Describes memory hierarchy: cloud, mass stor-
age, main memory, cache, and CPU registers. It also discusses memory
hardware designs for registers, SRAM, and DRAM.

Chapter 9: Central Processing Unit    Gives an overview of CPU subsys-
tems. The chapter also explains the instruction execution cycle and the
main x86-64 registers and shows how to view register contents in the gdb
debugger.

Chapter 10: Programming in Assembly Language    Looks at the
minimal C function, both compiler-generated assembly language and as
written directly in assembly language. The chapter covers assembler
directives and first instructions. I give an example of using the text
user interface of gdb as a learning tool. It includes a brief description
of AT&T syntax.

Chapter 11: Inside the main Function    Describes passing arguments
in registers, position-independent code, and use of the call stack for
passing the return address and creating automatic variables.

Chapter 12: Instruction Details    Looks at how instructions are coded
at the bit level. It also covers addressing modes and conditional jumps,
as well as algorithms of assembler and linker programs.

Chapter 13: Control Flow Constructs    Covers assembly language
implementation of controlling program flow with while, do-while, for,
if-else, and switch constructs.

Chapter 14: Inside Subfunctions    Describes how functions access
external variables: global, pass by value, pass by pointer, and pass by
reference. The chapter summarizes the structure of the stack frame.

Chapter 15: Special Uses of Subfunctions    Shows how recursion
works. The chapter also discusses using assembly language to access
CPU hardware features that are not directly accessible in high-level
language, using a separate function or inline assembly.

Preface xix

Chapter 16: Computing with Bitwise Logic, Multiplication, and
Division Instructions    Describes bit masking, shifting bits, and the
multiplication and division instructions.

Chapter 17: Data Structures    Explains how arrays and records
(structs) are implemented and accessed in a program at the assembly
language level.

Chapter 18: Object-Oriented Programming    Shows how structs are
used as objects in C++.

Chapter 19: Fractional Numbers    Describes fixed-point and floating-
point numbers, the IEEE 754 standard, and a few SSE2 floating-point
instructions.

Chapter 20: Input/Output    Compares I/O with memory and bus tim-
ing. Describes isolated and memory-mapped I/O. This chapter gives
a rough sketch of polled I/O programming and discusses interrupt-
driven and direct memory access I/O.

Chapter 21: Interrupts and Exceptions    Briefly describes how the
x86-64 handles interrupts and exceptions. The chapter includes examples
of using int 0x80 and syscall to do system calls without using the C run-
time environment.

Appendix A: Using GNU make to Build Programs    Gives a brief tuto-
rial on using the GNU make program.

Efficient Use of This Book
Because of the way I have organized this book, you will learn the material
more efficiently if you follow a few simple guidelines.

Many sections have exercises at the end that give you the opportunity to
practice working with the material presented in the main body of the section.
These are intended as exercises, not tests. In fact, I have provided answers
and my solutions to most of these exercises online at https://rgplantz.github.io.

If you are an instructor using this book, sorry, but you will have to make
up your own exam questions. Many exercises have fairly obvious extensions
that instructors could make to create class assignments.

To make efficient use of these exercises, I recommend an iterative
process:

	1.	 Try to solve the problem on your own. Spend some time on it, but do
not let yourself get stuck for too long.

	2.	 If the answer does not come to you, peek at my solution. In some cases,
I give a hint before providing the full solution.

	3.	 Return to step 1, armed with some knowledge of how an experienced
assembly language programmer might approach the solution.

https://rgplantz.github.io.

xx Preface

One thing I strongly urge you to do is to type code in by yourself. I
believe this physical activity will help you to learn the material faster. If
nothing else, it forces you to read every character in the code. And I do not
see any advantage to copying and pasting code from my online solutions.
Frankly, none of the programs in this book have any real-world usefulness.
The code is provided for your own exercising, so please use it in that spirit.

This hands-on approach also applies to the mathematics in the first few
chapters, which includes converting numbers between several number bases.
Any good calculator will do that easily, but the actual conversion is not the
point. The point is to learn about how data values can be represented in bit
patterns. I believe that using paper and pencil to work through the arithme-
tic will help you to get a feel for these patterns.

In the first chapter, we’ll start by taking a high-level overview of the major
subsystems of a computer. Then I’ll describe how I set up the programming
environment on my computer to create and run the programs in this book.

A C K N O W L E D G M E N T S

My work is the result of the help from hundreds of people over the years. The
people who helped me most are the many students I’ve had in my classes dur-
ing my two decades of teaching. They asked questions that showed where my
explanations were lacking. You, the reader of this book, get to judge whether
I was successful at improving my explanations.

Next, I would like to specifically thank those who directly helped me in
the writing of this book. Working with Bill Pollock, the owner of No Starch
Press, has been a pleasure. I agree with his ideas of what makes up a good
book. He put together a fantastic team to work with me: Zach Lebowski, Alex
Freed, Annie Choi, and Athabasca Witschi were the developmental editors,
and Paula Williamson was the production editor. In addition, other people at
No Starch Press were working behind the scenes to make this book a reality. I
truly appreciate their help.

The technical reviewers from outside No Starch Press, William Young
and Michael Lyle, did a great job of finding my errors and suggesting
improvements to the book.

I would also like to thank my partner, João Barretto, for his support and
encouragement while I spent many hours on my computer.

1
S E T T I N G T H E S T A G E

We’ll start with a brief overview of how
computer hardware can be thought of as

organized into three subsystems. The goal is
to make sure we have a common framework for

discussing how things are organized and how they fit
together. Working within this framework, you’ll learn
how a program is created and then executed.

This book contains a fair amount of programming. To help you prepare
for doing the programming, this chapter ends with a section describing how
to set up a programming environment, using my system as an example.

Computer Subsystems
You can think of computer hardware as consisting of three separate subsys-
tems: central processing unit (CPU), memory, and input/output (I/O). They are
connected with buses, as shown in Figure 1-1.

2 Chapter 1

Data bus

CPU Memory I/O

Address bus
Control bus

Figure 1-1: Subsystems of a computer. The CPU, memory,
and I/O subsystems communicate with one another via
the three buses.

Let’s take each of these pieces in turn:

Central processing unit (CPU)   Controls the flow of data to and from
memory and I/O devices. The CPU performs arithmetic and logical
operations on the data. The CPU can decide the order of operations
based on the results of arithmetic and logic operations. It contains a
small amount of very fast memory.

Memory   Provides storage that is readily accessible to the CPU and I/O
devices for the instructions to the CPU and the data they manipulate.

Input/output (I/O)   Communicates with the outside world and with
mass storage devices (for example, the disk, network, USB, and printer).

Bus   A physical communication pathway with a protocol specifying
exactly how the pathway is used.

As indicated by the arrows in Figure 1-1, signals can flow in either direc-
tion on the buses. The address bus is used to specify a specific memory loca-
tion or an I/O device. Program data and program instructions flow on the
data bus. The control bus carries signals that specify how each of the subsys-
tems should be using the signals on the other buses.

The buses shown in Figure 1-1 indicate logical groupings of the signals
that must pass between the three subsystems. A given bus implementation
might not have physically separate paths for each of the three types of sig-
nals. For example, if you have ever installed a graphics card in a computer,
it probably used the Peripheral Component Interconnect Express (PCI-E)
bus. The same physical connections on the PCI-E bus carry addresses and
data, but at different times.

Program Execution
A program consists of a sequence of instructions stored in memory. When
you create a new program, you use an editor to write the source code for your
new program, usually in a high-level language (for example, C, C++, or Java).
The editor program sees the source code for your new program as data, which

Setting the Stage 3

is typically stored in a file on the disk. Then you use a compiler to translate the
high-level language statements into machine code instructions that are stored
in a disk file. Just as with the editor program, the compiler program sees
both your source code and the resulting machine instructions as data.

When it comes time to execute the program, the CPU loads the instruc-
tions from the machine code disk file into memory. Most programs include
some constant data that is also read into memory. The CPU executes the
program by reading, often called fetching, each instruction from memory
and executing it. The data is also fetched as needed by the program.

When the CPU is ready to execute the next instruction in the program,
the location of that instruction in memory is placed on the address bus.
The CPU also places a read signal on the control bus. The memory subsys-
tem responds by placing the instruction on the data bus, where the CPU
can then copy it. If the CPU is instructed to read data from memory, the
same sequence of events takes place.

If the CPU is instructed to store data in memory, it places the data on
the data bus, places the location in memory where the data is to be stored
on the address bus, and places a write signal on the control bus. The
memory subsystem responds by copying the data on the data bus into the
specified memory location.

There are variations on this edit-compile-execute scheme. An interpreter is
a program that translates the programming language into machine instruc-
tions, but instead of saving the instructions in a file, they are immediately
executed. Another variation is for a compiler to translate the programming
language into an intermediate shorthand language that is stored in a file that
can be executed by an interpreter.

Most programs also access I/O devices. Some are meant to interact
with humans, for example, a keyboard, a mouse, or a screen. Others are
meant for machine-readable I/O, for example, a disk. I/O devices are
very slow compared to the CPU and memory, and they vary widely in their
timing characteristics. Because of their timing characteristics, data trans-
fers between I/O devices and the CPU and memory must be explicitly
programmed.

Programming an I/O device requires a thorough understanding of
how the device works and how it interacts with the CPU and memory. We’ll
look at some of the general concepts near the end of the book. Meanwhile,
nearly every program we write in the book will use at least the terminal
screen, which is an output device. The operating system includes functions
to perform I/O, and the C runtime environment provides a library of appli-
cation-oriented functions to access the operating system I/O functions.
We’ll use these C library functions to perform most of our I/O operations
and leave I/O programming to more advanced books.

These few paragraphs are intended to provide you with a general over-
all view of how computer hardware is organized. Before exploring many of
these concepts in more depth, the next section will help you to set up the
tools you’ll need for the programming covered in the rest of the book.

4 Chapter 1

The Programming Environment
In this section, I’ll describe how I set up my computer to do all the pro-
gramming described in this book. You may choose to do things differently,
depending on the Linux distribution you are using and your personal
preferences.

I used the GNU programming tools that are included with Ubuntu
20.04 LTS running on a desktop computer, both as the primary operating
system and running under Windows Subsystem for Linux (https://docs
.microsoft.com/en-us/windows/wsl/install-win10/), to create and execute the
programs in this book. You can download a free copy of Ubuntu at https://
ubuntu.com/. The installed compilers, gcc and g++, are version 9.3.0, and the
assembler, as, is version 2.34.

You may be new to using the Linux command line. As we go through
the programs, I’ll show you the commands I used to create them, but this
will give you just the basics. You’ll be much more productive if you take the
time to become familiar with using the command line. I found William
Shotts’s The Linux Command Line, Second Edition (No Starch Press, 2019),
to be an excellent resource.

You should also become familiar with the documentation provided in
Linux for the programming tools we’ll be using. The simplest is the help
system built into most programs. You access help by typing the name of the
program with only the --help option. For example, gcc --help brings up a
list of the command line options you can use with gcc with a brief descrip-
tion of what each does.

Most Linux programs include a manual, usually called a man page, that
provides more complete documentation than the help facility. It can be
read by using the man command followed by the name of the program. For
example, man man brings up the man page for the man program.

GNU programs come with even more complete documentation that
can be read with the info command followed by the name of the program.
For example, info info brings up the manual for using info, shown here:

Next: Stand-alone Info, Up: (dir)

Stand-alone GNU Info

This documentation describes the stand-alone Info reader which you can
use to read Info documentation.

 If you are new to the Info reader, then you can get started by typing
'H' for a list of basic key bindings. You can read through the rest of
this manual by typing <SPC> and (or <Space> and <Backspace>) to
move forwards and backwards in it.

* Menu:

* Stand-alone Info:: What is Info?
* Invoking Info:: Options you can pass on the command line.

https://docs.microsoft.com/en-us/windows/wsl/install-win10/
https://docs.microsoft.com/en-us/windows/wsl/install-win10/
https://ubuntu.com/
https://ubuntu.com/

Setting the Stage 5

* Cursor Commands:: Commands which move the cursor within a node.
* Scrolling Commands:: Commands for reading the text within a node.
* Node Commands:: Commands for selecting a new node.
* Searching Commands:: Commands for searching an Info file.
* Index Commands:: Commands for looking up in indices.
* Xref Commands:: Commands for selecting cross-references.
* Window Commands:: Commands which manipulate multiple windows.
* Printing Nodes:: How to print out the contents of a node.
* Miscellaneous Commands:: A few commands that defy categorization.
* Variables:: How to change the default behavior of Info.
* Colors and Styles:: Customize the colors used by Info.
* Custom Key Bindings:: How to define your own key-to-command bindings.
* Index:: Global index.

-----Info: (info-stnd)Top, 31 lines --All---
Welcome to Info version 6.7. Type H for help, h for tutorial.

Items that begin with * and end with :: are hyperlinks to other pages
in the manual. Use the arrow keys on your keyboard to put the cursor any
place within such an item and press ENTER to bring up that page.

To get the info documentation, I had to install the following Ubuntu
packages:

binutils-doc   Adds useful documentation for the GNU assembler as
(sometimes called gas)

gcc-doc   Adds useful documentation for the GNU gcc compiler

The packages you need to get these features may differ depending on
the Linux distribution you are using. I have even had to change this list for
different releases of Ubuntu over the years.

In most cases, I compiled programs using no optimization (-O0
option) because the goal is to study concepts, not to create the most effi-
cient code. The examples should work in any x86-64 GNU development
environment with gcc, g++, and as installed. However, the machine code
generated by the compiler may differ depending on its specific configu-
ration and version. You will begin seeing compiler-generated assembly
language about halfway through the book. Any differences should be
consistent as you continue through the rest of the book.

You will also use a text editor for all your programming. Do not use a
word processor. Word processors add a lot of hidden control characters to
format the text. These hidden characters confuse compilers and assem-
blers, causing them not to work.

Several excellent text editors exist for Linux, each with its own person-
ality. My favorite changes from time to time. I recommend trying several
that are available to you and deciding which one you prefer.

These are text editors I have used:

nano   A simple text editor that is included with most Linux installa-
tions. It uses a command line user interface. Text is inserted directly.
The CTRL and “meta” keys are used to specify keyboard sequences for
manipulating text.

6 Chapter 1

vi   Supposed to be installed on all Linux (and Unix) systems. It pro-
vides a command line user interface that is mode oriented. Text is
manipulated through keyboard commands. Several commands place vi
in text-insert mode. The ESC key is used to return to command mode.
Most Linux installations include vim (Vi IMproved), which has addi-
tional features helpful in editing program source code.

emacs   Uses a command line user interface. Text is inserted directly.
The CTRL and meta keys are used to specify keyboard sequences for
manipulating text.

gedit   Probably installed if you are using the GNOME desktop. It uses a
graphical user interface that will likely be familiar to you if you’re used
to using a word processor.

kate   Probably installed if you are using the KDE desktop. It uses a
graphical user interface that will likely be familiar to you if you’re used
to using a word processor.

Visual Studio Code   A free editor from Microsoft that runs on
Windows 7/8/10, Linux, and macOS (https://code.visualstudio.com/). It
uses a graphical user interface and can be used to edit text files on
remote servers and a Windows Subsystem for Linux installation. It
also allows you to open a terminal pane for commands.

Graphical user interfaces are also available for both vi and emacs.
Any of these, and many other, text editors would be an excellent choice

for the programming covered in this book. Don’t spend too much time try-
ing to pick the “best” one.

YOUR T UR N

Make sure that you understand the computer you’ll be using for the program-
ming in this book. What CPU does it use? How much memory does it have?
What are the I/O devices connected to it? Which editor will you be using?

What You’ve Learned

Central processing unit (CPU)   The subsystem that controls most of
the activities of the computer. It also contains a small amount of very
fast memory.

Memory   The subsystem that provides storage for programs and data.

Input/output (I/O)   The subsystem that provides a means of commu-
nication with the outside world and with mass storage devices.

Bus   A communication pathway between the CPU, memory, and I/O.

https://code.visualstudio.com/

Setting the Stage 7

Program execution   An overview of how the three subsystems and the
buses are used when a program is run.

Programming environment   An example of how to set up the tools
needed to do the programming in this book.

In the next chapter, you will start learning how data is stored in a com-
puter, get an introduction to programming in C, and start learning how to
use the debugger as a learning tool.

2
D A T A S T O R A G E F O R M A T S

In this book, we’re going to look at com-
puters in a different way: instead of seeing

computers as a collection of programs and
files and graphics, we’re going to see them as

billions of two-state switches and one or more control
units, devices that can both detect and change the
states of the switches. In Chapter 1, we discussed com-
municating with the world outside the computer by
using input and output. In this chapter, we’ll begin
exploring how computers encode data for storage in
memory; then we’ll write some programs in C that
explore these concepts.

10 Chapter 2

Describing Switches and Groups of Switches
Everything that happens on your computer—the code you write, the data
you use, the images on your screen—is controlled by a series of two-state
switches. Each combination of switches represents a possible state the
computer is in. If you wanted to describe what was happening on your com-
puter, you could list a combination of switches. In plain English, this would
be something like “The first switch is on, the second one is also on, but
the third is off, while the fourth is on.” But describing the computer this
way would be difficult, especially since modern computers use billions of
switches. Instead, we’ll use a more concise, numeric notation.

Representing Switches with Bits
You’re probably familiar with the decimal system, which uses 10 digits, 0 to 9,
to write numbers. We want a way to represent switches numerically, but our
switches have only 2 states, not 10. Here, the binary system—a two-digit sys-
tem that uses 0 and 1—is going to prove useful.

We’ll use a binary digit, commonly shortened to bit, to represent the
state of a switch. A bit can have two values: 0, which represents that a switch
is “off,” and 1, which represents that it’s “on.” If we wanted, we could assign
the opposite values to these digits—all that matters is that we’re consistent.
Let’s use bits to simplify our statement about switches. In our previous
example, we had a computer in which the first switch is on, the second
switch is on, the third is off, and the fourth is on. In binary, we would repre-
sent this as 1101.

Representing Groups of Bits
Even with binary, sometimes we have so many bits that the number is unread-
able. In those cases, we use hexadecimal digits to specify bit patterns. The hexa-
decimal system has 16 digits, each of which can represent one group of 4 bits.

Table 2-1 shows all 16 possible combinations of 4 bits and the correspond-
ing hexadecimal digit for each combination. After using hexadecimal for a
while, you will probably memorize this table, but if you forget it, an online
search will quickly bring up a hexadecimal-to-binary converter.

Table 2-1: Hexadecimal Representation of Four Bits

One hexadecimal digit Four binary digits (bits)

0 0000

1 0001

2 0010

3 0011

Data Storage Formats 11

One hexadecimal digit Four binary digits (bits)

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

a 1010

b 1011

c 1100

d 1101

e 1110

f 1111

Using hexadecimal, we can write 1101, or “on, on, off, on,” with a single
digit: d16 = 11012.

N O T E 	 When it isn’t clear from the context, I will indicate the base of a number in this text
with a subscript. For example, 10010 is in decimal, 10016 is in hexadecimal, and 1002
is in binary.

The octal system, based on the number eight, is less common, but you
will encounter it occasionally. The eight octal digits span from 0 to 7, and
each one represents a group of three bits. Table 2-2 shows the correspon-
dence between each possible group of three bits and its corresponding one
octal digit. If we want, for example, to briefly represent the first three bits in
the example we’ve been using, then we can simply use 68, which is equivalent
to 1102.

Table 2-2: Octal Representation of Three Bits

One octal digit Three binary digits (bits)

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

12 Chapter 2

Using Hexadecimal Digits
Hexadecimal digits are especially convenient when we need to specify the
state of a group of, say, 16 or 32 switches. In place of each group of four bits,
we can write one hexadecimal digit. Here are two examples:

6c2a16 = 01101100001010102

and

0123abcd16 = 000000010010001110101011110011012

A single bit isn’t usually useful for storing data. The smallest number of
bits that can be accessed at a time in a computer is defined as a byte. In most
modern computers, a byte consists of eight bits, but there are exceptions to
the eight-bit byte. For example, the CDC 6000 series of scientific mainframe
computers used a six-bit byte.

In the C and C++ programming languages, prefixing a number with
0x—that’s a zero and a lowercase x—specifies that the number is expressed
in hexadecimal, and prefixing a number with only a 0 specifies octal. C++
allows us to specify a value in binary by prefixing the number with 0b.
Although the 0b notation for specifying binary is not part of standard C,
our compiler, gcc, allows it. Thus, when writing C or C++ code in this book,
these all mean the same thing:

100 = 0x64 = 0144 = 0b01100100

But if you’re using another C compiler, you may not be able to use the 0b
syntax to specify binary.

YOUR T UR N

1.	 Express the following bit patterns in hexadecimal:

a.	 0100 0101 0110 0111
b.	 1000 1001 1010 1011
c.	 1111 1110 1101 1100
d.	 0000 0010 0101 0010

2.	 Express the following hexadecimal patterns in binary:

a.	 83af
b.	 9001
c.	 aaaa
d.	 5555

Data Storage Formats 13

3.	 How many bits are represented by each of the following?

a.	 ffffffff
b.	 7fff58b7def0
c.	 11112

d.	 111116

4.	 How many hexadecimal digits are required to represent each of the
following?

a.	 8 bits
b.	 32 bits
c.	 64 bits
d.	 10 bits
e.	 20 bits
f.	 7 bits

The Mathematical Equivalence of Binary and Decimal
In the previous section, you saw that binary digits are a natural way to show
the states of switches within the computer. You also saw that we can use
hexadecimal to show the state of four switches with a single character. In
this section, I’ll go through some of the mathematical properties of the
binary number system and show how it translates to and from the more famil-
iar decimal (base 10) number system.

Getting to Know Positional Notation
By convention, we use a positional notation when writing numbers. This
means that the value of a symbol depends on its position within a group of
symbols. In the familiar decimal number system, we use the symbols 0, 1,
…, 9 to represent numbers.

In the number 50, the value of the symbol 5 is 50 because it’s in the tens
position, where any number in that position is multiplied by 10. In the num-
ber 500, the value of the symbol 5 is 500 because it’s in the hundreds position.
The symbol 5 is the same in any position, but its value depends on the posi-
tion it occupies within the number.

Taking this a bit further, in the decimal number system, the integer 123
is taken to mean

1 × 100 + 2 × 10 + 3

or

1 × 102 + 2 × 101 + 3 × 100

14 Chapter 2

In this example, the rightmost digit, 3, is the least significant digit
because its value contributes the least to the number’s total value. The
leftmost digit, 1, is the most significant digit because it contributes the most
value.

A NOT HER NUMBER S YS T EM

Before positional notations were invented, people used counting systems to
keep track of numerical quantities. The Roman numeral system is a well-known
example of a counting system. It uses the symbols I for 1, V for 5, X for 10, L
for 50, and so on. To represent the value 2, you simply use two Is: II. The value
20 is written as XX.

The two main rules of the Roman numeral system are that symbols that rep-
resent larger values come first, and if a symbol representing a smaller value is
placed before a larger one, then the value of the smaller one is subtracted from
the immediately following larger one. For example, IV represents 4 because I
(1) is less than V (5), so it is subtracted from the value represented by V.

There is no symbol for 0 in the Roman numeral system because it isn’t
needed in counting systems. In a positional system, we need a symbol to mark
the fact that there is no value in that position, but the position still counts toward
the value being represented. For example, the zeros in 500 tell us that there are
no values in the tens position or in the ones position. There is just a value of 5 in
the hundreds place.

The invention of positional notations greatly simplified arithmetic and led
to the mathematics we know today. If you need to convince yourself, divide 60
(LX) by 3 (III) in the Roman numeral system. (Answer: XX.)

The base, or radix, of the decimal number system—the number of
unique digits—is 10. This means there are 10 symbols for representing the
digits 0 through 9. Moving a digit one place to the left increases its value by a
factor of 10. Moving it one place to the right decreases its value by a factor of
10. The positional notation generalizes to any radix r like so:

dn–1 × rn–1 + dn–2 × rn–2 + … + d1 × r1 + d0 × r0

where there are n digits in the number, and each di is a single digit with
0 ≤ di < r.

This expression tells us how to determine the value of each digit in the
number. We determine the position of each digit in the number by count-
ing from the right, starting with zero. At each position, we raise the radix,
r, to the power of its position and then multiply that number by the value
of the digit. Adding all the results gives us the value represented by the
number.

Data Storage Formats 15

The radix in the binary number system is 2, so there are only two sym-
bols for representing the digits; this means that di = 0, 1, and we can write
this expression as follows:

dn–1 × 2n–1 + dn–2 × 2n–2 + … + d1 × 21 + d0 × 20

where there are n digits in the number, and each di = 0 or 1.
In the next section, we’ll convert binary numbers to and from unsigned

decimals. Signed numbers can be either positive or negative, but unsigned
numbers have no sign. We’ll discuss signed numbers in Chapter 3.

Converting Binary to Unsigned Decimal
You can easily convert from binary to decimal by computing the value of 2
raised to the power of the position it is in and then multiplying that by the
value of the bit in that position. Here’s an example:

100101012	  = 1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20
	  = 128 + 16 + 4 + 1
	  = 14910

The following algorithm summarizes the procedure for converting
binary to decimal:

Let result = 0
1 Repeat for each i = 0,...,(n - 1)
 add 2di x 32i to result

At each bit position 1, this algorithm computes the power of 2 3 and
then multiplies by the respective bit value, either 0 or 1 2.

N O T E 	 Although we’re considering only integers at this point, this algorithm does generalize
to fractional values. Simply continue the exponents of the radix, r, on to negative
values, that is, rn−1, rn−2, …, r1, r0, r−1, r−2, This will be covered in detail in
Chapter 19.

YOUR T UR N

1.	 Looking at the generalized equation in this section, what are the values of
r, n, and each di for the decimal number 29458254 and the hexadecimal
number 29458254?

2.	 Convert the following 8-bit binary numbers to decimal:

a.	 1010 1010
b.	 0101 0101
c.	 1111 0000

(continued)

16 Chapter 2

d.	 0000 1111
e.	 1000 0000
f.	 0110 0011
g.	 0111 1011
h.	 1111 1111

3.	 Convert the following 16-bit binary numbers to decimal:

a.	 1010 1011 1100 1101
b.	 0001 0011 0011 0100
c.	 1111 1110 1101 1100
d.	 0000 0111 1101 1111
e.	 1000 0000 0000 0000
f.	 0000 0100 0000 0000
g.	 0111 1011 1010 1010
h.	 0011 0000 0011 1001

4.	 Develop an algorithm to convert hexadecimal to decimal and then convert
the following 16-bit numbers to decimal:

a.	 a000
b.	 ffff
c.	 0400
d.	 1111
e.	 8888
f.	 0190
g.	 abcd
h.	 5555

Converting Unsigned Decimal to Binary
If we want to convert an unsigned decimal integer, N, to binary, we set it
equal to the previous expression for binary numbers to give this equation:

N = dn–1 × 2n–1 + dn–2 × 2n–2 + … + d1 × 21 + d0 × 20

where each di = 0 or 1. We divide both sides of this equation by 2, and
the exponent of each 2 term on the right side decreases by 1, giving the
following:

2

r
0N

1
 + = (dn–1

× 2n–2 × dn–2
× 2n–3 + … + d

1
× 20) + d

0
× 2–1

where N1 is the integer part, and the remainder, r0, is 0 for even numbers
and 1 for odd numbers. Doing a little rewriting, we have the equivalent
equation:

2

d
0N

1
 + = (dn–1 × 2n–2 + dn–2

× 2n–3 + ⋯ + d
1
× 20) +

2

r
0

N1+r02=dn-1×2n-2×dn-2×2n-3+…+d1×20+d0×2-1

N1+r02=(dn-1×2n-2+dn-2×2n-3+⋯+d1×20)+d02

Data Storage Formats 17

All the terms within the parentheses on the right side are integers. The
integer part of both sides of an equation must be equal, and the fractional
parts must also be equal. That is:

N1 = dn–1 × 2n–2 + dn–2 × 2n–3 + … + d1 × 20

and

2

r
0

=

2

d
0

Thus, we see that d0 = r0. Subtracting r0 /2 (which equals d0/2) from
both sides of our expanded equation gives this:

N1 = dn–1 × 2n–2 + dn–2 × 2n–3 + … + d1 × 20

Again, we divide both sides by 2:

2

r
1N

2
+ = dn–1

 × 2n–3 + dn–2
 × 2n–4 + … + d

2
 × 20 + d

1
 × 2–1

2

d
1= (dn–1

 × 2n–3 + dn–2
 × 2n–4 + … + d

2
 × 20) +

Using the same reasoning as earlier, d1 = r1. We can produce the binary
representation of a number by working from right to left, repeatedly divid-
ing by 2, and using the remainder as the value of the respective bit. This is
summarized in the following algorithm, where the forward slash (/) is the
integer division operator and the percent sign (%) is the modulo operator:

quotient = N
i = 0
di = quotient % 2
quotient = quotient / 2
While quotient != 0
 i = i + 1
 di = quotient % 2
 quotient = quotient / 2

Some programming tasks require a specific bit pattern, for example,
programming a hardware device. In these cases, specifying a bit pattern—
rather than a numerical value—is more natural. We can think of the bits
in groups of four and use hexadecimal to specify each group. For example,
if our algorithm required the use of zeros alternating with ones, 0101 0101
0101 0101 0101 0101 0101 0101, we could convert this to the decimal value
431655765, or we could express it in hexadecimal as 0x55555555 (shown here
in C/C++ syntax). Once you’ve memorized Table 2-1, you’ll find that it’s
much easier to work with hexadecimal for bit patterns.

The discussion in these two sections has dealt only with unsigned inte-
gers. The representation of signed integers depends upon some architectural
features of the CPU that we’ll discuss in Chapter 3.

18 Chapter 2

YOUR T UR N

1.	 Convert the following unsigned decimal integers to an 8-bit hexadecimal
representation:

a.	 100

b.	 123

c.	 10

d.	 88

e.	 255

f.	 16

g.	 32

h.	 128

2.	 Convert the following unsigned decimal integers to 16-bit hexadecimal
representation:

a.	 1024
b.	 1000
c.	 32768
d.	 32767
e.	 256
f.	 65535
g.	 4660
h.	 43981

3.	 Invent a code that would allow us to store letter grades with a plus or
minus (that is, the grades A, A–, B+, B, B-, …, D, D–, F). How many bits
are required for your code?

Storing Data in Memory
We now have the language necessary to begin discussing how data is stored
in computer memory. You’ll first learn how memory is organized. There are
two general kinds of memory used for storing program instructions and
data in a computer:

Random access memory (RAM)

Once a bit (switch) is set to either 0 or 1, it stays in that state until the
control unit actively changes it or the power is turned off. The control
unit can both read the state of a bit and change it.

The name random access memory is misleading. Here random access means
that it takes the same amount of time to access any byte in the memory,
not that any randomness is involved when reading the byte. We contrast

Data Storage Formats 19

RAM with sequential access memory (SAM), where the amount of time it
takes to access a byte depends on its position in some sequence. You
can think of SAM like tape: the length of time it takes to access a byte
depends on the physical location of the byte with respect to the current
position of the tape.

Read-only memory (ROM)

ROM is also called nonvolatile memory (NVM). The control unit can read
the state of each bit but can’t change it. You can reprogram some types
of ROM with specialized hardware, but the bits remain in the new state
when the power is turned off.

Expressing Memory Addresses
Each byte in memory has a location, or address, much like the room num-
ber in an office building. The address of a specific byte never changes. That
is, the 957th byte from the beginning of memory will always remain the
957th byte. However, the state (content) of each of the bits—either 0 or 1—
in any given byte can be changed.

Computer scientists typically express the address of each byte in mem-
ory in hexadecimal, starting the numbering at zero. Thus, we would say that
the 957th byte is at address 0x3bc (= 956 in decimal).

The first 16 bytes in memory have the addresses 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a,
b, c, d, e, and f. Using the notation

<address>: <content>

we can show the content of each of the first 16 bytes of memory like in
Table 2-3 (the contents here are arbitrary).

Table 2-3: Arbitrary Contents of the First 16 Bytes of Memory

Address Content Address Content

0x00000000: 0x6a 0x00000008: 0xf0

0x00000001: 0xf0 0x00000009: 0x02

0x00000002: 0x5e 0x0000000a: 0x33

0x00000003: 0x00 0x0000000b: 0x3c

0x00000004: 0xff 0x0000000c: 0xc3

0x00000005: 0x51 0x0000000d: 0x3c

0x00000006: 0xcf 0x0000000e: 0x55

0x00000007: 0x18 0x0000000f: 0xaa

The content of each byte is represented by two hexadecimal digits,
which specify the exact state of the byte’s eight bits.

20 Chapter 2

But what can the state of the byte’s eight bits tell us? There are two
issues that a programmer needs to consider when storing data in memory:

How many bits are needed to store the data?   To answer this question,
we need to know how many different values are allowed for the particu-
lar data item. Look at the number of different values we can represent
in Table 2-1 (four bits) and Table 2-2 (three bits). We can see that we can
represent up to 2n different values in n bits. Notice, too, that we might
not use all the possible bit patterns we have within an allocated space.

What is the code for storing the data?   Most of the data we deal with
in everyday life is not expressed in terms of zeros and ones. To store it
in computer memory, the programmer must decide how to encode the
data in zeros and ones.

In the remaining part of this chapter, we’ll see how we can store char-
acters and unsigned integers in memory by using the state of the bits in one
or more bytes.

Characters
When you’re programming, you will almost always be manipulating text
strings, which are arrays of characters. The first program you ever wrote
was probably a “Hello, World!” program. If you wrote it in C, you used a
statement like this:

printf("Hello, World!\n");

or like this in C++:

cout << "Hello, World!" << endl;

When translating either of these statements into machine code, the
compiler must do two things:

•	 Store each of the characters in a location in memory where the control
unit can access them

•	 Generate the machine instructions to write the characters on the screen

We’ll start by considering how a single character is stored in memory.

Character Encoding

The most common standard for encoding characters for computer storage
is Unicode UTF-8. It uses from one to four bytes for storing a number called
a code point, which represents a character. A Unicode code point is written
as U+h, where h is four to six hexadecimal digits. The operating system and
display hardware associate one or more code points with a glyph, which is
what we see on the screen or on paper. For example, U+0041 is the code
point for the Latin capital letter A, which has the glyph A in the font used
for this book.

Data Storage Formats 21

UTF-8 is backward compatible with an older standard, the American
Standard Code for Information Interchange (ASCII—pronounced “ask-ee”).
ASCII uses seven bits to specify each code point in a 128-character set,
which contains the English alphabet (uppercase and lowercase), numerals,
special characters, and control characters. In this book, we will use only the
characters from the ASCII subset of UTF-8, U+0000 to U+007F, in all our
programming.

Table 2-4 shows the Unicode code points for the characters used to rep-
resent hexadecimal numbers and the corresponding 8-bit patterns that are
stored in memory in our programming environment. You’ll have a chance
to use this table later in the book, when you learn how to convert from the
character representation of an integer to its binary representation. For now,
notice that while the numeric characters are organized in a contiguous bit
pattern sequence, there is a gap between them and the alphabetic characters.

Table 2-4: UTF-8 for the Hexadecimal Characters

Code point Character description Character glyph Bit pattern

U+0030 Digit zero 0 0x30

U+0031 Digit one 1 0x31

U+0032 Digit two 2 0x32

U+0033 Digit three 3 0x33

U+0034 Digit four 4 0x34

U+0035 Digit five 5 0x35

U+0036 Digit six 6 0x36

U+0037 Digit seven 7 0x37

U+0038 Digit eight 8 0x38

U+0039 Digit nine 9 0x39

U+0061 Latin small letter a a 0x61

U+0062 Latin small letter b b 0x62

U+0063 Latin small letter c c 0x63

U+0064 Latin small letter d d 0x64

U+0065 Latin small letter e e 0x65

U+0066 Latin small letter f f 0x66

Although the hexadecimal numerical portion is the same as the bit pat-
tern for the code points U+0000 to U+007F, this does not necessarily hold
true for other characters. For example, U+00B5 is the code point for the
micro sign, which is stored in memory as the 16-bit pattern 0xc2b5 and has
the glyph µ in the font used for this book.

UTF-8 uses one byte per character to store code points U+0000 to
U+007F. Bits 6 and 5 in the byte (recall that bits are numbered from right
to left, starting with 0) specify the four groups of characters, shown in

22 Chapter 2

Table 2-5. The special characters are mostly punctuation. For example, the
space character is U+0020, and the ; character is U+003B.

Table 2-5: Character Groups in Code Points U+0000
to U+007F

Bit 6 Bit 5 Type of character

0 0 Control

0 1 Numeric and special

1 0 Uppercase alphabetic and special

1 1 Lowercase alphabetic and special

You can generate a table of the code points that coincide with ASCII
characters by typing the command man ascii in a Linux terminal window.
(You may need to install the ascii program on your computer.) It is quite
large and not the sort of thing that you would want to memorize, but it can
be helpful to understand roughly how it’s organized.

You can learn more about Unicode at https://www.unicode.org/releases/.
For a more informal discussion of how Unicode came to be, I recommend
“The Absolute Minimum Every Software Developer Absolutely, Positively
Must Know About Unicode and Character Sets (No Excuses!)” at https://
www.joelonsoftware.com/.

YOUR T UR N

1.	 Many people use uppercase for the alphabetic hexadecimal charac-
ters. Every programming language I know about accepts either case.
Redo Table 2-4, showing the bit patterns for the uppercase hexadecimal
characters.

2.	 Create an ASCII table for the lowercase alphabetic characters.

3.	 Create an ASCII table for the uppercase alphabetic characters.

4.	 Create an ASCII table for the punctuation marks.

Storing a Text String

Getting back to Hello, World!\n, the compiler stores this text string as a con-
stant array of characters. To specify the extent of this array, a C-style string
uses the code point U+0000 (ASCII NUL) at the end of the string as a sentinel
value, a unique value that indicates the end of a sequence of characters.
Thus, the compiler must allocate 13 bytes for this string: 11 for Hello, World!,

https://www.unicode.org/releases/
https://www.joelonsoftware.com/
https://www.joelonsoftware.com/

Data Storage Formats 23

1 for the newline \n, and 1 for the NUL. For example, Table 2-6 shows how this
text string would be stored starting at location 0x4004a1 in memory.

Table 2-6: “Hello, World!” Stored in Memory

Address Content Address Content

0x4004a1: 0x48 0x4004a9: 0x6f

0x4004a2: 0x65 0x4004aa: 0x72

0x4004a3: 0x6c 0x4004ab: 0x6c

0x4004a4: 0x6c 0x4004ac: 0x64

0x4004a5: 0x6f 0x4004ad: 0x21

0x4004a6: 0x2c 0x4004ae: 0x0a

0x4004a7: 0x20 0x4004af: 0x00

C uses U+000A (ASCII LF) as a single newline character (at address
0x4004ae in this example) even though the C syntax requires that the pro-
grammer write two characters, \n. The text string ends with the NUL
character at 0x4004af.

In Pascal (another programming language), the length of the string
is specified by the first byte in the string, which is taken to be an eight-bit
unsigned integer. (This is the reason for the 256-character limit on text
strings in Pascal.) The C++ string class has additional features, but the actual
text string is stored as a C-style text string within the C++ string instance.

Unsigned Integers
Since an unsigned integer can be expressed in any radix, probably the most
obvious way to store it is to use the binary number system. If we number the
bits in a byte from right to left, then the lowest-order bit would be stored in
bit 0, the next in bit 1, and so forth. For example, the integer 12310 = 7b16, so
the state of the byte where it is stored would be 011110112.

Using only one byte restricts the range of unsigned integers to be from
0 to 25510, since ff16 = 25510. The default size for an unsigned integer in our
programming environment is four bytes, which allows for a range of 0 to
4,294,967,29510.

One limitation of using the binary number system is that you need to
convert a decimal number from a character string to the binary number
system before performing arithmetic operations on it. For example, the
decimal number 123 would be stored in character string format as the four
bytes 0x31, 0x32, 0x33, and 0x00, while in unsigned integer format it would be
stored as the four-byte binary number 0x0000007b. On the other end, binary
numbers need to be converted to their decimal character representations
for most real-world display purposes.

Binary Coded Decimal (BCD) is another code for storing integers. It uses
four bits for each decimal digit, as shown in Table 2-7.

24 Chapter 2

Table 2-7: Binary Coded Decimal

Decimal digit BCD code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

For example, in a 16-bit storage location, the decimal number 1234
would be stored in BCD as 0001 0010 0011 0100 (in the binary number sys-
tem, it would be 0000 0100 1101 0010).

With only 10 of the possible 16 combinations being used, we can see
that six bit patterns are wasted. This means that a 16-bit storage location
has a range of 0 to 9,999 for values if we use BCD, compared to a range of
0 to 65,535 if we use binary, so this is a less efficient use of memory. On the
other hand, the conversions between a character format and an integer for-
mat are simpler with BCD, as you will see in Chapter 16.

BCD is important in specialized systems that deal primarily with
numerical business data, because they tend to print numbers more often
than perform mathematical operations on them. COBOL, a programming
language intended for business applications, supports a packed BCD for-
mat where two digits (in BCD code) are stored in each eight-bit byte. Here,
the last (four-bit) digit is used to store the sign of the number, as shown in
Table 2-8. The specific codes used depend upon the implementation.

Table 2-8: Example Sign
Codes for COBOL Packed
BCD Format

Sign Sign code

+ 1010

− 1011

+ 1100

− 1101

+ 1110

unsigned 1111

Data Storage Formats 25

For example, 0001 0010 0011 1010 represents +123, 0001 0010 0011 1011
represents −123, and 0001 0010 0011 1111 represents 123.

Next, we’ll explore some of these concepts using the C programming
language. If you’re new to C, this discussion will provide an introduction to
the language.

Exploring Data Formats with C
In this section, we’ll write our first programs with the C programming lan-
guage. These particular programs illustrate the differences between how
numbers are stored in memory and how we humans read them. C allows us
to get close enough to the hardware to understand the core concepts, while
taking care of many of the low-level details. You shouldn’t find the simple C
programs used in this book too difficult, especially if you already know how
to program in another language.

If you learned how to program in a higher-level language, like C++,
Java, or Python, chances are that you learned object-oriented program-
ming. C doesn’t support the object-oriented paradigm. C is a procedural
programming language. C programs are divided into functions. A function is a
named group of programming statements. Other programming languages
also use the terms procedure and subprogram, with some minor distinctions
between them, depending on the language.

C and C++ I/O Libraries
Most high-level programming languages include a standard library that can
be thought of as part of the language. A standard library contains functions
and data structures that can be used in the language for doing common
things like terminal I/O—writing to the screen and reading from the key-
board. C includes the C standard library, and C++ includes the C++ standard
library.

C programmers use functions in the stdio library, and C++ program-
mers use functions in the iostream library for terminal I/O. For example,
the C code sequence for reading an integer from the keyboard, adding 100
to it, and writing the result to the screen looks like this:

int x;
scanf("%i", &x);
x += 100;
printf("%i", x);

The C++ code sequence looks something like this:

int x;
cin >> x;
x +=100;
cout << x;

26 Chapter 2

In both examples, the code reads characters, each as a separate char
from the keyboard, and converts the char sequence into the corresponding
int format. Then it adds 100 to the int. Finally, the code converts the result-
ing int into a char sequence and displays it on the screen. The C or C++ I/O
library functions in the previous code do the necessary conversions between
char sequences and the int storage format.

Figure 2-1 shows the relationship between a C application program, the
I/O libraries, and the operating system.

Application

printf scanf

write read

Operating system

C standard library

Screen/keyboard

Figure 2-1: Relationship of I/O libraries to application and operating system

When reading from the keyboard, the scanf library function first calls
the read system call function, a function in the operating system, to read
characters from the keyboard. The input on the keyboard is in the form of
a string of characters, each in the char data type. The scanf library function
performs the conversion of this string to the int data type for the applica-
tion program. The printf library function converts from the int data type
to the corresponding string of characters in the char data type and calls the
write system call function to write each character to the screen.

As you can see in Figure 2-1, an application program can call the read
and write functions directly to transfer characters. We’ll be exploring
this in Chapter 16, where we’ll be writing our own conversion functions.
Although the C/C++ library functions do a much better job of this, the
exercise of doing it yourself will give you a better understanding of how
data is stored in memory and manipulated by software.

N O T E 	 If you are not familiar with the GNU make program, I urge you to learn how to use it
to build your programs. It may seem like overkill at this point, but it’s much easier to
learn with simple programs. The manual is available in several formats at https://
www.gnu.org/software/make/manual/, and I have some comments about using
it on my website, https://rgplantz.github.io/.

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
https://rgplantz.github.io/

Data Storage Formats 27

Writing and Executing Your First C Program
Most programming books start with a simple program that just prints
“Hello, world” to a computer screen, but we’ll start with a program that
reads a hexadecimal value, both as an unsigned integer and as a text string
(see Listing 2-1).

1 /* intAndString.c
 * Read and display an integer and a text string.
 */

2 #include <stdio.h>

3 int main(void)
{
4 unsigned int anInt;
 char aString[10];

5 printf("Enter a number in hexadecimal: ");
6 scanf("%x", &anInt);
 printf("Enter it again: ");
7 scanf("%s", aString);
8 printf("The integer is %u and the string is %s\n", anInt, aString);

9 return 0;
}

Listing 2-1: Program showing the difference between an integer and a text string

We start our code with some documentation that gives the name of the
file 1 and a brief description of what the program does. When writing your
own source files, you should also include your name and the date it was
written as part of the documentation (I’ve omitted them in the example
programs in this book to save paper). Everything between the /* and */ is a
comment. It is there for the human reader and has no effect on the program
itself.

The first operation that actually affects the program is the inclusion of
another file 2, the stdio.h header file. As you will learn, the C compiler needs
to know the type of each data item that is passed to or from a function. A
header file is used to provide a prototype statement for each function, which
specifies these data types. The stdio.h header file defines the interface to
many of the functions in the C standard library, which allows the compiler
to know what to do when calls to any of these functions are encountered
in our source code. The stdio.h header file is already installed on your com-
puter in a location that the compiler knows.

Next you see the definition of a C main function 3. All C programs are
made up of functions, which have this general format:

return_data_type function_name(parameter_list)
{
 function_body
}

28 Chapter 2

When a C program is executed, the operating system first sets up a C
runtime environment, which sets up the resources on your computer to run the
program. The C runtime environment then calls the main function, meaning
that the program you write must include a function whose function_name is
main. The main function can call other functions, which in turn can call other
functions. But program control normally ends up back in the main function,
which then returns to the C runtime environment.

When a function is called in C, the calling function can include a list of
arguments in the call as inputs to the called function. These inputs serve as
parameters in the computation performed by the called function. For exam-
ple, in Listing 2-1, when the program first starts, the main function calls the
printf function with one argument, a text string 5. The printf function
uses the text string to determine what to display on the screen. We’ll look
closely at how arguments get passed to functions, and how they’re used as
parameters in the function, in Chapter 14. The main function in Listing 2-1
does not need any data from the C runtime environment, which we show in
its definition by using void for the parameter_list.

Upon completing execution, a function normally returns to the calling
function. The called function can pass a data item to the calling function
when returning. A main function should return a single integer to the C
runtime environment indicating whether the program detected any errors
in its execution. Thus, the return_data_type for main is int. The main function
in Listing 2-1 returns the integer 0 to the C runtime environment 9, which
passes this value to the operating system. The value 0 tells the operating
system that everything went smoothly.

In Listing 2-1, we define two variables in the main function at the begin-
ning of the function_body 4, an unsigned integer named anInt and a text
string named aString. Most modern programming languages allow us to
introduce new variables anywhere in the code, but C requires that they be
listed at the beginning of the function. (This rule has some exceptions,
but they are beyond the scope of this book.) Think of it as listing the ingre-
dients for a cooking recipe before giving the instructions on how to use
them. We define a variable by introducing its name and specifying its data
type. The [10] notation tells the compiler to allocate an array of 10 chars for
the aString variable, which will allow us to store a C-style text string up to
9 characters long. (The 10th char would be the terminating NUL character.)
We’ll look at arrays in detail in Chapter 17.

The program uses the printf function from the C standard library to
display text on the screen. The first argument in the call to printf is a format
string, which is a text string made up of ordinary characters (except %) to
display on the screen.

The simplest format string for printf is just the text that you want
printed without any variables to print 5. If you want to print the values of
variables, the format string acts as a template of the text that you want to be
printed. The place in the text string where you want the value of a variable
to be printed is marked with a conversion specifier. Each conversion specifier
begins with the % character 8. The names of the variables are listed after

Data Storage Formats 29

the format string in the same order that their respective conversion speci-
fier appears in the template.

The % character that begins a conversion specifier is immediately
followed by one or more conversion code characters to tell printf how to
display the value of the variable. Table 2-9 shows some common conver-
sion specifiers.

Table 2-9: Common Conversion Specifiers for
printf and scanf Format String

Conversion specifier Representation

%u Unsigned decimal integer

%d or %i Signed decimal integer

%f Float

%x Hexadecimal

%s Text string

The conversion specifiers can include other characters that specify
properties like the field width of the display, whether the value is left or
right justified within the field, and more. We won’t go into detail here. You
can read man page 3 for printf to learn more (do this by typing man 3 printf
into your shell).

The first argument in the call to the C standard library function, scanf,
is also a format string. We use the same conversion specifiers in the format
string to tell the scanf function how to interpret the characters typed on
the keyboard 6. We need to tell scanf where to store the input integer by
using the address of operator on the variable name, &anInt. When passing
the name of an array to a function, C sends the address of the array, so we
don’t use the & operator when calling scanf to read a text string from the
keyboard 7.

Any other character included in the format string for scanf besides
these conversion specifiers must be matched exactly by the keyboard input.
For example,

scanf("1 %i and 2 %i", &oneInt, &twoInt);

requires in input like

1 123 and 2 456

which would read the integers 123 and 456 from the keyboard. You can
read man page 3 for scanf to learn more (do this by typing man 3 scanf into
your shell).

Finally, the main function returns 0 to the C runtime environment 9,
which passes this value to the operating system. The value 0 tells the operat-
ing system that everything went smoothly.

30 Chapter 2

Compiling and running the program in Listing 2-1 on my computer
gave the following output:

$ gcc -Wall -masm=intel -o intAndString intAndString.c
$./intAndString
Enter a hexadecimal value: 123abc
Enter it again: 123abc
The integer is 1194684 and the string is 123abc
$

The program in Listing 2-1 demonstrates an important concept—hexa-
decimal is used as a human convenience for stating bit patterns. A number
is not inherently binary, decimal, or hexadecimal. It’s simply a value. And a
specific value can be expressed equivalently in each of these three number
bases. For that matter, it can be expressed equivalently in any number base
(2, 16, 285). But since a computer consists of binary switches, it makes sense
to think of numerical values stored in a computer in terms of the binary
number base.

YOUR T UR N

1.	 Write a hexadecimal-to-decimal converter program in C. Your program
will allow a user to enter a number in hexadecimal and print the decimal
equivalent. The output should look like this: 0x7b = 123.

2.	 Write a decimal-to-hexadecimal converter program in C. Your program
will allow a user to enter a number in decimal and print the hexadecimal
equivalent. The output should look like this: 123 = 0x7b.

3.	 Change %u to %i in the last printf statement in the program in Listing 2-1.
What does the program print if you enter ffffffff?

Examining Memory with a Debugger
Now that we’ve started writing programs, you’ll need to learn how to use
the GNU debugger, gdb. A debugger is a program that allows you to run your
program while you observe and control its behavior. When you use a debug-
ger, it’s a little like you’re a puppeteer, and your program is a carefully con-
trolled puppet. Your main instrument of control is the breakpoint; when you
set a breakpoint and your program reaches it while running, the program
will pause and return control to the debugger program. When control is
with the debugger, you can look at the values stored in your program’s vari-
ables, which can help you figure out where any bugs are.

If all this seems premature—our programs so far are simple and don’t
seem to require debugging—I promise that it’s much better to learn how to
use a debugger on a simple example than on a complicated program that
does not work.

Data Storage Formats 31

gdb is also a valuable tool for learning the material in this book, even
when you write bug-free programs. For example, in the following gdb session
dialog, I’ll show you how to determine where a variable is stored in memory
and how to see what is stored there, both in decimal and in hexadecimal.
You will see how to use gdb on a live program to illustrate the concepts dis-
cussed on the previous pages.

The gdb commands listed here should be enough to get you started.
You’ll see more in Chapter 10.

b source_filename:line_number   Set a breakpoint at the specified line_
number in the source file, source_filename. The code will stop running at
the breakpoint, when line_number is encountered, and return control to
gdb, allowing you to test various elements of the code.

c   Continue program execution from the current location.

h command     Help on how to use command.

i r   Show the contents of the CPU registers (info registers). (You’ll learn
about CPU registers in Chapter 9.)

l line_number   List 10 lines of the source code, centered at the specified
line-number.

print expression   Evaluate expression and print the value.

printf "format", var1, var2, ...    Display the values of var1, var2, ... in
a given format. The "format" string follows the same rules as printf in the
C standard library.

r   Begin execution of a program that has been loaded under control
of gdb.

x/nfs memory_address   Display (examine) n values in memory in format f
of size s starting at memory_address.

Using Your Debugger
Let’s walk through the program in Listing 2-1 using gdb to explore some of
the concepts covered thus far. I recommend that you get on your computer
and follow along as you read this: it’s much easier to understand gdb when
you’re using it. Note that the addresses you see on your computer will prob-
ably be different than those in this example.

Start by compiling the program using the gcc command:

$ gcc -g -Wall -masm=intel -o intAndString intAndString.c

The -g option tells the compiler to include debugger information in the
executable program. The -Wall option tells the compiler to issue warnings
about things in your code that are correct C code but still might not be what
you intended to write. For example, it will warn you about declaring a vari-
able in your function that is never used, which could mean that you have
forgotten something.

Later in the book, when we write assembly language, we’ll use the syntax
specified in the Intel and AMD documentation, and we’ll tell the compiler

32 Chapter 2

to use the same syntax with the masm=intel option. You don’t need this option
yet, but I recommend getting used to using it since you’ll need it later.

The o option specifies the name of the output file, which is the execut-
able program.

Having compiled the program, we can run it under the control of gdb
using this command:

$ gdb ./intAndString
--snip--
Reading symbols from ./intAndString…
(gdb) l
1	 /* intAndString.c
2	 * Using printf to display an integer and a text string.
3	 */
4	
5	 #include <stdio.h>
6	
7	 int main(void)
8	 {
9	 unsigned int anInt;
10	 char aString[10];
(gdb)
11	
12	 printf("Enter a number in hexadecimal: ");
13	 scanf("%x", &anInt);
14	 printf("Enter it again: ");
15	 scanf("%s", aString);
16	
17	 printf("The integer is %u and the string is %s\n", anInt, aString);
18	
19	 return 0;
20	 }
(gdb)

The gdb startup message, which I’ve removed from the previous output
to save space, contains information about your debugger and refers you to
its usage documentation.

The l command lists 10 lines of source code and then returns control
to the gdb program, as shown by the (gdb) prompt. Press ENTER to repeat
the previous command, and l displays the next (up to) 10 lines.

A breakpoint is used to stop the program and return control to the debug-
ger. I like to set breakpoints where a function is about to call another function
so I can examine the values in the argument variables before they are passed
on to the called function. This main function calls printf on line 17, so I set a
breakpoint there. Since I’m already looking at the source code in the function
where I want to set a breakpoint, I don’t need to specify the filename:

(gdb)b 17
Breakpoint 1 at 0x11f6: file intAndString.c, line 17.

If gdb ever gets to this statement while executing the program, it will
pause before the statement is executed and return control to the debugger.

Data Storage Formats 33

Having set my breakpoint, I run the program:

(gdb) r
Starting program: /home/bob/progs/chapter_02/intAndString/intAndString
Enter a hexadecimal value: 123abc
Enter it again: 123abc

Breakpoint 1, main () at intAndString.c:17
1 17	 printf("The integer is %u and the string is %s\n", anInt, aString);

The r command starts executing the program from the beginning.
When the program reaches our breakpoint, control returns to gdb, which
displays the next program statement that is ready to be executed 1. Before
continuing execution, I’ll display the content of the two variables that are
being passed to the printf function:

(gdb) print anInt
$1 = 1194684
(gdb) print aString
$2 = "123abc\000\177\000>

We can use the print command to display the value currently stored in
a variable. gdb knows the data type of each variable from the source code.
It displays int variables in decimal. When displaying char variables, gdb will
do its best to display the character glyph corresponding to the code point
value. When there is no corresponding character glyph, gdb shows the code
point as a \ followed by three octal digits. (Refer to Table 2-2.) For example,
there is no character glyph for NUL, so gdb shows \000 at the end of the text
string we entered.

The printf command can format the displayed values. The formatting
string is the same as for the printf function in the C standard library:

(gdb) printf "anInt = %u = %#x\n", anInt, anInt
anInt = 1194684 = 0x123abc
(gdb) printf "aString = 0x%s\n", aString
aString = 0x123abc

gdb provides another command for examining the content of memory
directly—that is, for examining the actual bit patterns—x. Its help message
is brief, but it tells you everything you need to know:

 (gdb) h x
Examine memory: x/FMT ADDRESS.
ADDRESS is an expression for the memory address to examine.
FMT is a repeat count followed by a format letter and a size letter.
Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),
 t(binary), f(float), a(address), i(instruction), c(char) and s(string).
Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).
The specified number of objects of the specified size are printed
according to the format.

34 Chapter 2

Defaults for format and size letters are those previously used.
Default count is 1. Default address is following last thing printed
with this command or "print".

The x command needs the address of the area of memory to show. We
can use the print command to find the address of a variable:

(gdb) print &anInt
$3 = (unsigned int *) 0x7fffffffde88

We’ll use the x command to display the content of anInt three different
ways: one decimal word (1dw), one hexadecimal word (1xw), and four hexa-
decimal bytes (4xb).

(gdb) x/1dw 0x7fffffffde88
0x7fffffffde88: 1194684
(gdb) x/1xw 0x7fffffffde88
0x7fffffffde88: 0x00123abc
(gdb) x/4xb 0x7fffffffde88
0x7fffffffde88: 10xbc 0x3a 0x12 0x00

N O T E 	 The size of a word depends upon the computer environment you are using. In our
environment, it’s four bytes.

The display of the four bytes may look out of order to you. The first byte 1
is located at the address shown on the left of the row. The next byte in the
row is at the subsequent address, 0x7fffffffde89. So, this row displays each of
the bytes stored at the four memory addresses 0x7fffffffde88, 0x7fffffffde89,
0x7fffffffde8a, and 0x7fffffffde8b, reading from left to right, that make up the
variable, anInt. When displaying these same four bytes separately, the least sig-
nificant byte appears first in memory. This is called little-endian storage order;
I’ll explain further after this tour of gdb.

Similarly, we’ll display the content of the aString variable by first getting
its address:

(gdb) print &aString
$4 = (char (*)[50]) 0x7fffffffde8e

Next, we’ll look at the content of aString in two ways: 10 characters (10c)
and 10 hexadecimal bytes (10xb):

(gdb) x/10c 0x7fffffffde8e
0x7fffffffde8e: 49 '1' 50 '2' 51 '3' 97 'a' 98 'b' 99 'c' 0 '\000'
127 '\177'
0x7fffffffde96: 0 '\000'	 0 '\000'
(gdb) x/10xb 0x7fffffffde8e
0x7fffffffde8e: 0x31 0x32 0x33 0x61 0x62 0x63 0x00
0x7f
0x7fffffffde96: 0x00 0x00

Data Storage Formats 35

The character display shows the code point in decimal and the charac-
ter glyph for each character. The hexadecimal byte display shows only the
code point in hexadecimal for each byte. Both displays show the NUL charac-
ter that marks the end of the six-character string that we entered. Since we
asked for a 10-byte display, the remaining 3 bytes have random values not
related to our text string, often called garbage values.

Finally, I continue execution of the program and quit gdb:

(gdb)c
Continuing.
The integer is 1194684 and the string is 123abc
[Inferior 1 (process 3165) exited normally]
(gdb)q
$

Understanding Byte Storage Order in Memory
The difference between the full four-byte display and the single-byte display
of the integer value at 0x7fffffffde88 in memory illustrates a concept known
as endianness, or byte storage order. We usually read numbers from left to
right. The digits to the left have more significance (count for more) than
the digits to the right.

Little-Endian

Data is stored in memory with the least significant byte in a multiple-byte
value in the lowest-numbered address. That is, the “littlest” byte (counts the
least) comes first in memory.

When we examine memory one byte at a time, each byte is displayed in
numerically ascending addresses:

0x7fffffffde88: 0xbc
0x7fffffffde89: 0x3a
0x7fffffffde8a: 0x12
0x7fffffffde8b: 0x00

At first glance, the value appears to be stored backward, because the
least significant (“little end”) byte of the value is stored first in memory.
When we command gdb to display the entire four-byte value, it knows that
ours is a little-endian environment, and it rearranges the display of the
bytes in proper order:

7fffffffde88: 000123abc

Big-Endian

Data is stored in memory with the most significant byte in a multiple-byte
value in the lowest-numbered address. That is, the “biggest” byte (counts
the most) comes first in memory.

36 Chapter 2

In big-endian storage, the most significant (“biggest”) byte is stored
in the first (lowest-numbered) memory address. If we ran the previous
program on a big-endian computer, such as one using the PowerPC archi-
tecture, we would see the following (assuming the variable is located at the
same address):

(gdb) x/1xw 0x7fffffffde88
0x7fffffffde88: 0x00123abc
(gdb) x/4xb 0x7fffffffde88 [BIG-ENDIAN COMPUTER, NOT OURS!]
0x7fffffffde88: 0x00 0x12 0x3a 0xbc

That is, the four bytes in a big-endian computer would be stored as
follows:

0x7fffffffde88: 0x00
0x7fffffffde89: 0x12
0x7fffffffde8a: 0x3a
0x7fffffffde8b: 0xbc

Again, gdb would know that this is a big-endian computer so would dis-
play the full four-byte value in proper order.

In the vast majority of programming situations, endianness is not an
issue. However, you need to know about it because it can be confusing when
examining memory in the debugger. Endianness is also an issue when differ-
ent computers are communicating with each other. For example, Transport
Control Protocol/Internet Protocol (TCP/IP) is defined to be big-endian, some-
times called network byte order. The x86-64 architecture is little-endian.
The operating system reorders the bytes for internet communication. But
if you’re writing communications software for an operating system itself or
for an embedded system that may not have an operating system, you need to
know about byte order.

YOUR T UR N

Enter the program in Listing 2-1. Follow through the program with gdb. Using the
numbers you get, explain where the variables anInt and aString are stored in
memory and what is stored in each location.

What You’ve Learned

Bits   A computer is a collection of on/off switches that we can repre-
sent with bits.

Hexadecimal   A number system based on 16. Each hexadecimal digit,
0 to f, represents four bits.

Data Storage Formats 37

Byte   A group of eight bits. The bit pattern can be expressed as two
hexadecimal digits.

Converting between decimal and binary   The two number systems are
mathematically equivalent.

Memory addressing   Bytes in memory are numbered (addressed)
sequentially. The byte’s address is usually expressed in hexadecimal.

Endianness   An integer that is more than one byte can be stored with
the highest-order byte in the lowest byte address (big-endian) or with
the lowest-order byte in the lowest byte address (little-endian). The x86-
64 architecture is little-endian.

UTF-8 encoding   A code for storing characters in memory.

String   This C-style string is an array of characters terminated by the
NUL character.

printf   This C library function is used to write formatted data on the
monitor screen.

scanf   This C library function is used to read formatted data from the
keyboard.

Debugging   We used the gdb debugger as a learning tool.

In the next chapter, you’ll learn about addition and subtraction in the
binary number system, for both unsigned and signed integers. Doing so will
illuminate some of the potential errors inherent in using a fixed number of
bits to represent numerical values.

3
C O M P U T E R A R I T H M E T I C

The reality of computing is that we have a
finite number of bits. In the previous chap-

ter, you learned that each data item must fit
within a fixed number of bits, depending on its

data type. This chapter will show that this limit com-
plicates even our most basic mathematical operations.
For both signed and unsigned numbers, a limited
number of bits is a constraint we don’t normally think
about when doing math on paper or in our heads.

Fortunately, the carry flag (CF) and overflow flag (OF) in the status flags
portion of the CPU’s rflags register allow us to detect when adding and sub-
tracting binary numbers yields results that exceed the allocated number
of bits for the data type. We’ll take a closer look at the carry flag and the
overflow flag in subsequent chapters, but for now, let’s take a look at how
addition and subtraction affect them.

40 Chapter 3

Adding and Subtracting Unsigned Integers
When computers do arithmetic, they do it in the binary number system.
The operations may seem difficult at first, but if you remember the details
of performing decimal arithmetic by hand, binary arithmetic becomes
much easier. Since most people do addition on a calculator these days,
let’s review all the steps required to do it by hand. After the review, you’ll
develop the algorithms to do addition and subtraction in both binary and
hexadecimal.

N O T E 	 Most computer architectures provide arithmetic instructions in other number systems,
but these are somewhat specialized. We will not consider them in this book.

Adding in the Decimal Number System
Let’s start by restricting ourselves to two-digit decimal numbers. Consider
two two-digit numbers, x = 67 and y = 79. Adding these by hand on paper
would look like this:

1 ← Carry

6 7 ← x

+ 7 9 ← y

6 ← Sum

We start by working from the right, adding the two decimal digits in
the ones place. 7 + 9 = 16, which exceeds 10 by 6. We show this by placing a
6 in the ones place in the sum and carrying a 1 to the tens place.

1 1 ← Carries

6 7 ← x

+ 7 9 ← y

4 6 ← Sum

Next, we add the three decimal digits in the tens place: 1 (the carry
from the ones place) + 6 + 7. The sum of these three digits exceeds 10 by 4,
which we show by placing a 4 in the sum’s tens place and then recording the
fact that there is an ultimate carry of 1. Because we’re using only two digits,
there is no hundreds place.

The following algorithm shows the procedure of adding two decimal
integers, x and y. In this algorithm, xi and yi are the i th digits of x and y,
respectively, numbering from right to left:

Let carry = 0
Repeat for each i = 0,...,(n - 1) // starting in ones place
 sumi = (xi + yi) % 10 // remainder
 carry = (xi + yi) / 10 // integer division

Computer Arithmetic 41

This algorithm works because we use positional notation when writ-
ing numbers—a digit one place to the left counts 10 times more. The carry
from the current position one place to the left is always 0 or 1.

We use 10 in the / and % operations because there are exactly 10 digits
in the decimal number system: 0, 1, 2, …, 9. Since we are working in an
N -digit system, we restrict our result to N digits. The ultimate carry is either
0 or 1 and is part of the result, along with the N -digit sum.

Subtracting in the Decimal Number System
Let’s turn to the subtraction operation. As you remember from subtrac-
tion in the decimal number system, you sometimes have to borrow from
the next higher-order digit in the minuend (the number being subtracted
from). We’ll do the subtraction with the same numbers we used earlier (67
and 79). We’ll go through this in steps so you can see the process. “Scratch”
work will be in the borrows row above the two numbers.

6 7 ← x

− 7 9 ← y

← Difference

First, we need to borrow 1 from the 6 in the tens place and add it to the
7 in the ones place; then we can subtract 9 from 17 and get 8:

5 17 ← Borrowing

6 7 ← x

− 7 9 ← y

8 ← Difference

Next, we need to borrow from beyond the two digits, which we mark by
placing a 1 in the “carry” position, making 15 in the tens place, from which
we subtract 7:

1 15 ← Borrowing

5

6 7 ← x

− 7 9 ← y

8 8 ← Difference

This is shown in in the following algorithm, where x is the minuend
and y is the number being subtracted from it (the subtrahend). If borrow is 1
at the end of this algorithm, it shows that you had to borrow from beyond
the N digits of the two values, so the N -digit result is incorrect. Although it’s
called the carry flag, its purpose is to show when the operation gives a result

42 Chapter 3

that will not fit within the number of bits for the data type. Thus, the carry
flag shows the value of borrow (from beyond the size of the data type) at the
completion of the subtraction operation.

Let borrow = 0
Repeat for i = 0,···,(N − 1)
 1 If yi ≤ xi
 Let differencei = xi − yi
 Else
 2 Let j = i + 1
 3 While (xj = 0) and (j < N)
 Add 1 to j
 4 If j = N
 5 Let borrow = 1
 Subtract 1 from j
 Add 10 to xj
 6 While j > i
 Subtract 1 from xj
 Subtract 1 from j
 Add 10 to xj
 7 Let differencei = xi – yi

This algorithm isn’t nearly as complicated as it first looks (but it took
me a long time to figure it out!). If the digit we’re subtracting from is the
same or larger than the one we’re subtracting 1, we’re done with that place
in the number. Otherwise, we need to borrow from the next place to the
left 2. If the next digit we’re trying to borrow from is 0, then we need to
continue moving to the left until we find a nonzero digit or until we reach
the leftmost end of the number 3. If we do reach the number of digits allo-
cated for the number 4, we indicate that by setting borrow to 1 5.

After we have borrowed from positions to the left, we work our way back
to the position we’re dealing with 6 and perform the subtraction 7. When
you do subtraction on paper, you do all these things automatically, in your
head, but that probably won’t be as intuitive for you in the binary and hexa-
decimal systems. (I cheat and write my intermediate borrows in decimal.)

If you’re having trouble, don’t worry. You don’t need a thorough under-
standing of this algorithm to understand the material in this book. But I
think that working through it can help you learn how to develop algorithms
for other computing problems. Translating everyday procedures into the
logical statements used by programming languages is often a difficult task.

YOUR T UR N

1.	 How many bits are required to store a single decimal digit? Invent a code
for storing eight decimal digits in 32 bits. Using this code, does binary
addition produce the correct results? You’ll see such a code later in the
book and some reasons for its usefulness.

Computer Arithmetic 43

2.	 Develop an algorithm for adding fixed-width integers in the binary number
system.

3.	 Develop an algorithm for adding fixed-width integers in the hexadecimal
number system.

4.	 Develop an algorithm for subtracting fixed-width integers in the binary
number system.

5.	 Develop an algorithm for subtracting fixed-width integers in the hexadeci-
mal number system.

Adding and Subtracting Unsigned Integers in Binary
In this section, you’ll learn how to perform addition and subtraction opera-
tions on unsigned binary integers, but before going any further, look carefully
at Table 3-1, especially the binary bit patterns. You probably won’t memorize
this table at first, but after you work with the binary and hexadecimal num-
ber systems for a while, it will become natural to think of, say, 10, a, or 1010 as
being the same numbers, just in different number systems.

Table 3-1: Corresponding Bit Patterns and Unsigned Decimal Values
for the Hexadecimal Digits

One hexadecimal digit Four binary digits (bits) Unsigned decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

a 1010 10

b 1011 11

c 1100 12

d 1101 13

e 1110 14

f 1111 15

44 Chapter 3

Now that you’ve familiarized yourself with Table 3-1, let’s discuss
unsigned integers. As we do so, don’t forget that as far as the value of the
number goes, it doesn’t matter whether we think of the integers as being in
decimal, hexadecimal, or binary—they are all mathematically equivalent.
However, we might wonder whether a computer performing arithmetic in
binary gets the same results we do when doing the same calculation using
decimal arithmetic. Let’s take a closer look at some specific operations.

Adding in the Binary Number System

In the following examples, we use four-bit values. First, consider adding the
two unsigned integers, 2 and 4:

0 000 ← Carries

00102 = 216 = 210

+ 01002 = 416 = 410

01102 = 616 = 610

The decimal 2 is represented in binary as 0010, and decimal 4 is repre-
sented by 0100. The carry flag, or CF, is equal to 0, because the result of the
addition operation is also four bits long. We add the digits (shown both in
binary and hex here, though the carries are shown only in binary) in the
same relative positions, as we do in decimal.

Next, consider two larger integers, keeping our four-bit storage space.
We’ll add the two unsigned integers, 4 and 14:

1 100 ← Carries

01002 = 416 = 410

+ 11102 = e16 = 1410

00102 = 216 ≠ 1810

In this case, the carry flag equals 1, because the result of the operation
exceeded the four bits that we allocated for storing the integers, and our
result is incorrect. If we included the carry flag in the result, we would get
a five-bit value, and the result would be 100102 = 1810, which is correct. We’d
have to account for the carry flag in software.

Subtracting in the Binary Number System

Now, let’s subtract 14 from 4, or 0110 from 0100:

1 110 ← Borrows

01002 = 410

− 11102 = 1410

01102 = 610 ≠ −1010

Computer Arithmetic 45

The CPU indicates that we had to borrow from beyond the four bits by
setting the carry flag to 1, which means that the four-bit result in this sub-
traction is incorrect.

These four-bit arithmetic examples generalize to any size arithmetic
performed by the computer. After adding two numbers, the carry flag will
always be either set to 0 if there is no ultimate (or final) carry or set to 1 if
there is ultimate carry. Subtraction will set the carry flag to 0 if no borrow
from the “outside” is required, or 1 if a borrow is required. The CPU always
sets the CF flag in the rflags register to the appropriate value, 0 or 1, each
time there is an addition or subtraction. When there is no carry, the CPU
actively sets CF to 0, regardless of its previously held value.

The results are correct as long as they fit within the allocated number
of bits for the data type being used for the computation. The CPU indicates
the correctness by setting the carry flag to 0. When the results are incorrect,
either because addition would require another bit or subtraction would
need to borrow from a higher-order bit, the error is recorded by setting the
carry flag to 1.

Adding and Subtracting Signed Integers
When representing nonzero signed decimal integers, there are two possibil-
ities: positive or negative. With only two options, we just need to use one bit
for the sign. We could use a sign-magnitude code by simply using the highest-
order bit (let’s say that 0 means + and 1 means −) for signed numbers, but
we’ll run into some problems. As an example, consider adding +2 and −2:

00102 = +210

+ 10102 = −210

11002 ≠ 010

The result, 11002, is equal to −410 in our code, which is arithmetically
incorrect. The simple addition we used for unsigned numbers will not work
correctly for signed numbers when using a sign-magnitude code.

Some computer architectures do use one bit for the sign when using
signed decimal integers. They have a special signed add instruction that
handles cases like this. (A fun aside: such computers have both a +0 and a
−0!) But most computers employ a different encoding for signed numbers
that allows the use of a simple add instruction.

Two’s Complement
In mathematics, the complement of a quantity is the amount that must be
added to make it “whole.” When applying this concept to numbers, the
definition of whole depends on the radix (or base) you’re working in and the
number of digits that you allow to represent the numbers. If x is an

46 Chapter 3

n -digit number in radix r, its radix complement, ¬x, is defined such that
x + ¬x = radixn, where radixn is 1 followed by n 0s. For example, if we’re
working with two-digit decimal numbers, then the radix complement of
37 is 63, because 37 + 63 = 102 = 100. Another way of saying this is that
adding a number to its radix complement results in 0 with a carry beyond
the n digits.

Another useful concept is the diminished radix complement, which is defined
such that x + diminished_radix_complement = radixn – 1. For example, the dimin-
ished radix complement of 37 is 62, because 37 + 62 = 102 – 1 = 99. If you add
a number to its diminished radix complement, the result is n of the largest
digits in the radix—two 9s in this example of two digits in radix 10.

To see how the radix complement can be used to represent negative
numbers, say you have an audiotape cassette player. Many cassette players
have a four-digit counter that represents tape position. You can insert a
tape cassette and push a reset button to set the counter to 0. As you move
the tape forward and backward, the counter registers the movement. These
counters provide a “coded” representation of the tape position in arbitrary
units. Now, assume we can insert a cassette, somehow move it to its center,
and push the reset button. Moving the tape forward—in the positive direc-
tion—will cause the counter to increment. Moving the tape backward—in
the negative direction—will cause the counter to decrement. In particular,
if we start at 0 and move to +1, the “code” on the tape counter will show
0001. On the other hand, if we start at 0 and move to −1, the “code” on the
tape counter will show 9999.

We can use our tape system to perform the arithmetic in the previous
example, (+2) + (−2):

1.	 Move the tape forward to (+2); the counter shows 0002.

2.	 Add (−2) by moving the tape backward two steps on the counter; the
counter shows 0000, which is 0 according to our code.

Next, we’ll perform the same arithmetic starting with (−2) and then
adding (+2):

3.	 Move the tape backward to (−2); the counter shows 9998.

4.	 Add (+2) by moving the tape forward two steps on the counter; the coun-
ter shows 0000, but there is a carry (9998 + 2 = 0000 with carry = 1).

If we ignore the carry, the answer is correct. 9998 is the 10’s complement
(the radix is 10) of 0002. When adding two signed integers using radix com-
plement notation, the carry is irrelevant. Adding two signed numbers can
give a result that will not fit within the number of bits allocated for storing
the result, just as with unsigned numbers. But our tape example just showed
that the carry flag will probably not show us that the result will not fit. We
will discuss this issue in the next section.

Computers work in the binary number system, where the radix is 2. So
let’s look at the two’s complement notation for representing signed inte-
gers. It uses the same general pattern as the tape counter for representing

Computer Arithmetic 47

signed decimal integers in bit patterns. Table 3-2 shows the correspondence
between hexadecimal, binary, and signed decimal (in two’s complement
notation) for four-bit values. In binary, moving the “tape” one place back
(negative) from 0 would go from 0000 to 1111.

Table 3-2: Four-Bit Two’s Complement Notation

One hexadecimal digit Four binary digits (bits) Signed decimal

8 1000 −8

9 1001 −7

a 1010 −6

b 1011 −5

c 1100 −4

d 1101 −3

e 1110 −2

f 1111 −1

0 0000 0

1 0001 +1

2 0010 +2

3 0011 +3

4 0100 +4

5 0101 +5

6 0110 +6

7 0111 +7

Here are some important observations about this table:

•	 The high-order bit of each positive number is 0, and the high-order bit
of each negative number is 1.

•	 Although changing the sign of (negating) a number is more complicated
than simply changing the high-order bit, it is common to call the high-
order bit the sign bit.

•	 The notation allows for one more negative number than positive
numbers.

•	 The range of integers, x, that can be represented in this notation (with
four bits) is

–810 ≤ x ≤ +710

or

–2(4–1) ≤ x ≤ + (2(4–1) – 1)

48 Chapter 3

The last observation can be generalized for n bits to the following:

–2(n–1) ≤ x ≤ +(2(n–1) – 1)

When using two’s complement notation, the negative of any n-bit inte-
ger, x, is defined as

x + (–x) = 2n

Notice that 2n written in binary is 1 followed by n zeros. In other words,
in the n-bit two’s complement notation, adding a number to its negative
produces n zeros and a carry equal to 1.

Computing Two’s Complement
Now we’ll derive a way to compute the negative of a number by using two’s
complement notation. Solving the defining equation for −x, we get

–x = 2n – x

This may look odd to a mathematician, but keep in mind that x in this
equation is restricted to n bits, while 2n has n + 1 bits (1 followed by n 0s).

For example, if we want to compute −123 in binary (using two’s comple-
ment notation) in eight bits, we perform the arithmetic:

–12310 	  = 1000000002 – 011110112
	   = 100001012

or in hexadecimal:

–12310 	  = 10016 – 7b16
	   = 8516

This subtraction operation is error prone, so let’s do a bit of algebra on
our equation for computing −x. Subtract 1 from both sides and rearrange a
little:

–x – 1 	  = 2n – x – 1
	   = (2n–1) – x

which gives this:

–x = ((2n–1) – x) + 1

If this looks more complicated than our first equation, don’t worry.
Let’s consider the quantity (2n − 1). Since 2n is written in binary as 1 fol-
lowed by n 0s, (2n − 1) is written as n 1s. For example, for n = 8:

28 – 1 = 111111112

Computer Arithmetic 49

Thus, we can say:

(2n – 1) – x = 11...12 – x

where 11...12 designates n 1s.
Though it may not be immediately obvious, you’ll see how easy this sub-

traction is when you consider the previous example of computing −123 in
eight-bit binary. Let x = 123, giving this:

11111111 ← (2n – 1)

− 01111011 ← x

= 10000100 ← One’s complement

or in hexadecimal giving this:

ff ← (2n – 1)

− 7b ← x

= 84 ← One’s complement

Since all the quantities here have n bits, this computation is easy—
simply flip all the bits, giving the diminished radix complement, also called
the one’s complement in the binary number system. A 1 becomes 0, and a 0
becomes a 1, in the result.

All that remains to compute the negative is to add 1 to the result.
Finally, we have the following:

–12310 	  = 8416+ 116
	   = 8516
	   = 100001012

H I N T 	 To double-check your arithmetic, pay attention to whether the value you are convert-
ing is even or odd. It will be the same in all number bases.

YOUR T UR N

1.	 Develop an algorithm to convert signed decimal integers to two’s comple-
ment binary.

2.	 Develop an algorithm to convert integers in two’s complement binary nota-
tion to signed decimal.

(continued)

50 Chapter 3

3.	 The following 16-bit hexadecimal values are stored in two’s complement
notation. What are the equivalent signed decimal numbers?

a. 1234

b. ffff

c. 8000

d. 7fff

4.	 Show how each of the following signed, decimal integers would be stored
in 16-bit two’s complement notation. Give your answer in hexadecimal.

a. +1024

b. –1024

c. –256

d. –32767

Adding and Subtracting Signed Integers in Binary
The number of bits used to represent a value is determined at the time a
program is written by the computer architecture and programming lan-
guage being used. This is why you can’t just add more digits (bits) if the
result is too large, as you would on paper. For unsigned integers, the solu-
tion to this problem is the carry flag, which indicates when the sum of two
unsigned integers exceeds the number of bits allocated for it. In this sec-
tion, you’ll see that adding two signed numbers can also produce a result
that exceeds the range of values that can be represented by the allocated
number of bits, but the carry flag is not used to indicate the error.

The CPU registers when the sum of signed numbers has gotten too big
for its bits by using the overflow flag, OF, in the flags register, rflags. The value
of the overflow flag is given by an operation that may not seem intuitive at
first: the exclusive or (XOR) of the penultimate and ultimate carries. As an
example, let’s say we’re adding the two eight-bit numbers, 1516 and 6f16:

Ultimate carry → 0 1 ← Penultimate carry

0001 0101 ← x

+ 0110 1111 ← y

1000 0100 ← Sum

In this example, the carry is 0, and the penultimate carry is 1. The OF
flag is equal to the XOR of the ultimate carry and penultimate carry, OF
= CF ⊻ (penultimate carry), where ⊻ is the XOR operator. In the previous
example, OF = 0 ⊻ 1 = 1.

Computer Arithmetic 51

Case by case, we’ll see why the OF flag indicates the validity of adding
two signed integers in the two’s complement representation. In the next
three sections, we’ll discuss the three possible cases: the two numbers can
have opposite signs, both be positive, or both be negative.

Two Numbers of the Opposite Sign

Let x be the negative number and y the positive number. Then we can
express x and y in binary as follows:

x = 1…, y = 0…

That is, the high-order (sign) bit of one number is 1, and the high-order
(sign) bit of the other is 0, regardless of what the other bits are.

x + y always remains within the range of the two’s complement
representation:

–2(n–1) ≤ x < 0
0 ≤ y ≤ +(2(n–1) – 1)

–2(n–1) ≤ x + y ≤ +(2(n–1) – 1)

Now, if we add x and y, there are two possible carry results:

•	 If the penultimate carry is 0:

Carry → 0 0 ← Penultimate carry

1… ← x

+ 0… ← y

1… ← Sum

This addition produces OF = 0 ⊻ 0 = 0.

•	 If the penultimate carry is 1:

Carry → 1 1 ← Penultimate carry

1… ← x

+ 0… ← y

0… ← Sum

This addition produces OF = 1 ⊻ 1 = 0.

Adding two integers of opposite signs always yields 0 for the overflow
flag, so the sum is always within the allocated range.

Two Positive Numbers

Since both are positive, we can express x and y in binary as follows:

x = 0…, y = 0…

52 Chapter 3

Here the high-order (sign) bit of both numbers is 0, regardless of what
the other bits are. Now, if we add x and y, there are two possible carry
results:

•	 If the penultimate carry is 0:

Carry → 0 0 ← Penultimate carry

0… ← x

+ 0… ← y

0… ← Sum

We’d have OF = 0 ⊻ 0 = 0. The high-order bit of the sum is 0, so it’s a
positive number, and the sum is in range.

•	 If the penultimate carry is 1:

Carry → 0 1 ← Penultimate carry

0… ← x

+ 0… ← y

1… ← Sum

Then we’d have OF = 0 ⊻ 1 = 1. The high-order bit of the sum is 1, so it’s
a negative number. Adding two positive numbers cannot give a negative
sum, so the sum must have exceeded the allocated range.

Two Negative Numbers

Since both are negative, we can express x and y in binary as follows:

x = 1…, y = 1…

Because the numbers are negative, the high-order (sign) bit of both
numbers is 1, regardless of what the other bits are. Now, if we add x and y,
there are two possible carry results:

•	 If the penultimate carry is 0:

Carry → 1 0 ← Penultimate carry

1… ← x

+ 1… ← y

0… ← Sum

This gives OF = 1 ⊻ 0 = 1. The high-order bit of this sum is 0, so it’s a
positive number. But adding two negative numbers cannot give a posi-
tive sum, so the sum has exceeded the allocated range.

Computer Arithmetic 53

•	 If the penultimate carry is 1:

Carry → 1 1 ← Penultimate carry

1… ← x

+ 1… ← y

1… ← Sum

This addition produces OF = 1 ⊻ 1 = 0. The high-order bit of the sum is
1, so it is a negative number, and the sum is within range.

We won’t go into subtraction here. The same rules apply there, and I
invite you to explore them on your own!

Let’s take what we just learned, and what we did in “Adding and
Subtracting Unsigned Integers in Binary” on page 43, and state some
rules for adding or subtracting two n -bit numbers:

•	 When the program treats the result as unsigned, the carry flag, CF, is 0
if and only if the result is within the n-bit range; OF is irrelevant.

•	 When the program treats the result as signed, the overflow flag, OF, is 0
if and only if the result is within the n-bit range; CF is irrelevant.

NOTE	 Using two’s complement notation means that the CPU does not need additional
instructions for signed addition and subtraction, thus simplifying the hardware.
The CPU just sees bit patterns. Both CF and OF are set according to the rules of
binary arithmetic by each arithmetic operation, regardless of how the program
treats the numbers. The distinction between signed and unsigned is completely
determined by the program. After each addition or subtraction operation, the pro-
gram should check the state of CF for unsigned integers or OF for signed integers
and at least indicate when the sum is in error. Many high-level languages do not
perform this check, which can lead to some obscure program bugs.

Circular Nature of Integer Codes
The notations used for both unsigned integers and signed integers are
circular in nature—that is, for a given number of bits, each code “wraps
around.” You can see this visually in the “decoder ring” for three-bit num-
bers shown in Figure 3-1.

To use this decoder ring to add or subtract two integers, follow these
steps:

1.	 Pick the ring corresponding to the type of integer you’re using (signed
or unsigned).

2.	 Move to the location on that ring corresponding to the first integer.

3.	 Move along the ring, moving the number of “spokes” equal to the
second integer. Move clockwise to add, and move counterclockwise to
subtract.

54 Chapter 3

Signed
integers Unsigned

integers

CF

OF

Bit
patterns

0

0 +1

+2

+3

-4

-3

-2

-1

1

2

3

4

5

6

7 000

001

010

011

100

101

110

111

Figure 3-1: “Decoder ring” for three-bit signed and unsigned integers

The result is correct if you do not cross the top for unsigned integers or
cross the bottom for signed integers.

YOUR T UR N

1.	 Use the decoder ring in Figure 3-1 to perform the following arithmetic.
Indicate whether the result is “right” or “wrong.”

a.	 Unsigned integers: 1 + 3
b.	 Unsigned integers: 3 + 4
c.	 Unsigned integers: 5 + 6
d.	 Signed integers: (+1) + (+3)
e.	 Signed integers: (−3) − (+3)
f.	 Signed integers: (+3) + (–4)

2.	 Add the following pairs of eight-bit numbers (shown in hexadecimal)
and indicate whether your result is “right” or “wrong.” First treat them as
unsigned values and then as signed values (stored in two’s complement).

a.	 55 + aa
b.	 55 + f0
c.	 80 + 7b
d.	 63 + 7b
e.	 0f + ff
f.	 80 + 80

Computer Arithmetic 55

3.	 Add the following pairs of 16-bit numbers (shown in hexadecimal) and
indicate whether your result is “right” or “wrong.” First treat them as
unsigned values and then as signed values (stored in two’s complement).

a.	 1234 + edcc
b.	 1234 + fedc
c.	 8000 + 8000
d.	 0400 + ffff
e.	 07d0 + 782f
f.	 8000 + ffff

What You’ve Learned

Binary arithmetic   Computers perform addition and subtraction in
the binary number system. Addition of two numbers may yield a result
that is one bit wider than each of the two numbers. Subtraction of one
number from another may require borrowing from one bit beyond the
width of the two numbers.

Representing signed/unsigned   Bit patterns can be treated as repre-
senting either signed or unsigned integers. Two’s complement notation
is commonly used to represent signed integers.

Carry flag   The CPU includes a one-bit carry flag that shows whether
the result of addition or subtraction exceeds the number of bits allowed
for an unsigned integer.

Overflow flag   The CPU includes a one-bit overflow flag that shows
whether the result of addition or subtraction exceeds the number of
bits allowed for a signed integer using the two’s complement notation.

In the next chapter, you’ll learn Boolean algebra. Although it may seem
a bit strange at first, once we get going, you’ll see that it’s actually easier than
elementary algebra. For one thing, everything evaluates to either 0 or 1!

4
B O O L E A N A L G E B R A

Boolean algebra was developed in the 19th
century by an English mathematician,

George Boole, who was working on ways to
use mathematical rigor to solve logic problems.

He formalized a mathematical system for manipulating
logical values in which the only possible values for the
variables are true and false, usually designated 1 and 0,
respectively.

The basic operations in Boolean algebra are conjunction (AND), disjunc-
tion (OR), and negation (NOT). This distinguishes it from elementary algebra,
which includes the infinite set of real numbers and uses the arithmetic opera-
tions addition, subtraction, multiplication, and division. (Exponentiation is a
simplified notation for repeated multiplication.)

58 Chapter 4

As mathematicians and logicians were expanding the field of Boolean
algebra in increasingly complex and abstract ways, engineers were learn-
ing to harness electrical flows using switches in circuits to perform logic
operations. The two fields developed in parallel until the mid-1930s, when
a graduate student named Claude Shannon proved that electrical switches
could be used to implement the full range of Boolean algebraic expressions.
(When used to describe switching circuits, Boolean algebra is sometimes
called switching algebra.) With Shannon’s discovery, a world of possibilities
was opened, and Boolean algebra became the mathematical foundation of
the computer.

This chapter starts with descriptions of the basic Boolean operators.
Then you’ll learn about their logical rules, which form the basis of Boolean
algebra. Next, I’ll explain ways to combine Boolean variables and opera-
tors into algebraic expressions to form Boolean logic functions. Finally, I’ll
discuss techniques for simplifying Boolean functions. In subsequent chap-
ters, you’ll learn how electronic on/off switches can be used to implement
logic functions that can be connected together in logic circuits to perform
the primary functions of a computer—arithmetic and logic operations and
memory storage.

Basic Boolean Operators
There are several symbols used to denote each Boolean operator, which I’ll
include in the description of each of the operators. In this book, I’ll present
the symbols used by logicians. A Boolean operator acts on a value, or pair
of values, called the operands.

I’ll use truth tables to show the results of each operation. A truth table
shows the results for all possible combinations of the operands. For example,
consider the addition of two bits, x and y. There are four possible combina-
tions of the values. Addition will give a sum and a possible carry. Table 4-1
shows how to express this in a truth table.

Table 4-1: Truth Table
Showing Addition of
Two Bits

x y Carry Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

I’ll also provide the electronic circuit representations for the gates, the
electronic devices that implement the Boolean operators. You’ll learn more

Boolean Algebra 59

about these devices in Chapters 5 through 8, where you’ll also see that the
real-world behavior of the physical devices varies slightly from the ideal
mathematical behavior shown in the truth tables.

As with elementary algebra, you can combine these basic operators to
define secondary operators. You’ll see an example of this when we define
the XOR operator near the end of this chapter.

AND

AND is a binary operator, meaning it acts on two operands. The result
of AND is 1 if and only if both operands are 1; otherwise, the result is 0.
In logic, the operation is known as conjunction. I’ll use ∧ to designate
the AND operation. It’s also common to use the ⋅ symbol or simply
AND. Figure 4-1 shows the circuit symbol for an AND gate and a truth
table defining the output, with operands x and y.

x y x ⋀ y

0 0 0

0 1 0

1 0 0

1 1 1

Figure 4-1: The AND gate acting on two
variables, x and y

As you can see from the truth table, the AND operator has properties
similar to multiplication in elementary algebra, which is why some use
the ⋅ symbol to represent it.

OR

OR is also a binary operator. The result of OR is 1 if at least one of
the operands is 1; otherwise, the result is 0. In logic, the operation is
known as disjunction. I’ll use ∨ to designate the OR operation. It’s also
common to use the + symbol or simply OR. Figure 4-2 shows the cir-
cuit symbol for an OR gate and a truth table defining the output, with
operands x and y.

x y x ⋁ y

0 0 0

0 1 1

1 0 1

1 1 1

Figure 4-2: The OR gate acting on two
variables, x and y

The truth table shows that the OR operator follows rules somewhat
similar to addition in elementary algebra, which is why some use the +
symbol to represent it.

x
y x ∧ y

x
y x ∨ y

60 Chapter 4

NOT

NOT is a unary operator, which acts on only one operand. The result
of NOT is 1 if the operand is 0, and it is 0 if the operand is 1. Other
names for the NOT operation are complement and invert. I’ll use ¬ to
designate the NOT operation. It’s also common to use the ' symbol,
an overscore above the variable, or simply NOT. Figure 4-3 shows the
circuit symbol for a NOT gate, and a truth table defining the output,
with the operand x.

x ¬x

0 1

1 0

Figure 4-3: The NOT gate acting on one variable, x

As you’ll see, NOT has some properties of the arithmetic negation used
in elementary algebra, but there are some significant differences.

It’s no accident that AND is multiplicative and OR additive. When
George Boole was developing his algebra, he was looking for a way to apply
mathematical rigor to logic and use addition and multiplication to manipu-
late logical statements. Boole developed the rules for his algebra based on
using AND for multiplication and OR for addition. In the next section,
you’ll see how to use these operators, together with NOT, to represent logical
statements.

Boolean Expressions
Just as you can use elementary algebra operators to combine variables into
expressions like (x + y), you can use Boolean operators to combine variables
into expressions.

There is a significant difference, though. A Boolean expression is
created from values (0 and 1) and literals. In Boolean algebra, a literal is
a single instance of a variable or its complement that’s being used in an
expression. In the expression

x ∧ y ∨ ¬x ∧ z ∨ ¬x ∧ ¬y ∧ ¬z

there are three variables (x, y, and z) and seven literals. In a Boolean
expression, you can see a variable in both its complemented form and
its uncomplemented form because each form is a separate literal.

We can combine literals by using either the ∧ or ∨ operator. Like in ele-
mentary algebra, Boolean algebra expressions are made up of terms, groups
of literals that are acted upon by operators, like (x ∨ y) or (a ∧ b). And just
like elementary algebra, operation precedence (or order of operations) specifies
how these operators are applied when evaluating the expression. Table 4-2
lists the precedence rules for the Boolean operators. As with elementary
algebra, expressions in parentheses are evaluated first, following the prece-
dence rules.

x ¬x

Boolean Algebra 61

Table 4-2: Precedence Rules of Boolean
Algebra Operators

Operation Notation Precedence

NOT ¬x Highest

AND x ∧ y Middle

OR x ∨ y Lowest

Now that you know how the three fundamental Boolean operators
work, we’ll look at some of the rules they obey when used in algebraic
expressions. As you’ll see later in the chapter, we can use the rules to sim-
plify Boolean expressions, which will allow us, in turn, to simplify the way
we implement those expressions in the hardware.

Knowing how to simplify Boolean expressions is an important tool for
both those making hardware and those writing software. A computer is
just a physical manifestation of Boolean logic. Even if your only interest is
in programming, every programming statement you write is ultimately car-
ried out by hardware that is completely described by the system of Boolean
algebra. Our programming languages tend to hide much of this through
abstraction, but they still use Boolean expressions to implement program-
ming logic.

Boolean Algebra Rules
When comparing AND and OR in Boolean algebra to multiplication and
addition in elementary algebra, you’ll find that some of the rules of Boolean
algebra are familiar, but some are significantly different. Let’s start with the
rules that are the same, followed by the rules that differ.

Boolean Algebra Rules That Are the Same as Elementary Algebra

AND and OR are associative.
We say that an operator is associative if, when there are two or more
occurrences of the operator in an expression, the order of applying the
operator does not change the value of the expression. Mathematically:

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (y ∨ z) = (x ∨ y) ∨ z

To prove the associative rule for AND and OR, let’s use exhaustive
truth tables, as shown in Tables 4-3 and 4-4. Table 4-3 lists all possible
values of the three variables x, y, and z, as well as the intermediate com-
putations of the terms (y ∧ z) and (x ∧ y). In the last two columns, we
can compute the values of each expression on both sides of the previ-
ous equations, which shows that the two equalities hold.

62 Chapter 4

Table 4-3: Associativity of the AND Operation

x y z (y ∧ z) (x ∧ y) x ∧ (y ∧ z) (x ∧ y) ∧ z

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 1 0 0

1 1 1 1 1 1 1

Table 4-4 lists all possible values of the three variables x, y, and z, as well
as the intermediate computations of the terms (y ∨ z) and (x ∨ y). In
the last two columns, we can compute the values of each expression on
both sides of the previous equations, which shows that the two equali-
ties hold.

Table 4-4: Associativity of the OR Operation

x y z (y ∨ z) (x ∨ y) x ∨ (y ∨ z) (x ∨ y) ∨ z

0 0 0 0 0 0 0

0 0 1 1 0 1 1

0 1 0 1 1 1 1

0 1 1 1 1 1 1

1 0 0 0 1 1 1

1 0 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1

This strategy will work for each of the rules shown in this section, but
I’ll go through only the truth table for the associative rule here. You’ll
do this for the other rules when it’s Your Turn at the end of this section.

AND and OR have identity values.

An identity value is a value specific to an operation such that using that
operation on a quantity with the identity value yields the value of the
original quantity. For AND and OR, the identity values are 1 and 0,
respectively:

x ∧ 1 = x

x ∨ 0 = x

Boolean Algebra 63

AND and OR are commutative.

We can say that an operator is commutative if we can reverse the order of
its operands:

x ∧ y = y ∧ x

x ∨ y = y ∨ x

AND is distributive over OR.

The AND operator applied to quantities OR-ed together can be distrib-
uted to apply to each of the OR-ed quantities, like so:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Unlike in elementary algebra, the additive OR is distributive over the
multiplicative AND. You’ll see this in the next section.

AND has an annulment (also called annihilation) value.

Operating on a value with the operator’s annulment value yields the
annulment value. The annulment value for AND is 0:

x ∧ 0 = 0

We’re used to 0 being the annulment value for multiplication in ele-
mentary algebra, but addition has no concept of annulment. You’ll learn
about the annulment value for OR in the next section.

NOT shows involution.

An operator shows involution if applying it to a quantity twice yields the
original quantity:

¬(¬x) = x

Involution is simply the application of a double complement: NOT(NOT
true) = true. This is similar to double negation in elementary algebra.

Boolean Algebra Rules That Differ from Elementary Algebra
Although AND is multiplicative and OR is additive, there are significant
differences between these logical operations and the arithmetic ones. The
differences stem from the fact that Boolean algebra deals with logic expres-
sions that evaluate to either true or false, while elementary algebra deals
with the infinite set of real numbers. In this section, you’ll see expressions
that might remind you of elementary algebra, but the Boolean algebra rules
are different.

64 Chapter 4

OR is distributive over AND.

The OR operator applied to quantities AND-ed together can be distrib-
uted to apply to each of the AND-ed quantities:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Because addition is not distributive over multiplication in elementary
algebra, you may miss this way of manipulating Boolean expressions.

First, let’s look at elementary algebra. Using addition for OR and multi-
plication for AND in the previous equation, we have this:

x + (y ⋅ z) ≠ (x + y) ⋅ (x + z)

We can see this by plugging in the numbers x = 1, y = 2, and z = 3. The
left-hand side gives

1 + (2 ⋅ 3) = 7

 and the right-hand side gives

(1 + 2) ⋅ (1 + 3) = 12

Thus, addition is not distributive over multiplication in elementary
algebra.

The best way to show that OR is distributive over AND in Boolean alge-
bra is to use a truth table, as shown in Table 4-5.

Table 4-5: OR Distributes over AND

x y z x ∨ (y ∧ z) (x ∨ y) ∧ (x ∨ z)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Comparing the two right-hand columns, you can see that the variable
that is common to the two OR terms, x, can be factored out, and thus
the distributive property holds.

Boolean Algebra 65

OR has an annulment (also called annihilation) value.

An annulment value is a value such that operating on a quantity with the
annulment value yields the annulment value. There is no annulment
value for addition in elementary algebra, but in Boolean algebra, the
annulment value for OR is 1:

x ∨ 1 = 1

AND and OR both have a complement value.

The complement value is the diminished radix complement of the vari-
able. You saw in Chapter 3 that the sum of a quantity and that quantity’s
diminished radix complement is equal to (radix – 1). Since the radix in
Boolean algebra is 2, the complement of 0 is 1, and the complement of
1 is 0. So, the complement of a Boolean quantity is simply the NOT of
that quantity, which gives

x ∧ ¬x = 0

x ∨ ¬x = 1

The complement value illustrates one of the differences between the
AND and OR logical operations and the multiplication and addition
arithmetic operations. In elementary algebra:

x ⋅ (–x)   = –x2
x + (–x)   = 0

Even if we restrict x to be 0 or 1, in elementary algebra 1 ⋅ (–1) = –1, and
1 + (–1) = 0.

AND and OR are idempotent.

If an operator is idempotent, applying it to two of the same operands
results in that operand. In other words:

x ∧ x = x

x ∨ x = x

This looks different than in elementary algebra, where repeatedly mul-
tiplying a number by itself is exponentiation, and repeatedly adding a
number to itself is equivalent to multiplication.

De Morgan’s law applies.

In Boolean algebra, the special relationship between the AND and OR
operations is captured by De Morgan’s law, which states

¬(x ∧ y) = ¬x ∨ ¬y

¬(x ∨ y) = ¬x ∧ ¬y

66 Chapter 4

The first equation states that the NOT of the AND of two Boolean
quantities is equal to the OR of the NOT of the two quantities.
Likewise, the second equation states that the NOT of the OR of
two Boolean quantities is equal to the AND of the NOT of the two
quantities.

This relationship is an example of the principle of duality, which in
Boolean algebra states that if you replace every 0 with a 1, every 1 with
a 0, every AND with an OR, and every OR with an AND, the equation
is still true. Look back over the rules just given and you’ll see that all of
them except involution have dual operations. De Morgan’s law is one
of the best examples of duality. Please, when it’s Your Turn, prove De
Morgan’s law so you can see the principle of duality in play.

YOUR T UR N

1.	 Use truth tables to prove the Boolean algebra rules given in this section.

2.	 Prove De Morgan’s law.

Boolean Functions
The functionality of a computer is based on Boolean logic, which means
the various operations of a computer are specified by Boolean functions.
A Boolean function looks somewhat like a function in elementary algebra,
but the variables can appear in either uncomplemented or complemented
form. The variables and constants are connected by Boolean operators. A
Boolean function evaluates to either 1 or 0 (true or false).

In “Adding in the Binary Number System” on page 44, you saw that
when adding two bits, x and y, in a binary number, we have to include a pos-
sible carry into their bit position in the number. The conditions that cause
carry to be 1 are

x = 1, y = 1, and there’s no carry into the current bit position, or

x = 0, y = 1, and there’s carry into the current bit position, or

x = 1, y = 0, and there’s carry into the current bit position, or

x = 1, y = 1, and there’s carry into the current bit position.

We can express this more concisely with this Boolean function:

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)

Boolean Algebra 67

where x is one bit, y is the other bit, cin is the carry in from the next-
lower-order bit position, and Cout(cin, x, y) is the carry resulting from the
addition in the current bit position. We’ll use this equation throughout
this section, but first, let’s think about the differences between Boolean and
elementary functions.

Like an elementary algebra function, a Boolean algebra function can
be manipulated mathematically, but the mathematical operations are dif-
ferent. Operations in elementary algebra are performed on the infinite set
of real numbers, but Boolean functions work on only two possible values,
0 or 1. Elementary algebra functions can evaluate to any real number, but
Boolean functions can evaluate only to 0 or 1.

This difference means we have to think differently about Boolean func-
tions. For example, look at this elementary algebra function:

F(x , y) = x ⋅ (–y)

You probably read it as, “If I multiply the value of x by the negative
of the value of y, I’ll get the value of F(x, y).” However, if you look at the
Boolean function

F(x , y) = x ∧ (¬y)

there are only four possibilities. If x = 1 and y = 0, then F(x, y) = 1. For the
other three possibilities, F(x, y) = 0. Whereas you can plug in any numbers
in an elementary algebra function, a Boolean algebra function shows you
what the values of the variables are that cause the function to evaluate to
1. I think of elementary algebra functions as asking me to plug in values for
the variables for evaluation, while Boolean algebra functions tell me what
values of the variables cause the function to evaluate to 1.

There are simpler ways to express the conditions for carry. And those
simplifications lead to being able to implement this function in hardware
with fewer logic gates, thus lowering the cost and power usage. In this and
the following sections, you’ll learn how the mathematical nature of Boolean
algebra makes function simplification easier and more concise.

Canonical Sum or Sum of Minterms
A canonical form of a Boolean function explicitly shows whether each vari-
able in the problem is complemented or not in each term that defines the
function, just as we did with our English statement of the conditions that
produce a carry of 1 earlier. This ensures that you have taken all possible
combinations into account in the function definition. The truth table,
shown in Table 4-6, for the carry equation we saw earlier

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)

should help to clarify this.

68 Chapter 4

Table 4-6: Conditions That Cause Carry to Be 1

Minterm cin x y (¬cin ∧ x ∧ y) (cin ∧ ¬x ∧ y) (cin ∧ x ∧ ¬y) (cin ∧ x ∧ y) Cout(cin, x, y)

m0 0 0 0 0 0 0 0 0

m1 0 0 1 0 0 0 0 0

m2 0 1 0 0 0 0 0 0

m3 0 1 1 1 0 0 0 1

m4 1 0 0 0 0 0 0 0

m5 1 0 1 0 1 0 0 1

m6 1 1 0 0 0 1 0 1

m7 1 1 1 0 0 0 1 1

Although the parentheses in the equation are not required, I’ve added
them to help you see the form of the equation. The parentheses show four
product terms, terms where all the literals are operated on only by AND. The
four product terms are then OR-ed together. Since the OR operation is like
addition, the right-hand side is called a sum of products. It’s also said to be in
disjunctive normal form.

Now let’s look more closely at the product terms. Each of them
includes all the variables in this equation in the form of a literal (uncom-
plemented or complemented). An equation that has n variables has 2n
permutations of the values for the variables; a minterm is a product term
that specifies exactly one of the permutations. Since there are four com-
binations of values for cin, x, and y that produce a carry of 1, the previous
equation has four out of the possible eight minterms. A Boolean function
that is defined by summing (OR-ing) all the minterms that evaluate to 1
is said to be a canonical sum, a sum of minterms, or in full disjunctive normal
form. A function defined by a sum of minterms evaluates to 1 when at least
one of the minterms evaluates to 1.

For every minterm, exactly one set of values for the variables makes the
minterm evaluate to 1. For example, the minterm (cin ∧ x ∧ ¬y) in the pre-
vious equation evaluates to 1 only when cin = 1, x = 1, y = 0. A product term
that does not contain all the variables in the problem, either in uncomple-
mented or in complemented form, will always evaluate to 1 for more sets of
values for the variables than a minterm. For example, (cin ∧ x) evaluates to 1
for cin = 1, x = 1, y = 0, and cin = 1, x = 1, y = 1. Because they minimize the num-
ber of cases that evaluate to 1, we call them minterms.

Rather than write out all the literals in a function, logic designers com-
monly use the notation mi to specify the i th minterm, where i is the integer
represented by the values of the literals in the problem if the values are
placed in order and treated as binary numbers. For example, cin = 1, x = 1,
y = 0 gives 110, which is the (base 10) number 6; thus, that minterm is m6.
Table 4-6 shows all eight possible minterms for a three-variable equation,
and the minterm, m6 = (cin ∧ x ∧ ¬y), in the four-term equation shown ear-
lier evaluates to 1 when cin = 1, x = 1, y = 0.

Boolean Algebra 69

Using this notation to write Boolean equations as a canonical sum
and using the ∑ symbol to denote summation, we can restate the function
for carry:

C out(cin, x , y)	  = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)
	   = m3 ∨ m5 ∨ m6 ∨ m7
	   = ∑(3,5,6,7)

We are looking at a simple example here. For more complicated func-
tions, writing all the minterms out is error-prone. The simplified notation is
easier to work with and helps to avoid making errors.

Canonical Product or Product of Maxterms
Depending on factors like available components and personal choice, a
designer may prefer to work with the cases where a function evaluates to 0
instead of 1. In our example, that means a design that specifies when carry
is 0. To see how this works, let’s take the complement of both sides of the
equation for specifying carry, using De Morgan’s law:

¬C out(cin, x , y) = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y)

Because we complemented both sides of the equation, we now have the
Boolean equation for ¬Cout, the complement of carry. Thus, we are looking
for conditions that cause ¬Cout to evaluate to 0, not 1. These are shown in
the truth table, Table 4-7.

Table 4-7: Conditions That Cause the Complement of Carry to Be 0

Maxterm cin x y (cin ∨ ¬x ∨ ¬y) (¬cin ∨ x ∨ ¬y) (¬cin ∨ ¬x ∨ y) (¬cin ∨ ¬x ∨ ¬y) ¬Cout(cin, x, y)

M0 0 0 0 1 1 1 1 1

M1 0 0 1 1 1 1 1 1

M2 0 1 0 1 1 1 1 1

M3 0 1 1 0 1 1 1 0

M4 1 0 0 1 1 1 1 1

M5 1 0 1 1 0 1 1 0

M6 1 1 0 1 1 0 1 0

M7 1 1 1 1 1 1 0 0

In this equation, the parentheses are required due to the precedence
rules of Boolean operators. The parentheses show four sum terms, terms
where all the literals are operated on only by OR. The four sum terms are
then AND-ed together. Since the AND operation is like multiplication, the
right-hand side is called a product of sums. It’s also said to be in conjunctive
normal form.

70 Chapter 4

Each of the sum terms includes all the variables in this equation in the
form of literals (uncomplemented or complemented). Where a minterm
was a product term that specified a single permutation of the 2n permuta-
tions of possible values for the variables, a maxterm is a sum term specifying
exactly one of those permutations. A Boolean function that is defined by
multiplying (AND-ing) all the maxterms that evaluate to 0 is said to be a
canonical product, a product of maxterms, or in full conjunctive normal form.

Each maxterm identifies exactly one set of values for the variables in a
function that evaluates to 0 when OR-ed together. For example, the max-
term (¬cin ∨ ¬x ∨ y) in the previous equation evaluates to 0 only when cin = 1,
x = 1, y = 0. But a sum term that does not contain all the variables in the
problem, either in uncomplemented or complemented form, will always
evaluate to 0 for more than one set of values. For example, the sum term
(¬cin ∨ ¬x) evaluates to 0 for two sets of values for the three variables in this
example, cin = 1, x = 1, y = 0 and cin = 1, x = 1, and y = 1. Because they mini-
mize the number of cases that evaluate to 0 and thus maximize the number
of cases that evaluate to 1, we call them maxterms.

Rather than write out all the literals in a function, logic designers com-
monly use the notation Mi to specify the i th maxterm, where i is the integer
value of the base 2 number created by concatenating the values of the liter-
als in the problem. For example, stringing together cin = 1, x = 1, y = 0 gives
110, which is the maxterm M6. The truth table, Table 4-7, shows the max-
terms that cause carry = 0. Notice that maxterm M6 = (¬cin ∨ ¬x ∨ y) evaluates
to 0 when cin = 1, x = 1, y = 0.

Using this notation to write Boolean equations as a canonical sum and
using the ∏ symbol to denote multiplication, we can restate the function for
the complement of carry as follows:

¬C out(cin, x , y)	  = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y)
	   = M3 ∧ M5 ∧ M6 ∧ M7
	   = ∏ (3,5,6,7)

If you look back at Table 4-7, you’ll see that these are the conditions
that cause the complement of carry to be 0 and hence carry to be 1. This
shows that using either minterms or maxterms is equivalent. The one you
use can depend on factors such as what hardware components you have
available to implement the function and personal preference.

Comparison of Canonical Boolean Forms
Table 4-8 shows all the minterms and maxterms for a three-variable prob-
lem. If you compare corresponding minterms and maxterms, you can see
the duality of minterms and maxterms: one can be formed from the other
using De Morgan’s law by complementing each variable and interchanging
OR and AND.

Boolean Algebra 71

Table 4-8: Canonical Terms for a Three-Variable Problem

Minterm = 1 x y z Maxterm = 0

m0 ¬x ∧ ¬y ∧ ¬z 0 0 0 M0 x ∨ y ∨ z

m1 ¬x ∧ ¬y ∧ z 0 0 1 M1 x ∨ y ∨ ¬z

m2 ¬x ∧ y ∧ ¬z 0 1 0 M2 x ∨ ¬y ∨ z

m3 ¬x ∧ y ∧ z 0 1 1 M3 x ∨ ¬y ∨ ¬z

m4 x ∧ ¬y ∧ ¬z 1 0 0 M4 ¬x ∨ y ∨ z

m5 x ∧ ¬y ∧ z 1 0 1 M5 ¬x ∨ y ∨ ¬z

m6 x ∧ y ∧ ¬z 1 1 0 M6 ¬x ∨ ¬y ∨ z

m7 x ∧ y ∧ z 1 1 1 M7 ¬x ∨ ¬y ∨ ¬z

…

The canonical forms give you a complete, and unique, statement of the
function because they take all possible combinations of the values of the
variables into account. However, there often are simpler solutions to the prob-
lem. The remainder of this chapter is devoted to methods of simplifying
Boolean functions.

Boolean Expression Minimization
When implementing a Boolean function in hardware, each ∧ operator
becomes an AND gate, each ∨ operator an OR gate, and each ¬ opera-
tor a NOT gate. In general, the complexity of the hardware is related to
the number of AND and OR gates used (NOT gates are simple and tend
not to contribute significantly to the complexity). Simpler hardware uses
fewer components, thus saving cost and space, and uses less power. Cost,
space, and power savings are especially important with handheld and wear-
able devices. In this section, you’ll learn how you can manipulate Boolean
expressions to reduce the number of ANDs and ORs, thus simplifying their
hardware implementation.

Minimal Expressions
When simplifying a function, start with one of the canonical forms to
ensure that you have taken all possible cases into account. To translate a
problem into a canonical form, create a truth table that lists all possible
combinations of the variables in the problem. From the truth table, it will
be easy to list the minterms or maxterms that define the function.

Armed with a canonical statement, the next step is to look for a func-
tionally equivalent minimal expression, an expression that does the same
thing as the canonical one, but with a minimum number of literals and

72 Chapter 4

Boolean operators. To minimize an expression, we apply the rules of Boolean
algebra to reduce the number of terms and the number of literals in each
term, without changing the logical meaning of the expression.

There are two types of minimal expressions, depending on whether you
use minterms or maxterms:

Minimal Sum of Products

When starting with a minterms description of the problem, the mini-
mal expression is called a minimal sum of products, which is a sum of
products expression where all other mathematically equivalent sum
of products expressions have at least as many product terms, and
those with the same number of product terms have at least as many
literals.

As an example of a minimal sum of products, consider these equations:

 S(x , y, z) 	 = (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y ∧ z)
S1(x , y, z)	 = (¬x ∧ ¬y ∧ ¬z) ∨ (x ∧ ¬y)
S2(x , y, z)	 = (x ∧ ¬y ∧ z) ∨ (¬y ∧ ¬z)
S3(x , y, z)	 = (x ∧ ¬y) ∨ (¬y ∧ ¬z)

S is in canonical form as each of the product terms explicitly shows the
contribution of all three variables. The other three functions are sim-
plifications of S. Although all three have the same number of product
terms, S3 is a minimal sum of products for S because it has fewer literals
in its product terms than S1 and S2.

Minimal Product of Sums

When starting with a maxterms description of the problem, the mini-
mal expression is called a minimal product of sums, which is a product of
sums expression where all other mathematically equivalent product
of sums expressions have at least as many sum terms, and those with
the same number of sum terms have at least as many literals.

For an example of a minimal product of sums, consider these
equations:

P(x , y, z) 	  = (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z)
P1(x , y, z)	 = (x ∨ ¬y ∨ z) ∧ (¬x ∨ z)
P2(x , y, z)	 = (¬x ∨ y ∨ z) ∧ (¬y ∨ z)
P3(x , y, z)	 = (¬x ∨ z) ∧ (¬y ∨ z)

P is in canonical form, and the other three functions are simplifications
of P. Although all three have the same number of sum terms as P, P3 is a
minimal product of sums for P because it has fewer literals in its product
terms than P1 and P2.

A problem may have more than one minimal solution. Good hard-
ware design typically involves finding several minimal solutions and then

Boolean Algebra 73

assessing each one within the context of the available hardware. This means
more than using fewer gates. For example, as you’ll learn when we discuss
the actual hardware implementations, adding judiciously placed NOT gates
can actually reduce hardware complexity.

In the following two sections, you’ll see two ways to find minimal
expressions.

Minimization Using Algebraic Manipulations
To illustrate the importance of reducing the complexity of a Boolean func-
tion, let’s return to the function for carry:

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)

The expression on the right-hand side of the equation is a sum of min-
terms. Figure 4-4 shows the circuit to implement this function. It requires
four AND gates and one OR gate. The small circles at the inputs to the AND
gates indicate a NOT gate at that input.

cin

x
y

Cout(cin, x, y)

Figure 4-4: Hardware implementation of a function to generate
the value of carry when adding two numbers

Now let’s try to simplify the Boolean expression implemented in
Figure 4-4 to see whether we can reduce the hardware requirements. Note
that there may not be a single path to a solution, and there may be more
than one correct solution. I’m presenting only one way here.

First, we’ll do something that might look strange. We’ll use the idempo-
tency rule to duplicate the fourth term twice:

C out(cin, x , y) = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y) 
∨ (cin ∧ x ∧ y)  ∨ (cin ∧ x ∧ y)

Next, rearrange the product terms slightly to OR each of the three
original terms with (cin ∧ x ∧ y):

C out(cin, x , y) = ((¬cin ∧ x ∧ y) ∨ (cin ∧ x ∧ y)) ∨ ((cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)) 
∨ ((cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ y))

74 Chapter 4

Now we can use the rule for distribution of AND over OR to factor out
terms that OR to 1:

C out(cin, x , y)	   =  (x ∧ y ∧ (¬cin ∨ cin)) ∨ (cin ∧ x ∧ (¬y ∨ y)) ∨ (cin ∧ y ∧ (¬x ∨ x))
	    =  (x ∧ y ∧ 1) ∨ (cin ∧ x ∧ 1) ∨ (cin ∧ y ∧ 1)
	    =  (x ∧ y) ∨ (cin ∧ x) ∨ (cin ∧ y)

Figure 4-5 shows the circuit for this function. Not only have we elimi-
nated an AND gate, but also all the AND gates and the OR gate have one
fewer inputs.

x
y

cin
Cout(cin, x, y)

Figure 4-5: Simplified hardware implementation generating carry
when adding two numbers

Comparing the circuits in Figures 4-5 and 4-4, Boolean algebra has
helped you to simplify the hardware implementation. You can see this sim-
plification from stating the conditions that result in a carry of 1 in English:
the original, canonical form of the equation stated that carry, Cout(cin, x, y),
will be 1 in any of these four cases:

if cin = 0, x = 1, and y = 1

if cin = 1, x = 0, and y = 1

if cin = 1, x = 1, and y = 0

if cin = 1, x = 1, and y = 1

The minimization can be stated much simpler: carry is 1 if at least two
of cin, x, and y are 1.

We arrived at the solution in Figure 4-5 by starting with the sum of
minterms; in other words, we were working with the values of cin, x, and y
that generate a 1 for carry. As you saw in “Canonical Product or Product of
Maxterms” on page 69, since carry must be either 1 or 0, it’s equally as valid
to start with the values of cin, x, and y that generate a 0 for the complement of
carry and to write the equation as a product of maxterms:

¬C out(cin, x , y) = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y)

To simplify this equation, we’ll take the same approach we took with
the sum of minterms and start by duplicating the last term twice:

¬C out(cin, x , y) = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y) 
∧ (¬cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y)

Boolean Algebra 75

Adding some parentheses helps to clarify the simplification process:

¬C out(cin, x , y) = ((cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y)) ∧ ((¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y)) 
∧ ((¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y))

Next, use the distribution of OR over AND. Because this is tricky, I’ll
go over the steps to simplify the first grouping of product terms in this
equation—the steps for the other two groupings are similar to this one.
Distribution of OR over AND has this generic form:

(X ∨ Y) ∧ (X ∨ Z) = X ∨ (Y ∧ Z)

Looking at the sum terms in our first grouping, you can see they both
share a (¬x ∨ ¬y). So, we’ll make these substitutions into the generic form:

X 	 = (¬x ∨ ¬y)
Y 	 = cin
Z 	 = ¬cin

Making the substitutions and using the complement rule for AND, we get

(cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ ¬y)   = (¬x ∨ ¬y) ∨ (cin ∧ ¬cin)
	    = (¬x ∨ ¬y)

Applying these same manipulations to other two groupings, we get

¬C out(cin, x , y) = (¬x ∨ ¬y) ∧ (¬cin ∨ ¬x) ∧ (¬cin ∨ ¬y)

Figure 4-6 shows the circuit implementation of this function. This cir-
cuit produces the complement of carry. We would need to complement the
output, ¬Cout(cin, x, y), to get the value of carry.

x
y

cin
¬Cout(cin, x, y)

Figure 4-6: Simplified hardware implementation generating the
complement of carry when adding two numbers

Compare Figure 4-6 with Figure 4-5, and you can graphically see De
Morgan’s law: the ORs have become ANDs with complemented values as
inputs.

The circuit in Figure 4-5 might look simpler to you because the cir-
cuit in Figure 4-6 requires NOT gates at the six inputs to the OR gates.
But as you will see in the next chapter, this may not be the case because of

76 Chapter 4

the inherent electronic properties of the devices used to construct logic
gates. The important point to understand here is that there is more than
one way to solve the problem. One of the jobs of the hardware engineer is
to decide which solution is best, based on things such as cost, availability of
components, and so on.

Minimization Using Karnaugh Maps
The algebraic manipulations used to minimize Boolean functions may not
always be obvious. You may find it easier to work with a graphic representa-
tion of the logical statements.

A commonly used graphic tool for working with Boolean functions
is the Karnaugh map, also called a K-map. Invented in 1953 by Maurice
Karnaugh, a telecommunications engineer at Bell Labs, the Karnaugh
map gives a way to visually find the same simplifications you can find alge-
braically. They can be used either with a sum of products, using minterms,
or a product of sums, using maxterms. To illustrate how they work, we’ll
start with minterms.

Simplifying Sums of Products Using Karnaugh Maps

The Karnaugh map is a rectangular grid with a cell for each minterm.
There are 2n cells for n variables. Figure 4-7 is a Karnaugh map showing all
four possible minterms for two variables, x and y. The vertical axis is used
for plotting x, and the horizontal for y. The value of x for each row is shown
by the number (0 or 1) immediately to the left of the row, and the value of y
for each column appears at the top of the column.

F(x, y)

x

y

m0 m1

m2 m3

0 1

1

0

Figure 4-7: Mapping of
two-variable minterms on
a Karnaugh map

To illustrate how to use a Karnaugh map, let’s look at an arbitrary func-
tion of two variables:

F(x , y) = (x ∧ ¬y) ∨ (¬x ∧ y) ∨ (x ∧ y)

Start by placing a 1 in each cell corresponding to a minterm that appears
in the equation, as shown in Figure 4-8.

Boolean Algebra 77

F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-8: Karnaugh
map of the arbitrary
function, F(x, y)

By placing a 1 in the cell corresponding to each minterm that evaluates
to 1, we can see graphically when the equation evaluates to 1. The two cells
on the right side correspond to the minterms m1 and m3, (¬x ∧ y) and (x ∧ y).
Since these terms are OR-ed together, F(x, y) evaluates to 1 if either of
these minterms evaluates to 1. Using the distributive and complement rules,
we can see that

(¬x ∧ y) ∨ (x ∧ y)	   =  (¬x ∨ x) ∧ y
	    =  y

This shows algebraically that F(x, y) evaluates to 1 whenever y is 1, which
you’ll see next by simplifying this Karnaugh map.

The only difference between the two minterms, (¬x ∧ y) and (x ∧ y), is
the change from x to ¬x. Karnaugh maps are arranged such that only one
variable changes between two cells that share an edge, a requirement called
the adjacency rule.

To use a Karnaugh map to perform simplification, you group two adja-
cent cells in a sum of products Karnaugh map that have 1s in them. Then
you eliminate the variable that differs between them and coalesce the two
product terms. Repeating this process allows you to simplify the equation.
Each grouping eliminates a product term in the final sum of products. This
can be extended to equations with more than two variables, but the num-
ber of cells that are grouped together must be a multiple of 2, and you can
group only adjacent cells. The adjacency wraps around from side to side
and from top to bottom. You’ll see an example of that in a few pages.

To see how all this works, consider the grouping in the Karnaugh map
in Figure 4-9.

F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-9: Two of
the minterms in F(x, y)
grouped

This grouping is a graphical representation of the algebraic manipula-
tion we did earlier. You can see that F(x, y) evaluates to 1 whenever y = 1,

78 Chapter 4

regardless of the value of x. Thus, the grouping coalesces two minterms
into one product term by eliminating x.

From the last grouping, we know our final simplified function will have
a y term. Let’s do another grouping to find the next term. First, we’ll sim-
plify the equation algebraically. Returning to the original equation for
F(x, y), we can use idempotency to duplicate one of the minterms:

F(x , y) = (x ∧ ¬y) ∨ (¬x ∧ y) ∨ (x ∧ y) ∨ (x ∧ y)

Now we’ll do some algebraic manipulation on the first product term
and the one we just added:

(x ∧ ¬y) ∨ (x ∧ y)	   = (¬y ∨ y) ∧ x
	    =  x

Instead of using algebraic manipulations, we can do this directly on
our Karnaugh map, as shown in Figure 4-10. This map shows that separate
groups can include the same cell (minterm).

F(x, y)

x

y
0 1

1

0

1 1

1

Figure 4-10: A Karnaugh
map grouping showing
that (x ∧ ¬y) ∨ (¬x ∧ y)
∨ (x ∧ y) = (x ∨ y)

The group in the bottom row represents the product term x, and
the one in the right-hand column represents y, giving us the following
minimization:

F(x , y) = x ∨ y

Note that the cell that is included in both groupings, (x ∧ y), is the term
that we duplicated using the idempotent rule in our algebraic solution pre-
viously. You can think of including a cell in more than one group as adding
a duplicate copy of the cell, like using the idempotent rule in our algebraic
manipulation earlier, and then coalescing it with the other cell(s) in the
group, thus removing it.

The adjacency rule is automatically satisfied when there are only two
variables in the function. But when we add another variable, we need to
think about how to order the cells of a Karnaugh map such that we can use
the adjacency rule to simplify Boolean expressions.

Karnaugh Map Cell Order

One of the problems with both the binary and BCD codes is that the dif-
ference between two adjacent values often involves more than one bit being

Boolean Algebra 79

changed. In 1943 Frank Gray introduced a code, the Gray code, in which
adjacent values differ by only one bit. The Gray code was invented because
the switching technology of that time was more prone to errors. If one bit
was in error, the value represented by a group of bits was off by only one in
the Gray code. That’s seldom a problem these days, but this property shows
us how to order the cells in a Karnaugh map.

Constructing the Gray code is quite easy. Start with one bit:

Decimal Gray code

0 0

1 1

To add a bit, first write the mirror image of the existing pattern:

Gray code

0

1

1

0

Then add a 0 to the beginning of each of the original bit patterns and
add a 1 to the beginning of each of the mirror image set to give the Gray
code for two bits, as shown in Table 4-9.

Table 4-9: Gray Code for
Two Bits

Decimal Gray code

0 00

1 01

2 11

3 10

This is the reason the Gray code is sometimes called reflected binary code
(RBC). Table 4-10 shows the Gray code for four bits.

Table 4-10: Gray Code for Four Bits

Decimal Gray code Binary

0 0000 0000

1 0001 0001

2 0011 0010

(continued)

80 Chapter 4

Decimal Gray code Binary

3 0010 0011

4 0110 0100

5 0111 0101

6 0101 0110

7 0100 0111

8 1100 1000

9 1101 1001

10 1111 1010

11 1110 1011

12 1010 1100

13 1011 1101

14 1001 1110

15 1000 1111

Let’s compare the binary codes with the Gray codes for the decimal
values 7 and 8 in Table 4-10. The binary codes for 7 and 8 are 0111 and 1000,
respectively; all four bits change when stepping only 1 in decimal value. But
comparing the Gray codes for 7 and 8, 0100 and 1100, respectively, only one
bit changes, thus satisfying the adjacency rule for a Karnaugh map.

Notice that the pattern of changing only one bit between adjacent values
also holds when the bit pattern wraps around. Only one bit is changed when
going from the highest value (15 for four bits) to the lowest (0).

Karnaugh Map for Three Variables

To see how the adjacency property is important, let’s consider a more com-
plicated function. We’ll use a Karnaugh map to simplify our function for
carry, which has three variables. Adding another variable means that we
need to double the number of cells to hold the minterms. To keep the map
two-dimensional, we add the new variable to an existing variable on one side
of the map. We need a total of eight cells (23), so we’ll draw it four cells wide
and two high. We’ll add z to the y-axis and draw our Karnaugh map with y
and z on the horizontal axis, and x on the vertical, as shown in Figure 4-11.

F(x, y, z) yz

x
m0 m1 m3 m2

m4 m5 m7 m6

0

1

00 01 11 10

Figure 4-11: Mapping of three-variable
minterms on a Karnaugh map

Table 4-10: Gray Code for Four Bits (continued)

Boolean Algebra 81

The order of the bit patterns along the top of the three-variable
Karnaugh map is 00, 01, 11, 10, which is the Gray code order in Table 4-9,
as opposed to 00, 01, 10, 11. The adjacency rule also holds when wrapping
around the edges of the Karnaugh map—that is, going from m2 to m0 or
going from m6 to m4—which means that groups can wrap around the edges
of the map. (Other axis labeling schemes will also work, as you’ll see when
it’s Your Turn at the end of this section.)

You saw earlier in this chapter that carry can be expressed as the sum of
four minterms:

C out(cin, x , y)	  = (¬cin ∧ x ∧ y) ∨ (cin ∧ ¬x ∧ y) ∨ (cin ∧ x ∧ ¬y) ∨ (cin ∧ x ∧ y)
	   =  m3 ∨ m5 ∨ m6 ∨ m7
	   =  ∑ (3,5,6,7)

Figure 4-12 shows these four minterms on the Karnaugh map.

yz
00 01 11 10

0

1
cin

Cout(cin, x, y)

1

11 1

Figure 4-12: Karnaugh map of the
function for carry

We look for adjacent cells that can be grouped together to eliminate
one variable from the product term. As noted, the groups can overlap, giv-
ing the three groups shown in Figure 4-13.

yz
00 01 11 10

0

1
cin

Cout(cin, x, y)

1

11 1

Figure 4-13: A minimum sum of products
of the function for carry = 1

Using the three groups in the Karnaugh map in Figure 4-13, we end up
with the same equation we got through algebraic manipulations:

C out(cin, x , y) = (x ∧ y) ∨ (cin ∧ x) ∨ (cin ∧ y)

Simplifying Products of Sums Using Karnaugh Maps

It’s equally valid to work with a function that shows when the complement
of carry is 0. We did that using maxterms:

¬C max(cin, x , y)	   = (cin ∨ ¬x ∨ ¬y) ∧ (¬cin ∨ x ∨ ¬y) ∧ (¬cin ∨ ¬x ∨ y) ∧ (¬cin ∨ ¬x ∨ ¬y)
	    =  M7 ∧ M6 ∧ M5 ∧ M3
	    =  ∏(3,5,6,7)

82 Chapter 4

Figure 4-14 shows the arrangement of maxterms on a three-variable
Karnaugh map.

¬F(x, y, z) yz

x
0

1

00 01 11 10

M0 M1 M3 M2

M4 M5 M7 M6

Figure 4-14: Mapping of three-variable
maxterms on a Karnaugh map

When working with a maxterm statement of the solution, you mark the
cells that evaluate to 0. The minimization process is the same as when work-
ing with minterms, except that you group the cells with 0s in them.

Figure 4-15 shows a minimization of ¬Cout(cin, x, y) , the complement of
carry.

yz
00 01 11 10

0

1
cin

¬Cout(cin, x, y)

0

00 0

Figure 4-15: A minimum product of sums
of the function for NOT carry = 0

The Karnaugh map in Figure 4-15 leads to the same product of sums
we got algebraically for the complement of carry = 0:

¬C out(cin, x , y) = (¬x ∨ ¬y) ∧ (¬cin ∨ ¬x) ∧ (¬cin ∨ ¬y)

If you compare Figures 4-13 and 4-15, you can see a graphic view of
De Morgan’s law. When making this comparison, keep in mind that
Figure 4-13 shows the product terms that get added, and Figure 4-15
shows the sum terms that get multiplied, and the result is complemented.
Thus, we exchange 0 and 1 and exchange AND and OR to go from one
Karnaugh map to the other.

To further emphasize the duality of minterm and maxterm, compare
(a) and (b) in Figure 4-16.

F(x, y, z) ¬F(x, y, z)
yz

x

00 01 11 10

(a) (b)

01

000

0

0

0 00

1

1

1

1 1

11 1
x

yz

0

1

00 01 11 10

Figure 4-16: Comparison of (a) one minterm and (b) one maxterm

Boolean Algebra 83

Figure 4-16(a) shows the following function:

F(x , y, z) = ¬x ∧ ¬y ∧ ¬z

Although it’s not necessary and usually not done, we have placed a 0 in
each of the cells representing minterms not included in this function.

Similarly, in Figure 4-16(b), we have placed a 0 for the maxterm and a 1
in each of the cells representing the maxterms that are not included in the
function:

¬F(x , y, z) = x ∨ y ∨ z

This comparison graphically shows how a minterm specifies the mini-
mum number of 1s in a Karnaugh map, while a maxterm specifies the
maximum number of 1s.

Larger Groupings on a Karnaugh Map

Thus far, we have grouped only two cells together on our Karnaugh maps.
Let’s look at an example of larger groups. Consider a function that outputs
1 when a three-bit number is even. Table 4-11 shows the truth table. It uses 1
to indicate that the number is even and uses 0 to indicate odd.

Table 4-11: Even Values of an Eight-Bit Number

Minterm x y z Number Even(x, y, z)

m0 0 0 0 0 1

m1 0 0 1 1 0

m2 0 1 0 2 1

m3 0 1 1 3 0

m4 1 0 0 4 1

m5 1 0 1 5 0

m6 1 1 0 6 1

m7 1 1 1 7 0

The canonical sum of products for this function is

Even(x , y, z) = ∑(0,2,4,6)

Figure 4-17 shows these minterms on a Karnaugh map with these four
terms grouped together. You can group all four together because they all
have adjacent edges.

From the Karnaugh map in Figure 4-17, we can write the equation for
showing when a three-bit number is even:

Even(x , y, z) = ¬z

84 Chapter 4

Even(x, y, z)
00 01 11 10

10

1
x

yz

1 1

1

Figure 4-17: Karnaugh map showing
even values of a three-bit number

The Karnaugh map shows that it does not matter what the values of x
and y are, only that z = 0.

Adding More Variables to a Karnaugh Map

Each time you add another variable to a Karnaugh map, you need to double
the number of cells. The only requirement for the Karnaugh map to work
is that you arrange the minterms, or maxterms, according to the adjacency
rule. Figure 4-18 shows a four-variable Karnaugh map for minterms. The y
and z variables are on the horizontal axis, and w and x are on the vertical.

00 01 11 10
F(w, x, y, z) yz

wx

m000

01

11

10

m1 m3

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

m2

Figure 4-18: Mapping of four-variable
minterms on a Karnaugh map

So far we have assumed that every minterm (or maxterm) is accounted
for in our functions. But design does not take place in a vacuum. We might
have knowledge about other components of the overall design telling us
that some combinations of variable values can never occur. Next, we’ll see
how to take this knowledge into account in your function simplification
process. The Karnaugh map provides an especially clear way to visualize
the situation.

Don’t Care Cells

Sometimes, you have information about the values that the variables can
have. If you know which combinations of values will never occur, the min-
terms (or maxterms) that represent those combination are irrelevant. For

Boolean Algebra 85

example, you may want a function that indicates whether one of two pos-
sible events has occurred, but you know that the two events cannot occur
simultaneously. Let’s name the events x and y, and let 0 indicate that the
event has not occurred and 1 indicate that it has. Table 4-12 shows the truth
table for our function, F(x, y).

Table 4-12: Truth Table
for x or y Occurring,
but Not Both

x y F(x, y)

0 0 0

0 1 1

1 0 1

1 1 X

We can show that both events cannot occur simultaneously by placing an
X in that row. We can draw a Karnaugh map with an X for the minterm that
can’t exist in the system, as shown in Figure 4-19. The X represents a don’t
care cell—we don’t care whether this cell is grouped with other cells or not.

F(x, y) y

x
0

1 X

0 1

1

1

Figure 4-19: Karnaugh
map for F(x, y), showing
a “don’t care” cell

Since the cell that represents the minterm (x ∧ y) is a “don’t care” cell,
we can include it, or not, in our minimization groupings, leading to the
two groupings shown. The Karnaugh map in Figure 4-19 leads us to the
solution:

F(x , y) = x ∨ y

which is a simple OR gate. You probably guessed this solution without hav-
ing to use a Karnaugh map. You’ll see a more interesting use of “don’t care”
cells when you learn about the design of two digital logic circuits at the end
of Chapter 7.

86 Chapter 4

Combining Basic Boolean Operators
As mentioned earlier in this chapter, we can combine basic Boolean opera-
tors to implement more-complex Boolean operators. Now that you know
how to work with Boolean functions, we’ll design one of the more common
operators, the exclusive or, often called XOR, using the three basic operators,
AND, OR, and NOT. It’s so commonly used that it has its own circuit symbol.

XOR

The XOR is a binary operator. The result is 1 if one, and only one, of
the two operands is 1; otherwise, the result is 0. We’ll use ⊻ to designate
the XOR operation. It’s also common to use the ⊕ symbol. Figure 4-20
shows the XOR gate operation with inputs x and y.

x y x ⊻ y

0 0 0

0 1 1

1 0 1

1 1 0

Figure 4-20: The XOR gate acting on two variables, x and y

The minterm implementation of this operation is

x ⊻ y = (x ∧ ¬y) ∨ (¬x ∧ y)

The XOR operator can be implemented with two AND gates, two NOT
gates, and one OR gate, as shown in Figure 4-21.

x ⊻ y

x

y

Figure 4-21: XOR gate made from AND, OR, and
NOT gates

We can, of course, design many more Boolean operators. But we’re
going to move on in the next few chapters and see how these operators can
be implemented in hardware. It’s all done with simple on/off switches.

x
y x ⊻ y

Boolean Algebra 87

YOUR T UR N

1.	 Design a function that will detect all the four-bit integers that are even.

2.	 Find a minimal sum-of-products expression for this function:

F(x, y, z)  =  (¬x  ∧  ¬y  ∧ ¬z)  ∨  (¬x  ∧  ¬y  ∧  z)  ∨  (¬x  ∧  y  ∧  ¬z)  ∨  (x ∧  ¬y  ∧  ¬z)  
∨  (x  ∧  y  ∧  ¬z)  ∨  (x  ∧  y  ∧  z)

3.	 Find a minimal product-of-sums expression for this function:

F(x, y, z)  =  (x  ∨  y  ∨  z)  ∧  (x  ∨  y  ∨  ¬z)  ∧  (x  ∨  ¬y  ∨  ¬z) 
∧  (¬x  ∨  y   ∨  z)  ∧  (¬x  ∨  ¬y  ∨  ¬z)

4.	 The arrangement of the variables for a Karnaugh map is arbitrary, but
the minterms (or maxterms) need to be consistent with the labeling. Show
where each minterm is located with this Karnaugh map axis labeling using
the notation of Figure 4-11.

F(x, y, z) xy

z
0

1

00 01 11 10

5.	 The arrangement of the variables for a Karnaugh map is arbitrary, but
the minterms (or maxterms) need to be consistent with the labeling. Show
where each minterm is located with this Karnaugh map axis labeling using
the notation of Figure 4-11.

F(x, y, z) xz

y
0

1

00 01 11 10

6.	 Create a Karnaugh map for five variables. You’ll probably need to review
the Gray code in Table 4-10 and increase it to five bits.

Design a logic function that detects the single-digit prime numbers. Assume
that the numbers are coded in four-bit BCD (see Table 2-7 in Chapter 2).
The function is 1 for each prime number.

88 Chapter 4

What You’ve Learned

Boolean operators   The basic Boolean operators are AND, OR, and
NOT.

Rules of Boolean algebra   Boolean algebra provides a mathematical
way to work with the rules of logic. AND works like multiplication, and
OR is similar to addition in elementary algebra.

Simplifying Boolean algebra expressions   Boolean functions specify
the functionality of a computer. Simplifying these functions leads to a
simpler hardware implementation.

Karnaugh maps   These provide a graphical way to simplify Boolean
expressions.

Gray code   This shows how to order the cells in a Karnaugh map.

Combining basic Boolean operators   XOR can be created from AND,
OR, and NOT.

The next chapter starts with an introduction to basic electronics that
will provide a basis for understanding how transistors can be used to imple-
ment switches. From there, we’ll look at how transistor switches are used to
implement logic gates.

5
L O G I C G A T E S

In the previous chapter, you learned about
Boolean algebra expressions and how to

implement them using logic gates. In this
chapter, you’ll learn how to implement logic

gates in hardware by using transistors, the solid-state
electronic devices used to implement the on/off
switches we’ve been discussing throughout this book.

To help you to understand how transistors operate, we’ll start with a sim-
ple introduction to electronics. From there, you’ll see how transistors can be
connected in pairs to switch faster and use less electrical power. We’ll end the
chapter with some practical considerations regarding the use of transistors to
construct logic gates.

90 Chapter 5

Crash Course in Electronics
You don’t need to be an electrical engineer to understand how logic gates
work, but some understanding of the basic concepts can help. This section
provides a brief overview of the fundamental concepts of electronic circuits.
We’ll begin with two definitions.

Current refers to the movement of electrical charge. Electrical charge is
measured in coulombs. A flow of one coulomb per second is defined as one
ampere, often abbreviated as amp. Current flows through an electrical circuit
only if there is a completely connected path from one side of the power source
to the other side.

Voltage refers to the difference in electrical energy per unit charge, also
called potential difference, between two points in an electrical circuit. One volt
is defined as the electrical difference between two points on a conductor (the
medium the current flows through) when one ampere of current flowing
through the conductor dissipates one watt of power.

A computer is constructed from the following electronic components:

•	 Power source that provides the electrical power

•	 Passive components that affect current flow and voltage levels,
but whose characteristics cannot be altered by another electronic
component

•	 Active components that switch between various combinations of the
power source, passive components, and other active components under
the control of one or more other electronic components

•	 Conductors that connect the other components together

Let’s look at how each of these electronic components works.

Power Supplies and Batteries
In almost all countries, electrical power comes in the form of alternating cur-
rent (AC). For AC, a plot of the magnitude of the voltage versus time shows
a sinusoidal wave shape. Computer circuits use direct current (DC) power,
which, unlike AC, does not vary over time. A power supply is used to convert
AC power to DC, as shown in Figure 5-1.

Voltage

+

− AC

Power
supply

DC
Time

Voltage

+

−
Time

Figure 5-1: AC/DC power supply

Batteries also provide DC electrical power. When drawing circuits, we’ll
use the symbol for a battery (Figure 5-2) to designate a DC power supply.
The power supply in Figure 5-2 provides 5 volts DC.

Logic Gates 91

5.0 V

Figure 5-2: Circuit
symbol for a 5-volt
DC power source

Throughout this book, you’ve seen that everything that goes on in a
computer is based on a system of 1s and 0s. But how are these 1s and 0s phys-
ically represented? Computer circuits distinguish between two different
voltage levels to provide logical 0 and 1. For example, logical 0 may be rep-
resented by 0 volts DC and logical 1 by 5 volts DC. The reverse could also be
implemented: 5 volts as logical 0 and 0 volts as logical 1. The only require-
ment is that the hardware design be consistent. Luckily, programmers don’t
need to worry about the actual voltages used—that’s best left to the computer
hardware engineers.

N O T E 	 Electronic devices are designed to operate reliably within a range of voltages. For
example, a device designed to operate at a nominal 5 volts typically has a tolerance
of ±5%, or 4.75 to 5.25 volts.

Because computer circuits are constantly switching between the two volt-
age levels, when the voltage is suddenly switched from one level to another,
computer hardware engineers need to consider the time-dependent char-
acteristics of the circuit elements. We’ll look at these characteristics in the
following section.

Passive Components
All electrical circuits have resistance, capacitance, and inductance. These
electromagnetic properties are distributed throughout any electronic
circuit:

Resistance    Impedes current flow, thus dissipating energy. The elec-
trical energy is transformed into heat.

Capacitance    Stores energy in an electric field. Voltage across a capac-
itance cannot change instantaneously.

Inductance    Stores energy in a magnetic field. Current through an
inductance cannot change instantaneously.

It takes time for energy to be stored as an electric field in capacitance,
or as a magnetic field in inductance, so these two properties impede changes
in voltage and current. These two properties are lumped together with
resistance and called impedance. The impedance to changes slows down the
switching that takes place in a computer, and the resistance consumes elec-
trical power. We’ll be looking at the general timing characteristics of these
properties in the remaining part of this section but will leave a discussion of
power consumption to more advanced books on the topic.

92 Chapter 5

To get a feel for the effects of each of these properties, we’ll consider the
discrete electronic devices that are used to place these properties in a specific
location in a circuit: resistors, capacitors, and inductors. They are part of a
broader class of electronic components called passive components, which can-
not be controlled electronically. They simply consume or store the energy.

Figure 5-3 shows the circuit symbols for the passive electronic devices
we’ll be discussing. Each is described next.

(a) Resistor (b) Capacitor

(c) Inductor (d) Switch

1.0 kΩ 1.0 μF

1.0 μH

Figure 5-3: Circuit symbols for
passive devices

Switches

A switch can be in one of two positions—open or closed. In the open posi-
tion, there is no connection between the two ends. When closed, the con-
nection between the two ends is complete, thus conducting electricity.
The symbol in Figure 5-3 (d) typically indicates a switch that is activated
manually. In “Transistors” on page 100, you’ll learn that a computer uses
transistors for open/closed switches, which are controlled electronically, thus
implementing the on/off logic that forms the basis of a computer.

Resistors

A resistor is used to limit the amount of current in a specific location in a
circuit. By limiting the current flow into a capacitor or inductor, a resistor
affects the time it takes for these other devices to build up their energy
storage. The amount of resistance is usually chosen in conjunction with the
amount of capacitance or inductance to provide specific timing character-
istics. Resistors are also used to limit current flowing through a device to
nondestructive levels.

As it limits current flow, a resistor irreversibly transforms the electri-
cal energy into heat. A resistor doesn’t store energy, unlike a capacitor or
inductor, which can return the stored energy to the circuit at a later time.

The relationship between voltage and current for a single resistor is
given by Ohm’s law,

V(t) = I(t) × R

where V(t) is the voltage difference across the resistor at time t, I(t) is the cur-
rent flowing through it at time t, and R is the value of the resistor. Resistor
values are specified in ohms.

Logic Gates 93

The circuit shown in Figure 5-4 shows two resistors connected through
a switch to a power supply, which supplies 5 volts. The Greek letter Ω is used
to indicate ohms, and kΩ indicates 103 ohms. Since current can flow only
in a closed path, no current flows until the switch is closed.

5.0 V

1.0 kΩ

1.5 kΩ

B

C

A

+

−

I

Figure 5-4: Two resistors in series with a power
supply and switch

In Figure 5-4, both resistors are in the same path, so when the switch is
closed, the same current, I, flows through each of them. Resistors that are
in the same current flow path are said to be connected in series. To determine
the amount of current flowing from the battery, we need to compute the
total resistance in the current path.

The total resistance in the path of the current is the sum of the two
resistors:

R	 = 1.0 kΩ + 1.5 kΩ
 	  = 2.5 kΩ

Thus, the voltage, 5 volts, is applied across a total of 2.5 kΩ. Solving for
I, and leaving out t because the power supply voltage doesn’t vary with time,

I =
R
V

2.5 × 103 ohms

5.0 volts
=

= 2.0 × 10–3 ohms

= 2.0 ma

where ma means milliamps.
We can now determine the voltage difference between points A and B

in the circuit in Figure 5-4 by multiplying the resistor value and current:

VAB	   = 1.0 kΩ × 2.0 ma
	   = 2.0 volts

Similarly, the voltage difference between points B and C is

VBC	   = 1.5 kΩ × 2.0 ma
	   = 3.0 volts

Thus, connecting the resistors in series serves as a voltage divider, divid-
ing the 5 volts between the two resistors—2.0 volts across the 1.0 kΩ resistor
and 3.0 volts across the 1.5 kΩ resistor.

I	  thinsp=VR
	  thinsp=5.0 volts2.5 × 103 ohms
	  thinsp=2.0×10-3amps

= 2.0 ma

94 Chapter 5

Figure 5-5 shows the same two resistors connected in parallel.

5.0 V 1.0 kΩ 1.5 kΩ

A

C

IT

I1 I2
+

−

Figure 5-5: Two resistors in parallel

In Figure 5-5, the full voltage of the power supply, 5 volts, is applied
across points A and C when the switch is closed. Thus, each resistor has
5 volts applied across it, and we can use Ohm’s law to compute the current
through each:

I
1
=

R
1

V

1.0 kΩ

5.0 volts
=

= 5.0 × 10–3 amps

= 5.0 ma

and

I2 =
R

2

V

1.5 kΩ

5.0 volts
=

= 3.3 ma

The total current, IT = I1 + I2, supplied by the power supply when the
switch is closed is divided at point A to supply both the resistors. It must
equal the sum of the two currents through the resistors:

IT	   = I1 + I2

	   = 5.0 ma + 3.3 ma
	   = 8.3 ma

Capacitors

A capacitor stores energy in the form of an electric field, which is essentially
the electric charge at rest. A capacitor initially allows current to flow into
the capacitor. Instead of providing a continuous path for the current flow, a
capacitor stores the electric charge, creating an electric field and thus caus-
ing the current flow to decrease over time.

Since it takes time for the electric field to build up, capacitors are
often used to smooth out rapid changes in voltage. When there is a sudden
increase in current flow into the capacitor, the capacitor tends to absorb

I1	  thinsp=VR1
	  thinsp= 5.0 volts1.0

kΩ
	  thinsp=5.0×10-3

amps
= 5.0 ma

I2	  thinsp=VR 2
	  thinsp= 5.0

volts1.5 kΩ
	  thinsp= 3.3

ma

Logic Gates 95

the electric charge. Then when the current flow suddenly decreases, the
stored electric charge is released from the capacitor.

The voltage across a capacitor changes with time according to

V(t) =
C
1
∫

t

I(t)dt
o

where V(t) is the voltage difference across the resistor at time t, I(t) is the
current flowing through it at time t, and C is the value of the capacitor in
farads; the symbol for farads is F.

N O T E 	 In case you haven’t studied calculus, the ∫ symbol represents integration, which can
be thought of as “infinitesimal summation.” This equation says that the voltage sums
up as time increases from 0 to the current time, t. You’ll see a graphic view of this in
Figure 5-7.

Figure 5-6 shows a 1.0 μF (microfarad) capacitor being charged
through a 1.0 kΩ resistor.

5.0 V
+

−

1.0 kΩ BA I(t)

C

1.0 μF

Figure 5-6: Capacitor in series with a resistor.
VAB is the voltage across the resistor, and VBC is
the voltage across the capacitor.

As you will see later in the chapter, this circuit is a rough simulation of the
output of one transistor connected to the input of another. The output of the
first transistor has resistance, and the input to the second transistor has capac-
itance. The switching behavior of the second transistor depends upon the volt-
age across the (equivalent) capacitor, VBC(t), reaching a threshold value.

Let’s look at the time it takes for the voltage across the capacitor to
charge up to a threshold value. Assuming the voltage across the capacitor,
VBC, is 0 volts when the switch is first closed, current flows through the resis-
tor and into the capacitor. The voltage across the resistor plus the voltage
across the capacitor must be equal to the voltage available from the power
supply. That is,

5.0 = I(t)R + VBC(t)

Starting with the voltage across the capacitor, VBC, at 0 volts, when the
switch is first closed, the full voltage of the power supply, 5 volts, will appear
across the resistor. Thus, the initial current flow in the circuit will be

Iinitial =
1.0 kΩ

= 5.0 ma

5.0 volts

V(t)=1C0
tI(t)dt

I initial	  thinsp=5.0
volts1.0 kΩ

	  thinsp= 5.0 ma

96 Chapter 5

This initial surge of current into the capacitor causes the voltage across
the capacitor to build up toward the power supply voltage. The previous
integral equation shows that this buildup exponentially decreases as the
voltage across the capacitor approaches its final value. As the voltage across
the capacitor, VBC(t), increases, the voltage across the resistor, VAB(t), must
decrease. When the voltage across the capacitor finally equals the voltage
of the power supply, the voltage across the resistor is 0 volts, and current
flow in the circuit becomes zero. The rate of the exponential decrease in
current flow is given by the product of the resistor value and the capacitor
value, RC, called the time constant.

For the values of R and C in this example, we get

RC	  = 1.0 × 103 ohms × 1.0 × 10–6 farads
	   = 1.0 × 10–3 seconds
	   = 1.0 msec

Assuming the capacitor in Figure 5-6 has 0 volts across it when the
switch is closed, the voltage that develops across the capacitor over time is
given by

−t
10-3VBC(t) = 5.0 × (1 – e)

You can see this graphically in Figure 5-7. The left y -axis shows voltage
across the capacitor, while the right-side voltage is across the resistor. Note
that the scales go in opposite directions.

msec.

V B
C,

 v
ol

ts

V A
B,

vo
lts

5

4

3

2

1

0
6 8 100

0

1

2

3

4

5

42

Figure 5-7: Capacitor charging over time
in the circuit in Figure 5-6

At the time t = 1.0 millisecond (one time constant), the voltage across
the capacitor is

VBC =

= 5.0 (1 − e−1)

5.0 1 − e
−10−3

10−3((

= 5.0 × 0.63

= 3.15 volts

VBC(t) = 5.0 × (1
– e-t1.0)

VBC	  thinsp=5.0(1-e-10-310-3)
	  thinsp= 5.0(1-e -1)
	  thinsp=5.0×0.63
	  thinsp= 3.15 volts

Logic Gates 97

which is more than the threshold voltage of the typical transistors used in a
computer. Again, you’ll learn more about this later in the chapter.

After six constants of time have passed, the voltage across the capacitor
has reached

VBC =

= 5.0 (1 − e−1)

5.0 1 − e
−6 × 10−3

10−3((

= 5.0 × 0.63

= 3.15 volts

At this time, the voltage across the resistor is essentially 0 volts, and cur-
rent flow is very low.

Inductors

An inductor stores energy in the form of a magnetic field, which is created by
electric charge in motion. An inductor initially prevents the flow of electri-
cal charge, requiring time for the magnetic field to build. By providing a
continuous path for the flow of electrical charge (current), an inductor cre-
ates the magnetic field.

In a computer, inductors are mainly used in the power supply and the
circuitry that connects the power supply to the CPU. If you have access to the
inside of a computer, you can probably see a small (about 1 cm in diameter)
donut-shaped device with wire wrapped around it on the motherboard near
the CPU. This is an inductor used to smooth the power supplied to the CPU.

Although either an inductor or a capacitor can be used to smooth the
power, the inductor does it by resisting current changes, and the capacitor
does it by resisting voltage changes. The choice of which one, or even both,
to use for smoothing would take us into a much more complicated discus-
sion of electronics.

The relationship between voltage V(t) at time t across an inductor and
current flow through it, I(t), is given by the equation

dt
dI(t)

V(t) = L

where L is the value of the inductor in henrys; the symbol for henrys is H.

N O T E 	 Again, we’re using some calculus here. The dI(t)/dt notation represents differentia-
tion, which is the rate of change of I(t) with respect to time, t. This equation says that
the voltage at time, t, is proportional to the rate of change of I at that time. (You’ll see
a graphic view of this later in Figure 5-9.)

Figure 5-8 shows a 1.0 μH inductor connected in series with a 1.0 kΩ
resistor.

VBC	  thinsp=5.0(1-e-6×10-310-3)
	  thinsp=5.0(1-e -6)
	  thinsp= 5.0×0.997
	  thinsp=4.99 volts

V(t)=LdI(t)dt

98 Chapter 5

5.0 V
+

−

1.0 μH BA I(t)

C

1.0 kΩ

Figure 5-8: Inductor in series with a resistor

When the switch is open, no current flows through this circuit. Upon
closing the switch, the inductor initially impedes the flow of current, tak-
ing time for a magnetic field to be built up in the inductor. Before the
switch is closed, no current is flowing through the resistor, so the volt-
age across it, VBC, is 0 volts. The full voltage of the power supply, 5 volts,
appears across the inductor, VAB. As current begins to flow through the
inductor, the voltage across the resistor, VBC(t), grows. This results in an
exponentially decreasing voltage across the inductor. When the voltage
across the inductor finally reaches 0 volts, the voltage across the resistor is
5 volts, and current flow in the circuit is 5.0 ma.

The rate of the exponential voltage decrease is given by the time con-
stant L/R. Using the values of R and L in Figure 5-8, we get

1.0 × 103 ohms

1.0 × 10–6 henrys
=

R

L

= 1.0 × 10–9 seconds

= 1.0 nanoseconds

When the switch is closed, the voltage that develops across the inductor
over time is given by

−t

10−9V
AB

(t) = 5.0 × e

as shown in Figure 5-9. The left y -axis shows voltage across the resistor, with
the right-side voltage across the inductor. Note that the scales go in oppo-
site directions.

nanosec.

V B
C,

 v
ol

ts

V A
B,

vo
lts

5

4

3

2

1

0
6 8 100

0

1

2

3

4

5

42

Figure 5-9: Inductor building a magnetic
field over time in the circuit in Figure 5-8

LR	  thinsp=1.0×10-6 hen-
rys1.0×103 ohms

	  thinsp=1.0×10-9 sec-
onds

=1.0 nanoseconds

VAB(t)=5.0×e-t10-9

Logic Gates 99

At time t = 1.0 nanoseconds (one time constant), the voltage across the
inductor is

VAB =

= 5.0 (1 − e−1)

5.0 1 − e
−10−9

10−9

= 5.0 × 0.63

= 3.15 volts

After about 6 nanoseconds (six time constants), the voltage across the
inductor is essentially equal to 0 volts. At this time, the full voltage of the
power supply is across the resistor, and a steady current of 5.0 ma flows.

This circuit in Figure 5-8 shows how inductors can be used in a CPU
power supply. The power supply in this circuit simulates the computer power
supply, and the resistor simulates the CPU, which is consuming the electri-
cal energy from the power supply. The voltage produced by a power supply
includes noise, which consists of small, high-frequency fluctuations added to
the DC level. As shown in Figure 5-9, the voltage supplied to the CPU, VBC(t),
changes little over short periods of time. The inductor connected in series
between the power supply and the CPU acts to smooth out the voltage that
powers the CPU.

Power Consumption

An important part of hardware design is power consumption, especially in
battery-powered devices. Of the three electromagnetic properties we’ve dis-
cussed here, resistance is the primary consumer of power.

Energy is the ability to cause change, and power is a measure of how fast
energy can be used to make the change. The basic unit of energy is a joule.
The basic unit of power is a watt, which is defined as expending one joule
per second. For example, I have a backup battery that can store 240 WH.
That means it can store enough energy to provide 240 watts for one hour or
120 watts for two hours. It can store 240 WH × 360 seconds/hour = 864,000
joules. The units for volt and ampere are defined such that 1 watt = 1 volt ×
1 ampere. This gives rise to the formula for power,

P = V × I

where P is the power used, V is the voltage across the component, and I is
the current flowing through it.

After a brief charging time, a capacitor prevents current flow, so the
amount of power used by a capacitor goes to zero. It simply stores energy in the
form of an electrical field. And after a brief field buildup time, the voltage
across an inductor goes to zero, so the amount of power used by an inductor
goes to zero. An inductor stores energy in the form of a magnetic field.

However, a resistor doesn’t store energy. As long as there is a voltage
difference across a resistor, current flows through it. The power used by a
resistor, R, is given by

P 	 = V × I
	  = I × R × I
	  = I2 × R

VAB=5.0(1-e-10-910-9)
= 5.0(1-e -1)
=5.0×0.63
=3.15 volts

100 Chapter 5

This power is converted to heat in the resistor. Since the power con-
sumption increases by the square of the current, a common hardware
design goal is to reduce the amount of current flow.

This section has been an idealized discussion of the passive compo-
nents that computer engineers include in their designs. In the real world,
each component includes elements of all three characteristics—resistance,
capacitance, and inductance—that the hardware design engineer needs
to take into account. These secondary effects are subtle and often trouble-
some in the design.

The rest of this chapter is devoted to discussing the active components,
those controlled electronically, that are used to implement the switches
that are the basis for a computer. As you will see, the active components
include resistance and capacitance, which affect the design of the circuit
they’re used in.

Transistors
We have already described a computer as a collection of two-state switches.
In previous chapters, we discussed how data can be represented by the set-
tings, 0 or 1, of these switches. Then we moved on to look at how 0s and 1s
can be combined using logic gates to implement logical functions. In this
section, we’ll see how transistors can be used to implement the two-state
switches that make up a computer.

A transistor is a device whose resistance can be controlled electronically,
thus making it an active component. The ability to be controlled electronically
is what distinguishes the switches made from transistors from the simple
on/off switches you saw earlier in the chapter, which could be controlled
mechanically. Before describing how a transistor can be used as a switch,
let’s look at how we’d implement a logic gate using mechanical on/off
switches. We’ll use the NOT gate for this example.

Figure 5-10 shows two push-button switches connected in series between
5 volts and 0 volts. The top switch is normally closed. When its button is
pushed (from the left side), the connection between the two small circles is
broken, thus opening the circuit at this point. The bottom switch is normally
open. When its button is pushed, a connection is made between the two
small circles, thus completing the circuit at this point.

Now we’ll let 5 volts represent a 1 and 0 volts a 0. The input to this NOT
gate, x, pushes the two buttons simultaneously. We will control x in the
following way: when x = 1, we’ll push the two buttons, and when x = 0, we
will not push the buttons. When the button is not pushed, x = 0, the 5 volts
are connected to the output, ¬x, which represents 1. When the button is
pushed, x = 1, the 5 volts are disconnected, and the 0 volts, which represent
0, are connected to the output. Thus, an input of 1 gets an output of 0, and
an input of 0 gets an output of 1—a NOT gate.

Early computing devices did use mechanical switches to implement
their logic, but the results were very slow by today’s standards. Modern

Logic Gates 101

computers use transistors, which are electronic devices made from semicon-
ductor materials that can be switched between their conducting and non-
conducting states quickly under electronic control.

5 V

0 V

x ¬x

Figure 5-10: NOT gate made
from two push-button switches

Just as with the mechanically controlled push-button example, we use
two different voltages to represent 1 and 0. For example, we might use a
high voltage, say +5 volts, to represent 1, and a low voltage, say 0 volts, to
represent 0. But transistors can be switched on or off electronically, which
makes them much faster than the mechanical switches used in the original
computers. Transistors take up much less space and consume much less
electrical power.

In the following sections, we’ll look at two transistors commonly used in
modern computers.

MOSFET Switch
The most commonly used switching transistor in today’s computer logic
circuits is the metal-oxide-semiconductor field-effect transistor (MOSFET). There
are several types of MOSFET that use different voltage levels and polarities.
I’ll describe the behavior of the most common type, the enhancement-mode
MOSFET, and leave the details of the other variations to more advanced
books on the topic. The brief discussion here should help you to under-
stand the basics of how they work.

The basic material in a MOSFET is typically silicon, which is a semicon-
ductor, meaning it conducts electricity, but not very well. Its conductivity is
improved by adding an impurity, a process called doping. Depending on the
type of impurity, the electrical conductivity can be either the flow of electrons
or the flow of lack of electrons (called holes). Since electrons have a negative
electrical charge, the type that conducts electrons is called N-type, and the
type that conducts holes is called P-type. The main conduction path through
a MOSFET is the channel, which is connected between the source and the drain
terminals on the MOSFET. The gate is made from the opposite type of semi-
conductor. The gate controls the conductivity through the channel.

102 Chapter 5

Figure 5-11 (a) and (b) shows the two basic types of MOSFET, N-channel
and P-channel, respectively. I’ve shown each MOSFET connected to a 5-volt
power source through a resistor.

5 V

0 V

(a) N-channel (b) P-channel

Gate

Drain

Source

5 V

0 V

Gate

Drain

Source

R

R

Figure 5-11: Two basic types of MOSFETs

These are simplified circuits so we can discuss how MOSFETs work.
Each MOSFET has three connection points, or terminals. The gate is used
as the input terminal. Voltage applied to the gate, relative to the volt-
age applied to the source, controls current flow through the MOSFET.
The drain is used as the output. The source of an N-channel MOSFET is
connected to the lower voltage of the power supply, and the source of a
P-channel is connected to the higher voltage.

After learning about complements in Boolean algebra, it probably
does not surprise you that the two types of MOSFETs have complementary
behavior. You’ll see in the following sections how we can connect them in
complementary pairs that make for faster, more efficient switches than
using only one.

First, we’ll look at how each works as a single switching device, starting
with the N-channel MOSFET.

N-Channel MOSFET

In Figure 5-11 (a), the drain of the N-channel MOSFET is connected to the
5-volt side of the power supply through the resistor, R, and the source to the
0-volt side.

When the voltage applied to the gate is positive with respect to the
source, the resistance between the drain and the source of the N-channel
MOSFET decreases. When this voltage reaches a threshold value, typically
in the range of 1 volt, the resistance becomes very low, thus providing a
good conduction path for current between the drain and the source. The
resulting circuit is equivalent to Figure 5-12 (a).

In this circuit, Figure 5-12 (a), current flows from the 5-volt connection
of the power supply to the 0-volt connection through the resistor R. The
voltage at the drain will be 0 volts. A problem with this current flow is that
the resistor consumes power, simply converting it to heat. In a moment,

Logic Gates 103

we’ll see the reason we don’t want to increase the amount of resistance to
limit the current flow to reduce power consumption.

5 V

0 V
Source

Drain

R

Gate = 5 V

(a) N-channel MOSFET on

5 V

0 V
Source

Drain

R

Gate = 0 V

(b) N-channel MOSFET off

Figure 5-12: N-channel MOSFET switch equivalent circuit: (a) switch
closed, (b) switch open

If the voltage applied to the gate is switched to be nearly the same as
the voltage applied to the source, 0 volts in this example, the MOSFET
turns off, resulting in the equivalent circuit shown in Figure 5-12 (b). The
drain is typically connected to another MOSFET’s gate, which draws cur-
rent only briefly as it switches from one state to the other. After this brief
switching of state, the connection of the drain to another MOSFET’s gate
does not draw current. Since no current flows through the resistor, R, there
is no voltage difference across it. Thus, the voltage at the drain will be at
5 volts, and the resistor is said to be acting as the pull-up device, because when
the MOSFET is turned off, the circuit is completed through the resistor,
which acts to pull the voltage on the drain up to the higher voltage of the
power supply.

P-channel MOSFET

Now, let’s look at the P-channel MOSFET, shown in Figure 5-11 (b). Here
the drain is connected to the lower voltage (0 V) through a resistor, and
the source is connected to the higher-voltage power supply (5 V). When the
voltage applied to the gate is switched to be nearly the same as the voltage
applied to the source, the MOSFET turns off. In this case, the resistor, R,
acts as a pull-down device, to pull the voltage on the drain down to 0 volts.
Figure 5-13 (a) shows the equivalent circuit.

When the voltage applied to the gate is negative with respect to
the source, the resistance between the drain and source of the P-channel
MOSFET decreases. When this voltage reaches a threshold value, typically
in the range of –1 volt, the resistance becomes very low, thus providing
a good conduction path for current between the drain and the source.
Figure 5-13 (b) shows the resulting equivalent circuit when the gate is –5
volts with respect to the source.

There are a couple of problems with both MOSFET types. Looking at
the equivalent circuits in Figure 5-12 (a) and 5-13 (b), you can see that the
respective MOSFET in its on state acts like a closed switch, thus causing

104 Chapter 5

current to flow through the pull-up or pull-down resistor. The current flow
through the resistor when the MOSFET is in its on state consumes power
that is simply converted to heat.

5 V

0 V

Source

Drain

R

Gate = 5 V

(a) P-channel MOSFET off

5 V

0 V

Source

Drain

R

Gate = 0 V

(b) P-channel MOSFET on

Figure 5-13: P-channel MOSFET switch equivalent circuit: (a) switch
closed, (b) switch open

In addition to the pull-up and pull-down resistors using power when
a MOSFET is in its on state, there’s another problem with this hardware
design. Although the gate of a MOSFET draws essentially no current to
remain in either an on or off state, a brief burst of current into the gate is
required to change the MOSFET’s state. That current is supplied by the
device connected to the gate, probably from the drain of another MOSFET.
We won’t go into the details in this book, but the amount of current that
can be supplied at the drain from this other MOSFET is largely limited by
its pull-up or pull-down resistor. The situation is essentially the same as that
in Figures 5-6 and 5-7, where you saw that the time it takes to charge a capaci-
tor is longer for higher-resistance values.

So, there’s a trade-off here: the larger the resistors, the lower the cur-
rent flow, which reduces power consumption when the MOSFET is in the on
state. But a larger resistor also reduces the amount of current available at
the drain, thus increasing the amount of time it takes to switch a MOSFET
connected to the drain. We’re left with a dilemma: small pull-up and pull-
down resistors increase power consumption, but large resistors slow down
the computer.

CMOS Switch
We can solve this dilemma with complementary metal-oxide semiconductor
(CMOS) technology. To see how this works, let’s eliminate the pull-up and
pull-down resistors and connect the drains of a P-channel and an N-channel
together. The P-channel will replace the pull-up resistor in the N-channel cir-
cuit, and the N-channel will replace the pull-down resistor in the P-channel
circuit. We’ll also connect the two gates together, giving the circuit shown in
Figure 5-14.

Logic Gates 105

5 V
P source

Drains

N source
0 V

Gates

Figure 5-14: CMOS inverter
(NOT) circuit

Figure 5-15 (a) shows the equivalent circuit with the gates at the higher
power supply voltage, 5 volts. The pull-up MOSFET (a P-channel) is off,
and the pull-down MOSFET (an N-channel) is on, so the drains are pulled
down to the lower power supply voltage, 0 volts. In Figure 5-15 (b) the gates
are at the lower power supply voltage, 0 volts, which turns the P-channel
MOSFET on and the N-channel MOSFET off. The P-channel MOSFET
pulls the drains up to the higher power supply voltage, 5 volts.

5 V
P source

N source

Drains

0 V

(a) N-channel on

Gates = 5 V

5 V
P source

N source

Drains

0 V

(b) P-channel on

Gates = 0 V

Figure 5-15: CMOS inverter equivalent circuit: (a) pull-up open and
pull-down closed, (b) pull-up closed and pull-down open

We can summarize this behavior in Table 5-1.

Table 5-1: Truth Table
for a Single CMOS

Gates Drains

0 V 5 V

5 V 0 V

If we use the gates connection as the input, we use the drains connec-
tion as the output, and we let 5 volts be logical 1 and 0 volts logical 0, then
the CMOS implements a NOT gate.

106 Chapter 5

The two main advantages of using CMOS circuits are

•	 They consume very little power. Because of the switching speed differ-
ence between N-channel and P-channel MOSFETs, only a small amount
of current flows during the switching period. Less current means less
heat, which is often the limiting factor in chip design.

•	 The circuit responds much faster. A MOSFET can supply the current
at its output faster than a resistor, charging the gate of the following
MOSFET. This allows us to build faster computers.

Figure 5-16 shows an AND gate implemented with three CMOSs.

5 V

5 V

0 V

0 V

x

y

A x ∧ y

Figure 5-16: AND gate from three CMOS transistors

The truth table, Table 5-2, shows the intermediate output from the first
two CMOSs, point A in Figure 5-16.

Table 5-2: Truth Table
for the AND Gate of
Figure 5-16

x y A x ∧ y

0 0 1 0

0 1 1 0

1 0 1 0

1 1 0 1

From the truth table, we see that the signal at point A is ¬(x ∧ y). The
circuit from point A to the output is a NOT gate. The result at point A is
called the NAND operation. It requires two fewer transistors than the AND
operation. We’ll look at the implications of this result in the next section.

Logic Gates 107

NAND and NOR Gates
As we saw in the previous section, the inherent design of transistors means
that most circuits invert the signal. That is, for most circuits, a high voltage
at the input produces a low voltage at the output, and vice versa. As a result,
an AND gate will typically require a NOT gate at the output to achieve a
true AND operation.

You also learned that it takes fewer transistors to produce NOT(AND)
than a regular AND. The combination is so common that it has been given
the name NAND gate. And, of course, we have an equivalent with the OR
gate, called the NOR gate.

NAND   A binary operator that gives a result of 0 if and only if both
operands are 1 and gives 1 otherwise. We’ll use ¬(x ∧ x) to designate the
NAND operation. Figure 5-17 shows the hardware symbol for the NAND
gate along with a truth table showing its operation on inputs x and y.

x y ¬(x ∧ y)

0 0 1

0 1 1

1 0 1

1 1 0

Figure 5-17: The NAND gate acting on two variables, x and y

NOR   A binary operator that gives a result of 0 if at least one of the two
operands is 1 and gives 1 otherwise. We’ll use ¬(x ∨ y) to designate the
NOR operation. Figure 5-18 shows the hardware symbol for the NOR
gate along with a truth table showing its operation on inputs x and y.

x y ¬(x ∨ y)

0 0 1

0 1 0

1 0 0

1 1 0

Figure 5-18: The NOR gate acting on two variables, x and y

Notice the small circle at the output of the NAND and NOR gates in
Figure 5-18. This signifies NOT, just as with the NOT gate (Figure 4-3).

x
y ¬(x ∧ y)

x
y ¬(x ∨ y)

108 Chapter 5

Although in the previous chapter we explicitly showed NOT gates when
inputs to gates are complemented, it’s common to simply use these small
circles at the input to signify the complement. For example, Figure 5-19
shows an OR gate with both inputs complemented.

x y (¬x ∨ ¬y) ¬(x ∧ y)

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

Figure 5-19: An alternate way to draw a NAND gate

As the truth table shows, this is another way to implement a NAND
gate. As you learned in Chapter 4, De Morgan’s law confirms this:

¬(x ∧ y) = (¬x ∨ ¬y)

NAND as a Universal Gate
One of the interesting properties about NAND gates is that they can be
used to build AND, OR, and NOT gates. This means the NAND gate can
be used to implement any Boolean function. In this sense, you can think of
the NAND gate as a universal gate. Recalling De Morgan’s law, it probably
won’t surprise you that a NOR gate can also be used as a universal gate. But
the physics of CMOS transistors is such that NAND gates are faster and take
less space, so they are almost always the preferred solution.

Let’s go through how to use a NAND gate to build AND, OR, and NOT
gates. To build a NOT gate using NAND, simply connect the signal to both
inputs of a NAND gate, as shown in Figure 5-20.

x ¬(x ∧ x) = ¬x

Figure 5-20: A NOT gate built
from a NAND gate

To make an AND gate, we can observe that the first NAND gate in
Figure 5-21 produces ¬(x ∧ y) and connect it to a NOT gate to produce (x ∧ y).

We can use De Morgan’s law to derive an OR gate. Consider the
following:

¬(¬x ∧ ¬y)	 = ¬(¬x) ∨ ¬(¬y)
	  = x ∨ y

x
y ¬x ∨ ¬y

Logic Gates 109

x
y x ∧ y

¬(x ∧ y)

Figure 5-21: An AND gate built
from two NAND gates

So to implement OR, we need three NAND gates, as shown in
Figure 5-22. The two NAND gates at the x and y inputs are connected at
NOT gates to produce ¬x and ¬y, which gives ¬((¬x) ∨ (¬y)) at the output
of the third NAND gate.

x

y
x ∨ y

Figure 5-22: An OR gate built from
three NAND gates

It looks like we are creating more complexity to build circuits from
NAND gates, but consider this function:

F(w, x , y, z) = (w ∧ x) ∨ (y ∧ z)

Without knowing how logic gates are constructed, it would be reason-
able to implement this function with the circuit shown in Figure 5-23.

(w ∧ x) ∨ (y ∧ z)

w

z

x

y

Figure 5-23: F(w, x, y, z) using two AND
gates and one OR gate

The involution property states that ¬(¬x) = x, so we can add two NOT
gates in each path, as shown in Figure 5-24.

(w ∧ x) ∨ (y ∧ z)

w

z

x

y

Figure 5-24: F(w, x, y, z) using two AND gates, one
OR gate, and four NOT gates

Comparing the two AND-gate/NOT-gate combinations that operate on
the w, x, y, and z inputs with Figure 5-17, we see that each is simply a NAND
gate. They will produce ¬(w ∧ x) and ¬(y ∧ z) at the outputs of the two left-
most NOT gates.

110 Chapter 5

We saw from the application of De Morgan’s law in Figure 5-19 that (¬a)
∨ (¬b) = ¬(a ∧ b). In other words, we can replace the combination of the two
rightmost NOT gates and OR gate with a single NAND gate.

¬(¬(w ∧ x) ∧ ¬(y ∧ z)) = (w ∧ x) ∨ (y ∧ z)

The resulting circuit in Figure 5-25 uses three NAND gates.

w

z

x

y
(w ∧ x) ∨ (y ∧ z)

Figure 5-25: F(w, x, y, z) using only three
NAND gates

From simply viewing the logic circuit diagrams in Figures 5-23 and 5-25,
it may seem that we haven’t gained anything in this circuit transformation.
But we saw in the previous section that a NAND gate (point A in Figure 5-16)
requires two fewer transistors than an AND gate. Thus, the NAND gate
implementation is less power intensive and faster. Although we don’t show it
here, the same is true of an OR gate.

The conversion from an AND/OR/NOT gate design to one that uses
only NAND gates is straightforward:

1.	 Express the function as a minimal sum of products.

2.	 Convert the products (AND terms) and the final sum (OR) to NANDs.

3.	 Add a NAND gate for any product with only a single literal.

Everything I’ve said about NAND gates here applies to NOR gates. You
simply apply DeMorgan’s law to find the complement of everything. But as
mentioned, NAND gates are typically faster and take less space than NOR
gates, so they are almost always the preferred solution.

As with software, hardware design is an iterative process. Most prob-
lems do not have a unique solution, and you often need to develop several
designs and analyze each one within the context of the available hardware.
As the previous example shows, two solutions that look the same on paper
may be very different at the hardware level.

YOUR T UR N

1.	 Design a NOT gate, AND gate, and OR gate using NOR gates.

2.	 Design a circuit using NAND gates that detects the “below” condition for
two two-bit integers, x and y, F(x, y) = 1. It’s common to use below/above
for unsigned integer comparisons and less-than/greater-than for signed
integer comparisons.

Logic Gates 111

What You’ve Learned

Basic electronics concepts   Resistance, capacitance, and inductance
affect the voltages and current flow in an electronic circuit.

Transistors   Semiconductor devices that can be used as electronically
controlled switches.

MOSFET   Metal-oxide-semiconductor field-effect transistors are the
most commonly used switching device for implementing logic gates in
computers. They come in both N-channel and P-channel types.

CMOS   N-channel and P-channel MOSFETs are paired in a comple-
mentary configuration to increase switching speed and reduce power
consumption.

NAND and NOR gates   These require fewer transistors than AND
and OR gates because of the inherent electronic characteristics of
transistors.

In the next chapter, you’ll see how simple logic gates are connected in
circuits to implement the complex operations needed to build a computer.

6
C O M B I N A T I O N A L
L O G I C C I R C U I T S

In the previous chapter, you learned about
a computer’s basic component, the logic

gate. Computers are constructed from assem-
blages of logic gates, called logic circuits, that

process digital information. In this and the following
two chapters, we’ll look at how to build some of the
logic circuits that make up CPUs, memory, and other
devices. We won’t describe any of these units in their
entirety; instead, we’ll look at a few small parts and dis-
cuss the concepts behind them. The goal is to provide
an introductory overview of the ideas that underlie these
logic circuits.

114 Chapter 6

The Two Classes of Logic Circuits
Logic circuits come in two classes:

Combinational   A combinational logic circuit has output that depends
only on the inputs given at any specific time and not on any previous
inputs.

Sequential   A sequential logic circuit has outputs that depend both on
previous and current inputs.

To elucidate these two types, let’s consider a TV remote. You can select
a specific channel by entering a number on the remote. The channel selec-
tion depends only on the number you entered and ignores the channels
you were viewing before. Thus, the relationship between the input and the
output is combinational.

The remote control also has an input for going up or down one chan-
nel. This input depends on the previously selected channel and the previous
sequence of up/down button pushes. The channel up/down buttons illus-
trate a sequential input/output relationship.

We’ll explore sequential logic circuits in the next chapter. In this chap-
ter, we’ll go through several examples of combinational logic circuits to see
how they function.

SIGN A L VOLTAGE L E V EL S

Electronic logic circuits represent 1s and 0s with either a high or low voltage.
We call the voltage that represents 1 the active voltage. If we use a higher volt-
age to represent 1, then the signal is called active-high. If we use a lower voltage
to represent 1, then the signal is called active-low.

An active-high signal can be connected to an active-low input, but the
hardware designer must take the difference into account. For example, say
that the required logical input to an active-low input is 1. Since it is active-
low, that means the required voltage is the lower of the two. If the signal to
be connected to this input is active-high, then a logical 1 is the higher of the
two voltages, and the signal must first be complemented to be interpreted as
a 1 at the active-low input.

I will use only logic levels—0 and 1—in the discussions of logic circuits in
this book and avoid the actual voltage levels being used in the hardware. But
you should know about the terminology because it can come up when talking
to others or reading specifications sheets for components.

Combinational Logic Circuits 115

Adders
We’ll start with one of the most fundamental operations performed in
the CPU: adding two bits. Our eventual goal is to add two n -bit numbers.

Remember from Chapter 2 that the bits in a binary number are num-
bered from right (the least significant bit) to left (the most significant bit),
starting with 0. We will start by showing how to add two bits in the ith bit
position and complete the discussion showing how to add two four-bit num-
bers, taking into account the carry from each bit position.

Half Adder
Addition can be done with several kinds of circuits. We’ll start with the half
adder, which simply adds the two bits in the current bit position of a number
(expressed in binary). This is shown by the truth table, Table 6-1. In this
table, xi is the i th bit of the number x. The values in the yi column repre-
sent the i th bit of the number y. Sumi is the i th bit of the number, Sum, and
Carryi+1 is the carry from adding bits xi and yi.

Table 6-1: Adding Two Bits,
Half-Adder

xi yi Carryi+1 Sumi

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

The sum is the XOR of the two inputs, and the carry is the AND of the
two inputs. Figure 6-1 shows the logic circuit for a half adder.

xi

yi
Sumi

Carryi+1

Figure 6-1: A half adder circuit

But there’s a flaw here: the half adder works with only two input bits. It
can be used to add the two bits from the same bit position of two numbers,
but it doesn’t take into account a possible carry from the next lower-order
bit position. To allow for the carry, we’ll have to add a third input.

116 Chapter 6

Full Adder
Unlike the half adder, a full adder circuit has three one-bit inputs, Carryi, xi,
and yi. Carryi is the carry that resulted when you added the two bits in the
previous bit position (the bit to the right). For example, if we’re adding the
two bits in bit position 5, the inputs to the full adder are the two bits in posi-
tion 5 plus the carry from adding the bits in bit position 4. Table 6-2 shows
the results.

Table 6-2: Adding Two Bits, Full Adder

Carryi xi yi Carryi+1 Sumi

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

To design a full adder circuit, we start with the function that specifies
when Sumi is 1 as a sum of product terms from Table 6-2.

Sumi(Carryi, xi, yi) = (¬ Carryi ∧ ¬ xi ∧ yi) ∨ (¬ Carryi ∧ xi ∧ ¬ yi)
∨ (Carryi ∧ ¬ xi ∧ ¬ yi) ∨ (Carryi ∧ xi ∧ yi)

There are no obvious simplifications in this equation, so let’s look at the
Karnaugh map for Sumi (Figure 6-2).

00 01 11 10

0

1

1 1

11

Sumi(Carryi, xi, yi)

Carryi

xiyi

Figure 6-2: A Karnaugh map for sum
of three bits, Carryi, xi, and yi

There are no obvious groupings in Figure 6-2, so we are left with the
four product terms to compute Sumi in the previous equation.

We saw in Chapter 4 that Carryi+1 can be expressed by this equation:

Carryi+1(Carryi, xi, yi) = (xi ∧ yi) ∨ (Carryi ∧ xi) ∨ (Carryi ∧ yi)

Combinational Logic Circuits 117

Together, these two functions give the circuit for a full adder in Figure 6-3.

xi
yi

Carryi

Sumi

Carryi+1

Figure 6-3: A full adder circuit

As you can see, the full adder uses nine logic gates. In the next section,
we’ll see if we can find a simpler circuit.

Full Adder from Two Half Adders
To see if we can find a simpler solution for adding two bits and the carry
from the next lower-order bit position, let’s go back to the equation for
Sumi. Using the distribution rule, we can rearrange:

Sumi(Carryi, xi, yi)  = ¬ Carryi ∧ ((¬ xi ∧ yi) ∨ (xi ∧ ¬ yi))
∨ Carryi ∧ ((¬ xi ∧ ¬ yi) ∨ (xi ∧ yi))

In Chapter 4, you learned that the quantity in the parentheses in the
first product term is the XOR of xi and yi:

(¬ xi ∧ yi) ∨ (xi ∧ ¬ yi) = xi ⊻ yi

Thus, we have this:

Sumi(Carryi, xi, yi) = ¬ Carryi ∧ (xi ⊻ yi) ∨ Carryi ∧ ((¬ xi ∧ ¬ yi) ∨ (xi ∧ yi))

Now let’s manipulate the quantity in the parentheses in the second
product term. Recall that in Boolean algebra x ∧ ¬ x = 0, so we can write
the following:

(¬ xi ∧ ¬ yi) ∨ (xi ∧ yi)	  = (xi ∧ ¬ xi) ∨ (¬ xi ∧ ¬ yi) ∨ (xi ∧ yi) ∨ (yi ∧ ¬ yi)
	   = xi ∧ (¬ xi ∨ yi) ∨ ¬ yi ∧ (¬ xi ∨ yi)
	   = (xi ∨ ¬ yi) ∧ (¬ x ∨ yi)
	   = xi ⊻ yi

118 Chapter 6

Thus,

Sumi(Carryi, xi, yi)	  = Carryi ∧ (xi ⊻ yi) ∨ Carryi ∧ ¬ (xi ⊻ yi)
	   = Carryi ∨ (xi ⊻ yi)

We’ll do something to develop a Boolean function for Carryi+1 that will
probably seem counterintuitive. Let’s start with the Karnaugh map for carry
when adding three bits, Figure 4-13 from Chapter 4, but remove two of the
groupings, as shown by the dotted lines in Figure 6-4.

xiyi

00 01 11 10

0

1
Carryi

Carryi+1(Carryi, xi, yi)

1

11 1

Figure 6-4: The Karnaugh map for carry
from Figure 4-13, redrawn without two
overlapping groupings (dotted lines)

This will give us the following equation:

Carryi+1	  = (xi ∧ yi) ∨ (Carryi ∧ ¬ xi ∧ yi) ∨ (Carryi ∧ xi ∧ ¬ yi)
	   = (xi ∧ yi) ∨ Carryi ∧ ((¬ xi ∧ yi) ∨ (xi ∧ ¬ yi))
	   = (xi ∧ yi) ∨ (Carryi ∧ (xi ⊻ yi))

Notice that two of the terms in this equation, (xi ∧ yi) and (xi ⊻ yi)
are already generated by a half adder (see Figure 6-1). So with a second
half adder and an OR gate, we can implement a full adder, as shown in
Figure 6-5.

xi
yi

Carryi

Sumi

Carryi+1

Figure 6-5: Full adder using two half adders

Now you can see where the terms half adder and full adder come from.
A simple circuit is not always better. In truth, we cannot say which of

the two full adder circuits, Figure 6-3 or Figure 6-5, is better just from
looking at the logic circuits. Good engineering design depends on many
factors, such as how each logic gate is implemented, the cost of the logic
gates and their availability, and so forth. The two designs are given here
to show that different approaches can lead to different, but functionally
equivalent, designs.

Combinational Logic Circuits 119

Ripple-Carry Addition and Subtraction Circuits
Now we know how to add the two bits in a given bit position, plus a carry
from the next lower-order bit position. But most values that a program
works with have many bits, so we need a way to add the corresponding bits
in each bit position of two n-bit numbers. This can be done with an n-bit
adder, which can be implemented with n full adders. Figure 6-6 shows a
four-bit adder.

x3 y3 x2 y2 x1 y1 x0 y0

Full adder

c4 s3

c3

s2

c2

s1

c1

s0

0

s = x + y
CF = c4
OF = c3 ⩡ c4

Full adder Full adder Full adder

Figure 6-6: Four-bit adder

Addition begins with the full adder on the right receiving the two
lowest-order bits, x0 and y0. Since this is the lowest-order bit, there is no
carry, and c0 = 0. The bit sum is s0, and the carry from this addition, c1,
is connected to the carry input of the next full adder to the left, where it is
added to x1 and y1.

Thus, the i th full adder adds the two i th bits of the operands, plus the
carry (which is either 0 or 1) from the (i – 1)th full adder. Each full adder
handles one bit (often referred to as a slice) of the total width of the values
being added. The carry from each bit position is added to the bits in the
next higher-order bit position. The addition process flows from the lowest-
order bit to the highest-order in a sort of rippling effect, which gives this
method of adding the name ripple-carry addition.

Notice that in Figure 6-6, we have CF and OF, the carry flag and overflow
flag. You learned about carry and overflow in Chapter 3. Whenever the CPU
performs an arithmetic operation, addition in this case, it records whether
carry and overflow occurred in the rflags register. You will learn about this
register in Chapter 9.

Now let’s see how we can use a similar idea to implement subtraction.
Recall that in two’s complement, a number is negated by taking its two’s
complement, flipping all the bits, and adding 1. Thus, we can subtract y
from x by doing this:

x – y	  = x + (two's complement of y)
	   = x + ((y's bits f lipped) + 1)

120 Chapter 6

Subtraction can be performed with our adder in Figure 6-5 if we
complement each yi and set the initial carry in to 1 instead of 0. Each yi can
be complemented by XORing it with 1. This leads to the four-bit circuit in
Figure 6-7, which will add two four-bit numbers when func = 0 and subtract
them when func = 1.

x3 y3 x2 y2 x1 y1 x0 y0

func

if (func == 0)
 s = s + y
else // func is 1
 s = x – y
CF = c4
OF = c3 ⊻ c4

c4 s3

c3

s2

c2

s1

c1

s0

Full adder Full adder Full adder Full adder

Figure 6-7: Four-bit adder/subtractor

There is, of course, a time delay as the sum is computed from right to
left. The computation time can be significantly reduced through more com-
plex circuit designs that precompute the values of CF carry and OF, but we
won’t go into such details in this book. Let’s turn to our next type of circuit.

YOUR T UR N

You learned about the carry flag (CF) and overflow flag (OF) in the rflags regis-
ter in Chapter 3. The rflags register also contains a zero flag (ZF) and a nega-
tive flag (NF). The ZF is 1 when the result of an arithmetic operation is zero, and
the NF is 1 when the result is a negative number if the number is considered to
be in two’s complement notation. Design a circuit that uses the outputs of the full
adders in Figure 6-7, s0, s1, s2, s3, c3, and c4, and outputs the CF, OF, NF, and ZF.

Combinational Logic Circuits 121

Decoders
Many places in a computer require selecting one of several connections
based on a number. For example, as you will see in a few chapters, the CPU
has a small amount of memory organized in registers, which are used for
computations. The x86-64 architecture has sixteen 64-bit registers. If an
instruction uses one of the registers, four bits in the instruction must be
used to select which of the sixteen registers should be used.

This selection can be done with a decoder. The input to the decoder is
the four-bit number of the register, and the output is one of sixteen possible
connections to the specified register.

A decoder has n binary inputs that can produce up to 2n binary out-
puts. The most common type of decoder, sometimes called a line decoder,
selects only one of the output lines to set to 1 for each input bit pattern. It’s
also common for a decoder to include an Enable input. The truth table for
a 3 × 8 (3 inputs, 8 outputs) decoder with an enabling input in Table 6-3
shows how this works. When Enable = 0, all the output lines are 0. When
Enable = 1, the three-bit number at the input, x = x2x1x0, selects which
output line is set to 1. So this decoder could be used to select one of eight
registers with a three-bit number. (I’m not using the sixteen registers in the
x86-64 architecture to keep the table a reasonable size here.)

Table 6-3: 3 × 8 Decoder with Enable

Input Output

Enable x2 x1 x0 y7 y6 y5 y4 y3 y2 y1 y0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

122 Chapter 6

The 3 × 8 line decoder specified in Table 6-3 can be implemented with
four-input AND gates, as shown in Figure 6-8.

x1x2 x0Enable

y1

y0

y2

y3

y4

y5

y6

y7

Figure 6-8: Circuit for a 3 × 8 decoder with Enable

Decoders are more versatile than they might seem at first glance. Each
possible input can be seen as a minterm (for a refresher on minterms, see
Chapter 4). The line decoder in Table 6-3 shows that only a single output
is 1 when a minterm evaluates to 1 and Enable is 1. Thus, a decoder can be
viewed as a “minterm generator.” We know from earlier in the book that any
logical expression can be represented as the OR of minterms, so it follows
that we can implement any logical expression by ORing the output(s) of a
decoder.

For example, if you look back at the Karnaugh maps for the full adder
(Figures 6-2 and 6-4), you might see that Sum and Carry can be expressed as
the OR of minterms,

Sumi(Carryi, xi, yi)	  = m1 ∨ m2 ∨ m4 ∨ m7
Carryi+1(Carryi, xi, yi)	  = m3 ∨ m5 ∨ m6 ∨ m7

where the subscript, i, on x, y, and Carry refers to the bit slice, and the sub-
scripts on m are part of the minterm notation. We can implement each bit
slice of a full adder with a 3 × 8 decoder and two four-input OR gates, as
shown in Figure 6-9.

Combinational Logic Circuits 123

The decoder circuit in Figure 6-8 requires eight AND gates and three
NOT gates. The full adder in Figure 6-9 adds two OR gates, for a total of
thirteen logic gates. Comparing this with the full adder design in Figure 6-5,
which requires only five logic gates (two XOR, two AND, and one OR), it
would seem that using a decoder to construct a full adder increases the com-
plexity of the circuit. But keep in mind that designs are often based on other
factors, such as availability of components, cost of components, and so forth.

 3 x 8
decoder

xi
yi

Carryi

Enable

Sumi

Carryi+1

m0
m1
m2
m3
m4
m5
m6
m7

Figure 6-9: One bit slice of a full adder implemented
with 3 × 8 decoder. An n-bit adder would require n
of these circuits.

YOUR T UR N

You have probably seen seven-segment displays, which are used to display
numerals (Figure 6-10).

a

b

c

d

e

f

g

dp

Figure 6-10: Seven-segment display

(continued)

124 Chapter 6

Each segment in a seven-segment display is lit by applying a 1 to the input
pin connected to the corresponding segment. I have a seven-segment display
with an eight-bit input that lights the segments and the decimal point, as shown
in Table 6-4.

Table 6-4: Input Bit
Assignments for the
Seven-Segment Display
in Figure 6-10

Bit Segment

0 a

1 b

2 c

3 d

4 e

5 f

6 g

7 dp

For example, we could display a 5 with the bit pattern 0110 1101. However, it
would be more convenient for us to write our program to use BCD for individual
numerals. Design a decoder that transforms numerals in BCD to segment pat-
terns on our seven-segment display.

Multiplexers
In the previous section, you learned how an n -bit number can be used to
select which one of 2n output lines should be set to 1. The opposite situa-
tion also occurs, where we need to select which of several inputs should be
passed on. For example, when performing arithmetic operations, like addi-
tion, the numbers can come from different locations within the CPU. (You
will learn more about this in the next few chapters.) The operation itself will
be performed by one arithmetic unit, and the CPU needs to select the inputs
to the operation from all the possible locations.

A device that can make this selection is called a multiplexer (MUX).
It can switch between 2n input lines by using n selection lines. Figure 6-11
shows a circuit for a four-way multiplexer.

The output is given by this:

Output = (¬ s0 ∧ ¬ s1 ∧ w) ∨ (¬ s0 ∧ s1 ∧ x)
∨ (s0 ∧ ¬ s1 ∧ y) ∨ (s0 ∧ s1 ∧ z)

Combinational Logic Circuits 125

w
x
y

z

s0 s1

Output

Figure 6-11: A four-way multiplexer

When using AND and OR gates, the number of transistors required to
implement a multiplexer gets large as the number of inputs grows. A three-
input AND gate is required for each input to the multiplexer, and the num-
ber of inputs to the OR gate equals the number of multiplexer inputs. The
AND gates are being used to feed only one of the multiplexer inputs to the
OR gate. Next we’ll see a device that can accomplish the same functionality
of the AND and OR gate combination by simply disconnecting the input
signal from the output.

Tristate Buffer
The logic device called a tristate buffer has three possible outputs: 0, 1, and
“no connection.” The “no connection” output is actually a high impedance
connection, also called high Z or open. The “no connection” output lets us
physically connect the outputs of many tristate buffers together but select
only one to pass its input to the common output line.

A tristate buffer has both a data input and an enabling feature, which
behave as shown Table 6-5.

Table 6-5: Tristate Buffer
Truth Table

Enable In Out

0 0 High Z

0 1 High Z

1 0 0

1 1 1

126 Chapter 6

Figure 6-12 shows the circuit symbol for a tristate buffer.

Enable

In Out

Figure 6-12: Tristate buffer

When Enable = 1, the output, which is equal to the input, is connected
to whatever circuit element follows the tristate buffer. But when Enable = 0,
the output is essentially disconnected. This is different from 0; being
disconnected means it has no effect on the circuit element to which it is
connected.

To illustrate how tristate buffers can be used, look back at the four-way
multiplexer in “Multiplexers” on page 124. It required four AND gates, two
NOT gates, and a four-input OR gate. If we try to scale this up, the n-input
OR gate will present some technical electronic problems for a large n. The
use of an n -input OR gate can be avoided by using n tristate buffers, as
shown by the four-way multiplexer in Figure 6-13.

w

x

y

z

s0

s1

Output

 2 x 4
decoder

Figure 6-13: Four-way multiplexer built
from decoder and tristate buffers

The multiplexer in Figure 6-13 uses a 2 × 4 decoder and four tristate
buffers. The 2 × 4 decoder selects which of the tristate buffers connects one
of the inputs, w, x, y, or z, to the output.

Figure 6-14 shows the circuit symbol used for a multiplexer, and Table 6-6
shows its behavior.

w

x

y

z

s0, s1

Output

0

2

3

1 4x1
MUX

Figure 6-14: Circuit symbol
for a four-way multiplexer

Combinational Logic Circuits 127

Table 6-6: Truth Table
for a Four-Way
Multiplexer

s1 s0 Output

0 0 w

0 1 x

1 0 y

1 1 z

As an example of where we might use the four-way multiplexer in
Figure 6-14, consider a computer with four registers and one adder. Let’s
name the registers w, x, y, and z. If we connect the bits in the corresponding
bit position from each register to a multiplexer, then we can use the two-bit
selector, s0s1, to choose which register will provide the input to the adder.
For example, each bit in position 5, w5, x5, y5, and z5, would be connected
one of the inputs in multiplexer 5. If s0s1 = 10, the input to the adder would
be y5.

Programmable Logic Devices
So far, we’ve been discussing hardware designs that use individual logic
gates. If the design changes, the logic gate configuration changes. This
almost always means that the circuit board that holds the logic gates and
connects them will need to be redesigned. A change also often means order-
ing a different kind of logic gate, which can be expensive and take time.
These problems can be reduced by using programmable logic devices (PLDs)
to implement the required logic function.

PLDs contain many AND gates and OR gates, which can be programmed
to implement Boolean functions. The inputs, and their complemented value,
are connected to the AND gates. The AND gates, taken together, are referred
to as the AND plane, or AND array. The outputs from the AND gates are con-
nected to OR gates, which taken together are referred to as the OR plane, or
OR array. Depending on the type, one or both planes can be programmed to
implement combinational logic. When using a PLD, a design change means
only changing how the device is programmed, not buying different devices,
meaning the circuit board does not need to be redesigned.

PLDs come in several types. Most can be programmed by a user. Some
are preprogrammed at the time of manufacture, and some can even be
erased and reprogrammed by the user. Programming technologies range
from specifying the manufacturing mask (for the preprogrammed devices)
to inexpensive electronic programming systems.

There are three general categories of PLDs.

128 Chapter 6

Programmable Logic Array
In a programmable logic array (PLA), both the AND and OR planes are pro-
grammable. PLAs are used to implement logic functions. Figure 6-15 gives
the general idea for a PLA that has two input variables and two possible out-
put functions of these variables.

x y

F1(x, y) F
2
(x, y)

Figure 6-15: Simplified circuit for a programmable logic array

Each input variable, in both its uncomplemented and complemented
form, is an input to the AND gates through fuses. A fuse is a thin piece of
conductor used to protect an electrical circuit. If the current flowing through
it is high enough, the conductor melts, thus opening the circuit and stop-
ping current flow. PLDs can be programmed by breaking (or blowing) the
appropriate fuses, thus removing the input to the logic gate. Some devices
use antifuses instead of fuses. These are normally open, and programming
them consists of completing the connection instead of removing it. Devices
that can be reprogrammed have fuses that can be broken and then remade.

In Figure 6-15, the S -shaped lines in the circuit diagram represent the
fuses. The fuses can be blown or left in place so as to program each AND
gate to output a product of the inputs, x, ¬ x, y, and ¬ y. Since every input,
plus its complement, is input to each AND gate, any of the AND gates can
be programmed to output a minterm.

The products produced by the AND gate plane are all connected to
the inputs of the OR gates, also through fuses. Thus, depending on which
OR-gate fuses are left in place, the output of each OR gate is a sum of prod-
ucts. There may be additional logic circuitry to select between the different
outputs. We have already seen that any Boolean function can be expressed
as a sum of products, so this logic device can be programmed to implement
any Boolean function by blowing the fuses.

Combinational Logic Circuits 129

A PLA is typically larger than the one shown in Figure 6-15, which is
already complicated to draw. To simplify the drawing, it is typical to use a
diagram similar to Figure 6-16 to specify the design.

w x y z

F1 F2 F3

Figure 6-16: Diagram for a programmable logic array. The dots
represent connections.

This diagram can be a little tricky to understand. In Figure 6-15, each
AND gate has multiple inputs—one for each variable and one for its comple-
ment. In Figure 6-16, we use one horizontal line leading to the input of each
AND gate to represent multiple wires (variable and complement). So,
each AND gate in Figure 6-16 has eight inputs even though we draw only
one line.

The dots at the intersections of the vertical and horizontal line repre-
sent places where the fuses have been left intact, thus creating a connec-
tion. For example, the three dots on the topmost horizontal line indicate
that there are three inputs left connected to that AND gate. The output of
the topmost AND gate is as follows:

¬ w ∧ y ∧ z

Referring again to Figure 6-15, we see that the output from each AND
gate is connected to each of the OR gates (through fuses). Therefore, the
OR gates also have multiple inputs—one for each AND gate—and the verti-
cal lines leading to the OR gate inputs represent multiple wires. The PLA in
Figure 6-16 has been programmed to provide these three functions:

F1(w, x , y, z)	 = (¬ w ∧ y ∧ z) ∨ (w ∧ x ∧ ¬ z)
F2(w, x , y, z)	 = ¬ w ∧ ¬ x ∧ ¬ y ∧ ¬ z
F3(w, x , y, z)	 = (¬ w ∧ y ∧ z) ∨ (w ∧ x ∧ ¬ z)

130 Chapter 6

Since the AND plane can produce all possible minterms and the OR
plane can provide any sum of the minterms, a PLA can be used to imple-
ment any possible logical function. If we want to change the function, it’s a
simple matter of programming another PLA and replacing the old one.

Read-Only Memory
Although PLDs have no memory (meaning the current state isn’t affected
by previous states of the inputs), they can be used to make nonvolatile
memory—memory whose contents remain intact when the power is turned
off. Read-only memory (ROM) is used to store bit patterns that can represent
data or program instructions. A program can only read the data or pro-
gram stored in ROM, but the contents of the ROM cannot be changed by
writing new data or program instructions to it. ROM is commonly used in
devices that have a fixed set of functionalities, like watches, automobile
engine control units, and appliances. In fact, our lives are surrounded by
devices that are controlled by programs stored in ROM.

ROM can be implemented as a programmable logic device where only the
OR gate plane can be programmed. The AND gate plane remains wired to
provide all the minterms. We can think of the inputs to the ROM as addresses.
Then the OR gate plane is programmed to provide the bit pattern at each
address. For example, the ROM diagrammed in Figure 6-17 has two inputs, a1
and a0, which provide a two-bit address.

a1 a0

d7 d6 d5 d4 d3 d2 d1 d0

Figure 6-17: Four-byte ROM

Combinational Logic Circuits 131

The “×” connections in Figure 6-17 represent permanent connections,
showing that the AND gate plane is fixed. Each AND gate produces a
minterm at each address in this ROM. The OR gate plane produces up to
2n eight-bit bytes, where n is the width, in number of bits, of the address
input to the AND gate plane. The connections (dots) to the OR gates rep-
resent the bit pattern stored at the corresponding address. Table 6-7 shows
a ROM in which the OR gate plane has been programmed to store the four
characters, A, B, C, and D (in ASCII code).

Table 6-7: A ROM Holding Four ASCII Characters

Minterm Address Contents ASCII character

¬ a1¬ a0 00 01000001 A

¬ a1a0 01 01000010 B

a1¬ a0 10 01000011 C

a1a0 11 01000100 D

Although we have stored only data in this example, computer instruc-
tions are bit patterns, so we could just as easily store an entire program in
ROM. As with a programmable logic array, if you need to change the pro-
gram, just program another ROM and replace the old one.

There are several types of ROM. While the bit pattern is set in a ROM
during manufacturing, a programmable read-only memory (PROM) device is
programmed by the person who uses it. There are also erasable programmable
read-only memory (EPROM) devices that can be erased with an ultraviolet
light and then reprogrammed.

Programmable Array Logic
In a programmable array logic (PAL) device, each OR gate is permanently
wired to a group of AND gates. Only the AND gate plane is programmable.
The PAL diagrammed in Figure 6-18 has four inputs. It provides two outputs,
each of which can be the sum of up to four products. The “×” connections in
the OR gate plane show that the top four AND gates are OR-ed to produce
F1(w, x, y, z) and the lower four OR-ed to produce F2(w, x, y, z). The AND gate
plane in this figure has been programmed to produce these two functions:

F1(w, x , y, z)	  = (w ∧ ¬ x ∧ z) ∨ (¬ w ∧ x) ∨ (w ∧ x ∧ ¬ y) ∨ (¬ w ∧ ¬ x ∧ ¬ y ∧ ¬ z)
F2(w, x , y, z)	  = (¬ w ∧ y ∧ z) ∨ (x ∧ y ∧ ¬ z) ∨ (w ∧ x ∧ y ∧ z) ∨ (w ∧ x ∧ ¬ y ∧ ¬ z)

Of the three types of PLD presented here, the PLA is the most flex-
ible, since we can program both the OR and the AND plane, but it is the
most expensive of the three devices. The ROM is less flexible. It can be
programmed to produce any combination of minterms, which are then
OR-ed together. We know that any function can be implemented as the OR
of minterms, so we can produce any function with a ROM. However, a ROM
doesn’t allow us to minimize the function since all the product terms must
be minterms.

132 Chapter 6

w x y z

F1 F2

Figure 6-18: Two-function programmable array logic

The PAL is the least flexible, because all the product terms programmed
in the AND plane will be ORed together. So, we cannot select which min-
terms are in the function by programming the OR plane. However, PALs
allow us to do some Boolean function minimization. If the required func-
tion can be implemented in a PAL, it is less expensive than a ROM or PLA.

YOUR T UR N

Comparing two values to determine which is larger, or whether they are the
same, is a common operation in computing. The hardware device to perform
such a comparison is called a comparator. Use a programmable logic device
to design a comparator that compares two two-bit values. Your comparator will
have three outputs: equal, greater than, and less than.

Combinational Logic Circuits 133

What You’ve Learned

Combinational logic circuits   These depend only on their input at any
point in time. They have no memory of previous effects of the inputs.
Examples include adders, decoders, multiplexers, and programmable
logic devices.

Half adder   This circuit has two one-bit inputs. It produces two one-bit
outputs: the sum of the inputs and the carry from that sum.

Full adder   This circuit has three one-bit inputs. It produces two
one-bit outputs: the sum of the inputs and the carry from that sum.

Ripple-carry adder   Uses n full adders to add n -bit numbers. The
carry output from each full adder is one of the three inputs to the full
adders in the next higher-order bit position.

Decoder   A device used to select one of n outputs based on 2n inputs.

Multiplexer (MUX)   A device used to select one of 2n inputs based on
an n-bit selector signal.

Programmable logic array (PLA)   A device used to generate an OR-ed
combination of minterms to implement Boolean functions in hardware.

Read-only memory (ROM)   Provides nonvolatile memory with the input
being the address of the data or instruction.

Programmable array logic (PAL)   A device used to implement Boolean
functions in hardware. It’s less flexible than a PLA or ROM, but it is less
expensive.

In the next chapter, you will learn about sequential logic circuits, which
use feedback to maintain a memory of their activity.

7
S E Q U E N T I A L L O G I C C I R C U I T S

In the previous chapter, you learned about
combinational logic circuits, circuits that depend

only on their current input. Another way
of thinking about this is that combinational

logic circuits are instantaneous (except for the time
required for the electronics to settle): their output
depends only on the input at the time the output is
observed. Sequential logic circuits, on the other hand,
depend on both the current and past inputs. They
have a time history, which can be summarized by the
current state of the circuit.

Formally, the system state is a description of the system such that know-
ing the state at time t0 and the inputs from time t0 through time t1, uniquely
determines the state at time t1 and the outputs from time t0 through time t1.
In other words, the system state provides a summary of everything that has

136 Chapter 7

affected the system. Knowing the state of a system at any given time, t, tells
you everything you need to know to specify the system’s behavior from that
time on. How it got into this state is irrelevant.

The concept of system state is captured in a finite state machine, a math-
ematical model of computation that can exist in any one of a finite number
of states. External inputs to a finite state machine cause it to transition from
one state to another or to the same state, while possibly producing an output.
Sequential logic circuits are used to implement finite state machines. If a
sequential logic circuit is designed such that its output depends only on the
state it’s in, it’s called a Moore state machine. If the output also depends on
the input causing a transition to a state, it’s called a Mealy state machine.

In this chapter, we’ll look at how feedback is used in a logic circuit to
keep the gates in a particular state over time, thus implementing memory.
We’ll use state diagrams to show how inputs cause a sequential logic circuit
to transition between states and what the corresponding outputs are. You’ll
also learn how sequential logic circuits can be synchronized with a clock to
provide reliable results.

Latches
The first sequential logic circuit we’ll look at is a latch, a one-bit storage
device that can be in one of two states, depending on its input. A latch can
be constructed by connecting two or more logic gates such that the output
from one gate is fed back into the input of another gate; this keeps the out-
put of both gates in the same state as long as power is applied. The state of
a latch does not depend on time. (The term latch is also used for a multiple-
bit storage device that behaves like the one-bit device described here.)

SR Latch Using NOR Gates
The most basic latch is the Set-Reset (SR). It has two inputs (S and R) and two
states, called Set and Reset. The state is used as the primary output, Q. It’s
common to also provide the complemented output, ¬Q. The SR latch is said
to be in the Set state when the outputs Q = 1 and ¬Q = 0. It’s in a Reset state
when Q = 0 and ¬Q = 1.

Figure 7-1 shows a simple implementation of an SR latch using NOR
gates. The output of each NOR gate is fed into the input of the other. As we
describe the behavior of the circuit in this chapter, you’ll see that this feed-
back is what keeps the latch in one state.

¬QS

R Q

Figure 7-1: NOR gate implementation of an SR latch

Sequential Logic Circuits 137

There are four possible input combinations for an SR. Let’s go through
them here:

S = 0, R = 0: Keep current state
If the latch is in the Set state (Q = 1 and ¬Q = 0), an input of S = 0 and
R = 0 will cause ¬Q, the output of the upper NOR gate, to yield ¬(0 ∨
1) = 0, and Q, the output of the lower NOR gate, to yield ¬(0 ∨ 0) = 1.
Conversely, if the latch is in a Reset state (Q = 0 and ¬Q = 1), then the
output of the upper NOT gate yields ¬(0 ∨ 0) = 1, and the lower NOR
gate yields ¬(1 ∨ 0) = 0. Thus, the cross feedback between the two NOR
gates maintains the current state of the latch.

S = 1, R = 0: Set (Q = 1)
If the latch is in the Reset state, these inputs cause the output of the
upper NOR gate to be ¬(1 ∨ 0) = 0, thus changing ¬Q to 0. This is fed
back to the input of the lower NOR gate to yield ¬(0 ∨ 0) = 1. The feed-
back from the output of the lower NOR gate to the input of the upper
keeps the output of the upper NOR gate at ¬(1 ∨ 1) = 0. The latch has
then moved into the Set state (Q = 1 and ¬Q = 0).

If the latch is in the Set state, the upper NOR gate yields ¬(1 ∨ 1) = 0,
and the output of the lower NOR gate is ¬(0 ∨ 0) = 1. The latch thus
remains in the Set state.

S = 0, R = 1: Reset (Q = 0)
If the latch is in the Set state, the lower NOR gate yields ¬(0 ∨ 1) = 0,
thus changing Q to be 0. This is fed back to the input of the upper NOR
gate to yield ¬(0 ∨ 0) = 1. The feedback from the output of the upper
NOR gate to the input of the lower keeps the output of the lower NOR
gate at ¬(1 ∨ 1) = 0. The latch has then moved into the Reset state (Q = 0
and ¬Q = 1).

If the latch is already in the Reset state, the lower NOR gate yields ¬(1 ∨
1) = 0, and the output of the upper NOR gate is ¬(0 ∨ 0) = 1, so the latch
remains in the Reset state.

S = 1, R = 1: Not allowed
If Q = 0 and ¬Q = 1, the upper NOR gate yields ¬(1 ∨ 0) = 0. This is fed
back to the input of the lower NOR gate to yield ¬(0 ∨ 1) = 0. This would
give Q = ¬Q, which is inconsistent with the laws of Boolean algebra.

If Q = 1 and ¬Q = 0, the lower NOR gate yields ¬(0 ∨ 1) = 0. This is fed
back to the input of the upper NOR gate to yield ¬(1 ∨ 0) = 0. This
would give Q = ¬Q, which is inconsistent.

Circuits must be designed to prevent this input combination.

To simplify things, we can represent this logic visually. Figure 7-2 intro-
duces a graphic way to show the behavior of a NOR gate SR latch: the state
diagram. In this state diagram, the current state is shown in the bubbles,

138 Chapter 7

with the corresponding primary output below the state. The lines with
arrows show the possible transitions between the states and are labeled with
the inputs that cause the transition to the next state.

Reset SetSR = 00

SR = 01 0

SR = 10

1

SR = 01

SR = 00

SR = 10

Figure 7-2: State diagram for NOR-gate SR latch

The two circles in Figure 7-2 show the two possible states of the SR
latch—Set or Reset. The labels on the lines show the combination of inputs,
SR, that causes each state transition. For example, when the latch is in the
Reset state, there are two possible inputs, SR = 00 and SR = 01, that cause it
to remain in that state. The input SR = 10 causes it to transition to the Set
state. Since the output is dependent only on the state, and not on the input,
a latch is a Moore state machine.

Those familiar with graph theory will recognize that a state diagram
is a directed graph: the states are the vertices, and the inputs that cause
transitions are the edges. Although they are beyond the scope of this book,
tools from graph theory can be useful in the design process.

As in graph theory, we can also show the same behavior in a tabular
form with a state transition table, as in Table 7-1. Here S and R are the inputs,
Q is the output in the current state, and Qnext shows the output in the state
that results from the corresponding input. The X in the bottom two rows
indicates an impossible condition.

Table 7-1: NOR Gate
SR Latch

S R Q Qnext

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

Both inputs to a NOR gate SR latch are normally held at 0, which main-
tains the current state, giving the output Q. Momentarily changing only R

Sequential Logic Circuits 139

to 1 causes the state to go to Reset, which changes the output to Q = 0, as
shown in the Qnext column of the state transition table. And momentarily
changing only S to 1 causes the state to go to Set, giving the output Q = 1.

As described earlier, the input combination S = R = 1 is not allowed
because that would cause an inconsistent state for the SR latch. We show
this in the state transition table by placing an X in the Qnext column in the
rows that are prohibited.

SR Latch Using NAND Gates
The physics of their construction tends to make NAND gates faster than
NOR gates. Recalling that NAND and NOR have complementary proper-
ties, it probably doesn’t surprise you that it’s possible to build an SR latch
from NAND gates. Since a NAND gate is the logical complement of a NOR
gate, we’ll use ¬S and ¬R as the inputs, as shown in Figure 7-3. To empha-
size the logical duality of the two designs, NAND and NOR, I have drawn
the circuit with the output Q at the top and ¬Q on the bottom.

¬S

¬R ¬Q

Q

Figure 7-3: NAND gate
implementation of an
SR latch

Like the NOR gate SR latch, the NAND gate SR latch is said to be in
the Set state when the outputs are Q = 1 and ¬Q = 0, and in a Reset state
when Q = 0 and ¬Q = 1. There are four possible input combinations:

¬S = 1, ¬R = 1: Keep current state
If the latch is in the Set state (Q = 1 and ¬Q = 0), the upper NAND gate
yields ¬(1 ∧ 0) = 1, and the lower NAND gate ¬(1 ∧ 1) = 0. If Q = 0 and
¬Q = 1, the latch is in the Reset state, the upper NAND gate yields ¬(1 ∧
1) = 0, and the lower NAND gate ¬(0 ∧ 1) = 1. Thus, the cross feedback
between the two NAND gates maintains the state of the latch.

¬S = 0, ¬R = 1: Set (Q = 1)
If the latch is in the Reset state, the upper NAND gate yields ¬(0 ∧ 1)
= 1, thus changing Q to be 1. This is fed back to the input of the lower
NAND gate to yield ¬(1 ∧ 1) = 0. The feedback from the output of the
lower NAND gate to the input of the upper keeps the output of the
upper NAND gate at ¬(0 ∧ 0) = 1. The latch has moved into the Set state
(Q = 1 and ¬Q = 0).

140 Chapter 7

If the latch is already in the Set state, then the upper NAND gate yields
¬(0 ∧ 0) = 1, and the output of the lower NAND gate is ¬(1 ∧ 1) = 0. The
latch thus remains in the Set state.

¬S = 1, ¬R = 0: Reset (Q = 0)
If the latch is in the Set state, the lower NAND gate yields ¬(1 ∧ 0) = 1.
This is fed back to the input of the upper N gate, making Q = ¬(1 ∧ 1) =
0. The feedback from the output of the upper NAND gate to the input
of the lower keeps the output of the lower NAND gate at ¬(0 ∧ 0) = 1, so
the latch moves into the Reset state (Q = 0 and ¬Q = 1).

If the latch is already in the Reset state, the lower NAND gate yields ¬(0
∧ 0) = 1, and the output of the upper NAND gate is ¬(1 ∧ 1) = 0. The
latch remains in the Reset state.

¬S = 0, ¬R = 0: Not allowed
If the latch is in the Reset state, the upper NAND gate yields ¬(0 ∧ 1) = 1.
This is fed back to the input of the lower NAND gate to yield ¬(1 ∧ 0) = 1.
This would give Q = ¬Q, which is inconsistent.

If the latch is in the Set state, the lower NAND gate yields ¬(1 ∧ 0) = 1.
This is fed back to the input of the upper NAND gate to yield ¬(0 ∧ 1) = 1.
This would also give Q = ¬Q, which is also inconsistent.

Circuits must be designed to prevent this input combination.

Figure 7-4 shows the behavior of a NAND gate SR latch using a state
diagram.

¬S¬R = 01

¬S¬R = 11 ¬S¬R = 11
¬S¬R = 10 ¬S¬R = 01

¬S¬R = 10

Set Reset
0 1

Figure 7-4: NAND gate SR latch

Comparing this with the NOR gate SR latch in Figure 7-2, you can see
that they both describe the same behavior. For example, an input of SR = 10
to the NOR gate SR latch will place it in the Set state, while an input of
¬S¬R = 01 to the NAND gate SR latch will also place it in the Set state. I find
that I have to think carefully about this when analyzing circuits. An off-by-
one error when there are only two choices can cause behavior opposite to
what I want.

Table 7-2 is a state transition table for a NAND gate SR latch. Placing 0
on both inputs at the same time causes a problem—namely, that the outputs
of both NAND gates would become 1. In other words, Q = ¬Q = 1, which is
logically impossible. The circuit design must be such to prevent this input
combination. The X in two rows indicates an impossible condition.

Sequential Logic Circuits 141

Table 7-2: NAND-Gate
SR Latch

¬S ¬R Q Qnext

1 1 0 0

1 1 1 1

1 0 0 0

1 0 1 0

0 1 0 1

0 1 1 1

0 0 0 X

0 0 1 X

The SR latch implemented with two NAND gates can be thought of as
the complement of the NOR gate SR latch. The state is maintained by holding
both ¬S and ¬R at 1. Momentarily changing ¬S to 0 causes the state to be Set
with the output Q = 1, and ¬R = 0 causes it to be Reset with the output Q = 0.

Thus far, we have been looking at a single latch. The problem here is
that the state of the latch, and its output, will change whenever the input
changes. In a computer, it would be interconnected with many other devices,
each changing state with new inputs. It takes time for each device to change
state and for its output(s) to propagate to the next device(s), and the precise
timing depends on slight manufacturing differences in the devices. The
results can be unreliable. We need a means for synchronizing the activity to
bring some order to the operations. We’ll start by adding an Enable input to
the SR latch, which will allow us to control more precisely when the inputs
will be allowed to affect the state.

SR Latch with Enable
We can get better control over the SR latch by adding two NAND gates
to provide an Enable input. Connecting the outputs of these two NAND
gates to the inputs of an ¬S¬R latch gives us a gated SR latch, as shown in
Figure 7-5.

S

R

Q

¬Q

Enable

Figure 7-5: Gated SR latch

In this circuit, the outputs of both the control NAND gates remain at 1
as long as Enable = 0. This sends ¬S = 1 and ¬R = 1 to the inputs of the ¬S¬R

142 Chapter 7

latch portion of this circuit, which causes the state to remain the same. By
AND-ing the additional Enable input with the S and R input lines, we can
control the time when the state should be changed to the next value.

Table 7-3 shows the state behavior of the SR latch with the Enable control.

Table 7-3: Gated SR Latch

Enable S R Q Qnext

0 – – 0 0

0 – – 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 X

1 1 1 1 X

In this table, – indicates that an input does not matter, and X indicates
a prohibited result. As explained, the design must prevent input combina-
tions that would produce prohibited results. The state of the latch changes
only when Enable = 1 and S and R have the opposite values. In the next sec-
tion, we’ll use this observation to simplify the gated SR latch and create a
latch that takes a single data input, D, with control over the time when this
input will affect the state of the latch.

The D Latch
A D latch allows us to store the value of one bit. We start with the truth
table, Table 7-4, which includes the rows from Table 7-3 where Enable = 1
and R = ¬S. We’re looking for a design that will have two inputs—one for
Enable, the other for D (short for data). We want D = 1 to set the state, giv-
ing the output Q = 1, and D = 0 to reset it, giving the output Q = 0, when the
Enable line becomes 1. This design is known as a D latch.

Table 7-4: D Latch with Enable

Enable S R D Q Qnext

0 – – – 0 0

0 – – – 1 1

1 0 1 0 0 0

1 0 1 0 1 0

1 1 0 1 0 1

1 1 0 1 1 1

Sequential Logic Circuits 143

We can construct a gated D latch from a gated SR latch by adding a D
input and a NOT gate, as shown in Figure 7-6.

D

Enable

S

R

¬S

¬R

Q

¬Q

Figure 7-6: Gated D latch constructed from an SR latch

The one data input, D, is fed to the S side of the SR latch; the comple-
ment of the data value is fed to the R side.

Now we have a circuit that can store one bit of data using the D input
and can be synchronized with other operations using the Enable input.
However, there are some problems with the D latch. Mainly, there are issues
with its reliability when connected with other circuit elements. After the
D input has been applied and the circuit has been enabled, it takes a brief
period of time for all the electronics to reach the new voltage levels, called
the settling time. Even after the settling time, the state of a D latch can be
affected by the input while the D latch is enabled. Thus, its output can
change, making it difficult to synchronize reliably with other devices.

However, this scheme works well when the latch should remain in
one state for a long period of time. In general, latches work for opera-
tions where we want to select a state and leave it for a period of time that
is beyond the control of the computer. An example is an I/O port, where
the timing is dependent on the behavior of the device connected to the
I/O port. For example, a running program cannot know when the user will
press a key on the keyboard. When a key is pressed, the program may not
be ready for the character, so the binary code for the character should be
latched at the input port. Once the character is stored, the latch would
be disabled until the program reads the character code from the latch.

But most of the computing operations within the CPU and main mem-
ory must be coordinated in time. You’re about to see how sequential logic
circuits can be controlled by a clock. Connecting many circuits to the same
clock allows us to synchronize their operations.

Let’s consider how we might synchronize a D latch connected in a circuit.
We feed an input to this D latch and enable it. Even after a brief settling time,
its output can change if the input changes, making its output unreliable dur-
ing the time it is enabled. If the output from our D latch is connected to the
input of another device, the input to this second device is unreliable while
our D latch is enabled. There is also a propagation delay for the output of our
D latch to reach the input of the second device due to the physics of the con-
nections. This second device should be disabled until the input to our D latch
is reliable and we have allowed for the propagation delay. Once our D latch

144 Chapter 7

has settled, it’s disabled. After allowing for the propagation delay, the device
our D latch is connected to can be enabled.

While the device our D latch is connected to is waiting for a reliable
input from our D latch, it is disabled, and its output (from the previous clock
cycle) is reliable. So if it’s connected to the input of yet another device, this
third device can be enabled. This leads to a scheme where every other device
is enabled while the alternate devices are disabled. After waiting for a period
equal to the sum of the longest settling time and propagation delay time of
all the devices connected together, the disabled devices are enabled, and the
enabled devices are disabled. The digital 1s and 0s are propagated through
this circuit of devices by means of this alternating enable/disable cycle.

As you can probably imagine, coordinating this flipping back and forth
between enable and disable can be difficult. We’ll give a solution to this
problem in the next section.

Flip-Flops
While a latch could be controlled by a clock signal, its output would be
affected by any changes in the input during the portion of time when the
clock signal enables the latch. A flip-flop circuit is a one-bit storage device
designed to accept an input during one portion of the clock signal and
then lock the output to a single value throughout the duration of the other
portion of the clock signal. This provides the reliability needed to connect
many flip-flops in a circuit and synchronize their operations with one clock.
We’ll start this section with a discussion of clocks and then look at a few
examples of flip-flops.

N O T E 	 The terminology varies. Some people also call latches flip-flops. I will use the term
latch to mean a device that stores one bit, with no timing considerations, and
flip-flop to mean a device that stores one bit during one-half of a clock cycle and
then presents it as an output during the other half of the clock cycle.

Clocks
Sequential logic circuits have a time history, summarized in their state. We
keep track of time with a clock, a device that provides an electronic clock
signal, typically a square wave that alternates between the 0 and 1 levels, as
shown in Figure 7-7. This signal is used as the enabling/disabling input to
devices that need to be synchronized.

Time

Figure 7-7: Typical clock
signal to synchronize
sequential logic circuits

Sequential Logic Circuits 145

The amount of time spent at each level is usually equal. To achieve reli-
able behavior, most circuits are designed such that a transition of the clock
signal triggers the circuit elements to start their respective operations.
Either the positive-going (0 to 1) or negative-going (1 to 0) transition may
be used. The clock frequency must be slow enough such that all the circuit
elements have time to complete their operations before the next clock transi-
tion (in the same direction) occurs.

Let’s look at a few examples of flip-flop circuits that can be controlled
by a clock.

D Flip-Flop
We’ll begin by connecting a clock signal to the Enable input of the gated D
latch in Figure 7-6. Here the input affects the output as long as Enable = 1.
The problem is that if the input changes while Enable = 1, the output will
also change, leading to an unreliable design.

One way to isolate the output from input changes is to connect the
outputs of a D latch to the inputs of another D latch in a primary/second-
ary configuration. The primary portion of the circuit processes the input
and stores the state, and then it passes its output to the secondary portion
for final output. This creates a D flip-flop, as shown in Figure 7-8. The
uncomplemented output of the Primary D latch is fed to the S input, and
its complemented output is fed to the R input of the Secondary SR latch,
effectively making the Secondary a D latch without requiring a NOT gate
at the R input.

D

CK

Primary

S

Secondary

R

Q

¬Q

Figure 7-8: D flip-flop, positive-edge triggering

In the D flip-flop in Figure 7-8, the bit we want to store, 0 or 1, is fed to
the D input of the Primary D latch. The clock signal is fed to the CK input.

Let’s walk through how this circuit works, starting with CK = 0. The CK
signal passes through a NOT gate, inverting it from 0 to 1 and thus enabling
the Primary D latch, placing it in write mode. This latch will either Reset or
Set, following a D input of 0 or 1, respectively.

While the CK input remains at the 0 level, the second NOT gate inverts
the CK signal again, thus presenting the original signal, an enable signal
of 0, to the Secondary D latch. This in turn disables it and places it in read
mode. Any changes in the input to the Primary D latch will affect its output
but will have no effect on the Secondary D latch. Therefore, the overall

146 Chapter 7

output of this D flip-flop, Q, will be a reliable signal during the entire half-
cycle of the clock signal that the secondary portion is in read mode.

When the CK input transitions to the 1 level, the control signal to the
Primary D latch becomes 0, disabling it and placing it in read mode. At the
same time, the enable input to the Secondary D latch goes to 1, thus placing
it in write mode. The output of the Primary D latch is now reliable, provid-
ing a reliable input to the Secondary D latch during this entire clock half-
cycle. After a brief settling time (in practice, negligible), the output of the
Secondary D latch provides a reliable output. Thus, the flip-flop provides a
time separation of one-half clock cycle between accepting an input and pro-
viding an output. Since the output is available at the 0 to 1 transition, this is
called positive-edge triggering.

If the first NOT gate connected to the CK signal in Figure 7-8 is
removed, that would create a D flip-flop with negative-edge triggering.

Sometimes a flip-flop must be set to a known value before the clocking
begins—for example, when a computer is first starting up. These known
values are input independent of the clock process; hence, they are asynchro-
nous input. Figure 7-9 shows a D flip-flop with an asynchronous preset input
added to it.

D

CK

S

R

PR

Q

¬Q

Figure 7-9: D flip-flop, positive-edge triggering with asynchronous preset

When a 1 is applied to the PR input, Q becomes 1 and ¬Q becomes 0,
regardless of what the other inputs are, even CLK. It is also common to
have an asynchronous clear input that sets the state (and output) to 0.

There are more efficient circuits for implementing edge-triggered D
flip-flops, but this discussion shows that they can be constructed from ordi-
nary logic gates. They are economical and efficient, so they are widely used
in very-large-scale integration (VLSI) circuits—circuits that include billions
of billions of transistor gates on a single semiconductor microchip. Rather
than draw the implementation details for each D flip-flop, circuit designers
use the symbols shown in Figure 7-10.

The various inputs and outputs are labeled in this figure. Hardware
designers typically use Q instead of ¬Q. It’s common to label the flip-flop as
Qn where n = 1, 2, ..., which is used to identify the flip-flop within the over-
all circuit. The small circle at the clock input in Figure 7-10 (b) means that
this D flip-flop is triggered by a negative-going clock transition.

Sequential Logic Circuits 147

D

CK
PR

(a)

Q
CLR

Q1 Q2

(b)

Q

D
CLR

Q

QCK
PR

Figure 7-10: Symbols for D flip-flops, including
asynchronous clear (CLR) and preset (PR).
(a) Positive-edge triggering; (b) negative-edge
triggering.

T Flip-Flop
You’re probably familiar with switches that toggle between two states each
time you activate them. The CAPS LOCK key on your computer is a good
example. If the alphabetic keys are in the lowercase mode, pressing the
CAPS LOCK key switches to uppercase mode. Press it again, and you’re
back in lowercase mode. Unlike a set/reset flip-flop, a toggle takes a single
input that reverses (or complements) the current state.

We can implement toggleable switches using a flip-flop that simply
complements its state, called a T flip-flop. To construct a T flip-flop from a
D flip-flop, we need to feed the output back and combine it with the input
to the D flip-flop. Next, we’ll determine exactly how to combine it.

Before tackling the design of the T flip-flop, let’s do some Boolean alge-
bra manipulation to get a sense of what direction our design might take.
First, take a look at the state diagram for a T flip-flop, in Figure 7-11, and
the state transition table, in Table 7-5.

T = 0

T = 1

0
Off On

1 T = 0

T = 1

Figure 7-11: T flip-flop state diagram

Table 7-5: T Flip-Flop
State Transition Table

T Q Qnext

0 0 0

0 1 1

1 0 1

1 1 0

148 Chapter 7

Referring to Table 7-4 for a D flip-flop, let’s add a column to the state
transition table for the T flip-flop, giving Table 7-6, which shows the D val-
ues that would cause the same state transitions as T.

Table 7-6: D Values
That Have the Same
Effect as a T Flip-Flop

T Q Qnext D

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

From Table 7-6, it’s easy to write the equation for D:

D	  = (¬T ∧ Q) ∨ (T ∧ ¬Q)
	   = T ⊻ Q

Thus, we need to add only a single XOR gate, giving us the design for
the T flip-flop shown in Figure 7-12.

D Q Q

Q QCK CKCK

Q1 Q2

(b)(a)

T TQ

¬Q

Figure 7-12: T flip-flop. (a) Circuit using a D flip-flop. (b) Symbol for a T flip-flop.

You have seen how we can use a D flip-flop to store one bit in either
its 1 (set) or 0 (reset) state, keep the state the same, or, by adding a logic
gate, toggle the bit. In the next section, you’ll see how we can modify an SR
flip-flop to implement all four actions—set, reset, keep, toggle—in a single
device.

JK Flip-Flop
Implementing all four possible actions—set, reset, keep, toggle—requires
two inputs, J and K, giving us the JK flip-flop. As with the T flip-flop, we’ll
see if the state diagram and transition table can give us some insight into
the design we want. Figure 7-13 shows the state diagram for a JK flip-flop,
and Table 7-7 shows its state transition table. The leftmost column in
Table 7-7 shows which of the four functions the JK flip-flop performs for
each value of JK.

Sequential Logic Circuits 149

JK = 10

JK = 00

JK = 01

JK = 11

Reset Set
0 1

JK = 11

JK = 00
JK = 10JK = 01

Figure 7-13: JK flip-flop state diagram

Table 7-7: JK Flip-Flop State
Transition Table

J K Q Qnext

Keep 0 0 0 0

Keep 0 0 1 1

Reset 0 1 0 0

Reset 0 1 1 0

Set 1 0 0 1

Set 1 0 1 1

Toggle 1 1 0 1

Toggle 1 1 1 0

The first six rows of the JK flip-flop state transition table are the same
as the first six rows on the enabled portion of the SR latch state transition
table (Table 7-3). We saw when discussing the SR latch that the condition
S = R = 1 is not allowed. Perhaps we can add some logic circuitry so we can
use the J = K = 1 condition to implement the toggle function in our JK flip-
flop. We’ll start with a circuit for an SR flip-flop and add another signal to
each of the input NAND gates, as shown in Figure 7-14. The points ¬S and
¬R are labeled to show the inputs to the part of the Primary ¬S¬R latch that
is the same, as shown in Figure 7-3.

Primary Secondary

Q

¬Q

¬S

¬R

Ja

Ka

CK

K

J

Figure 7-14: SR flip-flop with additional inputs added, leading to JK flip-flop

150 Chapter 7

The Primary SR latch in Figure 7-14 is in its write mode when CK = 0.
We want it to toggle the output, Q, when J = K = 1. Given these conditions,
Table 7-8 shows how ¬S and ¬R depend on Ja and Ka for the two possible
values of Q. We saw how these values of ¬S and ¬R affect Q in Table 7-2,
which are copied here into Table 7-8.

Table 7-8: Additional Inputs to Add
Toggle Function to SR Flip-Flop

Ja Ka ¬S ¬R Q Qnext

0 0 1 1 0 0

0 1 1 0 0 0

1 0 0 1 0 1

1 1 0 0 0 X

0 0 1 1 1 1

0 1 1 0 1 0

1 0 0 1 1 1

1 1 0 0 1 X

The third and sixth rows of Table 7-8 show that JaKa = 10 toggles the
state, Q, from 0 to 1, and JaKa = 01 toggles the state from 1 to 0. The leads us
to the design in Figure 7-15, with Ja = ¬Q and Ka = Q.

Primary Secondary

J

K

CK

¬S

¬R

Q

¬Q

Figure 7-15: JK flip-flop

We should check that the feedback connections made in this circuit
preserve the behavior of the other functions of the JK flop-flop. Table 7-9
shows the state transition table for the JK flip-flop in Figure 7-15 with ¬S,
¬R, and ¬Q added. Refer to Table 7-2 for the relationship between ¬S, ¬R,
and Qnext.

Sequential Logic Circuits 151

Table 7-9: JK Flip-Flop State Table for the
Circuit in Figure 7-15

J K Q ¬Q ¬S ¬R Qnext

Keep 0 0 0 1 1 1 0

Keep 0 0 1 0 1 1 1

Reset 0 1 0 1 1 1 0

Reset 0 1 1 0 1 0 0

Set 1 0 0 1 0 1 1

Set 1 0 1 0 1 1 1

Toggle 1 1 0 1 0 1 1

Toggle 1 1 1 0 1 0 0

Using three-input NAND gates at the input to this JK flip-flop does add
some complexity to the circuit. The additional complexity is about the same
as adding an XOR gate to a D flip-flop to get a T flip-flop (see Figure 7-12).
Although an SR flip-flop is a little less complex than a JK flip-flop if the
toggle function is not needed, there are manufacturing cost advantages to
having only one design. The JK flip-flop, by providing all four functions,
also allows more flexibility, and hence cost savings, in design.

Designing Sequential Logic Circuits
Now we’ll consider a more general set of steps for designing sequential logic
circuits. Design in any field is usually iterative, as you have no doubt learned
from your programming experience.

You start with a design, analyze it, and then refine the design to make
it faster, less expensive, and so forth. After gaining some experience, the
design process usually requires fewer iterations. The following steps are a
good method for building a first working design:

1.	 From the word description of the problem, create a state transition
table and state diagram showing what the circuit must do. These form
the basic technical specifications for the circuit you will be designing.

2.	 Choose a binary code for the states and create a binary-coded version
of the state table and/or state diagram. For N states, the code will need
log2N bits. Any code will work, but some codes may lead to simpler com-
binational logic in the circuit.

3.	 Choose a type of flip-flop. This choice is often dictated by the compo-
nents you have on hand.

4.	 Add columns to the state table that show the input required to each
flip-flop to cause each of the required transitions.

152 Chapter 7

5.	 Simplify the inputs to each flip-flop. Karnaugh maps or algebraic meth-
ods are good tools for the simplification process.

6.	 Draw the circuit.

The simplification step may cause you to rethink your choice of type
of flip-flop. These three steps—flip-flop choice, determining inputs, sim-
plification—may need to be repeated several times to get a good design.
The following two examples illustrate this process.

Designing a Counter
Rather than asking you to do all the work at this point, I’ll go through two
examples. If you have access to a digital circuit simulator, or the required
hardware, I suggest that you use those resources to follow along. This is like
a guided “Your Turn.”

In this example, we want to design a counter that has an Enable input.
When Enable = 1, it increments through the sequence 0, 1, 2, 3, 0, 1, ...,
incrementing each clock tick. Enable = 0 causes the counter to remain in its
current state. The output is the sequence number in two-bit binary.

Step 1: Create a State Transition Table and State Diagram

At each clock tick, the counter increments by 1 if Enable = 1. If Enable = 0,
it remains in the current state. Figure 7-16 shows the four states—0, 1, 2,
3—and the corresponding two-bit output for each state.

1
01 10

00

0 3
11

Enable = 1
Enable = 0

Enable = 1

Enable = 1Enable = 1

Enable = 0

Enable = 0

Enable = 0

2

Figure 7-16: State diagram for a counter that cycles through 0, 1, 2, 3, 0, …

Table 7-10 shows the state transition table.

Table 7-10: State Transition Table for
a Counter that Cycles Through 0, 1,
2, 3, 0, …

Enable = 0 Enable = 1

Current n Next n Next n

0 0 1

1 1 2

Sequential Logic Circuits 153

Enable = 0 Enable = 1

Current n Next n Next n

2 2 3

3 3 0

When Enable = 0, the counter is essentially turned off, and when
Enable = 1, the counter automatically increments by 1, wrapping around
to 0 when it reaches its limit of 3.

Step 2: Create a Binary-Coded Version of the State Table and/or State Diagram

With four states, we need two bits. We will let n be the state, which we rep-
resent with the two-bit binary number n1n0. The behavior of the counter is
shown in the state transition table, Table 7-11.

Table 7-11: State Transition Table
for Two-Bit Counter

Current Next

Enable n1 n0 n1 n0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

Step 3: Select a Flip-Flop

JK flip-flops are a good place to start because they provide all the functions.
After going through the design, we may learn that a simpler flip-flop would
work. We could then come back to this step and go through the remaining
steps again. An experienced designer may have some insight into the prob-
lem that would suggest starting with another type of flip-flop. Often, any
potential savings in cost or power consumption do not justify changing to
another type of flip-flop.

Step 4: Add Columns to the State Transition Table Showing the Required Inputs

We need two flip-flops, one for each bit. The columns added to the state
transition table show the inputs—Enable, n1, n0—required to each JK flip-
flop to cause the correct state transition. From the description of the JK

154 Chapter 7

flip-flop earlier in the chapter, we know that JK = 00 keeps the current state,
JK = 01 resets it (to 0), JK = 10 sets it (to 1), and JK = 11 toggles the state. We
use X when the input can be either 0 or 1, or “don’t care.” Table 7-12 shows
the required JK inputs.

Table 7-12: Two-Bit Counter Implemented with JK Flip-Flops

Current Next

Enable n1 n0 n1 n0 J1 K1 J0 K0

0 0 0 0 0 0 X 0 X

0 0 1 0 1 0 X X 0

0 1 0 1 0 X 0 0 X

0 1 1 1 1 X 0 X 0

1 0 0 0 1 0 X 1 X

1 0 1 1 0 1 X X 1

1 1 0 1 1 X 0 1 X

1 1 1 0 0 X 1 X 1

There are quite a few “don’t care” entries for both JK flip-flops in this
table. This suggests that we can do quite a bit of simplification. It also sug-
gests that Karnaugh maps will be a good approach, since their graphic
presentation tends to make it easier to visualize the effects of “don’t care”
entries.

Step 5: Simplify the Required Inputs

We’ll use Karnaugh maps to find a simpler solution, using E for Enable, as
shown in Figure 7-17.

J0(E, n1, n0) n
1
n

0
K0(E, n1, n0)

E
0

1

00 01 11 10

X

n1n0
00 01 11 10

X

X X

X

X

X

X

0
E

1 1 1 1 1

n
1
n

0
00 01 11 10

n1n0
00 01 11 10

E
0

1
E

0

1

X X

X X

X X

X X1 1

J1(E, n1, n0) K1(E, n1, n0)

Figure 7-17: Karnaugh maps for two-bit counter implemented with JK flip-flops

Sequential Logic Circuits 155

We can easily write the equations from the Karnaugh maps to solve this
problem, as shown here:

J0(E, n1, n0)	  = E
K0(E, n1, n0)	  = E
J1(E, n1, n0)	   = E ∧ n0
K1(E, n1, n0)	  = E ∧ n0

J = K = 1 causes a JK flip-flop to toggle between states. These equations
show that the low-order JK flip-flop toggles with each clock cycle. When it’s
enabled, its output, n0, changes between 0 and 1 with each clock cycle. That
is AND-ed with the Enable input to the high-order JK flip-flop, causing it to
toggle between 0 and 1 every two clock cycles. (You will see this timing later
in Figure 7-19 in the following step.)

Step 6: Draw the Circuit

Figure 7-18 shows a circuit to implement this counter. Referring to Table 7-8,
we see that both JK flip-flops are being used as toggles in this design.

J
Q0

QCK n0

n1

CLK

Enable

K

J
Q1

QCK

K

Figure 7-18: Two-bit counter implemented with two JK flip-flops

Figure 7-19 shows the timing of the binary counter when counting
through the sequence 3, 0, 1, 2, 3 (11, 00, 01, 10, 11).

Qi.JK is the input to the i th JK flip-flop, and ni is its output. (Recall that
J = K in this design.) When the i th input, Qi.JK, is applied to its JK flip-flop,
remember that the output of the flip-flop does not change until the second
half of the clock cycle. This can be seen when comparing the trace for the
corresponding output, ni, in the figure.

The short delay after a clock transition before the value of each output
actually changes represents the time required for the electronics to com-
pletely settle to the new values.

156 Chapter 7

n1

Q1.JK

n0

Q0.JK

CLK

n1n0 11 00 01 10 11

1

0

1

1

1

1

0

0

0

0

Figure 7-19: Timing of two-bit counter, implemented with JK flip-flops

Designing a Branch Predictor
Let’s do another guided “Your Turn” here. This example is a bit more com-
plicated than the previous one.

Except for very inexpensive microcontrollers, most modern CPUs exe-
cute instructions in stages. Each stage consists of hardware that is specialized
to perform the operations in that stage. An instruction passes through each
stage in an assembly-line fashion. For example, if you were to create an assem-
bly line to manufacture wooden chairs, you could do it in three stages: saw
the wood to make the parts for the chair, assemble the parts, paint the chair.
The hardware needed at each stage would be saw, hammer and screwdriver,
and paintbrush.

The arrangement of specialized hardware in the CPU is called a pipe-
line. The hardware in the first stage is designed to fetch an instruction from
memory, as you’ll see in Chapter 9. After an instruction is fetched from
memory, it passes onto the next stage of the pipeline, where the instruc-
tions are decoded. Simultaneously, the first stage of the pipeline fetches
the next instruction from memory. The result is that the CPU is working on
several instructions at the same time. This provides some parallelism, thus
improving execution speed.

Almost all programs contain conditional branch points—places where the
next instruction to be fetched can be in one of two different memory loca-
tions. Unfortunately, there is no way to know which of the two instructions
to fetch until the decision-making instruction has moved several stages into
the pipeline. To maintain execution speed, as soon as a conditional branch
instruction has passed on from the fetch stage, it’s helpful if the CPU can
predict where to fetch the next instruction from. Then the CPU can go
ahead and fetch the predicted instruction. If the prediction was wrong, the

Sequential Logic Circuits 157

CPU simply ignores the work it has done on the predicted instruction by
flushing out the pipeline and fetching the other instruction, which enters
the beginning of the pipeline.

In this example, we’ll design a circuit that predicts whether a condi-
tional branch will be taken. The predictor continues to predict the same
outcome, and the branch will be taken, or not taken, until it makes two mis-
takes in a row.

Step 1: Create a State Table and State Diagram

We use Yes to indicate when the branch is taken and No to indicate when
it’s not. The state diagram in Figure 7-20 shows the four possible states.

Actual = Not Taken

Actual = Taken

Yes-error

Take

No

Don’t take

No-error

Don’t take

Actual = Not Taken

Actual = Not Taken

Actual = Not Taken

Actual = Taken

Actual = Taken

Actual = Taken

Yes

Take

Figure 7-20: Branch predictor

Let’s begin in the No state. Here, the branch was not taken at least
the last two times this instruction was executed. The output is to predict
that it will also not be taken this time. The input to the circuit is whether
the branch has actually been taken when the instruction has completed
execution.

The arc labeled Actual = Not Taken loops back to the No state, with
the prediction (the output) that the branch will not be taken the next time.
If the branch is taken, the Actual = Taken arc shows that the circuit moves
into the No-error state to indicate one error in the prediction. But because
it must be wrong twice in a row to change our prediction, the circuit is still
predicting “Don’t take” as the output.

158 Chapter 7

From the No-error state, if the branch is not taken (the prediction is
correct), the circuit returns back to the No state. However, if the branch is
taken, the circuit predicted incorrectly twice in a row, so the circuit moves
to the Yes state, and the output is Take.

I’ll leave tracing through the remainder of this state diagram as an
exercise for you. Once you’re satisfied with how it works, take a look at
Table 7-13, which provides the technical specifications for our circuit.

Table 7-13: Branch Predictor State Table

Actual = Not Taken Actual = Taken

Current state Prediction Next state Prediction Next state Prediction

No Don’t take No Don’t take No-error Don’t take

No-error Don’t take No Don’t take Yes Take

Yes-error Take No Don’t take Yes Take

Yes Take Yes-error Take Yes Take

When the result of the conditional branch is determined in the pipeline,
taken or not taken, Table 7-13 shows the next state and the corresponding
prediction. This prediction would be used to determine which of the two
possible addresses—the address of the next instruction or the address of the
branch target—to store for use the next time this instruction is encountered
in the program.

Step 2: Represent the States

For this problem, we’ll choose a binary code for the state, s1s0, as shown in
Table 7-14.

Table 7-14: States of Branch Predictor

State s1 s0 Prediction

No 0 0 Don’t take

No-error 0 1 Don’t take

Yes-error 1 0 Take

Yes 1 1 Take

The Prediction is one bit, s1, which is 0 if the prediction is “Don’t take”
and 1 if the prediction is Take.

Letting the input, Actual, be 0 when the branch is not taken and 1 when
it is taken and using the state notation of Table 7-14, we get the state transi-
tion table, Table 7-15.

Sequential Logic Circuits 159

Table 7-15: State Transition Table for Branch Predictor

Current Next

Actual s1 s0 s1 s0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

When the conditional branch instruction reaches a point in the pipe-
line where it is determined whether the branch should be taken or not,
this information is used as the input, Actual, to the predictor circuit, which
transforms the state from Current to Next for the next time this instruction
is encountered.

Step 3: Select a Flip-Flop

For the same reasons as in the counter example, we’ll use a JK flip-flop here.

Step 4: Add Columns to the State Table Showing the Required Inputs

Table 7-16 shows the JK flip-flop inputs required to implement the state
transitions in Table 7-15.

Table 7-16: JK Flip-Flop Inputs for Branch Predictor

Current Next

Actual s1 s0 s1 s0 J1 K1 J0 K0

0 0 0 0 0 0 X 0 X

0 0 1 0 0 0 X X 1

0 1 0 0 0 X 1 0 X

0 1 1 1 0 X 0 X 1

1 0 0 0 1 0 X 1 X

1 0 1 1 1 1 X X 0

1 1 0 1 1 X 0 1 X

1 1 1 1 1 X 0 X 0

160 Chapter 7

Step 5: Simplify the Required Inputs

We’ll use Karnaugh maps, Figure 7-21, to find a minimal solution. The
input is whether the branch was taken: Actual = 0 means it was not taken;
Actual = 1 means it was taken.

J0(Actual, s1, s0) s
1
s
0

00 01 11 10

0

1
Actual

K0(Actual, s1, s0) s1s0

Actual
1

0

00 01 11 10

X X

XX

X X

XX

1 1

1 1

J1(Actual, s1, s0) s1s0

00 01 11 10

K1(Actual, s1, s0) s1s0

00 01 11 10

Actual Actual
0 0

1 1 1

1X X

XX

X X

XX

Figure 7-21: Karnaugh maps for branch predictor

We can write the equations directly from these Karnaugh maps:

J0(Actual, s1, s0)	   = Actual
K0(Actual, s1, s0)	  = ¬Actual
J1(Actual, s1, s0)	   = Actual ∧ s0
K1(Actual, s1, s0)	  = ¬Actual ∧ ¬s0

For this circuit, then, we’ll need two JK flip-flops, two AND gates, and
one NOT gate.

Step 6: Draw the Circuit

In this circuit, the input is Actual = 0 if the branch was not taken the last
time, and Actual = 1 if it was taken. We need to add two AND gates and one
NOT gate to the inputs of the JK flip-flops, as shown in Figure 7-22.

This example shows the simplest method of branch prediction. More
complex methods exist. There is ongoing research into the effectiveness
of branch prediction. Although it can speed up some algorithms, the addi-
tional hardware required for branch prediction consumes more electrical
power, which is of concern in battery-powered devices.

Sequential Logic Circuits 161

Actual J

K

CK

J

K

CK

CLK

s0

s1 = Prediction

Q0

Q1

Q

Q

Q

Figure 7-22: Branch predictor circuit using JK flip-flops

What You’ve Learned

SR latch   The state of an SR latch depends on its input, either set or
reset. It can include an Enable input.

D flip-flop   A D flip-flop stores one bit of data. By connecting two latches
in a primary-secondary configuration, the output is isolated from the
input, allowing a flip-flop to be synchronized with a clock signal. The out-
put of a D flip-flop can be changed only once per clock cycle.

T flip-flop   The state of a T flip-flop toggles between 0 and 1 with each
clock cycle when it is enabled.

JK flip-flop   The JK flip-flop is called the universal flip-flop because
it provides the four primary functions—keep current state, set, reset,
toggle.

You also saw two examples of designing sequential logic circuits with JK
flip-flops. In the next chapter, you’ll learn about some of the various mem-
ory structures used in a computer system.

8
M E M O R Y

In the previous three chapters, we looked
at some of the hardware used to implement

logical functions. Now we’ll look at how this
functionality can be used to implement the sub-

systems that make up a computer, starting with memory.
Every computer user wants lots of memory and fast computing. However,

faster memory costs more money, so there are some trade-offs. We’ll begin
this chapter with a discussion of how different types of memory are used to
provide a reasonable compromise between speed and cost. Then we’ll dis-
cuss a few different ways of implementing memory in hardware.

The Memory Hierarchy
In general, the closer memory is to the CPU, the faster and more expen-
sive it is. The slowest memory is the cloud. It’s also the least expensive.
My email account provides 15GB of storage in the cloud and doesn’t cost
me any money (if I ignore the “cost” of seeing a few advertisements). But
its speed is limited by my internet connection. At the other extreme, the

164 Chapter 8

memory within the CPU runs at the same speed as the CPU but is relatively
expensive. In the x86-64 architecture, there’s only about 1KB of memory
in the CPU available to the programmer.

Figure 8-1 shows this general hierarchy. As we get closer to the CPU
(the top of this figure), memory is faster and costs more money, so there’s
less of it.

CPU
registers

Level 1 cache

Level 2 cache

Main memory

Disk
DVD, memory stick

Cloud

Size

C
os

t

Sp
ee

d
Figure 8-1: Computer memory hierarchy

The top three layers in Figure 8-1 are typically included in the CPU
chip in modern computers. There may be one or two more levels of cache
before getting to main memory. The main memory and disk are usually in
the same enclosure with the CPU, which may include more than one disk.

The next layer away from the CPU represents offline data storage
devices. DVDs and memory sticks are only two examples. You may also have
an external USB disk, a tape drive, and so forth. These are devices that you
usually need to take some physical action, such as inserting a DVD in the
player or plugging a memory stick into a USB port, before they are acces-
sible to the computer.

The final layer in this hierarchy is the storage in the cloud. Although
most of us set up our computers to log on automatically, it may not always
be available.

In this chapter, we’ll start with the two layers just above the cloud layer,
offline storage and disk, and work our way in to the CPU registers. Then
we’ll describe the hardware used to build registers and work our way back
out to main memory. We’ll leave discussion of implementation of the three
outermost layers to other books.

Mass Storage
Mass storage is used for keeping programs and large amounts of data in
a machine-readable format. This includes hard disks, solid-state drives,
memory sticks, optical disks, and so forth. Their contents are nonvolatile,
meaning that when the power is turned off, the contents remain. They also
are slow compared to the CPU. Accessing their contents requires explicit
programming.

Memory 165

In Figure 8-2, the input/output (I/O) block includes specialized cir-
cuitry that interfaces with mass storage devices.

Data bus

CPU Memory I/O

Address bus
Control bus

Figure 8-2: Subsystems of a computer. The CPU, memory, and
I/O subsystems communicate with one another via the three
buses. (Repeat of Figure 1-1.)

For example, my computer has circuitry that implements the Serial
Advanced Technology Attachment (SATA) interface protocol. I have
an SSD card plugged into one of the SATA ports. The operating system
includes software (a device driver) that applications call to access the data
and applications on my SSD card through the SATA port. We’ll discuss I/O
programming in Chapter 20, but the specifics of device drivers are beyond
the scope of this book.

For the rest of this chapter, we’ll look at volatile memory, which loses its
contents when power is turned off.

Main Memory
Next, we have main memory. This is the RAM that you see in the specifica-
tions when you buy a computer. As shown in Figure 8-2, main memory
communicates with the CPU using the data, address, and control buses.
We’ll discuss how these buses work in Chapter 9. Main memory is synchro-
nized in the hardware with the CPU. Thus, a programmer can access items
in memory by simply specifying the address and whether to read the item
from memory or store a new value there.

Usually, the entire program and dataset are not loaded into main mem-
ory. Only the portion currently being worked on is loaded by the operating
system from mass storage into main memory. Most mass storage devices in
modern computers can be accessed only in blocks of predetermined size.
For example, the disk block size in my Ubuntu installation is 4KB. When
a needed instruction or data item is loaded into main memory, the com-
puter loads the whole block of instructions or data that includes the needed
item into memory. Chances are good that the nearby parts of the program
(instructions or data) will be needed soon. Since they’re already in main
memory, the operating system doesn’t need to access the mass storage
device again, thus speeding up program execution.

166 Chapter 8

The most common organization of main memory is to store both the
program instructions and data in main memory. This is referred to as the
von Neumann architecture, and it was described by John von Neumann (“First
Draft of a Report on the EDVAC,” Moore School of Electrical Engineering,
University of Pennsylvania, 1945), although other computer science pioneers
of the day were working with the same concepts.

A downside of the von Neumann architecture is that if an instruction
calls for reading data from, or writing data to, memory, the next instruc-
tion in the program sequence cannot be read from memory over the same
bus until the current instruction has completed the data transfer—this is
known as the von Neumann bottleneck. This conflict slows program execution,
giving rise to another stored-program architecture, the Harvard architecture,
in which the program and data are stored in different memories, each with
its own bus connected to the CPU. This makes it possible for the CPU to
access both program instructions and data simultaneously. This specializa-
tion reduces the memory usage flexibility that generally increases the total
amount of memory needed. It also requires additional memory access hard-
ware. The additional memory and access hardware increase the cost.

Another downside of the von Neumann architecture is that a pro-
gram can be written to view itself as data, thus enabling a self-modifying
program, which is generally a bad idea. GNU/Linux, like most modern,
general-purpose operating systems, prohibits applications from modify-
ing themselves.

Cache Memory
Most of the programs I use take up tens or hundreds of megabytes in main
memory. But most of the execution time is taken up by loops, which execute
the same few instructions repetitively, access the same few variables, and
occupy only tens or hundreds of bytes. Most modern computers include
very fast cache memory between the main memory and the CPU, which pro-
vides a much faster location for the instructions and variables currently
being processed by the program.

Cache memory is organized in levels, with Level 1 being the closest
to the CPU, and the smallest. The computer I’m using has three levels of
cache: 64KB of Level 1, 256KB of Level 2, and 8MB of Level 3. When a pro-
gram needs to access an instruction or data item, the hardware first checks to
see if it’s located in the Level 1 cache. If not, it checks the Level 2 cache. If it’s
in the Level 2 cache, the hardware copies a block of memory that includes
the needed instruction or data into the Level 1 cache and then into the
CPU, where it stays until the program needs it again, or the Level 1 cache
needs to reuse that location for other instructions or data from the Level 2
cache. The amount of memory copied into a cache at a time, called a line, is
much less than that copied from a mass storage device.

If the required instruction or data is not in the Level 2 cache, the hard-
ware checks the Level 3 cache. If it finds what it needs, it copies the line
containing the needed instruction or data into Level 2, then Level 1, and

Memory 167

from there into the CPU. If the data is not in Level 3, the hardware checks
main memory. In this way, the hardware makes a copy of the portion of the
program it’s currently working within the Level 3 cache, a smaller portion
of what it’s working on in the Level 2 cache, and an even smaller portion
in the Level 1 cache. It’s common for the Level 1 cache to have a Harvard
architecture, thus providing separate paths to the CPU for the instructions
and the data. The Level 1 cache on my computer has a Harvard archi-
tecture with 32KB devoted to instructions and 32KB for data. My Level 1
instruction cache has a line size of 32 bytes, while all the others have a line
size of 64 bytes.

When data is written to main memory, it starts with Level 1 cache,
then the next cache levels, and finally into main memory. There are many
schemes for using caches, which can become rather complex. I’ll leave
further discussion of caches for more advanced treatments, for example:
https://en.wikibooks.org/wiki/Microprocessor_Design/Cache.

The time to access the Level 1 cache is close to the speed of the CPU.
Level 2 is about 10 times slower, Level 3 about 100 times slower, and main
memory about 1,000 times slower. These values are approximate and differ
widely among implementations. Modern processors include cache memory
in the same chip as the CPU, and some have more than three levels of
cache.

Computer performance is usually limited by the time it takes for the CPU
to read instructions and data into the CPU, not by the speed of the CPU
itself. Having the instructions and data in Level 1 cache reduces this time.
Of course, if they are not in Level 1 cache, and the hardware needs to copy
other instructions or data from Level 2, or Level 3, or main memory into
Level 3, then Level 2, and finally Level 1, access will take longer than simply
getting the instructions or data directly from main memory. The effective-
ness of cache depends on the locality of reference, which is the tendency of a
program to reference nearby memory addresses in a short period of time.
This is one of the reasons good programmers break a program, especially
repetitive sections, into small units. A small program unit is more likely
to fit within a few lines of a cache, where it would be available for succeed-
ing repetitions.

YOUR T UR N

1.	 Determine the cache size(s) on your computer. On my Ubuntu 20.04 LTS
system, the command is lscpu. You may need to use another command on
your computer.

2.	 Determine the line size of each of the caches on your computer. On my
Ubuntu 20.04 LTS system, the command is getconf -a| grep CACHE. You
may need to use another command on your computer.

https://en.wikibooks.org/wiki/Microprocessor_Design/Cache

168 Chapter 8

Registers
The fastest memory is within the CPU itself: the registers. Registers typically
provide about 1KB of storage and are accessed at the same speed as the
CPU. They’re mainly used for numerical computations, logical operations,
temporary data storage, and similar short-term operations—somewhat like
how we use scratch paper for hand computation. Many registers are directly
accessible by the programmer, while others are hidden. Some are used in
the hardware that serves to interface between the CPU and I/O devices.
The organization of registers in the CPU is very specific to the particular
CPU architecture, and it’s one of the most important aspects of program-
ming a computer at the assembly language level. You’ll learn about the
main registers that a programmer works with in the x86-64 architecture in
the next chapter.

But first, let’s look at how memory can be implemented in hardware
using the logic devices discussed in previous chapters. We’ll start with the
CPU registers, the top layer in Figure 8-1, and work our way out to main
memory. As we work through this hierarchy, you’ll learn why faster memory
is more expensive, which is the reason for organizing memory in this hier-
archical way. We won’t cover the implementation of mass storage systems in
this book.

Implementing Memory in Hardware
Now that we’re at the top of the hierarchy in Figure 8-1, let’s see how we
implement the memory in the CPU registers. We’ll then work our way back
out from the CPU, and you’ll see some of the limitations when applying
these designs to larger memory systems, like cache and main memory. We’ll
end the section with designs for the memory in these larger systems.

Four-Bit Register
Let’s begin with a design for a simple four-bit register, which might be found
in inexpensive CPUs used in price-sensitive consumer products, like coffee
makers, remote controls, and so forth. Figure 8-3 shows a design for imple-
menting a four-bit register using a D flip-flop for each bit. Each time the
clock does a positive transition, the state (contents) of the register, r = r3r2r1r0,
is set to the input, d = d3d2d1d0.

The problem with this circuit is that any changes in any di will change
the state of the corresponding stored bit, ri, in the next clock cycle, so the
contents of the register are essentially valid for only one clock cycle. One-
cycle buffering of a bit pattern is sufficient for some applications, but we
also need registers that will store a value until it is explicitly changed, per-
haps billions of clock cycles later.

Let’s add a Store signal and feedback from the output, ri, of each bit. We
want each ri to remain unchanged when Store = 0 and to follow the input, di,
when Store = 1, as shown in Table 8-1.

Memory 169

d3 d2 d1 d0

D

CK

Q r0

r1

r2

r3

CLK

D

CK

Q

D

CK

Q

D

CK

Q

Q0

Q1

Q2

Q3

Figure 8-3: A four-bit register using a
D flip-flop for each bit

Table 8-1: One-Bit
Storage Using a D
Flip-Flop with Store
Signal

Store di ri D

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

170 Chapter 8

Table 8-1 leads to the Boolean equation for D:

 D(Store, di, ri) = ¬(¬(¬Store ∧ ri) ∧ ¬(Store ∧ di))

This equation can be implemented with three NAND gates at the input
of each D flip-flop, as shown in Figure 8-4.

D

CK

Q r0

r1

r2

r3

D

CK

Q

D

Q

D

CK

Q

Q0

Q1

Q2

Q3

CK

CLK

d3 d2 d1 d0

Store

Figure 8-4: A four-bit register with Store signal

This design has another important feature that follows from the
primary/secondary property of the D flip-flops. The state of the secondary
portion does not change until the second half of the clock cycle. So the
circuit connected to the output of this register can read the current state
during the first half of the clock cycle, while the primary portion is prepar-
ing to possibly change the state to the new contents.

Memory 171

We now have a way to store, for example, the results from an adder
circuit. The output from the register could be used as the input to another
circuit that performs arithmetic or logical operations on the data.

Registers can also be designed to perform simple operations on the
data stored in them. We’ll look next at a register design that can convert
serial data to a parallel format.

Shift Register
We can use a shift register as a serial-in parallel-out (SIPO) device. A shift
register uses a sequence of D flip-flops, like the simple storage register in
Figure 8-4, but the output of each flip-flop is connected to the input of the
next flip-flop in the sequence, as shown in Figure 8-5.

D

CK

Q r0

r1

r2

r3

D

CK

Q

D

Q

D

CK

Q0

Q1

Q2

Q3

CK

Q

CLK

si

Figure 8-5: Four-bit serial-to-parallel
shift register

In the shift register in Figure 8-5, a serial stream of bits is input at si. At
each clock tick, the output of Q0 is applied to the input of Q1, thus copying
the previous value of r0 to the new r1. The state of Q0 changes to the value
of the new si, thus copying this to be the new value of r0. The serial stream
of bits continues to ripple through the four bits of the shift register. At any
time, the last four bits in the serial stream are available in parallel at the
four outputs, r3, r2, r1, r0, with r3 being the oldest in time.

172 Chapter 8

The same circuit could be used to provide a time delay of four clock
ticks in a serial bit stream. Simply use r3 as the serial output.

Register File
The registers in the CPU that are used for similar operations are grouped
together into a register file. For example, as you’ll see in the next chapter, the
x86-64 architecture includes sixteen 64-bit general-purpose registers that are
used for integer computations, temporary storage of addresses, and so forth.
We need a mechanism for addressing each of the registers in the register file.

Consider a register file composed of eight four-bit registers, r0–r7,
implemented using eight copies of the four-bit register circuit shown in
Figure 8-4. To read the four bits of data in one of these eight registers
(for example, r53, r52, r51, and r50 in register r5), we need to specify one of
the eight registers using three bits. You learned in Chapter 7 that a multi-
plexer can select one of several inputs. We can connect a 3 × 8 multiplexer
to each corresponding bit of the eight registers, as shown in Figure 8-6.
The inputs to the multiplexer, r0i–r7i, are the i th bits from each of eight reg-
isters, r0–r7. The slash through the RegSel line with a 3 next to it is the nota-
tion used to show that there are three lines here.

RegOuti

RegSel

3

0
1
2
3
4
5
6
7

r0i

r1i

r2i

r3i

r4i

r5i

r6i

r7i

Figure 8-6: Eight-way mux used to
select output of register file. This only
shows the output of the ith bit; n muxes
are required for n-bit registers.

A four-bit register would need four of these multiplexer output circuits.
The same RegSel would be applied to all four multiplexers simultaneously to
output all four bits of the same register. Larger registers would, of course,
require correspondingly more multiplexers.

Read-Write Memory
You saw how to build a four-bit register to store values from D flip-flops in
Figure 8-3. We now need to be able to select when to read the value that’s
stored in the register and disconnect the output when we’re not reading it. A
tristate buffer allows us to do that, as shown in Figure 8-7. This circuit is for
only one four-bit register. We need one of these for each register in the com-
puter. The addrj line comes from a decoder and selects one of the registers.

Memory 173

D

CK

Q r0

r1

r2

r3

D

CK

Q

D

Q

D

CK

Q

Q0

Q1

Q2

Q3

CK

d3 d2 d1 d0

CLK

Read

addrj

Write

Figure 8-7: Four-bit read-write register

Write = 1 causes the four-bit data, d3d2d1d0, to be stored in the D flip-flops
Q3, Q2, Q1, and Q0. The four-bit output, r3r2r1r0, remains disconnected from
the D flip-flops when Read = 0. Setting Read = 1 connects the outputs.

We’ll continue down the memory hierarchy in Figure 8-1 to cache mem-
ory, which is typically constructed from flip-flops, similar to a register file.

Static Random-Access Memory
The memory we’ve been discussing that uses flip-flops is called static random-
access memory (SRAM). It’s called static because it maintains its values so
long as power is maintained. As we saw in Chapter 2, it’s called random
because it takes the same amount of time to access any (random) byte in
this memory. SRAM is commonly used for cache memory, which can range
in size up to several megabytes.

Let’s look at ways to address individual bytes in a large memory. Selecting
one byte in 1MB of memory requires a 20-bit address. This requires a 20 × 220
address decoder, as shown in Figure 8-8.

174 Chapter 8

Write

Address
20

Read

Data

1 MB Mem.20 x 220

Decoder

220

Figure 8-8: Addressing 1MB of memory with one 20 × 220 address decoder

Recall that an n × 2n decoder requires 2n AND gates. So a 20 × 220
decoder requires 1,048,576 AND gates. We can simplify the circuitry by
organizing memory into a grid of 1,024 rows and 1,024 columns, as shown
in Figure 8-9. We can then select a byte by selecting a row and a column,
each using a 10 × 210 decoder.

1 MB Mem.10 × 210

Decoder

10 × 210

Decoder

10

20

10 210

Read

Data

Address

Write

210

Figure 8-9: Addressing 1MB of memory with two 10 × 210 address decoders

Memory 175

Although two decoders are required, each requires 2n/2 AND gates, for
a total of 2 × 2n/2 = 2(n/2)+1 = 2,048 AND gates for each of the two decoders.
Of course, accessing individual bytes in memory is slightly more complex,
and some complexity is added to split the 20-bit address into two 10-bit
portions, but this example should give you an idea of how engineers can
simplify designs.

Continuing down the memory hierarchy, we get to main memory, the
largest memory unit that is internal to the computer.

Dynamic Random-Access Memory
Each bit in SRAM requires about six transistors for its implementation.
Dynamic random-access memory (DRAM), which is used for main memory, is
less expensive.

A bit in DRAM is commonly implemented by a charging a capacitor to
one of two voltages. The circuit requires only one transistor to charge the
capacitor, as shown in Figure 8-10. These circuits are arranged in a rectan-
gular array.

Row Select

Bit Read/Write

d

Capacitor

Sense Amplifier/Latch

Figure 8-10: One DRAM bit

When the Row Select line is set to 1, all the transistors in that row are
turned on, thus connecting the respective capacitor to the Sense Amplifier/
Latch. The value stored in the capacitor, high voltage or low voltage, is
amplified and stored in the latch. There, it’s available to be read. Since this
action tends to discharge the capacitors, they must be refreshed from the
values stored in the latch. Separate circuitry is provided to do the refresh.

When data is to be stored in DRAM, the new bit value, 0 or 1, is first
stored in the latch. Then Row Select is set to 1, and the Sense Amplifier/
Latch circuitry applies the voltage corresponding to the logical 0 or 1 to the
capacitor. The capacitor is either charged or discharged appropriately.

These operations take more time than simply switching flip-flops, so
DRAM is appreciably slower than SRAM. In addition, capacitors lose their

176 Chapter 8

charge over time, so each row of capacitors must be read and refreshed in
the order of every 60 msec. This requires additional circuitry and further
slows memory access.

Now we have a clear picture of how the hierarchical arrangement of
memory in a modern computer allows fast program execution while keep-
ing hardware costs at a reasonable level. Although DRAM is much slower
than the CPU, its low cost per bit makes it a good choice for main memory.
As we move closer to the CPU in the memory hierarchy, the much faster
SRAM is used for the cache(s). Since cache is much smaller compared to
main memory, the higher cost per bit of SRAM is tolerable. And since the
instructions and data needed by the program being executed by the CPU
are often in the cache, we see the benefits of the higher speed of the SRAM
in program execution.

YOUR T UR N

Derive the equation for D(Store, di, ri) from Table 8-1.

What You’ve Learned

Memory hierarchy   Computer storage is organized such that smaller
amounts of faster, more costly memory are located closer to the CPU.
Smaller amounts of program instructions and data are copied to the suc-
cessively faster memory levels as a program executes. This works because
there is a very high probability that the next memory location needed by
a program will be at an address that is close to the current one.

Registers   A few thousand bytes of memory located in the CPU that
are accessed at the same speed as the CPU. Implemented in flip-flops.

Cache   Thousands to millions of bytes of memory outside the CPU,
but often on the same chip. Cache memory is slower than the CPU but
synchronized with it. It is often organized in levels, with faster, smaller
amounts closer to the CPU. This is usually implemented in SRAM.

Main memory   Hundreds of millions to billions of bytes of memory
separate from the CPU. It’s much slower than the CPU, but synchro-
nized with it. This is usually implemented in DRAM.

Static random-access memory (SRAM)   Uses flip-flops to store bits.
SRAM is fast, but expensive.

Dynamic random-access memory (DRAM)   Uses capacitors to store
bits. DRAM is slow, but has a much lower cost.

In the next chapter, you will learn how the x86-64 CPU is organized
from a programmer’s point of view.

9
C E N T R A L P R O C E S S I N G U N I T

Now that you’ve learned about the elec-
tronic components used to build a central

processing unit (CPU), it’s time to learn
about some of the specifics of the x86-64 CPU.

The two major manufacturers of these CPUs are Intel
and AMD. An x86-64 CPU can be run in either 32-bit
or 64-bit mode. The 32-bit mode is called the compati-
bility mode, which allows you to run programs that were
compiled for either a 32-bit or 16-bit environment.

In this book, we’ll focus on the 64-bit mode, which is called IA-32e in
the Intel manuals and long mode in the AMD manuals. I’ll refer to it as the
64-bit mode. I’ll point out some of the major differences of the compatibility
mode, which I’ll refer to as the 32-bit mode. You cannot mix the two modes
in the same program, but most 64-bit operating systems allow you to run
either a 32-bit program or a 64-bit program.

178 Chapter 9

We’ll begin the chapter with an overview of a typical CPU. Next, we’ll
look at the registers in the x86-64 CPU and how a programmer accesses
them. The chapter concludes with an example of using the gdb debugger to
view the contents of the registers.

CPU Overview
As you probably already know, the CPU is the heart of the computer. It fol-
lows the execution path that you specify in your program and performs
all the arithmetic and logic operations. It also fetches the instructions and
data from memory as they are needed by your program.

We’ll begin with a look at the major subsystems of a typical CPU. This
will be followed by a description of how the CPU fetches instructions from
memory as it executes a program.

CPU Subsystems
Figure 9-1 shows an overall block diagram of the major subsystems of a
typical CPU. The subsystems are connected through internal buses, which
include the hardware pathways and the software protocols that control the
communications. Keep in mind that this is a highly simplified diagram.
Actual CPUs are much more complicated, but the general concepts dis-
cussed in this chapter apply to most of them.

Instruction pointer

Instruction register

Control unit

Arithmetic
logic unit

Status register

Cache
memory

Register file

Bus interface

to Address, Data, and Control buses

Figure 9-1: Major subsystems of a CPU

Let’s briefly look at each of the subsystems in Figure 9-1. The descrip-
tions provided here are generic and apply to most CPUs. After this brief

Central Processing Unit 179

introduction, we’ll look at the subsystems that a programmer will be most
interested in and how they’re used in the x86-64 architecture.

Instruction pointer   This register always contains the memory address
of the next instruction to be executed.

Cache memory   Although it could be argued that this is not part of
the CPU, most modern CPUs include very fast cache memory on the
CPU chip. As you’ll see later in this chapter, the CPU fetches each
instruction from memory as it executes a program. The CPU can exe-
cute instructions much faster than it can fetch them from main mem-
ory through the bus interface. The interface with main memory makes
it more efficient to fetch several instructions at one time, storing them
in cache memory where the CPU has fast access to them.

Instruction register   This register contains the instruction currently
being executed. Its bit pattern determines what the control unit is
causing the CPU to do. Once that action has been completed, the bit
pattern in the instruction register will be changed to that of the next
instruction, and the CPU will perform the operation specified by this
new bit pattern.

Register file   A register file is a group of registers used in similar ways.
Most CPUs have several register files. For example, the x86-64 CPU has
a register file for integer operations and another register file for floating-
point operations. Compilers and assemblers have names for each register.
Almost all arithmetic and logic operations and data movement opera-
tions involve at least one register in a register file.

Control unit   The bits in the instruction register are decoded in the
control unit. To carry out the action(s) specified by the instruction, the
control unit generates the signals that control the other subsystems in
the CPU. It’s typically implemented as a finite-state machine and con-
tains decoders, multiplexers, and other logic components.

Arithmetic logic unit (ALU)   The ALU is used to perform the arith-
metic and logic operations you specify in your program. It’s also used
by the CPU when it needs to do its own arithmetic (for example, add
two values to compute a memory address).

Status register   Each operation performed by the ALU results in vari-
ous conditions that must be recorded for possible use by the program.
For example, addition can produce a carry. One bit in the status regis-
ter will be set to either 0 (no carry) or 1 (carry) after the ALU has com-
pleted any operation that may produce a carry.

Bus interface   This is how the CPU communicates with the other com-
puter subsystems—the memory and input/output (I/O) in Figure 1-1
(see Chapter 1). It contains circuitry to place addresses on the address
bus, read and write data on the data bus, and read and write signals
on the control bus. The bus interface on many CPUs interfaces with
external bus control units that in turn interface with memory and with
different types of I/O buses (for example, USB, SATA, or PCI-E).

180 Chapter 9

Instruction Execution Cycle
In this section, we’ll go into more detail about how the CPU executes a pro-
gram stored in main memory. It does this by fetching the instructions from
main memory using the three buses that you learned about in Chapter 1—
address, data, and control—through the bus interface.

The address in the instruction pointer register, rip, always points to (has
the memory address of) the next instruction in a program to be executed.
The CPU works its way through a program by fetching the instruction from
the memory address in the instruction pointer. When an instruction is
fetched, the CPU starts to decode it. The first byte or two, depending on
the instruction, tell the CPU the number of bytes in the instruction. The
CPU then increments the rip register by this number, causing the rip to
contain the address of the next instruction in the program. Thus, the rip
marks the current location in a program.

There are instructions that change the address in the rip, thus causing
a jump from one place in the program to another. In this case, the address
of the next instruction is not known until the instruction that causes the
jump is actually executed.

The x86-64 architecture also supports rip-relative addressing, which
allows the program to access memory locations that are a fixed displace-
ment away from the current address in the rip. This allows us to create a
program that can be loaded anywhere in memory for execution, which
allows for better security. You’ll learn more about this in Chapter 11, as we
look into the assembly language details of a function.

When the CPU fetches an instruction from memory, it loads that instruc-
tion into the instruction register. The bit pattern in the instruction register
causes the CPU to perform the operations specified in the instruction.
Once that action has been completed, another instruction is automatically
loaded into the instruction register, and the CPU will perform the operation
specified by this next bit pattern.

Most modern CPUs use an instruction queue. Several instructions are
waiting in the queue, ready to be executed. Separate electronic circuitry
keeps the instruction queue full while the regular control unit is executing
the instructions. But this is simply an implementation detail that allows the
control unit to run faster. The essence of how the control unit executes a
program can be represented by the single instruction register model, which
is what I’ll describe here.

The steps to fetch each instruction from memory, and thus to execute a
program, are as follows:

1.	 A sequence of instructions is stored in memory.

2.	 The memory address where the first instruction is located is copied to
the instruction pointer.

3.	 The CPU sends the address in the instruction pointer to memory on
the address bus.

4.	 The CPU sends a “read” signal on the control bus.

Central Processing Unit 181

5.	 The memory responds by sending a copy of the state of the bits at that
memory location on the data bus, which the CPU then copies into its
instruction register.

6.	 The instruction pointer is automatically incremented to contain the
address of the next instruction in memory.

7.	 The CPU executes the instruction in the instruction register.

8.	 Go back to step 3.

Steps 3, 4, and 5 are called an instruction fetch. Notice that steps 3–8
constitute a cycle, the instruction execution cycle. It’s shown graphically in
Figure 9-2.

Stop CPU

Fetch the
instruction

pointed to by
instruction pointer

Add number of
bytes in the
instruction to

instruction pointer

Execute the
instruction

Is it the hlt
instruction?

No

Yes

Figure 9-2: The instruction
execution cycle

Most instructions in a program use at least one register in at least one
of the register files. A program typically loads data from memory into a reg-
ister, operates on the data, and stores the result in memory. Registers are

182 Chapter 9

also used to hold addresses of items that are stored in memory, thus serving
as pointers to data or other addresses.

The remainder of this chapter is mostly devoted to describing the general-
purpose registers in the x86-64 architecture. You’ll learn how to view their
contents in the gdb debugger. Then in the next chapter, you’ll learn how to
start using them in assembly language.

x86-64 Registers
A portion of the memory in the CPU is organized into registers. Machine
instructions access CPU registers by their addresses, just like they access
main memory. Of course, the register addressing space is separate from
the main memory addressing space. Register addresses are placed on the
internal CPU bus, not on the address portion of the bus interface, since the
registers are in the CPU. The difference from a programmer’s point of view
is that the assembler has predefined names for the registers, whereas the
programmer creates symbolic names for memory addresses. Thus, in each
program that you write in assembly language, the following happens:

•	 CPU registers are accessed by using the names that are predefined in
the assembler.

•	 Memory is accessed by the programmer providing a name for the mem-
ory location and using that name in the user program.

Table 9-1 lists the x86-64 architecture registers, which groups them
according to their general usage in a program. Within each general cat-
egory, the columns in the table show the number of registers, the size of
each register, and the usage of each register in a program.

Table 9-1: The x86-64 Registers

Basic programming registers

16 64-bit General-purpose

1 64-bit Flags

1 64-bit Instruction pointer

6 16-bit Segment

Floating-point registers

8 80-bit Floating-point data

1 16-bit Control

1 16-bit Status

1 16-bit Tag

1 11-bit Opcode

1 64-bit FPU instruction pointer

1 64-bit FPU data pointer

Central Processing Unit 183

MMX registers

8 64-bit MMX

XMM registers

16 128-bit XMM

1 32-bit MXCR

Model-specific registers (MSRs)

Vary depending on implementation. Used
only by operating system.

I’ve already described the instruction pointer register. Most of the pro-
gramming concepts presented in this book use only the general-purpose
registers. These are used for integral data types, such as int and char integer
values (signed and unsigned), character representations, Boolean values,
and addresses. In the remainder of this section, we’ll look at the general-
purpose registers and the flags register. We’ll discuss the floating-point reg-
isters near the end of the book. The MMX and XMM registers are used for
more advanced programming techniques that we won’t cover.

General-Purpose Registers
As mentioned, the general-purpose registers deal with integral data types
and memory addresses. Each bit in each register is numbered from right to
left, beginning with 0. So, the rightmost bit is number 0, the next one to the
left is 1, and so on. Since there are 64 bits in each general-purpose register,
the leftmost bit is 63.

Each instruction in a computer treats a group of bits as a single unit.
In the early days, that unit was called a word. Each CPU architecture had a
word size. In modern CPU architectures, different instructions operate on
different numbers of bits, but the terminology has carried over from the
early days of the Intel 8086 instruction set architecture to the current 64-bit
instruction set architecture, x86-64. Hence, 16 bits is called a word, 32 bits a
doubleword, and 64 bits a quadword.

You can access the bits in each general-purpose register by using the
following groupings in your programs:

Quadword   All 64 bits (63–0)

Doubleword   The low-order 32 bits (31–0)

Word   The low-order 16 bits (15–0)

Byte   The low-order 8 bits (7–0), and in four registers bits (15–8)

The assembler uses a different name for each group of bits in a register.
Table 9-2 lists the assembler names for the groups of the bits. Each row in
the table represents one register, and each column represents the name for
that grouping of bits in the register.

184 Chapter 9

Table 9-2: Assembly Language Names for Portions of the
General-Purpose CPU Registers

Bits 63–0 Bits 31–0 Bits 15–0 Bits 15–8 Bits 7–0

rax eax ax ah al

rbx ebx bx bh bl

rcx ecx cx ch cl

rdx edx dx dh dl

rsi esi si sil

rdi edi di dil

rbp ebp bp bpl

rsp esp sp spl

r8 r8d r8w r8b

r9 r9d r9w r9b

r10 r10d r10w r10b

r11 r11d r11w r11b

r12 r12d r12w r12b

r13 r13d r13w r13b

r14 r14d r14w r14b

r15 r15d r15w r15b

In 64-bit mode, writing to an 8-bit or 16-bit portion of a register doesn’t
affect the other 56 or 48 bits in the register. However, when writing to the
low-order 32 bits, the high-order 32 bits are set to 0. (I don’t know why the
CPU designers chose this behavior, which seems odd to me.) Programs run-
ning in 32-bit mode can use only the registers above the line in Table 9-2.
64-bit mode can use of all the registers. The ah, bh, ch, and dh registers (bits
15–8) can’t be used in the same instruction with any of the registers below
the line. For example, you cannot copy the 8-bit value in the ah register to the
sil register with a single instruction, but you could copy it to the dl register.

Most CPU architectures name their registers r0, r1, and so on. When Intel
introduced the 8086/8088 instruction set architecture, it used the names
above the line in the columns for bits 15–0, 15–8, and 7–0 in Table 9-2. The
four 16-bit registers, ax, bx, cx, and dx, were more general-purpose than the
other four and were used for most of the computations in the CPU. The pro-
grammer could access either the entire register or one-half of each register.
The low-order bytes were named al, bl, cl, and dl, and the high-order bytes
named ah, bh, ch, and dh.

Access to these 8-bit and 16-bit registers has been maintained in 32-bit
mode for backward compatibility but is limited in 64-bit mode. Access to
the 8-bit low-order portions of the rsi, rdi, rsp, and rbp registers was added
along with the move to 64 bits in the x86-64 architecture but cannot be
used in the same instruction with the 8-bit register portions of the ah, bh, ch,
or dh registers.

Central Processing Unit 185

The e prefix on the 32-bit portion of each register name comes from
the history of the x86 architecture. The introduction of the 80386 in 1986
brought an increase of register size from 16 bits to 32 bits. There were no
new registers; the old ones were simply “extended.” In addition to increas-
ing the register size to 64 bits, the introduction of the x86-64 architecture
added eight more registers, named r8–r15. Rather than change the names
of the first eight registers, I assume that the designers decided to use the r
prefix on the historical names.

When using fewer than the entire 64 bits in a register, it’s generally bad
practice to write code that assumes the remaining portion is in any particu-
lar state. Such code is difficult to read and leads to errors during the pro-
gram’s maintenance phase.

Figure 9-3 shows a pictorial representation of the naming of each por-
tion of the general-purpose registers. The three registers shown here are
representative of the pattern of all the general-purpose registers.

rax
eax

ax
ah al

rsi
esi

si
sil

r8
r8d

r8w
r8b

Figure 9-3: General-purpose register naming

Although they’re called general-purpose, some instructions use several
of these registers in special ways. We’ll mostly treat all the general-purpose
registers like variables in a high-level language. The important exceptions
are the rsp and rbp registers, which hold memory addresses that are key for
the proper functioning of a program that’s executing.

Special Pointer Registers

Let’s look at two general-purpose registers that are important in a program.
The rsp register is used as a stack pointer, and the rbp register is used as a
frame pointer. They are used to keep track of the locations of items in an
area of memory used as the call stack. The call stack is used for temporary
storage and passing information between functions when a program is
running. Several machine instructions use the rsp register implicitly.

The usage of the rsp and rbp registers must follow a very strict protocol,
which I’ll describe in detail in subsequent chapters. You need to follow the
protocol carefully when writing assembly language.

186 Chapter 9

Other Restrictions on General-Purpose Registers

Several instructions work only with specific general-purpose registers. For
example, the unsigned multiplication and division instructions use the rax
and rdx registers. In addition, each operating system and programming
environment has a set of rules for using the general-purpose registers. In
our programming environment (C under 64-bit GNU/Linux), the first
argument to a function is passed in the rdi register, but when using C under
64-bit Windows, the first argument is passed in the rcx register.

You’ll learn about these restrictions and conventions (for GNU/Linux,
not Windows) in Chapter 11.

Status Register
Another specialized register in the CPU is the status register, which you saw
in Figure 9-1. It’s given the name rflags. We will be concerned with several
bits in this register that are used as status flags, which indicate some side
effects of many instructions.

Most arithmetic and logical operations affect the status flags. For
example, the carry flag, CF, and overflow flag, OF, are in the rflags register.
Figure 9-4 shows the bits that are affected. The high-order 32 bits (63–32)
are reserved for other use and are not shown here. We also don’t show bits
31–12, which are for system flags.

OF SF ZF AF PF CF
11 10 9 8 7 6 5 4 3 2 1 0

Figure 9-4: Status flags portion of the rflags register

Table 9-3 shows the status flags.

Table 9-3: Status Flags in the rflags Register

Name Function Condition that sets flag to 1

OF Overflow flag Overflow of signed-integer (two’s complement)
arithmetic

SF Sign flag Copy of most significant bit of result

ZF Zero flag Result is 0

AF Auxiliary carry flag Shows carry or borrow in binary-coded decimal
arithmetic

PF Parity flag Least significant byte of result has an even number of 1
bits

CF Carry flag Carry or borrow beyond most significant bit of result

There are machine instructions for testing the state of the status flags.
For example, there’s an instruction that will branch to another place in the
program if the ZF status flag is 1.

Next, we’ll look at some C/C++ data types as they relate to the sizes of
the general-purpose registers.

Central Processing Unit 187

C/C++ Integral Data Types and Register Sizes
Every piece of data in a computer program has a data type, which specifies
the following: the possible values for the data type, the bit patterns used to
represent those values, operations that can be performed on the data, and
the data’s semantic usage in the program.

Some programming languages like C, C++, and Java require the pro-
grammer to explicitly state the data types of values used in the program.
Other languages like Python, BASIC, and JavaScript can determine a data
type from the way the value is used. CPU manufacturers specify machine-
level data types specific to the CPU architecture, often including special-
ized data types that are unique to the design.

The C and C++ language specifications provide ranges for values that
can be stored in a variable of each data type. For example, an int must be
able to store a value in the range –32,767 to + 32,767; thus, it must be at least
16 bits in size. An unsigned int must be at least 0 to 65,525, so it also must be
at least 16 bits. Compiler designers are free to exceed the minimums speci-
fied in the language specifications.

Table 9-4 gives x86-64 register sizes for C/C++ data types you can expect
from our compilers, gcc and g++, but you should be careful not to count on
these sizes to always be the same. The *any notation means a pointer (mem-
ory address) to any data type.

Table 9-4: Sizes of Some C/C++ Data Types in the
x86-64 Architecture

Data type Size in 32-bit mode Size in 64-bit mode

char Byte Byte

int Doubleword Doubleword

long Doubleword Quadword

long long Quadword Quadword

float Doubleword Doubleword

double Quadword Quadword

*any Doubleword Quadword

N O T E 	 If your solution to a problem depends on data sizes, C standard libraries often define
specific sizes. For example, the GNU C libraries define int16_t to be a 16-bit signed
integer and u_int16_t to be an unsigned 16-bit integer. In rare cases, you may want
to use assembly language to ensure correctness.

A value can usually be represented with more than one data type. For
example, most people would think of 123 as representing the integer one
hundred twenty-three, but this value could be stored in a computer either
as an int or as a char[] (a char array where each element of the array holds
one code point for a character).

188 Chapter 9

As you can see in Table 9-4, an int in our C/C++ environment is stored
in a doubleword, so 123 would be stored with the bit pattern 0x0000007b. As a
C-style text string, we’d also need four bytes of memory, but the bit patterns
would be 0x31, 0x32, 0x33, and 0x00—that is, the characters 1, 2, 3, and NUL.
(Recall that a C-style string is terminated with a NUL character.)

You can learn a lot about how the CPU works by viewing what takes
place in the registers. In the next section, you’ll learn how to view the regis-
ters by using the gdb debugger.

Using gdb to View the CPU Registers
We’ll use the program in Listing 9-1 to show how to use gdb to view the con-
tents of the CPU registers.

/* inches2feet.c
 * Converts inches to feet and inches.
 */

#include <stdio.h>
#define inchesPerFoot 12

int main(void)
{
1 register int feet;
 register int inchesRem;
2 int inches;
 int *ptr;

 ptr = &inches;

 printf("Enter inches: ");
3 scanf("%i", ptr);

 feet = inches / inchesPerFoot;
 inchesRem = inches % inchesPerFoot;
 printf("%i\" = %i' %i\"\n", inches, feet, inchesRem);

 return 0;
}

Listing 9-1: Simple program to illustrate the use of gdb to view CPU registers

I’ve used the register storage class modifier 1 to request that the com-
piler use a CPU register for the feet and inchesRem variables. The register
modifier is advisory only. The C language standard doesn’t require the
compiler to honor the request. But notice that I didn’t request the compiler
use a CPU register for the inches variable 2. The inches variable must be
placed in memory since scanf needs a pointer to the location of inches 3 to
store the value read from the keyboard.

You’ve already seen some gdb commands earlier in the book (review
Chapter 2 for a refresher). When you hit a breakpoint in a program that has

Central Processing Unit 189

been running, here are some additional commands that you may find useful
for moving through the program under your control and viewing informa-
tion about the program:

n (next) executes the current source code statement; if it’s a call to a
function, the entire function is executed.

s (step) executes the current source code statement; if it’s a call to a
function, step into the function, arriving at the first instruction of the
called function.

si (step instruction) executes the current machine instruction; if it’s a
call to a function, step into the function.

i r (info registers) displays the contents of the registers, except the
floating-point and vector registers.

Here’s how I used gdb to control the execution of the program and observe
the register contents. Note that you’ll probably see different addresses if you
replicate this example on your own, which you’re asked to do when it’s Your
Turn.

1 $ gcc -g -O0 -Wall -masm=intel -o inches2feet inches2feet.c
2 $ gdb ./inches2feet
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2
 --snip--
Reading symbols from ./inches2feet...done.
3 (gdb) l
1 /* inches2feet.c
2 * Converts inches to feet and inches.
3 */
4
5 #include <stdio.h>
6 #define inchesPerFoot 12
7
8 int main(void)
9 {
10 register int feet;
(gdb) ENTER
11 register int inchesRem;
12 int inches;
13 int *ptr;
14
15 ptr = &inches;
16
17 printf("Enter inches: ");
18 scanf("%i", ptr);
19
20 feet = inches / inchesPerFoot;
(gdb) ENTER
21 inchesRem = inches % inchesPerFoot;
22 printf("%i\" = %i' %i\"\n", inches, feet, inchesRem);
23
24 return 0;
25 }

190 Chapter 9

We first compile the program 1, load it with gdb 2, and then list the
source code so we can see where to set breakpoints. Using the ENTER
key 3 (RETURN on some keyboards) repeats the previous command. The
debugger starts by printing information about itself, which I have cut out of
my display to save space.

We want to follow along as the program processes the data by setting
breakpoints at strategic points in the program:

(gdb) b 17
Breakpoint 1 at 0x11af: file inches2feet.c, line 17.
(gdb) b 20
Breakpoint 2 at 0x11d8: file inches2feet.c, line 20.

We set the first breakpoint where the program is about to prompt the
user to enter the input data, line 17, and a second at the statement where
the program’s computations begin, line 20.

When we run the program, it breaks at the first breakpoint it
encounters:

(gdb) r
Starting program: /home/progs/chapter_09/inches2feet/inches2feet

Breakpoint 1, main () at inches2feet.c:17
17 printf("Enter inches: ");

The program stops at line 17 of the source code, and control returns to
gdb. We can see the contents of the registers with the i r command. (Be sure
to type a space between i and r.)

(gdb) i r
rax 0x7fffffffdeac 140737488346796
rbx 0x555555555260 93824992236128
rcx 0x555555555260 93824992236128
rdx 0x7fffffffdfd8 140737488347096
rsi 0x7fffffffdfc8 140737488347080
rdi 0x1 1
rbp 0x7fffffffded0 0x7fffffffded0
rsp 0x7fffffffdea0 0x7fffffffdea0
r8 0x0 0
r9 0x7ffff7fe0d50 140737354009936
r10 0x7 7
r11 0x2 2
r12 0x5555555550a0 93824992235680
r13 0x7fffffffdfc0 140737488347072
r14 0x0 0
r15 0x0 0
rip 0x5555555551af 0x5555555551af <main+38>
eflags 0x246 [PF ZF IF]
cs 0x33 51
ss 0x2b 43
ds 0x0 0

Central Processing Unit 191

es 0x0 0
fs 0x0 0
gs 0x0 0

This display tells us the contents of the registers before the user enters
data (you’ll see different numbers). We might want to know if the compiler
honored our request to use registers for the feet and inchesRem variables.
And if it did, which registers did it use?

We’d like to know this information so we can look at the contents of the
registers before and after they’re used by the program so we can see if the
program is storing the correct values in them. We can answer this question
by asking gdb to print the addresses of these two variables:

(gdb) print &feet
Address requested for identifier "feet" which is in register $r12
(gdb) print &inchesRem
Address requested for identifier "inchesRem" which is in register $rbx

When we ask for the address of a variable, gdb will give the memory
address associated with a programmer-supplied identifier. But in this pro-
gram we asked the compiler to use registers, and gdb tells us which register
the compiler chose for each variable.

We didn’t ask the compiler to use registers for the inches and ptr vari-
ables, so gdb should tell us where they are located in memory:

(gdb) print &inches
$1 = (int *) 0x7fffffffdeac
(gdb) print &ptr
$2 = (int **) 0x7fffffffdeb0

Now that we know r12 is being used for feet and rbx for inchesRem, we can
see what’s currently stored in these two registers and continue running the
program:

1 (gdb) i r rbx r12
rbx 0x555555555260 93824992236128
r12 0x5555555550a0 93824992235680
2 (gdb) c
Continuing.
Enter inches: 123 3

Rather than display all the registers, we can specify the two we want to
look at 1. Continuing program’s execution 2, the program asks the user
to enter the number of inches, and I responded with 123 3. It then breaks
back into gdb at the next breakpoint it encounters:

Breakpoint 2, main () at inches2feet.c:20
20 feet = inches / inchesPerFoot;

192 Chapter 9

Before starting the computations, let’s make sure the user’s input is
stored in the right place:

(gdb) print inches
$3 = 123

The program is about to compute the number of feet, and then it will
compute the remainder of inches. So I’ll execute two statements using n:

(gdb) n
21 inchesRem = inches % inchesPerFoot;
(gdb) ENTER
22 printf("%i\" = %i' %i\"\n", inches, feet, inchesRem);

The program is now ready to print out the results of the computations.
I’ll check to make sure all the computations were performed correctly and
the results are in the proper variables, which we’ve already determined are
in rbx and r12:

(gdb) i r rbx r12
rbx 0x3 3
r12 0xa 10

There are other ways to see what’s stored in feet and inchesRem:

(gdb) print $rbx
$4 = 3
(gdb) print $r12
$5 = 10
(gdb) print feet
$6 = 10
(gdb) print inchesRem
$7 = 3

When using gdb’s print command, you can print only one variable at a
time, even if a register is being used to store the variable. The $ prefix on
the register name isn’t required for the i r command, but it is for the print
command.

Before completing execution of the program, I’ll take a final look at all
the registers:

(gdb) i r
rax 0x78 120
rbx 0x3 3
rcx 0xa 10
rdx 0x7b 123
rsi 0x0 0
rdi 0x7fffffffd960 140737488345440
rbp 0x7fffffffded0 0x7fffffffded0
rsp 0x7fffffffdea0 0x7fffffffdea0
r8 0xa 10
r9 0x0 0
r10 0x7ffff7f5bac0 140737353464512

Central Processing Unit 193

r11 0x0 0
r12 0xa 10
r13 0x7fffffffdfc0 140737488347072
r14 0x0 0
r15 0x0 0
rip 0x55555555521e 0x55555555521e <main+149>
eflags 0x206 [PF IF]
cs 0x33 51
ss 0x2b 43
ds 0x0 0
es 0x0 0
fs 0x0 0
gs 0x0 0

There’s nothing remarkable in this display, but after you gain some
experience looking at such displays, you’ll learn to sometimes spot that
something is not right. Now that I’m satisfied that the program performed
all the computations correctly, I’ll continue to the end of the program by
using cont and then exit with q:

(gdb) c
Continuing.
123" = 10' 3"
[Inferior 1 (process 3874) exited normally]
(gdb) q
$

The program continues to execute, printing the result and returning
control to gdb. Of course, the last thing to do is to exit from gdb.

YOUR T UR N

1.	 Modify the program in Listing 9-1 such that registers are used for the vari-
ables inches and ptr. Did the compiler allow you to do that? If not, why?

2.	 Write a program in C that allows you to determine the endianess of your
computer.

3.	 Modify the program in the previous exercise so that you can demonstrate,
using gdb, that endianess is a property of the CPU. That is, even though a
32-bit int is stored little endian in memory, it will be read into a register in
the “proper” order.

What You’ve Learned

General-purpose registers   Sixteen 64-bit registers in the x86-64 pro-
vide a small amount of memory for computations in the CPU.

Status register   This register contains flags that show whether arithme-
tic/logic operations produce carry, overflow, or 0.

194 Chapter 9

Instruction pointer    This pointer always has the address of the next
instruction to be executed.

Instruction register   This register holds the instruction currently
being executed.

Arithmetic logic unit   Performs the arithmetic and logic operations.

Control unit   Controls the activity in the CPU.

Bus interface   Responsible for interfacing the CPU with the main
memory and I/O devices.

Cache memory   Cache memory is faster than main memory. It holds
portions of the program, both instructions and data, that are currently
being worked on by the CPU.

Instruction execution cycle   Details how the CPU works its way
through a list of instructions.

C/C++ data type sizes    Data sizes are closely related to register sizes.

Debugger   In addition to helping you find bugs, gdb is useful to help
you learn the concepts.

In the next chapter, you’ll start programming your computer in assem-
bly language.

10
P R O G R A M M I N G I N

A S S E M B LY L A N G U A G E

In the previous chapters, you saw how
computers can be programmed using 1s

and 0s to represent the operations and the
data, the machine language. Now we’ll move on

to programming at the machine level, but instead of
using machine language, we’ll use assembly language.
Assembly language uses a short mnemonic for each
machine language instruction. We’ll use an assembler program to trans-
late the assembly language into the machine language instructions that
control the computer.

Creating a program in assembly language is similar to creating one in
a higher-level compiled language like C, C++, Java, or FORTRAN. We’ll use
C as our programming model to explore the primary programming con-
structs and data structures that are common to essentially all higher-level
programming languages. The compiler we’re using, gcc, allows us to look at

196 Chapter 10

the assembly language it generates. From there, I will show you how I would
implement the programming constructs and data structures directly in
assembly language.

We’ll begin the chapter by looking at the steps the compiler takes to
create an executable program from C source code. Next, we’ll look at which
of these steps apply to assembly language programming and create our
own program directly in assembly language that will run in the C runtime
environment. You’ll also learn about a gdb mode that’s useful for learning
assembly language.

While reading this chapter, you should also consult the man and info
documentation resources available in most GNU/Linux installations for the
programs discussed here. (You may need to install the info documentation
on your computer as described in Chapter 1.)

Compiling a Program Written in C
We’ll use the GNU compiler, gcc, which creates an executable program from
one or more source files by performing several distinct steps. Each step
results in an intermediate file that serves as input to the next step. The
description of each step here assumes a single C source file, filename.c.

Preprocessing
Preprocessing is the first step. This step resolves compiler directives
such as #include (file inclusion), #define (macro definition), and #if (con-
ditional compilation) by invoking the program cpp. The compilation
process can be stopped at the end of the preprocessing phase with the
-E option, which writes the resulting C source code to standard out.

Standard out is usually the terminal window. You can redirect the out-
put to a file with the > operator, like this:

$ gcc -Wall -O0 -masm=intel -E filename.c > filename.i

The .i file extension denotes a file that does not require preprocessing.

Compilation
Next, the compiler translates the source code that results from pre-
processing into assembly language. The compilation process can be
stopped at the end of the compilation phase with the -S option (upper-
case S), which writes the assembly language source code to filename.s.

Assembly
After the compiler generates the assembly language that implements
the C source code, the assembler program, as, translates the assembly
language into machine code. The process can be stopped at the end of
the assembly phase with the -c option, which writes the machine code
to an object file, named filename.o. Some call this assembler gas, for GNU
assembler.

Programming in Assembly Language 197

Linking
The ld program determines where each function and data item will be
located in memory when the program is executed. It then replaces the
programmer’s symbolic names where each of these items is referenced
with the memory address of the item. The result of this linking is writ-
ten to an executable file. The default name of the executable file is a.out,
but you can specify another name with the -o option.

If the called function is in an external library, this is noted where the
function is called, and the address of the external function is determined
during program execution. The compiler directs the ld program to add
the computer code to the executable file that sets up the C runtime envi-
ronment. This includes operations such as opening paths to standard out
(the screen) and standard in (the keyboard) for use by your program.

As you might know, if you don’t use any of the gcc options to stop the
process at the end of one of these steps (-E, -S, -c), the compiler will per-
form all four steps and automatically delete the intermediate files, leaving
only the executable program as the final result. You can direct gcc to keep
all the intermediate files with the -save-temps option.

The complement of being able to stop gcc along the way is that we can
supply files that have effectively gone through the earlier steps, and gcc will
incorporate those files into the remaining steps. For example, if we write a
file in assembly language, gcc will skip the preprocessing and compilation
steps and perform the assembly and linking steps. If we supply only object
files (.o), gcc will go directly to the linking step. An implicit benefit of this
is that we can write programs in assembly language that call functions in
the C standard library (which are already in object file format), and gcc will
automatically link our assembly language with those library functions.

Be careful to use the filename extensions that are specified in the GNU
programming environment when naming a file. The default action of the
compiler at each step depends upon the filename extension appropriate
to that step. To see these naming conventions, type info gcc into the com-
mand line, select Invoking GCC, and then select Overall Options. If you don’t
use the specified filename extension, the compiler might not do what you
want or even overwrite a required file.

From C to Assembly Language
Programs written in C are organized into functions. Each function has a
name that is unique within the program. After the C runtime environment
is set up, the main function is called, so our program starts with main.

Since we can easily look at the assembly language that the compiler gen-
erates, that is a good place to start. We’ll start off by looking at the assembly
language that gcc generates for the minimum C program in Listing 10-1.
The program does nothing except return 0 to the operating system. A pro-
gram can return various numerical error codes to the operating system; 0
indicates that the program did not detect any errors.

198 Chapter 10

N O T E 	 If you are not familiar with the GNU make program, I urge you to learn how to use it
to build your programs. It may seem like overkill at this point, but it’s much easier to
learn with simple programs. The manual is available in several formats at https://
www.gnu.org/software/make/manual/, and I have some comments about using
it on my website, https://rgplantz.github.io/.

/* doNothingProg.c
 * Minimum components of a C program.
 */

int main(void)
{
 return 0;	
}

Listing 10-1: Minimum C program

Even though this program accomplishes very little, some instructions
need to be executed just to return 0. To see what takes place, we first trans-
late this program from C to assembly language with the following GNU/
Linux command:

$ gcc -O0 -Wall -masm=intel -S doNothingProg.c

Before showing the result of this command, I’ll explain the options I’ve
used. The -O0 (uppercase O and zero) option tells the compiler not to use
any optimization. The goal of this book is to show what’s taking place at the
machine level. Asking the compiler to optimize the code may obscure some
important details.

You’ve already learned that the -Wall option asks the compiler to warn you
about questionable constructions in your code. It’s not likely in this simple pro-
gram, but it’s a good habit to get into.

The -masm=intel option directs the compiler to generate assembly lan-
guage using the Intel syntax instead of the default AT&T syntax. I’ll explain
why we use Intel syntax later in this chapter.

The -S option directs the compiler to stop after the compilation phase
and write the assembly language resulting from the compilation to a file
with the same name as the C source code file, but with the .s extension
instead of .c. The previous compiler command generates the assembly lan-
guage shown in Listing 10-2, which is saved in the file doNothingProg.s.

 .file "doNothingProg.c"
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
main:
.LFB0:
 1 .cfi_startproc
 endbr64

https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
https://rgplantz.github.io/

Programming in Assembly Language 199

 push rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 mov rbp, rsp
 .cfi_def_cfa_register 6
 mov eax, 0
 pop rbp
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits
 .section .note.gnu.property,"a"
 .align 8
 .long 1f - 0f
 .long 4f - 1f
 .long 5
0:
 .string "GNU"
1:
 .align 8
 .long 0xc0000002
 .long 3f - 2f
2:
 .long 0x3
3:
 .align 8
4:

Listing 10-2: Minimum C program, assembly language generated by compiler

The first thing you might notice in Listing 10-2 is that many of the iden-
tifiers begin with a . character. All of them, except the ones followed by a :,
are assembler directives, also known as pseudo-ops. They are instructions to the
assembler program itself, not computer instructions. We won’t need all of
them for the material in this book. The identifiers that are followed by a :
are labels on memory locations, which we’ll discuss in a few pages.

Assembler Directives That We Won’t Use
The assembler directives in Listing 10-2 that begin with .cfi 1 tell the
assembler to generate information that can be used for debugging and
certain error situations. The identifiers beginning with .LF mark places in
the code used to generate this information. A discussion of this is beyond
the scope of this book, but their appearance in the listing can be confusing.
So, we’ll tell the compiler not to include them in the assembly language file
with the -fno-asynchronous-unwind-tables option:

$ gcc -O0 -Wall -masm=intel -S -fno-asynchronous-unwind-tables doNothingProg.c

200 Chapter 10

This produces the file doNothingProg.s shown in Listing 10-3.

 .file "doNothingProg.c"
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
main:
 1 endbr64
 push rbp
 mov rbp, rsp
 mov eax, 0
 pop rbp
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits
 2 .section .note.gnu.property,"a"
 .align 8
 .long 1f - 0f
 .long 4f - 1f
 .long 5
0:
 .string "GNU"
1:
 .align 8
 .long 0xc0000002
 .long 3f - 2f
2:
 .long 0x3
3:
 .align 8
4:

Listing 10-3: Minimum C program, assembly language generated by compiler, without
.cfi directives

Even without the .cfi directives, the assembly language still includes an
instruction and several directives that we won’t use for now. Intel has devel-
oped a technique, Control-flow Enforcement Technology (CET), for providing
better defense against types of security attacks of computer programs that
hijack a program’s flow. The technology is supposed to be included in Intel
CPUs starting in the second half of 2020. AMD has said they will include an
equivalent technology in their CPUs at a later date.

The technology includes a new instruction, endbr64, which is used as the
first instruction in a function to check whether program flow gets there 1.
The instruction has no effect if the CPU does not include CET.

The compiler also needs to include some information for the linker
to use CET. This information is placed in a special section of the file that
the assembler will create, denoted with the .section .note.gnu.property,"a"
assembler directive 2, after the actual program code.

Programming in Assembly Language 201

The version of gcc used in this book includes the CET feature by default
in anticipation of the new CPUs. The details of using CET are beyond the
scope of this book. If you’re curious, you can read about it at https://www.intel
.com/content/www/us/en/developer/articles/technical/technical-look-control-flow
-enforcement-technology.html. The programs we’re writing in this book are
not intended for production use, so we won’t be concerned about security
issues in our programs. We’ll use the -fcf-protection=none option to tell the
compiler not to include CET, and we won’t use it when writing directly in
assembly language.

To keep our discussion focused on the fundamentals of how a computer
works, we’ll tell the compiler to generate assembly language with the follow-
ing command:

$ gcc -O0 -Wall -masm=intel -S -fno-asynchronous-unwind-tables \
> -fcf-protection=none doNothingProg1.c

This command yields the assembly language file shown in Listing 10-4.

 1 .file "doNothingProg.c"
 2 .intel_syntax noprefix
 3 .text
 4 .globl main
 5 .type main, @function
main:
 push rbp
 mov rbp, rsp
 mov eax, 0
 pop rbp
 ret
 6 .size main, .-main
 7 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 8 .section .note.GNU-stack,"",@progbits

Listing 10-4: Minimum C program, assembly language generated by compiler, without
.cfi directives and CET code

Now that we’ve stripped away the advanced features, I’ll discuss the
assembler directives remaining in Listing 10-4 that we won’t need when
writing our own assembly language. The .file directive 1 is used by gcc
to specify the name of the C source file that this assembly language came
from. When writing directly in assembly language, this isn’t used. The .size
directive 6 computes the size of the machine code, in bytes, that results
from assembling this file, and assigns the name of this function, main, to this
value. This can be useful information in systems with limited memory but is
of no concern in our programs.

I honestly don’t know the reasons for using the .ident and .section
directives 7 8. I’m guessing from their arguments that they’re being used
to provide information to the developers of gcc when users report bugs. Yes,
even compilers have bugs! But we won’t use these directives in our assembly
language.

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html

202 Chapter 10

Assembler Directives That We Will Use
Now we’ll look at the directives that will be required when we write in
assembly language. The .text assembler directive 3 in Listing 10-4 tells the
assembler to place whatever follows in the text section. What does text section
mean?

In GNU/Linux, the object files produced by the assembler are in the
Executable and Linking Format (ELF). The ELF standard specifies many
types of sections, each specifying the type of information stored in it. We
use assembler directives to tell the assembler in which section to place
the code.

The GNU/Linux operating system also divides memory into segments
for specific purposes when a program is loaded from the disk. The linker
gathers all the sections that belong in each segment together and outputs
an executable ELF file that’s organized by segment to make it easier for the
operating system to load the program into memory. The four general types
of segments are as follows:

Text (also called code)   The text segment is where program instruc-
tions and constant data are stored. The operating system prevents a
program from changing anything stored in the text segment, making
it read-only.

Data   Global variables and static local variables are stored in the data
segment. Global variables can be accessed by any of the functions in a
program. A static local variable can be accessed only by the function it’s
defined in, but its value remains the same between calls to its function.
Programs can both read from and write to variables in the data seg-
ment. These variables remain in place for the duration of the program.

Stack   Automatic local variables and the information that links func-
tions are stored on the call stack. Automatic local variables are created
when a function is called, and deleted when the function returns to its
calling function. Memory on the stack can be both read from and writ-
ten to by the program. It’s allocated and deallocated dynamically as the
program executes.

Heap   The heap is a pool of memory that’s available for a program to
use when running. A C program calls the malloc function (C++ calls
new) to get a chunk of memory from the heap. It can be both read from
and written to by the program. It’s used to store data and is explicitly
deallocated by calling free (delete in C++) in the program.

This has been a simplistic overview of ELF sections and segments.
You can find further details by reading the man page for ELF and reading
sources like “ELF-64 Object File Format,” which can be downloaded at
https://uclibc.org/docs/elf-64-gen.pdf, and John R. Levine’s Linkers & Loaders
(Morgan Kaufmann, 1999). The readelf program is also useful for learning
about ELF files.

Now look back at Listing 10-4. The .globl directive 4 has one argu-
ment, the identifier main. The .globl directive makes the name globally

https://uclibc.org/docs/elf-64-gen.pdf

Programming in Assembly Language 203

known so functions that are defined in other files can refer to this name.
The code that sets up the C runtime environment was written to call the
function named main, so the name must be global in scope. All C/C++ pro-
grams start with a main function. In this book, we’ll also start our assembly
language programs with a main function and execute them within the C
runtime environment.

You can write stand-alone assembly language programs that don’t
depend on the C runtime environment, in which case you can create your
own name for the first function in the program. You need to stop the com-
pilation process at the end of the assembly step with the -c option. You then
link the object (.o) files using the ld command by itself, not as part of gcc.
I’ll describe this in more detail in Chapter 20.

The assembler directive, .type, 5 has two arguments, main and @function.
This causes the identifier main to be recorded in the object file as the name
of a function.

None of these three directives gets translated into actual machine instruc-
tions, and none of them occupies any memory in the finished program.
Rather, they’re used to describe the characteristics of the statements that
follow.

You may have noticed that I haven’t yet described the purpose of the
.intel_syntax noprefix directive 2. It specifies the syntax of the assembly lan-
guage we’ll use. You can probably guess that we’ll be using the Intel syntax,
but that will be easier to understand after I explain the assembly language
instructions. We’ll do this using the same function from Listing 10-1 but
written directly in assembly language.

Creating a Program in Assembly Language
Listing 10-5 was written in assembly language by a programmer, rather
than by a compiler. Naturally, the programmer has added comments to
improve readability.

1 # doNothingProg.s
Minimum components of a C program, in assembly language.
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
2 main:
 3 push rbp # save caller's frame pointer
 4 mov rbp, rsp # establish our frame pointer
5

 6 mov eax, 0 # return 0 to caller

 mov rsp, rbp # restore stack pointer
 pop rbp # restore caller's frame pointer
 ret # back to caller

Listing 10-5: Minimum C-style program written in assembly language

204 Chapter 10

Assembly Language in General
The first thing to notice in Listing 10-5 is that assembly language is orga-
nized by lines. Only one assembly language statement is on each line, and
none of the statements spans more than one line. This differs from the
free-form nature of many high-level languages where the line structure is
irrelevant. In fact, good programmers use the ability to write program state-
ments across multiple lines and indentation to emphasize the structure of
their code. Good assembly language programmers use blank lines to help
separate parts of an algorithm, and they comment almost every line.

Next, notice that the first two lines begin with the # character 1. The
rest of the line is written in English and is easily read. Everything after the
character is a comment. Just as with a high-level language, comments are
intended solely for the human reader and have no effect on the program.
The comments at the top are followed by the assembler directives we dis-
cussed earlier.

Blank lines 5 are intended to improve readability. Well, they improve
readability once you learn how to read assembly language.

The remaining lines are organized roughly into columns. They prob-
ably do not make much sense to you at this point because they’re written in
assembly language, but if you look carefully, each of the assembly language
lines is organized into four possible fields:

label: operation operand(s) # comment

Not all the lines will have entries in all the fields. The assembler requires
at least one space or tab character to separate the fields. When writing
assembly language, your program will be much easier to read if you use the
Tab key to move from one field to the next so that the columns line up.

Let’s look at each field in some detail:

Label   Allows us to give a symbolic name to any line in the program.
Each line corresponds to a memory location in the program, so other
parts of the program can then refer to the memory location by name.

A label consists of an identifier immediately followed by the : character.
You, as the programmer, must make up these identifiers. We’ll look at
the rules for creating an identifier soon. Only the lines we need to refer
to are labeled.

Operation   Contains either an instruction operation code (opcode) or
an assembler directive (pseudo op). The assembler translates the opcode,
along with its operands, into machine instructions, which are copied
into memory when the program is to be executed.

Operand   Specifies the arguments to be used in the operation. The
arguments can be explicit values, names of registers, or programmer-
created identifiers. The number of operands can be zero, one, two, or
three, depending on the operation.

Programming in Assembly Language 205

Comment   Everything on a line following a # character is ignored by
the assembler, thus providing a way for the programmer to provide
human-readable comments. Since assembly language is not as easy to
read as higher-level languages, good programmers will place a com-
ment on almost every line.

A word about program comments here. Beginners often comment on
what the programming statement does, not its purpose relative to solving
the problem. For example, a comment like

counter = 1; /* let x = 1 */

in C is not very useful. But a comment like

counter = 1; /* need to start at 1 */

could be very helpful. Your comments should describe what you are doing,
not what the computer is doing.

The rules for creating an identifier are similar to those for C/C++. Each
identifier consists of a sequence of alphanumeric characters and may include
other printable characters such as ., _, and $. The first character must not be
a numeral. An identifier may be any length, and all characters are significant.
Although the letter case of keyword identifiers (operators, operands, direc-
tives) is not significant, it is significant for labels. For example, myLabel and
MyLabel are different. Compiler-generated labels begin with the . character,
and many system-related names begin with the _ character. It’s a good idea
to avoid beginning your own labels with the . or the _ character so that you
don’t inadvertently create one that’s already being used by the system.

It’s common to place a label on its own line 2, in which case it applies
to the address of the next assembly language statement that takes up
memory 3. This allows you to create longer, more meaningful labels while
maintaining the column organization of your code.

Integers can be used as labels, but they have a special meaning. They’re
used as local labels, which are sometimes useful in advanced assembly lan-
guage programming techniques. We won’t be using them in this book.

First Assembly Language Instructions
Rather than list all the x86-64 instructions (there are more than 2,000,
depending on how you count), I will introduce a few at a time, and only the
ones that will be needed to illustrate the programming concept at hand. I
will also give only the commonly used variants of the instructions I introduce.

For a detailed description of the instructions and all their variants,
you’ll need a copy of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume Two, which can be downloaded at https://software.intel.com/
en-us/articles/intel-sdm/, or AMD64 Architecture Programmer’s Manual, Volume 3:
General-Purpose and System Instructions, which can be downloaded at https://
developer.amd.com/resources/developer-guides-manuals/. These are the instruc-
tion set reference manuals from the two major manufacturers of x86-64
CPUs. They can be a little difficult to read, but going back and forth

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
/
https://developer.amd.com/resources/developer-guides-manuals/
https://developer.amd.com/resources/developer-guides-manuals/

206 Chapter 10

between my descriptions of the instructions in this book and the descrip-
tions in the manuals should help you to learn how to read the manuals.

Assembly language provides a set of mnemonics that correspond directly
to the machine language instructions. A mnemonic is a short, English-like
group of characters that suggests the action of the instruction. For example,
mov is used to represent the instruction that copies (moves) a value from
one place to another; the machine instruction 0x4889e5 copies the entire
64-bit value in the rsp register to the rbp register. Even if you’ve never seen
assembly language before, the mnemonic representation of this instruc-
tion in Listing 10-5 4 probably makes much more sense to you than the
machine code.

N O T E 	 Strictly speaking, the mnemonics are completely arbitrary, as long as you have an
assembler program that will translate them into the desired machine instructions.
However, most assembler programs follow the mnemonics used in the manuals pro-
vided by CPU vendors.

The general format of an assembly language instruction in our usage of
the assembler (Intel syntax) is

operation destination, source1, source2

where destination is the location where the result of the operation will be
stored, and source1 and source2 are the locations where the input(s) to the
operation are located. There can be from zero to two sources, and some
instructions don’t require that you specify a destination. The destination
can be a register or memory. A source value can be in a register, in memory,
or immediate data. Immediate data is stored as part of the machine code
implementation of the instruction and is hence a constant value in the
program. You’ll see how this works in Chapter 12, when we look at how
instructions are encoded in the 1s and 0s of machine code.

When describing instructions, I use reg, reg1, or reg2 to mean one of the
names of a general-purpose register from Table 9-2 in Chapter 9. I use mem
to mean a label of a memory location and imm to mean a literal data value.
In most cases, the values specified by the operands must be the same. There
are instructions for explicitly converting from one size to another.

Let’s start with the most commonly used assembly language instruction,
mov. In fact, in Listing 10-5 half the instructions are mov.

mov—Move

Copies a value from a source to a destination.

mov reg1, reg2 moves the value in reg2 to reg1.

mov reg, mem moves the value in mem to reg.

mov mem, reg moves the value in reg to mem.

mov reg, imm moves imm to reg.

mov mem, imm moves imm to mem.

The mov instruction does not affect the status flags in the rflags register.

Programming in Assembly Language 207

The size (number of bits) of the value moved must be the same for
the source and the destination. When the assembler program translates
the assembly language instruction to machine code, it can figure out the
size from the register name. For example, the mov eax, 0 instruction 6 in
Listing 10-5 will cause the 32-bit integer, 0, to be stored in the eax register,
which is the 32-bit portion of the rax register. Recall (from Chapter 9) that
when the destination is the 32-bit portion of a register, the high-order 32
bits of that register are set to 0. If I had used mov al, 0, then only an 8-bit
representation of 0 would be stored in the al portion of the rax register, and
the other bits in the register would not be affected. For 8-bit and 16-bit opera-
tions, you should assume that the portion of any register that isn’t explicitly
modified by an instruction contains an unknown value.

You may have noticed that the variant that moves an immediate value to
memory, mov mem, imm, doesn’t use a register. In this case, you have to tell the
assembler the data size with a size directive placed before the mem operand.
Table 10-1 lists the size directives for each data size.

Table 10-1: Data Size Directives

Directive Data type Number of bits

byte ptr Byte 8

word ptr Word 16

dword ptr Doubleword 32

qword ptr Quadword 64

The size directive includes ptr because it specifies how many bytes the
memory address points to. For immediate data, this address is in the rip
register. For example,

 mov byte ptr x[ebp], 123
 mov qword ptr y[ebp], 123

would store 123 in the one-byte variable, x, and 123 in the four-byte vari-
able, y. (This syntax for specifying the memory locations is explained in
the next chapter.)

Notice that you can’t move data from one memory location directly to
another memory location. You have to first move the data into a register
from memory and then move it from that register to the other memory
location.

The other three instructions used in Listing 10-5 are push, pop, and ret.
These three instructions use the call stack. We’ll discuss the call stack in
detail in the next chapter. For now, you can think of it as a place in memory
where you can stack data items one on top of another and then remove
them in reverse order. (Think of stacking dinner plates, one at a time, on
a shelf and then removing each one as it’s needed.) The rsp register always
contains the address of the item on the top of the call stack; hence, it’s
called the stack pointer.

208 Chapter 10

push—Push onto stack

Moves a 64-bit source value to the top of the call stack.

push reg places the 64-bit value in reg on the call stack, changing the
rsp register such that it has the memory address of this new item on
the stack.

push mem places the 64-bit value in mem on the call stack, changing the
rsp register such that it has the memory address of this new item on
the stack.

The push instruction does not affect the status flags in the rflags
register.

pop—Pop from stack

Moves a 64-bit value from the top of the call stack to a destination.

pop reg copies the 64-bit value at the top of the stack to reg, changing
the rsp register such that it has the memory address of the next item
on the stack.

pop mem copies the 64-bit value at the top of the stack to mem, changing
the rsp register such that it has the memory address of the next item
on the stack.

The pop instruction does not affect the status flags in the rflags register.

ret—Return from function

Returns from a function call.

ret has no operands. It pops the 64-bit value at the top of the stack
into the instruction pointer, rip, thus transferring program control to
that memory address.

The ret instruction does not affect the status flags in the rflags register.

Now that you have an idea of how each of the instructions in Listing 10-5
works, let’s see what they’re doing in this program. As we walk through this
code, keep in mind that this program doesn’t do anything for a user. The code
here forms a sort of infrastructure for any C-style function that you write. You’ll
see variations as you continue through the book, but you should take the time
to become familiar with the basic structure of this program.

Minimal Processing in a Function
Aside from the data processing that a function does, it needs to perform
some processing just so it can be called and return to the calling function.
For example, the function needs to keep track of the address from where it
was called so it can return to the correct place when the function has com-
pleted. Since there are a limited number of registers, the function needs a

Programming in Assembly Language 209

place in memory for storing the return address. After completion, the func-
tion returns to the calling place and no longer needs the return address, so
it can release the memory where the return address was stored.

As you’ll learn in the next chapter, the call stack is a great place for
functions to temporarily store information. Each function uses a portion of
the call stack for storage, which is called a stack frame. The function needs
a reference to its stack frame, and this address is stored in the rbp register,
usually called the frame pointer.

Let’s walk through the actual processing that takes place in the pro-
gram in Listing 10-5. I’ll repeat the listing here to save you some page
flipping (Listing 10-6).

doNothingProg.s
Minimum components of a C program, in assembly language.
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
main:
 1 push rbp # save caller's frame pointer
 2 mov rbp, rsp # establish our frame pointer

 3 mov eax, 0 # return 0 to caller

 4 mov rsp, rbp # restore stack pointer
 5 pop rbp # restore caller's frame pointer
 6 ret # back to caller

Listing 10-6: Code repeated for your convenience

The first thing a function must do is to save the calling function’s frame
pointer so the calling function can use rbp for its own frame pointer and
then restore the calling function’s frame pointer before returning. It does
this by pushing the value onto the call stack 1. Now that we’ve saved the
calling function’s frame pointer, we can use the rbp register as the frame
pointer for the current function. The frame pointer is set to the current
location of the stack pointer 2.

N O T E 	 Remember that we are telling the compiler not to use any code optimization in this book
with the -O0 option to gcc. If you tell gcc to optimize the code, it may determine that
these values may not need to be saved, so you wouldn’t see some of these instructions.
After you understand the concepts presented in this book, you can start thinking about
how to optimize your code.

This probably sounds confusing at this point. Don’t worry, we’ll go into
this mechanism in detail in the next chapter. For now, make sure that every
function you write in assembly language begins with these two instructions,

210 Chapter 10

in this order. Together, they make up the beginning of the function prologue
that prepares the call stack and the registers for the actual computational
work that will be done by the function.

C functions can return values to the calling function. This is the main
function, and the operating system expects it to return the 32-bit integer 0
if the function ran without errors. The rax register is used to return up to a
64-bit value, so we store 0 in the eax register 3 just before returning.

The function prologue prepared the call stack and registers for this
function, and we need to follow a strict protocol for preparing the call stack
and registers for return to the calling function. This is accomplished with
the function epilogue. The function epilogue is essentially the mirror image
of the function prologue. The first thing to do is to make sure the stack
pointer is restored to where it was at the beginning of the prologue 4.
Although we can see that the stack pointer was not changed in this simple
function, it will be changed in most functions, so you should get in the
habit of restoring it. Restoring the stack pointer is essential for the next
step to work.

Now that we’ve restored the stack pointer from the rbp register, we
need to restore the calling function’s value in the rbp register. That value
was pushed onto the stack in the prologue, so we’ll pop it off the top of
the stack back into the rbp register 5. Finally, we can return to the calling
function 6. Since this is the main function, this will return to the operating
system.

One of the most valuable uses of gdb is as a learning tool. It has a
mode that is especially helpful in learning what each assembly language
instruction does. I’ll show you how to do this in the next section, using the
program in Listing 10-5. This will also help you to become more familiar
with using gdb, which is an important skill to have when debugging your
programs.

Using gdb to Learn Assembly Language
This would be a good place for you to run the program in Listing 10-5 so
you can follow along with the discussion. It can be assembled, linked, and
executed with the following commands:

$ as -–gstabs -o doNothingProg.o doNothingProg.s
$ gcc -o doNothingProg doNothingProg.o
$./doNothingProg

The --gstabs option (note the two dashes here) tells the assembler to
include debugging information with the object file. The gcc program rec-
ognizes that the only input file is already an object file, so it goes directly
to the linking stage. There is no need to tell gcc to include the debug-
ging information because it was already included in the object file by the
assembler.

Programming in Assembly Language 211

As you might guess from the name, you won’t see anything on the
screen from running this program. We’ll need this for later in the chapter
when we use gdb to walk through the execution of this program. Then you’ll
see that this program actually does something.

The gdb debugger has a mode that’s useful for seeing the effects of each
assembly language instruction as it’s executed one step at a time. The text
user interface (TUI) mode splits the terminal window into a display area at
the top and the usual command area at the bottom. The display area can
be further split into two display areas.

Each display area can show either the source code (src), the registers
(regs), or the disassembled machine code (asm). Disassembly is the process of
translating the machine code (1s and 0s) into the corresponding assembly
language. The disassembly process does not know the programmer-defined
names, so you will see only the numerical values that were generated by the
assembly and linking processes. The asm display will probably be more use-
ful when we look at the details of instructions in Chapter 12.

The documentation for using the TUI mode is in info for gdb. I’ll
give a simple introduction here of using the TUI mode with the program
doNothingProg.s, from Listing 10-5. I’ll step through most of the instructions.
You’ll get a chance to single-step through each of them when it’s Your Turn.

N O T E 	 My example here shows gdb being run from the command line. I’ve been told that this
doesn’t work well if you try to run gdb under the Emacs editor.

$ gdb ./doNothingProg
--snip--
Reading symbols from ./doNothingProg...
1 (gdb) set disassembly-flavor intel
2 (gdb) b main
Breakpoint 1 at 0x1129: file doNothingProg.s, line 8.
(gdb) r
Starting program: /home/bob/progs/chap11/doNothingProg_asm/doNothingProg

Breakpoint 1, main () at doNothingProg.s:8
8	 push rbp 	 # save caller's frame pointer
3 (gdb) tui enable

We start the program under gdb the usual way. The default assembly
language syntax that gdb uses for disassembly under GNU/Linux is AT&T,
so we need to set it to Intel 1. This syntax issue will be explained at the end
of this chapter. It matters if you use the asm display.

Then we set a breakpoint at the beginning of the program 2. We used
source code line numbers for setting breakpoints in C code. But each C
statement typically translates into several assembly language instructions,
so we can’t be sure that gdb will break at a specific instruction. The label
syntax gives us a way to ensure that gdb will break at a specific instruction if
it is labeled.

212 Chapter 10

When we run the program, it breaks at the main label, which is on the
first instruction of the function. Next, we enable the TUI mode 3, which
shows the source code, as shown in Figure 10-1.

Figure 10-1: gdb in TUI mode with src display

The bottom section of the terminal window shows the usual (gdb)
prompt, which is where you enter gdb commands and examine memory con-
tents. The top section shows the source code for this function with the line
about to be executed shown in reverse video to highlight it. There’s also
an indication on the left side that there’s a breakpoint at this line (B+) and
that the instruction pointer, rip, currently points to this line, >. The display
also shows the current address in the rip register, using the name PC, in the
lower-right margin of the source display section. (Program counter is another
name for instruction pointer.)

The layout regs command splits the display area of the terminal window
and displays the registers, as shown in Figure 10-2. We’re about to execute
the first instruction in the main function.

Programming in Assembly Language 213

Figure 10-2: gdb in TUI mode with the source and registers windows

The s command executes the current instruction and moves on to the
next instruction, which becomes highlighted, as shown in Figure 10-3.

Figure 10-3: Executing an instruction causes any registers that have changed
to be highlighted.

214 Chapter 10

Executing the first instruction, push rbp, has caused gdb to highlight
the rsp register and its contents in the registers display window shown in
Figure 10-3. This instruction has pushed the contents of the rbp register
onto the call stack and changed the stack pointer, rsp, accordingly. Pushing
a 64-bit register onto the call stack has changed the stack pointer from
0x7fffffffde98 (Figure 10-2) to 0x7fffffffde90; that is, it decremented the
stack pointer by the number of bytes (8) pushed onto the stack. You’ll learn
more about the call stack and its usage in the next chapter.

In Figure 10-3, you can also see that the current location within the
program has moved to the next instruction. This instruction is now high-
lighted; the instruction pointer character, >, has moved to this instruction;
and the address in the rip register (PC in lower right) has changed from
0x555555555129 to 0x55555555512a. This change in rip shows that the instruc-
tion that was just executed, push rbp, occupies only one byte in memory.
You’ll learn more about this in Chapter 12.

The TUI enhancement does not provide a data or address view of mem-
ory, only a disassembly view. We need to view data and addresses that are
stored in memory in the command area. For example, if we want to see what
the push rbp instruction stored in memory, we need to use the x command to
view the memory pointed to by the stack pointer, rsp. Figure 10-4 shows the
giant (64-bit) contents in hexadecimal at the memory address in rsp.

Figure 10-4: Examining memory in TUI mode is done in the command area.

Executing two more instructions shows that the mov rax, 0 instruction
stores 0 in the rax register, as shown in Figure 10-5. Comparing Figures 10-4
and 10-5, you can also see the effects of the mov rbp, rsp instruction.

Programming in Assembly Language 215

Figure 10-5: Effects of the mov eax, 0 instruction

Another step takes us to the ret instruction, shown in Figure 10-6,
ready to return to the calling function.

Figure 10-6: Ready to return to the calling function

216 Chapter 10

Comparing Figure 10-6 with Figure 10-2 shows us that the frame
pointer, rbp, has been restored to the calling function’s value. We can also
see that the stack pointer, rsp, has been moved back to the same location it
was at when our function first started. If both the frame pointer and stack
pointer are not restored before returning to the calling function, it’s almost
certain that your program will crash. For this reason, I often set a break-
point at the ret instruction so I can check that my function restored both
these registers properly, highlighted in Figure 10-7.

Figure 10-7: The program has completed.

All that remains is to quit gdb.

YOUR T UR N

1.	 Enter the program in Listing 10-5 and use gdb to single-step through the
code. Notice that when you execute the mov rsp, rbp instruction in the
epilogue, TUI does not highlight the registers. Explain. Next, change the
program so that it returns the integer 123. Run it with gdb. What number
base does gdb use to display the exit code?

Programming in Assembly Language 217

2.	 Enter the program in Listing 10-1 and compile it with debugging turned
on (-g option). Set a breakpoint at main. Does gdb break at the entry to
the function? Can you follow the actions of the prologue by using the s
command? Can you continue through the program and step through the
epilogue?

3.	 Write the following C function in assembly language:

/* f.c */
 int f(void) {
 return 0;
}

Make sure that it assembles with no errors. Use the -S option to compile f.c
and compare gcc's assembly language with yours. Write a main function
in C that tests your assembly language function, f, and prints out the func-
tion’s return value.

4.	 Write three assembly language functions that do nothing but return an
integer. They should each return a different, nonzero integer. Write a main
function in C that tests your assembly language functions and prints out the
functions’ return values by using printf.

5.	 Write three assembly language functions that do nothing but return a char-
acter. Each should return a different character. Write a main function in C
that tests your assembly language functions and prints out the functions’
return values by using printf.

In the next chapter, we’ll take a more detailed look inside the main
function. I’ll describe how to use the call stack in detail. This will include
how to create local variables in a function. But first, I’ll give a brief sum-
mary of the AT&T assembly language syntax. If you look at any assembly
language in a Linux or Unix environment, you’ll probably see the AT&T
syntax being used.

AT&T Syntax
I am using the Intel syntax for the assembly language in this book, but for
those who might prefer the AT&T syntax, I’ll briefly describe it here. AT&T
syntax is the default in most Linux distributions.

Listing 10-7 is a repeat of the program in Listing 10-5 but written using
the AT&T syntax.

doNothingProg_att.s
Minimum components of a C program, in assembly language.
 .text
 .globl main
 .type main, @function

218 Chapter 10

main:
 1 pushq 2 %rbp # save caller's frame pointer
 movq 3 %rsp, %rbp # establish our frame pointer

 movq 4 $0, %rax # return 0;

 movq %rbp, %rsp # restore stack pointer
 popq %rbp # restore caller's frame pointer
 ret # back to caller

Listing 10-7: Minimum C program written in assembly language using AT&T syntax

The first difference that you probably notice is that a character specifying
the size of the operand is added as a suffix to most instruction mnemonics 1.
Table 10-2 lists the size letters. (Yes, this is redundant in the cases where one
of the operands is a register, but it’s part of the syntax.) The next difference
you probably see is that each register is prefixed with the % character 2.

The most significant difference is that the order of the operands is
reversed 3. Instead of placing the destination first, it’s last. If you move
between the two syntaxes, Intel and AT&T, it’s easy to get the operands in
the wrong order, especially with instructions that use two registers. You
also need to prefix an immediate data value with the $ character 4 in
the AT&T syntax.

Table 10-2: Data Size Suffix for AT&T Syntax

Suffix letter Data type Number of bits

b Byte 8

w Word 16

l Doubleword 32

q Quadword 64

As stated in the preface, I chose to use the Intel syntax in this book to
be consistent with the Intel and AMD manuals. As far as I know, the GNU
assembler, as, is the only one that defaults to the AT&T syntax. All other
assemblers use the Intel syntax, and as offers that as an option.

What You’ve Learned

Editor    A program used to write the source code for a program in the
chosen programming language.

Preprocessor   The first stage of compilation. It brings other files into
the source, defines macros, and so forth, in preparation for actual
compilation.

Compilation   Translates from the chosen programming language into
assembly language.

Assembly   Translates assembly language into machine language.

Programming in Assembly Language 219

Linking    Links separate object code modules and libraries together to
produce the final executable program.

Assembler directives   Guide the assembler program during the assem-
bly process.

mov instruction    Moves values between memory and the CPU and
within the CPU.

push instruction    Places values on the call stack.

pop instruction    Retrieves values from the call stack.

ret instruction   Returns program flow to the calling function.

gdb TUI mode   Displays changes in registers in real time as you step
through a program. It’s an excellent learning tool.

Prologue   Sets up the call stack for the called function.

Epilogue   Restores the call stack for the calling function.

In the next chapter, you’ll learn the details about how to pass arguments
to functions, how the call stack works, and how to create local variables in
functions.

11
I N S I D E T H E M A I N F U N C T I O N

As you know, every C program begins by
executing a function named main, which is

called from a startup function in the C run-
time environment. The main function will call

other functions (subfunctions) to do most of the process-
ing. Even a simple “Hello, World!” program needs to call
another function to write the message on the screen.

Most subfunctions need data to be passed to them as arguments from
the calling function, and they often pass a result back to the calling func-
tion. Arguments to a function can be data or memory addresses. When
the function is called, it performs its operations and then returns to the
calling function. The calling function needs to send the called function
the address to return to. In the x86-64 architecture, the return address is
passed on the call stack.

Adding a little more complexity, most functions need their own local
variables for storing data and addresses. Registers can be used for variables,

222 Chapter 11

but they are global, and we would quickly run out of registers to use. The
stack provides a good place to allocate space for local variables in memory.

In this chapter, we’ll break down this process. We’ll do this by discussing
how to write characters on the screen and read characters from the keyboard
in our main function. Starting with this chapter, we’ll usually bypass the C
standard library functions, printf and scanf, and use the system call functions
write to output to the screen and read to input from the keyboard.

We’ll start by discussing the write and read functions. Then we’ll look
at how arguments are passed to a function in the CPU registers. We’ll next
look at how the CPU can determine an address to pass to a function when
that’s needed. Then we’ll look at how a data structure called the call stack is
used for creating local variables within a function.

The write and read System Call Functions
In Chapter 2 we used printf and scanf, from the C standard library, for writ-
ing to the screen and reading from the keyboard. As shown in Figure 2-1
(in Chapter 2), printf converts data from its memory storage format to a
character format and calls the write system call function to display the char-
acters on the screen. When reading characters from the keyboard, scanf
calls the read system call function and converts the characters to a memory
storage format.

Linux sees the screen and keyboard as files. When a program is first
launched, the operating system opens three files—standard in, standard
out, and standard error—and assigns an integer to each file that is called a
file descriptor. The program interacts with each file by using the file descrip-
tor. The C interfaces for calling read and write are specified in the Portable
Operating System Interface (POSIX) standard. The general formats for calling
these two functions are

int write(int fd, char *buf, int n);
int read(int fd, char *buf, int n);

where fd is a file descriptor, buf is the address of the character storage, and n
is the number of characters to read or write. You can see more details in the
man pages for write and read:

man 2 write
man 2 read

Table 11-1 shows the file descriptors we’ll use and the device each is
normally associated with.

Table 11-1: File Descriptors for write and read System Call Functions

Name Number Use

STDIN_FILENO 0 Read characters from keyboard

STDOUT_FILENO 1 Write characters to screen

STDERR_FILENO 2 Write error messages to screen

Inside the main Function 223

These names are defined in the system header file, unistd.h, which is
located at /usr/include/unistd.h on my Ubuntu system. (The location on your
system may be different.)

Let’s look at how to pass the appropriate arguments to the write func-
tion to write text on the screen.

Passing Arguments in Registers
Up to six arguments can be passed in registers from one function to another
in our environment. We’ll look at how to pass more than six arguments in
Chapter 14, and I’ll note here that the Windows C environment allows only
four arguments to be passed in registers.

Let’s start with a program that does something very simple. We’ll
write “Hello, World!” on the screen by using the write system call function
(Listing 11-1).

/* helloWorld.c
 * Hello World program using the write() system call.
 */

#include <unistd.h>

int main(void)
{

 write(STDOUT_FILENO, "Hello, World!\n", 14);

 return 0;
}

Listing 11-1: “Hello, World!” program using the write system call function

This function passes three arguments to write. In principle, the C
compiler—or you, when you’re writing in assembly language—could use
any of the 16 general-purpose registers, except rsp, to pass arguments from
one function to another. (The reason you can’t use rsp will be explained in
a moment.) Just store the arguments in the registers and call the desired
function. Of course, the compiler, or a person writing in assembly lan-
guage, needs to know exactly which register each argument is in when it
comes to the called function.

The best way to avoid making mistakes is to develop a standard set of rules
and follow them. This is especially important if more than one person is writ-
ing code for a program. Other people have realized the importance of having
such standards and have given a good set of standards for passing arguments
in System V Application Binary Interface AMD64 Architecture Processor Supplement
(with LP64 and ILP32 Programming Models) Version 1.0. I found the January 28,
2018, version in PDF format at https://github.com/hjl-tools/x86-psABI/wiki/x86-64
-psABI-1.0.pdf. (The latest version is maintained in LaTeX source at https://gitlab
.com/x86-psABIs/x86-64-ABI/, but you need pdflatex to build a PDF version.) The
compiler we’re using, gcc, follows the rules in the System V standards, and we’ll
do the same for the assembly language we write.

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI
https://gitlab.com/x86-psABIs/x86-64-ABI

224 Chapter 11

Table 11-2 summarizes the System V standards for using registers.

Table 11-2: General-Purpose Register Usage

Register Special usage Save?

rax Return first value from function No

rbx General-purpose Yes

rcx Pass fourth argument to function No

rdx Pass third argument to function; return second value from function No

rsp Stack pointer Yes

rbp Optional frame pointer Yes

rdi Pass first argument to function No

rsi Pass second argument to function No

r8 Pass fifth argument to function No

r9 Pass sixth argument to function No

r10 Pass function’s static chain pointer No

r11 None No

r12 None Yes

r13 None Yes

r14 None Yes

r15 None Yes

The Save? column shows whether a called function needs to preserve
the value in that register for the calling function. You’ll learn how to do this
in the next few sections.

The first six arguments are passed in registers rdi, rsi, rdx, rcx, r8, and
r9, reading from left to right in a C function. Listing 11-2 shows the assem-
bly language generated by gcc for the C function in Listing 11-1. This illus-
trates how to pass the three required arguments to the write function.

N O T E 	 The compiler did not comment the assembly language code in this listing. I’ve added
my own comments, using ##, to help you to see the relationships with the C source code.
I’ll do this with most of the compiler-generated assembly language I show in this book.

 .file "helloWorld.c"
 .intel_syntax noprefix
 .text
 1 .section .rodata
2 .LC0:
 .string "Hello, World!\n"
 .text
 .globl main
 .type main, @function
main:
 push rbp

Inside the main Function 225

 mov rbp, rsp
 mov edx, 314 ## number of chars
 lea rsi, 4.LC0[rip] ## address of string
 mov edi, 51 ## STDOUT_FILENO
 call 6 write@PLT
 mov eax, 0
 pop rbp
 ret
 .size main, .-main
 .ident " GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 11-2: Assembly language generated by gcc for program in Listing 11-1

When programming in assembly language, it’s common to store the
arguments in the registers starting with the last argument in the argument
list, working your way to the first argument. In Listing 11-2, the third argu-
ment to write, the number of characters 3, is stored first in the register for
the third argument, edx. The second argument is the address of the first
character in the string 4, which goes in rsi. The first argument, the device
to write to 5, is stored in edi just before the call to write 6.

This program also introduces two more instructions, lea and call, and
some rather odd-looking syntax associated with these instructions. The lea
instruction loads the memory address of .LC0 into the rsi register, and the
call instruction transfers program control to the address of the write func-
tion. Before describing the details of these instructions, we need to look at
where the various components of a program are located in memory.

Position-Independent Code
The job of the linker is to decide where each program component should
be located in memory and then fill in the addresses in the program code
where the component is referenced. The linker could decide where each
component should be located in memory and include these addresses
in the executable file, but it’s more secure to allow the operating system
to decide where to load each component. Let’s look at how the assembly
language generated by gcc allows the program to be loaded anywhere in
memory.

For the program to run correctly when the operating system is given
the responsibility to decide where to load it, the linker needs to create a
position-independent executable. For this to work, each function in the pro-
gram must consist of position-independent code, code that will work correctly
no matter where it is loaded into memory. The default for the gcc compiler
is usually set to produce position-independent code, and the linking phase
produces a position-independent executable.

Linking the functions and global data items in the source code files
that we write for our program is straightforward. The linker knows how
many bytes are in each function and global data item, so it can compute
where each begins relative to the beginning of the program. From there,

226 Chapter 11

the linker can compute the number of bytes from where a component is
referenced to the relative location of the referenced component, giving
an offset value. The linker inserts this offset value into the code at the place
where the component is referenced.

You’ve already learned about the execution cycle and how the instruc-
tion pointer works its way through the program as it’s executed. The result
is that at any given point in the program, the current address is in the
instruction pointer, rip, regardless of where the program was loaded into
memory. During program execution, when the CPU comes to an instruc-
tion that references another component, it adds the offset value to the
address in the instruction pointer to result in an effective address of the ref-
erenced component. The effective address is used by both the lea and call
instructions.

lea—Load effective address

Computes an effective address and loads it into a register.

lea reg, mem loads the effective address of mem into reg.

The lea instruction does not affect the status flags in the rflags register.

call—Call procedure

Saves linking information on the stack and jumps to a procedure.

call function_name pushes the address of the next instruction onto the
call stack and then transfers control to function_name.

The call instruction does not affect the status flags in the rflags
register.

In Listing 11-2, the memory location of the text string is labeled .LC0 2.
The syntax to specify that we need this address relative to the instruction
pointer is .LC0[rip] 4. You can think of this as “.LC0 off of rip.” During
the linking phase, the linker computes the memory distance between the
lea instruction and the .LC0 label, and it uses that value as the offset. To
be more precise, the linker uses the memory distance of the instruction
immediately following the lea instruction. Recall that during program
execution when the CPU fetches an instruction, it increments the address
in the rip register to that of the next instruction. So the action of the lea
rsi, .LC0[rip] instruction is to add the offset that the linker computed to
the address in the rip register, which has now updated to the address of the
next instruction, and load that address into the rsi register.

The label .LC0 is in the .rodata section 1, which is typically loaded
into the .text segment by the operating system. Most of what is stored in
the .text segment are CPU instructions, so the operating system treats it
as a read-only area of memory. The .rodata section contains constant data,
which is also read-only.

You’ll learn about pushing things onto the stack in the next section,
but you can see that the call instruction in Listing 11-2 has @PLT appended
to the name of the function being called, write 6. PLT stands for procedure
linkage table. The write function is in a C shared library, not in one of source

Inside the main Function 227

code files that we wrote. The linker has no idea where it will be located
relative to our main function, so it includes a procedure linkage table and a
global offset table (GOT) in the executable file.

The first time our program calls the write function, the dynamic loader
in the operating system loads the function into memory (if it has not
already been loaded by another program), puts the address of the function
in the global offset table, and adjusts the procedure linkage table accord-
ingly. If our program calls the write function again, the procedure linkage
table uses the value in the global offset table to directly call it. The syntax,
write@PLT, says to call the write function, whose address can be found in the
procedure linkage table. When we’re calling functions that are included
when linking our program, we don’t need to use the procedure linkage
table because the linker can compute the relative address of the function
being called.

The Call Stack
The call stack, or simply the stack, is used extensively for the interface
between a calling function and called function, creating local variables
within a function, and saving items within a function. Before describing
how these things are done, we need to understand what stacks are and how
they are used.

Stacks in General
A stack is a data structure created in memory for storing data items that
includes a pointer to the “top” of the stack. Informally, you can think of a
stack as being organized very much like a stack of dinner plates on a shelf.
We need to be able to access only the item at the top of the stack. (And, yes,
if you pull out a plate from somewhere within the stack, you will probably
break something.) There are two fundamental operations on a stack:

push data_item   Places the data_item on the top of the stack and moves
the stack pointer to point to this latest item.

pop location   The data item on the top of the stack is moved to location,
and the stack pointer is moved to point to the next item left on the stack.

The stack is a last in, first out (LIFO) data structure. The last thing to be
pushed onto the stack is the first thing to be popped off.

To illustrate the stack concept, let’s continue with our dinner plate
example. Say we have three differently colored dinner plates, a red one on
the dining table, a green one on the kitchen counter, and a blue one on
the bedside table. Now we’ll stack them on the shelf in the following way:

1.	 Push red plate.

2.	 Push green plate.

3.	 Push blue plate.

At this point, our stack of plates looks like Figure 11-1.

228 Chapter 11

Blue plate

Green plate

Red plate

Figure 11-1: Three dinner
plates in a stack

4.	 Now perform the operation: pop kitchen counter.

We’ll have a blue plate on our kitchen counter (recall that the blue plate
was on the bedside table) and our stack of dinner plates will be left as
shown in Figure 11-2.

Green plate

Red plate

Figure 11-2: One dinner
plate has been popped
from the stack.

If you have guessed that it’s easy to really mess up a stack, you’re right.
A stack must be used according to a strict discipline. Within any function:

•	 Always push an item onto the stack before popping anything off.

•	 Never pop more things off than you have pushed on.

•	 Always pop everything off the stack.

If you have no use for the item(s) to be popped off, you may simply
adjust the stack pointer. This is equivalent to discarding the items that are
popped off. (Our dinner plate analogy breaks down here.)

A good way to maintain this discipline is to think of the use of paren-
theses in an algebraic expression. A push is analogous to a left parenthesis,
and a pop is analogous to a right parenthesis. The pairs of parentheses can
be nested, but they have to match. An attempt to push too many items onto
a stack is called stack overflow. An attempt to pop items off the stack beyond
the bottom is called stack underflow.

We have looked only at the essential operations on a stack here. It’s
common to add other operations in an implementation of a stack. For
example, a peek operation allows you to look at the item on the top of the
stack without removing it. And as you’ll see in subsequent chapters, items
not on the top of the stack are often accessed directly without pushing and
popping, but in a very well-controlled way.

A stack is implemented by dedicating a contiguous area of main
memory to it. Stacks can grow in either direction in memory, into higher
addresses or lower. An ascending stack grows into higher addresses, and a
descending stack grows into lower addresses. The stack pointer can point
to the top item on the stack, a full stack, or to the memory location where

Inside the main Function 229

the next item will be pushed onto the stack, an empty stack. These four pos-
sible stack implementations are shown in Figure 11-3 with the integers 1, 2,
and 3 pushed onto the stack in that order. Be sure to notice that memory
addresses are increasing downward in this figure, which is the way we usually
view them in the gdb debugger.

1

2

3

????

????

SP

Full
descending

1

2

3

????

????SP

Empty
descending

1

2

3

????

????

SP

Full
ascending

1

2

3

????

????

SP

Empty
ascending

In
cr

ea
si

ng
 a

dd
re

ss
es

Figure 11-3: Four ways to implement a stack

x86-64 instructions use the stack as a full-descending stack. To under-
stand this choice, think about how you might organize things in memory.
Recall that the control unit automatically increments the program counter
as your program is executed. Programs come in vastly different sizes, so
storing the program instructions at low memory addresses allows maximum
flexibility with respect to program size.

The stack is a dynamic structure. You do not know ahead of time how
much stack space will be required by any given program as it executes. It’s
impossible to know how much space to allocate for the stack. You would
like to allocate as much space as possible, while preventing it from colliding
with program instructions. The solution is to start the stack at the highest
address and have it grow toward lower addresses.

This is a highly simplified rationalization for implementing stacks such
that they grow “downward” in memory. The organization of various program
elements in memory is much more complex than the simple description
given here. But this may help you to understand that there are some good
reasons for what may seem to be a rather odd implementation.

The important point is that we need to write our assembly language
accordingly. We’ll next look at the details of how the stack is used in the
function prologue and epilogue and how arguments to another function in
registers, by writing our own “Hello, World!” program directly in assembly
language.

Inside the Function Prologue and Epilogue
My assembly language version of the “Hello, World!” program, Listing 11-3,
closely follows the assembly language generated from the C version by the
compiler in Listing 11-2, but I’ve added comments and used a more mean-
ingful label for the string constant. This should make it a little easier to

230 Chapter 11

understand how the program uses the stack and passes arguments to the
write function.

helloWorld.s
Hello World program using the write() system call

 .intel_syntax noprefix
Useful constant
 1 .equ STDOUT, 1

Constant data
 2 .section .rodata
message:
 .string "Hello, World!\n"
 .equ 3 msgLength, .-message-1

Code
 .text
 .globl main
 .type main, @function
main:
 push rbp # save caller's frame pointer
 mov rbp, rsp # our frame pointer

 mov edx, MsgLength # message length
 lea rsi, message[rip] # message address
 mov edi, STDOUT # the screen
 call write@plt # write message

 mov eax, 0 # return 0

 pop rbp # restore caller frame pointer
 ret # back to caller

Listing 11-3: “Hello, World!” program written in assembly language

Before we get to a discussion of the prologue, notice that I’ve used
another assembler directive, .equ, in Listing 11-3 1. The format is

.equ symbol, expression

Note that we don’t need to specify the .text segment for the .rodata sec-
tion 2. The assembler and linker produce an .rodata section, and it’s up to
the operating system to determine where to load it.

The expression must evaluate to an integer, and the assembler sets
symbol equal to that value. You can then use the symbol in your code, mak-
ing it much easier to read, and the assembler will plug in the value of the
expression. The expression is often just an integer. In this program, I have
equated the symbol STDOUT to the integer 1.

The . character in an expression means here in memory location. Thus,
when the assembler gets to the expression 3, it computes the current loca-
tion in memory, which is the end of the C-style text string; subtracts the
beginning location of the string, the location that the programmer labeled

Inside the main Function 231

message, and then subtracts 1 for the terminating NUL character. The net
result is that MsgLength is equated with the number of printable characters in
the text string.

You’ve learned in Chapter 10 how the caller’s frame pointer is saved on
the call stack and a new frame pointer is established for this function. But
now that you know more about how the call stack works, let’s walk through
the prologue of this function with gdb.

The first thing we need to do is to set a breakpoint at the beginning of
the function:

(gdb) b main
Breakpoint 1 at 0x1139: file helloWorld.s, line 18.

You can use either the label, main, or the line number. We saw how to
use the li command to see the line numbers in Chapter 2. Using the line
number may cause gdb to execute the prologue and break after it. (I’ve seen
different behavior in different versions of gdb.)

After setting the breakpoint, when we run the program, it breaks at the
first instruction, and we can inspect the contents of the rbp and rsp registers:

(gdb) r
Starting program: /home/bob/progs/chap11/helloWorld_asm/helloWorld

Breakpoint 1, main () at helloWorld.s:18
18 push rbp # save caller's frame pointer
(gdb) i r rbp rsp
rbp 0x0 0x0
rsp 0x7fffffffde88 0x7fffffffde88

The i r command gives us the current location of the stack pointer, rsp.
The instruction about to be executed will push the eight bytes in the rbp
register onto the call stack. To see the effects in memory, we’ll examine the
current contents of the stack. Since the call stack is full descending, we’ll
subtract 8 from the current address in the stack pointer for our display so
we can get a view of the area of memory that this instruction will change
before it’s changed:

(gdb) x/2xg 0x7fffffffde80
0x7fffffffde80: 0x0000555555555160 0x00007ffff7de70b3

The stack pointer is currently pointing to the value 0x00007ffff7de70b3,
which is the return address that the call instruction in the calling function
(in the C runtime environment, since this is the main function) pushed onto
the stack. The rbp register contains 0x0000000000000000. This value is about
to be pushed onto the stack at location 0x7fffffffde80, which currently con-
tains 0x0000555555555160.

Next, we execute the two instructions in the function prologue, which
will take us to the first instruction after the prologue:

(gdb) si
19 mov rbp, rsp # our frame pointer

232 Chapter 11

(gdb) si
21 mov edx, MsgLength # message length

We’ll inspect the values in the rsp and rbp registers:

(gdb) i r rbp rsp
rbp 0x7fffffffde80 0x7fffffffde80
rsp 0x7fffffffde80 0x7fffffffde80

We can see that the stack pointer has been decremented by 8, and the
frame pointer has been set to the top of the stack. Let’s look at how the
stack has changed by examining the same memory area that we examined
earlier:

(gdb) x/2xg 0x7fffffffde80
0x7fffffffde80: 0x0000000000000000 0x00007ffff7de70b3
(gdb)

We see that the value in the rbp register, 0x0000000000000000, has been
nicely saved at the top of the call stack. Next, we’ll set a breakpoint at the
call write@PLT instruction so we can make sure that the registers have been
set up correctly for write:

(gdb) b 24
Breakpoint 2 at 0x55555555514e: file helloWorld.s, line 24.
(gdb) c
Continuing.

Breakpoint 2, main () at helloWorld.s:24
24 call write@plt # write message
(gdb) i r rdx rsi rdi
rdx 0xe 14
rsi 0x555555556004 93824992239620
rdi 0x1 1

The rdx register contains the number of characters to be written on
the screen, and the rsi register contains the address of the first character.
Recall that a C-style text string is terminated with a NUL character, so we’ll
examine 15 characters at this address:

(gdb) x/15c 0x555555556004
0x555555556004: 72 'H' 101 'e' 108 'l' 108 'l' 111 'o' 44 ',' 32 ' ' 87 'W'
0x55555555600c: 111 'o' 114 'r' 108 'l' 100 'd' 33 '!' 10 '\n' 0 '\000'

Next, we’ll set a breakpoint at the ret instruction to make sure that the
stack pointer and frame pointer have been restored to the caller’s values:

(gdb) b 29
Breakpoint 3 at 0x555555555159: file helloWorld.s, line 29.
 (gdb) c
Continuing.
Hello, World!

Inside the main Function 233

Breakpoint 3, main () at helloWorld.s:29
29	 ret # back to caller
(gdb) i r rbp rsp rip
rbp 0x0 0x0
rsp 0x7fffffffde88 0x7fffffffde88
rip 0x555555555159 0x555555555159 <main+32>

I’ve included the rip register in this display to show the effects of the ret
instruction. Executing the ret instruction shows that it pops the value from
the top of the stack into the rip register, thus returning to the C runtime
environment:

(gdb) si
__libc_start_main (main=0x555555555139 <main>, argc=1, argv=0x7fffffffdf78,
 init=<optimized out>, fini=<optimized out>, rtld_fini=<optimized out>,
 stack_end=0x7fffffffdf68) at ../csu/libc-start.c:342
342 ../csu/libc-start.c: No such file or directory.
(gdb) i r rbp rsp rip
rbp 0x0 0x0
rsp 0x7fffffffde90 0x7fffffffde90
rip 0x7ffff7de70b3 0x7ffff7de70b3 <__libc_start_main+243>

Looking back at the displays of the stack shown, we can see that the
address that was pushed onto the stack by the function in the C runtime
environment that called our main function has been popped back into the
rip register.

The protocol that specifies the interaction between functions needs to
be followed very precisely, or the program will usually crash.

In the next section, we’ll look at how we can create local variables on
the stack. You’ll see the importance of the frame pointer.

YOUR T UR N

Modify the assembly language program in Listing 11-3 so that it prints Hello,
your_name! on the screen. Remember to change the documentation so it accu-
rately describes your program.

Local Variables in a Function
Variables that are defined in a C function can be used in the function only
where they’re defined, making them local variables. They are created when
the function is called and deleted when the function returns to the calling
function, so they are also called automatic variables.

You learned in Chapter 9 that CPU registers can be used as variables,
but if we were to use CPU registers to hold all of our variables, we’d soon
run out of registers in even a small program, so we need to allocate space in
memory for variables.

234 Chapter 11

We also saw earlier that a function needs to preserve the contents of
some registers (the Save? column in Table 11-2) for the calling function. If
we want to use such a register in our function, we need to save its content in
memory and restore it before returning to the calling function.

We’ll next look at how to use the call stack for these two purposes: cre-
ating and removing automatic variables and saving and restoring register
content.

Variables on the Stack
From the description of the call stack shown previously, you might guess
that it’s a good place for saving a register’s content—simply push it onto the
stack before using the register for something else and then pop the content
off into the register before returning to the calling function.

Creating variables on the call stack is more complicated. If we restrict
our usage of the stack to pushing and popping, keeping track of where
each variable is located on the stack would quickly become messy, if not
impossible.

There is, however, an easy way to use the stack for variables. As part of
the function prologue, we’ll allocate enough memory for the variables on
the stack by moving the stack pointer, thus increasing the size of the stack
frame for the function. We can use the same addressing technique to access
our variables in the stack frame that was used to access the message address
in Listing 11-3, except we’ll use the frame pointer, rbp, for the address base.
We need to be careful not to change rbp so we can use it as a reference
point in the stack frame, leaving the stack pointer free to push and pop
items as needed.

To illustrate how to use the stack frame for automatic local variables,
we’ll start with the C program in Listing 11-4, which reads one character
from the keyboard and echoes it on the screen.

/* echoChar.c
 * Echoes a character entered by the user.
 */

#include <unistd.h>

int main(void)
{
 char aLetter;

 write(STDOUT_FILENO, "Enter one character: ", 21); /* prompt user */
 read(STDIN_FILENO, &aLetter, 1); /* one character */
 write(STDOUT_FILENO, "You entered: ", 13); /* message */
 write(STDOUT_FILENO, &aLetter, 1);

 return 0;
}

Listing 11-4: Program to echo a single character entered by a user

Inside the main Function 235

Listing 11-5 shows the way our compiler does this, which is the assembly
language that gcc generates for the C program in Listing 11-4.

 .file "echoChar.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "Enter one character: "
.LC1:
 .string "You entered: "
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 1 sub rsp, 16
 2 mov rax, QWORD PTR fs:40
 3 mov QWORD PTR -8[rbp], rax
 xor eax, eax
 mov edx, 21 ## prompt message
 lea rsi, .LC0[rip]
 mov edi, 1
 call write@PLT
 4 lea rax, -9[rbp] ## &aLetter
 mov edx, 1
 mov rsi, rax
 mov edi, 0
 call read@PLT
 mov edx, 13 ## response message
 lea rsi, .LC1[rip]
 mov edi, 1
 call write@PLT
 lea rax, -9[rbp]
 mov edx, 1
 mov rsi, rax
 mov edi, 1
 call write@PLT
 mov eax, 0
 5 mov rcx, QWORD PTR -8[rbp]
 xor rcx, QWORD PTR fs:40
 je .L3
 call __stack_chk_fail@PLT
.L3:
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 11-5: Assembly language generated by the compiler for the echoChar program
in Listing 11-4

236 Chapter 11

The C program defines a local char variable, aLetter, which requires
only one byte. However, the compiler allocated 16 bytes on the call stack by
simply moving the stack pointer 1. The x86-64 architecture includes a set
of sixteen 128-bit registers that are used by some floating-point and vector
instructions. You’ll learn more about them in Chapter 18. The stack pointer
needs to be aligned at 16-byte address boundaries for these instructions, so
most protocol standards specify that the stack pointer be aligned at 16-byte
boundaries. This is less error-prone than aligning the stack pointer only
where it’s needed.

The instruction to move the stack pointer introduces the subtraction
instruction, sub. While we’re here, we’ll also describe the addition and nega-
tion instructions, add and neg.

sub—Subtract

Subtracts source value from destination value, leaving result in
destination.

sub reg1, reg2 subtracts the value in reg2 from the value in reg1, leaving
the result in reg1.

sub reg, mem subtracts the value in mem from the value in reg, leaving the
result in reg.

sub mem, reg subtracts the value in reg from the value in mem, leaving the
result in mem.

sub reg, imm subtracts imm from the value in reg, leaving the result in reg.

sub mem, imm subtracts imm from the value in mem, leaving the result in mem.

The sub instruction sets the OF, SF, ZF, AF, PF, and CF status flags in the
rflags register according to the result.

add—Add

Adds source value to destination value, leaving result in destination.

add reg1, reg2 adds the value in reg2 to the value in reg1, leaving the
result in reg1.

add reg, mem adds the value in mem to the value in reg, leaving the result
in reg.

add mem, reg adds the value in reg to the value in mem, leaving the result
in mem.

add reg, imm adds imm to the value in reg, leaving the result in reg.

add mem, imm adds imm to the value in mem, leaving the result in mem.

The add instruction sets the OF, SF, ZF, AF, PF, and CF status flags in the
rflags register according to the result.

Inside the main Function 237

neg—Negate

Performs the two’s complement negation of a value.

neg reg negates the value in reg.

neg mem negates the value in mem.

The neg instruction sets the OF, SF, ZF, AF, PF, and CF status flags in the
rflags register according to the result.

The instructions to multiply and divide are more complex and are
described in Chapter 16.

We need to pass the address of the local char variable to the read func-
tion so it can store the character entered by the user there. We can do this
with the lea (load effective address) instruction 4. As you can see, the com-
piler has chosen the byte that’s located 9 bytes inside the 16 bytes allocated
on the stack. Figure 11-4 shows the location of this variable.

rbp

rsp

Return address

Caller’s rbp
-8

-16

0

Unused memory (7 bytes)

1 byte for aLetter
Stack canary

Memory for
stack growth

Figure 11-4: Stack frame for program in Listing 11-5

One of the items in the stack frame of Figure 11-4 is a stack canary,
which is used to help detect stack corruption.

Stack Corruption
The function epilogue restores the caller’s frame pointer in the rbp register
and returns the stack pointer to point to the return address. However, if
either of these values has been changed on the stack, the program will not
behave properly. A stack canary can help detect whether either of these val-
ues has been changed.

When a program starts, the operating system stores a 64-bit random
number in a special place in memory labeled fs:40, which only the operat-
ing system can change. We read this value from memory 2 and store it in
the stack frame immediately after the caller’s value of rbp 3. Then, before
executing the function epilogue, we check to see if the value of the stack
canary has been changed 5.

N O T E 	 Using a stack canary is an optional feature. In my version of gcc, it’s used by default.
You can override the default behavior with one of the command line options -fstack
-protector, -fstack-protector-strong, or -fstack-protector-all to use a stack canary,
and -fno-stack-protector not to use one.

238 Chapter 11

The code to perform this check introduces two more instructions.

xor—Exclusive OR

Performs a bitwise exclusive OR between the source value and destina-
tion value, leaving the result in the destination.

xor reg1, reg2 performs bitwise exclusive OR between the values in reg1
and reg2, which can be the same or different registers. The result is left
in reg1.

xor reg, mem performs bitwise exclusive OR between the values in reg
and mem, leaving the result in reg.

xor mem, reg performs bitwise exclusive OR between the values in mem
and reg, leaving the result in mem.

xor reg, imm performs bitwise exclusive OR between a value in reg and
imm, leaving the result in reg.

xor mem, imm performs bitwise exclusive OR between a value in memory
and the constant imm, leaving the result in memory.

The xor instruction sets the SF, ZF, and PF status flags in the rflags reg-
ister according to the result. The OF and CF status flags are cleared to 0,
and the value of the AF status flag is undefined.

je—Jump if equal

Jumps if the zero flag is true, which typically shows equality of two
values.

je label jumps to the memory location label if the ZF is 1 (true).

The je instruction is one of several conditional jump instructions, which
will be explained in Chapter 13 when we talk about program flow con-
structs. The conditional jump instructions test the status flags in the
rflags register and transfer program flow accordingly. The je instruc-
tion tests the zero status flag and jumps to label in the function if the
flag is true.

In Listing 11-5, the code to check for a corrupt stack 5 first retrieves
the value that was saved on the stack, the stack canary, and then performs
a bitwise exclusive OR with the original value that was generated when the
program first started, at memory location fs:40. If the two values are identi-
cal, the exclusive OR results in 0, which sets the zero status flag, ZF, to 1
(true), causing the je .L3 instruction to transfer program flow to the leave
instruction, thus skipping over the call to the __stack_chk_fail@PLT function.
If the exclusive OR operation does not produce a 0, the jump will not occur,
and the program will call the __stack_chk_fail@PLT function, which will report
the stack corruption error and terminate the program.

You see another new instruction in this program, leave.

Inside the main Function 239

leave—Leave function

Deletes the stack frame.

leave restores the caller’s frame pointer and places the stack pointer at
the return address.

The leave instruction performs the same operations as the two
instructions:

 mov rsp, rbp
 pop rbp

Referring to Figure 11-4, you can see that this moves the stack pointer
to the place where the caller’s rbp is stored and then pops this back into
the rbp register, leaving the stack pointer at the return address.

The assembly language generated by gcc in Listing 11-5 includes some
additional notation, QWORD PTR 25. In most cases, the assembler can figure
out the size of the operand—byte, word, double word, or quadword—from
the context of the instruction. If one of the operands is a register, the reg-
ister name dictates the size of the operand. But if one of the operands is
a memory address and the other is a literal constant, the operand size is
undeterminable. For example, in Listing 11-5, if the instruction at 3 had
been the following,

 mov -8[rbp], 123

the integer 123 could be stored in any size from one byte and larger. In this
case, you need to tell the assembler the size of the data item, using the nota-
tion in Table 10-1 in Chapter 10 (replicated here as Table 11-3).

Table 11-3: Assembler Data
Item Size Notations

Modifier Data type Number of bits

byte ptr Byte 8

word ptr Word 16

dword ptr Doubleword 32

qword ptr Quadword 64

Thus, the instruction

 mov byte ptr -8[rbp], 123

would store 123 as an 8-bit value, while the instruction

 mov qword ptr -8[rbp], 123

240 Chapter 11

would store 123 as a 64-bit value. I don’t know why the compiler writer
chose to use this notation in Listing 11-5 since the assembler can figure out
the data item size from the names of the register being used, rax, but the
redundancy isn’t harmful.

Let’s put this stuff together and write the echoChar program directly in
assembly language. We’ll use more meaningful names for the labels, let the
assembler compute the length of the text strings, and comment our code, as
shown in Listing 11-6.

echoChar.s
Prompts user to enter a character, then echoes the response
 .intel_syntax noprefix
Useful constants
 .equ STDIN,0
 .equ STDOUT,1
Stack frame
 .equ aLetter,-1
 .equ localSize,-16

Constant data
 .section .rodata
prompt:
 .string "Enter one character: "
 .equ promptSz,.-prompt-1
msg:
 .string "You entered: "
 .equ msgSz,.-msg-1
 .text
Code
 .globl main
 .type main, @function
main:
 push rbp # save caller's frame pointer
 mov rbp, rsp # establish our frame pointer
 add rsp, localSize # for local var.

 mov rax, fs:40 # get stack canary
 mov -8[rbp], rax # and save it

 mov edx, promptSz # prompt size
 lea rsi, prompt[rip] # address of prompt text string
 mov edi, STDOUT # standard out
 call write@plt # invoke write function

 mov edx, 1 # 1 character
 lea rsi, 1aLetter[rbp] # place to store character
 mov edi, STDOUT # standard out
 call write@plt # invoke write function

Inside the main Function 241

 mov edx, 1 # 1 character
 lea rsi, aLetter[rbp] # place to store character
 mov edi, STDIN # standard in
 call read@plt # invoke read function

 mov edx, msgSz # message size
 lea rsi, msg[rip] # address of message text string
 mov edi, STDOUT # standard out
 call write@plt # invoke write function

 mov edx, 1 # 1 character
 lea rsi, aLetter[rbp] # place where character stored
 mov edi, STDOUT # standard out
 call write@plt # invoke write function

 mov eax, 0 # return 0

 mov rcx, -8[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 2 mov rsp, rbp # delete local variables
 pop rbp # restore caller's frame pointer
 ret # back to calling function

Listing 11-6: Program to echo a single character, written directly in assembly language

When reading the code in Listing 11-6, I think you’ll find that giving
names to the offsets for variables in the stack frame makes the code much
easier to read 1. I also explicitly undo the stack frame instead of using the
leave instruction to emphasize what is taking place 2.

In subsequent chapters, you’ll learn how to use the stack frame for larger
and more complex variables. You’ll also learn how to use the stack for passing
arguments beyond the six that can be passed in registers.

Not Using the C Runtime Environment
The main purpose of this book is to show what is going on at the instruc-
tion set level when writing in higher-level languages, so we’ll continue using
the C (and later the C++) runtime environment and the POSIX write and
read system call functions for the remainder of this book.

Of course, it’s possible to write stand-alone programs that do not use
the C runtime environment. You’ll see how this is done in Chapter 20.

242 Chapter 11

YOUR T UR N

1.	 Enter the program in Listing 11-6 and get it to work. Why do you get the
extra system prompt when the program ends? Here’s an example:

$./echoChar
Enter one character: a
You entered: a$
$

2.	 Modify the program to eliminate the extra system prompt. Here’s an example:

$./echoChar
Enter one character: a
You entered: a
$

Did your modification cause an error? If so, what do you need to do to fix it?

3.	 The following subfunction stores a text string at a memory address passed
to it and returns the number of characters stored there:

/* theMessage.c
 * Stores "Hello" for caller and returns
 * number of characters stored.
 */

int theMessage(char *aMessage)
{

 int nChars = 0;
 char *messagePtr = "Hello.\n";

 while (*messagePtr != 0)
 {
 *aMessage = *messagePtr;
 nChars++;
 messagePtr++;
 aMessage++;
 }

 return nChars;
}

Write a main function in assembly language that calls this subfunction and
displays the text string that was stored. Use a stack canary. Change the
message in the subfunction to Greetings.\n. What happens?

Inside the main Function 243

What You’ve Learned

write and read functions    System call functions that bypass the C
standard library.

Passing arguments to a subfunction    Up to six arguments are passed
in registers.

Position-independent executable    The operating system can load the
program any place in memory, and it will execute correctly.

Call stack    An area of memory used for storing program data and
addresses that grows and shrinks as needed.

Function prologue   Sets up the call stack for the transition from the
calling function to the called function.

Function epilogue   The complement to the function prologue that
restores the call stack to the state it was in when the function was
called.

Automatic variables   Created anew each time the function is called.
They can be easily created on the call stack.

Stack canary    A random number is placed at the beginning of the stack
area for the current function that can show when important information
on the call stack was changed.

In the next chapter, we’ll step back from writing programs and look at
the translation into machine code performed by the assembler program.

12
I N S T R U C T I O N D E T A I L S

In Chapters 2 and 3 you learned how bit
patterns can be used to represent data, and

in Chapters 4–8 you learned how bits can
be implemented in hardware and used to per-

form computations. In this chapter, we’ll look at a few
details of how instructions are encoded in bit patterns
that perform the computations and specify the loca-
tions of the data they operate on.

The primary goal of this chapter is to give an overall view of how com-
puter instructions know where the data they operate on is located. The
details of machine code for each instruction are not the sort of thing that
people memorize. You’ll need to consult the manuals for the details. The
details have helped me to debug my programs in some cases.

Another reason for learning about how instructions are encoded is that
the information is included in the manual’s description of each instruction.
Having some knowledge about instruction encoding can help you to read
the manuals.

246 Chapter 12

We’ll examine two of the most common operations in most programs:
moving data and branching. We’ll look at how the CPU locates the oper-
ands of an instruction, what data or addresses it operates on, and how the
CPU knows where to branch to when it executes a branching instruction.

Looking at Machine Code
We can look at the machine code, the 0s and 1s that make up a program,
by producing an assembly listing, which shows the machine code correspond-
ing to each instruction. We can produce assembly listings by passing the -al
options to the assembler. This causes the listing to be written to standard
out, which defaults to the screen. We can capture this with the redirec-
tion operator. For example, I used this:

$ as –gstabs -al -o adressing.o addressing.s > addressing.lst

to produce the file shown in Listing 12-1.

GAS LISTING register.s page 1

 1 # register.s
 2 # Some instructions to illustrate machine code.
 3 .intel_syntax noprefix
 4 .text
 5 .globl main
 6 .type main, @function
 7 main:
 8 0000 155 push rbp # save caller's frame pointer
 9 0001 4889E5 mov rbp, rsp # establish our frame pointer
 10
 11 0004 289C8 mov eax, ecx # 32 bits, low reg codes
 12 0006 389F7 mov edi, esi # highest reg codes
 13 0008 46689C8 mov ax, cx # 16 bits
 14 000b 588C8 mov al, cl # 8 bits
 15 000d 64489C7 mov edi, r8d # 32 bits, 64-bit register
 16 0010 74889C8 mov rax, rcx # 64 bits
 17
 18 0013 B8000000 mov eax, 0 # return 0 to os
 18 00
 19 0018 4889EC mov rsp, rbp # restore stack pointer
 20 001b 85D pop rbp # restore caller's frame pointer
 21 001c 9C3 ret # back to caller

Listing 12-1: Machine code for some sample instructions

This program doesn’t do anything. It’s just a collection of instructions
that we’ll use to illustrate how instructions are encoded in machine lan-
guage. I’ve included a prologue and epilogue so you can assemble and link
the program and run it under gdb if you want to see what each instruction
does (which you’re asked to do when it’s Your Turn).

Instruction Details 247

The first column in the assembly listing is the line number in decimal.
The next column shows the address, in hexadecimal, of each instruction rel-
ative to the beginning of the function. The third column shows the machine
code, also in hexadecimal. The remaining part of this listing is the assembly
language source code. Since the listing file includes line numbers, we’ll refer
to them when discussing how the instructions are coded in machine code.

Instruction Bytes
Both the operation and its operands need to be coded in binary. The num-
ber of bytes needed for this encoding dictates the number of possible opera-
tion/operand combinations in the computer’s instruction set. In the x86-64
architecture, the number of bytes varies, while some other architectures use
the same number of bytes for each instruction. We’ll consider only x86-64
instructions in this book.

The location of each operand needs to be specified in the machine code
for the instruction. An operand could be located in a register, in memory, or
in an I/O port. Programming I/O ports is more complicated, so we’ll leave
that for Chapter 19. The way we specify the location of an operand is called
the addressing mode. We’ll look at several addressing modes and how they’re
encoded in the instruction.

To give some context to how an x86-64 instruction is encoded,
Figure 12-1 shows the general layout of the bytes in an instruction. We’ll
look at the meaning of each byte afterward.

Prefix Opcode ModR/M SIB Offset Immediate

Figure 12-1: General arrangement of an x86-64 machine instruction

At least one byte is needed for each instruction to specify the opera-
tion, usually called the opcode. There can be one, two, or three bytes in the
opcode.

In the simplest addressing mode, the operand is located in a register.
Some instruction opcodes leave enough extra bits in the opcode byte to
include the code for a register, but most require an additional byte for this.
When an operand is located in memory, the addressing is more complex.
These more complex addressing modes necessitate additional bytes in the
instruction, shown by the dashed lines in Figure 12-1.

Before getting to operands in memory, let’s look at the case when they’re
located in registers. We’ll use the instructions in Listing 12-1 to show how
the CPU knows which register(s) to use.

Opcode Bytes
The ret instruction on line 21 of Listing 12-1 does not explicitly have any
operands, but it has two implicit ones—the rsp and rip registers. Since it
always affects only these two registers, the instruction doesn’t need to spec-
ify them and can be encoded in only one opcode byte 9.

248 Chapter 12

The push and pop instructions on lines 8 and 20 specify a register, rbp, as
their operand. The opcode for push is 01010rrr 1, and for pop it’s 01011rrr 8,
where the three bits rrr are used to encode the register. There are only
three bits in this single byte available for encoding the register, which limits
us to the eight registers rax to rdi. The number of bytes to push or pop is
determined by how the operating system sets up the call stack when a pro-
gram is first loaded into memory. We’re working in a 64-bit environment, so
these instructions operate on 64-bit values. If we use either of these instruc-
tions with one of the registers r8 to r15, the assembler adds a prefix byte that
contains the fourth bit, which I’ll explain in “REX Prefix Byte” on page 250.

Next, we’ll look at the instruction on line 11, which moves the 32-bit
value in ecx to eax. The opcode is 0x89 2. The mov instruction can move data
from register to register, from memory to register, and from register to
memory. There are too many permutations to code up in a single byte, so
the assembler adds a ModR/M byte to the instruction.

ModR/M Byte
The ModR/M byte is used to extend the possible combinations of operator
and operands. Figure 12-2 shows the format of the ModR/M byte.

Reg/
OpcodeMod R/M

7 6 5 3 2 04 1

Figure 12-2: ModR/M byte

The two Mod bits specify one of four possible addressing modes. The
Reg/Opcode bits specify a register or additional bits of the opcode. The
R/M bits specify a register that is used by the instruction in different ways,
depending on the addressing mode specified in the Mod bits.

I won’t give all the possible cases for the ModR/M byte in this book,
since that information is available in the manuals. We’ll look at how they’re
coded in several instructions, which should help you to figure out how to
read the manuals.

Tables 12-1 and 12-2 give the codes that are used for the registers in any
part of an instruction. Table 12-1 shows the codes used to specify 8-, 16-,
and 32-bit portions of the first eight registers, rax–rdi.

Table 12-1: 8-, 16-, and 32-Bit Register Codes

8-bit register 16-bit register 32-bit register Code

al ax eax 000

cl cx ecx 001

dl dx edx 010

bl bx ebx 011

ah sp esp 100

Instruction Details 249

8-bit register 16-bit register 32-bit register Code

ch bp ebp 101

dh si esi 110

bh di edi 111

You may wonder how the CPU can distinguish between the three sizes
of a registers with the same code. The default operand size is 32 bits. If
you use a 16-bit register, the assembler inserts the 0x66 prefix byte before
the opcode, which overrides the default and causes that instruction to use
16-bit operands. The distinction between 8-bit and 32-bit operations is
made by using different opcodes.

Table 12-2 shows the register codes for the full set of 64-bit registers. As
you’ll see next section, most 64-bit operations are accomplished by adding a
REX prefix byte before the opcode.

Table 12-2: 64-Bit Register Codes

Register Code Register Code

rax 0000 r8 1000

rcx 0001 r9 1001

rdx 0010 r10 1010

rbx 0011 r11 1011

rsp 0100 r12 1100

rbp 0101 r13 1101

rsi 0110 r14 1110

rdi 0111 r15 1111

The first thing you probably notice about the register codes in Table 12-2
is that they are four bits, but the ModR/M byte allows only three bits for the
codes. If the instruction uses only the 32-bit portions of the first eight regis-
ters, eax to edi, the high-order bit is 0 and not needed. The remaining three
bits fit within the ModR/M byte. You’ll see in a moment where the fourth bit
is located when an instruction uses any portion of the r8–r15 registers or the
full 64 bits of any of the 16 registers, rax–r15.

The instruction on line 12 of Listing 12-1 is another example of using
only 32-bit registers. It has the same opcode, 0x89 3, as the instruction on
line 11 2, but they operate on different general-purpose registers. The
registers are specified in the ModR/M byte: 11 001 000 for moving from ecx
to eax, and 11 110 111 for moving from esi to edi. I inserted spaces in the bit
patterns here so you can see the three fields corresponding to Figure 12-2
in each byte. The Mod field, 11, specifies the register-to-register mode for
the move. Consulting Table 12-1, we can see that the three bits in the Reg/
Opcode field of line 12, 110, specify the source register, esi, and the three
bits in the R/M field, 111, specify the destination register, edi.

250 Chapter 12

The instruction on line 13 moves only 16 bits from cx to ax. Instead of
using a different opcode, this variance from the 32-bit move is indicated
with the prefix byte 0x66 4. On line 14, we’re moving only 8 bits from cl to
al, which uses a different opcode, 0x88 5.

Line 15 shows a 32-bit move, but this time we’re using one of the reg-
isters, r8d, that was added when upgrading from a 32-bit to a 64-bit CPU
design. Now we need four bits to specify the r8 register, which requires the
assembler to modify the instruction with a REX prefix 6.

REX Prefix Byte
A REX prefix byte is required for most instructions that involve a 64-bit oper-
and or one of the registers r8 to r15. Figure 12-3 shows the format of the
REX prefix.

7 6 5 3 2 04 1

0 1 0 0 W R X B

Figure 12-3: REX prefix format

The REX prefix byte starts with the high-order four bits 0100. The W
bit is set to 1 for a 64-bit operand or 0 for any other size. If the instruction
uses any of the 64-bit registers r8 to r15, the high-order bit for each register
(see Table 12-2) is stored in the R, X, or B bits, depending on how the reg-
ister is used in the instruction. (The remaining three bits are stored in the
ModR/M byte, as described earlier.)

We can see the use of the W bit by comparing the instructions on lines
11 2 and 16 7. They both move from the rcx register to the rax register,
but the instruction on line 11 moves 32 bits, while the one on line 16 moves
64 bits. The only difference between the instructions is the addition of the
REX prefix byte, 01001000 (W = 1), to the 64-bit instruction 7.

The instruction on line 15 moves only 32 bits, but the source is one of the
registers added for the 64-bit upgrade from the 32-bit CPU. So, the assembler
adds the REX prefix, 01000100 6. The W bit is 0, indicating a 32-bit move, but
the R bit is 1. When executing this instruction, the CPU uses this 1 as the
high-order bit of the source register field in the ModR/M byte, 11 000 111, to
give 1000, or r8 (see Table 12-2). Since W = 0, the instruction moves only 32 bits.

So far, we’ve considered only instruction addressing modes used to
move a value from one CPU register to another. Of course, there needs to
be a way to move a value into a register in the first place. We’ll next look at
an addressing mode that can be used to move a constant value into a regis-
ter or memory.

Immediate Addressing Mode
A single data item up to 64 bits can be stored as part of the instruction.
The instruction accesses it using the immediate addressing mode (immediate

Instruction Details 251

because the data item is located at the address immediately after the opera-
tion part of the instruction). The data value can be moved into a register
or into a memory location. We’ll look only at moving into a register here.
Listing 12-2 provides some examples of using the immediate addressing
mode for storing constants in registers.

GAS LISTING immediate.s page 1

 1 # immediate.s
 2 # Some instructions to illustrate machine code.
 3 .intel_syntax noprefix
 4 .text
 5 .globl main
 6 .type main, @function
 7 main:
 8 0000 55 push rbp # save caller's frame pointer
 9 0001 4889E5 mov rbp, rsp # establish our frame pointer
 10
 11 0004 1B0AB mov al, 0xab # 8-bit immediate
 12 0006 266B8CDAB mov ax, 0xabcd # 16-bit immediate
 13 000a 3B812EFCD mov eax, 0xabcdef12 # 32-bit immediate
 13 AB
 14 000f 448B812EF mov rax, 0xabcdef12 # to 64-bit reg
 14 CDAB0000
 14 0000
 15 0019 548B88967 mov rax, 0xabcdef0123456789 # 64-bit immed.
 15 452301EF
 15 CDAB
 16
 17 0023 6B8000000 mov eax, 0 # return 0 to os
 17 00
 18 0028 4889EC mov rsp, rbp # restore stack pointer
 19 002b 5D pop rbp # and frame pointer
 20 002c C3 ret # back to caller

Listing 12-2: Examples of immediate data

The two opcodes for moving immediate data into a register are 11010rrr
and 11011rrr, where rrr is the register number (see Table 12-1). The data
itself is stored immediately after the opcode, thus forming part of the
instruction. The instruction on line 11 in Listing 12-2 shows an example of
moving the value 0xab into the al register 1. The opcode, 0xb0, includes the
coding of the eax register, 000. The byte immediately following the opcode
is the data, 0xab, which is stored at the end of the instruction, as shown in
Figure 12-1.

Line 13 shows the instruction to move a 32-bit value 3. It uses the
opcode 10111rrr, where rrr = 000, the same as the 8-bit instruction on line
11. Notice that the constant value, 0xabcdef12, is stored in little-endian for-
mat. When reading assembly language listings, it’s important to remember
that the instruction itself is stored by byte, but any constant data is stored in
little-endian format.

252 Chapter 12

Next, let’s look at the instruction on line 12. It uses the same opcode
as the 32-bit instruction on line 13, but the 0x66 prefix byte tells the CPU to
use the other operand size, 16 bits, instead of the default size of 32 bits 2.

Moving on to line 14, we can see that the assembler inserted a REX
prefix, 01001000, with W = 1 to indicate that this is a 64-bit move 4. The
constant value, 0xabcdef12, written in assembly language is only 32 bits, but
the assembler filled in the leading zeros to make it a full 64 bits for storage
as part of the machine code. The assembly language instruction on line 15
specifies a full 64-bit constant, which can be seen in the machine code 5.

Now you’re able to read the machine code for the instruction on line
17 6, mov eax, 0, which we’ve been using from the beginning of writing
assembly language to set the return value from main. Notice that the assem-
bler codes the constant, 0, in 32 bits. Compare this instruction, 0xb800000000,
with the instruction on line 13, 0xb812efcdab. They both move a 32-bit
constant, which is stored immediately after the opcode, 0xb8, into the eax
register.

We can now move on to the addressing modes that direct the CPU to
access values stored elsewhere in memory.

Memory Addressing Modes
Almost any useful program needs to use memory for storing data. In this
section, we’ll look at the machine code of the addressing modes used to
determine a memory address. We’ll look only at instructions that read
from memory, but the same addressing modes work for writing to memory
(which you are asked to do when it’s Your Turn).

The x86-64 architecture allows only one of the operands, either the
source or the destination, to be a memory location. The simplest case is to
move directly to or from memory.

Direct Memory Addressing
In assembly language, we could label the memory location and simply use
that label as an operand to a mov instruction. For example, if my program
included a memory location labeled x, the following instruction would store
the 32 bits located at location x in the rax register:

 mov eax, x

The assembler translates this into the machine code, where I have used
spaces to separate the different parts of the instruction:

8B 04 25 00000000

The 0x8b opcode tells the CPU to move a 32-bit value from memory
into a register. This is followed by the ModR/M byte, 00 000 100. The Reg/
Opcode bits are 000, which designates the eax register. The Mod bits are 00,
and the R/M bits are 100, which is a special case telling the CPU to look at
the SIB byte (see Figure 12-1) for further details. The format of the SIB byte

Instruction Details 253

will be described in a moment, but the 0x25 value in the SIB byte does not
follow the usual format. It’s another special case telling the CPU that the
address of the data is the 32-bit value immediately following this instruc-
tion, which is 0x00000000.

This 0x00000000 is simply a placeholder put there by the assembler. The
assembler also makes a note in the object file of the location of this place-
holder and the name of the memory location it refers to. It’s the job of the
linker to find this label, determine its address, and insert this address into
the placeholder location in the final executable file. In the 64-bit mode,
when the CPU executes the instruction, it extends this 32-bit address with
leading zeros to be 64 bits.

Since the linker fills in an address here, this instruction is not position-
independent code. To make it position independent, we would need to use
x relative to the instruction pointer:

 mov eax, x[rip]

We’ll be using position-independent code throughout this book, so all
our memory reads and writes will use a register indirect addressing mode,
using either the rip or another register as our reference address.

Register Indirect with Offset
When the CPU is executing an instruction that references memory based
on a register, it starts by computing the effective address. You’ve already seen
this with the lea instruction, which simply loads the effective address into a
register. The mov instruction goes a step further and moves the data stored
at the effective address into a register. If the memory address is the destina-
tion operand, then the mov instruction stores the data in the register at the
effective address.

The simplest indirect addressing mode is just using an address in a reg-
ister. For example, in the instruction on line 13 of Listing 12-3, the effective
address is the address in the rbp register 2. This instruction moves the four
bytes from that memory location into the eax register.

GAS LISTING memory.s page 1

 1 # memory.s
 2 # Some instructions to illustrate machine code.
 3 .intel_syntax noprefix
 4 .text
 5 .globl main
 6 .type main, @function
 7 main:
 8 0000 55 push rbp # save caller's frame pointer
 9 0001 4889E5 mov rbp, rsp # establish our frame pointer
 10 0004 4883EC30 sub rsp, 48 # local variables
 11
 12 0008 48C7C105 mov rcx, 5 # for indexing
 12 000000

254 Chapter 12

 13 000f 18B4500 mov eax, 2[rbp] # indirect
 14 0012 38B45D0 mov eax, 4-48[rbp] # indirect + offset
 15 0015 8B440DD0 mov eax, -48[rbp+5rcx] # indirect + offset and index
 16 0019 8B448DD0 mov eax, -48[rbp+64*rcx] # and scaled index
 17
 18 001d B8000000 mov eax, 0 # return 0 to os
 18 00
 19 0022 4889EC mov rsp, rbp # restore stack pointer
 20 0025 5D pop rbp # and frame pointer
 21 0026 C3 ret # back to caller

Listing 12-3: Register indirect memory addressing

The next instruction, on line 14, computes the effective address by
adding an offset, -48, to the address in the rbp register 4. The CPU does
this computation internally and does not change the contents of rbp. For
example, if rbp contained 0x00007fffffffdf60, the effective address would be
0x00007fffffffdf60 + 0xffffffffffffffd0 = 0x00007fffffffdf30. The instruction
would move the four bytes at 0x00007fffffffdf30 into eax.

Let’s compare the machine code for the instructions on lines 13 and 14:

000f 8B4500
0012 8B45D0

They both use the opcode 0x8b, which tells the CPU to compute an
effective address and move 32 bits from that address to the eax register.
They both use the same ModR/M byte, 01 000 101 (45 in hexadecimal).
The 01 in the Mod field tells the CPU to compute an effective address by
adding an 8-bit offset to the value in the base register. The offset value is
in two’s complement and can be negative 3. The CPU extends the 8 bits
to 64 bits, preserving the sign by copying the highest-order bit of the 8-bit
value into the 56 higher-order bits of the 64-bit value (called sign extension),
before adding it to the value in the base register. The offset byte is stored
at the offset field of the instruction, before any immediate data, as shown
in Figure 12-1.

Rather than creating a separate opcode for mov without offset (line 13),
the CPU designers chose to simply set the offset to 0 1. The base register
for this operation is coded in the R/M field—101 in these instructions. The
default address size is 64 bits in the x86-64 architecture, so the CPU uses
the entire rbp register, and there is no need for a REX prefix byte here.

If this is starting to look complicated to you, don’t panic. As you saw
in Chapter 11, you’ll use the .equ assembler directive to provide meaning-
ful names for these offsets. Then this instruction would look something
like this:

 mov eax, numberOfItems[rbp]

The assembler will substitute the value of numberOfItems for you, and the
CPU will do the arithmetic.

Instruction Details 255

Register Indirect with Indexing
On line 15, we’ve added in the indexing register, rcx 5. The effective address
is the sum of the values in rcx and rbp plus -48. This addressing mode is use-
ful for working through an array one byte at a time. Notice that both the
indexing and base registers must be the same size even though the value
in the register you use for indexing would fit into a smaller portion of the
register. Thus, on line 15, we’ve stored a 64-bit value in rcx to ensure that
the high-order bits are 0, even though the value would fit within 8 bits. The
CPU will add the full 64 bits of the index register to the base register when
computing the effective address.

The ModR/M byte of this instruction is 01 000 100. The 01 in the Mod
field indicates an 8-bit offset, and the 000 in the Reg/Opcode field specifies
that the destination register is eax. The 100 in the R/M field is the number
for the stack pointer register, which would never be used for this type of
operation. So the CPU designers chose to use this code to indicate that
another special byte, the SIB byte, is needed for encoding the rest of this
instruction.

SIB Byte
Figure 12-4 shows the format of the SIB byte.

IndexScale Base reg

7 6 5 3 2 04 1

Figure 12-4: Format of the SIB byte

The SIB byte has fields for the Scale, Index register, and Base register.
The Scale can be 1, 2, 4, or 8.

The SIB byte in the instruction on line 15 is 00 001 101, which indicates
a scale of 1, rcx as the index register, and rbp as the base register. As men-
tioned, the CPU assumes 64-bit addressing, so three bits are sufficient for
encoding the first eight registers, rax to rdi. If we were to use any of r8 to r15,
the assembler would need to prefix this instruction with a REX prefix byte
so it could use four bits to encode these registers.

Often, the size of the data items in an array is larger than one byte.
The instruction on line 16 shows that the value in the index register can be
scaled 6. In this example code, increasing the index value by 1 adds 4 to
the effective address. The SIB byte is 10 001 101, showing the same base and
index registers but a scale factor of 4.

So far, we’ve been looking at moving data. Moving data is probably the
most common operation in a program. The next most common operation
is probably jumping from one place in the program to another.

256 Chapter 12

Jump Instructions
Nearly every program has multiple branches in its flow of execution. Almost
all the jumps are conditional, based on some settings in the status flag. In
this section, we’ll look at how the jump instruction is coded so that pro-
gram flow goes to the right location when the jump is taken.

There are some 30 conditional jump instructions that can do either a
short jump or a near jump. The short jump is limited to a distance that can be
represented as an 8-bit signed integer (–128 – +127 bytes), whereas a near
jump uses a 16-bit or 32-bit signed integer. Most programs are written such
that short jumps are sufficient.

A long jump (greater than –2,147,483,648 – +2,147,483,647 bytes) requires
the use of the jmp (unconditional jump) instruction. We can do this using a
conditional jump to jump over the unconditional jump. It’s basically a dou-
ble-negative construct. For example, to do a long jump based on the equal
condition, you could use the jne instruction like this:

 jne skip # skip the jump if equal
 jmp FarAway # not not equal, so jump
skip: next instruction

We’ll look only at the short conditional jump here, whose instruction
format is shown in Figure 12-5.

7 6 5 3 2 04 1

0 1 1 1 Condition

7 6 5 3 2 04 1

Signed offset

Figure 12-5: Format of short conditional jump instruction

The four condition bits in Figure 12-5 direct the CPU to check various
combinations of the status flags in the status register. The assembler uses
mnemonics for the conditions that suggest what you want to do. The condi-
tional jump instruction should follow immediately after the operation that
causes the conditions you want to check, because an intermediate instruc-
tion might change the conditions of the status flags.

Listing 12-4 is an example of two short conditional jump instructions
that jump based on the results of an xor instruction.

GAS LISTING jumps.s page 1

 1 # jumps.s
 2 # Some instructions to illustrate machine code.
 3 .intel_syntax noprefix
 4 .text
 5 .globl main
 6 .type main, @function

Instruction Details 257

 7 main:
 8 0000 55 push rbp # save caller's frame pointer
 9 0001 4889E5 mov rbp, rsp # establish our frame pointer
 10
 11 0004 4831D8 xor rax, rbx # sets status flags
 12 0007 17506 jne 2forward # test ZF
 13 back:
 14 0009 4D89C8 mov r8, r9 # stuff to jump over
 15 000c 4889CB mov rbx, rcx
 16 forward:
 17 000f 4831D8 xor rax, rbx # sets status flags
 18 0012 374F5 je back # test ZF
 19
 20 0014 B8000000 mov eax, 0 # return 0 to os
 20 00
 21 0019 4889EC mov rsp, rbp # restore stack pointer
 22 001c 5D pop rbp # and frame pointer
 23 001d C3 ret # back to caller

Listing 12-4: Machine code for short jump instructions

The instruction on line 12 should be read, “Jump to forward if the values
in rax and rbx are not equal.” The jne instruction checks the ZF in the status
register. The results of the xor instruction will be 0 only if the two values in
rax and rbx are equal, which would produce ZF = 1 (true). The jne instruc-
tion takes the jump when ZF = 0 (false).

The assembler also provides a jnz mnemonic for the same machine
instruction. Looking at Figure 12-5, you can see that there are only 16 (four
bits) possible conditions that can be tested by a short jump, but there are
more than 30 such assembly language instructions. There’s usually more
than one assembler mnemonic for each conditional jump instruction. You
should use the mnemonic that most clearly conveys your intent in the algo-
rithm. We’ll discuss the conditional jump instructions when we look at con-
trolling program flow in Chapter 13.

Returning to line 12, the offset byte contains 0x06 1. When this instruc-
tion is being executed, the instruction pointer has already been incremented
to have the address of the next instruction, 0x0009, relative to the beginning
of this function. If ZF = 0, this instruction simply adds the offset to the cur-
rent value in the instruction pointer, giving 0x000f relative to the beginning
of this function. If ZF = 1, program execution continues with the instruction
at 0x0009 relative to the beginning of this function.

Next, we’ll look at the je instruction on line 18. It takes the jump (adds
the offset value to the instruction pointer) when ZF = 1 (true). Note that the
value of the offset, 0xf5, is a negative number 3. The CPU sign-extends
the offset to 64 bits before adding it to the 64-bit address in the instruction
pointer. The result is that it subtracts 0x0b from the instruction pointer, giv-
ing 0x0014 – 0x000b = 0x0009 relative to the beginning of this function.

258 Chapter 12

YOUR T UR N

1.	 Enter the program in Listing 12-1 and change the registers to see the effects
on the machine code. Run your program under gdb to see the effects on the
register contents.

2.	 Enter the program in Listing 12-3 and change the order of each instruction
so that it stores the contents of the respective register in memory, except
that you should not store anything at [rbp]. Why? Run your program under
gdb to see the effects on the memory contents.

3.	 Enter the program in Listing 12-3 and change it so that it stores a constant
in each of the memory locations, except that you should not store anything
at [rbp]. Don’t forget that you need to tell the assembler the size of the
data item to store (see Table 10-1 in Chapter 10). Run your program under
gdb to see the effects on the memory contents.

This discussion should give you a brief idea of how these conditional
jump instructions work. You will see much more about them, including a
list of the commonly used ones, when we talk about some program flow
constructs in Chapter 13. But before we move on to more programming,
we’ll take a quick look at how assembler and linker programs work.

Assemblers and Linkers
Now that you have an idea of what machine code looks like, let’s look at how
an assembler program translates assembly language into machine code.
The general algorithm is similar for linking functions together, so we’ll also
look at that. The presentation here is just an overview. It ignores most of the
details. My intent is to give you only a rough idea of how an assembler trans-
lates the source code into machine language and how a linker connects the
different modules that make up an entire program.

The Assembler
The assembler needs to translate the assembly language into machine code.
Since there is a one-to-one correspondence between the two, the simplest
approach would be to go through the assembly language source one line at
a time, translating that line. This would work fine, except for situations like
line 12 in Listing 12-4. This instruction, jne forward 2, refers to a label that
the assembler has not yet encountered. The assembler would have no idea
of what the offset is from this instruction to the forward label. As you saw in
Figure 12-5, the offset is part of the instruction.

One solution to this problem is to use a two-pass assembler. The assem-
bler creates a local symbol table associating each symbol with a numerical

Instruction Details 259

value during the first pass. Those symbols defined with an .equ directive
are entered directly on the table. For the labeled locations in the code,
the assembler needs to determine the location of each label relative to the
beginning of the module being assembled and then enter that value and
the label to the table. A separate local symbol table is created for each .text
and .data segment in the file. Algorithm 12-1 gives an overview of creating a
local symbol table.

Let LocationCounter = 0
do
 Read a line of source code
 if (.equ directive)
 LocalSymbolTable.Symbol = symbol
 LocalSymbolTable.Value = expression value
 else if (line has a label)
 LocalSymbolTable.Symbol = label
 LocalSymbolTable.Value = LocationCounter
 Determine NumberOfBytes required by line when assembled
 LocationCounter = LocationCounter + NumberOfBytes
while(more lines of source code)

Algorithm 12-1: First pass of a two-pass assembler

Once the local symbol table is created, the assembler does a second
pass through the source code file. It uses a built-in opcode table to deter-
mine the machine code, and when a symbol is used in an instruction, it
looks up the value of the symbol on the local symbol table. If it does not
find the symbol in the local symbol table, it leaves space in the instruction
for a number and records the symbol and its location in the object file.
Algorithm 12-2 shows this process.

Let LocationCounter = 0
do
 Read a line of source code
 Find machine code from opcode table
 if (symbol is used in instruction)
 if (symbol found in LocalSymbolTable)
 get value of symbol
 else
 Let value = 0
 Write symbol and LocationCounter to object file
 Add symbol value to instruction
 Write assembled instruction to object file
 Determine NumberOfBytes used by the assembled instruction
 LocationCounter = LocationCounter + NumberOfBytes
while(more lines of source code)

Algorithm 12-2: Second pass of a two-pass assembler

Algorithm 12-1 and Algorithm 12-2 are highly simplified. They ignore
many details but are intended to show you the general idea of how an
assembler works. As an alternative, we could create a one-pass assembler. It

260 Chapter 12

would need to maintain a list of the location of each forward reference and,
then when the label is found, use the table to go back and fill in the appro-
priate value.

This has been a brief overview of the assembly process. Chapter 7 in
Structured Computer Organization, Sixth Edition, by Andrew S. Tanenbaum
and Todd Austin (Pearson, 2012) has a section that provides more details
about the assembly process. There is a thorough discussion of the design
of assembler programs in Chapter 2 in Leland Beck’s System Software: An
Introduction to Systems Programming, Third Edition (Pearson, 1997).

Most functions will contain references to .text segments defined in other
files, which cannot be resolved by the assembler. The same is true of any .data
segments if they’re used. The job of the linker is to resolve these references.

The Linker
A linker works in much the same way as an assembler, except the basic unit
is a block of machine code instead of a line of assembly language. A typi-
cal program is made up of many object files, each of which often has more
than one .text segment and may have .data segments, all of which must be
linked together. As with an assembler, two passes can be used to resolve for-
ward references.

An object file created by the assembler includes the size of each segment
in the file together with a list of all the global symbols and where they are
used in the segment. During the first pass, the linker reads each object file
and creates a global symbol table, which contains the relative location of
each global symbol from the beginning of the program. In the second pass,
the linker creates an executable file that includes all the machine code from
the object files with the relative location values from the global symbol table
plugged into the locations where they are referenced.

This process will resolve all the references to symbols that are defined
in the program, but it will leave references to externally defined references
unresolved (for example, names of functions or variables that are defined
in libraries). The linker enters these references to external names into the
global offset table. If the external reference is a function call, the linker
also enters this information into the procedure linkage table (you first saw
these two tables in Chapter 11) along with the location in the machine code
where the reference is made.

When the program runs, the operating system also loads the global off-
set table and the procedure linkage table for the program. During execu-
tion, if the program accesses an external variable, the operating system
loads the library module where the variable is defined and enters its relative
address in the global offset table. When the program calls one of the func-
tions in the procedure linkage table, if the function has not already been
loaded, the operating system loads it, inserts its address into the program’s
global offset table, and adjusts the corresponding entry in the procedure
linkage table accordingly.

Instruction Details 261

I want to emphasize that this has been a sketchy overview of how
assemblers and linkers work. I’ve omitted the details and given only a
rough overview of what is involved. If you would like to learn more about
linkers, I recommend John R. Levine’s Linkers & Loaders (1999).

What You’ve Learned

Assembler listings   Show the machine code for each instruction.

Nonuniform instruction length   x86-64 instructions can be as short as
one byte but can have many more bytes, depending on the instruction.

Instruction prefix bytes   You will often see the REX prefix byte in a
64-bit instruction.

ModR/M byte   Used to specify a register or addressing mode.

SIB byte   Used to specify the registers used to index through an array
in memory.

Immediate addressing mode   Constant data can be stored as part of
the instruction.

Register indirect with offset addressing mode   The memory location
is specified as a fixed offset from the address in a base register.

Register indirect with indexing addressing mode   In addition to
using an offset from a base register, a second register can be used as an
index into a specific location in memory.

Conditional jumps   A set of jump instructions can be used to test the
status codes and jump to another place in the program depending on
the state of status codes.

Assembler   A program that translates assembly language to machine
code and creates a global symbol table.

Linker   This program resolves cross-references between the segments
in the program and creates a procedure linkage table that is used by
the operating system.

In the next chapter, we’ll return to programming and look at the two
most common program flow constructs: repetition and two-way branching.

13
C O N T R O L F L O W C O N S T R U C T S

When writing a program in C or assembly
language, we specify the order in which each

statement or instruction is executed. This
order is called the control flow. Programming

by specifying the control flow is known as imperative
programming. This is in contrast to declarative program-
ming, where we state the logic of the computation
and another program figures out the control flow to
perform it.

If you have been using make to build your programs, as we recommended
in Chapter 2, the statements in a makefile are an example of declarative pro-
gramming. You specify the logic of the results, and the make program figures
out the control flow to produce the results.

264 Chapter 13

There are three fundamental control flow constructs: sequence, itera-
tion, and selection. You’ve already seen sequence in the programs thus
far: each instruction, or subfunction, is executed in the order in which
it’s written. In this chapter, we’ll look at how to alter the control flow
from the written order to iterate the same block of written instructions
or to select between several blocks of written instructions. We’ll look at
how each of these control flow constructs is implemented at the assem-
bly language level. (We’ll look at the details of higher-level control flow
actions, calling functions, in Chapter 14.)

Both iteration and selection depend on altering control flow based on
a true/false condition, using a conditional jump. Since they’ll be used in
the rest of the chapter, we’ll start by looking at the jumps, conditional and
unconditional, that are available.

Jumps
A jump instruction transfers control flow from one memory location to
another. When implementing the iteration and selection flow constructs,
we’ll need to use conditional jumps and sometimes unconditional jumps.

Unconditional Jumps
As you learned in Chapter 9, when an instruction is fetched from memory, the
CPU automatically increments the instruction pointer to have the address
of the next instruction in memory. The unconditional jump instruction
changes the instruction pointer, which causes the CPU to continue program
execution in some other location.

jmp—Jump

Unconditionally transfers program control flow to a memory location.

jmp label transfers control flow to label.

jmp reg transfers control flow to the address in reg.

The label can be on any memory location within –2,147,483,648 to
+2,147,483,647 bytes. The CPU sign extends the offset between the jmp
instruction and label to 64 bits and adds this signed number to the
instruction pointer, rip. The reg form simply copies the 64 bits in reg to
the rip register.

The assembler’s computation of the offset in the label form of the jmp
instruction takes into account that the value in the rip register will point to
the next instruction following the jmp during program execution. This off-
set is simply added to the rip to cause the transfer of control.

The jmp instruction is commonly used together with a conditional jump
instruction to skip over blocks of code or to go back to the beginning of a
block of code and execute it again.

Control Flow Constructs 265

Conditional Jumps
There are two groups of conditional jump instructions. The first group
works by evaluating a logical combination of some of the status flags in the
rflags register. If the logical expression evaluates to true, the instruction
changes the value in the instruction pointer, rip. Otherwise, the instruction
pointer does not change, and control flow continues with the instruction
immediately after the conditional jump instruction.

The general form for this group of conditional jump instructions is as
follows:

jcc—Jump if condition

Transfers control flow to a memory location if the condition cc is met.

jcc label transfers control flow to label when cc is true.

The jcc instruction reads the status flags in the rflags register. None
of the conditional jump instructions changes the status flags. The
distance from the jcc instruction, after the CPU fetches the instruction, to
label must be within –2,147,483,648 to +2,147,483,647 bytes.

The second group of conditional jump instructions have the same
behavior as those in the jcc group, but they are based on the content of the
rcx register instead of the rflags register:

jcxz—Jump if cx is zero

Transfers control flow to a memory location if the content of the cx
register is 0.

jcxz label transfers control flow to label when the content of the cx
register is 0.

jecxz—Jump if ecx is zero

Transfers control flow to a memory location if the content of the ecx
register is 0.

jecxz label transfers control flow to label when the content of the ecx
register is 0.

jrcxz—Jump if rcx is zero

Transfers control flow to a memory location if the content of the rcx
register is 0.

jrcxz label transfers control flow to label when the content of the rcx
register is 0.

The jcxz, jecxz, and jrcxz instructions evaluate only the respective bits
in the rcx register, not the status flags. They jump to label, which must
be within –128 to +127 bytes of the instruction, relative to the current
value of the instruction pointer after the CPU fetches the instruction, if the
bits are 0.

266 Chapter 13

There are 16 condition combinations of the cc portion of the jcc
instruction. Some of the conditions have more than one assembly lan-
guage mnemonic, giving 30 different jcc instructions. They are listed in
Table 13-1, along with the status flags that each tests.

Table 13-1: Conditional Jumps

cc Condition Status flags cc Condition Status flags

jz Zero ZF je Equal ZF

jnz Not zero ¬ZF jne Not equal ¬ZF

ja Above ¬CF ∧ ¬ZF jg Greater than ¬SF ∧ ¬ZF

jae Above or equal ¬CF jge Greater than or equal SF = OF

jna Not above CF ∨ ZF jng Not greater than ZF ∧ SF ≠ OF

jnae Not above or equal CF jnge Not greater than or equal SF ≠ OF

jb Below CF jl Less than SF ≠ OF

jbe Below or equal CF ∨ ZF jle Less than or equal ZF ∧ SF ≠ OF

jnb Not below ¬CF jnl Not less than SF = OF

jnbe Not below or equal ¬CF ∧ ¬ZF jnle Not less than or equal ¬SF ∧ ¬ZF

jc Carry CF jo Overflow OF

jnc No carry ¬CF jno No overflow ¬OF

jp Parity PF js Sign SF

jnp No parity ¬PF jns No sign ¬SF

jpe Parity even PF jno Parity odd ¬PF

I have arranged the codes in Table 13-1 in the order you are likely to
use them. The codes on the left apply roughly to unsigned values, and
those on the right to signed. Make special note of the difference between
above and greater than, and between below and less than. Above and below
refer to unsigned values, and greater than and less than refer to signed values.
For example, 0xffffffff is above 0x00000001 with respect to the bit patterns.
But if these bit patterns represent signed integers, then 0xffffffff = –1 and
0x00000001 = +1 and thus 0xffffffff is less than 0x00000001.

It’s important to use the conditional jump instructions immediately
after the instruction whose result you want to base the jump on. An interven-
ing instruction might change the states of the status flags, thus introducing a
bug into your program.

Before moving on to the flow constructs that use conditional jumps, I’ll
share a hint with you. When using a relational conditional jump like jg or
jl, I usually forget the order of the test—source compared to destination,
or destination compared to source. So when testing my program, I almost
always start by using gdb and putting a breakpoint at the conditional jump

Control Flow Constructs 267

instruction. When the program breaks, I check the values. Then I use the
s step command to see which way the jump went.

Iteration
Many algorithms use iteration, also called looping, which is the repeated
execution of a block of instructions until the value(s) of the loop control
variable(s) meet a termination condition. There are two ways to implement
controlled repetition: looping and recursion. With a looping construct, the
value(s) of the loop control variable(s) must be changed within the block of
instructions. In recursion, the block of instructions is repeatedly invoked
with differing values of the control variable(s). Recursion is implemented
using a separate function, which we’ll discuss in Chapter 15 when we talk
about subfunctions. In this chapter, we’ll look at looping constructs within
a function.

N O T E 	 Although the loop termination condition can be dependent on more than one vari-
able, I’ll use just one loop control variable to clarify the discussion.

while Loop
The while loop is a fundamental form of looping. Here is the form in C:

initialize loop control variable
while (expression)
{
 body
 change loop control variable
}
next_statement

Before entering the while loop, you need to initialize the loop control
variable. At the beginning of the while loop, the expression is evaluated in a
Boolean context. If it evaluates to false, 0 in C, control flow continues to the
next_statement. If the expression evaluates to true, nonzero in C, the body is
executed, the loop control variable is changed, and control flow continues
at the top with the reevaluation of the expression. Figure 13-1 shows the flow
graphically.

We used the write system call function in Chapter 11 to write a text
message on the screen (Listing 11-1). In that program, we explicitly told the
write function how many characters were in the text string. In this chapter,
we’ll see how to use looping to avoid having to determine the number of
characters in the text string. We’ll use the write function to write one char-
acter at a time on the screen, looping until we reach the NUL character that
terminates a C-style text string.

268 Chapter 13

Initialize loop
control variable

Evaluate
Boolean

expression

false

true

Execute body
of while loop

Next instruction
after while

loop construct

Figure 13-1: Control flow of the
while loop

We’ll start with a C while loop, shown in Listing 13-1.

/* helloWorld.c
 * Hello World program using the write() system call
 * one character at a time.
 */
#include <unistd.h>
1 #define NUL '\0'

int main(void)
{
2 char *stringPtr = 3 "Hello, World!\n";

 while 4 (*stringPtr != NUL)
 {
 5 write(STDOUT_FILENO, stringPtr, 1);
 6 stringPtr++;

Control Flow Constructs 269

 }

 return 0;
}

Listing 13-1: Writing a text string to the terminal window one character at a time

We use the #define directive to give a symbolic name to the NUL charac-
ter 1. The stringPtr variable is defined to be a pointer to a char type 2. As
you’ll see when we look at the assembly language, the compiler will store
the text string 3 in a read-only part of memory and store the address of the
first character in that text string in the stringPtr pointer variable.

The while statement first checks to see if the pointer variable, stringPtr,
is pointing to the NUL character 4. If it’s not the NUL character, program flow
enters the while loop body and writes the character pointed to by stringPtr
on the screen 5. The pointer variable is then incremented to point to the
next character in the text string 6. Program flow returns to the top of the
loop where this next character is checked to see if it’s the NUL character 4.
This loop terminates when the character pointer, stringPtr, is pointing to
the NUL character. By testing for this condition first, we wouldn’t even enter
the body of the while loop if stringPtr were to point to an empty string,
because there would be nothing to do.

The compiler generated the assembly language shown in Listing 13-2
for this program.

 .file "helloWorld.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "Hello, World!\n"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 16
 lea rax, .LC0[rip] ## address of text string
 mov QWORD PTR -8[rbp], rax
 1 jmp .L2 ## jump to bottom
2 .L3:
 mov rax, QWORD PTR -8[rbp] ## address of current character
 mov edx, 1 ## one character
 mov rsi, rax ## pass address
 mov edi, 1 ## STDOUT_FILENO
 call write@PLT
 add QWORD PTR -8[rbp], 1 ## increment pointer
.L2:
 mov rax, QWORD PTR -8[rbp] ## address of current character
 movzx eax, BYTE PTR [rax] ## load character
 3 test al, al ## NUL character?
 jne .L3 ## no, continue looping

270 Chapter 13

 mov eax, 0 ## yes, all done
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 13-2: Assembly language for the C program in Listing 13-1

Although this assembly language seems to be testing for the termina-
tion condition at the end of the loop, it follows the logical flow shown in
Figure 13-1. It jumps down to .L2 1 and tests for the terminating condi-
tion 3 before jumping up to .L3 2 to start execution of the body of the
while loop.

This code introduces two more instructions:

movzx—Move with zero-extend
Copies (moves) a source value from memory or a register to a wider reg-
ister and zero-extends the value in the destination register.

movzx reg, reg moves from a register to a register.

movzx reg, mem moves from a memory location to a register.

An 8-bit source value can be extended to 16, 32, or 64 bits, and a 16-bit
value can be extended to 32 or 64 bits. The additional high-order bits
in the destination are all 0. If the extension is to 32 bits, the high-order
32-bit portion of the destination register is also all 0. Recall (from
Chapter 9) that a mov of 32 bits into a register will zero the high-order
32 bits of the register, thus zero-extending 32 bits to 64 bits. The movzx
instruction does not affect the status flags in the rflags register.

test—Test bits
Performs a bitwise AND between the source and destination operands,
without changing either and sets status flags accordingly.

test reg, reg tests between two registers.

test mem, reg tests between a register and a memory location.

test reg, imm tests between an explicit number and a register.

test mem, imm tests between an explicit number and a memory location.

The test instruction sets the status flags in the rflags register to show
the result of AND-ing the source and destination operands. Neither
operand is changed.

In my assembly language version of this program, Listing 13-3, I’ve
organized the code so that the conditional test is at the top of the while
loop 1.

helloWorld.s
Hello World program using the write() system call
one character at a time.

Control Flow Constructs 271

 .intel_syntax noprefix
Useful constants
 .equ STDOUT,1
Stack frame
 .equ aString,-8
 .equ localSize,-16
Read only data
 .section .rodata
theString:
 .string "Hello, World!\n"
Code
 .text
 .globl main
 .type main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 lea rax, theString[rip]
 mov aString[rbp], rax # *aString = "Hello World.\n";
whileLoop:
 mov rsi, aString[rbp] # current char in string
 1 cmp byte ptr [rsi], 0 # null character?
 2 je allDone # yes, all done

 mov edx, 1 # one character
 mov edi, STDOUT # to standard out
 call write@plt

 3 inc qword ptr aString[rbp] # aString++;
 4 jmp whileLoop # back to top
allDone:
 mov eax, 0 # return 0;
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 13-3: Writing one character at a time to the screen, in assembly language

I have also used two more new instructions, cmp 1 and inc 3, which are
detailed next.

cmp—Compare
Compares first operand with second operand and, without changing
either, sets the status flags accordingly.

cmp reg, reg compares the value in a first register with the value in a
second register.

cmp mem, reg compares the value in memory with the value in a register.

cmp reg, imm compares the value in a register with the explicit number.

cmp mem, imm compares the value in memory with the explicit number.

272 Chapter 13

The cmp instruction sets the status flags in the rflags register to show
the result of subtracting the first operand from the second operand.
Neither operand is changed.

inc—Increment
Adds 1 to a variable.

inc reg adds 1 to the value in a register.

inc mem adds 1 to the value in memory.

The inc instruction does set the status flags in the rflags register
according to the result.

It might seem that my assembly language solution is less efficient than
what the compiler generated (Listing 13-2) because the jmp instruction 4 is
executed in addition to the conditional je instruction 2 with each iteration
of the loop. Most modern CPUs use a technique known as branch prediction,
in which they assume that a conditional jump will always go one way. We
won’t go into the details in this book, but the technique greatly speeds up
the execution of the conditional jump instruction when the jump is not
taken.

A while loop works well when a sentinel value, a unique value that
marks the end of a data sequence, is used as the termination condition.
For example, the while loop in Listing 13-1 works for any length of text
string. The loop continues writing one character at a time on the screen
until it reaches the sentinel value, a NUL character. C has another looping
construct, the for loop, that many programmers find to be more natural
in some algorithms.

for Loop
Although their C syntax differs, the two looping constructs, while and for,
are semantically equivalent. The syntactical difference is that the for loop
allows you to group all three control elements—loop control variable ini-
tialization, checking, and changing—within the parentheses. The general
form of a for loop is as follows:

for (initialize loop control variable; expression; change loop control
variable)
{
 body
}
next_statement

But placing all the control elements within the parentheses is not
required. In fact, we could also write the for loop as follows:

initialize loop control variable
for (; expression;)
{
 body

Control Flow Constructs 273

 change loop control variable
}
next_statement

The for loop syntax does require both semicolons in the parentheses.
We could rewrite the program in Listing 13-1 using a for loop, as shown

in Listing 13-4.

/* helloWorld-for.c
 * Hello World program using the write() system call
 * one character at a time.
 */
#include <unistd.h>
#define NUL '\x00'

int main(void)
{
 char *stringPtr;

 for (stringPtr = "Hello, World!\n"; *stringPtr != NUL; stringPtr++)
 {
 write(STDOUT_FILENO, stringPtr, 1);
 }

 return 0;
}

Listing 13-4: Using a for loop to write a text string in the terminal window one character
at a time

You may wonder if either looping construct is better than the other.
Here’s where your knowledge of assembly language becomes useful. When I
used gcc to generate the assembly language for Listing 13-4, I got the same
assembly language code as for the while loop version in Listing 13-1. Since
the assembly language for the for loop is shown in Listing 13-2, I won’t
repeat it here.

N O T E 	 Since the for statement in this program controls only one C statement, you really don’t
need the curly brackets around that statement. But I usually include them because if
I later modify the program and add another statement, I often forget that I then need
the curly brackets.

A for loop is often used for a count-controlled loop, in which the number
of iterations is known before the loop is started. You’ll see an example of
this usage in a moment when we look at the selection constructs.

The conclusion we can reach from this comparison of a for loop with a
while loop is that you should use the high-level language looping construct
that feels natural for the problem you’re solving. And, yes, this is usually a
subjective choice.

274 Chapter 13

The third looping construct in C does provide a different behavior.
Both the while loop and for loop constructs will skip the body of the loop if
the termination conditions are met by the initial value of the loop control
variable. The do-while loop will always execute the loop body at least once.

do-while Loop
In some situations, the algorithm will execute the body of the loop at least
once. In these cases, the do-while loop may be more natural. It has this gen-
eral form:

initialize loop control variable
do
{
 body
 change loop control variable
} while (expression)
next_statement

In the do-while looping construct, the value of the expression is com-
puted at the end of executing the loop body. Looping continues until this
evaluation results in a Boolean false. We can rewrite our “Hello, World!”
program using a do-while loop, as shown in Listing 13-5.

/* helloWorld-do.c
 * Hello World program using the write() system call
 * one character at a time.
 */
#include <unistd.h>
#define NUL '\x00'

int main(void)
{
 char *stringPtr = "Hello, World!\n";

 do
 {
 write(STDOUT_FILENO, stringPtr, 1);
 stringPtr++;
 }
 while (*stringPtr != NUL);

 return 0;
}

Listing 13-5: Writing one character at a time on the screen with a do-while loop

The assembly language generated by gcc, Listing 13-6, shows the differ-
ence between the do-while and the while and for constructs.

Control Flow Constructs 275

 .file "helloWorld-do.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "Hello, World!\n"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 16
 mov QWORD PTR -8[rbp], 0
 lea rax, .LC0[rip] ## address of text string
 mov QWORD PTR -8[rbp], rax
1 .L2:
 mov rax, QWORD PTR -8[rbp] ## address of current character
 mov edx, 1 ## one character
 mov rsi, rax ## pass address
 mov edi, 1 ## STDOUT_FILENO
 call write@PLT
 add QWORD PTR -8[rbp], 1 ## increment pointer
 mov rax, QWORD PTR -8[rbp] ## address of current characte
 movzx eax, BYTE PTR [rax] ## load character
 2 test al, al ## NUL character?
 jne .L2 ## no, continue looping
 mov eax, 0
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 13-6: Assembly language for the do-while loop in Listing 13-5

Comparing the assembly language in Listing 13-6 with that in
Listing 13-2 (the while and for loops), the only difference is that the do-while
doesn’t jump down to perform the loop control check 2 before executing
the loop the first time 1. It may seem that do-while is more efficient, but
looking at the assembly language, we can see the only savings is a single
jump the first time the loop is executed.

W A R N I N G 	 The do-while loop construct will always execute the body of the loop at least once.
Make sure this is the correct algorithm to solve the problem. For example, the algorithm
in Listing 13-5 is incorrect for an empty text string: it would write the NUL character to
the screen and then check the byte in memory immediately following the NUL character,
which is unspecified in this program.

Next, we’ll look at how to select whether to execute a block of code.

276 Chapter 13

YOUR T UR N

1.	 Enter the three C programs in Listings 13-1, 13-4, and 13-5, and use the
compiler to generate the assembly language for each of them. Compare
the assembly language for the three looping constructs. Compilers change
with version changes, so you should look at what your version of the com-
piler does.

2.	 Write a program in assembly language that (a) prompts the user to enter
some text, (b) uses the read function to read the entered text, and (c) echoes
the user’s entered text in the terminal window. You will need to allocate
space on the stack for storing the characters entered by the user.

Selection
Another common flow construct is selection, where we determine whether
to execute a block of code. We’ll start with the simplest case—determining
whether to execute a single block based on a Boolean conditional state-
ment. Then we’ll look at using a Boolean conditional statement to select
one of two blocks. We’ll end the chapter by discussing ways to select
between several blocks based on an integral value.

if Conditional
The general form of an if conditional in C is as follows:

if (expression)
{
 block
}
next_statement

The expression is evaluated in a Boolean context. If it evaluates to false,
0 in C, control flow continues to the next_statement. If the expression evalu-
ates to true, nonzero in C, the block of code is executed, and control flow
continues to the next_statement.

Listing 13-7 shows an example of an if statement that simulates flipping
a coin 10 times and showing when it comes up heads.

/* coinFlips1.c
 * Flips a coin, heads.
 */

#include <stdio.h>
#include <stdlib.h>

int main()
{
 register int randomNumber;
 register int i;

Control Flow Constructs 277

1 for (i = 0; i < 10; i++)
 {
 randomNumber = 2 random();
 if 3 (randomNumber < RAND_MAX/2)
 {
 4 puts("heads");
 }
 }

 return 0;
}

Listing 13-7: Flipping a coin, showing when it comes up heads

This program uses a count-controlled for loop to simulate flipping a
coin 10 times 1. The simulation involves calling the random function in the
C standard library 2. If the random number is in the lower half of all pos-
sible values from the random function 3, we call that heads. We use the puts
function in the C standard library, which prints a simple text string on the
screen with an appended newline character 4. The compiler generated the
assembly language shown in Listing 13-8.

 .file "coinFlips1.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "heads"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 push r12
 push rbx
 mov ebx, 0
 jmp .L2 ## jump to bottom of for loop
.L4:
 call random@PLT ## get random number
 mov r12d, eax ## save random number
 cmp r12d, 1073741822 ## compare with half max
 1 jg .L3 ## greater, skip block
 lea rdi, .LC0[rip] ## less or equal, execute block
 call puts@PLT
2 .L3:
 add ebx, 1
.L2:
 cmp ebx, 9
 jle .L4
 mov eax, 0
 pop rbx
 pop r12
 pop rbp
 ret

278 Chapter 13

 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 13-8: Assembly language for a simple if statement

The if statement is implemented with a simple conditional jump 1. If
the condition is true (in this case, greater than), program flow jumps over
the block of code that is controlled by the if statement 2.

We often need to select between two different blocks of code, which
we’ll discuss next.

if-then-else Conditional
The general form of an if-then-else conditional in C is as follows (C does not
use a then keyword):

if (expression)
{
 then-block
}
else
{
 else-block
}
next_statement

The expression is evaluated in a Boolean context. If the expression
evaluates to true, nonzero in C, the then-block is executed, and control flow
jumps to the next_statement. If it evaluates to false, 0 in C, control flow jumps
to the else-block and then continues to the next_statement. Figure 13-2 shows
the control flow of the if-then-else conditional.

Evaluate
Boolean

expression

Execute then
block

Execute else
block

Next instruction
after if-then-else

construct

true false

Figure 13-2: Control flow of an if-then-else conditional

Control Flow Constructs 279

One of the problems with the coin-flipping program in Listing 13-7 is
that the user doesn’t know the total number of times the coin was flipped.
We can improve the program by using an if-then-else conditional to print a
message stating when the coin came up tails, as shown in Listing 13-9.

/* coinFlips2.c
 * Flips a coin, heads or tails.
 */

#include <stdio.h>
#include <stdlib.h>

int main()
{
 register int randomNumber;
 register int i;

 for (i = 0; i < 10; i++)
 {
 randomNumber = random();
 if (randomNumber < RAND_MAX/2)
 {
 puts("heads");
 }
 else
 {
 puts("tails");
 }
 }

 return 0;
}

Listing 13-9: Flipping a coin, heads or tails

Listing 13-10 shows the compiler-generated assembly language.

 .file "coinFlips2.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "heads"
.LC1:
 .string "tails"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 push r12
 push rbx
 mov ebx, 0
 jmp .L2

280 Chapter 13

.L5:
 call random@PLT ## get random number
 mov r12d, eax ## save random number
 cmp r12d, 1073741822 ## less than half max?
 jg .L3 ## no, else block
 lea rdi, .LC0[rip] ## yes, then block
 lea rdi, .LC0[rip]
 call puts@PLT
 1 jmp .L4
 .L3:
 lea rdi, .LC1[rip] ## else block
 call puts@PLT

 2 .L4:
 add ebx, 1
.L2:
 cmp ebx, 9
 jle .L5
 mov eax, 0
 pop rbx
 pop r12
 pop rbp
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 13-10: Assembly language that implements if-else construct

When writing in assembly language, you need an unconditional jump
at the end of the then-block 1 to jump over the else-block 2.

My assembly language design of the coin-flipping program differs
slightly, as shown in Listing 13-11.

coinFlips2.s
flips a coin, heads/tails
 .intel_syntax noprefix

Useful constants
 .equ MIDDLE, 1073741823 # half of RAND_MAX
 .equ STACK_ALIGN, 8

Constant data
 .section .rodata
headsMsg:
 .string "heads"
tailsMsg:
 .string "tails"

The code
 .text
 .globl main
 .type main, @function

Control Flow Constructs 281

main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 1 push r12 # save, use for i
 2 sub rsp, STACK_ALIGN

 mov r12, 0 # i = 0;
for:
 cmp r12, 10 # any more?
 jae done # no, all done

 call random@plt # get a random number
 cmp eax, MIDDLE # which half?
 jg tails
 lea rdi, headsMsg[rip] # it was heads
 call puts@plt
 jmp next # jump over else block
tails:
 lea rdi, tailsMsg[rip] # it was tails
 call puts@plt
next: inc r12 # i++;
 jmp for
done:
 3 add rsp, STACK_ALIGN # realign stack ptr
 4 pop r12 # restore for caller
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 13-11: An assembly language design for the coin-flipping program

The primary difference between my design and what the compiler
generated is that I use only the r12 register for the variable i, while the
compiler used both rbx and r12. When deciding which registers to use for
variables in a function, it’s important that you check the rules in Table 11-1
in Chapter 11. That table says that a function must preserve the value in r12
for the calling function. A good way to do this is to push it onto the stack
after setting up the stack frame 1 and then pop it back off before undoing
the stack frame 4. You can probably see the importance of having agreed-
upon rules here. Not only must our function return to the calling function
with its value in r12 preserved, but we can assume that the functions our
function calls also preserve our value in r12. So, it’s safe to assume that the
value remains the same through a function call.

One of the stack-handling rules that’s easy to violate when saving regis-
ters on the stack is keeping the stack pointer on 16-byte addressing bound-
aries between function calls. The registers are 8 bytes wide, so I’ve followed
this rule by subtracting 8 from the stack pointer 2 after saving r12 by push-
ing it onto the stack. It’s important to remember to add the same value back
before popping the value of r12 off the stack 3, thus restoring the register’s
value for the calling function.

282 Chapter 13

I won’t go into the details here, but if you need to select one of several
blocks of code to execute, you can use the if-else statement in a ladder con-
struct. The general form is as follows:

if (expression1)
{
 block1
}
else if (expression2)
{
 block2
}
⋮
else (expression_n)
{
 block_n
}
next_statement

The if-then-else selection is based on a Boolean evaluation of the con-
trolling expression, but as you’ll see next section, there are algorithms in
which the selection is based on a discrete value, which is used to select one
of several cases.

switch Conditional
C provides a switch conditional, where control flow jumps to a place in a list
of code blocks depending on the value of an expression. The general form
of the switch is as follows:

switch (selector)
{
 case selector_1:
 block_1
 case selector_2:
 block_2
 ⋮
 case selector_n:
 block_n
 default:
 default_block
}

The selector variable must evaluate to an integral value. If the value
equals one of the integral values specified by case—selector_1, selector_2,
. . . , or selector_n—control flow jumps to that location in the list of code
blocks, and all the remaining code blocks in the list of cases will be exe-
cuted. Since we often want to execute only one block of code, it’s common
to use a break statement at the end of each block, which causes control flow
to exit the switch statement. If the value of the selector does not match any
case values, control flow exits the switch statement or jumps to the optional
default case if it exists.

Control Flow Constructs 283

Listing 13-12 gives a simple example of using a switch to show whether
the index of a for loop is 1, 2, 3, or greater than 3.

/* switch.c
 * Three-way selection.
 */

#include <stdio.h>

int main(void)
{
 register int selector;
 register int i;

 for (i = 1; i <= 10; i++)
 {
 selector = i;
 switch (selector)
 {
 case 1:
 puts("i = 1");
 break;
 case 2:
 puts("i = 2");
 break;
 case 3:
 puts("i = 3");
 break;
 default:
 puts("i > 3");
 }
 }

 return 0;
}

Listing 13-12: Selecting one of three cases

The compiler implemented this switch statement in assembly language
as a ladder of if-else statements. I’ll let you run the compiler to look at it on
your own. As you might guess, it consists of code sequences like this:

 cmp r12d, 2
 je .L4
 ⋮
.L4:
 lea rdi, .LC1[rip]
 call puts@PLT
 jmp .L7

where .L7 is a label at the end of the switch construct.
Instead, I’ll show you another way to implement a switch, using a jump

table, as shown in Listing 13-13.

284 Chapter 13

switch.s
Three-way switch using jump table
 .intel_syntax noprefix
Useful constants
 .equ LIMIT, 10
Constant data
 .section .rodata
oneMsg:
 .string "i = 1"
twoMsg:
 .string "i = 2"
threeMsg:
 .string "i = 3"
overMsg:
 .string "i > 3"
Jump table
 .align 8
jumpTable:
 .quad 1 one # addresses where messages are
 .quad two # printed
 .quad three
 .quad over
 .quad over
 .quad over
 .quad over
 .quad over
 .quad over # need an entry for
 .quad over # each possibility
Program code
 .text
 .globl main
 .type main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 push rbx
 push r12 # save, use for i

 mov r12, 1 # i = 1;
for:
 cmp r12, LIMIT # at limit?
 je done # yes, all done
List of cases
 2 lea rax, jumpTable[rip]
 mov rbx, r12 # current location in loop
 3 sub rbx, 1 # count from 0
 4 shl rbx, 3 # multiply by 8
 add rax, rbx # location in jumpTable
 5 mov rax, [rax] # get address from jumpTable
 jmp rax # jump there
one:
 lea rdi, oneMsg[rip]
 call puts@plt # display message
 jmp endSwitch

Control Flow Constructs 285

two:
 lea rdi, twoMsg[rip]
 call puts@PLT
 jmp endSwitch
three:
 lea rdi, threeMsg[rip]
 call puts@plt
 jmp endSwitch
over:
 lea rdi, overMsg[rip]
 call puts@plt
endSwitch:
 inc r12 # i++;
 jmp for # loop back
done:
 mov eax, 0 # return 0;
 pop r12 # restore regs
 pop rbx
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 13-13: Jump table

Each entry in the jump table is the address of the code block to execute
for the corresponding value of the selector variable 1. The .quad directive
allocates 8 bytes, the proper space for an address.

In the program code, we need to compute which of the addresses in the
jump table to use. I start by loading the beginning address of the table 2. I
make a copy of the index variable so I can perform some arithmetic opera-
tions without disrupting the index. To start, I subtract 1 because the first
address on the table is zero bytes from the beginning 3. We’ll look at shift
instructions in more detail in Chapter 16, but the shl rbx, 3 instruction 4
shifts the value in the rbx register three bits to the left, thus multiplying it
by 8, the number of bytes in each address on our jump table.

The rbx register now contains the relative location of the address of
the selected code block from the beginning of the table. Adding rax to rbx
gives the location in the table where the address we want is stored. The mov
rax, [rax] instruction 5 may look strange to you, but it simply replaces the
address in rax with the address that’s stored in the table. Now all I need to
do is to jump to the address in the rax register.

You need to be careful that there is an entry in the jump table for every
possible read from the table. When the CPU executes the mov rax, [rax]
instruction, it will fetch the 8 bytes located at whatever address is in rax.
The jmp rax instruction will jump to wherever this new value is. You’ll get a
chance to explore this when it’s Your Turn.

It’s difficult to say whether a jump table is more efficient than an if-else
ladder. The efficiency depends on several factors, like cache usage and the
internal CPU design. This could vary among different CPU implementations
that use the same instruction set. But now you know two ways to implement a
switch construct.

286 Chapter 13

YOUR T UR N

1.	 Change the assembly language program in Listing 13-11 so that it sees the
lowest one-fourth and highest one-fourth of the random numbers (0 – RAND_
MAX/4 and 3*RAND_MAX/4 – RAND_MAX) as heads. The program will see the
middle half of the random numbers (RAND_MAX/4 – 3*RAND_MAX/4) as tails.

2.	 Use the compiler to generate the assembly language for the program in
Listing 13-12. Now make a copy of the C program, using a different name
for the file, and change this copy so that it executes the loop 15 times.
What did you need to change? Also generate the assembly language for
the changed copy. What changed at the assembly language level?

3.	 Change the assembly language program in Listing 13-13 so that it executes
the loop 15 times. What did you need to change? How does this compare
with the changes made in the previous exercise?

What You’ve Learned

Unconditional jump   Changes the instruction pointer to alter control
flow.

Conditional jump   Evaluates Boolean combinations of the status flags
in the rflags register and alter control flow if the combination evaluates
to true.

while loop   Checks for a Boolean condition and then iterates a block of
code until the condition becomes false.

for loop   Checks for a Boolean condition and then iterates a block of
code until the condition becomes false.

do-while loop   Executes a block of code once and iterates it until a
Boolean condition becomes false.

if conditional   Checks for a Boolean condition and then executes a
block of code if the condition is true.

if-else conditional    Checks for a Boolean condition and then exe-
cutes one of two blocks of code depending on whether the condition is
true or false.

switch conditional   Evaluates an expression and then jumps to a loca-
tion in a list of blocks of code depending on the integral value of the
expression.

Now that you know about control flow constructs, we’ll move on to a
discussion of how to write your own subfunctions. You’ll learn how to pass
arguments and how to access those arguments in the subfunction.

14
I N S I D E S U B F U N C T I O N S

Good engineering practice generally
includes breaking problems down into

functionally distinct subproblems. In soft-
ware, this approach leads to programs with

many functions, each of which solves a subproblem.
This “divide and conquer” approach has distinct
advantages:

It’s easier to solve a small subproblem.

Previous solutions to subproblems are often reusable.

Several people can be working on different parts of the overall problem
simultaneously.

When breaking down a problem like this, it’s important to coordinate
the many partial solutions so that they work together to provide a correct
overall solution. In software, this translates to making sure that the data

288 Chapter 14

interface between a calling function and a called function works correctly.
To ensure correct operation of the interface, it must be specified in an
explicit way.

We’ll first discuss how to place data items in a global location so that
all the functions in the program can have direct access to them. Then we’ll
look at restricting the passage of data items as arguments to a function,
which gives us better control over the data that the function works with.

In the previous chapters, you learned how to pass arguments to a func-
tion in registers. In this chapter, you’ll learn how to store these arguments
in memory so that the registers can be reused inside the called function.
You’ll also learn how to pass more arguments to a function than can be
done with the six registers specified in Table 11-2 in Chapter 11.

We’ll also look in more detail at the creation of variables within a func-
tion. Our discussion will include variables that exist only when program
flow is in the function, as well as variables that stay in memory for the dura-
tion of the program but are accessible only within their defining function.

Before discussing the inner workings of functions, let’s take a look at
some of the rules that govern the use of variable names in C.

Scope of Variable Names in C
This is not a book on C, so I’m not going to cover all the rules here, but
enough to help us to see how programs are organized. Scope refers to the
places in our code where the name is visible, meaning where we can use the
name. There are four kinds of scope in C: file, function, block, and function
prototype.

In C, a declaration of a variable introduces its name and data type into
the current scope. A definition of a variable is a declaration that also allo-
cates memory for the variable. A variable can be defined in only one place
in a program, but as we’ll see in the “Global Variables” section, it might be
declared in more than one scope.

Variables that are defined inside a function definition, including its
parameter list, have function scope and are called local variables. Their
scope extends from the point of definition to the end of the function.

A block in C is a group of C statements enclosed in a matched pair of
curly brackets, {…}. The scope of variables defined inside a block extends
from the point of definition to the end of that block, including any enclosed
blocks.

A function prototype is only a declaration of the function, not its defi-
nition. The scope of variables defined in a function prototype is limited to
their own prototype. This limit allows us to use the same names in different
function prototypes. For example, the C standard library includes functions
for computing sine and cosine, whose prototypes are as follows:

double sin(double x);
double cos(double x);

Inside Subfunctions 289

We can use both function prototypes in the same function without having
to use different names for the arguments.

We’ll look at file scope after a brief overview of the reasons for passing
arguments to a function.

Overview of Passing Arguments
As you read through this section, be careful to distinguish between data
input/output from a called function and data input/output by a user. User
input typically comes from an input device, such as the keyboard or touch
screen, and user output is typically sent to an output device, such as the
screen or speaker.

To illustrate the difference, consider the C program statement from
Listing 2-1 in Chapter 2.

scanf("%x", &anInt);

The scanf function has one data input from the main function, the
address of the formatting text string, "%x". The scanf function reads user
data that is input from the keyboard and outputs data, an unsigned inte-
ger, to anInt variable in the main function. In this chapter, we’ll discuss the
inputs and outputs between functions within a program, not the inputs
from and outputs to the user of the program.

Functions can interact with the data in other parts of the program in
four ways:

Global   The data is directly accessible from any function in the
program.

Input   The data comes from another part of the program and is used
by the function, but the original copy is not modified.

Output    The function provides new data to another part of the
program.

Update   The function modifies a data item that is held by another part
of the program. The new value is based on the value before the func-
tion was called.

All four interactions can be performed if the called function also
knows the location of the data item, but this exposes the original copy of
the data and allows it to be changed even if it’s intended only as input to a
called function.

We can output data from a function by placing the output in a globally
known location, like a register or globally known address. We can also pass
the called function the address of the place to store the output. Updates
require the called function to know the address of the data being updated.

We’ll start the discussion by looking at how global variables are created
and how they are accessed in a subfunction.

290 Chapter 14

Global Variables
Global variables are those that are defined outside any functions and have file
scope. They can be accessed from the point of their definition to the end of
the file. Global variables can also be accessed from another file by declar-
ing them with the extern modifier. This only introduces the name and data
type of the variable into the scope of the declaration, without allocating
memory.

Listing 14-1 shows how to define global variables.

/* sumIntsGlobal.c
 * Adds two integers using global variables
 */

#include <stdio.h>
#include "addTwoGlobal.h"

/* Define global variables. */
int x = 0, y = 0, z;

int main(void)
{
 printf("Enter an integer: ");
 scanf("%i", &x);
 printf("Enter an integer: ");
 scanf("%i", &y);
 addTwo();
 printf("%i + %i = %i\n", x, y, z);

 return 0;
}

Listing 14-1: A main function that defines three global variables

This program defines the variables x and y, both initialized to 0, and
also defines z for the result. Note we initialized the first two of the variables
and not the third; this is simply so we can show two different ways to define
global variables in the following assembly language.

Placing the definitions outside the function body makes the variables
global. This main function calls the addTwo function, which will add x and y
and store the sum in z. Listing 14-2 shows the assembly language produced
by the compiler for this main function.

.file "sumIntsGlobal.c"
 .intel_syntax noprefix
 1 .text
 .globl x
 2 .bss ## bss section
 3 .align 4
 4 .type x, @object
 .size x, 4 ## 4 bytes

Inside Subfunctions 291

x:
 5 .zero 4 ## initialize to 0
 .globl y
 .align 4
 .type y, @object
 .size y, 4
y:
 .zero 4 ## initialize to 0
 6 .comm z,4,4
 .section .rodata
.LC0:
 .string "Enter an integer: "
.LC1:
 .string "%i"
.LC2:
 .string "%i + %i = %i\n"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 7 lea rsi, x[rip] ## globals are relative to rip
 lea rdi, .LC1[rip] ## format string
 mov eax, 0
 call __isoc99_scanf@PLT
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 lea rsi, y[rip]
 lea rdi, .LC1[rip]
 mov eax, 0
 call __isoc99_scanf@PLT
 call addTwo@PLT
 mov ecx, DWORD PTR z[rip] ## load globals
 mov edx, DWORD PTR y[rip]
 mov eax, DWORD PTR x[rip]
 mov esi, eax
 lea rdi, .LC2[rip]
 mov eax, 0
 call printf@PLT
 mov eax, 0
 pop rbp
 ret .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-2: Compiler-generated assembly language for the function in Listing 14-1

I don’t know the reason the compiler added the first .text directive 1, but
it’s not needed. Its effect is immediately overridden by the .bss directive 2.

292 Chapter 14

The .bss directive designates a data segment that is uninitialized by the
program source code but is initialized to 0 when the program is loaded into
memory for execution. This program aligns the beginning of its bss segment
at a multiple of four using the .align directive 3. The program then defines
the label, x, to be an object of size four bytes using the .type and .size direc-
tives 4. The .zero directive here says to skip four bytes and make sure they are
set to 0 when the program is loaded 5. It’s probably redundant since we’re in a
bss section. The y variable is defined in the same way.

Since the z variable is not initialized, it is defined with the .comm direc-
tive 6. The first argument to .comm is the name of the variable, z. The second
argument is the number of bytes to allocate in the data segment for this vari-
able, and the third argument specifies the address alignment of the beginning
of the variable. In this case, four bytes will be allocated for z, and the address
of the first byte will be a multiple of four.

The compiler has generated position-independent code for the main
function, which accesses the global variables relative to the instruction
pointer 7. This works because the loader will locate the data and bss seg-
ments adjacent to the text segment when running a position-independent
executable.

Next, let’s look at how the subfunction accesses the global variables in
this program. Listing 14-3 shows the header file for this function.

/* addTwoGlobal.h
 * Adds two integers and determines overflow.
 */

#ifndef ADDTWOGLOBAL_H
#define ADDTWOGLOBAL_H
void addTwo(void);
#endif

Listing 14-3: Header file for the addTwo function version that uses global variables

The header file has the function prototype statement for the addTwo func-
tion, which declares the function. It gives the name of the function and tells
the compiler the data types for any arguments and the return value. In this
case, there are no arguments, nor is there a return value.

You need a prototype statement for each function you’ll call in a file,
but you can have only one prototype statement for each function. When
you include this file in another file using #include, the C compiler directive
#ifndef ADDTWOGLOBAL_H will cause the compiler preprocessor to skip down to
the #endif if ADDTWOGLOBAL_H has already been defined during this compila-
tion. Otherwise, the preprocessor will execute the #define ADDTWOGLOBAL_H
statement, which defines it. It’s common to use #include to include other
header files in header files, and the #ifndef technique protects against
duplicating prototype statements. Using the uppercase of the header file-
name gives us a unique identifier to #define.

Listing 14-4 gives the C code for defining the addTwo function.

Inside Subfunctions 293

/* addTwoGlobal.c
 * Adds two integers and determines overflow.
 */

1 #include "addTwoGlobal.h"

/* Declare global variables defined elsewhere. */
2 extern int x, y, z;

void addTwo(void)
{
 z = x + y;
}

Listing 14-4: The addTwo subfunction using global variables

The header file for a function should be included with (#include 1) in
the file where the function is defined to make sure that the function pro-
totype in the header file matches the definition. The global variables are
defined in only one place, but they need to be declared in any other file
that uses them 2.

Listing 14-5 shows the assembly language generated by the compiler.

 .file "addTwoGlobal.c"
 .intel_syntax noprefix
 .text
 .globl addTwo
 .type addTwo, @function
addTwo:
 push rbp
 mov rbp, rsp
 mov edx, DWORD PTR 1x[rip] ## names are global
 mov eax, DWORD PTR y[rip] ## relative to rip
 add eax, edx
 mov DWORD PTR z[rip], eax
 nop
 pop rbp
 ret
 .size addTwo, .-addTwo
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-5: Assembly language generated by the compiler for the subfunction
in Listing 14-4

Just as in the main function, the global variables are accessed relative to
the instruction pointer 1.

Although global variables are simple to work with in small programs,
managing them quickly becomes unwieldly in large programs. You need
to keep track of exactly what each function in the program is doing with
the variables. Managing variables is much easier if you define them within

294 Chapter 14

a function and pass only what is needed to each subfunction. In the next
section, we’ll look at how to maintain good control over what gets passed to
and from a subfunction.

Explicitly Passing Arguments
When we restrict each function to using only those variables it needs, it’s
much easier to isolate the inner workings of a function from other func-
tions, a principle called information hiding. You, the programmer, need to
deal only with those variables and constants that the subfunction needs in
order to do its specific job. Of course, most subfunctions will need to inter-
act with some of the variables in its calling function as inputs, outputs, or
updates. In this section, we’ll look at how the arguments explicitly passed
to a function are used by that function to accept input, produce output, or
update a variable.

When a value serves only as input to the called function, we can pass a
copy of the value to the called function; this is called pass by value. Passing
by value prevents the called function from possibly changing the value in
the calling function.

Receiving output from the called function is a bit more complex. One
way is to use a return value, which in our environment is placed in the eax
register. Using the eax register assumes the return value is an int; there are
other rules for returning larger values, which we won’t go into in this book.
You’ve seen this technique used in most of the example programs in this
book. The main function almost always returns a 0 to the function in the
operating system that called it.

The other techniques for the called function to receive an output from
the calling function require that the calling function pass the called func-
tion the address of the place to store the output. This can be implemented
in the higher-level language as either pass by pointer or pass by reference. The
difference is that with pass by pointer, the program can change the pointer
to point to another object, while in pass by reference, the pointer cannot
be changed by the program. C and C++ both support pass by pointer, but
only C++ supports pass by reference. These are the same at the assembly
language level—the address of the place to store the output is passed to the
called function. The difference is enforced by the high-level language.

Passing Arguments in C
We’ll write the same program as in Listings 14-1, 14-3, and 14-4, but this
time we’ll define the variables as locals in the main function and pass them
as arguments to the subfunction, as in Listing 14-6.

/* sumInts.c
 * Adds two integers using local variables
 */

#include <stdio.h>
#include "addTwo.h"

Inside Subfunctions 295

int main(void)
{
1 int x = 0, y = 0, z;

 printf("Enter an integer: ");
 scanf("%i", &x);
 printf("Enter an integer: ");
 scanf("%i", &y);
 addTwo(x, y, 2&z);
 printf("%i + %i = %i\n", x, y, z);

 return 0;
}

Listing 14-6: Sum two integers, local variables

Defining the variables inside the body of the function 1 makes them
visible only to this function. The values of the x and y variables are inputs to
the addTwo function, so we pass copies of these variables. The addTwo function
will store its result at the address we pass in as the third argument, &z 2.

Listing 14-7 shows the header file for the addTwo function.

/* addTwo.h
 * Adds two integers and outputs sum.
 */

#ifndef ADDTWO_H
#define ADDTWO_H
void addTwo(int a, int b, int *c);
#endif

Listing 14-7: Header file for the addTwo function

Listing 14-8 shows the definition of the function.

/* addTwo.c
 * Adds two integers and outputs sum.
 */

#include "addTwo.h"

void addTwo(int a, int b, int *c)
{
 int temp;

 temp = a + b;
 *c = temp;
}

Listing 14-8: The addTwo function

The third argument to this function, c, is a pointer to an int. We need
to dereference the variable, *c, to store the result of the computation at the
address passed in c.

296 Chapter 14

What’s Going On in Assembly Language
Listing 14-9 shows the assembly language by the compiler for the main func-
tion in sumInts.

 .file "sumInts.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "Enter an integer: "
.LC1:
 .string "%i"
.LC2:
 .string "%i + %i = %i\n"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 32
 mov rax, QWORD PTR fs:40
 mov QWORD PTR -8[rbp], rax
 xor eax, eax
 mov DWORD PTR -20[rbp], 0 ## x = 0;
 mov DWORD PTR -16[rbp], 0 ## y = 0;
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 lea rax, -20[rbp] ## address of x
 mov rsi, rax
 lea rdi, .LC1[rip]
 mov eax, 0
 call __isoc99_scanf@PLT
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 lea rax, -16[rbp] ## address of y
 mov rsi, rax
 lea rdi, .LC1[rip]
 mov eax, 0
 call __isoc99_scanf@PLT
 mov ecx, DWORD PTR -16[rbp] ## load y
 mov eax, DWORD PTR -20[rbp] ## load x
 lea 1 rdx, -12[rbp] ## address of z
 mov esi, ecx ## y
 mov edi, eax ## x
 call addTwo@PLT
 mov ecx, DWORD PTR -12[rbp] ## z
 mov edx, DWORD PTR -16[rbp] ## y
 mov eax, DWORD PTR -20[rbp] ## x
 mov esi, eax
 lea rdi, .LC2[rip]
 mov eax, 0

Inside Subfunctions 297

 call printf@PLT
 mov eax, 0
 mov rsi, QWORD PTR -8[rbp]
 xor rsi, QWORD PTR fs:40
 je .L3
 call __stack_chk_fail@PLT
.L3:
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-9: Assembly language generated by compiler for the main function in sumInts

From Table 11-2 in Chapter 11, we learned that the third argument is
passed in register rdx. We can see that the compiler has allocated space at
–12 off of rbp when it loads this address into rdx 1.

Next, we’ll look at the compiler-generated assembly language for the
addTwo function, as shown in Listing 14-10.

 .file "addTwo.c"
 .intel_syntax noprefix
 .text
 .globl addTwo
 .type addTwo, @function
addTwo:
 push rbp
 mov rbp, rsp
 1 mov DWORD PTR -20[rbp], edi ## store a
 mov DWORD PTR -24[rbp], esi ## store b
 mov QWORD PTR -32[rbp], rdx ## address of c
 mov edx, DWORD PTR -20[rbp]
 mov eax, DWORD PTR -24[rbp]
 add eax, edx ## a + b
 mov DWORD PTR -4[rbp], eax ## sum = a + b;
 2 mov rax, QWORD PTR -32[rbp] ## address of c
 mov edx, DWORD PTR -4[rbp] ## load sum
 3 mov DWORD PTR [rax], edx ## *c = sum;
 4 nop
 pop rbp
 ret
 .size addTwo, .-addTwo
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-10: Assembly language generated by compiler for the addTwo function

The first thing you might notice about this function is that it does not
allocate space on the stack for local variables, but it is using an area on
the stack for the sum local variable. In addition, it’s storing the three input
arguments in the stack area where local variables are usually placed 1. The
System V Application Binary Interface defines the 128 bytes beyond the stack
pointer—that is, the 128 bytes at addresses lower than the one in the rsp

298 Chapter 14

register—as a red zone. The operating system is not allowed to use this area,
so the function can use it for temporary storage of values that do not need
to be saved when another function is called. In particular, leaf functions,
functions that do not call other functions, can store local variables in this
area without moving the stack pointer.

Figure 14-1 gives a pictorial view of addTwo’s stack frame.

Caller’s rbp

?

?

?

?

Return address

Address

Value

Value

b = [rbp] − 24

a = [rbp] − 20

[rbp] − 16

[rbp] − 12

[rbp] − 8

 *c = [rbp] − 32

rsp

rbp
[rbp] + 8

[rsp] − 128

temp = [rbp] − 4

Local variable area

Argument save
area

Red zone

Figure 14-1: Stack frame for the C version of the addTwo function

The address of each item in the stack frame is given on the left side.
For example, the temp local variable is stored at the address in rbp minus 4.
Although the rules in the System V Application Binary Interface specify
only that the stack pointer must be at a 16-byte address boundary, the com-
piler has followed that rule for separating the local variable area from the
argument save area. Notice that the red zone is defined relative to the stack
pointer, rsp, while the variables and saved arguments are accessed relative
to the frame pointer, rbp.

After performing the computation using the input data, the function
loads the address of the place to store the result from where it was stored in
the stack area 2. It then stores the result at that address 3.

The compiler has inserted another instruction, nop, after the instruc-
tion that stores the result 4.

nop—No operation
Performs no operation, but uses one byte.

The nop instruction is used to fine-tune hardware implementation details
to improve efficiency. It has no effect on the logic of the program.

The nop instruction does not affect the status flags in the rflags register.

Most functions take fewer than the six arguments we can pass in regis-
ters, but sometimes you want to pass more arguments. In the next section,
you’ll see how the stack comes to our rescue.

Inside Subfunctions 299

Handling More Than Six Arguments
When a calling function needs to pass more than six arguments to another
function, the additional arguments beyond the first six in registers are
passed on the call stack. They are pushed onto the stack in 8-byte chunks
before the call. Because the return address will be pushed onto the stack
after the arguments when the subfunction is called, the arguments are read
directly from the stack instead of popping them off.

Pushing Arguments onto the Stack
The order of pushing is from right to left in the C argument list. Since
these arguments are on the call stack, they are within the called function’s
stack frame, so the called function can access them.

We’ll use the main function in Listing 14-11 to show how this works.

/* sum9Ints.c
 * Sums the integers 1 - 9.
 */
#include <stdio.h>
#include "addNine.h"

int main(void)
{
 int total;
 int a = 1;
 int b = 2;
 int c = 3;
 int d = 4;
 int e = 5;
 int f = 6;
 int g = 7;
 int h = 8;
 int i = 9;

 total = addNine(a, b, c, d, e, f, g, h, i);
 printf("The sum is %i\n", total);
 return 0;
}

Listing 14-11: Passing more than six arguments to a subfunction

The values of the first six arguments—a, b, c, d, e, and f—will be passed
in the registers edi, esi, edx, ecx, r8d, and r9d. The remaining three argu-
ments will be pushed onto the stack. Listing 14-12 shows the treatment of
the variables.

 .file "sum9Ints.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "The sum is %i\n"
 .text

300 Chapter 14

 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 48
 mov DWORD PTR -40[rbp], 1 ## a = 1
 mov DWORD PTR -36[rbp], 2 ## b = 2
 mov DWORD PTR -32[rbp], 3 ## c = 3
 mov DWORD PTR -28[rbp], 4 ## d = 4
 mov DWORD PTR -24[rbp], 5 ## e = 5
 mov DWORD PTR -20[rbp], 6 ## f = 6
 mov DWORD PTR -16[rbp], 7 ## g = 7
 mov DWORD PTR -12[rbp], 8 ## h = 8
 mov DWORD PTR -8[rbp], 9 ## i = 9
 mov r9d, DWORD PTR -20[rbp] ## load f
 mov r8d, DWORD PTR -24[rbp] ## load e
 mov ecx, DWORD PTR -28[rbp] ## load d
 mov edx, DWORD PTR -32[rbp] ## load c
 mov esi, DWORD PTR -36[rbp] ## load b
 1 mov eax, DWORD PTR -40[rbp] ## load a
 2 sub rsp, 8 ## for stack alignment
 mov edi, DWORD PTR -8[rbp]
 3 push rdi ## push i
 mov edi, DWORD PTR -12[rbp]
 push rdi ## push h
 mov edi, DWORD PTR -16[rbp]
 push rdi ## push g
 4 mov edi, eax
 call addNine@PLT
 5 add rsp, 32 ## remove 3 ints and alignment
 mov DWORD PTR -4[rbp], eax
 mov eax, DWORD PTR -4[rbp]
 mov esi, eax
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 mov eax, 0
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-12: Pushing three arguments onto the stack for the call to addNine

The first argument, a, is stored at -40[rbp] and must be placed in edi
before calling the subfunction. This algorithm temporarily stores the value
of a in eax 1, uses rdi for pushing the three values of i, h, and g onto the
stack 3, and then places the value of the first argument, a, in edi 4, where
it is needed at the first argument to addNine. I do not know why the compiler
didn’t place the value of a in edi and then use rax for the pushing opera-
tions, which would have made this mov instruction unnecessary.

Inside Subfunctions 301

You may notice that when the values are passed in the registers, only the
32-bit portions of the registers are used, but when passed on the stack, the full
64 bits are used. The size of an int in our C environment is 32 bits. But the
stack is 64 bits wide, so a push or pop moves a 64-bit value. Recall that moving a
32-bit value into a register zeros the high-order 32 bits in the register; thus, the
original 32 bits are preserved in the 64-bit push operations in this function.

Recall that our protocol for using the stack is to make sure that the stack
pointer is on a 16-byte address boundary before calling a function. Three
8-byte values will be pushed onto the stack, so the algorithm subtracts 8
from the stack pointer before pushing the three values 2. After returning
from the call to the subfunction, all 32 bytes are effectively removed from
the stack by adjusting the stack pointer 5. Figure 14-2 shows the argument
area of the stack just before the call to addNine.

7

8

9g = [rsp] + 16

h = [rsp] + 8

i = [rsp]

rsp

Argument
area

?

Figure 14-2: Arguments pushed on stack by the main function

Next, let’s turn our attention to the addNine function. Listing 14-13
shows the header file.

/* addNine.h
 * Returns sum of nine integers.
 */
#ifndef ADDNINE_H
#define ADDNINE_H
int addNine(int one, int two, int three, int four, int five,
 int six, int seven, int eight, int nine);
#endif

Listing 14-13: Header file for the addNine function

Listing 14-14 shows the C source code defining the function.

/* addNine.c
 * Sums nine integers and returns the sum.
 */

#include <stdio.h>
#include "addNine.h"

int addNine(int one, int two, int three, int four, int five,
 int six, int seven, int eight, int nine)
{

302 Chapter 14

 int sum;

 sum = one + two + three + four + five + six
 + seven + eight + nine;
 return sum;
}

Listing 14-14: The addNine function, in C

The compiler generated the assembly language shown in Listing 14-15
for the addNine function.

 .file "addNine.c"
 .intel_syntax noprefix
 .text
 .globl addNine
 .type addNine, @function
addNine:
 push rbp
 1 mov rbp, rsp
 2 mov DWORD PTR -20[rbp], edi ## store a locally
 mov DWORD PTR -24[rbp], esi ## store b locally
 mov DWORD PTR -28[rbp], edx ## store c locally
 mov DWORD PTR -32[rbp], ecx ## store d locally
 mov DWORD PTR -36[rbp], r8d ## store e locally
 mov DWORD PTR -40[rbp], r9d ## store f locally
 mov edx, DWORD PTR -20[rbp] ## sum = a
 mov eax, DWORD PTR -24[rbp]
 add edx, eax ## sum += b
 mov eax, DWORD PTR -28[rbp]
 add edx, eax ## sum += c
 mov eax, DWORD PTR -32[rbp]
 add edx, eax ## sum += d
 mov eax, DWORD PTR -36[rbp]
 add edx, eax ## sum += e
 mov eax, DWORD PTR -40[rbp]
 add edx, eax ## sum += f
 3 mov eax, DWORD PTR 16[rbp] ## from arg list
 add edx, eax ## sum += g
 mov eax, DWORD PTR 24[rbp]
 add edx, eax ## sum += h
 mov eax, DWORD PTR 32[rbp]
 add eax, edx ## sum += i
 mov DWORD PTR -4[rbp], eax
 mov eax, DWORD PTR -4[rbp]
 pop rbp
 ret
 .size addNine, .-addNine
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-15: Compiler-generated assembly language for the addNine function

After the prologue for the addNine function establishes its frame
pointer 1, its stack frame is in the state shown in Figure 14-3.

Inside Subfunctions 303

7

8

9nine = [rbp] + 32

eight = [rbp] + 24

seven = [rbp] + 16

rsp

Argument
area

?

rbp

Return address

Caller’s rbp

Figure 14-3: Stack frame for addNine function

The addNine function stores the arguments passed in registers in the red
zone of the stack 2. Then it starts its computation of the sum. When it gets
to the arguments that were passed on the stack, it loads each one into the
eax register as needed 3. The offsets from the rbp register for each stack
argument are obtained from the drawing in Figure 14-3.

W A R N I N G 	 Knowing the exact location of each argument passed on the stack is essential when
designing a subfunction. I learned many years ago that I need to draw diagrams like
the ones in Figures 14-2 and 14-3 to get this right.

You have seen that the subfunction accesses arguments directly on the
stack instead of popping them off. They can be placed directly on the stack by
the calling function instead of pushing them. In the next section, I’ll show how
this is done when I write the sumNine program directly in assembly language.

Storing Arguments Directly on the Stack
The push operation is somewhat inefficient. It performs two operations: sub-
tract 8 from the rsp register and store a value at the address in the updated
rsp register. When placing several values on the stack, it’s a little more effi-
cient to subtract enough from the stack pointer to make room for all the
values and then store each value directly on the stack. We’ll use this tech-
nique when writing the sumNine program directly in assembly language.

Listing 14-16 shows the main function for our assembly language version
of the sumNine program.

sum9Ints.s
Sums the integers 1 - 9.
 .intel_syntax noprefix

Stack frame
passing arguments on stack (rsp)
need 3x8 = 24 -> 32 bytes
 1 .equ seventh,0
 .equ eighth,8
 .equ ninth,16
 .equ argSize,-32

304 Chapter 14

local vars (rbp)
need 10x4 = 40 -> 48 bytes for alignment
 .equ i,-4
 .equ h,-8
 .equ g,-12
 .equ f,-16
 .equ e,-20
 .equ d,-24
 .equ c,-28
 .equ b,-32
 .equ a,-36
 .equ total,-40
 .equ localSize,-48
Read only data
 .section .rodata
format:
 .string "The sum is %i\n"
Code
 .text
 .globl main
 .type main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 mov dword ptr a[rbp], 1 # initialize values
 mov dword ptr b[rbp], 2 # etc...
 mov dword ptr c[rbp], 3
 mov dword ptr d[rbp], 4
 mov dword ptr e[rbp], 5
 mov dword ptr f[rbp], 6
 mov dword ptr g[rbp], 7
 mov dword ptr h[rbp], 8
 mov dword ptr i[rbp], 9

 2 add rsp, argSize # space for arguments
 mov eax, i[rbp] # load i
 3 mov ninth[rsp], rax # 9th argument
 mov eax, h[rbp] # load h
 mov eighth[rsp], rax # 8th argument
 mov eax, g[rbp] # load g
 mov seventh[rsp], rax # 7th argument
 mov r9d, f[rbp] # f is 6th
 mov r8d, e[rbp] # e is 5th
 mov ecx, d[rbp] # d is 4th
 mov edx, c[rbp] # c is 3rd
 mov esi, b[rbp] # b is 2nd
 mov edi, a[rbp] # a is 1st
 call addNine
 4 sub rsp, argSize # remove arguments
 mov total[rbp], eax # total = sumNine(...)

 mov esi, total[rbp] # show result
 lea rdi, format[rip]

Inside Subfunctions 305

 mov eax, 0
 call printf@plt

 mov eax, 0 # return 0;
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 14-16: The main function for the sumNine program written directly in assembly
language

We’ll start the design by using the diagram of the stack in Figure 14-2 to
figure out the values of the identifiers for the seventh, eighth, and ninth argu-
ments 1. It’s also convenient to create an identifier for the amount of space
we’ll need on the stack for the arguments, making sure that it’s a multiple of 16.

We start the call to addNine by first allocating space on the stack for the
three arguments beyond the six we’ll pass on registers by subtracting the
appropriate amount from rsp 2. Having created identifiers for each argu-
ment, it’s then a simple matter to directly store each of the three arguments
in the area we’ve just allocated 3. Then when the addNine subfunction returns
to our function, we need to effectively delete the argument area from the top
of the stack by adding the same amount that we subtracted from rsp when
starting the call sequence 4.

Next, let’s look at how the addNine function, Listing 14-17, accesses the
arguments passed on the stack.

addNine.s
Sums nine integer arguments and returns the total.
 .intel_syntax noprefix
Calling sequence:
edi <- one, 32-bit int
esi <- two
ecx <- three
edx <- four
r8d <- five
r9d <- six
push seven
push eight
push nine
returns sum
Stack frame
arguments in stack frame
 1 .equ seven,16
 .equ eight,24
 .equ nine,32
local variables
 .equ total,-4
 .equ localSize,-16

Code
 .text
 .globl addNine
 .type addNine, @function

306 Chapter 14

addNine:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 add edi, esi # add two to one
 add edi, ecx # plus three
 add edi, edx # plus four
 add edi, r8d # plus five
 add edi, r9d # plus six
 2 add edi, seven[rbp] # plus seven
 add edi, eight[rbp] # plus eight
 add edi, nine[rbp] # plus nine
 mov total[rbp], edi # save total

 mov eax, total[rbp] # return total;
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 14-17: The addNine function written directly in assembly language

The offsets of the arguments seven, eight, and nine are defined using the
diagram in Figure 14-3 1. Using these identifiers, adding the values passed
to the addNine function is straightforward 2.

Summary of Stack Frame Usage
When calling a function, it’s essential that you follow the register usage and
argument passing disciplines precisely. Any deviation can cause errors that
are difficult to debug. The rules are as follows.

In the calling function:

1.	 Assume that the values in the rax, rcx, rdx, rsi, rdi, and r8–r11 registers
will be changed by the called function.

2.	 The first six arguments are passed in the rdi, rsi, rdx, rcx, r8, and r9
registers in left-to-right order.

3.	 Arguments beyond argument 6 are stored on the stack as though they
had been pushed onto the stack in right-to-left order.

4.	 Use the call instruction to invoke the function you want to call.

Upon entering the called function:

5.	 Save the caller’s frame pointer by pushing rbp onto the stack.

6.	 Establish a frame pointer for the called function at the current top of
the stack by copying rsp to rbp.

7.	 Allocate space on the stack for all the local variables, plus any required
register save space, by subtracting the number of bytes required from
rsp; this value must be a multiple of 16.

8.	 If a called function changes any of the values in the rbx, rbp, rsp, or
r12–r15 registers, they must be saved in the register save area and then
restored before returning to the calling function.

Inside Subfunctions 307

9.	 If the function calls another function, save the arguments passed in
registers on the stack.

Within the called function:

10.	 The rsp register is pointing to the current bottom of the stack that is
accessible to this function. Observe the usual stack discipline; do not
use the stack pointer to access arguments or local variables.

11.	 Arguments passed in registers to the function and saved on the stack
are accessed by negative offsets from the frame pointer, rbp.

12.	Arguments passed on the stack to the function are accessed by posi-
tive offsets from the frame pointer, rbp. Local variables are accessed by
negative offsets from the frame pointer, rbp.

When leaving the called function:

13.	 Place the return value, if any, in eax.

14.	 Restore the values in the rbx, rbp, rsp, and r12–r15 registers from the reg-
ister save area in the stack frame.

15.	 Delete the local variable space and register save area by copying rbp to rsp.

16.	 Restore the caller’s frame pointer by popping rbp off the stack save area.

17.	 Return to the calling function with ret.

Figure 14-4 shows what the stack frame looks like.

rsp

rbp [rbp] − 8

[rbp] + 8

Arguments
passed on

stack

Return address

Caller’s rbp

Local variables
and saved

register
contents

Memory available
for use as stack
by this function

Figure 14-4: Overall pattern of a stack frame

As explained, a stack frame may not include all these parts. If no more
than six arguments are passed to the function, then the lower box in this
diagram does not exist. And some functions may not have any local vari-
ables or saved register contents. In certain cases, the function may not
even need to save the caller’s rbp. The only box in this diagram that will
always exist is the return address.

308 Chapter 14

In the next section, we’ll look at how to create a local variable that
keeps its value between calls to its defining subfunction.

YOUR T UR N

1.	 Modify the assembly language program in Listings 14-16 and 14-17 so
that all nine arguments are passed on the stack.

2.	 Write a program in assembly language that sums all the integers between
two integers entered by the user.

3.	 Write the two functions, writeStr and readLn, in assembly language. You
will use these functions in exercises later in the book.

a.	 writeStr writes text in the terminal window using the write system
call. It takes one argument and returns the number of characters
written.

b.	 readLn reads characters from the keyboard using the read system
call and stores them in memory as a C-style text string. It takes two
arguments, a pointer to the memory location to store the text and the
number of bytes available in that location. If the number of characters
entered exceeds the available storage space, it reads the remaining
input but does not store it. It returns the number of characters entered,
less the NUL terminating character.

c.	 Test your functions with the following C main function. Don’t forget to
write the C header files for your assembly language functions. Hint:
Use a much smaller number for MAX when testing your readLn function.

/* echo.c
 * Prompts user to enter text and echoes it.
 */

#include "writeStr.h"
#include "readLn.h"
#define MAX 50

int main(void)
{
 char text[MAX];

 writeStr("Enter some text: ");
 readLn(text, MAX);
 writeStr("You entered: ");
 writeStr(text);
 writeStr("\n");

 return 0;
}

Inside Subfunctions 309

Static Local Variables
We learned in Chapter 11 (also see Figures 14-1 and 14-4) that automatic
local variables are created in a function’s prologue and get deleted in the
function’s epilogue. This means the value stored in an automatic local
variable will be lost in subsequent calls to a subfunction. We might want to
keep the value of a variable between function calls while still providing the
information-hiding advantage of a local variable. For example, we might have
a function that is called from several other functions and want to maintain a
count of how many times it’s called. We could use a global variable, but a
global variable doesn’t provide the information-hiding properties of a local
variable.

A local variable in a program has one of two possible lifetimes in memory.
An automatic local variable is created in memory during the prologue of
the function it’s defined in, and it’s deleted in the epilogue of the function.
A static local variable also has local scope like an automatic local variable, but
like a global variable, it remains in memory throughout the lifetime of the
entire program.

We’ll see where static local variables are created in memory when we
discuss the program in Listings 14-18, 14-20, and 14-21, which illustrates the
differences between the visibility and persistence of an automatic local vari-
able, a static local variable, and a global variable.

/* varLife.c
 * Compares scope and lifetime of automatic, static,
 * and global variables.
 */

#include <stdio.h>
#include "addConst.h"
#define INITx 12
#define INITy 34
#define INITz 56

1 int z = INITz;

int main(void)
{
2 int x = INITx;
 int y = INITy;

 printf(" automatic static global\n");
 printf(" x y z\n");
 printf("In main:%12i %8i %8i\n", x, y, z);
3 addConst();
 addConst();
 printf("In main: %12i %8i %8i\n", x, y, z);
 return 0;
}

Listing 14-18: Program to compare automatic local, static local, and global variables

310 Chapter 14

The main function for this program first initializes a global variable 1
and then two local variables 2. It then calls a function to add a constant
value to each of three variables 3. As you will see, even though the vari-
ables in addConst have the same names as the ones in main, only the global
variable is the same physical object. Thus, this program has five variables: x
and y in main, x and y in addConst, and z, which is accessible by both main and
addConst.

The compiler generates a little different assembly language for the
global variable, z, in this program than it generated for the global variables
in Listing 14-2. Let’s look at the compiler-generated assembly language for
main; see Listing 14-19.

 .file "varLife.c"
 .intel_syntax noprefix
 .text
 .globl z
 1 .data
 .align 4
 .type z, @object
 .size z, 4
z:
 2 .long 56 ## int z = INITz;
 .section .rodata
 .align 8
.LC0:
 .string " automatic static global"
 .align 8
.LC1:
 .string " x y z"
.LC2:
 .string "In main:%12i %8i %8i\n"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 16
 mov DWORD PTR -8[rbp], 12 ## int x = INITx;
 mov DWORD PTR -4[rbp], 34 ## int y = INITy;
 lea rdi, .LC0[rip]
 call puts@PLT
 lea rdi, .LC1[rip]
 call puts@PLT
 mov ecx, DWORD PTR z[rip]
 mov edx, DWORD PTR -4[rbp]
 mov eax, DWORD PTR -8[rbp]
 mov esi, eax
 lea rdi, .LC2[rip]
 mov eax, 0
 call printf@PLT
 call addConst@PLT
 call addConst@PLT

Inside Subfunctions 311

 mov ecx, DWORD PTR z[rip]
 mov edx, DWORD PTR -4[rbp]
 mov eax, DWORD PTR -8[rbp]
 mov esi, eax
 lea rdi, .LC2[rip]
 mov eax, 0
 call printf@PLT
 mov eax, 0
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-19: Compiler-generated assembly language for the main function in Listing 14-1

Most of the assembly language in Listing 14-19 is probably familiar to
you, but the implementation of the global variable, z, differs from the way
we saw for the x and y global variables in the program in Listing 14-2, which
were both placed in the data segment and initialized to 0.

In Listing 14-19, we see that the global variable in this program, z, is
placed in the .data section 1, so it will also be placed in the data segment
when the program is executed. But the nonzero value for the global vari-
able in this program must be stored in the executable program file. The
compiler has used the .long assembler directive to specify this value 2. An
advantage of using .bss for memory that should be initialized to 0 in a pro-
gram is that it doesn’t require space in the program file, which would be
needed to store nonzero values.

The header file for the addConst function, Listing 14-20, shows that it
takes no arguments and does not return a value.

/* addConst.h
 * Adds constant to automatic, static, global variables.
 */

#ifndef ADDCONST_H
#define ADDCONST_H
void addConst(void);
#endif

Listing 14-20: Header file for addConst function

Listing 14-21 shows the addConst function.

/* addConst.c
 * Adds constant to automatic, static, global variables.
 */

#include <stdio.h>
#include "addConst.h"
1 #define INITx 78
#define INITy 90
#define ADDITION 1000

312 Chapter 14

2 extern int z; /* global */

void addConst(void)
{
3 int x = INITx; /* every call */
4 static int y = INITy; /* first call only */

 x += ADDITION; /* add to each */
 y += ADDITION;
 z += ADDITION;

 printf("In addConst: %8i %8i %8i\n", x, y, z);
}

Listing 14-21: Function to add a constant value to three variables

We’ll use different constants in addConst so we can clearly see the differ-
ences in scope and persistence of the five variables in this program when we
run it 1.

The x variable in addConst is defined to be an automatic local variable 3.
It gets created and assigned an initial value, INITx, each time this function
is called. This x variable is different from the variable also named x in the
main function because each is defined within its respective function, making
them local variables. Changing the value of this x does not affect the x vari-
able in main.

The y variable in addConst is defined to be static 4. A static local vari-
able can be given an initial value when it is defined, as I’ve done here. If no
value is given, it’s initialized to numerical zero by the operating system. A
local static variable has this initial value the first time the function where
it’s defined is called. If the variable is changed in the function, the new value
persists for the next time the function is called, effectively skipping the ini-
tialization. Like x, the y variable is also local, so it is different from the
variable also named y in the main function. Changing the value of this y
does not affect the y variable in main.

The z variable was defined outside the main function. But because it
was defined in another file, we need to declare it as extern in this file so we
can access it 2. As you learned in Chapter 14, changing it in this function
changes the only copy in this program, so main will also see the changes to z
in addConst.

Listing 14-22 shows the assembly language that the compiler generated
for the addConst function.

 .file "addConst.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "In addConst:%8i %8i %8i\n"
 .text
 .globl addConst
 .type addConst, @function

Inside Subfunctions 313

addConst:
 push rbp
 mov rbp, rsp
 sub rsp, 16
 mov DWORD PTR 1-4[rbp], 78 ## int x = INITx;
 add DWORD PTR -4[rbp], 1000 ## x += ADDITION;
 mov eax, DWORD PTR 2y.2319[rip] ## load y
 add eax, 1000 ## y += ADDITION;
 mov DWORD PTR y.2319[rip], eax ## store new y
 mov eax, DWORD PTR 3z[rip] ## load z
 add eax, 1000 ## z += ADDITION;
 mov DWORD PTR z[rip], eax ## store new z
 mov ecx, DWORD PTR z[rip]
 mov edx, DWORD PTR y.2319[rip]
 mov eax, DWORD PTR -4[rbp]
 mov esi, eax
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 nop
 leave
 ret
 .size addConst, .-addConst
 4 .data
 .align 4
 .type y.2319, @object
 .size y.2319, 4
5 y.2319:
 .long 90 ## static int y = INITy;
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 14-22: Assembly language generated by the compiler for the addConst function
in Listing 14-21

From the assembly language in Listing 14-22, we can see that automatic
local variables are allocated in the stack frame. The compiler accesses them
using an offset from the frame pointer, rbp 1. And as we saw earlier in this
chapter, global variables are accessed by their global name relative to rip 3.

Static local variable are also accessed by name relative to rip, but the
name is not specified as .global. Furthermore, the compiler adds a num-
ber to the name, separated by a . character 2. This embellishment of our
given name for the variable is called name mangling. The compiler needs
to do name mangling to distinguish this static local variable from possibly
another static local variable with the same given name in another function
defined in the same file.

As you probably already guessed, a static local variable cannot exist in
the stack frame. Like the global variable, z, defined in the main function (see
Listing 14-2), the static local variable, y, is allocated in the .data section and
initialized with a .long assembler directive 4. It is labeled with the mangled
name so it can be accessed only by its function 5.

Figure 14-5 shows a run of this program.

314 Chapter 14

 Automatic Static Global
 x y z
In main: 12 34 56
In addConst: 1078 1090 1056
In addConst: 1078 2090 2056
In main: 12 34 2056

Figure 14-5: Scope and lifetime of three classes
of C variables

The program shows that the x and y variables in main are different from
the x and y variables in addConst. We can also see that the x in addConst is newly
initialized each time the function is called. But the y variable in addConst is
given its initial value only the first time the function is called, and the addi-
tion of 1,000 to the variable persists between the two calls to the function. We
can also see that both main and addConst are using the same (global) z.

My assembly language solution to the varLife program, Listings 14-23
and 14-24, is similar to what the compiler generated, but I use more mean-
ingful labels and names to make the code easier for a human to read.

varLife.s
Compares scope and lifetime of automatic, static, and global variables.
 .intel_syntax noprefix

Stack frame
 .equ x,-8
 .equ y,-4
 .equ localSize,-16
Useful constants
 .equ INITx,12
 .equ INITy,34
 .equ INITz,56
 .section .rodata
 .align 8
tableHead1:
 .string " automatic static global"
tableHead2:
 .string " x y z"
format:
 .string "In main:%12i %8i %8i\n"
Define global variable
 .data
 .align 4
 .globl z
 .type z, @object
z:
 1 .int INITz # initialize the global
Code
 .text
 .globl main
 .type main, @function
main:
 push rbp # save frame pointer

Inside Subfunctions 315

 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 mov 2 dword ptr x[rbp], INITx # initialize locals
 mov dword ptr y[rbp], INITy

 lea rdi, tableHead1[rip] # print heading
 call puts@plt
 lea rdi, tableHead2[rip]
 call puts@plt
 mov 3 ecx, z[rip] # print variables
 mov edx, y[rbp]
 mov esi, x[rbp]
 lea rdi, format[rip]
 mov eax, 0
 call printf@plt

 call addConst # add to variables
 call addConst

 mov ecx, z[rip] # print variables
 mov edx, y[rbp]
 mov esi, x[rbp]
 lea rdi, format[rip]
 mov eax, 0
 call printf@plt

 mov eax, 0 # return 0;
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 14-23: Assembly language version of the main function for the varLife program

The .int directive is the same as the .long used by the compiler. In our
environment, both emit a 32-bit integer in little endian order. I prefer using
the .int directive rather than .long to specify an int value 1, but this is just
personal style.

Since x and y in this function are automatic local variables, they are in
the stack frame and accessed relative to the frame pointer 2, while z is a
global so accessed relative to the instruction pointer 3.

When we write the addConst function in assembly language, we’ll use a
more meaningful identifier to mangle the static local variable, as shown in
Listing 14-24.

addConst.s
Adds constant to automatic, static, global variables.
 .intel_syntax noprefix

Stack frame
 .equ 1 x,-4
 .equ localSize,-16

316 Chapter 14

Useful constants
 .equ ADDITION,1000
 .equ INITx,78
 .equ INITy,90
Constant data
 .section .rodata
 .align 8
format:
 .string "In addConst:%8i %8i %8i\n"
Define static variable
 .data
 .align 4
 .type 2 y_addConst, @object
y_addConst:
 3 .int INITy

Code
 .text
 .globl addConst
 .type addConst, @function
addConst:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov dword ptr x[rbp], INITx # initialize

 add dword ptr x[rbp], ADDITION # add to vars
 add 4 dword ptr y_addConst[rip], ADDITION
 add dword ptr z[rip], ADDITION

 mov ecx, z[rip] # print variables
 mov edx, y_addConst[rip]
 mov esi, x[rbp]
 lea rdi, format[rip]
 mov eax, 0 # no floats
 call printf@plt

 mov eax, 0 # return 0;
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 14-24: Assembly language version of the addConst function

Be careful to notice that the automatic local variable, x, here is created
in the stack frame for addConst 1 so is different from the x that was created in
the stack frame for main. I have chosen to mangle the static local variable, y,
by appending the function name to the name of the variable, thus assuring
a unique name to the variable 2. Since y is static, it’s placed in the .data sec-
tion 3 and accessed relative to the instruction pointer 4.

Table 14-1 summarizes the memory characteristics of some of the most
common components for a program.

Inside Subfunctions 317

Table 14-1: Memory Characteristics of Some Components of a Program

Role in the program Memory segment Access Lifetime

Automatic local variable Stack Read and write Function

Constant Text Read only Program

Instruction Text Read only Program

Static local variable Data Read and write Program

Global variable Data Read and write Program

The memory segment in Table 14-1 refers to the segments created by the
operating system. Constants are placed in a text segment because the oper-
ating system prohibits a program from writing to a text segment. Variables
need to be in a segment that can be both read from and written to.

Table 14-2 summarizes some of the more common assembler directives
used to control where program components go in memory.

Table 14-2: Some Common Assembler Memory Directives

Directive Memory segment Effect

.text Text Instructions follow

.rodata Text Constant data follows

.string "string", … Text Arrays of characters, each terminated
by NUL

.ascii "string", … Text Arrays of characters

.asciz "string", … Text Arrays of characters, each terminated
by NUL

.data Data Variable data follows

.bss Data Following data memory initialized to
zero

.comm label, size Data Allocates size bytes of uninitialized
data memory

.byte expression, … Data Initialize memory, one byte for each
expression

.int expression, … Data Initialize memory, one int for each
expression

.long expression, … Data Initialize memory, one int for each
expression

The .string, .ascii, and .asciz directives can allocate more than one
text string, each separated by a comma. The .string and .asciz directives
add a NUL character to the end of the text string, while .ascii does not.

The first byte of memory allocated by the .comm directive is named label,
which has global scope in the program. The operating system zeros the size
bytes of memory associated with label when the program is first loaded.

318 Chapter 14

The .int and .long directives do the same thing—allocate 32 bits in our
environment set to the value of expression, which must be an integral value.
The .byte directive must also evaluate to an integral value. These directives
can allocate multiple expressions, each separated by a comma.

This is only a summary of these directives. You need to consult the info
page for as to read the details.

YOUR T UR N

1.	 Modify the program in Listings 14-23 and 14-24 so that the addConst func-
tion prints the number of times it has been called.

2.	 Modify the program in Listings 14-23 and 14-24 so that there are two func-
tions in the same file, addConst0 and addConst1, that add different constants
to the variables. Each of these two subfunctions will print the number of
times it has been called.

What You’ve Learned

Global variables   Accessible from any function in the program and
persist during the entire life of the program.

Automatic local variables   Accessible only from within the function
where they are defined and last only during the execution of their
function.

Static local variables   Accessible only from within the function where
they are defined and persist between calls to their function.

Passing arguments   The first six are passed in registers. Any addi-
tional arguments are passed on the stack.

Pass by value   A copy of the value is passed.

Pass by pointer   The address of the variable is passed. The address
can be changed.

Pass by reference   The address of the variable is passed. The address
cannot be changed.

Stack frame   Creation of the stack frame begins in the calling func-
tion and is completed in the called function.

Frame pointer   Items placed in the stack frame by the calling function
are accessed using positive offset from the frame pointer. Items placed
in the stack frame by the called function are accessed using negative
offsets.

Now that you know how to write functions, we’ll look at a couple of spe-
cialized uses of subfunctions in the next chapter.

15
S P E C I A L U S E S O F S U B F U N C T I O N S

As we saw in Chapter 14, the most common
use of a subfunction is to break a problem

into smaller, easier-to-solve subproblems.
This is the foundation of recursion, the subject

of the first half of this chapter. After we cover recur-
sion, we’ll take a look at another use of subfunctions:
directly accessing hardware features in assembly
language that may not be easily accessible in a higher-
level language.

Recursion
Many computer solutions involve repetitive actions. We saw how to use
iteration—while, for, and do-while loops—to perform repetitive actions in
Chapter 14. While iteration can be used to solve any repetitive problem,

320 Chapter 15

some solutions are described more succinctly using recursion. A recursive
algorithm is an algorithm that calls itself to compute a simpler case of the
problem and uses that result to compute the more complex case at hand.
The recursive calls continue until the simpler case reaches a base case. At
this point, the recursive algorithm returns the base case value to the next
more complex case where the value is used in that computation. This
return/compute process continues, performing the increasingly complex
computations along the way, until we’re back at the original case.

Let’s look at an example. In mathematics, we denote the factorial oper-
ation on positive integers with an !, which can be defined recursively:

n!	  = n × (n – 1)!
0!	  = 1

The first equation shows that n! is defined by computing a simpler case
of itself, (n – 1)!. This computation is performed repetitively until we reach
the base case of n = 0. Then we work our way back out, computing each n!
along the way.

For comparison, the iterative definition of the factorial operation is as
follows:

n! 	 = n × (n – 1) × (n – 2) × ⋯ 1
0! 	 = 1

Although both forms of defining the factorial operation involve the
same number of computations, the recursive form is more concise and per-
haps more intuitive to some people.

Listings 15-1, 15-2, and 15-3 show a program that uses a function, factorial,
to compute 3!. You’ll see the reason for using a small, fixed value when we use
gdb to examine the behavior of the following function:

/* threeFactorial.c
 */
#include <stdio.h>
#include "factorial.h"

int main(void)
{
 unsigned int x = 3;
 unsigned int y;

 y = factorial(x);
 printf("%u! = %u\n", x, y);
 return 0;
}

Listing 15-1: Program to compute 3!

The mathematical factorial function is defined for non-negative inte-
gers, so we use unsigned ints.

There is nothing remarkable about the header file for the factorial
function, shown in Listing 15-2.

Special Uses of Subfunctions 321

/* factorial.h
 */

#ifndef FACTORIAL_H
#define FACTORIAL_H
unsigned int factorial(unsigned int n);
#endif

Listing 15-2: Header file for factorial function

Listing 15-3 shows that the factorial function calls itself to perform a
simpler computation, (n – 1), so it can easily compute n!.

/* factorial.c
 */
#include "factorial.h"

unsigned int factorial(unsigned int n)
{
 unsigned int current = 1; /* assume base case */
 if 1(n != 0)
 {
 current = 2n * factorial(n - 1);
 }
 return current;
}

Listing 15-3: Function to compute n!

The factorial function first checks for the base case of n = 0 1. If we’re
at the base case, the current result is 1. If we’re not at the base case, the
factorial function calls the factorial function to compute (n – 1)! and multi-
plies that by n to get n! 2.

The assembly language for the main function is unremarkable, but let’s
look at the assembly language the compiler generated for the factorial
function; see Listing 15-4.

 .file "factorial.c"
 .intel_syntax noprefix
 .text
 .globl factorial
 .type factorial, @function
factorial:
 push rbp
 mov rbp, rsp
 sub rsp, 32
 1 mov DWORD PTR -20[rbp], edi ## store n
 mov DWORD PTR -4[rbp], 1 ## current = 1;
 cmp DWORD PTR -20[rbp], 0 ## base case?
 je .L2 ## yes, current good
 mov eax, DWORD PTR -20[rbp] ## no, compute n - 1
 sub eax, 1
 2 mov edi, eax
 call factorial ## compute (n - 1)!

322 Chapter 15

 mov edx, DWORD PTR -20[rbp] ## load n
 3 imul eax, edx ## n * (n - 1)!
 mov DWORD PTR -4[rbp], eax ## store in current
.L2
 mov eax, DWORD PTR -4[rbp] ## load current
 leave
 ret
 .size factorial, .-factorial
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 15-4: Compiler-generated assembly language for the factorial function in Listing 15-3

The algorithm used in the factorial function is a simple if-then construct
that we learned about in Chapter 13. The important part of a recursive func-
tion is that we need to save any arguments that are passed to it in registers
so that the registers can be reused to pass arguments in the recursive call to
the function.

For example, the factorial function takes one argument, n, which is
passed in the rdi register. (Only the edi portion of the register is used
because an int in our environment is 32 bits.) In Table 11-2 in Chapter 11, we
see that we don’t need to save the content of rdi in our function, but we need
to use rdi for the recursive call with the new value, (n - 1) 2. And when
the recursive call returns, we need the original value of n. The compiler
has allocated space in the stack frame for saving n 1.

We haven’t discussed the imul instruction 3. As you might guess, the
instruction here multiplies the integer in eax by the one in edx, leaving the
product in eax. The details of multiplication instructions are somewhat com-
plex. We’ll discuss them in Chapter 16.

We can simplify the factorial function a bit by writing it directly in
assembly language, as shown in Listing 15-5.

factorial.s
Computes n! recursively.
Calling sequence:
edi <- n
call readLn
returns n!
 .intel_syntax noprefix
Stack frame
 .equ n,-4
 .equ localSize,-16

 .text
 .globl factorial
 .type factorial, @function
factorial:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 1 mov n[rbp], edi # save n
 2 mov eax, 1 # assume at base case

Special Uses of Subfunctions 323

 cmp dword ptr n[rbp], 0 # at base case?
 3 je done # yes, done
 mov edi, n[rbp] # no,
 4 sub edi, 1 # compute (n - 1)!
 call factorial
 5 mul dword ptr n[rbp] # n! = n * (n - 1)!
done:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 15-5: Assembly language version of factorial function

One of the simplifications in our assembly language version of factorial
is to use eax as the local variable for storing the current result 2. We also
start by assuming that we’re at the base case. If this is true, the result is in eax,
where it should be for the return 3. If not, then we call factorial recursively,
passing (n – 1) as the argument 4. Since the input argument is needed after
the return from the recursive call for the n * (n – 1)! computation 5, we
need to save the input argument on the stack 1.

Instead of the signed multiply instruction, imul, used by the compiler,
since all the numbers in this function are unsigned, I chose to use the
unsigned multiplication instruction, mul 5. The mul instruction assumes that
the multiplicand is already in eax, which it is upon the return from the recur-
sive call to factorial. After the multiplication operation, the mul instruction
replaces the multiplicand in eax with the product, where it needs to be for
the return. Again, the details of using both the mul and imul instructions are
explained in Chapter 16.

Recursive algorithms can be simple and elegant, but they make heavy
use of the stack. I used the assembly language version of factorial (and the
C header file in Listing 15-2) with the main function of Listing 15-1 and ran
the program under gdb so we can take a look at stack usage.

(gdb) li factorial
11
12 .text
13 .globl factorial
14 .type factorial, @function
15 factorial:
16 push rbp # save frame pointer
17 mov rbp, rsp # set new frame pointer
18 add rsp, localSize # for local var.
19
20 mov n[rbp], edi # save n
(gdb)
21 mov eax, 1 # assume at base case
22 cmp dword ptr n[rbp], 0 # at base case?
23 je done # yes, done
24 mov edi, n[rbp] # no,
25 sub edi, 1 # compute (n - 1)!
26 1 call factorial
27 imul eax, n[rbp] # n! = n * (n - 1)!
28 done:

324 Chapter 15

29 2 mov rsp, rbp # restore stack pointer
30 pop rbp # and caller frame pointer
(gdb) b 26
Breakpoint 1 at 0x118c: file factorial.s, line 26.
(gdb) b 29
Breakpoint 2 at 0x1195: file factorial.s, line 29.
(gdb) r
Starting program: /home/bob/chap15/factorial_asm/threeFactorial

Breakpoint 2, factorial () at factorial.s:26
26 call factorial

I set two breakpoints, one at the recursive call to factorial 1 and the
second at the point where the function returns 2. When the program
breaks back into gdb, let’s look at the input value and stack frame for the
first recursive call to factorial.

(gdb) i r rax rdi rbp rsp
rax 0x1 1
rdi 1 0x2 2
rbp 0x7fffffffde40 0x7fffffffde40
rsp 0x7fffffffde30 0x7fffffffde30
(gdb) x/4xg 0x7fffffffde30
0x7fffffffde30: 0x00007ffff7fb1fc8 20x00000003555551b0
0x7fffffffde40: 0x00007fffffffde60 30x0000555555555156

We see that the first recursive call to factorial is passing 2 as the argu-
ment 1, which is (n – 1) in this program. The stack frame for factorial is
32 bytes, which I’m displaying in 8-byte groups here. The first value that
was pushed onto the stack when factorial was called from main is the return
address to main 3.

Keep in mind that memory storage in our environment is little endian,
so we need to be careful when reading the value of n stored in the stack
frame. The code in Listing 15-5 shows that the variable n is stored −4
from rbp, or at memory location 0x7fffffffde3c in my run of the program
here. Since our environment is little endian and we’re displaying 8-byte val-
ues, the 8 bytes that include memory location 0x7fffffffde3c are displayed
with the byte at 0x7fffffffde38 in the rightmost position, and the byte at
0x7fffffffde3f in the leftmost position. So the variable n is the fifth byte
from the right of this 8-byte display, 0x03 2.

Since the input to factorial is 3 (see Listing 15-1), the function will be
recursively called two more times before reaching the base case:

(gdb) c
Continuing.

Breakpoint 1, factorial () at factorial.s:26
26 call factorial
(gdb) c
Continuing.

Breakpoint 1, factorial () at factorial.s:26

Special Uses of Subfunctions 325

26 call factorial
(gdb) i r rax rdi rbp rsp
rax 0x1 1
rdi 1 0x0 0
rbp 0x7fffffffde00 0x7fffffffde00
rsp 0x7fffffffddf0 0x7fffffffddf0
(gdb) x/12xg 0x7fffffffddf0
0x7fffffffddf0: 0x0000000000000000 0x0000000100000000
0x7fffffffde00: 0x00007fffffffde20 20x000055555555519a
0x7fffffffde10: 0x00000000000000c2 0x00000002ffffde47
0x7fffffffde20: 0x00007fffffffde40 30x000055555555519a
0x7fffffffde30: 0x00007ffff7fb1fc8 0x00000003555551b0
0x7fffffffde40: 0x00007fffffffde60 40x0000555555555156

Now we’re at the point where the recursive call to factorial passes in
the base case value, 0 1. We can see that factorial has created three stack
frames, one above the other. The two most recent stack frames show the
return address is to the same place 23, which is in factorial. The oldest
stack frame shows the return address to main 4.

Continuing four more times unwinds the stack frames and takes us
back to the first one created when main called factorial.

(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29 mov rsp, rbp # restore stack pointer
(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29 mov rsp, rbp # restore stack pointer
(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29 mov rsp, rbp # restore stack pointer
(gdb) c
Continuing.

Breakpoint 2, done () at factorial.s:29
29 mov rsp, rbp # restore stack pointer
(gdb) i r rax rdi rbp rsp
rax 0x6 16
rdi 2 0x0 0
rbp 0x7fffffffde40 0x7fffffffde40
rsp 0x7fffffffde30 0x7fffffffde30
(gdb) x/4xg 0x7fffffffde30
0x7fffffffde30: 0x00007ffff7fb1fc8 0x00000003555551b0
0x7fffffffde40: 0x00007fffffffde60 0x0000555555555156
(gdb) c
Continuing.
3! = 6
[Inferior 1 (process 2373) exited normally]

326 Chapter 15

Now that we’re back in the first call to factorial, the call that will return
to main, the argument to this call is the base case, 0 2, and it’s returning the
result, 6 1.

As you can see, recursive function calls use a lot of stack space. And since
they call a function in each repetition, they can be time-consuming. Every
recursive solution has an equivalent iterative solution, which is usually more
efficient, both in time and stack usage. The iterative algorithm to compute
the factorial of an integer, for example, is simple. But although it doesn’t
show in this simple example, many problems (for example, some sorting
algorithms) lend themselves more naturally to a recursive solution. In such
problems, the simplicity of the code is often worth the costs of recursion.

Now that we know how to store data items in a function and move data
back and forth between functions in assembly language, we’ll look at using
assembly language to access hardware features that might not be accessible
in the high-level language we’re using.

YOUR T UR N

Run the C program in Listings 15-1, 15-2, and 15-3 under gdb. Set a breakpoint
at the statement that calls factorial recursively, current = n * factorial(n - 1);,
and another breakpoint at the next line, }. You can find the line numbers for set-
ting these breakpoints in factorial by first using the li factorial command in
gdb. When the program reaches the call with n = 1, identify the three stack
frames. Hint: Use the compiler-generated assembly language in Listing 15-4 to
determine the size of a stack frame.

Accessing CPU Features in Assembly Language
In Chapter 14, it may have seemed a bit silly to create a whole subfunction
just to add two integers (see Listing 14-8), which can be done with a single
instruction. But as we saw in Chapter 3, even simple addition can produce
carry or overflow, which is indicated by flags in the rflags register in the CPU.

C and C++ do not provide a way to check the overflow or carry flags in
the rflags register. In this section, we’ll look at two ways to tell our C func-
tion whether there is overflow from addition: we can either write a separate
function in assembly language that is callable from our C code or embed
assembly language within our C code.

A Separate Function Written in Assembly Language
We’ll start by rewriting the sumInts program in C so that it warns the user if the
addition produces overflow. We’ll check for overflow in the subfunction, addTwo,
and pass the result back to the main function by using the return mechanism.

Listing 15-6 shows our modified main function that checks the return
value for overflow.

Special Uses of Subfunctions 327

/* sumInts.c
 * Adds two integers using local variables
 * Checks for overflow
 */

#include <stdio.h>
#include "addTwo.h"

int main(void)
{
 int x = 0, y = 0, z;
 int overflow;

 printf("Enter an integer: ");
 scanf("%i", &x);
 printf("Enter an integer: ");
 scanf("%i", &y);
1 overflow = addTwo(x, y, &z);
 printf("%i + %i = %i\n", x, y, z);
 if 2(overflow)
 {
 printf(" *** Overflow occurred ***\n");
 }

 return 0;
}

Listing 15-6: Program to sum two integers and check for overflow

We’ll rewrite the addTwo function such that it returns 0 if there’s no over-
flow and 1 if there is overflow, which we assign to the variable, overflow 1.
In C, zero is logically false, while nonzero is true 2.

Listing 15-7 shows our header file for our new addTwo function.

/* addTwo.h
 * Adds two integers and determines overflow.
 */

#ifndef ADDTWO_H
#define ADDTWO_H
int addTwo(int a, int b, int *c);
#endif

Listing 15-7: Header file for addTwo function that checks for overflow

The only change in the function declaration is returning an int instead
of void. We need to add a check for overflow in the definition of the addTwo
function, as shown in Listing 15-8.

/* addTwo.c
 * Adds two integers and determines overflow.
 */

#include "addTwo.h"

328 Chapter 15

int addTwo(int a, int b, int *c)
{
 int temp;
 int overflow = 0; /* assume no overflow */

 temp = a + b;
 if 1(((a > 0) && (b > 0) && (temp < 0)) ||
 ((a < 0) && (b < 0) && (temp > 0)))
 {
 overflow = 1;
 }
 *c = temp;
 return overflow;
}

Listing 15-8: Adds two integers and checks for overflow

We learned in Chapter 3 that if adding two integers of the same sign
gives a result of the opposite sign, we have overflow, so we use this logic as
the check for overflow 1. Listing 15-9 shows the assembly language gener-
ated by the compiler from this C source.

 .file "addTwo.c"
 .intel_syntax noprefix
 .text
 .globl addTwo
 .type addTwo, @function
addTwo:
 push rbp
 mov rbp, rsp
 mov DWORD PTR -20[rbp], edi ## store a
 mov DWORD PTR -24[rbp], esi ## store b
 mov QWORD PTR -32[rbp], rdx ## address of c
 1 mov DWORD PTR -8[rbp], 0 ## overflow = 0;
 mov edx, DWORD PTR -20[rbp]
 mov eax, DWORD PTR -24[rbp]
 add eax, edx ## a + b
 mov DWORD PTR -4[rbp], eax ## temp = a + b;
 2 cmp DWORD PTR -20[rbp], 0 ## a <= 0?
 jle .L2 ## yes
 cmp DWORD PTR -24[rbp], 0 ## b <= 0?
 jle .L2 ## yes
 cmp DWORD PTR -4[rbp], 0 ## temp < 0?
 js .L3 ## yes, overflow
.L2:
 cmp DWORD PTR -20[rbp], 0 ## a == 0?
 3 jns .L4 ## yes, no overflow
 cmp DWORD PTR -24[rbp], 0 ## b == 0?
 jns .L4 ## yes, no overflow
 cmp DWORD PTR -4[rbp], 0 ## temp == 0?
 jle .L4 ## yes, no overflow
.L3:
 4 mov DWORD PTR -8[rbp], 1
.L4:
 mov rax, QWORD PTR -32[rbp] ## address of c

Special Uses of Subfunctions 329

 mov edx, DWORD PTR -4[rbp] ## temp
 mov DWORD PTR [rax], edx ## *c = temp;
 mov eax, DWORD PTR -8[rbp] ## return overflow;
 pop rbp
 ret
 .size addTwo, .-addTwo
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 15-9: Assembly language generated by the compiler for addTwo in Listing 15-8

The algorithm starts by assuming there will not be overflow 1. After
adding the two integers, it checks to see if a ≤ 0 2. If it is, it then checks to
see a is negative by comparing a to 0 and checking the sign flag in the rflags
register 3. If it is 0, there is no overflow, so the algorithm jumps past the
instruction that would change the overflow variable to 1 4.

The algorithm for determining overflow in C (Listing 15-8) is some-
what complicated, so we’ll take advantage of the fact that the CPU makes
that determination during addition and sets the status flags in the rflags
register accordingly. We can use the results in the rflags register by writing
addTwo directly in assembly language, as shown in Listing 15-10.

addTwo.s
Adds two integers and returns OF
Calling sequence:
edi <- x, 32-bit int
esi <- y, 32-bit int
rdx <- &z, place to store sum
returns value of OF
 .intel_syntax noprefix
Stack frame
 .equ temp,-4
 .equ overflow,-8
 .equ localSize,-16
Code
 .text
 .globl addTwo
 .type addTwo, @function
addTwo:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 add edi, esi # x + y
 1 seto al # OF T or F
 movzx eax, al # convert to int for return
 mov [rdx] , edi # *c = sum

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 15-10: Assembly language version of addTwo returns the value of the OF flag

330 Chapter 15

We’re using another instruction in Listing 15-10, seto 1. The setcc
instructions are used to tell when various conditions, as shown in the condi-
tion codes, are true or false:

setcc—Byte on Condition

Sets an 8-bit register to 0 or 1 depending on the condition cc.

setcc reg stores 1 in 8-bit reg when cc is true, 0 when cc is false.

The setcc instructions use the same cc codes as those in the jcc group,
as shown in Table 13-1 in Chapter 13. reg is an 8-bit register, except ah,
bh, ch, and dh cannot be used in 64-bit mode. C treats 1 as true and 0 as
false.

Another difference in our assembly language version of addTwo is that
we won’t use the red zone for local variables. It’s a matter of personal pro-
gramming style, but I prefer to create a full stack frame so I don’t have to
worry about using the stack if I change the function. I also have not saved
the input arguments. The values in the registers used for passing argu-
ments do not need to be preserved for the calling function (see Table 11-2
in Chapter 11).

If we use the C version of the main function (Listing 15-6) to call our
assembly language version of addTwo, we still need to #include the C header
file (Listing 15-7) to tell the compiler how to call addTwo.

Comparing our assembly language solution (Listing 15-10) with what
the compiler did (Listing 15-9) shows that we used about half as many
instructions.

N O T E 	 We need to be careful about such comparisons. The speed of program execution depends
as much on the internal CPU architecture as on the number of instructions. I think the
real savings in this example comes from not having to use somewhat complex C code to
tell us about overflow.

Our assembly language version of the main function for this program, as
shown in Listing 15-11, is similar to what the compiler generates from the
C version, but our use of symbolic names for offsets in the stack frame and
labels makes it easier to read.

sumInts.s
Adds two integers using local variables
Checks for overflow
 .intel_syntax noprefix

Stack frame
 .equ x,-24
 .equ y,-20
 .equ z,-16
 .equ overflow,-12
 .equ canary,-8
 .equ localSize,-32
Read only data
 .section .rodata

Special Uses of Subfunctions 331

askMsg:
 .string "Enter an integer: "
readFormat:
 .string "%i"
resultFormat:
 .string "%i + %i = %i\n"
overMsg:
 .string " *** Overflow occurred ***\n"
Code
 .text
 .globl main
 .type main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, fs:40 # get stack canary
 mov canary[rbp], rax # and save it

 mov dword ptr x[rbp], 0 # x = 0
 mov dword ptr y[rbp], 0 # y = 0

 lea rdi, askMsg[rip] # ask for integer
 mov eax, 0
 call printf@plt
 lea rsi, x[rbp] # place to store x
 lea rdi, readFormat[rip]
 mov eax, 0
 call __isoc99_scanf@plt

 lea rdi, askMsg[rip] # ask for integer
 mov eax, 0
 call printf@plt
 lea rsi, y[rbp] # place to store y
 lea rdi, readFormat[rip]
 mov eax, 0
 call __isoc99_scanf@plt

 lea rdx, z[rbp] # place to store sum
 mov esi, x[rbp] # load x
 mov edi, y[rbp] # load y
 call addTwo
 mov overflow[rbp], eax # save overflow
 mov ecx, z[rbp] # load z
 mov edx, y[rbp] # load y
 mov esi, x[rbp] # load x
 lea rdi, resultFormat[rip]
 mov eax, 0 # no floating point
 call printf@plt

 cmp dword ptr overflow[rbp], 0 # overflow?
 je noOverflow
 lea rdi, overMsg[rip] # yes, print message
 mov eax, 0
 call printf@plt

332 Chapter 15

noOverflow:
 mov eax, 0 # return 0

 mov rcx, canary[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@plt # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 15-11: Assembly language version of the main function for the sumIntegers program

This example shows one of the reasons for writing a subfunction in
assembly language—we were able to access a feature of the CPU, the OF in
the rflags register, which is not accessible in the higher-level language we’re
using, C. And we needed to check for overflow immediately after the opera-
tion that we are checking is performed (addition, in this example).

This example also illustrates a common use of the return value. Inputs
and outputs are often passed in the argument list, with supplemental infor-
mation about the computation carried in the return value.

That said, calling a function to simply add two numbers is inefficient.
In the next section, we’ll look at a common extension to C that allows us to
insert assembly language directly in our C code.

Inline Assembly Language
Like many C compilers, gcc includes an extension to the standard C lan-
guage that allows us to embed assembly language in our C code, inline
assembly. Doing so can be complex. We’ll look at a simple case here. You can
read the details at https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language
-with-C.html, or you can use the info gcc shell command and select C
ExtensionsUsing Assembly Language with CExtended Asm.

The general form for embedding assembly language in C is as follows:

asm asm-qualifiers (assembly language statements
 : output operands
 : input operands
 : clobbers);

The asm-qualifiers are used to help the compiler optimize the C code,
a topic that is beyond the scope of this book. We’re not asking the compiler
to optimize our C code, so we won’t use asm-qualifiers.

The output operands are the C variables that could be changed by the
assembly language statements, thus acting as outputs from the assembly
language statements. The input operands are the C variables that are used by
the assembly language statements but are not changed, thus acting as inputs
to the assembly language statements. The clobbers are the registers that get
explicitly changed by the assembly language statements, thus telling the com-
piler about the possible changes in these registers.

https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html

Special Uses of Subfunctions 333

In Listing 15-12, we use inline assembly language to check for overflow
in our addition.

/* sumInts.c
 * Adds two integers
 */

#include <stdio.h>

int main(void)
{
 int x = 0, y = 0, z, overflow;

 printf("Enter an integer: ");
 scanf("%i", &x);
 printf("Enter an integer: ");
 scanf("%i", &y);

 asm("mov edi, 1%22\n"
 "3add edi, %3\n"
 "seto al\n"
 "movzx eax, al\n"
 "mov %1, eax\n"
 "mov %0, edi"
 : 4"=rm" (z), "=rm" (overflow)
 : 5"rm" (x), "rm" (y)
 : "rax", "rdx", 6"cc");

 printf("%i + %i = %i\n", x, y, z);
 if (overflow)
 printf("*** Overflow occurred ***\n");

 return 0;
}

Listing 15-12: Using inline assembly language to check for overflow when adding

The first thing to note about our code here is that it’s important to
place the add instruction in the assembly language 3 so that we can check
for overflow immediately after the instruction is executed. If we were to
do the addition in C and then just check for overflow in our assembly
language, the compiler might insert an instruction before our assembly lan-
guage that might change the overflow flag.

We need to specify the constraints on each of our C variables. The "=rm"
(z) 4 says that our assembly language will assign a value to the z C variable
(=) and that the compiler can use either a register (r) or memory (m) for z.
We would use "+rm" if the value of the variable is updated in our assembly
language. Our inline assembly language code only reads the values in
the x and y C variables, so the constraints on them are "rm" 5.

We specify the C variables in our assembly language by using the syntax
%n 1, where n is the relative position in the ouputs:inputs list, starting from
0. In our program, z is in position 0, overflow in 1, x in 2, and y in 3. So the
instruction mov edi, %2 loads the value in the C variable y into the edi register.

334 Chapter 15

Remember that assembly language source code is line-oriented, so
it’s important to place a newline character at the end of each assembly
language statement 2. The newline is not needed at the end of the last
assembly language statement.

We need to be careful when using inline assembly language. The com-
piler could generate assembly language for our C code that does not work
well with our assembly language. It’s a good idea to generate the assembly
language for the entire function (using the -S compiler option) and read it
carefully to make sure the function is doing what you intend.

YOUR T UR N

1.	 Modify the functions in Listings 15-6, 15-7, and 15-10 to use unsigned ints
and tell the user when the addition produces carry. Write the main function
in C. It will declare the variables as follows:

unsigned int x = 0, y = 0, z;

The formatting code for reading and printing the values of the unsigned
ints is %u. Here’s an example:

scanf("%u", &x);

2.	 Modify the program in Listing 15-12 to use unsigned ints and tell the user
when the addition produces carry.

What You’ve Learned

Recursion   Allows for simple and elegant solutions to some problems,
but uses lots of stack space.

Accessing hardware features.    Most programming languages do
not allow direct access to all the hardware features in a computer. An
assembly language subfunction, or inline assembly language, may be
the best solution.

Inline assembly   Allows us to embed assembly language in our C code.

Now that you know some common ways to use functions in a program,
we’ll move on to multiplication, division, and logic operations. You’ll learn
how to convert a string of numerals in ASCII code to the integer they
represent.

16
C O M P U T I N G W I T H B I T W I S E

L O G I C , M U L T I P L I C A T I O N , A N D
D I V I S I O N I N S T R U C T I O N S

Now that we’ve learned about program
organization, let’s turn our attention to

computation. We’ll start by looking at the
logic operators, which can be used to change

individual bits in a value by using a technique called
masking. Then we’ll move on to shift operations, which
provide a way to multiply or divide by powers of two. In
the last two sections of this chapter, we’ll cover arith-
metic multiplication and division by arbitrary integers.

Bit Masking
It’s often better to think of data items as patterns of bits rather than numer-
ical entities. For example, if you look back at Table 2-5 in Chapter 2, you’ll
see that the only difference between uppercase and lowercase alphabetic

336 Chapter 16

characters in the ASCII code is bit number 5. It’s 1 for lowercase and 0 for
uppercase. For example, the ASCII code for m is 0x6d, and for M it’s 0x4d. If
you wanted to write a function that changed the case of a string of alpha-
betic characters from lowercase to uppercase, you could view this as a
numerical difference of 32. You would need to determine the current case
of the character and then decide whether to change it by subtracting 32.

But there’s a faster way. We can change bit patterns by using logical bit-
wise operations and a mask, or bitmask. A mask is a specific pattern of bits that
can be used to make specified bits in a variable either 1 or 0, or to invert them.
For example, to make sure an alphabetic character is uppercase, we need to
make sure its bit number 5 is 0, giving the mask 11011111 = 0xdf. Then, using
the previous example of m, 0x6d ∧ 0xdf = 0x4d, which is M. And if the character
is already uppercase, then 0x4d ∧ 0xdf = 0x4d, leaving it as uppercase. This solu-
tion avoids checking for the case before the conversion.

We can use similar logic for other operations. If you want to make a
bit 1, you place a 1 in the appropriate bit position in the mask and use the
bitwise OR operation. To produce a 0 in a bit position, place a 0 in that
position and a 1 in each of the other bit positions in the mask and then use
the bitwise AND operation. You can invert bits by placing a 1 in each bit
position you want to invert, placing 0 in all other positions, and using the
bitwise XOR operation.

Bit Masking in C
As you saw earlier, uppercase and lowercase alphabetic characters in the
ASCII code are distinguished by bit 5, which is 0 for uppercase and 1 for low-
ercase. The program in Listings 16-1, 16-2, and 16-3 shows how to use a mask
to convert all lowercase alphabetic characters in a text string to uppercase.

N O T E 	 This program, and many that follow in the book, use the readLn and writeStr func-
tions that you were asked to write in “Your Turn” at the end of Chapter 14. If you
want, you could use the gets and puts functions, respectively, in the C standard
library, but you would need to make the appropriate changes in the book’s functions
that call them because their behavior is a little different.

/* upperCase.c
 * Converts alphabetic characters to uppercase
 */

#include <stdio.h>
#include "toUpper.h"
#include "writeStr.h"
#include "readLn.h"
1 #define MAX 50

int main()
{
2 char myString[MAX];

 writeStr("Enter up to 50 alphabetic characters: ");

Computing with Bitwise Logic, Multiplication, and Division Instructions 337

3 readLn(myString, MAX);

4 toUpper(myString, myString);
 writeStr("All upper: ");
 writeStr(myString);
 writeStr("\n");

 return 0;
}

Listing 16-1: Program to convert lowercase alpha characters to uppercase

The main function in this program allocates a char array 2 to hold user
input. We use #define to give a symbolic name to the length of the array 1,
which allows us to easily change the length in one place and make sure the
correct value gets passed to the readLn function 3.

Passing the name of an array in C passes the address of the beginning
of the array, so we don’t use the & (address of) operator 4. You’ll learn more
about how arrays are implemented in Chapter 17. Nothing else is new in
this main function, so we’ll move on to the subfunction, toUpper.

Since we’re passing the same array as both the source and destination
arrays to toUpper, it will replace the characters stored in the array with the
new values.

/* toUpper.h
 * Converts alphabetic letters in a C string to uppercase.
 */

#ifndef TOUPPER_H
#define TOUPPER_H
int toUpper(char *srcPtr, char *destPtr);
#endif

Listing 16-2: Header file for the toUpper function

/* toUpper.c
 * Converts alphabetic letters in a C string to uppercase.
 */

#include "toUpper.h"
#define UPMASK 10xdf
#define NUL '\0'

int toUpper(char *srcPtr, char *destPtr)
{
 int count = 0;
 while (*srcPtr != NUL)
 {
 *destPtr = 2*srcPtr & UPMASK;
 srcPtr++;
 destPtr++;
 count++;
 }

338 Chapter 16

3 *destPtr = *srcPtr;

4 return count;
}

Listing 16-3: The toUpper function

To make sure that bit 5 is 0, we use a mask that has 0 in bit position 5
and 1 elsewhere 1. While it’s not the NUL character, we perform a bitwise AND
with the character, which masks out bit 5 and allows all the other bits to
remain the same in the result 2. Don’t forget to include the NUL character
from the input text string 3! Forgetting to do so is a common program-
ming error that often does not show up during testing, because the byte in
memory following where the output is being stored just happens to be 0x00
(the NUL character). Then if you change the length of the input text string,
the next byte in memory may not be 0x00. The error might show up in a
seemingly random way.

Although this function returns a count of the number of characters
processed 4, our main function does nothing with the value. A calling
function doesn’t need to use a returned value. I usually include a count-
ing algorithm in functions like this for debugging purposes if needed.

Listing 16-4 shows the assembly language the compiler generates for
the toUpper function.

 .file "toUpper.c"
 .intel_syntax noprefix
 .text
 .globl toUpper
 .type toUpper, @function
toUpper:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -24[rbp], rdi ## save srcPtr
 mov QWORD PTR -32[rbp], rsi ## save destPtr
 mov DWORD PTR -4[rbp], 0 ## count = 0;
 jmp .L2
.L3:
 1 mov rax, QWORD PTR -24[rbp] ## load srcPtr
 2 movzx eax, BYTE PTR [rax] ## and char there
 3 and eax, -33 ## and with 0xdf
 mov edx, eax
 mov rax, QWORD PTR -32[rbp] ## load destPtr
 mov BYTE PTR [rax], dl ## store new char
 add QWORD PTR -24[rbp], 1 ## srcPtr++;
 add QWORD PTR -32[rbp], 1 ## destPtr++;
 add DWORD PTR -4[rbp], 1 ## count++;
.L2:
 4 mov rax, QWORD PTR -24[rbp] ## load srcPtr
 5 movzx eax, BYTE PTR [rax] ## and char there
 6 test al, al ## NUL char?
 jne .L3 ## no, loop back
 mov rax, QWORD PTR -24[rbp] ## yes, load srcPtr
 movzx edx, BYTE PTR [rax] ## and char there

Computing with Bitwise Logic, Multiplication, and Division Instructions 339

 mov rax, QWORD PTR -32[rbp] ## load destPtr
 mov BYTE PTR [rax], dl ## store NUL
 mov eax, DWORD PTR -4[rbp] ## return count;
 pop rbp
 ret
 .size toUpper, .-toUpper
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 "
 .section .note.GNU-stack,"",@progbits

Listing 16-4: Compiler-generated assembly language for the toUpper function

Before entering the while loop, toUpper loads the address of the source
text string into rax 14. The movzx instruction overwrites the address in rax
with the byte stored at that address (BYTE PTR) and zeros the upper 56 bits of
the register 25. The and instruction 3 uses the immediate data -33 = 0xdf,
which is the mask to turn bit 5 to 0, thus making sure that the character is
uppercase. This code sequence is repeated within the while loop for each
character in the input text string that is not the NUL character 6.

As explained, treating the characters as bit patterns rather than as
numerical values works for both converting lowercase to uppercase and let-
ting uppercase remain unchanged.

Listing 16-4 introduces another logic instruction, and 3. We already
saw the xor instruction in Chapter 11. Let’s look at two more logical instruc-
tions, and and or.

Logic Instructions
Logic instructions work bitwise. That is, they operate on the individual bits in
the corresponding bit positions of the two operands. Two of the most com-
mon logic instructions are AND and OR.

and—Logical AND

Performs a bitwise AND between two values.

and reg1, reg2 performs bitwise AND between values in registers, reg1
and reg2, which can be the same or different registers. The result is left
in reg1.

and reg, mem performs bitwise AND between a value in a register and a
value in memory, leaving the result in the register.

and mem, reg performs bitwise AND between a value in memory and a
value in a register, leaving the result in memory.

and reg, imm performs bitwise AND between a value in a register and the
constant imm, leaving the result in the register.

and mem, imm performs bitwise AND between a value in memory and the
constant imm, leaving the result in memory.

The and instruction performs a bitwise AND between the source and
destination values, leaving the result in the destination. The SF, ZF,
and PF flags in the rflags register are set according to the result, the OF and
CF flags are set to 0, and the AF flag is undefined.

340 Chapter 16

or—Logical Inclusive OR

Performs a bitwise inclusive OR between two values.

or reg1, reg2 performs bitwise inclusive OR between values in registers,
reg1 and reg2, which can be the same or different registers. The result is
left in reg1.

or reg, mem performs bitwise inclusive OR between a value in a register
and a value in memory, leaving the result in the register.

or mem, reg performs bitwise inclusive OR between a value in memory
and a value in a register, leaving the result in memory.

or reg, imm performs bitwise inclusive OR between a value in a register
and the constant imm, leaving the result in the register.

or mem, imm performs bitwise inclusive OR between a value in memory
and the constant imm, leaving the result in memory.

The or instruction performs a bitwise inclusive OR between the
source and destination values, leaving the result in the destination.
The SF, ZF, and PF flags in the rflags register are set according to the
result, the OF and CF flags are set to 0, and the AF flag is undefined.

Next, we’ll look at a way to write this same program directly in assembly
language.

Bit Masking in Assembly Language
We’ll use the same masking algorithm in our assembly language version,
but we’ll use identifiers that make it easier to see what is taking place.
Listing 16-5 shows the main function written in assembly language.

upperCase.s
Makes user alphabetic text string all upper case
 .intel_syntax noprefix
Stack frame
 .equ myString,-64
 .equ canary,-8
 .equ 1 localSize,-64
Useful constants
 .equ upperMask,0xdf
 .equ 2 MAX,50 # character buffer limit
 .equ NUL,0
Constant data
 .section .rodata
 .align 8
prompt:
 .string "Enter up to 50 alphabetic characters: "
message:
 .string "All upper: "
newLine:
 .string "\n"
Code
 .text
 .globl	 main
 .type	 main, @function

Computing with Bitwise Logic, Multiplication, and Division Instructions 341

main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rdi, prompt[rip] # prompt user
 call writeStr

 mov esi, MAX # limit user input
 lea rdi, myString[rbp] # place to store input
 call readLn

 lea rsi, myString[rbp] # destination string
 lea rdi, myString[rbp] # source string
 call toUpper

 lea rdi, message[rip] # tell user
 call writeStr

 3 lea rdi, myString[rbp] # result
 call writeStr
 lea rdi, newLine[rip] # some formatting
 call writeStr

 mov eax, 0 # return 0;
 mov rcx, canary[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-5: Assembly language version of the main function to convert lowercase alpha-
betic characters to uppercase

We’re allowing enough memory space for 50 characters 2. Allowing
another 8 bytes for the canary value totals 58 bytes, but we need to keep
the stack pointer at a multiple of 16, so we allocate 64 bytes for our local
variables 1. We’re passing the address of the char array as both the source
and the destination to the toUpper function 3, so it will replace the original
values in the array with the new ones.

We’ll use the same masking algorithm as the compiler when writing
toUpper in assembly language but will structure the function differently. See
Listing 16-6 for the code.

toUpper.s
Converts alphabetic characters in a C string to upper case.
Calling sequence:
rdi <- pointer to source string
rsi <- pointer to destination string

342 Chapter 16

returns number of characters processed.
 .intel_syntax noprefix

Stack frame
 .equ count,-4
 .equ localSize,-16
Useful constants
 .equ upperMask,0xdf
 .equ NUL,0
Code
 .text
 .globl toUpper
 .type toUpper, @function
toUpper:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 1 add rsp, localSize # for local var.

 mov dword ptr count[rbp], 0
whileLoop:
 mov 2 al, byte ptr [rdi] # char from source
 and al, upperMask # no, make sure it's upper
 mov byte ptr [rsi], al # char to destination
 3 cmp al, NUL # was it the end?
 je allDone # yes, all done
 inc rdi # increment
 inc rsi # pointers
 inc dword ptr count[rbp] # and counter
 jmp whileLoop # continue loop
allDone:
 4 mov byte ptr [rsi], al # finish with NUL
 mov eax, dword ptr count[rbp] # return count

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-6: The toUpper function, written in assembly language

The compiler used the red zone on the stack for local variables, but I
prefer creating an explicit stack frame 1. Instead of saving the source and
destination addresses that were passed to this function in the local variable
area of the stack, we can simply use the registers that the addresses were
passed in.

The compiler used the movzx instruction to zero the portion of the rax
register that was not used for processing each character. I prefer using a
byte portion of the rax register, al, to process a character since that’s the
correct size 2. Keep in mind that this leaves the 56 high-order bits in rax
as they were, but if we are consistent in using only al when processing the
character in the algorithm, that will be irrelevant. It also seems more
natural to me to use the cmp instruction instead of test to check for the
termination character, NUL 3. And, as explained earlier, don’t forget to
include the NUL character 4.

Computing with Bitwise Logic, Multiplication, and Division Instructions 343

N O T E 	 I do not know whether my assembly language solution is more, or less, efficient than
what the compiler produced. In most cases, code readability is far more important
than efficiency.

YOUR T UR N

1.	 Write a program in assembly language that converts all alphabetic char-
acters to lowercase.

2.	 Write a program in assembly language that changes the case of all alpha-
betic characters to the opposite case.

3.	 Write a program in assembly language that converts all alphabetic char-
acters to uppercase and to lowercase. Your program should also show the
user’s original input string after displaying both the uppercase and lower-
case conversions.

Shifting Bits
It’s sometimes useful to be able to shift all the bits in a variable to the left
or to the right. If the variable is an integer, shifting all the bits to the left
one position effectively multiplies the integer by two, and shifting them one
position to the right effectively divides it by two. Using left/right shifts to do
multiplication/division by powers of two is very efficient.

Shifting Bits in C
We’ll discuss shifts by looking at a program that reads integers entered in
hexadecimal from the keyboard and stores it as a long int. The program
reads up to eight characters: '0'…'f'. Each character is in 8-bit ASCII code
and represents a 4-bit integer, 0–15. Our program starts with a 64-bit inte-
ger that is 0. Starting with the most significant hexadecimal character, the
first one entered by the user, the program converts the 8-bit ASCII code
to its corresponding 4-bit integer. We’ll shift the accumulated value of our
64-bit integer four bits to the left to make room for the next 4-bit integer
and then add the new 4-bit integer value to the accumulated value.

Listings 16-7, 16-8, and 16-9 show the program.

/* convertHex.c
 * Gets hex number from user and stores it as a long int.
 */
#include <stdio.h>
#include "writeStr.h"
#include "readLn.h"
#include "hexToInt.h"

#define MAX 20

344 Chapter 16

int main()
{
 char theString[MAX];
 long int theInt;

 writeStr("Enter up to 16 hex characters: ");
 readLn(theString, MAX);

 hexToInt(theString, &theInt);
 printf("%lx = %li\n", theInt, theInt);
 return 0;
}

Listing 16-7: Program to convert hexadecimal to a long int

The program allocates a char array for storing the user input charac-
ter string and a long int to hold the converted value. The size of the long
int data type depends on the operating system and hardware it’s running
on. In our environment, it’s 64 bits. After reading the user’s input string,
the main function calls hexToInt to do the actual conversion, passing the
addresses of the input text string and the variable where the result will
be stored.

The printf function converts theInt back to character format for display
on the screen. The %lx formatting code tells printf to display the entire long
int (64 bits in our environment) in hexadecimal. The %li formatting code
displays the long int in decimal.

/* hexToInt.h
 * Converts hex character string to long int.
 * Returns number of characters converted.
 */

#ifndef HEXTOINT_H
#define HEXTOINT_H
int hexToInt(char *stringPtr, long int *intPtr);
#endif

Listing 16-8: Header file for the hexToInt function

The header file declares the hexToInt function, which takes two point-
ers. The char pointer is the input, and the long int pointer is the location for
the primary output. The hexToInt function also returns the number of char-
acters that it converted as an int as a secondary output.

/* hexToInt.c
 * Converts hex character string to int.
 * Returns number of characters.
 */

#include "hexToInt.h"
#define GAP 0x07
#define INTPART 0x0f /* also works for lowercase */
#define NUL '\0'

Computing with Bitwise Logic, Multiplication, and Division Instructions 345

int hexToInt(char *stringPtr, long int *intPtr)
{
 *intPtr = 0;
 char current;
 int count = 0;

 current = *stringPtr;
 while (current != NUL)
 {
 if (current > '9')
 {
 1 current -= GAP;
 }
 2 current = current & INTPART;
 3 *intPtr = *intPtr 4;
 4 *intPtr |= current;
 stringPtr++;
 count++;
 current = *stringPtr;
 }
 return count;
}

Listing 16-9: Converting a string of hexadecimal characters to a long int

First, we need to convert the hexadecimal character to a 4-bit integer.
The ASCII code for the numeric characters ranges from 0x30 to 0x39, and for
the uppercase alphabetic characters from 0x41 to 0x46. Subtracting this 0x07
gap from the alphabetic characters 1 gives us the bit patterns 0x30, 0x31, …,
0x39, 0x3a, …, 0x3f for the characters entered. Of course, the user may enter
lowercase alphabetic characters, in which case subtracting 0x07 gives 0x30,
0x31, …, 0x39, 0x5a, …, 0x5f. Each hexadecimal character represents four bits,
and if we look at the low-order four bits after subtracting 0x07, they are the
same whether the user enters lowercase or uppercase alphabetic characters.
We can convert to a 4-bit integer by masking off the upper four bits with the
bit pattern 0x0f using the C bitwise AND operator, & 2.

Next, we shift all the bits in the accumulated value four bits to the left
to make room for the next four bits represented by the hexadecimal char-
acter 3. The left shift leaves 0s in the four least significant bit positions, so
we can copy the four bits in current into these positions with the bitwise OR
operation, | 4.

Now let’s look at the assembly language the compiler generates for the
hexToInt function, as shown in Listing 16-10.

 .file "hexToInt.c"
 .intel_syntax noprefix
 .text
 .globl hexToInt
 .type hexToInt, @function
hexToInt:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -24[rbp], rdi ## save stringPtr

346 Chapter 16

 mov QWORD PTR -32[rbp], rsi ## save intPtr
 mov rax, QWORD PTR -32[rbp]
 mov QWORD PTR [rax], 0 ## *intPtr = 0;
 mov DWORD PTR -4[rbp], 0 ## count = 0;
 mov rax, QWORD PTR -24[rbp] ## load stringPtr
 movzx eax, BYTE PTR [rax] ## current = *stringPtr
 mov BYTE PTR -5[rbp], al
 jmp .L2
.L4:
 cmp BYTE PTR -5[rbp], 57 ## current <= '9'?
 jle .L3 ## yes, skip
 movzx eax, BYTE PTR -5[rbp] ## no, load current
 sub eax, 7 ## subtract gap
 mov BYTE PTR -5[rbp], al ## store current
.L3:
 1 and BYTE PTR -5[rbp], 15 ## current & 0x0f
 mov rax, QWORD PTR -32[rbp] ## load intPtr
 mov rax, QWORD PTR [rax] ## load *intPtr
 2 sal rax, 4 ## make room for 4 bits
 mov rdx, rax
 mov rax, QWORD PTR -32[rbp]
 mov QWORD PTR [rax], rdx ## store shifted value
 mov rax, QWORD PTR -32[rbp]
 mov rdx, QWORD PTR [rax] ## load shifted value
 3 movsx rax, BYTE PTR -5[rbp] ## load new 4 bits
 4 or rdx, rax ## add them
 mov rax, QWORD PTR -32[rbp]
 mov QWORD PTR [rax], rdx ## store updated value
 add QWORD PTR -24[rbp], 1 ## stringPtr++;
 add DWORD PTR -4[rbp], 1 ## count++;
 mov rax, QWORD PTR -24[rbp]
 movzx eax, BYTE PTR [rax] ## load next character
 mov BYTE PTR -5[rbp], al ## and store it
.L2:
 cmp BYTE PTR -5[rbp], 0 ## NUL character?
 jne .L4 ## no, continue looping
 mov eax, DWORD PTR -4[rbp] ## yes, return count
 pop rbp
 ret
 .size hexToInt, .-hexToInt
 .size hexToInt, .-hexToInt
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 16-10: Compiler-generated assembly language for the hexToInt function

After subtracting the gap between the numeric and alphabetic charac-
ters, if necessary, the character is converted to a 4-bit integer with a masking
operation, leaving the result in the current variable in the stack frame 1.
The accumulated value is then shifted four bit positions to the left to make
room for the new 4-bit integer value 2.

These four bits are inserted into the vacated location in the accumu-
lated value with an or instruction 4, but like most arithmetic and logic
operations, it can be performed only on same-sized values. The accumulated

Computing with Bitwise Logic, Multiplication, and Division Instructions 347

value is a 64-bit long int, so the 4-bit integer must be type cast to a 64-bit long
int before inserting it into the 64-bit accumulated value. If the C compiler
can figure out what type casting is needed from the C statement, it will do it
automatically. Indeed, the compiler used the movsx instruction to extend the
8-bit value at -5[rbp] to a 64-bit value in rax 3. The movsx instruction does
sign extension, but since the masking operation made the high-order four
bits of the 8-bit value all 0, the sign extension copies the 0 in bit number 7
into the 56 high-order bits of rax.

movsx—Move with Sign-Extension

Copies (moves) an 8-bit or 16-bit value from memory or a register to a
larger register width and copies the sign bit into the high-order bits in
the destination register.

movsx reg1, reg2 moves the value in reg2 to reg1.

movsx reg, mem moves from a memory location to a register.

The movsx instruction extends the number of bits occupied by a value.
The extension can be from 8 bits to 16, 32, or 64 bits, or from 16 bits to
32 or 64 bits. The movsx instruction does not affect the status flags in the
rflags register.

movsxd—Move with Sign-Extension Doubleword

Copies (moves) a 32-bit value from the memory 64-bit register and cop-
ies the sign bit into the high-order bits in the destination register.

movsxd reg1, reg2 moves the value in reg2 to reg1.

movsxd reg, mem moves from a memory location to a register.

The movsxd instruction extends the number of bits occupied by a value
from 32 to 64 bits. The movsxd instruction does not affect the status flags
in the rflags register.

Next, we’ll look at the most common shift instructions.

Shift Instructions
The shift instructions move all the bits in the destination location right or
left. The number of bit places to shift is loaded into the cl register before
the shift or expressed as an immediate value in the shift instruction. The
CPU uses only the low-order five bits of the shift operand when shifting a
32-bit value, and it uses only the low-order six bits of the shift operand when
shifting a 64-bit value.

sal—Shift Arithmetic Left

Shifts bits logically to the left.

sal reg, cl shifts the bits in reg left by the number of places specified
in cl.

sal mem, cl shifts the bits at the mem location left by the number of places
specified in cl.

348 Chapter 16

sal reg, imm shifts the bits in reg left by the number of places specified
by imm.

sal mem, imm shifts the bits in reg left by the number of places specified
by imm.

The bits on the right that are vacated by the left shift are filled with 0s.
The last bit shifted out of the left (most significant) side of the destina-
tion operand is stored in CF in the rflags register. When the shift operand
is 1, the OF is set to the exclusive OR of the CF and the bit that is shifted
into the highest-order bit in the destination operand result; for larger
shifts, the state of the OF is undefined.

sar—Shift Arithmetic Right

Shifts bits arithmetically to the right.

sar reg, cl shifts the bits in reg right by the number of places specified
in cl.

sar mem, cl shifts the bits at the mem location right by the number of
places specified in cl.

sar reg, imm shifts the bits in reg right by the number of places specified
by imm.

sar mem, imm shifts the bits in reg right by the number of places specified
by imm.

The bits on the left that are vacated by the right shift are filled with a
copy of the highest-order bit, thus preserving the sign of the value. The
last bit shifted out of the right (least significant) side of the destination
operand is stored in the CF flag.

B E C A R E F U L ! 	 Since the sar instruction copies the highest-order bit into the vacated bits, the
result of shifting a negative value (in two’s complement notation) can never be
zero. For example, shifting –1 any number of bits to the right is still –1, but you
might expect it to be 0.

shr —Shift Logical Right

Shifts bits logically to the right.

shr reg, cl shifts the bits in reg right by the number of places specified
in cl.

shr mem, cl shifts the bits at the mem location right by the number of places
specified in cl.

shr reg, imm shifts the bits in reg right by the number of places specified
by imm.

shr mem, imm shifts the bits in reg right by the number of places specified
by imm.

Computing with Bitwise Logic, Multiplication, and Division Instructions 349

The bits on the left that are vacated by the right shift are filled with 0s.
The last bit shifted out of the right (least significant) side of the destina-
tion operand is stored in the CF flag.

The manuals also define a shift logical left, shl, but this is just another
name for the sal instruction.

Next, we’ll take a similar approach to writing the hexadecimal-to-integer
conversion program in assembly language as we did for the earlier case con-
version C program. We’ll use only the 8-bit portions of registers for converting
each character.

Shifting Bits in Assembly Language
Listing 16-11 shows the main function for the hexadecimal-to-integer conver-
sion program written in assembly language.

convertHex.s
 .intel_syntax noprefix
Stack frame
 .equ myString,-48
 .equ myInt, -16
 .equ canary,-8
 .equ localSize,-48
Useful constants
 .equ MAX,20 # character buffer limit
Constant data
 .section	.rodata
 .align 8
prompt:
 .string "Enter up to 16 hex characters: "
format:
 .string "%lx = %li\n"
Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rdi, prompt[rip] # prompt user
 call writeStr

 mov esi, MAX # get user input
 lea rdi, myString[rbp]
 call readLn

 lea rsi, myInt[rbp] # for result
 lea rdi, myString[rbp] # convert to int
 call hexToInt

350 Chapter 16

 mov rdx, myInt[rbp] # converted value
 mov rsi, myInt[rbp]
 lea rdi, format[rip] # printf format string
 mov eax, 0
 call printf

 mov eax, 0 # return 0;
 mov rcx, canary[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-11: The main function for the program converting hexadecimal to long int in
assembly language

There isn’t anything new in the main function here, but we’re using
more meaningful labels and added comments to make it easier to read. As
mentioned earlier, rather than type cast the char variables, we’ll use the
8-bit portion of a register for our assembly language version of hexToInt, as
in Listing 16-12.

hexToInt.s
Converts hex characters in a C string to int.
Calling sequence:
rdi <- pointer to source string
rsi <- pointer to long int result
returns number of chars converted
 .intel_syntax noprefix

Stack frame
 .equ count,-4
 .equ localSize,-16
Useful constants
 .equ GAP,0x07
 .equ NUMMASK,0x0f # also works for lowercase
 .equ NUL,0
 .equ NINE,0x39 # ASCII for '9'
Code
 .text
 .globl hexToInt
 .type hexToInt, @function
hexToInt:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 1 mov dword ptr count[rbp], 0 # count = 0
 2 mov qword ptr [rsi], 0 # initialize to 0
 3 mov al, byte ptr [rdi] # get a char

Computing with Bitwise Logic, Multiplication, and Division Instructions 351

whileLoop:
 cmp al, NUL # end of string?
 je allDone # yes, all done
 cmp al, NINE # no, is it alpha?
 jbe numeral # no, nothing else to do
 sub al, GAP # yes, numeral to alpha gap
numeral:
 4 and al, NUMMASK # convert to 4-bit int
 sal qword ptr [rsi], 4 # make room
 5 or byte ptr [rsi], al # insert the 4 bits
 inc dword ptr count[rbp] # count++
 inc rdi # increment string ptr
 mov al, byte ptr [rdi] # next char
 jmp whileLoop # and continue
allDone:
 mov eax, dword ptr count[rbp] # return count

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-12: Assembly language version of hexToInt function

We’re using three different sized variables in this function. The count
variable, which shows the number of characters converted, is a 32-bit int 1.
Although our main function doesn’t use this value, you’ll get a chance to use
it when it’s Your Turn. Our conversion results in a 64-bit long int 2. Both
these variables are in memory, so we need to specify their size whenever we
use them (dword ptr and qword ptr, respectively).

The character we are converting fits into a single byte, so we use the al
portion of the rax register 3. When doing this, the high-order 56 bits of
the rax register can hold any bit pattern, but none of our operations on al
will involve these high-order bits. The bit mask we’re using will set the high-
order four bits of the al register to 0 4, so the or instruction will insert only
the four low-order bits of the al register into the low-order 4-bit portion
of the result 5.

Shifts are good for multiplying and dividing by powers of two, but we
also need to be able to multiply and divide by any numbers. We’ll look at
multiplication and division of any integers in the next two sections, defer-
ring fractional and floating-point values until Chapter 19.

YOUR T UR N

1.	 Modify the C main function in Listing 16-7 so it displays the number of
hexadecimal characters converted. Use the assembly language hexToInt
function in Listing 16-12 for the conversion.

2.	 Write a program in assembly language that converts octal input to a long int.

352 Chapter 16

Multiplication
Of course, we need to be able to multiply arbitrary integers, not just by pow-
ers of two. It could be done using loops, but most general-purpose CPUs
include multiply instructions.

Multiplication in C
Let’s modify the C program in Listings 16-7, 16-8, and 16-9 to convert numeric
text strings into decimal integers. When converting from hexadecimal text
strings, we shifted the accumulated value four bits to the left, thus multiply-
ing it by 16. We’ll use the same algorithm for converting decimal text strings
but multiply by 10 instead of 16. Listings 16-13, 16-14, and 16-15 show the C
program.

/* convertDec.c
 * Reads decimal number from keyboad and displays how
 * it's stored in hexadecimal.
 */

#include <stdio.h>
#include "writeStr.h"
#include "readLn.h"
#include "decToUInt.h"
#define MAX 20
int main()
{
 char theString[MAX];
 unsigned int theInt;

 writeStr("Enter an unsigned integer: ");
 readLn(theString, MAX);

 decToUInt(theString, &theInt);
1 printf("\"%s\" is stored as 0x%x\n", theString, theInt);

 return 0;
}

Listing 16-13: Program to convert a numeric text string into an unsigned decimal integer

The main function for this decimal conversion program is almost the
same as for the hexadecimal conversion program in the previous sec-
tion. The primary difference is that we display the original text string
entered by the user and show how the resulting unsigned int is stored in
hexadecimal 1.

The function to do the conversion, decToUInt, takes a pointer to the text
string and a pointer to the variable for the primary output, and it returns
the number of characters that were converted (Listing 16-14).

/* decToUInt.h
 * Converts decimal character string to unsigned int.

Computing with Bitwise Logic, Multiplication, and Division Instructions 353

 * Returns number of characters.
 */

#ifndef DECTOUINT_H
#define DECTOUINT_H
int decToUInt(char *stringPtr, unsigned int *intPtr);
#endif

Listing 16-14: Header file for the decToUInt function

Listing 16-15 shows the implementation of the decToUInt function.

/* decToUInt.c
 * Converts decimal character string to unsigned int.
 * Returns number of characters.
 */

#include <stdio.h>
#include "decToUInt.h"
#define INTMASK0xf

int decToUInt(char *stringPtr, unsigned int *intPtr)
{
 int radix = 10;
 char current;
 int count = 0;

 *intPtr = 0;
 current = *stringPtr;
 while (current != '\0')
 {
 1 current = current & INTMASK;
 2 *intPtr = *intPtr * radix;
 3 *intPtr += current;
 stringPtr++;
 count++;
 current = *stringPtr;
 }
 return count;
}

Listing 16-15: The decToUInt function

The first difference between this algorithm and the one for hexa-
decimal is that we don’t need to check for alphabetic characters because
the ASCII code for the numeric characters is contiguous from 0 to 9.
Since the low-order four bits of the ASCII code for the numerals is the
same as the integer value it represents, we can simply mask off the high-
order four bits 1.

As we saw, when working with hexadecimal, we can easily make room
for the new value by shifting the accumulating result, but this works only
when the maximum of the new value is a power of two. When working with
decimal, we need to multiply the accumulating result by 10 2, and then we
need to add the new value 3.

354 Chapter 16

The compiler generates the assembly language for the decToUInt func-
tion, shown in Listing 16-16.

 .file "decToUInt.c"
 .intel_syntax noprefix
 .text
 .globl decToUInt
 .type decToUInt, @function
decToUInt:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -24[rbp], rdi ## save stringPtr
 mov QWORD PTR -32[rbp], rsi ## save intPtr
 mov DWORD PTR -4[rbp], 10 ## radix = 10;
 mov DWORD PTR -8[rbp], 0 ## count = 0;
 mov rax, QWORD PTR -32[rbp]
 mov DWORD PTR [rax], 0 ## *intPtr = 0;
 mov rax, QWORD PTR -24[rbp]
 movzx eax, BYTE PTR [rax]
 mov BYTE PTR -9[rbp], al ## load character
 jmp .L2 ## go to bottom
.L3:
 and BYTE PTR -9[rbp], 15 ## convert to int
 mov rax, QWORD PTR -32[rbp]
 mov edx, DWORD PTR [rax] ## load current value
 mov eax, DWORD PTR -4[rbp] ## load radix
 1 imul edx, eax ## times 10
 mov rax, QWORD PTR -32[rbp]
 mov DWORD PTR [rax], edx ## store 10 times current
 mov rax, QWORD PTR -32[rbp]
 mov edx, DWORD PTR [rax] ## load 10 times current
 2 movsx eax, BYTE PTR -9[rbp] ## byte to 32 bits
 3 add edx, eax ## add in latest value
 mov rax, QWORD PTR -32[rbp]
 mov DWORD PTR [rax], edx ## *intPtr += current;
 add QWORD PTR -24[rbp], 1 ## stringPtr++;
 add DWORD PTR -8[rbp], 1 ## count++;
 mov rax, QWORD PTR -24[rbp]
 movzx eax, BYTE PTR [rax]
 mov BYTE PTR -9[rbp], al ## load next character
.L2:
 cmp BYTE PTR -9[rbp], 0 ## NUL?
 jne .L3 ## no, keep going
 mov eax, DWORD PTR -8[rbp] ## yes, return count;
 pop rbp
 ret
 .size decToUInt, .-decToUInt
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 16-16: Compiler-generated assembly language for the decToUInt function

Computing with Bitwise Logic, Multiplication, and Division Instructions 355

The assembly language for the decToUInt function is similar to the
assembly language for the hexToInt function shown in Listing 16-12. The pri-
mary differences are that the accumulated result is multiplied by the radix
we’re converting to, 10 for decimal, using the imul instruction 1, and that
the new value is type cast to be a 32-bit int 2 before it’s added to the accu-
mulated result 3.

The x86-64 instruction set includes both an unsigned multiply instruc-
tion, mul, and a signed one, imul. It may seem odd that the compiler is using
the signed multiply instruction to convert the numeric text string to an
unsigned int. We’ll see the reason after looking at the details of the two
instructions.

Multiply Instructions
The signed multiply instruction can have one, two, or three operands:

imul—Signed Multiply

Performs a signed multiply.

imul reg multiplies the integer in al, ax, eax, or rax by the integer in reg,
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

imul mem multiplies the integer in al, ax, eax, or rax by the integer in mem,
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

imul reg1, reg2 multiplies the integer in reg1 by the integer in reg2, leav-
ing the result in reg1. reg1 and reg2 can be the same register.

imul reg, mem multiplies the integer in reg by the integer in mem, leaving
the result in reg.

imul reg1, reg2, imm multiplies the integer in reg2 by the integer imm,
leaving the result in the destination reg1. reg1 and reg2 can be the same
register.

imul reg, mem, imm multiplies the integer in mem by the integer imm, leav-
ing the result in reg.

The width of the integers in registers or in memory must be the same.
In the first form, the width of the result will be twice that of the integers
being multiplied and will be sign-extended in the high-order portion.
In the second and third forms, the n-bit destination is multiplied by the
n -bit source and n low-order bits left in the destination. In the last two
forms –128 ≤ imm ≤ +127, which is sign-extended to the same width as the
source and destination registers before multiplying it by the n-bit source,
leaving the n low-order bits in the destination register.

In all but the first two forms, if the width of the result does not exceed
the width or the two integers being multiplied, both the CF and OF in the
rflags register are set to 0. If the width of the result exceeds the width
of the two integers being multiplied, the high-order portion is lost, and
both the CF and OF in the rflags register are set to 1.

356 Chapter 16

mul—Unsigned Multiply

Performs an unsigned multiply.

mul reg multiplies the integer in al, ax, eax, or rax by the integer in reg,
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

mul mem multiplies the integer in al, ax, eax, or rax by the integer in mem,
leaving the result in ax, dx:ax, edx:eax, or rdx:rax, respectively.

The width of the integers in registers or in memory must be the same.
The width of the result will be twice that of the integers being multi-
plied and will not be sign-extended in the high-order portion.

When multiplying two n-bit integers, the product can be up to 2n bits
wide. Without offering a formal proof here, you can probably be convinced
by considering the largest 3-bit number, 111. Add 1 to get 1000. From 1000 ×

1000 = 1000000, we can conclude that 111 × 111 ≤ 111111. More precisely, 111 × 111

= 110001.

The mul instruction and the single-operand forms of the imul instruc-
tion allow for the possibility of the full width of 2n for the product when
multiplying two n -bit integers. When multiplying the 8-bit integer in al
by an 8-bit integer, the 16-bit result is left in ax. For multiplying two 16-bit
integers, the notation dx:ax means that the high-order 16 bits of the 32-bit
result is stored in the dx register, and the low-order 16 bits in the ax register.
Similarly, edx:eax means the high-order 32 bits of the 64-bit result are in edx
and the low-order 32 bits in eax, and rdx:rax means the high-order 64 bits
of the 128-bit result are in rdx and the low-order 64 bits in rdx. The 32-bit
multiply, which uses edx:eax for the 64-bit result, also zeros the high-order
32 bits of both the rdx and rax registers, like most arithmetic instructions, so
any data that might be in those parts of the registers would be lost.

It’s important to remember that the portions of the rax and rdx registers
(only rax for 8-bit multiply) used by the mul instruction and the single-operand
forms of the imul instruction never appear as operands in the instruction. We
can summarize the use of the mul and single-operand forms of the imul instruc-
tions in Table 16-1.

Table 16-1: Register Usage of mul and Single-Operand imul

Multiplier Multiplicand Product

Reg or mem size Low-order High-order Low-order

8 bits al ah al

16 bits ax dx ax

32 bits eax edx eax

64 bits rax rdx rax

The two’s complement notation implies a fixed number of bits, but the
mul instruction and the single-operand forms of the imul instruction extend
the number of bits in the result. When we allow for a wider result, we need
to distinguish between sign extension or not. For example, if 1111 is meant

Computing with Bitwise Logic, Multiplication, and Division Instructions 357

to represent 15 in a program and we convert it to eight bits, it should be
00001111. On the other hand, if it is meant to represent –1, then the 8-bit
representation should be 11111111. The mul instruction doubles the width of
the result with no sign extension, and the single-operand forms of the imul
instruction that double the width of the result do extend the sign bit into
the high-order bit positions.

In many cases, we know that the product will always fit within the same
n-bit width of the multiplicand and multiplier. In these cases, the other four
forms of imul provide more flexibility. But if we made a mistake and the
product exceeds the n bits allowed for it, the high-order bits are lost. The
n-bit product is, of course, incorrect, which is noted by the CPU by setting
both the OF and CF in the rflags register to 1.

In the two-operand forms of the imul instruction, if the result does not
exceed the size of the two values being multiplied, it is correct whether it
represents a signed integer (in two’s complement notation) or an unsigned
integer. With the three-operand forms of imul, the 8-bit immediate value is
sign-extended to the same width as the other two operands before the mul-
tiplication, so the result is correct, both signed and unsigned, if it does not
exceed the width of the other integer being multiplied.

Returning to the use of the imul instruction when converting to an
unsigned integer in Listing 16-16 1, the result of the multiplication will be
correct for both signed and unsigned integers as long as the result remains
within 32 bits. As explained, a result exceeding 32 bits would be an error,
and the compiler does not check for that possibility. What makes the result
an unsigned integer is the way the integer is used in the program. In this
program, the main function (Listing 16-13) treats it as an unsigned integer.

Next, we’ll look at using multiplication in assembly language.

Multiplication in Assembly Language
Our assembly language version of the main function for converting a deci-
mal text string to an int, as shown in Listing 16-17, is similar to the C
version.

convertDec.s
 .intel_syntax noprefix
Stack frame
 .equ myString,-48
 .equ myInt, -12
 .equ canary,-8
 .equ localSize,-48
Useful constants
 .equ MAX,11 # character buffer limit
Constant data
 .section .rodata
 .align 8
prompt:
 .string "Enter an unsigned integer: "
format:
 .string "\"%s\" is stored as 0x%x\n"

358 Chapter 16

Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rdi, prompt[rip] # prompt user
 call writeStr

 mov esi, MAX # get user input
 lea rdi, myString[rbp]
 1 call readLn

 lea rsi, myInt[rbp] # for result
 lea rdi, myString[rbp] # convert to int
 2 call decToUInt

 mov edx, myInt[rbp] # converted value
 lea rsi, myString[rbp] # echo user input
 lea rdi, format[rip] # printf format string
 mov eax, 0
 call	 printf

 mov eax, 0 # return 0;
 mov rcx, canary[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-17: Assembly language version of the main function to convert a decimal num-
ber from a text string to an int

After reading the user’s input text string 1, the main function calls the
decToUInt function 2, which converts the text string to the unsigned int that
the string represents, as shown in Listing 16-18.

decToUInt.s
Converts decimal character string to unsigned 32-bit int.
Calling sequence:
rdi <- pointer to source string
rsi <- pointer to int result
returns 0
 .intel_syntax noprefix

Computing with Bitwise Logic, Multiplication, and Division Instructions 359

Useful constants
 .equ DECIMAL,10
 .equ NUMMASK,0x0f
 .equ NUL,0

Code
 .text
 .globl decToUInt
 .type decToUInt, @function
decToUInt:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer

 mov 1 dword ptr [rsi], 0 # result = 0
 mov al, byte ptr [rdi] # get a char
whileLoop:
 cmp al, NUL # end of string?
 je allDone # yes, all done
 2 and eax, NUMMASK # no, 4-bit -> 32-bit int
 3 mov ecx, dword ptr [rsi] # current result
 imul 4 ecx, ecx, DECIMAL # next base position
 5 add ecx, eax # add the new value
 6 mov dword ptr [rsi], ecx # update result
 inc rdi # increment string ptr
 mov al, byte ptr [rdi] # next char
 jmp whileLoop # and continue
allDone:
 mov dword ptr [rsi], ecx # output result
 mov eax, 0 # return 0

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-18: Assembly language version of decToUInt function

Instead of creating a local variable to hold the converted int, we’ll
use the memory location in the calling function, accessing it from the
passed-in address 1. We read the characters into the al register. Masking
off all but the low-order four bits of the eax register type casts the 4-bit
integer from the character in al to a 32-bit int 2 so it can be added to
the result 5.

The destination operand of the imul instruction must be a register, so
we need to load the result into a register for the multiplication operation 3.
Using the same register for one source operand and the destination operand
multiplies the value in the register by the immediate value 4. After adding in
the new value in the ecx register, we store the new value back in the location
of the result 6.

Next, we’ll discuss the inverse of multiplication, division.

360 Chapter 16

YOUR T UR N

1.	 Write the function decToSInt in assembly language that converts a signed
decimal number from its text string format to its int format, using two’s
complement notation. Your function should interpret numbers with no sign
prefix, or with a + prefix, as positive. Negative numbers will have a - pre-
fix. Hint: Your function could call the decToUInt function in Listing 16-18 to
do most of the conversion.

2.	 Modify the decToUInt function in Listing 16-18 so that it doesn’t use a multi-
ply instruction. You will need to use shifting and addition to do this.

Division
When multiplying two n -bit numbers, we were concerned about the result
being 2n bits wide. In division, the quotient will usually be narrower than
the dividend. But division is complicated by the existence of a remainder,
which needs to be stored someplace. When we describe the division instruc-
tions, you’ll see that they start with a 2n-bit-wide dividend and an n-bit-wide
divisor and are limited to an n-bit quotient and an n-bit remainder.

We’ll start with a C function that converts an int to the numerical text
string it represents, the inverse of the earlier decToUInt function.

Division in C
Our main function will read an unsigned integer from the user, add 123 to it,
and show the sum. Our subfunction, intToUDec, will use a division algorithm
to convert a 32-bit int to the text string that represents it so that the main func-
tion can display the sum. Listings 16-19, 16-20, and 16-21 show the program.

/* add123.c
 * Reads an unsigned int from user, adds 123,
 * and displays the result.
 */

#include "writeStr.h"
#include "readLn.h"
#include "decToUInt.h"
#include "intToUDec.h"
#define MAX 11
int main()
{
 char theString[MAX];
 unsigned int theInt;

 writeStr("Enter an unsigned integer: ");
 readLn(theString, MAX);

Computing with Bitwise Logic, Multiplication, and Division Instructions 361

1 decToUInt(theString, &theInt);
 theInt += 123;
 intToUDec(theString, theInt);

 writeStr("The result is: ");
 writeStr(theString);
 writeStr("\n");

 return 0;
}

Listing 16-19: Program to add 123 to an unsigned integer

The main function for this program is quite simple. We’ll use the decToUInt
function from earlier, either the C version (Listing 16-15) or assembly lan-
guage version (Listing 16-18), to convert the user’s input to an int 1.

/* intToUDec.h
 * Converts an int to corresponding unsigned text
 * string representation.
 */

#ifndef INTTOUDEC_H
#define INTTOUDEC_H
void intToUDec(char *decString, unsigned int theInt);
#endif

Listing 16-20: Header file for the intToUDec function

The header file for the intToUDec function shows that the output,
decString, is passed by pointer, and the input, theInt, is passed by value.
Listing 16-21 shows the implementation of intToUDec.

/* intToUDec.c
 * Converts an int to corresponding unsigned text
 * string representation.
 */

#include "intToUDec.h"
#define ASCII 0x30
#define MAX 12
#define NUL '\0'

void intToUDec(char *decString, unsigned int theInt)
{
 int base = 10;
 char reverseArray[MAX];
 char digit;
 char *ptr = reverseArray;

1 *ptr = NUL; // start with termination char
 ptr++;
 do
 {
 2 digit = theInt % base;

362 Chapter 16

 3 digit = ASCII | digit;
 *ptr = digit;
 4 theInt = theInt / base;
 ptr++;
 } while (theInt > 0);
5 do // reverse the string
 {
 ptr--;
 *decString = *ptr;
 decString++;
 } while 6 (*ptr != NUL);
}

Listing 16-21: Function to convert a 32-bit unsigned int to its corresponding text string for
display

The algorithm we’re using to find the characters that represent the
unsigned int involves the repeated integer division of the unsigned int by the
number base, 10 in this function. The % operator computes the remainder
from the division, which will be the value of the low-order digit 2. We convert
this single digit to its ASCII character with an OR operation 3 and append
it the string we’re creating. Now that we’ve converted the low-order digit,
the / operator will perform an integer divide, effectively removing the
low-order digit from theInt 4.

Since this algorithm works from right to left, the characters are stored
in reverse order. We need to reverse the order of the text string for the call-
ing function 5. Storing the NUL character first 1 provides a way to know
when the entire text string has been completely copied in reverse order 6.

Next, we’ll look at the assembly language generated by the compiler;
see Listing 16-22.

 .file "intToUDec.c"
 .intel_syntax noprefix
 .text
 .globl intToUDec
 .type intToUDec, @function
intToUDec:
 push rbp
 mov rbp, rsp
 sub rsp, 64
 mov QWORD PTR -56[rbp], rdi
 mov DWORD PTR -60[rbp], esi
 mov rax, QWORD PTR fs:40
 mov QWORD PTR -8[rbp], rax
 xor eax, eax
 mov DWORD PTR -36[rbp], 10 ## base = 10;
 lea rax, -20[rbp] ## place to store string
 mov QWORD PTR -32[rbp], rax
 mov rax, QWORD PTR -32[rbp]
 mov BYTE PTR [rax], 0
 add QWORD PTR -32[rbp], 1
.L2:
 mov ecx, DWORD PTR -36[rbp] ## load base

Computing with Bitwise Logic, Multiplication, and Division Instructions 363

 mov eax, DWORD PTR -60[rbp] ## load the int
 1 mov edx, 0 ## clear high-order
 div ecx
 2 mov eax, edx ## remainder
 3 mov BYTE PTR -37[rbp], al ## store char portion
 4 or BYTE PTR -37[rbp], 48 ## convert to char
 mov rax, QWORD PTR -32[rbp] ## pointer to string
 movzx edx, BYTE PTR -37[rbp] ## load the char
 mov BYTE PTR [rax], dl ## store the char
 mov esi, DWORD PTR -36[rbp] ## load base
 mov eax, DWORD PTR -60[rbp] ## load the int
 5 mov edx, 0 ## clear high-order
 div esi
 mov DWORD PTR -60[rbp], eax ## store quotient
 add QWORD PTR -32[rbp], 1 ## ptr++;
 cmp DWORD PTR -60[rbp], 0 ## quotient > 0?
 jne .L2 ## yes, continue
.L3:
 sub QWORD PTR -32[rbp], 1 ## no, reverse string
 mov rax, QWORD PTR -32[rbp]
 movzx edx, BYTE PTR [rax]
 mov rax, QWORD PTR -56[rbp]
 mov BYTE PTR [rax], dl
 add QWORD PTR -56[rbp], 1
 mov rax, QWORD PTR -32[rbp]
 movzx eax, BYTE PTR [rax]
 test al, al
 jne .L3
 nop
 mov rax, QWORD PTR -8[rbp]
 xor rax, QWORD PTR fs:40
 je .L4
 call __stack_chk_fail@PLT
.L4:
 leave
 ret
 .size intToUDec, .-intToUDec
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 16-22: Compiler-generated assembly language for the intToUDec function

As you will see in the more detailed description of the div instruction
coming up, we can divide a 2n-bit number by an n-bit number. In our envi-
ronment, an int is 32 bits. The div instruction assumes that we are dividing
a 64-bit long int by a 32-bit int. The high-order 32 bits of the long int must
be placed in edx, and the low-order 32 bits in eax, before the division. In
many cases, the dividend is within the low-order 32 bits, but we need to be
careful to fill in the full 64 bits of edx:eax by storing 0 in edx 1.

After we have set up edx:eax, the div instruction will divide that 64-bit
integer by the 32-bit integer in div’s single operand, ecx in this example.
The division will leave the remainder in the edx register 2. By storing only
the al portion of the rax register, the remainder is type cast as it’s stored in

364 Chapter 16

the local char variable 3 and then converted to an ASCII character 4. We
still need to divide the integer we’re converting by 10 to effectively remove
the low-order decimal digit. Before performing this division, we need to
remember to zero edx 5.

Division Instructions
The x86-64 architecture provides two integer-divide instructions, signed
and unsigned:

idiv—Signed Divide

Performs a signed divide.

idiv reg divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer
in reg, leaving the quotient in al, ax, eax, or rax, and the remainder in ah,
dx, edx, or rdx, respectively.

idiv mem divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer
in mem, leaving the quotient in al, ax, eax, or rax, and the remainder in ah,
dx, edx, or rdx, respectively.

The division yields a signed integer quotient, truncated toward zero,
and a remainder. The sign of the remainder is the same as the sign of
the dividend. The states of the OF, SF, ZF, AF, PF, and CF flags in the rflags
register are all undefined (can be either 0 or 1) after the idiv instruc-
tion is executed. If the quotient won’t fit within the respective register
(al, ax, eax, or rax), the instruction causes a system error.

div—Unsigned Divide

Performs an unsigned divide.

div reg divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer
in reg, leaving the quotient in al, ax, eax, or rax, and the remainder in ah,
dx, edx, or rdx, respectively.

div mem divides the integer in ax, dx:ax, edx:eax, or rdx:rax by the integer
in mem, leaving the quotient in al, ax, eax, or rax, and the remainder in ah,
dx, edx, or rdx, respectively.

The division yields an unsigned integer quotient, truncated toward
zero, and a remainder. The states of the OF, SF, ZF, AF, PF, and CF flags in
the rflags register are all undefined (can be either 0 or 1) after the idiv
instruction is executed. If the quotient won’t fit within the respective
register (al, ax, eax, or rax), the instruction causes a system error.

If the divisor is 0 or the quotient is too large to fit into the destination
register, the idiv and div instructions cause a type of system error called an
exception. We’ll look at exceptions in Chapter 21. For now, exceptions are
handled by the operating system, which typically terminates the application
with a somewhat cryptic error message.

It’s important to remember that the portions of the rax and rdx registers
(only rax for 8-bit divide) used by the divide instructions never appear as

Computing with Bitwise Logic, Multiplication, and Division Instructions 365

operands in the instruction. We can summarize register use of the div or
idiv instruction in Table 16-2.

Table 16-2: Register Use of the div and idiv Instructions

Divisor Dividend Results

Reg or mem size High-order Low-order Remainder Quotient

8 bits ah al ah al

16 bits dx ax dx ax

32 bits edx eax edx eax

64 bits rdx rax rdx rax

Since the register names in Table 16-2 don’t appear as part of the
instruction’s operands, a common programming error is to forget to set the
high-order portion of the dividend to the correct value before executing a
division instruction. For the div instruction, this usually means setting ah,
dx, edx, or rdx to 0.

For the idiv instruction, you need to be careful to preserve the sign of the
dividend before executing the instruction. For example, if you’re using 32-bit
integers and the dividend is –10 (= 0xfffffff6), you need to set edx to 0xffffffff
to create –10 in 64 bits. The x86-64 instruction set includes four instructions
that do not take any operands but extend the sign to the registers used in divi-
sion, as shown in Table 16-3. When the dividend and divisor are the same size
in your program, which is common, you should use the corresponding instruc-
tion from Table 16-3 immediately before an idiv instruction.

Table 16-3: Instructions to Sign-Extend an Integer
for Signed Division

Instruction From To, high-order To, low-order

cbw al ah al

cwd ax dx ax

cdq eax edx eax

cqo rax rdx rax

The / and % division operators in C and C++ follow the same rules for
integers as the x86-64 div and idiv instructions: the quotient is truncated
toward zero. This is not the case for all programming languages, which can
create confusion when using signed division of integers.

For example, in Python the / operator computes the floating-point
result. To get the integer part of a quotient, we need to use the floor divi-
sion operator, //, which causes Python to apply the floor operation to the
floating-point result. The floor of a real number, x, is the greatest integer
that is less than or equal to x. So when the quotient is negative, the value in
Python is one less than the value in C and C++. The % operator in Python
gives a remainder value based on floor division for the quotient.

366 Chapter 16

N O T E 	 The remarks here apply to Python 3. As of January 1, 2020, Python 2 is no longer
supported.

With signed division, the sign of the quotient is positive if both the
dividend and divisor are of the same sign, and it’s negative if they are of the
opposite sign, like multiplication. But the sign of the remainder depends
on how the quotient is truncated—toward zero as in C or toward the next
lower signed integer as in Python. In all cases, when dividing a by b,

r = a – b × q

where r is the remainder, and q is the quotient. With truncation toward
zero, the sign of the remainder is the same as the sign of the dividend, but
with truncation toward the lower signed integer, the sign of the remainder
is the same as that of the divisor. Proving it from this equation is a bit tricky,
but you can probably be convinced if you plug in the values from Table 16-4
that I got for C and Python, where a is the dividend, b the divisor, q the quo-
tient, and r the remainder.

Table 16-4: Dividing a by b,
C vs. Python 3

C Python 3

a b q r q r

27 4 6 3 6 3

27 –4 –6 3 –7 –1

–27 4 –6 –3 –7 1

–27 –4 6 –3 6 –3

As you can see from this discussion, signed division can yield unex-
pected results. I try to design my algorithms to avoid signed division and
adjust the sign after the result is computed.

The / and % are two separate operators in C, and the compiler generated
a div instruction for the use of each C operation, as shown in Listing 16-22.
Since the div instruction performs both operations, our assembly language
version of intToUDec will use this fact.

Division in Assembly Language
We didn’t look at the compiler-generated assembly language for the C version
of our add123 program, as shown in Listing 16-19. It’s similar to the assembly
language version in Listing 16-23.

add123.s
Adds 123 to an int.
 .intel_syntax noprefix
Stack frame
 .equ myString,-32

Computing with Bitwise Logic, Multiplication, and Division Instructions 367

 .equ myInt, -12
 .equ canary,-8
 .equ localSize,-32
Useful constants
 1 .equ MAX,11 # character buffer limit
Constant data
 .section .rodata
 .align 8
prompt:
 .string "Enter an unsigned integer: "
message:
 .string "The result is: "
endl:
 .string "\n"
Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rdi, prompt[rip] # prompt user
 call writeStr

 mov esi, MAX # get user input
 lea rdi, myString[rbp]
 call readLn

 lea rsi, myInt[rbp] # for result
 lea rdi, myString[rbp] # convert to int
 2 call decToUInt

 mov eax, dword ptr myInt[rbp]
 3 add eax, 123
 mov dword ptr myInt[rbp], eax

 4 mov esi, myInt[rbp] # the number
 5 lea rdi, myString[rbp] # place for string
 call intToUDec

 lea rdi, message[rip] # message for user
 call writeStr

 lea rdi, myString[rbp] # number in text
 call writeStr

 lea rdi, endl[rip]
 call writeStr

 mov eax, 0 # return 0;
 mov rcx, canary[rbp] # retrieve saved canary

368 Chapter 16

 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-23: Assembly language version of main function of program to add 123 to an
unsigned integer

The main function for our program is probably familiar to you by now.
Since unsigned integers can be as large as 4,294,967,295, we’ll allow up to
11 characters as user input 1, which includes the terminating NUL character.
Before adding 123 to it, we need to convert the input integer from a text
string to an unsigned int 2.

The addition itself is a single instruction 3. The sum is passed to the
intToUDec function by value 4, and the address of the input string is passed
by pointer 5.

We’ll use the same algorithm in our assembly language version of
intToUDec, as shown in Listing 16-24, but our implementation differs quite a
bit from the compiler’s version.

intToUDec.s
Creates character string that represents unsigned 32-bit int.
Calling sequence:
rdi <- pointer to resulting string
esi <- unsigned int
 .intel_syntax noprefix

Stack frame
 .equ reverseArray,-32
 .equ canary,-8
 .equ localSize,-32
Useful constants
 .equ DECIMAL,10
 .equ ASCII,0x30
 .equ NUL,0

Code
 .text
 .globl intToUDec
 .type intToUDec, @function
intToUDec:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rcx, reverseArray[rbp] # pointer
 mov byte ptr [rcx], NUL # string terminator
 inc rcx # a char was stored

Computing with Bitwise Logic, Multiplication, and Division Instructions 369

 mov eax, esi # int to represent
 mov r8d, DECIMAL # base we're in
convertLoop:
 1 mov edx, 0 # for remainder
 div r8d # quotient and remainder
 2 or dl, ASCII # convert to char
 3 mov byte ptr [rcx], dl # append to string
 inc rcx # next place for char
 cmp eax, 0 # all done?
 ja convertLoop # no, continue
reverseLoop:
 dec rcx # yes, reverse string
 mov dl, byte ptr [rcx] # one char at a time
 mov byte ptr [rdi], dl
 inc rdi # pointer to dest. string
 cmp dl, NUL # was it NUL?
 jne reverseLoop # no, continue

 mov eax, 0 # return 0;
 mov rcx, canary[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 16-24: Assembly language version of intToUDec function

The primary difference in our assembly language version is that we take
advantage of knowing that the div instruction leaves the quotient in eax and
the remainder in edx 2. Since the conversion is base 10, we know that the
remainder will always be in the range 0–9. Thus, the remainder can be easily
converted to its corresponding numerical ASCII code 2. Having appended
the newly converted character to the text string we’re creating 3, the edx
register is zeroed before the next time the div instruction is executed 1.

Division takes more time than multiplication. People have invented algo-
rithms for determining the low-order decimal digit without using division.
One technique when dividing by a constant is to use the fact that shifting is
much faster than division. For example, in our intToUDec function, we’re divid-
ing by 10. When dividing a number, x, by 10, consider the following equation:

10

2n

((
10

x
=

2n
x

×

10

2n
= × x \2n

Now, if we compute the constant 2n/10, we can multiply x by this new
constant and then do the division by shifting the result of the multiplica-
tion n bit positions to the right. The details are beyond the scope of this
book, but you can see how this works by looking at the assembly language

370 Chapter 16

generated by the compiler, using the -O1 optimization option for the
intToUDec function in Listing 16-21.

YOUR T UR N

1.	 Write the function intToSDec in assembly language that converts a 32-bit
int to its text string representation. Your function should prepend nega-
tive numbers that have a negative sign but not prepend positive number
with a plus sign. Hint: Your function could call the intToUDec function in
Listing 16-24 to do most of the conversion.

2.	 Write the two functions, putInt and getInt, in assembly language. putInt
takes one argument, a 32-bit signed integer, and displays it on the screen.
getInt takes one argument, a pointer to a place for storing a 32-bit signed
integer, which it reads from keyboard input. putInt should call your
intToSDec function, and getInt should call your decToSInt function. Note:
putInt and getInt will be used in subsequent chapters for displaying and
reading integers.

3.	 Write a program in assembly language that allows a user to enter two
signed decimal integers. The program will add, subtract, multiply, and
divide the two integers. It will display the sum, difference, product, and
quotient and remainder resulting from these operations.

What You’ve Learned

Bit masking   We can use bitwise logic instructions to directly change
bit patterns in variables.

Bit shifting   Bits in variables can be shifted left or right, effectively
multiplying or dividing by multiples of 2.

Mutliplication   The signed multiply instruction has several forms,
making it more flexible than the unsigned multiply instruction, which
has only one form.

Division   Both the signed and unsigned divide instructions pro-
duce a quotient and a remainder. Signed integer division is somewhat
complicated.

Converting numbers between binary storage and character display  
Arithmetic operations are easier when numbers are stored in the binary
system, but keyboard input and screen display use the corresponding
character format.

We’ve covered ways to organize program flow and perform arithmetic
or logic operations on data items. Organizing the data is another important
part of designing computing algorithms. In the next chapter, we’ll look at
two of the most fundamental ways to organize data: arrays and records.

17
D A T A S T R U C T U R E S

An essential part of programming is deter-
mining how to organize data. In this chapter,

we’ll look at two of the most fundamental
ways of organizing data: arrays, which can be

used for grouping only data items of the same data
type; and records, which can be used for grouping
data items of different data types.

As you will see, these ways of organizing data determine how we access the
individual data items in each. Both require two addressing items to locate a
data item. Since the data items are all the same type in an array, we can access
an individual data item from knowing the name of the array plus the index
number of the item. Accessing an individual data item in a record requires the
name of the record and the name of the data item located in the record.

372 Chapter 17

Arrays
An array is a collection of data elements of the same data type, arranged in
a sequence. We can access a single element in an array by using the name
of the array together with an index value, which specifies the number of the
element relative to the beginning of the array. We have used char arrays in
previous chapters to store ASCII characters as text strings. Each element in
the array was the same type, a char, which is one byte. In our applications,
we were accessing each character in order, so we started with a pointer to
the first char and simply incremented it by 1 to access each subsequent char.
We didn’t need an index to locate each char within the text string array.

In this chapter, we’ll look at int arrays, which use four bytes for each
data element in the array. If we started with a pointer to the first element,
we would need to increment it by 4 to access each subsequent element. But
it’s much easier to use the array index number to access each individual
element. You’ll see how the index number is converted to an address offset
to access an array element relative to the beginning of the array. You’ll also
see that C passes arrays to other functions differently from other data items.

Arrays in C
We define an array in C by stating the element data type, giving the array a
name, and specifying the number of elements in the array. Let’s start with
the example in Listing 17-1.

/* fill2XIndex.c
 * Allocates an int array, stores 2 X element number
 * in each element and prints array contents.
 */
#include <stdio.h>
#include "twiceIndex.h"
#include "displayArray.h"
#define N 10

int main(void)
{
1 int intArray[N];

 twiceIndex(2intArray, N);
 displayArray(intArray, N);
 return 0;
}

Listing 17-1: Filling an array with integers and then displaying the contents

As stated, we define an array by giving the data type of each element
(int), a name for the array (intArray), and the number of elements in the
array (N) 1. This main function calls the twiceIndex function, which sets each
element in the array to twice its index. For example, it stores the int 8 in
array element number 4. It then calls displayArray, which prints the contents
of the entire array in the terminal window.

Data Structures 373

One of the first things you might notice about the arguments we’re pass-
ing to the functions is that it appears the array is being passed by value, since
we give only its name in the argument list 2. But since twiceIndex stores val-
ues in the array, it needs to know where the array is located in memory.

Usually, a programmer passes an input value to a function by value. But
if the input consists of a large number of data items, copying them all into
registers and onto the stack would be very inefficient, in which case it makes
more sense to pass by pointer. Arrays almost always have many data items,
so the designers of the C language decided to always pass them by pointer.
When you give the name of the array as an argument to a function call, C
will pass the address of the first element of the array.

We can see this explicitly by looking at the compiler-generated assem-
bly language for this main function, as shown in Listing 17-2.

 .file "fill2XIndex.c"
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 48 ## memory for array
 mov rax, QWORD PTR fs:40
 mov QWORD PTR -8[rbp], rax
 xor eax, eax
 1 lea rax, -48[rbp] ## load address of array
 mov esi, 10 ## number of elements
 mov rdi, rax ## pass address
 call twiceIndex@PLT
 2 lea rax, -48[rbp] ## load address of array
 mov esi, 10
 mov rdi, rax ## pass address
 call displayArray@PLT
 mov eax, 0
 mov rdx, QWORD PTR -8[rbp]
 xor rdx, QWORD PTR fs:40
 je .L3
 call __stack_chk_fail@PLT
.L3:
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 17-2: Compiler-generated assembly language showing an array passed by pointer

In the assembly language, we can see the address of the array passed
first to the twiceIndex function 1 and then to the displayArray function 2.
The elements of the array are inputs to the displayArray function, so it does
not need to know the address of the array, but it’s much more efficient to
pass the address than a copy of each of the array elements.

374 Chapter 17

 Next, we’ll look at the subfunctions that store values in the array and dis-
play the contents of the array, as shown in Listings 17-3, 17-4, 17-6, and 17-7.

/* twiceIndex.h
 * Stores 2 X element number in each element.
 */

#ifndef TWICEINDEX_H
#define TWICEINDEX_H
void twiceIndex(int theArray[], int nElements);
#endif

Listing 17-3: Header file for the twiceIndex function

The int theArray[] syntax is equivalent to int *theArray, a pointer to an
int. Using either syntax, C will pass the address of the first element of the
array to the function. We need to pass the number of elements in the array
separately.

/* twiceIndex.c
 * Stores 2 X element number in each array element.
 */
#include "twiceIndex.h"

void twiceIndex(int theArray[], int nElements)
{
 int i;

 for (i = 0; i < nElements; i++)
 {
 theArray[i] = 2 * i;
 }
}

Listing 17-4: Function to store two times the index number in each element of an array

The twiceIndex function uses a for loop to process the array, storing two
times the index value in each element of the array. Let’s look at the assem-
bly language generated by the compiler for this function; see Listing 17-5.

 .file "twiceIndex.c"
 .intel_syntax noprefix
 .text
 .globl twiceIndex
 .type twiceIndex, @function
twiceIndex:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -24[rbp], rdi ## save array address
 mov DWORD PTR -28[rbp], esi ## and num of elements
 mov DWORD PTR -4[rbp], 0 ## i = 0
 jmp .L2
.L3:
 mov eax, DWORD PTR -4[rbp]

Data Structures 375

 1 cdqe ## to 64 bits
 lea rdx, 20[0+rax*4] ## element offset
 3 mov rax, QWORD PTR -24[rbp] ## array address
 add rax, rdx ## element address
 mov edx, DWORD PTR -4[rbp] ## current i
 add edx, edx ## 2 times i
 mov DWORD PTR [rax], edx ## store 2 times i
 add DWORD PTR -4[rbp], 1 ## i++
.L2:
 mov eax, DWORD PTR -4[rbp]
 cmp eax, DWORD PTR -28[rbp]
 jl .L3
 nop
 pop rbp
 ret
 .size twiceIndex, .-twiceIndex
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 17-5: Compiler-generated assembly language for the twiceIndex function

The algorithm used by the compiler to access an array element is as
follows: compute the offset of the element from the beginning of the array
and then add that offset to the address of the beginning. This is an array of
ints, so each element is four bytes. The compiler uses the register indirect
with indexing addressing mode (described in Chapter 12) to compute the
address offset of the int element 2.

This addressing mode requires that all the registers be the same size.
Since we’re using 64-bit addressing in our environment, the 32-bit index
value in eax must be extended to 64 bits before it can be used to compute
the address offset. The compiler chose to do this with the cdge instruc-
tion 1 because the index variable, i, was declared as an int, which is signed
by default.

The cdqe instruction doubles the size of the value in the eax register
from 32 bits to the full 64 bits in the rax register. It copies the sign bit in
eax into all the high-order 32 bits of rax, thus preserving the sign in the
extended value. There are three such instructions like this, each of which
operates on portions of the rax register:

cbw, cwde, cdqe—Convert Byte to Word, Convert Word to Doubleword,
Convert Doubleword to Quadword

Doubles the size of the source operand using sign extension.

cbw copies bit number 7 in the al register into bits 15–8, doubling the
size from al to ax and preserving the sign. Bits 63–16 are unaffected.

cwde copies bit number 15 in the ax register into bits 31–16, doubling the
size from ax to eax and preserving the sign. Bits 63–32 are zeroed.

cdqe copies bit number 31 in the eax register into bits 63–32, doubling
the size from eax to rax and preserving the sign.

These instructions work only on the rax register and do not affect the
rflags register.

376 Chapter 17

Once we have computed the 64-bit offset of the array element, we can get
the address of the beginning of the array 3 and add this offset to it to get the
address of the array element. The algorithm used by the compiler doubles
the value of the index by adding it to itself. It then stores this at the computed
address of the array element.

After the array has been filled with data, the contents are displayed
with the displayArray function, as shown in Listings 17-6 and 17-7.

/* displayArray.h
 * Prints array contents.
 */
#ifndef DISPLAYARRAY_H
#define DISPLAYARRAY_H
void displayArray(int theArray[], int nElements);
#endif

Listing 17-6: Header file for the displayArray function

/* displayArray.c
 * Prints array contents.
 */
#include "displayArray.h"
#include "writeStr.h"
#include "putInt.h"
void displayArray(int theArray[], int nElements)
{
 int i;

 for (i = 0; i < nElements; i++)
 {
 writeStr("intArray[");
 putInt(i);
 writeStr("] = ");
 putInt(theArray[i]);
 writeStr("\n");
 }
}

Listing 17-7: Function to display the contents of an int array

The displayArray function also uses a for loop to process each element
of the array. We’ll skip the compiler-generated assembly language for the
displayArray function since it accesses the individual array elements using
the same algorithm as twiceIndex (Listing 17-5).

We’ll do things a little differently when writing this program directly in
assembly language.

Arrays in Assembly Language
Now we’ll write our own assembly language function that fills an array
with values. Our approach will be similar to the compiler’s, but we’ll use

Data Structures 377

instructions that are a little more intuitive. Listing 17-8 shows our main func-
tion. It’s similar to what the compiler generated (Listing 17-2) except that I
have used meaningful names for the constants.

fill2XIndex.s
Allocates an int array, stores 2 X element number
in each element and prints array contents.
 .intel_syntax noprefix
Stack frame
 .equ intArray,-48
 .equ canary,-8
 .equ localSize,-48
Constant
 .equ N,10
Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 mov esi, N # number of elements
 lea rdi, intArray[rbp] # our array
 call twiceIndex

 mov esi, N # number of elements
 lea rdi, intArray[rbp] # our array
 call displayArray

 mov eax, 0 # return 0;
 mov rcx, canary[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 17-8: Filling an array and displaying its contents in assembly language

The main function here simply passes the address of the array and
the number of elements in the array to the two functions, twiceIndex and
displayArray, for processing the array.

Our assembly language version of twiceIndex, as shown in Listing 17-9, uses
instructions that seem a little more intuitive than what the compiler used.

378 Chapter 17

twiceIndex.s
Stores 2 X element number in each array element.
Calling sequence:
rdi <- pointer to array
esi <- number of elements
 .intel_syntax noprefix

Code
 .text
 .globl twiceIndex
 .type twiceIndex, @function
twiceIndex:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer

 mov 1 ecx, 0 # index = 0
storeLoop:
 mov eax, ecx # current index
 2 shl eax, 1 # times 2
 3 mov [rdi+rcx*4], eax # store result
 inc ecx # increment index
 cmp ecx, esi # end of array?
 jl storeLoop # no, loop back

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 17-9: Assembly language function to store twice the index value in each array
element

We are using a register for the indexing variable 1. Recall that when
we are in 64-bit mode, storing a 32-bit value in a register zeros the entire
high-order 32 bits of the register, so we don’t need to extend the index
value to 64 bits when using it as an address offset 3. We also use a shift to
multiply the index by 2 2 instead of adding it to itself.

Our assembly language version of displayArray, as shown in Listing 17-10,
uses the same approach to access the array elements as twiceIndex.

displayArray.s
Prints array contents.
Calling sequence:
rdi <- pointer to array
esi <- number of elements
 .intel_syntax noprefix

Stack frame
 .equ nElements,-8
 .equ localSize,-16
Constant data
 .section .rodata

Data Structures 379

 .align 8
format1:
 .string "intArray["
format2:
 .string "] = "
endl:
 .string "\n"
Code
 .text
 .globl displayArray
 .type displayArray, @function
displayArray:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # local variables
 push rbx # save, use for i
 push r12 # save, use for array pointer

 mov r12, rdi # pointer to array
 mov nElements[rbp], esi # number of elements

 mov ebx, 0 # index = 0
printLoop:
 lea rdi, format1[rip] # start of formatting
 call writeStr
 mov edi, ebx # index
 call 1 putInt
 lea rdi, format2[rip] # more formatting
 call writeStr
 mov edi, [r12+rbx*4] # array element
 call putInt # print on screen
 lea rdi, endl[rip] # next line
 call writeStr

 inc ebx # increment index
 cmp ebx, nElements[rbp] # end of array?
 jl printLoop # no, loop back

 pop r12 # restore registers
 pop rbx
 mov rsp, rbp # yes, restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 17-10: Displaying the elements of an int array in assembly language

Instead of using printf to display the contents of the array, we’re
using the putInt function that was developed in the last “Your Turn” in
Chapter 16 1.

In the next section, we’ll look at how to group items of different data
types.

380 Chapter 17

YOUR T UR N

1.	 Modify the assembly language program in Listings 17-8, 17-9, and 17-10 to
store the element index number in each element of the array and then store
123 in the fifth element before displaying the results.

2.	 In the C program in Listings 17-4, 17-6, and 17-7, we defined the index
variable to be an int, which caused the compiler to use the cdqe instruc-
tion to sign-extend the value when doubling its size for use in the register
indirect with indexing addressing mode. But index will always have a posi-
tive value, so we could have used an unsigned int. Change the definition
of index in that program to an unsigned int. How does this change affect
the assembly language generated by the compiler?

Records
A record (or structure) allows a programmer to group several data items of
possibly different data types together into a new programmer-defined data
type. Each individual data item in a record is called a field or element. A field
is often called a member, especially in object-oriented programming. We’ll
discuss C++ objects in the next chapter.

Since the fields in a record can have different sizes, accessing them is a
bit more complex than accessing the data items in an array. We’ll start with
looking at how this is done, and then we’ll look at how records are passed to
other functions.

Records in C
Let’s start by looking at a program that defines a record, stores data in the
fields of each record, and then displays the values, as shown in Listing 17-11.

/* recordField.c
 * Allocates a record and assigns a value to each field.
 */

#include <stdio.h>

int main(void)
{
1 struct
 {
 char aChar;
 int anInt;
 char anotherChar;
2} x;

3 x.aChar = 'a';

Data Structures 381

 x.anInt = 123;
 x.anotherChar = 'b';

 printf("x: %c, %i, %c\n",
 x.aChar, x.anInt, x.anotherChar);
 return 0;
}

#endif

Listing 17-11: A single record using a struct variable in C

We use the struct keyword to declare a record in C 1. We define the
fields of the record by using the usual C syntax: a data type followed by
the field name. We can define a record by following its declaration with a
name for the record 2. We access the individual fields of a record by using
the dot operator 3.

We can learn how the record is stored in memory by looking at the
compiler-generated assembly language for this function in Listing 17-12.

 .file "recordField.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "x: %c, %i, %c\n"
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 16 ## memory for record
 mov BYTE PTR 1-12[rbp], 97 ## x.aChar = 'a';
 mov DWORD PTR -8[rbp], 123 ## x.anInt = 123;
 mov BYTE PTR -4[rbp], 98 ## x.anotherChar = 'b';
 movzx eax, BYTE PTR -4[rbp] ## load x.anotherChar
 movsx ecx, al ## to 32 bits
 mov edx, DWORD PTR -8[rbp] ## load x.anInt
 movzx eax, BYTE PTR -12[rbp] ## load x.aChar
 movsx eax, al ## to 32 bits
 mov esi, eax
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 mov eax, 0
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 17-12: Accessing the fields of a C struct variable in memory

382 Chapter 17

Like other local variables, the record is allocated in the function’s stack
frame, so its fields are accessed relative to the stack frame pointer, rbp. The
compiler computes the offset from the address in rbp to each field in the
record 1.

We show the layout in memory for the record in Figure 17-1, which
shows the record after the values have been assigned to the three fields.

x.aChar = −12

x.anInt = −8

x.anotherChar = −4

Caller’s rsp

Caller’s rbp

rsp

rbp

′a′

′b′

123

Figure 17-1: Stack frame showing one record implemented as a C struct

An int in our environment takes four bytes and must be aligned on a
four-byte memory address. Although both the two char fields in this record
take only one byte, the alignment requirement for the int field leads to the
six “wasted” bytes, as shown in Figure 17-1. There are also four extra bytes
in the stack frame to create proper stack pointer alignment, as described in
“Variables on the Stack” in Chapter 11.

Records in Assembly Language
Rather than compute the offset from rbp, we’ll use a different technique in
our assembly language version of accessing the fields of a record, as shown
in Listing 17-13.

recordField.s
Allocates a record and assigns a value to each field.
 .intel_syntax noprefix
Stack frame
 .equ x,-12
 .equ localSize,-16
record offsets
 1 .equ aChar,0
 .equ anInt,4
 .equ anotherChar,8
 .equ recordSize,12
Constant data
 .section .rodata
 .align 8
message:
 .string "x: %c, %i, %c\n"
Code
 .text
 .globl	 main

Data Structures 383

 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 2 lea rax, x[rbp] # fill record
 mov byte ptr aChar[rax], 'a'
 mov dword ptr anInt[rax], 123
 mov byte ptr anotherChar[rax], 'c'

 lea rax, x[rbp] # print record
 movzx ecx, byte ptr anotherChar[rax]
 mov edx, dword ptr anInt[rax]
 movzx esi, byte ptr aChar[rax]
 lea rdi, message[rip]
 mov eax, 0
 call printf@plt

 mov eax, 0 # return 0;
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 17-13: Accessing record fields in assembly language.

In our assembly language version, we first equate the field names with
their respective offsets from the beginning of the record 1. The diagram
is Figure 17-1 is useful in coming up with these numbers. Then we can load
the address of the beginning of the record 2 and directly access the fields
using their names.

Passing a record to another function raises additional issues. As you
have seen, we need to specify the type of data that we are passing, but a
record can have many fields, each of which can have a different data type.
In the next section, we’ll see how C solves this problem.

Passing Records to Other Functions in C
Defining the fields every time we define another instance of a record is
cumbersome. C allows us to define our own struct types using a structure tag
(or simply tag), which serves as a synonym for the field definitions. Not only
is this useful for defining multiple records of the same field composition,
but it’s necessary for passing records to other functions.

For example, we defined the struct variable x in Listing 17-11:

struct
 {
 char aChar;
 int anInt;
 char anotherChar;
} x;

384 Chapter 17

Instead, if we create a tag for the fields in the struct like this,

struct aTag
 {
 char aChar;
 int anInt;
 char anotherChar;
 };

then we have created a new programmer-defined data type, struct aTag. We
can then define variables of our new data type in the usual way:

struct aTag x;

We’ll start by declaring our new struct data type in a separate header
file, as shown in Listing 17-14, so that it can be included in each file where it
is used.

/* aRecord.h
 * Declaration of a record.
 */

#ifndef ARECORD_H
#define ARECORD_H
struct 1aTag
{
 char aChar;
 int anInt;
 char anotherChar;
};
#endif

Listing 17-14: Declaration of a programmer-defined record data type in C

The tag for a record in C is a programmer-defined identifier placed
immediately after the struct keyword in the record’s declaration 1. We
can then use aTag to represent the record fields declared in Listing 17-14.
Listing 17-15 shows how we can use the tag to define two records in a
program.

/* records.c
 * Allocates two records, assigns a value to each field
 * in each record, and displays the contents.
 */

#include "aRecord.h"
#include "loadRecord.h"
#include "displayRecord.h"

int main(void)
{
1 struct aTag x;
 struct aTag y;

Data Structures 385

 loadRecord(2&x, 'a', 123, 'b');
 loadRecord(&y, '1', 456, '2');

 displayRecord(3x);
 displayRecord(y);

 return 0;
}

Listing 17-15: Program to load data into two records and then display the contents

When defining a record variable, we need to follow the struct C
keyword with our tag for the type of struct we’re defining 1. Since the
loadRecord function will store data values in the record, we need to pass
the address of the record 2. We can use pass by value to pass a copy of the
record to the displayRecord 3 since it doesn’t change the data values. But
you’ll see as we go through the details that it’s common for programmers
to use pass by pointer for records to avoid copying large amounts of data.

Both x and y are local variables in Listing 17-15, so they will be created
on the stack, as shown in Listing 17-16.

 .file "records.c"
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 sub rsp, 32 ## memory for 2 records
 mov rax, QWORD PTR fs:40
 mov QWORD PTR -8[rbp], rax
 xor eax, eax
 1 lea rax, -32[rbp] ## address of x record
 mov ecx, 98 ## data to store in it
 mov edx, 123
 mov esi, 97
 mov rdi, rax
 call loadRecord@PLT
 lea rax, -20[rbp] ## address of y record
 mov ecx, 50 ## data to store in it
 mov edx, 456
 mov esi, 49
 mov rdi, rax
 call loadRecord@PLT
 2 mov rdx, QWORD PTR -32[rbp] ## 8 bytes of x
 mov eax, DWORD PTR -24[rbp] ## 4 more bytes of x
 mov rdi, rdx
 mov esi, eax
 call displayRecord@PLT
 mov rdx, QWORD PTR -20[rbp] ## 8 bytes of y
 mov eax, DWORD PTR -12[rbp] ## 4 more bytes of y
 mov rdi, rdx
 mov esi, eax

386 Chapter 17

 call displayRecord@PLT
 mov eax, 0
 mov rcx, QWORD PTR -8[rbp]
 xor rcx, QWORD PTR fs:40
 je .L3
 call __stack_chk_fail@PLT
.L3:
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 17-16: Compiler-generated assembly language for the program that stores values in
two records

As we specified, the compiler passes the address of each record to the
loadRecord function 1. However, the records are passed by value to the
displayRecord function, so the compiler passes a copy of all 12 bytes in the
record, including the unused bytes, to the function 2.

Listings 17-17 and 17-18 show the loadRecord function header file and
definition.

/* loadRecord.h
 * Loads record with data.
 */

#ifndef LOADRECORD_H
#define LOADRECORD_H
1 #include "aRecord.h"
int loadRecord(struct aTag *aStruct, char x, int y, char z);
#endif

Listing 17-17: Header file for the loadRecord function

The argument list in Listing 17-17 shows how to use the tag for passing
arguments to a function. The struct aTag syntax means that the data type
of this argument is the C struct that has been declared with the tag, aTag.
We need to #include the file where this tag is declared before using it in this
file 1.

The loadStruct function, as shown in Listing 17-18, introduces a useful C
syntax for dealing with pointers to records.

/* loadRecord.c
 * Loads record with data.
 */

#include "loadRecord.h"

int loadRecord(struct aTag *aRecord, char x, int y, char z)
{
1 (*aRecord).aChar = x;
2 aRecord->anInt = y; /* equivalent syntax */
 aRecord->anotherChar = z;

Data Structures 387

 return 0;
}

Listing 17-18: The loadRecord function

The argument passed to this function is a pointer to the record. We
need to dereference this pointer before accessing the individual fields in
the record it points to. Since the dot operator (.) has higher precedence
than the dereferencing operator (*), we need to use parentheses to do the
dereferencing before the field access 1.

This pair of operations—dereference and then select a field—is so com-
mon and the syntax so cumbersome, the C language designers created an
alternative syntax, -> 2. This performs exactly the same operations as the
other syntax but is more succinct.

Listing 17-19 shows the compiler-generated assembly language for
loadRecord.

 .file "loadRecord.c"
 .intel_syntax noprefix
 .text
 .globl loadRecord
 .type loadRecord, @function
loadRecord:
 push rbp
 mov rbp, rsp
 1 mov QWORD PTR -8[rbp], rdi ## save address of record
 mov DWORD PTR -16[rbp], edx ## save y
 mov eax, ecx
 mov edx, esi
 mov BYTE PTR -12[rbp], dl ## save x
 mov BYTE PTR -20[rbp], al ## save z
 2 mov rax, QWORD PTR -8[rbp] ## load address of record
 movzx edx, BYTE PTR -12[rbp] ## load x
 mov BYTE PTR [rax], dl ## store x
 mov rax, QWORD PTR -8[rbp] ## load address of record
 mov edx, DWORD PTR -16[rbp] ## load y
 mov DWORD PTR 4[rax], edx ## store y
 mov rax, QWORD PTR -8[rbp] ## load address of record
 movzx edx, BYTE PTR -20[rbp] ## load z
 mov BYTE PTR 8[rax], dl ## store z
 mov eax, 0
 pop rbp
 ret
 .size loadRecord, .-loadRecord
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 17-19: Compiler-generated assembly language for the loadRecord function

For the loadRecord function, the compiler uses an algorithm for storing
data in the record fields that is essentially the same as it used in the main
function for storing data in Listing 17-11. It first saves the address of the
record in the red zone on the stack 1. Then it retrieves this address before

388 Chapter 17

storing the data in each field 2, using the address offset from the declara-
tion of the record in the aRecord.h file, Listing 17-14. Figure 17-1 shows these
address offsets.

The displayRecord function is different because the record is passed by
value, as shown in Listings 17-20 and 17-21.

/* displayRecord.h
 * Display contents of a record.
 */

#ifndef DISPLAYRECORD_H
#define DISPLAYRECORD_H
#include "aRecord.h"
void displayRecord(struct aTag aRecord);
#endif

Listing 17-20: Header file for the displayRecord function

/* displayRecord.c
 * Display contents of a struct.
 */

#include <stdio.h>
#include "displayRecord.h"

void displayRecord(struct aTag aRecord)
{
 printf("%c, %i, %c\n", aRecord.aChar,
 aRecord.anInt, aRecord.anotherChar);
}

Listing 17-21: Function to display a record

The algorithm that displays the contents of the fields in the record is
straightforward. We simply pass the value in each field to the printf func-
tion. But when we look at the compiler-generated assembly language, as
shown in Listing 17-22, we see that the algorithm requires a reconstruction
of the record in the stack frame of the displayRecord function.

 .file "displayRecord.c"
 .intel_syntax noprefix
 .text
 .section .rodata
.LC0:
 .string "%c, %i, %c\n"
 .text
 .globl displayRecord
 .type displayRecord, @function
displayRecord:
 push rbp
 mov rbp, rsp
 1 sub rsp, 16 ## memory for a record
 mov rdx, rdi

Data Structures 389

 mov eax, esi
 2 mov QWORD PTR -16[rbp], rdx ## 8 bytes of record
 mov DWORD PTR -8[rbp], eax ## another 4 bytes
 3 movzx eax, BYTE PTR -8[rbp] ## load anotherChar
 movsx ecx, al ## extend to 32 bits
 mov edx, DWORD PTR -12[rbp] ## load anInt
 movzx eax, BYTE PTR -16[rbp] ## load aChar
 movsx eax, al ## extend to 32 bits
 mov esi, eax
 lea rdi, .LC0[rip]
 mov eax, 0
 call printf@PLT
 nop
 leave
 ret
 .size displayRecord, .-displayRecord
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 17-22: Compiler-generated assembly language for the displayRecord function

For the displayRecord function, the compiler chose to create a stack
frame 1. It then copies the 12 bytes that make up the record from the reg-
isters they were passed in to the stack frame 2. Once the record has been
reconstructed in the local stack frame, the data in the individual fields is
passed to the printf function for display on the screen 3.

In the next section, we’ll rewrite this program in assembly language and
show the advantage of passing a record by pointer, even when it’s an input.

Passing Records to Other Functions in Assembly Language
Our approach to accessing the record fields in the loadRecord function will
be similar to the compiler’s. We’ll use the address of the record (pass by
pointer) in a register and use the field address offset to access it.

But we’ll pass the record by pointer, instead of by value, to the
displayRecord function. Although you could also do this in C, our assembly
language version will clearly show the advantage of doing it this way.

We’ll start with the main function in Listing 17-23.

records.s
Allocates two records, assigns a value to each field
in each record, and displays the contents.
 .intel_syntax noprefix
Stack frame
 .equ x,-32
 .equ y, -20
 .equ canary,-8
 .equ localSize,-32
Constant data
 .section .rodata
 .align 8
endl:
 .string "\n"

390 Chapter 17

Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 mov ecx, 'b' # data to store in record
 mov edx, 123
 mov esi, 'a'
 lea rdi, x[rbp] # x record
 call loadRecord

 mov ecx, '2' # data to store in record
 mov edx, 456
 mov esi, '1'
 lea rdi, y[rbp] # y record
 call loadRecord

 1 lea rdi, x[rbp] # display x record
 call displayRecord

 lea rdi, y[rbp] # display y record
 call displayRecord

 mov eax, 0 # return 0;
 mov rcx, canary[rbp] # retrieve saved canary
 xor rcx, fs:40 # and check it
 je goodCanary
 call __stack_chk_fail@PLT # bad canary
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 17-23: Assembly language program to store data in two records and display their
contents

Our assembly language version of the main function is similar to the
compiler-generated assembly language for our C version (Listing 17-16),
except that we are passing the records to the displayRecord function by
pointer 1 instead of by value.

Next, we’ll place the equates for the offsets of the fields in the record
in a separate file, as shown in Listing 17-24, to make sure we use the same
equates in all the files where the fields are accessed.

aRecord
Declaration of a record.
1 # This record takes 12 bytes.

Data Structures 391

 .equ aChar,0
 .equ anInt,4
 .equ anotherChar,8

Listing 17-24: Record field offsets

We’re using the same offsets for the fields as the C version, as shown
in Figure 17-1. Since the main function does not access the record fields
directly, we didn’t need the offsets in this file there. But we did need to
know the total number of bytes used by the record 1 when allocating
space on the stack for each record.

The standard for the C language specifies some rules for the memory
alignment of the fields in a struct, but the rules allow different compilers to
use different values for the offsets to the fields. To help us interface assem-
bly language functions with C functions, the standard specifies a macro in
the stddef.h header file, offsetof, that will show the values that our compiler
chose for the offsets in the C code. For example, this code

#include <stddef.h>
#include "aRecord.h"
--snip--
offsetof(struct aTag, anInt);

will return the value of the offset of anInt from the beginning of the struct.
The man page for offsetof includes a more complete example of how to use it.
I used both the offsetof macro and the assembly language generated by the
compiler (Listing 17-19) to determine the values of the offsets.

The assembly language function to store data in a record (Listing 17-25)
is similar to what the compiler generated from the C version (Listing 17-19).

loadRecord.s
Loads record with data.
Calling sequence:
rdi <- pointer to record
esi <- 1st char
edx <- int
ecx <- 2nd char
 .intel_syntax noprefix
Record field offsets
 1 .include "aRecord"
Code
 .text
 .globl loadRecord
 .type loadRecord, @function
loadRecord:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer

 2 mov aChar[rdi], esi # 1st char field
 mov anInt[rdi], edx # int field
 mov anotherChar[rdi], ecx # 2nd char field

392 Chapter 17

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 17-25: Assembly language version of the loadRecord function

We’re using the .include assembler directive to bring the record field
names and their respective offsets into this function 1. The .include assem-
bler directive works like the #include C directive—it copies the text from the
specified file into this source file before assembling the code.

Since this function does not call any other functions, we know that
the address of the record that was passed to this function in rdi will not be
changed. We can simply access each field using the field name with rdi as
the base register 2.

Passing a record by pointer to the displayRecord function, as shown in
Listing 17-26, simplifies the function.

displayRecord.s
Displays contents of a record.
Calling sequence:
rdi <- pointer to record
 .intel_syntax noprefix
Record field offsets
 .include "aRecord"
Stack frame
 .equ recordPtr,-16
 .equ localSize,-16
Useful constant
 .equ STDOUT,1
Constant data
 .section .rodata
 .align 8
endl:
 .string "\n"
Code
 .text
 .globl displayRecord
 .type displayRecord, @function
displayRecord:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 1 mov recordPtr[rbp], rdi # save record address

 mov edx, 1 # write one character
 mov rax, recordPtr[rbp] # address of record
 lea rsi, aChar[rax] # character located here
 mov edi, STDOUT # to screen
 2 call write@plt
 lea rdi, endl[rip] # new line
 call writeStr

Data Structures 393

 mov rax, recordPtr[rbp] # address of record
 mov edi,anInt[rax] # get the integer
 call putInt # write to screen
 lea rdi, endl[rip]
 call writeStr

 mov edx, 1 # second character
 mov rax, recordPtr[rbp] # address of record
 lea rsi, anotherChar[rax]
 mov edi, STDOUT
 call write@plt
 lea rdi, endl[rip]
 call writeStr

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 17-26: Assembly language version of displayRecord function

This function calls other functions, which can change the contents of
rdi, so we need to save the address of the record in our stack frame 1 for
accessing the individual record fields later in the function. Since the char
fields hold a single character, we use the write function to display the con-
tents of these fields 2.

YOUR T UR N

1.	 Modify the record declaration in Listing 17-14 so that the two char fields
are adjacent to each other. Generate the assembly language for the
main, loadRecord, and displayRecord functions in Listings 17-15, 17-18,
and 17-21. Draw a diagram of the records in the stack frame similar to
Figure 17-1.

2.	 Modify the C displayRecord function in Listings 17-20 and 17-21 to pass
the record by pointer. Generate the assembly language file. How does this
compare to the assembly language version in Listing 17-25?

394 Chapter 17

What You’ve Learned

Arrays   Collections of data items of the same data type, stored contigu-
ously in memory.

Processing arrays   The CPU has an addressing mode for accessing an
array element using an index value.

Passing arrays   In C, arrays are passed by pointer rather than by value.

Records   Collections of data items, possibly of different data
types, stored together in memory, possibly with padding for address
alignment.

Accessing record fields   The address with offset addressing mode can
be used to access a record field.

Passing records   It’s often more efficient to pass a record by pointer,
even when it’s an input.

In the next chapter, we’ll discuss how C++ uses records to implement
the object-oriented programming paradigm.

18
O B J E C T - O R I E N T E D

P R O G R A M M I N G

So far in this book, we have been using the
procedural programming paradigm (see

“Exploring Data Formats with C” on page 25).
In this chapter, we’ll take an introductory look

at how object-oriented programming is implemented
at the assembly language level.

In object-oriented programming, an object has a set of attributes, the data
items that define the state of the object. These attributes can be changed
or queried by a set of methods that are part of the object. A software solution
typically consists of constructing instances of objects and then programming
the sending of messages to the objects, which use the methods to act on the
attributes.

We’ll use C++, an object-oriented extension of C, to illustrate some of
these concepts. Our discussion will show how a record can be used to store
the attributes of an object and how methods are implemented as functions
that are associated with the record.

396 Chapter 18

Many other features of C++ are important for creating good object-oriented
programming solutions, but we won’t go into them in this book. For readers
of this book, I think Josh Lospinoso’s C++ Crash Course (No Starch Press, 2019)
would be a good way to learn C++. If you want to dig into the design of C++
after learning how to use it, I recommend Bjarne Stroustrup’s (the creator of
C++) book, The Design and Evolution of C++ (Addison-Wesley, 1994).

As usual, we’ll start with looking at some assembly language generated
by the C++ compiler.

Objects in C++
A C++ object is declared by specifying a class, which adds a programmer-
defined type to the program. A C++ class is very much like a C record, but
in addition to the data members that define the attributes of the object, it can
include functions as members of the class. In C++, we send a message to an
object telling it to perform a method by calling a class member function.

We instantiate (create an instance of) an object by giving the class name
along with a name for the object, just like defining a variable. For example,
in the program we’ll look at shortly, the C++ statement

fraction x;

instantiates an object named x that belongs to the fraction class.
C++ allows us to write two special member functions. The first is a con-

structor function for initializing an object to place it in a known state before
sending messages to the object. The C++ compiler generates the code to
call our constructor function automatically at the point where we instanti-
ate an object. A constructor function has the same name as the class. It
cannot have a return value, not even void. The default constructor takes no
arguments, but we can also write constructors that take arguments, which
allows us to have more than one constructor in a class.

We can also write a destructor function to release any resources that were
allocated by a constructor. For example, a constructor might allocate mem-
ory from the heap, which the destructor would deallocate. (The heap is
described in Chapter 10.) There can be only one destructor function, which
has the same name as the class preceded by the ~ character. The destructor
cannot have a return value and takes no arguments. The C++ compiler will
generate the code to call the destructor automatically when program flow
leaves the scope of the object.

We’ll first look at a simple fraction class, whose attributes are a numera-
tor and a denominator, that includes a constructor and destructor. If we
don’t supply constructor or destructor member functions, a C++ compiler
will supply appropriate code to perform the construction and destruction
of an object. Later in this chapter, we’ll explore what our compiler does for
us when we don’t supply them.

We’ll start with the declaration of our fraction class, which we’ll place
in a header file so it can be included in any file that uses the class, as shown
in Listing 18-1.

Object-Oriented Programming 397

1 // fraction.hpp
// Simple fraction class.

#ifndef FRACTION_HPP
#define FRACTION_HPP
// Uses the following C functions
2 extern "C" int writeStr(char *);
extern "C" int getInt(int *);
extern "C" int putInt(int);

3 class fraction
{
 4 int num; // numerator
 int den; // denominator
5 public:
 6 fraction(); // default constructor
 ~fraction(); // default destructor
 void get(); // gets user's values
 void display(); // displays fraction
 void add(int); // adds integer
};
#endif

Listing 18-1: A simple fraction class

Being an extension of C, nearly everything that can be done in C can
also be done in C++. One of the additions in C++ is the // syntax for com-
ments 1. Like the # syntax in our assembly language, the remainder of the
line is a comment, intended only for the human reader.

We’ll be using some assembly language functions that we wrote earlier
in the book, which follow the C calling conventions. As you’ll see, the con-
ventions for calling a function in C++ differ from C, so we need to tell the
C++ compiler that we’ll call these functions using the C conventions 2.

The overall syntax of a class declaration 3 is similar to a record dec-
laration but includes the capability to include the methods of the class as
member functions 6. By default, data members and member functions
declared within a class are in the private scope 4: they can be accessed only
by member functions of the same class. We’ll place the attributes of our
fraction class, num and den, in the private scope where they are defined as
variables 4. They can be accessed only by the member functions.

A class can also have a public scope for items that are to be accessed by
entities outside the class 5. We’ll declare our member functions in the
public scope so they can be called from outside the class 6. C++ classes can
have other levels of access, but we won’t cover them in this book.

The struct keyword can also be used to declare a C++ class, but it does
not have a default scope access protection. We would need to explicitly
declare a private scope, as shown in Listing 18-2.

struct fraction
{
 private:
 int num; // numerator

398 Chapter 18

 int den; // denominator
 public:
 fraction(); // constructor
 ~fraction(); // destructor
 void get(); // gets user's values
 void display(); // displays fraction
 void add(int); // adds integer
};

Listing 18-2: Our fraction class declared using the struct keyword

I prefer using the class keyword because that emphasizes that there is
more to it than a simple C record, but it’s a personal choice. Next, we’ll look
at how to create objects and how to send messages to them.

Using Objects in C++
To illustrate how to create an object and send messages to it, we’ll use a simple
program that allows a user to enter the numerator and denominator values
of a fraction and then adds 1 to the fraction, shown in Listing 18-3. The
program displays the state of the fraction before getting user input values
and then again after adding 1 to the user’s fraction.

// incFraction.cpp
// Gets a fraction from user and increments by 1.

#include "fraction.hpp"
int main(void)
{
1 fraction x;

2 x.display();
 x.get();
 x.add(1);
 x.display();
 return 0;
}

Listing 18-3: Program to add 1 to a fraction

An object is instantiated by using the class name and providing a name
for the object, just like defining a variable 1. The dot operator (.) is used
to send a message to a method in the class 2, which calls the respective
member function in the class the object belongs to.

Next, we’ll look at the assembly language generated by the C++ com-
piler to implement the main function in Listing 18-3. The C++ compiler is
named g++. I used the following command to generate the assembly lan-
guage in Listing 18-4:

g++ -fno-asynchronous-unwind-tables -fno-exceptions -fcf-protection=none -S \
-masm=intel incFraction.cc

This is the same as the command we’ve been using for C code except
we’ve added the -fno-exceptions option. C++ provides an exception mechanism

Object-Oriented Programming 399

for dealing with runtime errors when they’re detected. The compiler pro-
vides the information for this feature through assembler directives, which
would tend to obscure the discussion here of how objects are implemented.
The -fno-exceptions option turns off this feature.

 .file "incFraction.cpp"
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 push rbx
 1 sub rsp, 24
 mov rax, QWORD PTR fs:40
 mov QWORD PTR -24[rbp], rax
 xor eax, eax
 2 lea rax, -32[rbp] ## address of object
 mov rdi, rax
 call _ZN8fractionC1Ev@PLT ## construct
 lea rax, -32[rbp] ## address of object
 mov rdi, rax
 call _ZN8fraction7displayEv@PLT
 lea rax, -32[rbp] ## address of object
 mov rdi, rax
 call _ZN8fraction3getEv@PLT
 lea rax, -32[rbp] ## address of object
 mov esi, 1 ## integer to add
 mov rdi, rax
 call _ZN8fraction3addEi@PLT
 lea rax, -32[rbp] ## address of object
 mov rdi, rax
 call _ZN8fraction7displayEv@PLT
 mov ebx, 0 ## return value
 lea rax, -32[rbp] ## address of object
 mov rdi, rax
 3 call _ZN8fractionD1Ev@PLT
 mov eax, ebx ## return 0;
 mov rdx, QWORD PTR -24[rbp]
 xor rdx, QWORD PTR fs:40
 je .L3
 call __stack_chk_fail@PLT
.L3:
 add rsp, 24
 pop rbx
 pop rbp
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 18-4: Compiler-generated assembly language showing the construction of an
object, sending messages to it, and its destruction

400 Chapter 18

The first thing to note is that x is an automatic local variable
(Listing 18-3), so memory space is allocated on the stack for this fraction
object in the function’s prologue 1. Then the address of this memory
area 2 is passed to a function, _ZN8fractionC1Ev, at the point where the
object is instantiated. (Notice that rbx was pushed onto the stack before
allocating the 24 bytes for the fraction object, making the correct offset
here –32.)

If you look back at Listing 18-1, you can see that the C++ compiler
has mangled the name of our constructor function, fraction, to be
_ZN8fractionC1Ev. We saw the C compiler doing name mangling of a static
local variable in Chapter 15. The purpose there was to distinguish between
different static local variables with the same name in different functions
defined in the same file.

C++ does name mangling to associate member functions with their
class. If you look at the calls to the class member functions in Listing 18-4,
you can see that they all begin with _ZN8fraction. Since function names are
global in scope, including the class name allows us to define other classes in
the program that have the same names for member functions. For example,
we might have more than one class in a program that has a display member
function. Name mangling identifies each display member function with the
class it belongs to.

C++ name mangling also allows function overloading. If you look closely
at how the compiler mangled our add member function, _ZN8fraction3addEi,
you can probably figure out that the compiler’s name mangling includes
the number and types of arguments. In this example, the i at the end of the
mangled name shows that the function takes a single int argument. This
allows us to have more than one class member function with the same name
but that differ in their number of arguments and their types, which is called
function overloading. You’ll get a chance to overload the default constructor
when it’s Your Turn.

There is no standard for how name mangling is done, so it could be dif-
ferent for each compiler. This means that all C++ code in a program must
be compiled and linked using compatible compilers and linkers.

Next, look at the two instructions just before each call to a member
function 2. We can see that the address of the object is passed to each of
them. This is a hidden argument that doesn’t show up in the C++ code. We’ll
see how to access this address in a member function when we look inside
the member functions later in the chapter.

Although it doesn’t show in the C++ code that we write, the compiler
generates a call to our destructor function at the point where program flow
leaves the scope of the object 3. In some more advanced programming tech-
niques, we would call the destructor explicitly, but we won’t cover them in the
book. Most of time we let the compiler decide when to call the destructor.

We’ll next look at the constructor and destructor and the other mem-
ber functions of this fraction class.

Object-Oriented Programming 401

Defining Class Member Functions
 Although it’s common to put each C function in its own file, C++ source files
are commonly organized to include all the functions in a class. Listing 18-5
shows the definitions of the member functions for our fraction class.

// fraction.cpp
// Simple fraction class.

#include "fraction.hpp"
// Use char arrays because writeStr is C-style function.
1 char numMsg[] = "Enter numerator: ";
char denMsg[] = "Enter denominator: ";
char over[] = "/";
char endl[] = "\n";

2 fraction::fraction()
{
 num = 0;
 den = 1;
}

fraction::~fraction()
{
 // Nothing to do for this object
}

void fraction::get()
{
 writeStr(numMsg);
 getInt(&num);

 writeStr(denMsg);
 getInt(&den);
}

void fraction::display()
{
 putInt(num);
 writeStr(over);
 putInt(den);
 writeStr(endl);
}

void fraction::add(int theValue)
{
 num += theValue * den;
}

Listing 18-5: Member function definitions for fraction class

402 Chapter 18

Although C++ includes library functions for writing to the screen, the
assembly language to call them is somewhat complex. Instead, we’ll use
our assembly language writeStr function, which follows C calling conven-
tions. It works with C-style text strings, which we’ll place in the global
area 1. This will allow us to concentrate on how objects are implemented
in C++.

Membership in a class is specified by giving the name of the class fol-
lowed by two colons (::) 2. Constructors have the same name as the class
and are used to do any initialization that may be required. For example,
our constructor initializes the fraction object to be 0/1. In some designs
they may need to do other things, such as allocate memory from the heap
or open a file. They cannot have a return value.

Let’s look at the assembly language generated by the C++ compiler for
these member functions, as shown in Listing 18-6.

 .file "fraction.cpp"
 .intel_syntax noprefix
 .text
 .globl numMsg
 .data
 .align 16
 .type numMsg, @object
 .size numMsg, 18
numMsg:
 .string "Enter numerator: "
 .globl denMsg
 .align 16
 .type denMsg, @object
 .size denMsg, 20
denMsg:
 .string "Enter denominator: "
 .globl over
 .type over, @object
 .size over, 2
over:
 .string "/"
 .globl endl
 .type endl, @object
 .size endl, 2
endl:
 .string "\n"
 .text
 .align 2
 1 .globl _ZN8fractionC2Ev
 .type _ZN8fractionC2Ev, @function
_ZN8fractionC2Ev: ## constructor
 push rbp
 mov rbp, rsp
 2 mov QWORD PTR -8[rbp], rdi ## this pointer
 mov rax, QWORD PTR -8[rbp] ## load addr of object
 mov DWORD PTR [rax], 0 ## num= 0;
 mov rax, QWORD PTR -8[rbp]
 mov DWORD PTR 4[rax], 1 ## den = 1;

Object-Oriented Programming 403

 nop
 pop rbp
 ret
 .size _ZN8fractionC2Ev, .-_ZN8fractionC2Ev
 .globl _ZN8fractionC1Ev
 3 .set _ZN8fractionC1Ev,_ZN8fractionC2Ev
 .align 2
 4 .globl _ZN8fractionD2Ev
 .type _ZN8fractionD2Ev, @function
_ZN8fractionD2Ev: ## destructor
 push rbp
 mov rbp, rsp
 mov QWORD PTR -8[rbp], rdi ## this pointer
 nop
 pop rbp
 ret
 .size _ZN8fractionD2Ev, .-_ZN8fractionD2Ev
 .globl _ZN8fractionD1Ev
 .set _ZN8fractionD1Ev,_ZN8fractionD2Ev
 .align 2
 .globl _ZN8fraction3getEv
 .type _ZN8fraction3getEv, @function
_ZN8fraction3getEv:
 push rbp
 mov rbp, rsp
 sub rsp, 16
 mov QWORD PTR -8[rbp], rdi ## this pointer
 lea rdi, numMsg[rip]
 call writeStr@PLT
 mov rax, QWORD PTR -8[rbp]
 mov rdi, rax
 call getInt@PLT
 lea rdi, denMsg[rip]
 call writeStr@PLT
 mov rax, QWORD PTR -8[rbp]
 add rax, 4
 mov rdi, rax
 call getInt@PLT
 nop
 leave
 ret
 .size _ZN8fraction3getEv, .-_ZN8fraction3getEv
 .align 2
 .globl _ZN8fraction7displayEv
 .type _ZN8fraction7displayEv, @function
_ZN8fraction7displayEv:
 push rbp
 mov rbp, rsp
 sub rsp, 16
 mov QWORD PTR -8[rbp], rdi ## this pointer
 mov rax, QWORD PTR -8[rbp]
 mov eax, DWORD PTR [rax]
 mov edi, eax
 call putInt@PLT
 lea rdi, over[rip]

404 Chapter 18

 call writeStr@PLT
 mov rax, QWORD PTR -8[rbp]
 mov eax, DWORD PTR 4[rax]
 mov edi, eax
 call putInt@PLT
 lea rdi, endl[rip]
 call writeStr@PLT
 nop
 leave
 ret
 .size _ZN8fraction7displayEv, .-_ZN8fraction7displayEv
 .align 2
 .globl _ZN8fraction3addEi
 .type _ZN8fraction3addEi, @function
_ZN8fraction3addEi:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -8[rbp], rdi ## this pointer
 mov DWORD PTR -12[rbp], esi
 mov rax, QWORD PTR -8[rbp]
 mov edx, DWORD PTR [rax]
 mov rax, QWORD PTR -8[rbp]
 mov eax, DWORD PTR 4[rax]
 imul eax, DWORD PTR -12[rbp]
 add edx, eax
 mov rax, QWORD PTR -8[rbp]
 mov DWORD PTR [rax], edx
 nop
 pop rbp
 ret
 .size _ZN8fraction3addEi, .-_ZN8fraction3addEi
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 18-6: Assembly language generated by the compiler for the fraction class mem-
ber functions

The main function calls _ZN8fractionC1Ev as the constructor for the fraction
object (Listing 18-4), but the compiler names it _ZN8fractionC2Ev 1. Then
the compiler sets the _ZN8fractionC1Ev as equal to _ZN8fractionC2Ev 3. (The
.set assembler directive is the same as .equ.) The two different construc-
tors are used to implement more advanced features of C++. In our simple
example, they are the same.

Our main function calls _ZN8fractionD1Ev as the destructor. Similar to the
constructor, the compiler named our destructor _ZN8fractionD2Ev and then
made _ZN8fractionD2Ev equal to _ZN8fractionD2Ev 4. Again, this allows for
more complex destructors.

I said earlier that we can access the address of an object in a member
function. C++ provides a special pointer variable named this that contains
the object’s address 2. Most of the time we don’t need to explicitly use the
this pointer. When we use an object’s data member in a member function,
the compiler assumes that we mean the current object and uses the this
pointer implicitly. This assumption also holds if we call another member

Object-Oriented Programming 405

function from within a member function. Some more advanced C++ pro-
gramming techniques require the explicit use of the this pointer, but they
are beyond the scope of this book.

The rest of the code in Listing 18-6 should be familiar to you, so we’ll
move on to show when we don’t need to write a constructor or destructor.

YOUR T UR N

Add another constructor to the C++ program in Listings 18-1, 18-3, and 18-5
that takes two integer arguments for initializing the fraction. Add an object
that uses your second constructor. For example, fraction y(1,2); would create
the fraction object initialized to 1/2. Modify the main function to display this
second fraction object, get a new value for it, add an integer to the second
object, and display it again.

Letting the Compiler Write a Constructor and Destructor
If all we need is a default constructor to initialize data members, we don’t
even need to write a constructor or destructor. Bjarne Stroustrup and
Herb Sutter maintain an excellent list of recommendations for writing
C++. Their recommendation C.45 (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#Rc-default/) states: “Don’t define a default constructor that
only initializes data members; use in-class member initializers instead.” They
point out that the compiler will “generate the function” for us, which “can be
more efficient.” Most C++ books I’ve read give essentially the same advice.

In this section, we’ll follow this advice. We’ll modify the code from
Listings 18-1, 18-3, and 18-5 by deleting our constructor and destructor.
Then we’ll use our knowledge of assembly language to see what the com-
piler has generated for us. Listing 18-7 shows our fraction class without a
constructor or destructor, using in-class member initializers instead.

// fraction.hpp
// Simple fraction class.

#ifndef FRACTION_HPP
#define FRACTION_HPP
// Uses the following C functions
extern "C" int writeStr(char *);
extern "C" int getInt(int *);
extern "C" int putInt(int);

class fraction
{
 1 int num{0}; // numerator
 int den{1}; // denominator
 public:
 void get(); // gets user's values

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default/

406 Chapter 18

 void display(); // displays fraction
 void add(int theValue); // adds integer
};
#endif

Listing 18-7: fraction class from Listing 18-1 with the constructor and destructor removed

Instead of using a constructor to initialize the data members in a
fraction object, we’ll initialize them using the brace initialization syn-
tax of C++ 1. C++ also allows the following syntaxes for data member
initialization:

int num = 0;
int num = {0};

I like the brace initialization syntax because it conveys the message
that the actual assignment to the variable doesn’t take place until an object
is instantiated, as we’ll see shortly. The differences are discussed in Josh
Lospinoso’s book, cited at the beginning of this chapter.

We won’t change the code in Listing 18-3, and we’ll remove the con-
structor and destructor (fraction() and ~fraction()) from Listing 18-5.
These changes give us the compiler-generated assembly language for the
main function shown in Listing 18-8.

 .file "incFraction.cpp"
 .intel_syntax noprefix
 .text
 .globl main
 .type main, @function
main:
 push rbp
 mov rbp, rsp
 1 sub rsp, 16
 mov rax, QWORD PTR fs:40
 mov QWORD PTR -8[rbp], rax
 xor eax, eax
 2 mov DWORD PTR -16[rbp], 0 ## num = 0;
 mov DWORD PTR -12[rbp], 1 ## den = 1;
 lea rax, -16[rbp]
 mov rdi, rax
 call _ZN8fraction7displayEv@PLT
 lea rax, -16[rbp]
 mov rdi, rax
 call _ZN8fraction3getEv@PLT
 lea rax, -16[rbp]
 mov esi, 1
 mov rdi, rax
 call _ZN8fraction3addEi@PLT
 lea rax, -16[rbp]
 mov rdi, rax
 call _ZN8fraction7displayEv@PLT
 mov eax, 0 ## return 0;
 3 mov rdx, QWORD PTR -8[rbp]

Object-Oriented Programming 407

 xor rdx, QWORD PTR fs:40
 je .L3
 call __stack_chk_fail@PLT
.L3:
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 18-8: Assembly language showing how the g++ compiler generates a constructor
for our fraction object

C++ creates the object in the stack frame, as it did when we wrote our
own constructor 1. But the compiler does not write a separate constructor
function. Instead, it initializes the data members directly in the function
where the object is instantiated 2.

Since the only resource used by a fraction object is memory on the
stack, the normal stack cleanup in the function epilogue deletes the object.
Thus, the compiler doesn’t need to do anything special to destruct our
fraction object 3.

Comparing the code in Listing 18-8 with that in Listing 18-4, we can
see that the compiler has saved eight instructions, including two function
calls. So it really did create a more efficient constructor for us. But the
assembly language also shows us that it’s more correct to say that the com-
piler generated an inline constructor rather than a constructor function. Of
course, the C++ language specifications allow for other compilers to do this
differently.

Finally, I’ll point out that if we need another constructor that takes
arguments, then we’ll have to also supply our own default constructor. The
compiler won’t take care of the default construction for us.

The rest of the code in Listing 18-8 should be familiar to you, so we’ll
move on to looking at how we might implement objects directly in assembly
language.

YOUR T UR N

Remove the initialization of the num and den member functions from Listing 18-7.
What effect does this have on the program? Hint: Look at the compiler-generated
assembly language for the main function.

Objects in Assembly Language
We probably would not be using assembly language for object-oriented
programming, but the discussion in this section will help to ensure that we
have a clear picture of how C++ implements objects.

408 Chapter 18

We start with the offsets of the data members in a fraction object, as
shown in Listing 18-9.

fraction
Declaration of fraction attributes.
This object takes 8 bytes.
 .equ num,0
 .equ den,4

Listing 18-9: Offsets of the attribute values in the fraction class

The attributes of an object are implemented as a record, so the offsets
to the object’s data members are declared the same way as field offsets in
a record. There are no assembler directives to make them private. The dis-
tinction between private and public is made by the high-level language, C++
in our case. It will be up to us to write our assembly language such that only
class member functions access the data members.

Listing 18-10 shows the assembly language version of our main function.

incFraction.s
Gets numerator and denominator of a fraction
from user and adds 1 to the fraction.
 .intel_syntax noprefix
Stack frame
 .equ x,-16
 .equ canary,-8
 .equ localSize,-16
Constant data
 .section	.rodata
 .align 8
Code
 .text
 .globl main
 .type main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov canary[rbp], rax

 lea rdi, x[rbp] # address of object
 1 call fraction_construct # construct it

 lea rdi, x[rbp] # address of object
 call fraction_display # display fraction

 lea rdi, x[rbp] # address of object
 call fraction_get # get fraction values

 mov esi, 1 # amount to add
 lea rdi, x[rbp] # address of object
 call fraction_add # add it

Object-Oriented Programming 409

 lea rdi, x[rbp] # address of object
 call fraction_display # display fraction

 lea rdi, x[rbp] # address of object
 call fraction_destruct # delete fraction

 mov eax, 0 # return 0;
 2 mov rcx, canary[rbp]
 xor rcx, qword ptr fs:40
 je goodCanary
 call __stack_chk_fail@plt
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 18-10: Assembly language program to add 1 to a fraction

When writing in C++, the constructor and destructor are called implic-
itly, but in assembly language we have to do it explicitly 1. We won’t mangle
the names as much as the compiler. We’ll simply prepend each member
function name with fraction_.

Aside from the function name mangling, there’s nothing unusual about
this main function. Notice that we check the stack canary after calling the
destructor since that call uses the stack 2.

Next, we’ll write the assembly language for the member functions,
starting with the constructor in Listing 18-11.

fraction_construct.s
Initializes fraction to 0/1.
Calling sequence:
rdi <- address of object
 .intel_syntax noprefix
 .include "fraction"
Code
 .text
 .globl fraction_construct
 .type fraction_construct, @function
fraction_construct:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 1 mov dword ptr num[rdi], 0 # initialize
 mov dword ptr den[rdi], 1 # fraction
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 18-11: Assembly language implementation of a constructor for our fraction class

Since we don’t call any other functions from this function, we can use the
rdi register as the this pointer for accessing the data members in the object 1.

The destructor doesn’t do anything in our fraction class, but we’ll write
one anyway for the sake of completeness, as shown in Listing 18-12.

410 Chapter 18

fraction_destruct.s
Nothing to do here.
Calling sequence:
rdi <- address of object
 .intel_syntax noprefix
 .include "fraction"
Code
 .text
 .globl fraction_destruct
 .type fraction_destruct, @function
fraction_destruct:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
Has nothing to do
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 18-12: A destructor for our fraction class

Next, we’ll write the fraction_display function, as shown in Listing 18-13.

fraction_display.s
Displays fraction.
Calling sequence:
rdi <- address of object
 .intel_syntax noprefix
 .include "fraction"
Text for fraction_display
 .data
over:
 .string "/"
endl:
 .string "\n"
Stack frame
 1 .equ this,-16
 .equ localSize,-16
Code
 .text
 .globl fraction_display
 .type fraction_display, @function
fraction_display:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov this[rbp], rdi # this pointer

 mov rax, this[rbp] # load this pointer
 mov edi, num[rax]
 call putInt

 lea rdi, over[rip] # slash
 call writeStr

Object-Oriented Programming 411

 mov rax, this[rbp] # load this pointer
 mov edi, den[rax]
 call putInt

 lea rdi, endl[rip] # newline
 call writeStr

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 18-13: The fraction_display function for our fraction class

The fraction_display function calls other functions, any of which may
change the content of rdi, so we need to save the this pointer in our stack
frame 1.

Listing 18-13 illustrates one of the reasons we’re following the usual
custom of having a separate file for each function in assembly language. An
identifier defined by an .equ directive has file scope. Depending on what
other things need to go in the stack frame, the this pointer might need to
be in a different relative location in different functions. If we were to place
all the member functions in a single file, we would need to do some name
mangling to associate each this offset with its respective member function.
The C++ compiler figures out the numerical offset for the this pointer for
each member function separately, so the this name isn’t used in the assem-
bly language it generates.

Listings 18-14 and 18-15 show the fraction_get and fraction_add functions.

fraction_get.s
Gets numerator and denominator from keyboard.
Calling sequence:
rdi <- address of object
 .intel_syntax noprefix
 .include "fraction"
Messages
 .data
numMsg:
 .string "Enter numerator: "
denMsg:
 .string "Enter denominator: "
Stack frame
 .equ this,-16
 .equ localSize,-16
Code
 .text
 .globl fraction_get
 .type fraction_get, @function
fraction_get:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov this[rbp], rdi # this pointer

412 Chapter 18

 lea rdi, numMsg[rip] # prompt message
 call writeStr
 mov rax, this[rbp] # load this pointer
 lea rdi, num[rax]
 call getInt

 lea rdi, denMsg[rip]
 call writeStr
 mov rax, this[rbp] # load this pointer
 lea rdi, den[rax]
 call getInt
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 18-14: The fraction_get function for our fraction class

fraction_add.s
Adds integer to fraction
Calling sequence:
rdi <- pointer to object
esi <- int to add
 .intel_syntax noprefix
 .include "fraction"
Code
 .text
 .globl fraction_add
 .type fraction_add, @function
fraction_add:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 mov eax, den[rdi] # load denominator
 imul eax, esi # denominator X int to add
 add num[rdi], eax # add to numerator
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 18-15: The fraction_add function for our fraction class

There is nothing remarkable about fraction_get or fraction_add. The
fraction_get function calls other functions, so we need to place the this
pointer in the stack frame. The rdi register is safe to use as the this pointer
in fraction_add because it doesn’t call any other functions.

YOUR T UR N

Modify the assembly language program in Listings 18-9 through 18-15 so that it
displays the fraction in “integer & fraction” format, where “fraction” is less than
1. For example, 3/2 would be displayed as 1 & 1/2.

Object-Oriented Programming 413

What You’ve Learned

Class   The declaration of the data members that define the state of
an object along with any member functions used to access these data
members.

Object in C++   A named area of memory that contains the data mem-
bers declared in a class.

Methods or member functions   The member functions declared in a
class can be called to access the state of an object of the same class.

Name mangling   The compiler creates member function names that
include the function name, the class it belongs to, and the number and
types of any arguments to the function.

Constructor   A member function used to initialize an object.

Destructor   A member function used to clean up resources that are no
longer needed.

This has been a brief introduction to the way that C++ implements the
basic object-oriented programming features.

So far in this book we have been using only integral values in our pro-
grams. In the next chapter, we’ll look at how fractional values are repre-
sented in memory and some of the CPU instructions to manipulate them.

19
F R A C T I O N A L N U M B E R S

We have been using only integral values—
integers and characters—in our programs.

In this chapter, we’ll look at how computers
represent fractional numbers. We’ll look at

two ways to represent fraction values, fixed-point and
floating-point.

We’ll start by looking at fixed-point numbers, which will show how frac-
tional values are represented in binary. As you will see, the number of bits
we use for the integral part of the number limits the range of numbers we
can represent. Using some bits for the fractional part simply allows us to
divide that range into smaller portions.

This limitation on the range will lead us to a discussion of floating-point
numbers, which allow for a much larger range but introduce other limita-
tions. We’ll discuss the format and properties of floating-point representation
and then discuss the most common floating-point binary standard, IEEE 754.
We’ll end the chapter with a brief look at how floating-point numbers are
processed in the x86-64 architecture.

416 Chapter 19

Fractional Values in Binary
Let’s start by looking at the mathematics of fractional values. Recall from
Chapter 2 that a decimal integer, N, is expressed in binary as follows:

N = dn–1 × 2n–1 + dn–2 × 2n–2 + … + d1 × 21 + d0 × 20

where each di = 0 or 1.
We can extend this to include a fractional part, F:

N.F�� = dn–1 × 2n–1 + dn–2 × 2n–2 + … + d0 × 20 + d–1 × 2–1 + d–2 × 2–2 + ⋯
 = dn–1dn–2…d0.d–1d–2…

where each di = 0 or 1. Be careful to note the binary point between d0 and
d–1 on the right side of this equation. All the terms to the right of the binary
point are inverse powers of 2, so this portion of the number sums to a frac-
tional value. Like the decimal point on the left side, the binary point sepa-
rates the fractional part from the integral part of the number. Here’s an
example:

1.687510 	  = 1.010 + 0.510 + 0.12510 + 0.063510
	   = 1 × 20 + 1 × 2–1 + 0 × 2–2 + 1 × 2–3 + 1 × 2–4
	   = 1.10112

Although any integer can be represented as a sum of powers of two,
an exact representation of fractional values in binary is limited to sums of
inverse powers of two. For example, consider an 8-bit representation of the
fractional value 0.9. From

0.111001102 = 0.8984375010
0.111001112 = 0.9023437510

we can see the following:

0.111001102 < 0.910 < 0.111001112

In fact,

0.910 = 0.1110011002

where 1100 means this bit pattern repeats indefinitely.
Rounding fractional values in binary is simple. If the next bit to the

right is 1, add 1 to the bit position where rounding. Let’s round 0.9 to eight
bits. From earlier, we see that the ninth bit to the right of the binary point is
0, so we do not add 1 in the eighth bit position. Thus, we use

0.910 ≈ 0.111001102

which gives a rounding error as follows:

0.910 – 0.111001102 	  = 0.910 – 0.898437510
	   = 0.001562510

Fractional Numbers 417

Fixed-Point Numbers
A fixed-point number is essentially a scaled integer representation, where the
scaling is shown by the location of the radix point. The radix point separates
the fractional part of a number from the integral part. We call it the decimal
point in decimal numbers and the binary point in binary numbers. English-
speaking countries commonly use a period; other regions typically use a
comma.

For example, 1234.510 represents 1234510 scaled by 1/10; 10011010010.12
is 1001101001012 scaled by a factor of 1/2. When performing computations
with fixed-point numbers, we need to be mindful of the location of the
radix point.

Next, we’ll look at scaling numbers with a fractional part that is an
inverse power of two, in which case the fractional part can be represented
exactly. Then we’ll look at scaling fractional numbers in decimal to avoid
the rounding errors described earlier.

When the Fractional Part Is a Sum of Inverse Powers of Two
We’ll start with a program that adds two measurements that are specified in
inches. The fractional parts of inches are typically specified in inverse pow-
ers of 2: 1/2, 1/4, 1/8, and so forth, which can be represented exactly in the
binary system.

Our program will add two measurements that are specified to the near-
est 1/16 of an inch. We’ll need four bits to store the fractional part, leaving
28 bits for the integral part.

When adding two numbers, we need to align their radix points. Listing 19-1
shows how we’ll do this alignment when reading numbers from the keyboard.

getLength.s
Gets length in inches and 1/16s.
Outputs 32-bit value, high 28 bits hold inches,
low 4 bits hold fractional value in 1/16s.
Calling sequence:
rdi <- pointer to length
 .intel_syntax noprefix
Useful constant
 .equ fractionMask, 0xf
Stack frame
 .equ lengthPtr,-16
 1 .equ inches,-8
 .equ fraction,-4
 .equ localSize,-16
Constant data
 .section	.rodata
 .align 8
prompt:
 .string "Enter inches and 1/16s\n"
inchesPrompt:
 .string " Inches: "
fractionPrompt:
 .string " Sixteenths: "

418 Chapter 19

Code
 .text
 .globl getLength
 .type getLength, @function
getLength:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 mov lengthPtr[rbp], rdi # save pointer to output

 lea rdi, prompt[rip] # prompt user
 call writeStr

 lea rdi, inchesPrompt[rip] # ask for inches
 call writeStr
 lea rdi, inches[rbp] # get inches
 call 2 getUInt
 lea rdi, fractionPrompt[rip] # ask for 1/16's
 call writeStr
 lea rdi, fraction[rbp] # get fraction
 call getUInt

 mov eax, dword ptr inches[rbp] # retrieve inches
 3 sal eax, 4 # make room for fraction
 mov ecx, dword ptr fraction[rbp] # retrieve frac
 4 and ecx, fractionMask # make sure < 16
 add eax, ecx # add in fraction
 mov rcx, lengthPtr[rbp] # load pointer to output
 mov [rcx], eax # output

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 19-1: Function to read a number in inches and sixteenths of an inch from keyboard

We allocate 32 bits for both the number of inches, and the number of
sixteenths of an inch, each to be read as integers from the keyboard 1.
Notice that we’re using the getUInt function to read each unsigned int 2.
This is a simple modification of the getInt function, which reads a signed
int; we wrote getInt in Chapter 15.

We’re using the four low-order bits to store the fractional part, so we
shift the integral part four bits to the left to make room for adding in the
fractional part 3. Before adding the fractional part, we’ll make sure that
the user didn’t enter a number that exceeds four bits 4.

The scaling leaves 28 bits for the integral part. This limits the range of
our numbers to be 0 to 268435455 15/16. This is sixteen times less than the
0 to 4294967295 range of a 32-bit integer, but the resolution is to the near-
est 1/16.

Our function to display these measurements, as shown in Listing 19-2,
shows both the integral and fractional parts.

Fractional Numbers 419

displayLength.s
Displays length in inches and 1/16s.
Calling sequence:
edi <- value with 1/16s in low-order 4 bits
 .intel_syntax noprefix
Useful constant
 .equ 1 fractionMask, 0xf
Stack frame
 .equ length,-16
 .equ localSize,-16
Constant data
 .section	.rodata
 .align 8
link:
 .string " "
over:
 .string "/16"
msg:
 .string "Total = "
endl:
 .string "\n"
Code
 .text
 .globl displayLength
 .type displayLength, @function
displayLength:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 mov length[rbp], rdi # save input length
 lea rdi, msg[rip] # nice message
 call writeStr

 mov edi, length[rbp] # original value
 2 shr edi, 4 # integer part
 call putUInt # write to screen
 lea rdi, link[rip]
 call writeStr

 mov edi, length[rbp] # original value
 3 and edi, fractionMask # fraction part
 call putUInt # write to screen
 4 lea rdi, over[rip]
 call writeStr

 lea rdi, endl[rip]
 call writeStr

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 19-2: Function to display measurements in inches and sixteenths of an inch

420 Chapter 19

We shift the number four bits to the right so that we can display the
integral part as an integer 2. Using a four-bit mask 1, we mask off the inte-
gral part and display the fractional part as another integer 3. And we add
some text to show that this second integer is the fractional part 4.

Listing 19-3 shows the main function.

rulerAdd.s
Adds two ruler measurements, to nearest 1/16 inch.
 .intel_syntax noprefix
Stack frame
 .equ x,-16
 .equ y, -12
 .equ canary,-8
 .equ localSize,-16
Constant data
 .section	.rodata
 .align 8
endl:
 .string "\n"
Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rdi, x[rbp] # x length
 call getLength

 lea rdi, y[rbp] # y length
 call getLength

 mov edi, x[rbp] # retrieve x length
 1 add edi, y[rbp] # add y length
 call displayLength

 mov eax, 0 # return 0;
 mov rcx, qword ptr canary[rbp]
 xor rcx, qword ptr fs:40
 je goodCanary
 call __stack_chk_fail@plt
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 19-3: Program to add two measurements in inches and sixteenths of an inch

If you look at the equation for representing fractional values in binary in
the previous section, you can probably convince yourself that the integer add
instruction will work for the entire number, including the fractional part 1.

Fractional Numbers 421

This example works nicely with binary numbers, but we mostly use
decimal numbers in computations. As we saw earlier in this chapter, most
fractional decimal numbers can’t be converted to a finite number of bits and
need to be rounded. In the next section, we’ll discuss how to avoid rounding
errors when using fractional decimal numbers.

When the Fractional Part Is in Decimal
Let’s think about how we’ve handled the fractional part in our fixed-point
format here. When we read the integral part from the keyboard, we shifted
it four bit positions to the left, leaving room to add the number of sixteenths
to this int. We’ve effectively created a 32-bit number with the binary point
between the fifth and fourth bits (bits numbered 4 and 3). This works
because the fractional part is a sum of inverse powers of two.

Another way to think about how we handled fractions previously is that
the four-bit shift multiplied the number by 16. We’ll take this approach
when working in decimal: multiply the numbers by multiples of 10 such that
the smallest value becomes an integer.

We’ll explore this approach with a program that adds two US dollar
values to the nearest 1/100th of a dollar. As with the ruler measurement pro-
gram in Listings 19-1, 19-2, and 19-3, we’ll start with the function to read
money values from the keyboard, getMoney, as shown in Listing 19-4.

getMoney.s
Gets money in dollars and cents.
Outputs 32-bit value, money in cents.
Calling sequence:
rdi <- pointer to length
 .intel_syntax noprefix
Useful constant
 .equ 1 dollar2cents, 100
Stack frame
 .equ moneyPtr,-16
 .equ dollars,-8
 .equ cents,-4
 .equ localSize,-16
Constant data
 .section	.rodata
 .align 8
prompt:
 .string "Enter amount\n"
dollarsPrompt:
 .string " Dollars: "
centsPrompt:
 .string " Cents: "
Code
 .text
 .globl getMoney
 .type getMoney, @function
getMoney:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer

422 Chapter 19

 add rsp, localSize # for local var.

 mov moneyPtr[rbp], rdi # save pointer to output

 lea rdi, prompt[rip] # prompt user
 call writeStr

 lea rdi, dollarsPrompt[rip] # ask for dollars
 call writeStr
 lea rdi, dollars[rbp] # get dollars
 2 call getUInt
 lea rdi, centsPrompt[rip] # ask for cents
 call writeStr
 lea rdi, cents[rbp] # get cents
 3 call getUInt

 mov eax, dword ptr dollars[rbp] # retrieve dollars
 mov ecx, dollar2cents # scale dollars to cents
 4 mul ecx
 mov ecx, dword ptr cents[rbp] # retrieve cents
 add eax, ecx # add in cents
 mov rcx, moneyPtr[rbp] # load pointer to output
 mov [rcx], eax # output

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 19-4: Function to read dollars and cents from the keyboard and convert to cents

As with the ruler measurement program, we’ll read the integral part 2
and fractional part 3 as integers. As explained, since the scaling is a mul-
tiple of 10, we need to multiply the integral part 4 by the scaling factor 1
instead of just shifting it.

The function to display the scaled numbers needs to invert the process
to separate the integral and fractional parts. We’ll do that in the displayMoney
function, as shown in Listing 19-5.

displayMoney.s
Displays money in dollars and cents.
Calling sequence:
edi <- money in cents
 .intel_syntax noprefix
Useful constant
 .equ 1 cent2dollars, 100
Stack frame
 .equ money,-16
 .equ localSize,-16
Constant data
 .section	.rodata
 .align 8
decimal:
 .string "."
msg:

Fractional Numbers 423

 .string "Total = $"
zero:
 .string "0"
endl:
 .string "\n"
Code
 .text
 .globl displayMoney
 .type displayMoney, @function
displayMoney:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.

 mov money[rbp], rdi # save input money
 lea rdi, msg[rip] # nice message
 call writeStr

 mov edx, 0 # clear high order
 mov eax, money[rbp] # convert money amount
 mov ecx, cent2dollars # to dollars and cents
 2 div ecx
 3 mov money[rbp], edx # save cents
 mov edi, eax # dollars
 call putUInt # write to screen
 4 lea rdi, decimal[rip]
 call writeStr

 cmp dword ptr money[rbp], 10 # 2 decimal places?
 jae twoDecimal # yes
 lea rdi, zero[rip] # no, 0 in tenths place
 call writeStr
twoDecimal:
 mov edi, money[rbp] # load cents
 call putUInt # write to screen

 lea rdi, endl[rip]
 call writeStr

 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 19-5: Function that displays cents as dollars and cents

We used a scaling factor to move the decimal point two places to the
right when reading the money values. Now we need to move the decimal
point two places to the left to recover the fractional part. So we need to use
the same scaling factor, 100 1.

Then the div instruction will leave the integral part in eax and the remain-
der (the fractional part) in edi 2. We’ll temporarily save the fractional part
while we print the integral part 3. As with the ruler measurement program,
we print text to indicate the fractional part 4.

Listing 19-6 shows the main function that adds two money amounts.

424 Chapter 19

moneyAdd.s
Adds two money amounts in dollars and cents.
 .intel_syntax noprefix
Stack frame
 .equ x,-16
 .equ y, -12
 .equ canary,-8
 .equ localSize,-16
Constant data
 .section	.rodata
 .align 8
endl:
 .string "\n"
Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rdi, x[rbp] # x amount
 call getMoney

 lea rdi, y[rbp] # y amount
 call getMoney

 mov edi, x[rbp] # retrieve x amount
 1 add edi, y[rbp] # add y amount
 call displayMoney

 mov eax, 0 # return 0;
 mov rcx, qword ptr canary[rbp]
 xor rcx, qword ptr fs:40
 je goodCanary
 call __stack_chk_fail@plt
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 19-6: Program to add money amounts using fixed-point numbers

The money amounts we’re using in the main function have been scaled
to be integers, so we can use a simple add instruction to add them 1.

Although fixed-point arithmetic allows us to preserve the full resolution
of the numbers, the range of values is limited by the number of bits in the
integral data type, 32 in this program. We’ve limited the range of the num-
bers in our program to be 0 to 42949672.95 but increased resolution to the
nearest 0.01.

Fractional Numbers 425

We have a more convenient notation for representing very large and
very small numbers, which we’ll explore next.

YOUR T UR N

1.	 Enter the program in Listings 19-1, 19-2, and 19-3. Using the gdb debugger,
examine the numbers stored in the x and y variables in main. Identify the
integral and fractional parts.

2.	 Enter the program in Listings 19-4, 19-5, and 19-6. Using the gdb debug-
ger, examine the numbers stored in the x and y variables in main. Identify
the integral and fractional parts.

3.	 Enter the program in Listings 19-4, 19-5, and 19-6. Run the program, enter-
ing $42949672.95 for one amount and $0.01 for the other. What total
does the program give?

4.	 Modify the program in Listings 19-4, 19-5, and 19-6 so it will work with
both positive and negative values. You might need the getSInt and putSInt
functions from Chapter 15. For a negative value, you’ll need to enter both
the dollars and cents amounts as negative numbers. What is the range of
totals for this modification?

Floating-Point Numbers
Let’s begin with the most important concept in this section: floating-point
numbers are not real numbers. Real numbers include the continuum of all
numbers from −∞ to +∞. You already know that computers are finite, so
there is certainly a limit on the largest values that can be represented, but
the problem is worse than simply a limit on the magnitude.

As you will see in this section, floating-point numbers comprise a
small subset of real numbers. There are significant gaps between adjacent
floating-point numbers. These gaps can produce several types of errors. To
make matters worse, these errors can occur in intermediate results, where
they are difficult to debug.

Floating-Point Representation
Floating-point representation is based on scientific notation. In floating-point
representation, we have a sign and two numbers to completely specify a
value: a significand and an exponent. A decimal floating-point number is writ-
ten as a significand times 10 raised to an exponent. For example, consider
these two numbers:

0.0010123    = 1.0123 × 10–3
–456.78 	 = –4.5678 × 102

426 Chapter 19

Notice that in floating-point representation, the number is normalized
such that only one digit appears to the left of the decimal point. The expo-
nent of 10 is adjusted accordingly. If we agree that each number is normal-
ized and that we are working in base 10, then each floating-point number is
completely specified by three items: significand, exponent, and sign. In the
previous two examples:

10123, –3, and + represent +1.0123 × 10–3

45678, +2, and – represent –4.5678 × 10+2

The advantage of using floating-point representation is that, for a given
number of digits, we can represent a larger range of values.

Let’s look at how floating-point numbers are stored in a computer.

IEEE 754 Floating-Point Standard
The most commonly used standard for storing floating-point numbers is
IEEE 754 (https://standards.ieee.org/standard/754-2019.html). Figure 19-1 shows
the general pattern.

SignificandExponentS

Figure 19-1: General pattern for storing
floating-point numbers

Here, S is the sign of the number.
Like all storage formats, floating-point formats involve trade-offs

between resolution, rounding errors, size, and range. The IEEE 754 stan-
dard specifies sizes from 4 to 16 bytes. The most common sizes used in C/C++
are float (four bytes) and double (eight bytes). The x86-64 architecture sup-
ports both sizes plus a 10-byte extended version that is similar to, but not part
of, the IEEE 754 standard.

Figure 19-2 shows the number of bits specified for each of these three sizes.

63 62 52 51

f

fe + 127

e + 1023s

s

0

0

(a)

(b)

31 30 23 22

636479 78

fe + 16383s

0

(c)

62

i

Figure 19-2: Number of bits for (a) C float, (b) C double, and (c) x86-64 extended version

The values in Figure 19-2 represent a floating-point number, N, stored
in the normalized form.

N = (–1)s × 1.f × 2e

The first bit, s, is the sign bit, 0 for positive and 1 for negative.

https://standards.ieee.org/standard/754-2019.html

Fractional Numbers 427

As in decimal, the exponent is adjusted such that there is only one non-
zero digit to the left of the binary point. In binary, though, this digit is always
1, giving 1.f as the significand. Since it’s always 1, the integer part (1) is not
stored in the IEEE 754 four- and eight-byte versions. It’s called the hidden bit.
Only the fraction part of the significand, f, is stored. The integer part, i, is
included in the x86-64 extended 10-byte version.

The formats need to allow for negative exponents. Your first thought
might be to use two’s complement. However, the IEEE standard was developed
in the 1970s, when floating-point computations took a lot of CPU time. Many
algorithms in programs depend upon only the comparison of two numbers,
and the computer scientists of the day realized that a format that allowed
integer comparison instructions would result in faster execution times. So
they decided to add an amount, a bias, to the exponent before storing it such
that the most negative allowable exponent would be stored as 0. The result,
a biased exponent, can then be stored as an unsigned int. As you can see in
Figure 19-2, the bias is 127 for the 4-byte standard, 1023 for the 8-byte, and
16383 for the 10-byte.

The hidden bit scheme presents a problem—there is no way to represent
0. To address this and other issues, the IEEE 754 standard has several spe-
cial cases:

Zero value   All the biased exponent bits and fraction bits are 0, allow-
ing for both –0 and +0. This preserves the sign of a computation that
converges to 0.

Denormalized   If the value to be represented is smaller than can be
represented with all the biased exponent bits being 0, meaning that
e has the most negative value possible, the hidden bit is no longer
assumed. In this case, the amount of bias is reduced by 1.

Infinity   Infinity is represented by setting all the biased exponent bits
to 1 and all the fraction bits to 0. Notice that this allows the sign bit to
designate both +∞ and −∞, allowing us to still compare numbers that are
out of range.
Not a number (NaN)    If the biased exponent bits are all 1 but the
fraction bits are not all 0, this represents a value that is in error. This
might be used to indicate that a floating-point variable doesn’t yet have
a value. A NaN should be treated as a program error.

An example of an operation that gives infinity is dividing a nonzero
value by 0. An example that produces NaN is an operation that has an
undefined result, like dividing 0 by 0.

Next, we’ll discuss the x86-64 hardware used to work with floating-
point numbers.

SSE2 Floating-Point Hardware
Until the introduction of the Intel 486DX in April 1989, the x87 floating-
point unit was on a separate chip, a coprocessor. It is now included on the

428 Chapter 19

CPU chip, although it uses a somewhat different execution architecture
than the integer unit in the CPU. It uses the 10-byte floating standard in
Figure 19-2(c).

In 1997, Intel added Multimedia Extensions (MMX) to its processors, which
include instructions that operate on multiple data items simultaneously—
single instruction, multiple data (SIMD). Operations on single data items
are called scalar operations. Operations on multiple data items in parallel are
called vector operations, which are useful for many multimedia and scientific
applications. We’ll discuss only scalar operations in this book.

Originally, MMX performed only integer computations, but in 1998
AMD added the 3DNow! extension to MMX, which includes floating-point
instructions. Intel soon followed suit with the Streaming SIMD Extension
(SSE) on the Pentium III in 1999, and AMD soon added SSE to give us
3DNow! Professional. Several versions have evolved over the years—SSE,
SSE2, SSE3, and SSE4. In 2011 Intel and AMD added Advanced Vector
Extensions (AVX) for SIMD and floating-point operations.

The x86-64 architecture includes at least SSE2. Higher versions are
available only on higher-level CPU chips. We’ll discuss SSE2 in this book
since it is the most common, and chips with more advanced versions still
support SSE2. The only CPU chips that don’t include at least SSE are some
inexpensive 32-bit microcontrollers (for example, the Intel Quark), so we
won’t discuss the x87 architecture in this book.

Most of the SSE2 instructions operate on multiple data items simulta-
neously. There are SSE2 instructions for both integer and floating-point
operations. Integer instructions operate on up to sixteen 8-bit, eight 16-bit,
four 32-bit, two 64-bit, or one 128-bit integers at a time.

Vector floating-point instructions operate on all four 32-bit or both
64-bit floats in a register simultaneously. Each data item is treated inde-
pendently. These instructions are useful for algorithms that do things like
process arrays. One SSE2 instruction can operate on several array elements
in parallel, resulting in considerable speed gains. Such algorithms are com-
mon in multimedia and scientific applications.

In this book we will consider only a few of the scalar floating-point instruc-
tions, which operate on only single data items. These instructions operate on
either 32-bit (single-precision) or 64-bit (double-precision) values. The scalar
instructions operate on only the low-order portion of the 128-bit xmm registers,
with the high-order 64 or 96 bits remaining unchanged.

xmm Registers
The SSE architecture added eight 128-bit registers to the CPU, which are
separate from the general-purpose integer registers we’ve been using thus
far in the book. SSE2 added a 64-bit mode, which adds eight more 128-bit
registers with the register names xmm0, xmm1, …, xmm15. AVX extensions add
wider registers, the 256-bit ymm0, ymm1, …, ymm15 and 512-bit zmm0, zmm1, …,
zmm15 registers. In the AVX architecture, the register names xmm0, xmm1, …,
xmm15 refer to the low-order 128 bits of the 256-bit ymm0, ymm1, …, ymm15 and
512-bit zmm0, zmm1, …, zmm15 registers.

Fractional Numbers 429

Figure 19-3 shows a single xmm register and how its contents are arranged
when copied into or from memory.

00

0c
08
04

float0

float0

float1

float2

float3

float3 float2 float1

0313263649596127

Relative
memory
address

xmm register

Figure 19-3: A single xmm register and its mapping into memory

SSE also includes its own 32-bit status and control register, mxcsr.
Table 19-1 shows the meanings of the bits in this register, and the default
setting of each bit when the CPU is first powered on.

Table 19-1: The Bits in the mxcsr Register

Bits Mnemonic Meaning Default

31:16 Reserved

15 FZ Flush to zero 0

14:13 RC Rounding control 00

12 PM Precision mask 1

11 UM Underflow mask 1

10 OM Overflow mask 1

9 ZM Divide-by-zero mask 1

8 DM Denormals operation
mask

1

7 IM Invalid operation mask 1

6 DAZ Denormals are zero 0

5 PE Precision flag 0

4 UE Underflow flag 0

3 OE Overflow flag 0

2 ZE Divide-by-zero flag 0

1 DE Denormal flag 0

0 IE Invalid operation flag 0

Bits 0–5 are set by SSE operations that result in the respective condition.
They can cause exceptions, which are typically handled by the operating sys-
tem. (You’ll learn more about exceptions in Chapter 21.) Bits 7–12 are used
to control whether the respective exception will occur in a process called
masking. The RC bits are set to control the way a number is rounded, as shown
in Table 19-2.

430 Chapter 19

Table 19-2: Rounding Mode of Floating-Point Numbers

RC Rounding mode

00 Round to nearest value. If tied, choose even value. Default mode.

01 Round down, toward −∞.

10 Round up, toward +∞.

11 Truncate.

A detailed description of each condition is beyond the scope of this
book, but we’ll look at one example to give you an idea of how they’re used.
A precision error is caused when a floating-point operation yields a result
that cannot be represented exactly—for example, 1.0 divided by 3.0. The
SSE unit rounds the result and sets the PE bit in the mxcsr register. In most
cases, the precision error is acceptable, and we don’t want the exception to
occur. Setting the PM bit to 1 masks out this exception, and the program con-
tinues without involving the operating system in this error.

As you can see in Table 19-1, masking out a precision error is the default
condition. If such an error is important in the program you’re writing, you
would need to unmask the PE error. The C standard library includes func-
tions to work with the mxcsr register, which you can read about by using the
man fenv command in a Linux terminal window. You’ll get a chance to work
with a divide-by-zero situation in assembly language when it’s Your Turn.

Unlike the status flags set by integer instructions in the rflags register,
there are no instructions to test the condition bits in the mxcsr register.
Although most SSE instruction don’t affect it, four comparison instructions,
comisd, comiss, ucomisd, and ucomiss, do set the status flags in the rflags register.
We’re not using these instructions in this book, but they would allow us to use
the conditional jump instructions based on floating-point comparisons.

Let’s look at using the SSE hardware to perform floating-point
computations.

Programming with Floating-Point Numbers
The program in Listing 19-7 adds two floats and prints their sum. We’ll
use assembly language to make it easier for us to see what’s going on and to
examine numbers in the debugger.

addFloats.s
Adds two floats.
 .intel_syntax noprefix
Stack frame
 1 .equ x,-20
 .equ y,-16
 .equ z,-12
 .equ canary,-8
 .equ localSize,-32
Constant data
 .section	.rodata

Fractional Numbers 431

prompt:
 .string "Enter a number: "
scanFormat:
 .string "%f"
printFormat:
 .string "%f + %f = %f\n"
Code
 .text
 .globl	 main
 .type	 main, @function
main:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer
 add rsp, localSize # for local var.
 mov rax, qword ptr fs:40 # get canary
 mov qword ptr canary[rbp], rax

 lea rdi, prompt[rip] # prompt for input
 mov eax, 0
 call printf@plt
 lea rsi, x[rbp] # read x
 lea rdi, scanFormat[rip]
 mov eax, 0
 call __isoc99_scanf@plt

 lea rdi, prompt[rip] # prompt for input
 mov eax, 0
 call printf@plt
 lea rsi, y[rbp] # read y
 lea rdi, scanFormat[rip]
 mov eax, 0
 call __isoc99_scanf@plt

 2 movss xmm2, x[rbp] # load x
 addss xmm2, y[rbp] # compute x + y
 movss z[rbp], xmm2
 3 cvtss2sd xmm0, x[rbp] # convert to double
 cvtss2sd xmm1, y[rbp] # convert to double
 cvtss2sd xmm2, z[rbp] # convert to double
 lea rdi, printFormat[rip]
 mov eax, 3 # 3 xmm regs.
 call printf@plt

 mov eax, 0 # return 0;
 mov rcx, qword ptr canary[rbp]
 xor rcx, qword ptr fs:40
 je goodCanary
 call __stack_chk_fail@plt
goodCanary:
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 19-7: Program to add two numbers using floating-point variables

432 Chapter 19

The float data type is 32 bits 1. All the computations using floating-
point numbers are performed in the xmm registers 2. The floating-point
arguments to printf are also passed in xmm registers, but printf requires that
they be passed as doubles 3.

We see some SSE instructions in Listing 19-7, movss 1, addss 2, and
cvtss2sd 3:

movss—Move Scalar Single-Precision Floating-Point

Copies (moves) a scalar single-precision 32-bit floating-point value from
one location to another.

movss xmmreg1, xmmreg2 moves from xmmreg2 register to xmmreg1 register.

movss xmmreg, mem moves from a memory location to an xmm register.

movss mem, xmmreg moves from xmmreg register to a memory location.

The movss instruction moves 32 bits using the low-order 32 bits of the
specified xmm register(s). When the destination is an xmm register, the
high-order 96 bits are not affected, except when moving from memory
they are zeroed.

addss—Add Scalar Single-Precision Floating-Point

Adds a scalar single-precision 32-bit floating-point value to another.

addss xmmreg1, xmmreg2 adds the floating-point value in xmmreg2 to the
floating-point value in xmmreg1, leaving the result in xmmreg1.

addss xmmreg, mem adds the floating-point value in a memory location to
the floating-point value in an xmm register.

addss mem, xmmreg adds the floating-point value in an xmm register to add
the floating-point value in a memory location.

The result of the addition can cause an OE, UE, IE, PE, or DE exception.
The addss instruction affects only the low-order 32 bits of the destina-
tion xmm register.

cvtss2sd—Convert Scalar Single-Precision Floating-Point to Scalar Double-
Precision

Converts a scalar single-precision 32-bit floating-point value to a
double-precision 64-bit floating-point value.

cvtss2sd xmmreg1, xmmreg2 converts the single-precision floating-point
value in xmmreg2 to the equivalent double-precision floating-point value,
leaving the result in xmmreg1.

cvtss2sd xmmreg, mem converts the single-precision floating-point value
in a memory location to the equivalent double-precision floating-point
value, leaving the result in xmmreg.

The result of the conversion can cause an IE or DE exception. The
cvtss2sd instruction affects only the low-order 64 bits of the destination
xmm register.

Fractional Numbers 433

Floating-Point Arithmetic Errors
Most of the arithmetic errors we’ll discuss here also exist with fixed-point arith-
metic. Probably the most common arithmetic error is rounding error. This can
occur for two reasons: either the number of bits available for storage is limited
or the fractional values cannot be precisely represented in all number bases.

Both these limitations also apply to fixed-point representation. The dif-
ference with floating-point is that the CPU hardware can shift the significand
of an arithmetic result, adjusting the exponent accordingly, causing bits to be
lost. With integer arithmetic, any shifting of bits is explicit in the program.

It’s easy to think of floating-point numbers as real numbers, but they’re
not. Most floating-point numbers are rounded approximations of the real
numbers they represent. When using floating-point arithmetic, we need to
be aware of the effects of rounding on our computations. If we don’t pay
close attention to the rounding effects, we might not notice any errors that
could creep into our computations.

When computing with integers, we need to be aware of errors in the
most significant places of the results: carry for unsigned integers and over-
flow for signed. With floating-point numbers, the radix point is adjusted
to maintain the integrity of the most significant places. Most errors in
floating-point are the result of any rounding in the low-order places that
is needed to fit the value within the allocated number of bits. The errors
in floating-point arithmetic are more subtle, but they can have important
effects on the accuracy of our programs.

Let’s run the program in Listing 19-7:

$./addFloats
Enter a number: 123.4
Enter a number: 567.8
123.400002 + 567.799988 = 691.200012

The arithmetic here doesn’t look accurate. Before you go back to look
for the bugs in Listing 19-7, let’s bring in the debugger to see if we can fig-
ure out what’s happening:

--snip--
(gdb) b 53
Breakpoint 1 at 0x11e4: file addFloats.s, line 53.
(gdb) r
Starting program: /home/bob/progs/chapter_19/addFloats_asm/addFloats
Enter a number: 123.4
Enter a number: 567.8

Breakpoint 1, main () at addFloats.s:53
53 call printf@plt

I set a breakpoint at the call to printf and then ran the program, entering
the same numbers we used earlier. Next, let’s look at the numbers stored in
the three variables, x, y, and z:

(gdb) i r rbp
rbp 0x7fffffffdee0 0x7fffffffdee0

434 Chapter 19

(gdb) x/3xw 0x7fffffffdecc
0x7fffffffdecc: 0x42f6cccd 0x440df333 0x442ccccd

The x variable is located at 0x7fffffffdecc: 0x42f6cccd. From the IEEE 754
format shown previously, we see that the exponent is stored as 8516 = 13310,
giving e = 6. Thus, x is stored as (writing the significand, including the hid-
den bit, in binary and the exponent part in decimal) 1.11101101100110011001101
× 26 = 1111011.01100110011001101 = 123.40000152587890625. The f formatting
character in the examine memory command shows us the memory contents
in floating-point format:

(gdb) x/3fw 0x7fffffffdecc
0x7fffffffdecc: 123.400002 567.799988 691.200012

The display here is not as accurate as our hand computations, but it
clearly shows that there is rounding error in all three numbers.

At this point in the program, x, y, and z have been loaded into the xmm0,
xmm1, and xmm2 registers and converted to doubles. Let’s look at those registers.
Since the x86-84 uses little-endian order, the low-order values are displayed
first in each {...} grouping:

(gdb) i r xmm0
xmm0 {v4_float = {0x0, 0x3, 0x0, 0x0}, v2_double = {0x7b, 0x0}, v16_
int8 = {0x0, 0x0, 0x0, 0xa0, 0x99, 0xd9, 0x5e, 0x40, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0}, v8_int16 = {0x0, 0xa000, 0xd999, 0x405e, 0x0, 0x0, 0x0, 0x0},
v4_int32 = {0xa0000000, 0x405ed999, 0x0, 0x0}, v2_int64 = {0x405ed999a0000000,
0x0}, uint128 = 0x405ed999a0000000}

When using the info registers command, gdb shows us all possible uses of
the xmm registers, but we can use the print command to tell gdb which usage to
display. In our case, we’re using the xmm registers to hold two doubles:

(gdb) p $xmm0.v2_double
$1 = {123.40000152587891, 0}
(gdb) p $xmm1.v2_double
$2 = {567.79998779296875, 0}
(gdb) p $xmm2.v2_double
$3 = {691.20001220703125, 0}

The print command displays more decimal places than the x command.
We can also tell print to display the values as 64-bit ints.

(gdb) p/x $xmm0.v2_int64
$4 = {0x405ed999a0000000, 0x0}
(gdb) p/x $xmm1.v2_int64
$5 = {0x4081be6660000000, 0x0}
(gdb) p/x $xmm2.v2_int64
$6 = {0x40859999a0000000, 0x0}

Notice that the conversion from float to double simply adds 0s in the
additional 28 bits in the low-order part of the significand. The conversion
does not increase the number of significant bits.

Fractional Numbers 435

Finally, we execute the rest of the program:

(gdb) cont
Continuing.
123.400002 + 567.799988 = 691.200012
[Inferior 1 (process 2547) exited normally]
(gdb)

The errors that occur from computing with rounded numbers can be
subtle. We’ll use our addFloats program in Listing 19-7 to illustrate some
common errors.

YOUR T UR N

1.	 Modify the assembly language program in Listing 19-7 so that it performs
the addition using doubles. Run it with the same numbers in my example.
Does it give a more accurate result? Explain.

2.	 Modify the assembly language program in Listing 19-7 so that it divides
instead of adding. Try dividing by 0.0. The SSE instruction to divide floats
is divss. What happens when you run it?

3.	 Now, if your program in the previous exercise gave a result for the divi-
sion, that means the divide-by-zero exception was masked out; modify
the program so that ZE is no longer masked out. If it gave a core dump,
ZE was not masked out; modify the program so that ZE is masked out. To
modify the ZM bit in the mxcsr register, you need two instructions: stmxcsr
mem stores a copy of the 32-bit mxcsr register in the memory location, mem,
and ldmxcsr mem loads the 32-bit value at the memory location mem into the
mxcsr register.

Absorption

Absorption results from adding (or subtracting) two numbers of widely differ-
ent magnitude. The value of the smaller number gets lost in the computation.
Let’s run our addFloats program under gdb to see how this occurs.

We’ll set a breakpoint at the call to printf and run the program:

(gdb) run
Enter a number: 16777215.0
Enter a number: 0.1

Starting program: /home/bob/progs/chapter_19/addFloats_asm/addFloats
Breakpoint 1, main () at addFloats.s:53
53 call printf@plt

The significand in a 32-bit float is 24 bits (don’t forget the hidden bit),
so I used 16777215.0 as one of the numbers. Then I used 0.1 as the fraction
to be added to it.

436 Chapter 19

Next, let’s look at the numbers stored in the three variables, x, y, and z:

(gdb) i r rbp
rbp 0x7fffffffdee0 0x7fffffffdee0
(gdb) x/3xw 0x7fffffffdecc
0x7fffffffdecc: 0x4b7fffff 0x3dcccccd 0x4b7fffff

Let’s look at the hexadecimal number in x, which is located at 0x7fffffff
decc: 0x4b7fffff. From the IEEE 754 format shown earlier, we see that the
exponent is stored as 9616 = 15010, giving e = 13. Thus, x is stored as 1.11111
111111111111111111 × 213 = 111111111111111111111111.0 = 16777215.010. Similarly,
y is stored as 1.10011001100110011001101 × 2–4 = 0.000110011001100110011001101 ≅
0.10000000143710. Adding these two binary numbers gives 11111111111111111
1111111.000110011001100110011001101. The floating-point hardware in the CPU
will round this to 24 bits to fit it into the IEEE 754 format, which cuts off
the entire fractional portion. The small number in this example, 0.1, has
been absorbed in this floating-point addition.

The absorption may not be obvious if we look at the numbers in gdb’s
floating-point format:

(gdb) x/3fw 0x7fffffffdecc
0x7fffffffdecc: 16777215 0.100000001 16777215

Cancellation

Another type of error, cancellation, can occur when subtracting two num-
bers that differ by a small amount. Since floating-point notation preserves
the integrity of the high-order portions, the subtraction will give 0 in
the high-order portion of the result. If either of the numbers has been
rounded, its low-order portion is not exact, which means that the result will
be in error.

We’ll use our addFloats program in Listing 19-7 to subtract by entering a
negative number. Here’s an example using two close numbers:

$./addFloats
Enter a number: 1677721.5
Enter a number: -1677721.4
1677721.500000 + -1677721.375000 = 0.125000

The relative error in this subtraction is (0.125 – 0.1) / 0.1 = 0.25 = 25%.
We can see that the second number has been rounded from –1677721.4 to
–1677721.375, which led to the error in the arithmetic.

Let’s look at how these numbers are treated as floats:
x = 1.10011001100110011001100 × 220

y = 1.10011001100110011001011 × 220

z = 1.00000000000000000000000 × 2–3

Subtraction has caused the high-order 20 bits of x and y to cancel, leav-
ing only three bits of significance for z. The rounding error in y carries
through to cause an error in z.

Fractional Numbers 437

Let’s use two values that will not give a rounding error:

$./addFloats
Enter a number: 1677721.5
Enter a number: -1677721.25
1677721.500000 + -1677721.250000 = 0.250000

In this case, the three numbers are stored exactly:
x = 1.10011001100110011001100 × 220

y = 1.10011001100110011001010 × 220

z = 1.00000000000000000000000 × 2–2

The subtraction has still caused the high-order 20 bits of x and y to can-
cel and left only three bits of significance for z, but z is correct.

Catastrophic cancellation occurs when at least one of the floating-point
numbers has a rounding error that causes an error in the difference. If
both numbers are stored exactly, we get benign cancellation. Both types of
cancellation cause a loss of significance in the result.

Associativity

Probably the most insidious effects of floating-point errors are those that
occur in intermediate results. They can show up in some sets of data but
not in others. Errors in intermediate results even cause floating-point addi-
tion not to be associative: there are some values of the floats x, y, and z for
which (x + y) + z is not equal to x + (y + z).

Let’s write a simple C program to test for associativity, as shown in
Listing 19-8.

/* threeFloats.c
 * Associativity of floats.
 */

#include <stdio.h>

int main()
{
 float x, y, z, sum1, sum2;

 printf("Enter a number: ");
 scanf("%f", &x);
 printf("Enter a number: ");
 scanf("%f", &y);
 printf("Enter a number: ");
 scanf("%f", &z);

1 sum1 = x + y;
 sum1 += z; /* sum1 = (x + y) + z */
 sum2 = y + z;
 sum2 += x; /* sum2 = x + (y + z) */

 if (sum1 == sum2)
 printf("%f is the same as %f\n", sum1, sum2);

438 Chapter 19

 else
 printf("%f is not the same as %f\n", sum1, sum2);

 return 0;
}

Listing 19-8: Program to show that floating-point arithmetic is not associative

Most programmers would do the addition in one statement, sum1 =
(x + y) + z, but doing it in separate stages will allow us to look at the
intermediate results in the debugger 1. We’ll start with some simple
numbers:

$./threeFloats
Enter a number: 1.0
Enter a number: 2.0
Enter a number: 3.0
6.000000 is the same as 6.000000

The result seems reasonable. Let’s try some slightly more interesting
numbers:

$./threeFloats
Enter a number: 1.1
Enter a number: 1.2
Enter a number: 1.3
3.600000 is not the same as 3.600000

We’ll use gdb to see if we can figure out what’s going on here:

$ gdb ./threeFloats
--snip--

(gdb) b 18
Breakpoint 1 at 0x121f: file threeFloats.c, line 18.
(gdb) r
Starting program: /home/bob/progs/chapter_19/threeFloats_C/threeFloats
Enter a number: 1.1
Enter a number: 1.2
Enter a number: 1.3

Breakpoint 1, main () at threeFloats.c:18
18	 sum1 = x + y;
(gdb) p x
$1 = 1.10000002
(gdb) p y
$2 = 1.20000005
(gdb) p z
$3 = 1.29999995

Fractional Numbers 439

We can see that there is a rounding error in each number as it’s stored.
Let’s step through each statement one at a time and look at how the sums
build up:

(gdb) n
19	 sum1 += z;
(gdb) p sum1
$4 = 2.30000019

Both x and y have rounding errors, and adding them introduces even
more rounding error in their sum:

(gdb) n
20	 sum2 = y + z;
(gdb) p sum1
$5 = 3.60000014

Next, we’ll follow the buildup of sum2:

(gdb) n
21	 sum2 += x;
(gdb) p sum2
$6 = 2.5
(gdb) n
22	 if (sum1 == sum2)
(gdb) p sum2
$7 = 3.5999999
(gdb) cont
Continuing.
3.600000 is not the same as 3.600000
[Inferior 1 (process 2406) exited normally]
(gdb)

Using the debugger to look at the storage of each number and watch-
ing the sums build up allows us to see the effects of rounding errors in the
float storage format. The %f format tells printf to display six decimal places,
rounded as needed. So our program correctly tells us that 3.60000014 ≠
3.5999999, but printf rounds both numbers to 3.600000.

YOUR T UR N

Modify the C program in Listing 19-8 to use doubles. Does this make addition
associative?

440 Chapter 19

Comments About Numerical Accuracy
Beginning programmers often see floating-point numbers as real numbers
and thus think they are more accurate than integers. It’s true that using
integers carries its own set of problems: even adding two large integers can
cause overflow. Multiplying integers is even more likely to produce a result
that will overflow. And we need to take into account that integer division
results in two values, the quotient and the remainder, instead of the one
value that floating-point division gives us.

But floating-point numbers are not real numbers. As you’ve seen in
this chapter, floating-point representations extend the range of numerical
values but have their own set of potential inaccuracies. Arithmetically accu-
rate results require a thorough analysis of your algorithm. These are some
points to consider:

Try to scale the data such that integer arithmetic can be used.

Using doubles instead of floats improves accuracy and may actually
increase the speed of execution. Most C and C++ library routines
take doubles as arguments, so the compiler converts floats to doubles
when passing them as arguments, as we saw in the call to printf in
Listing 19-7.

Try to arrange the order of computations so that similarly sized num-
bers are added or subtracted.

Avoid complex arithmetic statements, which may obscure incorrect
intermediate results.

Choose test data that stresses your algorithm. If your program
processes fractional values, include data that has no exact binary
equivalent.

The good news is that with today’s prevalence of 64-bit computers, the
range of integers is –9,223,372,036,854,775,808 ≤ N ≤ +9,223,372,036,854,
775,807. And there are libraries available in many programming languages
that allow us to use arbitrary-precision arithmetic in our programs. A good
resource for finding one to use is https://en.wikipedia.org/wiki/List_of_arbitrary
-precision_arithmetic_software.

We’ve looked at the primary causes of numerical errors when using
floating-point numbers. For a more rigorous mathematical treatment of the
topic, good starting points would be David Goldberg’s paper, “What Every
Computer Scientist Should Know About Floating-Point Arithmetic,” ACM
Computing Surveys, Vol 23, No 1, March 1991, and https://en.wikipedia.org/
wiki/Floating-point_arithmetic. For an example of a programming technique
to reduce rounding errors, you can read about the Kahan summation algo-
rithm at https://en.wikipedia.org/wiki/Kahan_summation_algorithm.

https://en.wikipedia.org/wiki/List_of_arbitrary -precision_arithmetic_software
https://en.wikipedia.org/wiki/List_of_arbitrary -precision_arithmetic_software
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

Fractional Numbers 441

What You’ve Learned

Binary representation of fractional values   Fractional values in binary
are equal to sums of inverse powers of two.

Fixed point in binary   The binary point is assumed to be between two
specific bits.

Floating-point numbers are not real numbers   The gap between adja-
cent floating-point numbers varies according to the exponent.

Floating-point is usually less accurate than fixed-point   Rounding
errors are commonly obscured by floating-point format normalization
and can accumulate through multiple computations.

IEEE 754   The most common standard for representing floating-point
values in a computer program. The integer part is always 1. The expo-
nent specifies the number of bits included in, or excluded from, the
integer part.

SSE floating-point hardware   A separate set of hardware in the CPU,
with its own registers and instruction set, for working with floating-
point numbers.

So far in this book, we have discussed programs that follow a step-by-
step order of execution of instructions. But in some instances, an instruc-
tion cannot do anything meaningful with its operands—for example, when
we divide by 0. As you saw earlier in this chapter, that can trigger an excep-
tion to the intended order of program execution. And we may want to
allow outside events, like typing a key on the keyboard, to interrupt the
ongoing program execution. After discussing input/output in Chapter 20,
we’ll look at interrupts and exceptions in Chapter 21.

20
I N P U T/O U T P U T

We’ll look at the I/O subsystem in this
chapter. The I/O subsystem is what programs

use to communicate with the outside world,
meaning devices other than the CPU and mem-

ory. Most programs read data from one or more input
devices, process the data, and then write the results to
one or more output devices.

Keyboards and mice are typical input devices; display screens and print-
ers are typical output devices. Although most people don’t think of them
this way, devices such as magnetic disks, solid-state drives, USB sticks, and
so forth, are also I/O devices.

We’ll start the chapter by looking at some of the timing characteristics
of I/O devices and how they compare to memory. Then we’ll look at the
interface between the CPU and I/O devices that we use to deal with the tim-
ing issues. Finally, we’ll take a cursory look at how to program I/O devices.

444 Chapter 20

Timing Considerations
Since the CPU accesses memory and I/O over the same buses (see Figure 1-1,
Chapter 1), it might seem that a program could access the I/O devices in the
same way as memory. That is, it might seem that I/O could be performed by
using the mov instruction to transfer bytes of data between the CPU and the
specific I/O device. This can be done, but other issues must be taken into
account in order to make it work correctly. One of the main issues lies in the
timing differences between memory and I/O. Before tackling I/O timing,
let’s consider memory timing characteristics.

N O T E 	 As I’ve pointed out, the three-bus description given in this book shows the logical
interaction between the CPU and I/O. Most modern computers employ several types of
buses. The way in which the CPU connects to the various buses is handled in hardware.
A programmer generally deals only with the logical view.

Memory Timing
An important characteristic of memory is that its timing is relatively uniform
and not dependent on external events. This means that memory timing can
be handled by the hardware, so a programmer doesn’t need to be concerned
about memory timing. We can simply move data to and from memory with
CPU instructions.

Comparing the two types of memory commonly used in computers, the
access time for SRAM is 5–10 times as fast as DRAM, but SRAM costs more
and takes up more physical space. As you learned in Chapter 8, DRAM is
commonly used for the main memory, with SRAM used for the smaller cache
memory. The combination of SRAM cache with DRAM main memory works
well to ensure minimal time delays when the CPU accesses memory.

It’s worth noting here that CPU speeds are still faster than memory,
especially DRAM. Accessing memory—fetching an instruction, loading data,
storing data—is typically the most important factor that slows program
execution. There are techniques for improving cache performance, which
improves memory access times. But employing such techniques requires a
thorough understanding of the CPU and memory configuration of the sys-
tem you’re using, which is beyond the scope of this book.

I/O Device Timing
Almost all I/O devices are much slower than memory. Consider a common
input device, the keyboard. Typing at 120 words per minute is equivalent to
10 characters per second, or 100 milliseconds between each character. A CPU
running at 2 GHz can execute approximately 200 million instructions during
that time. This is to say nothing of the fact that the time intervals between
keystrokes are very inconsistent. Many will be much longer than this.

Even a solid-state drive is slow compared to memory. For example, data
can be transferred to and from a typical SSD at about 500 MBps. The trans-
fer rate for DDR4 memory (commonly used for main memory) is around 20
GBps, some 40 times faster.

Input/Output 445

In addition to being much slower, I/O devices exhibit much more vari-
ance in their timing. Some people type very fast on a keyboard, some very
slow. The required data on a magnetic disk might be just coming up to the
read/write head, or it may have just passed by and we have to wait for nearly
a full revolution of the disk for it to come under the head again.

Before discussing how to deal with I/O device timing, we’ll look at
some bus timing issues.

Bus Timing
Although our overall view of the three major subsystems in Figure 1-1 shows
only three buses connecting the subsystems, the large differences in timing
between memory and the various I/O devices have led to different buses for
accessing memory and I/O devices. Each bus design carries address, data, and
control information, but they use different protocols and physical connections
that are better matched to the speeds of the devices they connect to.

Most computers use a hierarchical bus structure that allows memory and
other fast subsystems to be connected to the CPU through a fast bus, while
connecting slower subsystems through slower buses. We can discuss the con-
cepts by looking at a common arrangement for PCs up until around 2005, as
shown in Figure 20-1.

CPU

PCI-E

Audio

Ethernet

PCIUSB

SATA

IDE

RAM
Memory
controller

hub

I/O
controller

hub

Front-side bus

Figure 20-1: Typical bus control in a PC

The memory controller hub is often called the northbridge; it provides a fast
communication pathway to the CPU through the front-side bus. In addition
to providing a fast connection to main memory, the memory controller hub
connects to fast I/O buses, like the PCI-E bus. The PCI-E bus provides a fast
interface to devices like a graphics card. The I/O controller hub is often called
the southbridge. It connects to slower I/O buses, like SATA, USB, and so forth.

446 Chapter 20

As chip technology improves over the years, manufacturers are able to add
more functionality to the CPU chip, which reduces cost and saves space and
power. Intel included the functionality of the memory controller hub on the
same chip as the CPU in 2008, and AMD included it in 2011. Manufacturers
continue to move bus control hardware onto the same chip with the CPU.

These days, both Intel and AMD sell system on a chip (SoC) devices that
use the x86-64 instruction set and include both memory control and I/O
control on the same chip as the CPU. Of course, SoC devices provide a
fixed set of I/O buses. Essentially all our mobile devices use an SoC for
their computing power.

Accessing I/O Devices
The CPU works with an I/O device through a device controller, the hardware
that does the actual work of controlling the I/O device. For example, a key-
board controller detects which keys are pressed and converts this to a bit
pattern that represents the key. It also detects whether a modifier key, like
SHIFT or CTRL, is pressed and sets bits accordingly.

The device controller interfaces with the CPU through a set of registers.
In general, the device controller provides the following types of I/O registers:

Transmit   Allows data to be written to an output device

Receive   Allows data to be read from an input device

Status   Provides information about the current state of the device,
including the controller itself

Control   Allows a program to send commands to the controller to
change the settings of the device and the controller

It’s common for a device controller interface to have more than one
register of the same type, especially control registers and status registers.

Writing data to an output device is very much like storing data in
memory: you move the data from the CPU to the device controller transmit
register. Where the output device differs is the timing. As discussed, memory
timing is taken care of by the hardware, so a programmer doesn’t need to
be concerned about the timing when storing data in memory. However, an
output device may not be ready to accept new data—it may be working on
previously written data. This is where the status register comes into play. The
program needs to check the status register of the device controller to see if
it’s ready to accept new data.

Reading data from an input device is like loading data from memory
into the CPU: you move the data from the device controller receive register.
Again, the difference is that an input device may not have new data, so the
program needs to check the status register of the input device controller to
see if it has new data.

Most I/O devices also need to be told what to do by sending commands
to the control register. For example, after waiting for an output device control-
ler to become ready for new data and then moving the data to the transmit

Input/Output 447

register, some device controllers require that you tell them to output the
data to the actual device. Or if you want to get data from an input device,
some device controllers require that you request them to get an input. You
can send such commands to the control register.

There are two ways that the CPU can access the I/O registers on a device
controller: port-mapped I/O and memory-mapped I/O. The x86-64 architec-
ture supports both techniques.

Port-Mapped I/O
The x86-64 architecture includes a set of I/O ports that are numbered from
0x0000 to 0xffff. This port address space is separate from the memory address
space. Using the I/O ports for input and output is called port-mapped I/O, or
isolated I/O.

There are special instructions for accessing the I/O address space, in
and out:

in—Input from Port

Read from an I/O port.

in reg, imm reads byte(s) from I/O port number imm. reg can be al, ax, or
eax.

in reg, dx reads byte(s) from the I/O port number specified in dx. reg
can be al, ax, or eax.

The number of bytes read is one for al, two for ax, and four for eax. The
in instruction does not affect the status flags in the rflags register.

out—Output to Port

Write to an I/O port.

out imm, reg writes byte(s) to I/O port number imm. reg can be al, ax, or
eax.

out dx, reg writes byte(s) to the I/O port number specified in dx. reg can
be al, ax, or eax.

The number of bytes written is one for al, two for ax, and four for eax.
The out instruction does not affect the status flags in the rflags register.

When using the in and out instructions, the CPU places the port num-
ber on the address bus, and a control signal on the control bus that selects
the port address space instead of the program address space. This leaves the
entire program address space available for programs. However, the x86-64
architecture’s 64-bit addressing space provides plenty of room for us to use
some of the addresses for I/O devices.

Memory-Mapped I/O
It’ll be easier to understand memory-mapped I/O if we first look at how memory
is managed by Linux, and most other operating systems, when executing a
program.

448 Chapter 20

Programs run in a virtual memory address space, a technique that simu-
lates a large memory with contiguous addressing from 0 to some maximum
value. These are the addresses you see when using gdb—for example, the
addresses in the rip and rsp registers. Although the x86-64 architecture
allows 64-bit addressing, current CPU hardware implementations use only
48 bits for the address. This allows a maximum address of 248 bytes (256
tebibytes) to execute programs in this virtual address space. But most com-
puters have only around 4 to 16 gigabytes (or gibibytes) of physical memory,
the actual RAM installed in the computer, and a program needs to be in
physical memory to be executed.

N O T E 	 We commonly use the metric naming convention for specifying multiple-byte quanti-
ties that is based on powers of 10: kilobyte, megabyte, gigabyte, and so forth. The
International Electrotechnical Commission (IEC) has also defined a naming conven-
tion that is based on powers of two: kibibyte, mebibyte, gibibyte, and so forth. For
example, a kilobyte is 1,000 bytes, and a kibibyte is 1,024 bytes. You can read more
about the naming conventions at https://en.wikipedia.org/wiki/Byte.

The operating system manages the placement of programs in physi-
cal memory by dividing each program into pages. A typical page size is 4
kilobytes (or kibibytes). Physical memory is divided into the same size page
frames. The page of the program that contains the code currently being exe-
cuted by the CPU is loaded from the place where it’s stored (for example,
disk, DVD, USB stick) into a page frame of physical memory.

The operating system maintains a page map table, which shows where the
page of the program is currently loaded in physical memory. Figure 20-2
shows the relationship between virtual memory and physical memory using
the page map table.

page 1

page 0

page n

page n − 1

page frame 1

page frame 0

page frame m

page frame m − 1

Program in
virtual memory

Page map
table Physical memory

(RAM)

Figure 20-2: Relationship between virtual memory and physical memory

The CPU includes a memory mapping unit. When the CPU needs to access
an item in memory, it uses the virtual address of the item. The memory map-
ping unit uses the virtual address as an index into the page map table to
locate the page in physical memory, and from there, the item. If the requested
page is not currently loaded into physical memory, the memory mapping unit
generates a page fault exception, which calls a function in the operating system
to load the page into physical memory and enter its location in the page map
table. (You’ll learn about exceptions in Chapter 21.)

https://en.wikipedia.org/wiki/Byte

Input/Output 449

Similar to mapping virtual memory to physical memory, virtual mem-
ory addresses can be mapped to I/O ports, giving us memory-mapped
I/O. Once an I/O port has been associated with a memory address, the
CPU instructions that access memory can be used to access the I/O port.
One advantage is that you can usually write the I/O functions in a higher-
level language like C. Using the in and out instructions requires you to use
assembly language because compilers typically don’t use these instructions.

Next, we’ll take a look at how to approach I/O programming.

YOUR T UR N

Pick two programs that you have written. Start each program with gdb in sepa-
rate terminal windows. Set a breakpoint near the beginning of each program
and run the program. When the program breaks, look at the addresses in the
rip and rsp registers. Do the two programs appear to share the same memory
space? Explain.

I/O Programming
I/O devices differ widely in the amount of data they process and the speed
with which they process it. For example, input from a keyboard is one byte
at human typing speed, while input from a disk is several hundred mega-
bytes per second. Depending on their inherent characteristics, I/O devices
use different techniques for communicating with the CPU, and thus we
need to program each of them accordingly.

Polled I/O
Polling is the simplest way to do I/O and is often a sufficient method for
small amounts of data. We first check the status register of the I/O device
controller to determine the device’s state. If the device is in a ready state,
then we can read data from an input device or write data to an output
device. Polling typically involves a loop that iterates, checking the device’s
status register in each iteration of the loop, until the device is in a ready
state. This way of doing I/O is known as polled I/O, or programmed I/O.

The downside of polled I/O is that the CPU can be tied up for long peri-
ods of time while it waits for the device to become ready. This would probably
be acceptable if the CPU were dedicated to running only one program on the
system (for example, controlling your microwave oven). But it’s not acceptable
in the multiprogram environments of our laptop and desktop computers.

Interrupt-Driven I/O
We could get more work out of the CPU if we could tell an I/O device to
let us know when it’s ready for data input or output and then use the CPU
for something else. Many I/O devices include an interrupt controller that can

450 Chapter 20

send an interrupt signal to the CPU when the device has completed an
operation or is ready to take on another operation.

An interrupt from an external device causes the CPU to call an interrupt
handler, a function within the operating system that deals with the input or
output from the interrupting device. We’ll discuss the CPU features that
allow it to call interrupt handlers in Chapter 21.

Direct Memory Access
I/O devices that transfer large amounts of data at high speed often have the
capability of direct memory access (DMA). They have DMA controllers that can
access main memory directly without the CPU. For example, when reading
from a disk, the DMA controller accepts a memory address and a com-
mand to read data from the disk. When the DMA controller has read the
data from the disk into its own buffer memory, it writes that data directly to
main memory. When the DMA data transfer has completed, the controller
sends an interrupt to the CPU, thus invoking the disk handler that notifies
the operating system that the data is now available in memory.

Next, we’ll look at some examples of how polling I/O might be done.

Polled I/O Programming Algorithms
The operating system has complete control over the I/O devices on our
computer, so it will not allow us to write applications that directly access an
I/O device. The programs we’re writing here are meant only to show the
concepts, not to do anything useful. In fact, running them will elicit an
error message from the operating system.

We’ll look at some simple polling algorithms that show how we might
program a universal asynchronous receiver/transmitter (UART) for I/O. This
device performs parallel-to-serial conversion to transmit a byte of data one
bit at a time. The output of a UART requires only one transmission line,
which is placed at one of two voltage levels. A transmitting UART sends a
string of bits by switching between the two voltage levels at a fixed rate. The
receiving UART reads the bits one at a time and performs serial-to-parallel
conversion to reassemble the byte that was sent to it. Both UARTs must be
set at the same bit rate.

In the idle state, the transmitting UART places the high voltage on the
transmission line. When a program outputs a byte to the UART, the transmit-
ting UART switches the transmission line to the low voltage for the amount of
time corresponding to the agreed-upon rate, thus sending a start bit.

The UART then uses a shift register to shift the byte one bit at a time,
setting the voltage on the output line accordingly. Most UARTs start with
the low-order bit. When the entire byte has been sent, the UART returns the
output line to the idle state for at least one bit time, thus sending at least one
stop bit.

Figure 20-3 shows how a UART with typical settings would send the two
characters m and n that are encoded in ASCII.

Input/Output 451

Time

St
ar

t

St
op St

ar
t

St
op IdleIdle 0 1 00 0 00 111 11 1111

Data DataData

Figure 20-3: UART output to send the characters m and n

The receiving UART watches the transmission line, looking for a start
bit. When it detects a start bit, it uses a shift register to reassemble the indi-
vidual bits into a byte, which is provided to the receiving program as input.

We’ll use the 16550 UART, a common type, for our programming
example. The 16550 UART has 12 eight-bit registers, shown in Table 20-1.

Table 20-1: Registers of the 16550 UART

Name Address DLAB Purpose

RBR 000 0 Receiver buffer—input byte

THR 000 0 Transmitter holding—output byte

IER 001 0 Interrupt enable—set type of interrupt

IIR 010 x Interrupt identification—show type of interrupt

FCR 010 x FIFO control—set FIFO parameters

LCR 011 x Line control—set communications format

MCR 100 x Modem control—set interface with modem

LSR 101 x Line status—show status of data transfers

MSR 110 x Modem status—show status of modem

SCR 111 x Scratch

DLL 000 1 Divisor latch, low-order byte

DLM 001 1 Divisor latch, high-order byte

The addresses in Table 20-1 are offsets from the UART’s base address.
You probably noticed that some of the registers have the same offset. The
address specifies a port to a register. The specific register being accessed
through that port depends on what the program is doing with that port. For
example, if the program reads from port 000, it’s reading from the receiver
buffer register (RBR). But if the program writes to port 000, it’s writing to the
transmitter holding register (THR).

The divisor latch access bit (DLAB) is a bit number 7 in the line control
register (LCR). When it is set to 1, port 000 connects to the low-order byte of
the 16-bit divisor latch value, and port 001 connects to the high-order byte
of the divisor latch value.

The 16550 UART can be programmed for interrupt-driven I/O and
direct memory access. It includes 16-byte first-in, first-out (FIFO) buffers on
both the transmitter and the receiver ports. It can also be programmed to
control a serial modem.

452 Chapter 20

Older PCs typically connected the UART to a COM port. In past years,
COM ports were often used to connect devices like a printer and a modem
to the computer, but most PCs these days use USB ports for serial I/O. The
16550 UART on my desktop computer has a set of internal connection pins
but no external connection port.

We’ll assume that our UART is installed in a computer that uses memory-
mapped I/O so that we can show the algorithms in C. To keep things simple,
we’ll do only polled I/O here, which requires these three functions:

init_io   Initializes the UART. This includes setting the parameters in
the hardware such as speed, communications protocol, and so forth.

charin   Reads one character that was received by the UART.

charout   Writes one character to transmitted by the UART.

W A R N I N G 	 The code we’ll discuss here is incomplete and does not run on any known computer.
It’s meant only to illustrate some basic concepts.

UART Memory-Mapped I/O in C
We will explore only a few features of the UART. Let’s start with a file that
provides symbolic names for the registers and some numbers we’ll be using
in our example program, as shown in Listing 20-1.

/* UART_defs.h
 * Definitions for a 16550 UART.
 * WARNING: This code does not run on any known
 * device. It is meant to sketch some
 * general I/O concepts only.
 */
#ifndef UART_DEFS_H
#define UART_DEFS_H
1 /* register offsets */
#define RBR 0x00 /* receive buffer register */
#define THR 0x00 /* transmit holding register */
#define IER 0x01 /* interrupt enable register */
#define FCR 0x02 /* FIFO control register */
#define LCR 0x03 /* line control register */
#define LSR 0x05 /* line status register */
#define DLL 0x00 /* divisor latch LSB */
#define DLM 0x01 /* divisor latch MSB */

/* status bits */
#define RxRDY 0x01 /* receiver ready */
#define TxRDY 0x20 /* transmitter ready */

/* commands */
#define NOFIFO 0x00 /* don't use FIFO */
#define NOINTERRUPT 0x00 /* polling mode */
#define MSB38400 0x00 /* 2 bytes used to */
#define LSB38400 0x03 /* set baud 38400 */
#define NBITS 0x03 /* 8 bits */
#define STOPBIT 0x00 /* 1 stop bit */

Input/Output 453

#define NOPARITY 0x00
2 #define SETCOM NBITS | STOPBIT | NOPARITY
3 #define SETBAUD 0x80 | SETCOM
#endif

Listing 20-1: Definitions for a 16550 UART

The ports to the registers are at fixed positions relative to the start
of the mapped memory address of the UART. The UART might be used
in another computer, where the mapping might begin at another base
address, so we just define the offsets here 1. These offsets, and the status
and control bit settings, are taken from a 16550 datasheet. You can down-
load one at https://www.ti.com/product/TL16C550D/.

Let’s look at how I arrived at the value for the SETCOM control 2. The
communication parameters are set by writing a byte to the line status reg-
ister. The number of bits in each data frame can range from 5 to 8. The
datasheet tells us that setting bits 1 and 0 to 11 will specify 8 bits. Hence, I
set NBITS to 0x03. Setting bit 2 to 0 specifies one stop bit, so STOPBIT = 0x00. We
won’t use parity, which is bit 3, so NOPARITY = 0x00. I OR these together to cre-
ate the byte that sets the communication parameters. Of course, we really
don’t need the two 0 values, but specifying them makes our intent explicit.

Baud is a measure of the speed of communication, defined as the num-
ber of symbols per second. A UART uses only two voltage levels for commu-
nication, symbolically 0 or 1, or one bit. So for a UART, baud is equivalent
to the number of bits transmitted or received per second. We need to set
the DLAB bit to 1 to place our UART in the mode that allows us to set the
baud 3.

Next, we need a header file for declaring the functions, as shown in
Listing 20-2.

/* UART_functions.h
 * Initialize, read, and write functions for an abstract UART.
 * WARNING: This code does not run on any known
 * device. It is meant to sketch some
 * general I/O concepts only.
 */
#ifndef UART_FUNCTIONS_H
#define UART_FUNCTIONS_H
void UART_init(unsigned char* UART); /* initialize UART */
unsigned char UART_in(unsigned char* UART); /* input */
void UART_out(unsigned char* UART, unsigned char c); /* output */
#endif

Listing 20-2: Declarations of UART functions

The header file in Listing 20-2 declares the three basic functions for
using our UART. We won’t cover the more advanced features of a UART in
this book.

We’ll place the definitions of these three functions in one file, as shown
in Listing 20-3, because they would typically be used together.

https://www.ti.com/product/TL16C550D/

454 Chapter 20

/* UART_functions.c
 * Initialize, read, and write functions for an abstract UART.
 * WARNING: This code does not run on any known
 * device. It is meant to sketch some
 * general I/O concepts only.
 */

#include "UART_defs.h"
#include "UART_functions.h"

/* UART_init initializes the UART. */
1 void UART_init(unsigned char* UART)
{
 unsigned char* port = UART;

2 *(port+IER) = NOINTERRUPT; /* no interrupts */
 (port+FCR) = NOFIFO; / no fifo */
 (port+LCR) = SETBAUD; / set frequency mode */
 (port+DLM) = MSB38400; / set to 38400 baud */
 (port+DLL) = LSB38400; / with 2 bytes */
 (port+LCR) = SETCOM; / communications mode */
}

/* UART_in waits until UART has a character then reads it */
unsigned char UART_in(unsigned char* UART)
{
 unsigned char* port = UART;
 unsigned char character;

3 while ((*(port+LSR) & RxRDY) != 0)
 {
 }
 character = *(port+RBR);
 return character;
}

/* UART_out waits until UART is ready then writes a character */
void UART_out(unsigned char* UART, unsigned char character)
{
 unsigned char* port = UART;
 unsigned char status;
 while ((*(port+LSR) & TxRDY) != 0)
 {
 }
 *(port+THR) = character;
}

Listing 20-3: UART memory-mapped I/O function definitions in C

We pass each of the functions in Listing 20-3 a pointer to the UART
port 1. We then access each of the UART registers through an offset from this
pointer 2. Both the input and output functions wait until the UART is ready
for their respective action 3. These functions illustrate an important advan-
tage of memory-mapped I/O: they can be written in a high-level language.

Input/Output 455

We can see a potential downside of writing these functions in a high-level
language by looking at the assembly language generated by the compiler, as
shown in Listing 20-4.

 .file "UART_functions.c"
 .intel_syntax noprefix
 .text
 .globl UART_init
 .type UART_init, @function
UART_init:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -24[rbp], rdi
 mov rax, QWORD PTR -24[rbp] ## UART base address
 mov QWORD PTR -8[rbp], rax
 1 mov rax, QWORD PTR -8[rbp] ## UART base address
 add rax, 1 ## IER offset
 mov BYTE PTR [rax], 0 ## no interrupts
 mov rax, QWORD PTR -8[rbp]
 add rax, 2 ## FCR offset
 mov BYTE PTR [rax], 0 ## no FIFO
 mov rax, QWORD PTR -8[rbp]
 add rax, 3 ## LCR offset
 mov BYTE PTR [rax], -125 ## set baud mode
 mov rax, QWORD PTR -8[rbp]
 add rax, 1 ## DLM offset
 mov BYTE PTR [rax], 0 ## high byte
 mov rax, QWORD PTR -8[rbp] ## DLL offset = 0
 mov BYTE PTR [rax], 3 ## low byte
 mov rax, QWORD PTR -8[rbp]
 add rax, 3 ## LCR offset
 mov BYTE PTR [rax], 3 ## communications mode
 nop
 pop rbp
 ret
 .size UART_init, .-UART_init
 .globl UART_in
 .type UART_in, @function
UART_in:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -24[rbp], rdi
 mov rax, QWORD PTR -24[rbp]
 mov QWORD PTR -8[rbp], rax
 nop
.L3:
 mov rax, QWORD PTR -8[rbp] ## UART base address
 add rax, 5 ## LSR offset
 movzx eax, BYTE PTR [rax]
 movzx eax, al ## load LSR
 and eax, 1 ## (*(port+LSR) & RxRDY)
 2 test eax, eax
 jne .L3
 mov rax, QWORD PTR -8[rbp]

456 Chapter 20

 movzx eax, BYTE PTR [rax] ## input character
 mov BYTE PTR -9[rbp], al
 movzx eax, BYTE PTR -9[rbp] ## return character
 pop rbp
 ret
 .size UART_in, .-UART_in
 .globl UART_out
 .type UART_out, @function
UART_out:
 push rbp
 mov rbp, rsp
 mov QWORD PTR -24[rbp], rdi
 mov eax, esi
 mov BYTE PTR -28[rbp], al
 mov rax, QWORD PTR -24[rbp]
 mov QWORD PTR -8[rbp], rax
 nop
.L6:
 mov rax, QWORD PTR -8[rbp] ## UART base address
 add rax, 5 ## LSR offset
 movzx eax, BYTE PTR [rax]
 movzx eax, al ## load LSR
 and eax, 32 ## (*(port+LSR) & TxRDY)
 test eax, eax
 jne .L6
 mov rax, QWORD PTR -8[rbp]
 lea rdx, 7[rax]
 movzx eax, BYTE PTR -28[rbp] ## load character
 mov BYTE PTR [rdx], al ## output character
 nop
 pop rbp
 ret
 .size UART_out, .-UART_out
 .ident "GCC: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0"
 .section .note.GNU-stack,"",@progbits

Listing 20-4: Assembly language generated by the compiler for our UART functions

We can see some inefficiencies in the code that the compiler generates.
The initialization function, UART_init, sends several commands to the UART’s
control registers. The compiler computes the effective address of each con-
trol register 1, and then it repeats this computation for each command.

Another inefficiency can be seen in the input function, UART_in. The algo-
rithm uses the and instruction to check the receiver ready bit. The compiler
has then used the test instruction to determine if the result of the and instruc-
tion was 0 2. But the test instruction performs an AND operation to set the
status flags in the rflags register, which were already set by the and instruction.
In other words, the test instruction is redundant in this algorithm.

I stated earlier in this book that we won’t be concerned about code
efficiency, and it may seem that saving a few CPU cycles when accessing
a slow I/O device is unimportant. But the algorithms we’re looking at
here are often used within a device handler. Other I/O devices may inter-
rupt the handler currently being executed, causing delays. Since it’s not

Input/Output 457

possible to know the timing of external devices, it’s a good idea to minimize
the amount of time spent within a device handler. When writing a device
handler, I often start with C. Then I generate the corresponding assembly
language and check that for inefficiencies and inaccuracies.

More often, I write device handlers directly in assembly language.
We’ll look now at how these functions could be written directly in assembly
language.

UART Memory-Mapped I/O in Assembly Language
Having learned what the compiler generates for these three UART I/O
functions, we can now try to do a better job directly in assembly language.
This starts with the definitions of symbolic names for use in our assembly
language functions, as shown in Listing 20-5.

UART_defs
Definitions for a 16550 UART.
WARNING: This code does not run on any known
device. It is meant to sketch some
general I/O concepts only.

register offsets
 .equ RBR,0x00 # receive buffer register
 .equ THR,0x00 # transmit holding register
 .equ IER,0x01 # interrupt enable register
 .equ FCR,0x02 # FIFO control register
 .equ LCR,0x03 # line control register
 .equ LSR,0x05 # line status register
 .equ DLL,0x00 # divisor latch LSB
 .equ DLM,0x01 # divisor latch MSB

status bits
 .equ RxRDY,0x01 # receiver ready
 .equ TxRDY,0x20 # transmitter ready

commands
 .equ NOFIFO,0x00 # don't use FIFO
 .equ NOINTERRUPT,0x00 # polling mode
 .equ MSB38400,0x00 # 2 bytes used to
 .equ LSB38400,0x03 # set baud 38400
 .equ NBITS,0x03 # 8 bits
 .equ STOPBIT,0x00 # 1 stop bit
 .equ NOPARITY,0x00
 .equ SETCOM,NBITS | STOPBIT | NOPARITY
 .equ SETBAUD,0x80 | SETCOM

Listing 20-5: Assembly language symbolic names for UART functions

Listing 20-6 shows our assembly language version of the three UART
I/O functions.

UART_functions.s
Initialize, read, and write functions for a 16550 UART.

458 Chapter 20

WARNING: This code does not run on any known
device. It is meant to sketch some
general I/O concepts only.
 .intel_syntax noprefix

 .include "UART_defs"

Intialize the UART
Calling sequence:
rdi <- base address of UART
 .text
 .globl UART_init
 .type UART_init, @function
UART_init:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer

 # no interrupts, don't use FIFO queue
 1 mov byte ptr IER[rdi], NOINTERRUPT
 mov byte ptr FCR[rdi], NOFIFO
 # set divisor latch access bit = 1 to set baud
 mov byte ptr LCR[rdi], SETBAUD
 mov byte ptr DLM[rdi], MSB38400
 mov byte ptr DLL[rdi], LSB38400
 # divisor latch access bit = 0 for communications mode
 mov byte ptr LCR[rdi], SETCOM

 mov rsp, rbp # yes, restore stack pointer
 pop rbp # and caller frame pointer
 ret

Input a single character
Calling sequence:
rdi <- base address of UART
returns character in al register
 .globl UART_in
 .type UART_in, @function
UART_in:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer

inWaitLoop:
 2 and byte ptr LSR[rdi], RxRDY # character available?
 jne inWaitLoop # no, wait
 movzx eax, byte ptr RBR[rdi] # yes, get it
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret
	
Output a single character in sil register
 .globl	 UART_out
 .type	 UART_out, @function
UART_out:
 push rbp # save frame pointer
 mov rbp, rsp # set new frame pointer

Input/Output 459

outWaitLoop:
 and byte ptr LSR[rdi], TxRDY # ready for character?
 jne outWaitLoop # no, wait
 mov THR[rdi], sil # yes, send it
 mov rsp, rbp # restore stack pointer
 pop rbp # and caller frame pointer
 ret

Listing 20-6: Assembly language versions of UART I/O functions

The functions are called with a pointer to the base address of the UART,
so we can access the UART registers by using the register-indirect-with-offset
addressing mode 1. The compiler chose to use an add instruction to add the
offset for each UART register access, which is less efficient.

Since we are using memory-mapped I/O here, we can use the and
instruction to check the ready status without loading the contents of the
UART’s status register into a CPU general-purpose register 2, which is
what the compiler does. Our assembly language solution here may not
be more efficient because the contents still must be loaded into the CPU
(using a hidden register) before the and operation can be performed.

At the beginning of the chapter, I described I/O programming as
being complex, but the code I’ve presented is fairly straightforward. The
complexity comes when interfacing the I/O programming with the operat-
ing system, which is responsible for managing all the system resources. For
example, we could have several programs running concurrently, all using
the same keyboard. The operating system needs to keep track of which pro-
gram gets the input from the keyboard at any moment in time.

The algorithms I’ve presented here are only a small part of the entire
picture of I/O, but they should give you an introduction to the sorts of
issues involved. Although memory-mapped I/O is the more common tech-
nique, the x86-64 also support port-mapped I/O, which we’ll explore in the
next section.

YOUR T UR N

1.	 Use the -c option to create object files from the code in Listings 20-3 and 20-7:

gcc -c -masm=intel -Wall -g UART_echo.c
gcc -c -masm=intel -Wall -g UART_functions.c

Link the two object files with this command:

ld -e myProg -o UART_echo UART_echo.o UART_functions.o

(continued)

460 Chapter 20

The UART address I give in this program is arbitrary. If you run the result-
ing program, the operating system should give you an error message. This
exercise will only show whether all the functions fit together correctly.

/* UART_echo.c
 * Use a UART to echo a single character.
 * WARNING: This code does not run on any known
 * device. It is meant to sketch some
 * general I/O concepts only.
 */

#include "UART_functions.h"
#define UART0 (unsigned char *)0xfe200040 /* address of UART */

int myProg() {
 unsigned char aCharacter;

 UART_init(UART0);
 aCharacter = UART_in(UART0);
 UART_out(UART0, aCharacter);

 return 0;
}

Listing 20-7: Program to check UART I/O functions. (Do not try to run this
program.)

2.	 Enter the code in Listings 20-5 and 20-6. Assemble it and check for cor-
rectness by linking the resulting object file with the UART_echo.o object file
from the previous “Your Turn” exercise.

UART Port-Mapped I/O
Unlike memory-mapped I/O, we cannot treat the I/O port numbers as
memory addresses. The arguments to the functions are numbers, not point-
ers, as shown in Listing 20-8.

/* UART_functions.c
 * Initialize, read, and write functions for a 16550 UART.
 * WARNING: This code does not run on any known
 * device. It is meant to sketch some
 * general I/O concepts only.
 */

#include <sys/io.h>
#include "UART_defs.h"
#include "UART_functions.h"

/* UART_init intializes the UART and enables it. */
void UART_init(unsigned short int UART)
{

Input/Output 461

1 unsigned short int port = UART;

2 outb(NOINTERRUPT, port+IER); /* no interrupts */
 outb(NOFIFO, port+FCR); /* no fifo */
 outb(SETBAUD, port+LCR); /* set frequency mode */
 outb(MSB38400, port+DLM); /* set to 38400 baud */
 outb(LSB38400, port+DLL); /* 2 regs to set */
 outb(SETCOM, port+LCR); /* communications mode */
}

/* UART_in waits until UART has a character then reads it */
unsigned char UART_in(unsigned short int UART)
{
 unsigned short int port = UART;
 unsigned char character;

 while ((inb(port+LSR) & RxRDY) != 0)
 {
 }
 character = inb(port+RBR);
 return character;
}

/* UART_out waits until UART is ready then writes a character */
void UART_out(unsigned short int UART, unsigned char character)
{
 unsigned short int port = UART;

 while ((inb(port+LSR) & TxRDY) != 0)
 {
 }
 outb(character, port+THR);
}

Listing 20-8: UART port-mapped I/O function definitions in C

The Linux programming environment provides a header file, io.h, that
includes functions to use the I/O ports. The interface with our UART takes
bytes, so we’ll use inb and outb. You can read about these functions on their
man page: man inb.

The algorithms for port-mapped I/O are the same as for memory
mapped. But instead of accessing the port as a memory address, we use a
number 1. And we need to call the appropriate function to transfer bytes
to and from the UART 2.

When I tried to compile the file in Listing 20-8 by using the -masm=intel
option, I got the following error messages:

$ gcc -c -masm=intel -Wall -g UART_functions.c
/usr/include/x86_64-linux-gnu/sys/io.h: Assembler messages:
/usr/include/x86_64-linux-gnu/sys/io.h:47: Error: operand type mismatch for
`in'
/usr/include/x86_64-linux-gnu/sys/io.h:98: Error: operand type mismatch for
`out'

462 Chapter 20

I was puzzled so decided to look at the compiler-generated assembly
language by changing the -c option to -S. I won’t go through the entire file,
but let’s look at the first part of the compiler-generated assembly language,
as shown in Listing 20-9.

 .file "UART_functions.c"
 .intel_syntax noprefix
 .text
 .type inb, @function
1 inb:
 push rbp
 mov rbp, rsp
 mov eax, edi
 mov WORD PTR -20[rbp], ax
 movzx eax, WORD PTR -20[rbp]
 mov edx, eax
2 #APP
47 "/usr/include/x86_64-linux-gnu/sys/io.h" 1
 inb dx,al
0 "" 2
#NO_APP
 mov BYTE PTR -1[rbp], al
 movzx eax, BYTE PTR -1[rbp]
 pop rbp
 ret
 .size inb, .-inb
 .type outb, @function
outb:
 push rbp
 mov rbp, rsp
 mov edx, edi
 mov eax, esi
 mov BYTE PTR -4[rbp], dl
 mov WORD PTR -8[rbp], ax
 movzx eax, BYTE PTR -4[rbp]
 movzx edx, WORD PTR -8[rbp]
#APP
98 "/usr/include/x86_64-linux-gnu/sys/io.h" 1
 outb al,dx
0 "" 2
#NO_APP
 nop
 pop rbp
 ret
 .size outb, .-outb
 .globl UART_init
 .type UART_init, @function
UART_init:
 push rbp
 mov rbp, rsp
 sub rsp, 24
 mov eax, edi

Input/Output 463

 mov WORD PTR -20[rbp], ax
 movzx eax, WORD PTR -20[rbp]
 mov WORD PTR -2[rbp], ax
 movzx eax, WORD PTR -2[rbp]
 add eax, 1
 movzx eax, ax
 mov esi, eax
 mov edi, 0
 call outb
 movzx eax, WORD PTR -2[rbp]
 add eax, 2
--snip--

Listing 20-9: Some compiler-generated assembly language for the functions in Listing 20-8

The first thing to note is that the compiler has included the assembly
language for the inb and outb functions 1. These functions are not part of
the C standard library. They are meant to be used in the operating system
code, not in applications programs. They are specific to the Linux kernel
running on an x86-64 computer.

Next, we see that the actual in and out instructions are inserted into the
code by macros 2. The macros insert these two instructions in AT&T syn-
tax (see AT&T Syntax at the end of Chapter 10):

 inb dx, al ## at&t syntax
 outb al, dx

As we saw earlier in this chapter, the instructions are written in Intel
syntax as follows:

 in al, dx ## intel syntax
 out dx, al

The problem here is that the assembly language used in the Linux ker-
nel is written using the AT&T syntax, whereas we’re using the Intel syntax
for assembly language. If we were to generate the assembly language with-
out the -masm=intel option, all the assembly language would be in the AT&T
syntax. If we use the C functions in io.h for port-mapped I/O, we cannot use
the -masm=intel compiler option.

YOUR T UR N

Rewrite the UART I/O functions in Listing 20-6 to use port-mapped I/O instead of
memory-mapped I/O and assemble them. Modify UART_echo.c in Listing 20-7
to use your port-mapped I/O functions. The base port number on most PCs is
0x3f8. Compile UART_echo.c and link the two resulting object files to check for
correctness.

464 Chapter 20

What You’ve Learned

Memory timing   Memory access is synchronized with the timing of
the CPU.

I/O timing   I/O devices are much slower than the CPU and have a
wide range of characteristics, so we need to program their access.

Bus timing   Buses are often arranged in a hierarchical manner to better
match the differences in timing between various I/O devices.

Port-mapped I/O   In this technique, I/O ports have their own
address space.

Memory-mapped I/O   In this technique, I/O ports are given a
portion of the main memory address space.

Polled I/O   The program waits in a loop until the I/O device is ready
to transfer data.

Interrupt-driven I/O   The I/O device interrupts the CPU when it is
ready to transfer data.

Direct memory access   The I/O device can transfer data to and from
main memory without using the CPU.

In the next chapter, you’ll learn about the CPU features that allow it to
maintain control over the I/O hardware and prevent application programs
from accessing the hardware without going through the operating system.

21
I N T E R R U P T S A N D E X C E P T I O N S

Thus far, we’ve viewed each application as
having exclusive use of the computer. But

like most operating systems, Linux allows
multiple applications to be executing concur-

rently. The operating system manages the hardware
in an interleaved fashion, providing each application,
and the operating system itself, with the use of the
hardware components it needs at any given time.

There are two issues here. First, for the operating system to carry out its
management tasks, it needs to maintain control over the interaction between
applications and hardware. It does this by using a system of privilege levels
in the CPU that allows the operating system to control a gateway between
applications and the operating system. Second, we saw near the end of the
previous chapter that most I/O devices can interrupt the ongoing activity of
the CPU when they are ready with input or ready to accept output. The CPU
has a mechanism to direct I/O interruptions through this gateway and call

466 Chapter 21

functions that are under the control of the operating system, thus allowing
the operating system to maintain its control over the I/O devices.

We’ll start by looking at how the CPU uses privilege levels to enforce its
control. Then we’ll look at how the CPU reacts to an interrupt or exception,
including the three ways to notify the CPU that its services are needed by
an I/O device or an application: external interrupt, exception, or software inter-
rupt. We’ll end the chapter by discussing how applications can directly call
upon services of the operating system by using a software interrupt.

Privilege Levels
For the operating system to carry out its management tasks, it needs to
maintain control over the interaction between applications and hardware.
It does this by using a system of privilege levels in the CPU that the operating
system uses to maintain a gateway between applications and the hardware.
At any given time, the CPU is running in one of four possible privilege lev-
els. Table 21-1 shows the levels, from most privileged to least.

Table 21-1: CPU Privilege Levels

Level Usage

0 Provides direct access to all hardware resources. Restricted to the lowest-level
operating system functions, such as I/O devices and memory management.

1 Somewhat restricted access to hardware resources. Might be used by some
library routines and software that control I/O devices not requiring full access
to the hardware.

2 More restricted access to hardware resources. Might be used by some library
routines and software that control I/O devices not requiring less access than
level 1.

3 No direct access to hardware resources. Applications run at this level.

Most operating systems use only levels 0 and 3, often called supervisor
mode and user mode, respectively. The operating system, including hardware
device drivers, runs in supervisor mode, and applications, including the
library routines they call, run in user mode. Levels 1 and 2 are seldom used.
Be careful not to confuse CPU privilege levels, a hardware feature, with
operating system file permissions, a software feature.

Whenever the CPU accesses memory, it does so through a gate descrip-
tor. This 16-byte record includes the privilege level for the page of memory
being accessed. The CPU is allowed to access memory that is at a privilege
level equal to or below the current privilege level of the CPU.

When the operating system first boots up, the memory allocated to it is
at the highest privilege level, 0, and the CPU is running at privilege level 0.
Memory allocated for I/O devices is also at privilege level 0.

When the operating system loads an application, it first allocates
memory for the program at the lowest privilege level, 3. After the applica-
tion is loaded, the operating system passes use of the CPU to the application
while simultaneously changing the CPU to privilege level 3. With the CPU
running at the lowest privilege level, the application cannot directly access

Interrupts and Exceptions 467

any memory that belongs to the operating system or the I/O devices. The
instructions that allow you to directly change privilege levels can be exe-
cuted only at level 0. Applications can access operating system services only
through a gate descriptor.

Next, we’ll look at what the CPU does when an interrupt or exception
occurs, including how gate descriptors are used.

CPU Response to an Interrupt or Exception
An interrupt or exception is an event that causes the CPU to pause the
execution of the current instruction stream and call a function, called an
interrupt handler, exception handler, or simply handler. Handlers are part of
the operating system. In Linux they can be either built into the kernel or
loaded as separate modules as needed.

This transfer of control is similar to a function call but with some addi-
tional actions. In addition to pushing the contents of the rip register (the
return address) onto the stack when responding to an interrupt or excep-
tion, the CPU also pushes the contents of the rflags register onto the stack.
Handlers almost always need to be executed at a high privilege level—most
often level 0 in Table 21-1—so there’s also a mechanism for placing the
CPU at the proper privilege level.

The calling address and privilege level of a handler, along with other
information, are stored in a gate descriptor (also called a vector) by the
operating system. Gate descriptors for interrupts and exceptions are stored
in an array, the interrupt descriptor table (IDT), or vector table, at the location
corresponding to their interrupt number. The x86-64 architecture supports
256 possible interrupts or exceptions, numbered 0–255. The first 32 (0–31)
are pre-assigned in the CPU hardware for specific uses. For example, the
first gate descriptor in the interrupt descriptor table, location 0, is for a
divide-by-zero exception. The remaining 224 are available for the operating
system to use for external interrupts and software interrupts.

In addition to transferring control to the hander-calling address, the
CPU also switches to the privilege level specified in the gate descriptor for
the interrupt or exception. The gate descriptor can tell the operating sys-
tem to use a different stack than the application. Under certain conditions,
the CPU will also push the application’s stack pointer onto the operating
system’s stack. The CPU then moves the address of the interrupt handler
from the gate descriptor into the rip, and execution continues from there.

Here’s a summary of the actions taken by the CPU in response to an
interrupt or exception:

1.	 Push the contents of the rflags register onto the stack.

2.	 Push the contents of the rip register onto the stack. Depending on the
nature of an exception, the handler may or may not return to the cur-
rent program after it has handled the exception.

3.	 Set the privilege level of the CPU to the level specified in the corre-
sponding gate descriptor.

4.	 Load the address of the handler from the corresponding gate descrip-
tor into the rip register.

468 Chapter 21

A simple ret instruction at the end of the handler will not work correctly.
There is another instruction, iret, that first restores the rflags register, the
privilege level, and the stack pointer (if it was saved) being used by the code
that was interrupted, and then restores the rip.

In some situations, it’s not possible to continue the interrupted code.
In such cases, the handler may be able to display an error message and pass
control to the operating system. In other cases, the operating system itself
stops running.

There is no universal agreement on how the two terms, interrupt or
exception, are used. I’ll follow the usage in the Intel and AMD manuals to
describe the three ways to notify the CPU that the services of the operating
system are needed by an I/O device or an application program: external
interrupt, exception, or software interrupt.

External Interrupts
An external interrupt is caused by hardware that is outside the CPU. The
interrupt signal is sent to the CPU via the control bus. An external inter-
rupt is asynchronous with CPU timing—it can occur while the CPU is in the
middle of executing an instruction.

Keyboard input is an example of an external interrupt. It’s impossible
to know exactly when someone will press a key on the keyboard or how soon
the next key will be pressed. For example, say a key is pressed in the middle
of executing the first of the following two instructions:

 cmp byte ptr [ebx], 0
 je allDone

The operating system needs to use the CPU to read the character from
the keyboard as soon as possible to prevent the character from being overwrit-
ten by the next key press, but first, the CPU needs to complete the execution
of the currently executing instruction.

The CPU will acknowledge an interrupt only between the execution of
instructions. In our example, the CPU will acknowledge the external inter-
rupt after it has executed the cmp instruction. In “Instruction Execution
Cycle” on page 180, you learned that the rip register gets updated to con-
tain the address of the je instruction while the CPU is executing the cmp
instruction. This is the address that gets pushed onto the stack so that the
CPU can return to the je instruction in our program after the interruption
has been handled.

The CPU then calls the keyboard handler to read the character from
the keyboard. It’s almost certain that the handler will change the rflags
register. The action of the je instruction needs to be based on the results
of the cmp instruction, not on whatever might have happened to the rflags
register in the handler. Now we see why the CPU needs to save a copy of the
rflags register when responding to an external interrupt.

Interrupts and Exceptions 469

Exceptions
The next way to interrupt the CPU we’ll consider is with an exception.
Exceptions are typically the result of a number that the CPU cannot deal
with. Examples include dividing by 0, accessing an invalid address, or
attempting to execute an invalid instruction. In a perfect world, the applica-
tion software would include all the checks that would prevent these errors
from occurring. The reality is that no program is perfect, so some of these
errors will occur.

When one of these errors does occur, it’s the operating system’s respon-
sibility to take the appropriate action. Often, the best the operating system
can do is to exit the application program and print an error message. For
example, when I made an error in how I treated the call stack in one of my
assembly language programs, I got the following message:

Segmentation fault (core dumped)

Like an external interrupt, a handler in the operating system needs to
be called to deal with an exception. The more the handler knows about the
state of the CPU when an exception occurs, the better it can determine the
cause. So it’s helpful to have the values in the rip and rflags registers passed
to the exception handler. And, of course, the CPU needs to be placed in
the highest privilege level since the handler is part of the operating system.

Not all exceptions are due to actual program errors. For example, when
a program references an address in another part of the program that has
not yet been loaded into memory, it causes a page fault exception. The operat-
ing system provides a handler that loads the appropriate part of the program
from the disk into memory and then continues with normal program exe-
cution without the user even being aware of this event. In this case, the
handler requires the values in the rip and rflags registers when the page
fault occurs so they can be restored when control returns to the program.

Software Interrupts
A software interrupt happens when we use an instruction to have the CPU
act as though there were an external interrupt or exception. Why would a
programmer want to purposely interrupt the program? The answer is to
request the services of the operating system.

Applications are running at the lowest privilege level, so they can’t
directly call functions in the operating system. The interrupt/exception
mechanism in the CPU includes the means for switching the privilege level
of the CPU while calling a function. Thus, a software interrupt allows an
application running at the lowest privilege level, 3, to call the functions
within the operating system kernel, while simultaneously switching the CPU
to the higher privilege level of the operating system. This mechanism allows
the operating system to maintain control.

470 Chapter 21

Programming interrupt and exception handlers is beyond the scope of
this book, but we can look at how to use software interrupts in applications,
which are running at the lowest privilege level, to call functions in the oper-
ating system, which can be run only at a higher privilege level.

System Calls
A system call, often called a syscall, allows an application to directly invoke
Linux kernel system tasks, such as performing I/O functions. Thus far in
the book, we have used C wrapper functions in the C standard library (for
example, write and read) to do system calls. These C wrapper functions
take care of the privilege-level transition from application to operating
system and back. In this section, we’ll see how to use assembly language
instructions to make system calls directly without using the C runtime
environment.

We’ll look at two mechanisms, int 0x80 and syscall. The int 0x80 instruc-
tion causes a software interrupt that uses the interrupt descriptor table. The
syscall instruction was added as part of the 64-bit instruction set and is avail-
able only in 64-bit mode. It causes a somewhat different set of actions in the
CPU, as we’ll see shortly.

The int 0x80 Software Interrupt
We can call any of the interrupt handlers installed in the interrupt descrip-
tor table with the int instruction:

int—Call to Interrupt Procedure

Call an interrupt handler.

int n calls interrupt handler n.

n can be any number in the range 0 to 255. The details of how int calls
the specified interrupt handler depend on the state of the CPU and
are beyond the scope of this book, but the overall result is the same as
though an external device had interrupted.

Although we won’t write any interrupt handlers here, you probably real-
ize that a handler needs to perform several actions to restore the CPU state
before returning. All this is done with the iret instruction.

iret—Interrupt Return

Return from interrupt handler.

iret returns from interrupt handler.

The iret instruction restores the rflags register, the rip register, and
CPU privilege level from the stack.

Linux uses interrupt descriptor number 12810 (= 8016) in the interrupt
descriptor table to specify a handler that will direct the operating system
to perform one of more than 300 functions. The specific operating system
function is specified by a number in the eax register.

Interrupts and Exceptions 471

Most of these operating system functions take arguments. We pass
in the arguments to an int 0x80 system call using registers, as shown in
Table 21-2. Notice that the register usage for int 0x80 differs from that of
function calls.

Table 21-2: Register Usage for int 0x80 System Call

Syscall # Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6

eax ebx ecx edx esi edi ebp

The system call numbers are listed in the Linux file unistd_32.h. On my
version of Ubuntu (20.04 LTS), I found the file at /usr/include/x86_64-linux
-gnu/asm/unistd_32.h. Table 21-3 shows three commonly used system call
numbers, along with any required arguments.

Table 21-3: Some Linux Operations for the int 0x80 Instruction

Operation eax ebx ecx edx

read 3 File descriptor Address of place to
store input

Number of bytes to read

write 4 File descriptor Address of first byte to
output

Number of bytes to
write

exit 1

Many of the system calls have C wrapper functions, which allows you to
determine the arguments from the man page for the function. If you look
back at Listing 13-2 in Chapter 13, you’ll see that the arguments to the write
system call using int 0x80 are the same as the write C wrapper function.

Listing 21-1 provides an example of using the int 0x80 software interrupt
to directly access operating system services.

helloWorld-int80.s
Hello World program
ld -e myStart -o helloWorld3-int80 helloWorld3-int80.o

 .intel_syntax noprefix
Useful constants
 .equ STDOUT, 1 # screen
 .equ WRITE, 4 # write system call
 .equ EXIT, 1 # exit system call

 .text
 .section .rodata # read-only data
message:
 .string "Hello, World!\n"
 .equ msgLength, .-message-1

Code
 .text # code
 .globl myStart

472 Chapter 21

1 myStart:
 2 mov edx, msgLength # message length
 lea ecx, message[rip] # message address
 mov ebx, STDOUT # the screen
 3 mov eax, WRITE # write the message
 int 0x80 # tell OS to do it

 mov eax, EXIT # exit program
 int 0x80

Listing 21-1: “Hello, World!” program using int 0x80 software interrupt.

The C runtime environment requires that the first function in a pro-
gram be named main. If you want to write a program that executes on its
own, without using any of the C library routines, you’re free to choose any
name you want 1. But instead of using gcc to link your program, you need
to use ld explicitly and provide the name of your function with the -e option.
For example, to assemble and link the program in Listing 21-1, use this:

$ as --gstabs -o helloWorld_int80.o helloWorld-int80.s
$ ld -e myStart -o helloWorld-int80 helloWorld-int80.o

We pass the number of the write system call to the int 0x80 handler in the
eax register 3. The arguments to the write system call are the same as those we
used when we called the write C wrapper function in Listing 13-2 (Chapter 13),
but we need to pass them in the registers specified in Table 21-2 2.

You might notice that we use only the 32-bit portions of the registers
when calling the int 0x80 handler. This mechanism was designed for a
32-bit environment. Although it also works in our 64-bit environment, the
64-bit enhancement to the x86 architecture added an instruction for mak-
ing a fast system call, which we’ll discuss in the next section.

The syscall Instruction
Besides adding more registers, the 64-bit enhancement to the x86 archi-
tecture added some instructions, one of which is the fast system call, syscall.
The syscall instruction bypasses the interrupt descriptor table. It’s the pre-
ferred method for making a system call in 64-bit mode:

syscall—Fast System Call
syscall moves contents of rip to rcx and then moves contents of the
LSTAR register to rip. Moves rflags to r11. Switches to privilege level 0.

The LSTAR register is a special CPU register where the operating system
stores the address of the syscall handler.

Unlike the int 0x80 instruction, syscall does not use the interrupt
descriptor table or save information on the stack, thus saving several
memory accesses. All its actions occur with registers in the CPU. That’s
why it’s called fast system call. Of course, this means the syscall handler
must save the contents of the rcx and r11 registers if it uses them, and
then it restores them to their original values before returning.

Interrupts and Exceptions 473

Returning from a syscall handler is done with a sysret instruction, which
moves r11 to rflags, moves rcx to rip, and sets the CPU privilege level to 3.

You must pass the arguments to the syscall system call in Linux in
registers, as shown in Table 21-4. Be careful to note that the arguments are
passed in different registers than with the int 0x80 system call.

Table 21-4: Register Usage for syscall System Call Instruction

Syscall # Arg 1 Arg 2 Arg 3 Arg 4 Arg 5 Arg 6

rax rdi rsi rdx r10 r8 r9

The system call numbers for syscall are listed in the Linux file unistd_64.h.
On my version of Ubuntu (20.04 LTS), I found the file at /usr/include/x86_64
-linux-gnu/asm/unistd_64.h. Table 21-5 shows several commonly used system call
numbers.

Table 21-5: Some Linux Operations for the syscall Instruction

Operation rax rdi rsi rdx

read 0 File descriptor Address of place to
store input

Number of bytes to read

write 1 File descriptor Address of first byte to
output

Number of bytes to write

exit 60

As with the int 0x80 instruction, you can determine the arguments for
most system calls from the man page for their C wrapper function.

Listing 21-2 shows our “Hello, World!” program using the syscall
instruction.

helloWorld-syscall.s
Hello World program
ld -e myStart -o helloWorld3_int80 helloWorld3_int80.o
 .intel_syntax noprefix
Useful constants
 .equ STDOUT, 1 # screen
 1 .equ WRITE, 1 # write system call
 .equ EXIT, 60 # exit system call

 .text
 .section .rodata # read-only data
message:
 .string "Hello, World!\n"
 .equ msgLength, .-message-1

Code
 .text # code
 .globl myStart

474 Chapter 21

myStart:
 2 mov rdx, msgLength # message length
 lea rsi, message[rip] # message address
 mov rdi, STDOUT # the screen
 mov rax, WRITE # write the message
 syscall # tell OS to do it

 mov rax, EXIT # exit program
 syscall

Listing 21-2: “Hello, World!” program using syscall instruction

The commands to assemble and link the program in Listing 21-2 are as
follows:

$ as --gstabs -o helloWorld_syscall.o helloWorld-syscall.s
$ ld -e myStart -o helloWorld-syscall helloWorld-syscall.o

This program performs only the write and exit operations, which are
given symbolic names at the beginning of the code for readability 1. It
stores the arguments to the write operation in the correct registers before
executing the syscall instruction 2.

YOUR T UR N

Write a program in assembly language that reads one character at a time from
the keyboard and echoes that character on the screen. Your program should
continue echoing characters until it reads a newline character. You may see
your typed text displayed twice. If so, why?

What You’ve Learned

Privilege levels   The operating system maintains control of the hard-
ware by running applications at a lower CPU privilege level.

Gate descriptor   A record that contains the address of an interrupt
handler and the CPU privilege settings for running the interrupt
handler.

Interrupt descriptor table   An array of gate descriptors. The interrupt
or exception number is the index into the array.

External interrupts   Other hardware devices can interrupt the regular
execution cycle of the CPU.

Exceptions   Certain conditions in the CPU can cause the CPU to
interrupt its regular execution cycle.

Interrupts and Exceptions 475

Software interrupts   Specific instructions that cause the CPU to inter-
rupt its regular execution cycle.

Interrupt handler   A function in the operating system that gets called
by the CPU when an interrupt or exception occurs.

int 0x80   The software interrupt used to perform a system call in
Linux.

syscall   The instruction used to perform a fast system call in 64-bit
Linux.

This has been a brief overview of interrupts and exceptions. The details
are complex and require a thorough knowledge of the specific model of
CPU you’re working with.

This concludes my introduction to computer organization. I hope that
it has provided you with the tools to further pursue any of the topics that
interest you.

I N D E X

Symbols
3DNow! 428
∧ AND 59
¬ NOT 60
∨ OR 59
⊻ XOR 86
* (asterisk) dereference 387
*/ (asterisk, slash) end C comment 27
 circuit symbol

capacitor 92
inductor 92
switch 92

. (dot)
select struct field 381, 387
send message in C++ 398

µ (Greek mu) micro 95
Ω (Greek omega) ohms 93
(hash mark) for starting comment 204
-> (hyphen, greater than) dereference

and select field 387
% (percent) C integer division

remainder 41, 365
/ (slash) C integer division quotient

41, 365
/* (slash, asterisk) begin C comment 27
~ (tilde) C++ destructor naming 396
:: (two colons) C++ class

membership 402
// (two slashes) begin C++ comment 397
// (two slashes) floor division 365

A
AC (alternating current) 90
active component 100
adder

for ripple-carry subtraction 119
full 116

full from two halfs 117
half 115
ripple-carry 119

adder 115–120
addition

binary 44
decimal 40

addressing modes
direct memory 252
immediate 250
register indirect with indexing

255, 375
register indirect with offset 253
register indirect with scaled

indexing 255, 375
adjacency rule 77
Advanced Vector Extensions (AVX) 428
alternating current (AC) 90
American Standard Code for

Information Interchange
(ASCII) 21

amp 90
ampere 90
arbitrary-precision arithmetic, link to

libraries 440
array

accessing single element 372, 375
character 372
definition of in C 372
element data type 372
in assembly language 376–379
in C 372–376
in C, pass by pointer 373–374
in C, pass by pointer syntax 374
index 372
integer 372

ASCII (American Standard Code for
Information Interchange) 21

478 Index

as options
-a 246
--gstabs 210
-l 246
-o 210

assembler
algorithm 258–260
data size notation 239
directives 199–203
local symbol table 258
opcode table 259
two-pass 258

assembler directive (pseudo op) 204
assembler directives

.align 292

.ascii 317

.asciz 317

.bss 291, 311

.byte 318

.cfi 199

.comm 292

.equ 230, 411

.file 201

.globl 202

.include 392

.int 315, 318

.intel_syntax 203

.long 315, 318
memory allocation 317
.quad 285
.rodata 226, 230
.set 404
.size 292
.string 317
.text 202, 230
.type 203, 292
.zero 292

assembly language
and machine language 195, 206
comments 205
compiler-generated 197–201
data size directives 207
label field 204
operand field 204
operation field 204

assembly listing 246
AT&T syntax 217
AVX (Advanced Vector Extensions) 428

B
base 14
battery 90
baud 453
BCD (binary coded decimal) 23
big endian 35, 36
binary

C syntax 12
binary and unsigned decimal 13–17
binary coded decimal (BCD) 23
binary digit 10
binary number system 13
binary point 417
bitmask 336
bit masking 335, 420

in assembly language
340–342, 359

in C 336–339, 353
bits 10

representing groups of 10–12
Boolean algebra

basic operations of 57
literal 60
operator precedence 61
term 60

Boolean algebra rules
annulment value 63, 65
associative 61
commutative 63
complement 65
distributive 63
idempotent 65
identity value 62
involution 63

Boolean expression minimization 71–86
minimal product of sums 72
minimal sum of products 72
using algebraic manipulations 73
using Karnaugh maps 76–84

Boolean expressions 60–66
Boolean functions 66–86

canonical form 67
canonical product 70
canonical sum 68
conjunctive normal form 70
disjunctive normal form 68
full conjunctive normal form 70
full disjunctive normal form 68

Index 479

maxterm 70
minterm 68
product of maxterms 70
product of sums 69
product term 68
sum of minterms 68
sum of products 68
sum term 69

Boolean operators 58–60
AND 59
combining basic 86
NOT 60
OR 59
XOR 86

Boole, George 57
bus

address 2, 165
control 2, 165
control in PC 445
data 2, 165
timing 445

bus structure, hierarchical 445
byte 12

order in memory 35–36

C
C++

calling C functions in 397
compiler 398
exception 398
function overloading 400
guidelines, link to 405
hidden argument to function 400
instantiate an object 396, 398
library functions 402
object 396–398
standard library 25

C++ class 396
and C record 396
compiler-generated

constructor 405–407
compiler-generated

destructor 407
constructor 396
constructor name 396
data member 396
data member, initialization of 406

declaration 397
default constructor 396
defining member function 401
destructor 396
destructor name 396
inline constructor 407
member function 396
private scope 397
public scope 397
struct declaration 397

C++ Core Guidelines, link to 405
C++ Crash Course (Lospinoso,

Josh) 396
cache 164, 166–167

levels 166–167
line 166
speed 167

capacitor 94–97, 175
carry flag (CF) 39, 44, 186
central processing unit. See CPU
CET (Control-flow Enforcement

Technology) 200
C function

arguments to 28
definition 27
format 27
parameters in 28
prototype 27, 288
prototype statement 292

characters 20
circuit symbols

adder 119
AND gate 59
decoder 122
MOSFET 102
multiplexer 126
NAND gate 107
NOR gate 107
NOT gate 60
OR gate 59
PLA 129, 132
resistor 92
ROM 131
tristate buffer 126
XOR gate 86

clock 144
clock signal 144

480 Index

CMOS (complementary metal-oxide
semiconductor) 104

NAND gate 106
power consumption 106
switching time 106

CMOS switch 104–106
code segment 202
comparing values 271

signed 266
unsigned 266

comparison of canonical Boolean
forms 70

compiler 3
assembly language from 198–201

compiler steps
assembly 196
compilation 196
linking 197
preprocessing 196

complement 45, 60
diminished radix 46
radix 46

complementary metal-oxide
semiconductor (CMOS) 104

COM port 452
computer subsystems 1–2
conditional branch point 156
conditional jumps

offset 256
table of 266

conductor 90
conjunction 57, 59
connected in parallel 94
connected in series 93
control flow

declarative programming 263
fundamental constructs 264
imperative programming 263

Control-flow Enforcement Technology
(CET) 200

control unit 9
conversion

hexadecimal to integer 344, 350
integer to signed decimal 370
integer to unsigned decimal

361, 368

signed decimal to integer 360
to uppercase 338, 341
unsigned decimal to integer 353,

358
converting

binary to unsigned decimal 15
unsigned decimal to binary 16

coprocessor, floating-point 427
coulomb 90
count-controlled loop 273
C preprocessor directives

#define 292, 337
#endif 292
#ifndef 292
#include 292

C programming 25
comments in 27
first program 27

CPU 178–179
32-bit mode 177
64-bit mode 177
internal bus 178, 182
registers 182

CPU features, accessing in assembly
language 326–332

C runtime environment 28, 196
C standard library 25, 27

functions
gets 336
offsetof 391
printf 28
puts 277, 336
scanf 29

not using 470–474
relationship to operating

system 26
stdio.h header file 27

C-style string 22
C variable

declaration 288
definition 288
global 290
local 288
name scope 288
scope and lifetime 314

Index 481

D
data segment 202
data size

byte 183, 187
doubleword 183, 187
instruction for extending 270
quadword 183, 187
word 183

data types, integral 187–188
DC (direct current) 90
debugger, examining memory 30
decimal number system 10
decimal point 417
decimal system 10
decoder 173, 121–123
decoder ring 53
decToSInt 360
decToUInt 358
De Morgan’s law 65
Design and Evolution of C++, The

(Stroustrup, Bjarne) 396
device controller 446
D flip-flop 168, 170–171
direct current (DC) 90
direct memory access (DMA) 450
disjunction 57, 59
division, integer 360–369

avoiding 369
by powers of two 351
quotient 365, 369
register usage 365
remainder 365, 369
signed versus unsigned 365

DMA (direct memory access) 450
controller 450

do-while loop 274
compared to while and for 275

DRAM (dynamic random-access
memory) 175

duality 66
dynamic random-access memory

(DRAM) 175

E
editors 2, 5
effective address 226, 253
electric field 94
electronics 90–100
ELF (Executable and Linking

Format) 202
endianness 35
energy 99
erasable programmable read-only

memory (EPROM) 131
exception 466, 469

CPU response to 467–469
handler 467
page fault 448
terminology 468

executable file 197
Executable and Linking Format

(ELF) 202
external interrupt 466, 468

F
farads 95
fast system call 472
fetching 3
file descriptors

STDERR_FILENO 222
STDIN_FILENO 222
STDOUT_FILENO 222

filename extensions 197
finite state machine 136
fixed-point numbers 417–424

fraction in decimal 421
fraction in powers of two 417

flip-flop, 144–152
asynchronous input 146
D 145
JK 148, 155, 160
primary portion 145, 149
negative-edge triggering 146
positive-edge triggering 146
secondary portion 145, 149
T 147

482 Index

floating-point arithmetic error 433–440
absorption 435
associativity 437
cancellation 436
man fenv 430
rounding 433

floating-point numbers 425–427
not real numbers 425
programming with 430
rounding mode 430

floating-point representation 425
biased exponent 427
double 426
exponent 425
float 426
hidden bit 427
significand 425
x86-64 extended version 426

floor division, in Python 365
for loop 272
fractional values in binary 416
frame pointer 185, 209, 216, 298, 307
front-side bus 445
function

epilogue 210
epilogue, inside 232
input to 289
minimal processing 208–210
output from 289
prologue 210
prologue, inside 231
return value 294, 338

function arguments 289
more than six 299–306
pass by pointer 294
pass by reference 294
pass by value 294
passing in C 294–303
pass in registers 223–224
pushing onto the stack 299
in registers 296–298
return value 294
storing directly on the stack 303

G
gate

AND 59
NOT 60

OR 59
XOR 86

gate descriptor 466
gcc options

-c 196
-E 196
-fcf-protection=none 201
-fno-asynchronous-unwind

-tables 199
-masm=intel 198
-o 197
-O0 198
-S 196, 198

gdb 30
as a learning tool 31
breakpoint 32
commands

b 31
c 31
h 31
i r 31
l 31
layout regs 212
n 189
q 35
r 31
s 189
set disassembly-flavor 211
si 189
tui enable 212
x 31

gdb debugger
learning assembly

language 210–216
TUI mode 211–217
viewing registers 188–193
viewing stack frame 231–233

getInt 370
global offset table (GOT) 227, 260
global variables 290–293
Goldberg, David (“What Every

Computer Scientist Should
Know About Floating-Point
Arithmetic”) 440

GOT (global offset table) 227, 260
Gray code and Karnugh maps 79
Gray, Frank 79

Index 483

H
handler 467
Harvard architecture 166

in cache 167
header file 27, 292
heap segment 202
henrys 97
hexadecimal 10

C syntax 12
hexadecimal characters, UTF-8 code

for 21
hexadecimal digit 10

four bits 10, 43
signed decimal 47
two’s complement 47
unsigned decimal 43
using 12

I
IDT (interrupt descriptor table) 467
IEEE 754 floating-point standard 426

biased exponent 427
hidden bit 427
link to 426
normalized form 426

if conditional 276–278
if-else ladder 282
if-then-else conditional 278
inb function 463
inductor 97–99
information hiding 294
inline assembly language 332–334
instruction

execution cycle 180–181
fetch 181
general format 206
operation code (opcode) 204
pointer 180
queue 180
register 180

instruction bytes. See machine code
instructions

add 236
addss 432
and 339
call 226
cbw 375
cdge 375

cmp 271
cvtss2sd 432
cwde 375
div 364
endbr64 200
idiv 364
imul 355
in 447
inc 272
int 470
iret 470
jcc 265
jcxz 265
je 238
jecxz 265
jmp 264
jrcxz 265
lea 226
leave 239
mov 206
movss 432
movsx 347
movsxd 347
movzx 270
mul 356
neg 237
nop 298
or 340
out 447
pop 208
push 208
ret 208
sal 347
sar 348
setcc 330
shl 349
shr 348
sign-extend for signed division 365
sub 236
syscall 472
test 270
xor 238

int 0x80
Linux operations 471
register usage 471
software interrupt 470

integer codes, circular nature of 53
integer unit 428

484 Index

integral data types 183
integral values 415
interpreter 3
interrupt controller 449
interrupt descriptor table (IDT) 467
interrupt-driven I/O 449
interrupt handler 450, 467
interrupt

CPU response to 467–469
handler 450, 467
terminology 468

intToSDec 370
intToUDec 368
invert 60
I/O controller hub 445
I/O controller register

control 446
receive 446
status 446
transmit 446

I/O devices 443
accessing 446–449

I/O functions
decToSInt 360
decToUInt 358
hexToInt 360
getInt 370
intToSDec 370
intToUDec 368
putInt 370
readLn 308
writeStr 308

io.h header file 461
I/O, memory-mapped 447
I/O, port-mapped 447
I/O ports 447
I/O programming 449
isolated I/O 447
iteration 264, 267–275

versus recursion 267, 320

J
joule 99
jump

conditional 265–267
long 256

near 256
short 256
unconditional 264

jump instructions 256–257
jump table 283

K
Kahan summation algorithm, link to 440
Karnaugh, Maurice 76
Karnaugh map 76–86, 154, 160

L
latch 136–144

D 142
feedback in 136
SR, gated 141
SR using NAND gates 139
SR using NOR gates 136
SR with Enable 141

ld options
-e 472
-o 472

leaf functions 298
least significant digit 14
linker

algorithm 260
global symbol table 260

listing file, assembler 246
little-endian 34
locality of reference 167
logic circuit 113

combinational 114
sequential 114

loop control variable 267
looping 267–275
Lospinoso, Josh (C++ Crash Course)

396, 406

M
machine code

looking at 246
ModR/M byte 248
opcode bytes 247
operands 247
REX prefix byte 250
SIB byte 255

Index 485

magnetic field 97
main function 28, 221
main memory 165–166, 175

organization 166
mask 336
mass storage 164–165
Mealy state machine 136
memory

addresses 19
cache 164
cost 164
data storage 18–23
hardware 168–176
hierarchy 163–164
layers 164
main 164–166, 175
nonvolatile 164
offline 164
page 448
page frame 448
page map table 448
physical 448
random access

dynamic 175–176
static 173–175

read-write 172–173
speed 164
timing 444
virtual 448
volatile 165

memory controller hub 445
memory-mapped I/O 447

in assembly language 457–459
in C 452–457

memory mapping unit 448
memory segments

bss 292
characteristics 317
data 202
heap 202
stack 202
text 202

metal-oxide-semiconductor field-effect
transistor (MOSFET) 101

minimum function
assembly language 208
C 197

Moore state machine 136
MOSFET (metal-oxide-semiconductor

field-effect transistor) 101
channel 101
drain 101
gate 101
N-channel 102
P-channel 103
power consumption 104
source 101
switch 101–104
switching time 104

most significant digit 14
multiplexer (MUX) 124–127, 172
multiplication, integer 352–359

by powers of two 351
register usage 356
signed versus unsigned 356

MUX (multiplexer) 124–127, 172
mxcsr register 429

N
name mangling 313, 400
NAND gate, universal 108–110
negation 48, 57
newline character 23
NOR gate, universal 110
northbridge 445
NOT gate 105
numerical accuracy 440

O
object

attribute 395
instance 395
instantiate 396
message 395
method 395
using in C++ 398–400

object file 196, 202, 210
objects in assembly language 407–412
octal 11

C syntax 12
octal digit, three bits 12
ohms 92
Ohm’s law 92
one’s complement 49

486 Index

organizing data 371
outb function 463
overflow flag (OF) 39, 50–53, 186

P
page fault exception 448, 469
PAL (programmable array logic) 131
Pascal 23
passive component 92
permissions, file 466
pipeline 156
PLA (programmable logic array) 128
PLD (programmable logic

device) 127–132
PLT (procedure linkage table) 226
polled I/O 449

programming algorithms 450
port-mapped I/O 447, 460–461
positional notation 13
position-independent code 225
position-independent executable 225
potential difference 90
power 99–100
power supply 90
principle of duality 66
printf, conversion specifiers 29
privilege levels, CPU 466
procedure linkage table (PLT) 226, 260
program execution 2–3
programmable array logic (PAL) 131
programmable logic array (PLA) 128
programmable logic device

(PLD) 127–132
programmable read-only memory

(PROM) 131
programmed I/O 449
programming documentation

info 4
man page 4

programming environment 4–6
PROM (programmable read-only

memory) 131
propagation delay 143
pseudo op 204
pull-down device 103
pull-up device 103
putInt 370

R
radix 14
radix point 417
RAM (random access memory) 18, 165
rbp register 185
read-only memory (ROM) 19, 130
real numbers 425
record 380

in assembly language 382
in C 380–382
element 380
field 380
layout in memory 382
member 380
pass by pointer advantage 389–393
pass by value in C 386
pass in assembly language 389–393
passing in C 383–389

recursion 319–326
base case 320
compared to iteration 267, 320
save registers 322
stack usage 323–326

register 168, 182–186
32-bit 184, 207
64-bit mode 184
bit numbering 183
file 172
general purpose 183–186
general purpose, naming 183, 185
general purpose, usage 224
hardware implementation

168–170
mxcsr 429
passing arguments in 224
rbp 307
rflags 39, 186
rsp 307
shift 171–172
sizes 183
status 186
xmm 428
ymm 428
zmm 428

register content, saving 224
resistor 92–94

Index 487

rflags register, 186, 467–468
status flags 39, 265

rip register 180
rip-relative addressing 180
ROM (read-only memory) 19, 130
Roman numerals 14
rsp register 185

S
SAM (sequential access memory) 19
scanf 29

conversion specifiers 29
scientific notation 425
selection 264, 276–285
semiconductor 101

doping 101
holes 101
N-type 101
P-type 101

sentinel character 22
sentinel value 22

loop control 272
sequential access memory (SAM) 19
sequential logic circuit, designing 151

branch predictor 156
counter 152

settling time 143
Shannon, Claude 58
shifting bits 343

in assembly language 349–351
in C 343–347

shift instructions 347
signal voltage levels, active-high and

active-low 114
sign bit 47
signed integers 15

addition 50–53
subtraction 50–53

sign flag (SF) 186
sign-magnitude code 45
SIMD (single instruction, multiple

data) 428
SoC (system on a chip) 446
software interrupt 466, 469
source code 2
southbridge 445

SRAM 173
SSE (Streaming SIMD Extension) 428
SSE2 floating-point hardware 427–430

rounding mode 430
status and control register 429

stack
ascending 228
corruption 237
data structure 227–229
descending 228
empty 229
full 228
red zone 298, 303, 342
segment 202

stack canary 237–238
stack frame 209, 234–237, 298

usage 306–307
stack pointer 185, 207, 216, 307

address boundary 298, 301
addressing boundary 281
alignment 236
local variables 236
moving 303

standard error 222
standard in 222
standard out 222
state diagram 136, 140, 152, 157
state, system 135
state transition table 138, 140, 142,

152, 159
static random-access memory

(SRAM) 173
status flags

carry flag (CF) 39, 44, 119, 186
overflow flag (OF) 39, 50, 119, 186
sign flag (SF) 186
zero flag (ZF) 186

status register 186
STDIN_FILENO 222
STDOUT_FILENO 222
STDERR_FILENO 222
storage blocks

data 165
instructions 165

Streaming SIMD Extension (SSE) 428
Stroustrup, Bjarne (Design and

Evolution of C++, The) 396, 405

488 Index

struct
accessing field in C 381
declaring new data type of 384
defining in C 381
defining with tag in C 385
field memory alignment 391
pass by value in C 386, 388
tag 383–386
tag for passing as argument 386

structure 380
subfunctions 221
subtraction

binary 44
borrow in 41
decimal 41

subtractor 120
supervisor mode 466
Sutter, Herb 405
switch 92
switch conditional 282–285
switches, representing 10–12
switching algebra 58
syscall (system call) 470, 472

Linux operations 473
register usage 473

system call. See syscall
system call functions

read 222
write 222, 267

system on a chip (SoC) 446

T
testing bits 270
text segment 202
text string 22
this pointer 404, 409, 411
time constant 96, 98
timing considerations 444

bus 445
I/O device 444
memory 444

toggle 147
transistor 100–106

switching time 106

tristate buffer 125, 172
truth table 58

AND 59
NOT 60
OR 59
XOR 86

two’s complement 45–49
computing 48

type casting 347, 350, 355, 359, 363

U
UART (universal asynchronous

receiver/transmitter) 450
16550 data sheet, link to 453
16550 registers 451
data bits 450
port-mapped 460
programming in assembly

language 457
programming in C 452
start bit 450
stop bit 450

Unicode UTF-8 20
universal asynchronous receiver/

transmitter (UART) 450
unsigned integers 15, 23

addition 40–45
subtraction 40–45

uppercase versus lowercase, ASCII 336
user mode 466
UTF-8 20

V
variable

automatic 233
local 233–237, 316
static local 309–316

vector 467
vector table 467
very-large-scale integration (VLSI) 146
volt 90
von Neumann

architecture 166
bottleneck 166

von Neumann, John 166

Index 489

W
watt 99
“What Every Computer Scientist

Should Know About Floating-
Point Arithmetic” (Goldberg,
David) 440

while loop 267–272

X
x87 floating point unit 427

Z
zero flag (ZF) 186

NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

HOW LINUX WORKS, 3RD EDITION
What Every Superuser Should Know
by brian ward
464 pp., $49.99
isbn 978-1-7185-0040-2

ALGORITHMIC THINKING
A PROBLEM-BASED INTRODUCTION
by daniel zingaro
408 pp., $49.95
isbn 978-1-7185-0080-8

EFFECTIVE C
AN INTRODUCTION TO PROFESSIONAL
C PROGRAMMING
by robert seacord
272 pp., $49.95
isbn 978-1-7185-0104-1

THE ART OF 64-BIT ASSEMBLY,
VOLUME 1
X86-64 MACHINE ORGANIZATION
AND PROGRAMMING
by randall hyde
1032 pp., $79.99
isbn 978-1-7185-0108-9

C++ CRASH COURSE
A FAST-PACED INTRODUCTION
by josh lospinoso
792 pp., $59.95
isbn 978-1-59327-888-5

THE LINUX COMMAND LINE,
2ND EDITION
A COMPLETE INTRODUCTION
by william shotts
504 pp., $39.95
isbn 978-1-59327-952-3

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/introcomporg/ for errata and more information.

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

Introduction to Computer Organization gives
programmers a practical understanding of what
happens in a computer when you execute your code.
Working from the ground up, the book starts with
fundamental concepts like memory organization,
digital circuit design, and computer arithmetic. It
then uses C/C++ to explore how familiar high-level
coding concepts—like control flow, input/output, and
functions—are implemented in assembly language.
The goal isn’t to make you an assembly language
programmer, but to help you understand what happens
behind the scenes when you run your programs.

Classroom-tested for over a decade, this book will
also demystify topics like:

•	How data is encoded in memory

•	How the operating system manages hardware
resources with exceptions and interrupts

•	How Boolean algebra is used to implement the
circuits that process digital information

•	How a CPU is structured, and how it uses buses to
execute a program stored in main memory

•	How recursion is implemented in assembly, and
how it can be used to solve repetitive problems

•	How program code gets transformed into machine
code the computer understands

You may never have to write x86-64 assembly
language or design hardware yourself, but knowing
how the hardware and software works will make you
a better, more confident programmer.

A B O U T T H E A U T H O R

Robert G. Plantz started his career designing
electronics for the horizon scanners on the Gemini
spacecraft and Apollo Lunar Module. He earned
his PhD in electrical engineering at the University
of California Berkeley and worked as a software
engineer for eight years before becoming an
educator. He was a professor at Sonoma State
University for 21 years.

B U I LT W I T H
x 8 6 - 6 4 A S S E M B LY

L A N G U A G E

S E E H O W T H E
M A G I C H A P P E N S

$59.99 ($78.99 CDN)

	Brief Contents
	Contents in Detail
	Preface
	Who This Book Is For
	About This Book
	The Programming in the Book
	Why Read This Book?
	Chapter Organization

	Efficient Use of This Book

	Acknowledgments
	Chapter 1: Setting the Stage
	Computer Subsystems
	Program Execution
	The Programming Environment
	What You’ve Learned

	Chapter 2: Data Storage Formats
	Describing Switches and Groups of Switches
	Representing Switches with Bits
	Representing Groups of Bits
	Using Hexadecimal Digits

	The Mathematical Equivalence of Binary and Decimal
	Getting to Know Positional Notation
	Converting Binary to Unsigned Decimal
	Converting Unsigned Decimal to Binary

	Storing Data in Memory
	Expressing Memory Addresses
	Characters
	Unsigned Integers

	Exploring Data Formats with C
	C and C++ I/O Libraries
	Writing and Executing Your First C Program

	Examining Memory with a Debugger
	Using Your Debugger
	Understanding Byte Storage Order in Memory

	What You’ve Learned

	Chapter 3: Computer Arithmetic
	Adding and Subtracting Unsigned Integers
	Adding in the Decimal Number System
	Subtracting in the Decimal Number System
	Adding and Subtracting Unsigned Integers in Binary

	Adding and Subtracting Signed Integers
	Two’s Complement
	Computing Two’s Complement
	Adding and Subtracting Signed Integers in Binary
	Circular Nature of Integer Codes

	What You’ve Learned

	Chapter 4: Boolean Algebra
	Basic Boolean Operators
	Boolean Expressions
	Boolean Algebra Rules
	Boolean Algebra Rules That Are the Same as Elementary Algebra
	Boolean Algebra Rules That Differ from Elementary Algebra

	Boolean Functions
	Canonical Sum or Sum of Minterms
	Canonical Product or Product of Maxterms
	Comparison of Canonical Boolean Forms

	Boolean Expression Minimization
	Minimal Expressions
	Minimization Using Algebraic Manipulations
	Minimization Using Karnaugh Maps

	Combining Basic Boolean Operators
	What You’ve Learned

	Chapter 5: Logic Gates
	Crash Course in Electronics
	Power Supplies and Batteries
	Passive Components

	Transistors
	MOSFET Switch
	CMOS Switch

	NAND and NOR Gates
	NAND as a Universal Gate
	What You’ve Learned

	Chapter 6: Combinational Logic Circuits
	The Two Classes of Logic Circuits
	Adders
	Half Adder
	Full Adder
	Full Adder from Two Half Adders
	Ripple-Carry Addition and Subtraction Circuits

	Decoders
	Multiplexers
	Tristate Buffer

	Programmable Logic Devices
	Programmable Logic Array
	Read-Only Memory
	Programmable Array Logic

	What You’ve Learned

	Chapter 7: Sequential Logic Circuits
	Latches
	SR Latch Using NOR Gates
	SR Latch Using NAND Gates
	SR Latch with Enable
	The D Latch

	Flip-Flops
	Clocks
	D Flip-Flop
	T Flip-Flop
	JK Flip-Flop

	Designing Sequential Logic Circuits
	Designing a Counter
	Designing a Branch Predictor

	What You’ve Learned

	Chapter 8: Memory
	The Memory Hierarchy
	Mass Storage
	Main Memory
	Cache Memory
	Registers

	Implementing Memory in Hardware
	Four-Bit Register
	Shift Register
	Register File
	Read-Write Memory
	Static Random-Access Memory
	Dynamic Random-Access Memory

	What You’ve Learned

	Chapter 9: Central Processing Unit
	CPU Overview
	CPU Subsystems
	Instruction Execution Cycle

	x86-64 Registers
	General-Purpose Registers
	Status Register

	C/C++ Integral Data Types and Register Sizes
	Using gdb to View the CPU Registers
	What You’ve Learned

	Chapter 10: Programming in Assembly Language
	Compiling a Program Written in C
	From C to Assembly Language
	Assembler Directives That We Won’t Use
	Assembler Directives That We Will Use

	Creating a Program in Assembly Language
	Assembly Language in General
	First Assembly Language Instructions
	Minimal Processing in a Function
	Using gdb to Learn Assembly Language

	AT&T Syntax
	What You’ve Learned

	Chapter 11: Inside the main Function
	The write and read System Call Functions
	Passing Arguments in Registers
	Position-Independent Code
	The Call Stack
	Stacks in General
	Inside the Function Prologue and Epilogue

	Local Variables in a Function
	Variables on the Stack
	Stack Corruption

	Not Using the C Runtime Environment
	What You’ve Learned

	Chapter 12: Instruction Details
	Looking at Machine Code
	Instruction Bytes
	Opcode Bytes
	ModR/M Byte
	REX Prefix Byte

	Immediate Addressing Mode
	Memory Addressing Modes
	Direct Memory Addressing
	Register Indirect with Offset
	Register Indirect with Indexing
	SIB Byte

	Jump Instructions
	Assemblers and Linkers
	The Assembler
	The Linker

	What You’ve Learned

	Chapter 13: Control Flow Constructs
	Jumps
	Unconditional Jumps
	Conditional Jumps

	Iteration
	while Loop
	for Loop
	do-while Loop

	Selection
	if Conditional
	if-then-else Conditional
	switch Conditional

	What You’ve Learned

	Chapter 14: Inside Subfunctions
	Scope of Variable Names in C
	Overview of Passing Arguments
	Global Variables
	Explicitly Passing Arguments
	Passing Arguments in C
	What’s Going On in Assembly Language

	Handling More Than Six Arguments
	Pushing Arguments onto the Stack
	Storing Arguments Directly on the Stack
	Summary of Stack Frame Usage

	Static Local Variables
	What You’ve Learned

	Chapter 15: Special Uses of Subfunctions
	Recursion
	Accessing CPU Features in Assembly Language
	A Separate Function Written in Assembly Language
	Inline Assembly Language

	What You’ve Learned

	Chapter 16: Computing with Bitwise Logic, Multiplication, and Division Instructions
	Bit Masking
	Bit Masking in C
	Logic Instructions
	Bit Masking in Assembly Language

	Shifting Bits
	Shifting Bits in C
	Shift Instructions
	Shifting Bits in Assembly Language

	Multiplication
	Multiplication in C
	Multiply Instructions
	Multiplication in Assembly Language

	Division
	Division in C
	Division Instructions
	Division in Assembly Language

	What You’ve Learned

	Chapter 17: Data Structures
	Arrays
	Arrays in C
	Arrays in Assembly Language

	Records
	Records in C
	Records in Assembly Language
	Passing Records to Other Functions in C
	Passing Records to Other Functions in Assembly Language

	What You’ve Learned

	Chapter 18: Object-Oriented Programming
	Objects in C++
	Using Objects in C++
	Defining Class Member Functions
	Letting the Compiler Write a Constructor and Destructor

	Objects in Assembly Language
	What You’ve Learned

	Chapter 19: Fractional Numbers
	Fractional Values in Binary
	Fixed-Point Numbers
	When the Fractional Part Is a Sum of Inverse Powers of Two
	When the Fractional Part Is in Decimal

	Floating-Point Numbers
	Floating-Point Representation
	IEEE 754 Floating-Point Standard
	SSE2 Floating-Point Hardware
	xmm Registers
	Programming with Floating-Point Numbers
	Floating-Point Arithmetic Errors

	Comments About Numerical Accuracy
	What You’ve Learned

	Chapter 20: Input/Output
	Timing Considerations
	Memory Timing
	I/O Device Timing
	Bus Timing

	Accessing I/O Devices
	Port-Mapped I/O
	Memory-Mapped I/O

	I/O Programming
	Polled I/O
	Interrupt-Driven I/O
	Direct Memory Access

	Polled I/O Programming Algorithms
	UART Memory-Mapped I/O in C
	UART Memory-Mapped I/O in Assembly Language
	UART Port-Mapped I/O

	What You’ve Learned

	Chapter 21: Interrupts and Exceptions
	Privilege Levels
	CPU Response to an Interrupt or Exception
	External Interrupts
	Exceptions
	Software Interrupts

	System Calls
	The int 0x80 Software Interrupt
	The syscall Instruction

	What You’ve Learned

	Index

