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Preface

This book is devoted to the study of exotic and non-standard mathematical methods
in quantum computing. The principal ingredients of quantum computation are
qubits and their transformations, which can be provided in different ways: first
mathematically, and they can then be further realized in hardware.

In this book we consider various extensions of the qubit concept per se, starting
from the obscure qubits introduced by the authors, and other fundamental general-
izations. We then introduce a new kind of gate, higher braiding gates, which are
implemented for topological quantum computations, as well as unconventional
computing, when computational complexity is affected by its environment, which
needs an additional stage of computation. Other generalizations are also considered
and explained in a widely accessible and easy to understand style.

This book will be useful for graduate students and last year students for
additional advanced chapters of lecture courses in quantum computer science and
information theory.

Steven Duplij and Raimund Vogl
Münster, Germany

August 2023
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Chapter 1

Obscure qubits and membership amplitudes

Nowadays, the development of quantum computing technique is governed by
theoretical extensions of its ground concepts (Nielsen and Chuang 2000, Kaye
et al 2007, Williams and Clearwater 1998). One of these extensions is to allow two
kinds of uncertainty, sometimes called randomness and vagueness/fuzziness (for a
review, see, Goodman and Nguyen 2002), which leads to the formulation of
combined probability and possibility theories (Dubois et al 2000) (see, also,
Bělohlávek 2002, Dubois and Prade 2000, Smith 2008, Zimmermann 2011).
Various interconnections between vagueness and quantum probability calculus
were considered in Pykacz (2015), Dvurečenskij and Chovanec (1988), Bartková
et al (2017), and Granik (1994), including the treatment of inaccuracy in measure-
ments (Gudder 1988, 2005), non-sharp amplitude densities (Gudder 1989), and the
related concept of partial Hilbert spaces (Gudder 1986).

Relations between truth values and probabilities were also given in Bolotin
(2018). The hardware realization of computations with vagueness was considered in
Hirota and Ozawa (1989), and Virant (2000). On the fundamental physics side, it
was shown that the discretization of space-time at small distances can lead to a
discrete (or fuzzy) character for the quantum states themselves.

With a view to applications of these ideas in quantum computing, we introduce a
definition of quantum state that is described by both a quantum probability and a
membership function (Duplij and Vogl 2021), and thereby incorporate vagueness/
fuzziness directly into the formalism. In addition to the probability amplitude, we
will define a membership amplitude, and such a state will be called an obscure/fuzzy
qubit (or qudit) (Duplij and Vogl 2021).

In general, the Born rule will apply to the quantum probability alone, while the
membership function can be taken to be an arbitrary function of all of the
amplitudes fixed by the chosen model of vagueness. Two different models of
obscure-quantum computations with truth are proposed below: (1) a Product
obscure qubit, in which the resulting amplitude is the product (in ) of the quantum
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amplitude and the membership amplitude; and (2) a Kronecker obscure qubit, for
which computations are performed in parallel, so that quantum amplitudes and the
membership amplitudes form vectors, which we will call obscure-quantum ampli-
tudes. In the latter case, which we call a double obscure-quantum computation, the
protocol of measurement depends on both the quantum and obscure amplitudes. In
this case, the density matrix need not be idempotent. We define a new kind of gate,
namely, obscure-quantum gates, which are linear transformations in the direct
product (not in the tensor product) of spaces: a quantum Hilbert space and a so-
called membership space having special fuzzy properties (Duplij and Vogl 2021). We
then introduce a new concept of double (obscure-quantum) entanglement, in which
vector and scalar concurrences are defined and computed for concrete examples.

1.1 Preliminaries
To establish a notation standard in the literature (see, e.g. Nielsen and Chuang 2000,
Kaye et al 2007), we present the following definitions. In an underlying d-dimen-
sional Hilbert space, the standard qudit (using the computational basis and Dirac
notation) H d

q
( ) is given by

H∑ψ = ∈ ∈
=

−

a i a i, , , (1.1)
i

d

0

1
d

i i
d( )

q
( )

where ai is a probability amplitude of the state i . (For a review, see, e.g. Genovese
and Traina 2008, Wang et al 2020.) The probability pi to measure the ith state is

= …p F a a( , , )i p n1i
, ⩽ ⩽p0 1i , ⩽ ⩽ −i d0 1. The shape of the functions Fpi

is

governed by the Born rule … =F a a a( , , )p d i1
2

i
, and ∑ == 1i

d
p0 i

. A one-qudit

(L = 1) quantum gate is a unitary transformation H H→U :d d d( )
q
( )

q
( ) described by

unitary d × d complex matrices acting on the vector (1.1), and for a register containing
L qudits quantum gates are unitary ×d dL L matrices. The quantum circuit model
(Deutsch 1985, Barenco et al 1995) forms the basis for the standard concept of
quantum computing. Here the quantum algorithms are compiled as a sequence of
elementary gates acting on a register containing L qubits (or qudits), followed by a
measurement to yield the result (Lloyd 1995, Brylinski and Brylinski 1994).

For further details on qudits and their transformations, see for example the
reviews by Genovese and Traina (2008) and Wang et al (2020) and the references
therein.

1.2 Membership amplitudes

Innovation 1.1. We define an obscure qudit with d states via the following super-
position (in place of that given in (1.1))

∑ψ α=
=

−

a i , (1.2)
i

d

0

1
d

i iob
( )
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where ai is a (complex) probability amplitude ∈ai , and we have introduced a (real)
membership amplitude αi, with α ∈ [0, 1]i , ⩽ ⩽ −i d0 1.

The probability pi to find the ith state upon measurement and the membership
function μi (of truth) for the ith state are both functions of the corresponding
amplitudes, as follows

= … ⩽ ⩽−p F a a p( , , ), 0 1, (1.3)i p d i0 1i

μ α α μ= … ⩽ ⩽μ −F ( , , ), 0 1. (1.4)i d i0 1i

The dependence of the probabilities of the ith states upon the amplitudes, i.e., the
form of the function Fpi

is fixed by the Born rule

… =F a a a( , , ) , (1.5)p n i1
2

i

while the form of μF
i
will vary according to different obscurity assumptions. In this

paper we consider only real membership amplitudes and membership functions—
complex obscure sets and numbers were considered in Buckley (1989), Ramot et al
(2002), and Garrido (2012). In this context, the real functions Fpi

and μF
i
,

⩽ ⩽ −i d0 1 will contain complete information about the obscure qudit (1.2).
We impose the normalization conditions

∑ =
=

−

p 1, (1.6)
i

d

0

1

i

∑μ =
=

−

1, (1.7)
i

d

0

1

i

where the first condition is standard in quantum mechanics, while the second
condition is taken to hold by analogy. Although (1.7) may not be satisfied, we will
not consider that case.

For d = 2, we obtain for the obscure qubit the general form, instead of that in
(1.2),

ψ α α= +a a0 1 , (1.8)ob
(2)

0 0 1 1

+ =F a a F a a( , ) ( , ) 1, (1.9)p p0 1 0 10 1

α α α α+ =μ μF F( , ) ( , ) 1. (1.10)0 1 0 10 1

The Born probabilities to observe the states 0 and 1 are

= = = =p F a a a p F a a a( , ) , ( , ) . (1.11)p p0
Born

0 1 0
2

1
Born

0 1 1
2

0 1
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Innovation 1.2. The membership functions are

μ α α μ α α= =μ μF F( , ), ( , ). (1.12)0 0 1 1 0 10 1

If we assume the Born rule (1.11) for the membership functions as well

α α α α α α= =μ μF F( , ) , ( , ) , (1.13)0 1 0
2

0 1 1
2

0 1

which is one of various possibilities depending on the chosen model, then

+ =a a 1, (1.14)0
2

1
2

α α+ = 1. (1.15)0
2

1
2

Using (1.14)–(1.15) we can parameterize (1.8) as

ψ θ θ θ θ
= +μ φ μecos

2
cos

2
0 sin

2
sin

2
1 , (1.16)i

ob
(2)

θ π φ π θ π⩽ ⩽ ⩽ ⩽ ⩽ ⩽μ0 , 0 2 , 0 . (1.17)

Therefore, obscure qubits (with Born-like rule for the membership functions) are
geometrically described by a pair of vectors, each inside a Bloch ball (and not as
vectors on the boundary spheres, because ‘ ⩽sin , cos 1 ’), where one is for the
probability amplitude (an ellipsoid inside the Bloch ball with θ =μ const1) and the
other is for the membership amplitude (which is reduced to an ellipse, being a slice
inside the Bloch ball with θ = const2, φ = const3). However, the norm of the obscure
qubits is not constant because

ψ ψ θ θ θ θ= + + + −μ μ( ) ( )1
2

1
4

cos
1
4

cos . (1.18)ob
(2)

ob
(2)

In the case where θ θ= μ, the norm (1.18) becomes θ−1 sin1
2

2 , reaching its minimum
1
2
when θ θ= = π

μ 2
.

Note that for complicated functions α αμF ( , )0 10, 1
, the condition (1.15) may be not

satisfied but the condition (1.7) should nevertheless always be valid. The concrete
form of the functions α αμF ( , )0 10, 1

depends upon the chosen model. In the simplest
case, we can identify two arcs on the Bloch ellipse for α α,0 1 with the membership
functions and obtain

α α
π

α
α

=μF ( , )
2

arctan , (1.19)0 1
1

0
0

α α
π

α
α

=μF ( , )
2

arctan , (1.20)0 1
0

1
1
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such that μ μ+ = 10 1 , as in (1.7).
In Mannucci (2006) and Maron et al (2013) a two stage special construction of

quantum obscure/fuzzy sets was considered. The so-called classical-quantum
obscure/fuzzy registers were introduced in the first step (for n = 2, the minimal
case) as

= − +s f f1 0 1 , (1.21)f

= − +s g g1 0 1 , (1.22)g

where ∈f g, [0, 1] are the relevant classical-quantum membership functions. In the
second step their quantum superposition is defined by

= +s c s c s , (1.23)f f g g

where cf and cg are the probability amplitudes of the fuzzy states s f and s g,
respectively. It can be seen that the state (1.23) is a particular case of (1.8) with

α = − + −a c f c g1 1 , (1.24)f g0 0

α = +a c f c g . (1.25)f g1 1

This gives explicit connection of our double amplitude description of obscure
qubits with the approach (Mannucci 2006, Maron et al 2013) which uses probability
amplitudes and the membership functions. It is important to note that the use of the
membership amplitudes introduced here αi and (1.2) allows us to exploit the
standard quantum gates but not to define new special ones, as in Mannucci
(2006) and Maron et al (2013).

Another possible form of α αμF ( , )0 10, 1
(1.12), with the corresponding membership

functions satisfying the standard fuzziness rules, can be found using a standard
homeomorphism between the circle and the square. In Hannachi et al (2007b) and
Rybalov et al (2014), this transformation was applied to the probability amplitudes
a0, 1.

Innovation 1.3. Here we exploit it for the membership amplitudes α0, 1

α α
π

α α α α= − +
μF ( , )

2
arcsin

sign sign 1
2

, (1.26)0 1
0
2

0 1
2

1
0

α α
π

α α α α= + +
μF ( , )

2
arcsin

sign sign 1
2

. (1.27)0 1
0
2

0 1
2

1
1

So for positive α0, 1, we obtain (cf Hannachi et al 2007b)

Innovative Quantum Computing
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α α
π

α α= − +
μF ( , )

2
arcsin

1
2

, (1.28)0 1
0
2

1
2

0

α α =μF ( , ) 1. (1.29)0 11

The equivalent membership functions for the outcome are

α α α α α α α α− −μ μ μ μ( )( ) ( )F F F Fmax min ( , ), 1 ( , ) , min 1 ( , ) , ( , ) , (1.30)0 1 0 1 0 1 0 10 1 0 1

α α α α α α α α− −μ μ μ μ( )( ) ( )F F F Fmin max ( , ), 1 ( , ) , max 1 ( , ) , ( , ) . (1.31)0 1 0 1 0 1 0 10 1 0 1

There are many different models for α αμF ( , )0 10, 1
which can be introduced in such

a way that they satisfy the obscure set axioms (Dubois and Prade 2000,
Zimmermann 2011).

1.3 Transformations of obscure qubits
Let us consider the obscure qubits in the vector representation, such that

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= =0 1
0

, 1 0
1

(1.32)

are basis vectors of the two-dimensional Hilbert space H q
(2). A standard quantum

computational process in the quantum register with L obscure qubits (qudits (1.1)) is
performed by sequences of unitary matrices U of size ×2 2L L ( ×n nL L), U U I=† ,
which are called quantum gates (I is the unit matrix). Thus, for one obscure qubit, the
quantum gates are 2 × 2 unitary complex matrices.

Innovation 1.4. In the vector representation, an obscure qubit differs from the
standard qubit (1.8) by a 2 × 2 invertible diagonal (not necessarily unitary) matrix

Mψ α α ψ= ( , ) , (1.33)ob
(2)

0 1
(2)

M ⎜ ⎟⎛
⎝

⎞
⎠

α α α
α

=( , )
0

0
. (1.34)0 1

0

1

We call M α α( , )0 1 a membership matrix which can optionally have the property

M =tr 1, (1.35)2

if (1.15) holds.
Let us introduce the orthogonal commuting projection operators

P P⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= =1 0
0 0

, 0 0
0 1

, (1.36)0 1
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P P P P P P P P 0= = = =, , , (1.37)0
2

0 1
2

1 0 1 1 0

where 0 is the 2 × 2 zero matrix. Well-known properties of the projections are that

P Pψ ψ= =a a0 , 0 , (1.38)0
(2)

0 1
(2)

1

P Pψ ψ ψ ψ= =a a, . (1.39)(2)
0

(2)
0

2 (2)
1

(2)
1

2

Innovation 1.5. The membership matrix (1.34) can be defined as a linear combination
of the projection operators with the membership amplitudes as coefficients

M P Pα α α α= +( , ) . (1.40)0 1 0 0 1 1

We compute

M α α ψ α α= +a a( , ) 0 1 . (1.41)0 1 ob
(2)

0
2

0 1
2

1

We can therefore treat the application of the membership matrix (1.33) as
providing the origin of a reversible but non-unitary obscure measurement on the
standard qubit to obtain an obscure qubit—cf the mirror measurement (Battilotti
and Zizzi 2004, Zizzi 2005) and also the origin of ordinary qubit states on the fuzzy
sphere (Zizzi and Pessa 2014).

An obscure analog of the density operator (for a pure state) is the following form
for the density matrix in the vector representation

⎛

⎝
⎜

⎞

⎠
⎟ρ ψ ψ

α α α
α α α

= =
*

*

a a a

a a a
(1.42)ob

(2)
ob
(2)

ob
(2) 0

2
0

2
0 0 1 1

0 0 1 1 1
2

1
2

with the obvious standard singularity property ρ =det 0ob
(2) . But ρ =tr ob

(2)

α α+ ≠a a 10
2

0
2

1
2

1
2 , and here there is no idempotence ρ ρ≠( )ob

(2) 2
ob
(2), which

can distinct ρob
(2) from the standard density operator.

1.4 Kronecker obscure qubits
We next introduce an analog of quantum superposition for membership amplitudes,
called ‘obscure superposition’ (cf Cunha et al 2019, and also Toffano and Dubois
2017).

Innovation 1.6. Quantum amplitudes and membership amplitudes will here be
considered separately in order to define an obscure qubit taking the form of a double
superposition (cf (1.8), and a generalized analog for qudits (1.1) is straightforward)

A 0 A 1Ψ = +
2

, (1.43)ob
0 1

Innovative Quantum Computing
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where the two-dimensional vectors

A ⎡
⎣

⎤
⎦α=

a
(1.44)0, 1

0, 1

0, 1

are the (double) obscure-quantum amplitudes of the generalized states 0 , 1 .

For the conjugate of an obscure qubit we put (informally)

A 0 A 1Ψ = +⋆ ⋆

2
, (1.45)ob

0 1

where we denote A ⎡⎣ ⎤⎦α=⋆ *a0, 1 0, 1 0, 1 , such that A A α= +⋆ a0, 1 0, 1 0, 1
2

0, 1
2 . The

(double) obscure qubit is normalized in such a way that, if the conditions (1.14)–
(1.15) hold, then

α αΨ Ψ = + + + =a a
2 2

1. (1.46)ob ob
0

2
1

2
0
2

1
2

Innovation 1.7. A measurement should be made separately and independently in the
probability space and the membership space, which can be represented using an analog
of the Kronecker product.

Indeed, in the vector representation (1.32) for the quantum states and for the
direct product amplitudes (1.44) we should have

A A⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Ψ = ⊗ + ⊗1

2
1
0

0
1

, (1.47)ob (0) 0 K 1 K

where the (left) Kronecker product is defined by (see (1.32))

H

e e
e e

e e e

⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

α
α α

⊗ = =
+
+

= = ∈

( ) ( )
( )

a c
d

a
c
d
c
d

a c d
c d

( )
( )

,

1
0

, 0
1

, .

(1.48)
K

0 1

0 1

0 1 0, 1 q
(2)

Informally, the wave function of the obscure qubit, in the vector representation,
now lives in the four-dimensional space of (1.48), which has two two-dimensional
spaces as blocks. The upper block, the quantum subspace, is the ordinary Hilbert
spaceH q

(2), but the lower block should have special (fuzzy) properties, if it is treated

as an obscure (membership) subspace Vmemb
(2) . Thus, the four-dimensional space,

where lives Ψob
(2) , is not an ordinary tensor product of vector spaces because of

(1.48) and the vector A on the lhs has entries of different natures, i.e., the quantum
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amplitudes a0, 1 and the membership amplitudes α0, 1. Despite the unit vectors in
H q

(2) andVmemb
(2) having the same form (1.32), they belong to different spaces (because

they are vector spaces over different fields). Therefore, instead of (1.48), we
introduce a Kronecker-like product ⊗˜

K by

e e
⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

α α ε ε
⊗̃ =

+
+( )a c

d
a c d

c d
( )
( )

, (1.49)K
0 1

0 1

He e e⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= = ∈1
0

, 0
1

, , (1.50)0 1 0, 1 q
(2)

V⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ε ε ε= = ∈
μ μ1

0
, 0

1
, . (1.51)0

( )

1

( )

0, 1 memb
(2)

In this way, the obscure qubit (1.43) can be presented in the from

e e

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

α α

α ε α ε

Ψ = +

= +

μ μ

a a

a a

1

2

1
0

1
0

1

2

0
1

0
1

1

2

1

2
.

(1.52)
ob

0

0

( )

1

1

( )

0 0

0 0

1 1

1 1

Therefore, we call the double obscure qubit (1.52) a Kronecker obscure qubit to
distinguish it from the obscure qubit (1.8). It can be also presented using the
Hadamard product (the element-wise or Schur product)

⎡⎣ ⎤⎦
⎡
⎣

⎤
⎦α α⊗ =( )a c

d
ac
d (1.53)H

in the following form

A E A EΨ = ⊗ + ⊗1

2

1

2
, (1.54)ob 0 H 0 1 H 1

where the unit vectors of the total four-dimensional space are

H VE
e⎡

⎣
⎤
⎦ε= ∈ × . (1.55)0, 1

0, 1

0, 1
q
(2)

memb
(2)

The probabilities p0, 1 and membership functions μ0, 1 of the states 0 and 1 are
computed through the corresponding amplitudes by (1.11) and (1.12)

μ α α= = =μp a F i, ( , ), 0, 1, (1.56)i i i
2

0 1i

and in the particular case by (1.13) satisfying (1.15).
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By way of example, consider a Kronecker obscure qubit (with a real quantum
part) with probability p and membership function μ (measure of trust) of the state
0 , and of the state 1 given by − p1 and μ−1 , respectively. In the model (1.19)–
(1.20) for μi (which is not Born-like) we obtain

e e

⎜ ⎟⎜ ⎟
⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

π μ π μ

ε π μ ε π μ

Ψ = +
−

= +
−

μ μ

p
p

p p

1

2

0

cos
2

0

1

2

0
1

0

sin
2

1

2 cos
2

1

2

1

sin
2

,

(1.57)

ob ( ) ( )

0

0

1

1

where ei and εi are unit vectors defined in (1.50) and (1.51).
This can be compared, e.g., with the classical-quantum approach (1.23), and

Mannucci (2006) and Maron et al (2013), in which the elements of the columns are
multiplied, while we consider them independently and separately.

1.5 Obscure-quantum measurement
Let us consider the case of one Kronecker obscure qubit register L = 1 (see (1.47)), or
using (1.48) in the vector representation (1.52). The standard (double) orthogonal
commuting projection operators, Kronecker projections, are (cf (1.36))

P 0

0 P

P 0

0 P
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥= =μ μP P, , (1.58)0

0

0
( ) 1

1

1
( )

where 0 is the 2 × 2 zero matrix, and P μ
0, 1
( ) are the projections in the membership

subspaceVmemb
(2) (of the same form as the ordinary quantum projections P0, 1 (1.36))

VP P P P⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= = ∈μ
μ

μ
μ

μ μ1 0
0 0

, 0 0
0 1

, , End , (1.59)0
( )

( )

1
( )

( )

0
( )

1
( )

memb
(2)

P P P P P P P P 0= = = =μ μ μ μ μ μ μ μ, , . (1.60)0
( )2

0
( )

1
( )2

1
( )

0
( )

1
( )

1
( )

0
( )

For the double projections we have (cf (1.37))

= = = =P P P P P P PP 0, , , (1.61)0
2

0 1
2

1 0 1 1 0

where 0 is the 4 × 4 zero matrix, and P0, 1 act on the Kronecker qubit (1.58) in the
standard way (cf (1.38))
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e
A E

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = = = ⊗μ

a
aP

1

2

1
0

1
0

1

2

1

2
, (1.62)0 ob

0

0

( )
0 0

0 0
0 H 0

e
A E

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = = = ⊗μ

a
aP

1

2

0
1

0
1

1

2

1

2
. (1.63)1 ob

1

1

( )
1 1

1 1
1 H 1

Observe that for Kronecker qubits there exist in addition to (1.58) the following
orthogonal commuting projection operators

P 0

0 P

P 0

0 P
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥= =μ μP P, , (1.64)01

0

1
( ) 10

1

0
( )

and we call these the crossed double projections. They satisfy the same relations as
(1.61)

= = = =P P P P P P P P 0, , , (1.65)01
2

01 10
2

10 01 10 10 01

but act on the obscure qubit in a different (mixing) way than (1.62), i.e.,

e
⎡

⎣

⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = =
a

aP
1

2

1
0

0
1

1

2
, (1.66)01 ob

0

1

0 0

1 1

e
⎡

⎣

⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

⎡
⎣

⎤
⎦α

α εΨ = =
a

aP
1

2

0
1

1
0

1

2
. (1.67)10 ob

1

0

1 1

0 0

The multiplication of the crossed double projections (1.64) and the double
projections (1.58) is given by

P 0
0 0

0 0
0 P

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

= = ≡ = = ≡μ
μP P P P Q P P PP Q, , (1.68)01 0 0 01

0
0 01 1 1 01

1
( ) 1

( )

0 0
0 P

P 0
0 0

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

= = ≡ = = ≡μ
μP P P P Q P P PP Q, , (1.69)10 0 0 10

0
( ) 0

( )
10 1 1 10

1
1

where the operators Q Q,0 1 and
μ μQ Q,0

( )
1
( ) satisfy
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= = = =Q Q Q Q Q Q Q Q 0, , , (1.70)0
2

0 1
2

1 1 0 0 1

= = = =μ μ μ μ μ μ μ μQ Q Q Q Q Q Q Q 0, , , (1.71)0
( )2

0
( )

1
( )2

1
( )

1
( )

0
( )

0
( )

1
( )

= = = =μ μ μ μQ Q Q Q Q Q Q Q 0, (1.72)1
( )

0 0
( )

1 1 0
( )

0 1
( )

and we call these ‘half Kronecker (double) projections’.
These relations imply that the process of measurement when using Kronecker

obscure qubits (i.e. for quantum computation with truth or membership) is more
complicated than in the standard case.

To show this, let us calculate the obscure analogs of expected values for the
projections above. Using the notation

Ψ Ψ¯ ≡A A . (1.73)ob ob

Then, using (1.43)–(1.45) for the projection operators Pi, Pij, Qi,
μQi

( ), =i j, 0, 1,
≠i j , we obtain (cf (1.39))

α α¯ = + ¯ =
+a a

P P
2

,
2

, (1.74)i
i i

ij
i j

2 2 2 2

α¯ = ¯ =μa
Q Q

2
,

2
. (1.75)i

i
i

i
2

( )
2

So follows the relation between the obscure analogs of expected values of the
projections

¯ = ¯ + ¯ ¯ = ¯ + ¯μ μP Q Q P Q Q, . (1.76)i i i ij i j
( ) ( )

Taking the ket corresponding to the bra Kronecker qubit (1.52) in the form

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦α αΨ = +* *a a
1

2
(1 0), (1 0)

1

2
(0 1), (0 1) , (1.77)ob 0 0 1 1

a Kronecker (4 × 4) obscure analog of the density matrix for a pure state is given by
(cf (1.42))

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ρ

α α
α α

α α α α α
α α α α α

Ψ Ψ= =

*

*

* *

* *

a a a a a

a a a a a

a a

a a

1
2

. (1.78)ob
(2)

ob ob

0
2

0 1 0 0 0 1

1 0 1
2

1 0 1 1

0 0 0 1 0
2

0 1

1 0 1 1 0 1 1
2

If the Born rule for the membership functions (1.13) and the conditions (1.14)–
(1.15) are satisfied, then the density matrix (1.78) is non-invertible because

ρ =det 0ob
(2) and has unit trace ρ =tr 1ob

(2) but is not idempotent ρ ρ≠( )ob
(2) 2

ob
(2) because

it holds for the ordinary quantum density matrix (Nielsen and Chuang 2000).
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1.6 Kronecker obscure-quantum gates
In general, (double) obscure-quantum computation with L Kronecker obscure
qubits (or qudits) can be performed by a product of unitary (block) matrices U of
the (double size to the standard one) size × ×2 (2 2 )L L (or × ×n n2 ( )L L ), =†U U I
(here I is the unit matrix of the same size as U). We can also call such computation a
quantum computation with truth (or with membership).

Let us consider obscure-quantum computation with one Kronecker obscure
qubit. Informally, we can present the Kronecker obscure qubit (1.52) in the form

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

α
α

Ψ =
μ

( )
( )

a
a

1

2
1

2

. (1.79)ob

0

1

0

1

( )

Innovation 1.8. The state Ψob can be interpreted as a vector in the direct product
(not tensor product) spaceH V×q

(2)
memb
(2) , whereH q

(2) is the standard two-dimensional

Hilbert space of the qubit, andVmemb
(2) can be treated as the membership space, which

has a different nature from the qubit space and can have a more complex structure.

For discussion of similar spaces, see for example Dubois et al (2000), Bělohlávek
(2002), Smith (2008), and Zimmermann (2011). In general, one can consider
obscure-quantum computation as a set of abstract computational rules, independ-
ently of the introduction of the corresponding spaces.

An obscure-quantum gate will be defined as an elementary transformation on an
obscure qubit (1.79) and is performed by unitary (block) matrices of size 4 × 4 (over
) acting in the total space H V×q

(2)
memb
(2)

U 0
0 U

⎛
⎝

⎞
⎠

= = =μ
† †U UU U U I, , (1.80)

( )

H VUU U U I U U U U I U U= = = = ∈ ∈μ μ μ μ μ† † † †, , End , End , (1.81)( ) ( ) ( ) ( )
q
(2) ( )

memb
(2)

where I is the unit 4 × 4 matrix, I is the unit 2 × 2 matrix, and U andU μ( ) are unitary
2 × 2 matrices acting on the probability and membership subspaces, respectively.
The matrixU (over ) will be called a quantum gate, and we call the matrixU μ( ) (over
) an obscure gate. We assume that the obscure gates U μ( ) are of the same shape as
the standard quantum gates, but they act in the other (membership) space and have
only real elements (see, e.g. Nielsen and Chuang 2000). In this case, an obscure-
quantum gate is characterized by the pair U U μ{ , }( ) , where the components are
known gates (in various combinations), e.g., for one qubit gates: Hadamard, Pauli-
X (NOT),Y,Z (or two qubit gates e.g. CNOT, SWAP, etc). The transformed qubit then
becomes (informally)
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U

U

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

α
α

Ψ =
μ

μ

( )
( )

a
a

U

1

2
1

2

. (1.82)ob

0

1

( ) 0

1

( )

Thus, the quantum and the membership parts are transformed independently for the
block diagonal form (1.80). Some examples of this can be found, e.g., in Domenech
and Freytes (2006), Mannucci (2006), and Maron et al (2013). Differences between
the parts were mentioned in Kreinovich et al (2011). In this case, an obscure-
quantum network is physically realized by a device performing elementary oper-
ations in sequence on obscure qubits (by a product of matrices), such that the
quantum and membership parts are synchronized in time; for a discussion of the
obscure part of such physical devices, see Hirota and Ozawa (1989), Kóczy and
Hirota (1990), Virant (2000), and Kosko (1997). Then, the result of the obscure-
quantum computation consists of the quantum probabilities of the states together
with the calculated level of truth for each of them (see, e.g. Bolotin 2018).

For example, the obscure-quantum gate NOTNOTH =U {Hadamard, }, acts on the
state E0 (1.55) as follows

NOT NOTE
e e

H H

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ε

= = = +
μ μU U

1
0

1
0

1

2
1
1

0
1

1

2
( )

. (1.83), 0 , ( ) ( )
0 1

1

It would be interesting to consider the case when U (1.80) is not block diagonal
and try to find possible physical interpretations of the non-diagonal blocks.

1.7 Double entanglement
Let us introduce a register consisting of two obscure qubits (L = 2) in the
computational basis ij i j′ = ⊗ ′ , as follows

B 00 B 10 B 01 B 11Ψ Ψ= = = ′ + ′ + ′ + ′= ′ ′ ′ ′L( 2) (2)
2

, (1.84)n
ob
( 2)

ob
00 10 01 11

determined by two-dimensional vectors (encoding obscure-quantum amplitudes)

B ⎡

⎣
⎢

⎤

⎦
⎥β= = ′ = ′ ′′

′

′

b
i j j, , 0, 1, 0 , 1 , (1.85)ij

ij

ij

where ∈′bij are probability amplitudes for a set of pure states and β ∈′ij are the
corresponding membership amplitudes. By analogy with (1.43) and (1.46), the
normalization factor in (1.84) is chosen so that

Ψ Ψ =(2) (2) 1, (1.86)ob ob

if (cf (1.14)–(1.15))
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+ + + =′ ′ ′ ′b b b b 1, (1.87)00
2

10
2

01
2

11
2

β β β β+ + + =′ ′ ′ ′ 1. (1.88)00
2

10
2

01
2

11
2

A state of two qubits is entangled if it cannot be decomposed as a product of two
one-qubit states, and otherwise it is separable (see, e.g. Nielsen and Chuang 2000).

Innovation 1.9. We define a product of two obscure qubits (1.43) as

A A 00 A A 10 A A 01 A A 11
′ ′ ′ ′ ′Ψ Ψ⊗ =

⊗ ′ + ⊗ ′ + ⊗ ′ + ⊗ ′
2

, (1.89)ob ob
0 H 0 1 H 0 0 H 1 1 H 1

where ⊗H is the Hadamard product (1.53).

Comparing (1.84) and (1.89), we obtain two sets of relations, for probability
amplitudes and for membership amplitudes

=′ ′b a a
1

2
, (1.90)ij i j

β α α= = ′ = ′ ′′ ′ i j j
1

2
, , 0, 1, 0 , 1 . (1.91)ij i j

In this case, the relations (1.14)–(1.15) give (1.87)–(1.88).
Two obscure-quantum qubits are entangled if their joint state (1.84) cannot be

presented as a product of one qubit states (1.89), and in the opposite case the states
are called totally separable. It follows from (1.90)–(1.91) that there are two general
conditions for obscure qubits to be entangled

⎜ ⎟
⎛
⎝

⎞
⎠

≠ ≠ =′ ′ ′ ′
′ ′

′ ′
b b b b

b b
b b

b b, or det 0, , (1.92)00 11 10 01
00 01

10 11

⎜ ⎟
⎛
⎝

⎞
⎠

β ββ β β β
β β
β β

≠ ≠ = ·′ ′ ′ ′
′ ′

′ ′
, or det 0, (1.93)00 11 10 01

00 01

10 11

The first equation (1.92) is the entanglement relation for the standard qubit, while
the second condition (1.93) is for the membership amplitudes of the two obscure
qubit joint state (1.84). The presence of two different conditions (1.92)–(1.93) leads
to new additional possibilities (which do not exist for ordinary qubits) for partial
entanglement (or partial separability), when only one of them is fulfilled. In this case,
the states can be entangled in one subspace (quantum or membership) but not in the
other.

The measure of entanglement is numerically characterized by the concurrence.
Taking into account the two conditions (1.92)–(1.93), we propose to generalize the
notion of concurrence for two obscure qubits in two ways. First, we introduce the
vector obscure concurrence
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C ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥β

= =
μ

C

C

b
2

det
det

, (1.94)vect
q

( )

where b and β are defined in (1.92)–(1.93), and ⩽ ⩽C0 1q , ⩽ ⩽μC0 1( ) .

Innovation 1.10. The corresponding scalar obscure concurrence can be defined as

β= +
C

bdet det
2

, (1.95)scal

2 2

such that ⩽ ⩽C0 1scal . Thus, two obscure qubits are totally separable, if =C 0scal .

For instance, for an obscure analog of the (maximally entangled) Bell state

00 11

⎛

⎝

⎜
⎜
⎜

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎞

⎠

⎟
⎟
⎟

Ψ = ′ + ′(2)
1

2

1

2
1

2

1

2
1

2

(1.96)ob

we obtain

C ⎡
⎣

⎤
⎦

= =C1
1

, 1. (1.97)vect scal

A more interesting example is the intermediately entangled two obscure qubit
state, e.g.,

00 10 01 11
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where the amplitudes satisfy (1.87)–(1.88). If the Born-like rule (as in (1.13)) holds
for the membership amplitudes, then the probabilities and membership functions of
the states in (1.98) are

= = = =′ ′ ′ ′p p p p
1
4

,
1

16
,

3
16

,
1
2

, (1.99)00 10 01 11

μ μ μ μ= = = =′ ′ ′ ′
1
2

,
5

16
,

1
8

,
1

16
. (1.100)00 10 01 11

This means that, e.g., that the state 10′ will be measured with the quantum
probability 1/16 and the membership function (truth value) 5/16. For the entangled
obscure qubit (1.98) we obtain the concurrences
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In the vector representation (1.49)–(1.52), we have

ij i j
e e⎡

⎣⎢
⎤
⎦⎥ε ε′ = ⊗ ′ =

⊗
⊗ = ′ = ′ ′′

′
i j j, , 0, 1, 0 , 1 , (1.102)

i j

i j

K

K

where ⊗K is the Kronecker product (1.48), and e ε,i i are defined in (1.50)–(1.51).
Using (1.85) and the Kronecker-like product (1.49), we put (informally, with no
summation)

B ij
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⊗ = ′ = ′ ′′

′ ′
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i j j, , 0, 1, 0 , 1 . (1.103)ij

ij i j

ij i j

K

K

To clarify our model, we show here a manifest form of the two obscure qubit state
(1.98) in the vector representation
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Innovation 1.11. The states above may be called ‘symmetric two obscure qubit states’.
However, there are more general possibilities, as may be seen from the rhs of (1.103)
and (1.104), when the indices of the first and second rows do not coincide. This would
allow more possible states, which we call ‘non-symmetric two obscure qubit states’. It
would be worthwhile to establish their possible physical interpretation.

These constructions show that quantum computing using Kronecker obscure
qubits can involve a rich structure of states, giving a more detailed description with
additional variables reflecting vagueness.

1.8 Conclusions
We have proposed a new scheme for describing quantum computation bringing
vagueness into consideration, in which each state is characterized by a measure of
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truth. A membership amplitude is introduced in addition to the probability
amplitude in order to achieve this, and we are led thereby to the concept of an
obscure qubit. Two kinds of these are considered: the product obscure qubit, in
which the total amplitude is the product of the quantum and membership
amplitudes; and the Kronecker obscure qubit, where the amplitudes are manipu-
lated separately. In the latter case, the quantum part of the computation is based, as
usual, in Hilbert space, while the truth part requires a vague/fuzzy set formalism,
which can be performed in the framework of a corresponding fuzzy space. Obscure-
quantum computation may be considered as a set of rules (defining obscure-
quantum gates) for managing quantum and membership amplitudes independently
in different spaces. In this framework, we obtain not only the probabilities of final
states but also their membership functions, i.e., how much trust we should assign to
these probabilities. Our approach considerably extends the theory of quantum
computing by adding the logic part directly to the computation process. Future
challenges could lie in the direction of development of the corresponding logic
hardware in parallel with the quantum devices.
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Chapter 2

Higher braid quantum gates

One of the main problems in the physical realization of quantum computers is the
presence of errors, which implies that it is desirable for quantum computations be
provided with error correction or that ways be found to make the states more stable,
which leads to the concept of topological quantum computation (for reviews, see,
e.g., Freedman et al 2003, Nayak et al 2008, Rowell and Wang 2018, and references
therein). In the Turaev approach (Turaev 1988), link invariants can be obtained
from the solutions of the constant Yang–Baxter equation (the braid equation). It
was realized that the topological entanglement of knots and links is deeply
connected with quantum entanglement (Aravind 1997, Kauffman and Lomonaco
2002). Indeed, if the solutions to the constant Yang–Baxter equation (Lambe and
Radford 1997) or Yang–Baxter operators/maps (Bukhshtaber 1998, Veselov 2003)
are interpreted as a special class of quantum gate, namely braiding quantum gates
(Kauffman and Lomonaco 2004, Melnikov et al 2018), then the inclusion of non-
entangling gates does not change the relevant topological invariants (Alagic et al
2016, Kauffman and Mehrotra 2019). For further properties and applications of
braiding quantum gates, see Melnikov et al (2019), Ballard and Wu (2011b),
Kolganov and Morozov (2020), and Kolganov et al (2021).

Here we obtain and study (Duplij and Vogl 2021) the solutions to the higher arity
(polyadic) braid equations introduced in Duplij (2021b, 2021a) as a polyadic
generalization of the constant Yang–Baxter equation, which is considerably differ-
ent from the generalized Yang–Baxter equation of Rowell et al (2010), Kitaev and
Wang (2012), Vasquez et al (2016), and Padmanabhan et al (2020b). We introduce
special classes of matrices (star and circle types), to which most of the solutions
belong, and find that the so-called magic matrices (Khaneja and Glaser 2001, Kraus
and Cirac 2001, Ballard and Wu 2011b) belong to the star class. We investigate their
general non-trivial group properties and polyadic generalizations. We then consider
the invertible and noninvertible matrix solutions to the higher braid equations as the
corresponding higher braiding gates acting on multi-qubit states. It is important for
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multi-qubit entanglement can speed up quantum key distribution (Epping et al 2017)
and accelerate various algorithms (Vartiainen et al 2004). As an example, we have
made detailed computations for the ternary braiding gates as solutions to the ternary
braid equations (Duplij 2021b, 2021a). A particular solution to the n-ary braid
equation is also presented. It is shown that for each multi-qubit state, there exist
higher braiding gates that are not entangling and the concrete relations for that are
obtained, which can allow us to build non-entangling networks.

2.1 Yang–Baxter operators
Recall here (Kauffman and Lomonaco 2002, 2004) the standard construction of the
special kind of gates we will consider, the braiding gates, in terms of solutions to the
constant Yang–Baxter equation (Lambe and Radford 1997), also called the algebraic
Yang–Baxter equation (Dye 2003), or the (binary) braid equation (Duplij 2021b).

2.1.1 Yang–Baxter maps and braid group

First we consider a general abstract construction of the (binary) braid equation. Let
V be a vector space over a field  and the mapping V V V VVC :2 ⊗ → ⊗ , where

⊗=⊗ is the tensor product over  . A linear operator (braid operator) VC 2 is called a
Yang–Baxter operator (denoted by R in Kauffman and Lomonaco 2004 and by B in
Lambe and Radford 1997) or Yang–Baxter map (Veselov 2003) (denoted by F in
Bukhshtaber 1998) if it satisfies the braid equation (Drinfeld 1989, 1992, Kassel
1995).

V V V V V V V V V V V VC C C C C C( id ) (id ) ( id ) (id ) ( id ) (id ),(2.1)2 2 2 2 2 2⊗ ◦ ⊗ ◦ ⊗ = ⊗ ◦ ⊗ ◦ ⊗

where V VVid : → is the identity operator inV . The connection of VC 2 with the R-
matrix R is given by VC R2 τ= ◦ , where τ is the flip operation (Drinfeld 1989,
Bukhshtaber 1998, Lambe and Radford 1997).

Let us introduce the operators V V V V V VA :1, 2 ⊗ ⊗ → ⊗ ⊗ by

V V V VA C A Cid , id , (2.2)1 22 2= ⊗ = ⊗

It follows from (2.1) that

A A A A A A . (2.3)1 2 1 2 1 2◦ ◦ = ◦ ◦

If VC 2 is invertible, then
V

C 1
2

− is also the Yang–Baxter map with A1
1− and A2

1− .
Therefore, the operators Ai represent the braid group B e{ , , }3 1 2 1 2 1 2 1 2σ σ σ σ σ σ σ σ= =
by the mapping 3π as

B eV V V VA AEnd( ), , , id . (2.4)3 1 1 2 2
3 3 3 3σ σ⟶ ⊗ ⊗ ↦ ↦ ↦

π π π π

The representation mπ of the braid group with m strands

B e
i m
i j

, , ,
, 1, , 1,

, 2,
(2.5)m m

i i i i i i

i j j i
1 1

1 1 1⎧
⎨⎩

⎫
⎬⎭

σ σ
σ σ σ σ σ σ

σ σ σ σ= …
= = … −

= − ⩾−
+ + +
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can be obtained using operators A m( ):i V m→⊗ V m⊗ analogous to (2.2)

V V V V V

V

A m C
A m i m

( ) id id id id ,
( ) (id ) , 1, , 1,

(2.6)

i m i1 1

i
m

0

2= ⊗ ⋯⊗ ⊗ ⊗ ⊗ ⋯
= = ⋯ −

− − −

⊗

� ��� ��� � ��� ���

by the mapping B: Endm mπ → V m⊗ in the following way

A m e A m( ) ( ), ( ) ( ). (2.7)m i i m 0π σ π= =

In this notation (2.2) is A A (2)i i= , i 1, 2= , and therefore (2.3) represents B3 by
(2.4).

2.1.2 Constant matrix solutions to the Yang–Baxter equation

Consider next a concrete version of the vector spaceV that is used in the quantum
computation, a d-dimensional Euclidean vector space Vd over complex numbers 
with a basis e{ }i , i d1, ,= … . A linear operatorV Vd d→ is given by a complex d × d
matrix, the identity operator Vid becomes the identity d × dmatrix Id, and the Yang–
Baxter map VC 2 is a d d2 2× matrix Cd 2 (denoted by R in Dye 2003) satisfying the
matrix algebraic Yang–Baxter equation

C I I C C I I C C I I C( )( )( ) ( )( )( ), (2.8)d d d d d d d d d d d d2 2 2 2 2 2⊗ ⊗ ⊗ = ⊗ ⊗ ⊗

being an equality between two matrices of size d d3 3× . We use the unified notations,
which can be straightforwardly generalized for higher braid operators. In
components

C e e c e e( ) , (2.9)
j j

d

, 1

d i i i i
j j

j j
2

1 2

1 2

1 2
1 2

1 2
∑◦ ⊗ = · ⊗
′ ′=

′ ′
′ ′

the Yang–Baxter equation (2.8) has the shape (where summing is by primed indices)

c c c c c c q . (2.10)
j j j

d

l l l

d

, , 1 , , 1

i i
j j

j i

j k

j j

k k
i i

l l

i l

k l

l l

k k
i i i

k k k

1 2 3

1 2
1 2

2 3

3 3

1 3

1 2

1 2 3

2 3
2 3

1 2

1 1

1 3

2 3

1 2 3

1 2 3∑ ∑· · = · · ≡
′ ′ ′=

′ ′
′

′
′ ′

′ ′ ′=

′ ′
′

′
′ ′

The system (2.10) is highly overdetermined because the matrix Cd 2 contains d 4

unknown entries, while there are d 6 cubic polynomial equations for them. So for
d = 2 we have 64 equations for 16 unknowns, while for d = 3 there are 729 equations
for the 81 unknown entries of Cd 2. The unitarity of Cd 2 imposes a further d 2

quadratic equations, and so for d = 2 we have in total 68 equations for 16 unknowns.
This makes the direct discovery of solutions for the matrix Yang–Baxter equation
(2.10) very cumbersome. Nevertheless, using a conjugation classes method, the
unitary solutions and their classification for d = 2 were presented in Dye (2003).

In the standard matrix form, (2.9) can be presented by introducing the four-
dimensional vector space V V V4̃ = ⊗ with the natural basis
e e e e e e e e e{ , , , }k 1 1 1 2 2 1 2 2˜ = ⊗ ⊗ ⊗ ⊗˜ , where k 1, , 8˜ = … is a cumulative index.
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The linear operatorC V V:4 4 4
˜ ˜ → ˜ corresponding to (2.9) is given by 4 × 4 matrix c j˜ı̃ ˜ as

C e c ej j j4 1
4˜ ◦ ˜ = ∑ ˜ · ˜ı ı˜ ˜ = ˜ ˜ ˜. The operators (2.2) become two 8 × 8 matrices A1, 2

˜ as

A c I A I c, , (2.11)1 K 2 2 2 K
˜ = ˜⊗ ˜ = ⊗ ˜

where K⊗ is the Kronecker product of matrices and I2 is the 2 × 2 identity matrix. In
this notation, which is universal and also used for higher braid equations, the
operator binary braid equations (2.117) become a single matrix equation

A A A A A A , (2.12)1 2 1 2 1 2˜ ˜ ˜ = ˜ ˜ ˜

which we call the matrix binary braid equation, and also the constant Yang–Baxter
equation (Dye 2003). In component form, (2.12) is a highly overdetermined system
of 64 cubic equations for 16 unknowns, the entries of c̃ .

The matrix equation (2.12) has the following gauge invariance, which allows a
classification of Yang–Baxter maps (Hietarinta 1993). Introduce an invertible
operator Q V V: → in the two-dimensional vector space V Vd 2≡ = . In the basis

e e{ , }1 2 , its 2 × 2 matrix q is given by Q e q ei j ij j1
2◦ = ∑ ·= . In the natural four-

dimensional basis ek˜ ˜ the tensor product of operators Q Q⊗ is presented by the
Kronecker product of matrices q q q4 K˜ = ⊗ . If the 4 × 4 matrix c̃ is a fixed solution
to the Yang–Baxter equation (2.12), then the family of solutions c q( )˜ corresponding
to the invertible 2 × 2 matrix q is the conjugation of c̃ by q4̃ such that

c q q cq q q c q q( ) ( ) ( ), (2.13)4 4
1

K
1

K
1˜ = ˜ ˜ ˜ = ⊗ ˜ ⊗− − −

which follows from conjugating (2.12) by q qK⊗ and using (2.11). If we include the
obvious invariance of (2.12) with respect to an overall factor t ∈ , then the general
family of solutions becomes (cf the Yang–Baxter equation Hietarinta 1993)

c q t tq cq t q q c q q( , ) ( ) ( ). (2.14)4 4
1

K
1

K
1˜ = ˜ ˜ ˜ = ⊗ ˜ ⊗− − −

It follows from (2.13) that the matrix q GL(2, )∈ is defined up to a complex
nonzero factor. In this case we can put

q a
c d

1 , (2.15)⎛
⎝

⎞
⎠

=

and the manifest form of q4̃ is

q

a a a
ac ad c d
ac c ad d
c cd cd d

1

. (2.16)4

2

2 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

˜ =

The matrix q q4 4˜ ˜⋆ (where ⋆ represents Hermitian conjugation) is diagonal (this case is
important in a further classification similar to the binary one Dye 2003), when the
condition
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c a d (2.17)= − *

holds, and so the matrix q takes the special form (depending on two complex
parameters)

q a
a d d

1 . (2.18)⎛
⎝

⎞
⎠

=
− *

We call two solutions c1̃ and c2˜ of the constant Yang–Baxter equation (2.12)
q-conjugated, if

c q q c , (2.19)1 4 4 2˜ ˜ = ˜ ˜

and we will not distinguish between them. The q-conjugation in the form (2.19) does
not require the invertibility of the matrix q, and therefore the solutions of different
ranks (or invertible and not invertible) can be q-conjugated (for the invertible case,
see Hietarinta 1993, Alagic et al 2014, Padmanabhan et al 2021).

The matrix equation (2.12) does not imply the invertibility of solutions, i.e.,
matrices c̃ being of full rank (in the binary Yang–Baxter case of rank 4 and d = 2).
Therefore, below we introduce in a unified way invertible and noninvertible
solutions to the matrix Yang–Baxter equation (2.10) for any rank of the corre-
sponding matrices.

2.1.3 Partial identity and unitarity

To be as close as possible to the invertible case, we introduce noninvertible analogs
of identity and unitarity. Let M be a diagonal n × n matrix of rank r n⩽ , and
therefore with n − r zeros on the diagonal. If the other diagonal elements are units,
such a diagonal M can be reduced by row operations to a block matrix, being a
direct sum of the identity matrix Ir r× and the zero matrix Z n r n r( ) ( )− × − .

Definition 2.1. We call such a diagonal matrix a block r-partial identity

I r( ) diag 1, 1 ,0, , 0

r n r

n
(block) ⎧

⎨
⎩

⎫
⎬
⎭

= … …
−��� � � �� �

, and without the block reduction a shuffler-

partial identity I r( )n
(shuffle) (these are connected by conjugation). We will use the

term partial identity and I r( )n to denote any matrix of this form.

Obviously, with the full rank r = n we have I n I( )n n≡ , where In is the identity n × n
matrix. As with the invertible case and identities, the partial identities (of the
corresponding form) are trivial solutions of the Yang–Baxter equation.

Innovation 2.2. If a matrixM M r( )= of size n × n and rank r satisfies the following r-
partial unitarity condition

M r M r I r( ) ( ) ( ), (2.20)n
(1)=⋆
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M r M r I r( ) ( ) ( ), (2.21)n
(2)=⋆

whereM r( )⋆ is the conjugate-transposed matrix and I r( )n
(1) , I r( )n

(2) are partial identities
(of any kind, they can be different), then M r( ) is called a r-partial unitary matrix.

In the case, when I r I r( ) ( )n n
(1) (2)= , the matrix M r( ) is called normal. If

M r M r( ) ( )=⋆ , then it is called r-partial self-adjoint. In the case of full rank r = n,
the conditions (2.20)–(2.21) become ordinary unitarity, and M n( ) becomes an
unitary (and normal) matrix, while a r-partial self-adjoint matrix becomes a self-
adjoint matrix or Hermitian matrix.

As an example, we consider a 4 × 4 matrix of rank 3

M e
e

e

(3)

0 0 0 0
0 0 0
0 0 0

0 0 0

, , , , (2.22)
i

i

i

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α β γ= ∈
β

γ

α

which satisfies the 3-partial unitarity conditions (2.20)–(2.21) with two different 3-
partial identities on the rhs

M M I I M M(3) (3)

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

(3) (3)

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(3) (3) .(2.23)4
(1)

4
(2)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= = ≠ = =⋆ ⋆

For a noninvertible matrix M r( ), one can define a pseudoinverse M r( )+ (or the
Moore-Penrose inverse) (Nashed 1976) by

M r M r M r M r M r M r M r M r( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ) , (2.24)= =+ + + +

and M r M r( ) ( )+, M r M r( ) ( )+ are Hermitian. In the case of (2.22) the partial unitary
matrix M(3) coincides with its pseudoinverse

M M(3) (3) , (2.25)=⋆ +

which is similar to the standard unitarity M Minv inv
1=⋆ − for an invertible matrix Minv.

It is important that (2.22) is a solution of the matrix Yang–Baxter equation (2.12)),
and so is an example of a noninvertible Yang–Baxter map.

If only the first (second) of the conditions (2.20)–(2.21) holds, then we call such
M r( ) a left (right)r-partial unitary matrix. An example of such a noninvertible
Yang–Baxter map of rank 2 is the left 2-partial unitary matrix

M

e
e
e

e

(2)
1

2

0 0 0
0 0 0
0 0 0
0 0 0

, , , (2.26)

i

i

i

i

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

α β= ∈

α

β

β

β
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which satisfies (2.20), but not (2.21), and so M(2) is not normal

M M

e

e

M M(2) (2)

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

1 0 0
0 1 1 0
0 1 1 0

0 0 1

(2) (2) . (2.27)

i

i

( )

( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= ≠ =

α β

β α

⋆

−

−

⋆

Nevertheless, the property (2.25) still holds and M M(2) (2)=⋆ +.

2.1.4 Permutation and parameter-permutation 4-vertex Yang–Baxter maps

The system (2.12) with respect to all 16 variables is too cumbersome for direct
solution. The classification of all solutions can only be accomplished in special cases,
e.g., for matrices over finite fields (Hietarinta 1993) or for fewer than 16 vertices.
Here we will start from 4-vertex permutation and parameter-permutation matrix
solutions and investigate their group structure. It has been shown by Dye (2003), and
Kauffman and Lomonaco (2004) that the special 8-vertex solutions to the Yang–
Baxter equation are most important for further applications including braiding
gates. We will therefore study the 8-vertex solutions in the most general way: over 
and in various configurations, invertible and not invertible, and also consider their
group structure.

First, we introduce the permutation Yang–Baxter maps that are presented by the
permutation matrices (binary matrices with a single 1 in each row and column), i.e.,
4-vertex solutions. In total, there are 64 permutation matrices of size 4 × 4, while
only four of them have the full rank 4 and simultaneously satisfy the Yang–Baxter
equation (2.12), as follows

c
c c

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

,
tr 2, det 1,

eigenvalues: {1} , { 1} ,
(2.28)bisymm

perm
[2] [2]

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

˜ =
˜ = ˜ = −

−

c
c c

i i

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

,

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

,
tr 0, det 1,

eigenvalues: 1, , 1, .
(2.29)90symm

perm
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

˜ = ˜ = ˜ = −
− −

Here and next we list the eigenvalues to understand which matrices are conjugated,
and, after that, if and only if the conjugation matrix is of the form (2.16), then such
solutions to the Yang–Baxter equation (2.12) coincide. The traces are important in the
construction of corresponding link invariants (Turaev 1988) and local invariants
(Balakrishnan and Sankaranarayanan 2010, Sudbery 2001), and the determinants are
connected with the concurrence (Jaffali and Oeding 2020, Walter et al 2016). Note that
the first matrix in (2.28) is the SWAP quantum gate (Nielsen and Chuang 2000).

To understand the symmetry properties of (2.28)–(2.29), we introduce the so-
called reverse matrix J Jn≡ of size n × n by J( )n ij i n i, 1δ= + − . For n = 4 it is
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J

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

. (2.30)4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

For any n × n matrix M Mn≡ the matrix JM is the matrix M reflected vertically,
and the product MJ is M reflected horizontally. In addition to the standard
symmetric matrix satisfying M M T= (T is the transposition), one can introduce

M JM JMis persymmetric, if ( ) , (2.31)T=

M M JMis 90 symmetric, if . (2.32)T− =◦

Thus, a persymmetric matrix is symmetric with respect to the minor diagonal,
while a 90°-symmetric matrix is symmetric under 90°-rotations. A bisymmetric
matrix is symmetric and persymmetric simultaneously. In this notation, the first
family of the permutation solutions (2.28) are bisymmetric but not 90°-symmetric,
while the second family of the solutions (2.29) are, oppositely, 90°-symmetric but not
symmetric and not persymmetric (which explains their notation).

In the next step, we define the corresponding parameter-permutation solutions
replacing the units in (2.28) with parameters. We found the following four 4-vertex
solutions to the Yang–Baxter equation (2.12)) over 

c x y z t

x
y

z
t

y
x

t
z

c x t
c xyzt x y z t

x t yz yz

( , , , )

0 0 0
0 0 0
0 0 0
0 0 0

,

0 0 0
0 0 0
0 0 0

0 0 0

,

tr ,
det , , , , 0,
eigenvalues: , , , ,

(2.33)

rank 4
perm,star

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

˜ =

˜ = +
˜ = − ≠

−

=

c x y

x
y

x
y

x
x

y
y

c
c x y x y

xy xy i xy i xy

( , )

0 0 0
0 0 0

0 0 0
0 0 0

,

0 0 0
0 0 0

0 0 0
0 0 0

,

tr 0,
det , , 0,

eigenvalues: , , , .

(2.34)

rank 4
perm,circ

2 2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

˜ =

˜ =
˜ = − ≠

− −

=

Innovation 2.3. The first pair of solutions (2.33) correspond to the bisymmetric
permutation matrices (2.28), and we call them star-like solutions, while the second two
solutions (2.34) correspond to the 90°-symmetric matrices (2.28), which are called
circle-like solutions.

Innovative Quantum Computing

2-8



The first (second) star-like solution in (2.33) with y = z (x = t) becomes symmetric
(persymmetric), while on the other hand with x = t (y = z) it becomes persymmetric
(symmetric). They become bisymmetric parameter-permutation solutions if all of the
parameters are equal x y z t= = = . The circle-like solutions (2.34) are 90°-sym-
metric when x = y.

Using q-conjugation (2.14), one can next get families of solutions depending on
the entries of q and the additional complex parameters in (2.15).

2.1.5 Group structure of 4-vertex and 8-vertex matrices

Let us analyze the group structure of 4-vertex matrices (2.33)–(2.34) with respect to
matrix multiplication, i.e., which kinds of subgroups in GL(4, ) they can form. For
this we introduce four 4-vertex 4 × 4 matrices over : two star-like matrices

N

x
y

z
t

N

y
x

t
z

N x t
N xyzt x y z t

x t yz yz

0 0 0
0 0 0
0 0 0
0 0 0

,

0 0 0
0 0 0
0 0 0

0 0 0

,
tr ,

det , , , , 0,
eigenvalues: , , , ,

(2.35)

star1

star2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

=
= +

= − ≠
−

and two circle-like matrices

N

x
y

z
t

N

x
y

z
t

N
N xyzt x y z t

xyzt xyzt i xyzt xyzt

0 0 0
0 0 0

0 0 0
0 0 0

,

0 0 0
0 0 0

0 0 0
0 0 0

,

tr 0,
det , , , , 0,

eigenvalues: , , , ,
.

(2.36)

circ1

circ2

4 4 4 4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

=
=

= − ≠
− −

Denoting the corresponding sets by N{ }star1, 2 star1, 2N = and N{ }circ1, 2 circ1, 2N = ,
these do not intersect and are closed with respect to the following multiplications

, (2.37)star1 star1 star1 star1N N N N=

, (2.38)star2 star2 star2 star2N N N N=

, (2.39)circ1 circ1 circ1 circ1 circ1 circ1N N N N N N=

. (2.40)circ2 circ2 circ2 circ2 circ2 circ2N N N N N N=

Note that there are no closed binary multiplications among the sets of 4-vertex
matrices (2.35)–(2.36).
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To give a proper group interpretation of (2.37)–(2.40), we introduce a k-ary
(polyadic) general linear semigroup nGLS ( , ) { }k k[ ]

full
[ ]M μ= , where M{ }n nfullM = ×

is the set of n × n matrices over  and k[ ]μ is an ordinary product of k matrices. The
full semigroup nGLS ( , )k[ ]  is derived in the sense that its product can be obtained by
repeating the binary products that are (binary) closed at each step.

Innovation 2.4. The n × n matrices of special shape can form k-ary subsemigroups of
nGLS ( , )k[ ]  that can be closed with respect to the product of at minimum k matrices but

not of two matrices, and we call such semigroups k-ary nonderived (or k-nonderived).

Moreover, we have for the sets star1, 2N and circ1, 2N

,
.

(2.41)full star1 star2 circ1 circ2

star1 star2 circ1 circ2

M N N N N
N N N N

∪ ∪ ∪
∩ ∩ ∩

=
= ∅

A simple example of a 3-nonderived subsemigroup of the full semigroup
nGLS ( , )k[ ]  is the set of antidiagonal matrices { }Madiag adiagM = (having nonzero

elements on the minor diagonal only): the product [3]μ of three matrices from adiagM is

closed, and therefore adiagM is a subsemigroup S { }adiag
[3]

adiag
[3]M μ= of the full

ternary general linear semigroup nGLS ( , )[3]  with the multiplication [3]μ as the
ordinary triple matrix product.

In the theory of polyadic groups (Dörnte 1929) an analog of the binary inverse
M 1− is given by the querelement, which is denoted by M̄ and in the matrix k-ary case
is defined by

M M M M,
(2.42)

k 1

⋯ ¯ =
−���� �

where M̄ can be on any place. If each element of the k-ary semigroup nGLS ( , )k[ ] 
(or its subsemigroup) has its querelement M̄ , then this semigroup is a k-ary general
linear group nGL ( , )k[ ]  .

In the set of n × n matrices the binary (ordinary) product is defined (even it is not
closed), and for invertible matrices we formally determine the standard inverse M 1− ,
but for arity k 4⩾ it does not coincide with the querelement M̄ because, as follows
from (2.42) and cancellativity in ,

M M . (2.43)k2¯ = −

Definition 2.5. The k-ary (polyadic) identity In
k[ ] in nGLS ( , )k[ ]  is defined by

I I M M,
(2.44)

k 1

n
k

n
k[ ] [ ]⋯ =

−� � �� �

which holds when M in the lhs is on any place.
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If M is only on one or another side (but not in the middle places) in (2.44), then
In

k[ ] is called left (right) polyadic identity. For instance, in the subsemigroup (in
nGLS ( , )k[ ]  ) of antidiagonal matrices Sadiag

[3] the ternary identity In
[3] can be chosen

as the n × n reverse matrix (2.30) having units on the minor diagonal, while the
ordinary n × n unit matrix In is not inSadiag

[3] . It follows from (2.44), that for matrices

over  the (left, right) polyadic identity In
k[ ] is

I I( ) , (2.45)n
k k

n
[ ] 1 =−

which means that for the ordinary matrix product In
k[ ] is a k( 1)− -root of In (or In

k[ ] is
a reflection of k( 1)− degree), while both sides cannot belong to a subsemigroup
S k[ ] of nGLS ( , )k[ ]  under consideration (as in Sadiag

[3] ). Since the solutions of (2.45)
are not unique, there can be many k-ary identities in a k-ary matrix semigroup. We
denote the set of k-ary identities by I{ }n

k
n
k[ ] [ ]I = . In the case of Sadiag

[3] the ternary

identity In
[3] can be chosen as any of the n × n reverse matrices (2.30) with unit

complex numbers ei jα , j n1, ,= … on the minor diagonal, where jα satisfies

additional conditions depending on the semigroup. In the concrete case of Sadiag
[3] ,

the conditions giving (2.45) are k r( 1) 1 2j jα π− = + , rj ∈ , j n1, ,= … .
In the framework of the above definitions, we can interpret the closed products

(2.37)–(2.38) as the multiplications [3]μ of the ternary semigroups
S (4, ) { }star1, 2

[3]
star1, 2

[3]N μ= . The corresponding querelements are given by

N N

x

z

y

t

N N

z

x

t

y

x y z t

1
0 0 0

0 0
1

0

0
1

0 0

0 0 0
1

,

0 0 0
1

0
1

0 0

0 0
1

0

1
0 0 0

, , , , 0.

(2.46)

star1 star1
1

star2 star2
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

¯ = =

¯ = = ≠

−

−
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The ternary semigroups having querelements for each element, i.e., the additional
operation ( ) defined by (2.46), are the ternary groups
G (4, ) { , ( )}star1, 2

[3]
star1, 2

[3]N μ= which are two (non-intersecting because

star1 star2N N∩ = ∅) subgroups of the ternary general linear group GL (4, )[3]  . The
ternary identities in G (4, )star1, 2

[3]  are the following different continuous sets

{ }Istar1, 2
[3]

star1, 2
[3]I = , where

I

e
e

e
e

e e e

0 0 0
0 0 0
0 0 0
0 0 0

, 1, , (2.47)

i

i

i

i

i i i
jstar1

[3] 2 2 ( )

1

2

3

4

1 4 2 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α= = = = ∈

α

α

α

α

α α α α+

I

e
e

e
e

e e e

0 0 0
0 0 0
0 0 0

0 0 0

, 1, . (2.48)

i

i

i

i

i i i
jstar2

[3] 2 2 ( )

1

2

3

4

2 3 1 4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α= = = = ∈

α

α

α

α

α α α α+

In the particular case 0jα = , j 1, 2, 3, 4= , the ternary identities (2.47)–(2.48)
coincide with the bisymmetric permutation matrices (2.28).

Next we treat the closed set products (2.39)–(2.40) as the multiplications [5]μ of the
5-ary semigroups S (4, ) { }circ1, 2

[5]
circ1, 2

[5]N μ= . The querelements are

N N

yzt

xzt

xyt

xyz

0 0
1

0

1
0 0 0

0 0 0
1

0
1

0 0

, (2.49)circ1 circ1
3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

¯ = =−

N N

yzt

xzt

xyt

xyz

x y z t

0
1

0 0

0 0 0
1

1
0 0 0

0 0
1

0

, , , , 0. (2.50)circ2 circ2
3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

¯ = = ≠−

and the corresponding 5-ary groups G (4, ) { , ( )}circ1, 2
[5]

circ1, 2
[5]N μ= , which are two

(non-intersecting because circ1 circ2N N∩ = ∅) subgroups of the 5-ary general linear
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group nGL ( , )[5]  . We have the following continuous sets of 5-ary identities

{ }Icirc1, 2
[3]

circ1, 2
[3]I = in G (4, )circ1, 2

[5]  satisfying

I

e
e

e
e

e

0 0 0
0 0 0

0 0 0
0 0 0

, 1, , (2.51)

i

i

i

i

i
jcirc1

[5] ( )

1

2

3

4

1 2 3 4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α= = ∈

α

α

α

α

α α α α+ + +

I

e
e

e
e

e

0 0 0
0 0 0

0 0 0
0 0 0

, 1, . (2.52)

i

i

i

i

i
jcirc2

[5] ( )

1

2

3

4

1 2 3 4

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α= = ∈

α

α

α

α

α α α α+ + +

In the case 0jα = , j 1, 2, 3, 4= , the 5-ary identities (2.51)–(2.52) coincide with the
90◦-symmetric permutation matrices (2.29).

Innovation 2.6. It follows from (2.46)–(2.52) that the 4-vertex star-like (2.35) and
circle-like (2.36) matrices form subgroups of the k-ary general linear group
GL (4, )k[ ]  with significantly different properties: they have different querelements
and (sets of) polyadic identities, and even the arities of the subgroups G (4, )star1, 2

[3] 

and G (4, )circ1, 2
[5]  do not coincide (2.37)–(2.40).

If we take into account that 4-vertex star-like (2.35) and circle-like (2.36) matrices
are (binary) additive and distributive, then they form (with respect to the binary
matrix addition ( )+ and the multiplications [3]μ and [5]μ ) the (2, 3)-ring
R (4, ) { , }star1, 2

[3]
star1, 2

[3]N μ= + and (2, 5)-ring R (4, ) { , }circ1, 2
[5]

star1, 2
[5]N μ= + .

Next we consider the interaction of the 4-vertex star-like (2.35) and circle-like
(2.36) matrix sets, i.e., their exotic module structure. For this, let us recall the ternary
(polyadic) module (Duplij 2001) and s-place action (Duplij 2018) definitions, which
are suitable for our case. An abelian group M is a ternary left (middle, right)
R-module (or a module over R) if there exists a ternary operation
R R M M× × → (R M R M× × → , M R R M× × → ) which satisfies some
compatibility conditions (associativity and distributivity) that hold in the matrix
case under consideration (and where the module operation is the triple ordinary
matrix product) (Duplij 2001). A 5-ary left (right) module M over R is a 5-ary
operation R R R R M M× × × × → (M R R R R M× × × × → ) with analo-
gous conditions (and where the module operation is the pentuple matrix product)
(Duplij 2018, 2022).

First, we have the triple relations inside star and circle matrices

( ) ( ), , (2.53)star1 star2 star1 star2 circ1 circ2 circ1 circ1N N N N N N N N= =

( ) ( ), , (2.54)star1 star1 star2 star2 circ1 circ1 circ2 circ1N N N N N N N N= =
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( ) ( ), , (2.55)star2 star1 star1 star2 circ2 circ1 circ1 circ1N N N N N N N N= =

( ) ( ), , (2.56)star2 star2 star1 star1 circ2 circ2 circ1 circ2N N N N N N N N= =

( ) ( ), , (2.57)star2 star1 star2 star1 circ2 circ1 circ2 circ2N N N N N N N N= =

( ) ( ), . (2.58)star1 star2 star2 star1 circ1 circ2 circ2 circ2N N N N N N N N= =

We observe the following module structures on the left-hand column above
(elements of the corresponding module are in brackets, and we informally denote
modules by their sets): (1) from (2.53)–(2.55), the set star2N is a middle, right, and left
module over ;star1N (2) from (2.56)–(2.58), the set star1N is a middle, right, and left
module over ;star2N

, , (2.59)star1 circ1 star1 circ2 star1 circ2 star1 circ1N N N N N N N N= =

, , (2.60)star2 circ1 star2 circ2 star2 circ2 star2 circ1N N N N N N N N= =

( ) ( ), ( ) ( ), (2.61)star1 star1 circ1 circ1 circ1 star1 star1 circ1N N N N N N N N= =

( ) ( ), ( ) ( ), (2.62)star1 star1 circ2 circ2 circ2 star1 star1 circ2N N N N N N N N= =

( ) ( ), ( ) ( ), (2.63)star2 star2 circ1 circ1 circ1 star2 star2 circ1N N N N N N N N= =

( ) ( ), ( ) ( ), (2.64)star2 star2 circ2 circ2 circ2 star2 star2 circ2N N N N N N N N= =

(3) from (2.61)–(2.64), the sets circ1, 2N are a right and left module over ;star1, 2N

( ) ( ), ( ) ( ), (2.65)circ1 star1 circ1 star1 circ1 star2 circ1 star2N N N N N N N N= =

( ) ( ), ( ) ( ), (2.66)circ2 star1 circ2 star1 circ2 star2 circ2 star2N N N N N N N N= =

, , (2.67)circ1 circ1 star1 star2 star1 circ1 circ1 star2N N N N N N N N= =

, , (2.68)circ1 circ1 star2 star1 star2 circ1 circ1 star1N N N N N N N N= =

, , (2.69)circ2 circ2 star1 star2 star1 circ2 circ2 star2N N N N N N N N= =

, , (2.70)circ2 circ2 star2 star1 star2 circ2 circ2 star1N N N N N N N N= =

(4) from (2.65)–(2.66), the sets star1, 2N are a middle ternary module over ;circ1, 2N

( ) ( ), ( ) ( ), (2.71)circ1 circ1 circ1 circ1 star1 star1 circ1 circ1 circ1 circ1 star2 star2N N N N N N N N N N N N= =

( ) ( ), ( ) ( ), (2.72)star1 circ1 circ1 circ1 circ1 star1 star2 circ1 circ1 circ1 circ1 star2N N N N N N N N N N N N= =

( ) ( ), ( ) ( ), (2.73)circ2 circ2 circ2 circ2 star1 star1 circ2 circ2 circ2 circ2 star2 star2N N N N N N N N N N N N= =
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( ) ( ), ( ) ( ), (2.74)star1 circ2 circ2 circ2 circ2 star1 star2 circ2 circ2 circ2 circ2 star2N N N N N N N N N N N N= =

( ) ( ), ( ) ( ), (2.75)circ1 circ1 circ1 circ1 circ2 circ2 circ2 circ1 circ1 circ1 circ1 circ2N N N N N N N N N N N N= =

( ) ( ), ( ) ( ). (2.76)circ2 circ2 circ2 circ2 circ1 circ1 circ1 circ2 circ2 circ2 circ2 circ1N N N N N N N N N N N N= =

(5) from (2.71)–(2.76), the sets circ1, 2N are right and left 5-ary modules over circ2, 1N
and star1, 2N .

Note that the sum of 4-vertex star solutions of the Yang–Baxter equations (2.33)
(with different parameters) gives the shape of 8-vertex matrices, and the same with
the 4-vertex circle solutions (2.34). Let us introduce two kind of 8-vertex 4 × 4
matrices over : an 8-vertex star matrix Mstar and an 8-vertex circle matrix Mcirc as

v

vM

x y
z s
t u

w

M xw y st uz M x z u w

0 0
0 0
0 0

0 0

, det ( )( ), tr , (2.77)star star star

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= = − − = + + +

v

vM

x y
z s
t u

w

M xw y st uz M

0 0
0 0
0 0

0 0

, det ( )( ), tr 0. (2.78)circ circ circ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= = − − =

If Mstar and Mcirc are invertible (the determinants in (2.77)–(2.78) are non-
vanishing), then

v
v

v

v v

v
v

v

v v

M

w
xw y xw y

u
st uz

t
st uz

s
st uz

z
st uz

y
xw y

x
xw y

M

w
xw y xw y

u
st uz

t
st uz

s
st uz

z
st uz

y
xw y

x
xw y

0 0

0 0

0 0

0 0

,

0 0

0 0

0 0

0 0

,

(2.79)

star
1

circ
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

=

−
−

−

−
− −

−
−

−
−

− −

=

−
−

−

−
− −

−
−

−
−

− −

−

−

and therefore the parameter conditions for invertibility are the same in both Mstar

and Mcirc
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vxw y st uz0, 0. (2.80)− ≠ − ≠

The corresponding sets M{ }star starM = and M{ }circ circM = are closed under the
following multiplications

, (2.81)star star starM M M=

, , (2.82)star circ circ circ star circM M M M M M= =

, (2.83)circ circ starM M M=

and in terms of sets we can write star star1 star2M N N∪= and circ circ1 circ2M N N∪= ,
while star1 star2N N∩ = ∅ and circ1 circ2N N∩ = ∅ (see (2.41)). Note that, if starM and

circM are treated as elements of an algebra, then (2.81)–(2.83) are reminiscent of the
Cartan decomposition (see, e.g., Helgason 1962), but we will consider them from a
more general viewpoint, which will treat such structures as semigroups, ternary
groups, and modules.

Innovation 2.7. The set 8vertex star circM M M∪= is closed and because of the associativity
of matrix multiplication, 8vertexM forms a non-commutative semigroup, which we call a 8-
vertex matrix semigroupS (4, )8vertex  , which contains the zero matrix SZ (4, )8vertex ∈
and is a subsemigroup of the (binary) general linear semigroup GLS(4, ) .

It follows from (2.81), that starM is its subsemigroupS (4, )8vertex
star  . Moreover, the

invertible elements of S (4, )8vertex  form a 8-vertex matrix group G (4, )8vertex 
because its identity is a unit 4 × 4 matrix I4 starM∈ , and so starM is a subgroup
G (4, )8vertex

star  of G (4, )8vertex  and a subgroup of the (binary) general linear group
GL(4, ) . The structure of S (4, )8vertex  (2.81) is similar to that of block-diagonal
and block-antidiagonal matrices (of the necessary sizes). So the 8-vertex (binary)
matrix semigroup S (4, )8vertex  in which the parameters satisfy (2.80) is a 8-vertex
(binary) matrix group G (4, )8vertex  , having a subgroup G I(4, ) ,8vertex

star
star 4M = · ,

where ( )· is an ordinary matrix product, and I4 is its identity.
The group structure of the circle matrices circM (2.78) follows from

, (2.84)circ circ circ circM M M M=

which means that circM is closed with respect to the product of three matrices (the
product of two matrices from circM is outside the set (2.83)). We define a ternary
multiplication [3]ν as the ordinary triple product of matrices.

Innovation 2.8. Then S (4, )8vertex
circ[3]

circ
[3]M ν= becomes a ternary (3-nonderived)

semigroup with the zero Z circM∈ , which is a subsemigroup of the ternary (derived)
general linear semigroup GLS (4, )[3]  . Instead of the inverse, for each invertible
element M Z\circ circM∈ we introduce the unique querelement Mcirc¯ (Dörnte 1929) by
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(2.42), and because the ternary product is the triple ordinary product, we have
M Mcirc circ

1¯ = − from (2.43).

Innovation 2.9. If the conditions of invertibility (2.80) hold valid, then the ternary
semigroup S (4, )8vertex

circ(3)  becomes the ternary group G (4, ) , ()8vertex
circ(3)

circ
[3]M ν=

which does not contain the ordinary (binary) identity, since I4 circM∉ .

Nevertheless, the ternary group of circle matricesG (4, )8vertex
circ[3]  has the following set

{ }Icirc
[3]

circ
[3]I = of left–right 6-vertex and 8-vertex ternary identities (see (2.44)–(2.45))

I

a
b

a
ab
c

c
c

ab
c c

b
c a

b

ab
c

ad
c

cd
b

ad
b

c a
b d

0
1

0

0 0

0 0 0
1

0 0 0

,

0
1

0

0 0 0
1

0 0
0 0 0

,

0
1

0

0 0
1

0 0
0 0

, (2.85)circ
[3]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= −

− − −

− −

which (without additional conditions) depend upon the free parameters

a b c d, , , ∈ , b c, 0≠ , and ( )I Icirc
[3] 2

4= , Icirc
[3]

circM∈ . In the binary sense, the
matrices from (2.85) are mutually similar, but as ternary identities they are different.

If we consider the second operation for matrices (as elements of a general matrix
ring), the binary matrix addition ( )+ , then he structure of 8vertex star circM M M∪=
becomes more exotic.

Innovation 2.10. The set starM is a (2, 2)-ring R ,star
8vertex

[2, 2]
starM= + · with the binary

addition ( )+ and binary multiplication ( )· from the semigroup S8vertex
star , while circM is a

(2, 3)-ring R ,8vertex
circ[2, 3]

circ
[3]M ν= + with the binary matrix addition ( )+ , the ternary

matrix multiplication [3]ν and the zero Z.

Moreover, because of the distributivity and associativity of binary matrix multi-
plication, the relations (2.82) mean that the set circM (being an abelian group under
binary addition) can be treated as a left and right binary module M8vertex

circ over the
ring Rstar

8vertex
(2, 2) with an operation ( )* : the module action M M Mcirc star circ* = ,

M M Mstar circ circ* = (coinciding with the ordinary matrix product (2.82)). The left
and right modules are compatible because the associativity of ordinary matrix
multiplication gives the compatibility condition M M M M M M( ) ( )circ star circ circ star circ′ ′= ,

RM star
star 8vertex

(2, 2)∈ , RM M,circ circ 8vertex
circ(2, 3)′ ∈ , and therefore Mcirc (as an abelian group

under the binary addition ( )+ and the module action ( )* ) is a Rstar
8vertex

(2, 2)-bimodule
M8vertex

circ . The last relation (2.83) shows another interpretation of circM as a formal
square root of starM (as sets).
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2.1.6 Star 8-vertex and circle 8-vertex Yang–Baxter maps

Let us consider the star 8-vertex solutions c̃ to the Yang–Baxter equation (2.12),
having the shape (2.77), in the most general setting, over  and for different ranks,
i.e., including noninvertible ones. In components, they are determined by

v
v

v v
v

v

vy u z y t wz x xz y s x z t u x

y u w x x s svy tuz tvy suz

vwy xz x z stz y w wz xz s
uz z u suz tvy y s w u t z w

tuz svy stz vxy wz z w s wz x xz

stu u x ux vwy s z w t w u

uz u z y t u w x w

s u x t x z s u w x w

vy z u u w x x t

uw vxy stu u w w t wz xz

( ) 0, ( ) 0, ( ( ) ( )) 0,

( ( ) ) 0, 0, 0,

( ) 0, ( ) 0,
( ) 0, 0, ( ( ) ( )) 0,

0, ( ) 0, ( ) 0,

0, ( ( ) ( )) 0,

( ) 0, ( ( ) ) 0,

( ( ) ( )) 0, ( ( ) ) 0,

( ) 0, ( ( ) ) 0,

0, ( ) 0.

(2.86)

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2 2 2

− = − − + = − + − =
− + − = − = − =

+ − − = − + − =
− = − = − + − =

− = − + − = − − + =
+ − − = − + − =

− = + − − =
− + − = + − − =

− = − + − =
+ − − = − − + =

Solutions from, e.g., Dye (2003) and Hietarinta (1993), etc, should satisfy this
overdetermined system of 24 cubic equations for eight variables.

We search for the 8-vertex constant solutions to the Yang–Baxter equation over 
without additional conditions, unitarity, etc (which will be considered in the next
sections). We also will need the matrix functions tr and det, which are related to link
invariants, as well as the eigenvalues, which help to find similar matrices and q-
conjugated solutions to braid equations. Take into account that the Yang–Baxter
maps are determined up to a general complex factor t ∈ (2.14). For eigenvalues
(which are determined up to the same factor t) we use the notation:
{eigenvalue}[algebraic multiplicity].

We found the following 8-vertex solutions, classified by rank and number of
parameters.

• Rank 4= (invertible star Yang–Baxter maps) are
(1) Quadratic in two parameters

c x y

xy y
xy xy
xy xy

x xy

c xy

c x y x y

i xy i xy

( , )

0 0
0 0
0 0

0 0

,

tr 4 ,

det 4 , 0, 0,

eigenvalues: {(1 ) } , {(1 ) } ,

(2.87)

rank 4
par 2

2

2

4 4

[2] [2]

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

˜ =
±

∓
−

˜ =
˜ = ≠ ≠

+ −

=
=

(2) Quadratic in three parameters
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c x y z

xy y
zy xy
xy zy

z xy

c y x z

c y z x z x y

y x z y x z y x z

( , , )

0 0
0 0
0 0

0 0

,

tr 2 ( ),

det ( ) , , 0,

eigenvalues: ( ), ( ), { ( )} ,

(2.88)

rank 4, 1
par 3

2

2

4 2 2 2

[2]

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

˜ =
±

±

˜ = +
˜ = − ≠ ± ≠

− − − +

=
=

(3) Irrational in three parameters

{ } { }( ) ( )

c x y z

xy y

x z
y y

x z

y
x z x z

y

x z
yz

c y x z

c y x z y z x

y x z x z y x z x z

( , , )

0 0

0
2 2

0

0
2 2

0

( )

4
0 0

,

tr 2 ( ),

det
1

16
( ) , 0, ,

eigenvalues :
1
2

2 ,
1
2

2 .

(2.89)

rank 4
par 3

2

2 2

2 2

2

4 4

2 2
[2]

2 2
[2]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

+ ± +

± + +

+

˜ = +

˜ = − ≠ ≠

+ − + + + +

=
=

Note that only the first and the last cases are genuine 8-vertex Yang–Baxter maps
because the three-parameter matrices (2.88) are q-conjugated with the 4-vertex
parameter-permutation solutions (2.33). Indeed,

xy y
zy xy
xy zy

z xy

q q

y x z
y x z

y x z
y x z

q q

0 0
0 0
0 0

0 0

( )

( ) 0 0 0
0 0 ( ) 0
0 ( ) 0 0
0 0 0 ( )

( ),

(2.90)

2

2

K
1

K
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ⊗

+
−

−
+

⊗− −

q

y
z

b

b
z
y

1
, (2.91)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
±

∓
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where b ∈ is a free parameter. If b y
z

= two matrices q in (2.91) are similar, and we
have the unique q-conjugation (2.90), then another solution in (2.88) is q-conjugated
to the second 4-vertex parameter-permutation solutions (2.33) such that

xy y
zy xy
xy zy

z xy

q q

y x z
y x z

y x z
y x z

q q

0 0
0 0
0 0

0 0

( )

0 0 0 ( )
0 ( ) 0 0
0 0 ( ) 0

( ) 0 0 0

( ),

(2.92)

2

2

K
1

K
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−
−

= ⊗

−
+

+
−

⊗− −

q
i

y
z

i
y
z

i
y
z

i
y
z

1 1
,

1 1
, (2.93)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= ±

±

− ±

±

where qs are pairwise similar in (2.93), and therefore we have two different q-
conjugations.

• Rank 2= (noninvertible star Yang–Baxter maps) are quadratic in parameters

c x y

xy y
xy xy
xy xy

x xy

c xy

xy
( , )

0 0
0 0
0 0

0 0

,
tr 4 ,

eigenvalues:{2 } , {0} .
(2.94)rank 2

par 2

2

2

[2] [2]

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

˜ =
±

±
˜ =

=
=

There are no star 8-vertex solutions of rank 3. The above two solutions for crank 4
par 2˜ =

=

with different signs are q-conjugated (2.19), with the matrix q being one of the
following

q i
x
y

0 1

0 . (2.95)
⎛

⎝
⎜

⎞

⎠
⎟= ±

Further families of solutions can be obtained from (2.87)–(2.94) by applying the
general q-conjugation (2.14).

Particular cases of the star solutions are called also X-type operators
(Padmanabhan et al 2021) or magic matrices (Ballard and Wu 2011b) connected
with the Cartan decomposition of SU (4) (Khaneja and Glaser 2001, Kraus and
Cirac 2001, Bullock 2004, Bullock and Brennen 2004).

The circle 8-vertex solutions c̃ to the Yang–Baxter equation (2.12) of the shape
(2.78) are determined by the following system of 32 cubic equations for eight
unknowns over 
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v

v
v v

v
v

v v
v v

v

v
v

v v
v

v v
v v v v

x ty z u y vx tx y z wx
y st tx wy xz su x y sxy uxy

z t y x sz wx sy x z s ux

swy s xy z swx s w yz u y

st t x z y u su z x xz tu

su w xy z t s tu uw yz ty

s t z x wz svw vwx z xz wy
sw w t yz z s sz u w vy

t tu vy z y x tx x s u uvy

xy t w u w uvx t sy u w ux y

tz s x s tuv tz x y svw uvw

u w tz swz tyz s t w u z

tx w t u z tvx t y uvw vwy

tvy t u w wy uz u s w tu wx
twz t w z vwz s w t uw vx

sw u y w x w s u z wy

( ( ) ) 0, ( ) 0,
( ) 0, ( ) 0,

( ( ) ) 0, ( ) ( ) 0,

( ) 0, ( ) 0,

( ) 0, ( ) ( ) 0,

( ) ( ) 0, ( ) 0,

( ) ( ) 0, ( ) 0,
( ) ( ) 0, ( ( ) ) 0,

( ( )) 0, ( ) 0,

( ) 0, ( ) ( ) 0,

( ) 0, ( ) 0,

( ) 0, ( ) ( ) 0,

( ) ( ) 0, 0,

( ) 0, ( ( ) ) 0,
( ) 0, ( ( ) ) 0,

0, ( ( ) ) 0.

(2.96)

2 2 2

2 2

2 2

2 2 2

2

2 2

2

2 2 2

2

2 2 2

2

2

2 2 2 2

+ − − = + − − =
− + + − = − − + =

− − + = + − + =
− + − = − + − =

− + − = − + − =
− + − = − + − =

+ − + = − + − =
− + − = + − − =

− + − = − + − =
− + − = + − + =

− − + = − − + =
− − + = − + − =
− + − = − − + =

− + − = − − + =
− + + = − − + =
− + − = + − − =

We found the 8-vertex solutions, classified by rank and number of parameters.
• Rank 4= (invertible circle Yang–Baxter map) are quadratic in parameters

c x y z

xy yz

z xy
xz yz

z xz

c
c y z z x y z z x
yz x z yz x z yz x z yz x z

( , , )

0 0

0 0
0 0

0 0

,

tr 0,
det ( ), 0, 0, ,

eigenvalues: ( ), ( ), ( ), ( ).

(2.97)

rank 4
par 3

2

2

2 2 2 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

˜ =

˜ =
˜ = − ≠ ≠ ≠ ±

− − − − − + − +

=
=

• Rank 2= (noninvertible circle Yang–Baxter map) are linear in parameters

c x y

y y
x y
x y

x x

xy xy( , )

0 0
0 0
0 0

0 0

, eigenvalues: 2 , 2 , {0} . (2.98)rank 2
par 2 [2]

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

˜ =

− −
−
−

−=
=

There are no circle 8-vertex solutions of rank 3. The corresponding families of
solutions can be derived from the above using the q-conjugation (2.14).

A particular case of the 8-vertex circle solution (2.97) was considered in Asaulko
and Korablev (2019).
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2.1.7 Triangle invertible 9- and 10-vertex solutions

There are some higher vertex solutions to the Yang–Baxter equations that are not in
the above star/circle classification. They are determined by the following system of
15 cubic equations for nine unknowns over 

v v v

v

v

v
v

v v v v
v v v

v v
v

py x u w y y z s x x
ty vz x y z

x t ty w z vz y u

pz t y z x u w z s x t
ps u w y z s t u z x u w y z w y

uwy uwz uyz wyz
y p t u x t pz t u z ux

p s pu u y z t st u u w u x t z p tw wx
ps t tw y u u w z py w y wx

z p tw wx y t p u x

p s pw w y z s w u w wx
p p w u tw u

( ( ) ( )) ( )( ) 0,
( ( )) 0,
( ) ( ) ( ) 0,

( ( ) ( )) ( ) 0,
( ) ( ( ) ( ) ( ))

0,
( ( ) ( )) 0, ( ( ) ) 0,

( ) ( ( )) 0, ( ( ) ) 0,
( ) ( ) ( ) 0, ( ( ) ) 0,

( ( ) ) 0, ( ( ) ( )) 0,

( ) ( ) ( ( ) ) 0,
( ( ) ) 0,

(2.99)

2 2

2 2

2 2

− − + − + + + − + =
− + + − =

− + − + − =
− + + + − + − =

− + − + + − + + − + − + +
+ − − + =

− + − = − + + =
+ − + + − + + + = − − + =
− + − + − = − + + − =
− + − = − + − =

− + − − + + + − =
− − + =

We found the following 9-vertex Yang–Baxter maps

c

x y z s
x y

x z
x

x y y z
x y

x y
x

x y y z

x
zx
y

x
zx
y
x

0 0
0 0
0 0 0

,
0 0
0 0
0 0 0

,

0 0

0 0

0 0 0

, (2.100)rank 4
9 vert, 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

˜ =
− −

− −

−

−

=
−

c x c x x x xtr 2 , det , 0, eigenvalues: { } , . (2.101)4 [3]˜ = ˜ = − ≠ −

The third matrix in (2.100) is conjugated with the 4-vertex parameter-permutation
solutions (2.33) of the form (which has the same the same eigenvalues (2.101))

c x

x
x

x
x

( )

0 0 0
0 0 0
0 0 0
0 0 0

(2.102)rank 4
4 vert

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

˜ ==
−

by the conjugated matrix

U

y
x

y
x

z
y

1
2 2

0

0 1 0

0 0 1 0
0 0 0 1

. (2.103)9to4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

−

−

Innovative Quantum Computing

2-22



The matrix (2.103) cannot be presented as the Kronecker product q qK⊗ (2.16), and
so the third matrix in (2.100) and (2.102) are different solutions of the Yang–Baxter
equation (2.12). Although the first two matrices in (2.100) have the same eigenvalues
(2.101), they are not similar because they are different from (2.102) middle Jordan
blocks.

Then we have another 3-parameter solutions with fractions

c x y z

x y y z

x y
xz
y

x y
xz
y

x
xz
y

c x
xz y

y

c x
xz
y

x y z
y
x

x x x
xz
y

( , , )

0 0
2

0 0
2

0 0 0
4

3

,

tr 2
2

,

det 3
4

, 0, 0,
3
4

,

eigenvalues: { } , ,
4

3 ,

(2.104)

rank 4
9 vert, 2

2

2

2

4
2

2

[2]
2

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜ ⎛

⎝
⎞
⎠

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜ =

− −

− −

−

˜ = −

˜ = − ≠ ≠ ≠

− −

=
−

and

c x y z

x y y z

x
zx
y

y

x
zx
y

y

zx
y

x

c x
xz
y

c x
zx
y

x y z
y
x

x i x i x x
zx
y

( , , )

0 0
2

0 3 0
2

0 0 0
4

,

tr 2 1 2

det 3
4

1 , 0, 0,
4

eigenvalues: , 3 , 3 , 1
4

(2.105)

rank 4
9 vert, 3

2

2

2

4
2

2

2

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜ =

−

− +

−

+

˜ = +

˜ = + ≠ ≠ ≠

− +

=
−

The 4-parameter 9-vertex solution is
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x y z s

x y z s

x y
sx
z

x
xy

z
z

sx
z

x sx z y z

z

c x
sx yz

z

c
x y z z y z sx

z
x y

z
z

x x
y

z
x

y

z

x sx z y z

z

( , , , )

0 0
2

0
2

0
2

0 0 0
(4 (2 ))

,

tr 2
2

det (2 )( (2 ) 4 ) , 0,
2

, 0,

eigenvalues : ,
2

1 ,
2

1 ,
(4 (2 ))

.

(2.106)

rank 4
9 vert,par 4

2

2

4

3

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

− −

− −

− +

˜ = −

˜ =
− + −

≠ ≠ ≠

− − −
− +

=
− =

We also found a 5-parameter and 9-vertex solution of the form

c x y z s t

x y z s

t
s t x

z
y

y t x

z
x

s t x

z
z

s t x tz y z xyz

z

c
st sx tz xz stx tyz xyz

z

c
xt x y z ty s t x tz y z xyz

z

x
t
z

ty xy xz
t
z

ty xy xz

st stx tz ytz sx yxz

z
x z t

( , , , , )

0 0
( )

0
( )

0
( )

0 0 0
( ) ( )

,

tr
2

,

det
( ( ) )( ( ) ( ) ) ,

eigenvalues : , ( ) , ( ) ,

2
, 0, 0, 0.

(2.107)

rank 4
9 vert,par 5

2

2

2 2 2 2

2

2

3

2 2 2

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

˜ =

−
+

−
+

−
+

− + + −

˜ = + + + − + −

˜ =
− − − + + −

− + − − +

− + + + − ≠ ≠ ≠

=
− =

Finally, we found the following 3-parameter 10-vertex solution

c x y z

x y y
y
x

x y
x y

z x
c x

c x x zy x

x x
zy
x

x
zy
x

( , , ) 0 0
0 0

0 0

,

tr 2 ,
det ( ), 0,

eigenvalues: { } , , .

(2.108)

rank 4
10 vert

2

3 2

[2] 2
2

2
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

˜ = − −
− −

˜ =
˜ = − + ≠

+ − +

=
−

Innovative Quantum Computing

2-24



This solution is conjugated with the 4-vertex parameter-permutation solutions
(2.33) of the form (which has the same the same eigenvalues as (2.108))

c x y z

x

x
y z
x

x
x

( , , )

0 0 0

0 0 0

0 0 0
0 0 0

(2.109)rank 4
4 vert

2

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

˜ = +
=

−

by the conjugated matrix

U

x
z

x
z

x
yz

x
yz

y
x

x
yz

x
yz

0 0

1

1 0

0 0 1 1

. (2.110)10to4

2 2

2 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

−

− − −

−

Since the matrix (2.110) cannot be presented as the Kronecker product q qK⊗
(2.16), (2.108) and (2.109) are different solutions of the Yang–Baxter equation
(2.12).

Further families of the higher vertex solutions to the constant Yang–Baxter
equation (2.12) can be obtained from the ones above by using the q-conjugation
(2.14).

2.2 Polyadic braid operators and higher braid equations
The polyadic version of the braid equation (2.1) was introduced in Duplij (2021b,
2022). Here we define higher analog of the Yang–Baxter operator and develop its
connection with higher braid groups and quantum computations. The whole
material of this and the following sections is fully original and innovative.

Let us consider a vector spaceV over a field  . A polyadic (n-ary) braid operator
VC n is defined as the mapping (Duplij 2021b)

V V V VVC : .
(2.111)

n n

n ⊗ ⋯⊗ → ⊗ ⋯⊗
� �� �� � �� ��

The polyadic analog of the braid equation (2.1) was introduced in Duplij (2021b)
using the associative quiver technique (Duplij 2018).

Let us introduce n operators

V V V VA : ,
(2.112)

n n2 1 2 1

p ⊗ ⋯⊗ → ⊗ ⋯⊗
− −� �� �� � �� ��

V V VA C p nid id , 1, , , (2.113)p
p n p( 1) ( )

n= ⊗ ⊗ = …⊗ − ⊗ −
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i.e., p is a place of VC n instead of one Vid in Vid n⊗ . A system of n( 1)− polyadic (n-ary)
braid equations is defined by

A A A A A A A A (2.114)n n n1 2 3 4 2 1 1◦ ◦ ◦ ◦⋯◦ ◦ ◦ ◦− −

A A A A A A A A (2.115)n n2 3 4 5 1 1 2= ◦ ◦ ◦ ◦⋯◦ ◦ ◦ ◦
⋮

−

A A A A A A A A . (2.116)n n n n n1 2 3 3 2 1= ◦ ◦ ◦ ◦⋯◦ ◦ ◦ ◦− − −

Example 2.11. In the lowest non-binary case n = 3, we have the ternary braid
operator V V V V V VVC :3 ⊗ ⊗ → ⊗ ⊗ and two ternary braid equations onV 5⊗

V V V V V V V V V V V V

V V V V V V V V V V V V

V V V V V V V V V V V V

C C C C

C C C C

C C C C

( id id ) (id id ) (id id ) ( id id )
(id id ) (id id ) ( id id ) (id id )
(id id ) ( id id ) (id id ) (id id ).

(2.117)

3 3 3 3

3 3 3 3

3 3 3 3

⊗ ⊗ ◦ ⊗ ⊗ ◦ ⊗ ⊗ ◦ ⊗ ⊗
= ⊗ ⊗ ◦ ⊗ ⊗ ◦ ⊗ ⊗ ◦ ⊗ ⊗
= ⊗ ⊗ ◦ ⊗ ⊗ ◦ ⊗ ⊗ ◦ ⊗ ⊗

Note that the higher braid equations presented above differ from the generalized
Yang–Baxter equations of Rowell et al (2010), Kitaev and Wang (2012), and Chen
(2012a).

The higher braid operators (2.111) satisfying the higher braid equations (2.114)–
(2.116) can represent the higher braid group (Duplij 2021a) using (2.6) and (2.113).
By analogy with (2.6), we introduce m operators by

V V V V Vm mB ( ): , B ( ) (id ) ,
(2.118)

m n m n2 2

i
m n

0
( 2)⊗ ⋯⊗ → ⊗ ⋯⊗ =

+ − + −
⊗ + −

� �� �� � �� ��

V V Vm C i mB ( ) id id , 1, , 1. (2.119)i
i m i( 1) ( 1)

n= ⊗ ⊗ = … −⊗ − ⊗ − −

The representation m
n[ ]π of the higher braid group Bm

n[ 1]+ (of n( 1)+ -degree in the
notation of Duplij 2021a, 2022) (having m 1− generators iσ and identity e) is given
by

B V: End , (2.120)m
n

m
n m n[ ] [ 1] ( 2)π ⟶+ ⊗ + −

m i m( ) B ( ), 1, , 1. (2.121)m
n

i i
[ ] σπ = = … −

In this way, the generators iσ of the higher braid groupBm
n[ 1]+ satisfy the relations

• n higher braid relations

(2.122)
n 1

i i i n i n i1 2 1σ σ σ σ σ⋯
+

+ + − + −
� ���� ����
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(2.123)i i i n i i1 2 1 1σ σ σ σ σ= ⋯
⋮

+ + + − +

, (2.124)i n i i i i i i n1 1 2 1 1σ σ σ σ σ σ σ= ⋯+ − + + + + −

i m n1, , , (2.125)= … −

• n-ary far commutativity

(2.126)
n

i i i i in n n1 2 2 1σ σ σ σ σ⋯
⋮

− −

� ��� ����

, (2.127)i i i i i( ) ( ) ( ) ( ) ( )n n n1 2 2 1σ σ σ σ σ= ⋯τ τ τ τ τ− −

i i n p s nif all , , 1, , , (2.128)p s− ⩾ = …

where τ is an element of the permutation symmetry group Snτ ∈ . The relations
(2.122)–(2.127) coincide with those from Duplij (2021a, 2022), obtained by another
method, i.e., via the polyadic-binary correspondence.

In the case m = 4 and n = 3, the higher braid group B4
[4] is represented by (2.117)

and generated by three generators 1σ , 2σ , 3σ , which satisfy two braid relations only
(without far commutativity)

. (2.129)1 2 3 1 2 3 1 2 3 1 2 3σ σ σ σ σ σ σ σ σ σ σ σ= =

According to (2.126)–(2.127), the far commutativity relations appear when the
number of elements of the higher braid groups satisfy

m m n n( 1) 2, (2.130)min⩾ = − +

such that all conditions (2.128) should hold. Thus, to have the far commutativity
relations in the ordinary (binary) braid group (2.5), we need three generators andB4,
while for n = 3 we need at least seven generators iσ and B8

[4] (see example 7.12 in
Duplij 2021a).

In the concrete realization ofV as a d-dimensional Euclidean vector space Vd over
the complex numbers  and basis e{ }i , i d1, ,= … , the polyadic (n-ary) braid
operator VC n becomes a matrix Cd n of size d dn n× which satisfies n 1− higher
braid equations (2.114)–(2.116) in matrix form. In the components, the matrix braid
operator is

C e e e c e e e( ) . (2.131)
j j j

d

, 1

d i i i i i i
j j j

j j j
n

n

n

n
n

n
1 2

1 2

1 2
1 2

1 2
∑◦ ⊗ ⊗ ⋯⊗ = · ⊗ ⊗ ⋯⊗

′ ′⋯ ′=

′ ′ ′
′ ′ ′⋯

⋯

Thus, we have d n2 entries (unknowns) in Cd n satisfying n d( 1) n4 2− − equations
(2.114)–(2.116) in components of polynomial power n 1+ . In the minimal non-
binary case n = 3, we have d2 10 equations of power 4 for d 6 unknowns, e.g., even for
d = 2, we have 2048 for 64 components, and for d = 3 there are118 098 equations for
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729 components. Thus, solving the matrix higher braid equations directly is
cumbersome and only particular cases are possible to investigate, for instance by
using permutation matrices (2.28), or the star and circle matrices (2.77)–(2.78).

2.3 Solutions to the ternary braid equations
Here we consider some special solutions to the minimal ternary version (n = 3) of the
polyadic braid equation (2.114)–(2.116), the ternary braid equation (2.117).

2.3.1 Constant matrix solutions

Let us consider the following two-dimensional vector space V Vd 2≡ = (which is
important for quantum computations) and the component matrix realization (2.131)
of the ternary braiding operator C V V V V V V:8 ⊗ ⊗ → ⊗ ⊗ as

C e e e c e e e i j( ) , , 1, 2.(2.132)
j j j, , 1

2

i i i i i i
j j j

j j j8 1, 2, 3 1, 2, 31 2 3

1 2 3

1 2 3
1 2 3

1 2 3
∑◦ ⊗ ⊗ = · ⊗ ⊗ ′ =

′ ′ ′=

′ ′ ′
′ ′ ′

We now turn (2.132) to the standard matrix form (just to fix notations) by
introducing the 8-dimensional vector spaceV V V V8̃ = ⊗ ⊗ with the natural basis
e e e e e e e e e e{ , , , }k 1 1 1 1 1 2 2 2 2˜ = ⊗ ⊗ ⊗ ⊗ … ⊗ ⊗˜ , where k 1, , 8˜ = … is a cumu-
lative index. The linear operatorC V V:8 8 8

˜ ˜ → ˜ corresponding to (2.132) is given by the
8 × 8 matrix c j˜ı̃ ˜ as C e c ej j j8 1

8˜ ◦ ˜ = ∑ ˜ · ˜ı ı˜ ˜ = ˜ ˜ ˜. The operators (2.112)–(2.113) become

three 32 × 32 matrices A1, 2, 3
˜ as

A c I I A I c I A I I c, , , (2.133)1 K 2 K 2 2 2 K K 2 3 2 K 2 K
˜ = ˜⊗ ⊗ ˜ = ⊗ ˜⊗ ˜ = ⊗ ⊗ ˜

where K⊗ is the Kronecker product of matrices and I2 is the 2 × 2 identity matrix. In
this notation, the operator ternary braid equations (2.117) become the matrix
equations (cf (2.114)–(2.116)) with n = 3

A A A A A A A A A A A A , (2.134)1 2 3 1 2 3 1 2 3 1 2 3˜ ˜ ˜ ˜ = ˜ ˜ ˜ ˜ = ˜ ˜ ˜ ˜

which we call the total matrix ternary braid equations. Some weaker versions of
ternary braiding are described by the partial braid equations

A A A A A A A Apartial 12 braid equation , (2.135)1 2 3 1 2 3 1 2− ˜ ˜ ˜ ˜ = ˜ ˜ ˜ ˜

A A A A A A A Apartial 13 braid equation , (2.136)1 2 3 1 3 1 2 3− ˜ ˜ ˜ ˜ = ˜ ˜ ˜ ˜

A A A A A A A Apartial 23 braid equation , (2.137)2 3 1 2 3 1 2 3− ˜ ˜ ˜ ˜ = ˜ ˜ ˜ ˜

where, obviously, two of them are independent. It follows from (2.114)–(2.116) that
the weaker versions of braiding are possible for n 3⩾ , but only for higher than
binary braiding (the Yang–Baxter equation (2.8)).
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Thus, by comparing (2.134) and (2.129) we conclude that (for each invertible
matrix c̃ in (2.133) satisfying (2.134)) the isomorphism A: i i4

[4] σπ̃ ↦ ˜ , i 1, 2, 3= gives
a representation of the braid group B4

[4] by 32 × 32 matrices over .
Now we can generate families of solutions corresponding to (2.133)–(2.134) in the

following way. Consider an invertible operator Q V V: → in the two-dimensional
vector space V Vd 2≡ = . In the basis e e{ , }1 2 , its 2 × 2 matrix q is given by

Q e q ei j ij j1
2◦ = ∑ ·= . In the natural 8-dimensional basis ek˜ ˜, the tensor product of

operators Q Q Q⊗ ⊗ is presented by the Kronecker product of matrices
q q q q8 K K˜ = ⊗ ⊗ . Let the 8 × 8 matrix c̃ be a fixed solution to the ternary braid
matrix equations (2.134). Then, the family of solutions c q( )˜ corresponding to the
invertible 2 × 2 matrix q is the conjugation of c̃ by q8̃ so that

c q q cq q q q c q q q( ) ( ) ( ). (2.138)8 8
1

K K
1

K
1

K
1˜ = ˜ ˜ ˜ = ⊗ ⊗ ˜ ⊗ ⊗− − − −

This also follows directly from the conjugation of the braid equations (2.134)–
(2.137) by q q q q qK K K K⊗ ⊗ ⊗ ⊗ and (2.133). If we include the obvious
invariance of the braid equations with the respect of an overall factor t ∈ , then
the general family of solutions becomes (cf the Yang–Baxter equation Hietarinta
1993)

c q t tq cq t q q q c q q q( , ) ( ) ( ). (2.139)8 8
1

K K
1

K
1

K
1˜ = ˜ ˜ ˜ = ⊗ ⊗ ˜ ⊗ ⊗− − − −

Let

q a b
c d

GL(2, ), (2.140)⎛
⎝

⎞
⎠

= ∈

and then the manifest form of q8̃ is

q

a a b a b ab a b ab ab b
a c a d abc abd abc abd b c b d
a c abc a d abd abc b c abd b d
ac acd acd ad bc bcd bcd bd
a c abc abc b c a d abd abd b d
ac acd bc bcd acd ad bcd bd
ac bc acd bcd acd bcd ad bd
c c d c d cd c d cd cd d

. (2.141)8

3 2 2 2 2 2 2 3

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

3 2 2 2 2 2 2 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

It is important that not every conjugation matrix has this very special form (2.141),
and that therefore, in general, conjugated matrices are different solutions of the
ternary braid equations (2.134). The matrix q q8 8˜ ˜⋆ (⋆ being the Hermitian conjuga-
tion) is diagonal (this case is important for further classification similar to the binary
one Dye 2003), when the conditions

ab cd 0 (2.142)*+ *=
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hold, and so the matrix q has the special form (depending on three complex
parameters, for d 0≠ )

q
a b

a
b
d

d
. (2.143)

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= − *
*

We can present the families (2.138) for different ranks because the conjugation by an
invertible matrix does not change rank. To avoid demanding (2.142), due to the
cumbersome calculations involved, we restrict ourselves to a triangle matrix for q
(2.140).

In general, there are 8 8 64× = unknowns (elements of the matrix c̃), and each
partial braid equation (2.135)–(2.137) gives 32 32 1024× = conditions (of power 4)
for the elements of c̃, while the total braid equations (2.134) give twice as many
conditions1024 2 2048× = (cf the binary case: 64 cubic equations for 16 unknowns
(2.8)). This means that, even in the ternary case, the higher braid system of equations
is hugely overdetermined and finding even the simplest solutions is a non-trivial task.

2.3.2 Permutation and parameter-permutation 8-vertex solutions

First we consider the case when c̃ is a binary (or logical) matrix consisting of {0, 1}
only, and, moreover, it is a permutation matrix (see subsection 2.1.4). In the latter
case, c̃ can be considered as a matrix over the field 2 (Galois field GF (2)). In total,
there are 8 40 320! = permutation matrices of the size 8 × 8. All of them are
invertible of full rank 8 because they are obtained from the identity matrix by
permutation of rows and columns.

We have found the following four invertible 8-vertex permutation matrix
solutions to the ternary braid equations (2.134)

c

c
c
c

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1

,

0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0

,
tr 4,

det 1,
eigenvalues:{1} , { 1} ,

(2.144)

rank 8
bisymm1

rank 8
bisymm2

[4] [4]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

˜ =

˜ =
˜ =
˜ =

−

=

=
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c

c
c
c

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0

,

0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

,
tr 4,

det 1,
eigenvalues:{1} , { 1} .

(2.145)

rank 8
symm1

rank 8
symm2

[4] [4]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

˜ =

˜ =
˜ =
˜ =

−

=

=

The first two solutions (2.144) are given by bisymmetric permutation matrices (see
(2.31)), and we call them 8-vertex bisymm1 and bisymm2, respectively. The second
two solutions (2.145) are symmetric matrices only (we call them 8-vertex symm1and
symm2), but one matrix is a reflection of the other with respect to the minor
diagonal (making them mutually persymmetric). No 90◦-symmetric (see (2.32))
solution for the ternary braid equations (2.134) was found. The bisymmetric and
symmetric matrices have the same eigenvalues, and are therefore pairwise conjugate
but not q-conjugate because the conjugation matrices do not have the form (2.141).
Thus, they are four different permutation solutions to the ternary braid equations
(2.134). Note that the bisymm1 solution (2.144) coincides with the three-qubit swap
operator introduced in Ballard and Wu (2011b).

All the permutation solutions are reflections (or involutions) c I2
8˜ = having

cdet 1˜ = + , eigenvalues {1, 1}− , and are semi-magic squares (the sums in rows
and columns are 1, but not the sums in both diagonals). The 8-vertex permutation
matrix solutions do not form a binary or ternary group because they are not closed
with respect to multiplication.

By analogy with (2.33)–(2.34), we obtain the 8-vertex parameter-permutation
solutions from (2.144)–(2.145) by replacing units with parameters and then solving
the ternary braid equations (2.134). Each type of the permutation solutions

,bisymm1 2 and ,symm1 2 from (2.144)–(2.145) will give a corresponding series
of parameter-permutation solutions over . The ternary braid maps are determined
up to a general complex factor (see (2.14) for the Yang–Baxter maps and (2.139)),
and therefore we can present all the parameter-permutation solutions in polynomial
form.

• The bisymm1 series consists of two two-parameter matrices with two two-
parameter matrices
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c x y

xy

y
xy

x
y

xy

x
xy

c xy

c x y x y

xy xy

( , )

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

tr 4 ,

det , , 0,

eigenvalues: { } , { } ,

(2.146)

rank 8
bisymm1, 1

2

2

2

2

8 8

[6] [2]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

˜ =

±

±
±

±

˜ =
˜ = ≠

−

=

c x y

xy

y
xy

x
y

xy

x
xy

c xy

c x y x y

xy ixy ixy

( , )

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

tr 4 ,

det , , 0,

eigenvalues: { } , { } , { } .

(2.147)

rank 8
bisymm1, 2

2

2

2

2

8 8

[4] [2] [2]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

˜ =

±

±
∓

∓

˜ =
˜ = ≠

−

=

• The bisymm2 series consists of four two-parameter matrices

c x y

x
x y

x y

x y

x y

x y

x y

y

c x y

c x y x y x y

x y x y x y

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

,

tr 4 ,

det ( , ) , , 0,

eigenvalues : { } , { } , { } ,

(2.148)

rank 8
bisymm2, 1

6

3 3

4 2

3 3

3 3

2 4

3 3

6

3 3

rank 8
bisymm2 24 24

3 3 [2] 3 3 [2] 3 3 [4]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

±

±
±

±

˜ = ±
˜ = ≠

− ±

=

=
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c x y

x
x y

x y

x y

x y

x y

x y

y

c x y

c x y x y x y

ix y ix y x y

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

,

tr 4

det ( , ) , , 0,

eigenvalues : { } , { } , { } .

(2.149)

rank 8
bisymm2, 2

6

3 3

4 2

3 3

3 3

2 4

3 3

6

3 3

rank 8
bisymm2 24 24

3 3 [2] 3 3 [2] 3 3 [4]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

±

±
±

−
±

−

˜ = ±
˜ = ≠

− ±

=

=

• The symm1 series consists of four two-parameter matrices

c x y

xy
xy

y
xy

xy
xy

xy

x
c xy

c x y x y

xy xy

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

,

tr 4 ,

det , , 0,

eigenvalues: { } , { } ,

(2.150)

rank 8
symm1, 1

2

2

8 8

[6] [2]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

±

±

˜ =
˜ = ≠

−

=

c x y

xy
xy

y
xy

xy
xy

xy

x
c xy

c x y x y

xy xy

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

,

tr 4 ,

det , , 0,

eigenvalues: { } , { } ,

(2.151)

rank 8
symm1, 2

2

2

8 8

[6] [2]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

±

∓

−
˜ =

˜ = ≠
−

=
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• The symm2 series consists of four two-parameter matrices

c x y

y
xy

xy
xy

xy

x
xy

xy

c xy

c x y x y

xy ixy ixy

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

tr 4 ,

det , , 0,

eigenvalues: { } , { } , { } .

(2.152)

rank 8
symm2, 1

2

2

8 8

[4] [2] [2]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ = ±

±

˜ =
˜ = ≠

−

=

c x y

y
xy

xy
xy

xy

x
xy

xy

c xy

c x y x y

xy ixy ixy

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

tr 4 ,

det , , 0,

eigenvalues: { } , { } , { } .

(2.153)

rank 8
symm2, 2

2

2

8 8

[4] [2] [2]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ = ±

−
∓

˜ =
˜ = ≠

−

=

The above matrices with the same eigenvalues are similar but their conjugation
matrices do not have the form of the triple Kronecker product (2.141), and therefore
all of them together are 16 different two-parameter invertible solutions to the ternary
braid equations (2.134). Further families of solutions can be obtained using ternary
q-conjugation (2.139).

2.3.3 Group structure of the star and circle 8-vertex matrices

Here we investigate the group structure of 8 × 8 matrices by analogy with the star-
like (2.35) and circle-like (2.36) 4 × 4 matrices, which are connected with our 8-
vertex constant solutions (2.146)–(2.153) to the ternary braid equations (2.134).

Let us introduce the star-like 8 × 8 matrices (cf (2.35)), which correspond to the
bisymm series (2.146)–(2.149)

Innovative Quantum Computing

2-34



v
v

v
v v

N

x
y

z
s

t
u

w

N

y
x

s
z

u
t

w

N x z u w N stuvwxyz s t u w x y z

x z u w y y st st

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

,

tr , det , , , , , , , , 0,

eigenvalues: , , , , , , , ,

(2.154)
star1 star2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

′ = ′ =

′ = + + + ′ = ≠
− −

and the circle-like 8 × 8 matrices (cf (2.36)), which correspond to the symm series
(2.150)–(2.153)

v
v

N

x
y

z
s

t
u

w

N

y
x

s
z

u
t

w

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

, (2.155)circ1 circ2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

′ = ′ =

v v
v

N x s u N stuvwxyz s t u w x y z

x s u ty ty wz wz

tr , det , , , , , , , , 0,

eigenvalues: , , , , , , , .
(2.156)

′ = + + + ′ = ≠
− −

We denote the corresponding sets by { }Nstar1, 2 star1, 2N′ ′= and { }Ncirc1, 2 circ1, 2N′ ′= ,
and then we have for them (which differs from 4 × 4 matrix sets (2.41))

, , (2.157)full star1 star2 circ1 circ2 star1 star2 circ1 circ2M N N N N N N N N D∪ ∪ ∪ ∩ ∩ ∩′ ′ ′ ′ ′ ′ ′ ′ ′= =

whereD is the set of diagonal 8 × 8 matrices. Again, as for 4 × 4 star-like and circle-
like matrices, there are no closed binary multiplications among the sets of 8-vertex
matrices (2.154)–(2.155). Nevertheless, we have the following triple set products

, (2.158)star1 star1 star1 star1N N N N′ ′ ′ = ′

, (2.159)star2 star2 star2 star2N N N N′ ′ ′ = ′

, (2.160)circ1 circ1 circ1 circ1N N N N′ ′ ′ = ′

, (2.161)circ2 circ2 circ2 circ2N N N N′ ′ ′ = ′

which should be compared with the analogous 4 × 4 matrices (2.39)–(2.40): note that
now we do not have pentuple products.
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Using the definitions (2.42)–(2.45), we interpret the closed products (2.158)–
(2.159) and (2.160)–(2.161) as the multiplications [3]μ (being the ordinary triple

matrix product) of the ternary semigroups S { }(8, )star1, 2
[3]

star1, 2
[3]N ′ μ= and

S { }(8, )circ1, 2
[3]

circ1, 2
[3]N ′ μ= , respectively. The corresponding querelements (2.42)

are given by

v

N N

x

z

t

s

u

y

w

1
0 0 0 0 0 0 0

0 0 0 0 0 0
1

0

0 0
1

0 0 0 0 0

0 0 0 0
1

0 0 0

0 0 0
1

0 0 0 0

0 0 0 0 0
1

0 0

0
1

0 0 0 0 0 0

0 0 0 0 0 0 0
1

, (2.162)star1 star1
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

¯ ′ = =′−

v

vN N

x

t

z

u

s

w

y

s t u w x y z

0 0 0 0 0 0 0
1

0
1

0 0 0 0 0 0

0 0 0 0 0
1

0 0

0 0 0
1

0 0 0 0

0 0 0 0
1

0 0 0

0 0
1

0 0 0 0 0

0 0 0 0 0 0
1

0

1
0 0 0 0 0 0 0

, , , , , , , , 0, (2.163)star2 star2
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

¯ ′ = = ≠′−

and
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v

N N

x

t

w

s

y

u

z

1
0 0 0 0 0 0 0

0 0 0 0
1

0 0 0

0 0 0 0 0 0 0
1

0 0 0
1

0 0 0 0

0
1

0 0 0 0 0 0

0 0 0 0 0
1

0 0

0 0 0 0 0 0
1

0

0 0
1

0 0 0 0 0

, (2.164)circ1 circ1
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

¯ ′ = =′−

v

vN N

t

x

s

w

u

y

z

s t u w x y z

0 0 0 0 0
1

0 0

0
1

0 0 0 0 0 0

0 0
1

0 0 0 0 0

0 0 0 0 0 0
1

0

0 0 0 0
1

0 0 0

1
0 0 0 0 0 0 0

0 0 0
1

0 0 0 0

0 0 0 0 0 0 0
1

, , , , , , , , 0. (2.165)circ2 circ2
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

¯ ′ = = ≠′−

The ternary semigroups S { }(8, )star1, 2
[3]

star1, 2
[3]N ′ μ= and

S { }(8, )circ1, 2
[3]

circ1, 2
[3]N ′ μ= in which every element has its querelement given by

(2.162)–(2.164) become the ternary groups G { }(8, ) , ( )star1, 2
[3]

star1, 2
[3]N ′ μ= and

G { }(8, ) , ( )circ1, 2
[3]

circ1, 2
[3]N ′ μ= , which are four different (3-nonderived) ternary

subgroups of the derived ternary general linear group GL (8, )[3]  . The ternary
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identities in G (8, )star1, 2
[3]  and G (8, )circ1, 2

[3]  are the following different continuous

sets { }Istar1, 2
[3]

star1, 2
[3]I =′ ′ and { }Icirc1, 2

[3]
circ1, 2

[3]I =′ ′ , where

I

e
e

e
e

e
e

e
e

I

e
e

e
e

e
e

e
e

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

,

(2.166)

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

star1
[3]

star2
[3]

1

2

3

4

5

6

7

8

2

1

4

3

6

5

8

7

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

=

=

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

′

′

e e e e e e 1, , , , (2.167)i i i i i i2 2 2 2 ( ) ( )
1 8

1 3 6 8 2 7 4 5 α α= = = = = = … ∈α α α α α α α α+ +

and

I

e
e

e
e

e
e

e
e

I

e
e

e
e

e
e

e
e

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

(2.168)

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

circ1
[3]

circ2
[3]

1

2

3

4

5

6

7

8

2

1

4

3

6

5

8

7

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

=

=

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

′

′

e e e e e e 1, , , , (2.169)i i i i i i2 2 2 2 ( ) ( )
1 8

1 4 6 7 3 8 2 5 α α= = = = = = … ∈α α α α α α α α+ +
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such that all the identities are the 8 × 8 matrix reflections I I( )[3] 2
8=′ (see (2.45)). If

0jα = , j 1, , 8= … , then the ternary identities (2.167)–(2.169) coincide with the 8 ×
8 permutation matrices (2.144)–(2.145), which are solutions to the ternary braid
equations (2.134).

The module structure of the 8-vertex star-like (2.154) and circle-like (2.155) 8 × 8
matrix sets differs from the 4 × 4 matrix sets (2.53)–(2.76). First, because of the
absence of pentuple matrix products (2.71)–(2.76), and second through some
differences in the ternary closed products of sets.

We have the following triple relations between star and circle matrices separately
(the sets corresponding to modules are in brackets, and we informally denote
modules by their sets)

( ) ( ), ( ) ( ), (2.170)star1 star2 star1 star2 circ1 circ2 circ1 circ2N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) , (2.171)star1 star1 star2 star2 circ1 circ1 circ2 circ2N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.172)star2 star1 star1 star2 circ2 circ1 circ1 circ2N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.173)star2 star2 star1 star1 circ2 circ2 circ1 circ1N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.174)star2 star1 star2 star1 circ2 circ1 circ2 circ1N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ). (2.175)star1 star2 star2 star1 circ1 circ2 circ2 circ1N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

So we may observe the following module structures: (1) from (2.170)–(2.172), the
sets star2N′ ( circ2N′ ) are the middle, right, and left ternary modules over star1N′ ( circ1N′ ); (2)
from (2.173)–(2.175), the set star1N′ ( circ1N′ ) are middle, right, and left ternary modules
over star2N′ ( circ2N′ );

( ) ( ), ( ) ( ), (2.176)star1 star1 circ1 circ1 circ1 star1 star1 circ1N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.177)star1 star1 circ2 circ2 circ2 star1 star1 circ2N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.178)star2 star2 circ1 circ1 circ1 star2 star2 circ1N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.179)star2 star2 circ2 circ2 circ2 star2 star2 circ2N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

(3) from (2.176)–(2.179), the sets circ1, 2N′ are right and left ternary modules over
;star1, 2N′

( ) ( ), ( ) ( ), (2.180)circ1 circ1 star1 star1 star1 circ1 circ1 star1N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.181)circ1 circ1 star2 star2 star2 circ1 circ1 star2N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.182)circ2 circ2 star1 star1 star1 circ2 circ2 star1N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′

( ) ( ), ( ) ( ), (2.183)circ2 circ2 star2 star2 star2 circ2 circ2 star2N N N N N N N N′ ′ ′ = ′ ′ ′ ′ = ′
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(4) from (2.180)–(2.183), the sets star1, 2N′ are right and left ternary modules over

circ1, 2N′ .

2.3.4 Group structure of the star and circle 16-vertex matrices

Next we will introduce 8 × 8 matrices of a special form similar to the star 8-vertex
matrices (2.77) and the circle 8-vertex matrices (2.78), analyze their group structure,
and establish which ones could be 16-vertex solutions to the ternary braid equations
(2.134). We will derive the solutions in the opposite way to that for the 8-vertex
Yang–Baxter maps, following the note after (2.34). Indeed, the sum of the
permutation bisymm solutions (2.144) gives the shape of the 8 × 8 star matrix
Mstar′ (as in (2.77)), while the sum of symm solutions (2.145) gives the 8 × 8 circle
matrix Mcirc′ (as in (2.78))

v
M

x y
z s

t u
w

a b
c d

f g
h p

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

, (2.184)star

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

′ =

v
M

x y
z s

t u
w

f g
h p

a b
c d

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, (2.185)circ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

′ =

v
v

M x z t b d g p
M b aw cu dt fs gz px hy

tr ,
det ( )( )( )( ),

(2.186)
′ = + + + + + + +

′ = − − − −

v v v v

( ) ( )
( ) ( )
( ) ( )
( ) ( )

d t cu d t d t cu d t

b aw b b aw b

p x hy p x p x hy p x

g z fs g z g z fs g z

eigenvalues :
1
2

4 ( ) ,
1
2

4 ( ) ,

1
2

4 ( ) ,
1
2

4 ( ) ,

1
2

4 ( ) ,
1
2

4 ( ) ,

1
2

4 ( ) ,
1
2

4 ( ) .

(2.187)

2 2

2 2

2 2

2 2

+ − + − + + + −

+ − + − + + + −

+ + + − + − + −

+ − + − + + + −
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The 16-vertex matrices are invertible, if Mdet 0star′ ≠ and Mdet 0circ′ ≠ , which
give the following joint conditions on the parameters (cf (2.80))

vb aw cu dt fs gz px hy0, 0, 0, 0. (2.188)− ≠ − ≠ − ≠ − ≠

Only in this concrete parametrization (2.184) and (2.185) do the matrices Mstar′
and Mcirc′ have the same trace, determinant, and eigenvalues, and they are
diagonalizable and conjugate via

U

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

. (2.189)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

′ =

The matrixU ′ cannot be presented in the form of a triple Kronecker product (2.141),
and so two matrices Mstar′ and Mcirc′ are not q-conjugate in the parametrization
(2.184) and (2.185), and can lead to different solutions to the ternary braid equations
(2.134). It follows from (2.188) that 16-vertex matrices with all nonzero entries equal
to 1 are noninvertible, having vanishing determinant and rank 4 (despite each one
being a sum of two permutation matrices). In the case all the conditions (2.188)
holding, the inverse matrices become

v v

v
v

v

M

p
px hy

y
px hy

g
fs gz

s
fs gz

d
cu dt

u
cu dt

b
b aw

w
b aw

a
b aw b aw

c
cu dt

t
cu dt

f
fs gz

z
fs gz

h
px hy

x
px hy

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

, (2.190)star
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

−
−

−

−
− −

−
− −

−
−

−
−

− −

−
−

−

−
−

−

−
− −

′−
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v v

v
v

v

M

p
px hy

y
px hy

g
fs gz

s
fs gz

d
cu dt

u
cu dt

b
b aw

w
b aw

f
fs gz

z
fs gz

h
px hy

x
px hy

a
b aw b aw

c
cu dt

t
cu dt

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

. (2.191)circ
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

−
−

−

−
− −

−
− −

−
−

−

−
−

−

−
− −

−
− −

−
−

−

′−

Denoting the sets of matrices corresponding to (2.184) and (2.185) by starM′ and
circM′ , their multiplications are

, , (2.192)star star star circ circ circM M M M M M′ ′ = ′ ′ ′ = ′

and in term of sets star star1 star2M N N∪′ ′ ′= and circ circ1 circ2M N N∪′ ′ ′= , and
star1 star2N N D∩′ ′ = and circ1 circ2N N D∩′ ′ = (see (2.157)). Note that the structure

(2.192) is considerably different from the binary case (2.81)–(2.83), and therefore
it may not necessarily be related to the Cartan decomposition.

The products (2.192) mean that both starM′ and circM′ are separately closed with
respect to binary matrix multiplication ( )· , and therefore S16vert

star
starM′= · and

S16vert
circ

circM′= · are semigroups. We denote their intersection by
S S Svert8

diag
16vert
star

16vert
circ∩= which is a semigroup of diagonal 8-vertex matrices. In

case, the invertibility conditions (2.188) are fulfilled, the sets starM′ and circM′ form
subgroups G I, ( ) ,16vert

star
star

1
8M′= · − and G I, ( ) ,16vert

circ
circ

1
8M′= · − (where I8

is the 8 × 8 identity matrix) of GL(8, ) with the inverse elements given explicitly by
(2.190)–(2.191). Because the elements Mstar′ and Mcirc′ in (2.184) and (2.185) are
conjugates by the invertible matrixU ′ (2.189), the subgroups G16vert

star and G16vert
circ (as

well as the semigroups S16vert
star and S16vert

circ ) are isomorphic by the obvious
isomorphism

M U M U , (2.193)star circ
1′ ↦ ′ ′ ′−

whereU ′ is in (2.189).
The interaction between starM′ and circM′ also differs from the binary case (2.82),

because

, , (2.194)star circ quad circ star quadM M M M M M′ ′ = ′ ′ ′ = ′

, (2.195)quad quad quadM M M′ ′ = ′

where quadM′ is a set of 32-vertex so-called quad-matrices of the form
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v

v

M

x y z s

t u w
a b c d

f g h p

x y z s

t u w
a b c d

f g h p

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

. (2.196)quad

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

′ =

Because of (2.195), the set quadM′ is closed with respect to matrix multiplication,
and therefore (for invertible matrices Mquad′ ) the group

G I, ( ) ,32vert
quad

quad
1

8M′= · − is a subgroup of GL(8, ) . So, in trying to find

higher 32-vertex solutions (having at most half as many unknown variables as a
general 8 × 8 matrix) to the ternary braid equations (2.134), it is worthwhile to
search within the class of quad-matrices (2.196).

Innovation 2.12. The group structure of the above 16-vertex 8 × 8 matrices (2.192)–
(2.195) is considerably different to that of 8-vertex 4 × 4 matrices (2.77)–(2.78)
because the former contains two isomorphic binary subgroups G16vert

star and G16vert
circ of

GL(8, ) (cf (2.81)–(2.83) and (2.192)).

The sets starM′ , circM′ and quadM′ are also closed with respect to matrix addition, and

therefore (because of the distributivity of ) they are the matrix rings R16vert
star , R16vert

circ

and R vert32
quad , respectively. In the invertible case (2.188) and Mdet 0quad′ ≠ , these

become matrix fields.

2.3.5 Pauli matrix presentation of the star and circle 16-vertex constant matrices

The main peculiarity of the 16-vertex 8 × 8 matrices (2.192)–(2.195) is the fact that
they can be expressed as special tensor (Kronecker) products of the Pauli matrices
(see, also, Khaneja and Glaser 2001, Ballard and Wu 2011b). Indeed, let

i j k, , , 1, 2, 3, 4, (2.197)ijk i j kK Kρ ρ ρΣ = ⊗ ⊗ =

where iρ are Pauli matrices (we have already used the letter ‘σ’ for the braid group
generators (2.5))

i
i

I0 1
1 0

, 0
0

, 1 0
0 1

, 1 0
0 1

. (2.198)1 2 3 4 2⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ρ ρ ρ ρ= = − =
−

= =

Among the total of 64 8 × 8 matrices ijkΣ (2.197), there are 24 which generateMstar′
(2.184) and Mcirc′ (2.185):

• Eight diagonal matrices: diagΣ = { , , , , , , , };333 334 343 344 433 434 443 444Σ Σ Σ Σ Σ Σ Σ Σ
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• Eight antidiagonal matrices: { , , , , , , , };adiag 111 112 121 122 211 212 221 222Σ = Σ Σ Σ Σ Σ Σ Σ Σ
• Eight circle-like matrices (Mcirc′ with 0s on the diagonal):

{ , , , , , , , }.circ 131 132 141 142 231 232 241 242Σ = Σ Σ Σ Σ Σ Σ Σ Σ
Thus, in general we have the following set structure for the star and circle 16-

vertex matrices (2.184) and (2.185)

, (2.199)star diag adiagM ∪′ = Σ Σ

, (2.200)circ diag circM ∪′ = Σ Σ

. (2.201)star circ diagM M∩′ ′ = Σ

In particular, for the 8-vertex permutation solutions (2.144)–(2.145) of the ternary
braid equations (2.134), we have

c
1
2

( ), (2.202)rank 8
bisymm1, 2

111 444 212 343˜ = Σ + Σ ± Σ ± Σ=

c
1
2

( ). (2.203)rank 8
symm1, 2

141 444 232 333˜ = Σ + Σ ± Σ ± Σ=

The noninvertible 16-vertex solutions Mstar′ (2.184) and Mcirc′ (2.185) having 1s on
nonzero places are of rank 4= and can be presented by (2.197) as follows

M (1)

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

, (2.204)star 111 444

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

′ = = Σ + Σ

M (1)

1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1

. (2.205)circ 141 444

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

′ = = Σ + Σ

Similarly, one can obtain the Pauli matrix presentation for the general star and
circle 16-vertex matrices (2.184) and (2.185) which will contain linear combinations
of the 16 parameters as coefficients before the Σs.
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2.3.6 Invertible and noninvertible 16-vertex solutions to the ternary braid equations

First, consider the 16-vertex solutions to (2.134) having the star matrix shape
(2.184). We found the following two one-parameter invertible solutions

c x

x
x x

x x
x x
x x

x x
x x

x x

c x

c x x

i x i x

( )

0 0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

,

tr 8 ,

det 16 , 0,

eigenvalues:{(1 ) } , {(1 ) } .

(2.206)

rank 8
16 vert,star

3

3 2

3 2

3 4

2 3

4 3

4 3

6 3

3

24

3 [4] 3 [4]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

−
∓

−
∓

±

±

˜ =
˜ = ≠

+ −

=
−

Both matrices in (2.206) are diagonalizable and are conjugates via

U

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, (2.207)star

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

−

−

which cannot be presented in the form of a triple Kronecker product (2.141).
Therefore, the two solutions in (2.206) are not q-conjugate and become different 16-
vertex one-parameter invertible solutions of the braid equations (2.134).

In search of 16-vertex solutions to the total braid equations (2.134) of the circle
matrix shape (2.185), we found that only noninvertible ones exist. They are the
following two 2-parameter solutions of rank 4

c x y

xy y
xy xy

xy y
xy xy

xy xy

x xy
xy xy

x xy

c xy

xy

( , )

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

,

tr 8 ,

eigenvalues: {2 } , {0} .

(2.208)
rank 4
16 vert,circ

2

2

2

2

[4] [4]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

±
±

±
±

±
±

±
±

˜ = ±

=
−
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Two matrices in (2.208) are not even conjugates in the standard way, and so they are
different 16-vertex two-parameter noninvertible solutions to the braid equations
(2.134).

For the only partial 13-braid equation (2.136), there are four polynomial 16-
vertex two-parameter invertible solutions

c x y

x y
xy x

x y
xy x

x xy

x x
x xy

x x

( , )

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

, (2.209)rank 8
16 vert, 13circ

2

2

2

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

±
±

±
±

=
−

x y
xy x

x y
xy x

x xy

x x
x xy

x x

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

, (2.210)

2

2

2

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

−
±

∓
−

∓
±

c x y

c x y x y

x y x y x y

tr 4 ( 1),

det ( 1) , 0, 1,

eigenvalues : { ( 1)} , { ( 1)} , { ( 1)} .

(2.211)8 2 4

[4] [2] [2]

˜ = +
˜ = − ≠ ≠

+ − − −

Also, for the partial 13-braid equation (2.136), we found four exotic irrational (an
analog of (2.89) for the Yang–Baxter equation (2.12)) 16-vertex, two-parameter
invertible solutions of rank 8 of the form

c x y

x y y

xy x y y

x y y

xy x y y

x y y xy

x x
x y y xy

x x

rank 8
16 vert, 13circ, 1( , )

(2 1) 0 0 0 0 2 0 0

0 0 0 2( 1) 1 0 0 0

0 0 (2 1) 0 0 0 0 2

0 0 0 0 0 2( 1) 1 0

0 2( 1) 1 0 0 0 0 0

2 0 0 0 0 0 0
0 0 0 2( 1) 1 0 0 0

0 0 2 0 0 0 0

,
(2.212)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =
−

=

−

− +

− ±

± − +

− +

± − +

±
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c x y

x y y

xy x y y

x y y

xy x y y

x y y xy

x x
x y y xy

x x

rank 8
16 vert, 13circ, 2( , )

(2 1) 0 0 0 0 2 0 0

0 0 0 2( 1) 1 0 0 0

0 0 (2 1) 0 0 0 0 2

0 0 0 0 0 2( 1) 1 0

0 2( 1) 1 0 0 0 0 0

2 0 0 0 0 0 0
0 0 0 2( 1) 1 0 0 0

0 0 2 0 0 0 0

,
(2.213)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =
−

=

−

− − +

− ±

∓ − +

− − +

∓ − +

±

c xy c x y x ytr 8 , det ( 1) , 0, 1, (2.214)8 8˜ = ˜ = − ≠ ≠

{ } { }( ) ( )x y y y x y y yeigenvalues : 2( 1) 1 , 2( 1) 1 . (2.215)
[4] [4]

+ − + − − +

The matrices in (2.209)–(2.213) are diagonalizable, have the same eigenvalues
(2.215), and are pairwise conjugate by

U

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

. (2.216)circ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=

−
−

BecauseUcirc cannot be presented in the form (2.141), all solutions in (2.209)–(2.213)
are not mutually q-conjugate and become eight different 16-vertex two-parameter
invertible solutions to the partial 13-braid equation (2.136). If y = 1, then the
matrices (2.209)–(2.213) become of rank 4 with vanishing determinants (2.211),
(2.214), and therefore in this case they are a 16-vertex one-parameter circle of
noninvertible solutions to the total braid equations (2.134).

Further families of solutions could be constructed using additional parameters:
the scaling parameter t in (2.139) and the complex elements of the matrix q (2.140).

2.3.7 Higher 2n-vertex constant solutions to n-ary braid equations

Next we considered the 4-ary constant braid equations (2.114)–(2.116) and found the
following 32-vertex star solution
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c

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

. (2.217)16

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

˜ =

−
−

−
−

−
−

−
−

We may compare (2.217) with particular cases of the star solutions to the Yang–
Baxter equation (2.87) and the ternary braid equation (2.206)

c c

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

,

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

. (2.218)4 8

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

˜ =

−
− ˜ =

−
−

−
−

Informally we call such solutions the Minkowski star solutions because their legs
have the Minkowski signature. Thus, we assume that in the general case for the n-ary
braid equation there exist 2n 1+ -vertex 2 2n n× matrix Minkowski star invertible
solutions of the above form

c

1 0 0 0 0 1
0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0
1 0 0 0 0 1

. (2.219)2n

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

˜ =

−
⋱ ⋰

−

⋰ ⋱

This allows us to use the general solution (2.219) as n-ary braiding quantum gates
with an arbitrary number of qubits.
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2.4 Invertible and noninvertible quantum gates
Informally, quantum computing consists of preparation (setting up an initial
quantum state), evolution (by a quantum circuit), and measurement (projection
onto the final state). Mathematically (in the computational basis), the initial state is
a vector in a Hilbert space (multi-qubit state), the evolution is governed by
successive (quantum circuit) invertible linear transformations (unitary matrices
called quantum gates), and the measurement is made by noninvertible projection
matrices to leave only one final quantum (multi-qubit) state. So, quantum comput-
ing is noninvertible overall, and we may consider noninvertible transformations at
each step. It was then realized that one can invite the Yang–Baxter operators
(solutions of the constant Yang–Baxter equation) into quantum gates, providing a
means of entangling otherwise non-entangled states. This insight uncovered a deep
connection between quantum and topological computation (for details, see e.g.
Kauffman and Lomonaco 2002, 2004).

Here we propose extending the above picture in two directions. First, we can treat
higher braided operators as higher braiding gates. Second, we will analyze the
possible role of noninvertible linear transformations (described by the partial unitary
matrices introduced in (2.20)–(2.21)), which can be interpreted as a property of some
hypothetical quantum circuit, e.g., with specific loss of information, some kind of
dissipativity or vagueness. This can be considered as an intermediate case between
standard unitary computing and the measurement only computing of Bonderson
et al (2008).

To establish notation recall (Nielsen and Chuang 2000) that in the computational
basis (vector representation) and Dirac notation, a (pure) one-qubit state is
described by a vector in two-dimensional Hilbert spaceV 2=

a a

a a a i

0 1 , 0 1
0

, 1 0
1

,

1, , 1, 2,
(2.220)

i

(1)
0 1

0
2

1
2

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠



ψ ψ≡ = + = =

+ = ∈ =

where ai is a probability amplitude of i . Sometimes, for a one-qubit state it is
convenient to use the Bloch unit sphere representation (normalized up to a general
unimportant and unmeasurable phase)

e( , ) cos
2

0 sin
2

1 , 0 , 0 2 . (2.221)iψ θ γ θ θ θ π γ π= + ⩽ ⩽ ⩽ ⩽γ

A (pure) state of L-qubits L( )ψ is described by 2L amplitudes, and so is a vector in
2L-dimensional Hilbert space. If L( )ψ cannot be presented as a tensor product of L
one-qubit states (2.220), then it is called entangled. For instance, a two-qubit pure
state

a a a a

a a a a
a i j

00 01 10 11 ,

1,
, , 1, 2,

(2.222)

ij

(2)
00 01 10 11

00
2

01
2

10
2

11
2



ψ = + + +
+ + + =

∈ =
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is entangled, if adet ( ) 0ij ≠ , and the concurrence

C C a( ) 2 det ( ) (2.223)ij
(2) (2) (2)ψ≡ =

is the measure of entanglement C0 1(2)⩽ ⩽ . It follows from (2.220) that the tensor
product of states has vanishing concurrence C ( ) 0(2)

1 2ψ ψ⊗ = . An example of
the maximally entangled (C 1(2) = ) two-qubit states is the (first) Bell state

( 00 11 )/ 2(2)
Bellψ = + .

The concurrence of the three-qubit state

a ijk a a, 1, , (2.224)
i j k i j k, , 0

1

, , 0

1

ijk ijk ijk
(3) 2

∑ ∑ψ = = ∈
= =

is determined by the Cayley’s 2 2 2× × hyperdeterminant

C a C4 hdet( ) , 0 1, (2.225)ijk
(3) (3)= ⩽ ⩽

a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
a a a a a a a a a a a a

hdet( ) 2

2 2 2 2
2 4 4 .

(2.226)
ijk 000

2
111
2

001
2

110
2

010
2

101
2

100
2

011
2

000 001 110 111

000 010 101 111 000 011 100 111 001 010 101 111 001 011 100 110

010 011 100 101 000 011 101 110 001 010 100 111

= + + + −
− − − −
− + +

Thus, if the three-qubit state (2.224) is not entangled, thenC 0(3) = (for the tensor
product of one-qubit states). One of the maximally entangled (C 1(3) = ) three-qubit
states is the GHZ state ( 000 111 )/ 2(3)

GHZψ = + .
A quantum L-qubit gate is a linear transformation of 2L-dimensional Hilbert

space ( ) ( )L L2 2 →⊗ ⊗ which in the computational basis (2.220) is described of the
2 2L L× matrixU L( ) such that the L-qubit state transforms as UL L L( ) ( ) ( )ψ ψ=′ .
In this way, a quantum circuit is described as the successive application of elementary
gates to an initial quantum state, which is the product of the corresponding matrices
(for details, see, e.g., Nielsen and Chuang 2000). It is a standard assumption that
each elementary L-qubit transformation is unitary, which implies the following
strong restriction on the corresponding matrixU U L( )≡ as

U U UU I I , (2.227)2 2L L= = ≡⋆ ⋆
×

where I is the 2 2L L× identity matrix for L-qubit state and the operation ( )⋆ is the
conjugate-transposition. The first equality in (2.227) means that the matrix U L( ) is
normal (cf (2.20)–(2.21)). The equations (2.227) follow from the definition of the
adjoint operator

U I I U (2.228)L L L L( ) ( ) ( ) ( )ψ φ ψ φ= ⋆

applied to this simplest example of L-qubits in the 2L-dimensional Hilbert space
( ) L2 ⊗ (for the general case the derivation almost literally coincides), which we write
in the following special form (in Dirac notation with bra- and ket- vectors) with
explicitly added identities. Then, (2.227) follows from (2.228) as
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U U I I UU I I , (2.229)L L L L L L( ) ( ) ( ) ( ) ( ) ( )ψ φ ψ φ ψ φ= =⋆ ⋆

and any unitary matrix preserves the inner product

U U I I , (2.230)L L L L( ) ( ) ( ) ( )ψ φ ψ φ=

which means that unitary operators satisfying (2.227) are bounded operators
(bounded matrices in our case) and invertible with the inverseU U1 =− ⋆.

Let us consider a possibility of noninvertible intermediate transformations of L-
qubit states, i.e., noninvertible gates, which are described by the 2 2L L× matrices
U r( ) of (possibly) less than full rank r1 2L⩽ ⩽ . This can be related to the
production of degenerate states (see, e.g. Jaffali and Oeding 2020), particle loss
(Neven et al 2018, Fraïsse and Braun 2016, Zangi and Qiao 2021), and the role of
ranks in multiparticle entanglement (Chong et al 2005, Bruzda et al 2019).

In the limited casesU r U U( 2 )L L( )= ≡ = , andU (1) corresponds to the measure-
ment matrix being the projection to one final vector ifinal . In this case, for
noninvertible transformations with r 2L< instead of unitarity (2.227), we consider
partial unitarity (2.20)–(2.21) as

U r U r I r( ) ( ) ( ), (2.231)1=⋆

U r U r I r( ) ( ) ( ), (2.232)2=⋆

where I r( )1 and I r( )2 are (or may be) different partial shuffle identities having r units
on the diagonal. There is an exotic limiting case, which is impossible for the identity
I: we call two partial identities orthogonal, if

I r I r Z( ) ( ) , (2.233)1 2 =

where Z Z2 2L L= × is the zero 2 2L L× matrix.
We propose corresponding noninvertible analogs of (2.228)–(2.230) as follows.

The partial adjoint operator U r( )⋆ in the 2L-dimensional Hilbert space ( ) L2 ⊗ is
defined by

U r I r I r U r( ) ( ) ( ) ( ) , (2.234)L L L L( )
2

( )
1

( ) ( )ψ φ ψ φ= ⋆

such that (see (2.231)–(2.232))

U r U r I r I r U r U r I r I r( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) . (2.235)L L L L L L( )
2

( )
1

( ) ( )
1

( )
2

( )ψ φ ψ φ ψ φ= =⋆ ⋆

We call the rhs of (2.235) the partial inner product. So instead of (2.230), we define
U r( ) as the partially bounded operator

U r U r I r I r( ) ( ) ( ) ( ) . (2.236)L L L L( ) ( )
1

( )
2

( )ψ φ ψ φ=

Thus, if the partial identities are orthogonal (2.233), then the partial inner product
vanishes identically, and the operator U r( ) becomes a zero norm operator in the
sense of (2.236), although (2.231)–(2.232) are not zero.

In case the rank r is fixed, there can be r r(2 / (2 ) )L L 2! ! − ! partial unitary matrices
U r( ) satisfying (2.231)–(2.232).
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We define a general unitary semigroup as a semigroup of matricesU r( ) of rank r
satisfying partial regularity (2.231)–(2.232) (in the symmetric case
I r I r I r( ) ( ) ( )1 2= ≡ ).

As an example, we consider two 2-qubit states (2.222) (2)ψ and (2)φ (with aij′
and i j′ ′ ) and the noninvertible transformation described by three-parameter 4 × 4
matrices of rank 3 (but which are not nilpotent)

U U r e
e

e

(3) ( 3)

0 0 0 0
0 0 0
0 0 0

0 0 0

, , , . (2.237)L
i

i

i

( 2)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α β γ= = = ∈
β

γ

α

=

The partial unitarity (2.231)–(2.232) and partial identities now become

U U I(3) (3) (3)

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

, (2.238)1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =⋆

U U I(3) (3) (3)

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (2.239)2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =⋆

The partial identities (2.238)–(2.239) are not orthogonal (2.233), because

I I Z(3) (3)

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

, (2.240)1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= ≠

which directly gives the signature of the partial inner product (2.235), in our case of
the Hilbert space ( )2 2 ⊗ .

The definition of a partial adjoint operator (2.234) is satisfied with both sides
being equal to a a e a a e a a e00 1 1 01 0 1 11 1 0i i i

00 11 01 01 11 10′ ′ ′′ ′ + ′ ′ + ′ ′α β γ . The partial
boundedness condition (2.236) holds with the partial inner product (2.235) becoming
a a a a01 0 1 11 1 101 01 11 11′ ′′ ′ + ′ ′ , thusU (3) (2.237), which is a bounded partial unitary
operator.

An example of a zero norm (in our sense (2.236)) operator is the two-parameter
partial unitary rank 2 matrix

U U r e
e

(2) ( 2)

0 0 0 0
0 0 0

0 0 0
0 0 0 0

, , . (2.241)L
i

inil
( 2)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

α β= = = ∈
β

α
=

The partial unitarity relations forU (2)nil have the form
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U U I(2) (2) (2)

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

, (2.242)nil nil nil,1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =⋆

U U I(2) (2) (2)

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

. (2.243)nil nil nil,2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =⋆

It may be seen that the partial identities I (2)nil,1 and I (2)nil,2 are now orthogonal
(2.233), and the partial inner product (2.235) vanishes identically, and also the
boundedness condition (2.236) holds with the rhs vanishing, despiteU (2)nil being a
nonzero nilpotent matrix (2.241).

2.5 Binary braiding quantum gates
Let us consider those Yang–Baxter maps that could be linear transformations of
two-qubit spaces. We will pay attention to the most general 8-vertex solutions to the
Yang–Baxter equations (2.87)–(2.94) and (2.97)–(2.98), which are unitary (and
invertible) or partial unitary (2.20)–(2.21) (and noninvertible).

Consider the unitary version of the invertible star 8-vertex solutions (2.87)–(2.89)
to the matrix Yang–Baxter equation (2.12). We use the exponential form of the
parameters

x r e y r e z r e

r r

, , ,

, , , , 0, , , 2 .
(2.244)x

i
y

i
z

i

x y z x y z, , , ,α β γ α β γ π
= = =

∈ ⩾ ⩽

α β γ

For (2.87), exploiting unitarity (2.227) we obtain

U

e e
e e
e e

e e

( , )
1

2

0 0
0 0
0 0

0 0

, (2.245)

i i

i i

i i

i i

rank 4
8 vert,star

( ) 2

( ) ( )

( ) ( )

2 ( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

α β = ±
∓

−

α β β

α β α β

α β α β

α α β

=
−

+

+ +

+ +

+

U e

U e

tr 2 2 ,

det ,
, (2.246)

i

i

( )

4 ( )

=
=

α β

α β

+

+

e eeigenvalues : { ( 1) } , {( 1) } . (2.247)i i3 4 ( ) [2] 1 4 ( ) [2]− − −α β α β+ +

With the particular choice of parameters 0α β= = and lower signs, the solution
(2.245) coincides with the 8-vertex braiding gate of Kauffman and Lomonaco
(2004).

Next we search for unitary solutions among the invertible circle of 8-vertex
traceless solutions (2.97) to the matrix Yang–Baxter equation (2.12) with parameters
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in the exponential form (2.244). The unitarity conditions (2.227) give the following
equations on the parameters (2.244)

r r r r r r r r r r, ( ) 1, 2 1 (2.248)y z x
2 2 2 8 6 4 2= = + = + − + =

2
. (2.249)α β π− =

The system of equations (2.248) has two real positive (or zero) solutions

r r(1) 1,
5 1

2
, (2.250)x = = −

r r(2) 0, 1. (2.251)x = =

Thus, only the first solution leads to an 8-vertex two-parameter unitary braiding
quantum gate of the form (we put γ β↦ in (2.244))

U

e ie

e e

ie ie

e ie

( , )

5 1
2

0
5 1

2
0

5 1
2

0 0

0 0
5 1

2

0
5 1

2
0

,
(2.252)

i i

i i

i i

i i

rank 4
8 vert,circ

( ) ( )

2 ( )

2 ( )

2 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

α β

= −

−

− −

−

− −

α β α β

α α β

α α β

α α

=
−

+ +

+

+

U edet . (2.253)i2 (3 )= α β+

The second solution (2.251) gives 4-vertex two-parameter unitary braiding
quantum gate (we also put γ β↦ in (2.244))

U

e
e

e
e

U e( , )

0 0 0
0 0 0

0 0 0
0 0 0

, det . (2.254)

i

i

i

i

i
rank 4
4 vert,circ

( )

2

( )

2

2 (3 )

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

α β = = −

α β

α

α β

α

α β
=

−

+

+
+

The noninvertible 8-vertex circle solution (2.98) to the Yang–Baxter equation
(2.12) cannot be partial unitary (2.231)–(2.232) with any values of its parameters.

2.6 Higher braiding quantum gates
In general, only special linear transformations of 2L-dimensional Hilbert space can
be treated as elementary quantum gates for an L-qubit state (Nielsen and Chuang
2000). First, in the invertible case, the transformations should be unitary (2.227),
and in the hypothetical noninvertible case they can satisfy partial unitarity (2.231)–
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(2.232). Second, the braiding gates have to be 2 2L L× matrix solutions to the
constant Yang–Baxter equation (Kauffman and Lomonaco 2004) or higher braid
equations (2.114)–(2.116). Here we consider (as a lowest case higher example) the
ternary braiding gates acting on 3-qubit quantum states, i.e., 8 × 8 matrix solutions
to the ternary braid equations (2.134), which satisfy unitarity (2.227) or partial
unitarity (2.231)–(2.232).

Note that all the permutation solutions (2.144)–(2.145) are by definition unitary,
and are therefore ternary braiding gates automatically, and we call them permuta-
tion8-vertex ternary braiding quantum gates Uperm

8 vertex− . By the same reasoning the
unitary version of the invertible star 8-vertex parameter-permutation solutions
(2.146)–(2.153) to the ternary braid equations (2.134) will contain the complex
numbers of unit magnitude as parameters.

Indeed, for the bisymmetric series (2.146)–(2.147) of star-like solutions we have
four two-real parameter unitary ternary braiding quantum gates ( 1ϰ = ± )

U

e
e

e
e

e
e

e
e

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

, , , 2 ,

(2.255)

i

i

i

i

i

i

i

i

bisymm1
8 vertex

( )

2

( )

2

2

( )

2

( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟



α β

α β α β π

=

ϰ

ϰ
±ϰ

±ϰ

∈ ⩽

α β

β

α β

α

β

α β

α

α β

−

+

+

+

+

which is a ternary analog of the first parameter-permutation solution to the Yang–
Baxter equation from (2.33). The ternary analog of the second star solution is the
following unitary version of the bisymmetric series (2.148)–(2.149)

U

e
e

e
e

e
e

e
e

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

.
(2.256)

i

i

i

i

i

i

i

i

bisymm2
8 vertex

6

3 ( )

2 (2 )

3 ( )

3 ( )

2 ( 2 )

3 ( )

6

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

α β

=

ϰ

ϰ
ϰ

±
ϰ

±

α

α β

α β

α β

α β

α β

α β

β

−

+

+

+

+

+

+

The same unitary ternary analogs of the symmetric series (2.150)–(2.153) for the
first and the second circle-like solutions from (2.34) are
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U

e
e

e
e

e
e

e
e

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,
(2.257)

i

i

i

i

i

i

i

i

symm1
8 vertex

( )

( )

2

( )

( )

( )

( )

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

α β

=

ϰ

±ϰ

±

α β

α β

β

α β

α β

α β

α β

α

−

+

+

+

+

+

+

and

U

e
e

e
e

e
e

e
e

( , )

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,
(2.258)

i

i

i

i

i

i

i

i

symm2
8 vertex

2

( )

( )

( )

( )

2

( )

( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

α β

= ϰ

±
±ϰ

β

α β

α β

α β

α β

α

α β

α β

−

+

+

+

+

+

+

respectively.
The invertible 16-vertex star-like solutions (2.206) to the ternary braid equations

(2.134) lead to the following two unitary one-parameter ternary braiding quantum
gates (cf the binary case (2.245))

U

e
e e

e e
e e
e e

e e
e e

e e

( )
1

2

0 0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

. (2.259)

i

i i

i i

i i

i i

i i

i i

i i

3 qubits
16 vertex

3

3 2

3 2

3 4

2 3

4 3

4 3

6 3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

α =

−
∓

−
∓

±

±

α

α α

α α

α α

α α

α α

α α

α α

− ±
−

The braiding gate (2.259) is a ternary analog of (2.245), and therefore with 0α =
it can be treated as a ternary analog of the 8-vertex braiding gate considered in
Kauffman and Lomonaco (2004). Note that the solutionU (0)3 qubits

16 vertex
− +

− is transpose to
the so-called generalized Bell matrix (Rowell et al 2010). Comparing (2.184) and
(2.259), we observe that the ternary braiding quantum gates (acting on 3 qubits) are
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those elements of the 16-vertex star semigroupG16vert
star (2.192), which satisfy unitarity

(2.227).
In the same way, the 32-vertex analog the 8-vertex binary braiding gate of

Kauffman and Lomonaco (2004) (now acting on four qubits) is the following
constant 4-ary braiding unitary quantum gate

U
1

2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

.(2.260)4 qubits
32 vertex

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

−
−

−
−

−
−

−
−

−
−

Thus, in general, the Minkowski star solutions for n-ary braid equations
correspond to 2n-vertex braiding unitary quantum gates as 2 2L L× matrices acting
on L = n qubits

U
1

2

1 0 0 0 0 1
0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0
1 0 0 0 0 1

. (2.261)L qubits
2 vertexL

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

−
⋱ ⋰

−

⋰ ⋱

−
−

The braiding gate (2.261) can be treated as a polyadic (n-ary) generalization of the
GHZ generator (see, e.g., Rowell et al 2010, Ballard and Wu 2011b) acting on L = n
qubits.

2.7 Entangling braiding gates
Entangled quantum states are obtained from separable states by acting with special
quantum gates on two-qubit states and multi-qubit states (Jaffali and Oeding 2020,
2016). Here we consider the concrete form of braiding gates, which can be
entangling or not entangling. There are general considerations on these subjects
for the Yang–Baxter maps (Kauffman and Lomonaco 2004, Balakrishnan and
Sankaranarayanan 2010, Padmanabhan et al 2021) and generalized Yang–Baxter
maps (Chen 2012a, Vasquez et al 2016, Rowell et al 2010, Padmanabhan et al
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2020b). We present the solutions for the binary and ternary braid maps introduced
above, which connect the parameters of the gate and the state.

2.7.1 Entangling binary braiding gates

Let us first examine how the 8-vertex star binary braiding gate
U U( , ) ( , )s rank 4

8 vert,starα β α β≡ =
− (2.245) acts on the product of one-qubit states concretely.

We use the Bloch representation (2.221) to obtain the expression for the transformed
concurrence (2.223)

C U

e e e e

( ( , ) ( , ) ( , ) )

sin
2

cos
2

sin
2

cos
2

.
(2.262)

s s

i i i i

(2)
1 1 2 2

( 2 ) 2 1 2 1 ( 2 ) 2 2 2 2
1 2⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

α β ψ θ γ ψ θ γ

θ θ θ θ

⊗

= ± ∓β γ α β γ α

±

+ +

In general, a braiding gate is entangling if the transformed concurrence (2.262)
does not vanish, and its roots give the values of the gate parameters U ( , )α β for
which the gate is not entangling for a given two-qubit state. In search of the solutions
for the transformed concurrenceC 0s

(2) =± , we observe that one of the qubits has to be
on the Bloch sphere equator

21θ = π (or
22θ = π ). Only in this case can the first (or

second) bracket in (2.262) vanish, and we obtain

C(1) 0, if
2

and 2 , or
2

and 2 ; (2.263)s
(2)

1 1 2 2θ π α β γ π θ π α β γ= = − = − = − =+

C(2) 0, if
2

and 2 , or
2

and 2 . (2.264)s
(2)

1 1 2 2θ π α β γ θ π α β γ π= = − = = − = −−

Therefore, the 8-vertex star binary braiding gates (2.245) with the parameters
fixed by (2.263)–(2.264) are not entangling.

For the 8-vertex circle binary braiding gateU U( , ) ( , )c rank 4
8 vert,circα β α β≡ =

− (2.252), we
obtain

C U

W e ie e ie

( ( , ) ( , ) ( , ) )

sin
2

cos
2

sin
2

cos
2

,
(2.265)

i i i i

c
(2)

c 1 1 1 1

( 2 ) 2 1 2 1 ( 2 ) 2 2 2 2
1 2⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

α β ψ θ γ ψ θ γ
θ θ θ θ

⊗

= − −β γ α β γ α+ +

W ( 5 1)
2

0.971 74. (2.266)
3
2

= − =

Analogously to (2.263)–(2.264), the concurrence of the states transformed by the
8-vertex circle binary braiding gate (2.252) can vanish if

C 0, if
2

and 2
2

, or
2

and 2
2

. (2.267)c
(2)

1 1 2 2θ π α β γ π θ π α β γ π= = − = − = − = −

Thus, the 8-vertex circle binary braiding gates (2.252) are not entangling if the
parameters satisfy (2.267).
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In the case of the 4-vertex circle binary braiding gate (2.254), the transformed
concurrence vanishes identically, and therefore this gate is not entangling for any
values of its parameters.

2.7.2 Entangling ternary braiding gates

Let us consider the tensor product of three qubit pure states
( , ) ( , ) ( , )1 1 2 2 3 3ψ θ γ ψ θ γ ψ θ γ⊗ ⊗ (in the Bloch representation (2.221)), which

obviously has zero concurrence C (3) (2.225) because of the vanishing of the hyper-
determinant (2.226). After transforming by the 16-vertex star ternary braiding gates
U U( ) ( )16 3 qubits

16 vertexα α≡ −
− (2.259), the concurrence becomes

C U

e e e e e e e e

e e e e

( ( ) ( , ) ( , ) ( , ) )
1

64
( )cos ( )cos

( )cos .

(2.268)i i i i i i i i

i i i i

16
(3)

16 1 1 2 2 3 3

2 2 2 2
1

2 2 2 2 2
2

2

2 2 2 2
3

2

1 1 2 2

3 3

α ψ θ γ ψ θ γ ψ θ γ

θ θ

θ

⊗ ⊗

= ± + ∓ − + +

∓ + ±

α γ α γ α γ α γ

α γ α γ

±

We observe that the ternary concurrence (2.268) vanishes if any of the brackets is
equal to zero. Because the domain of all angles is , we only have solutions for fixed
discrete , , /2kθ π π π= − , k 1, 2, 3= , which means that on the Bloch sphere the
quantum states should be on the equator (as in the binary case), or additionally at
the poles. In this case, e ei i k= ±α γ , and

{ k, 1, 2, 3. (2.269)k

k
α

γ
γ π= + =

Thus, for a fixed three-qubit product state one (or more) of which is at a pole or
the equator of the Bloch sphere, those ternary braiding gates U ( )16 α satisfying the
conditions (2.269) are not entangling C 016

(3) =± , whereas in other cases they are

entangling C 016
(3) ≠± .

By analogy, a similar action of the 8-vertex bisymmetric (star-like) ternary
braiding gatesU U( , ) ( , )b8 1, 2 bisymm1, 2

8 vertexα β α β≡ − (2.255)–(2.256) gives

C U

e e

( ( , ) ( , ) ( , ) ( , ) )

sin sin sin
2

cos
2

,
(2.270)

b b

i i

8 1
(3)

8 1 1 1 2 2 3 3

2
1

2
3

2 ( ) 2 2 2 2 2
2

2⎛
⎝

⎞
⎠

α β ψ θ γ ψ θ γ ψ θ γ

θ θ θ θ

⊗ ⊗

= −β γ α+

C U

e e

( ( , ) ( , ) ( , ) ( , ) )

sin sin sin
2

cos
2

.
(2.271)

b b

i i

8 2
(3)

8 2 1 1 2 2 3 3

2
1

2
3

2 ( ) 2 2 2 2 2
2

2⎛
⎝

⎞
⎠

α β ψ θ γ ψ θ γ ψ θ γ

θ θ θ θ

⊗ ⊗

= −α γ β+

Their solutions coincide with the binary case (2.263)–(2.264) applied to the middle
qubit ( , )2 2ψ θ γ and 22 2γ γ→ .
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The action of the 8-vertex symmetric (circle-like) ternary braiding gates
U U( , ) ( , )s8 symm1, 2

8 vertexα β α β≡ − (2.257)–(2.258) leads to the transformed concurrence

C U

e e e e

( ( , ) ( , ) ( , ) ( , ) )

sin sin
2

cos
2

sin
2

cos
2

.
(2.272)

s s

i i i i

8
(3)

8 1 1 2 2 3 3

2
2

( 2 ) 2 1 2 1 ( 2 ) 2 3 2 3
1 3⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

α β ψ θ γ ψ θ γ ψ θ γ

θ θ θ θ θ
⊗ ⊗

= − −β γ α β γ α+ +

The conditions for this to vanish, i.e., when the gate U ( , )s8 α β becomes not
entangling, coincide with those for the binary case (2.263)–(2.264), applied here to
the first or the third qubit.

Thus we have shown that the braiding binary and ternary quantum gates can be
either entangling or not entangling, depending on how their parameters are related
to the concrete quantum state on which they act.

The constructions presented here (Duplij and Vogl 2021) could be used, e.g., in
the entanglement-free protocols (de Burgh and Bartlett 2005, Rehman and Shin
2021) and some experiments (Almeida et al 2014, Higgins et al 2007). This can also
allow us to build quantum networks without any entangling at all non-entangling
networks, when the next gate depends upon the previous state in such a way that at
each step there is no entangling because the separable, but different, final state is
received from a separable initial state.
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Chapter 3

Supersymmetry and quantum computing

It is well-known that quantum computation is based on the algebraic structure of its
constituents, qubits and qudits, living in some Hilbert space. Therefore, possible
improvements could be connected with some special generalizations of the Hilbert
space. A promising direction is supersymmetric generalization of the ordinary
Hilbert space (De Witt 1992, Constantinescu 2002) and consideration of various
super analogs of quantum states in it, with simultaneous passing from corresponding
groups to supergroups.

3.1 Superspaces and supermatrices
Let us consider the main ideas in the supersymmetrization of qubits (Borsten et al
2010, 2014, 2015). The principal statement changes the Hilbert space to super
Hilbert space (in sense of Rudolph 2000) and considers quantum states as (even)
supervectors in the latter, i.e., taking values in the corresponding Grassmann algebra
(or some more general supercommutative superalgebra). In this approach, the inner
product and probabilities contain Grassmann algebra parts. In the same way, the
bra/ket formalism of quantum mechanics (Dirac 1939, van Eijndhoven and de Graaf
1985, Gieres 2000) transforms to super-bra/super-ket formalism with additional
parity rules. Here we will point out the foremost relations and statements concisely
(only needed), while we refer to the details and further notations to the standard
supermathematics sources (Berezin 1987, Leites 1980, De Witt 1992). To clarify the
structure of variables, we present some formulas in two columns: ordinary (left) and
supersymmetric (right) cases, and moreover we use different notations for them (the
latter will be marked in bold).

Let ( )N Λ be a complex Grassmann algebra having N anticommuting generators
iθ . The nilpotence of θs (which follows from their anticommutativity) leads to its
finiteness (with dimension 2N) and to the decompositions of any element z ( )N ∈Λ
(informally)
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z z z z z z z , (3.1)
s s s and s and s sno with no no 0 with 0 even odd

body soul invert noninvert even odd
� � �� �⏞⏞ ⏞⏞ ⏞

= + = + = +
θ θ θ θ θ θ′ ′ ′ ′ ′ ′

where zbody ∈ , z \0invert ∈ , z ( )\Nsoul  ∈ Λ , z ( )\ {0}Nnoninvert   ∪∈ Λ . The last
decomposition allows us to introduce the degree by zdeg 0even = ¯ and deg z 1odd = ¯,
and elements with the fixed degree are homogeneous. Obviously, that for homoge-
neous elements yz y zdeg deg deg (mod 2)= + . Another name of deg is parity (or
grade), in special cases they are fine different (Bernstein et al 2013) but in the
superqubit context all of them are interchangable. Thus, the mapping
deg: ( ) {0, 1}N 2 Λ → = ¯ ¯ , gives the direct sum decomposition of the Grassmann

algebra ( ) ( ) ( ) ( ) ( )N N N N N
(even) (odd) (0) (1)    Λ = Λ ⊕ Λ = Λ ⊕ Λ¯ ¯

, which means that
( )N Λ is the simplest example of 2 -graded algebra. The analog of the ordinary

commutator for ( )N Λ is the supercommutator

y z yz zy y z y z yz zy y z[ , ] , , , [ , ] ( 1) , , ( ).(3.2)
susy

y z
Ndeg

deg deg = − ∈ ⟹ = − − ∈ Λ

If y z[ , ] 0deg = for all elements of a superalgebra, then it is supercommutative,
which is indeed the case of the Grassmann algebra ( )N Λ . The same rule will be
implied for all of the other 2 -graded homogeneous variables.

The ordinary involution * and the grade involution ♯ (superstar or super-
involution (Bernstein et al 2013, Borsten et al 2010)) can be defined on ( )N Λ as
follows

xy xy yz z y y y( ) , ( ) , ( ) , (3.3)* = ¯ * = * * ** =

xy xy yz y z y y x y z( ) , ( ) , ( ) ( 1) , , , ( ), (3.4)y
N

deg  = ¯ = = − ∈ ∈ Λ♯ ♯ ♯ ♯ ♯ ♯♯

such that z ( )N
z(deg ) *∈Λ , z ( )N

z(deg ) ∈ Λ♯ .
The superqubits live in a finite-dimensional 2 -graded linear vector space (or

superspace)V over  (or any other field  ), which has the same decomposition on
the even and odd parts as the Grassmann algebra above V V V(0) (1)= ⊕¯ ¯ . If the
dimensions of the component spaces V pdim (0) =¯ and V qdim (1) =¯ , then we denote
the 2 -graded vector space V p q= ∣ , and its graded dimension p qdim p q = +∣ .
The 2 -graded direct product of superspaces ⊗ˆ (which is used for superqubit
constructions) is crucially different from the ordinary direct product of spaces ⊗
(exploited for qubits). Indeed, we have the ordinary direct product

V W V W V W V W V W , (3.5)(0) (0) (1) (1) (1) (0) (0) (1)⊗ = ⊗ + ⊗ + ⊗ + ⊗¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

which does not allow us to introduce the 2 -graded structure without additional
assumptions.

Innovation 3.1. Only the definition of a new operation, the 2 -graded direct product⊗ˆ ,
gives the consistent superspace structure of product (by endowing two last terms in (3.5)
with odd grading of the product)
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V W V W( ) , , , , (mod 2), (3.6)
( ) ( ) ( )

2k r s r s r s
k r s

k r s ⊗̂ = ⊕ ⊗ ∈ ⊞ ≡ +
= ⊞

or simply

V W V W V W( ) , (3.7)(0) (0) (0) (1) (1)⊗̂ = ⊗ + ⊗¯ ¯ ¯ ¯ ¯

V W V W V W( ) . (3.8)(1) (1) (0) (0) (1)⊗̂ = ⊗ + ⊗¯ ¯ ¯ ¯ ¯

Usually, the (different) operations⊗ˆ and⊗ are denoted by the same symbol, but they
should be used with care and taking account the actual distinction of (3.5) and (3.6).

In the consideration of mappings between superspaces and trying to introduce
2 -graded structure for them, we also note some peculiarities (important for

superqubit constructions). Indeed, the set of homomorphisms T{ } from superspace
V to superspace W is defined in the standard way

V W V WT THom( , ) { }. (3.9)= ⊂

We could assume that the 2 -graded structure is analogous to (3.6)

V W V W V WT THom ( , ) { Hom( , ) }, , . (3.10)( ) ( ) ( )
2k rk r r k = ∈ ⊂ ∈⊞

Innovation 3.2. Only even mappings V WT Hom ( , )(0) (0)=¯ ¯ ( Tdeg 0 2= ¯ ∈ ) are
homomorphisms. Only odd mappings T(1)¯ ( Tdeg 1 2= ¯ ∈ ) are not morphisms at all
because they cannot be composed: T T(1) (1)◦¯ ¯ is not odd, but is even mapping.

The same observation can be made for the linear operators in a 2 -graded linear
vector space p q ∣ given by (super)matrices. In the standard basis, a linear operator
T End( )p q∈ ∣ can be represented by the square block p q p q( ) ( )+ × + supermatrix
over ( )N Λ (Berezin 1987, Leites 1980) (other representations are also possible
Bernstein et al 2013)

A B

C D
p qM Mat( , ( )), (3.11)

p p p q

q p q q
N ⎜ ⎟

⎛
⎝

⎞
⎠

= ∈ ∣ Λ× ×

× ×

where the even (ordinary) matrices Ap p× , Dq q× are over ( ) ( )N N
(even) (0) Λ = Λ ¯

, and the

odd (ordinary) matrices Bp q× ,Cq p× are over ( ) ( )N N
(odd) (1) Λ = Λ ¯

. This full supermatrix
has the total parity (degree) deg M 0= and

( )
( )

A

D
M M M

0

0
M . (3.12)M

p p p q

q p q q
deg 0 body soul

body

body

soul

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= + = +=
× ×

× ×
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If oppositely, Ap p× , Dq q× are (ordinary) matrices over ( )N
(1) Λ ¯

, and Bp q× , Cq p× are

(ordinary) matrices over ( )N
(0) Λ ¯

, then deg M 1= , and

( )
( )

B

C
M M M

0

0
M . (3.13)

p p p q

q p q q
deg M 1 body soul

body

body

soul

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= + = +=
× ×

× ×

Innovation 3.3. The supermatrices with deg M 1= are not morphisms of p q ∣ because
their product gives the first ones having deg M 0= , and therefore

{M} End( ). (3.14)p q
deg M 1 ∉=

∣

After the decomposition of the matrices (3.11) with deg M 0= (reminding (3.12),
(3.13))

M M M M M , (3.15)(even) (odd) (0) (1)= + = +

A

D
M

0

0
, (3.16)

p p p q

q p q q

(0)
⎜ ⎟
⎛
⎝

⎞
⎠

= × ×

× ×

B

C
M

0

0
, (3.17)

p p p q

q p q q

(1)
⎜ ⎟
⎛
⎝

⎞
⎠

= × ×

× ×

we observe that M M M(0) (0) (0)=¯ ′ ¯ ′′ ¯ , and therefore the corresponding operators are
even endomorphisms of p q ∣

T{ } End( ), (3.18)p q(0) ∈¯ ∣

but

M M M . (3.19)(1) (1) (0)=¯ ′ ¯ ′′ ¯

Innovation 3.4. The set {M }(1)¯ is not closed under composition (matrix multiplica-
tion), therefore the corresponding odd operators T(1) are not morphisms by definition
at all

T{ } End( ). (3.20)p q(1) ∉¯ ∣

Both “even” and “odd” superoperators (considered together) are morphisms.

These considerations should be taken into account during consistent calculations
with superqubits and supersymmetric quantum gates.

We remind some common notions in present notations for self-consistency. First,
in contrast to the standard transpose operator p p: Mat( , ) Mat( , )T  → , the
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supertranspose operator p q p q: Mat( , ( )) Mat( , ( ))N NsT  ∣ Λ → ∣ Λ is double-valued
depending of the parity of supermatrix

A B

C D

A C

B D

A C

B D

, if deg M 0,

, if deg M 1.

(3.21)
p p p q

q p q q

p p q p

p q q q

p p q p

p q q q

sT

T T

T T

T T

T T

⎜ ⎟
⎛
⎝

⎞
⎠

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=
−

= ¯

−
= ¯

× ×

× ×

× ×

× ×

× ×

× ×

It is seen that ( ) id2sT ≠◦ (while id2T =◦ ) but ( ) id4sT =◦ , and therefore the
supertranspose operator is the reflection of order 4, while the transpose is the
ordinary reflection (of order 2). For two supermatrices of the same shape

p qM, N Mat( , ( ))N ∈ ∣ Λ , we have

(MN) ( 1) N M , (3.22)Ndeg M degsT sT sT= −

and in particular

a a a( M) M , ( ), (3.23)N
sT sT = ∀ ∈ Λ

which means that supertranspose sT is a ( )N Λ -module, e.g., in case of the ordinary
transpose operator T, which is a -module.

The supertrace is the homomorphism p qstr: Mat( , ( )) ( )N N ∣ Λ → Λ that is also
double-valued (depending of parity of supermatrix) mapping (for the supermatrix of
the standard format (3.11))

A B

C D

A D

A D
str

tr tr , if deg M 0,

tr tr , if deg M 1,
(3.24)

p p p q

q p q q

p p q q

p p q q
⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨⎩

=
− = ¯

+ = ¯
× ×

× ×

× ×

× ×

which is additive and has the supercommutativity property, where M, N are
ordinary matrices, and str is invariant with respect to supertranspose (analogous
to ordinary trace)

tr M tr M str M str M. (3.25)susy
T sT= ⟹ =

The standard superdeterminant (Pakhomov 1974, Berezin and Leites 1975) (or
Berezinian Berezin 1987, Leites (1980)) in our notation is

( )( )
A B

C D
A B D C DBer M Ber det det , (3.26)

p p p q

q p q q
p p p q q q q p q q

1 1
⎜ ⎟
⎛
⎝

⎞
⎠

= = −× ×

× ×
× × ×

−
× ×

−

which differs from the ordinary determinant by the power ( 1)− in the last multiplier.
The mapping Ber is a homomorphism of p qMat( , ( ))N ∣ Λ and invariant with respect
to supertranspose sT (3.21)

det (M ) det M Ber(M ) Ber M. (3.27)
susy

T sT= ⟹ =
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The connection of Ber and str is similar to the ordinary case

e edet M Ber M , (3.28)susy
tr(ln M) str(ln M)= ⟹ =

e e e edet Ber , (3.29)susy
M tr M M str M= ⟹ =

where pM Mat( , )∈ and p qM Mat( , ( ))N ∈ ∣ Λ .
The Berezinian (3.26) has the inconvenient property for characterizing the

entanglement: Ber is not defined for noninvertible Dq q× . Therefore, in Borsten
et al (2010) it was proposed to use another possible function for the entanglement
measure, which has many properties of Berezinian (but not all of them), and which
satisfies (3.27) and has the ordinary det as the nonsupersymmetric limit (when odd
variables vanish). Because the notion sdet is widely used for Ber (Berezin 1987,
Leites 1980), we denote this function sdTr, which can be defined by the following
informal analogy

( )( ) ( )E E E Edet M
1
2

tr((M ) (M )) sdTr M
1
2

str M M , (3.30)
susy

sl sl osp osp
T sT= ⟹ =

where Esl and Eosp are SL(2) and OSp(1 2) invariant tensors (Bernstein et al 2013)
(determining the corresponding group and supergroup in the standard way
M E M Msl

T = and M E M Mosp
sT = ). The main property of sdTr is vanishing on

the direct product states, and therefore it can measure whether a quantum (two
superqubit) state is unentangled or entangled (see below).

3.2 Super Hilbert spaces and operators
Let us denote vectors (quantum states) in the r-dimensional complex Hilbert space
Hr by kets ψ and the inner product by :∣ H Hr r × → , which is a non-
degenerate Hermitean and positive form that is linear in the first argument and
antilinear (conjugate linear) in the second argument. The bra φ is defined as an
element of the dual space H r

† (in the notation of Borsten et al (2010), for a inner
product vector space V the notation V * is also used for its dual), which is the
functional H: r φ∣ → , such that the action on a ket is denoted by

( )φ ψ φ ψ≔ ∣ and coincides with the inner product after the identification of
the Hilbert space with its dual (Riesz representation theorem Rudin 1991).
Informally, one can write the injection ( )ψ ψ=† , which in the matrix represen-
tation (and finite-dimensional) standardly coincides with Hermitean adjoint, when
ψ becomes a matrix-column, ψ is a matrix-row, and the inner product is a scalar
product, the obvious property φ ψ ψ φ∣ = ∣† also holds valid.

In a similar way, we consider the r s( )∣ -dimensional super Hilbert spaceHr s( )∣ over

( )N Λ as the 2 -graded spaceH H Hr s r s r s( ) ( )
(0)

( )
(1)= ⊕∣ ∣

¯
∣

¯
, such that the supersymmetric

quantum states, if homogenous, carry 2 -grading 0, 1 2π = ¯ ¯ ∈ψ , and they are

denoted by super-kets H r s
( )

( )
( )ψ∣∣ 〉 ∈π π

∣
ψ ψ with deg ψπ =ψ , while the body of even super

states are the ordinary kets

Innovative Quantum Computing
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H . (3.31)r
(0)

bodyψ ψ∣∣ 〉 = ∈¯

We denote the super inner product by H H: ( )r s r s N( ) ( ) ∣∣ × → Λ∣ ∣ obeying the
property

. (3.32)body ∣∣ = ∣ ∈

The super dual Hilbert space H r s( )∣
‡ is defined as the space of the functionals

H: ( )r s N
( )

( )
( )

ϕ ∣∣ → Λπ π
∣

φ ψ , and the super bra ( )ϕ〈 ∣∣πφ with deg 2ϕπ = ∈φ is given by
the action

( ) ( ) ( ). (3.33)
susy

N
( ) ( ) ( ) ( ) ϕ ψ ϕ ψφ ψ φ ψ δ= ∣ ∈ ⟹ 〈 ∣∣ ∣∣ 〉 = 〈 ∣∣ 〉 ∈ Λπ π

π π
π πφ ψ

φ ψ
φ ψ

The presence of the delta function in (3.33) means that the commonly used
agreement that the graded super vectors of opposite parity are mutually orthogonal

0, if . (3.34)( ) ( )ϕ ψ π π〈 ∣∣ 〉 = ≠π π
φ ψφ ψ

Therefore, in similar expressions we will put

0, 1 . (3.35)2π π π= = = ¯ ¯ ∈φ ψ

In this case, we have

. (3.36)( ) ( ) ( ) ( )ϕ ψ ψ ϕ〈 ∣∣ 〉 = 〈 ∣∣ 〉π π π π♯

Thus, informally, one can write

( ) , (3.37)( ) ( )ψ ψ∣∣ 〉 = 〈 ∣∣π π‡

which means that ( )‡ does not change parity π, and it is the reflection of order 4,
because

( ) ( 1) , (3.38)( ) ( )ψ ψ∣∣ 〉 = − ∣∣ 〉π π π‡‡

( ) . (3.39)( ) ( )ψ ψ∣∣ 〉 = ∣∣ 〉π π‡‡‡‡

If z ( )N ∈Λ has a fixed parity, then its product with super ket and super bra
behaves with respect to ( )‡ differently

z z( ) ( 1) , (3.40)z( ) deg ( )ψ ψ∣∣ 〉 = − 〈 ∣∣π π π‡ ♯

z z( ) ( 1) , (3.41)z( ) (deg 1) ( )ψ ψ〈 ∣∣ = − ∣∣ 〉π π π‡ + ♯

where ( )♯ is the graded involution or superstar (3.4).

Innovation 3.5. We can omit the δ-function in (3.33), and this will lead to a new kind
of Hilbert spaces that allow mixing of gradings, such that all above formulas should be
changed.

Innovative Quantum Computing

3-7



In the super Hilbert space Hr s( )∣ the superadjoint ( )‡ of the superoperator (3.9)
with the standard graded structure (3.10) is defined by

T T T T( 1) , (3.42)
susy

( ) ( ) ( ) ( ) ( ) ( )T T Tϕ ψ ϕ ψφ ψ φ ψ∣ = ∣ ⟹ 〈 ∣∣ 〉 = − 〈 ∣∣ 〉π π π π π π π π† ‡φ ψ φ φ ψ

where T and T † are an operator and its adjoint in the Hilbert space Hr,
H, rψ φ ∈ , and H r s

( )
( )
( )ϕ ∈π π

∣
φ , H r s

( )
( )
( )ψ ∈π π

∣
ψ ψ , TdegT 2π = ∈ . Here we do

not have the restriction (3.35) because the superoperator T( )Tπ with n 1T = ¯ can
change the parity of quantum states. The superadjoint of the action on the quantum
state is

T T T T( ) ( ) ( 1) , (3.43)
susy

( ) ( ) ( ) ( )T T Tψ ψψ ψ= ⟹ ∣∣ 〉 = − 〈 ∣∣π π π π π π† † ‡ ‡ψ ψ ψ

The definition (3.42) is equivalent to (see (4.12))

T T( 1) . (3.44)( ) ( ) ( ) ( ) ( ) ( ) ( )T T Tϕ ψ ψ ϕ〈 ∣∣ ∣∣ 〉 = − 〈 ∣∣ ∣∣ 〉π π π π π π π π π π π π‡ + + + ♯φ ψ φ ψ ψ φ ψ ψ φ

If the superoperator T has a supermatrix representation in p qMat( , ( ))N ∣ Λ , then
its superadjoint is represented by composition of supertranspose (3.21) and the
graded involution (superstar) (3.4) as

p p qM M , M Mat( , ) M (M ) , M Mat( , ( )), (3.45)
susy

N
T sT = ¯ ∈ ⟹ = ∈ ∣ Λ† ‡ ♯

which is the superanalog of the Hermitean conjugation (conjugate transpose).

3.3 Qubits and superqubits
Mathematically, qubits (or d-qudits) and superqubits (or r s( )∣ -superqudits) are
normalized vectors in the r-dimensional Hilbert space and r s( )∣ -dimensional super
Hilbert space, respectively, which are presented in the Dirac bra-ket notation (see
previous section). They are written in the computational basis to thoroughly study
various symmetries and introduce suitable variables that can consistently measure
entanglement. Because the super Hilbert space is 2 -graded, there can exist even and
odd vectors (as for the general quantum states in the previous section) that can
correspond to even and odd superqubits, respectively.

The definitions of a single qudit in the complex Hilbert space Hd and a single
superqudit in super Hilbert spaceHr s( )∣ (over ( )N Λ ) can be written, in general, as the
expansions of the (pure) quantum states on the computational (super) basis as
follows

x x x d0 1 1 , (3.46)d d( ) 0 1 1Ψ = Ψ = + + ⋯ + −−

Hx x x x i i d1, , , 0, , 1,
(3.47)d i d0

2
1
2

1
2

susy

+ + ⋯ + = ∈ ∈ = … −−
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x x x0 1 r 1 œ æ œ æ , (3.48)r s s
(0)

0 1 1 0 0 1 1Ψ∣∣ 〉 = ∣∣ 〉 + ∣∣ 〉 + ⋯ + ∣∣ − 〉 + ∣∣ 〉 + ⋯ + ∣∣ 〉¯
− − −

x x x x x x æ æ æ æ 1, (3.49)r r s s0 0 1 1 1 1 0 0 1 1+ + ⋯ + − − ⋯ =♯ ♯
−
♯

−
♯

−
♯

−

H H

x x

x

0 1 r

j

æ æ 1 æ œ œ ,

( ), , æ ( ), œ .
(3.50)

r s s

i N r s N r s

(1)
0 1 1 0 0 1 1

(0)
( )
(0) (1)

( )
(1) 

Ψ∣∣ 〉 = ∣∣ 〉 + ∣∣ 〉 + ⋯ + ∣∣ − 〉 + ∣∣ 〉 + ⋯ + ∣∣ 〉

∈ Λ ∣∣ 〉 ∈ ∈ Λ ∣∣ 〉 ∈α α

¯
− − −

∣
¯ ¯

∣
¯

We assume that i xdeg deg 0i∣∣ 〉 = = ¯ , deg œ∣∣ 〉α = deg æ 1= ¯α , and therefore the
superqudit (3.48)has theevenparity deg 0π Ψ= ∣∣ 〉 = ¯Ψ , andwecall it the evensuperqudit

(0) evenΨ Ψ∣∣ 〉 = ∣∣ 〉¯ , while the superqudit (3.50) has the odd parity deg 1π Ψ= ∣∣ 〉 = ¯Ψ , and
we call it the odd superqudit (1) oddΨ Ψ∣∣ 〉 = ∣∣ 〉¯ , denoting both of them ( ) ( )Ψ Ψ∣∣ 〉 = ∣∣ 〉π πΨ .
The normalization of the odd superqudit can be done using some special Grassmann
norms considered in Rudolph (2000), Rogers (2007) and Haba and Kupsch (1995).

Definition 3.6. The qudits Ψ and superqudits Ψ∣∣ 〉 are
(1) Linear spans of the corresponding subspace Hispan({ }) d⊆ and sub-

superspace Hispan({ } { œ }) r s( )∣∣ 〉 ∣ ∣∣ 〉 ⊆α ∣ , respectively,
(2) Having the normalization conditions (3.47), (3.49).

For consistency, it is natural to assume that the superqudit (3.48) has the
Grassmannless limit, body map (Rogers 1980), as the ordinary qudit (3.46)

. (3.51)r
(0)

body ( )Ψ∣∣ 〉 = Ψ¯

The normalization conditions (3.47) and (3.49) distinguish (super)qudits among
general span subspaces, which allows us to endow them probablistic interpretation.
If the limit (3.51) is accepted, then (3.47) and (3.49), as well as the bases Hi{ } r∈
and Hi{ } r s( )∣∣ 〉 ∈ ∣ are connected with the body map.

The (super)qudits in minimum dimensions d = 2, r = 2, s = 1 are called (super)
qubits (Borsten et al 2010) and have the form1

H

H

H

x x

x x
x x

x x

x x x x

x

x x x

0 1

0 1

0 1

0 1 ,

1,
, , 0 , 1 ,

œ æ,

æ æ 1,

æ æ œ ,

, , ( ), , ,

æ, æ , æ ( ), œ .

(3.52)
susy

N

N

(2) 0 1

0
2

1
2

0 1 2

(0)
0 1

0 0 1 1

(1)
0 1

0 1
(0)

(2 1)
(0)

0 1
(1)

(2 1)
(1)

 



Ψ

Ψ
Ψ = Ψ = +

+ =
∈ ∈

⟹

∣∣ 〉 = ∣∣ 〉 + ∣∣ 〉 + ∣∣ 〉
+ − =

∣∣ 〉 = ∣∣ 〉 + ∣∣ 〉 + ∣∣ 〉

∈ Λ ∣∣ 〉 ∣∣ 〉 ∈

∈ Λ ∣∣ 〉 ∈

¯

♯ ♯ ♯

¯

¯
∣

¯

¯
∣

¯

1 For clarity and convenience for applications, we use the manifest presentation of different variables. The right
coordinates are used in superqubits according to the sign agreement of Borsten et al (2010).
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There are four main operations between two single (super)qubits.
(1) Inner product of bra (super)qubit and ket (super)qubit

x x x x
x x x x

x x

æ æ ,

æ æ æ æ
(3.53)

susy
0 0 1 1

(0) (0)
0 0 1 1

(1) (1)
0 0 1 1


Ψ Ψ

Ψ Ψ
Ψ∣Ψ′ = ¯ ′ + ¯ ′ ∈ ⟹

〈 ∣∣ ′〉 = ′ + ′ − ′

〈 ∣∣ ′〉 = ′ + ′ + ′

¯ ¯ ♯ ♯ ♯

¯ ¯ ♯ ♯ ♯

where () is complex conjugation and ( )♯ is the grade involution (3.4).
If the states coincide, Ψ′ = Ψ and Ψ Ψ∣∣ ′〉 = ∣∣ 〉, then (3.53) are square

norms of Ψ and (0)Ψ∣∣ 〉¯ becoming unity for normalized (super)qubits. For
physical states, the square norm of the even superqubit is positive

0. (3.54)(0)
body
2 (0) (0)

bodyΨ Ψ Ψ∣∣ ∣∣ = 〈 ∣∣ ′〉 >¯ ¯ ¯

(2) Outer product of ket and bra gives the density (super)matrix of (super)qubit

x x x x
x x x x (3.55)0 0 1 0

0 1 1 1
⎛
⎝

⎞
⎠

ρ = Ψ Ψ = ¯ ¯
¯ ¯

(3.56)susy

x x x x x

x x x x x

x x

æ

æ

æ æ ææ

, (3.57)(0) (0) (0)

0 0 1 0 0

0 1 1 1 1

0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ρ Ψ Ψ= ∣∣ 〉〈 ∣∣ =

− − −

¯ ¯ ¯

♯ ♯ ♯

♯ ♯ ♯

♯ ♯ ♯

x

x

x x xx

æ æ æ æ æ

æ æ æ æ æ

æ æ

, (3.58)(1) (1) (1)

0 0 1 0 0

0 1 1 1 1

0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ρ Ψ Ψ= ∣∣ 〉〈 ∣∣ =
− − −
− − −¯ ¯ ¯

♯ ♯ ♯

♯ ♯ ♯

♯ ♯ ♯

and the body map limit for (0)ρ ¯ is similar to (3.51). The standard connection
of the inner product with the (super)trace of density matrix for a given
(super)qubit holds valid (taking into account gradings)

tr
str ( ),

str ( ).
(3.59)

susy N

N

(0) (0) (0) (0)

(1) (1) (1) (0)





ρ

ρ

ρ

Ψ Ψ

Ψ Ψ
= Ψ∣Ψ ∈ ⟹

= 〈 ∣∣ 〉 ∈ Λ

= −〈 ∣∣ 〉 ∈ Λ

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

(3) Tensor product of two ket (super)qubits (or two bra (super)qubits) (3.52) can
be presented as the following manifest expansions on elementary tensors (all
gradings appear and are shown for clarity and direct usage in computations)
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H H

H H

H H

H H

( )

( )

( )

( )

x x x x x x x x

x x

x

x

x x

x

x

x
x

x x

x x

x

x

x x

x

x

x
x

x x

x

x

xx

x

x

xx

xx
x

x

0 0 0 1

0 1 0 1 1

1 0 1

0 0 0 1 1 0 1 1

æ æ

æ

æ

æ æ

æ

æ

œ

æ
æ

æ æ

æ æ

æ

æ

æ æ

æ

æ

œ

æ
æ

æ æ

œ

æ

æ

ææ
œ

æ

æ

ææ

œ œ

ææ

æ
æ

.

(3.60)

0 0 0 1 1 0 1 1

susy

(0) (0)

(1) (1)

(0) (1)

(1) (0)

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

0

0

0

0

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

1

1

1

1

0

0

0

0

1

1

1

1

(2 1) (2 1)
(0)

(2 1) (2 1)
(0)

(2 1) (2 1)
(1)

(2 1) (2 1)
(1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

′ ′ ′ ′

′
′
′
′

′
′
′
′

′
′
′
′

′
′
′
′

′
′
′
′

′
′
′
′

′
′
′
′

Ψ Ψ

Ψ Ψ

Ψ Ψ

Ψ Ψ

Ψ ⊗ Ψ′ = ⊗ ′ + ⊗ ′ + ⊗ ′ + ⊗ ′

∣∣ 〉 ⊗ ∣∣ 〉

∣∣ 〉 ⊗ ∣∣ 〉

∣∣ 〉 ⊗ ∣∣ 〉

∣∣ 〉 ⊗ ∣∣ 〉

= ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉

+ ∣∣ 〉 ⊗ ∣∣ ′〉

′
′
′
′

+ ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉

+ ∣∣ 〉 ⊗ ∣∣ ′〉

′
′
′
′

+ ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉

+ ∣∣ 〉 ⊗ ∣∣ ′〉

′
′
′
′

∈

⊗

⊗

⊗

⊗

¯ ¯

¯ ¯

¯ ¯

¯ ¯

∣ ∣
¯

∣ ∣
¯

∣ ∣
¯

∣ ∣
¯

Thus, there are four different superqubit tensor products, depending of
their parity.

Definition 3.7. The (pure) quantum state that can be obtained as a tensor product is
called a separable state.

(4) Cross product of two ket qutrits ((3.46) with d = 3) of the form

x x x0 1 2 , (3.61)(3) 0 1 2Ψ = Ψ = + +

H

x x x
x x x

1,
, , , 0 , 1 , 2 ,

(3.62)0
2

1
2

2
2

0 1 2 3

+ + =
∈ ∈

can be defined by analogy with ordinary cross product of vectors

x x i (3.63)
i j k, , 0,1,2

ijk j kcross ∑ ϵΦ = Ψ × Ψ′ = ′
=

x x x
x x x

M M Mdet
0 1 2

det 0 det 1 det 2 (3.64)0 1 2

0 1 2

0 1 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
′ ′ ′

= + +
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x x x x x x x x x x x x x x( ) 0 ( ) 1 ( ) 2 , , , (3.65)i i1 2 2 1 0 2 2 0 0 1 1 0 = ′ − ′ − ′ − ′ + ′ − ′ ′ ∈

where M i is the minor of element i , and ijkϵ fully antisymmetric tensor.
The last expanded form (3.65) is convenient to use for superqubits as well.

Definition 3.8. We call the qutrit crossΦ that is built as the cross product (3.65) a
cross-qutrit.

The square norm of the cross-qutrit is

det M det M det M .
(3.66)

cross
2 2 2 2

0
2

1
2

2
2

∣ Φ ∣ = ∣Ψ ∣ ∣Ψ′ ∣ − Ψ∣Ψ′

= + +

Therefore, for the normalized qutrit crossΦ , we have the additional condition
(together with two conditions (3.62) for Ψ and Ψ′ )

det M det M det M 1. (3.67)0
2

1
2

2
2+ + =

Definition 3.9. The (pure) quantum state which can be obtained as a cross product is
called a cross-separable state.

The cross-qutrits have special properties and can be connected with the con-
currence measure in considering entanglement (see below).

3.4 Multi-(super)qubit states
The multi-(super)qudit quantum states are vectors in the tensor product of n (super)

Hilbert spaces H H H

n

d
n

d d

� ��� ���
= ⊗ ⋯⊗⊗ (resp. H H Hr s

n
r s r s( ) ( ) ( )

n� ���� ����
= ⊗ ⋯⊗∣

⊗
∣ ∣ ). On first

sight, a straightforward way to obtain such vectors is to use the tensor product (3.60)
repeatedly n 1− times. However, this procedure is too restricted and can only give
separable states. The consequent definition should be made in terms of spans, as in
Definition 3.6.

Definition 3.10. The multi-qudits (n-qudit states) are
(1) Linear span of the Hilbert subspace

H H Hn i i i k n

n x i i x

{ ( ) } span( ) , , 1, , ,

( ) , ,
(3.68)

n d d

n

k d

i

d

i

d

i i n i i

1

0

1

0

1

1

n

n n

1

1 1 

� ��� ���

∑ ∑

Ψ = ⊗ ⋯⊗ ⊆ ⊗ ⋯⊗ ∈ = …

Ψ = ⋯ ⊗ ⋯⊗ ∈
=

−

=

−

⋯ ⋯
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(2) With the normalization (3.46)

x 1. (3.69)
i

d

i

d

0

1

0

1

i i
2

n

n

1

1∑ ∑⋯ =
=

−

=

−

⋯

Definition 3.11. The multi-superqudits (n-superqudit states) are
(1) Linear span of the super Hilbert subspace

H H

H H

I I I i

i

span( ) , ( , œ ),

, œ , 1, , ,
(3.70)n r s r s k k k

k r s k r s

1
. .

( ) ( )
.

( )
(0)

( )
(1)

n

k n

� ���� ����
∣∣ 〉 ⊗ ⋯⊗∣∣ 〉 ⊆ ⊗ ⋯⊗ ∣∣ 〉 = ∣∣ 〉 ∣∣ 〉

∣∣ 〉 ∈ ∣∣ 〉 ∈ = …

∣ ∣

∣
¯

∣
¯

which respect parities of variables, such that we have even and odd
superqubits (see (3.6))

n xy I I y

y I I

( ) , ( , æ ),

deg deg deg 0, 1 ,

(3.71)j

n

j

n

0

1

0

1

j j n j j j j j j

j j n

( )
1
. .

1
. .

2

n

n n n n

n

1

1 1 1 1

1
k

k



∑ ∑Ψ∣∣ 〉 = ⋯ ∣∣ 〉 ⊗ ⋯⊗∣∣ 〉 =

= ⊞ ∣∣ 〉⊞⋯ ∣∣ 〉 = ¯ ¯ ∈
=

−

=

−

⋯ ⋯ ⋯ ⋯

⋯

(2) Normalization can be made for the even multi-superqubit n( )(0)Ψ∣∣ 〉¯ only, as
for the single superqubit (3.52).

To clarify the difference between the separable (3.60) and nonseparable (3.68),
(3.71) states, we consider the example of two (super)qubits. Thus, for n = 2 (two-
party states), we obtain

H H

H H

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

x x x x

x x

x
x x

x x x

x

0 0 0 1

0 1 0 1 1

1 0 1

(2) 0 0 0 1 1 0 1 1

(2)

(2) æ æ

œ
æ

æ æ

œ
æ

œ
æ

œ
æ

œ œ æ ,

(3.72)

00 01 10 11

susy

(0)

(1)

00

00

01

01

02

02

10

10

11

11

12

12

20

20

21

21

22

22

(2 1) (2 1)
(0)

(2 1) (2 1)
(1)

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

′

′

Ψ
Ψ

Ψ = ⊗ ′ + ⊗ ′ + ⊗ ′ + ⊗ ′

∣∣ 〉
∣∣ 〉

= ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉

+ ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉

+ ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉 + ∣∣ 〉 ⊗ ∣∣ ′〉

+ ∣∣ 〉 ⊗ ∣∣ ′〉 ∈
⊗

⊗

¯

¯

∣ ∣
¯

∣ ∣
¯

where (2)Ψ has four bosons, (2)(0)Ψ∣∣ 〉¯ has five bosons and four fermions, (2)(1)Ψ∣∣ 〉¯

has four bosons and five fermions. Comparing the tensor product (3.60) and (3.72),
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we observe that for separable states all the amplitudes (coordinates) in (3.72) can be
composed

{
{

x x x

x
i j

x
x x

x
x x

x
xx

x
xx

x

x
x

x
x

x
x

x

x x x x x x x

,

,
, 0, 1

æ æ
,

æ æ
,

ææ
, ææ

æ
æ

æ
, æ

æ
æ

, æ
æ

æ
, æ æ

æ

, , , , , , ( ),

æ, æ , æ , æ , æ , æ , æ ( ).

(3.73)

sep

susy

sep sep sep sep

sep sep sep sep
ij i j

i

ij
i j

i j
i

i

i
i

i

i

ij
i j

i j
i

i

i
i

i

i

i ij i i i N

i ij i i i N

2 2 22

2 2 22

2 2
(0)

2 2
(1)







⎧
⎨⎩

⎧
⎨⎩

⎧
⎨⎩

⎧
⎨⎩

⎧
⎨⎩

⎧
⎨⎩

= ′
∈
=

⟹

=
′
′ = ′

′ =
′
′ = ′

′

=
′
′ = ′

′ =
′
′ = ′

′

′ ′ ∈ Λ

′ ′ ∈ Λ

¯

¯

Remark 3.12. The separability of two-party superqubit even (2)(0)Ψ∣∣ 〉¯ and odd
(2)(1)Ψ∣∣ 〉¯ states (3.72) is determined in the nonunique way (3.73).

Definition 3.13. Multi-(super)qubit states are called entangled (inseparable) if at
least one of their amplitudes (yj jn1⋯ in (3.71)) cannot be presented in the composite
factorized form (3.73).

A suitable function that can measure entanglement should have the main
property: vanishing for the separable states (3.60). The simplest such function for
two qubits (without other requirements) is the determinant. Indeed, for the separable
two party (super)qubit system, we have from the factorization (3.73)

( )f x x x x x x i j(2) : ( ) det det 0, , , , 0, 1.
(3.74)

sep
ij i j i j

susy

Ψ = = ′ ≡ ∀ ′ ∈ =

f y x x y x(2) : ( ) det ( æ æ ) 0, ( , æ ), (3.75)
sep

ij i j ij ij ij
(0) (0)

22 2 2Ψ∣∣ 〉 = + = =¯ ¯

f y x x x(2) : ( ) det (æ æ ) 0, ( ), æ ( ). (3.76)sep
ij i j ij N ij N

(1) (1)
22 2 2

(0) (1) Ψ∣∣ 〉 = − = ∈ Λ ∈ Λ¯ ¯ ¯ ¯

Further requirements can be imposed, for ordinary qubits they are positivity,
monotonicity, and the range in {0, 1}, as probability, which gives the concurrence
(Hill and Wootters 1997, Wootters 1998, Horodecki et al 2009)

C x C f x x( ) ( (2) ) 2 ( ) 2 det , (3.77)ij2 = Ψ = =

such that for maximally entangled states, e.g., the Bell state x x 1

211 22= = ,

x x 001 10= = , to get C x( ) 1= .
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Innovation 3.14. We define the even and odd superconcurrences by

C y C x x( ) ( (2) ) 2 det ( æ æ ) , (3.78)ij i j R
(0) (0)

22 2 2Ψ= ∣∣ 〉 = ∣ + ∣¯ ¯

C y C x x( ) ( (2) ) 2 det (æ æ ) , (3.79)ij i j R
(1) (1)

22 2 2Ψ= ∣∣ 〉 = ∣ − ∣¯ ¯

where R∣ ∣ is one of the Grassmann norms (De Witt 1992, Rogers 2007, Rudolph
2000).

The square of the concurrence is called tangle (Borsten et al 2010), which can be
written for two qubits in the form

x f x f x x x( ) 4 ( ) ( ) 4 det det , (3.80)ij ijτ = = ¯

where ( ) is the complex conjugation.

Innovation 3.15. For two even/odd superqubits, by analogy with (3.80) and taking
into account possible noninvertibilities, we can define the even supertangle x( )(0)τ ¯ and
odd supertangle x( )(1)τ ¯ in the following way

y x x f y f y( ) ( ) 4 ( )( ( )) , (3.81)(0)
22 22

(0) (0)τ =¯ ♯ ¯ ¯ ♯

y f y f y( )æ (æ ) 4 ( )( ( )) , (3.82)(1)
22 22

(1) (1)τ =¯ ♯ ¯ ¯ ♯

where f y( )(0)¯ and f y( )(1)¯ are defined in (3.75) and (3.76), respectively.

In case of invertible x22, the even superconcurrence C y( )(0)¯ (3.78) and even
supertangle x( )(0)τ ¯ (3.81) can be connected with the Berezinian (3.26).

There are many other entanglement measures, e.g., entropy of entanglement,
positive partial transpose, quantum discord, entanglement of formation, distillable
entanglement, entanglement cost, squashed entanglement, and entanglement wit-
nesses (Horodecki et al 2009). Some of them can also be applied for multi-(super)
qudits, for superqubits, see, e.g. Borsten et al (2010).

The entanglement classification and manipulation can be provided by considering
various local symmetries of multi-(super)qubit systems. The main paradigm is local
operations and classical communication (LOCC), which was proposed in Bennett
et al (1996): it is not possible to change the quantum property of a many party state
(e.g. increase its entanglement) using local operations (e.g. on one party qubits) and
classical channels only. Thus, the many party quantum states can be classified in
such a way that each class contains the representative state with maximum
entanglement. If some operations can be performed using LOCC, but may fail,
they are called stochastic local operations and classical communication (SLOCC)
(Vidal 2000, Verstraete et al 2001). Quantum states that can be transformed into one
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another are called SLOCC equivalent and the corresponding equivalence classes are
called entanglement (SLOCC) classes, which are invariant under invertible unitary
transformations (Eltschka and Siewert 2014, Verstraete et al 2001).

A single qubit Ψ (3.52) carries the fundamental representation of SU (2) group,
and therefore for the n-qubit state the LOCC equivalence group is SU[ (2, )] n ⊗

(Vidal 2000, Verstraete et al 2001), while the SLOCC equivalence group is
SL[ (2, )] n ⊗ (Borsten et al 2010). Thus, any separable n-qubit state will remain
separable under all SU[ (2)] n⊗ operations. In a similar way, the even superqubit

(0)Ψ∣∣ 〉¯ (3.52) carries the fundamental representation of the local operation (unitary
orthosymplectic) group uOSp(2 1)∣ , and so for n-superqubit state the LOCC
equivalence group is uOSp[ (2 1)] n∣ ⊗ and the SLOCC equivalence group is
OSp[ (2 1)] n∣ ⊗ (Borsten et al 2015).
The supersymmetrization of (S)LOCC groups is different from supersymmetriza-

tion of the Poincaré group, and therefore artificially adding the superpartners of the
electron and photon does not give a superqubit (Brádler 2012). Nevertheless,
supersymmetric extension of quantum mechanics based on superqubits may be a
candidate for a superquantum theory that lies in the gap between the ordinary
quantum theory and nonlocal boxes (Popescu and Rohrlich 1994, Borsten et al
2014). There can be applications of superqubits in condensed matter physics where
the orthosymplectic Lie superalgebras play an important role (Efetov 1997).

3.5 Innovations
Here we consider the following generalizations of superqubits.

Innovation 3.16. (Odd superqubits). The odd superqubits (1)Ψ∣∣ 〉¯ were introduced in
(3.52) by analogy with the odd superfields. We suppose that the SLOCC equivalence
group for odd superqubits could be connected with the periplectic group, a subgroup of
the general linear supergroup over ( )N Λ , which preserves the odd bilinear form (Leites
and Serganova 1991, Deligne et al 2018).

Innovation 3.17. [Tensor product of qubit and superqubit] From the first glance, one
can think that the tensor product of H2Ψ ∈ and H(2 1)Ψ∣∣ ′〉 ∈ ∣ is a particular case of
Ψ Ψ∣∣ 〉 ⊗ ∣∣ ′〉 (3.60) where one multiplier is the body map (3.51). However, the
consistent construction is more complicated because the spacesHd andHr s( )∣ are over
different fields. In general, the tensor product of the vector spaceV1 over 1 and 2V over

2 can be built as

V V V V( ). (3.83)1 2 1 2 22 2 1
  ⊗ ≔ ⊗ ⊗

The same construction can be provided for the corresponding Hilbert spaces by
consideration their inner products. Moreover, the properties of the qubit tensor product
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with even (0)Ψ∣∣ 〉¯ and odd (1)Ψ∣∣ 〉¯ superqubits are fully different. Indeed, from (3.52) we
have the mixed qubit-superqubit tensor product (using informally the same its sign)

H

H

H

H

( )
( )

x x
x

x x
x

x
x x

x x
x

x x
x

x
x x

0 1

0 1

0
æ

0
æ

0 œ
æ

1
æ

1
æ

1 œ
æ

.

(3.84)

(0)

(1)

0 0

0 0

0 1

0 1

0

0

1 0

1 0

1 1

1 1

1

1

2 (2 1)
(0)

2 (2 1)
(1)

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ψ

Ψ

Ψ ⊗ ∣∣ ′〉

Ψ ⊗ ∣∣ ′〉
= ⊗ ∣∣ ′〉

′
′ + ⊗ ∣∣ ′〉

′
′

+ ⊗ ∣∣ ′〉 ′
′ + ⊗ ∣∣ ′〉

′
′ + ⊗ ∣∣ ′〉

′
′

+ ⊗ ∣∣ ′〉 ′
′ ∈

⊗

⊗

¯

¯

∣
¯

∣
¯

Such mixed tensor products and corresponding qubit-superqubit nonseparable
quantum states would be worthwhile to investigate in detail from the viewpoint of
entanglement and constructing SLOCC equivalence groups for them.

Innovation 3.18. [Concurrence through cross product of qutrits] Here we show that
concurrence of 2-qutrit states can be expressed through the cross product of qutrits.
Let us consider a general nonseparable 2-qutrit state which is not the tensor product of
two qutrits (3.61)

x i j(2) , (3.85)
i j, 0,1,2

ij(3) ∑Ψ = ⊗ ′
′=

′

H Hx x i j1, , , . (3.86)
i j, 0,1,2

ij ij
2

3 3∑ = ∈ ∈ ′ ∈ ′
′=

′ ′

Now we present 2-qutrit state (3.85) as some special kind of superposition by
introducing three (ancilla) qutrits i (3)Φ and call it the semi-separable form of
2-qutrit state

a a a(2) 0 1 2 , (3.87)(3) 0 0 1 1 2 2Ψ = Φ ⊗ ′ + Φ ⊗ ′ + Φ ⊗ ′

y y y a y i j0 1 2 , , , , 0, 1, 2, (3.88)i i i i i i ij(3) 0 1 2 Φ = Φ = + + ∈ =

H Hy for each i i j1, 0, 1, 2, , . (3.89)
j 0,1,2

ij
2

3 3∑ = = ∈ ′ ∈ ′
=

Both normalizatons (3.86) and (3.89) lead to the restriction on the coefficients ai in
the expansion (3.87), and if they are real ai ∈ , then a a a 10

2
1
2

2
2+ + = , moreover,

in the simplest case we can choose

a a a
1

3
. (3.90)0 1 2= = =
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Thus, we obtain the relation between amplitudes

y x 3 . (3.91)ij ij=

Let us construct three cross products (3.65) of the ancilla qutrits (3.88)

i j i jΦ × Φ ≡ Φ × Φ , i j( , ) (0, 1), (1, 2), (2, 0)= , which have the square norms
(3.66) (given in terms of their amplitudes (3.88) in the form which is convenient for
application to superqubits)

y y y y y y y y y y y y , (3.92)0 1
2

00 11 01 10
2

00 12 02 10
2

01 12 02 11
2∣Φ × Φ ∣ = − + − + −

y y y y y y y y y y y y , (3.93)1 2
2

10 21 11 20
2

10 22 12 20
2

11 22 12 21
2∣Φ × Φ ∣ = − + − + −

y y y y y y y y y y y y . (3.94)2 0
2

00 21 01 20
2

00 22 02 20
2

01 22 02 21
2∣Φ × Φ ∣ = − + − + −

Observe, that the sum of the square norms after the substitution (3.91) coincides with
the concurrence for 2-qutrits (Cereceda 2003) (in Pashaev 2023 the coefficient 3 was
lost). Thus, we obtain the expression for the 2-qutrit concurrence

( )C (2) . (3.95)y x3 (3) 0 1
2

1 2
2

2 0
2

3ij ijΨ = ∣Φ × Φ ∣ + ∣Φ × Φ ∣ + ∣Φ × Φ ∣ ∣ =

Definition 3.19. The concurrence of 2-qutrit state (3.95) can informally be treated as
the space diagonal of the rectangular parallelepiped (cuboid) built on three ancilla
qutrit cross product vectors i jΦ × Φ , i j( , ) (0, 1), (1, 2), (2, 0)= with the
further substitution (3.91). We call this procedure a cross product concurrence
computation.

Innovation 3.20. (Cross product of 7-qudits). The cross product of two vectors
(without modifications or extensions of its standard definition) exists in three and
seven dimensions only (Brown and Gray 1967). Therefore, the above general method
of concurrence construction can be provided in a similar way for two 7-qudit state using
7 ancilla 7-qudit cross products. The final formula ( )C (2)7 (7)Ψ will have possibly the
same shape as that of 2-qutrit state (3.95), but with 7 summands.

Innovation 3.21. (Cross product of n-qudits). The cross product can be defined in n
dimensions if we wish to modify it by an additional cross term (Silagadze 2002, Tian
et al 2013). In the same way, the concurrence for n-qudit state ( )C (2)n n( )Ψ can be
computed through their cross products using the above procedure of introducing n
ancilla n-qudits (3.87) and considering the space diagonal of the rectangular
parallelepiped in n dimensions, similarly to (3.95).

Innovation 3.22. (Cross product of 7-superqudits). The cross product concurrence
computation procedure can also be applied for superqubits because they are effectively

Innovative Quantum Computing

3-18



defined in three-dimensional space (superspaceH(2 1)∣ ), as well as for 7-superqubits in
effective seven-dimensional superspace Hr s( )∣ , r s 7+ = . We can introduce a super-
analog of (3.63), at least informally, taking into account 2 sign rule in further
calculations and use the graded involution (3.4) instead of the complex conjugation.
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Chapter 4

Duality quantum computing

The duality (quantum) computer is based on the interference principle of any
quantum system, but in a special way (Long 2006a, Long and Liu 2008). The main
idea is to consider an undisturbed quantum system from the wave viewpoint, while
on the measurement stage it is treated from the particle viewpoint. In this way, the
initial quantum state (as wave) can be (1) decomposed into subwaves moving along
separate paths and (2) combined at some point where they interfere (Gudder 2007).
These two operations provide the additional duality parallelism, which can improve
the calculational characteristics and the possible superiority of a duality computer
(Long 2006a, Gudder 2008). The corresponding two additional operations are
quantum operators of a new kind (duality gates): (quantum wave) divider and
(quantum wave) combiner. The subwaves pass through a set of quantum gates and
are collected by the combiner. The measurement is then performed on the joint final
state. This procedure is a division of state of the same particle but is not a clone of
the state of one particle onto another particle, and therefore this does not violate the
no cloning theorem (Long 2011). The connection of the duality computer concept
with the interference principle and computational applications was given in Long
and Liu (2008), and the experimental realization was given in Wei et al (2017). Here
we outline general mathematical constructions of a duality computer and present a
new interpretation based on analogy with a convolution product in the polyadic
Hopf algebra theory (Duplij 2022), which can be interesting by itself.

4.1 Duality computing and polyadic operations
Let us consider the complex Hilbert spaceH with the inner product and denote

the direct sum of n its copies by H H H H

n

n
i
n

i n1 1

� ��� ���
= ⊕ = ⊕ ⋯⊕⊕

= , where H Hi = ,

i n1 ⩽ ⩽ . For short, we also use the vector-like notation H H n→
= ⊕ , such that the

total quantum state i
n

i1 ψ⊕ = becomes
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H Hn i n( ) , , 1 , (4.1)

n

i i

1

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ψ
ψ

ψ

ψΨ
→

= Ψ
→

=
⋮

∈
→

∈ ⩽ ⩽

where we use number of slits n in the vector state (or operators below) manifestly
when it will be needed.

If all the states in (4.1) are the same iψ ψ= , then we place the subscript (=) as

follows Ψ
→

= Ψ
→

= , and this state will be called symmetric. A similar brief notation

will be used for other variables taking values in the direct sum.

The total inner product → of two vectors Ψ
→

and Φ
→

is defined by (in the

bra-ket notation)

H H i n, , , 1 . (4.2)n n i i i1 1 2 2φ ψ φ ψ φ ψ φ ψΦ
→

Ψ
→

= + + ⋯ + ∈ ∈ = ⩽ ⩽
→

The spaceH
→

endowed with the total inner product → (4.2) becomes a complex
Hilbert space. The norm of the total space → is induced by (4.2)

, (4.3)n1
2

2
2 2ψ ψ ψΨ

→
= + + ⋯+

→

where i i iψ ψ ψ= is the norm in Hi.

Thus, we have four different mappings of Hilbert spaces H and H
→

H H , (4.4)→

H H , (4.5)→
→

→

H H , (4.6)→
→

H H . (4.7)→
→

The first two mappings (4.4)–(4.5) are the standard (bounded linear) operators in

the Hilbert spaces, such that H HT: → and H HT :
→ →

→
→
, where

H HnT T

T
T

T

T( ) , : , (4.8)

n

i

1

2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

→
=

→
= ⋮ →

The action on the total quantum state becomes

T

T
T

T

T
T

T

, (4.9)

n n n n
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1 1
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⎠

⎟
⎟
⎟

ψ
ψ

ψ

ψ
ψ

ψ

→
Ψ
→

= ⋮ •
⋮

=
⋮
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and we informally define T Ti i i iψ ψ≔ , such that T T
→

Ψ
→

≔
→

Ψ
→

, and (•) is the
Hadamard product (here it is the componentwise action). The norm of the total

operator T
→

is defined by analogy with (4.3)

T T T T , (4.10)n1
2

2
2 2→

= + + ⋯+

where H{ }T sup , , 0
T

i
i i

i
i i iψ ψ= ∀ ∈ ≠ψ

ψ
.

The inner product in H of any quantum state Hφ ∈ with the transformed
state T ψ can be written as the functional T T T( )( )φ ψ φ ψ φ ψ= = ,
which is the convolution (in ) of the operator T with the states φ and ψ . The

convolution of the operator T
→

in the total Hilbert spaceH
→

should be written with
respect to the total inner product → (4.2) in the following way

T T T T . (4.11)n n n1 1 1 2 2 2φ ψ φ ψ φ ψΦ
→ →

Ψ
→

= + + ⋯ + ∈
→

If the states are the same φ ψ= , then the operator convolution Tψ ψ is
called the expectation value of the operator T, and the total expectation value of

HT
→

∈
→

is determined using (4.11) with Φ
→

= Ψ
→

.

The adjoint operator T* with respect to the inner product ∣ inH is defined by

T T , (4.12)φ ψ ψ φ* = ∈

where () is the complex conjugation. The corresponding adjoint operator T*
⎯ →⎯⎯

in the

total Hilbert space H
→

is defined in the similar way with respect to the total inner
product

T T , (4.13)Φ
→ →* Ψ

→
= Ψ

→
Φ
→→ →

which can be written using (4.11) as

T T T T . (4.14)n n n1 1 1 2 2 2ψ φ ψ φ ψ φΦ
→ →* Ψ

→
= + + ⋯ + ∈

→

The convolution can be written as T T( )( )φ ψ φ ψ= , where the bra
vector T( )φ in the matrix notation corresponds to Tφ† , which is equal to T( )φ† †

(because T T*⟶ † in the matrix notation), where (†) is the Hermitean conjugation.
Thus, informally we can define T Tφ φ≔ * to get the conventional relation for
the adjoint operator

T T . (4.15)φ ψ φ ψ= *

In the total space we informally define by analogy T TΦ
→ →

≔
→ * Φ

→
, and we have

with respect to the total inner product in the total Hilbert space H
→
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T T , (4.16)Φ
→ →

Ψ
→

=
→ * Φ

→
Ψ
→

∈
→ →

which can be expanded using (4.11)–(4.14) to obtain

T T T T T T . (4.17)n n n n n n1 1 1 2 2 2 1 1 1 2 2 2φ ψ φ ψ φ ψ φ ψ φ ψ φ ψ+ + ⋯ + = + + ⋯ +* * *

It follows from (4.11), (4.17), and the commutativity of  that knowing the
operator convolutions (which are in ) in each subspace determines the total
convolutions uniquely, but not vice versa.

Recall that the unitary operator T U= preserves the inner product in the Hilbert
space

U U . (4.18)φ ψ φ ψ= ∈

Using (4.15), we standardly obtain that unitary operators satisfy

U U U U id. (4.19)*◦ = ◦ * =

In the direct sum of spaces H
→

we have the definition of U
→

with the respect of the
total inner product

U U , (4.20)
→

Φ
→ →

Ψ
→

= Φ
→

Ψ
→

∈
→

and by means of (4.16) we obtain

U U U U id, id id id id .
(4.21)

n� ���� ����→ *◦
→

=
→

◦
→*=

→ →
= ⊕ ⊕ ⋯⊕

The unitary operators U{ } acting in H are widely used as quantum gates in

quantum computers, while the vector operators U{ }
→

act in the total spaceH
→

and are
exploited as vector quantum gates in duality computing (Long and Liu 2008).

The second two mappings (4.6)–(4.7) can have another meaning (than the
previous ordinary operators acting in some Hilbert space) because they are multiary

operations between Hilbert spaces: H and H
→
. We propose to treat them as n-ary

comultiplication (4.6) and n-ary multiplication (4.7) of the special kind.

Definition 4.1. Let Hψ ∈ be a quantum state in the Hilbert space H , then the
divider Dp is the operation which splits the quantum wave into n weighted subwaves,
describing multi-slits, as

H H HnD ( ): , (4.22)n
p →

→
= ⊕

n

p
p

p

p

p

p

P pD ( ) , , (4.23)

n n

ip

1

2

1

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ψ

ψ
ψ

ψ

ψ
ψ

ψ

= ⋮ •
⋮

=
⋮

=
→

• Ψ
→

∈=
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where the probability distribution{ }P
→

is called the divider structure. The divider

structure is normalized, if

( )P P p p p

p
p

p

p p( , , , ) 1, . (4.24)
i

n

1
n

n

i i1 2

1

2 2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∑→ →
= ¯ ¯ … ¯ ⋮ = = ∈

=

†

Definition 4.2. The divider structure is called uniform, if

p p p
n
1

. (4.25)n1 2= = ⋯ = =

The divider operation nD ( )p (4.22) can be treated a special analog of n-ary
comultiplication (deformed n-ary coaddi) map ( n( )Δ ) in the polyadic Hopf algebra
theory (see Duplij 2022, chapter 9). The analog of polyadic total coassociativity for

nD ( )p is

H H

n n

n n

i j n i j

D D

D D

id id ( ) id id ( )

id id ( ) id id ( ),

, 0, , 1, , id id : , id .

(4.26)

n i i

n j j

1

1

p p

p p

H

� ��� ��� � ��� ���

� ��� ��� � ��� ���

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

ψ ψ

⊕ ⋯⊕ ⊕ ⊕ ⊕ ⋯⊕ ◦

= ⊕ ⋯⊕ ⊕ ⊕ ⊕ ⋯⊕ ◦

∀ = … − ≠ ≡ → ◦ =

− −

− −

There are n( 1)2− relations in (4.26). If not all of them satisfied the polyadic
coassociativity, then this is called partial (see, e.g. Thurston 1949, Belousov 1972,
Sokhatsky 1997).

Definition 4.3. Let HΦ
→

∈
→

be a direct sum of quantum states (4.1), then the
combiner operation that gathers multi-slits in one quantum state as follows

H HnC ( ): , (4.27)q
→

→

H n q q q Q qC C( ) , , (4.28)

n

n n

T

iq q

1

2
1 1 2 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

ψ

ψ

ψ

ψ ψ ψΨ
→

=
⋮

= + + ⋯ + =
→

Ψ
→

∈ ∈

where the probability distribution Q q q q{ , , , }
T

n1 2

→
= … is called the combiner

structure, and it is normalized, if
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( )Q Q q q q

q
q

q

q q( , , , ) 1, . (4.29)
i

n

1

T

n

n

i i1 2

1

2 2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

∑→ ¯⎯→⎯
= …

¯
¯
⋮
¯

= = ∈
=

The combiner operation nC ( )q (4.27) can be treated as a deformed (by the

probability distributionQ
→
) analog of n-ary multiplication (or more exactly addition)

map ( )n( )μ in the polyadic algebra theory (Duplij 2022, chapter 5). The analog of
polyadic total associativity for Cq is

H H

n n

n n

i j n i j

C C

C C

( ) id id ( ) id id

( ) id id ( ) id id ,

, 0, , 1, , id id : , id .

(4.30)

n i i

n j j

1

1

q q

q q

H

� ��� ��� � ��� ���

� ��� ��� � ��� ���

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

ψ ψ

◦ ⊕ ⋯⊕ ⊕ ⊕ ⊕ ⋯⊕

= ◦ ⊕ ⋯⊕ ⊕ ⊕ ⊕ ⋯⊕

∀ = … − ≠ ≡ → ◦ =

− −

− −

There are n( 1)2− relations in (4.26). If not all of them satisfied the polyadic
associativity, then this is called partial (see, e.g. Thurston 1949, Belousov 1972).

Proposition 4.4. The combiner operation nC ( )q is totally polyadic associative, if the

probability distribution{ }Q
→

is idempotent

Q Q Q q q i n, or , 1, , . (4.31)
i i
2→

•
→

=
→

= = …

Proof. Make the action of both sides of (4.30) on ψ and insert (4.28) into each of n
places consequently to get (4.31).

Corollary 4.5. Because qi ∈ , and in  there only two idempotents, that are 0 and
1, the total associativity of Cq for invertible qi implies that all q 1i = , i n1, ,= … .

Corollary 4.6. If some qi in (4.28) are not idempotent (4.31), then the combiner

operation is a polyadic operator (n-ary multiplication) H HC :q
→

→ that is not totally
associative.

Definition 4.7. The combiner structure{ }Q
→

is called uniform, if

q q q
n
1

. (4.32)n1 2= = ⋯ = =
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The nonassociative binary operators are widely used in quantum mechanics and
quantum field theory (Løhmus et al 1994).

Let us consider possible relations between divider and combiner operations.
Initially, we will not fix the probability distributions (in our approach, deformation

parameters){ }P
→

and{ }Q
→

, trying to find their connections in special cases.

Proposition 4.8. The composition (◦) of divider and combiner is the identity
operator in H , if

n n q p q p q p q pC D( ) ( ) id 1, , . (4.33)n n i iq p 1 1 2 2◦ = ⟺ + + ⋯ + = ∈

Proof. It follows directly from consequent acting first of Dp and then Cq on the
quantum state ψ and then using the definitions (4.23) and (4.28).

Corollary 4.9. A particular case

q p (4.34)i i= ¯

corresponds to the complex duality computing (Cao et al 2012), in this choice the
condition (4.33) leads to uniformity of both nC ( )q (4.32) and nD ( )p (4.25).

Without the restrictions (4.34) the equation (4.33) has an infinite number of
solutions, even when both divider and combiner operations are uniform.

Definition 4.10. We say that the divider and combiner are consistent if they are
similar to n-ary coalgebra map and n-ary algebra map, respectively (Duplij 2022,
chapter 9), i.e., nD ( )p and nC ( )q satisfy

n n n n nC D D D C( ) ( ) ( ) ( ) ( ) . (4.35)

n

q p p p q

� ���� ����⎛

⎝
⎜

⎞

⎠
⎟◦ ⊕ ⋯⊕ Ψ

→
= ◦ Ψ

→

In the Hopf algebra theory, the consistency condition is the part of polyadic
bialgebra definition in terms of n-ary multiplication and n-ary comultiplication
(Duplij 2022, chapter 9).

Proposition 4.11. If the total state is symmetric 〉 Ψ
→

= Ψ
→

= (4.1), then the divider

and combiner are consistent, when the probability distributions are connected by n
equations

q p p p p q q q i n p q( ) ( ), 1, , , , . (4.36)i n i n i i1 2 1 2+ + ⋯ + = + + ⋯ + = … ∈

Proof. It follows directly from the definitions (4.23), (4.28) and the consistency
condition (4.36).
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In case n = 2, we have only one condition q p q p1 2 2 1= .

Definition 4.12. We introduce an analog of the polyadic ith partial antipode Si

(Duplij 2022, chapter 9) by

Hn n nC S D( ) id id ( ) id id ( ) , . (4.37)iq p

n i i1� ��� ��� � ��� ���⎛

⎝
⎜

⎞

⎠
⎟ ψ ψ ψ◦ ⊕ ⋯⊕ ⊕ ⊕ ⊕ ⋯⊕ ◦ = ∈

− −

The full antipode is defined as nS S ( )ipq = , i n1, ,= … if all partial antipodes are
equal.

For ith partial antipode from the definitions (4.23), (4.28) and (4.37) we obtain

n
q p

q p p qS ( )
1

1 , , . (4.38)
k k i

n

1,

i
i i

k k i i
⎛

⎝
⎜

⎞

⎠
⎟∑= − ∈

= ≠

To finally understand the general algebraic structure of the duality computing, we
turn to further similarity with the polyadic Hopf algebra theory (Duplij 2022,
chapter 9) and introduce an analog of the n-ary convolution for gates. Recall that
the binary convolution product of two operators T1 and T2 in the bialgebra having
multiplication μ and comultiplication Δ is defined by T T( )1 2μ◦ ⊗ ◦Δ (Abe 1980,
Sweedler 1969, Radford 2012).

Let T
→

be an operator (4.8) in the total Hilbert spaceH
→

(in the vector notation),
Dp and Cq be the divider (4.23) and combiner (4.28).

Definition 4.13. The duality n-ary convolution of the vector operator T
→

is the
composition

( ) n n n nQ T C T T T D C T D( ) ( ) ( ) ( ). (4.39)

n
n q p

ndual
( ), ,

q 1 2 p q p

� ���� ����⎛

⎝
⎜

⎞

⎠
⎟

→
= ◦ ⊕ ⊕ ⋯⊕ ◦ = ◦

→
◦

In this way, the antipode (4.37) can be treated as the polyadic inverse of the
identity with respect to the n-ary convolution product (4.39)

Informally, the ordinary quantum computation process (on pure states) consists
of:

(1) Preparation of the initial state initψ .
(2) Computation as consequent action on ψ with the set of k quantum gates

being unitary operators U U U{ , , , }k(1) (2) ( )… by their composition to obtain
the final (still not measured) quantum state

U U U U U . (4.40)k k
fin

( ) ( 1) (2) (1)
init initψ ψ ψ= ◦ ◦⋯◦ ◦ =−

(3) Measurement M: fin measuredψ ψ⟶ .
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In the duality computation processing, one changes (2) and replaces (4.40) with
the more complicated set of gates acting in subspaces. Indeed, if in each ith subspace
we have k unitary gates

H H i nU

U
U

U

U U U U U U, , : , 1, , , (4.41)

n

i i
k

i
k

i i i

1

2 ( ) ( 1) (2) (1)

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

→
= ⋮ = ◦ ◦⋯◦ ◦ → = …−

then we obtain in total kn unitary gates.

Definition 4.14. Duality computation with n sub-slits is defined by kn unitary gates,

vector unitary gates U
→

(instead of the standard unitary gate U (4.40) composed from
k unitary gates)

( )Q U , (4.42)n q p
fin dual

( ), ,
initψ ψ=

→

where the duality operator ( )Q Un q p
dual
( ), , →

is defined in (4.39).

Effectively, any operator connecting initial and final quantum states can be called
a generalized quantum gate, but duality quantum gates are special nonunitary
combinations of the given unitary operators.

Theorem 4.15. The duality quantum gate ( )Q Un q p
dual
( ), , →

is a nonunitary operator of the
form

( ) q p q p q p q pT Q U U U U , , . (4.43)n q p
n n n i idual dual

( ), ,
1 1 1 2 2 2=

→
= + + ⋯ + ∈

Proof. It follows directly from (4.42) the divider (4.23) and combiner (4.28).

Remark 4.16. The duality gate (4.43) is nonunitary, but with the special choice of

probability distributions{ }Q
→

and{ }P
→

one could obtain the unitary Tdual.

If the probability distributions satisfy (4.33), then the product q pi i can be treated
as the probability of the quantum wave to pass through the ith slit.

Corollary 4.17. If all components of U
→

are equal and (4.33) satisfied, then the
duality quantum computer reduces to the ordinary quantum computer.

The case q pi i= ¯ was considered in Cao et al (2012), and such Tdual was called
generalized duality quantum gate.
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4.2 Higher duality computing
Now we propose another generalization of the duality computation (4.42), i.e., the
higher duality one, by using higher powers of the divider (4.23) and combiner (4.28).
Because they are polyadic (multiary) operations, to be consistent with arities and
number of entries, we should use the polyadic powers for them (Duplij 2022). The
main consequence of this would be the possibility of having different compositions
of the divider nD ( )pp (4.23) and combiner nC ( )q q (4.28) with different arities n np q≠ ,
such that the number of slits remains to be equal to n.

Definition 4.18. The polyadic power ℓp of the divider nD ( )p p (4.23) as np-ary
comultiplication (coaddition) is defined by the coiterated coaction (or ℓp

compositions)

H H H H

( ) ) )n n n n

n

D D D D

D

( ) id id id id ( ) ( ) ( ) ,

id: , ( ): ,

(4.44)
ℓ

n

p p p p p p p p

p p

n n ℓ1 1

p

p p p

p

� ��� ��� � ��� ��� � ������ ������⎛

⎝

⎜
⎜

⎛

⎝

⎜
⎜

⎛

⎝

⎜
⎜

= ⊕ ⋯⊕ ⊕ ⋯ ⊕ ⋯⊕ ⊕ ⋯◦ ◦

→ →

◦

⊕

− −

and the arity nq′ of the composed operation (4.46) is equal to

( )n ℓ n 1 1. (4.45)p p p′ = − +

Definition 4.19. The polyadic power ℓq of the combiner (4.28) as nq-ary multi-
plication (addition) is defined by the iterated action (or ℓq compositions)

H H H H

) )( ) ( (n n n n

n

C C C C

C

( ) ( ) ( ) ( ) id id id id ,

id: , ( ): ,

(4.46)
ℓ

n

q q q q q q q q

q q

ℓ n n1 1

q

q q q

q

� ������ ������ � ��� ��� � ��� ��� ⎞

⎠

⎟
⎟

= ◦ ◦⋯ ⊕ ⊕ ⋯⊕ ⋯⊕ ⊕ ⋯⊕

→ →

◦

⊕

− −

and the arity nq′ of the composed operation (4.46) is equal to

( )n ℓ n 1 1. (4.47)q q q′ = − +

Note that the brackets in the polyadic powers (4.46) and (4.44) can be omitted if
operations nC ( )q q and nD ( )p p are totally associative and coassociative, respectively.

Now, by analogy with (4.33), the composition of ℓp power of divider and ℓq power
of combiner can be the identity operator inH but not for all divider and combiner
arities np and nq.

Proposition 4.20. The composition of ℓp power of divider and ℓq power of combiner
can be the identity operator in H if their arities satisfy

n nC D( ) ( ) id, (4.48)ℓ ℓ
q q p p

q p◦ =◦ ◦
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( ) ( )ℓ n ℓ n1 1 . (4.49)p p q q− = −

Proof. It follows directly from the definitions (4.23) and (4.28) that the arities of the
powers should coincide n np q′ ′= and the arity formulas (4.45), (4.47).

Equation (4.49) can be treated as so called quantization of arities, and therefore
the analog of (4.43) depends of their concrete values.

Example 4.21. Let us consider the minimal case of nonbinary (n 2p,q > ) and unequal
arities n 3p = , ℓ 3p = and n 4q = , ℓ 2q = , and the total number of slits

( ) ( )ℓ n ℓ n1 1 1 1 7p p q q− + = − + = . Then for the values of the polyadic powers of
divider (4.44) and combiner (4.46) we have manifestly using (4.27) and (4.22)

p

p

p p

p p

p p

p p

p

D (3) , (4.50)p
3

1

2

1 3

2 3

1 3
2

2 3
2

3
3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

ψ

ψ
ψ
ψ
ψ
ψ

ψ

ψ

=◦

q q q q q q q qC (4) (7) ( ) . (4.51)q 2
1 1 1 2 2 3 3 4 4 2 5 3 6 4 7ψ ψ ψ ψ ψ ψ ψΨ

→
= + + + + + +◦

The condition that the composition of the powers (4.50) and (4.51) to be the
identity (4.48) gives the equation for the probability distributions

{ }Q q q q q(4) { , , , }1 2 3 4

→
= and{ }P p p p(3) { , , }1 2 3

→
=

q p q q p q q p p q q p p q p p q p p q p 1, (4.52)1
2

1 1 2 2 1 3 1 3 1 4 2 3 2 1 3
2

3 2 3
2

4 3
3+ + + + + + =

which is nonlinear in qi, pi and should be compared with the standard linear case of
unity powers (4.33).

Let us introduce the higher analog of the duality n-ary operator Q n
dual
( ),q,p (4.39).

Definition 4.22. The higher duality n-ary convolution of the vector operator HT
→

∈
→

is the composition of the ℓp dividers (4.44) and ℓq combiners (4.46) which maps
H H→

( ) n n n nQ T C T T T D C T D( ) ( ) ( ) ( ), (4.53)ℓ ℓ
n ℓ

n
ℓ ℓ ℓ

hdual, ,
( ),q,p

q q 1 2 p p q q p p

n

q p

q p q p
� ���� ����⎛

⎝
⎜

⎞

⎠
⎟

→
= ◦ ⊕ ⊕ ⋯⊕ ◦ = ◦

→
◦◦ ◦ ◦ ◦
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where the number of slits n is equal to

( ) ( )n ℓ n ℓ n1 1 . (4.54)p p q q= − = −

Definition 4.23. The higher duality computation with n sub-slits is defined by kn

unitary gates, vector unitary gates U
→

(4.41)

( )Q U , (4.55)ℓ ℓ
n

fin hdual, ,
( ),q,p

initq p
ψ ψ=

→

where the duality operator ( )Q Uℓ ℓ
n

hdual, ,
( ),q,p

q p

→
is defined in (4.53).

Theorem 4.24. The ( )ℓ ℓ,q p -higher duality quantum gate ( )Q Uℓ ℓ
n

hdual, ,
( ),q,p

q p

→
is a non-

unitary operator of the form

H H( ) n nT Q U C U D T( ) ( ), : . (4.56)ℓ ℓ
n ℓ ℓ

hdual hdual, ,
( ),q,p

q p hdualq p
q p=

→
= ◦

→
◦ →◦ ◦

It is important that not all possible values of arities and powers are allowed, but
only those which satisfy the quantization condition (4.54). The allowed number of
slits n and corresponding nq, np and ℓq, ℓp are presented in table 4.1. Note that the
unusual peculiarity comes from the nondiagonal entries, which correspond to
unequal arities of divider and combiner n np q≠ . The table is symmetric, which
means that the arity n (number of slits) is invariant under the exchange
( ) ( )n ℓ n ℓ, ,p p q q⟷ following from (4.54).

Table 4.1. The allowed valued of slits for given arities n n,p q and polyadic powers (or numbers of divider and
combiner compositions) ℓ ℓ,p q. The framed box corresponds to the binary standard duality convolution (4.39)
with two slits n = 2.
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Example 4.25. (Example 4.21 continued). With the concrete parameters (4.50) and
(4.51), we have the 7-ary convolution product with three dividers and two combiners

( )
q p q q p q q p p q q p p q p p q p p q p

T Q U C U D

U U U U U U U

(4) (7) (3)

.
(4.57)ℓ ℓ

n
hdual hdual, ,

( ),q,p
q

2
p

3

1
2

1 1 1 2 2 2 1 3 1 3 3 1 4 2 3 4 2 1 3
2

5 3 2 3
2

6 4 3
3

7

q p
ψ=

→
= ◦

→
◦

= + + + + + +

◦ ◦

Effectively, a nonunitary operator connecting initial and final quantum states can
be called a higher generalized quantum gate, i.e., higher duality quantum gate.
Indeed, to continue example 4.21 and 4.25, and consider a nonunitary generalized
quantum gate

r r r r r r r rT U U U U U U U( ) , (4.58)1 1 2 2 3 3 4 4 5 5 6 6 7 7= + + + + + +

r r r r r r r r1, . (4.59)i1 2 3 4 5 6 7+ + + + + + = ∈

If the parameters ri are given, we can find the corresponding higher duality n = 7
slits quantum gate (4.57) with the composition of three (ternary) dividers (4.50) and
two (4-ary) combiners (4.51), which have the following probability distributions

{ }P (3)
→

and{ }Q (4)
→

, where, e.g.,

p
r

r
r
r

p
r

r r
r r

r
r r

r
r

r r r
r p

r

r r
r r

r
r

r

r r r
r

1
,

1
,

1
, (4.60)1

2
4

5

7
2

1

2 3
2 4 5

6

7 1
5 2

3 3
8

4 5
3

6
2 7 3

1
2

2 3
3 5 6

1
5 2

3 3
8

4 5
3

6
2 76 3= = =

q
r

r r
r r

r
r

r

r r r
r q

r
r

r
r

r
r

r r r
r

1
,

1
, (4.61)1

1
3

2 3
4 5 6

1
5 2

3 3
8

4 5
3

6
2 7 2

1

3
2 5

1
5 2

3 3
8

4 5
3

6
2 73= =

q
r

r
r

r r r
r q

r
r

r
r

1
,

1
, (4.62)3

1
5 2

3 3
8

4 5
3

6
2 7 4

1
3

4

6

6= =

and there are five other more cumbersome solutions. We should also take (4.59) into
account, which gives (4.52).

Let us consider the reverse convolution (with respect to (4.39)) by the divider and
combiner of an operator in H .

Definition 4.26. The duality reverse n-ary convolution of the operator H HT: →
by the divider nD ( )p and combiner nC ( )q is the composition

n nP T D T C( ) ( ) ( ). (4.63)n
rdual
( ),q,p

p q= ◦ ◦
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Proposition 4.27. The action of the duality reverse n-ary convolution with the

probability distributions{ }Q
→

and{ }P
→

on the vector quantum state Hn( )Ψ
→

∈
→

=

is

n P Q T nP T( ) ( ) ( ) , (4.64)n T

rdual
( ),q,p

K⎛
⎝

⎞
⎠

Ψ
→

=
→→

⊗ ˆ Ψ
→

= =

where K⊗ is the Kronecker product of the matrix P Q M ( )
T

n n
→→

∈ × and T̂ is the
matrix of the operator T in its matrix representation.

Proof. It follows from the manifest form of the divider (4.22) and combiner (4.27)
and their linearity.

Note that if the duality reverse n-ary convolution (4.63) could be identity (for
T id= ), then together with (4.33) the divider nD ( )p and combiner nC ( )q become an
n-ary analog of the biproduct in category theory (Mac Lane 1971). However, the

condition that is needed for this condition (P Q
T→→
is the identity matrix) is never

satisfied for nonvanishing probability distributions.

4.3 Duality quantum mode
The duality computer can be simulated by the ordinary quantum computer in a
special work mode, i.e., having an additional/auxiliary qubit (or qudit) (Wei et al
2016). The main idea of the duality quantum mode computer is to provide the one-
to-one correspondence of the auxiliary qudit state with the unitary operations on the
slits (Long 2011).

The total state of the k-qubits Hinitψ ∈ and one auxiliary qudit (n-dit)
representing n-slits Hauxφ ∈ is the direct product init auxψ φ⊗ . The divider
operation is represented by the unitary operator V acting on qudit, while the
combider operation corresponds to the unitary operator W acting on qudit auxφ .
Between V and W there are n controlled operations corresponding to U U U, n1 2⋯
one-to-one related to the states of qudit iU 1i⟷ − . The whole duality quantum
mode process can be presented as four consequent steps.

(1) Action of V on 0 aux. Prepare the initial quantum state, e.g., with
0 0aux auxφ = = , as 0initψ ⊗ . The divider operation for n slits

corresponds to the acting of the unitary operator V of the qudit (n-dit) state
0 as

i i V iV V0 0 1 1 0 1 ,
(4.65)

i

n

i

n
V

1

id

1

i,1

� ���� ����

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑↦ = − − = −

= =

where V i V1 0i,1 = − ∈ is the convolution of operator H HV: →
between the states i 1− and 0 , i.e., its matrix element, which represents

the divider n-ary structure{ }P n( )
→

(4.23) after the identification
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p V i V1 0 . (4.66)i i,1= = −

Obviously, by definition

V p 1, (4.67)
i

n

i

n

1 1

i i,1
2∑ ∑= =

= =

as it should be for probabilities. Thus, using (4.65) and (4.66) the final sub-
state i 1initψ ⊗ − corresponds to the ith slit sub-wave, and

p i p i0 1 1 . (4.68)
i

n

i

n
Vid

1 1
i iinit init init∑ ∑ψ ψ ψ⊗ ↦ ⊗ − = ⊗ −

⊗

= =

(2) Action of Ui on initψ . The auxiliary controlled operation means that the
action of the unitary operator Ui on initψ will be applied to the ith slit only,
i.e., to the ith summand inside the last term (4.68). This is the reason why
the same (for each i) initial state initψ was inserted into the sum. Therefore,

p i p iU1 ( ) 1 . (4.69)
i

n

i

n
U

1

id

1
i i iinit init

i∑ ∑ψ ψ⊗ − ↦ ⊗ −
=

⊗

=

(3) Action of W on the state i 1− . By analogy with (4.65) for each ith slit we
have

i i j j i W jW W1 1 1 1 1 1 ,
(4.70)

j

n

j

n
W

1

id

1

j i,

� ���� ����

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑− ↦ − = − − − = −

= =

where W j iW1 1j i, = − − ∈ is the convolution of operator (being a
representative of the combiner) H HW: → between the states j 1− and
i 1− , i.e., its matrix element, which represents (for fixed ith slit) the
probabilities

q W j iW1 1 . (4.71)j
i

j i
( )

,= = − − ∈

Now the normalization condition is

W q j n1, 1, , , (4.72)
i

n

i

n

1 1

j i j
i

,
( ) 2∑ ∑= = ∀ = …

= =

as it should be by definition of probability. Then, using (4.69) and (4.70), the
final quantum state will take the form
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p q j

p q j j

U

U T

0 1

( 1 ) 1 ,

(4.73)
i

n

j

n

j

n

i

n

j

n
1 1

1 1 1

i i j
i

i j
i

i
j

init init
( )

( )
init qdual

( )
init

∑ ∑

∑∑ ∑

ψ ψ

ψ ψ

⊗ ↦ ⊗ −

= ⊗ − = ⊗ −

= =

= = =

where

q pT U (4.74)
i

n

1

j
j
i

i iqdual
( ) ( )∑=

=

represents the duality gate in ordinary quantum computer.
(4) Complete measurement. After the previous three steps the auxiliary qubit

arrives into the superposition state; therefore, the ith detector is placed at ith
slit, when the qudit wave function is in the final state i 1− .

Consider the properties of the duality gate operator T j
qdual
( ) (4.74). The condition

q p j n1, 1, , , (4.75)
i

n

1
j
i

i
( )∑ ⩽ ∀ = …

=

leads to the allowable duality gates (Long et al 2009). Because of the Cauchy–
Bunyakovsky–Schwarz inequality and unitarity of the operators V and W, together
with (4.67) and (4.72), we have

q p j n1, 1, , . (4.76)
i

n

1
j
i

i
( )∑ ⩽ ∀ = …

=

The duality gate (4.74) with the condition (4.76) is called the restricted allowable
generalized quantum gate (Long et al 2009, Cao et al 2010).

Now we present the higher duality computation on the ordinary quantum
computer. To model the polyadic power of the divider (4.44), we introduce the
higher analog of the unitary operator action on the qudit state (4.65) and call it the
duality power denoted by ℓ( )⊛ . In this case the number of slits n does not coincide
with the number of vectors of qudit nd, and they are related by the formula of
polyadic power (4.54) as follows

n ℓ n( 1) 1. (4.77)d= − +⊛

We propose the following definition of the duality power, which is consistent with
the polyadoc power (4.44). For instance, in case of quadratic duality power, instead
of (4.65), we have for the n slits and nd-dit the general formula

V V j V iV0 0 1 (1 ) 1 , (4.78)
i

n

j

n
V

1 1

i i j i i
2

,1 ,1 ,1 ,1 ,1

d d2 ⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

∑ ∑δ δ↦ = − + − −
= =

⊛
⊛
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n n2 1, (4.79)d= −

where i j,δ is the ordinary delta function, andVi,1 is defined in (4.66). For the ternary
duality power case ℓ 3=⊛ , to avoid cumbersome formulas, we give the concrete
example n 3d = , n = 7 from which the general pattern is clearly seen (cf (4.50))

( )p p p p p p p p pV0 0 0 1 2 1 2 1 2 , (4.80)3
1 1 1 2 3 2 3 2 3

V 3

⎡⎣ ⎤⎦↦ = + + + + + +⊛
⊛

where p Vi i,1= and V i jV1 1i j, = − − is the matrix element of the unitary
operator V, i j n, 1, , d= … .

The other steps (2)–(4) in the duality quantum mode computation can be taken
to be the same. This will lead to the higher nonlinear (in terms of the matrix elements
of the operators V and W) duality version of computation with the generalized
nonunitary quantum gates of the form (4.74).
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Chapter 5

Measurement-based quantum computing

The measurement-based quantum computation model (Raussendorf and Briegel
2001, Raussendorf et al 2003) is a counterpart of the standard circuit model
grounded on the unitary evolution (Deutsch 1989, Deutsch and Jozsa 1992). In
the latter, the measurement is provided at the end of the whole computation to get
the classical output, while in the measurement-based computation the principal
operation is the measurement itself. Informally, the computation starts with several
entangled qubits and measurements act on each qubit separately. The result is then
exploited for next measurements. To avoid measurement indeterminacy, local
unitary operations (named corrections) are implemented, which give the one-way
computation (Raussendorf and Briegel 2001).

In general, the computation or the measurement pattern (program) consists of
input and output sets of qubits connected with the sequence of basic commands. The
patterns are then merged using tensor products and compositions (Danos et al 2007).
The one-qubit measurement-based basic commands are:

(1) Preparation Ni of qubit i in the state + = +( 0 1 )/ 2i (set N);
(2) Entanglement = ∧E Zij ij (controlled-Z) of two qubits i and j (set E);
(3) Measurement αM ( )i of qubit i defined by projections on ± =α i

α± = ±αe P( 0 1 )/ 2 ( )i , where α = αP e( ) diag(1, )i is the phase
operator, α π⩽ ⩽0 2 is the angle of measurement (set M);

(4) Corrections being the Pauli operators Xi and Zi (set C).

The result of the measurement provided at qubit i is presented by outcomes
= ∈s 0, 1i 2, where the convention is =s 0i , if the initial qubit + i after the

measurement becomes +α i, while =s 1i , if + i collapses into −α i. After the
measurement, the set of initial qubits i{ } produces the sum (in 2) of individual
outcomes ∑ =s si , which is named signal, while the set i{ } is called the domain of the
signal.

doi:10.1088/978-0-7503-5281-9ch5 5-1 ª IOP Publishing Ltd 2023
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The main idea of this method is some additional functional dependence of the
corrections →X Xi i

s( ), →Z Zi i
s( ) and measurements α α→M M( ) ( )i i

s t( , ) from signals
s t, . Because the signals are in 2, the dependences from them become simple
discrete functions

⎧
⎨⎩

⎧
⎨⎩

= =
=

= =
=

X
I s
X s

Z
I s
Z s

, 0,
, 1

,
, 0,
, 1

, (5.1)i
s

i
i

s

i

( ) ( )

⎧

⎨
⎪

⎩
⎪

α α π

α
α

α π
α π

= − + =

= =
− = =
+ = =

− + = =

M M t

M s t
M s t

M s t
M s t

( ) (( 1) )

( ), 0, 0,
( ), 1, 0,

( ), 0, 1,
( ), 1, 1

. (5.2)i
s t

i
s

i

i

i

i

( , )

The signal modification of measurements (5.2) can be expressed by the X- and Z-
actions AX and AZ of conjugation with the Pauli matrices defined by (no summation)

α α α α◦ ≡ = − =M XM X M MA ( ) ( ) ( ) ( ), (5.3)X i i i i i i
(1, 0)

α α α π α◦ ≡ = + =M Z M Z M MA ( ) ( ) ( ) ( ). (5.4)Z i i i i i i
(0, 1)

The actions (5.3) and (5.4) commute because the addition of angles α is πmod 2 .
Since the measurements are destructive, the actions (5.3) and (5.4) can be simplified
as follows

α α= −M X M( ) ( ), (5.5)i i i

α α π= −M Z M( ) ( ). (5.6)i i i

The signal domains of dependent commands give the set of such measurements
that should be made before determination of the actual command value.

In general, the measurement pattern P is defined as
(1) Three sets:

a. The computation space V of qubits and the associated quantum state
space H , which is V⊗ ∈i

2.
b. The pattern inputs In V∈ and outputs Out V∈ sets, together with

their associated quantum state spacesHIn andHOut, correspondingly.
(2) Two injective maps In V→i: and Out V∈o: .
(3) The finite sequence of n commands … −A A A A, , , ,n n1 2 1 which act from the

left to the right as ⋯−A A A An n 1 2 1 on the pattern inputs from the set In.

In this notation, the measurement pattern becomes the map In Out→P: and the
pattern type is denoted by V In Out( , , ). To simplify the notation, the sets of states
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Ini( ) and Outo( ) are denoted by the same letters In and Out, correspondingly.
Providing a consequent pattern computation needs four conditions of definiteness

• Def0 If outcome state is not measured, then no commands depend on it.
Otherwise, one tries to apply a command depending on an outcome that is

not known.
• Def1 If a qubit is measured, then no commands act on it.

If not, then one tries to execute a command on an already measured, and
therefore changed, qubit.

• Def2 If a qubit is not the input one but not prepared, then no commands act
on it.

Otherwise, one tries to apply a command to a not existing qubit.
• Def3 If a qubit is not output, then it can be measured.

In other words, since measurement consumes the qubits, this statement
makes sure that the final state is in the output state.

If all of the statements are satisfied, then the conjunction =Def Def0
∧ ∧ ∧Def1 Def2 Def3 will be used. It is important that a given pattern should
satisfy Def , in general. The case when one exploits neither input not output qubits in
a pattern corresponds to the auxiliary qubits, which considerably enlarges the space
computation complexity. To avoid this, one should use as small number of the
auxiliary qubits as possible. Moreover, one assumes that the inputs In and outputs
Out can intersect, which can lead to simple unitaries implementations (Danos et al
2005).

The combination of patterns can be provided in two ways:
Composition If for two patterns defined by V In Out( , , )1 1 1 and V In Out( , , )2 2 2 we

have V V Out In∩ = =1 2 1 2, then the composition P P P= ◦2 1 can be given by
V In Out( , , ), where

V V V In In Out Out∪= = =, , , (5.7)1 2 1 2

and the commands are concatenated consequently.
Tensor product If the sets do not intersect V V∩ = ∅1 2 , then we can construct

the tensor product pattern P P P= ⊗2 1 which is defined by

V V V In In In Out Out Out∪ ∪ ∪= = =, , . (5.8)1 2 1 2 1 2

Since the sets V1 and V2 are disjoint, the commands from different patterns
commute and are applied for qubits from different sets independently.

If V is initially not measured qubits (and then still active), then we denote the set
V* as the measured qubits, which become classical bits. Therefore, the computation
state space is

HS VV V
V= Σ ×*

*, (5.9)2
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where V *
2 is outcome space of bits. We denote V Γ *→: 2, and then the space (5.9)

becomes the set of the quadruples

S V V Γ= * q{( , , , )} (5.10)

(for short notation, the set of pairs S Γ= q{( , )}), where HV∈q is a quantum state.
The value of signals given by Γ are defined as InΓ= ∑Γ ∈s i( )i

with the sum in 2. If
the outcome is empty, then the notation ∅

2 will be used. Some modification of the
outcome map can be defined as follows

⎧
⎨⎩

Γ
Γ

=
=
≠

∈k i j
k i j
j i j

i j k[ ]( )
,

( ), ,
, , , . (5.11)2

which maps V →∪* i
2

{ }
2. We can then write the action of the commands on the

computation space (5.9) as (suppressing V V*, )

Γ

Γ Γ Γ

Γ

⊗ +
↑

⟵ ⎯ →⎯⎯⎯
⏐↓⏐

∧

Γ
Γ Γ

Γ

( )

q
N

Y q q X q

E

Z q

( , )

( , ) ( , ) ( , )

,

(5.12)
Y X

i

i

i
s

i
s

ij

ij

( ) ( )i
s

i
s( ) ( )

and the action of the measurements (5.2) on the quadruples (5.10) as

V V
V V

V V

⎧
⎨
⎩

∪ ∪
∪

Γ
Γ

Γ
* ⎯ →⎯⎯⎯⎯⎯⎯

* +

* −

α α

α

Γ

Γ

( )
( )

i q
i q i

i q i
( { }, , , )

, { }, , [0 ] ,

, { }, , [1 ] ,
, (5.13)

M ( ) i

i

i
s t( , )

using the modified α from (5.2) in the form α α π= − +Γ ΓΓ t( 1)s .
For instance, the structure of the patterns with Pauli corrections X Y, in terms of

the above commands can be formally (with suppressing all indices) written as
(Mhalla et al 2022) ∏ XYM EN( ) .

In general, the execution of a pattern can be presented in the diagrammatic form
(schematically)

H H H H HIn In V Out
V Out

Out  ⟶ × ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ × ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ × ⟶
…∅ ∅ *−

. (5.14)A A A Apreparation , , , ,
2 2 2

n n1 2 1

The Brach map denoted by Bs can be formally written as

= ◦ ◦B C M U, (5.15)s s s

where H HIn V↪U: is a unitary embedding which is branch independent,
H HV Out→M :s is a projection being collection of measurements along the branch,

and Cs is a map corresponding to corrections on the output. Because all of the above
maps are unitary, the resulting branch map is also unitary
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∑ =†B B I, (5.16)
s

s s

where I is the identity matrix, and ∈s n
2. It follows from (5.16), that each pattern is

presented by a positive map that preserves the trace (Danos et al 2007). A pattern is
called deterministic if it is a positive trace preserving map and sends pure states to
pure states.
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Chapter 6

Quantum walks

Quantum walks are the quantum counterpart of the classical random walks and they
play an important role in the modelling of many phenomena, e.g., information
spreading in complex networks (Noh and Rieger 2004), optimal search strategies (Lv
et al 2002), genetic sequence location (van den Engh et al 1992), and chemical reactions
(Gillespie 1977). The term ‘quantum walks’ was introduced in Aharonov et al (1993),
but the idea to incorporate quantum effects to stochastic calculus appeared in Iche and
Nozieres (1978), while the coherence effects in evolution of Brownian quantum particle
were first considered in Schwinger (1961). The quantum analogies of classical random
walks in discrete time and space were investigated in Godoy and Fujita (1992). The
quantum cellular automata were introduced in Grössing and Zeilinger (1988), which
appeared to be equivalent to the construction of Aharonov et al (1993), and which can
be considered as one particle sector of the former; for a review, see (Arrighi 2019) and
more general (Venegas-Andraca 2012). The connections between correlated classical
random walks and quantum walks were given in Konno (2009) using matrix methods.

There are two models of quantum walks:

(1) Discrete quantum walks consist of two systems, called a walker and a coin,
and the evolution unitary operator acts on them in discrete time steps.

(2) Continuous quantum walks consists of one quantum system called a walker,
which ‘walks’ without time restrictions, which is described by the evolution
operator (Hamiltonian) and the Schrödinger equation (Childs et al 2002).

The general topology in both cases can be described by discrete graphs.

6.1 Discrete quantum walks
In the case of discrete quantum walks on a line, the total quantum state consists of
quantum states of the walker and the coin, i.e., the total Hilbert stateHtot becomes
the direct product
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H H H . (6.1)tot coin walk= ⊗

The position of the walker is described by the vector from the computational basis
of the walker Hilbert space Hwalk walkψ ∈ , which is infinite-dimensional and

countable, such that the walker state walkψ is the quantum superposition

w ℓ w w, 1, . (6.2)
ℓ ℓ

ℓ ℓ ℓwalk w
2 

 

∑ ∑ψ = = ∈
∈ ∈

In distinction to the classical coin, which can be in two states, the quantum s-state
coin can be not only in s canonical basis states 0 1 s 1, , ,c c c… − , but also in
their quantum superposition

c c cj , 1, . (6.3)
j

s

j

s

0

1

0

1

j j jcoin c
2 ∑ ∑ψ = = ∈

=

−

=

−

Usually, to be closer to the classical case, one puts s = 2. The total state of the
quantum walk is given by

, (6.4)tot coin walkψ ψΨ = ⊗

and the initial total state, if to take 0walk initial wψ = , becomes

0 . (6.5)tot initial coin initial wψΨ = ⊗

In general, the total state can be written as

( )ℓ ℓ0 1 , (6.6)
ℓ

ℓ ℓtot 0, c w 1, c w


∑ φ φΨ = ⊗ + ⊗
∈

( ) 1 , . (6.7)
ℓ

ℓ ℓ ℓ ℓ0,
2

1,
2

0, 1, 


∑ φ φ φ φ+ = ∈
∈

It follows from (6.2)–(6.3) that

c w ℓ j, , 0, 1, (6.8)j ℓ j ℓ, φ = ∈ =

and so the normalization condition (6.7) reduces one parameter from the set of ones
describing the total state (6.6).

By analogy with the classical random walk, we need one operator to move the
walker on the line and one operator to play the same role as the coin toss. In contrast
to the classic case, where such an operator is represented by a stochastic matrix, in
the case of the quantum walk evolution there is no room for randomness before
measurement and it is represented by a unitary matrix, which acts as an internal
rotation in the internal state space. The goal of the coin operator is to render the coin
state in a superposition, while the randomness is introduced by making a measure-
ment on the system after both evolution operators have been applied to the total
quantum system for many times.
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Thus, the evolution of a quantum walk is driven by the special composite action
of two unitary operators: (1) in the first, a shift operator S acts in a combined total
position-coin spaceH ;tot (2) in the second, the coin operator C acts in the coin space
Hcoin. In this way, the total evolution is described by the unitary operator U, which is
defined by the main formula of the coined quantum walk concept

U S C I( ), (6.9)w= ◦ ⊗

H H H H H H H HS C U: , : , : , (6.10)coin walk coin walk coin coin tot tot⊗ → ⊗ → →

where HIw walk∈ is the unity of the walker space Hwalk.
If we consider the two-state coin s = 2 (6.6), then the operator S should act on the

total quantum state (6.4) by shifts that are dependent from the coin state

( )ℓ ℓS 0 0 1 , (6.11)c w c w◦ ⊗ = ⊗ +

( )ℓ ℓS 1 1 1 . (6.12)c w c w◦ ⊗ = ⊗ −

This can be written in the unified form

( )ℓ ℓS j j ( 1) , (6.13)j
c w c w◦ ⊗ = ⊗ + −

i.e., the shift operator depends on the coin state S Sj= . Therefore, in the computa-
tional basis, S can be presented using two projections in Hc as (the outer product
representation)

ℓ ℓ ℓ ℓS 0 0 1 11 1 , (6.14)
ℓ ℓ

c c w w c c w w
 

∑ ∑= ⊗ + + ⊗ −
∈ ∈

which satisfies the required shifting properties in the walker space (6.11)–(6.12).
The coin operator C is an arbitrary element of the unitary groupU s( ), and for the

two-state coin s = 2, and it can be represented by the four real parameter 2 × 2
complex matrix Ĉ of the form

C C a b
c d

e e e
e e

a b c dcos sin
sin cos

, , , , , , , , . (6.15)i
i i

i i, , ,  ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

θ θ
θ θ

α β γ θˆ = ˆ = =
−

∈ ∈α β γ θ
γ α β

β α− −

In most cases, for quantum walks with two-state coin the Hadamard operator is
widely used

( )C 0 0 0 1 1 0 1 1
1

2
, (6.16)H c c c c c c c c= + + −

or in the matrix representation (6.15)

C C
1

2
1 1
1 1

. (6.17)H
2

,
2

,
2

,
4

⎛
⎝

⎞
⎠

ˆ = ˆ =
−α π β π γ π θ π= = = =
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The evolution of the total state (6.4) during the discrete time ( t= ) quantum walk
after t steps t( )totΨ is given by the application of the unitary operator (6.9) t times in
the following way

t U( ) (0) , (6.18)t
tot totΨ = Ψ

where (0)tot tot initialΨ = Ψ (6.5).

Example 6.1. Using (6.9) and (6.16), we can get the first three steps for the
Hadamard quantum walk with the two-state coin as

0 1(1)
1

2
1

1

2
1 , (6.19)tot c w c wΨ = ⊗ + ⊗ −

1 0 1 0(2)
1
2

2
1
2

( ) 0
1
2

2 (6.20)tot c w c c w c wΨ = − ⊗ − + + ⊗ + ⊗

0 1
1
2

( 0 2 )
1
2

( 0 2 ), (6.21)c w w c w w= ⊗ + + ⊗ − −

1 0 0 1 0tot(3)
1

2 2
c 3 w

1

2 2
c 1 w

1

2 2
(2 c c) 1 w

1

2 2
c 3 w (6.22)Ψ = ⊗ − − ⊗ − + + ⊗ + ⊗

0 1
1

2 2
( 1 2 1 3 )

1

2 2
( 1 3 ). (6.23)c w w w c w w= ⊗ − − + + + ⊗ + −

If the final state at the time t is known t( )totΨ , then the standard way to describe
the quantum walk is the partial measurement of the walker state probabilities (see,
e.g. Portugal 2013).

However, we now have the tensor product of two spaces (6.1). Therefore, to have
the complete description of the quantum walk, we propose to also consider the
partial measurement of the (s-) coin state probabilities.

Let the total state at the time t (6.18) have the general form (see (6.6)–(6.8))

t t ℓj( ) ( ) , (6.24)
ℓ j

s

0

1

j ℓtot , c w


∑ ∑φΨ = ⊗
∈ =

−

t( ) 1 . (6.25)
ℓ

j ℓ j ℓ,
2

, 


∑ φ φ= ∈
∈

We denote the doubly partial probability of the state ℓj c w⊗ at time t by

p t t p t( ) ( ) , ( ) 1. (6.26)
ℓ j

s

0

1

j ℓ j ℓ j ℓ, ,
2

,


∑ ∑φ= =
∈ =

−
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Now we propose to characterize the quantum walk by two partial probability
distributions:

(1) The walker probability distribution

p t t( ) ( ) , (6.27)
j

s

0

1

ℓ j ℓ
walk

,
2∑ φ=

=

−

p t( ) 1. (6.28)
ℓ

ℓ
walk



∑ =
∈

(2) The coin probability distribution

p t t( ) ( ) , (6.29)
ℓ

j j ℓ
coin

,
2



∑ φ=
∈

p t( ) 1. (6.30)
j

s

0

1

j∑ =
=

−

In the standard approach (Portugal 2013), only the first (walker) distribution
(6.27) is usually considered: the time is fixed by t t0= , and the graph{ }ℓ p t, ( )ℓ

walk
0 is

plotted. Nevertheless, the coin probability distribution (6.29) gives additional
information about the quantum walk. To observe the difference between (6.27)
and (6.29) concretely, we continue example 6.1 in detail.

Example 6.2. (Example 6.1 continued) Here we compute the walker and coin
probabilities (6.27) and (6.29) for three steps t 1, 2, 3= of the Hadamard walk

t( )totΨ in (6.19)–(6.23).The formulas (6.19), (6.20), and (6.22) are convenient to use
for the walker probabilities, and the formulas (6.19), (6.21), and (6.23) can be used
for the coin probabilities. We derive the walker probabilities p t( )ℓ

walk from (6.19)

p t p t( 1) ( 1)
1

2

1
2

, (6.31)ℓ ℓ1
walk

1
walk

2

w
⎜ ⎟
⎛
⎝

⎞
⎠

= = = = == =

p t p t( 1) ( 1)
1

2

1
2

, (6.32)ℓ ℓ1
walk

1
walk

2

w
⎜ ⎟
⎛
⎝

⎞
⎠

= = = = ==− = −

and from (6.20) we obtain the symmetric distribution

p t p t( 2) ( 2)
1
2

1
4

, (6.33)ℓ ℓ2
walk

2
walk

2

w
⎛
⎝

⎞
⎠

= = = = ==− = −
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p t p t( 2) ( 2)
1
2

1
2

1
2

, (6.34)ℓ ℓ0
walk

0
walk

2 2

w
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= = = = + == =

p t p t( 2) ( 2)
1
2

1
4

. (6.35)ℓ ℓ2
walk

2
walk

2

w
⎛
⎝

⎞
⎠

= = = = == =

The probability distribution p t( )ℓ
walk for the third step t = 3 is nonsymmetric

(6.22)

p t p t( 3) ( 3)
1

2 2

1
8

, (6.36)ℓ ℓ3
walk

3
walk

2

w
⎜ ⎟
⎛
⎝

⎞
⎠

= = = = ==− = −

p t p t( 3) ( 3)
1

2 2

1
8

, (6.37)ℓ ℓ1
walk

1
walk

2

w
⎜ ⎟
⎛
⎝

⎞
⎠

= = = = − ==− = −

p t p t( 3) ( 3) 2
1

2 2

1

2 2

5
8

, (6.38)ℓ ℓ1
walk

1
walk

2 2

w
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= = = = + == =

p t p t( 3) ( 3)
1

2 2

1
8

, (6.39)ℓ ℓ3
walk

3
walk

2

w
⎜ ⎟
⎛
⎝

⎞
⎠

= = = = == =

as well as for further steps (times) t 3> .
For the coin probabilities p t( )ℓ

coin we have from (6.19)

p t p t( 1) ( 1)
1

2

1
2

, (6.40)j j 00
coin coin

2

c
⎜ ⎟
⎛
⎝

⎞
⎠

= = = = == =

p t p t( 1) ( 1)
1

2

1
2

, (6.41)j j 11
coin coin

2

c
⎜ ⎟
⎛
⎝

⎞
⎠

= = = = == =

and from (6.21) we have for the second step t = 2 the symmetric distribution

p t p t( 2) ( 2)
1
2

1
2

1
2

, (6.42)j j 00
coin coin

2 2

c
⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

= = = = + == =

p t p t( 2) ( 2)
1
2

1
2

1
2

, (6.43)j j 11
coin coin

2 2

c
⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

= = = = + − == =

The probability distribution p t( )j
coin for the third step t = 3 is also nonsymmetric

as p t( 3)ℓ
walk = , so from (6.23) we get
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p t p t( 3) ( 3)
1

2 2
2

1

2 2

1

2 2

3
4

, (6.44)j j 00
coin coin

2 2 2

c
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
⎟= = = = − + + == =

p t p t( 3) ( 3)
1

2 2
2

1

2 2

1
4

, (6.45)j j 11
coin coin

2 2

c
⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
⎟= = = = + == =

and in the similar way for further steps (discrete times) t 3> .
As it should be, both the above walker and coin probability distributions are

correctly normalized satisfying (6.28) and (6.30) at each discrete time t.

6.1.1 Polyander visualization of quantum walks

The coin probability distribution p t( )j
coin introducted in (6.29), from the first glance,

can be also characterized at the fixed time t t0= by the graph { }j p t, ( )j
coin

0 as the

walker probability distribution p t( )ℓ
walk

0 . However, because the coin has a specific
physical sense, we propose here another way of the quantum walk description, which
originates from genome landscapes (Azbel’ M Y 1973, 1995, Lobry 1996) and one-
dimensional DNA walks (Cebrat and Dudek 1998) and trianders (Duplij and Duplij
2005).

Innovation 6.3. We can consider the time evolution of the probability for the concrete
quantum state when we provide the corresponding measurements in the coin or walker
subspaces, i.e., we fix the states ℓ ℓ0= or j j0= and introduce the following time

evolution graphs{ }t p t, ( )ℓ ℓ
walk

0= or{ }t p t, ( )j j
coin

0= .

Definition 6.4. The polyander visualization of a quantum walk is its description by
the time evolution graphs { }t p t, ( )ℓ

walk or { }t p t, ( )j
coin . Each line of the graph

describing the probability evolution of the fixed quantum state ℓ ℓ0= for ℓ0 w or
j j0= for j c is called a leg of the polyander.

It is obvious that the walker polyander has a finitely increasing number of legs
and corresponding quantum states, while the s-side coin polyander has exactly s legs.

For example 6.1, we obtain the following.

Example 6.5. (Example 6.1 continued) The walker polyander p t( )ℓ
walk in the time

range t1 3⩽ ⩽ has seven legs (quantum states) ℓ3 3− ⩽ ⩽ , which have the
following probability evolutions
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ð6:46Þ

The coin polyander p t( )j
coin in the time range t1 3⩽ ⩽ has two legs (quantum

states), j 0, 1= , which have the following probability evolutions

ð6:47Þ

Each leg can be presented as a horizontal strip of the width 1 on which the points
corresponding to the probabilities p t0 ( ) 1⩽ ⩽ at times t 1, 2, 3= … are indicated.
The probability behaviour of each quantum state can then be visually seen and
mutually compared in the same time points.

For the coin polyander, it is important to consider the probability differences
because of the following

Definition 6.6. The total quantum state is called trivial at the time t ttriv= if all the s-
side coin states have equal probabilities p t( )

s
1

j
coin

triv = , j s0, 1, , 1= … − , s 2⩾ .

Definition 6.7. The quantum walk is called trivial if the s-side coin states are trivial
at all times.

In the case of the standard coin s = 2, the triviality means that the measurements
of both sides give the same probability at the t ttriv= . Therefore, to describe triviality
in detail, we should introduce the differences and search for nonzero ones.

Definition 6.8. The bias s-side coin polyander has s( 1)− legs, which are defined by

p t p t p t j s( ) ( ) ( ), 0, , 2. (6.48)j j j
coin coin

1
coinΔ = − = … −+
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Example 6.9. (Example 6.1 continued) The 2-side coin bias polyander in the time
range t1 3⩽ ⩽ has one leg which has the following probability evolution

p t p t p t( ) ( ) ( )j j0 10
coin coin coin

c c
Δ = Δ − Δ= = (see (6.47))

ð6:49Þ

which can be nontrivial after the time t = 3 only.

In the higher times, the walker and coin polyanders, as well as the bias coin
polyander, will have more complicated behavior, which in any case needs the
manifest form of the total quantum state (6.18). In examples 6.5 and 6.9, we
considered for clarity only the time range t1 3⩽ ⩽ and the 2-side coin to show in
detail how to compute probability polyanders for finite times. The physical sense of
the bias polyander is in the following: its nonzero values show nontriviality
evolution along the quantum walk.

Thus, polyanders allow us to further study the fine structure, and thoroughly
characterize and visually present quantum walks from different viewpoints.

6.1.2 Methods of final states computation

The main goal of studying the quantum walks is to obtain the analytical expression
for the final quantum state (6.18) in discrete finite times t ∈ , and then calculate the
dynamical and statistical properties of various probability distributions and
characteristics.

The main computational methods to find the total quantum state (6.18) are
(1) The Schrödinger approach. Starting from an arbitrary state of the quantum

walk with a certain walker position, to provide the discrete time Fourier
transform (Ambainis et al 2001) and obtain the closed form of total
amplitudes.

(2) The combinatorial approach. The amplitude at any discrete time is derived
as a sum of amplitudes of all paths starting from the initial state and ending
up in the final state. This can be treated as reminiscent of the standard path
integral technique.

In Carteret et al (2005), it was shown that both Schrödinger and combinatorial
approaches are equivalent. Among less known methods, we can mention the
alternative description of quantum walks based on the scattering theory (Feldman
and Hillery 2007) and the analytic formulation of probability densities and moments
(Fuss et al 2007).

Innovative Quantum Computing

6-9



6.1.2.1 Fourier transform and analytic solutions
In general, the usage of the Fourier transform is the standard way to simplify
computations by turning equations to algebraic ones. In its application to quantum
works and analysing the evolution (6.18), there two peculiarities:

(1) The Fourier transform is applied to one subspace from the product (6.4),
i.e., the walker one Hwalk.

(2) Sometimes it is simpler to turn from transforming functions to transform
the computational basis of the walker subspace.

Following (2), we transform the computational basis of the walker spaceHwalk as

He ℓ ℓ ℓ, , , , (6.50)
ℓ

i ℓ
w w w w walkk kk 



∑= ∈ ∈
∈

where the Fourier transformed vectors wk are denoted by the double brackets
and depend on the continuous real wave number ,k ∈ kπ π− ⩽ ⩽ . The inverse
transformation is

ℓ d e
1

2
. (6.51)i ℓ

w wk kk∫π
=

π

π

−
−

Let us introduce the Fourier transformation of the amplitudes t( )j ℓ,φ at time t from
the decomposition (6.24) in the standard way by

t e t( ) ( ), . (6.52)
ℓ

j
i ℓ

j ℓ, , kk
k



∑ φ π πΦ = − ⩽ ⩽
∈

−

The inverse Fourier transform becomes

t d e t( )
1

2
( ). (6.53)j ℓ

i ℓ
j, ,k k

k∫φ
π

= Φ
π

π

−

Then, instead of the computational basis ℓj c w⊗ in (6.24), using (6.50) and
(6.53) and cancelling exponents, we can present the total state in the Fourier basis
j c wk⊗ as follows

t t j( )
1

2
( ) . (6.54)

j

s

0

1

jtot , c wkk∫∑
π

Ψ = Φ ⊗
=

−

π

π

−

The action of the shift operator S on the Fourier basis can be derived from (6.13)
and using (6.50), as follows

( )

e ℓ e ℓ

e ℓ e ℓ

e e ℓ e

S j S j S j

j j

j j

( ) ( ) ( )

( 1) ( )

( ) ,

(6.55)

i ℓ i ℓ

i ℓ j i ℓ

i i ℓ i

c w c w c w

c w
( ( 1) )

c w

( 1)
c w

( 1)
c w

ℓ ℓ

ℓ ℓ

ℓ

j

j j

k

k

k k

k k

k k k

 

 



∑ ∑

∑ ∑

∑

◦ ⊗ = ◦ ⊗ = ◦ ⊗

= ⊗ + − = ⊗ ′

= ⊗ ′ = ⊗

′− −

− − ′ − −

∈ ∈

∈ ′∈

′∈
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where we used the substitution ℓ ℓ ( 1) j′ = + − and the translation symmetry of the
infinite sum.

In the case of the two-side coin j 0, 1= and the Hadamard quantum walk (6.16)–
(6.17), the action of operators can be expressed in the matrix form.

So we apply the total evolution operator U (6.9) in the matrix form to the Fourier
basis j c wk⊗ using (6.17) to get

U S C

e C

j j

j C j

( )

( ) ,

(6.56)
j

j j

0

1

0

1

0

1

jj

i
jj jj

c w c w

( 1)
c w c w

j

k k

k k kk

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

∑

∑ ∑

ˆ ′ ⊗ = ˆ ˆ ⊗

= ˆ ⊗ = ¯ ⊗

=

= =

′

− −
′ ′

where

e
e

C e e
e e

C( ) 0
0

1

2
. (6.57)

i

i

i i

i i
k

k

k

k k

k k
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

¯ = ˆ =
−

− − −

It follows from (6.56) that diagonalization of C( )k¯ leads to the spectral decom-
position of the total operator Û . Indeed, if ( )kλ is the eigenvalue of the matrix C( )k¯ ,
then it is also the eigenvalue of Û , as is seen from (6.56). We denote the
corresponding ( )kλ eigenvector by ( )

c
v kλ , such that

( ) ( )U C( ) ( ) . (6.58)( )
c

w ( )
c

w ( )
c

wv k k v k k v kk k kλˆ ◦ ⊗ = ¯ ◦ ⊗ = ⊗λ λ λ

The matrix C( )k¯ (6.57) has two eigenvalues

e e( ) , ( ) , (6.59)i i
1

( )
2

( )k kk kλ λ= = −α α−

( ) arcsin
1

2
sin ,

2
( )

2
, (6.60)k k k⎜ ⎟

⎛
⎝

⎞
⎠

α π α π= − ⩽ ⩽

and two corresponding normalized eigenvectors

r
e

e e

1

2
, (6.61)

i

i i( )
c 1,2

( )1,2v k

k

k k
⎜ ⎟
⎛
⎝

⎞
⎠

=
± −λ α

−

− −

( )r 2 1 cos cos 1 cos . (6.62)1,2
2 2k k k= + ∓ +

Thus, in the total evolution the operator can be written in terms of eigenvalues
and eigenvectors of C( )k¯ (6.57)

( )U d e e
1

2
. (6.63)i

k k
i

k k
( )

( ) c ( ) c
( )

( ) c ( ) c w w1 1 2 2k v v v v k kk k⎡
⎣

⎤
⎦

∫π
ˆ = − ⊗

π

π
α λ λ α λ λ−

−
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Using orthogonality of the basis eigenvectors, the power of the evolution operator
can be presented as

( )U d e e
1

2
( 1) .(6.64)t i t

k k
t i t

k k
( )

( ) c ( ) c
( )

( ) c ( ) c
w w1 1 2 2k v v v v k kk k⎡

⎣
⎤
⎦

∫π
ˆ = + − ⊗

π

π α λ λ α λ λ−
−

Now we can use the main quantum evolution formula (6.18) to obtain the total
quantum state at any time from an initial quantum state (6.5). For instance, if

0 0initialtot c wΨ = ⊗ , then using (6.54) and (6.61), we derive the Fourier
transformed amplitudes

( ) ( )t e e

t
e

e e

( )
1

2 1 cos
1 cos cos 1 cos cos ,

( )
2 1 cos

( ).
(6.65)

j
i t i t

j
i

i t i t

0,
2

2 ( ) 2 ( ( ))

1,
2

( ) ( ( ))

k
k k k k

k

k
k k

k
k

k k

⎡
⎣

⎤
⎦

Φ =
+

+ + + + −

Φ =
+

−

α π α

α π α

= − +

= − +

Then by applying the reverse Fourier transform (6.53) and taking into account
symmetries of integrand, we get the amplitudes in the computational basis at the
arbitrary time t as

t
d e t ℓ

t ℓ

( )
1

2
cos

1 cos
1 , even,

0, odd,

(6.66)j ℓ

i ℓ t

0,

( ( ) )
2

k
k

k
k k

⎜ ⎟
⎧

⎨
⎪

⎩⎪

⎛

⎝

⎞

⎠
∫φ π= +

+ + =

+ =
π

π
α

= −
−

t
d e t ℓ

t ℓ

( )

1
2

1

1 cos
, even,

0, odd.

(6.67)j ℓ

i ℓ t

1,

( ( ) )
2

k
k

k k k⎧

⎨
⎩

∫φ π= +
+ =

+ =
π

π
α

= −
− +

Finally, using the partial probability formulas (6.27) and (6.29), one can plot the

time evolution graphs { }t p t, ( )ℓ ℓ
walk

0= and{ }t p t, ( )j j
coin

0= , i.e., to provide the polyander

visualization (see section 6.1.1).

6.1.3 Generalizations of discrete-time quantum walks

There are plenty of generalizations of the above constructions. Nevertheless, the
main procedures remain nearly the same.

• Coin operator. The most general form of the two-sided (s = 2) coin operator C
is given by the complex matrix (6.15) from the unitary groupU(2), i.e., other
than the Hadamard matrix (6.17) can be considered, such as the Fourier coin
(Portugal 2013).

• Higher dimensions. The main quantum walk equation (6.9) can be extended
to a higher dimension of the s-sided coin whenHcoin is s2 -dimensional Hilbert
space and Hwalk is the Hilbert space corresponding to the direct product

s� ��� ���
 ⊗ ⋯⊗ . The common choice for an s-sided coin is the Grover operator
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described by the corresponding s2 -dimensional matrix CGrover
ˆ that was

proposed in Moore and Russell (2002).
• Anyonic quantum walks. To include the braiding interaction, one includes the
additional Hilbert space (fusion space)Hfusion where the generators of the braid
group act. Then the total space becomesH H H Htot coin fusion walk= ⊗ ⊗ , and
the time evolution contains the additional braid operator in some representa-
tion (Lehman et al 2011).
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