

Database Design for Mere Mortals®

A Hands-on Guide to Relational Database Design

Third Edition

Michael J. Hernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 by Michael J. Hernandez

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to
Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88449-7

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com

ISBN-10: 0-321-88449-3

Text printed in the United States on recycled paper at Edwards Brothers Malloy in
Ann Arbor, Michigan.
First printing, February 2013

For my wife, who has always believed in me and continues to do so.

To those who have helped me along my journey—teachers, mentors, friends, and
colleagues.

Dedicated to anyone who has unsuccessfully attempted to design a relational
database.

About the Author

Michael J. Hernandez has been an independent relational database consultant
specializing in relational database design. He has more than twenty years of
experience in the technology industry, developing database applications for a broad
range of clients. He’s been a contributing author to a wide variety of magazine
columns, white papers, books, and periodicals, and is coauthor of the best-selling SQL
Queries for Mere Mortals® (Addison-Wesley, 2007). Mike has been a top-rated and
noted technical trainer for the government, the military, the private sector, and
companies throughout the United States. He has spoken at numerous national and
international conferences, and has consistently been a top-rated speaker and
presenter.
Aside from his technical background, Mike has a diverse set of skills and interests that
he also pursues, ranging from the artistic to the metaphysical. His greatest interest is
still the guitar, as he’s been a practicing guitarist for more than forty years and played
professionally for fifteen years. He is a great cook, loves to teach (writing, public
speaking, music), has a gift for bad puns, and even reads tarot cards.
He says he’s never going to retire, per se, but rather just change whatever it is he’s
doing whenever he finally gets tired of it and move on to something else that interests
him.

Contents

Foreword

Preface

Acknowledgments

Introduction

What’s New in the Third Edition
Who Should Read This Book
The Purpose of This Book
How to Read This Book
How This Book Is Organized

Part I: Relational Database Design
Part II: The Design Process
Part III: Other Database Design Issues
Part IV: Appendixes

A Word About the Examples and Techniques in This Book
A New Approach to Learning

Part I: Relational Database Design

Chapter 1: The Relational Database
Topics Covered in This Chapter
Types of Databases
Early Database Models

The Hierarchical Database Model
The Network Database Model

The Relational Database Model

Retrieving Data
Advantages of a Relational Database

Relational Database Management Systems
Beyond the Relational Model
What the Future Holds

A Final Note
Summary
Review Questions

Chapter 2: Design Objectives
Topics Covered in This Chapter
Why Should You Be Concerned with Database Design?
The Importance of Theory
The Advantage of Learning a Good Design Methodology
Objectives of Good Design
Benefits of Good Design
Database Design Methods

Traditional Design Methods
The Design Method Presented in This Book

Normalization
Summary
Review Questions

Chapter 3: Terminology
Topics Covered in This Chapter
Why This Terminology Is Important
Value-Related Terms

Data
Information

Null
The Value of Nulls
The Problem with Nulls

Structure-Related Terms
Table
Field
Record
View
Keys
Index

Relationship-Related Terms
Relationships
Types of Relationships
Types of Participation
Degree of Participation

Integrity-Related Terms
Field Specification
Data Integrity

Summary
Review Questions

Part II: The Design Process

Chapter 4: Conceptual Overview
Topics Covered in This Chapter
The Importance of Completing the Design Process
Defining a Mission Statement and Mission Objectives
Analyzing the Current Database
Creating the Data Structures

Determining and Establishing Table Relationships
Determining and Defining Business Rules
Determining and Defining Views
Reviewing Data Integrity
Summary
Review Questions

Chapter 5: Starting the Process
Topics Covered in This Chapter
Conducting Interviews

Participant Guidelines
Interviewer Guidelines (These Are for You)
The Case Study: Mike’s Bikes

Defining the Mission Statement
The Well-Written Mission Statement
Composing a Mission Statement

Defining the Mission Objectives
Well-Written Mission Objectives
Composing Mission Objectives

Summary
Review Questions

Chapter 6: Analyzing the Current Database
Topics Covered in This Chapter
Getting to Know the Current Database

Paper-Based Databases
Legacy Databases

Conducting the Analysis
Looking at How Data Is Collected

Looking at How Information Is Presented
Conducting Interviews

Basic Interview Techniques
Before You Begin the Interview Process . . .

Interviewing Users
Reviewing Data Type and Usage
Reviewing the Samples
Reviewing Information Requirements

Interviewing Management
Reviewing Current Information Requirements
Reviewing Additional Information Requirements
Reviewing Future Information Requirements
Reviewing Overall Information Requirements

Compiling a Complete List of Fields
The Preliminary Field List
The Calculated Field List
Reviewing Both Lists with Users and Management
Case Study

Summary
Review Questions

Chapter 7: Establishing Table Structures
Topics Covered in This Chapter
Defining the Preliminary Table List

Identifying Implied Subjects
Using the List of Subjects
Using the Mission Objectives

Defining the Final Table List
Refining the Table Names

Indicating the Table Types
Composing the Table Descriptions

Associating Fields with Each Table
Refining the Fields

Improving the Field Names
Using an Ideal Field to Resolve Anomalies
Resolving Multipart Fields
Resolving Multivalued Fields

Refining the Table Structures
A Word about Redundant Data and Duplicate Fields
Using an Ideal Table to Refine Table Structures
Establishing Subset Tables
Case Study

Summary
Review Questions

Chapter 8: Keys
Topics Covered in This Chapter
Why Keys Are Important
Establishing Keys for Each Table

Candidate Keys
Primary Keys
Alternate Keys
Non-keys

Table-Level Integrity
Reviewing the Initial Table Structures

Case Study
Summary

Review Questions

Chapter 9: Field Specifications
Topics Covered in This Chapter
Why Field Specifications Are Important
Field-Level Integrity
Anatomy of a Field Specification

General Elements
Physical Elements
Logical Elements

Using Unique, Generic, and Replica Field Specifications
Defining Field Specifications for Each Field in the Database

Case Study
Summary
Review Questions

Chapter 10: Table Relationships
Topics Covered in This Chapter
Why Relationships Are Important
Types of Relationships

One-to-One Relationships
One-to-Many Relationships
Many-to-Many Relationships
Self-Referencing Relationships

Identifying Existing Relationships
Establishing Each Relationship

One-to-One and One-to-Many Relationships
The Many-to-Many Relationship
Self-Referencing Relationships

Reviewing the Structure of Each Table
Refining All Foreign Keys

Elements of a Foreign Key
Establishing Relationship Characteristics

Defining a Deletion Rule for Each Relationship
Identifying the Type of Participation for Each Table
Identifying the Degree of Participation for Each Table
Verifying Table Relationships with Users and Management
A Final Note

Relationship-Level Integrity
Case Study

Summary
Review Questions

Chapter 11: Business Rules
Topics Covered in This Chapter
What Are Business Rules?

Types of Business Rules
Categories of Business Rules

Field-Specific Business Rules
Relationship-Specific Business Rules

Defining and Establishing Business Rules
Working with Users and Management
Defining and Establishing Field-Specific Business Rules
Defining and Establishing Relationship-Specific Business Rules

Validation Tables
What Are Validation Tables?
Using Validation Tables to Support Business Rules

Reviewing the Business Rule Specifications Sheets

Case Study
Summary
Review Questions

Chapter 12: Views
Topics Covered in This Chapter
What Are Views?
Anatomy of a View

Data View
Aggregate View
Validation View

Determining and Defining Views
Working with Users and Management
Defining Views
Reviewing the Documentation for Each View
Case Study

Summary
Review Questions

Chapter 13: Reviewing Data Integrity
Topics Covered in This Chapter
Why You Should Review Data Integrity
Reviewing and Refining Data Integrity

Table-Level Integrity
Field-Level Integrity
Relationship-Level Integrity
Business Rules
Views

Assembling the Database Documentation

Done at Last!
Case Study—Wrap-Up

Summary

Part III: Other Database Design Issues

Chapter 14: Bad Design—What Not to Do
Topics Covered in This Chapter
Flat-File Design
Spreadsheet Design

Dealing with the Spreadsheet View Mind-set
Database Design Based on the Database Software
A Final Thought
Summary

Chapter 15: Bending or Breaking the Rules
Topics Covered in This Chapter
When May You Bend or Break the Rules?

Designing an Analytical Database
Improving Processing Performance

Documenting Your Actions
Summary

In Closing

Part IV: Appendixes

Appendix A: Answers to Review Questions
Chapter 1
Chapter 2
Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

Appendix B: Diagram of the Database Design Process

Appendix C: Design Guidelines
Defining and Establishing Field-Specific Business Rules
Defining and Establishing Relationship-Specific Business Rules
Elements of a Candidate Key
Elements of a Foreign Key
Elements of a Primary Key

Rules for Establishing a Primary Key
Elements of the Ideal Field
Elements of the Ideal Table
Field-Level Integrity
Guidelines for Composing a Field Description
Guidelines for Composing a Table Description
Guidelines for Creating Field Names
Guidelines for Creating Table Names
Identifying Relationships
Identifying View Requirements
Interview Guidelines

Participant Guidelines
Interviewer Guidelines

Mission Statements
Mission Objectives
Relationship-Level Integrity
Resolving a Multivalued Field
Table-Level Integrity

Appendix D: Documentation Forms

Appendix E: Database Design Diagram Symbols

Appendix F: Sample Designs

Appendix G: On Normalization
Please Note . . .
A Brief Recap
How Normalization Is Integrated into My Design Methodology
Logical Design versus Physical Design and Implementation

Appendix H: Recommended Reading

Glossary

References

Index

Foreword

To the Third Edition
Here it is, ten years later, and Mike and I cross paths even less than we used to. For
those who were unaware, we share the same birthday (although he’s much older than
me, at least one full year), and we meet up at least once each year and congratulate
ourselves for making it another year. It’s also funny how Microsoft “reboots” its
technology every ten years or so, and now, revisiting the foreword I wrote ten years
ago, nothing much has changed—I’m still hip-deep in a new Microsoft technology,
but this time it’s all about WinRT and Windows 8, rather than .NET. One thing that
hasn’t changed, however, is the need for carefully planned and executed database
design. Nothing Mike wrote in his original volume has changed very much, and
although this new edition modifies some details, the basics of good database design
haven’t changed in the ensuing ten years. I must confess a little jealousy that Mike
has written a book with such enduring shelf life, but, if he’s going to have a book that
succeeds for this many years, at least it’s a good one. Whether this is your first visit
to Mike’s detailed explanation of database design, or your second or third, be assured
that you’ll find a carefully considered, helpful path through the vagaries of database
design here. But let’s get past the intro, and get to work!
—Ken Getz, November 14, 2012

From the Second Edition . . .
I don’t see Mike Hernandez as much as I used to. Both our professional lives have
changed a great deal since I first wrote the foreword to his original edition. If nothing
else, we travel less, and our paths cross less often than they did. If you’ll indulge me,
I might try to add that the entire world has changed since that first edition. On the
most mundane level, my whole development life has changed, since I’ve bought into
this Microsoft .NET thing whole-heartedly and full-time. One thing that hasn’t
changed, however, is the constant need for data, and well-designed data. Slapping
together sophisticated applications with poorly designed data will hurt you just as
much now as when Mike wrote his first edition—perhaps even more. Whether you’re
just getting started developing with data, or are a seasoned pro; whether you’ve read
Mike’s previous book, or this is your first time; whether you’re happier letting
someone else design your data, or you love doing it yourself—this is the book for

you. Mike’s ability to explain these concepts in a way that’s not only clear, but fun,
continues to amaze me.
—Ken Getz, October 10, 2002

From the First Edition . . .
Perhaps you’re wondering why the world needs another book on database design.
When Mike Hernandez first discussed this book with me, I wondered. But the fact is
—as you may have discovered from leafing through pages before landing here in the
foreword—the world does need a book like this one. You can certainly find many
books detailing the theories and concepts behind the science of database design, but
you won’t find many (if any) written from Mike’s particular perspective. He has
made it his goal to provide a book that is clearly based on the sturdy principles of
mathematical study, but has geared it toward practical use instead of theoretical
possibilities. No matter what specific database package you’re using, the concepts in
this book will make sense and will apply to your database-design projects.
I knew this was the book for me when I turned to the beginning of Chapter 6 and saw
this suggestion:

Do not adopt the current database structure as the basis for the new database
structure.

If I’d had someone tell me this when I was starting out on this database developer
path years ago I could have saved a ton of time! And that’s my point here: Mike has
spent many years designing databases for clients; he has spent lots of time thinking,
reading, and studying about the right way to create database applications; and he has
put it all here, on paper, for the rest of us.
This book is full of the right stuff, illustrated with easy-to-understand examples.
That’s not to say that it doesn’t contain the hardcore information you need to do
databases right—it does, of course. But it’s geared toward real developers, not
theoreticians.
I’ve spent some time talking with Mike about database design. Over coffee, in
meetings, writing courseware, it’s always the same: Mike is passionate about this
material. Just as the operating system designer seeks the perfect, elegant algorithm,
Mike spends his time looking for just the right way to solve a design puzzle and—as
you will read in this book—how best to explain it to others. I’ve learned much of
what I know about database design from Mike over the years and feel sure that I

have a lot more to learn from this book. After reading through this concise, detailed
presentation of the information you need to know in order to create professional
databases, I’m sure you’ll feel the same way.
—Ken Getz, MCW Technologies (KenG@mcwtech.com)

mailto:KenG@mcwtech.com

Preface

Life, as the most ancient of all metaphors insists, is a journey . . .
—JONATHAN RABAN, FOR LOVE AND MONEY

Paths may change and the course may need adjustment, but the journey
continues . . .

—MICHAEL J. HERNANDEZ DATABASE DESIGN FOR MERE MORTALS®, SECOND
EDTION

To say that the technology field, and database management in particular, has changed
significantly in the nine years since the second edition of this book was published
would be an understatement, to be sure. Small, handheld devices containing storage
capacity and processing power that once would have required several room-sized
mainframe computers are now so ubiquitous that many people take them for granted,
especially the more recent generations. (My young nephew would likely never
understand the excitement I experienced when I purchased my first 40MB storage
expansion card for my IBM PC. But that’s another story.) Database management
systems can now handle terabytes of data, and there’s recently been a considerable
amount of emphasis on storing, managing, and accessing data “in the cloud.”
Is there still a need, then, for a book such as the one you hold in your hands?
Absolutely! Regardless of how complex or complicated database management
becomes, there will always be a need for a book on the basics of database design.
You must learn the fundamentals in order to know how and why things work the way
they do. This is true of many other areas of expertise, whether they are technical
disciplines such as architectural design and engineering or artistic disciplines such as
music and cooking.
My journey has taken me along new and different paths in recent years, and I’m
really enjoying what I do. I’ve been doing a lot more writing lately, which is why I
thought it was time to do this new edition. I thought I’d share some new nuggets of
information I’ve learned along the way and perhaps clarify my perspectives on this
subject a little more. Now that I’ve completed this work, I can’t wait to see where my
journey takes me next.

An important note to readers:
Visit Informit.com/titles/0321884493 to access additional content referenced in
the book.

Acknowledgments

Writing is truly a cooperative effort, despite what you may have heard about it. I’m
so grateful for the editors, colleagues, friends, and family who continue to be ready
and willing to lend their help. These are the people who provided encouragement and
kept me focused on the task at hand, and it is to them that I extend my most heartfelt
appreciation.
First and foremost, I want to thank my wonderful editor, Joan Murray, for the
opportunity to write yet another edition of my book. We had been talking about this
project for a couple of years, and it was her perseverance, patience, kindness, and
leadership that helped me decide to take on this work and bring it to successful
completion. I also want to thank production editor Caroline Senay for guiding the
author review process with such a deft hand and copy editor Audrey Doyle for her
precise and detailed review of the content. And a special thanks to John Fuller and his
production staff—they did great work, as they always do! I’ve always had a
wonderful relationship with the Addison-Wesley team, and I just can’t imagine why
I’d ever want to write technical books for anyone else.
Next, I’d like to acknowledge my distinguished technical review team: Tracy
Thornton, Tony Wiggins, and Theodor Richardson. These folks graciously and
generously gave their time, effort, and expertise to provide me with a wealth of
valuable feedback and suggestions. This book definitely benefitted from their
contributions. My thanks once again to each of you for your time and input and for
helping to make this edition even better than I first envisioned.
I want to extend a very special thanks to Ken Getz for once again providing the
foreword for my book. Ken is a well-respected expert, a colleague, and a good friend.
I’m so pleased to have his thoughts and comments at the beginning of the book.
A special thanks also goes to all of those readers who took the time to send me their
thoughts and comments. I am humbled by their praise and support and particularly
appreciative of the good, constructive criticism that eventually helped me to improve
the material in this edition. I also wish to thank all the academic institutions,
government agencies, and commercial organizations that have adopted my book and
made it “standard reading” for those just beginning their database careers. I am
honored by their support of my work.

Finally, I want to thank my wife for her unending patience while I was enmeshed in
my writing. Her help and support have been invaluable, and once again, I owe her a
great debt. I would tell you exactly how I feel about her, but she abhors any sort of
PDA (public display of affection). Instead, I’ll just extend her a laurel and hardy
handshake.

Introduction

Plain cooking cannot be entrusted to plain cooks.
—COUNTESS MORPHY

In the past, the process of designing a database has been a task performed by people
in information technology (IT) departments and professional database developers.
These people usually had mathematical, computer science, or systems design
backgrounds and typically worked with large mainframe databases. Many of them
were experienced programmers and had coded a number of database application
programs consisting of thousands of lines of code. (And these people were usually
very overworked due to the nature and importance of their work!)
People designing database systems at that time needed to have a solid educational
background because most of the systems they created were meant to be used
companywide. Even when creating databases for single departments within a
company or for small businesses, database designers still required extensive formal
training because of the complexity of the programming languages and database
application programs they were using. As technology advanced, however, those
educational requirements evolved.
Database software programs have evolved quite a bit since the 1980s, too. Many
vendors developed software that ran on desktop computers and could be more easily
programmed to collect, store, and manage data than their mainframe counterparts. As
computing power and demand for complexity grew, vendors produced software that
allowed groups of people to access and share centralized data within a variety of
environments, such as client/server architectures on computers connected within local
area networks (LANs) and wide area networks (WANs). People within a company or
organization were no longer strictly dependent on mainframe databases or on having
their information needs met by centralized IT departments.
The emergence and wide use of the laptop computer and the evolution and greater
acceptance of the Internet have also played a part in database software development.
Laptops have become quite powerful, with gigabytes of memory and storage, and
extremely fast processing power. They’ve become so ubiquitous that they’ve all but
replaced the desktop computer in many environments. They’ve also allowed people
to be connected to the Internet even in such mundane places as coffee shops,

restaurants, and airports. (And I won’t even mention the plethora of other devices
that now allow the same type of access—that’s for another book and another
discussion.) As such, there’s been a greater push by both software vendors and
businesses to run database software and manage databases from the Internet, thus
allowing people to access their applications and data from anywhere at any time. It
will be interesting to see how this whole idea progresses over the next several years.
Vendors continue to add new features and enhance the tool sets in their database
software, enabling database developers to create more powerful and flexible database
applications. They’re also constantly improving the ease with which the software can
be used, enabling many people to create their own database applications. Today’s
database software greatly simplifies the process of creating efficient database
structures and intuitive user interfaces.
Most programs provide sample database structures that you can copy and alter to suit
your specific needs. Although you might initially think that it would be quite
advantageous for you to use these sample structures as the basis for a new database,
you should stop and reconsider that move for a moment. Why? Because you could
easily and unwittingly create an improper, inefficient, and incomplete design. Then
you would eventually encounter problems in what you believed to be a dependable
database design. This, of course, raises the question, “What types of problems would
I encounter?”
Most problems that surface in a database fall into two categories: application
problems and data problems. Application problems include such things as problematic
data entry/edit forms, confusing menus and toolbars, confusing dialog boxes, and
tedious task sequences. These problems typically arise when the database developer
is inexperienced, is unfamiliar with a good application design methodology, or knows
too little about the software he’s using to implement the database. Problems of this
nature are common and important to address, but they are beyond the scope of this
work.

Note
One good way to solve many of your application problems is to purchase and
study third-party “developer” books that cover the software you’re using.
Such books discuss application design issues, advanced programming
techniques, and various tips and tricks that you can use to improve and
enhance an application. Armed with these new skills, you can revamp and
fine-tune the database application so that it works correctly, smoothly, and
efficiently.

Data problems, on the other hand, include such things as missing data, incorrect data,
mismatched data, and inaccurate information. Poor database design is typically the
root cause of these types of problems. A database will not fulfill an organization’s
information requirements if it is not structured properly. Although poor design is
typically generated by a database developer who lacks knowledge of good database
design principles, it shouldn’t necessarily reflect negatively on the developer. Many
people, including experienced programmers and database developers, have had little
or no instruction in any form of database design methodology. Many are unaware that
design methodologies even exist. Data problems and poor design are the issues that
this work will address.

What’s New in the Third Edition
I revised this edition to improve readability, update or extend existing topics, add new
content, and enhance its educational value. Here is a list of the changes you’ll find in
this edition.

• Portions of the text have been rewritten to improve clarity and reader
comprehension.

• Figures have been updated for improved relevance as appropriate.
• The discussion on data types has been updated.
• The Recommended Reading section includes the latest editions of the books

and now includes each book’s ISBN.
• A new appendix on Normalization very briefly explains the concept and then

explains in detail how it is incorporated into the design process presented in this
book.

Visit Informit.com/titles/0321884493 to access additional content referenced in the
book.

Who Should Read This Book
No previous background in database design is necessary to read this book. The
reason you have this book in your hands is to learn how to design a database
properly. If you’re just getting into database management and you’re thinking about
developing your own databases, this book will be very valuable to you. It’s better that
you learn how to create a database properly from the beginning than that you learn by
trial and error. Believe me, the latter method takes much longer.
If you fall into the category of those people who have been working with database
programs for a while and are ready to begin developing new databases for your
company or business, you should read this book. You probably have a good feel for
what a good database structure should look like, but aren’t quite sure how database
developers arrive at an effective design. Maybe you’re a programmer who has
created a number of databases following a few basic guidelines, but you have always
ended up writing a lot of code to get the database to work properly. If this is the case,
this book is also for you.
It would be a good idea for you to read this book even if you already have some
background in database design. Perhaps you learned a design methodology back in
college or attended a database class that discussed design, but your memory is vague
about some details, or there were parts of the design process that you just did not
completely understand. Those points with which you had difficulty will finally
become clear once you learn and understand the design process presented in this
book.
This book is also appropriate for those of you who are experienced database
developers and programmers. Although you may already know many of the aspects
of the design process presented here, you’ll probably find that there are some
elements that you’ve never before encountered or considered. You may even come
up with fresh ideas about how to design your databases by reviewing the material in
this book because many of the design processes familiar to you are presented here
from a different viewpoint. At the very least, this book can serve as a great refresher
course in database design.

The Purpose of This Book

In general terms, there are three phases to the overall database development process.
1. Logical design: The first phase involves determining and defining tables and

their fields, establishing primary and foreign keys, establishing table
relationships, and determining and establishing the various levels of data
integrity.

2. Physical implementation: The second phase entails creating the tables,
establishing key fields and table relationships, and using the proper tools to
implement the various levels of data integrity.

3. Application development: The third phase involves creating an application that
allows a single user or group of users to interact with the data stored in the
database. The application development phase itself can be divided into separate
processes, such as determining end-user tasks and their appropriate sequences,
determining information requirements for report output, and creating a menu
system for navigating the application.

You should always go through the logical design first and execute it as completely as
possible. After you’ve created a sound structure, you can then implement it within
any database software you choose. As you begin the implementation phase, you may
find that you need to modify the database structure based on the pros and cons or
strengths and weaknesses of the database software you’ve chosen. You may even
decide to make structural modifications to enhance data processing performance.
Performing the logical design first ensures that you make conscious, methodical, clear,
and informed decisions concerning the structure of your database. As a result, you
help minimize the potential number of further structural modifications you might need
to make during the physical implementation and application development phases.
This book deals with only the logical design phase of the overall development
process, and the book’s main purpose is to explain the process of relational database
design without using the advanced, orthodox methodologies found in an
overwhelming majority of database design books. I’ve taken care to avoid the
complexities of these methodologies by presenting a relatively straightforward,
commonsense approach to the design process. I also use a simple and straightforward
data modeling method as a supplement to this approach, and present the entire
process as clearly as possible and with a minimum of technical jargon.
There are many database design books out on the market that include chapters on
implementing the database within a specific database product, and some books even

seem to meld the design and implementation phases together. (I’ve never particularly
agreed with the idea of combining these phases, and I’ve always maintained that a
database developer should perform the logical design and implementation phases
separately to ensure maximum focus, effectiveness, and efficiency.) The main
drawback that I’ve encountered with these types of books is that it can be difficult for
a reader to obtain any useful or relevant information from the implementation
chapters if he or she doesn’t work with the particular database software or
programming language that the book incorporates. It is for this reason that I decided
to write a book that focuses strictly on the logical design of the database.
This book should be easier to read than other books you may have encountered on
the subject. Many of the database design books on the market are highly technical
and can be difficult to assimilate. I think most of these books can be confusing and
overwhelming if you are not a computer science major, database theorist, or
experienced database developer. The design principles you’ll learn within these pages
are easy to understand and remember, and the examples are common and generic
enough to be relevant to a wide variety of situations.
Most people I’ve met in my travels around the country have told me that they just
want to learn how to create a sound database structure without having to learn about
normal forms or advanced mathematical theories. Many people are not as worried
about implementing a structure within a specific database software program as they
are about learning how to optimize their data structures and how to impose data
integrity. In this book, you’ll learn how to create efficient database structures, how to
impose several levels of data integrity, as well as how to relate tables together to
obtain information in an almost infinite number of ways. Don’t worry; this isn’t as
difficult a task as you might think. You’ll be able to accomplish all of this by
understanding a few key terms and by learning and using a specific set of
commonsense techniques and concepts.
You’ll also learn how to analyze and leverage an existing database, determine
information requirements, and determine and implement business rules. These are
important topics because many of you will probably inherit old databases that you’ll
need to revamp using what you’ll learn by reading this book. They’ll also be just as
important when you create a new database from scratch.
When you finish reading this book, you’ll have the knowledge and tools necessary to
create a good relational database structure. I’m confident that this entire approach will

work for a majority of developers and the databases they need to create.

How to Read This Book
I strongly recommend that you read this book in sequence from beginning to end,
regardless of whether you are a novice or a professional. You’ll keep everything in
context this way and avoid the confusion that generally comes from being unable to
see the “big picture” first. It’s also a good idea to learn the process as a whole before
you begin to focus on any one part.
If you are reading this book to refresh your design skills, you could read just those
sections that are of interest to you. As much as possible, I’ve tried to write each
chapter so that it can stand on its own; nonetheless, I still recommend that you glance
through each chapter to make sure you’re not missing any new ideas or points on
design that you may not have considered up to now.

How This Book Is Organized
Here’s a brief overview of what you’ll find in each part and each chapter.

Part I: Relational Database Design
This section provides an introduction to databases, the idea of database design, and
some of the terminology you’ll need to be familiar with in order to learn and
understand the design process presented in this book.
Chapter 1, “The Relational Database,” provides a brief discussion of the types of
databases you’ll encounter, common database models, and a brief history of the
relational database.
Chapter 2, “Design Objectives,” explores why you should be concerned with design,
points out the objectives and advantages of good design, and provides a brief
introduction to Normalization and normal forms.
Chapter 3, “Terminology,” covers the terms you need to know in order to learn and
understand the design methodology presented in this book.

Part II: The Design Process
Each aspect of the database design process is discussed in detail in Part II, including
establishing table structures, assigning primary keys, setting field specifications,
establishing table relationships, setting up views, and establishing various levels of

data integrity.
Chapter 4, “Conceptual Overview,” provides an overview of the design process,
showing you how the different components of the process fit together.
Chapter 5, “Starting the Process,” covers how to define a mission statement and
mission objectives for the database, both of which provide you with an initial focus
for creating your database.
Chapter 6, “Analyzing the Current Database,” covers issues concerning the existing
database. We look at reasons for analyzing the current database, how to look at
current methods of collecting and presenting data, why and how to conduct
interviews with users and management, and how to compile initial field lists.
Chapter 7, “Establishing Table Structures,” covers topics such as determining and
defining what subjects the database should track, associating fields with tables, and
refining table structures.
Chapter 8, “Keys,” covers the concept of keys and their importance to the design
process, as well as how to define candidate and primary keys for each table.
Chapter 9, “Field Specifications,” covers a topic that a number of database
developers tend to minimize. Besides indicating how each field is created, field
specifications determine the very nature of the values a field contains. Topics in this
chapter include the importance of field specifications, types of specification
characteristics, and how to define specifications for each field in the database.
Chapter 10, “Table Relationships,” explains the importance of table relationships,
types of relationships, setting up relationships, and establishing relationship
characteristics.
Chapter 11, “Business Rules,” covers types of business rules, determining and
establishing business rules, and using validation tables. Business rules are very
important in any database because they provide a distinct level of data integrity.
Chapter 12, “Views,” looks into the concept of views and why they are important,
types of views, and how to determine and set up views.
Chapter 13, “Reviewing Data Integrity,” reviews each level of integrity that has been
defined and discussed in previous chapters. Here you learn that it’s a good idea to
review the final design of the database structure to ensure that you’ve imposed data
integrity as completely as you can.

Part III: Other Database Design Issues
This section deals with topics such as avoiding bad design and bending the rules set
forth in the design process.
Chapter 14, “Bad Design—What Not to Do,” covers the types of designs you should
avoid, such as a flat-file design and a spreadsheet design.
Chapter 15, “Bending or Breaking the Rules,” discusses those rare instances in
which it may be necessary to stray from the techniques and concepts of the design
process. This chapter tells you when you should consider bending the rules, as well as
how it should be done.

Part IV: Appendixes
These appendices provide information that I thought would be valuable to you as
you’re learning about the database design process and when you’re working on
developing your database.
Appendix A, “Answers to Review Questions,” contains the answers to all of the
review questions in Chapters 1 through 12.
Appendix B, “Diagram of the Database Design Process,” provides a diagram that
maps the entire database design process.
Appendix C, “Design Guidelines,” provides an easy reference to the various sets of
design guidelines that appear throughout the book.
Appendix D, “Documentation Forms,” provides blank copies of the Field
Specifications, Business Rule Specifications, and View Specifications sheets, which
you can copy and use on your database projects.
Appendix E, “Database Design Diagram Symbols,” contains a quick and easy
reference to the diagram symbols used throughout the book.
Appendix F, “Sample Designs,” contains sample database designs that can serve as
the basis for ideas for databases you may want or need to create.
Appendix G, “On Normalization,” provides a discussion on how I incorporated
Normalization into my design methodology.
Appendix H, “Recommended Reading,” provides a list of books that you should
read if you are interested in pursuing an in-depth study of database technology.
Glossary contains concise definitions of various words and phrases used throughout

the book.

Important: Read this Section!

A Word About the Examples and Techniques in This Book
You’ll notice that there are a wide variety of examples in this book. I’ve made sure
that they are as generic and relevant as possible. However, you may notice that
several of the examples are rather simplified, incomplete, or occasionally even
incorrect. Believe it or not, I created them that way on purpose.
I’ve created some examples with errors so that I could illustrate specific concepts and
techniques. Without these examples, you wouldn’t see how the concepts or
techniques are put to use, as well as the results you should expect from using them.
Other examples are simple because, once again, the focus is on the technique or
concept and not on the example itself. For instance, there are many ways that you
can design an order-tracking database. However, the structure of the sample order-
tracking database I use in this book is simple because the focus is specifically on the
design process, not on creating an elaborate order-tracking database system.
So what I’m really trying to emphasize here is this:

Focus on the concept or technique and its intended results, not
on the example used to illustrate it.

A New Approach to Learning
Here’s an approach to learning the design process (or pretty much anything else, for
that matter) that I’ve found very useful in my database design classes.
Think of all the techniques used in the design process as a set of tools; each tool (or
technique) is used for a specific purpose. The idea here is that once you learn how a
tool is used generically, you can then use that tool in any number of situations. The
reason you can do this is because you use the tool the same way in each situation.
Take a Crescent wrench, for example. Generically speaking, you use a Crescent
wrench to fasten and unfasten a nut to a bolt. You open or close the jaw of the
wrench to fit a given bolt by using the adjusting screw located on the head of the
wrench. Now that you’re clear about its use, try using it on a few bolts. Try it on the
legs of an outdoor chair, or the fan belt cover on an engine, or the side panel of an
outdoor cooling unit, or the hinge plates of an iron gate. Do you notice that regardless

of where you encounter a nut and bolt, you can always fasten and unfasten the nut
by using the Crescent wrench in the same manner?
The tools used to design a database work in exactly the same way. Once you
understand how a tool is used generically, it will work the same way regardless of the
circumstances under which it is used. For instance, consider the tool (or technique)
for decomposing a field value. Say you have a single ADDRESS field in a
CUSTOMERS table that contains the street address, city, state, and zip code for a
given customer. You’ll find it difficult to use this field in your database because it
contains more than one item of data; you’ll certainly have a hard time retrieving
information for a particular city or sorting the information by a specific zip code.
The solution to this apparent dilemma is to decompose the ADDRESS field into smaller
fields. You do this by identifying the distinct items that make up the value of the field,
and then treating each item as its own separate field. That’s all there is to it! This
process constitutes a “tool” that you can now use on any field containing a value
composed of two or more distinct data items, such as these sample fields. The
following table shows the results of the decomposition process.

Note
You’ll learn more about decomposing field values in Chapter 7, “Establishing
Table Structures.”

You can use all of the techniques (“tools”) that are part of the design process
presented in this book in the same manner. You’ll be able to design a sound database

structure using these techniques regardless of the type of database you need to create.
Just be sure to remember this:

Focus on the concept or technique being presented and its
intended results, not on the example used to illustrate it.

Part I: Relational Database Design

1. The Relational Database

A fish must swim three times—in water, in butter, and in wine.
—POLISH PROVERB

Topics Covered in This Chapter
Types of Databases
Early Database Models
The Relational Database Model
Relational Database Management Systems
Beyond the Relational Model
What the Future Holds
Summary
Review Questions

The relational database has been in existence for more than 40 years. It spawned a
multibillion-dollar industry, is the most widely used type of database in the world
today, and is an essential part of our everyday lives. It is very likely that you are using
a relational database every time you purchase goods online or at a local store, make
travel plans with your travel agent, check out books at the library, or make a purchase
on the Internet.
Before we delve into the design process, let’s take a look at a brief history of the
relational database—where it came from, where it is now, and where it’s likely to go
in the future.

Types of Databases
What is a database? As you probably know, a database is an organized collection of
data used for the purpose of modeling some type of organization or organizational
process. It really doesn’t matter whether you’re using paper or a computer application
program to collect and store the data. As long as you’re gathering data in some
organized manner for a specific purpose, you’ve got a database. Throughout the
remainder of this discussion, we’ll assume that you’re using an application program to
collect and maintain your data.

There are two types of databases in database management, operational databases and
analytical databases.
Operational databases are the backbone of many companies, organizations, and
institutions throughout the world. This type of database is primarily used in online
transaction processing (OLTP) scenarios, that is, in situations where there is a need to
collect, modify, and maintain data on a daily basis. The type of data stored in an
operational database is dynamic, meaning that it changes constantly and always
reflects up-to-the-minute information. Organizations such as retail stores,
manufacturing companies, hospitals and clinics, and publishing houses use operational
databases because their data is in a constant state of flux.
In contrast, analytical databases are primarily used in online analytical processing
(OLAP) scenarios, where there is a need to store and track historical and time-
dependent data. An analytical database is a valuable asset when there is a need to
track trends, view statistical data over a long period of time, and make tactical or
strategic business projections. This type of database stores static data, meaning that
the data is never (or very rarely) modified. The information gleaned from an
analytical database reflects a point-in-time snapshot of the data. Chemical labs,
geological companies, and marketing analysis firms are examples of organizations that
use analytical databases.
Analytical databases often use data from operational databases as their main data
source, so there can be some amount of association between them; nevertheless,
operational and analytical databases fulfill very specific types of data processing needs
and creating their structures requires radically different design methodologies. This
book focuses on designing an operational database because it is still the most
commonly used type of database in the world today.

Early Database Models
In the days before the relational database model, two data models were commonly
used to maintain and manipulate data—the hierarchical database model and the
network database model.

Note
I’ve provided a brief overview of each of these models for historical purposes
only. In an overall sense, I believe it is useful for you to know what preceded
the relational model so that you have a basic understanding of what led to its
creation and evolution.
In the following overview I briefly describe how the data in each model is
structured and accessed, how the relationship between a pair of tables is
represented, and one or two of the advantages or disadvantages of each
model.

Some of the terms you’ll encounter in this section are explained in more detail in
Chapter 3, “Terminology.”

The Hierarchical Database Model
Data in this type of database is structured hierarchically and is typically diagrammed
as an inverted tree. A single table in the database acts as the “root” of the inverted
tree and other tables act as the branches flowing from the root. Figure 1.1 shows a
diagram of a typical hierarchical database structure.

Figure 1.1. Diagram of a typical hierarchical database

Agents Database
In the example shown in Figure 1.1, an agent books several
entertainers, and each entertainer has his own schedule. An agent
also maintains a number of clients whose entertainment needs are
met by the agent. A client books engagements through the agent and
makes payments to him for his services.

A relationship in a hierarchical database is represented by the term parent/child. In
this type of relationship, a parent table can be associated with one or more child
tables, but a single child table can be associated with only one parent table. These
tables are explicitly linked via a pointer or by the physical arrangement of the records
within the tables. A user accesses data within this model by starting at the root table
and working down through the tree to the target data. This access method requires
the user to be very familiar with the structure of the database.
One advantage to using a hierarchical database is that a user can retrieve data very
quickly because there are explicit links between the table structures. Another
advantage is that referential integrity is built in and automatically enforced. This
ensures that a record in a child table must be linked to an existing record in a parent
table, and that a record deleted in the parent table will cause all associated records in
the child table to be deleted as well.

Note
In the following examples, table names within the text appear in all capital
letters (such as VENDORS) and field names within the text appear in small
capital letters (such as VENDOR ID NUMBER).

A problem occurs in a hierarchical database when a user needs to store a record in a
child table that is currently unrelated to any record in a parent table. Consider an
example using the Agents database shown in Figure 1.1. A user cannot enter a new
entertainer in the ENTERTAINERS table until the entertainer is assigned to an agent
in the AGENTS table. Recall that a record in a child table (in this case,
ENTERTAINERS) must be related to a record in the parent table (AGENTS). Yet in

real life, entertainers commonly sign up with the agency well before they are assigned
to specific agents. This scenario is difficult to model in a hierarchical database. The
rules can be bent without breaking them if a dummy agent record is inserted in the
AGENTS table; however, this option is not really optimal.
This type of database cannot support complex relationships, and there is often a
problem with redundant data. For example, there is a many-to-many relationship
between clients and entertainers—an entertainer will perform for many clients, and a
client will hire many entertainers. You can’t directly model this type of relationship in
a hierarchical database, so you’ll have to introduce redundant data into both the
SCHEDULE and ENGAGEMENTS tables.

• The SCHEDULE table will now have client data (such as client name, address,
and phone number) to show for whom and where each entertainer is
performing. This particular data is redundant because it is currently stored in
the CLIENTS table.

• The ENGAGEMENTS table will now contain data on entertainers (such as
entertainer name, phone number, and type of entertainer) to indicate which
entertainers are performing for a given client. This data is redundant as well
because it is currently stored in the ENTERTAINERS table.

The problem with this redundancy is that it opens up the possibility of allowing a user
to enter a single piece of data inconsistently. This, in turn, can result in producing
inaccurate information.
A user can solve this problem in a roundabout manner by creating one hierarchical
database specifically for entertainers and another specifically for agents. The new
Entertainers database will contain only the ENTERTAINERS table, and the revised
Agents database will contain the AGENTS, CLIENTS, PAYMENTS, and
ENGAGEMENTS tables. The SCHEDULE table is no longer needed in the
Entertainers database because you can define a logical child relationship between the
ENGAGEMENTS table in the Agents database and the ENTERTAINERS table in the
Entertainers database. With this relationship in place, you can retrieve a variety of
information, such as a list of booked entertainers for a given client or a performance
schedule for a given entertainer. Figure 1.2 shows a diagram of the new model.

Figure 1.2. Using two hierarchical databases to resolve a many-to-many
relationship

As you can see, a person designing a hierarchical database must be able to recognize
the need to use this technique for a many-to-many relationship. Here the need is
relatively obvious, but many relationships are more obscure and may not be
discovered until very late in the design process or, more disturbingly, well after the
database has been put into operation.
The hierarchical database lent itself well to the tape storage systems used by
mainframes in the 1970s and was very popular in companies that used those systems.
But, despite the fact that the hierarchical database provided fast and direct access to
data and was useful in a number of circumstances, it was clear that a new database
model was needed to address the growing problems of data redundancy and complex
relationships among data.

The Network Database Model
The network database was, for the most part, developed as an attempt to address

some of the problems of the hierarchical database. The structure of a network
database is represented in terms of nodes and set structures. Figure 1.3 shows a
diagram of a typical network database.

Figure 1.3. Diagram of a typical network database

A node represents a collection of records, and a set structure establishes and
represents a relationship in a network database. It is a transparent construction that
relates a pair of nodes together by using one node as an owner and the other node as
a member. (This is a valuable improvement on the parent/child relationship.) A set
structure supports a one-to-many relationship, which means that a record in the
owner node can be related to one or more records in the member node, but a single
record in the member node is related to only one record in the owner node.
Additionally, a record in the member node cannot exist without being related to an
existing record in the owner node. For example, a client must be assigned to an agent,
but an agent with no clients can still be listed in the database. Figure 1.4 shows a
diagram of a basic set structure.

Figure 1.4. A basic set structure

One or more sets (connections) can be defined between a specific pair of nodes, and
a single node can also be involved in other sets with other nodes in the database. In
Figure 1.3, for instance, the CLIENTS node is related to the PAYMENTS node via
the Make set structure. It is also related to the ENGAGEMENTS node via the
Schedule set structure. Along with being related to the CLIENTS node, the
ENGAGEMENTS node is related to the ENTERTAINERS node via the Perform set
structure.
A user can access data within a network database by working through the appropriate
set structures. Unlike the hierarchical database, where access must begin from a root
table, a user can access data from within the network database, starting from any
node and working backward or forward through related sets. Consider the Agents
database in Figure 1.3 once again. Say a user wants to find the agent who booked a
specific engagement. She begins by locating the appropriate engagement record in the
ENGAGEMENTS node, and then determines which client “owns” that engagement
record via the Schedule set structure. Finally, she identifies the agent that “owns” the
client record via the Represent set structure. The user can answer a wide variety of
questions as long as she navigates properly through the appropriate set structures.
One advantage the network database provides is fast data access. It also allows users
to create queries that are more complex than those they created using a hierarchical

database. A network database’s main disadvantage is that a user has to be very
familiar with the structure of the database in order to work through the set structures.
Consider the Agents database in Figure 1.3 once again. It is incumbent on the user to
be familiar with the appropriate set structures if she is to determine whether a
particular engagement has been paid. Another disadvantage is that it is not easy to
change the database structure without affecting the application programs that interact
with it. Recall that a relationship is explicitly defined as a set structure in a network
database. You cannot change a set structure without affecting the application
programs that use this structure to navigate through the data. If you change a set
structure, you must also modify all references made from within the application
program to that structure.
Although the network database was clearly a step up from the hierarchical database, a
few people in the database community believed that there must be a better way to
manage and maintain large amounts of data. As each data model emerged, users
found that they could ask more complex questions, thereby increasing the demands
made upon the database. And so we come to the relational database model.

The Relational Database Model
The relational database was first conceived in 1969 and is still one of the most widely
used database models in database management today. The father of the relational
model, Dr. Edgar F. Codd, was an IBM research scientist in the late 1960s and was at
that time looking into new ways to handle large amounts of data. His dissatisfaction
with the database models and database products of the time led him to begin thinking
of ways to apply the disciplines and structures of mathematics to solve the myriad
problems he had been encountering. Being a mathematician by profession, he strongly
believed that he could apply specific branches of mathematics to solve problems such
as data redundancy, weak data integrity, and a database structure’s over dependence
on its physical implementation.
Dr. Codd formally presented his new relational model in a landmark work entitled “A
Relational Model of Data for Large Shared Databanks”1 in June 1970. He based his
new model on two branches of mathematics—set theory and first-order predicate
logic. Indeed, the name of the model itself is derived from the term relation, which is
part of set theory. (A widely held misconception is that the relational model derives its
name from the fact that tables within a relational database can be related to one
another.)

A relational database stores data in relations, which the user perceives as tables. Each
relation is composed of tuples, or records, and attributes, or fields. (I’ll use the terms
tables, records, and fields throughout the remainder of the book.) The physical order
of the records or fields in a table is completely immaterial, and each record in the
table is identified by a field that contains a unique value. These are the two
characteristics of a relational database that allow the data to exist independent of the
way it is physically stored in the computer. As such, a user isn’t required to know the
physical location of a record in order to retrieve its data. This is unlike the hierarchical
and network database models in which knowing the layout of the structures is crucial
to retrieving data.
The relational model categorizes relationships as one-to-one, one-to-many, and many-
to-many. (These relationships are covered in detail in Chapter 10, “Table
Relationships.”) A relationship between a pair of tables is established implicitly
through matching values of a shared field. In Figure 1.5, for example, the CLIENTS
and AGENTS tables are related via an Agent ID field; a specific client is associated
with an agent through a matching Agent ID. Likewise, the ENTERTAINERS and
ENGAGEMENTS tables are related via an Entertainer ID; a record in the
ENTERTAINERS table can be associated with a record in the ENGAGEMENTS
table through matching Entertainer IDs.

Figure 1.5. Examples of related tables in a relational database

As long as a user is familiar with the relationships among the tables in the database, he
can access data in an almost unlimited number of ways. He can access data from
tables that are directly related and from tables that are indirectly related. Consider the
Agents database in Figure 1.5. Although the CLIENTS table is indirectly related to the
ENGAGEMENTS table, the user can produce a list of clients and the entertainers
who have performed for them. (Of course, it really depends on how the tables are
actually structured, but I digress. This example serves our purpose for now.) He can
do this easily because CLIENTS is directly related to ENGAGEMENTS and
ENGAGEMENTS is directly related to ENTERTAINERS.

Retrieving Data
You retrieve data in a relational database by using Structured Query Language (SQL).
SQL is the standard language used to create, modify, maintain, and query relational
databases. The following shows a sample SQL query statement you can use to
produce a list of all clients in the city of El Paso:
Click here to view code image

SELECT ClientLastName, ClientFirstName, ClientPhoneNumber
FROM Clients
WHERE City = "El Paso"
ORDER BY ClientLastName, ClientFirstName

The three components of a basic SQL query are the SELECT...FROM statement, the
WHERE clause, and the ORDER BY clause. You use the SELECT clause to indicate the fields
you want to use in the query and the FROM clause to indicate the table(s) to which the
fields belong. You can filter the records the query returns by imposing criteria against
one or more fields with the WHERE clause, and then sort the results in ascending or
descending order with the ORDER BY clause.
Most of today’s major relational database software programs incorporate various
forms of SQL implementations, ranging from windows in which users can manually
enter “raw” SQL statements to tools that allow users to build queries using various
graphic elements. For example, a user working with R:BASE Technologies’ R:BASE
can opt to build and execute SQL query statements directly from a command prompt,
while someone using Microsoft SQL Server may find it easier to build queries using
SQL Server’s graphical query builder. Regardless of how the queries are built, the
user can save them for future use.

It’s not always necessary for you to know SQL in order to work with a database. If
your database software provides a graphical query builder or you’re using a custom-
built application to work with the data in your database, you’ll never need to write a
single SQL statement. It’s a good idea, however, for you to gain a basic understanding
of SQL. It will help those of you using query-building tools to understand and
troubleshoot the queries you create with these tools, and it will definitely be to your
advantage should you need to work with high-end database software programs, such
as Oracle and Microsoft SQL Server.

Note
Although a detailed discussion of SQL is beyond the scope of this book, you
should understand that SQL is a language directly related to the relational
database model. If you have a desire or need to study SQL, you could start by
reading my second book, SQL Queries for Mere Mortals®, Second Edition,
and then move on to any of the other SQL books that I have listed in
Appendix H, “Recommended Reading.”

Advantages of a Relational Database
The relational database provides a number of advantages over previous models, such
as the following.

• Built-in multilevel integrity: Data integrity is built into the model at the field
level to ensure the accuracy of the data; at the table level to ensure that records
are not duplicated and to detect missing primary key values; at the relationship
level to ensure that the relationship between a pair of tables is valid; and at the
business level to ensure that the data is accurate in terms of the business itself.
(Integrity is discussed in detail as the design process unfolds.)

• Logical and physical data independence from database applications: Neither
changes a user makes to the logical design of the database, nor changes a
database software vendor makes to the physical implementation of the
database, will adversely affect the applications built upon it.

• Guaranteed data consistency and accuracy: Data is consistent and accurate
due to the various levels of integrity you can impose within the database. (This
will become quite clear as you work through the design process.)

• Easy data retrieval: At the user’s command, data can be retrieved either from
a particular table or from any number of related tables within the database.
This enables a user to view information in an almost unlimited number of
ways.

These and other advantages have proved beneficial to the business community and to
all those who need to collect and manage data. Indeed, the relational database has
become the database of choice in many circumstances.
One commonly perceived disadvantage of the relational database was that software
programs based on it ran very slowly. This was not a fault of the relational model
itself, but of the ancillary technology available at the time of the model’s introduction.
Processing speed, memory, and storage were simply insufficient to provide database
software vendors with a platform on which to build a full implementation of the
relational database, so the initial relational database software programs fell woefully
short of their full potential. Advances in both hardware technology and software
engineering over the past 20 years have made processing speed an insignificant issue
and have allowed vendors to make significant gains in their efforts to support the
model more fully.
You’ll learn more about the relational database model as you work through the design
process presented in this book. Some of the topics you’ll encounter include creating
tables, establishing data integrity, working with relationships, and establishing business
rules.

Relational Database Management Systems
A relational database management system (RDBMS) is a software application
program you use to create, maintain, modify, and manipulate a relational database.
Many RDBMS programs also provide the tools you need to create end-user
applications that interact with the data stored in the database. Of course, the quality of
an RDBMS is a direct function of the extent to which it supports the relational
database model. Even among “true” RDBMSs, support for the relational database
varies among vendors, and there is yet to be a full implementation of the relational
model’s potential. Despite this, all RDBMS programs continue to evolve and become
more full-featured and powerful than ever before.
In the earliest days of the relational database, RDBMSs were written for use on
mainframe computers. (Didn’t everything start on a mainframe?) Two RDBMS

programs prevalent in the early 1970s were System R, developed by IBM at its San
Jose Research Laboratory in California, and Interactive Graphics Retrieval System
(INGRES), developed at the University of California at Berkeley. These two
programs contributed greatly to the general appreciation of the relational model.
As the benefits of the relational database became more widely known, many
companies decided to make a slow move from hierarchical and network database
models to the relational database model, thus creating a need for more and better
mainframe RDBMS programs. The 1980s saw the development of various
commercial RDBMSs for mainframe computers by companies such as Oracle and
IBM.
The early to mid-1980s saw the rise of the personal computer, and with it the
development of PC-based RDBMS programs. Some of the early entries in this
category, from companies such as Ashton-Tate and Fox Software, were nothing more
than elementary file-based database management systems. True PC-based RDBMS
programs began to emerge with products developed by companies such as Microrim
and Ansa Software. These companies helped to spread the idea and potential of
database management from the mainframe-dominated domain of information systems
departments to the desktop of the common end user.
The need to share data became apparent as more and more users worked with
databases throughout the late 1980s and early 1990s. The concept of a centrally
located database that could be made available to multiple users seemed a very
promising idea. This would certainly make data management and database security
much easier to implement. Database vendors such as Microsoft and Oracle responded
to this need by developing client/server RDBMS programs.
In a client/server environment, the data resides on a computer acting as a database
server, and users interact with the data through applications residing on their own
computers, or database client. The database developer uses the client/server RDBMS
program to create and maintain the database and attendant end-user application
programs. She implements data integrity and data security on the database server,
giving her the ability to base a variety of user applications on the same set of data
without affecting the data’s integrity or security.

Beyond the Relational Model
Although RDBMSs have been widely accepted for use in typical business applications

such as inventory control, patient management, banking, order processing, and event
scheduling, they proved to be somewhat lacking for such applications as computer-
aided design (CAD), geographic information systems (GIS), and multimedia storage
systems. Two new database models eventually emerged in response to this problem:
the object-oriented database and the object-relational database.
The object-oriented model incorporates all of the characteristics of an object-oriented
programming language and essentially relegates the relational database to the status of
a data store. The fundamental idea here is that the database developer handles every
aspect of the database, including the sets of operations that manipulate the data in the
database from within the object-oriented database programming software. No longer
is there a clear separation between the database software and the application
programming software. (As with any other model, there are pros and cons to this
approach.) Versant Corporation and IBM are two vendors that produce object-
oriented database software.
Unlike the relational model, which has a solid theoretical basis in two distinct
branches of mathematics, the object-oriented database model has no specific
theoretical foundation. As such, there is no singular, cohesive consensus as to its
definition. There is, however, a version of the model defined by the Object
Management Group (OMG) that is somewhat of a de facto standard for object-
oriented database management systems.

Note
The OMG is a nonprofit international group that addresses the issues of object
standards. It was founded in 1989 and comprises more than 800 member
organizations. It is important to note that the OMG is not a standards body,
such as the American National Standards Institute (ANSI), but merely an
advisory and certification group.

The object-relational model (formerly known as the extended relational data model),
on the other hand, extended the relational database model by incorporating various
object-oriented elements and characteristics, such as classes, encapsulation, and
inheritance. The idea was that these extensions would allow a relational database to
manage and manipulate more complex types of data, such as audio streams, video
clips, and architectural drawings. Vendors that have produced application programs

based on this model include companies such as IBM, Oracle, Microsoft, and the
PostgreSQL Global Development Group.

What the Future Holds
The manner in which databases are used has evolved immensely in the past several
years. There came a time when many organizations began to realize that there was a
lot of useful information that could be gathered from data they stored in various
relational and nonrelational databases. This prompted them to question whether there
was a way to mine the data for useful analytical information that they could then use
to make critical business decisions. Furthermore, they wondered if they could
consolidate and integrate their data into a viable knowledgebase for their
organizations. Indeed, these would be difficult questions to answer.
IBM proposed the idea of a data warehouse, which, as originally conceived, would
allow organizations to access data stored in any number of nonrelational databases.
They were unsuccessful in their first attempts at implementing data warehouses,
primarily because of the complexities and performance problems associated with such
a task. It has been only since the 1990s that the implementation of data warehouses
has become more viable and practical. Bill Inmon, widely regarded as the father of
the data warehouse, is a strong and vocal advocate of the technology and has been
instrumental in its evolution. Data warehouses are now more commonplace as
companies move to leverage the vast amounts of data they’ve stored in their
databases over the years.
The Internet has had a significant impact on the way organizations use databases.
Many companies and businesses use the Web to expand their consumer base, and
much of the data they share with and gather from these consumers is stored in a
database. Developers commonly use eXtensible Markup Language (XML) to
assemble and consolidate data from various relational and nonrelational systems.
There has been a considerable effort by various vendors to get their clients to create
databases and store data in the “cloud,” that is, a location that is completely apart
from the client’s location. The idea is that the client can access data from the “cloud”
database via the Internet from anywhere at any time. Given the broad emergence and
use of connected devices within the past few years (as of this writing), it will be
interesting to see how database management systems evolve within this type of
environment.

A Final Note
RDBMSs now have a long history, and they continue to play a huge role in the way
people, businesses, and organizations interact with their data. Their role is constantly
expanding and evolving as data becomes more accessible via the Internet and
businesses move at an ever-increasing pace to expand their presence on the Web.
Numerous organizations are heavily invested in their relational database systems, and
they are not likely to disappear anytime soon.

Summary
We opened this chapter by defining the two types of databases currently used in
database management: operational databases and analytical databases.
We then briefly discussed the hierarchical database model and the network database
model. Our discussion covered the data structures, relationships, and data access
methods used in both models, as well as their chief disadvantages. You learned that
these models were widely used in the early days of database management and led to
the eventual development and introduction of the relational database model.
Next, we provided a detailed discussion of the relational database model, its history,
and its features. We noted that it is based on specific branches of mathematics and
that this mathematical foundation is what makes the model so structurally sound.
Then we explored the model’s data structures and relationships, and the role SQL
plays in accessing data within the model. You’ll remember, no doubt, that SQL is the
standard language used to work with relational databases. We ended this section by
reviewing the advantages of the relational database model.
We then took a look at a brief history of relational database management systems,
beginning with the mainframe systems of the early 1970s and progressing through the
PC-based systems of the 1980s to the client/server systems of the 1990s. At this
point you should have a sense of the progression of circumstances that have led to the
development of the database systems we use today.
The chapter continued with a brief discussion of the object-relational and object-
oriented database models. Here you learned that these models emerged ostensibly as
a means to deal with advanced database applications, and that they each incorporate
various object-oriented elements and characteristics.
Finally, we closed the chapter with a brief discussion of data warehouses and
accessing data via the Internet. You learned that data warehouses are used to

consolidate and integrate data from heterogeneous sources and that the possibility of
truly using them has only recently become more viable and practical. Next, you
learned that XML is a common tool for assembling data across relational and
nonrelational data sources and that there is an ever-growing movement to store and
manage data “in the cloud.” You should now understand that relational databases are
likely to be used for quite some time, despite the great impact the Internet has had on
the way organizations use databases.
In the next chapter, we’ll discuss why you should be concerned with database design
and why theory is important. We’ll also cover the objectives and advantages of good
design.

Review Questions
1. Name the two main types of databases in use today.
2. What type of data does an analytical database store?
3. True or False: An operational database is used primarily in online transaction

processing (OLTP) scenarios.
4. What two data models were commonly used in the days before the relational

database model?
5. Describe a parent/child relationship.
6. What is a set structure?
7. Name one of the branches of mathematics on which the relational model is

based.
8. How does a relational database store data?
9. Name the three types of relationships in a relational database.

10. How do you retrieve data in a relational database?
11. State two advantages of a relational database.
12. What is a relational database management system?
13. What is the premise behind the object-relational model?
14. What is the purpose of a data warehouse?

2. Design Objectives

Everything factual is, in a sense, theory. The blue of the sky exhibits the
basic laws of chromatics. There is no sense in looking for something

behind phenomena; they are theory.
—GOETHE

Topics Covered in This Chapter
Why Should You Be Concerned with Database Design?
The Importance of Theory
The Advantage of Learning a Good Design Methodology
Objectives of Good Design
Benefits of Good Design
Database Design Methods
Normalization
Summary
Review Questions

Why Should You Be Concerned with Database Design?
Some of you who work with relational database management system (RDBMS)
application programs may wonder why you should be concerned with database
design. After all, most programs come with sample databases that you can copy and
modify to suit your own needs, and you can even borrow tables from the sample
databases and use them in other databases that you’ve created. Some programs also
provide tools that will guide you through the process of defining and creating tables.
However, these tools don’t actually help you design a database—they merely help
you create the physical tables that you will include in the database.
What you must understand is that it’s better for you to use these tools after you’ve
created the logical database structure. RDBMS programs provide the design tools
and the sample databases to help minimize the time it takes you to implement the
database structure physically. Theoretically, reducing implementation time gives you
more time to focus on creating and building end-user applications.

Yet the primary reason you should be concerned with database design is that it is
crucial to the consistency, integrity, and accuracy of the data in a database. If you
design a database improperly, it will be difficult for you to retrieve certain types of
information, and you’ll run the risk that your searches will produce inaccurate
information. Inaccurate information is probably the most detrimental result of
improper database design—it can adversely affect your organization’s bottom line.
In fact, if your database affects the manner in which your business performs its daily
operations or if it’s going to influence the future direction of your business, you must
be concerned with database design.
Let’s look at this from a different perspective for a moment: Think about how you
would go about having a custom home built. What’s the first thing you’re going to
do? Certainly you’re not going to hire a contractor immediately and let him build your
home however he wishes. Surely you will first engage an architect to design your new
home and then hire a contractor to build it. The architect will explore your needs and
express them as a set of blueprints, recording decisions about size and shape and
requirements for various systems (structural, mechanical, electrical). Next, the
contractor will procure the labor and materials, including the listed systems, and then
assemble them according to the drawings and specifications.
Now let’s return to our database perspective and think of the logical database design
as the architectural blueprints and the physical database implementation as the
completed home. The logical database design describes the size, shape, and necessary
systems for your database and it addresses the informational and operational needs of
your business. You then build the physical implementation of the logical database
design using your RDBMS program. Once you’ve created your tables, set up table
relationships, and established the appropriate levels of data integrity, your database is
complete. Now you’re ready to design and create applications that allow you and
your users to interact easily with the data stored in the database, and you can be
confident that these applications will provide you with timely and, above all, accurate
information.
Although you can implement a poor design in an RDBMS, implementing a good
design is far more to your advantage because it will yield accurate information, store
data more efficiently and effectively, and be easier for you to manage and maintain.

The Importance of Theory

Note
In this chapter, I use the term theory to represent “general propositions used
as principles” and not “conjectures or proposals.”

A number of major disciplines (and their associated design methodologies) have some
type of theoretical basis. Structural engineers design an unlimited variety of structures
using the theories of physics. Composers create beautiful symphonies and orchestral
pieces using the concepts found in music theory. The automobile industry uses
aerodynamics theories to design more fuel-efficient vehicles. The aerospace industry
uses the same theories to design airplane wings that reduce wind drag.
These examples demonstrate that theory is relevant and very important. The chief
advantage of theory is that it helps you predict outcomes; it allows you to predict
what will happen if you perform a certain action or series of actions. You know if you
drop a stone, it will fall to the ground. If you are agile, you can get your toes out of
the way of Newton’s theory of gravity. The point is that it works every time. If you
chisel a stone flat and place it on another flat stone, you can predict that it will stay
where you put it. This theory allows you to design pyramids and cathedrals and brick
outhouses. Now consider a database example. Let’s assume you have a pair of tables
that are related to each other. You know that you can draw data from both tables
simultaneously simply because of the way relational database theory works. The data
you draw from both tables is based on matching values of a shared field between the
tables themselves. Again, your actions have a predictable result.
The relational database is based on two branches of mathematics known as set theory
and first-order predicate logic. This very fact is what allows the relational database
to guarantee accurate information. These branches of mathematics also provide the
basis for formulating good design methodologies and the building blocks necessary to
create good relational database structures.
You might harbor an understandable reluctance to study complicated mathematical
concepts simply to carry out what seems to be a rather limited task. You’re still sure
to hear claims that the mathematical theories on which the relational database and its
associated design methodologies are based don’t have any relevance to the real world,
or that they are somehow impractical. This is not true: Math is central to the relational
model and is what guarantees the model’s viability. But cheer up—it isn’t really

necessary for you to know anything about set theory or first-order predicate logic in
order to use a relational database! You certainly don’t have to know all the details of
aerodynamics just to drive an automobile. Aerodynamics theories may help you
understand and appreciate how an automobile can get better gas mileage, but they
won’t help you learn how to parallel park.
Mathematical theory provides the foundation for the relational database model, and
thus makes the model predictable, reliable, and sound. Theory describes the basic
building blocks used to create a relational database and provides guidelines for how it
should be arranged. Arranging building blocks to achieve a desired result is defined as
“design.”

The Advantage of Learning a Good Design Methodology
You could learn how to design a database properly by trial and error, but it would take
you a very long time and you would probably have to repair many mistakes along the
way. The best approach is to learn a good database design methodology, such as the
one in this book, and then embark on designing your database.
You’ll gain several advantages from learning and using a good design methodology.

• It gives you the skills you need to design a sound database structure. A large
number of data processing problems can be attributed to the presence of
redundant data, duplicate data, and invalid data, or the absence of required
data. All of these problems produce erroneous information and make certain
queries and reports difficult to run. You can avoid almost all of these problems
by employing a good design methodology.

• It provides you with an organized set of techniques that will guide you step-
by-step through the design process. The organization of the techniques enables
you to make informed decisions on every aspect of your design.

• It helps you keep your missteps and design reiterations to a minimum. Of
course, you will naturally make some mistakes when you’re designing a
database, but a good methodology helps you recognize errors in your design
and gives you the tools to correct them. Additionally, the organization of the
techniques within the methodology keeps you from unnecessarily repeating a
given design process.

• It makes the design process easier and reduces the amount of time you spend
designing the database. You will inevitably waste valuable time taking an

arbitrary trial-and-error approach to design because it lacks the logic and
organization that a good methodology provides.

• It will help you understand and use your RDBMS application program more
fully and effectively. As your knowledge of proper design expands and grows,
you’ll actually begin to understand why a given RDBMS provides certain tools
and how you can use them to implement the structure within the RDBMS
program.

Regardless of whether you use the design methodology presented in this book or
some other established methodology, you should choose a design methodology, learn
it as well as you can, and use it faithfully to design your databases.

Objectives of Good Design
There are distinct objectives you must achieve in order to design a good, sound
database structure. You can avoid many of the problems mentioned in the previous
section if you keep these objectives in mind and constantly focus on them while
you’re designing your database.

• The database supports both required and ad hoc information retrieval. The
database must store the data necessary to support information requirements
defined during the design process and any possible ad hoc queries that may be
posed by a user.

• The tables are constructed properly and efficiently. Each table in the database
represents a single subject, is composed of relatively distinct fields, keeps
redundant data to an absolute minimum, and is identified throughout the
database by a field with unique values.

• Data integrity is imposed at the field, table, and relationship levels. These
levels of integrity help guarantee that the data structures and their values will be
valid and accurate at all times.

• The database supports business rules relevant to the organization. The data
must provide valid and accurate information that is always meaningful to the
business.

• The database lends itself to future growth. The database structure should be
easy to modify or expand as the information requirements of the business
change and grow.

You might find it difficult at times to fulfill these objectives, but you’ll certainly be
pleased with your final database structure once you’ve met them.

Benefits of Good Design
The time you invest in designing a sound database structure is time well spent. Good
design saves you time in the long run because you do not constantly have to revamp a
quickly and poorly designed structure. You gain the following benefits when you
apply good design techniques.

• The database structure is easy to modify and maintain. Modifications you
make to a field or table will not adversely affect other fields or tables in the
database.

• The data is easy to modify. Changes you make to the value of a given field in a
table will not adversely affect the values of other fields within the table.
Furthermore, a well-designed database keeps duplicate fields to an absolute
minimum, so you typically modify a particular data value in one field only.

• Information is easy to retrieve. You’ll be able to create queries easily because
the tables are well constructed and the relationships between them are properly
established.

• End-user applications are easy to develop and build. You can spend more
time on programming and addressing the data manipulation tasks at hand,
instead of working around the inevitable problems that arise when you work
with a poorly designed database.

Database Design Methods

Traditional Design Methods
In general, traditional methods of database design incorporate three phases:
requirements analysis, data modeling, and Normalization.
The requirements analysis phase involves an examination of the business being
modeled, interviews with users and management to assess the current system and to
analyze future needs, and an assessment of information requirements for the business
as a whole. This process is relatively straightforward, and, indeed, the design process
presented in this book follows the same line of thinking.
The data modeling phase involves modeling the database structure using a data

modeling method, such as entity-relationship (ER) diagramming, semantic-object
modeling, object-role modeling, or UML modeling. Each of these modeling methods
provides a means of visually representing various aspects of the database structure,
such as the tables, table relationships, and relationship characteristics. In fact, the
modeling method used in this book is a basic version of ER diagramming. Figure 2.1
shows an example of a basic ER diagram.

Figure 2.1. An example of a basic ER diagram

Note
I’ve incorporated the data modeling method I use in this book into the design
process itself rather than treating it separately. I’ll introduce and explain each
modeling technique as appropriate throughout the process.

Each data modeling method incorporates a set of diagramming symbols used to
represent a database’s structure and characteristics. For example, the diagram in
Figure 2.1 provides information on several aspects of the database.

• The rectangles represent two tables called AGENTS and CLIENTS.
• The diamond represents a relationship between these two tables, and the “1:N”

within the diamond indicates that it is a one-to-many relationship.
• The vertical line next to the AGENTS table indicates that a client must be

associated with an agent, and the circle next to the CLIENTS table indicates
that an agent doesn’t necessarily have to be associated with a client.

Fields are also defined and associated with the appropriate tables during the data
modeling phase. Each table is assigned a primary key, various levels of data integrity
are identified and implemented, and relationships are established via foreign keys.
Once the initial table structures are complete and the relationships have been
established according to the data model, the database is ready to go through the
Normalization phase.
Normalization is the process of decomposing large tables into smaller ones in order to

eliminate redundant data and duplicate data, and to avoid problems with inserting,
updating, or deleting data. During the Normalization process, table structures are
tested against normal forms and then modified if any of the aforementioned problems
are found. A normal form is a specific set of rules that can be used to test a table
structure to ensure that it is sound and free of problems. There are a number of
normal forms, and each one is used to test for a particular set of problems. The
normal forms currently in use are First Normal Form, Second Normal Form, Third
Normal Form, Fourth Normal Form, Fifth Normal Form, Sixth Normal Form, Boyce-
Codd Normal Form, and Domain/Key Normal Form.

The Design Method Presented in This Book
The design method that I use in this book is one that I’ve developed over the years. It
incorporates a requirements analysis and a simple ER diagramming method to
diagram the database structure. However, it does not incorporate the traditional
Normalization process or involve the use of normal forms. The reason is simple:
Normal forms can be confusing to anyone who has not taken the time to study formal
relational database theory. For example, examine the following definition of Third
Normal Form:

A relvar is in 3NF if and only if it is in 2NF and every non-key
attribute is nontransitively dependent on the primary key.1

This description is relatively meaningless to a reader who is unfamiliar with the terms
relvar, 3NF, 2NF, non-key attribute, transitively dependent, and primary key.
The process of designing a database is not and should not be hard to understand. As
long as the process is presented in a straightforward manner and each concept or
technique is clearly explained, anyone should be able to design a database properly.
For example, the following definition is derived from the results of using Third
Normal Form against a table structure, and I believe most people will find it clear and
easy to understand:

A table should have a field that uniquely identifies each of its
records, and each field in the table should describe the subject
that the table represents.

The process I used to formulate this definition is the same one I used to develop my
entire design methodology.

Normalization
Back in the late 1980s, it occurred to me that the relational model had been in
existence for almost 20 years and that people had been designing databases using the
same basic methodology for about twelve years. (And I’m still surprised we’re using
it some 20+ years later.) I was using the traditional design methodology at that time,
but I occasionally found it difficult to employ. The two things that bothered me the
most about it were the Normalization process (as a whole) and the seemingly endless
iterations it took to arrive at a proper design. Of course, these seemed to be sore
points with most of the other database developers that I knew, so I certainly wasn’t
alone in my frustrations. I thought about these problems for quite some time, and
then I came up with a solution.
I already knew that the purpose of Normalization is to take an improperly or poorly
designed table and transform it into a table with a sound structure. I also understood
the process: Take a given table and test it against the normal forms to determine
whether it is properly designed. If it isn’t designed properly, make the appropriate
modifications, retest it, and repeat the entire process until the table structure is sound.
Figure 2.2 shows how I visualized the process at this point.

Figure 2.2. How I viewed the general Normalization process

I kept these facts in mind and then posed the following questions.
1. If we assume that a thoroughly normalized table is properly and efficiently

designed, couldn’t we identify the specific characteristics of such a table and
state these to be the attributes of an ideal table structure?

2. Couldn’t we then use that ideal table as a model for all tables we create for the
database throughout the design process?

The answer to both questions, of course, is yes, so I began in earnest to develop the
basis for my “new” design methodology. I first compiled distinct sets of guidelines for
creating sound structures by identifying the final characteristics of a well-defined
database that successfully passed the tests of each normal form. I then conducted a
few tests, using the new guidelines to create table structures for a new database and
to correct flaws in the table structures of an existing database. These tests went very
well, so I decided to apply this technique to the entire traditional design methodology.
I formulated guidelines to address other issues associated with the traditional design
method, such as domains, subtypes, relationships, data integrity, and referential
integrity. After I completed the new guidelines, I performed more tests and found that
my methodology worked quite well.
The main advantage of my design methodology is that it removes many aspects of the
traditional design methodology that new database developers find intimidating. For
example, Normalization, in the traditional sense, is now transparent to the developer
because it is incorporated (via the new guidelines) throughout the design process.
Another major advantage is that the methodology is clear and easy to implement. I
believe much of this is due to the fact that I’ve written all the guidelines in plain
English, making them easy for most anyone to understand.
It’s important for you to understand that this design methodology will yield a fully
normalized database structure only if you follow it as faithfully as you would any
other design methodology. You cannot shortcut, circumvent, de-emphasize, or omit
any part of this methodology (or any design methodology, for that matter) and expect
to develop a sound structure. You must go through the process diligently,
methodically, and completely in order to reap the expected rewards.

Note
I’ve provided a more detailed explanation of how I incorporated
Normalization into my design methodology in Appendix G, “On
Normalization.”

There are a few basic terms you’ll have to learn before you delve into the design
process, and we’ll cover them in the next chapter.

Summary
At the beginning of this chapter we looked at the importance of being concerned with
database design. You now understand that database design is crucial to the integrity
and consistency of the data contained in a database. We have seen that the chief
problem resulting from improper or poor design is inaccurate information. Proper
design is of paramount concern because bad design can adversely affect the
information used by an organization.
Next, we entered into a discussion of the importance of theory, as well as its
relevance to the relational database model. You learned that the model’s foundation in
mathematical theory makes it a very sound and reliable structure.
Following this discussion, we looked at the advantages gained by learning a design
methodology. Among other things, using a good methodology yields an efficient and
reliable database structure, reduces the time it takes to design a database, and allows
you to avoid the typical problems caused by poor design.
Next, we listed the objectives of good design. Meeting these objectives is crucial to
the success of the database design process because they help you ensure that the
database structure is sound. We then enumerated the advantages of good design, and
you learned that the time you invest in designing a sound database structure is time
well spent.
We closed this chapter with a short discussion of traditional database design methods,
an explanation of the premise behind the design method presented in this book, and
Normalization. By now, you understand that traditional design methods are complex
and can take some time to learn and comprehend. On the other hand, the design
method used in this book is presented in a clear and straightforward manner, is easy
to implement, and will yield the same results as the traditional design methodology.

Review Questions
1. When is the best time to use an RDBMS program’s design tools?
2. True or False: Design is crucial to the consistency, integrity, and accuracy of

data.
3. What is the most detrimental result of improper database design?
4. What fact makes the relational database structurally sound and able to

guarantee accurate information?
5. State two advantages of learning a design methodology.
6. True or False: You will use your RDBMS program more effectively if you

understand database design.
7. State two objectives of good design.
8. What helps to guarantee that data structures and their values are valid and

accurate at all times?
9. State two benefits of applying good design techniques.

10. True or False: You can take shortcuts through some of the design processes
and still arrive at a good, sound design.

3. Terminology

“When I use a word,” Humpty Dumpty said in rather a scornful tone, “it
means just what I choose it to mean—neither more nor less.”

—LEWIS CARROLL THROUGH THE LOOKING GLASS

Topics Covered in This Chapter
Why This Terminology Is Important
Value-Related Terms
Structure-Related Terms
Relationship-Related Terms
Integrity-Related Terms
Summary
Review Questions

The terms in this chapter are important for you to understand before you embark
upon learning the design process. Indeed, there are other terms that you’ll need to
learn, and I’ll cover them as you work through the process. There’s also a glossary in
the back of the book that you can use to refresh your memory on any term you learn
here or in the following chapters.

Why This Terminology Is Important
Relational database design has its own unique set of terms, just as any other
profession, trade, or discipline. Here are three good reasons why it’s important for
you to learn these terms.

1. They are used to express and define the special ideas and concepts of the
relational database model. Much of the terminology is derived from the
mathematical branches of set theory and first-order predicate logic, which form
the basis of the relational database model.

2. They are used to express and define the database design process itself. The
design process becomes clearer and much easier to understand once you know
these terms.

3, They are used anywhere a relational database or RDBMS is discussed. You’ll
see these terms in publications such as trade magazines, software manuals,
educational course materials, commercial database software books, and
database-related web sites.

This chapter covers a majority of the terms that define the ideas and concepts of the
design process, including definitions and somewhat detailed discussions for each term.
(I provide pertinent details or necessary further discussion for a given term at the
point where the term is expressly used within a specific technique in the design
process.) There are several other terms that I introduce and discuss later in the book
because I think you’ll more easily understand them within the context of the specific
idea or concept to which they relate.

Note
The glossary contains concise definitions for all of the terms in this chapter
and throughout the book.

There are four categories of terms defined in this chapter: value-related, structure-
related, relationship-related, and integrity-related.

Value-Related Terms

Data
The values you store in the database are data. Data is static in the sense that it
remains in the same state until you modify it by some manual or automated process.
Figure 3.1 shows some sample data.

Figure 3.1. An example of basic data

This data is meaningless at this point. For example, there is no easy way for you to
determine what “92883” represents. Is it a zip code? Is it a part number? Even if you
know it represents a customer identification number, is it one that is associated with
George Edleman? There’s just no way of knowing until you process the data.

Information

Information is data that you process in a manner that makes it meaningful and useful
to you when you work with it or view it. It is dynamic in the sense that it constantly
changes relative to the data stored in the database, and also in the sense that you can
process it and present it in an unlimited number of ways. You can show information
as the result of a SQL SELECT statement, display it in a form on your computer screen,
or print it as a report. The point to remember is that you must process your data in
some manner so that you can turn it into meaningful information.
Figure 3.2 demonstrates how you might process and transform the data from the
previous example into meaningful information. It has been manipulated in such a way
—in this case as part of a patient invoice report—that it is now meaningful to anyone
who views it.

Figure 3.2. An example of data transformed into information

It is very important that you understand the difference between data and
information. You design a database to provide meaningful information to someone
within a business or organization. This information is available only if the appropriate
data exists in the database and the database is structured in such a way as to support

that information. If you ever forget the difference between data and information, just
remember this little axiom:

Data is what you store; information is what you retrieve.
When you fully understand this single, simple concept, the logic behind the database
design process will become crystal clear.

Note
Unfortunately, data and information are two terms that are still frequently
used interchangeably (and, therefore, erroneously) throughout the database
industry. You’ll encounter this error in numerous trade magazines, commercial
database books, and web sites, and you’ll even see the terms misused by
authors who should know better.

Null
A null represents a missing or unknown value. You must understand from the outset
that a null does not represent a zero or a text string of one or more blank spaces. The
reasons are quite simple.

• A zero can have a very wide variety of meanings. It can represent the state of
an account balance, the current number of available first-class ticket upgrades,
or the current stock level of a particular product.

• Although a text string of one or more blank spaces is guaranteed to be
meaningless to most of us, it is definitely meaningful to a query language like
SQL. A blank space is a valid character as far as SQL is concerned, and a
character string composed of three blank spaces (' ') is just as legitimate as a
character string composed of three letters ('abc'). In Figure 3.3, a blank
represents the fact that Washington, D.C., is not located in any county
whatsoever.

Figure 3.3. An example of a table containing null values

• A zero-length string—two consecutive single quotes with no space in between
('')—is also an acceptable value to languages such as SQL, and can be
meaningful under certain circumstances. In an EMPLOYEES table, for
example, a zero-length string value in a field called MIDDLE INITIAL may
represent the fact that a particular employee does not have a middle initial in
his name.

Note
Due to space restrictions, I cannot always show all of the fields for a given
sample table. I will, however, show the fields that are most relevant to the
discussion at hand and use <<other fields>> to represent fields that are
unessential to the example. You’ll see this convention in many examples
throughout the remainder of the book.

The Value of Nulls
A null is quite useful when you use it for its stated purpose, and the CLIENTS table
in Figure 3.3 clearly illustrates this. Each null in the CLIENT COUNTY field represents a
missing or unknown county name for the record in which it appears. In order for you
to use nulls correctly, you must first understand why they occur at all.
Missing values are commonly the result of human error. For example, consider the
record for Shannon Black. If you’re entering the data for Ms. Black and you fail to
ask her for the name of the county she lives in, that data is considered missing and is

represented in the record as a null. Once you recognize the error, however, you can
correct it by calling Ms. Black and asking her for the county name.
Unknown values appear in a table for a variety of reasons. One reason may be that a
specific value you need for a field is as yet undefined. For instance, you could have a
CATEGORIES table in a School Scheduling database that doesn’t currently contain a
category for a new set of classes that you want to offer beginning in the fall session.
Another reason a table might contain unknown values is that they are truly unknown.
Refer to the CLIENTS table in Figure 3.3 once again and consider the record for
Marvin Russo. Say that you’re entering the data for Mr. Russo and you ask him for
the name of the county he lives in. If he doesn’t know the county name and you
don’t happen to know the county that includes the city in which he lives, then the
value for the county field in his record is truly unknown and is represented within the
record as a null. Obviously, you can correct the problem once either of you
determines the correct county name.
A field value may also be null if none of its values applies to a particular record.
Assume for a moment that you’re working with an EMPLOYEES table that contains
a SALARY field and an HOURLY RATE field. The value for one of these two columns is
always going to be null because an employee cannot be paid both a fixed salary and
an hourly rate.
It’s important to note that there is a very slim difference between “does not apply”
and “is not applicable.” In the previous example, the value of one of the two fields
literally does not apply. Now assume you’re working with a PATIENTS table that
contains a field called HAIR COLOR and you’re currently updating a record for an
existing male patient. If that patient recently became bald, then the value for that field
is definitely “not applicable.” Although you could just use a null to represent a value
that is not applicable, I always recommend that you use a true value such as “N/A” or
“Not Applicable.” This will make the information clearer in the long run.
As you can see, whether you allow nulls in a table depends on the manner in which
you’re using the data. Now that you’ve seen the positive side of using nulls, let’s take
a look at the negative implication of using them.

The Problem with Nulls
The major disadvantage of nulls is that they have an adverse effect on mathematical
operations. An operation involving a null evaluates to null. This is logically reasonable

—if a number is unknown then the result of the operation is necessarily unknown.
Note how a null alters the outcome of the operation in the following example:

(25 × 3) + 4 = 79
(Null × 3) + 4 = Null
(25 × Null) + 4 = Null
(25 × 3) + Null = Null

The PRODUCTS table in Figure 3.4 helps to illustrate the effects nulls have on
mathematical expressions that incorporate fields from a table. In this case, the value
for the TOTAL VALUE field is derived from the mathematical expression “[SRP] ×
[QTY ON HAND].” As you inspect the records in this table, note that the value for the
TOTAL VALUE field is missing where the QTY ON HAND value is null, resulting in a null
value for the TOTAL VALUE field as well. This leads to a serious undetected error that
occurs when all the values in the TOTAL VALUE field are added together: an inaccurate
total. This error is “undetected” because an RDBMS program will not inherently alert
you of the error. The only way to avoid this problem is to ensure that the values for
the QTY ON HAND field cannot be null.

Figure 3.4. The nulls in this table will have an effect on mathematical
operations involving the table’s fields.

Figure 3.5 helps to illustrate the effect nulls have on aggregate functions that
incorporate the values of a given field in a table. The result of an aggregate function,
such as COUNT(<fieldname>), will be null if it is based on a field that contains null
values. The table in Figure 3.5 shows the results of a summary query that counts the

total number of occurrences of each category in the PRODUCTS table in Figure 3.4.
The value of the TOTAL OCCURRENCES field is the result of the function expression
COUNT([CATEGORY]). Notice that the summary query shows “0” occurrences of an
unspecified category, implying that each product has been assigned a category. This
information is clearly inaccurate because there are two products in the PRODUCTS
table that have not been assigned a category.

Figure 3.5. Nulls affect the results of an aggregate function.

The issues of missing values, unknown values, and whether a value will be used in a
mathematical expression or aggregate function are all taken into consideration in the
database design process, and we will revisit and discuss these issues further in later
chapters.

Structure-Related Terms

Table
According to the relational model, data in a relational database is stored in relations,
which are perceived by the user as tables. Each relation is composed of tuples
(records) and attributes (fields). Figure 3.6 shows a typical table structure.

Figure 3.6. A typical table structure

Tables are the chief structures in the database and each table always represents a
single, specific subject. The logical order of records and fields within a table is of
absolutely no importance, and every table contains at least one field—known as a
primary key—that uniquely identifies each of its records. (In Figure 3.6, for example,
CLIENT ID is the primary key of the CLIENTS table.) In fact, data in a relational
database can exist independently of the way it is physically stored in the computer
because of these last two table characteristics. This is great news for the user because
he or she isn’t required to know the physical location of a record in order to retrieve
its data.
The subject that a given table represents can either be an object or an event. When
the subject is an object, it means that the table represents something that is tangible,
such as a person, place, or thing. Regardless of its type, every object has
characteristics that you can store as data and then process as information in an almost
infinite number of ways. Pilots, products, machines, students, buildings, and
equipment are all examples of objects that a table can represent, and Figure 3.6
illustrates one of the most common examples of this type of table.
When the subject of a table is an event, it means that the table represents something
that occurs at a given point in time having characteristics you wish to record. You can

store these characteristics as data and then process the data as information in exactly
the same manner as a table that represents some specific object. Examples of events
you may need to record include judicial hearings, distributions of funds, lab test
results, and geological surveys. Figure 3.7 shows an example of a table representing
an event that we all have experienced at one time or another—a doctor’s
appointment.

Figure 3.7. A table representing an event

A table that stores data used to supply information is called a data table, and it is the
most common type of table in a relational database. Data in this type of table is
dynamic because you can manipulate it (modify, delete, and so forth) and process it
into information in some form or fashion. You’ll constantly interact with these types
of tables as you work with your database.
A validation table (also known as a lookup table), on the other hand, stores data that
you specifically use to implement data integrity. A validation table usually represents
subjects, such as city names, skill categories, product codes, and project identification
numbers. Data in this type of table is static because it will very rarely change at all.
Although you have very little direct interaction with these tables, you’ll frequently use
them indirectly to validate values that you enter into a data table. Figure 3.8 shows an
example of a validation table.

Figure 3.8. An example of a validation table

I’ll discuss validation tables in more detail in Chapter 11, “Business Rules.”

Field
A field (known as an attribute in relational database theory) is the smallest structure
in the database and it represents a characteristic of the subject of the table to which it
belongs. Fields are the structures that actually store data. The data in these fields can
then be retrieved and presented as information in almost any configuration that you
can imagine. The quality of the information you get from your data is in direct
proportion to the amount of time you’ve dedicated to ensuring the structural integrity
and data integrity of the fields themselves. There is just no way to underestimate the
importance of fields.
Every field in a properly designed database contains one and only one value, and its
name will identify the type of value it holds. This makes entering data into a field very
intuitive. If you see fields with names such as FIRSTNAME, LASTNAME, CITY, STATE,
and ZIPCODE, you know exactly what type of values go into each field. You’ll also
find it very easy to sort the data by state or look for everyone whose last name is
“Hernandez.”
You’ll typically encounter three other types of fields in an improperly or poorly
designed database:

1. A multipart field (also known as a composite field), which contains two or
more distinct items within its value

2. A multivalued field, which contains multiple instances of the same type of
value

3. And a calculated field, which contains a concatenated text value or the result
of a mathematical expression

Figure 3.9 shows a table with an example of each of these types of fields.

Figure 3.9. A table containing regular, calculated, multipart, and multivalued
fields

I’ll cover calculated, multipart, and multivalued fields in greater detail in Chapter 7,
“Establishing Table Structures.”

Record
A record (known as a tuple in relational database theory) represents a unique instance
of the subject of a table. It is composed of the entire set of fields in a table, regardless
of whether the fields contain values.
Because of the manner in which a table is defined, each record is identified
throughout the database by a unique value in the primary key field of that record.
In Figure 3.9, each record represents a unique client within the table, and the CLIENT
ID field will identify a given client throughout the database. In turn, each record
includes all of the fields within the table, and each field describes some aspect of the
client represented by the record. Consider the record for Timothy Ennis, for example.
His record represents a unique instance of the table’s subject (“Clients”) and includes
the total collection of fields in the table, treated as a unit. The values of those fields
represent relevant facts about Mr. Ennis that are important to someone in the
organization.

Records are a key factor in understanding table relationships because you’ll need to
know how a record in one table relates to other records in another table.

View
A view is a “virtual” table composed of fields from one or more tables in the
database; the tables that comprise the view are known as base tables. The relational
model refers to a view as being “virtual” because it draws data from base tables rather
than storing data on its own. In fact, the only information about a view that is stored
in the database is its structure. Many major RDBMS programs support views, but
some (such as Microsoft Access) refer to them as saved queries. Your specific
RDBMS program will determine whether you refer to this object as a query or a
view.
Views enable you to see the information in your database from many different
aspects, providing you with a great amount of flexibility when you work with your
data. You can create views in a variety of ways and they are especially useful when
you base them on multiple related tables. In a school scheduling database, for
example, you could create a view that consolidates data from the STUDENTS,
CLASSES, and CLASS SCHEDULES tables.
Figure 3.10 shows a view called INSTRUMENT ASSIGNMENTS that is composed
of fields taken from the STUDENTS, INSTRUMENTS, and STUDENT
INSTRUMENTS tables. The view displays data that it draws from all of these tables
simultaneously, based on matching values between the STUDENT ID fields in the
STUDENTS and STUDENT INSTRUMENTS tables, and the INSTRUMENT ID fields
in the INSTRUMENTS and STUDENT INSTRUMENTS tables.

Figure 3.10. An example of a typical view

There are three major reasons that views are important.
1. They enable you to work with data from multiple tables simultaneously. (In

order for a view to do this, the tables must have connections, or relationships,
to one another.)

2. They enable you to prevent certain users from viewing or manipulating specific
fields within a table or group of tables. This capability can be very
advantageous in terms of security.

3. You can use them to implement data integrity. A view you use for this purpose
is known as a validation view.

You’ll learn more about designing and using views in Chapter 12, “Views.”

Note
Although every major database vendor supports the type of view I’ve
described in this section, several vendors are now supporting what is known
as an indexed (or materialized) view. An indexed view is different from a
“regular” view in that it does store data, and you can index its fields in order
to improve the speed at which the RDBMS processes the view’s data. A full
discussion of indexed views is beyond the scope of this book because it is a
vendor-specific implementation issue. However, you should research this topic
further if you are working with RDBMS software such as Oracle, Microsoft
SQL Server, IBM DB2, or Sybase SQL, or if you are working within a data
warehouse scenario.

Keys
Keys are special fields that play very specific roles within a table, and the type of key
determines its purpose within the table. There are several types of keys a table may
contain, but the two most significant ones are the primary key and the foreign key.
A primary key is a field or group of fields that uniquely identifies each record within a
table; a primary key composed of two or more fields is known as a composite
primary key. The primary key is absolutely the most important key in the entire table.

• A primary key value identifies a specific record throughout the entire
database.

• The primary key field identifies a given table throughout the entire database.
• The primary key enforces table-level integrity and helps establish relationships

with other tables in the database. (You’ll learn more about relationships in the
next section.)
Every table in your database should have a primary key!

The AGENT ID field in Figure 3.11 is a good example of a primary key. It uniquely
identifies each agent within the AGENTS table and helps to guarantee table-level
integrity by ensuring nonduplicate records. It also establishes relationships between
the AGENTS table and other tables in the database, as in the case with the
ENTERTAINERS table shown in the example.

Figure 3.11. An example of primary and foreign key fields

When you determine that two tables bear a relationship to each other, you typically
establish the relationship by taking a copy of the primary key from the first table and
incorporating it into the structure of the second table, where it becomes a foreign key.
The name “foreign key” is derived from the fact that the second table already has a
primary key of its own, and the primary key you are introducing from the first table is
“foreign” to the second table.
Figure 3.11 also shows a good example of a foreign key. Note that AGENT ID is the
primary key of the AGENTS table and a foreign key in the ENTERTAINERS table.
AGENT ID assumes this role because the ENTERTAINERS table already has a
primary key—ENTERTAINER ID. As such, AGENT ID establishes the relationship
between both of the tables.
Besides helping to establish relationships between pairs of tables, foreign keys also
help implement and ensure relationship-level integrity. This means that the records in
both tables will always be properly related because the values of a foreign key must
match existing values of the primary key to which it refers. Relationship-level integrity

also helps you avoid the dreaded “orphaned” record, a classic example of which is an
order record without an associated customer. If you don’t know who made the order,
you can’t process it, and you obviously can’t invoice it. That’ll throw your quarterly
sales off!
Key fields play an important part in a relational database, and you must learn how to
create and use them. You’ll learn more about primary keys in Chapter 8, “Keys,” and
Chapter 10, “Table Relationships.”

Index
An index is a structure that an RDBMS provides to improve data processing. Your
particular RDBMS program will determine how the index works and how you use it.
However, an index has absolutely nothing to do with the logical database structure!
The only reason I include the term index in this chapter is that people often confuse it
with the term key.
Index and key are just two more terms that are widely and frequently misused
throughout the database industry and in numerous database-related publications and
web sites. (Remember my comments on data and information?) You’ll always know
the difference between the two if you remember that keys are logical structures you
use to identify records within a table, and indexes are physical structures you use to
optimize data processing.

Relationship-Related Terms

Relationships
A relationship exists between two tables when you can in some way associate the
records of the first table with those of the second. You can establish the relationship
via a set of primary and foreign keys (as you learned in the previous section) or
through a third table known as a linking table (also known as an associative table).
The manner in which you establish the relationship really depends on the type of
relationship that exists between the tables. (You’ll learn more about that in a
moment.) While Figure 3.11 illustrated a relationship established via primary/foreign
keys, Figure 3.12 illustrates a relationship established with a linking table.

Figure 3.12. A relationship established between two tables with the help of a
linking table

A relationship is an important component of a relational database.
• It enables you to create multitable views.
• It is crucial to data integrity because it helps reduce redundant data and

eliminate duplicate data.
You can characterize every relationship in three ways: by the type of relationship that
exists between the tables, the manner in which each table participates, and the degree
to which each table participates.

Types of Relationships
There are three specific types of relationship (traditionally known as a cardinality)
that can exist between a pair of tables: one-to-one, one-to-many, and many-to-many.

One-to-One Relationships

A pair of tables bears a one-to-one relationship when a single record in the first table
is related to only one record in the second table, and a single record in the second
table is related to only one record in the first table. In this type of relationship, one
table serves as a “parent” table and the other serves as a “child” table. You establish
the relationship by taking a copy of the parent table’s primary key and incorporating it
within the structure of the child table, where it becomes a foreign key. This is a
special type of relationship because it is the only one in which both tables may
actually share the same primary key.
Figure 3.13 shows an example of a typical one-to-one relationship. In this case,
EMPLOYEES is the parent table and COMPENSATION is the child table. The
relationship between these tables is such that a single record in the EMPLOYEES
table can be related to only one record in the COMPENSATION table, and a single
record in the COMPENSATION table can be related to only one record in the
EMPLOYEES table. Note that EMPLOYEE ID is indeed the primary key in both tables.
However, it will also serve the role of a foreign key in the child table.

Figure 3.13. An example of a one-to-one relationship

One-to-Many Relationships

A one-to-many relationship exists between a pair of tables when a single record in the
first table can be related to many records in the second table, but a single record in
the second table can be related to only one record in the first table. (The parent/child
model I used to describe a one-to-one relationship works here as well. In this case,
the table on the “one” side of the relationship is the parent table, and the table on the
“many” side is the child table.) You establish a one-to-many relationship by taking a
copy of the parent table’s primary key and incorporating it within the structure of the
child table, where it becomes a foreign key.
The example in Figure 3.14 illustrates a typical one-to-many relationship. A single
record in the AGENTS table can be related to one or more records in the
ENTERTAINERS table, but a single record in the ENTERTAINERS table is related
to only one record in the AGENTS table. As you probably have already guessed,
AGENT ID is a foreign key in the ENTERTAINERS table.

Figure 3.14. An example of a one-to-many relationship

This is by far the most common relationship that exists between a pair of tables in a
database. It is crucial from a data-integrity standpoint because it helps to eliminate

duplicate data and to keep redundant data to an absolute minimum.

Many-to-Many Relationships

A pair of tables bears a many-to-many relationship when a single record in the first
table can be related to many records in the second table and a single record in the
second table can be related to many records in the first table. You establish this
relationship with a linking table. (You learned a little bit about this type of table at the
beginning of this section.) A linking table makes it easy for you to associate records
from one table with those of the other and will help to ensure you have no problems
adding, deleting, or modifying related data. You define a linking table by taking copies
of the primary key of each table in the relationship and using them to form the
structure of the new table. These fields actually serve two distinct roles: Together,
they form the composite primary key of the linking table; separately, they each serve
as a foreign key.
A many-to-many relationship that is not properly established is “unresolved.” Figure
3.15 shows a classic and clear example of an unresolved many-to-many relationship.
In this instance, a single record in the STUDENTS table can be related to many
records in the CLASSES table and a single record in the CLASSES table can be
related to many records in the STUDENTS table.

Figure 3.15. An example of an unresolved many-to-many relationship

This relationship is unresolved due to the inherent peculiarity of the many-to-many
relationship. The main issue is this: How do you easily associate records from the
first table with records in the second table? To reframe the question in terms of the
tables shown in Figure 3.15, how do you associate a single student with several
classes or a specific class with several students? Do you insert a few STUDENT fields
into the CLASSES table? Or do you add several CLASS fields to the STUDENTS
table? Either of these approaches will make it difficult for you to work with the data
in those tables and will affect data integrity adversely. The best approach for you to
take is to create and use a linking table, which will resolve the many-to-many
relationship in the most appropriate and effective manner. Figure 3.16 shows this
solution in practice.

Figure 3.16. Resolving the many-to-many relationship with a linking table

It’s important for you to know the type of relationship that exists between a pair of
tables because it determines how the tables are related, whether or not records
between the tables are interdependent, and the minimum and maximum number of
related records that can exist within the relationship. You’ll learn much more about
relationships in Chapter 10, “Table Relationships.”

Types of Participation
A table’s participation within a relationship can be either mandatory or optional. Say
there is a relationship between two tables called TABLE_A and TABLE_B.

• TABLE_A’s participation is mandatory if you must enter at least one record
into TABLE_A before you can enter records into TABLE_B.

• TABLE_A’s participation is optional if you are not required to enter any
records into TABLE_A before you can enter records into TABLE_B.

Let’s take a look at an example using the AGENTS and CLIENTS tables in Figure
3.17. The AGENTS table has a mandatory participation within the relationship if an
agent must exist before you can enter a new client into the CLIENTS table.
However, the AGENTS table’s participation is optional if there is no requirement for
an agent to exist in the table before you enter a new client into the CLIENTS table.
You can identify the appropriate type of participation for the AGENTS table by
determining how you’re going to use its data in relation to the data in the CLIENTS
table. For example, when you want to ensure that each client is assigned to an
available agent, you make the AGENTS table’s participation within the relationship
mandatory.

Figure 3.17. The AGENTS and CLIENTS tables

Degree of Participation
The degree of participation determines the minimum number of records that a given
table must have associated with a single record in the related table and the maximum
number of records that a given table is allowed to have associated with a single record
in the related table.

Consider, once again, a relationship between two tables called TABLE_A and
TABLE_B. You establish the degree of participation for TABLE_B by indicating a
minimum and maximum number of records in TABLE_B that can be related to a
single record in TABLE_A. If a single record in TABLE_A can be related to no less
than one but no more than ten records in TABLE_B, then the degree of participation
for TABLE_B is 1,10. (The notation for the degree of participation shows the
minimum number on the left and the maximum number on the right, separated by a
comma.) You can establish the degree of participation for TABLE_A in the same
manner. You can identify the degree of participation for each table in a relationship by
determining the way the data in each table is related and how you’re using the data.
Consider the AGENTS and CLIENTS tables in Figure 3.17 once more. If you require
an agent to handle at least one client, but certainly no more than eight, then the
degree of participation for the CLIENTS table is 1,8. When you want to ensure that a
client can only be assigned to one agent, then you indicate the degree of participation
for the AGENTS table as 1,1. You’ll learn how to indicate the degree of participation
for a given relationship in Chapter 10.

Integrity-Related Terms

Field Specification
A field specification (traditionally known as a domain) represents all the elements of
a field. Each field specification incorporates three types of elements: general,
physical, and logical.

• General elements constitute the most fundamental information about the field
and include items such as Field Name, Description, and Parent Table.

• Physical elements determine how a field is built and how it is represented to
the person using it. This category includes items such as Data Type, Length,
and Display Format.

• Logical elements describe the values stored in a field and include items such as
Required Value, Range of Values, and Default Value.

You’ll learn all of the elements associated with a field specification, including those
mentioned here, in Chapter 9, “Field Specifications.”

Data Integrity
Data integrity refers to the validity, consistency, and accuracy of the data in a

database. I cannot overstate the fact that the level of accuracy of the information you
retrieve from the database is in direct proportion to the level of data integrity you
impose upon the database. Data integrity is one of the most important aspects of the
database design process, and you cannot underestimate, overlook, or even partially
neglect it. To do so would put you at risk of being plagued by errors that are very
hard to detect or identify. As a result, you would be making important decisions on
information that is inaccurate at best, or totally invalid at worst.
There are four types of data integrity that you’ll implement during the database design
process. Three types of data integrity are based on various aspects of the database
structure and are labeled according to the area (level) in which they operate. The
fourth type of data integrity is based on the way an organization perceives and uses its
data. The following is a brief description of each.

1. Table-level integrity (traditionally known as entity integrity) ensures that there
are no duplicate records within the table and that the field that identifies each
record within the table is unique and never null.

2. Field-level integrity (traditionally known as domain integrity) ensures that the
structure of every field is sound; that the values in each field are valid,
consistent, and accurate; and that fields of the same type (such as CITY fields)
are consistently defined throughout the database.

3. Relationship-level integrity (traditionally known as referential integrity)
ensures that the relationship between a pair of tables is sound and that the
records in the tables are synchronized whenever data is entered into, updated
in, or deleted from either table.

4. Business rules impose restrictions or limitations on certain aspects of a
database based on the ways an organization perceives and uses its data. These
restrictions can affect aspects of database design, such as the range and types
of values stored in a field, the type of participation and the degree of
participation of each table within a relationship, and the type of synchronization
used for relationship-level integrity in certain relationships. All of these
restrictions are discussed in more detail in Chapter 11. Because business rules
affect integrity, they must be considered along with the other three types of
data integrity during the design process.

Summary

This chapter began with an explanation of why terminology is important for defining,
discussing, or reading about the relational database model and the database design
process.
The section on value-related terms showed you that there is a distinct difference
between data and information, and that understanding this difference is crucial to
understanding the database design process. You now know quite a bit about nulls and
how they affect information you retrieve from the database.
Structure-related terms were covered next, and you learned that the core structures of
every relational database are fields, records, and tables. You now know that views
are virtual tables that are used, in part, to work with data from two or more tables
simultaneously. We then looked at key fields, which are used to identify records
uniquely within a table and to establish a relationship between a pair of tables. Finally,
you learned the difference between a key field and an index. Now you know that an
index is strictly a software device used to optimize data processing.
In the section on relationship-related terms, you learned that a connection between a
pair of tables is known as a relationship. A relationship is used to help ensure various
aspects of data integrity, and it is the mechanism used by a view to draw data from
multiple tables. You then learned about the three characteristics of table relationships:
the type of relationship (one-to-one, one-to-many, many-to-many), the type of
participation (optional or mandatory), and the degree of participation
(minimum/maximum number of related records).
The chapter ended with a discussion of integrity-related terms. Here you learned that
a field specification establishes the general, physical, and logical characteristics of a
field—characteristics that are an integral part of every field in the database. You then
learned that data integrity is one of the most important aspects of the database design
process because of its positive effect on the data in the database. Also, you now
know that there are four types of data integrity—three based on database structure
and one based on the way the organization interprets and uses its data. These levels
of integrity ensure the quality of your database’s design and the accuracy of the
information you retrieve from it.

Review Questions
1. Why is terminology important?
2. Name the four categories of terms.

3. What is the difference between data and information?
4. What does a null represent?
5. What is a null’s major disadvantage?
6. What are the chief structures in the database?
7. Name the three types of tables.
8. What is a view?
9. State the difference between a key and an index.

10. What are the three types of relationships that can exist between a pair of
tables?

11. What are the three ways in which you can characterize a relationship?
12. What is a field specification?
13. What three types of elements does a field specification incorporate?
14. What is data integrity?
15. Name the four types of data integrity.

Part II: The Design Process

4. Conceptual Overview

I don’t pretend to understand the Universe—it’s a great deal bigger than I
am.

—THOMAS CARLYLE

Topics Covered in This Chapter
The Importance of Completing the Design Process
Defining a Mission Statement and Mission Objectives
Analyzing the Current Database
Creating the Data Structures
Determining and Establishing Table Relationships
Determining and Defining Business Rules
Determining and Defining Views
Reviewing Data Integrity
Summary
Review Questions

Understanding how to design a relational database isn’t quite as hard as understanding
the universe; in fact, it’s much easier. It is important, however, for you to have an
overall idea of the way the database design process works and a general idea of the
steps involved within the process. The purpose of this chapter is to provide an
overview of the database design process.
For the purpose of this overview, I’ve consolidated all of the techniques in the design
process into seven phases and I discuss each phase in general terms. This discussion
provides a good overall picture of the database design process and I hope it will give
you a much clearer understanding of each design technique covered in this part of the
book.
You can use the design methodology in this book to design a new database completely
from scratch, refine an existing database, or help you analyze an existing database so
that you can design a new database based on the results of your analysis.

Note
A database can be designed by a single individual or a design team composed
of two or more individuals. Throughout the remainder of the book, I use the
phrase database developer and the word developer to refer to the person or
group designing the database.

The Importance of Completing the Design Process
One thing I want to make perfectly clear from the very beginning is the importance of
completing the design process. I’m often asked if it’s truly necessary to go through
the entire design process. My answer is always a resounding “Yes!” I’m then asked
whether it’s still necessary if someone is only going to create a “simple” database.
(Simple is one of the most dangerous words known to database developers. Nothing
is ever “simple.”) Again, my answer is yes, it’s still necessary. The type, size, or
purpose of the database is totally irrelevant to the value of undertaking a fully
developed design. You should implement and follow the database design process from
beginning to end.
It is a well-known and proven fact that it is a bad idea to attempt to design a database
without employing a thorough database design process. Many database problems are
caused by poor database design, and partially following the design process is just
about as bad as not using it at all. An incomplete design is a poor design. Only if you
follow through with a whole, unabbreviated design process are you assured a sound
structure and data integrity.
An important point to keep in mind is that the level of structural integrity and data
integrity in your database is directly proportional to how thoroughly you follow the
design process. The less time you spend on the design process, the greater the risk
you run of encountering problems with the database. Thoroughly following the
database design process may not eliminate all of the problems you might encounter
when designing a database, but it will greatly help to minimize them. As you work
with your RDBMS software, you’ll find that a well-designed database is easier to
implement than a poorly designed one.
Databases are not hard to design; it just takes a little time to design them properly.
Don’t allow yourself to take shortcuts when it seems as if the design process is taking
too long—just be patient and remember what a wise old sage once said:

There’s never time to do it right, but there’s always time to do it over!

Defining a Mission Statement and Mission Objectives
The first phase in the database design process involves defining a mission statement
and mission objectives for the database. The mission statement establishes the
purpose of the database and provides you with a distinct focus for your design work.
Every database is created for a specific purpose, whether it’s to solve a particular
business problem, to manage the daily transactions of a business or organization, or to
be used as part of an information system. You identify the purpose of your database
and define it within a mission statement. This will help ensure that you develop an
appropriate database structure and that you collect the data necessary to support the
intended purpose of the database.
You’ll also define mission objectives in this phase. These are statements that
represent the general tasks your users can perform against the data in the database.
You use these objectives to support your mission statement and to help you determine
various aspects of the database structure.
There are two separate groups of people who will be involved in defining the mission
statement and the mission objectives. The first group includes the database developer
(you), the owner or head of the organization, and management personnel, and it is
responsible for defining the mission statement. The second group includes the
database developer (you again), management personnel, and end users, and it will be
responsible for defining the mission objectives.

Analyzing the Current Database
The second phase in the database design process involves analyzing the current
database, if one exists. Depending on your organization, the database will typically be
a legacy database or a paper-based database. A legacy database (also known as an
inherited database) is one that has been in existence and in use for several years. A
paper-based database, as you may already know, is a loose collection of forms, index
cards, manila folders, and the like. Whatever the database type or condition,
analyzing it will yield valuable information about the way your organization is
currently using and managing its data. The analysis also involves reviewing the way
your organization is currently collecting and presenting the data. You look at how
your organization uses paper to collect data (via forms) and present data (via reports).

If your organization uses some software application program to manage and
manipulate the data in the database, you study the way it collects and presents the
data on-screen. Finally, you take into account how (if at all) your organization is using
its data on the Web, and you review any browser-based applications that work with
the database.
Another part of the analysis involves conducting interviews with users and
management to identify how they interact with the database on a daily basis. As the
database developer, you ask users how they work with the database and what their
information requirements are at the current time. You then interview management
personnel and ask them about the information they currently receive and their
perception of the overall information requirements for the organization. These
interviews are an important component of your analysis because the questions you
ask (or don’t ask) will have a great impact on your final database structure. You must
conduct full and complete interviews if you are to design a database that truly meets
your organization’s information needs.
Next, you use the information you’ve gathered from the analysis and the interviews to
compile an initial list of fields. You then refine this list by removing all calculated
fields and placing them on their own list—you’ll use these calculated fields later in the
design process. The refined list constitutes your organization’s fundamental data
requirements and provides a starting point for the design of a new database. (As you
know, nothing is ever truly final. Rest assured that you’ll extend and refine this field
list further as you develop your design.)
Once your initial field list is complete, you send it to your users and management for
a brief review and possible refinement. You encourage feedback and take their
suggestions for modifications into consideration. If you think the suggestions are
reasonable and well supported, you make the appropriate modifications, record the
list in its current state, and move on to the next phase.

Creating the Data Structures
Creating the data structures for the database is the third phase in the database design
process. You define tables and fields, establish keys, and define field specifications for
every field.
Tables are the first structures you define in the database. You determine the various
subjects that the tables will represent from the mission objectives you wrote during

the first phase of the design process and the data requirements you gathered during
the second phase. Then you establish these subjects as tables and associate them with
fields from the field list you compiled during the second phase of the design process.
After you’ve completed this task, you review each table to ensure that it represents
only one subject and that it does not contain duplicate fields.
Now you go on to review the fields within each table. You refine all multipart or
multivalued fields in the table so that they each store only a single value, and you
move or delete fields that do not represent distinct characteristics of the subject the
table represents. When you complete this review, you then review and refine the table
structures. This involves checking the work you performed on the fields to ensure
that you didn’t accidentally miss anything, and ensuring that each table structure is
properly defined. Next, you establish the appropriate keys for each table. Your main
task is to ensure that each table has a properly defined primary key; this particular
key uniquely identifies each record within a table.
The final step in this phase is to establish field specifications for each field in the
database. Here you conduct interviews with users and management to help you
identify the specific field characteristics that are important to them and review and
discuss any characteristics with which they may be unfamiliar. After you’ve
completed these interviews, you define and document field specifications for each
field. You then review the table structures and field specifications with users and
management once more for possible refinements. The table structures are ready for
the next phase once you complete the refinements (if any) that you identified during
the review.

Determining and Establishing Table Relationships
The fourth phase of the database design process involves establishing table
relationships. You conduct interviews with users and management once again, identify
relationships, identify relationship characteristics, and establish relationship-level
integrity.
Working with users and management is a prudent exercise because they can assist you
in identifying relationships among the data. You cannot possibly be familiar with every
aspect of the data your organization uses, so leveraging whatever knowledge they
have about the data they use will be very beneficial to you.
After you’ve identified the relationships, you establish a logical connection between

the tables in each relationship with a primary key or with a linking table. What you
actually use depends upon the type of relationship you’re establishing between the
tables. Next, you determine the type of participation and degree of participation for
the tables in each relationship. In some cases, these participation characteristics will
be obvious to you due to the nature of the data stored in the tables. In other cases,
you’ll base the participation characteristics on specific business rules.

Determining and Defining Business Rules
Determining and defining business rules is the fifth phase of the database design
process. During this phase, you’ll hold interviews, identify limitations on various
aspects of the database, establish business rules, and define and implement validation
tables.
The manner in which your organization views and uses its data will determine a set of
limitations and requirements that you must build into the database. Your interviews
with users and management will help you identify the specific constraints you will
impose on the data, data structures, or relationships. You then establish and document
these specifications as business rules.
The interviews you conduct with users will reveal specific limitations on various
aspects of the database. For example, a user working with an order processing
database is very aware of specific details, such as the fact that a ship date must occur
later than an order date; that there must always be a daytime phone number; and that
a shipping method should always be indicated. Your interviews with management, on
the other hand, reveal general limitations on various aspects of the database. For
example, the office manager for an entertainment agency is familiar with general
issues such as the fact that an agent can represent no more than 20 entertainers and
that promotional information for each entertainer must be updated every year.
Next, you define and implement validation tables as necessary to support certain
business rules. Suppose you find that certain fields have a finite range of values
because of the manner in which your organization uses them. You can use validation
tables to ensure the consistency and validity of the values stored in those fields.
The level of integrity that business rules establish at this point is significant because it
relates directly to the way your organization views and uses its data. The
organization’s perspective on the data will change as the organization grows, which
means that the business rules must change as well. Determining and establishing

business rules is an ongoing, iterative process, and you must be constantly diligent if
you are going to maintain this level of integrity properly.

Determining and Defining Views
The sixth phase of the design process involves determining and defining views. Here
you’ll conduct interviews (once again), identify various ways of working with the
data, and establish the views.
You identify the types of views you need to build in the database by interviewing
users and management and determining how they work with their respective data.
You may find, for example, that many users require detailed information to perform
their work, while others need only summary information to help them make strategic
decisions for the organization. Each group of users must access information in very
specific ways, and you can use views to accommodate these situations.
Next, you define the views you’ve identified during the interview process using the
appropriate tables and fields, and establish criteria for those views that are required to
retrieve specific information. For instance, you would establish criteria for a view that
must list all customers located in Texas or a view that must display the total number
of authorized vendors (by city) in Washington.

Reviewing Data Integrity
The seventh and final phase in the database design process involves reviewing the
final database structure for data integrity.
First, you review each table to ensure that it meets the criteria of a properly designed
table and you check the fields within each table for proper structure. You then resolve
any inconsistencies or problems you encounter and review the structures once more.
After you’ve made the appropriate refinements, you check table-level integrity.
Second, you review and check the field specifications for each field. You make
necessary refinements to the fields and then check field-level integrity. This review
reaffirms the field-level integrity you identified and established earlier in the database
design process.
Third, you review the validity of each relationship, confirm the relationship type, and
confirm the participation characteristics for each table within the relationship. You
then review relationship integrity to ensure that there are matching values between
shared fields and that there are no problems inserting, updating, or deleting data in

either of the tables within the relationship.
Finally, you review the business rules that you identified earlier in the database design
process and confirm the constraints you’ve placed on various aspects of the database.
If there are any other limitations that have come to your attention since the last set of
personnel interviews, you establish them as new business rules and add them to the
existing set of business rules.
You’re ready to implement your logical database structure in an RDBMS program
once you’ve completed the entire database design process. However, the process is
never really complete because the database structure will always need refinement as
your organization evolves.

Summary
We began this chapter with a discussion of the importance of completing the design
process, and you learned that designing a database without the benefit of a good
design method leads to poor and improper design. We also discussed the fact that the
level of structural and data integrity is in direct proportion to how thoroughly you
follow the design process. You then learned that inconsistent data and inaccurate
information are two problems typically associated with poorly designed databases.
Next we looked at an overview of the entire database design process. The process
was consolidated into the following phases in order to provide you with a clear picture
of the general steps involved in designing a database.

1. Define a mission statement and mission objectives for the database. The
mission statement defines the purpose of the database, and the mission
objectives define the tasks that are to be performed by users against the data in
the database.

2. Analyze the current database. You identify your organization’s data
requirements by reviewing the way your organization currently collects and
presents its data and by conducting interviews with users and management to
determine how they use the database on a daily basis.

3. Create the data structures. You establish tables by identifying the subjects that
the database will track. Next, you associate each table with fields that represent
distinct characteristics of the table’s subject, and you designate a particular field
(or group of fields) as the primary key. You then establish field specifications
for every field in the table.

4. Determine and establish table relationships. You identify relationships that
exist between the tables in the database and establish the logical connection for
each relationship using primary keys and foreign keys or by using linking
tables. Then you set the appropriate characteristics for each relationship.

5. Determine and define business rules. You conduct interviews with users and
management to identify constraints that must be imposed upon the data in the
database. The manner in which your organization views and uses its data
typically determines the types of constraints you must impose on the database.
You then declare these constraints as business rules, and they will serve to
establish various levels of data integrity.

6. Determine and establish views. You interview users and management to
identify the various ways they work with the data in the database. When your
interviews are complete, you establish views as appropriate. You define each
view using the appropriate tables and fields, and you establish criteria for those
views that must display a limited or finite set of records.

7. Review data integrity. This phase involves four steps. First, you review each
table to ensure that it meets proper design criteria. Second, you review and
check all field specifications. Third, you test the validity of each relationship.
Fourth, you review and confirm the business rules.

Review Questions
1. Why is it important to complete the design process thoroughly?
2. True or False: The level of structural integrity is in direct proportion to how

thoroughly you follow the design process.
3. What is the purpose of a mission statement?
4. What are mission objectives?
5. What constitutes your organization’s fundamental data requirements?
6. How do you determine the various subjects that the tables will represent?
7. True or False: You establish field specifications for each field in the database

during the second phase of the database design process.
8. How do you establish a logical connection between the tables in a relationship?
9. What determines a set of limitations and requirements that you must build into

the database?
10. What can you design and implement to support certain business rules?
11. How do you determine the types of views you need to build in the database?
12. When can you implement your logical structure in an RDBMS program?

5. Starting the Process

“Where shall I begin, please your Majesty?” he asked. “Begin at the
beginning,” the King said gravely, “and go on till you come to the end:

then stop.”
—LEWIS CARROLL ALICE’S ADVENTURES IN WONDERLAND

Topics Covered in This Chapter
Conducting Interviews
The Case Study: Mike’s Bikes
Defining the Mission Statement
Defining the Mission Objectives
Summary
Review Questions

Everything has a beginning, and the database design process is no different.
Interestingly enough, you start the process by defining the end result. It is in the very
first step of the database design process that you identify and declare the purpose of
the database. You also define and declare a list of the tasks that your users can
perform against the data in the database. Both of these items provide you with a
focus and direction for developing a database, and they help ensure that your final
database structure supports the stated purpose and tasks.

Conducting Interviews
Interviews are an integral part of database design and they play a key role during
certain phases of the design process. Assuming that you work within some
organization and need to design a database to support the work that you and your
fellow employees perform, you should make certain that you conduct your interviews
in the manner described in this book. This means that you’ll interact with some of
your fellow employees, management personnel, and the owner (depending on the size
of the organization) throughout the design process. If you work for a small
organization that employs only a handful of people or if you are only creating a
database for yourself, you’ll conduct “self-interviews”; you’ll still conduct the

interviews described in this book, but you will act as the interviewer and the
interviewee. You will be the one who provides the answers to the questions.

Note
Interviewing is a skill that you can learn with some amount of patience,
diligence, and practice. There are a variety of approaches and techniques you
can use to conduct an interview, and there are numerous academic papers,
articles, and books that have been written on the subject. An in-depth
discussion of this topic is beyond the scope of this book, but I’ve included
several techniques and guidelines in this chapter that will help you conduct
your interviews efficiently and effectively.

Interviews are important because they provide a valuable communication link
between you (the developer) and the people for whom you’re designing the database,
help ensure the success of your design efforts, and provide critical information that
can affect the design of the database structure. As you’re working with table
relationships, for example, you might find it difficult to determine the type of
participation and degree of participation for a specific relationship. The only way for
you to determine the proper values for these relationship characteristics is to conduct
an interview with the appropriate people in your organization. You can then use the
information you gathered during the interview to set the relationship characteristics.
You can use an interview as an information-gathering tool to gain new insights from
participants regarding part of the database or to clarify facts that you don’t
understand. Note that you must always conduct each of the interviews incorporated
within this design process, regardless of the type of database you’re designing or the
number of people involved. You will inevitably miss some piece of important
information when you neglect or omit any of the interviews, and this could adversely
affect the final structure of your database.

Note
Throughout the remaining chapters, I use open-ended questions for all
interviews that are part of the concept or technique under discussion. You can
use these questions as a guide for formulating your own questions for a given
interview.

Always establish guidelines for your interviews before you conduct them. This will
help ensure that you conduct your interviews in a consistent manner and that they are
always (or usually) successful. Here are some guidelines you can establish for the
participants and for yourself.

Participant Guidelines
• Make the participants aware of your intentions. Many people are wary of

interviews. They don’t like to be “put on the spot” and they don’t want to be
asked “trick” questions. Let each person know the subject you wish to discuss,
the names of the other participants, the time you want to start the session, and
whether this interview is part of an ongoing series of interviews. Everyone in a
given interview session is more likely to engage in the conversation at hand and
be quite responsive to your questions if they know how you’re going to
conduct the session and what you expect of them. Above all, reassure them
that the interview is not a disguised assessment of their performance; you want
to make certain they feel comfortable talking to you openly and without
reservation. This will go a long way toward building a foundation of trust
between you and the participants.

• Let the participants know that you appreciate their participation in the
interview and that their responses to the interview questions are valuable to
the overall design project. Earlier experiences are likely to make some people
believe that whatever input they provide at work goes unnoticed and
unappreciated. Even when their input did make a significant impact on a
specific project, rarely did they get so much as a “Thank you.” In light of this,
there’s no real motivation for them to participate in your interview. Many, if
not all, of your participants are likely to start out with this attitude, but you can
really increase their motivation by letting them know that you sincerely and
honestly appreciate their participation and are very interested in their responses.
Assure them that their feedback is truly valuable to the design process and that
in many cases their responses can substantiate and validate decisions made
throughout the design process. The participants will be more apt to help you in
any way they can if you make yourself credible by being genuinely sincere;
your job will be much easier and everyone will participate voluntarily and
enthusiastically. It’s also very effective to show, on a second interview, how
you have already used participants’ earlier contributions.

• Make sure everyone understands that you are the official arbitrator if and
when a dispute arises. It’s inevitable that minor disputes will arise during an
interview and that there will be some amount of tension until such disputes are
resolved. You can avoid this situation by arbitrating these disputes yourself. As
the database developer, you’re in the best position to do this because you have
an objective viewpoint and can see both sides of an issue. Additionally, the
decision you make will always be in the best interests of the database structure.
Always remember that disputes dealing with something other than the database
structure can and should be referred to a more appropriate authority, if one
exists.

Interviewer Guidelines (These Are for You)
• Conduct the interview in a well-lit room, separated from distracting noise,

with a large table and comfortable chairs. You’ll greatly enhance your
chances of carrying out a successful interview when you pay attention to
atmosphere—you’ll be surprised how much of a difference this makes to the
tone and energy of the meeting. Use a well-lit room because it allows the
participants to read your interview materials very easily. A large table ensures
that everyone has space to work, and comfortable chairs keep them relaxed
enough to concentrate on the conversation at hand.
The business climate has changed considerably since I first wrote this book and
the subsequent second edition. Many people are now conducting interviews
and meetings remotely via the computer and in more public places, such as
restaurants or the local Starbucks; these are all great options if you can’t devise
an appropriate setting for your interviews. Many companies are more
frequently moving certain meetings off-site and into hotel conference rooms,
after finding that it can be quite advantageous and beneficial to get people away
from their daily work environments.

• Set a limit of ten people for each interview. Limiting the number of
participants promotes a more relaxed atmosphere and makes it easier for you to
encourage everyone to participate. One problem you’ll find in conducting an
interview with a large number of people is that the intimidation level of some of
the participants will rise in direct proportion to the number of participants
taking part in the interview as a whole. Some people are just afraid of looking
ignorant or incompetent in front of their colleagues, regardless of whether

there’s truly any justification for such feelings. As such, you do have a very
good reason to restrict the number of participants in an interview.

• Conduct separate interviews for users and management. Separating the two
groups is a good idea for a variety of reasons, including the “fear factor” noted
in the preceding item. Primarily, you want to separate them because each group
has a different perspective on the organization as a whole and how the
organization uses its data on a daily basis. Conducting separate interviews for
each group allows you to leverage their unique perspectives to your advantage
as you work through the database design process. Another reason for keeping
the interviews separate is to eliminate the conflicts that can arise when these
groups disagree about certain aspects of the organization. It’s quite common for
there to be a lack of communication between them and the odds are 50/50 that
the interview will bring this problem to the surface. This may impel them to
establish better lines of communication or it may exacerbate the problem
further. In any case, this communication problem can complicate and extend
your interview and diffuse its results. Use your knowledge of the organization
to help you judge whether to keep the interviews separate. If you need to
conduct an interview with both groups at the same time, do so intentionally,
with a specific purpose in mind, and be prepared for distractions.

• When you have to interview several groups of people, designate a group
leader for each group. The group leader will help you ensure that the interview
runs smoothly. She will be responsible for preparing each member of her group
for the interview and for providing you with any new information she obtained
from the group outside of the interview. During the interview, the group leader
can direct your questions to the member best equipped to answer them.
You’ll occasionally encounter a group leader who may want to dominate the
interview and answer every one of your questions. When this happens,
diplomatically and politely inform him that it is your job (and duty) to obtain
feedback from all of the participants so that you can make a complete
assessment of the organization’s overall information requirements. If this
doesn’t rectify the problem, you have the option of refraining from including
him in future interviews or designating someone else as the group leader.

• Prepare your questions prior to the interview. You can conduct an interview
rather easily if you have a set of prepared questions. (Coming up with

questions off the top of your head is rarely a good idea, even if you’re an
experienced interviewer and are highly skilled at producing ad hoc questions.)
Having a prepared list of questions allows you to provide a focus and direction
for the interview, and it provides the participant with a continuity of thought.
Your interview will flow more smoothly and will be more productive when
your questions move easily from topic to topic.
As you prepare your list of interview questions, make sure you use open-ended
questions. For example, “Did you feel our service was (a) poor, (b) average, or
(c) good?” is a closed question. A closed question isn’t particularly useful
because it supplies its own set of responses and does not allow an interviewee
to provide an objective opinion or elaborate answer. On the other hand, an
open-ended question such as “How do you feel about our service?” is far more
useful because it allows the interviewee to answer the question in a variety of
ways. There are times when you may need to use closed questions, but it’s
better to use them intentionally, sparingly, and with a specific purpose in mind.

• If you’re not very good at taking notes, either assign that task to a
dependable transcriber for each interview or get the group’s permission to
use a digital (or voice) recorder to record the interview. You conduct
interviews to gather specific information about the organization, so it’s
important that you establish a detailed record of each interview. If you find it
difficult to conduct an interview and take notes at the same time, you should
enlist one of the participants as your assistant and have him take notes for you.
(This is one good way to encourage participation from people who are
normally quiet or reserved.) Choose your assistant carefully because the notes
may suffer if he is at all distracted by the proceedings. Another option you
have available is to use a digital recorder to record the interview. This might
prove to be a better way to handle your notes because the digital recorder will
capture the interview more accurately, and you’ll be able to determine exactly
who provided you with a given piece of information. (Be sure you first obtain
permission from each participant if you do decide to record the interview.
There may be privacy or confidentiality issues at stake and you don’t want to
get yourself into any kind of trouble.)

• Give everyone your equal and undivided attention. This is a crucial point for
you to remember—you must pay complete attention to the person who is
speaking, and do so sincerely. If you give a participant the impression that

you’re bored, uninterested, or preoccupied, he will immediately reduce his level
of participation within the interview. On the other hand, he will probably
participate quite enthusiastically if he sees that you are interested in what he’s
saying and has your undivided attention.
I’m sure you know that there will be times when a participant responds to your
questions with vague or incomplete answers. He may respond this way for
several reasons. It may be that he doesn’t quite know how to express the ideas
he wants to convey or that he’s not at liberty to divulge certain information. It
could also be that he’s just not comfortable talking about himself and what he
does or that he is suspicious of you for some reason.
You’ll just have to be patient and make him feel at ease so that he will provide
you with the information you need. For example, you could try to state your
best approximation of what he’s said thus far and ask if it is what he meant to
say.

• Keep the pace of the interview moving. You’ve probably attended meetings
during which a particular point was belabored or much time was spent trying to
extract information from a reluctant participant. You can prevent this from
happening during your interviews by setting personal limits on the time you’ll
allow for a question to be answered and the time you’ll spend on a specific
topic. Don’t inform the participants about this limit; instead, indicate that you’ll
table the point for now so that the meeting can proceed. Be sure you get in
touch with the owner of the database soon after the meeting so that you can
come to a final conclusion and resolution to the issue.

• Always maintain control of the interview. This is the single most important
guideline for every interview you conduct. Inevitably, something goes wrong
the moment you lose control of the interview. For instance, say you have a
situation where one of the participants begins to change the focus of the
interview by discussing issues that have little or no relevance to the topics on
your agenda. You’ll certainly lose control of the interview unless you do
something to redirect the discussion. Regaining control of the interview will be
easy for you to do in some cases, but in others you’ll just have to declare your
portion of the interview “complete” and let the participants carry on with their
discussion. You can avoid situations like this so long as you maintain control of
the interview.

Interviews are an integral part of the design process and I provide examples of them
throughout the next several chapters. You’ll find sample dialogue that illustrates
typical interview scenarios and examples of questions you might use during a given
interview. (The sample questions always relate to the type of interview you’re
currently conducting.)

Note
The purpose of an interview example is to illustrate the techniques you use to
conduct a specific type of interview, and I’ve kept the dialogue relatively
simple for this reason. Use the dialogue as a means of coming up with good
ideas for the types of conversations you conduct in the interview.

One final point: Keep in mind that the guidelines I’ve presented in this section are
merely recommendations. I suspect that you won’t be able to apply all of these
guidelines to every interview you conduct or even apply them to the extent to which
I’ve described. I would, however, expect you to apply them fully in an ideal situation.
Yes, I know—you don’t come across ideal situations all the time. Neither do I. But
you can still make it your goal to meet as many of these guidelines as possible. In the
end, the person who stands to gain the most is you.

The Case Study: Mike’s Bikes
There are numerous examples throughout the book that illustrate the concepts and
techniques used in the database design process. I’ve drawn these examples from a
variety of databases and used them in an arbitrary fashion. Using them in this manner
allows me to demonstrate that once you learn how to apply a particular concept or
technique generically, you can then apply it to any other database you’re designing.
Your focus, then, should always be on the concept or technique being presented, not
on the example itself.
Nevertheless, I use a single database example as a case study to illustrate the steps
involved in the design process. This enables me to present the process with some
degree of continuity. As the database design process unfolds, I apply each technique
to designing the database for the fictitious company in the case study. I provide only a
few details about the company in this chapter, but I’ll supply more as I present each
new concept or technique.

Mike’s Bikes, our case-study business, is a new bike shop located in a small suburb
called Greenlake, not far from downtown Seattle. It has been open for only two
months, and business is growing steadily. Mike, the shop’s owner, has been
conducting his daily business on paper. He records sales on preprinted forms,
maintains employee and vendor information on sheets of paper (storing them in
folders), and writes information about his regular customers on index cards. As a
result, Mike spends a lot of time maintaining all of this data. He owns a computer but
uses it mainly to play games, watch videos on YouTube, write email, keep in touch
with friends on Facebook, and visit various golf sites. The only business-related task
he performs on the computer is keeping track of the bike shop’s inventory using a
spreadsheet program.
Recently, Mike learned that using a database would be a good way to store and work
with data related to his business. Using a database would greatly diminish the amount
of time he currently spends maintaining his data, and he could always ensure that the
data is up-to-date and that the information is accurate. Although he thinks a database
is a good idea, he’s aware of the fact that he doesn’t know the first thing about
properly designing one. Undaunted, Mike has decided to hire a database consultant to
design the database for him.
You are, in this fable, the consultant he has hired for the project. As the database
design process unfolds throughout the next several chapters, you’ll apply each
technique to design the database for Mike’s Bikes. As you learn new concepts or
techniques, Mike will supply you with the information you need to complete the
design of his database.

Defining the Mission Statement
In the previous chapter, you learned that the mission statement declares the specific
purpose of the database in general terms and that you define it at the beginning of the
database design process. Furthermore, it provides you with a focus for your design
efforts and keeps you from getting diverted and making the database structure
unnecessarily large or complex.

The Well-Written Mission Statement
A good mission statement is succinct and to the point. Verbose statements have a
tendency to be confusing, ambiguous, or vague; they do more to obscure the purpose
of the database than to clarify it. Here is an example of a typical mission statement:

The purpose of the New Starz Talent Agency database is to
maintain the data we generate, and to supply information that
supports the engagement services we provide to our clients and
the management services we provide to our entertainers.

This mission statement is well defined and uncluttered by unnecessary statements or
details. It is a very general statement, just as it should be. Think of a mission
statement as the flame of a candle located at the end of a dark tunnel. The light
produced by the flame guides you to the end of the tunnel, so long as you focus on it.
In the same manner, the mission statement guides you to the end of the database
design process. Guided by your mission statement, you can focus on designing a
database structure that will support the declared purpose of the database.
A well-written mission statement is free of phrases or sentences that explicitly
describe specific tasks. If your mission statement contains these types of phrases or
sentences, remove them and rewrite the statement. Be sure to keep the discarded
phrases handy, though, because you may be able to use them to formulate mission
objectives. (You’ll learn about mission objectives in the next section.) Here’s an
example of a poorly worded mission statement:

The purpose of the Whatcom County Hearing Examiner’s
database is to keep track of applications for land use, maintain
data on applicants, keep a record of all hearings, keep a record
of all decisions, keep a record of all appeals, maintain data on
department employees, and maintain data for general office
use.

It should be immediately apparent that there are a few things wrong with this mission
statement.

• It’s slightly verbose. Remember that the ideal mission statement should be
succinct and to the point.

• The specific purpose of the database is unclear. This mission statement is
written in such a way that it is difficult for you to ascertain the specific purpose
of the database.

• It describes several specific tasks. Two issues arise when a mission statement
is written in this manner. First, the description of the tasks does nothing to
define the specific purpose of the database. Second, the statement somehow
appears to be incomplete. It raises the question, “Are there any tasks we’ve

forgotten to include in the mission statement?”
You can fix this mission statement by removing the references to specific tasks (be
sure to save them for the next step) and rewriting the statement. Here is an example
of one of the possible ways you could rewrite this mission statement:

The purpose of the Whatcom County Hearing Examiner’s
database is to maintain the data the examiner’s office uses to
make decisions on land-use requests submitted by citizens of
Whatcom County.

Notice how the purpose of the database has become much clearer in this version.
Also note that the statement is more succinct and doesn’t give the impression of being
incomplete. You’ll always have a clear focus during the database design process when
you formulate your mission statements in this manner.

Composing a Mission Statement
The process of creating a mission statement involves conducting an interview with the
owner or manager of the organization, learning about the organization, and
determining the purpose of the new database.
You conduct the interview for this step with the owner of the organization or, if he
directs, the appropriate staff. Either will be able to help you define the statement
because each has an overall understanding of the organization and a general
comprehension of why the database is necessary in the first place. Besides helping
you to define the mission statement, this interview will also provide a great deal of
information about the organization itself. This information is valuable because you
can use it later in the design process.
Encourage the interview participant to discuss as many facets of the organization as
she can, even if the discussion relates to issues that aren’t directly relevant to the
database. The idea here is for you to understand what the organization does and how
it functions; the more you understand an organization, the better prepared you will be
to design a database that will fulfill its needs. The organization’s general need for a
database will become clear to you once you have a better understanding of the
organization itself. You can then translate this need into a mission statement.
Be sure to ask open-ended questions during the interview. In some cases, a good
question can prompt the participant to state the purpose of the database without much
effort. For example, say you posed the following question:

“How would you describe the purpose of your organization to a
new client?”

This is a good open-ended question because it focuses on the issue yet gives the
participant the freedom to respond with what she feels is a complete answer.
Furthermore, this type of question will typically generate a response that you can
translate directly into a mission statement.
Now assume you received the following reply:

“We supply entertainment services to our clientele for any and
all occasions. We take care of all the details for the engagement
so that it is as worry-free for the client as possible.”

You can easily rewrite this type of response and turn it into a mission statement.
When a response such as this one consists of two or more sentences or phrases, one
of the sentences or phrases typically indicates the purpose of the database. For
example, you can use the first sentence from the preceding reply to construct the
mission statement. Here is one of several ways you could rewrite the reply:

The purpose of the All-Star Talent database is to maintain the
data we use in support of the entertainment services we provide
to our clientele.

The most important point to remember is that the mission statement should make
sense to you (the database developer) and to those for whom you are designing the
database. Different groups of people have different ways of phrasing statements, and
the specific wording of the statement can depend greatly on industry-specific
terminology. Your mission statement is complete when you have a sentence that
describes the specific purpose of the database and that is understood and agreed upon
by everyone concerned.
Here are a few sample questions that you can use to arrive at your mission statement:

How would you describe the purpose of your organization to a new client?
What would you say is the purpose of your organization?
What is the major function of your organization?
How would you describe what your organization does?
How would you define the single most important reason for the existence of
your organization?

What is the main focus of your organization?
You may have noticed that some of these questions seem to be the same question
rewritten in a different manner. Keep in mind that the observation regarding the
phrasing of mission statements also applies to the interview questions you’ll use
throughout the database design process. You can pose the same question to several
people and receive different responses because each person may interpret the
meaning of the question a little differently. In some cases, you may just get a long “I
haven’t had my first espresso yet” type of stare. Experiment with different types of
phrasing and determine which type works best for you. Your method of constructing
and posing questions may be different from someone else’s, but it doesn’t matter so
long as you have a method that suits you.

Case Study: Defining a Mission Statement for Mike’s Bikes
Now you need to define a mission statement for Mike’s Bikes. Before you can define
the mission statement, you must conduct an interview with the owner to gather
information about his business. Assume you have an assistant named Zachary who is
conducting the interview for you. The interview may go something like this:

ZACHARY: “Can you tell me why you believe you need a database?”
MIKE: “I think we need a database just to keep track of all our inventory.

I’d also like to keep track of all our sales as well.”
ZACHARY: “I’m sure the database will address those issues. Now, what would

you say is the single most important function of your business?”
MIKE: “To provide a wide array of bicycle products and bicycle-related

services to our customers. We have a lot of great customers. And
regular ones too! They’re our biggest asset.”

(The interview continues until Zachary has finished asking all the questions on his
list.)
After the interview, review the information you’ve gathered and define the mission
statement. You can ascertain a few points from the previous dialogue with Mike, such
as the fact that he’ll need to be able to track products, customers, and customer sales.
But the most valuable point is provided by his reply to the second question. You can
use the first sentence in that reply to formulate the mission statement. Taking into
account some of the other points you’ve identified in the interview, you can rewrite
Mike’s reply to create the following mission statement:

The purpose of the Mike’s Bikes database is to maintain the
data we need to support our retail sales business and our
customer service operations.

When you believe you have a good mission statement, review it with Mike and make
sure that he understands and agrees with the declared purpose of the database. When
you and Mike are satisfied with the mission statement, you can go on to the next step,
which is to define the mission objectives.

Defining the Mission Objectives
To expand upon the overview in the previous chapter, mission objectives are
statements that represent the general tasks supported by the data maintained in the
database. Each mission objective represents a single task. These mission objectives
provide information that you’ll use throughout the database design process. For
example, mission objectives help you define table structures, field specifications,
relationship characteristics, and views. They also help you establish data integrity and
define business rules. Finally, mission objectives guide your development efforts and
ensure that your final database structure supports the mission statement.

Well-Written Mission Objectives
A well-written mission objective is a declarative sentence that clearly defines a general
task and is free from unnecessary details. It is expressed in general terms, succinct
and to the point, and unambiguous. Here are some examples of typical mission
objectives:

Maintain complete patient address information.
Keep track of all customer sales.
Make sure an account representative is responsible for no more than 20
accounts at any given time.
Keep track of vehicle maintenance.
Produce employee phone directories.

These mission objectives are well defined and easy to understand. Each mission
objective represents a single general task and defines the task clearly without
unnecessary details. For example, the last mission objective in the list states that
employee directories need to be produced, but it doesn’t indicate how they are to be
produced. It is not necessary to indicate how the employee directories will be

produced because that issue is part of the application development process.
Remember that the purpose of a mission objective is to help define various structures
within the database and to help guide the overall direction of the database’s
development.
If a mission objective represents more than one general task, you should decompose
it into two or more mission objectives. Here is an example of a poorly written mission
objective:

We need to keep track of the entertainers we represent and the
type of entertainment they provide, as well as the engagements
that we book for them.

There are two problems with this mission objective.
1. It defines more than a single general task. It is clear that there are two tasks

represented in this statement—keeping track of entertainers and keeping track
of engagements.

2. It contains unnecessary detail. It’s unnecessary to refer to the entertainer’s
“type of entertainment” in this mission objective. The phrase type of
entertainment either refers to a distinct characteristic of an entertainer, or
represents a new task that should be declared as a mission objective. If it refers
to a distinct characteristic of an entertainer, it should be removed from the
statement; otherwise, it should be used as the basis for a new mission
objective.

You can fix this mission objective by removing the unnecessary detail and rewriting it
as two mission objectives. (Keep the details you discard on a separate list; they may
be useful later in the design process.) Here is an example of one possible revision:

Maintain complete entertainer information.
Keep track of all the engagements we book.

Notice that each mission objective now clearly defines a single general task and is
easy to understand as well. Mission objectives such as these are easy to use as you
design the database.

Composing Mission Objectives
Defining mission objectives is a process that involves conducting interviews with
users and management and then writing appropriate mission objectives based on the

information gathered from the interviews.
The purpose of the interview is to determine what types of general tasks need to be
supported by the data in the database. You accomplish this by asking the participants
open-ended questions and allowing them to elaborate on their replies as necessary.
The mission statement and mission objectives interviews are the easiest ones you’ll
conduct during the design process because everyone is usually enthusiastic about
participating. (In my experience, at least.) It’s fairly easy to get people to discuss what
they do on a daily basis and to give their perspective on the function of the
organization. This is also one of the few interviews you’ll conduct with both users
and management; there should be a lot of common ground between the two groups
due to the general nature of the interview.
One very important point to remember is that the interviews you conduct here
involve very general discussions. The discussions are more conceptual than
analytical; your intent here is not to analyze the current database or database
application, but to get an overall idea of the general tasks the database should support.
Keep in mind that one of the purposes of the mission objectives is to help guide the
development of the database structure.
As you conduct the interview, be sure, once again, to ask open-ended questions.
Remember that open-ended questions are apt to elicit better responses from your
participants. Ask the participants questions regarding their daily work, how the
organization functions, and what type of issues they believe need to be addressed by
the database. Encourage them to discuss as many facets of their work and the
organization as they possibly can. As they reply, try to record each response as a
declarative sentence. You’ll find it is much easier to transform a sentence into a
mission objective if you can do this. Here are just a few examples of the types of
questions you could pose during the interview:

What kind of work do you perform on a daily basis?
How would you define your job description?
What kind of data do you work with?
What types of reports do you generate?
What types of things do you keep track of?
What types of services does your organization provide?
How would you describe the type of work you do?

All of these questions are likely to evoke a good, lengthy response from the
participant. One of the advantages of questions like these is that they provide the
opportunity for you to ask follow-up questions. For example, say you received the
following response to the last question in the list:

“First, I try to determine the general problem with the vehicle.
Then I fill out a work order and note my assessment of the
problem. Finally, I send the vehicle to the next available service
team.”

You’ll immediately notice that it’s a lengthy response, which is fine. You should also
note that you could easily ask a follow-up question, such as the following:

“Is there any type of customer information incorporated within
the procedure you just described?”

Even if the reply is “No,” the question is still open-ended enough for the participant to
elaborate further on his original response. This type of follow-up question could also
jar his memory and cause him to relay other information, which may be related to the
subject of the original response.
Here is a set of mission objectives that you could derive from the participant’s original
response:

Maintain information on customer vehicles.
Keep track of work orders.
Maintain information on our service teams.
Maintain information on our mechanics.
Maintain information on our customers.

Three of these objectives are derived directly from the response. They’re easy for
you to determine because their subjects are explicitly stated in the response itself. The
last two mission objectives are derived from assumptions based on the response. This
is a technique (which you can think of as “reading between the lines”) that
experienced database designers use quite often, and it is one that you should use
when you’re defining mission objectives. The technique relies on your ability to
determine what information a response conveys implicitly, as well as what it conveys
explicitly. So pay attention. Listen for implications. Without good assumptions, your
overall set of mission objectives could be incomplete.

Review the following response and determine whether there is implicit information
hidden within the response itself:

“I book entertainment for our clientele, which consists of
commercial and noncommercial clients. Our noncommercial
clients are typically individuals or small groups who book
weddings, birthdays, anniversaries, and the like. Our
commercial clients, on the other hand, consist of businesses
such as nightclubs and corporations. The nightclubs book
entertainment in six-week slots; the corporations book things
such as corporate parties, product rollouts, and various types of
promotional functions.”

Aside from the explicit information that this response conveys, there are at least two
pieces of implicit information that you can uncover in this response. The first piece of
implicit information concerns the need to maintain information on the entertainers
booked for the engagements. An agent needs to know things such as the entertainer’s
name, phone number, mailing address, availability, and whether he will travel to out-
of-town locations. The second piece of implicit information concerns the need to
maintain information on the engagements themselves. An agent must know all the
details concerning the engagement in order to ensure that the engagement runs
smoothly.
Now that you know how important it is to look for implicit information, keep it in
mind when you’re defining mission objectives.
Here are the “final words” regarding mission objectives: Make sure that your mission
objectives are both properly defined and well defined, that each objective makes
sense to you and to those for whom you are designing the database, and that you look
for any implicit information hidden within every participant’s response.

Case Study: Defining Mission Objectives for Mike’s Bikes
It’s time now to interview Mike and his staff so that they can help you define the
mission objectives for the Mike’s Bikes database. Here’s a partial transcript of the
interview with Mike. Once again, your assistant, Zachary, is conducting the interview.

ZACHARY: “Can you give me an idea of the things you’d like to track in the
database?”

MIKE: “Oh sure, that’s pretty easy. I want to keep track of our inventory,

our customers, and our sales.”
ZACHARY: “Is there anything else that you can think of that is related to these

subjects?”
MIKE “Well, I guess if we’re going to keep track of our inventory, we

should know who our suppliers are.”
ZACHARY: “What about the sales reps involved in each sale?”
MIKE: “Oh yeah, we should definitely keep information about our

employees. If nothing else, it’s a good idea to do this from a human
resources point of view. At least, that’s what my wife tells me!”

(The interview continues until Zachary has finished asking all the questions on his
list.)
When the interviews are complete, review all the information you’ve gathered and
define the appropriate mission objectives. Be sure to keep the “final words” in mind
as you define them. Here are a few possible mission objectives for the Mike’s Bikes
database.

Maintain complete inventory information.
Maintain complete customer information.
Track all customer sales.
Maintain complete supplier information.
Maintain complete employee information.

Once you’ve compiled a list of mission objectives, review them with Mike and his
staff. When they are satisfied that they understand the mission objectives and that the
list is relatively complete, commit the list to a document in your favorite application
program and save it for later use.

Summary
This chapter opened with a discussion of the interview process. You learned why
interviews are an important part of the database design process and why it’s important
to learn how to conduct an interview properly. You now know the difference between
an open-ended question and a closed question, as well as when to use each kind of
question. We ended this discussion by reviewing a set of interview guidelines, and you
learned that you should use them to help you ensure that the interviews are

productive and successful.
The mission statement was our next topic of discussion. We expanded upon the
information in Chapter 4, “Conceptual Overview,” by looking at how the mission
statement states the specific purpose of the database. You now know that the process
involves conducting interviews and learning about the organization, then formulating
the mission statement from the information you gathered during these steps. We
defined the characteristics of a good mission statement, and you learned that a well-
defined mission statement establishes a clear focus for your design efforts.
Next, we discussed mission objectives, and we expanded upon the Chapter 4
overview once again. As you now know, mission objectives represent the tasks
performed against the data in the database, and you define them after the mission
statement. We then explored how to define a mission objective. Here, you learned
that you conduct interviews with users and management and that the information you
gather from these interviews provides the basis for each mission objective. We also
discussed the characteristics of a well-written mission objective, and you learned that
a clearly defined mission objective will help you define various structures within the
database.

Review Questions
1. Why are interviews important?
2. What problem can arise when you conduct an interview with a large number

of people?
3. What is the primary reason for conducting separate interviews with users and

management?
4. True or False: You’ll commonly use closed questions in your interviews.
5. What kind of responses should you try to evoke from the interview

participants?
6. What is the single most important guideline for every interview you conduct?
7. What is a mission statement?
8. State two characteristics of a well-written mission statement.
9. True or False: You need not learn about the organization in order to compose a

mission statement.

10. When is your mission statement complete?
11. What is a mission objective?
12. State two characteristics of a well-written mission objective.
13. True or False: You should interview users and management to help you define

mission objectives.
14. How does the staff’s daily work relate to the mission objectives?
15. True or False: A mission objective can describe more than one task.
16. State two ways that a mission objective can be derived from a response.
17. When is a mission objective complete?

6. Analyzing the Current Database

To see what is in front of one’s nose needs a constant struggle.
—GEORGE ORWELL IN FRONT OF YOUR NOSE

Topics Covered in This Chapter
Getting to Know the Current Database
Conducting the Analysis
Looking at How Data Is Collected
Looking at How Information Is Presented
Conducting Interviews
Interviewing Users
Interviewing Management
Compiling a Complete List of Fields
Case Study
Summary
Review Questions

Getting to Know the Current Database
To determine where you should go, you must first understand
where you are.

This maxim defines the entire philosophy behind this phase of the database design
process. You must devote some time to gaining a clear understanding of your
organization’s database so that you can

• Determine whether the database supports the organization’s current
information requirements

• Uncover existing structural deficiencies
• Determine how the database needs to evolve so that it will support the

organization’s future information requirements
You can use the existing database as a resource for developing a new database.

However, you must carefully judge which aspects of the current database remain
useful and which aspects should be discarded. You can make these judgments by
answering the following questions:

What types of data does the organization use?
How does the organization use that data?
How does the organization manage and maintain that data?

The answers to these questions provide you with vital information that you can use to
design a database that best suits your organization’s needs.
You can best answer these questions by analyzing your organization’s existing
database. It’s very likely that the organization is using some type of database, and it
can probably be associated with one of the following categories.

• Paper-based databases—also known as file systems—typically consist of
various forms and handwritten or printed documents stored in file folders or
bound in notebooks. The folders and notebooks are identified by some coding
scheme (e.g., unique numbers or colored tabs) and stored in file cabinets.
These cabinets are likely to be identified by some coding scheme as well,
depending on the size of the database.

• Legacy databases have been in existence and in use for several years or more
and consist of various types of data structures and user interfaces that all reside
on mainframe computers, network servers, or personal computers. The
capability, functionality, and effectiveness of the structures and screens are
quite dependent upon the skills and knowledge of the developers, the
application development tools, and the database management software used to
create them.

• Human-knowledge bases (loosely defined) are based on the memory of one or
more employees within an organization. These individuals have a specific
amount of knowledge regarding a given aspect of the organization (e.g.,
customer information or product details), and they are crucial to conducting the
organization’s business.

The goals of your analysis are to determine the types of data the organization uses,
how the organization manages and maintains that data, and how the organization
views and uses the data. You can reduce the time it takes to define the preliminary
field and table structures for the new database if you conduct this investigation

properly.
During the analysis, you review the various ways the organization collects and
presents its data, and you conduct a set of interviews with users and management.
You then use the information you’ve gathered to define a Preliminary Field List and
to help you determine the tables that should be included in the initial database
structure. If your analysis reveals that the current database is poorly designed, you
can take precautions to ensure that you don’t make the same mistakes in the new
database. Despite whatever shortcomings the current database may have, it can still
help you identify a number of the fields and tables that you should include in the new
database.
There’s one rule you should keep first and foremost in your mind as you’re analyzing
the current database:

Do not adopt the current database structure as the basis for the
new database structure.

Following this rule will help you avert unnecessary errors and aid in maximizing your
design efforts.
Every so often, there’s a point during the analysis when a novice database developer
(and sometimes an experienced one) will stop and think, “This database doesn’t look
too bad. Let’s just end the analysis here and use this database as the basis for the new
one.” This is a particularly bad idea because every hidden problem within the current
database structure will be transferred into the new database. These types of problems
include awkward table structures, poorly defined relationships, and inconsistent field
specifications; they will invariably surface later and at the least opportune times.
Therefore, you should do your best to avoid this perilous situation by following the
aforementioned rule. Just remember that it’s always better to define a new database
structure explicitly than to copy an existing structure. After all, if the old database
didn’t have problems, you wouldn’t be building a new one.
You’ll typically analyze paper-based databases and legacy databases during this part
of the design process. Many organizations use both types of databases to some
degree, and you perform the same basic analysis process on each of them. There are
minor differences in the way you analyze a paper-based database and a legacy
database, to be sure, but the differences have more to do with the databases
themselves than with the overall analysis process. You needn’t be concerned with
these differences, however, because I’ve seamlessly incorporated them into the

analysis process presented in this book.

Paper-Based Databases
A paper-based database incorporates data that is literally collected, stored, and
maintained on paper, and you’ll find these items in a variety of shapes, sizes, and
configurations. Some of the more common formats include index cards, handwritten
or printed reports, and various types of preprinted forms. Anyone who has ever
worked in an office for a business or organization is very familiar with this type of
database.
You’ll find that analyzing a paper-based database can be a daunting task. One of your
most immediate problems is finding someone who completely understands how the
database works so that you can learn its use and purpose. There are several problems
with the database itself, especially in terms of the way data is collected and managed.
This type of database typically contains inconsistent data, erroneous data, duplicate
data, redundant data, incomplete entries, and old data that should have been purged
from the database long ago. Clearly, the only reason you’d analyze this type of
database is to identify items that you could incorporate into the new database. For
example, you can extract individual pieces of data from various sections of a form in
the old database and transform them into fields in the new database.

Legacy Databases
A legacy database is a database that has been in existence and in use for five years or
more. Mainframe databases typically fall into this category, as do older PC-based
databases. There are several reasons that “legacy” is used as part of the name for this
type of database. First, it suggests that the database has been around for a long time,
possibly longer than anyone can clearly remember. Second, the word legacy may
mean that the individual who originally created the database either has shifted
responsibilities within the organization or is working for someone else and, thus, the
database has become his or her legacy to the organization. Third, the term implies the
disturbing possibility that no single individual completely understands the database
structure or how it is implemented in the RDBMS application program.
Mainframe legacy databases present some special problems in the analysis process.
One problem stems from the fact that a number of older mainframe databases are
based on hierarchical or network database models. If neither you nor anyone in the
organization has a firm understanding of these models, it will take you some time to

decipher the structure of the database. In this case, you’ll find it very helpful to make
printouts of the data in each of the database structures.
Even if a legacy database is based on the relational model, there’s no particular
guarantee that the structure is sound. Unfortunately, there are many instances in
which the people who created these databases didn’t completely understand the
concept of a relational database. (After you have read this book, you won’t fall into
that group.) The result is that many older databases have improper or inefficient
structures.
Numerous PC-based legacy databases are improperly or inefficiently designed, too.
Many of them were originally developed and implemented in older nonrelational
database management systems, which means that they could not take advantage of
the benefits provided by the relational model. Two characteristics commonly
associated with these types of databases are duplicate fields and redundant data.
You’ll learn later that this can cause serious problems with data integrity.
Analyzing a legacy database is somewhat easier than analyzing a paper-based
database because a legacy database is typically more organized and structured than a
paper-based database, the structures within the database are explicitly defined, and
there is usually an application program that people use to interact with the data in the
database. (The application program is valuable to you during the analysis process
because it can reveal a lot of information about the data structures and the tasks
performed against the data in the legacy database.) The time it will take you to
perform a proper analysis will depend to some degree on the platform (mainframe or
PC), the RDBMS used to implement the legacy database, and the application
program.
The key point to remember when you’re analyzing either a paper-based or a legacy
database is that you should proceed through the process patiently and methodically so
that you can ensure a thorough and accurate analysis.

Conducting the Analysis
There are three steps in the analysis process: reviewing the way data is collected,
reviewing the manner in which information is presented, and conducting interviews
with users and management.
It will be necessary for you to speak to various people in the organization as you
conduct the first two steps in this process. Be sure your conversations relate purely

to the reviews at hand. You’ll have the opportunity to ask them other in-depth
questions later. Keep in mind that these reviews are an integral part of your
preparation for the interviews that will follow. Indeed, these reviews help you
determine the types of questions you’ll need to ask in subsequent interviews.

Looking at How Data Is Collected
The first step in the analysis process involves reviewing the ways in which data is
collected. This includes everything from index cards and handwritten or printed lists
to preprinted forms and data entry screens (such as those used in a database program
or web browser).
Begin this step by reviewing all paper-based items. Find out what types of documents
the organization is using to record data and then gather a single sample of each.
Assemble these samples and store them in a folder for use later in the design process.
For example, assume that the organization is collecting supplier data on index cards.
Go through each of the index cards until you find one with an entry that is as
complete as possible. When you’ve found an appropriate sample, make a copy of it
and save it in the folder. Proceed through this process for each type of item being
used. Figure 6.1 shows two examples of how the organization might use paper-based
items to collect data.

Figure 6.1. Examples of paper-based items used to collect data

Next, review all of the computer programs that the organization uses to collect data.
The objective here is to gather a set of sample screenshots that represent how the
organization uses these programs to work with data. A word of caution: Many people
have discovered unique and ingenious ways to use common programs, such as word
processors and spreadsheets, as a way to collect and manage data. Make sure you
speak with someone who is familiar with the way the computers are being used within
the organization and determine which programs the organization is using to manage its
data.
As you review each program, find a screen that best represents how the program
collects data. You’re looking for screens similar to those in Figure 6.2.

Figure 6.2. A typical database screen and a typical spreadsheet screen

The first screen is typical of those you would find in a database program, and the
second screen is typical of those you would find in a spreadsheet program. When
you’ve found an appropriate sample, create a screenshot using your favorite screen-
capture application, paste it into a document in your word processing program,
indicate the name of the source program and the date you created the screenshot, and
then print the document. Continue reviewing the program and repeat this procedure
as appropriate. Then repeat the entire process for each program. Once you’ve printed

copies of all the appropriate screenshots, assemble them together and store them in a
folder for use later in the design process.
Now examine the web pages that the organization uses to collect data via the Internet.
The pages you’re interested in will look very similar to the data entry forms you
would find in a database application program. Figure 6.3 shows an example of such a
page.

Figure 6.3. An example of a typical web-based data entry screen

You can follow the same examination procedure here that you used with the
application programs. Take a screenshot of a given web page, paste it into a word

processing document, indicate the program name and screen capture date, and print
it. Continue to review the web pages and repeat this procedure as appropriate. Once
you’ve printed copies of all the appropriate screenshots, assemble them and store
them in a folder for use later in the design process.
Make sure you clearly mark the folders containing the samples you’ve gathered
during your analysis. The small amounts of time you invest to organize your materials
pay big dividends when you use those materials during a complex phase of the design
process.

Looking at How Information Is Presented
The second step in the analysis process involves reviewing the various ways in which
the organization presents its data as information. During this process, you’ll review
items, such as handwritten documents, computer printouts, screen presentations, and
web pages.
Here are three of the most popular presentation methods that you’ll encounter during
this process.

1. Reports: A report is any document (handwritten, typed, or computer-
generated) used to arrange and present data in such a way that it is meaningful
to the person or people viewing it. Although using a word processor,
spreadsheet, or other software program is the standard method of generating a
report, you’ll still find some reports written by hand.

2. Screen presentations (a.k.a. slide shows): This type of presentation
incorporates a series of screens that discuss various topics in an organized
manner. It is generally created with a program, such as Microsoft PowerPoint
or Corel Presentations, and executed on a computer, although it can also be
composed of a series of plastic sheets that are displayed on a screen by an
overhead projector. (For our purposes, we’ll assume that you’re reviewing a
computer-based screen presentation.)

3. Web pages: Many organizations have vast amounts of information available via
pages on their web sites. A web page is used in much the same manner as a
report, and, indeed, it is really nothing more than a different type of report.

Begin this step by identifying and reviewing each report the organization generates
from the database, regardless of whether the organization produces the report by
hand or with an application program. Gather samples of the reports and assemble

them in a folder as you did with the items in the previous step. Overall, this task is
easier to perform in this step than it was in the previous step because people in the
organization are typically familiar with the reports they use. Copies of the reports are
usually readily available, and most reports can be reprinted if necessary. Figure 6.4
shows an example of a report written by hand and a report generated from a word
processing program.

Figure 6.4. A handwritten report and a computer-generated report

Next, review screen presentations that use or incorporate the data in the database. It’s

unnecessary for you to review every presentation, but you do need to review those
that have a direct bearing on the data in the database. For example, you don’t need to
review a presentation on the organization’s new product if it doesn’t draw any data
from the database. On the other hand, a presentation on sales statistics that does
incorporate data from the database is one that you do need to review.
Once you’ve identified which presentations you need to review, go through each one
carefully and make screenshots of the slides that use or incorporate data from the
database. Copy the screenshots into a word processing document, print the
document, and then store the document in a folder for later use. (Write the name of
the presentation and the date you captured the screenshots on the folder; you may
need to refer to it again at a later time.) Follow this procedure separately for each
presentation. You want to make sure you don’t accidentally combine two or more
presentations together, because this mistake will inevitably lead to mass confusion and
result in one huge mess!
Figure 6.5 shows an example of the type of slides you’ll examine during this review.

Figure 6.5. Examples of screen presentation slides

Reviewing a presentation is difficult in some cases, and deciding whether you should
include a given slide as a sample is purely a discretionary decision. Therefore, work
closely with the person most familiar with the presentation to ensure that you include
all appropriate slides in the samples.

Finally, review web pages that draw information directly from the database. Perform
this review in the same manner as the review for the screen presentations. As with the
previous review, you need to review those web pages that have a direct bearing on
the data in the database. For example, you don’t need to review a web page that
provides a history of your organization, but you do need to review a web page that
displays regional employee information.
Once you’ve identified which web pages you need to review, take a screenshot of
each page. Copy the screenshots into a word processing document, print the
document, and then store the document in a folder for later use. (Write the URL
address and the current date under each screenshot in the document; you may need
to refer to a particular web page again at a later time.)
Figure 6.6 shows an example of a web page you would examine during this review.

Figure 6.6. Example of a web page that presents information from a database

Try to work with the person (or persons) who created and developed the
organization’s web site. She can save you a lot of time by directing you to the exact
pages you should examine for this review.

Conducting Interviews
Now that you have a general idea of how the organization collects and presents its
data, it’s time to interview users and management to determine how the organization
uses its data. Interviews are useful in the analysis phase for these reasons

• They provide details about the samples you assembled during the previous
reviews. The discussions you had with users and management during the
previous reviews were solely meant to identify (in general terms) how the
organization collects and presents the data it uses. In this phase, however,
you’ll ask specific questions about the samples you assembled during those
reviews. This will enable you to clarify the aspects of a specific sample that
you consider to be vague or ambiguous.

• They provide information on the way the organization uses its data. These
interviews will provide you with information on how users work with the
organization’s data on a daily basis and how management uses information
based on that data to manage the organization’s affairs.

• They are instrumental in defining preliminary field and table structures. The
responses you receive from users and management during this round of
interviews will help you identify initial field and table structures for the
database.

• They help to define future information requirements. The discussions you’ll
have with users and management regarding the organization’s future growth
will often reveal new information requirements that must be supported by the
database.

I cannot overemphasize, and you must not underestimate, the impact interviews have
on the final database structure and how important they are to your successful
completion of the database design process. Only full and complete interviews will help
you ensure that the database you design fulfills your organization’s information
requirements.

Basic Interview Techniques

In order for you to conduct successful interviews, you must first learn a few basic
interview techniques. I address this issue here by providing you with a set of
fundamental techniques that you can use to conduct every interview within the
database design process. These techniques are relatively easy to learn and apply and
they’ll enable you to obtain the information you require for the task at hand.
You’ll probably execute these techniques in a strict, mechanical fashion as you’re just
starting to learn them, but you’ll apply them more instinctively and intuitively as you
conduct further interviews and gain additional experience. Conducting an interview is
a skill, and, as with any other skill, you will achieve various degrees of expertise with
patience and practice.

The Importance of Questions

Learning how to ask a question is a valuable skill that you’ll have to learn and develop
if you’re going to be successful at designing databases. It is what you will use to
understand how your (or your client’s) business works and enable you to gather the
information you need to develop the various structures for the database. And, as you
may have already surmised, it is precisely the skill required to conduct the interviews
throughout this design process. I know this might seem like I’m stating the obvious,
but I just can’t overstate how important a skill this truly is.

The Interview Process

You use both open-ended and closed questions throughout an interview, alternating
between each type as the interview progresses. Open-ended questions are more
general in nature and enable you to focus on specific subjects, whereas closed
questions are more specific and allow you to focus on particular details of a certain
subject. For instance, start the interview with a few open-ended questions to establish
some general subjects for discussion and then select a subject and ask more specific
(closed) questions relating to that subject. You could begin by asking one of the
interview participants an open-ended question such as this:

“How would you define the work that you do on a daily
basis?”

Most participants will use three or more sentences to answer this type of question. It’s
perfectly acceptable for a participant to provide you with a long, descriptive response
because you can work with this type of response more easily than you can with one
that is terse. To illustrate this point, assume the participant responds to your question

in this manner:
“As an account representative, I’m responsible for ten clients.
Each of my clients makes an appointment to come into the
showroom to view the merchandise we have to offer for the
current season. Part of my job is to answer any questions they
have about our merchandise and make recommendations
regarding the most popular items. Once they make a decision
on the merchandise they’d like to purchase, I write up a sales
order for the client. Then I give the sales order to my assistant,
who promptly fills the order and sends it to the client.”

This is a very good response. The participant not only answered your question, but
also provided you with the opportunity to begin asking follow-up questions. His
response also suggests several subjects that you can discuss later in the interview.

Note
A terse response, such as “I fill out customer sales orders,” will provide you
with little information, so you’ll have to work a bit harder with the participant
to get an idea of what this process involves. Terse responses commonly
indicate that the participant is just nervous or uncomfortable. In this case, you
could put him at ease by discussing an unrelated topic for a few moments or
by allowing him to select a more familiar or comfortable subject as a starting
point.

Identifying Subjects

As you ask each open-ended question, identify the subjects suggested within the
response to the question. You can identify subjects by looking for nouns within the
sentences that make up the response. Subjects are always represented by nouns and
identify a person, place, thing, or event (something that occurs at a given point in
time). There are some nouns, however, that represent a characteristic of a person,
place, thing, or event; you don’t need to concern yourself with these just yet.
Therefore, make sure you only look for nouns that specifically represent a person,
place, thing, or event. (Note that there’s no need to mark more than one occurrence
of a given noun.) You can ensure that you account for every subject you need to
discuss by marking the nouns with a double-underline as you identify them, as in this

example:
“As an account representative, I’m responsible for ten clients.
Each of my clients makes an appointment to come into the
showroom to view the merchandise we have to offer for the
current season. Part of my job is to answer any questions they
have about our merchandise and make recommendations
regarding the most popular items. Once they make a decision
on the merchandise they’d like to purchase, I write up a sales
order for the client. Then I give the sales order to my assistant,
who promptly fills the order and sends it to the client.”

After you’ve identified all of the appropriate nouns within the response, list them on a
sheet of paper; this becomes your list of subjects. You’ll add more subjects to the list
as you continue to work through the design process. Compile this list carefully and
methodically because you’ll use it to generate further discussions as the interview
progresses and to help you define tables later in the design process.
Here are subjects (shown in alphabetical order) that are represented in the previous
response:

You can now use this list as the basis of further questions during the interview.

Note
I refer to this entire procedure as the Subject-Identification Technique
throughout the remainder of the book.

Verify that the nouns you’ve underlined are genuine subjects by reviewing the way
they’re used in the response. For example, “account representative” is a subject

suggested by a noun in the first sentence, and you can assume that the subject
identifies an object (person, place, or thing) by the way the noun is used in the
sentence. “Appointment” is another subject suggested by a noun in the second
sentence, and you can assume this subject represents an event (something that occurs
at a given point in time) by the way it is used in the sentence.

Identifying Characteristics

After you’ve identified the subjects suggested within the response, pick a particular
subject and begin to ask follow-up questions related to that subject. You use this line
of questioning to obtain as much detailed information as possible about the subject
you’ve selected. Make sure your follow-up questions are more specific as you
progress through this part of the discussion. The nature of your follow-up questions
will depend on the responses you receive from the participant. Based on our sample
response, for example, you could continue the discussion by asking more specific
questions about sales orders or you could begin an entirely new line of questioning
regarding clients. Assume, for now, that you ask the following question to learn more
about sales orders:

“Let’s discuss sales orders for a moment. What does it take to
complete a sales order for a client?”

Note that this question begins with a statement directing the interview participant to
focus on a particular subject. This is a technique you should use to guide your
conversation after you’ve selected a specific subject to discuss. Also note that the
question is open-ended; it prompts the participant for details related to the subject
you’ve selected (sales orders) and allows you to establish the focus of the
participant’s subsequent responses.
Now, assume that the participant gives the following reply:

“Well, I enter all the client information first, such as the client’s
name, address, phone number, and email address. Then I enter
the items the client wants to purchase. After I’ve entered all the
items, I tally up the totals and I’m done. Oh, I forgot to
mention: I enter the client’s fax number and shipping address—
if they have one.”

Analyze this response with the Subject-Identification Technique to determine whether
there are subjects suggested within the response. Then add the new subjects to your

list of subjects. Remember: List only those nouns that represent person, place, thing,
or event.
After you’ve finished identifying new subjects, begin looking for details regarding the
subject under discussion. Your objective here is to obtain as many facts about the
subject as possible. Now you’re interested in nouns that represent characteristics of a
subject—they describe particular aspects of that subject. You can identify these
nouns quite easily because they are usually in singular form (“phone number,”
“address”). In contrast, nouns that identify subjects are usually in possessive form
(“the client’s phone number,” “the company’s address”).
Try to account for as many characteristics of the subject as possible. Use a single
underline to mark a noun that represents a characteristic, as in this example:

“Well, I enter all the client information first, such as the client’s
name, address, phone number, and email address. Then I enter
the items the client wants to purchase. After I’ve entered all the
items, I tally up the totals and I’m done. Oh, I forgot to
mention that I enter the client’s fax number and shipping
address—if they have one.”

As you identify the appropriate nouns within a response, list them on a sheet of
paper; this becomes your list of characteristics. You’ll add more characteristics to
the list as you work through the design process, and you’ll use this list later when
you’re determining the fields for the database. Use a separate sheet of paper for the
list of characteristics. Do not list the subjects and characteristics on the same
sheet! (The reason for keeping them on different lists will become clear when you
begin to define tables for the database in Chapter 7, “Establishing Table Structures.”)
Here are the characteristics (shown in alphabetical order) that are represented in the
previous response:

This constitutes the list of characteristics for the subject under discussion. These
characteristics will eventually become fields in the database.

Note
I refer to this entire procedure as the Characteristic-Identification Technique
throughout the remainder of the book.

Verify that the nouns you’ve marked with a single underline are genuine
characteristics by reviewing the way they’re used in the response. For example,
“name” is a characteristic suggested by a noun in the first sentence, and you can
assume that it describes some aspect of the subject “client” by the way the noun is
used in the sentence. “Shipping address” is another characteristic suggested by a noun
in the last sentence, and you can assume that this noun also represents some aspect of
the subject “client” by the way the noun is used in the sentence.
After you’ve finished discussing a particular subject, move on to the next subject on
your subjects list and begin the same pattern of questioning. Start with open-ended
questions, identify the subjects suggested in the responses, ask more specific
questions as the discussion progresses, and identify as many of the subject’s
characteristics as possible. Continue this process in a methodical manner until you’ve
discussed every subject on your list.
You should learn the Subject-Identification Technique and the Characteristic-
Identification Technique as thoroughly as possible because you’ll use them during
your interviews with users and management and as you identify fields and tables for
the initial database structure. Note that you won’t have to incorporate the single and
double underlines forever; you’ll eventually execute these techniques in your mind as
you gain experience and as they become more instinctive and intuitive.

Before You Begin the Interview Process . . .
You can use the techniques you’ve just learned in this section for both user interviews
and management interviews. The only differences between the two sets of interviews
lie in the subject matter and the content of the questions.
The interview process involves two sets of discussions: one with users and the other
with management. You’ll speak to the users first because they represent the “front
lines” of the organization. They have the clearest picture of the details connected with
the organization’s daily operations. Also, the information you gather from the users
should help you to understand the answers you receive from management.

Interviewing Users
The first part of the interview process involves conducting user interviews. The
interviews focus on these four issues:

1. The types of data users are currently using
2. How users are currently using their data
3. The collection of samples you assembled during the first two steps of the

analysis
4. And the types of information users require for their daily work

Because these issues are both data-centric and information-centric, you must be
certain that you understand and always keep in mind the difference between data and
information. Recall from Chapter 3, “Terminology,” that data are the values you
store in the database and information is data that you process in a manner that makes
it meaningful and useful to you when you work with it or view it. Keeping these
definitions in mind will help ensure that you focus on each issue properly and conduct
each segment of the interview successfully.

Reviewing Data Type and Usage
You can usually discuss the first two issues at the same time if you carefully phrase
your questions at the beginning of the interview. Your objective for this part of the
interview is to identify the types of data the users are currently using and how they
use that data in support of the work they do. You’ll use this information later in the
design process to help define field and table structures. Use the data collection and
data representation samples to help you formulate questions about the user’s data.
(However, don’t actually discuss the samples just yet; you should deal with them
separately.) During this discussion, you’ll start with open-ended questions, identify
subjects within the responses, and then use specific follow-up questions to identify
the characteristics of each subject.
As you begin the interview, ask each participant about the work he or she performs
on a daily basis. After a participant provides an overall description of the work he
does, ask him to explain his job in more detail. Perhaps he can walk you through the
job he performs on a daily basis.
Here’s an example of a typical conversation that occurs during this part of the
interview:

INTERVIEWER: “What kind of work do you do on a day-to-day basis?”
PARTICIPANT: “I accept land-use applications that are submitted by various

people, log them in, and set a hearing date with the hearing
examiner. I also assist applicants if they have any questions
regarding a specific application.”

INTERVIEWER: “Let’s talk about the applications for a moment. What types of
facts are associated with an application?”

PARTICIPANT: “There’s quite a number, actually. There are facts concerning the
type and name of the application, its designation and address, and
its location.”

INTERVIEWER: “Tell me about the facts concerning the application’s type and
name.”

PARTICIPANT: “There are four things we record: the type of application, the
name of the subdivision, the purpose of the project, and a
description of the project.”

Note how the interviewer starts the discussion with an open-ended question. After the
participant responds, the interviewer uses the Subject-Identification Technique to
identify subjects within the response. The interviewer then chooses a particular
subject and uses another open-ended question to focus the participant’s attention on
that subject. Because the participant’s next response is general in nature, the
interviewer focuses on a particular aspect of the subject and uses a more specific
follow-up question to elicit a detailed response from the participant.
The interviewer can continue to narrow the focus of his questions as the discussion
progresses. As the participant responds to each question, the interviewer continues to
use the Characteristic-Identification Technique to identify characteristics of the
subject that appear in the response. After he’s identified all of the subject’s
characteristics, the interviewer then moves on to the next subject and begins the entire
process again. He’ll continue in this manner until he’s covered his entire list of
subjects. You’ll go through the same exact process when you act as interviewer.

Note
The dialogue in the previous example and in the examples throughout the
book is simplistic by design; this also applies to all of the sample questions I
provide during my discussion of the interview process. They are simply the
vehicle through which I am presenting a specific skill or technique. As such,
don’t get too preoccupied with the actual dialogue or question itself; rather,
focus on how it is illustrating the skill or technique that I’m discussing at the
moment. The examples will be more beneficial to you if you see them from
this perspective.

Reviewing the Samples
The next round of discussions centers on all the samples you assembled earlier in the
analysis process. Your objectives during these discussions are to identify how the
objects represented by the samples are used, clarify the aspects of the samples you
don’t understand, and assign a description to each sample.
It should be relatively easy for you to talk to participants about the samples now that
you have an idea of the data the participants use on a daily basis. Begin the
conversation by asking questions about a specific sample. Figure 6.7 shows an
example of a data collection sample you might use as a starting point.

Figure 6.7. A data collection sample

Note
The statement I made about the dialogue examples also applies to this figure
and many of the other figures throughout the book. These figures are simply
the vehicle through which I am presenting a specific skill or technique. Use the
same approach that I suggested for the dialogue examples, as they’ll be more
beneficial to you.

Review your notes from the discussions you held at the beginning of the interview
before you ask your first question. You want to determine whether anything you’ve
already discussed is relevant to the sample you’re about to discuss. In one of the
previous discussions, for example, a participant indicated that part of his job is to
keep track of all the organization’s customers. Using that statement as a starting point,
you could ask him how he uses this particular data collection sample to perform that
task.

“You mentioned in a previous discussion that you keep track of
all the customers. How does this screen help you to carry out

that task?”
This is a well-phrased question. It begins with a statement that focuses on a particular
subject and then continues by bringing the participant’s attention to the sample. The
question is open enough to elicit a clear and complete response.
Now, assume the participant provides this response:

“This screen allows me to enter new customers, as well as
modify and maintain all the information we have on existing
customers.”

If this reply answers the question to your complete satisfaction, use it as the basis for
a description of the sample. On the other hand, if the reply does not completely
answer the question, continue with an appropriate line of questioning until the
participant clearly identifies the purpose and use of the sample. You must supply
descriptions for all of your samples because you’ll use them again later in the design
process.
A sample’s description should be succinct, yet clear enough to indicate the sample’s
purpose and how it is used. Write the description on a slip of paper and attach it to
the sample. Here’s an example of a description you might use for the sample in Figure
6.7:

This screen is used to collect and maintain all customer data.
It’s necessary for you to understand the sample as completely as possible so that you
can write a clear and concise description. If there are aspects of a given sample that
you don’t understand, ask the participant to clarify them for you. For example,
assume you’re working with the report sample shown in Figure 6.8.

Figure 6.8. A report sample

If you don’t know what the abbreviation “SRP” represents, make sure you have the
participant clarify it for you—never make assumptions or suppositions. Doing so can
waste valuable time and effort later in the process if your assumption or supposition
proves to be incorrect.
As you compose descriptions for each of the samples, you might find it difficult to
write a description for a complex sample. A sample is complex if it represents more
than one subject. The sample in Figure 6.8, for example, covers only one subject:
products. The sample in Figure 6.9, however, covers at least three subjects: doctor
services, nursing services, and patients. You’ll often have to work a little harder to
determine a complex sample’s purpose and use. In some cases, you’ll have to use the
Subject-Identification Technique to determine what subjects are represented.
Let’s say you’re working with the report sample shown in Figure 6.9 and you have
questions regarding the nursing services. You wonder whether the organization is
using this report as an indirect means of maintaining a current list of nursing services.
A question that elicits a yes or no response from a participant is not going to help you
much at all, so you need to use an open-ended question that will elicit a more
informative response. You could begin your discussion of this sample with this

question:

Figure 6.9. An example of a complex report sample

“What nursing services do you provide besides those listed in
this sample?”

This type of question gives the participant an opportunity to provide you with a
detailed response; furthermore, you’ve given yourself the opportunity to ask follow-
up questions as warranted by the participant’s reply. To continue the example, say
you receive the following answer:

“We provide various specialized services for the more complex
patient. You see only the general services on this report.
However, I can show you a complete list of our services that
Katherine maintains on her computer.”

You can continue with the process of writing the sample’s description if this reply
clarifies the point in question and you now understand the purpose of this report
sample; otherwise, continue asking follow-up questions until everything is explained to
your satisfaction.

Reviewing Information Requirements
The final issue you’ll discuss with users concerns their information requirements. The
objectives of this discussion are to determine whether individual users receive
information based on data they don’t directly control or maintain, to determine what
types of additional information they need, and to determine what types of information
they can foresee themselves needing in the future. You’ll use the information you
gather during this discussion later in the design process to help define and verify field
and table structures. You can also use this information as yet another way of
determining whether you accidentally overlooked anything during the previous
discussions.

Current Information Requirements

Users typically receive the information they use through a variety of reports.
Therefore, the best way to begin this discussion is by reviewing the report samples.
This time around, though, you’re not so concerned with how the reports are used as
you are with the data upon which they are based. It’s quite common that information
on some of the reports a user receives is based on data he does not personally create
and maintain. In this situation, you must determine the origin of that data so that you
can identify all the data used by a user, whether he uses it directly or indirectly.
Select a report from the report samples and work with one of the participants to
determine what data is used to produce the report. Ask him if he creates and
maintains the data on which the report is based. You can move on to the next sample
if he answers yes, but you’ll need to identify the origin of the data if he answers no.
Here’s an example that illustrates this process.
Say you have an assistant named Kira who is beginning a discussion with a participant
named Joan regarding the report sample shown in Figure 6.10.

Figure 6.10. A sample report

As Kira begins the conversation, Joan mentions that she works in the telemarketing
department. When Kira first asks about the sample report, Joan indicates that she
receives it every Monday morning. So Kira asks her the following question:

“Do you provide the data that’s used to generate this report?”
Her next course of action depends on Joan’s response. Kira can move on to the next
sample if Joan’s answer is yes; however, it would be a good idea for Kira to ask a
follow-up question to make certain that Joan’s answer is true.

“Do you personally enter and maintain this data on a daily
basis?”

If Joan’s answer is still yes, Kira can definitely move on to the next sample.
On the other hand, if Joan’s answer to the original question is no, Kira will need to
ask a few follow-up questions. First, she’ll ask Joan whether she contributes any data
to the report. If she does, Kira will then determine what data Joan specifically
submits. Then Kira will ask whether Joan knows the source of the remaining data.
To continue the example, say Joan’s reply to the original question is no and that the
following dialogue takes place after her response:

KIRA: “Can you tell me, then, if there is any data that you contribute to the

report at all?”
JOAN: “I do supply the customer’s name and phone number.”
KIRA: “Then you don’t supply the customer type or the last purchase date. Is

that correct?”
JOAN: “Yes.”
KIRA: “Can you tell me who provides this data?”
JOAN: “I’m not really sure, but . . .”
KIRA: “Do you have an idea of where these items come from?”
JOAN: “As a matter of fact, I do. They come from the sales department.”
KIRA: “That sounds good to me. I’ll make a note of that on this sample, and

then we can move on to the next one.”
Note that as the dialog begins, Kira first tries to determine whether Joan submits any
data at all to the report. When Joan reveals that she contributes two of the items for
the report, Kira then poses a follow-up question to verify that Joan is not submitting
any of the other data. Finally, Kira tries to identify the source of the remaining data
by asking Joan if she knows from where the data originates. In this case, it takes only
two well-phrased questions to find the answer. If Joan could not answer the last two
questions, Kira would need to continue her investigation with other participants.
You’re sure to obtain all the information you need about your report samples if your
discussions progress in the same manner as the preceding dialogue. Remember:
Follow-up questions are a crucial part of the conversation. You must phrase your
questions properly to elicit the types of responses you need from the participants.

Additional Information Requirements

The next subject of discussion is additional information requirements. The objective
here is to determine whether users require additional information that is not being
delivered to them currently. If this is the case, you must identify what additional
information they require and then define new data structures to support this extra
information later in the design process.
Start this conversation by directing the participants to review the reports they
currently receive. Ask them whether there is other information they would like to see
in their reports. Next, direct them to discuss the additional information, which reports
the information will affect, and the reason they believe the information is necessary.

Then determine whether the additional information represents new subjects or new
characteristics. If it does, identify each new item and add it to the appropriate list.
Finally, review the participants’ comments and determine whether there are further
issues you need to discuss with them in regard to the reports. Here’s an example that
illustrates the process.
Say you’re beginning this discussion and you’ve just asked the participants to review
the report samples they currently use. One of the participants is reviewing the sample
report shown in Figure 6.11.

Figure 6.11. The sample report being reviewed by a participant

You now instruct this particular participant to note the additional information she
would like to see on the report and to provide a brief statement indicating why the
information is necessary. It doesn’t really matter exactly how she makes the notations
so long as they are clear and attached to the report in an obvious manner. In this case,
she decides to use large sticky notes as a means of documenting her comments. She’s
specified two new fields she’d like to add to the report, along with the reason for their
inclusion. She’s also suggested possible locations for the fields by writing their names
on the report itself. Figure 6.12 shows the sample report with her comments.

Figure 6.12. A report sample with a participant’s comments

Next, determine whether there are new subjects or new characteristics represented in
the additional information. Apply the Subject-Identification Technique and the
Characteristic-Identification Technique to the comments attached to the report. Here’s
an example of how you apply these techniques to the first comment in Figure 6.12:

“Can we include the vendor name? It would make it easier to
identify a specific product.”

Here you’ve identified both a subject and a characteristic. (Note that the subject and
characteristic aren’t directly related: “vendor name” is a characteristic of a vendor, not
of a product. There’s no problem here, but you should be aware that this apparent
mismatch of subjects and characteristics is typical. You’ll address this issue later in
the design process.) Now, check your subjects list and characteristics list to determine
whether you’ve already accounted for these items. If you have, move on to the next
comment and repeat this procedure.
If you do discover a new subject, add it to your list of subjects and then identify as
many of its characteristics as possible. When you’re finished, add these items to your
list of characteristics, move on to the next comment, and repeat the entire procedure.
In many instances, however, you’ll only identify new characteristics. Don’t be
alarmed. People often want to add items to a report that are characteristics of subjects
that are already represented by the information on the report.

Finally, reexamine each report and determine if you have questions or concerns about
the notes participants have made. For instance, you may question the rationale behind
one participant’s belief that specific fields are necessary on a given report. Or you
might wonder why another participant wants to exclude certain fields from one of his
reports. You definitely want to make sure that the fields he wants to exclude are truly
unnecessary and that removing them will not have an adverse effect on the
information the report provides to other people. In either case, the inclusion or
exclusion of fields will affect the final database structure.
If a report has one or more remarks that are cause for concern, review it with the
appropriate participant and settle as many of the issues as you can. You can usually
resolve all your concerns with a few simple questions, but in some cases the
resolution to certain issues will not become apparent until later in the design process.
For example, you might have noticed that certain fields appear on two or more
reports. It’s difficult to determine if the fields are being unnecessarily duplicated until
you begin to define the field and table structures. When you encounter an issue that is
difficult to resolve at the present time, make a note of it and put the report aside for
later review.

Future Information Requirements

The last subject of discussion concerns future information requirements. Your
objective here is to identify the information that the participants believe will be
necessary for them to receive as the organization evolves. Once you identify these
future information requirements, you can ensure that you define the data structures
necessary to support that information.
You first need to make sure that every participant has some idea of how the
organization is evolving. The nature of the organization’s evolution will determine
what new information participants will require. If several people are unacquainted
with these issues, you’ll need to obtain this information from management and then
relay it to the participants prior to the discussion. Once everyone is familiar with these
matters, you can begin the conversation.
Start the discussion by directing the participants to think about the future evolution of
the organization and how it may affect the work they do on a daily basis. You’ll often
find that some participants are going to have a difficult time envisioning this scenario.
When this happens, use questions such as these to help them focus their thoughts:

How will the organization’s evolution affect the amount of information you’ll

need to do your job?
Do you think you’ll need additional types of information to carry out your
duties effectively as the organization evolves?
How will the evolution of the organization increase the time you spend on your
daily tasks?
Can you predict what types (categories, not specific items) of new information
you’ll need in order to carry out your duties as the organization evolves?
Do you anticipate a need for new information if your duties are increased as a
result of the organization’s evolution?

Keep in mind that most of the participants’ answers will be based on speculation.
There’s no accurate way for them to predict what types of information they’ll really
need until the organization’s evolution occurs. However, if you can anticipate their
hypothetical information requirements, you can prepare for them by defining the
necessary data structures in advance.
As the participants respond, use the Subject-Identification Technique to identify
brand-new subjects and then add them to your list of subjects. Then use the
Characteristic-Identification Technique to uncover new details concerning existing or
new subjects and add them to your list of characteristics.
You can sketch ideas for new reports or data entry forms to help participants visualize
the types of information they may need in the future. These sketches can then help
you identify new subjects or characteristics that the database structure needs to
address. If you create several rough drawings of sample reports, be sure to assemble
them in a separate, clearly marked folder. Then code each revision so that you can
compare it with earlier revisions. Figure 6.13 shows an example of a preliminary
design for a future report.

Figure 6.13. An example of a design for a new report

Continue the conversation with users until you’re satisfied that you’ve accounted for
as many of the participants’ future information requirements as possible. When
you’ve completed the discussion, you’re ready to conduct interviews with
management.

Note
You can use all of the techniques you learned in this section for the
management interviews as well. Therefore, the next section is somewhat
shorter and more concise.

Interviewing Management
The second part of the interview process involves interviewing management
personnel. This round of interviews focuses on these issues:

1. The types of information managers currently receive

2. The types of additional information they need to receive
3. The types of information they foresee themselves needing
4. And their perception of the organization’s overall information requirements

Note
Throughout the remainder of the book, I use the term management to refer to
the person or persons controlling or directing the organization.

Reviewing Current Information Requirements
Your objectives during the first part of this interview are to identify the information
that management routinely receives and to determine whether it receives reports that
are not represented in your group of report samples.
As you begin the interview, ask each participant about the work he performs and the
responsibilities associated with his position. A manager typically has a number of
issues on his mind, so these questions will help him focus his attention on the matters
at hand. His answers will give you some idea of how he might use the information on
the reports he receives and will provide you with a perspective on his need for that
information.
Next, ask each participant if he uses any of the reports in your collection of report
samples. Proceed with the next step if he says he doesn’t use any of the reports;
otherwise, examine each report and ask him to help you identify other subjects that
you might have previously overlooked. Use the Subject-Identification Technique as
necessary to aid you in this process. If the manager identifies a new subject, add it to
your list of subjects and use the Characteristic-Identification Technique to determine
the subject’s characteristics. Then add the new characteristics to your list of
characteristics. Repeat this entire procedure for each sample report.
Continue the discussion by asking each participant whether he receives reports that
are not represented in your report samples. If he answers yes, obtain a sample of
each new report and review it with the participant. Use the Subject-Identification
Technique and the Characteristic-Identification Technique to identify the subjects
(and their associated characteristics) represented within the report, and then add the
subjects and characteristics to their respective lists. Finally, attach a description to the
report and add it to your collection of report samples. Repeat this procedure until

you’ve accounted for every new report.

Reviewing Additional Information Requirements
The next subject of discussion concerns management’s need for additional
information. Your objective is to determine whether it requires supplemental
information that is currently missing from the reports it receives. If you conclude that
this is the case, you must identify that additional information. You’ll then define new
data structures (as appropriate) to support this information later in the design process.
However, you can move on to the next part of the interview if management doesn’t
require additional information.
You use the same techniques for this discussion as those you used for this segment of
the user interviews. Here are the steps you’ll follow.

1. Review the report samples with the participants once again and ask them if
there is additional information they would like to include in any of the reports.

2. Have the participants note the additional information—including the reasons
that they believe it’s necessary—on the appropriate reports. Remember that it
doesn’t matter how the participants make the notations so long as they are
clear, are noticeable, and are attached to the appropriate report.

3. Identify new subjects or characteristics within the information and add them to
the appropriate list.

4. Review the reports and discuss any concerns you have about them with the
participants. Once your concerns are resolved, this process is complete.

Reviewing Future Information Requirements
Future information requirements are the next subject of discussion. Your objective
here is to determine what information management foresees itself needing in the
future. Once you’ve identified these requirements, you can ensure that there are data
structures in place to support this information as the need for it arises.
As you begin the discussion, have the participants consider how the organization is
currently evolving. Then ask them how this evolution will affect the information they
require to make sound decisions and how it will influence the way they guide or direct
the organization. Remember that their answers are going to be based on speculation,
as was the case with the similar questions you asked users; there’s no way for
management to predict its future needs accurately until the organization actually

begins to evolve. (It’s always a good idea, however, to plan for the future as much as
possible.) Use the Subject-Identification Technique and Characteristic-Identification
Technique to identify new subjects and characteristics within the participants’
responses and then add the new items (if any) to the appropriate lists.
Next, make sketches of any new reports the participants might have in mind. Identify
new subjects and characteristics within each report and add them to the appropriate
lists. Then assemble these new reports in a clearly marked folder and add it to your
collection of samples.
You’re ready to move on to the last subject when you’ve accounted for as many of
management’s future information requirements as possible.

Reviewing Overall Information Requirements
The last topic of discussion concerns the organization’s overall information
requirements. In management’s opinion, what generic class of information does the
organization need? Your objective here is to discover whether there is data that the
organization needs to maintain that has not been previously discussed in either the
user interviews or the management interviews. If you determine that there is such
data, you must account for it in the database structure.
Take all of the reports that you’ve gathered throughout the analysis and interview
processes and review them with the participants once more. Then ask the participants
to consider the information the reports provide and how they might use that
information. (Note that they’ll have to make assumptions about how they might use
the information from the new reports.) Next, ask participants to determine whether
there is information that would be useful or valuable to the organization, but that is
not currently being received by anyone within the organization. If they determine that
there is indeed some new information that the organization could use, go through the
normal process of identifying that information and the subjects and characteristics
represented within it. Sketch samples of new reports for the information, as
appropriate, and add the samples to your existing collection of new reports.
For example, assume that one of the participants has identified a need for
demographic information; she believes that it would help the organization identify a
more specific target market for its product. None of the existing reports furnishes this
information, so you identify exactly what she needs by working with her to create a
sketch of a report that will present this information. (She might actually sketch more

than one report, but this is neither a problem nor a cause for concern.) You then use
the appropriate techniques to identify and note the subjects and characteristics
represented within the report and add it to your existing collection of new reports.
Later in the design process, you’ll define the data structures necessary to support the
new information.
Repeat this procedure until the participants can no longer identify any further
information that the organization might find useful or valuable. After you’re
reasonably confident that you’ve accounted for all of the organization’s information
requirements, suspend the interview process and begin the process of compiling the
Preliminary Field List.
It’s important for you to understand that you may have to revisit this process, even
though you and the participants may believe that you’ve accounted for all the
information the organization could possibly use. You’ll commonly identify new
information as the database design process unfolds.

Compiling a Complete List of Fields

The Preliminary Field List
Now that you have completed your analysis of the current database and the
interviews with users and management, you can create a Preliminary Field List. This
list represents the organization’s fundamental data requirements and constitutes the
core set of fields that you’ll define in the database. You create the Preliminary Field
List using a two-step process.

Step 1: Review and Refine the List of Characteristics

The first step involves reviewing and refining the list of characteristics you compiled
throughout the analysis and interview process. As you learned in Chapter 3, a field
represents a characteristic of a particular subject; therefore, each item on your list of
characteristics will become a field. Before you transform those characteristics into
fields, however, you first need to review the list to identify and remove duplicate
characteristics.
During the interviews, you identified various characteristics within each participant’s
responses and compiled them into a list as the interview progressed. There were
probably times when you mistakenly added the same characteristic to the list more
than once, or unknowingly referred to the same characteristic by two or more

different names. As a result, your list of characteristics requires some refinement.
Refining Items with the Same Name

Begin refining your list of characteristics by looking for items with the same name.
When you find one or more occurrences of a particular name, determine whether
they all represent the same characteristic. Remove all but one occurrence of the name
from the list if they do represent the same characteristic; otherwise, determine what
each instance of the name represents. You’ll often find that a duplicate name
represents the same type of characteristic as its original counterpart but should be
associated with a different subject than its counterpart. In this case, you rename the
duplicate to reflect how it relates to the appropriate subject.
Assume, for example, that the item “Name” appears three times on your list of
characteristics. Your first inclination will probably be to remove two of the
occurrences because your current objective is to eliminate duplicate characteristics.
However, you should determine whether each instance of “Name” represents a
distinct characteristic before you remove it. You can easily make this determination
by examining your interview notes; this will help you remember when and why you
added the item to the list.
After careful examination, you discover that the first occurrence of “Name”
represents a characteristic of the subject “Clients,” the second, a characteristic of the
subject “Employees,” and the third, a characteristic of the subject “Contacts.” You
resolve this duplication by renaming each occurrence of “Name” (using the subject as
a prefix) to reflect its true meaning. Now you’ll have three new characteristics called
“Client Name,” “Employee Name,” and “Contact Name.”
Items similar to “Name” commonly appear on a list of characteristics, and you must
address them in the same manner. You’ll commonly see one or more occurrences of
items such as “Address,” “City,” “State,” “Zip Code,” “Phone Number,” and “Email
Address,” and you can refer to them collectively as generic items. The point here is
that you must rename each instance of a generic item to reflect its true relationship to
a particular subject, thus ensuring that you have as accurate a field list as possible.
Refining Items Representing the Same Characteristic

Now look for items that represent the same characteristic and remove all but one.
The idea here is that a given characteristic should appear only once in the list of
characteristics. For example, assume that “Product #,” “Product No.,” and “Product
Number” appear on your list of characteristics. It’s evident that these items all

represent the same characteristic and you need only one of them on your list. Choose
the one that conveys the intended meaning clearly, completely, and unambiguously
and remove the remaining items from the list of characteristics. (In this case, the best
choice is “Product Number” because it fulfills the previous criteria.)
Ensuring Items Represent Characteristics

Finally, make sure that each item on your list represents a characteristic. It’s easy to
place items accidentally on the list that represents subjects. You can test each item by
asking yourself questions such as these:

Can this word be used to describe something?
Does this word represent a component, detail, or piece of something in
particular?
Does this word represent a collection of things?
Does this word represent something that can be broken down into smaller
pieces?

Depending on the item you’re working with, some questions are easier to answer than
others. When you find that an item represents a subject rather than a characteristic,
remove it from the list of characteristics and add it to the list of subjects. Be sure to
identify the new subject’s characteristics and add them to the existing list of
characteristics.
For example, say “Item” appears on your list of characteristics and you’re not quite
sure whether it represents a characteristic or a subject. Use the preceding questions to
help you make a determination.

Can “Item” be used to describe something?
Does “Item” represent a component, detail, or piece of something in particular?

You could make a case that “Item” helps to describe a sale inasmuch as it identifies
what a customer purchased. On the other hand, you could also say that “Item” isn’t a
characteristic because it doesn’t represent a singular aspect of a sale. “Date Sold,”
for example, represents a singular characteristic of a sale. Leaving the quandary
surrounding these questions unresolved, you go on to the next question:

Does “Item” represent a collection of things?
You can answer this question easily by looking at the plural form of the word, which
in this case is “Items.” If “Items” can be referred to as a collection, it is a subject. It’s

beginning to become clear that “Item” does represent a collection of some sort, and
you can make a final determination by asking yourself the last question:

Does “Items” represent something that can be broken down
into smaller pieces?

You can answer this question by determining whether you can identify any
characteristics for “Items.” If you can, then “Items” definitely represents a subject
and you should move it to the list of subjects. You also need to identify its
characteristics and add them to your list of characteristics.
Continue with this procedure until you’ve reviewed and refined the entire list of
characteristics to your satisfaction. When you are through, you have your first version
of the Preliminary Field List. Now you’ll add new items to it and refine it further
during the next step.

Step 2: Determine Whether There Are New Characteristics in Any of Your Samples

This step involves an examination of all the samples you gathered throughout the
analysis process. Your goal is to determine whether there are characteristics on the
samples that need to be added to the Preliminary Field List.
Begin this step by highlighting every characteristic you find on each sample. Then,
examine each characteristic and determine whether it’s already on the Preliminary
Field List; cross it out on the sample if it’s already on the list. Next, study the
remaining characteristics and determine whether any of them has the same meaning
as an existing field; if it does, cross it out on the sample. (Use the same procedure you
used in the first step to make this determination.) Finally, add any highlighted
characteristics remaining on the samples to the Preliminary Field List.
For example, say you’re working with the data collection sample shown in Figure
6.14.

Figure 6.14. An example of a data collection sample

Highlight each characteristic you find on the sample, as shown in Figure 6.15.

Figure 6.15. A sample with highlighted characteristics

You’re likely to find multiple occurrences of various characteristics in some of the
samples. As you can see, both “Name” and “Phone No.” appear twice on this
particular sample. You can cross out the duplicates in this case because they have the
same meaning as the original instances.
To continue with the example, say you reviewed the Preliminary Field List and found
that every characteristic on the sample is already on the list with the exception of
“Name” and “Phone No.” Cross out the existing items on the sample to show that
you have accounted for them. Before you add “Name” and “Phone No.” to the
Preliminary Field List, however, make sure that the names of these items properly
describe their relationship to the subject represented within the sample. In this case,
the two remaining items represent characteristics of a group of people known as
“Contacts.” Therefore, you rename these characteristics (using the subject as a
prefix) as “Contact Name” and “Contact Phone Number,” and then add them to the
Preliminary Field List. Repeat this procedure for each sample you’ve gathered until
you’ve gone through all the samples you’ve collected. When you’re through, you
have the second version of the Preliminary Field List.

A Side Note: Value Lists

As you examine the characteristics on a database, spreadsheet, or web page sample,
record on a sheet of paper the name of each characteristic that incorporates a value
list (also known as an enumerated list). This list specifies the acceptable range of
values for a particular characteristic and often enforces a given business rule. (You’ll
learn about business rules in Chapter 11, “Business Rules.”) For example, say you
work for a manufacturing company that uses four specific vendors to deliver its goods
to customers across the nation. You could use a value list to ensure that a user selects
one of those four vendors to ship a particular order. Figure 6.16 illustrates this
example (note Ship Via) and also shows two common types of value list.

Figure 6.16. A database screen with two value lists

When you record the name of a characteristic that incorporates a value list, also
record the values within the list. If the list contains a large number of values, write a
brief description of the type of values in the list and (if possible) a minimum and
maximum value; otherwise, write down each of the values. Figure 6.17 shows an
example of the record you’re creating.

Figure 6.17. Recording characteristics that incorporate value lists

You can be discerning about the characteristics you choose to record. For example,
it’s unnecessary for you to record characteristics that accept simple or obvious sets of
values, such as “yes/no,” “true/false,” or “active/inactive.” Instead, you should record
characteristics that accept distinct, specific sets of values.
Set this sheet (or sheets) aside after you’ve finished recording the appropriate
characteristics. You’ll refer to this sheet when you define field specifications for the
fields in the database and again when you define business rules.

The Calculated Field List
There’s one final refinement you must make to the Preliminary Field List before you
can consider it complete: You must remove every calculated field and place it on a
separate list. This new list becomes your Calculated Field List. Recall from Chapter
3 that a calculated field is one that stores the result of a string concatenation or

mathematical expression as its value. You list calculated fields separately because
you’ll use them in a specific manner later in the design process.
You build the Calculated Field List using existing fields from the Preliminary Field
List. Examine the list and determine whether there are fields that fit the description of
a calculated field. Fields that have names containing words such as amount, total,
sum, average, minimum, maximum, and count are likely candidates for the
Calculated Field List. Common names for calculated fields include “Subtotal,”
“Average Age,” “Discount Amount,” and “Customer Count.” As you identify each
calculated field, remove it from the Preliminary Field List and place it in the
Calculated Field List. When you’ve completed your examination of all of the fields in
the Preliminary Field List, you’ll have two completely new lists: a third version of the
Preliminary Field List and a Calculated Field List.

Reviewing Both Lists with Users and Management
Conduct brief interviews with users and management to review the items that appear
on the Preliminary Field List and the Calculated Field List. Your objective here is to
determine whether there are fields that have been omitted from either list. You can
continue with the next step in the design process when everyone is satisfied that the
lists are complete; otherwise, identify the fields that are missing and add them to the
appropriate list. Once the interviews are complete, you’ll have a “final” version of
each list.
Be sure you conduct these interviews because the participants’ feedback provides you
with a means of verifying the fields on both lists. Let me remind you once again to
avoid becoming too invested in the idea that these lists are absolutely complete and
final. At this point you still may not have identified every field that needs to be
included in the database—inadvertently, you’re almost sure to miss a few fields—but
if you strive to make your lists as complete as you can, the inevitable additions or
deletions will be quick and easy to make.

Case Study
You’ve already defined the mission statement and mission objectives for Mike’s new
database. Now it’s time to perform an analysis, conduct interviews, and compile a
Preliminary Field List.
First, analyze Mike’s current database. As you already know, he keeps most of his
data on paper; the only exception is the product inventory he maintains in a

spreadsheet program. Gather samples of the various papers Mike uses to collect data
and a screenshot or printout of the spreadsheet he uses to maintain the product
inventory. Assemble these samples together in a folder for later use. For example,
Figure 6.18 shows a sample of the index cards Mike uses to collect customer
information, along with a screenshot of his spreadsheet program.

Figure 6.18. A paper-based and a computer-generated sample from Mike’s Bikes

Next, identify the methods Mike uses to present information. He and his staff
currently produce a variety of reports that present the information they need to
conduct their daily affairs. They generate most of the reports using a word processing
program. Gather samples of all the reports and place them in a folder for later use.
Figure 6.19 shows a sample report that Mike creates on his computer.

Figure 6.19. A report sample from Mike’s Bikes

Now you’re ready to interview Mike’s staff. Here are some points to remember as
you’re conducting the interviews.

• Identify the types of data staff members are using and how they use that data.
Be sure to use the Subject-Identification Technique and the Characteristic-
Identification Technique to help you analyze responses and formulate follow-
up questions.

• Review all the samples you gathered during the beginning of the analysis
process. Determine how each sample is used, write an appropriate description,
and attach the description to the sample.

• Identify the staff’s information requirements. Determine what information
they’re currently using, what additional information they need (remember to
use the samples), and what kind of information they believe they’ll need as the
business evolves.

During the interview, one of the employees wonders whether she can add a new field
to the supplier phone list report. How do you respond? You hand her the report and
ask her to attach a note indicating the name of the new field and a brief explanation of
why she believes it’s necessary. When she’s finished, return the sample to the report
samples folder. Figure 6.20 shows the report sample with the attached note.

Figure 6.20. A report sample with attached note suggesting a new field

You’ll conduct the final interview with Mike. Keep the following points in mind as
you speak with him.

• Identify the reports he currently receives; you need to know what kind of
information he uses to make business decisions. If he receives reports that are
not represented in your group of report samples, obtain a sample of each report
and add it to the group, updating the subject and characteristic lists as needed.

• Review the group of report samples with him and determine whether he can
identify subjects or characteristics that have been overlooked by his staff. Use
the appropriate techniques to identify these items and then add them to the
appropriate list.

• Determine whether there is any additional information Mike needs to
supplement the information he currently receives.

• Determine what types of information Mike will need as the business evolves.
As you and Mike discuss his future information needs, he indicates that there is some
new information he’d like to receive once the business really gets rolling: He’d like to
see total bike sales by manufacturer. He believes this information would help him
determine which bikes he should consistently keep in stock. Such a report does not

currently exist, so have Mike sketch it out on a sheet of paper. Next, identify the
subjects and characteristics represented within the report and add them to the
appropriate list. Then add the new report to your group of report samples. Figure
6.21 shows the sketch of Mike’s new report.

Figure 6.21. The sketch of Mike’s new report

Your analysis is now complete. You’ve interviewed Mike and his staff, you’ve
gathered all the relevant samples, and you’ve created a list of subjects and a list of
characteristics. A partial list of subjects and characteristics is shown in Figure 6.22.
All you need to do now is to create your Preliminary Field List.

Figure 6.22. Partial lists of subjects and characteristics for Mike’s Bikes

As you already know, you need to refine the list of characteristics before it can
become the first version of the Preliminary Field List. Remove all duplicate
characteristics, delete items that represent the same characteristic, and refine those
items that have generic names. (Remember the problem with the characteristic called
“Name”? If you find such characteristics, now is the time to resolve them.) Next,
review all your samples and determine whether they contain characteristics that do
not currently appear on the Preliminary Field List. Add to the list any new
characteristics that you find. When you complete these tasks, you have the first
version of your Preliminary Field List.
Now you remove all the calculated fields from the Preliminary Field List and place
them on their own list; this becomes your new Calculated Field List. Figure 6.23
shows a small portion of your final Preliminary Field List and Calculated Field List.

Figure 6.23. A partial Preliminary Field List and a Calculated Field List

Note
You may have noticed that each list includes a date in the title. It’s a good idea
to date your lists so that you can maintain a clear history of their development.

Summary
This chapter began by discussing why you should analyze the organization’s current
database. You learned that the analysis helps you identify aspects of the current
database that will be useful to you when you design the new database. Armed with
this information, you can design a database that best suits the organization’s needs.
Next, we briefly looked at the two types of databases organizations commonly used:
paper-based databases and legacy databases. We ended this discussion by identifying
the three steps used in the analysis process: reviewing the way data is collected,
reviewing the way information is presented, and conducting interviews with the
organization’s staff.
The chapter continued with a discussion of the review process. You learned how to
review the ways the organization collects its data and how to assemble a set of data

collection samples. Then you learned how to review the ways the organization
presents information and how to assemble a set of report samples.
Next, we discussed the process you use to conduct interviews, and you learned why
interviews are useful at this stage of the design process. During this discussion you
learned two techniques that are crucial to the success of interviews: the Subject-
Identification Technique and the Characteristic-Identification Technique.
Conducting user interviews was the next subject of discussion. We examined the four
issues you must address during these interviews, along with the techniques you use to
address them. Next, we discussed conducting management interviews. Here you
learned about the issues and techniques these interviews incorporate.
Finally, we discussed the process of compiling a list of fields based on the list of
characteristics and the characteristics that appear in the samples. You learned that you
decompose the field list into two separate lists: a Preliminary Field List and a
Calculated Field List. The Preliminary Field List enumerates the organization’s
fundamental data requirements and establishes the core set of fields you must define
in the database. The Calculated Field List consists of fields that contain values
resulting from string concatenations or mathematical expressions.

Review Questions
1. State two goals of analyzing the current database.
2. True or False: You can adopt the current database structure as the basis for the

new structure.
3. What is a legacy database?
4. State two steps of the analysis process.
5. Which types of computer software programs should you review during the

analysis?
6. Why should you conduct interviews after you gather data collection and

information presentation samples?
7. How do you use “open-ended” and “closed” questions?
8. What is the Subject-Identification Technique?
9. How do you identify specific attributes for a particular subject?

10. True or False: You should interview users and management at the same time.

11. What three basic types of information requirements must you identify?
12. What is the Preliminary Field List?
13. State why each item on the Preliminary Field List should have a unique name.
14. What is a value list?
15. What are calculated fields? What (if anything) should you do about them?

7. Establishing Table Structures

It is a capital mistake to theorize before one has data.
—SHERLOCK HOLMES, THE ADVENTURES OF SHERLOCK HOLMES

Topics Covered in This Chapter
Defining the Preliminary Table List
Defining the Final Table List
Associating Fields with Each Table
Refining the Fields
Refining the Table Structures
Case Study
Summary
Review Questions

Organizations use databases to keep track of various subjects that are important to
them. For example, a medical clinic keeps track of, among other things, its patients,
doctors, and appointments; an equipment rental business must maintain data on its
customers, equipment, and rental agreements; and a registrar’s office is concerned (at
the very least) with students, teaching staff, and courses. In every case—and in any
other scenario you can imagine—a table within the database represents each subject.
Furthermore, each table is composed of fields, which represent the characteristics
that define or describe the subject of the table. Tables constitute the very foundation
of the database, and they guarantee a solid and sound foundation when they are
properly designed.

Defining the Preliminary Table List
During this portion of the database design process, you’ll define a Preliminary Table
List that you’ll use to identify and establish the tables for the new database. You’ll
use three procedures to develop this list. The first involves using the Preliminary
Field List, the second involves using the list of subjects you gathered during the
interviewing process, and the third involves using the mission objectives you defined
at the beginning of the database design process. You’ll then move on to build the

structure of each table using fields from the Preliminary Field List.

Identifying Implied Subjects
The process of defining the tables for the database begins with a review of the
Preliminary Field List. Your objective is to identify subjects that are implied by the
fields on the list.
You may wonder why you’re reviewing the Preliminary Field List instead of starting
with the list of subjects. The list of subjects does seem to be a more intuitive place to
start. After all, you’ve carefully built this list during the interview process, and you’ve
been influenced by the conversations you’ve had with the users and management.
Surely, all of this has helped you identify every subject that needs to be represented in
the database. You may be correct, but you could have a minor problem if you’re
wrong: missing tables.
Studying the fields on the primary field list helps you identify subjects from an
unbiased viewpoint—you’re letting the fields “talk” to you. It’s crucial that you now
look at this list as objectively as possible—as though you’ve never seen it before
—without any of the biases you’ve assimilated during the interview process. This
enables you to see how certain groups of fields suggest specific subjects, some of
which may not have been identified during the interview process. You can also use
the Preliminary Field List to verify many of the subjects on the list of subjects. Using
the Preliminary Field List in these ways allows you to cross-check your previous
work and helps you ensure that the new database structure includes all of the
necessary subjects.
As you review the Preliminary Field List, ask yourself whether a certain set of fields
defines or describes a particular subject. Move on to another set of fields if nothing
readily comes to mind. When you can infer a subject from the field in the list, enter
that subject on a new Preliminary Table List. Figure 7.1 shows a partial sample of a
Preliminary Field List and illustrates how a subject can be suggested by a set of fields.

Figure 7.1. Using the Preliminary Field List to identify subjects

Continue your review until you’ve scanned all the fields and identified as many
subjects as possible. Be sure to add each subject you identify to the Preliminary Table
List. This list will grow as you work with the list of subjects and mission objectives.
Figure 7.2 shows an example of the first version of a Preliminary Table List.

Figure 7.2. The first version of the Preliminary Table List

Using the List of Subjects
Now, create a second version of the Preliminary Table List by merging the list of
subjects (created during the interviews with users and management) with the first
version of the Preliminary Table List (compiled by studying the Preliminary Field
List). This new version contains a more complete list of tables. Merging the two lists
is a three-step process, which involves resolving duplicate items, resolving items that
represent the same subject, and combining the remaining items together into one list.

Step 1: Resolve Duplicate Items

Start this step by reviewing and cross-checking each item on the list of subjects
against the items on the Preliminary Table List. Your objective here is to identify
duplicate items, which are items on the list of subjects that already appear on the
Preliminary Table List. You must be very careful how you resolve the duplicate items
that you find. Begin by determining whether the items represent different subjects,
despite the fact that they share the same name. (Use your interview notes as
necessary to help you make your decision.) If they do represent different subjects,
rename each item so that it accurately identifies the subject it represents and then add
both items to the Preliminary Table List; otherwise, determine whether they truly
represent the same subject. When you conclude that both items do represent the

same subject, cross out the item on the list of subjects and keep the one that appears
on the Preliminary Table List. Then resume the review until you’ve examined all of
the items on both the list of subjects and the Preliminary Table List. Let’s take a look
at an example of this process.
Assume that you’re developing a database for an equipment rental business, and
you’re working with the list of subjects and the Preliminary Table List shown in
Figure 7.3.

Figure 7.3. The list of subjects and the Preliminary Table List for an equipment
rental business

As you review these lists, you discover two duplicate items: “Equipment” and “Rental
Agreements.” These items warrant further examination, so you start with
“Equipment” and try to determine whether each occurrence represents a different
subject. In reviewing your interview notes, you find that “Equipment” on the list of
subjects represents items such as tools, appliances, and audiovisual equipment. Then
you remember that “Equipment” on the Preliminary Table List also includes trucks,
vans, and trailers. You review your interview notes further and discover that vehicle
rentals are treated differently from “regular” equipment rentals. Therefore, each
occurrence of “Equipment” does represent a different subject. You resolve the
duplication by keeping one occurrence of “Equipment” and renaming the other
“Vehicles.” You then list both items on the Preliminary Table List.
Now you go through the same process with “Rental Agreements.” Fortunately, you

discover that both occurrences share exactly the same meaning. The only thing you
have to do in this case is cross out “Rental Agreements” on the list of subjects. Now
you can continue your review until you’ve inspected each item on the list of subjects.
Figure 7.4 shows the revised list of subjects and the Preliminary Table List.

Figure 7.4. The revised list of subjects and the revised Preliminary Table List
(first view)

Step 2: Resolve Items That Represent the Same Subject

Your objective during this step of the merge process is to determine whether an item
on the list of subjects and an item on the Preliminary Table List represent the same
subject even though they have different names. When you identify such a set of
items, select the name that best represents the subject and use it as the sole identifier
for that subject. Then deal with the name in this manner.

• If the name you’ve selected already appears on the Preliminary Table List,
cross out its counterpart on the list of subjects.

• If the name appears on the list of subjects, remove its counterpart on the
Preliminary Table List and replace it with the name from the list of subjects.

Repeat this process until you’ve covered all the items on the list of subjects.
Continuing with the equipment rental business example, assume you’ve discovered
that “Clients” and “Employees” on the list of subjects and “Customers” and “Sales
Reps” on the Preliminary Table List represent (respectively) the same subject (see

Figure 7.4). Deciding to deal with “Clients” and “Customers” first, you review your
interview notes and determine that “Customers” is the name that best represents both
the people and the organizations that rent equipment from the business. You then
resolve the duplication by keeping “Customers” and crossing out “Clients.” Moving
on to the next set of duplicate items, you decide to keep “Employees” and discard
“Sales Reps” because you believe that “Employees” best describes those people who
are employed by the business, regardless of their position. Figure 7.5 shows a revised
version of both lists and the resolution of the duplicate items.

Figure 7.5. The revised list of subjects and the revised Preliminary Table List
(second view)

Step 3: Combine the Items on the List of Subjects and the Preliminary Field List

The final step of this process is the easiest of the three. All you do is add the
remaining items from the list of subjects to the Preliminary Table List. Then throw
away the list of subjects—you won’t need it anymore. The list that remains becomes
the second version of the Preliminary Table List. That’s all there is to it! Figure 7.6
shows the second version of the Preliminary Table List, which is the result of merging
the two lists shown in Figure 7.5.

Figure 7.6. The second version of the Preliminary Table List

Using the Mission Objectives
In this third and final procedure, you use the mission objectives to determine whether
you’ve overlooked any subjects during the previous two procedures. This is your
final opportunity to add tables to the Preliminary Table List.
Start with the first mission objective, and use the Subject-Identification Technique to
identify the subjects represented in that statement. Underline each subject you
identify and then cross-check it against the items on the Preliminary Table List. Use
the same techniques here that you used in the previous procedure.

1. When an item you underlined in a mission objective statement matches an item
on the Preliminary Table List, determine whether the items represent different
subjects. If they do, assign an appropriate name to each occurrence and then
add each one to the Preliminary Table List; otherwise, cross out the duplicate
item on the mission objective.

2. When an item you underlined in the mission objective statement has a name
that is synonymous with the name of an item on the Preliminary Table List and
both items represent the same subject, select the name that best identifies that
subject and use it in the Preliminary Table List.

3. When an item you underlined in the mission objective statement represents a

new subject, add it to the Preliminary Table List.
Repeat these steps until you’ve worked through all the mission objectives. Here’s an
example of how you use these techniques to review the mission objectives.
Assume that you’re designing a database for a flight training school. You’re just
starting this particular process, and you’ve just used the Subject-Identification
Technique on the following statement:

We need to maintain data on our pilots and their certifications.
You now cross-check the subjects you identified in this mission objective against the
items in the Preliminary Table List shown in Figure 7.7.

Figure 7.7. The Preliminary Table List for a flight training school

In this case, you cross out “pilots” in the mission objective statement because it
already exists on the Preliminary Table List and it represents the same subject. You
then decide to examine “certifications” further, and, after some careful thought, you
make these observations.

1. It does not appear on the Preliminary Table List.
2. It doesn’t duplicate any item on the Preliminary Table List.
3. Its name is not synonymous with any item on the Preliminary Table List.
4. It doesn’t represent the same subject as any other item on the Preliminary

Table List.
These findings indicate that “certifications” is a new item and should be added to the
Preliminary Table List. So you add it to the Preliminary Table List and cross it out on
the mission objective statement; this shows you that you’ve already dealt with this
particular item. Figure 7.8 shows the revised version of the Preliminary Table List.

Figure 7.8. The revised Preliminary Table List

Defining the Final Table List
Your Preliminary Table List is as complete as it can be at this point, so you’ll now
transform it into a Final Table List. This new list incorporates two elements that are
not currently on the Preliminary Table List: table type and table description. Figure
7.9 shows an example of a Final Table List.

Figure 7.9. An example of a Final Table List

A table type allows you to classify a table by the role it plays within the database and
provides you with a means of identifying tables that function in a similar manner. The
table’s role determines its type, and there are four table types that you can associate
with a given table.

1. A data table represents a subject that is important to the organization and is
the primary foundation of the information that the database provides. (You’ll
learn more about data tables later in this chapter.)

2. A linking table establishes a link between two tables in a many-to-many
relationship. (Chapter 10, “Table Relationships,” covers linking tables in more

detail.)
3. A subset table contains fields that are related to a particular data table and

further describes the data table’s subject in a very specific manner. (You’ll
learn more about subset tables later in this chapter.)

4. A validation table contains relatively static data and is a crucial component of
data integrity. (Chapter 11, “Business Rules,” provides further details on this
type of table.)

A table description provides a clear definition of the subject represented by the table
and states why the subject is important to the organization. There are certain
guidelines that govern how you create a table description, and you’ll learn about them
later in this chapter. There is a final task you have to perform before you transform
your Preliminary Table List into the Final Table List: refining the table names.

Refining the Table Names
Naming a table is a more complex affair than you may realize at the moment. As you
learned in Chapter 3, “Terminology,” a table represents a single subject; therefore, its
name must clearly identify the subject it represents. The following guidelines will help
you create table names that are clear, unambiguous, descriptive, and meaningful.
They will also help ensure that you name your tables in a consistent manner.

Guidelines for Creating Table Names

• Create a unique, descriptive name that is meaningful to the entire
organization. Using unique names helps to ensure that each table clearly
represents a different subject and that everyone in the organization will
understand what the table represents. (If you encounter duplicate table names
at this point, resolve the problem using the techniques you learned earlier in this
chapter.) Choose names that are descriptive enough to be self-explanatory.
“Vehicle Maintenance” is an example of a good, descriptive name. Defining a
unique and descriptive name does take some work on your part, but it’s well
worth the effort in the long run.

• Create a name that accurately, clearly, and unambiguously identifies the
subject of the table. Vague or ambiguous names usually indicate that the table
represents more than one subject. When you encounter such a name, identify
the subjects the table truly represents and then treat each subject as a separate
table. “Dates” is a good example of a vague table name. You really don’t know

what the table represents without referring to its description. For example,
assume you’re designing a database for an entertainment agency and this table
appears in the Preliminary Table List. Upon seeing this table name, you decide
to review your interview notes. You discover that one person says “Dates”
represents appointments for client meetings, and another person says it
represents booking dates for the agency’s stable of entertainers. This table
clearly represents two subjects, so you remove “Dates” from the Preliminary
Table List and replace it with two new tables called “Client Meetings” and
“Entertainer Schedules.”
Possibly the most vague and ambiguous name you could assign to a table is
“Miscellaneous”—it doesn’t identify a single subject whatsoever. You might
occasionally feel compelled to create a “Miscellaneous” table because you just
can’t figure out what to do with certain fields on your Preliminary Field List.
When that happens, stop, take a break, and then come back and reexamine
those fields. Carefully and methodically apply the design techniques you’ve
learned, and you’re sure to determine what to do with the fields after all.

• Use the minimum number of words necessary to convey the subject of the
table. Everyone in the organization should be able to identify what the table
represents without having to read its description. Although your objective is to
create a short, succinct table name, avoid using a minimalist approach. “TD_1”
is a good example of a name that is exceedingly short. You won’t have the
slightest idea what this table represents unless you know the meaning of each
character in the name. You should also avoid going in the opposite direction as
well. “Multiuse Vehicle Maintenance Equipment” is much too long and can
easily be shortened to just “Equipment.”

• Do not use words that convey physical characteristics. Avoid using words
such as file, record, and table in the table name because they add a level of
confusion that you don’t need. A table name that includes this type of word is
very likely to represent more than one subject. Consider the name “Patient
Record.” On the surface, this may appear to be an acceptable name. You’ll
realize, however, that there are potential problems with this name when you
take some time to think about what a “patient record” is supposed to represent.
The name contains a word that you’re trying hard to avoid (record) and it
potentially represents three subjects: “patients,” “doctors,” and “examinations.”
With this in mind, remove “patients” from the Preliminary Table List and

replace it with three new tables, one for each of the three subjects.
• Do not use acronyms and abbreviations. Acronyms are hard to decipher,

abbreviations rarely convey the subject of the table, and both violate the first
guideline in this list. Take acronyms, for example. Say you’re helping an
organization revise its database structure and you encounter a table named
“SC.” How do you know what the table represents without knowing the
meaning of the letters themselves? The fact is that you can’t easily identify the
subject of the table. What’s more, you may find that the table means different
things to different departments in the organization. So you decide to conduct a
brief interview with some of the staff in order to determine what the letters
represent. (Now, this is the scary part.) To your disbelief, you discover that the
folks in personnel think it stands for “Steering Committees”; the information
systems staff believes it to be “System Configurations”; and the people in
security insist that it represents “Security Codes.” This example clearly
illustrates why you should make every effort to avoid using abbreviations and
acronyms in a table name.

• Do not use proper names or other words that will unduly restrict the data that
can be entered into the table. This guideline will keep you from falling into the
trap of creating duplicate table structures. A name such as “Southwest Region
Employees,” for example, severely restricts the data that you can enter into this
table. As the organization grows, how will you deal with employees from other
regions? When the organization begins to hire employees in Washington,
Oregon, and Idaho, you’ll have to create a “Pacific Northwest Region
Employees” table, and you’ll have to create a “Western Region Employees”
table when the organization begins to hire folks in Arizona, Utah, Nevada, and
California.
Proper database design principles dictate that you should not create duplicate
structures such as these because they can be quite problematic.

1. Users could have a difficult time retrieving data from all three tables
simultaneously.

2. The person maintaining the database would have the added responsibility
of ensuring that the tables are always structurally synchronized. If he adds,
modifies, or deletes a field in one table, he must take the same action on all
the other tables.

3. The person maintaining the database would also have the added
responsibility of ensuring synchronized data integrity between the tables.
He must be able to guarantee that data is completely and accurately
transferred from one table to the other when an employee relocates from
one region to another.

• Do not use a name that implicitly or explicitly identifies more than one
subject. This is one of the most common mistakes you can make with a table
name, and it is relatively easy to identify. This type of name typically contains
the word and or or and characters such as the slash (\) or ampersand (&);
examples include “Department or Branch” and “Facility\Building.” A table with
an ambiguous name suggests that you may have not identified the subject
clearly or accurately during the analysis and interview processes. You can
rectify this problem by reviewing your notes and conducting further analysis
and interviews as necessary. Just remember that you must always ensure that
each table represents only one subject.
Another name that falls under this category is “Miscellaneous.” (Yes, here’s
that name again!) A moment ago, I said that this name didn’t identify a single
subject whatsoever; this is a correct and valid assertion. It is also true,
however, that the name implicitly identifies more than one subject; you can’t
specifically identify the subjects because the name is vague and ambiguous.
Merriam-Webster’s online dictionary defines the word itself as follows:

Miscellaneous adj. 1. consisting of diverse things or members;
heterogeneous. 2. having various traits.

You can clearly see the problems that this name creates, so you should not use
it as a table name at all. There are certainly good reasons not to do so.

• Do use the plural form of the name. As you know, a table represents a single
subject, which can be an object or event. You can take this definition one step
further and state that a table represents a collection of similar objects or
events. For example, a sales representative wants to maintain data on all of his
customers, not just a single one; and a car rental business wants to keep track
of all its vehicles, not just the blue BMW. Using the plural form of the table
name is a sound idea because it makes clear your intention to refer to a
collection. Collections, of course, always take the plural (“Boats,” not “Boat”).
In contrast, words that identify fields are always singular (“Home Phone,” not

“Home Phones”). Following this rule will make it easy for you to
differentiate between table names and field names in any documentation you
create for the database. (As you rename your tables, remember that the plural
form of some words does not end in s or es. For instance, the singular and
plural forms of “equipment” are exactly the same.)

Use these guidelines to refine each table name on the Preliminary Table List. When
you’re finished, this list becomes your Final Table List and remains so for the
duration of the database design process. Note that the list is “final” only in the sense
that you’ve accounted for all the tables that you identified throughout the entire
analysis process. It’s very likely that you’ll add new tables to this list based on
requirements imposed by relationships, data integrity, or other information that you
develop.

Note
The guideline for using a plural form for a table name is a particularly good
one while you’re working on the logical design of the database. It makes it
very easy to differentiate table names from field names, especially when
you’re displaying them on a projection screen or when you’ve written them all
across a white board in a conference room.
Keep in mind, however, that the table names are likely to change once you (or
the database developer in charge of implementing the database) begin
implementing the database into a specific RDBMS application. The names will
then need to conform to the naming convention that developers commonly
use for the RDBMS.

Indicating the Table Types
As you learned earlier in this chapter, you indicate each table’s type on the Final Table
List. Recall that the four classifications you can use to identify the table type are data,
linking, subset, and validation.
When you first create your Final Table List, every item on the list is a data table
because it represents a subject that is important to the organization and serves as the
primary foundation of the information that the database provides. There will be no
linking tables or validation tables on the list because you have not yet defined
relationships or imposed data integrity. (You’ll address these issues later in the design

process.) The list will not contain subset tables because you define them after you
assign fields to the data tables.
For the moment, designate each table on the Final Table List as a data table. You’ll
assign other table types later as the database design process continues to unfold.

Composing the Table Descriptions
The table description is another aspect of a table that you record on the Final Table
List. A table description is crucial because it helps everyone understand why a given
table exists and why the organization is concerned with collecting the data for that
table. In fact, the description must explicitly define the table and state its importance
to the organization. It doesn’t matter whether the definition comes first or you use
more than one sentence to convey this information—both the definition and the
explanation of the table’s importance must be in the description. The table description
also provides a means of validating the need for a table—if you are unable to explain
why a table is important to the organization, then you need to determine when and
how the table was identified and whether it really is necessary at all.
Just as you had guidelines to help define table names, you also have a set of
guidelines to help you compose a table description that is focused, concise,
unambiguous, and clear.

Guidelines for Composing a Table Description

• Include a statement that accurately defines the table. Anyone should easily be
able to determine the identity of the table from its description without any
confusion or uncertainty. Here’s an example of a poor definition for a table
named “Suppliers” in a bakery database. As you can see, it’s not very accurate:

Suppliers—the companies that supply us with ingredients and
equipment

What if the bakery receives some of its ingredients from local farmers? The
farmers certainly don’t qualify as “companies.” What type of equipment do
these suppliers supply? Cooking utensils? Hand trucks? Delivery racks? Here’s
a much better definition of suppliers:

Suppliers—the people and organizations from which we
purchase ingredients and equipment

This statement can be used in the table description as the table definition.

• Include a statement that explains why this table is important to the
organization. A table contains data that is collected, maintained, manipulated,
and retrieved by the organization for a particular reason. Your statement
should explain why the data is important to the organization. Keeping in mind
that this statement becomes part of your table description, you might be
tempted to construct a statement such as this:

We need the Suppliers table to keep track of the names,
addresses, phone numbers, and contact names of all our
suppliers.

This statement is inadequate because it emphasizes only what needs to be
stored in the Suppliers table instead of amplifying why the data is important to
the business. The next example conveys a better sense of why the information
is important:

Supplier information is vital to the bakery because it allows us
to maintain a constant supply of ingredients and ensure that our
equipment is always in working order.

This is a more effective statement because it conveys the importance of the
data by identifying the services the suppliers provide to the bakery. It also
implies that the bakery could run out of ingredients or have a hard time keeping
its equipment in top shape without the suppliers’ services. This statement now
reflects why the table is important to the organization.

• Compose a description that is clear and succinct. Avoid the common mistake
of restating or rephrasing the table name in your table description, as in this
example:

Student Schedule—the class schedule of the student
Don’t be too brief or too verbose. You want to make sure that everyone can
identify the table and understand its importance to the organization, but you
also want to avoid furnishing too much information. Here’s an example of a
description that is quite lengthy and provides more information than is
necessary:

Student Schedule—All the classes that a student will attend
(including the days, the times, and the faculty conducting the
class) during the course of the school year. The data in this

table is important because it will let the student know the name
of the class and when and where he’s supposed to be. Also, the
student will know the duration of the class, as well as the name
of the teacher who is teaching the class.

This can be recast more clearly and succinctly as follows:
Student Schedule—Those classes that the student is scheduled
to attend during this school year. The information provided by
this table helps the student implement effective time
management and enables the school to figure class loads and
student loads.

The first sentence in this example provides the definition of the table, and the
second sentence states why the table is important to the academic organization.

• Do not include implementation-specific information in your table
description, such as how or where the table is used. Avoid statements that
indicate how you will specifically use this table, or how you will physically
access it. This type of information is germane to the database implementation
process, which is wholly separate from the database design process you’re
learning in this book. Here is an example of a description containing this type of
inappropriate information:

Student Schedule—Those classes that the student is scheduled
to attend during this school year. This information is used by
the registrar and is accessed from the Student Admissions menu
in the Registration Program.

• Do not make the table description for one table dependent upon the table
description of another table. Each table description should be self-explanatory
and independent from every other table description; it should be absolutely
unnecessary for you to cross-reference one table description against another.
This is the type of statement you’re trying to avoid:

Dependents—the spouse, children, or wards of a given
employee. (See description of Employee table for further
information.)

Here’s a much better description:
Dependents—the spouse, children, or wards of a given

employee. This information allows us to make the appropriate
tax deductions for the employee, and is necessary for the
benefits programs in which the employee is enrolled.

• Do not use examples in a table description. An example is a valuable
communication tool that helps you convey a particular meaning or concept and
is very effective when you use it wisely. But an example depends on
supplemental information (and, in some cases, further examples) to complete
the idea it’s supposed to convey. For instance, just think of the number of
examples you would have to use in order to define fully what a table
represents. A well-defined description is clear, succinct, and self-explanatory;
therefore, it does not require an example to convey its meaning.

Interviewing Users and Management

Now you’ll define table descriptions for the tables on the Final Table List. You’ll
conduct interviews with both users and management, and enlist their aid in
establishing each table’s definition and importance to the organization. (This is one of
the few times that you’ll actually interview both groups together.) Your main objective
is to get a consensus on general descriptions for the tables. When your interviews are
complete, take your notes and compose final table descriptions, making sure to follow
the guidelines outlined earlier in this chapter. Then confer with both parties once more
to make certain that the descriptions are acceptable and easily understood by all. The
Final Table List is complete when everyone has agreed on the descriptions.
Consider this example: Assume you’re developing a database for a local software
training organization. Your assistant, John, is conducting an interview with some of
the people from the organization. Specifically, he’s speaking to Mark from the
administration department; Frits, the instructor coordinator; Sara, the vice president of
sales; and Caroline, the head of the organization. The dialogue that follows is a partial
transcript of John’s interview. John is currently discussing the Students table.

Unlike the interviews you conducted during the analysis and requirements
review stages of the design process, you no longer need to involve everyone in
the organization. But you will work with a representative group of users and
management for the interviews you’ll conduct throughout the remainder of the
design process.

JOHN: “Okay, let’s talk about the Students table. How would you describe
a ‘student’?”

FRITS: “A student is a private individual who comes in for one of our
classes.”

SARA: “That’s only partially true. A student can also be an individual that
an organization sends to our classes. For example, many of our
students come from local banks and insurance companies, and those
organizations pay for the students’ tuitions.”

MARK: “Yes, you’re quite right. I guess we can simply say that a student is
an individual who comes in for one of our classes.”

(John makes a note of what Mark just said.)
JOHN: “Good—got it. Does everyone agree with Mark?”

(Everyone nods in approval.)
 “Great. Now, how would you explain to someone why student

information is important to this organization?”
CAROLINE: “Without students, we don’t have a business!”
FRITS: “If we can keep track of the students who attend our classes, we

can send them information regarding our new classes.”
SARA: “Keeping track of this information allows us to keep billing and

contact information current. This is especially true for organizations
that send their employees to our classes. Training coordinators move
on to other positions, and we have to know the name of the new
person we’ll be dealing with.”

JOHN: “Good point. Does anyone have anything further to add? No?
Okay, does everyone agree with what has been said so far?”

(Everyone once again nods in approval. Because no additional comments are
made, John jots down some final notes and moves on to the next table.)

As you can see, conducting this type of interview is a fairly straightforward affair.
Notice how John attempts to get a consensus as he recognizes that no one has
anything else to say about the topic at hand. He then makes note of the points that
will help him compose the description and moves on to his next topic.
After John has finished conducting the interview, he uses his notes to develop a table

description for each table on the Final Table List. He’ll have to interpret and study the
participants’ responses in order to develop a suitable table description. Based on his
examination, John writes the following description:

Students—those individuals who attend our classes. The
information provided by the data in the Students table allows
our organization to further promote our classes and supports
proper communications with the students.

John then writes a description for each table on the Final Table List. When he’s
finished, he’ll speak with Mark, Frits, Sara, and Caroline once more to make sure the
descriptions are acceptable and that everyone understands them without any
difficulty.

Associating Fields with Each Table
In Chapter 3 you learned that tables are composed of fields. During this stage of the
database design process, you’ll assign fields to each table on the Final Table List using
fields from your Preliminary Field List.
Assigning fields to a table is a relatively easy process: Determine which fields best
represent characteristics of the table’s subject and assign them to that table. Repeat
this procedure for every table on the Final Table List. If you think you can use a field
or set of fields to represent characteristics of more than one table, then assign them
accordingly. You’ll discover whether you’ve assigned the appropriate fields to each
table later when you go through the process of refining the table structures.

Note
In the following examples, you’ll note that I ask you to use sheets of paper for
specific procedures. Using paper helps you avoid the temptation of using an
RDBMS program to design your database. I cannot overemphasize or
overstate the fact that you should not use the computer at all until the
database design process is complete unless you’re using some type of
database-design-specific software. By heeding this advice, you will avoid the
traps I discuss later in Chapter 14 “Bad Design—What Not to Do.”

Begin this process by taking a sheet of legal paper and laying it in front of you
lengthwise from left to right. Write the name of each table (from the Final Table List)

across the top of the paper, starting at the left-hand side; leave enough space between
the table names to give you enough room to list lengthy field names underneath them.
Repeat this procedure, using as many sheets as you need to account for every table
on the list. Continuing with the school database example, Figure 7.10 shows the set of
table structures currently under development.

Figure 7.10. Setting up a sheet for listing table structures

Next, assign fields from the Preliminary Field List to each table. Determine which
fields best describe or define a table’s subject and then list these fields underneath the
table name. After you’ve assigned all of the fields you believe to be appropriate for
the table, move on to the next table and repeat the process. Continue in this manner
until you’ve assigned fields to all the tables. Figure 7.11 shows a partial set of table
structures.

Figure 7.11. Listing tables with their associated fields

Note
Before you work through the remainder of the chapter, now is a good time to
recall a principle I presented in the Introduction:

Focus on the concept or technique and its intended results, not
on the example used to illustrate it.

I bring this to your attention once again because you’ll certainly wonder why I
created an example in a particular manner. Maybe you’ve thought of a
different or better approach to the problem, and you might have thoroughly
valid reasons for using it. But don’t let the example mislead you. I’ve
fashioned each example in a specific manner for the sole reason of illustrating
the concept or technique at hand. Therefore, study the way that I correct the
problems you see in a particular example so that you can use those techniques
when you encounter similar problems in your database.

Refining the Fields
Now that you’ve assigned fields to each table, you’ll refine the fields by improving
the field names and resolving any structural problems that may exist. Then you’ll
refine the tables further by establishing that you’ve assigned the appropriate fields to
each table and that the table structures are sound.

Improving the Field Names
As you know, a field represents a characteristic of the subject of the table to which it
belongs. You can easily identify the characteristic a field is supposed to represent
when that field has an appropriate name. A field name that is ambiguous, vague, or
unclear is a sure sign of trouble and suggests that you have not thoroughly identified
the purpose of the field.
Earlier in this chapter, you learned a set of guidelines for naming a table. Now you’ll
learn another set of guidelines that you’ll apply to field names. Fortunately, many of
them are similar to the guidelines governing table names, so you’re already familiar
with most of the concepts.

Guidelines for Creating Field Names

• Create a unique, descriptive name that is meaningful to the entire
organization. A given field name should appear only once in the entire
database; the only exception to this rule occurs when the field serves to
establish a relationship between two tables. Make certain the name is
descriptive enough to convey its meaning accurately to everyone who sees it.
(Chapter 10 covers this issue in greater detail.)

• Create a name that accurately, clearly, and unambiguously identifies the
characteristic a field represents. “Phone Number” is a good example of an
inaccurate, ambiguous field name. What kind of phone number does it
represent? A home phone? An office phone? A cellular phone? Learn to be
specific. If you need to record each of these types of phone numbers, then
create “Home Phone,” “Work Phone,” and “Cellular Phone” fields.
In Chapter 6, “Analyzing the Current Database,” you learned how to resolve
generic field names, such as “Address,” “City,” and “State,” by using the table
name as a prefix for the field name. This produces names such as “Employee
Address,” “Customer Address,” and “Supplier Address.” When you have field

names such as these, you can abbreviate the prefix (for brevity’s sake) by using
the first three or four letters of the table name as the revised prefix. This allows
you to transform the previous field names into “EmpAddress,” “CustAddress,”
and “SuppAddress.” This technique helps you fulfill not only this guideline, but
the previous one as well.

Note
The degree to which you use prefixes within a table is a matter of style. When
a table contains generic field names, some database designers will choose to
prefix the generic names only, while others elect to prefix all of the field
names within the table. Regardless of the prefix method you choose to use, it
is very important that you use it consistently throughout the database
structure.
I personally prefer to prefix the generic field names only, and I’ll follow this
preference throughout the remainder of the book.

• Use the minimum number of words necessary to convey the meaning of the
characteristic the field represents. You want to avoid lengthy field names, but
at the same time, you also want to avoid using a single word as a field name if
that word is inappropriate. For example, if you’re trying to record the date a
particular employee joined the organization, “Hired” is too short (and slightly
vague) and “Date That the Employee Was Hired” is too long! “Date Hired,”
however, is a more appropriate name and accurately represents the
characteristic the field represents.

• Do not use acronyms, and use abbreviations judiciously. Acronyms can be
hard to decipher and often lead to misunderstanding. Imagine a field named
“CAD_SW.” How would you determine what the field represents? On the
other hand, you can use abbreviations so long as you use them sparingly and
handle them with care. Only use an abbreviation if it supplements or enhances
the field name in a positive manner. An abbreviation shouldn’t make a field
name ambiguous or diminish its meaning.

• Do not use words that could confuse the meaning of the field name. A field
name that contains redundant words or synonyms can make the name’s
meaning unclear and subject to misinterpretation. For instance, consider the

name “Digital Identification Code Number.” “Digital” and “number” are
redundant, so you can eliminate either one without diminishing the field name’s
meaning. Let’s assume that you decide to eliminate “digital.” You can split the
remaining name into two smaller names: “Identification Code” and
“Identification Number.” These names are often synonymous, and you can
easily use either as the final field name. In this situation, just use the name that
is most meaningful within the organization.

• Do not use names that implicitly or explicitly identify more than one
characteristic. These types of names are easy to spot because they typically
use the word and or or. Field names that contain a slash (\) or an ampersand
(&) are dead giveaways as well. When you encounter a field with a name such
as “Area or Location” or “Phone\Fax,” identify each characteristic that the
name implies, and create a new field for the characteristic. Then test the new
field name against these guidelines to ensure that the name is sound.

• Use the singular form of the name. A field with a plural name, such as
“Skills,” implies that it may contain two or more values for a given record,
which is not a good idea. (You’ll learn more about this later in the chapter.) A
field name is singular because it represents a single characteristic of the subject
of the table to which it belongs. A table name, on the other hand, is plural
because it represents a collection of similar objects or events. You can
distinguish table names from field names quite easily when you use this naming
convention.

Note
The specific guideline for using a table name as a prefix for a field name will
have the same issue that I brought up earlier for table names: These particular
field names are likely to change once you (or the database developer in charge
of implementing the database) begin implementing the database into a specific
RDBMS application. The names will need to conform to the naming
convention that developers commonly use for the RDBMS.

With these guidelines in mind, review each table and determine whether you can
make improvements to any of the field names. When you’re finished, you’re ready to
identify and resolve any problems with the fields. Figure 7.12 shows revisions to the

field names of the table structures in Figure 7.11.

Figure 7.12. Revised field names

In Figure 7.12, “Classes” is shortened to “Cls,” “Subjects” is shortened to “Subj,”
“Instructors” is shortened to “Inst,” “Student” is shortened to “Std,” and “Social
Security Number” replaces “SSN.” Remember that abbreviations can be very useful
so long as they are meaningful and understood by everyone in the organization. Using
proper and appropriate abbreviations will not detract from the meaning of the field
name.

Note
Throughout the remainder of the chapter and the rest of the book, table
names within the text appear in all capital letters (such as VENDORS) and
field names within the text appear in small capital letters (such as VENDOR ID
NUMBER).

Using an Ideal Field to Resolve Anomalies

Although you’ve carefully identified the fields on your Preliminary Field List, you
may have created a few fields that could prove problematic to the table structure.
Poorly defined fields can cause duplicate data and redundant data, and they can be
difficult to use. You might find it difficult to determine whether any of the fields in a
table is going to cause problems unless you know the warning signs. The best way to
identify potentially troublesome fields is to determine whether they comply with the
Elements of the Ideal Field. These elements constitute a set of guidelines you can use
to create sound field structures and to spot poorly designed fields easily.

Elements of the Ideal Field

• It represents a distinct characteristic of the subject of the table. As you know,
a table represents a specific subject, which can be an object or event. The ideal
field represents a distinct characteristic of that object or event.

• It contains only a single value. A field that can potentially store two or more
occurrences of the same value is known as a multivalued field. A multivalued
field causes data redundancy problems (quite obviously) and is difficult to use
when you try to edit, delete, or sort the data within it. The ideal field is free of
these problems because it contains only a single value.

• It cannot be deconstructed into smaller components. A field that can
potentially store two or more distinct items within a value is known as a
multipart (or composite) field. Like the multivalued field, this type of field
causes problems when you try to edit, delete, or sort the data within it. These
problems don’t occur with an ideal field because it represents a single, distinct
characteristic of the subject of the table to which it belongs. (You’ll learn more
about multivalued and multipart fields in just a moment.)

• It does not contain a calculated or concatenated value. The values of the
fields in a table should be mutually independent; a particular field should not
have to depend on the values of other fields for its own value. A calculated
field, however, does depend on the values of other fields for its own value, and
therein lies the problem. The calculated field’s value is not updated when the
value of any field participating in the calculation changes. It then becomes the
responsibility (and an undesirable burden) of the user or the database
application program to update the calculated field when this type of change
takes place. This is precisely why you deal with calculated fields separately.

• It is unique within the entire database structure. The only duplicate fields that

appear in a properly designed database are those that establish relationships
between tables. If duplicate fields other than these exist in a table, it is very
likely that the table will accumulate unnecessary redundant data and that the
data within the duplicate fields will inevitably become inconsistent.

Note
Remember that you’re dealing strictly with the logical database structure at
this point. You might have cause to duplicate specific fields when you
physically implement the database in an RDBMS program. During that
process, however, you’re making a conscious decision to duplicate the fields
and you’re prepared to deal with the consequences of that decision.

• It retains a majority of its properties when it appears in more than one table.
A field that establishes a relationship between two tables is a structural
component of each table. A majority of the field’s properties remain constant in
each occurrence of the field. (Chapter 9, “Field Specifications,” and Chapter
10 cover this matter in greater detail.)

Although you now know the specific elements of an ideal field, you’ll still find it
difficult in many instances to identify problematic fields just by looking at their
names. Figure 7.13 shows a table structure that helps to illustrate this point. Take a
moment and try to determine whether each field complies with the Elements of the
Ideal Field or needs to be modified.

Figure 7.13. A table containing fields with questionable structures

Each field on the list seems to conform to the Elements of the Ideal Field. Examine
the list carefully, however, and you’ll see that some fields don’t really comply with
the second and third elements. Three fields have anomalies that will cause problems
unless you resolve them: INSTNAME, INSTADDRESS, and CATEGORIES TAUGHT. If you
doubt this assertion, you can test it by “loading” the table with sample data. This will
quickly reveal anomalies, if any exist, and is the best way to confirm whether a field
complies with all of the Elements of the Ideal Field.
You don’t have to create a table physically to perform this test. Take a sheet of legal
paper and lay it in front of you lengthwise from left to right. Write the name of each
field across the top of the paper, starting from the left-hand side; leave enough space
between the field names to allow room for the values you’re going to place
underneath them. Then enter records into the table by filling in each field with some
sample data; be sure the sample data represents the data you’re actually going to enter
into the database. You need only a few records for the test to work properly. Your
sheet of paper should look similar to the one in Figure 7.14.

Figure 7.14. Testing a table with sample data

Note
As I mentioned in Chapter 3, I show only those fields that are most relevant to
the discussion at hand and use <<other fields>> to represent fields that are
inessential to the example.

Now you can easily identify which fields are going to be troublesome unless they are
resolved. As you can see, INSTNAME and INSTADDRESS are both multipart fields, and
CATEGORIES TAUGHT is a multivalued field. You must resolve these fields before you
can refine the table structure.

Resolving Multipart Fields
Working with a multipart field is difficult because its value contains two or more
distinct items. It’s hard to retrieve information from a multipart field, and it’s hard to
sort or group the records in the table by the field’s value. The INSTADDRESS field in
Figure 7.14 illustrates these difficulties; you’d certainly have problems retrieving
information for the city of Seattle or sorting information by zip code.
You resolve a multipart field by identifying the distinct items within the field’s value
and treating each item as an individual field. Accomplish this task by asking yourself a
simple question: “What specific items does this field’s value represent?” Once you’ve
answered the question and identified the items (as best you can), transform each item
into a new field.
In Figure 7.14, the value of the field INSTNAME represents two items: the first name
and the last name of an instructor. You resolve this field by creating a new INSTFIRST

NAME field and a new INSTLAST NAME field. The value of INSTADDRESS represents
four items: the street address, city, state, and zip code of an instructor. You transform
these items into fields as well; they will appear in the table as INSTSTREET ADDRESS,
INSTCITY, INSTSTATE, and INSTZIPCODE. Figure 7.15 shows the newly revised
INSTRUCTORS table.

Figure 7.15. Resolving the multipart fields in the INSTRUCTORS table

Some multipart fields are hard to recognize. Take a look at the INSTRUMENTS
table in Figure 7.16. At first glance, the table doesn’t seem to contain multipart fields.
When you examine the data in the table more closely, however, you’ll see that
INSTRUMENT ID is actually a multipart field. This field’s value represents two distinct
items: the category to which the instrument belongs—AMP (amplifier), GUIT
(guitar), MFX (multi-effects unit), SFX (single-effect unit)—and the instrument’s
identification number. Clearly, you should deconstruct INSTRUMENT ID into two
smaller fields in accordance with the third element of an ideal field. Imagine how
difficult it would be for you to update the field’s value if the MFX category changed
to MFU if you don’t do this. You would have to write programming code to parse the
value, test for the existence of MFX, and then replace it with MFU if it existed within
the parsed value. It’s not so much that you can’t do this, but you would definitely be
working harder than necessary, and you shouldn’t have to go through this at all if you
have a properly designed database.

Figure 7.16. An example of a “hidden” multipart field

Resolving Multivalued Fields
As you know, a multivalued field can potentially store two or more occurrences of the
same value. Fortunately, you’ll recognize a multivalued field when you see one. The
field’s name is often plural and its value almost invariably contains a number of
commas, which serve to separate the various occurrences that exist within the value
itself.
Resolving multipart fields is not very hard at all, but resolving multivalued fields can
be a little more difficult and will take some work. A multivalued field has the same
fundamental set of problems as a multipart field, as the CATEGORIES TAUGHT field in
Figure 7.17 clearly illustrates. For example, you’ll have difficultly retrieving
information for everyone who teaches a specific category (such as WP), you can’t
sort the data in any meaningful fashion, and, most important, you don’t have room to
enter more than four categories. What happens when one or more instructors teach
five categories? The only option you’ll have is to make the field larger every time you
need to enter more values than it will currently allow.

Figure 7.17. Identifying a multivalued field

So how would you resolve this multivalued field? Your first thought may be to create
a new field for each value, thus “flattening” the multivalued field into several single-
valued fields. Figure 7.18 shows what will happen if you follow through with this
idea.

Figure 7.18. The result of “flattening” the CATEGORIES TAUGHT field

Unfortunately, this is not much of an improvement at all. There are three specific
problems that arise from this type of structure.

1. Retrieving category information will be tedious at best. A user attempting to
find all instructors who teach the WP category must be sure to search for this
value within each of the category fields—there is no guarantee that WP is
consistently stored in the same field. Failure to do so means that the user runs

the risk of overlooking a qualified instructor.
2. There is no way for the RDBMS program to sort the category data in a

meaningful fashion.
3. This structure is inherently volatile. In its current state, the table unnecessarily

restricts the number of categories an instructor can teach; you must create
additional category fields when you have instructors who teach more than three
categories. Adding more category fields just compounds the first two problems.

Realizing that flattening the CATEGORIES TAUGHT field won’t solve your problem, your
next thought is to bring the field into compliance with the second element of an ideal
field and declare that it will contain only a single value. Although this is a good
impulse and a step in the right direction, it will not resolve the matter completely
because it will introduce yet another problem: data redundancy. Figure 7.19 illustrates
what happens when you follow through with this particular idea. Note that there is
now a single value in the CATEGORIES TAUGHT field for each record in the table.

Figure 7.19. The result of bringing CATEGORIES TAUGHT into compliance with the
second element of an ideal field

The values in CATEGORIES TAUGHT cause redundant data because you must duplicate
a given instructor record for each category that the instructor teaches. This

redundancy is obviously unacceptable, so you’ll have to resolve this problem in some
other manner.
You can avoid this situation entirely by using these steps to resolve a multivalued
field.

1. Remove the field from the table and use it as the basis for a new table. If
necessary, rename the field in accordance with the field name guidelines that
you learned earlier in this chapter.

2. Use a field (or set of fields) from the original table to relate the original table
to the new table; try to select fields that represent the subject of the table as
closely as possible. The field(s) you choose will appear in both tables. (You’ll
learn more about relating tables in Chapter 10.)

3. Assign an appropriate name, type, and description to the new table and add it
to the Final Table List.

These steps form a generic procedure that you can use to resolve any multivalued
field you encounter in a table. Now, apply these steps to the CATEGORIES TAUGHT
field.

1. Remove the field from the INSTRUCTORS table and use it as the basis of a
new table. Because this will now be a single-valued field, rename the field
CATEGORY TAUGHT.

2. Use INSTFIRST NAME and INSTLAST NAME as the connecting fields that will
relate the INSTRUCTORS table to the new table, and add them to the
structure of the new table.

3. Give the new table a proper name, compose a suitable description, and add the
table to the Final Table List. (Indicate the table’s type as “Data.”) Here’s one
possible name and description you might use for the new table:

Instructor Categories—the categories of software programs that
an instructor is qualified to teach. The information this table
provides allows us to make certain that there is an adequate
number of instructors for each software category.

Figure 7.20 shows the revised INSTRUCTORS table and the new INSTRUCTOR
CATEGORIES table.

Figure 7.20. Resolving the multivalued field in the INSTRUCTORS table

Note that the new INSTRUCTOR CATEGORIES table is free from the problems
typically associated with multivalued fields because CATEGORY TAUGHT is a single-
value field. You can easily retrieve information for a particular instructor or category,
and you can sort the records in a meaningful manner. Also note that the INSTFIRST
NAME and INSTLAST NAME fields retain their names in the new table, making them
compliant with the fifth element of an ideal field.
Although the new table contains redundant data, the redundancy is acceptable
because it is minimal. It’s a fact of life that a relational database will always contain

some amount of redundant data. Your goal as the database architect is to make
certain that it has only an absolute minimum amount of redundant data.
Figure 7.21 shows a version of the INSTRUCTORS table that contains three
multivalued fields.

CATEGORIES TAUGHT—This indicates the categories of classes that an instructor
can teach.
MAXIMUM LEVEL TAUGHT—This indicates the maximum skill level that the
instructor can teach for a given category.
LANGUAGES SPOKEN—This indicates the foreign languages that an instructor
can speak.

Figure 7.21. A version of the INSTRUCTORS table containing three
multivalued fields

Your task here seems relatively clear—you’re going to use the procedure you’ve just
learned to resolve these multivalued fields. You then notice one small, relatively
obscure problem: There is a distinct one-to-one association between values in
CATEGORIES TAUGHT and the values in MAXIMUM LEVEL TAUGHT for any given
record. You probably wouldn’t have noticed this anomaly had you not carefully
examined the sample data within these fields. Don’t worry; you’ll still use the same
procedure, but with one minor modification.
You’ll occasionally encounter a situation such as this, where some given field
(whether single- or multivalued) depends on a particular multivalued field. You can
easily fix this problem by including the dependent field in the structure of the new
table you build to resolve the multivalued field. Figure 7.22 shows the results of
consolidating this technique with the previous one to resolve CATEGORIES TAUGHT. (It

shows the resolution of LANGUAGES SPOKEN as well.)

Figure 7.22. Resolving the multipart fields in the INSTRUCTORS table

The redundancy in the new tables is acceptable because, once again, it is minimal. In
Chapter 10, you’ll learn how to reduce this type of redundancy even further by
relating the tables with primary keys and foreign keys.

Refining the Table Structures
Now that you’ve refined the fields and made certain that each field is sound, you can
begin the process of refining the table structures. Your objective in this phase of the

design process is to make sure that you’ve assigned the appropriate fields to each
table and that you’ve properly defined each table’s structure. This process will also
reveal whether the tables have anomalies that you need to resolve.

A Word about Redundant Data and Duplicate Fields
You’ve seen the term redundant data used quite often in this chapter. Redundant data
was characterized as being unacceptable in many cases, but appropriate in others. In
order for you to better understand how to determine when redundant data is
acceptable, a definition of the term is in order.
Redundant data is a value that is repeated in a field as a result of the field’s
participation in relating two tables or as a result of some field or table anomaly. In the
first instance, the redundant data is appropriate; by definition, a field used to relate
one table to another will contain redundant data. (You’ll learn more about this in
Chapter 10.) Redundant data is entirely unacceptable in the second instance,
however, because it poses problems with data consistency and data integrity;
therefore, you should always strive to keep redundant data to an absolute minimum.
A duplicate field is a field that appears in two or more tables for any of these
reasons.

• It is used to relate a set of tables together.
• It indicates multiple occurrences of a particular type of value.
• There is a perceived need for supplemental information.

The only instance in which a duplicate field is necessary is when it serves to establish
a relationship between two tables; it provides the sole means of associating records in
the first table with records in the second table. Duplicate fields are unnecessary in all
other cases, and you should avoid them because they introduce needless, redundant
data.
As you refine each table structure, you’ll assess whether to retain a given duplicate
field in the table. If the reason for its existence in the table is valid, then you’ll keep it;
otherwise, you’ll remove it. You’ll learn how to deal effectively with both redundant
data and unnecessary duplicate fields in the following sections.

Using an Ideal Table to Refine Table Structures
Despite your efforts to refine the fields in a table, the table structure itself may
contain anomalies that can produce unnecessary redundant data and make it difficult

to work with the data in the table. You can identify a potentially problematic table
structure by determining whether it complies with the Elements of the Ideal Table.
These elements constitute a set of guidelines you can use to create sound table
structures and to spot poorly designed tables easily.

Elements of the Ideal Table

• It represents a single subject, which can be an object or event. Yes, I know,
I’ve said this a number of times already. The fact of the matter is that I can’t
overemphasize this point. As long as you guarantee that each of your tables
represents a single subject, you greatly reduce the risk of potential data integrity
problems. This element validates the work you’ve done during the analysis and
interview stages of the database design process, as well as the work you’ve just
recently performed.

• It has a primary key. This is important for two reasons: A primary key
uniquely identifies each record within a table, and it plays a key role (no pun
intended) in establishing table relationships. Additionally, it has specific
characteristics that help to implement and enforce various levels of data
integrity. If you fail to assign a primary key to each table, you will eventually
have data integrity problems. Chapter 8, “Keys,” covers primary keys in
greater detail.

• It does not contain multipart or multivalued fields. Theoretically, you should
have resolved these issues when you refined the field structures. Nevertheless,
it’s still a good idea to review the fields one last time to ensure that you’ve
completely removed each and every one of them.

• It does not contain calculated fields. Although you might believe that your
current table structures are free of calculated fields, you may have accidentally
overlooked one or two calculated fields during the field refinement process.
This is a good time to review the table structures once more and make certain
you remove those calculated fields you may have missed.

• It does not contain unnecessary duplicate fields. (Note that this guideline does
not apply to fields used to relate a set of tables together, such as those used in
the example in Figure 7.22.) One of the hallmarks of a poorly designed table is
the inclusion of duplicate fields from other tables. You might feel compelled to
add duplicate fields to a table for one of two reasons: to provide reference
information or to indicate multiple occurrences of a particular type of value.

Duplicate fields such as these raise various difficulties when you work with the
data or attempt to retrieve information from the table.

• It contains only an absolute minimum amount of redundant data. Remember
that a relational database will never be completely free of redundant data. But
you can—and should—make certain that each table contains as little redundant
data as possible.

Resolving Unnecessary Duplicate Fields

Before you make final modifications to the table structures, you must first remove all
unnecessary duplicate fields from the database. You can then refine the tables so that
they comply with the Elements of the Ideal Table.
Duplicate fields that serve to provide reference information (also known as reference
fields) are unnecessary and easy to resolve—you just remove them from the table.
Unfortunately, many people believe that a table must contain every field that will
appear in the reports they generate from it, so they introduce into the table various
duplicate fields they deem are necessary. They assume that the table will then be able
to provide all the requisite information for their reports. But they are mistaken, and
their action is both unwise and undesirable. Tables containing reference fields exhibit
poor design and will have a number of problems, many of which will become
increasingly clear as the database design process unfolds. Reference fields force the
user or database application program to ensure that the values in all occurrences of
the field are mutually consistent, a process that carries a high risk of error. Figure 7.23
shows an example of a table containing reference fields.

Figure 7.23. Example of a table containing reference fields

The MANPHONE and WEB SITE fields in the INSTRUMENTS table are reference
fields and, by definition, are actually unnecessary duplicate fields. You certainly don’t
need to include them in this table because they’re already part of the
MANUFACTURERS table structure; therefore, you can remove them from the
INSTRUMENTS table in order to resolve the unnecessary duplication problem.
(MANUFACTURER is not a reference field because it currently relates the
INSTRUMENTS table to the MANUFACTURERS table.) You’ll learn in Chapter
12, “Views,” that you can work with fields from the INSTRUMENTS table and the
MANUFACTURERS table at the same time by combining them within a view (virtual
table). You can then use this view as the basis for compiling any reports you require.
Duplicate fields that serve to indicate multiple occurrences of the same type of value
are unnecessary as well. For example, take a look at the version of the STUDENTS
table presented in Figure 7.24.

Figure 7.24. A simple example of a table containing unnecessary duplicate fields

INSTRUMENT 1, INSTRUMENT 2, and INSTRUMENT 3 are duplicate fields that represent
multiple occurrences of the same type of value. Their purpose in the table is to enable
the music department to keep track of the instruments checked out by a given
student. Aside from the difficulties these fields pose in retrieving information about a
particular instrument, the fields also limit the number of instruments a student can
check out. What happens if several students want to check out more than three
instruments?
Does this type of field structure look strangely familiar? It should! It’s similar to the
one back in Figure 7.18. As you’ve probably already guessed, it’s nothing more than
a flattened multivalued field. Mind you, the person who created this table probably
didn’t have a multivalued field in mind (and neither do most folks who create fields
such as these), but that is what it truly is.
You already know how to deal with these unnecessary duplicate fields because you
know how to resolve multivalued fields. You can easily fix the STUDENTS table by
first visualizing the INSTRUMENT 1, INSTRUMENT 2, and INSTRUMENT 3 fields as a
singular multivalued field, and then resolving it as you would any multivalued field.
Figure 7.25 illustrates this process. The shaded version of the STUDENTS table
shows how you visualize the instrument fields as a singular multivalued field. You
then resolve the multivalued field by applying the three-step process you learned
earlier, which yields the revised STUDENTS table and the new STUDENT
INSTRUMENTS table. When you’re finished, you’ll be able to enter any number of

instruments for a particular student. It will then be quite easy for you to retrieve
information such as the names of the students who have checked out a guitar, a list of
the instruments that are currently checked out by a particular student, and the number
of students who have checked out an electric piano.

Figure 7.25. Resolving a simple set of unnecessary duplicate fields

In some instances, a table can contain two or more sets of duplicate fields that
represent multiple occurrences of the same type of value. Figure 7.26 shows a slightly
different version of the STUDENTS table shown in Figure 7.24; this version contains
two sets of duplicate fields. You may be thinking at this very moment, “Why is he
saying there are two sets of duplicate fields when I clearly see three?” Contrary to
what you may think, INSTRUMENT 1/CHECKOUT DATE 1, for example, does not
constitute a set of duplicate fields. Quite the opposite—INSTRUMENT 1/INSTRUMENT

2/INSTRUMENT 3 constitute the first set of duplicate fields, and CHECKOUT DATE
1/CHECKOUT DATE 2/CHECKOUT DATE 3 constitute the second set of duplicate fields.

Figure 7.26. Example of a table with multiple sets of duplicate fields

You’ve probably realized that these two sets of duplicate fields are actually two
flattened multivalued fields and that you can resolve them in the same manner as in
the previous example. The only other issue that you must be concerned with is the
distinct one-to-one association between an instrument and a checkout date. This
won’t be a problem, however, because you’ve dealt with this type of scenario before.
If you visualize one multivalued field called INSTRUMENTS and another called
CHECKOUT DATE, you’ll see that the overall table structure is quite similar to the one in
Figure 7.21. (In that figure, there’s a one-to-one association between the CATEGORIES
TAUGHT and MAXIMUM LEVEL TAUGHT fields.)
Figure 7.27 illustrates how you can fix this table. As before, the shaded version of the
STUDENTS table shows how you visualize the instrument and checkout date fields
as singular multivalued fields. You then resolve the multivalued fields by applying the
three-step process you learned earlier, yielding the revised STUDENTS table and the
new STUDENT INSTRUMENTS table.

Figure 7.27. Resolving the multiple sets of duplicate fields in the STUDENTS
table

Now that you’re familiar with the Elements of the Ideal Table, review your table
structures and refine them as necessary. When you’re in doubt about a particular
table, sketch its structure on a piece of paper and load it with sample data. You’ll then
be able to resolve the anomalies revealed by the data.

Establishing Subset Tables
As you refine the structures of your tables, you may find that some of the fields in a
particular table do not always contain values. This situation will not affect your ability
to retrieve information from the table, but it can indicate that the table might need
further refinement. Consider the structure of the INVENTORY table in Figure 7.28.

Figure 7.28. Structure of an office inventory table

In this scenario, the table contains data about various items in a person’s office, such
as office furniture, office equipment (computers, printers, and so forth), and books.
It’s inevitable that the values of several fields in many of the records will be blank.
For example, a book will not have a MANUFACTURER, MODEL, or WARRANTY
EXPIRATION DATE, and a printer will not have an AUTHOR, PUBLISHER, ISBN, or
CATEGORY. This doesn’t pose a problem from a physical viewpoint (limited hard-disk
space certainly isn’t the critical issue it was in years past), but it can pose a perceptual
problem. Users (and management, for that matter) get fairly nervous when they see a
lot of blank values in a table. Is the data missing? Did someone forget to make entries
into these fields?
Has someone mistakenly deleted the data? Did the computer accidentally destroy the
original values? (Yes, the urban myth, “The computer did it!” still lives on.) The more
important question is this: If you were adhering to the Elements of the Ideal Table as
you were creating this table, how did you arrive at this particular structure?
Fortunately, this is just another type of structural anomaly that occasionally occurs as
you design various tables. Your task now is to learn how to deal with it in an

appropriate manner.
The first step is to determine whether the INVENTORY table truly complies with the
first element of an ideal table (i.e., “It represents a single subject”). A table that
contains a large number of blank values in its fields usually—but not always—
represents more than one subject. Think about the two sets of fields in question for a
moment, and you’ll soon realize that they represent characteristics of two distinct
aspects of the table’s subject. The first set of fields describes equipment inventory,
and the second set of fields describes books inventory; furthermore, both types of
inventory share common characteristics, such as ITEM NAME, ITEM DESCRIPTION, and
CURRENT VALUE. In essence, “Equipment” and “Books” are subjects that are
dependent upon the INVENTORY table for their very existence; neither describes a
completely distinct object or event. As a result, they are subordinate subjects, and
you’ll create a subset table for each of them.
Just as a data table represents a distinct subject, a subset table represents a
subordinate subject of a particular data table. The subset table contains fields that are
germane to the subordinate subject it represents, and it also includes a field (or fields)
from the data table that serves to relate the data table to the subset table. It’s
important to note that a subset table does not contain fields that represent
characteristics common to both it and the data table; these fields must remain in the
data table.
Now that you’ve determined that the INVENTORY table describes three subjects (it
doesn’t matter that two of them are subordinate subjects), you must bring it into
compliance with the first element of an ideal table by removing the fields in question.
You then use the fields as the basis for two new subset tables, one for each
subordinate subject. Here are the steps you follow to accomplish these tasks.

1. Use the MANUFACTURER, MODEL, and WARRANTY EXPIRATION DATE fields to
create a new subset table called EQUIPMENT.

2. Use the PUBLISHER, AUTHOR, ISBN, and CATEGORY fields to create a new
subset table called BOOKS.

3. Add ITEM NAME to both tables; this field will relate each subset table to the
data table.

4. Compose a suitable description for both subset tables and add them to the
Final Table List. Indicate each table’s type as “Subset.”

Figure 7.29 shows the new subset table structures.

Figure 7.29. The new subset table structures

Take a moment to review your table structures once more. You may discover that
you’ve created subset tables without knowing it. Tables that have almost identical
structures are commonly subset tables; there are usually only a few unique fields that
distinguish one table from the other. For example, consider the two partial table
structures in Figure 7.30. Each table represents a distinct aspect of the same subject.

Figure 7.30. Previously unidentified subset tables

Both of these tables represent employees, but each represents a specific type of
employee. Notice, however, that there are generic fields common to both tables: first
name, last name, date hired, street address, city, and state. These fields are duplicated
unnecessarily, so you’ll need to refine the table structures to resolve this problem.

Refining Previously Unidentified Subset Tables

When you identify subset tables such as these, you can refine them using these steps.
1. Remove all the fields that the subset tables have in common and use them as

the basis for a new data table.
2. Identify what subject the new data table represents, and then give the table an

appropriate name.
3. Make sure that the subset tables represent subordinate subjects of the data

table and modify the subset table names as necessary.

4. Compose a suitable description for the data table and then add it to the Final
Table List. Indicate the table type as “Data.”

Figure 7.31 shows the results of using these steps on the FULL-TIME EMPLOYEES
and PART-TIME EMPLOYEES tables.

Figure 7.31. The results of refining the subset tables

At this point, all of your table structures should be in pretty good shape. You will need
to refine them even further, however, as you learn about primary keys, foreign keys,
relationships, and business rules.

Case Study
You’re now going to define the Preliminary Table List for Mike’s Bikes. As you
know, the first thing you need to do is review the Preliminary Field List to determine
what subjects you can infer from the fields on the list. Figure 7.32 shows a partial
sample of that list.

Figure 7.32. The Preliminary Field List for Mike’s Bikes

After carefully reviewing the entire Preliminary Field List, you determine that the
fields on the list suggest these subjects: customers, employees, invoices, products, and
vendors. You then compile these items into the first version of your Preliminary
Table List.
Now you create a second version of the list by merging the current Preliminary Table
List with the list of subjects you created during the analysis process. Keep the
following steps in mind as you merge the two lists together.

1. Resolve items that are duplicated on both lists. Remember that a single item
can appear on both lists yet represent different subjects. When you identify
such items, use the appropriate techniques to resolve this problem.

2. Resolve items that represent the same subject but have different names. You
want to ensure that only one table represents a particular subject.

3. Combine the remaining items together into one list. The combined list
becomes the second version of the Preliminary Table List.

After following these steps, your Preliminary Table List should look similar to the one
shown in Figure 7.33.

Figure 7.33. The second version of the Preliminary Table List

You cross out “Customers,” “Employees,” and “Products” on the list of subjects
because they represent the same subjects as their counterparts on the Preliminary
Table List. The SALES table has no counterpart on the Preliminary Table List, but it
does represent the same subject as “Invoices.” “Invoices” is most meaningful to Mike
and his staff, however, so you use it on the Preliminary Table List instead of “Sales.”
A similar situation exists between “Suppliers” and “Vendors”; Mike selects “Vendors”
as the name to appear on the Preliminary Table List, so you cross out “Suppliers.”

Note
Selecting a name that best represents the subject of the table is an arbitrary
task. A good rule to follow is to use the name that is most meaningful to
everyone in the organization.

Now you’ll work toward the final version of the Preliminary Table List. Use the
mission objectives you created at the beginning of the database design process to
determine whether there are subjects you may have overlooked during the previous
two procedures. Identify each subject represented in the mission objectives using the
Subject-Identification Technique. Once you’ve identified as many subjects as
possible, you can use the steps from the second procedure to cross-check these
subjects against the subjects currently listed on the Preliminary Table List. When
you’ve completed the review and have resolved any duplicate items, your final

version of the Preliminary Table List is complete.
As it turns out, all of the subjects you’ve identified from the mission objectives for
Mike’s Bikes already appear on the Preliminary Table List. This is good news
because it allows you to complete your cross-check quite easily. Satisfied that you’ve
completed the task thoroughly, you now have the final version of the Preliminary
Table List.
Now that the Preliminary Table List is complete, you’re ready to transform it into a
Final Table List. Keep these steps in mind as you begin this process.

1. Refine the table names. Use the appropriate guidelines to ensure that each
table name is clear, unambiguous, descriptive, and meaningful.

2. Compose a suitable description for each table. Make certain that the table
description explicitly defines the table and states its importance to the
organization. Use the pertinent guidelines to create each table description.

3. Indicate the table’s type. Remember that a table can be classified in one of
four ways—data, linking, subset, or validation. At this point, all of your tables
are data tables.

Figure 7.34 shows a partial example of the Final Table List for Mike’s Bikes.

Figure 7.34. A partial listing of the Final Table List for Mike’s Bikes

The next order of business is to associate fields from the Preliminary Field List with
each table in the Final Table List. Make certain you select the fields that best
represent characteristics of each table’s subject; each field should define or describe a
particular aspect of the subject. Figure 7.35 shows a partial example of the table
structures for Mike’s Bikes.

Figure 7.35. A partial listing of the table structures for Mike’s Bikes

Now you refine the fields. Remember to follow these steps as you work with each
field.

1. Improve the field name. Use the appropriate guidelines to ensure that each
field name is as clear, unambiguous, and descriptive as possible.

2. Determine whether the field complies with the Elements of the Ideal Field.
Make certain you check for multipart and multivalued fields. As you learned
earlier, they can cause a number of problems within a table.

As you review the fields, you decide to abbreviate some of the field names in the
CUSTOMERS, EMPLOYEES, and INVOICES tables, shortening CUSTOMER to
CUST and EMPLOYEE to EMP. You also decide that the field name QUANTITY (in the
PRODUCTS table) does not completely describe the characteristic it represents, so
you change it to QUANTITY ON HAND. The phone fields in the CUSTOMERS and
EMPLOYEES tables suffer the same problem, so you change them to CUSTHOME
PHONE and EMPHOME PHONE, respectively. Furthermore, you change SSN to SOCIAL
SECURITY NUMBER so that the field name is absolutely unambiguous.
Further investigation of the fields reveals that almost all of them comply with the

Elements of the Ideal Field. The only exceptions are the address fields in the
CUSTOMERS and EMPLOYEES tables, and the EMPLOYEE NAME fields in the
EMPLOYEES and INVOICES tables. After ascertaining that you can decompose
each address field into four individual items—street address, city, state, and zip code
—you transform these items into fields and add them to the CUSTOMERS and
EMPLOYEES tables. Similarly, you notice that the EMPLOYEE NAME field represents
two items—first name and last name—and you make the appropriate adjustments to
that field in the EMPLOYEES and INVOICES tables.
Figure 7.36 shows the result of all the changes you’ve made to the fields.

Figure 7.36. Refinements to the fields in the table structures

Your final task is to refine the table structures. Make certain that you have assigned
the appropriate fields to each table and that you have properly defined each table.
Remember to follow these steps as you work with each table.

1. Resolve unnecessary duplicate fields. When you create new tables as a result
of resolving duplicate fields, make sure you properly identify them and add

them to the Final Table List.
2. Determine whether each table complies with the Elements of the Ideal Table.

Make certain you resolve all the anomalies you identify in the fields or within
the table structure as a whole.

3. Establish subset tables as appropriate. Make certain you properly identify
these tables and add them to the Final Table List as well.

As you complete your review of the tables, you determine that all of them conform to
the Elements of the Ideal Table with the exception of the INVOICES table. The only
problem with this table is that it contains an unnecessary duplicate field: CUSTHOME
PHONE. You can remove this field from the table, however, because it provides only
reference information.
As you work with the PRODUCTS table, you notice that there are fields you might
be able to remove and then use as the basis for a subset table. So you review the
table once again. Figure 7.37 shows the PRODUCTS table structure you’re currently
examining. (This is an expanded version of the table structure shown in Figure 7.36.)

Figure 7.37. The PRODUCTS table structure (expanded version)

Your assumption proves correct. You determine that certain fields describe a service,

and you can construe a service as being a different type of product. A service is
similar to a product in that it has a name, description, and category, but it is different
inasmuch as it has a type, materials charge, service charge, and service date. With this
in mind, you create a new subset table called SERVICES, make the appropriate
modifications to the PRODUCTS table, and use the PRODUCT NAME field to relate the
two tables to each other. You then add the suitable listing for the SERVICES table to
the Final Table List. Figure 7.38 shows the revised PRODUCTS table and the new
SERVICES subset table.

Figure 7.38. The new PRODUCTS and SERVICES tables

Summary
We opened the chapter with a discussion of the Preliminary Table List. This list
constitutes the initial table structures for the new database. You learned how to
develop this list using the Preliminary Field List, the list of subjects, and the mission
objectives, all of which you compiled during the analysis phase of the database design
process.
Next we discussed the procedure for transforming the Preliminary Table List into a
Final Table List, which contains the name, type, and description of each table in the
database. You learned a set of guidelines for creating table names, and another set
of guidelines for composing table descriptions. We then worked on creating table

names that are unambiguous, descriptive, and meaningful and descriptions that
explicitly define tables, as well as stating their importance to the organization. You
also learned that enlisting the help of users and management is crucial to the process
of developing well-defined table descriptions. Table descriptions must be suitable and
easily understood by everyone in the organization.
We then discussed the process of associating fields with each table on the Final Table
List. Here you learned how to build a structure for a given table using fields from the
Preliminary Field List that best represent characteristics of the table’s subject.
Refining fields was the next subject of discussion, and you learned a set of guidelines
for creating field names that will help you ensure that they are clear, descriptive, and
meaningful. You also learned about the Elements of the Ideal Field. Now you know
that you can resolve anomalies in a field by determining whether it complies with
these elements. We then discussed how to resolve multipart and multivalued fields.
You learned that decomposing multipart fields yields new fields, whereas
decomposing multivalued fields yields new tables.
The chapter closed with a discussion of refining table structures. You learned to
identify the Elements of the Ideal Table, and you now know that you can ferret out a
problem in table structure by determining whether a table complies with these
elements. We then discussed unnecessary duplicate fields, and you now know that
they appear in a table for one of two reasons: to supply reference information or to
represent different occurrences of the same type of value. You then learned how to
resolve duplicate fields to eliminate the problems they present.
The final discussion centered on the topic of subset tables. As you now know, a
subset table represents a subordinate subject of a particular data table, and there is a
distinct relationship between the subset table and the data table. You also know that
you can explicitly create subset tables. You then learned that you may have
unknowingly created subset tables earlier in the database design process and that you
need to look for subset tables you have not previously identified. When you identify a
subset table, you refine it and add it to the Final Table List.

Review Questions
1. How do you identify and establish tables for a new database?
2. Why do you use the Preliminary Field List to help you define tables for the

database?

3. What action do you take when an item on the list of subjects and a differently
named item on the Preliminary Table List both represent the same subject?

4. What information does the Final Table List provide?
5. State three guidelines for creating table names.
6. State two guidelines for composing table descriptions.
7. How do you assign fields to a table on the Final Table List?
8. State three guidelines for creating field names.
9. What two problems can poorly designed fields cause?

10. What can you use to resolve field anomalies?
11. State three of the Elements of the Ideal Field.
12. Under what condition is redundant data acceptable?
13. In general terms, what three steps do you follow to resolve a multi-valued

field?
14. When is it necessary to use a duplicate field in a table?
15. How can you refine table structures?
16. State three of the Elements of the Ideal Table.
17. What is a subset table?

8. Keys

A fact in itself is nothing. It is valuable only for the idea attached to it, or
for the proof which it furnishes.

—CLAUDE BERNARD

Topics Covered in This Chapter
Why Keys Are Important
Establishing Keys for Each Table
Table-Level Integrity
Reviewing the Initial Table Structures
Case Study
Summary
Review Questions

By now you’ve identified all the subjects that the database will track and defined the
table structures that will represent those subjects. Furthermore, you’ve put the
structures through a screening process to control their makeup and quality. In this
next stage of the database design process, you’ll begin the task of assigning keys to
each table. You’ll soon learn that there are different types of keys, and each plays a
particular role within the database structure. All but one key is assigned during this
stage; you’ll assign the remaining key later (in Chapter 10, “Table Relationships”) as
you establish relationships between tables.

Why Keys Are Important
Keys are crucial to a table structure for the following reasons.

• They ensure that each record in a table is precisely identified. As you already
know, a table represents a singular collection of similar objects or events. (For
example, a CLASSES table represents a collection of classes, not just a single
class.) The complete set of records within the table constitutes the collection,
and each record represents a unique instance of the table’s subject within that
collection. You must have some means of accurately identifying each instance,
and a key is the device that allows you to do so.

• They help establish and enforce various types of integrity. Keys are a major
component of table-level integrity and relationship-level integrity. For instance,
they enable you to ensure that a table has unique records and that the fields
you use to establish a relationship between a pair of tables always contain
matching values.

• They serve to establish table relationships. As you’ll learn in Chapter 10,
you’ll use keys to establish a relationship between a pair of tables.

Always make certain that you define the appropriate keys for each table. Doing so
will help you guarantee that the table structures are sound, that redundant data within
each table is minimal, and that the relationships between tables are solid.

Establishing Keys for Each Table
Your next task is to establish keys for each table in the database. There are four main
types of keys: candidate, primary, foreign, and non-keys. A key’s type determines its
function within the table.

Candidate Keys
The first type of key you establish for a table is the candidate key, which is a field or
set of fields that uniquely identifies a single instance of the table’s subject. Each table
must have at least one candidate key. You’ll eventually examine the table’s pool of
available candidate keys and designate one of them as the official primary key for the
table.
Before you can designate a field as a candidate key, you must make certain it
complies with all of the Elements of a Candidate Key. These elements constitute a
set of guidelines you can use to determine whether the field is fit to serve as a
candidate key. You cannot designate a field as a candidate key if it fails to conform to
any of these elements.

Elements of a Candidate Key

• It cannot be a multipart field. You’ve seen the problems with multipart fields,
so you know that using one as an identifier is a bad idea.

• It must contain unique values. This element helps you guard against
duplicating a given record within the table. Duplicate records are just as bad as
duplicate fields, and you must avoid them at all costs.

• It cannot contain null values. As you already know, a null value represents the
absence of a value. There’s absolutely no way a candidate key field can
identify a given record if its value is null.

• Its value cannot cause a breach of the organization’s security or privacy
rules. Values such as passwords and Social Security numbers are not suitable
for use as a candidate key.

• Its value is not optional in whole or in part. A value that is optional implies
that it may be null at some point. You can infer, then, that an optional value
automatically violates the previous element and is, therefore, unacceptable.
(This caveat is especially applicable when you want to use two or more fields
as a candidate key.)

• It comprises a minimum number of fields necessary to define uniqueness.
You can use a combination of fields (treated as a single unit) to serve as a
candidate key, so long as each field contributes to defining a unique value. Try
to use as few fields as possible, however, because overly complex candidate
keys can ultimately prove to be difficult to work with and difficult to
understand.

• Its values must uniquely and exclusively identify each record in the table.
This element helps you guard against duplicate records and ensures that you
can accurately reference any of the table’s records from other tables in the
database.

• Its value must exclusively identify the value of each field within a given
record. This element ensures that the table’s candidate keys provide the only
means of identifying each field value within the record. (You’ll learn more
about this particular element in the section on primary keys.)

• Its value can be modified only in rare or extreme cases. You should never
change the value of a candidate key unless you have an absolute and
compelling reason to do so. A field is likely to have difficulty conforming to the
previous elements if you can change its value arbitrarily.

Establishing a candidate key for a table is quite simple: Look for a field or set of fields
that conforms to all of the Elements of a Candidate Key. You’ll probably be able to
define more than one candidate key for a given table. Loading a table with sample
data will give you the means to identify potential candidate keys accurately. (You used
this same technique in the previous chapter.)

See if you can identify any candidate keys for the table in Figure 8.1.

Figure 8.1. Are there any candidate keys in this table?

You probably identified EMPLOYEE ID, SOCIAL SECURITY NUMBER, EMPLAST NAME,
EMPFIRST NAME and EMPLAST NAME, EMPZIPCODE, and EMPHOME PHONE as
potential candidate keys. But you’ll need to examine these fields more closely to
determine which ones are truly eligible to become candidate keys. Remember that
you must automatically disregard any field(s) failing to conform to even one of the
Elements of a Candidate Key.
Upon close examination, you can draw the following conclusions.

• EMPLOYEE ID is eligible. This field conforms to every element of a candidate
key.

• SOCIAL SECURITY NUMBER is ineligible because it could contain null values
and will most likely compromise the organization’s privacy rules. Contrary to
what the sample data shows, this field could contain a null value. For example,
there are many people working in the United States who do not have Social
Security numbers because they are citizens of other countries.

Note
Despite its widespread use in many types of databases, I strongly recommend
that you refrain from using SOCIAL SECURITY NUMBER as a candidate key (or
as a primary key, for that matter) in any of your database structures. In many
instances, it doesn’t conform to the Elements of a Candidate Key.
The Philadelphia Region section of the Social Security Online web site
provides some very interesting facts about Social Security numbers and
identify theft, which is yet another good reason why you should avoid using
SSNs as candidate/primary keys. You can access their site here:
www.ssa.gov/phila/ProtectingSSNs.htm.

• EMPLAST NAME is ineligible because it can contain duplicate values. As
you’ve learned, the values of a candidate key must be unique. In this case
there can be more than one occurrence of a particular last name.

• EMPFIRST NAME and EMPLAST NAME are eligible. The combined values of
both fields will supply a unique identifier for a given record. Although multiple
occurrences of a particular first name or last name will occur, the combination
of a given first name and last name will always be unique. (Some of you are
probably saying, “This is not necessarily always true.” You’re absolutely right.
Don’t worry; we’ll address this issue shortly.)

• EMPZIPCODE is ineligible because it can contain duplicate values. Many
people live in the same zip code area, so the values in EMPZIPCODE cannot
possibly be unique.

• EMPHOME PHONE is ineligible because it can contain duplicate values and is
subject to change. This field will contain duplicate values for either of these
two reasons.

1. One or more family members work for the organization.
2. One or more people share a residence that contains a single phone line.

You can confidently state that the EMPLOYEES table has two candidate keys:
EMPLOYEE ID and the combination of EMPFIRST NAME and EMPLAST NAME.
Mark candidate keys in your table structures by writing the letters “CK” next to the
name of each field you designate as a candidate key. A candidate key composed of

http://www.ssa.gov/phila/ProtectingSSNs.htm

two or more fields is known as a composite candidate key, and you’ll write “CCK”
next to the names of the fields that make up the key. When you have two or more
composite candidate keys, use a number within the mark to distinguish one from
another. If you had two composite candidate keys, for example, you would mark one
as “CCK1” and the other as “CCK2.”
Apply this technique to the candidate keys for the EMPLOYEES table in Figure 8.1.
Figure 8.2 shows how your structure should look when you’ve completed this task.

Figure 8.2. Marking candidate keys in the EMPLOYEES table structure

Now try to identify as many candidate keys as you can for the PARTS table in Figure
8.3.

Figure 8.3. Can you identify any candidate keys in the PARTS table?

At first glance, you may believe that PART NAME, MODEL NUMBER, the combination
of PART NAME and MODEL NUMBER, and the combination of MANUFACTURER NAME
and PART NAME are potential candidate keys. After investigating this theory, however,
you come up with the following results.

• PART NAME is ineligible because it can contain duplicate values. A given part
name will be duplicated when the part is manufactured in several models. For
example, this is the case with Faust Brake Levers.

• MODEL NUMBER is ineligible because it can contain null values. A candidate
key value must exist for each record in the table. As you can see, some parts
do not have a model number.

• PART NAME and MODEL NUMBER are ineligible because either field can
contain null values. The simple fact that MODEL NUMBER can contain null
values instantly disqualifies this combination of fields.

• MANUFACTURER NAME and PART NAME are ineligible because the values for
these fields seem to be optional. Recall that a candidate key value cannot be
optional in whole or in part. In this instance, you can infer that entering the
manufacturer name is optional when it appears as a component of the part
name; therefore, you cannot designate this combination of fields as a candidate
key.

It’s evident that you don’t have a single field or set of fields that qualifies as a

candidate key for the PARTS table. This is a problem because each table must have
at least one candidate key. Fortunately, there is a solution.

Artificial Candidate Keys

When you determine that a table does not contain a candidate key, you can create
and use an artificial (or surrogate) candidate key. (It’s artificial in the sense that it
didn’t occur “naturally” in the table; you have to manufacture it.) You establish an
artificial candidate key by creating a new field that conforms to all of the Elements of
a Candidate Key and then adding it to the table; this field becomes the official
candidate key.
You can now solve the problem in the PARTS table. Create an artificial candidate key
called PART NUMBER and assign it to the table. (The new field will automatically
conform to the Elements of a Candidate Key because you’re creating it from scratch.)
Figure 8.4 shows the revised structure of the PARTS table.

Figure 8.4. The PARTS table with the artificial candidate key PART NUMBER

When you’ve established an artificial candidate key for a table, mark the field name
with a “CK” in the table structure, just as you did for the EMPLOYEES table in the
previous example.
You may also choose to create an artificial candidate key when it would be a stronger
(and thus, more appropriate) candidate key than any of the existing candidate keys.
Assume you’re working on an EMPLOYEES table and you determine that the only
available candidate key is the combination of the EMPFIRST NAME and EMPLAST

NAME fields. Although this may be a valid candidate key, using a single-field candidate
key might prove more efficient and may identify the subject of the table more easily.
Let’s say that everyone in the organization is accustomed to using a unique
identification number rather than a name as a means of identifying an employee. In
this instance, you can choose to create a new field named EMPLOYEE ID and use it as
an artificial candidate key. This is an absolutely acceptable practice—do this without
hesitation or reservation if you believe it’s appropriate.

Note
I commonly create an ID field (such as EMPLOYEE ID, VENDOR ID,
DEPARTMENT ID, CATEGORY ID, and so on) and use it as an artificial candidate
key. It always conforms to the Elements of a Candidate Key, makes a great
primary key (eventually), and, as you’ll see in Chapter 10, makes the process
of establishing table relationships much easier.

Review the candidate keys you’ve selected and make absolutely certain that they
thoroughly comply with the Elements of a Candidate Key. Don’t be surprised if you
discover that one of them is not a candidate key after all—incorrectly identifying a
field as a candidate key happens occasionally. When this does occur, just remove the
“CK” designator from the field name in the table structure. Deleting a candidate key
won’t pose a problem so long as the table has more than one candidate key. If you
discover, however, that the only candidate key you identified for the table is not a
candidate key, you must establish an artificial candidate key for the table. After
you’ve defined the new candidate key, remember to mark its name with a “CK” in
the table structure.

Primary Keys
By now, you’ve established all the candidate keys that seem appropriate for every
table. Your next task is to establish a primary key for each table, which is the most
important key of all.

• A primary key field exclusively identifies the table throughout the database
structure and helps establish relationships with other tables. (You’ll learn more
about this in Chapter 10.)

• A primary key value uniquely identifies a given record within a table and

exclusively represents that record throughout the entire database. It also helps
to guard against duplicate records.

A primary key must conform to the exact same elements as a candidate key. This
requirement is easy to fulfill because you select a primary key from a table’s pool of
available candidate keys. The process of selecting a primary key is somewhat similar
to that of a presidential election. Every four years, several people run for the office of
President of the United States. These individuals are known as “candidates” and they
have all of the qualifications required to become president. A national election is held,
and a single individual from the pool of available presidential candidates is elected to
serve as the country’s official president. Similarly, you identify each qualified
candidate key in the table, run your own election, and select one of them to become
the official primary key of the table. You’ve already identified the candidates, so now
it’s election time!
Assuming that there is no other marginal preference, here are a couple of guidelines
you can use to select an appropriate primary key.

1. If you have a simple (single-field) candidate key and a composite candidate
key, choose the simple candidate key. It’s always best to use a candidate key
that contains the least number of fields.

2. Choose a candidate key that incorporates part of the table name within its
own name. For example, a candidate key with a name such as SALES INVOICE
NUMBER is a good choice for the SALES INVOICES table.

Examine the candidate keys and choose one to serve as the primary key for the table.
The choice is largely arbitrary—you can choose the one that you believe most
accurately identifies the table’s subject or the one that is the most meaningful to
everyone in the organization. For example, consider the EMPLOYEES table again in
Figure 8.5.

Figure 8.5. Which candidate key should become the primary key of the
EMPLOYEES table?

Either of the candidate keys you identified within the table could serve as the primary
key. You might decide to choose EMPLOYEE ID if everyone in the organization is
accustomed to using this number as a means of identifying employees in items such
as tax forms and employee benefits programs. The candidate key you ultimately
choose becomes the primary key of the table and is governed by the Elements of a
Primary Key. These elements are exactly the same as those for the candidate key,
and you should enforce them to the letter. For the sake of clarity, here are the
Elements of a Primary Key:

Elements of a Primary Key

• It cannot be a multipart field.
• It must contain unique values.

• It cannot contain null values.
• Its value cannot cause a breach of the organization’s security or privacy rules.
• Its value is not optional in whole or in part.
• It comprises a minimum number of fields necessary to define uniqueness.
• Its values must uniquely and exclusively identify each record in the table.
• Its value must exclusively identify the value of each field within a given record.
• Its value can be modified only in rare or extreme cases.

Before you finalize your selection of a primary key, it is imperative that you make
absolutely certain that the primary key fully complies with this particular element:

Its value must exclusively identify the value of each field within
a given record.

Each field value in a given record should be unique throughout the entire database
(unless it is participating in establishing a relationship between a pair of tables) and
should have only one exclusive means of identification—the specific primary key
value for that record.
You can determine whether a primary key fully complies with this element by
following these steps.

1. Load the table with sample data.
2. Select a record for test purposes and note the current primary key value.
3. Examine the value of the first field (the one immediately after the primary key)

and ask yourself this question:
Does this primary key value exclusively identify the current value of
<fieldname>?
a. If the answer is yes, move to the next field and repeat the question.
b. If the answer is no, remove the field from the table, move to the next field,

and repeat the question.
4. Continue this procedure until you’ve examined every field value in the record.

A field value that the primary key does not exclusively identify indicates that the field
itself is unnecessary to the table’s structure; therefore, you should remove the field
and reconfirm that the table complies with the Elements of the Ideal Table. You can
then add the field you just removed to another table structure, if appropriate, or you

can discard it completely because it is truly unnecessary.
Here’s an example of how you might apply this technique to the partial table structure
in Figure 8.6. (Note that INVOICE NUMBER is the primary key of the table.)

Figure 8.6. Does the primary key exclusively identify the value of each field in
this table?

First, you load the table with sample data. You then select a record for test purposes
—we’ll use the third record for this example—and note the value of the primary key
(13002). Now, pose the following question for each field value in the record.

Does this primary key value exclusively identify the current value of . . .
INVOICE DATE? Yes, it does. This invoice number will always identify the

specific date that the invoice was created.
CUSTFIRST NAME? Yes, it does. This invoice number will always identify the

specific first name of the particular customer who made this
purchase.

CUSTLAST NAME? Yes, it does. This invoice number will always identify the
specific last name of the particular customer who made this
purchase.

EMPFIRST NAME? Yes, it does. This invoice number will always identify the
specific first name of the particular employee who served the
customer for this sale.

EMPLAST NAME? Yes, it does. This invoice number will always identify the
specific last name of the particular employee who served the
customer for this sale.

EMPHOME PHONE? No, it doesn’t! The invoice number indirectly identifies the
employee’s home phone number via the employee’s name. In
fact, it is the current value of both EMPFIRST NAME and
EMPLAST NAME that exclusively identifies the value of
EMPHOME PHONE—change the employee’s name and you
must change the phone number as well. You should now
remove EMPHOME PHONE from the table for two reasons:
The primary key does not exclusively identify its current
value and (as you’ve probably already ascertained) it is an
unnecessary field. As it turns out, you can discard this field
completely because it is already part of the EMPLOYEES
table structure.

After you’ve removed the unnecessary fields you identified during this test, examine
the revised table structure and make sure it complies with the Elements of the Ideal
Table.
The primary key should now exclusively identify the values of the remaining fields in
the table. This means that the primary key is truly sound and you can designate it as
the official primary key for the table. Remove the “CK” next to the field name in the
table structure and replace it with a “PK.” (A primary key composed of two or more
fields is known as a composite primary key, and you mark it with the letters “CPK.”)
Figure 8.7 shows the revised structure of the SALES INVOICES table with INVOICE
NUMBER as its primary key.

Figure 8.7. The revised SALES INVOICES table with its new primary key

As you create a primary key for each table in the database, keep these two rules in
mind:

Rules for Establishing a Primary Key

1. Each table must have one—and only one—primary key. Because the primary
key must conform to each of the elements that govern it, only one primary key
is necessary for a particular table.

2. Each primary key within the database must be unique—no two tables should
have the same primary key unless one of them is a subset table. You learned
at the beginning of this section that the primary key exclusively identifies a
table throughout the database structure; therefore, each table must have its own
unique primary key in order to avoid any possible confusion or ambiguity
concerning the table’s identity. A subset table is excluded from this rule because
it represents a more specific version of a particular data table’s subject—both
tables must share the same primary key.

Later in the database design process, you’ll learn how to use the primary key to help
establish a relationship between a pair of tables.

Alternate Keys
Now that you’ve selected a candidate key to serve as the primary key for a particular
table, you’ll designate the remaining candidate keys as alternate keys. These keys can
be useful to you in an RDBMS program because they provide an alternative means of
uniquely identifying a particular record within the table. If you choose to use an
alternate key in this manner, mark its name with “AK” or “CAK” (composite
alternate key) in the table structure; otherwise, remove its designation as an alternate
key and simply return it to the status of a normal field. You won’t be concerned with
alternate keys for the remainder of the database design process, but you will work
with them once again as you implement the database in an RDBMS program.
(Implementing and using alternate keys in RDBMS programs is beyond the scope of
this work—our only objective here is to designate them as appropriate. This is in line
with the focus of the book, which is the logical design of a database.)
Figure 8.8 shows the final structure for the EMPLOYEES table with the proper
designation for both the primary key and the alternate keys.

Figure 8.8. The EMPLOYEES table with designated primary and alternate keys

Non-keys
A non-key is a field that does not serve as a candidate, primary, alternate, or foreign
key. Its sole purpose is to represent a characteristic of the table’s subject, and its
value is determined by the primary key. There is no particular designation for a non-
key, so you don’t need to mark it in the table structure.

Table-Level Integrity
This type of integrity is a major component of overall data integrity, and it ensures the
following.

• There are no duplicate records in a table.
• The primary key exclusively identifies each record in a table.
• Every primary key value is unique.
• Primary key values are not null.

You began establishing table-level integrity when you defined a primary key for each
table and ensured its enforcement by making absolutely certain that each primary key
fully complied with the Elements of a Primary Key. In the next chapter, you’ll
enhance the table’s integrity further as you establish field specifications for each field
within the table.

Reviewing the Initial Table Structures
Now that the fundamental table definitions are complete, you need to conduct
interviews with users and management to review the work you’ve done so far. This
set of interviews is fairly straightforward and should be relatively easy to conduct.
During these interviews, you will accomplish these tasks.

• Ensure that the appropriate subjects are represented in the database.
Although it’s highly unlikely that an important subject is missing at this stage of
the database design process, it can happen. When it does happen, identify the
subject, use the proper techniques to transform it into a table, and develop it to
the same degree as the other tables in the database.

• Make certain that the table names and table descriptions are suitable and
meaningful to everyone. When a name or description appears to be confusing
or ambiguous to several people in the organization, work with them to clarify
the item as much as possible. It’s common for some table names and
descriptions to improve during the interview process.

• Make certain that the field names are suitable and meaningful to everyone.
Selecting field names typically generates a great deal of discussion, especially
when there is an existing database in place. You’ll commonly find people who
customarily refer to a particular field by a certain name because “that’s what
it’s called on my screen.” When you change a field name—you have good
reasons for doing so—you must diplomatically explain to these folks that you
renamed the field so that it conforms to the standards imposed by the new
database. You can also tell them that the field can appear with the more
familiar name once the database is implemented in an RDBMS program. What
you’ve said is true; many RDBMSs allow you to use one name for the field’s
physical definition and another name for display purposes. This feature,
however, does not change, reduce, or negate the need for you to follow the
guidelines for creating field names that you learned in Chapter 7, “Establishing

Table Structures.”
• Verify that all the appropriate fields are assigned to each table. This is your

best opportunity to make certain that all of the necessary characteristics
pertaining to the subject of the table are in place. You’ll commonly discover
that you accidentally overlooked one or two characteristics earlier in the design
process. When this happens, identify the characteristics, use the appropriate
techniques to transform them into fields, and follow all the necessary steps to
add them to the table.

When you’ve completed the interviews, you’ll move to the next phase of the database
design process and establish field specifications for every field in the database.

Case Study
It’s now time to establish keys for each table in the Mike’s Bikes database. As you
know, your first order of business is to establish candidate keys for each table. Let’s
say you decide to start with the CUSTOMERS table in Figure 8.9.

Figure 8.9. The CUSTOMERS table structure in the Mike’s Bikes database

As you review each field, you try to determine whether it conforms to the Elements
of a Candidate Key. You determine that STATUS, CUSTHOME PHONE, and the
combination of CUSTFIRST NAME and CUSTLAST NAME are potential candidate keys,
but you’re not quite certain whether any of them will completely conform to all of the
elements. So you decide to test the keys by loading the table with sample data as
shown in Figure 8.10.

Figure 8.10. Testing candidate keys in the CUSTOMERS table

Always remember that a field must comply with all of the Elements of a Candidate
Key in order to qualify as a candidate key. You must immediately disqualify the field
if it does not fulfill this requirement.
As you examine the table, you draw these conclusions.

• STATUS is ineligible because it will probably contain duplicate values. As
business grows, Mike is going to have many “Valued” customers.

• CUSTHOME PHONE is ineligible because it will probably contain duplicate
values. The sample data reveals that two customers can live in the same
residence and have the same phone number.

• CUSTFIRST NAME and CUSTLAST NAME are ineligible because they will
probably contain duplicate values. The sample data reveals that the
combination of first name and last name can represent more than one distinct
customer.

These findings convince you to establish an artificial candidate key for this table. You
then create a field called CUSTOMER ID, confirm that it complies with the

requirements for a candidate key, and add the new field to the table structure with the
appropriate designation.
Figure 8.11 shows the revised structure of the CUSTOMERS table.

Figure 8.11. The CUSTOMERS table with the new artificial candidate key,
CUSTOMER ID

Now you’ll repeat this procedure for each table in the database. Remember to make
certain that every table has at least one candidate key.
The next order of business is to establish a primary key for each table. As you know,
you select the primary key for a particular table from the table’s pool of available
candidate keys. Here are a few points to keep in mind when you’re choosing a
primary key for a table with more than one candidate key.

• Choose a simple (single-field) candidate key over a composite candidate key.
• If possible, pick a candidate key that has the table name incorporated into its

own name.
• Select the candidate key that best identifies the subject of the table or is most

meaningful to everyone in the organization.
You begin by working with the EMPLOYEES table in Figure 8.12. As you review the
candidate keys, you decide that EMPLOYEE NUMBER is a much better choice for a
primary key than the combination of EMPFIRST NAME and EMPLAST NAME because
Mike’s employees are already accustomed to identifying themselves by their assigned
numbers. Using EMPLOYEE NUMBER makes perfect sense, so you select it as the
primary key for the table.

Figure 8.12. The EMPLOYEES table structure in the Mike’s Bikes database

Now you perform one final task before you designate EMPLOYEE NUMBER as the
official primary key of the table: You make absolutely certain that it exclusively
identifies the value of each field within a given record. So you test EMPLOYEE NUMBER
by following these steps.

1. Load the EMPLOYEES table with sample data.
2. Select a record for test purposes and note the current value of EMPLOYEE

NUMBER.
3. Examine the value of the first field (the one immediately after EMPLOYEE

NUMBER) and ask yourself this question:
Does this primary key value exclusively identify the current value of
<fieldname>?
a. If the answer is yes, move to the next field and repeat the question.
b. If the answer is no, remove the field from the table, move to the next field,

and repeat the question. (Be sure to determine whether you can add the field
you just removed to another table structure, if appropriate, or discard it
completely because it is truly unnecessary.)

4. Continue this procedure until you’ve examined every field value in the record.
You know that you’ll have to remove any field containing a value that EMPLOYEE
NUMBER does not exclusively identify. EMPLOYEE NUMBER does exclusively identify
the value of each field in the test record, however, so you use it as the official primary
key for the EMPLOYEES table and mark its name with the letters “PK” in the table
structure. You then repeat this process with the rest of the tables in Mike’s new
database until every table has a primary key.
Remember to keep these rules in mind as you establish primary keys for each table.

• Each table must have one—and only one—primary key.
• Each primary key within the database should be unique—no two tables should

have the same primary key (unless one of them is a subset table).
As you work through the tables in Mike’s database, you remember that the
SERVICES table is a subset table. You created it during the previous stage of the
design process (in Chapter 7), and it represents a more specific version of the subject
represented by the PRODUCTS table. The PRODUCT NAME field is what currently
relates the PRODUCTS table to the SERVICES subset table. You now know,
however, that a subset table must have the same primary key as the table to which it
is related, so you’ll use PRODUCT NUMBER (the primary key of the PRODUCTS table)
as the primary key of the SERVICES table. Figure 8.13 shows the PRODUCTS and
SERVICES tables with their primary keys.

Figure 8.13. Establishing the primary key for the SERVICES subset table

The last order of business is to conduct interviews with Mike and his staff and review
all the work you’ve performed on the tables in the database. As you conduct these
interviews, make certain you check the following.

• The appropriate subjects are represented in the database.
• The table names and descriptions are suitable and meaningful to everyone.
• The field names are suitable and meaningful to everyone.
• All the appropriate fields are assigned to each table.

By the end of the interview, everyone agrees that the tables are in good form and that
all the subjects with which they are concerned are represented in the database. Only
one minor point came up during the discussions: Mike wants to add a CALL PRIORITY
field to the VENDORS table. There are instances in which more than one vendor
supplies a particular product, and Mike wants to create a way to indicate which
vendor he should call first if that product is unexpectedly out of stock. So you add the
new field to the VENDORS table and bring the interview to a close.

Summary
The chapter opened with a discussion of the importance of keys. You learned that
there are different types of keys, and each type plays a different role within the
database. Each key performs a particular function, such as uniquely identifying
records, establishing various types of integrity, and establishing relationships between
tables. You now know that you can guarantee sound table structure by making certain
that the appropriate keys are established for each table.
We then discussed the process of establishing keys for each table. We began by
identifying the four main types of keys: candidate, primary, foreign, and non-keys.
First, we looked at the process of establishing candidate keys for each table. You
learned about the Elements of a Candidate Key and how to make certain that a field
(or set of fields) complies with these elements. Then you learned that you can create
and use an artificial candidate key when none of the fields in a table can serve as a
candidate key or when a new field would make a stronger candidate key than any of
the existing candidate key fields.
The chapter continued with a discussion of primary keys. You learned that you select
a primary key from a table’s pool of candidate keys and that the primary key is
governed by a set of specific elements. We then covered a set of guidelines that help
you determine which candidate key to use as a primary key. Next, you learned how
to ensure that the chosen primary key exclusively identifies a given record and its set
of field values. When the primary key does not exclusively identify a particular field
value, you know that you must remove the field from the table in order to ensure the
table’s structural integrity. You also know that each table must have a single, unique
primary key.
You then learned that you designate any remaining candidate keys as alternate keys.
These keys will be most useful to you when you implement the database in an
RDBMS program because they provide an alternate means of identifying a given
record. We then discussed the non-key field, which is any field not designated as a
candidate, primary, alternate, or foreign key. You now know that a non-key field
represents a characteristic of the table’s subject and that the primary key exclusively
identifies its value.
Table-level integrity was the next subject of discussion, and you learned that it is
established through the use of primary keys and enforced by the Elements of a
Primary Key.

The chapter closed with some guidance on conducting further interviews with users
and management. You now know that these interviews provide you with a means of
reviewing the work you have performed on the tables and help you to verify and
validate the current database structure.

Review Questions
1. State the three reasons why keys are important.
2. What are the four main types of keys?
3. What is the purpose of a candidate key?
4. State four items of the Elements of a Candidate Key.
5. True or False: A candidate key can be composed of more than one field.
6. Can a table have more than one candidate key?
7. What is an artificial candidate key?
8. What is the most important key you assign to a table?
9. Why is this key important?

10. How do you establish a primary key?
11. State four items of the Elements of a Primary Key.
12. What must you do before you finalize your selection of a primary key?
13. What is an alternate key?
14. What do you ensure by establishing table-level integrity?
15. Why should you review the initial table structures?

9. Field Specifications

It has long been an axiom of mine that the little things are infinitely the
most important.

—SHERLOCK HOLMES, THE ADVENTURES OF SHERLOCK HOLMES

Topics Covered in This Chapter
Why Field Specifications Are Important
Field-Level Integrity
Anatomy of a Field Specification
Using Unique, Generic, and Replica Field Specifications
Defining Field Specifications for Each Field in the Database
Case Study
Summary
Review Questions

Fields are the bedrock of the database. They represent characteristics of the subjects
that are important to an organization. Fields store the data that the organization uses
as the basis of information—information that is vital to its daily operations, success,
and future growth. Despite their inherent value, fields are still the most overlooked,
underutilized, and neglected assets of the organization! Frequently, little or no time is
spent ensuring the structural and logical integrity of the fields in the database.
Much is said and written about data integrity, but little is done about it. Many people
believe that keeping an eye on their data entry personnel and having a “foolproof”
user interface for the database will greatly minimize potential data-related problems.
This superficial approach to data integrity commonly stems from an incorrect belief
that proper data integrity takes too much time to establish. It’s important to note,
however, that the people who don’t have time to establish data integrity usually spend
a large amount of time fixing their improperly designed databases—typically spending
up to three times as long as it would have taken them to design the database properly
in the first place!
In this chapter, you’ll learn how to establish data integrity by defining field
specifications for each field in the database. First, you’ll learn about the three sets of

elements that compose a field specification; then you’ll learn how to conduct
interviews with users and management to enlist their help in defining the specifications
for the fields.

Why Field Specifications Are Important
Despite what you may have heard, the time it takes to establish field specifications for
each field in the database is an investment toward building consistent data and quality
information—you are not wasting time whatsoever by performing this process. In
fact, you’ll waste more time in the end if you only partially perform this process or
neglect it entirely. Shirking this duty means you’re bound to encounter (and suffer
from) inconsistent and erroneous data and inaccurate information.
There are several reasons why field specifications are crucial.

• Field specifications help establish and enforce field-level integrity.
Implementing these specifications enables you to guarantee that the data in
each field is consistent and valid.

• Defining field specifications for each field enhances overall data integrity.
Remember that field-level integrity is one of the four components of overall
data integrity. Field-level integrity enhances (to some extent) the table-level
integrity you established in the previous stage of the design process. (This will
become apparent when you work with the logical elements of the field
specification.)

• Defining field specifications compels you to acquire a complete
understanding of the nature and purpose of the data in the database.
Understanding the data means that you can judge whether the data is truly
necessary and important to the organization, and you can learn how to use it to
your best advantage.

• Field specifications constitute the “data dictionary” of the database. Each
field specification stores data on the characteristics of a particular field within
the database. The complete set of specifications you establish for all of the
fields in the database composes a literal dictionary of the database’s structure.
This data dictionary is particularly useful when you implement your database in
an RDBMS—you can use it as a guide for creating the fields and setting their
fundamental properties. These specifications will also help you determine what
type of data entry and data validation procedures you need to implement within

any user interface application you create for the database.
Keep in mind that the levels of consistency, quality, and accuracy of the data in the
database (and information retrieved from that data) are in direct proportion to the
degree to which you complete these specifications. It is paramount that you establish
each field specification completely if your organization depends heavily on the
information you retrieve from the database.

Field-Level Integrity
A field attains field-level integrity after you’ve defined a complete set of field
specifications for the field. Field-level integrity warrants the following.

• The identity and purpose of a field is clear, and all of the tables in which it
appears are properly identified.

• Field definitions are consistent throughout the database.
• The values of a field are consistent and valid.
• The types of modifications, comparisons, and operations that can be applied to

the values in the field are clearly identified.
You can guarantee that a field structure is sound and optimally designed when it has a
complete set of field specifications and fully conforms to the Elements of the Ideal
Field. In fact, ensuring that the field complies with the Elements of the Ideal Field
makes defining a set of specifications a relatively easy task.
If you’ve had any lingering doubt about a particular field’s conformance to the
Elements of the Ideal Field, now is a good time to review that field once more. If you
determine that it is not in conformance, use the appropriate techniques to resolve the
problem and make the proper adjustments to the table; otherwise, you can begin the
process of defining field specifications for each field in the database. Here are the
Elements of the Ideal Field once again for your convenience.

• It represents a distinct characteristic of the subject of the table.
• It contains only a single value.
• It cannot be deconstructed into smaller components.
• It does not contain a calculated or concatenated value.
• It is unique within the entire database structure.
• It retains a majority of its characteristics when it appears in more than one

table.

Anatomy of a Field Specification
A field specification incorporates various elements that define every attribute of a
field. All of the elements within the specification are categorized as general elements,
physical elements, or logical elements. These element categories enable you to focus
on a distinct aspect of the field as you’re defining the specification, and they provide a
way for you to find a particular element quite easily.
Here are the elements within each category.

• General Elements: Field Name, Parent Table, Label, Specification Type,
Source Specification, Shared By, Alias(es), Description

• Physical Elements: Data Type, Length, Decimal Places, Character Support,
Input Mask, Display Format

• Logical Elements: Key Type, Key Structure, Uniqueness, Null Support,
Values Entered By, Required Value, Default Value, Range of Values, Edit Rule,
Comparisons Allowed, Operations Allowed

Figure 9.1 shows an example of a Field Specifications sheet. We’ll use this sheet (or
various portions of it) as we work on field specification examples throughout the
remainder of the book.

Figure 9.1. Field Specifications sheet

General Elements
Items under the General Elements category represent the most fundamental attributes
of the field. They provide information on the field’s purpose, the name of the table(s)
in which the field appears, and the pseudonyms the field assumes under certain
circumstances.

Field Name

This is the set of absolute minimal words that uniquely identifies a particular field
throughout the database. You created and refined field names earlier in the database
design process (see Chapter 7, “Establishing Table Structures”), so you’ll just take
each name and use it as the setting for this element.

Parent Table

The table that incorporates a given field within its structure is known as the field’s
parent table. This is the only table in which the field will appear unless the field is
participating in establishing a relationship. (You’ll learn more about this exception in
Chapter 10, “Table Relationships.”) For example, STUDENTS is the parent table of
the STUDFIRST NAME field.

Label

This is an alternate name (typically a shorter form of the field name) by which you
can identify the field within an end-user application interface that you create for the
database. For example, you might use QTY ON HAND as a label for a field named
QUANTITY ON HAND because many people in the organization are already accustomed
to this particular name. Labels can be particularly useful when you want to conserve
space on a data entry screen or squeeze more fields into a particular report.
Avoid the temptation of using the label as the official field name within the table
structure; otherwise, you make it possible for someone to misinterpret or incorrectly
identify the field. Always use the most precise and accurate name as the official field
name and then use the label (judiciously, of course) within your end-user interface
applications. This will enable you to make a distinction between the two at all times.

Specification Type

The elements you set for a given field depend upon the type of specification you
define for the field. You can define a specification in three ways.

1. Unique: This is the default specification for all fields except those that serve as
a template for other fields or those that participate within a table relationship as
foreign keys. You can incorporate all but the Source Specification element for
this type of specification, and the element settings you establish will apply only
to the field indicated in the Field Name element.

2. Generic: This specification serves as a template for other field specifications
and helps you ensure consistent definitions for fields that have the same
general meaning. For example, you could create this type of specification for a
generic STATE field and then use it as the basis for every other STATE field in the
database. Fields such as CUSTSTATE, EMPSTATE, and VENDSTATE all have the
same meaning (they represent a state within the United States), but there is
enough of an obvious distinction between them to require that they remain
separate fields. (If you recall, you learned about generic fields in Chapter 6,
“Analyzing the Current Database,” when you were developing the Preliminary
Field List and in Chapter 7 when you were working with the Elements of the
Ideal Field.)
A generic specification requires you to use a nonspecific field name and
element settings that are as broad and general as possible. You can, however,
incorporate any element except Parent Table, Label, Shared By, Alias(es), and
Source Specification.

3. Replica: This is the default specification for a field based on a generic field or
a field that serves as a foreign key within a table relationship, and it draws a
majority of its element settings from an existing specification. You can
incorporate elements that were not already incorporated by the source
specification, and you can alter any element settings drawn from the source
specification.

You’ll learn how to define each type of specification in the section “Using Unique,
Generic, and Replica Field Specifications” later in this chapter.

Source Specification

This element is set only on a Replica specification and indicates the name of the
specific field specification upon which the current specification is based. (You’ll see a

good example of this element in the next section.)

Shared By

This element indicates the names of other tables that share this field. The only table
names that should appear here are those that have an explicit relationship to the field’s
parent table. For example, assume you have a data table called EMPLOYEES that is
related to two subset tables called PART-TIME EMPLOYEES and FULL-TIME
EMPLOYEES via a field called EMPLOYEE ID NUMBER. As you create a field
specification for EMPLOYEE ID NUMBER, you would use “PART-TIME
EMPLOYEES, FULL-TIME EMPLOYEES” as the setting for this element.

Alias(es)

This is a name (or set of names) that you use for the field in very rare circumstances.
One instance in which you would use an alias is when there must be two occurrences
of the field in the same table. Let’s assume that an organization is accustomed to
identifying its employees by unique values within an EMPLOYEE ID NUMBER field.
Now, consider the SUBSIDIARIES table structure in Figure 9.2 (this is a partial
structure only).

Figure 9.2. A table requiring two occurrences of the same field

In this instance, each subsidiary has a president and a vice president. Both of these

individuals must be represented in the table because of their positions within the
subsidiary organization, so there are two EMPLOYEE ID NUMBER fields in the table
structure. Proper database design, however, dictates that there can only be one
occurrence of this field within the table; there is an obvious problem here. The only
solution is to use an alias for one or both occurrences of the EMPLOYEE ID NUMBER
field. For instance, you could (for sake of clarity) use PRESIDENT ID as an alias for
the first occurrence of EMPLOYEE ID NUMBER and VICE PRESIDENT ID as an alias for
the second occurrence of EMPLOYEE ID NUMBER. With the aliases in place, both
employees are properly represented within the table. Figure 9.3 shows the revised
table structure.

Figure 9.3. Using aliases in place of the EMPLOYEE ID NUMBER fields

Although using an alias is acceptable under these circumstances, you should use them
very judiciously; otherwise, they can become difficult to manage and maintain,
eventually conceal or disguise the true meaning of the original fields, and cause you to
misunderstand what the data actually represents. This issue will become even clearer
when you begin to establish table relationships.

Description

This is a complete interpretation of the field. Composing a field description is
extremely beneficial because it forces you (and everyone in the organization) to think
carefully about the nature of the data that will be stored in the field. You can be
relatively sure that the field requires further refinement if you have difficultly
composing a suitable description.
Earlier in the database design process you learned a set of guidelines for composing a
table description. Similarly, there is a set of guidelines that governs how you compose
a proper field description.
Guidelines for Composing a Field Description

• Use a statement that accurately identifies the field and clearly states its
purpose. The description should supplement the field name in terms of defining
what the field represents. It should also state the field’s role within the table or
its relationship to the table’s subject. Here’s an example of such a description:

CustCity—the metropolitan area in which a customer resides or
conducts business. This is an integral component of a
customer’s complete address.

• Write a clear and succinct statement. The description should be free of
confusing sentences or ambiguous phrases. Although the description should be
as complete as possible, use the minimum number of words necessary to
convey the required information. As you’ve seen with table descriptions,
verbose statements are difficult to read and understand.

• Refrain from restating or rephrasing the field name. Neither of these practices
does anything to illuminate the identity or purpose of the field. Remember that
the purpose of a description is to provide a complete interpretation of the field.
Here’s an example of a poor description:

CustLast Name—the last name of a customer.
A description is far more useful when you write it in this manner:

CustLast Name—the surname of a customer, whether original
or by marriage, that we use in all formal communications and
correspondence with that customer.

• Avoid using technical jargon, acronyms, or abbreviations. Although some
people within the organization will understand these types of idioms, it’s better
for you to use terminology that everyone understands. Remember that a

description must be as clear as possible to anyone who reads it. For example,
you should avoid this type of statement:

Employee ID Number—a unique number used to identify an
employee within the organization. It is a component of the SSP.

The problem with this description is that there is no inherent way to determine
the meaning of the acronym SSP. You could resolve this problem by spelling
out the complete term, but it would be better for you to restate the purpose of
the field.

• Do not include implementation-specific information. There’s no reason to
include the fact that a given field appears on a particular data entry screen or is
used within a specific piece of programming code. This type of information is
more appropriate for the implementation phase of the overall database
development process.

• Do not make this description dependent upon the description of another field.
Each description should be as complete as possible and independent of every
other description in the database. Interdependent descriptions introduce
unnecessary confusion and can inadvertently obscure the field’s true identity
and purpose. Avoid using a description such as this:

Item Reorder Level—minimum number of items that must exist
for a particular product. (See description for Quantity On
Hand.)

• Do not use examples. As you learned in Chapter 7, using examples in a
description is a bad idea because they depend on supplemental information to
convey their full meaning. You can ensure that a description is clear and
succinct by keeping it absolutely free of examples.

Figure 9.4 shows the General Elements section of a Field Specifications sheet for an
EMPLOYEE ID NUMBER field.

Figure 9.4. The General Elements category for an EMPLOYEE ID NUMBER field

Physical Elements
This category pertains to the structure of a field. Its elements are expressed in general
terms because each RDBMS program implements them in a slightly different manner.
Establishing these elements during this phase of the design process helps you ensure
consistent field definitions throughout the database and reduces the time it will take
you to implement the field structures in an RDBMS program.

Data Type

This element indicates the nature of the data that the field stores.
In Chapter 1, “Relational Databases,” you learned that Structured Query Language,
or SQL, is the standard language used to create, modify, maintain, and query
relational databases. SQL is actually a fully documented standard set forth jointly by
the American National Standards Institute (ANSI) and the International Organization
for Standardization (ISO). Although the current version of the standard (as of this
writing) is SQL 2011, most major RDBMS programs still seem to be supporting
earlier versions of SQL, such as SQL/92 and SQL 2008.
The SQL standard defines eight major data types, and each data type has one or
more uniquely named variations. Here’s a brief definition of each data type.

1. Character: This data type stores a fixed- or varying-length character string of
one or more printable characters. A fixed-length Character data type is known
as CHARACTER or CHAR, and a varying-length Character data type is

known as CHARACTER VARYING, CHAR VARYING, or VARCHAR.
2. National Character: This data type is the same as the Character data type, but

it can also store characters from foreign-language character sets. A fixed-length
National Character data type is known as NATIONAL CHARACTER,
NATIONAL CHAR, or NCHAR, and a varying-length National Character data
type is known as NATIONAL CHARACTER VARYING, NATIONAL CHAR
VARYING, or NCHAR VARYING.

3. Binary: This data type stores binary data such as images, sounds, videos, or
complex embedded documents such as word processing files or spreadsheets.
This data type is often referred to as BIT or BIT VARYING.

4. Exact Numeric: This data type stores whole numbers and numbers with
decimal places. Most RDBMS programs implement an Exact Numeric as
NUMERIC, DECIMAL (DEC), INTEGER (INT), BIGINT, or SMALLINT,
and each variation determines the range of values that the field will accept.

5. Approximate Numeric: This data type stores numbers with decimal places and
exponential numbers. Most RDBMS programs implement an Approximate
Numeric as FLOAT, REAL, or DOUBLE PRECISION, and each variation
determines the range of values that the field will accept.

6. Boolean: This data type stores true and false values, usually in a single binary
bit. Some RDBMS programs use BIT, INT, or TINYINT to store this data
type.

7. DateTime: This data type is commonly known as DATE, TIME, or
TIMESTAMP in most RDBMS programs, and it stores dates, times, and
combinations of both. Note that the implementation of this data type varies
widely among RDBMS programs, so you must make absolutely certain that
you refer to the RDBMS’s documentation to determine how the RDBMS
handles dates and times.

8. Interval: This data type stores the quantity of time between two DateTime
values, expressed either as year, month, year/month day, time, or day/time.
Not all major database systems support this data type, so check your
RDBMS’s documentation for further information.

Many RDBMS programs provide additional data types beyond those specified by the
standard, which are known as extended data types. Examples of extended data types

include MONEY/CURRENCY and SERIAL/ROWID (for unique row identifiers).
I’ve presented the SQL standard data types because you will encounter them (or
variations thereof) in practically every RDBMS program. I have not provided much
detail on these data types, however, because they are not implemented consistently
across all RDBMS programs; you must consult your RDBMS’s documentation to
determine which data types the RDBMS supports and how it implements them.
You can use any of the SQL data types (except Boolean and Interval) as the setting
for the Data Type element of a given specification. Due to data type implementation
inconsistencies, however, I recommend that you use one of the following three
general data types as the setting for this element instead.

1. Alphanumeric: This data type stores any combination of letters, numbers,
keyboard characters, or special characters. Keyboard characters include the
comma, dollar sign, exclamation mark, percent sign, and period. Special
characters include the copyright symbol, the trademark symbol, and the symbol
for pi.

2. Numeric: This data type stores only whole numbers and real numbers. It will
not accept numbers with leading zeroes (e.g., 0000234) because they are not
genuine numbers.

3. DateTime: This data type stores dates, times, or a combination of both.
These data types are quite suitable for indicating the nature of the data that the field
stores, and they are certainly much easier for users and management to understand.
Using general data types will help you avoid unnecessary confusion, especially when
you’re reviewing the specification with users and management.

Note
I use these general data types as the basis for all further data type references
and examples throughout the remainder of the book. You’ll certainly adjust
these as necessary when you implement your database in a particular RDBMS
program.

Length

This element specifies the total number of characters that a user can enter for any
given field value. The RDBMS program you use to implement the database will

determine the maximum number of characters you can set for this element. Although
you can theoretically set the Length element for any data type, you should be aware
that some RDBMS programs do not allow you to specify a length for a numeric field.
Instead, the RDBMS program sets the length of a numeric field based on the type of
number the field stores, such as an integer, a long integer, or a real number.

Decimal Places

This denotes the number of digits to the right of the decimal point in a real number.
The number of digits determines the real number’s precision. For example, many
businesses require that all currency values have four digits of precision to the right of
the decimal point.

Character Support

This element indicates the type of characters that a user can enter into a given field
value. Setting and enforcing this element helps you ensure that the user cannot
introduce meaningless data into the field, thus enhancing field-level integrity.
Let’s say you’re working with a CUSTSTATE field and its data type is alphanumeric.
This data type is appropriate for the field because it allows a user to incorporate
letters as part of a given field value. But it also allows him to use numbers, keyboard
characters, and extended characters, which means that he can enter a meaningless
value into the field—there are no state names or state abbreviations that contain
characters other than letters. You solve this problem by using the Character Support
element to define the characters that the user can incorporate within a field value. (I
address the issue of a valid combination of letters in the “Logical Elements” section.)
You can choose to include or exclude any of the following types of characters.

• Letters: All letters of the alphabet including foreign language letters such as é
and ñ.

• Numbers: 0 through 9.
• Keyboard characters: Any standard character other than letters and numbers,

such as asterisk, ampersand, bracket, caret, comma, equals sign, exclamation
point, parenthesis, percent sign, period, pound sign, question mark, quote,
semicolon, slash, or vertical bar. Note that the Field Specifications sheet
includes examples of the characters that belong to this category.

• Special characters: Any character that you can produce only through specific

combinations of standard keys and the CTRL, ALT, and/or SHIFT keys, or
with the aid of a special software program. Characters in this category include
complex mathematical symbols, the copyright symbol, fractions, the symbol for
pi, and the trademark symbol. The Field Specifications sheet includes examples
of these characters as well.

Input Mask

This element specifies the manner in which a user should enter data into the field. For
example, there are many ways to enter a date, such as “01/01/12,” “01-01-12,” and
“01-Jan-2012.” Using an input mask helps you ensure that a user enters values into
the field consistently and (in this case) prevents confusion over the meaning of the
date sequence.
RDBMS programs implement input masks in various ways, so you should use a
relatively generic setting for this element. (You can assign multiple input masks, if
appropriate.) For example, you could use “mm/dd/yy” as the input mask for a date
field. This mask indicates the sequence of the date components (month, day, year),
the structure of the date (two numbers per component, e.g., 05/16/12), and the date
component separator (the slash).

Display Format

This element governs the appearance of a field’s value when it is displayed on a
screen or printed within a document. A display format enables you to present the field
value in a more meaningful or readable fashion than the manner in which it was
entered. For example, “03/13/2012” might be the way you enter a given date, but
“March 13, 2012” is much easier to read and comprehend.
Use a generic setting for this element, just as you did with the Input Mask; RDBMS
programs implement display formats in various ways as well. For example, you can
use “Month Day, Year” as a display format for a DATE HIRED field. You can also use
a complete sentence to indicate a display format, such as the one in this example of a
display format setting for a COMPANY NAME field:

Each word should start with a capital letter.
Figure 9.5 shows the Physical Elements section of a Field Specifications sheet for an
EMPLOYEE ID NUMBER field.

Figure 9.5. The Physical Elements category for an EMPLOYEE ID NUMBER field

Logical Elements
This category pertains mainly to the values within a field. Its elements govern matters
such as whether each value should be unique, when a value should be entered,
whether a value can be edited, and the types of comparisons and operations that can
be performed on each value. Setting these elements helps you establish and enforce a
large part of field-level integrity.

Key Type

This element designates a field’s role within a table, which you identified as you were
establishing a primary key for the table. As you already know, a field can serve as a
non-key, a primary key, or an alternate key. In Chapter 10, you’ll learn all about
foreign keys and when to designate a field as a foreign key on the Field Specifications
sheet.

Key Structure

This element denotes whether a field designated as a primary key is acting as a simple
(single-field) primary key or as part of a composite (multifield) primary key.

Uniqueness

This element indicates whether a field’s values are unique. You set it as “Unique”
when the Key Type element is set to “Primary”; otherwise, you’ll typically set this
element as “Non-unique.”
When you work with a non-key field, think about how its values are going to be used
so that you can determine whether they should be unique. Consider the
DEPARTMENTS table structure in Figure 9.6.

Figure 9.6. Should the values of EMPLOYEE ID NUMBER be unique?

In this example, the EMPLOYEE ID NUMBER field identifies the person who manages a
particular department. Assuming that a person is allowed to manage only one
department at any given time, the values in this field should be unique; therefore, you
should set the Uniqueness element for this field as “Unique.”

Null Support

This specifies whether a field accepts null values. “No Nulls” is the setting you’ll
commonly use for this element, especially when a field serves as a primary key or an
alternate key, or when the field’s Required Value element is set to “Yes.” You can set
this element to “Nulls Allowed,” however, when there is a valid reason for a field to
accept null values. A CUSTCOUNTY field, for example, must accept nulls because a
customer may not know the name of the county in which she lives. (Of course, it will
no longer be null once she supplies the county name.)
Remember that a null does not represent a blank—it represents a missing or unknown
value. Users commonly make the mistake of using a blank to represent a meaningful
value, such as “None,” “Not Applicable,” “No Response,” and “Not Wanted.” If
these values are valid for a particular field, then make sure you include them in the
Range of Values element for the field. Above all, use nulls judiciously and do not use
blanks!

Values Entered By

This element indicates the source of a field’s values. Either a user will enter values
into the field manually or a database application program will enter them

automatically; the application program can provide values for the field only if the
person who developed the program provided a means for it to generate the values.
Note that the setting that represents the database application program is “System.”

Required Value

This denotes whether a user is required to enter a value for a field. Although you’ll
typically set this element to “No” for most of the fields in a table, you must set it to
“Yes” when the field serves as the primary key. You may also need to set Required
Value to “Yes” for a field such as CUSTZIPCODE—a letter or package you send to a
given customer must include a zip code in order for the Postal Service to handle it
properly and accurately.

Default Value

This is a value that a user can enter into a field when a more appropriate value is not
yet available and nulls are disallowed. Use a default value very judiciously, and only if
it is meaningful. For example, “WA” is a meaningful default value for a CUSTSTATE
field when the vast majority of your customers live in Washington. Conversely,
“01/01/12” is not a good default value for a DATE HIRED field because it is a
completely arbitrary value that has no real meaning.

Range of Values

This element specifies every possible valid value for a field. You can set this element
in various ways, such as with a lower and upper limit (1,000 to 9,999) or with a
specific list of values (“WA,” “OR,” “ID,” “MT”). There are three categories under
which you can establish a range of values.

1. General—a complete collection of every possible value for this field. For
example, the general range of values for a CUSTSTATE field might include all
valid abbreviations for every state in the United States.

2. Integrity-specific—a collection of values based on the field’s role within a
table relationship. (You’ll learn all about this category in Chapter 10.)

3. Business-specific—a collection of values generated by a particular business
requirement. Organizations commonly have various requirements that limit the
range of values for a field. In an organization that conducts its business strictly
in the Pacific Northwest, for example, the valid range of values for a
CUSTSTATE field are “WA,” “OR,” “ID,” and “MT.” (You’ll learn more about

this category in Chapter 11, “Business Rules.”)
You’re concerned only with the general range of values during this stage of the
database design process, and you’ll revisit the Range of Values element later when
you establish table relationships and business rules.
It’s important to note that “Other” and “Miscellaneous” are two values that you do
not want to set within any category of the Range of Values element. Both values are
nonspecific and absolutely meaningless within this context and are a sign of mental
laziness in that their very presence indicates a need to review the field for possible
refinement. You can avoid unnecessary confusion and potential problems by
refraining from using these values.

Edit Rule

This element designates at what point a user can enter a value into a field and
whether he can modify that value. You set this element to one of these four options.

1. Enter Now, Edits Allowed: A user must enter a value for this field when she
creates a new record in the field’s parent table. She can then edit the value at
any time.

2. Enter Later, Edits Allowed: A user has the option of entering a value for this
field when he creates a new record in the field’s parent table. This does not
imply in any way that the field’s value can be null for all time; the user must
enter a value for this field at some point in the near future. After he’s entered
the value, he can then edit it at any time.

3. Enter Now, Edits Not Allowed: A user must enter a value for this field when
she creates a new record in the field’s parent table, but she cannot edit it at any
time whatsoever.

4. Enter Later, Edits Not Allowed: A user has the option of entering a value for
this field when he creates a new record in the field’s parent table. This does not
imply in any way that the field’s value can be null for all time; the user must
enter a value for this field at some point in the near future. After he’s entered
the value, he cannot edit it at any time whatsoever.

You should use a default value when you set the Edit Rule element to the second or
fourth option; this will keep the field’s value from being null until such time that the
user enters an appropriate value.

Comparisons Allowed

This indicates the types of comparisons a user can apply to a given field value when
he’s retrieving information from the field. There are six types of comparisons: equal
to (=), not equal to (≠), greater than (>), less than (<), greater than or equal to (>=),
and less than or equal to (<=). This element also indicates whether a user can
compare a given field value to any of the following.

• Another value within the same field. When a field serves as a primary key, this
option applies to the values of related foreign key fields. (You’ll learn more
about this in the next chapter.)

• A value of another field within the parent table or from some other table in the
database.

• A value expression, which is some form of operation involving field values,
literal values, or a combination of both. It returns a single value that you can
then use for the comparison: (RETAIL PRICE – 2.50) is an example of a value
expression.

Controlling the types of comparisons a user can apply to the field’s values enables
you to keep him from making meaningless comparisons. Let’s say that he’s working
with an EMPLOYEE ID NUMBER field based on a numeric data type. Unless you
indicate otherwise, he can make a comparison such as this one:

Is an Employee ID Number in the Employees table greater
than or equal to an Employee ID Number in the Part-Time
Employees table?

Although a “greater than or equal to” comparison is generally acceptable in a numeric
field, it is not appropriate in this instance; there is no valid reason for him to make this
type of comparison.
Similarly, it would be pointless for him to make a comparison between a given
EMPLOYEE ID NUMBER value and the value of another numeric field within the
EMPLOYEES table or some other table within the database; therefore, a comparison
such as this is invalid:

Is an Employee ID Number in the Employees table greater
than or equal to a Quantity On Hand in the Products table?

It is both suitable and reasonable, however, for him to make a comparison between a
given EMPLOYEE ID NUMBER value within the EMPLOYEES table and another

EMPLOYEE ID NUMBER value within a related data table or related subset table. This
comparison, then, is a valid one:

Is an Employee ID Number in the Employees table equal to an
Employee ID Number in the Part-Time Employees table?

There are instances when it is perfectly suitable for the user to compare a particular
value of one field to the value of a completely different field. For example, it is totally
logical for him to make the following comparison between a DATE SHIPPED field and a
DATE ORDERED field:

Is the current value of Date Shipped greater than or equal to
the current value of Date Ordered?

It’s fortunate that he can make this type of comparison—he certainly doesn’t want
the value of DATE SHIPPED to be earlier than the value of DATE ORDERED!
As you set the Comparisons Allowed element for a given field, think about how
you’re going to use the field’s values so that you can designate the appropriate
comparisons. It’s very likely that you’ll review this element later in the design process
when you establish table relationships and define business rules.

Operations Allowed

This element specifies the types of operations that a user can perform on the field’s
values. There are five types of operations: addition (+), subtraction (–), multiplication
(×), division (÷), and concatenation. (Obviously, any combination of these operations
is valid as well.) This element also indicates whether an operation can incorporate

• Another value within the same field
• A value from another field within the parent table or from some other table in

the database
• The result of a value expression (which, as you recall, is itself some form of

operation involving field values, literal values, or a combination of both, that
returns a single value)

You can prevent the user from defining meaningless operations by limiting the types
of operations that he can perform on the field’s values. Let’s consider the EMPLOYEE
ID NUMBER, DATE SHIPPED, and DATE ORDERED fields once again. There is no reason
for the user to perform mathematical operations on a pair of EMPLOYEE ID NUMBER
values within the EMPLOYEES table, nor is there any reason for him to perform

such operations using a given EMPLOYEE ID NUMBER value and some other numeric
field’s value. In the case of the DATE SHIPPED field, however, it is suitable to perform
some of these operations using a given DATE SHIPPED value and the value of some
other appropriate date field within the database. For example, the user might need to
subtract DATE ORDERED from DATE SHIPPED to determine the time that elapsed
between the date that the customer placed the order and the date that the items within
the order were shipped to the customer.
As you set the Operations Allowed element for a given field, think about how you’re
going to use the field’s values so that you can designate the appropriate operations.
It’s very likely that you’ll review this element later in the design process as you define
business rules.
Figure 9.7 shows the Logical Elements section of a Field Specifications sheet for an
EMPLOYEE ID NUMBER field.

Figure 9.7. The Logical Elements category for an EMPLOYEE ID NUMBER field

Using Unique, Generic, and Replica Field Specifications
Earlier in this chapter, you learned that you could define a specification as Unique,
Generic, or Replica. You can ensure that you define the appropriate type of
specification for a given field by following these simple guidelines.

• Use a Unique specification for any field that will appear only once within the
entire database or for a field that serves as a primary key.

• Use a Generic specification for a field that serves as a template for other fields
within the database. Remember to use a nonspecific field name and element
settings that are as broad and general as possible.

• Use a Replica specification for a field that you base on a given generic field or
for a field that serves as a foreign key within a table relationship.

Figure 9.8 shows the complete Unique field specification for a VENDOR ID NUMBER
field.

Figure 9.8. Unique field specification for the VENDOR ID NUMBER field

Here are a few things to note about this specification.
1. This field also appears in the PRODUCTS table, as indicated by the Shared

By general element. This is both reasonable and necessary because each
product must be associated with a specific vendor. (You’ll learn more about
this type of issue in the next chapter.)

2. Examine the settings for the Uniqueness, Null Support, Required Value, and
Edit Rule logical elements. They are set in this manner because the Key Type
element is set to “Primary.” You should, in fact, use these element settings for
any field that serves as a primary key.

3. The Comparisons Allowed logical element is set to “Same Field—Equals” so
that a user can compare VENDOR ID NUMBER values in the VENDORS table to
VENDOR ID NUMBER values in the PRODUCTS table.

4. The Comparisons Allowed logical element is also set to “Value Expression—
Equals” so that a user can compare VENDOR ID NUMBER values to some
arbitrary numeric value.

Figure 9.9 shows the complete Generic field specification for a generic STATE field.

Figure 9.9. Generic field specification for a generic STATE field

Take note of these particular items.
1. The description is very general, as it should be for this type of specification.
2. The setting of the Display Format physical element is in the form of an

instruction. This demonstrates that you have a great deal of flexibility in the
way you set this element.

3. The Range of Values logical element is appropriately broad.
4. The Comparisons Allowed logical element is set to “Value Expression—

Equals” so that a user can compare STATE values to some arbitrary two-
character alphanumeric value.

5. The Operations Allowed logical element is set to “Other Fields—
Concatenation” so that a user can concatenate a given STATE value to the value
of some other alphanumeric field.

6. The Operations Allowed logical element is also set to “Value Expression—
Concatenation” so that a user can concatenate a given STATE value to some
arbitrary alphanumeric value.

This field (and its specification) now serves as a template for all other state fields you
create in the database. For example, you can create a VENDSTATE field based on the
generic STATE field. You’ll define a Replica specification for the VENDSTATE field that
is based on the STATE field’s Generic specification. Although the VENDSTATE field’s
Replica specification draws its initial element settings from the STATE field’s Generic
specification, you can modify any of the Replica specification’s element settings so
that you can completely customize them for the VENDSTATE field. Figure 9.10 shows
the customized Replica field specifications for the VENDSTATE field.

Figure 9.10. Customized Replica field specifications for the VENDSTATE field

Here are a few things to note about this specification.
1. The field name (VENDSTATE) accurately denotes what the field represents.
2. The label (“State”) is what the user will see on visual displays and printed

documents.
3. The Source Specification general element properly references the generic

STATE field’s specification.
4. The Description element is now specific to this field. Recall that the description

is more general in the source specification.
5. A default value has been set for this field; there is no such value in the source

specification.
6. The Range of Values element is now specific to this field; it was much broader

in the source specification.
In the next chapter, you’ll learn how to define a Replica field specification for a field
that serves as a foreign key.

Defining Field Specifications for Each Field in the Database
Now that you have all the necessary fields assigned to each table and you understand
the various elements within a field specification, you can begin the process of defining
a field specification for each field in the database. It will take you a considerable
amount of time to complete this process, but remember that you’re working diligently
to establish field-level integrity by ensuring that the data is consistent, valid, and as
free from errors as possible. All your hard work will pay great dividends because the
information you retrieve from the database will always be timely and accurate, and
you will have a reliable set of structural blueprints you can use when you implement
the database in an RDBMS program.
You can ensure that the specifications are as complete and accurate as possible by
working with both users and management to define them. They can provide insights
into the data and can be of special assistance in refining the specification’s logical
elements. You don’t have to speak with everyone in the organization, but you do
want to assemble and meet with a representative number of people who are very
familiar with the data and how it is used. Schedule as many meetings as are necessary

(or possible) to complete the interview process, and take the time you need to be as
thorough as you can. Above all, do not rush through this phase! Doing so just
diminishes the benefits of your overall efforts and increases your chances of making
unnecessary mistakes.
The best strategy for this task is to define as many of the specifications as you can (as
completely as possible) and then work with the participants to complete the rest. As
you work with a field’s specifications, use your best judgment to define the settings
for each element. Don’t worry if your settings seem slightly incorrect or if you have
difficulty providing settings for some of the elements—you’re going to review them
with the participants anyway. After you’ve defined specifications for all of the fields
that are familiar to you, begin meeting with the participants to work on specifications
for the remaining fields.
Your first order of business during the initial meeting is to explain the various
elements within a field specification and make sure that everyone understands them
as much as possible. Providing the participants with a brief and succinct education on
the specification’s elements gives them the knowledge they need to help you define a
specification properly. (In subsequent meetings, just review the elements to make
certain that everyone remembers what they represent.)
Next, review all of the specifications you’ve defined and ask the participants whether
the settings for the elements are suitable and correct. In some cases, the participants
will reveal new information about a field that will affect that field’s specification. For
example, a participant may remember (prompted by some topic in the discussion) that
there is a specific set of values that has always been used for a particular field;
therefore, you set the field’s Range of Values element to reflect this new information.
Make sure that you examine each part of the specification and then move on to the
next specification when the participants have no further suggestions for refinement.
Repeat this process for each specification.
Now, work with the participants on the specifications you were unable to define or
complete. Try to work with the people who are most familiar with the fields under
discussion because they are likely to know what settings should be used for the
Logical Elements category. Identify the appropriate element settings for each field and
mark them on the Field Specifications sheet. After you’ve defined specifications for
every field in the database, the entire process is complete.
The design of the new database is now close to completion. In the next chapter, you’ll

learn how to establish relationships between the tables in the database. Relationships
are important because they allow a view to draw data from multiple tables
simultaneously.

Case Study
Now that you have all the appropriate fields assigned to the tables in the Mike’s Bikes
database, it’s time to define field specifications for each field. Before you meet with
Mike and his staff, you define as many field specifications as you can. None of the
tables are unusual in any way, and the fields are pretty straightforward, so you have
little difficulty in defining the specifications. Figure 9.11 shows the specifications for
the PRODUCT DESCRIPTION field in the PRODUCTS table.

Figure 9.11. Field specifications for the PRODUCT DESCRIPTION field

Now you meet with Mike and his staff to discuss the field specifications you’ve
defined. No one seems to have problems with any of the specifications; everyone
confirms that all of the element settings seem suitable and correct. You do have a
question, however, regarding the CATEGORY field in the PRODUCTS table: You want
to know the appropriate setting for the Range of Values element. The response to
your question is mixed—no one seems to know the complete list of categories that are
valid for the field, so you decide to specify a general range of values for now. Figure
9.12 shows the revised logical elements for the CATEGORY field.

Figure 9.12. The logical elements for the CATEGORY field in the PRODUCTS
table

You’ll revisit this field (and its elements) again when you establish business rules for

the database. With this problem solved, your meeting—as well as the process of
establishing field specifications—is complete.

Summary
The chapter opened with an explanation of why field specifications are important and
the benefits you derive from defining them. You learned that defining specifications
helps you establish and enforce field-level integrity, enhances overall data integrity,
and compels you to acquire a complete understanding of the nature and purpose of
the data in the database. This level of understanding enables you to leverage the data
to your best advantage.
Next, we discussed the anatomy of a field specification. You’re now familiar with the
three categories of elements within the specification and the sheet you use to record
them. We then discussed each category and its elements in detail. As you now know,
the General Elements category represents the most basic attributes of the field.
During this discussion, you learned a set of guidelines that will help you compose a
good field description. You also learned that you could define three types of
specifications, thus enabling you to establish and maintain consistent field definitions.
We examined the Physical Elements category next, and you learned that it pertains to
the structure of the field. The Logical Elements category was the last topic of
discussion in this section. You now know that it mainly pertains to a field’s values and
that it includes elements such as Key Type, Null Support, Range of Values, Edit Rule,
Comparisons Allowed, and Operations Allowed.
We then discussed how to use each type of specification, and you learned a set of
guidelines that will help you determine which one to define for a given field. You also
examined samples of the specifications, and you know how they differ.
The chapter ended with a discussion of defining field specifications for each field.
Here you learned that the best way to ensure complete and accurate specifications is
to work with users and management to define them. You should first define as many
specifications as you can and then work with the staff to define specifications for the
remaining fields. You also learned that you could work with staff to refine the
specifications you initially defined.

Review Questions
1. State two major reasons why field specifications are important.

2. What do you gain by establishing field-level integrity?
3. What are the three categories of elements in a field specification?
4. Name the three types of specifications.
5. Why is it beneficial for you to compose a proper field description?
6. What does the Data Type element indicate?
7. What does the Character Support element indicate?
8. What is the purpose of the Display Format element?
9. What types of keys are indicated on a field specification?

10. True or False: A null represents a blank value.
11. What is the significance of the Range of Values element?
12. What is the purpose of an Edit Rule?
13. What is the purpose of the Comparisons Allowed element?
14. What is a value expression?
15. When do you use a generic specification?

10. Table Relationships

There is no substitute for the comfort supplied by the utterly taken-for-
granted relationship.

—IRIS MURDOCH

Topics Covered in This Chapter
Why Relationships Are Important
Types of Relationships
Identifying Existing Relationships
Establishing Each Relationship
Refining All Foreign Keys
Establishing Relationship Characteristics
Relationship-Level Integrity
Case Study
Summary
Review Questions

You learned in Chapter 3, “Terminology,” that a relationship exists between two
tables when you can in some way associate the records of the first table with those of
the second. You also learned that each relationship has three distinct characteristics:
the type of relationship that exists between the tables, the manner in which each
participates, and the degree to which each table participates.
In this chapter, I’ll discuss these topics in more detail. You’ll first learn how to
identify and establish the relationships between the tables in a database and then how
to set each relationship’s characteristics. You’ll also learn how to diagram tables and
relationships, which will enable you to create a graphic representation of the entire
database structure.

Why Relationships Are Important
A relationship is an important component of a relational database.

• It establishes a connection between a pair of tables that are logically related

to each other. A pair of tables is logically related via the data each contains. For
example, consider the tables in Figure 10.1.

Figure 10.1. A pair of logically related tables

A logical relationship exists between the data in the STUDENTS table and the
data in the STUDENT INSTRUMENTS table. A student can check out one or
more instruments during the course of a school year, so a record in the
STUDENTS table (representing the student) can be related to one or more
records in the STUDENT INSTRUMENTS table (representing the particular
instruments the student checks out).

• It helps to further refine table structures and minimize redundant data. As
you establish a relationship between a pair of tables, you will inevitably make
minor modifications to the table structures. These refinements will make the
structures more efficient and minimize any redundant data that the tables may
contain.

• It is the mechanism that enables you to draw data from multiple tables
simultaneously. In Chapter 12, “Views,” you’ll learn how a relationship enables
you to construct a view using fields from two or more related tables.

A properly defined relationship ensures relationship-level integrity, which guarantees
that the relationship itself is reliable and sound. (Recall that relationship-level integrity
is a component of overall data integrity.) You can take advantage of the many benefits
a relational database provides only when you establish each relationship carefully and
properly. Failure to do so means that you’ll have a hard and tedious time working

with data from multiple tables, and you’ll certainly encounter problems when you try
to insert, update, or delete records in related tables. You’ll learn more about these
types of problems later as the design process unfolds.

Types of Relationships
Before you begin to establish relationships between tables in the database, you must
know what types of relationships can exist between a given pair of tables. Knowing
how to identify them properly is an invaluable skill for designing a database
successfully.
There are three specific types of relationships that can exist between a pair of tables:
one-to-one, one-to-many, and many-to-many. The tables participate in only one type
of relationship at any given time. (You’ll rarely need to change the type of relationship
between a pair of tables. Only major changes in either of the table’s structures could
cause you to change the relationship.)

Note
The discussion for each type of relationship begins with a generic example of
the relationship. Learning how to visualize a relationship generically enables
you to understand the principle behind the relationship itself. Once you
understand how and why the relationship works, you’ll be able to determine
whether it exists between a given pair of tables quite easily.
Each discussion also includes an example of how to diagram the relationship. I
provide special instructions pertaining to the diagramming process where
appropriate and explain the symbols incorporated within the diagram as
necessary. This allows you to learn the diagramming method at a reasonable
pace and keeps you from having to memorize the entire set of diagram
symbols all at once.

Figure 10.2 shows the first symbols you will use to diagram a table relationship.

Figure 10.2. Diagramming symbols for a data table and a subset table

One-to-One Relationships
A pair of tables bears a one-to-one relationship when a single record in the first table
is related to only one record in the second table, and a single record in the second
table is related to only one record in the first table. Figure 10.3 shows a generic
example of a one-to-one relationship.

Figure 10.3. A generic example of a one-to-one relationship

As you can see, a single record in TABLE A is related to only one record in TABLE
B, and a single record in TABLE B is related to only one record in TABLE A. A one-
to-one relationship usually (but not always) involves a subset table. Figure 10.4 shows
an example of a typical one-to-one relationship that you might find in a database for
an organization’s human resources department. This example also illustrates a
situation where neither of the tables is a subset table.

Figure 10.4. A typical example of a one-to-one relationship

Although the fields in these tables could be combined into a single table, the database
designer chose to place the fields that can be viewed by anyone in the organization in
the EMPLOYEES table and the fields that can be viewed only by authorized
personnel in the COMPENSATION table. Only one record is required to store the
compensation data for a given employee, so there is a distinct one-to-one relationship
between a record in the EMPLOYEES table and a record in the COMPENSATION
table.
Figure 10.5 shows a generic example of how you create a relationship diagram for a
one-to-one relationship.

Figure 10.5. Diagramming a one-to-one relationship

The line that appears between the tables in the diagram indicates the type of
relationship, and there is a particular line that you use for each type. Later in this
chapter, you’ll learn how to modify the line so that it also shows the characteristics of
the relationship. Figure 10.6 shows the relationship diagram for the EMPLOYEES
and COMPENSATION tables in Figure 10.4. (Note that a Data Table symbol
represents each table.)

Figure 10.6. The relationship diagram for the EMPLOYEES and
COMPENSATION tables

One-to-Many Relationships
A one-to-many relationship exists between a pair of tables when a single record in the
first table can be related to one or more records in the second table, but a single

record in the second table can be related to only one record in the first table. Let’s
look at a generic example of this type of relationship.
Say you’re working with two tables, TABLE A and TABLE B, that have a one-to-
many relationship between them. Because of the relationship, a single record in
TABLE A can be related to one or more records in TABLE B. Figure 10.7 shows the
relationship from the perspective of TABLE A.

Figure 10.7. A one-to-many relationship from the perspective of TABLE A

Conversely, a single record in TABLE B can be related to only one record in TABLE
A. Figure 10.8 shows the relationship from the perspective of TABLE B.

Figure 10.8. A one-to-many relationship from the perspective of TABLE B

This is by far the most common relationship that exists between a pair of tables in a
database, and it is the easiest to identify. It is crucial from a data integrity standpoint
because it helps to eliminate duplicate data and to keep redundant data to an absolute
minimum. Figure 10.9 shows a common example of a one-to-many relationship that
you might find in a database for an equipment rental store.

Figure 10.9. A typical example of a one-to-many relationship

A customer can check out any number of items, so a single record in the
CUSTOMERS table can be related to one or more records in the CUSTOMER
RENTALS table. A single item, however, is associated with only one customer at any
given time, so a single record in the CUSTOMER RENTALS table is related to only
one record in the CUSTOMERS table.
Figure 10.10 shows a generic example of how you create a relationship diagram for a
one-to-many relationship.

Figure 10.10. Diagramming a one-to-many relationship

Note that the crow’s foot symbol is always located next to the table on the “many”
side of the relationship. Figure 10.11 shows the relationship diagram for the
CUSTOMERS and CUSTOMER RENTALS tables in Figure 10.9.

Figure 10.11. The relationship diagram for the CUSTOMERS and CUSTOMER
RENTALS tables

Many-to-Many Relationships
A pair of tables bears a many-to-many relationship when a single record in the first
table can be related to one or more records in the second table and a single record in
the second table can be related to one or more records in the first table.
Assume once again that you’re working with TABLE A and TABLE B and that there
is a many-to-many relationship between them. Because of the relationship, a single
record in TABLE A can be related to one or more records (but not necessarily all) in
TABLE B. Conversely, a single record in TABLE B can be related to one or more
records (but not necessarily all) in TABLE A. Figure 10.12 shows the relationship
from the perspective of each table.

Figure 10.12. A many-to-many relationship from the perspective of both
TABLE A and TABLE B

This is the second most common relationship that exists between a pair of tables in a
database. It can be a little more difficult to identify than a one-to-many relationship,
so you must be sure to examine the tables carefully. Figure 10.13 shows a typical
example of a many-to-many relationship that you might find in a school database,
which happens to be a classic example of this type of relationship (no pun intended!).

Figure 10.13. A typical example of a many-to-many relationship

A student can attend one or more classes during a school year, so a single record in
the STUDENTS table can be related to one or more records in the CLASSES table.
Conversely, one or more students will attend a given class, so a single record in the
CLASSES table can be related to one or more records in the STUDENTS table.
Figure 10.14 shows a generic example of how you create a relationship diagram for a
many-to-many relationship.

Figure 10.14. Diagramming a many-to-many relationship

In this case, there is a crow’s foot symbol located next to each table. Figure 10.15
shows the relationship diagram for the STUDENTS and CLASSES tables in Figure
10.13.

Figure 10.15. The relationship diagram for the STUDENTS and CLASSES
tables

Problems with Many-to-Many Relationships

A many-to-many relationship has an inherent peculiarity that you must address before
you can effectively use the data from the tables involved in the relationship. The issue
is this: How do you easily associate records from the first table with records in the
second table in order to establish the relationship? This is an important question
because you’ll encounter problems such as these if you do not establish the

relationship properly.
• It will be tedious and somewhat difficult to retrieve information from one of

the tables.
• One of the tables will contain a large amount of redundant data.
• Duplicate data will exist within both tables.
• It will be difficult for you to insert, update, and delete data.

There are two common methods that novice and inexperienced developers use in a
futile attempt to address this situation. I’ll demonstrate how you might apply these
methods using the STUDENTS and CLASSES tables in Figure 10.16 as examples.

Figure 10.16. Structures of the STUDENTS and CLASSES tables

Note
As this example unfolds, keep in mind that every many-to-many relationship
you encounter will exhibit these same issues.

As you can see, there is no actual connection between the two tables, so you have no
way of associating records in one table with records in the other table. The first
method you might use to attempt to establish a connection involves taking a field
from one table and incorporating it a given number of times within the other table.
(This approach usually appeals to people who are accustomed to working with
spreadsheets.) For example, you could take the STUDENT ID field from the
STUDENTS table and incorporate it within the CLASSES table structure, creating as
many copies of the field as you need to represent the maximum number of students
that could attend any class. Figure 10.17 shows the revised version of the CLASSES
table structure.

Figure 10.17. Incorporating STUDENT ID fields within the CLASSES table
structure

This structure is likely to be problematic, so you might try taking the CLASS ID field
from the CLASSES table and incorporating it within the STUDENTS table structure
instead. Figure 10.18 shows the revised version of the STUDENTS table structure.

Figure 10.18. Incorporating CLASS ID fields within the STUDENTS table
structure

Do these structures look (vaguely) familiar? They should. By using this method, all
you’ve done is to introduce a “flattened” multivalued field into the table structure. In
doing so, you’ve also introduced the problems associated with a multivalued field. (If
necessary, review Chapter 7, “Establishing Table Structures.”) Although you know
how to resolve a multivalued field, this is not a good or proper way to establish the

relationship.
The second method you might attempt to use is simply a variation of the first method.
In this case, you take one or more fields from one table and incorporate a single
instance of each field within the other table. For example, you could take the CLASS
ID, CLASS NAME, and INSTRUCTOR ID fields from the CLASSES table and
incorporate them into the STUDENTS table in order to identify the classes in which a
student is currently enrolled. This may seem to be a distinct improvement over the
first method, but you’ll see that there are problems that arise from such modifications
when you load the revised STUDENTS table with sample data.
Figure 10.19 clearly illustrates the problems you’ll encounter using this method.

• The table contains unnecessary duplicate fields. You learned all about
unnecessary duplicate fields and the problems they pose back in Chapter 7, so
you know that using them here is not a good idea. Besides, it is very likely that
the CLASS NAME and INSTRUCTOR ID fields are not appropriate in the
STUDENTS table—the CLASS ID field identifies the class sufficiently, and it is
really all you need to identify the classes a student is taking.

• There is a large amount of redundant data. Even if you remove the CLASS
NAME and INSTRUCTOR ID fields from the STUDENTS table, the CLASS ID
field will still produce a lot of redundant data.

• It is difficult to insert a new record. If you enter a record in the STUDENTS
table for a new class (instead of entering it in the CLASSES table) without also
entering student data, the fields pertaining to the student will be null—including
the primary key of the STUDENTS table (STUDENT ID). This will
automatically trigger a violation of the Elements of a Primary Key because the
primary key cannot be null; therefore, you cannot insert the record into the
table until you can provide a proper primary key value.

• It is difficult to delete a record. This is especially true if the only data about a
new class has been recorded in the particular student record you want to
delete. Note the record for Diana Barlet, for example. If Diana decides not to
attend any classes this year and you delete her record, you will lose the data for
the “Introduction to Database Design” class. That might not create a serious
problem—unless someone neglected to enter the data about this class into the
CLASSES table as well. Once you delete Diana’s record, you’ll have to reenter
all of the data for the class in the CLASSES table.

Figure 10.19. The revised STUDENTS table with sample data

Fortunately, you will not have to worry about any of these problems because you’re
going to learn the proper way to establish a many-to-many relationship.

Self-Referencing Relationships
This particular type of relationship does not exist between a pair of tables, which is
why it isn’t mentioned at the beginning of this section. It is instead a relationship that
exists between the records within a table. Ironically, you’ll still regard this throughout
the design process as a table relationship.
A table bears a self-referencing relationship (also known as a recursive relationship)
to itself when a given record in the table is related to other records within the table.
Similar to its dual-table counterpart, a self-referencing relationship can be one-to-one,
one-to-many, or many-to-many.

One-to-One

A self-referencing one-to-one relationship exists when a given record in the table can
be related to only one other record within the table. The MEMBERS table in Figure
10.20 is an example of a table with this type of relationship. In this case, a given
member can sponsor only one other member within the organization; the SPONSOR ID

field stores the member identification number of the member acting as a sponsor.
Note that Susan Black is Tom Wickerath’s sponsor.

Figure 10.20. Example of a self-referencing one-to-one relationship

Figure 10.21 shows how you diagram this type of relationship.

Figure 10.21. Diagramming a self-referencing one-to-one relationship

One-to-Many

A table bears a self-referencing one-to-many relationship to itself when a given record
in the table can be related to one or more other records within the table. Figure 10.22
shows an example in which a given customer can refer other customers to the
organization. The REFERRED BY field stores the customer identification number of the
customer making the referral. Note that Paul Litwin referred both Andy Baron and
Mary Chipman.

Figure 10.22. Example of a self-referencing one-to-many relationship

Figure 10.23 shows how you diagram a self-referencing one-to-many relationship.

Figure 10.23. Diagramming a self-referencing one-to-many relationship

Many-to-Many

A self-referencing many-to-many relationship exists when a given record in the table
can be related to one or more other records within the table and one or more records
can themselves be related to the given record. This may sound somewhat confusing
at first, but the example in Figure 10.24 should help clarify the matter.

Figure 10.24. Example of a self-referencing many-to-many relationship

In this case, a particular part can comprise several different component parts, and it
can itself be a component of other parts. For example, a clamp assembly (Part ID
704) is composed of a fastening bolt (Part ID 703), a bottom clamp (Part ID 702),
and a top clamp (Part ID 701). Additionally, the clamp assembly is itself a component
of a seat assembly (Part ID 707) and a frame assembly (Part ID 711). Figure 10.25
shows how you diagram this type of relationship.

Figure 10.25. Diagramming a self-referencing many-to-many relationship

Note
Before you begin to work through the examples in the remainder of the
chapter, now is a good time to remember a principle I presented in the
introduction:
Focus on the concept or technique and its intended results, not on the example
used to illustrate it.

There are, without a doubt, any number of ways in which you can relate the tables in
these examples (and also in the case studies), depending on each table’s role within a
given database. The manner in which I use the examples here is not important; what
is important are the techniques I use to identify and establish relationships between
tables. Once you learn these techniques, you can identify and establish relationships
for any pair of tables within any context you may encounter.
Now that you’ve learned about the various types of table relationships, your next task
is to identify the relationships that currently exist among the tables in the database.

Identifying Existing Relationships
When you were composing the table descriptions earlier in the database design
process (back in Chapter 7, to be exact), you assembled a representative group of
users and management to help you with that task. These people were also designated
as representatives of the organization and granted the authority to aid in the decision-
making process throughout the remainder of the database design process. (At least,
this is the current assumption for the sake of discussion and example.) Now you’ll
arrange meetings with this group once again so that they can help you identify existing
table relationships. These folks can provide valuable input because they are likely to
have a good perspective on how various subjects (or tables) are related. Although
their perceptions of the manner in which these subjects are related may not always be
complete or accurate, their contributions will still be useful in identifying most of the
relationships.
Begin the process of identifying relationships by creating a matrix of all the tables in
your database. (You can do this on a sheet of paper, a white board, or a spreadsheet
program.) For example, assume you’re working with these tables:

List each of the tables across the top of the matrix, and then again down the left-hand
side of the matrix; make certain the table names are in the same order. Figure 10.26
illustrates how the matrix should appear.

Figure 10.26. Setting up a table matrix to help identify existing relationships

Select a table on the left as a starting point and determine whether it has a relationship
with any of the tables listed across the top, working your way through the matrix as
you do so. (It doesn’t matter whether you work your way across the top or down the
side. Just make sure you work consistently, as it will make the task much easier.)
Keep in mind that you’re looking for direct relationships only—there must be a
specific connection between tables participating in the relationship. For example, the
CLASSES table has a direct relationship to the STUDENTS table because one or
more students can attend a given class. Conversely, the CLASSES table has an
indirect relationship to the STAFF table via the FACULTY table; it is a faculty
member that teaches a class, not a staff member. (You don’t have to worry about
indirect relationships just yet.)
As you work with a pair of tables, ask the participants questions about the records in
each table. Your goal is to determine the relationship between a single record in one
table to one or more records in the other table, and vice versa. (Remember that each

record represents a single instance of the subject represented by the table.) When you
get to a point where you’re examining the same table on both sides of the matrix, try
to determine the relationship between a given record in the table to one or more other
records within the table itself.
There are two types of questions you can ask.

1. Associative: This is a simple and straightforward type of question that you can
generically phrase as follows: Can a single record in (name of first table) be
associated with one or more records in (name of second table)? Considering
the matrix in Figure 10.26, you might ask an associative question such as this:

Can a single record in CLASSES be associated with one or
more records in BUILDINGS?

You can use this type of question to determine whether a table has a self-
referencing relationship by making two minor modifications to the question
itself: Can a single (singular form of the table name) be associated with one or
more (plural form of the table name)? For example, here’s a question you
might pose for the STAFF table:

Can a single staff member be associated with one or more other
staff members?

2. Contextual: This type of question contrasts a single instance of the subject
represented by the first table against multiple instances of the subject
represented by the second table. There are two categories within this type of
question: ownership-oriented and action-oriented.
a. Ownership-oriented questions include words or phrases such as own, has, is

part of, and contain. Here’s an example of this type of question:
Can a single order contain one or more products?

You can use this question to test for a self-referencing relationship by making
the same modifications you made to the associative question. Here’s an
example of a question you might pose for a PARTS table:

Can a single part contain one or more other parts?
b. Action-oriented questions incorporate action verbs such as make, visit,

place, teach, and attend. Here’s an example of this type of question:
Does a single flight instructor teach one or more types of

classes?
As you may have already guessed, you can use this question to test for a self-
referencing relationship as well by making the same modifications:

Does a single staff member manage one or more other staff
members?

Use the type of question you believe to be the most appropriate for the pair of tables
you’re working with. As you work down the list of tables in the matrix, you’ll
eventually realize that you’re asking questions about a given pair of tables twice—
once from the perspective of the first table and then again from the perspective of the
second table. The answers to both of these questions will identify the type of
relationship that exists between the tables.
Continuing with the example, assume that you’ve decided to start with the CLASSES
table and this is your first question:

Is a single class held in one or more buildings?
The answer to this question will reveal the type of relationship that exists between
these tables from the perspective of the CLASSES table. If you receive the following
answer, then a one-to-one relationship exists between these tables:

A single class is held in only one building.
If you receive this answer, however, then a one-to-many relationship exists between
the two tables:

A single class may be held in more than one building.
Once you’ve identified the relationship, indicate the relationship type in the box
located at the junction of the CLASSES table row (on the left) and the BUILDINGS
table column (on the top). You can use the following shorthand symbols for the
relationship types:

1:1—one-to-one
1:N—one-to-many
M:N—many-to-many

Note
You won’t need the many-to-many shorthand symbol at this point, but I’ve
included it here for completeness.

Figure 10.27 shows how the table matrix looks after you’ve finished identifying
relationships for the CLASSES table. Remember that the relationships indicated here
are from the perspective of the CLASSES table.

Figure 10.27. Completed table-matrix entries for the CLASSES table

You’ve probably noticed that some of the junction boxes are empty; this is perfectly
acceptable. It’s unnecessary for you to enter anything into the junction box if there is
no relationship between the tables at either end of the junction.
Now you repeat this process for each table on the left-hand side of the matrix.
Remember that you can start with any table. Let’s assume that you decide to continue
with the BUILDINGS table, and you’re attempting to identify the relationship
between it and the CLASSES table. Yes, I know you’ve covered this once already,
but in this case you’re identifying the relationship from the perspective of the
BUILDINGS table. Let’s now assume that you ask this question:

Does a single building provide space for more than one class?
If the answer is yes, then a one-to-many relationship exists between these tables;
otherwise, it’s a one-to-one relationship. Once you’ve identified the relationship,
indicate the relationship type in the box located at the junction of the BUILDINGS

table row (on the left) and the CLASSES table column (on the top). Figure 10.28
shows the revised table matrix with your entries for the BUILDINGS table.

Figure 10.28. Completed table-matrix entries for the BUILDINGS table

You’ve just seen two examples of how to identify a relationship between a distinct
pair of tables, so let’s take a look at how you identify a self-referencing relationship
for a single table. Assume you’re working with the STAFF table, and you’re now at
the junction between the STAFF table on the left and the STAFF table on the top.
Using the techniques you learned earlier in this section, you might pose a question
such as this:

Can a single staff member be associated with one or more other
staff members?

As with the earlier examples, the answer will indicate the type of relationship. Say you
received this answer:

Yes, a given staff member can be the spouse of another staff
member.

This indicates (rather obviously) that a self-referencing one-to-one relationship exists
for the STAFF table. But assume you received this answer instead:

Yes, a single staff member can manage several other staff
members.

You probably quickly realized that this answer indicates that a self-referencing one-to-
many relationship exists for the STAFF table. Identifying these two types of

relationships is a relatively easy task; identifying a self-referencing many-to-many
relationship can be slightly more difficult.
This is the type of question you must ask in order to determine whether a table has a
self-referencing many-to-many relationship: Can a single (singular form of the table
name) be associated with one or more other (plural form of the table name), and can
any of those (plural form of the table name) then be associated with yet one or more
other (plural form of the table name)? For example, here’s a question you might pose
for the STAFF table:

Can a single staff member be associated with one or more other
staff members, and can any one of those staff members then
be associated with one or more other staff members?

An answer such as the following (or one very similar to it) indicates that the STAFF
table has a self-referencing many-to-many relationship:

Yes, a given staff member can manage several other staff
members, and any one of those folks can then supervise one or
more other staff members.

Once you’ve identified the type of self-referencing relationship that exists for the
table, you indicate it in the table matrix as you would any other relationship.
Relationships will often differ from one perspective to the other, and you must know
how to determine what type of relationship officially exists between each pair of
tables on the matrix. You make this determination using the following set of formulas;
each formula corresponds to a particular relationship type definition. (I’ve provided
the definitions as a point of reference.)

1:1 + 1:1 = 1:1 A pair of tables bears a one-to-one relationship when a
single record in the first table is related to only one record in
the second table, and a single record in the second table is
related to only one record in the first table.

1:N + 1:1 = 1:N A one-to-many relationship exists between a pair of tables
when a single record in the first table can be related to one or
more records in the second table, but a single record in the
second table can be related to only one record in the first
table.

1:N + 1:N = M:N A pair of tables bears a many-to-many relationship when a

single record in the first table can be related to one or more
records in the second table and a single record in the second
table can be related to one or more records in the first table.

Here is the specific procedure you’ll use to identify the official relationship between a
pair of tables in the matrix. (It incorporates the relationship formulas in the preceding
list.) Let’s first look at a generic version of the procedure.

1. Select a pair of tables and note the entry at the junction between the first table
and the second table.

2. Locate the second table on the same side of the matrix you’re working on and
note the entry at the junction between it and the first table on the opposite side
of the matrix.

3. Apply the appropriate formula to the two entries and identify the official
relationship between the tables.

4. Diagram the relationship in the appropriate manner.
5. Cross out both entries on the matrix.

Now, let’s take a look at how you apply this procedure to a pair of tables in the
matrix. (In this example, you’re working down the left-hand side of the matrix.)

1. Assume you’ve selected the BUILDINGS and CLASSES tables. You note that
the entry at the junction between BUILDINGS and CLASSES is 1:N.

2. Now you proceed down the left-hand side of the matrix until you locate the
CLASSES table and then note that the entry at the junction between the
CLASSES and BUILDINGS table is 1:1.

3. Using these entries with the appropriate formula, you determine that the
official relationship between the BUILDINGS and CLASSES tables is 1:N.
(1:N + 1:1 = 1:N)

4. You create a one-to-many relationship diagram for the BUILDINGS and
CLASSES tables.

5. You cross out the entries on the matrix.
Figure 10.29 shows the results of your work.

Figure 10.29. Identifying the official relationship between the BUILDINGS and
CLASSES tables

Note that the relationship diagram is built from the perspective of the BUILDINGS
table. This is due to the fact that the BUILDINGS table is on the “one” side of the
relationship. When you create a simple diagram such as this, I recommend that you
always show the “one” side of the relationship on the left and the “many” side on the
right. Following this practice will make your diagrams easy to read and help ensure
that you create them in a consistent manner. (This practice is unnecessary, however,
when you create a complex diagram showing the relationships between several
tables.)
At the very least, you should include each table’s primary key in the diagram. Doing
so will prove to be a valuable visual aid when you begin to establish the relationships.
You could go so far as to display each table’s complete structure (as you see in Figure
10.30), assuming you have space on the diagram. Displaying the structures in this
manner often helps to reinforce the decision you’ve made regarding the type of
relationship that exists between the tables. (I use both types of diagrams throughout

the remainder of the book.)

Figure 10.30. Displaying each table’s structure in a relationship diagram

Note
You’ll occasionally find it difficult to identify the exact relationship between a
given pair of tables. When this happens, just load the tables with some sample
data. This usually helps to reveal the type of relationship that exists between
the tables.

It’s worth mentioning that this procedure is much easier and shorter when you work
with a table that has a self-referencing relationship, such as the STAFF table. As
Figure 10.31 illustrates, all you have to do here is diagram the relationship and cross
out the entry on the matrix.

Figure 10.31. Working with a self-referencing relationship

Continue this procedure until you’ve eliminated all of the entries on the matrix. When
you’ve finished identifying the official relationships among the tables in the database,
you can then go through the process of establishing each relationship in the
appropriate manner.

Establishing Each Relationship
This process involves defining an explicit logical connection between a pair of related
tables. The type of relationship that exists between the tables determines the manner
in which you define the connection.

One-to-One and One-to-Many Relationships
You use a primary key and a foreign key to establish the connection between tables
participating in a one-to-one or one-to-many relationship. (You’ll learn the definition
of a foreign key in just a moment.)

The One-to-One Relationship

In this type of relationship, one table serves as a parent table and the other serves as a
child table. A record must exist in the parent table before you can enter a related
record in the child table; stated another way, a record in the child table must have a
related record in the parent table. The roles you assign to the tables usually depend on
the subjects they represent, although there will be instances when you can assign the
roles rather arbitrarily. In Figure 10.32, for example, you would most likely assign the
parent role to the STAFF table and the child role to the COMPENSATION table.
This is a reasonable assumption because it would be completely illogical to have a
record in the COMPENSATION table that is not related to a record in the STAFF
table.

Figure 10.32. Which table would you pick as the parent table?

In the case where one of the tables is a subset table, you will usually assign the child
role to the subset table. There are instances, however, when you can assign the parent
role to the subset table.
You establish a one-to-one relationship by taking a copy of the parent table’s primary
key and incorporating it within the structure of the child table, where it then becomes
a foreign key. (The term foreign key is derived from the fact that the child table
already has a primary key of its own, and the primary key you are introducing from
the parent table is “foreign” to the child table.) In most one-to-one relationships,
however, the foreign key also serves as the child table’s primary key.

Figure 10.33 illustrates how you would establish the relationship between the STAFF
and FACULTY tables. STAFF is the parent table in this case because a record in the
FACULTY table must be related to a record in the STAFF table; faculty members are
drawn from the school’s staff. If you were to follow the procedure you just learned,
you would take a copy of the STAFF table’s primary key and incorporate it as a
foreign key in the FACULTY table. This is unnecessary, however, because
FACULTY is already a properly defined subset table. (Recall that a subset table and
the data table from which it was derived must share the same primary key. You
learned how to define a subset table in Chapter 7 and how to establish its primary key
in Chapter 8, “Keys.”)

Figure 10.33. Establishing the one-to-one relationship between the STAFF and
FACULTY tables

Figure 10.34 shows a slightly different example of a one-to-one relationship. Assume
that MANAGERS is a subset table of EMPLOYEES but has a direct relationship to
DEPARTMENTS—a single manager is associated with only one department and a
single department is associated with only one manager. Further assume that
MANAGERS is the parent table and DEPARTMENTS is the child table. (This is a
good example of a scenario in which you can choose the roles rather arbitrarily. It’s
also an instance of when a subset table plays the parent role within the relationship.)

Figure 10.34. A one-to-one relationship with a subset table in the parent role

Establish the relationship between these tables using the procedure you’ve just
learned, and then identify the DEPARTMENTS table’s new foreign key (EMPLOYEE
ID) by placing the letters “FK” next to its name. Figure 10.35 shows the revised
relationship diagram with the results of your modifications.

Figure 10.35. Establishing the relationship between the MANAGERS and
DEPARTMENTS tables

As long as you can visualize this process generically, you’ll be able to establish any
one-to-one relationship you encounter.

Note
Many database designers will use MANAGER ID as the primary key name in
the MANAGERS table and the foreign key name in the DEPARTMENTS
table. I choose to use EMPLOYEE ID instead for these reasons.

• MANAGERS is a subset of the EMPLOYEES table, so it shares the same
primary key (EMPLOYEE ID).

• It keeps the field in conformance with the Elements of the Ideal Field. (It
retains a majority of its characteristics when it appears in more than one
table.)

• It keeps the field in conformance with the Elements of a Foreign Key.
(You’ll learn about foreign keys later in this chapter.)

• It removes any possible ambiguity or doubt about the true nature of a
foreign key. (I’ll explain this in more detail during the discussion of the
Elements of a Foreign Key.)

There is no absolute right or wrong way to do this—in the end, the approach
you use is simply a matter of style. Once you decide which approach you
want to use, however, make certain you use it consistently.

There is a small change in the way you’ll diagram the relationships from this point
forward. You should now use the primary key as the beginning point and the foreign
key as the end point of the relationship line. (The only exception will be when you’re
diagramming the relationship between a subset table and its parent data table.) Making
this minor modification will help you visualize the relationships more clearly and make
it easier to identify the fields that establish the relationship.

The One-to-Many Relationship

The technique you use to establish a one-to-many relationship is similar to the one
you used to establish a one-to-one relationship. You simply take a copy of the
primary key from the table on the “one” side of the relationship and incorporate it
within the table structure on the “many” side, where it then becomes a foreign key.
For example, consider the one-to-many relationship between the BUILDINGS and
ROOMS tables shown in Figure 10.36.

Figure 10.36. The existing one-to-many relationship between the BUILDINGS
and ROOMS tables

The relationship between these two tables is such that a single building can contain
one or more rooms, but a single room is contained within only one building. Using the
procedure outlined earlier, you establish this relationship by taking a copy of the
primary key (BUILDING NUMBER) from the BUILDINGS table and incorporating it as
a foreign key within the ROOMS table. Now, revise the relationship diagram and
make the same type of adjustments as you did with the diagram for the one-to-one
relationship. Your revised diagram should look like the one in Figure 10.37. (Note that
the middle line of the crow’s foot symbol is the significant connection point—it
should point directly to the foreign key.)

Figure 10.37. Establishing the one-to-many relationship between the
BUILDINGS and ROOMS tables

Resolving Multivalued Fields—Revisited

Back in Chapter 7 you learned how to resolve a multivalued field by using this generic

procedure:
1. Remove the field from the table and use it as the basis for a new table. If

necessary, rename the field in accordance with the field naming guidelines that
you learned earlier in this chapter.

2. Use a field (or set of fields) from the original table to relate the original table
to the new table; try to select fields that represent the subject of the table as
closely as possible. The field(s) you choose will appear in both tables.

3. Assign an appropriate name, type, and description to the new table and add it
to the final table list.

You used this procedure to resolve a multivalued field called CATEGORIES TAUGHT in
an INSTRUCTORS table. Figure 10.38 shows the original version of the table and
the results of applying the procedure.

Figure 10.38. The original resolution of the CATEGORIES TAUGHT multivalued
field

There’s one final fact about a multivalued field that you need to learn: An inherent
one-to-many relationship exists between a given set of values within a multivalued
field and the record in which they reside. You’ll see this when you examine the

original INSTRUCTORS table in Figure 10.38. A single instructor (such as Kira
Bently) can teach one or more categories (DTP, SS, WP)—this holds true for every
record in the table.
When you properly resolve the multivalued field, the tables produced by the
procedure inherit the relationship. This is clearly the case with the revised
INSTRUCTORS and new INSTRUCTOR CATEGORIES tables. You can now
establish this one-to-many relationship as you would any other. (Of course, this
assumes that you’ve assigned a primary key to the INSTRUCTORS table.) Figure
10.39 shows the results of properly establishing this relationship.

Figure 10.39. Establishing the one-to-many relationship between the
INSTRUCTORS and INSTRUCTOR CATEGORIES tables

The INSTRUCTOR ID field in the INSTRUCTOR CATEGORIES table serves as a
foreign key and helps to establish the one-to-many relationship between the
INSTRUCTORS and INSTRUCTOR CATEGORIES tables. INSTRUCTOR ID is also
part of the composite primary key for the INSTRUCTOR CATEGORIES table; a
given combination of INSTRUCTOR ID and CATEGORY TAUGHT values uniquely
identifies a specific record in the table.

The Many-to-Many Relationship
You establish a many-to-many relationship with a linking table. This is a new table
that you’ll create using the following three-step procedure.

1. Define the linking table by taking copies of the primary key from each table in
the relationship and using those keys to form the structure of the table. These
fields will serve two distinct purposes within the linking table: Together they
constitute the table’s composite primary key, and each is a unique foreign key

that helps to establish a relationship between its parent table and the linking
table.

2. Give the linking table a name that represents the nature of the relationship
between the two tables. For example, if you’re establishing a many-to-many
relationship between a PILOTS table and a CERTIFICATIONS table, you
might choose to call the linking table PILOT CERTIFICATIONS.

3. Add the linking table to the final table list and make the proper entries for
“Table Type” and “Table Description.”

Figure 10.40 shows how you establish the many-to-many relationship between the
STUDENTS and CLASSES tables. (Note the new diagram symbol used to represent
a linking table.)

Figure 10.40. Establishing the many-to-many relationship between the
STUDENTS and CLASSES tables

Note
You could have used STUDENT SCHEDULES or CLASS SCHEDULES as
the name of the linking table; STUDENT CLASSES just happens to be my
personal preference. The point to remember is that you should use a name
that makes the most sense to you or the organization.

Creating a linking table produces a few noteworthy results.
• The original many-to-many relationship has been dissolved because there is

no longer a direct relationship between the STUDENTS and CLASSES tables.
The original relationship has been replaced by two one-to-many relationships:
one between STUDENTS and STUDENT CLASSES and another between
CLASSES and STUDENT CLASSES. In the first relationship, a single record
in STUDENTS can be associated with one or more records in STUDENT
CLASSES, but a single record in STUDENT CLASSES table can be
associated with only one record in STUDENTS. In the second relationship, a
single record in the CLASSES table can be associated with one or more
records in STUDENT CLASSES, but a single record in STUDENT CLASSES
can be associated with only one record in CLASSES.

• The STUDENT CLASSES linking table contains two foreign keys. STUDENT
ID and CLASS ID are both copies of the primary keys from the STUDENTS
and CLASSES tables, respectively; therefore, each is a foreign key by
definition. As such, they help to establish the relationship between their parent
tables and the linking table.

• The STUDENT CLASSES linking table has a composite primary key
composed of the STUDENT ID and CLASS ID fields. Except in rare instances, a
linking table always contains a composite primary key. (This rule applies to the
database’s logical design only. There are various reasons why you might break
this rule when you transform the logical design into a physical design, but this is
a discussion that is beyond the scope of this book.) It’s important to note that
you’ll occasionally have to add more fields to the linking table in order to
guarantee a unique primary key value. For example, assume the school decides
to record student schedules for every term of the school year (fall, winter, and
spring). You would have to add a new field, perhaps called TERM, and
designate it as part of the composite primary key. This would enable you to
enter another instance of a given student and class into the table, but for a
different term; a student may need to retake a class during the spring term
because he failed the class in the fall term.

• The linking table helps to keep redundant data to an absolute minimum.
There is no superfluous data in this table at all. In fact, the main advantage of
this table structure is that it allows you to enter as few or as many classes for a

single student as are necessary. Later in the database design process, you’ll
learn how to create views to draw the data from these tables together in order
to present it as meaningful information.

• The name of the linking table reflects the purpose of the relationship it helps
establish. The data stored in the STUDENT CLASSES table represents a
student and the classes in which he or she is enrolled.

As you work with many-to-many relationships, there will be instances in which you
will need to add fields to the linking table in order to reduce data redundancy and
further refine structures of the tables participating in the relationship. For example,
assume you’re working on a new database with a colleague and he’s just brought the
ORDERS and PRODUCTS tables in Figure 10.41 to your attention.

Figure 10.41. Is there a problem with either of these tables?

You note that there’s a many-to-many relationship between the tables and then realize
that your colleague tried to establish this relationship by taking a copy of the PRODUCT
NUMBER and QUOTE PRICE fields from the PRODUCTS table and incorporating them
into the ORDERS table. He thought that this was the best way to associate various
products with a particular order. The presence of these fields in the ORDERS table,
however, produces a large amount of redundant data. Figure 10.42 illustrates this
problem quite clearly.

Figure 10.42. Redundant data caused by an improperly established many-to-
many relationship

You can enter only one product number, quantity ordered, and quote price for any
given record; therefore, you’ll have to enter a new record into the table for each item
a customer places on his order. Customer number 9001, for example, included eight
items on an order he made on May 16, so there are eight records in the table for this
order alone.
Based on what you learned earlier in this chapter, you know that this is an improper
way to establish this relationship. You also know that you can establish the
relationship properly by creating and using a linking table. So you remove the
PRODUCT NUMBER field from the ORDERS table, establish the relationship in the
appropriate manner, and revise the relationship diagram. Figure 10.43 shows the
results of your work.

Figure 10.43. Properly establishing the many-to-many relationship between the
ORDERS and PRODUCTS tables

You’ve eliminated the redundant data in the ORDERS table, but you still have two
minor problems.

1. The QUOTE PRICE and QUANTITY ORDERED fields are no longer appropriate for
the ORDERS table; the ORDERS table’s primary key does not exclusively
identify their values, and they bear no relationship to any of the remaining
fields in the table. They do, however, relate to a particular PRODUCT NUMBER
that’s part of a given order within the ORDER DETAILS table.

2. You have duplicate data because there are two copies of the QUOTE PRICE
field: one in the ORDERS table and another in the PRODUCTS table.

So you resolve the first problem by removing the QUOTE PRICE and QUANTITY
ORDERED fields from the ORDERS table and incorporating them within the ORDER
DETAILS table. You then resolve the second problem by deleting the QUOTE PRICE
field from the PRODUCTS table; it makes more sense to associate a quote price with
a product as it’s being ordered. Finally, you modify the relationship diagram to reflect
the changes you made to the structures. Figure 10.44 shows your revised diagram.

Figure 10.44. The revised ORDER DETAILS linking table

When you establish a many-to-many relationship between a pair of tables, make
certain that you check each table and determine whether there are any fields that you
should transfer to the linking table. When in doubt, load all the tables with sample
data; this will usually reveal any potential problems.

Note
You won’t encounter this problem very often if you faithfully follow the
design process you’ve learned thus far. It will typically arise, however, when
you’re trying to incorporate a pair of tables from an existing database or
legacy database and you haven’t taken the time to refine their structures
properly. You’ll also encounter this problem when you work with someone
who has little or no database design experience.

Self-Referencing Relationships
Establishing a self-referencing relationship will be a relatively simple task now that
you know how to establish a relationship between a pair of tables.

One-to-One and One-to-Many

You use a primary key and a foreign key to establish these self-referencing
relationships, just as you do with their dual-table counterparts. The difference here,
however, is that the foreign key will reside in the same table as the primary key to

which it refers. You’ll often find that the foreign key is already part of the table’s
structure. If the foreign key does not already exist, you’ll simply create one.
Let’s revisit the MEMBERS table example from Figure 10.20. Recall that this table
has a self-referencing one-to-one relationship because a given member can sponsor
only one other member within the organization; the SPONSOR ID field stores the
member identification number of the member acting as a sponsor. Because the
SPONSOR ID field draws its values exclusively from the MEMBER ID field, it acts as the
foreign key for the relationship. You establish the relationship by officially designating
the SPONSOR ID field as the foreign key and notating it as such in the relationship
diagram. Figure 10.45 shows the revised relationship diagram for the MEMBERS
table.

Figure 10.45. Establishing the self-referencing one-to-one relationship for the
MEMBERS table

Now, consider the STAFF table example in Figure 10.46. You may remember that
this table has a self-referencing one-to-many relationship because a single staff
member can manage one or more other staff members.

Figure 10.46. The current structure of the STAFF table

There is currently no means of associating a given staff member to other staff
members within the table; therefore, you must create a new field that will act as the
foreign key and enable you to establish the relationship. Let’s assume you create a
new foreign key field called MANAGER ID that will draw its values exclusively from
the STAFF ID field. You now establish the relationship by officially designating
MANAGER ID as the foreign key and notating it as such in the relationship diagram.
Figure 10.47 shows the revised relationship diagram for the STAFF table.

Figure 10.47. The revised STAFF table with the new MANAGER ID foreign key

You probably noticed that the “one” side of the relationship line points to the
MANAGER ID field and the “many” side of the line points to the STAFF ID field. This
is perfectly acceptable because a manager will manage one or more staff members,
but a given staff member reports to only one manager. (As you may have intuitively
guessed, the “one” side of the line commonly points to the primary key and the
“many” side to the foreign key.)
As you work with self-referencing one-to-one and one-to-many relationships, take a
moment and examine each table’s structure carefully. You’ll occasionally find that you
can (or may need to) modify and improve the existing structure in order to eliminate
the relationship. I know what you’re wondering: “But why would I want to do that?”
Retrieving information from tables with these types of relationships can be tedious
and somewhat difficult. (A discussion of the reasons for this is, unfortunately, outside
the scope of this work.) Additionally, the very presence of the relationship can
indicate the need for new field and table structures.
Consider the STAFF table once again. Does it occur to you that if there is a need to
track staff members who are managers, there could be a need to track the

departments they manage? If this is true, then there must be other facets of the
departments that you need to track in the database. You should now conduct a quick
interview with the appropriate staff members to answer these questions and then take
the appropriate action based on their responses.
Let’s assume you were right and the organization does want to track departmental
data. Figure 10.48 shows one possible approach you might use to accomplish this
task.

Figure 10.48. Results of eliminating the self-referencing relationship and adding
new structures to track departmental data

These new structures and relationships enable you to track the data efficiently and
will provide a wide variety of information about the departments. (You will, of
course, ensure that the new fields and tables conform to the various design elements
that you’ve learned thus far.)
It’s important to note that self-referencing relationships do have their place within a
well-designed database. You should be vigilant, however, and make certain that each
self-referencing relationship does indeed serve a useful purpose.

Many-to-Many

You use a linking table to establish this type of self-referencing relationship, just as

you do with its dual-table counterpart. Establishing this relationship is slightly different
in that the fields you use to build the linking table come from the same parent table.
Let’s revisit the PARTS table example from Figure 10.24. Recall that this table has a
self-referencing many-to-many relationship because a particular part can comprise
several different component parts, and that part itself can be a component of other
parts. You establish this relationship as you would any other many-to-many
relationship—with a linking table. There is currently no way to associate a given part
to other parts within the table, so you must create a new field for this purpose. Say,
for example, that you create a field called COMPONENT ID. This field will store the
part identification number of a part that serves as a component of a parent part. You
can now use the PART ID and COMPONENT ID fields as the basis for the linking table.
For the sake of our example, we’ll assume that the name of the new linking table is
PART COMPONENTS. Once you’ve created and named the linking table, be sure to
revise the relationship diagram for the PARTS table. Figure 10.49 shows the results of
your work.

Figure 10.49. Establishing the self-referencing many-to-many relationship for
the PARTS table

As you can see, the PARTS table now has two distinct one-to-many relationships with
the PART COMPONENTS table. The first relationship is established via the PART ID
field and the second relationship is established via the COMPONENT ID field. Figure
10.50 illustrates how these relationships work. Note that a clamp assembly (Part ID
704) contains three components and is itself a component of a seat assembly (Part ID
707) and a frame assembly (Part ID 711).

Figure 10.50. Data relationships between the PARTS and PART
COMPONENTS tables

Now, use the techniques you’ve just learned to establish all of the relationships
you’ve identified among the tables in the database. Make absolutely certain you
create a diagram for each relationship—you’re going to add new information to these
diagrams as the design process unfolds further.

Reviewing the Structure of Each Table
Review all of the table structures after you’ve established the relationships between
tables. Remember that you made modifications to the existing table structures and
created several new table structures as you established the relationships; therefore,
you want to make certain that each table conforms to the Elements of the Ideal Table.

Elements of the Ideal Table

• It represents a single subject, which can be an object or event.
• It has a primary key.
• It does not contain multipart or multivalued fields.
• It does not contain calculated fields.
• It does not contain unnecessary duplicate fields.
• It contains only an absolute minimum amount of redundant data.

When you determine that a table does not comply with the Elements of the Ideal
Table, identify the problem and make the necessary modifications. Then, take the
table through the appropriate stages of the database design process until you return to
this point. You shouldn’t encounter any problems with the tables if you’ve been
following proper procedures thus far.

Refining All Foreign Keys
You now know that a primary key becomes a foreign key when you use it to establish
a relationship between a pair of tables in a one-to-one or one-to-many relationship. As
with any other key that you’ve worked with so far, a foreign key must comply with a
specific set of elements. These elements are collectively known as the Elements of a
Foreign Key.

Elements of a Foreign Key
• It has the same name as the primary key from which it was copied. You

should adhere to this rule unless there is an absolutely compelling reason not to
do so. (Review the discussion of the Alias field specification element in Chapter
9, “Field Specifications.” It provides an example of an occasion when you
might decide to break this rule.) Consider the relationship diagram in Figure
10.51, and note that the foreign keys have different names than the primary
keys to which they refer.

Figure 10.51. Primary keys and foreign keys with mismatched names

The fact that the names are different poses a problem because you can’t be
sure that the foreign keys are truly valid and actually refer to the primary keys.
Is EMP # truly equivalent to EMPLOYEE NUMBER? Is “Emp” really a shortened
version of “Employee,” or does it mean something else? Why did someone
choose to use CLIENT # in the ORDERS table instead of CUSTOMER ID? Is
there any difference between the two? Do they store the same type of data?
These are questions you must answer before you can do anything else with
these tables and their respective relationships.
You could make a relatively reasonable argument that the names are close
enough to assume that the foreign keys are indeed valid. If there’s any doubt,
you could test your assumption by loading the tables with sample data. You
really shouldn’t have to take the time to do this, however. Imagine having to do
this for 15 or 20 relationships; the amount of wasted time adds up.
You won’t have to ask these questions or perform these tests at all when you
adhere to this element. Figure 10.52 shows a revised version of the diagram
that uses the proper foreign key names. In this case, there is no ambiguity and
little doubt that the foreign keys are appropriate. You can examine this diagram
nine months from now and, with a quick glance, confidently ascertain the type

of relationships between the tables and how they’re established.

Figure 10.52. Foreign keys that comply with the first element of a foreign key

Note
I encounter this issue quite often when I’m asked to analyze certain types of
database problems. In many cases, the foreign keys are either completely
inappropriate or manifest serious data-integrity and relationship-integrity
problems. Once I identify the appropriate foreign keys (or revise the existing
ones) and ensure that they comply with this particular element, a number of
problems disappear.
The only time I can justify and approve of using a different name for the
foreign key field is when I establish a self-referencing relationship for a given
table. This is reasonable because the primary key and foreign key both reside
within the table (in most cases), and each must have a unique name.

• It uses a replica of the field specifications for the primary key from which it
was copied. This supports the sixth element of an ideal field, which you
learned in Chapter 7 (“It retains a majority of its properties when it appears in

more than one table”). A foreign key, however, has a few settings in both the
General Elements and Logical Elements categories that are slightly different
from those of its parent primary key.
There are four elements in the General Elements category that you will modify
when you define a field specification for a foreign key.

a. Specification Type: Because a foreign key is based on an existing primary
key, it inherits a replica of the primary key’s field specifications; therefore,
you designate the foreign key’s specification type as “Replica.” This
designation helps you ensure that your foreign key specifications are
consistent, and reminds you to keep this specification synchronized with
the primary key’s specification.

b. Parent Table: The name of the foreign key’s parent table goes here.
c. Source Specification: This is where you indicate the name of the parent

primary key. (Make certain you include the name of the primary key’s
parent table as well; this will make it easier for you to find the primary
key’s specification should you want to compare it to the foreign key’s
specification.)

d. Description: Compose a description that indicates the foreign key’s
purpose within the table. Figure 10.53 shows an example of these
modifications for an EMPLOYEE ID NUMBER field serving as a foreign key in
an ORDERS table.

Figure 10.53. General Elements for the EMPLOYEE ID NUMBER foreign key field
in the ORDERS table

You’ll also adjust five elements in the Logical Elements category for the foreign
key field specification.
a. Key Type: Set this element to “Foreign.” This is a rather obvious change,

but one that you can accidentally overlook if you’re not careful.
b. Uniqueness: You designate this element as “Non-unique” because you

want to be able to associate a single foreign key value with any number of
records in the parent table. In terms of our example, you want to be able to
associate a specific employee with any number of orders. If you set this to
“Unique” instead, you could associate a given employee with one order
only, which would greatly limit his or her sales potential! (In the case of a
one-to-one relationship, however, you’ll designate this element as “Unique”
because you want to associate a single foreign key value in the child table
with only one record in the parent table.)

c. Values Entered By: Unlike the parent primary key, you (or a user) will
enter values into the foreign key; therefore, you set this element to “User.”

d. Range of Values: You must set this element in such a way that you (or a
user) can enter only existing values from the parent primary key. (You’ll
learn more about this and see a good example in just a moment.)

e. Edit Rule: You normally set this to “Enter Now, Edits Allowed,” although
there might be instances (such as when the foreign key comes from a
validation table) when you can set this to “Enter Later, Edits Allowed.”
Allowing edits of foreign key values enables you to fix mistakes. For
example, you might have mistakenly entered employee ID number “100”
for a given order when you meant to enter “110.”

Figure 10.54 shows an example of these modifications for the EMPLOYEE ID
NUMBER foreign key field. (Note the setting for the Range of Values—this is
one good way to set this element.)

Figure 10.54. Logical Elements for the EMPLOYEE ID NUMBER foreign key field in
the ORDERS table

In order for you to see the significance of these modifications, Figure 10.55
shows the Logical Elements category from the Source Specification. (Recall
that this element is in the General Elements category; see Figure 10.53.)

• It draws its values from the primary key to which it refers. By definition, a
foreign key’s range of values is limited to existing values of the primary key to
which it refers. For example, you cannot enter an invalid EMPLOYEE ID
NUMBER into the ORDERS table. Any EMPLOYEE ID NUMBER you enter into the
ORDERS table must first exist as an EMPLOYEE ID NUMBER in the
EMPLOYEES table. This ensures consistency among the values of both fields
in both tables and helps to establish relationship-level integrity.

Figure 10.55. Logical Elements for the EMPLOYEE ID NUMBER primary key field
in the EMPLOYEES table

Review the foreign keys in each table to make certain that they conform to the
Elements of a Foreign Key, and make the appropriate modifications to those that fail
to do so. You really shouldn’t encounter any problems if you’ve been faithfully
following the design process up to this point.

Establishing Relationship Characteristics
Now you’ll establish the characteristics of each relationship. These characteristics
indicate what will occur when you delete a record, the type of participation each table
bears within the relationship, and to what degree each table participates in the
relationship.

Defining a Deletion Rule for Each Relationship

The first characteristic you’ll establish for the relationship is a deletion rule. This rule
determines what your RDBMS should do when you place a request to delete a given
record in the parent table of the relationship. Deletion rules are crucial to relationship-
level integrity because they help guard against orphaned records, which are records in
the child table that have no relationship whatsoever to any records in the parent table.
These are the five types of deletion rules you can define and the actions the RDBMS
should take when a given rule is in force.

1. Deny: The RDBMS will not delete the record in the parent table, but will
instead keep the record and designate it as “inactive.”

2. Restrict: The RDBMS will not delete the record in the parent table if related
records exist in the child table. You must have the RDBMS delete all of the
related records in the child table before you can have it delete the record in the
parent table.

3. Cascade: The RDBMS will take two specific actions: It will delete the record
in the parent table, and it will also automatically delete all related records in
the child table.

4. Nullify: The RDBMS will delete the record in the parent table and will then
update the foreign key values of related records in the child table to null. If you
are going to use this deletion rule, you must modify the foreign key’s field
specifications and set the Null Support logical element to “Nulls Allowed.”

5. Set Default: The RDBMS will delete the record in the parent table and will
then update the foreign key values of related records in the child table to the
current Default Value logical element setting in the foreign key’s field
specifications. Obviously, you must have a setting for the Default Value
element in order to use this rule.

Use a Restrict deletion rule as a matter of course and the other rules as appropriate.
The best way to determine which deletion rule is appropriate for a given relationship
is to examine the relationship diagram. Consider the diagram in Figure 10.56.

Figure 10.56. What deletion rule is appropriate for a given relationship?

Select a relationship, look at the diagram, and pose the following question:
When a record in the (name of parent table) table is deleted,
what should happen to related records in the (name of child
table) table?

Here the question is framed in a generic manner so that you can understand the
premise behind it. When you pose this question for a pair of tables in a particular
relationship, substitute the phrases within the parentheses with the appropriate table
names. If you’re working with the relationship between the EMPLOYEES and

ORDERS table, you could pose the question in this manner:
When a record in the EMPLOYEES table is deleted, what
should happen to related records in the ORDERS table?

The answer you receive depends on how the organization is using the data within the
tables and will usually indicate which deletion rule you should use for the relationship.

You can’t delete an employee record; you have to designate the employee as
inactive. (Use a Deny rule.)
You can’t delete an employee record if there are related order records. (Use a
Restrict rule.)
You must first delete the orders associated with the employee from the
ORDERS table and then delete the employee from the EMPLOYEES table.
(Use the Restrict rule.)
All orders associated with the employee must be deleted from the ORDERS
table as well. (Use the Cascade rule.)
The employee number for all orders associated with the employee must be
deleted. (Use a Nullify rule.)
The employee number for all orders associated with the employee must be
reset to the lead salesperson’s employee number. (Use a Set Default rule.)

If you (or the people you’re working with) cannot easily provide an answer, make
note of the relationship and continue with another relationship. You’ll revisit all of
these relationships when you establish business rules for the database in Chapter 11,
“Business Rules.” For now, let’s assume you received the first reply and you’re going
to use a Deny rule for the relationship.
Once you’ve identified the type of deletion rule you want to use for the relationship,
designate the rule on the relationship diagram. Use (D) for Deny, (R) for Restrict, (C)
for Cascade, (N) for Nullify, and (S) for Set Default. Place the designation under the
connection line of the parent table. Figure 10.57 shows the revised relationship
diagram for the EMPLOYEES and ORDERS tables.

Figure 10.57. Designating a Deny deletion rule for the relationship between the
EMPLOYEES and ORDERS tables

You always set the deletion rule from the perspective of the parent table because it is
the more important of the two tables within the relationship. Deleting a record in the
parent table will always have some effect on related records in the child table, but
deleting a record in the child table will have no effect on the related record in the
parent table. (There is a specific circumstance in which you might want to establish a
Restrict deletion rule for the child table, and you’ll learn about it in Chapter 11.)
The question you use to determine the deletion rule for a self-referencing relationship
is just slightly different from the one you just used for a dual-table relationship:

When a record in the (name of parent table) table is deleted,
what should happen to the foreign key values of the other
records that were related to it?

If you’re working with the self-referencing relationship for the EMPLOYEES table,
you could pose the question in this manner:

When a record in the EMPLOYEES table is deleted, what
should happen to the foreign key values of the other records
that were related to it?

Once again, the reply will usually indicate which deletion rule you should use for the
relationship:

You can’t delete a record for an employee who’s currently
managing other employees. (Use a Restrict rule.)
If the employee you want to delete is a manager, you cannot
delete his record until you assign the employees he manages to
a different manager. (Use the Restrict rule.)

If the employee whose record you want to delete is a manager,
the MANAGER ID must be deleted from the record of every
employee he currently manages. (Use a Nullify rule.)
If the employee whose record you want to delete is a manager,
the MANAGER ID must be reset to the senior manager’s
employee number in the record of every employee he currently
manages. (Use a Set Default rule.)

Note
The Cascade rule is notably absent from this example because it doesn’t apply
to the relationship at all; you don’t want to fire employees just because their
manager is leaving the organization. This rule is still a viable option in some
instances, so do keep it in mind when you’re establishing deletion rules for
other self-referencing relationships.

Say that you received the last reply in the preceding list and have determined that
you’re going to use a Set Default deletion rule for the relationship. You now complete
the process by designating the rule on the relationship diagram. Figure 10.58 shows
the results of your work.

Figure 10.58. Designating a Set Default deletion rule for the EMPLOYEES table
self-referencing relationship

Identifying the Type of Participation for Each Table
When you establish a relationship between a pair of tables, each table participates in a
particular manner. The type of participation you assign to a given table determines
whether a record must exist in that table before you can enter records into the related
table. There are two types of participation.

1. Mandatory: There must be at least one record in this table before you can
enter any records into the related table.

2. Optional: There is no requirement for any records to exist in this table before
you can enter records into the related table.

You’ll commonly determine the type of participation for most tables later when
you’re defining business rules, although you can quite often establish the type of
participation for tables in relationships where the type of participation for each table is
obvious, is a result of common sense, or is in accordance with some particular set of
standards. For example, consider the one-to-many relationship between the
EMPLOYEES and CUSTOMERS tables in Figure 10.59. (These are slightly
different versions of the tables in Figure 10.56.)

Figure 10.59. What type of participation should you assign to each table?

Assume that each customer must be assigned to a particular employee. This employee
acts as the customer’s account representative and takes care of all transactions and
communications between the organization and that customer. Although each customer
must be associated with a particular employee, a given employee does not have to be
associated with any customer at all. Many employees perform other functions within
the organization that do not require customer interaction.
This scenario neither implies nor defines any special circumstances, but does indicate
the manner in which the organization conducts this part of its business. As such, you
can infer the following.

• You should designate a Mandatory type of participation for the EMPLOYEES
table. This ensures that there is at least one employee for you to assign to a
given customer.

• You should designate an optional type of participation for the CUSTOMERS
table. This allows you to enter any person employed by the organization.

Once you’ve determined the type of participation for each table within the
relationship, designate each table’s participation on the relationship diagram. Use a
vertical line to represent a Mandatory type of participation and a circle to represent an
optional type of participation. Figure 10.60 shows the revised relationship diagram for
the EMPLOYEES and CUSTOMERS tables and also demonstrates how you indicate
each type of participation. Note that you place the symbol representing the type of
participation outside the symbol that represents the type of relationship.

Figure 10.60. Designating the type of participation for the EMPLOYEES and
CUSTOMERS tables

The type of participation also applies to a self-referencing relationship, although in a
slightly different manner. Because of the nature of a self-referencing relationship, you
designate the type of participation for the primary key and foreign key fields in the
table. Figure 10.61 shows a revised relationship diagram for the STAFF table you
worked with earlier in this chapter.

Figure 10.61. Designating the type of participation for the primary and foreign
keys of the STAFF table

In this case, you must have at least one staff member with a valid staff identification
number (the primary key) who can serve as a manager. Conversely, you need not
provide a manager identification number (the foreign key) for a brand-new staff
member; this person may have just been hired earlier today and has not yet been
assigned to a particular department or project.

Identifying the Degree of Participation for Each Table
Now that you’ve determined how each table will participate within the relationship,
you must determine the degree to which each table will participate. The degree of
participation indicates the minimum number of records that a given table must have
associated with a single record in the related table and the maximum number of
records that the table is allowed to have associated with a single record in the related
table. The factors you use to determine the degree of participation—obvious
circumstances, common sense, or conformance to some set of standards—are the
same as those you used to determine the type of participation. You’ll commonly
identify the degree of participation for some tables now and revisit the remaining
tables when you define business rules for the database.
You use two numbers separated by a comma and enclosed within parentheses to
represent the degree of participation for a given table. The first number indicates the
required minimum number of related records and the second number indicates the
allowable maximum number of related records. For example, a degree of participation
such as (2,11) indicates that the table must have at least 2 but no more than 11 of its
records related to a single record in the other table.
Consider the EMPLOYEES and CUSTOMERS tables once again. There is a one-to-
many relationship between these tables, which means that a given customer can be

associated with only one employee and a given employee can be associated with any
number of customers. (Yes, I know; this is the obvious part.) Assume, however, that
your organization has just instituted a new policy that focuses sharply on quality
customer service. In order to ensure that each account representative can deliver the
level of service the organization requires, the policy stipulates that he cannot be
assigned to more than 15 customers at the same time. Based on this scenario, you can
infer that the degree of participation for the EMPLOYEES table is (1,1) and the
degree of participation for the CUSTOMERS table is (0,15).
Once you’ve identified the degree of participation for a particular table, add the
information to the relationship diagram. Designate the degree of participation over the
connection line of the appropriate table. Figure 10.62 shows the revised relationship
diagram for the EMPLOYEES and CUSTOMERS tables.

Figure 10.62. Designating the degree of participation for the EMPLOYEES and
CUSTOMERS tables

The degree of participation also applies to a self-referencing relationship, although you
designate it for the primary key and foreign key fields in the table, just as you did
with the type of participation. Figure 10.63 shows an updated version of the
relationship diagram for the STAFF table that includes the degree of participation
information.
STAFF ID has a degree of participation of (0,12) because a manager can manage up to
12 staff members; a new manager who hasn’t yet been assigned to a department or

project will have no (or 0) staff members to manage. The degree of participation for
MANAGER ID is (1,1) because a given staff member is managed by only one manager.

Figure 10.63. Designating the degree of participation for the primary and
foreign keys of the STAFF table

You can designate an unlimited degree of participation for any table in a dual-table
relationship or key field in a self-referencing relationship by using an “N” in place of
the second number. For example, the ORDERS table in Figure 10.64 has an unlimited
degree of participation. Although a new customer may have not yet placed an order,
you will allow him to place as many orders as he wishes. Imagine the impact on your
organization’s business if you limited each customer to 35 orders! Your organization
would soon be out of business, unless it could continually and consistently acquire
new customers.

Figure 10.64. Designating an unlimited degree of participation for the ORDERS
table

Your task now is to set the relationship characteristics for every relationship you’ve
established thus far. As you complete work on a given relationship, be sure to update
the relationship diagram so that it reflects the results of your work.

Verifying Table Relationships with Users and Management
The very last order of business is to verify the relationships. You can perform this
task relatively easily by using the following checklist.

1. Make sure that you’ve properly identified each relationship.
2. Make certain that you’ve properly established each relationship.
3. Make certain that each foreign key complies with the Elements of a Foreign

Key.
4. Make sure that you’ve established an appropriate deletion rule for each

relationship.
5. Make certain that you’ve identified the proper type of participation for each

table within a dual-table relationship and for the appropriate key fields in a self-
referencing relationship.

6. Make certain that you’ve identified the proper degree of participation for each
table within a dual-table relationship and for the appropriate key fields in a self-
referencing relationship.

If all the relationships check out and everyone you’re working with agrees to this
assessment, you can be confident that the relationships are sound and ready to be
incorporated into views.

A Final Note
The degree to which you can easily implement these three relationship characteristics
depends greatly upon your RDBMS. Most RDBMSs do not fully or inherently
support all of the characteristics, but they do provide some basic support for the
deletion rule and type of participation. In most cases, however, you can use SQL and
programming code to implement these characteristics for any relationship in your
database.

Relationship-Level Integrity
A relationship attains relationship-level integrity after you’ve verified that it is
properly established and its characteristics are suitably set. Relationship-level integrity
warrants the following.

• The connection between the two tables (or key fields) in a relationship is
sound. You accomplished this by using primary and foreign key fields to

establish a one-to-one or a one-to-many relationship and a linking table to
establish a many-to-many relationship.

• You can insert new records into each table in a meaningful manner. You
ensured this by designating the appropriate type of participation for each table
(or key field) within the relationship.

• You can delete an existing record without producing any adverse effects. You
guaranteed this by assigning an appropriate deletion rule for the relationship.

• There is a meaningful limit to the number of records that can be interrelated
within the relationship. You implemented this by designating the appropriate
degree of participation for each table (or key field) within the relationship.

As you know, relationship-level integrity is the third component of overall data
integrity. (The first is table-level integrity and the second is field-level integrity.) You’ll
establish the final component of overall data integrity in the next chapter when you
learn how to establish business rules for the database.

Case Study
It’s now time to identify the relationships that exist for the tables that appear on the
final table list for Mike’s Bikes. You’ve assigned your assistant, Zachary, to this part
of the design process, and he’s currently working with these tables:

CUSTOMERS
EMPLOYEES
INVOICES
PRODUCTS
VENDORS

Zachary’s first order of business is to identify the relationships that currently exist
between the tables. He decides to meet only with Mike because there are few tables
in this database, and he figures that Mike should be familiar enough with the tables to
help him verify the relationships.
Before Zachary meets with Mike, he creates a table matrix and identifies as many
relationships as possible. Figure 10.65 shows his completed matrix.

Figure 10.65. Identifying the relationships among the tables in the Mike’s Bikes
database

Zachary then studies the table matrix closely and uses the appropriate formula to
determine the true relationship between each pair of tables. Here is what he’s
discovered so far.

CUSTOMERS and INVOICES bear a one-to-many relationship. (1:1 + 1:N =
1:N)
EMPLOYEES and INVOICES bear a one-to-many relationship. (1:1 + 1:N =
1:N)
PRODUCTS and INVOICES bear a many-to-many relationship. (1:N + 1:N =
M:N)

Now he diagrams the relationships, places them in a folder, and heads to Starbucks
for his meeting with Mike.
At the meeting, Mike and Zachary work on verifying the relationships. They both
determine that the three relationships are indeed correct, and then Zachary brings
Mike’s attention to the PRODUCTS and VENDORS tables. He’s not quite sure
about the relationship between them, so he discusses the matter with Mike.

ZACHARY: “I wanted to ask you about the relationship between the
PRODUCTS and VENDORS tables. Can a single product be
associated with one or more vendors?”

MIKE: “Yes, in a manner of speaking. What I mean is that a single type of
product—such as a bike lock—can be associated with one or more
vendors. But I give each lock its own product number and treat it as a

distinct item, regardless of the vendor who supplies it. Now, if the
true meaning of your question is whether a single record in the
PRODUCTS table can be associated with one or more records in the
VENDORS table, then the answer is no because each record in the
PRODUCTS table contains a reference to only one vendor in the
VENDORS table.”

ZACHARY: “I thought as much. In that case, there’s a one-to-many relationship
between the VENDORS and PRODUCTS tables. I automatically
figured that a single vendor could be associated with many products
in the PRODUCTS table.”

Zachary now diagrams the one-to-many relationship between the VENDORS and
PRODUCTS tables and continues with the next step.
He establishes each one-to-many relationship by taking a copy of the primary key
from the parent table and incorporating it within the structure of the child table (where
it serves as a foreign key) and then revises the relationship diagram accordingly.
Figure 10.66 shows one of his revised diagrams.

Figure 10.66. The relationship diagram for the EMPLOYEES and INVOICES
tables

Now Zachary establishes the many-to-many relationship between the INVOICES and
PRODUCTS tables by creating a new linking table called INVOICE PRODUCTS.
He bases the new table on the INVOICE NUMBER field from the INVOICES table and
the PRODUCT NUMBER field from the PRODUCTS table. Figure 10.67 shows the
revised relationship diagram for the INVOICES and PRODUCTS tables.

Figure 10.67. Establishing and diagramming the many-to-many relationship
between the INVOICES and PRODUCTS tables

Zachary reviews each table structure to ensure that it conforms to the Elements of the
Ideal Table. Fortunately, he doesn’t have to make any modifications because all of
the table structures are sound. He now refines the foreign keys in each table by
making certain that each one complies with the Elements of a Foreign Key. Finally,
Zachary modifies the appropriate items in the General Elements and Logical Elements
sections of each foreign key’s Field Specifications sheet. Figure 10.68 shows the
modifications he’s made for one of the foreign keys. (I’ve highlighted the changes so
that you can recognize them more easily.)

Figure 10.68. The General Elements and Logical Elements sections of the Field
Specifications sheet for the CUSTOMER ID foreign key field in the INVOICES

table

Zachary’s next task is to establish the appropriate relationship characteristics for each
relationship. He begins by defining a deletion rule for each relationship and then
identifies both the type of participation and the degree of participation for each table
within the relationship. He completes his task by designating these characteristics on
the relationship diagram. Figure 10.69 shows one of the completed diagrams.

Figure 10.69. The completed relationship diagram for the EMPLOYEES and
INVOICES tables

Mike and Zachary review and verify all the relationships one last time. They agree
that everything is complete, so they celebrate with a couple of Mocha Bréves.

Summary
We opened this chapter with a discussion of the three types of relationships that can
exist between a particular pair of tables—one-to-one, one-to-many, and many-to-
many. You now know that the one-to-many relationship is the most common type of
dual-table relationship and that the many-to-many relationship gives rise to problems
that must be resolved. You then learned about a self-referencing relationship, which
is a type of relationship that occurs between the records within a given table. It is
similar to a dual-table relationship in that it can be one-to-one, one-to-many, or many-
to-many.
Next, we discussed how to identify the relationships that exist among the tables in a
database. First you learned how to construct and use a table matrix, and then you
learned how to use associative and contextual questions to help you identify a given

relationship. We then discussed three formulas you could use to determine the true
relationship that exists between the tables in a dual-table relationship or between the
records in a self-referencing relationship.
The chapter continued with a discussion of how relationships are established. You
learned that one-to-one and one-to-many relationships are established by using
primary keys and foreign keys, and that many-to-many relationships are established
using linking tables. We then briefly revisited multivalued fields, and you learned
how to use a proper one-to-many relationship to resolve a multivalued field more
efficiently. Next, we discussed self-referencing relationships, and you now know that
you establish them in a very similar manner to dual-table relationships. You then
learned that you must review all of the table structures and ensure that they still
conform to the Elements of the Ideal Table.
Foreign keys were the next topic of discussion, and you learned that every foreign
key must comply with the Elements of a Foreign Key. You now know that it can be
very important for a foreign key to share the same name as its parent primary key,
that you must modify certain elements of a field specification for a field that serves as
a foreign key, and that a foreign key must draw its values from the parent primary
key.
We then discussed relationship characteristics. You learned how to define a deletion
rule for a relationship and that there are four ways you can define it. Next, you
learned how to identify the type of participation and degree of participation for each
table within a dual-table relationship and for each key field in a self-referencing
relationship. As you now know, you can designate the type of participation as
Mandatory or Optional. You also know that the degree of participation gauges the
minimum and maximum number of interrelated records that can exist within a given
relationship. Finally, you learned that you must verify the relationships with users and
management and that you can use a checklist to accomplish this task.
The chapter closed with a look at relationship-level integrity. You learned that a
relationship attains this type of integrity after you’ve verified that it is properly
established and its characteristics are suitably set.

Review Questions
1. State two major reasons why a relationship is important.
2. Name the three types of relationships.

3. Which relationship will pose the most problems?
4. State two problems you could possibly encounter with a many-to-many

relationship.
5. What is a self-referencing relationship?
6. How do you begin the process of identifying the relationships among the

tables in the database?
7. What are the two types of questions you can ask to help you identify existing

relationships?
8. What shorthand symbol do you use to designate a one-to-many relationship in

the table matrix?
9. How do you determine what type of relationship officially exists between each

pair of tables in the matrix?
10. How do you establish a one-to-many relationship?
11. True or False: Retrieving information from tables with a self-referencing

relationship can be tedious and somewhat difficult.
12. How do you establish a self-referencing many-to-many relationship?
13. How do you refine the foreign keys in the database?
14. What two element categories must you modify for a foreign key’s field

specification?
15. What is the function of a deletion rule?
16. What two types of participation can you designate for a table?
17. What does the degree of participation indicate?
18. When does a relationship attain relationship-level integrity?

11. Business Rules

You are remembered for the rules you break.
—GENERAL DOUGLAS MACARTHUR

Topics Covered in This Chapter
What Are Business Rules?
Categories of Business Rules
Defining and Establishing Business Rules
Validation Tables
Reviewing the Business Rule Specifications Sheets
Case Study
Summary
Review Questions

Throughout the database design process, you’ve performed tasks that helped to
establish various levels of data integrity. You’ve established table-level integrity, field-
level integrity, and relationship-level integrity thus far. In doing so, you’ve ensured
that the table and field structures are sound, that data entered into the fields will be
consistent and basically valid, and that relationships are meaningful and properly
established. In this chapter you’ll learn how to establish the final component of overall
data integrity: business rules.

What Are Business Rules?
A business rule is a statement that imposes some form of constraint on a specific
aspect of the database, such as the elements within a field specification for a
particular field or the characteristics of a given relationship. You base a business rule
on the way the organization perceives and uses its data, which you determine from
the manner in which the organization functions or conducts its business.
An important aspect of any design process is making choices. In database design, for
example, you must choose which data to store in the database; you would not
necessarily want or need to store every last piece of data the organization might
possibly use. The data you finally choose to store and how you decide to store it will

be determined by the way the organization uses its data. A hospital may wish to store
times of various events to the second, whereas a warehouse requires only the date for
any given event.
To guide these and other choices you’ll be required to make during the database
design process (and later, when you implement the database in an RDBMS), you
need a formal statement of the organization’s business rules. These rules will
influence a wide variety of database issues, such as the data you collect and store, the
manner in which you define and establish relationships, the types of information that
the database can provide, and the very security and confidentiality of the data itself. It
is next to impossible to create a generic set of business rules that could apply to two
or more organizations. Each organization has its own data and information
requirements and each has its own unique way of conducting its business; therefore,
every organization needs its own specific set of business rules.
The following statement is an example of a typical business rule:

A SHIP DATE cannot be prior to an ORDER DATE for any given
order.

This particular business rule imposes a constraint on the Range of Values element of
the field specifications for a SHIP DATE field. It will help ensure that the value of SHIP
DATE is meaningful within the context of a sales order. Without this constraint, you
could enter any date into the field (including one prior to the ORDER DATE), making
the SHIP DATE field’s value absolutely meaningless. The business rule is what makes
the SHIP DATE field’s value contextually meaningful.
Because business rules depend on the manner in which an organization perceives and
uses its data, it is quite possible that a particular rule can be used by several
organizations, but for completely different reasons.
For example, say that the music department at Bel Air High School is known far and
wide for the quality of musicianship it develops in its student musicians. The students
are able to attain this level of musicianship because they’re encouraged to focus their
musical studies and restrict themselves to learning to play no more than two
instruments. In another part of town, the music department at Lake City High School
(a private school) also imbues its student musicians with a high quality of
musicianship by helping the students focus their musical studies. The students at this
school, however, are restricted to learning to play no more than two instruments due
to school policy; the school’s inventory of musical instruments is very limited.

Coincidentally, both schools are in the process of designing their own database. In
each case, the school will use the database to support its daily operations and
administrative functions. It so happens that each database contains the tables shown
in Figure 11.1.

Figure 11.1. Tables from the Bel Air High School and Lake City High School
databases

Both schools are at the same stage of the database design process and are currently
establishing business rules. As it turns out, each school is using the following business
rule in their respective databases:

A student cannot have more than two instruments checked out
at the same time.

This business rule applies to the degree of participation between the STUDENTS
table and STUDENT INSTRUMENTS table. In this instance, a single record in the
STUDENTS table cannot be associated with more than two records in the
STUDENT INSTRUMENTS table where the value of CHECK-IN DATE for each
record is null; a null value in the CHECK-IN DATE field indicates that the instrument is
still in the student’s possession.
The rule does apply to both schools, yet each school requires it for a different reason.
Bel Air High School requires the rule because of the manner in which its music
program has been established, whereas Lake City High School requires the constraint

because of the physical limitations of its instrument inventory. The fact that both
schools developed an identical rule is pure coincidence. This example illustrates that a
business rule is, indeed, based on the way an organization functions or conducts its
business and demonstrates why every organization must have its own specific set of
business rules.
The example also illustrates another issue: You cannot establish constraints imposed
by certain business rules, such as this one, within the logical design of the database.
For instance, there is no clear way for you to indicate that the CHECK-IN DATE values
must be tested in order to determine whether a student can check out another
instrument. You must instead address and establish the constraint outside of the
logical design of the database. How do you determine whether you can properly
represent a given constraint within this process? You do so by identifying the type of
business rule you’re defining.

Types of Business Rules
There are two major types of business rules: database oriented and application
oriented. Both types of business rules impose some form of constraint and help
enforce and maintain overall data integrity, but they differ with regard to where and
how they are established.
Database-oriented business rules impose constraints that you can establish within the
logical design of the database. You implement a given constraint by modifying
various field specification elements, relationship characteristics, or a combination of
the two. The statement from which you derive the constraint is a database-oriented
business rule if you can meaningfully and clearly establish the constraint by either of
these means. For example, say you have a VENDORS table and define the following
business rule for the VENDSTATE field in that table:

We conduct business exclusively with vendors from the Pacific
Northwest.

This business rule limits the values that you can enter into the VENDSTATE field to
WA, OR, ID, and MT. You can establish the business rule’s constraint in a
meaningful manner by modifying the Range of Values element in the field
specifications for the VENDSTATE field. Figure 11.2 shows the modification.

Figure 11.2. Implementing a constraint imposed by a database-oriented
business rule

Application-oriented business rules impose constraints that you cannot establish
within the logical design of the database. You must instead establish them within the
physical design of the database or within the design of a database application, where
they will be more applicable and meaningful. (I use the term database application
here to refer to a program written in some RDBMS software that allows people in the
organization to use the database easily and to perform tasks related to their daily work
activities.)
Here is an example of a typical application-oriented business rule:

A customer with a “Preferred” status receives a 15% discount
on all purchases.

This business rule determines the amount of discount applied to a customer’s
purchases, based on a particular status. You cannot establish this constraint
meaningfully in the logical design for two reasons: There is no field in which to store
the discount amount (the amount is a result of a calculation, and calculated fields are
not allowed in a table), and there is no way to indicate the criterion used—the
customer’s status—to determine the discount. This is a rule that you must establish
within the physical design of the database or the design of the database application.

Note
The manner in which you actually define and establish application-oriented
business rules is a topic that is beyond the scope of this book. Some RDBMSs
provide tools that allow you to implement common application-oriented
business rules relatively easily; most RDBMSs will require you to write
programming code to implement and enforce these rules.

Although both types of business rules are important, you’ll focus on database-oriented
business rules during this stage of the database design process.

Note
Throughout the remainder of the book, I’ll refer to database-oriented business
rules simply as business rules.

Categories of Business Rules
It will be easier for you to understand and define business rules if you divide them
into two distinct categories: field specific and relationship specific.

Field-Specific Business Rules
Business rules under this category impose constraints on the elements of a field
specification for a particular field. The number of elements a given rule affects
depends on the manner in which you define that rule. For example, this rule only
affects one element:

Order dates are to be displayed in long form, such as “January
10, 2012.”

This rule affects the Display Format element of the ORDER DATE field in an ORDERS
table. You establish this rule by modifying the Display Format element of the field
specifications for the ORDER DATE field to indicate the manner in which the date
should be displayed.
Here’s a rule that affects more than one element:

We must be able to store a zip code for our Canadian
customers.

This rule affects the Data Type, Character Support, and Display Format elements of
the field specifications for the CUSTZIPCODE field in a CUSTOMERS table. Canadian
zip codes include letters, so you must make the following modifications to these
elements in order to impose the constraints defined by this rule.

1. Change the Data Type setting to “Alphanumeric.”
2. Include “Letters” under the Character Support element.
3. Modify the Display Format element to ensure that the letters in Canadian zip

codes will be capitalized.
Figure 11.3 shows the modified Physical Elements section of CUSTZIPCODE’s field
specifications.

Figure 11.3. Establishing a field-specific business rule for CUSTZIPCODE

Relationship-Specific Business Rules
These types of business rules impose constraints that affect the characteristics of a
relationship. For instance, assume you’re working with the tables and relationships in
Figure 11.4.

Figure 11.4. Tables and relationships from a school database

Say you determine that there must be a limit to the number of students for each class
and you define the following business rule:

Each class must have a minimum of five students, but cannot
have more than 20.

This business rule affects the degree of participation between the CLASSES and
STUDENT CLASSES tables. You enforce the constraint this rule defines by
modifying the relationship diagram to show that a single record in the CLASSES table
must be related to at least five—but no more than 20—records in the STUDENT
CLASSES table. (Depending on your point of view, you could also infer from this
business rule that the type of participation for the STUDENT CLASSES table is now
mandatory. You can enter a new class or keep an existing class in the CLASSES table
if and only if there are at least five students registered for that class.) Figure 11.5
shows the modification you must make to the diagram in order to establish the
business rule.

Figure 11.5. Establishing a relationship-specific business rule

Defining and Establishing Business Rules
You’ll define and establish business rules for the database during this stage of the
design process. Remember that you must base these rules on the manner in which
your organization perceives and uses its data, which (as you well know) will depend
on the way the organization functions or conducts its business. The best approach to
this task is to define and establish the field-specific business rules first, followed by
the relationship-specific business rules. This approach helps you to remain focused on
the type of rule you’re defining. It also keeps you from jumping back and forth
between different types of business rules, which can often lead to confusion and
some amount of frustration.

Working with Users and Management
Once again, you’ll work with the representative group of users and management.
Schedule new meetings with them so that you can work together to define and
establish the appropriate business rules for the database. Working as a group enables
you to make certain that the constraints imposed by the business rules you define are
meaningful and that there is no confusion or ambiguity as to the necessity of imposing
each constraint. If you or anyone in the group has some doubt about a constraint, you

can discuss the effect it will have on the field or relationship involved and the
advantages and disadvantages of imposing the constraint. You can then decide
whether to keep the rule or disregard it completely based on the results of your
discussion.

Defining and Establishing Field-Specific Business Rules
Begin the process of establishing business rules for the database by working on field-
specific rules. You define and establish each rule using these steps.

1. Select a table.
2. Review each field and determine whether it requires any constraints.
3. Define the necessary business rules for the field.
4. Establish the rules by modifying the appropriate field specification elements.
5. Determine what actions test the rule.
6. Record the rule on a Business Rule Specifications sheet.

Let’s now take a look at each step in greater detail.

Step 1: Select a Table

It doesn’t matter which table you select first because you’ll eventually apply this
procedure to every table within the database. If you choose a table with a familiar
structure, however, you can focus a little more on learning the steps within the
procedure. This extra effort will pay dividends when you begin to work with tables
containing fields that bear closer attention and examination.
Think about the subject the table represents and then pose these questions:

How does the organization use information based on or related
to this subject?
What relationships does this table have to itself or to other
tables in the database?

When necessary, consult the final table list and read the description for this table, and
refer to any relationship diagrams that incorporate this table. The answers to these
questions will be useful to you while you’re defining rules for this table and focusing
on the table in this manner prepares you for the next step.

Step 2: Review Each Field and Determine Whether It Requires Any Constraints

Examine the Field Specifications sheet for each field and determine whether you
should apply a constraint to any of its elements. Keep the questions from Step 1 in
mind as you review a given specification sheet, and then pose this question:

Based on how the table is used within the database, is a
constraint necessary for any element within this specification?

If the answer is no, move on to the next field; otherwise, go on to the next step. For
example, assume you’re working with the CUSTCOUNTY field in a CUSTOMERS
table and you have just posed the question about the need for a constraint. (Figure
11.6 shows the current Logical Elements category for this field.)

Figure 11.6. Current settings for the Logical Elements category of the
CUSTCOUNTY field

You should move on to the next step if you receive an answer such as this:

“Well, the boss wants to begin tracking our customers by
county, so we must make certain we record a county for every
customer. In fact, we’ve just added Pierce County and
Snohomish County to our sales region, so it’ll be imperative
that the county names get recorded.”

This response clearly is a yes, so you will go on to define business rules for this field
in the next step.

Step 3: Define the Necessary Business Rules for the Field

You define the appropriate business rules for the CUSTCOUNTY field by identifying the
constraints implied by the response in Step 2. Then you transform each constraint
into a rule.
The response in Step 2 suggests two possible constraints that you should impose upon
the CUSTCOUNTY field: A county name is required for each customer, and the range of
values for this field is limited to four specific counties (the two currently on the field
specification and the two new counties indicated in the response). Here are two
statements you might use to begin transforming these constraints into business rules:

A county must be associated with each customer.
The only counties that can be entered into this field are King,
Kitsap, Pierce, and Snohomish.

Once you’ve defined the appropriate business rules, you can move on to Step 4.

Step 4: Establish the Rules by Modifying the Appropriate Field Specification Elements

Establish each business rule you defined in Step 3 by modifying the appropriate
elements on the Field Specifications sheet. (Remember that some rules may affect
more than one element.) First, however, you must identify which elements of the field
specifications the rule affects. For example, consider the first business rule you
defined for the CustCounty field in Step 3:

A county must be associated with each customer.
You can deduce that the rule affects the Required Value, Null Support, and Edit Rule
elements because it explicitly states that a county “must be associated” with a
customer. Now you can make the appropriate modifications to these elements. In this
particular case, you’ll set Required Value to “Yes,” Null Support to “No Nulls,” and
Edit Rule to “Enter Now, Edits Allowed.”

As you can see, it’s important for you to examine each business rule very carefully in
order to determine which field specification elements it’s going to affect. When you
first begin to define business rules, it’s best to have a Field Specifications sheet handy
so that you can refer to it as necessary. Many of the elements will come to mind more
easily as you become more experienced at establishing business rules.
Now, consider the next business rule in the example:

The only counties that can be entered into this field are King,
Kitsap, Pierce, and Snohomish.

This business rule affects the Range of Values element, and you’ll now revise its
setting to “King, Kitsap, Pierce, and Snohomish.” Figure 11.7 shows the revised
Logical Elements category of the Field Specifications sheet for the CUSTCOUNTY field.

Figure 11.7. Revised settings for the Logical Elements category of the
CUSTCOUNTY field

Step 5: Determine What Actions Test the Rule

The constraint the business rule imposes is tested when you attempt to perform one
of three actions: inserting a record into the table or an entry into a field, deleting a
record from the table or a value within a field, or updating a field’s value. Now that
you’ve established a business rule and understand the constraint it will impose,
determine what actions test the rule by identifying when a violation of the rule is most
likely to occur. You can make this a relatively easy task by asking yourself the
following questions:

Will this rule be violated if I enter a new record into this table?
Will this rule be violated if I do not enter a new record into this table?
Will this rule be violated if I delete a record from this table?
Will this rule be violated if I enter a value into this field?
Will this rule be violated if I do not enter a value into this field?
Will this rule be violated if I update the value of this field?
Will this rule be violated if I delete the value of this field?

Once you’ve determined which actions will trigger a violation of the rule, make note
of them; you’ll use them in the next step. This information will also help you to
establish this rule in the most effective manner possible when you implement the
database in your RDBMS.
In this case, the business rule for the CUSTCOUNTY field will be tested when you try
to insert a value into the field because the value must be within a specific range of
values. The rule will also be tested when you try to delete a value in the field because
the value cannot be null.

Step 6: Record the Rule on a Business Rule Specifications Sheet

You can document a given business rule for future reference by filling out a Business
Rule Specifications sheet. This is something you should do for every rule, regardless
of its type or category. The Business Rule Specifications sheet provides three
advantages.

1. It allows you to document every database-oriented business rule. This helps

you ensure that you have appropriately defined and properly established each
rule.

2. It allows you to document every application-oriented business rule. Although
you cannot establish this type of rule within the logical design of the database,
you can at least indicate its basic elements. The information you document for
this type of business rule will prove invaluable to you when you implement the
database within your RDBMS or when you create the application program that
people will use to work with the database.

3. It provides a standard method for recording all business rules. Business rules
are easier to track and maintain if you record them in a consistent manner.
Using a uniform format also makes it easier for you to troubleshoot business
rules; every aspect of the rule appears on the specification sheet.

The Business Rule Specifications sheet contains the following items.
• Statement: This is the text of the business rule itself. It should be clear and

succinct and should convey the required constraints without any confusion or
ambiguity. Here’s an example of a well-framed statement:
A booking agent cannot be assigned to more than 25 entertainers.

• Constraint: This is a brief explanation of how the constraint applies to the
tables and fields. For instance, you can use the following explanation for the
constraint imposed by the business rule in the preceding example:
A single record in the AGENTS table can be associated with no more than 25
records in the ENTERTAINERS table.

• Type: Here is where you indicate whether the rule is database oriented or
application oriented.

• Category: This is where you indicate whether the rule is field specific or
relationship specific.

• Test On: Here is where you indicate which actions (insert, delete, update) will
test the constraint the business rule imposes.

• Structures Affected: Depending on the type of business rule, the constraint will
affect either a field or a relationship. This is where you designate the name of
the field(s) the rule will affect or the name of the table(s) involved in the
relationship that the rule affects.

• Field Elements Affected: A business rule that pertains to a field can affect one
or more elements of that field’s specifications. This is where you indicate the
elements the rule affects.

• Relationship Characteristics Affected: A business rule that pertains to a
relationship will affect one or more of the relationship’s characteristics. Here is
where you indicate the characteristics that the rule affects.

• Action Taken: Here you indicate the modifications you’ve made to the
elements of a field specification or to a relationship diagram. It is very
important that the statement you enter here be as clear and unambiguous as
possible. Should a problem occur as a result of enforcing this business rule, this
statement serves as accurate documentation of the steps you have taken to
establish the rule. You can use this statement to make certain that these steps
were actually carried out and that the rule has been properly established.

Now, fill out a Business Rule Specifications sheet for the rule you established in Step
4. Figure 11.8 shows a completed Business Rule Specifications sheet that documents
the business rules you established for the CUSTCOUNTY field.

Figure 11.8. An example of a Business Rule Specifications sheet

Defining and Establishing Relationship-Specific Business Rules
After defining and establishing field-specific business rules, the next order of business
is to tackle relationship-specific business rules. The procedure for performing this
task involves the following steps.

1. Select a relationship.
2. Review the relationship and determine whether it requires any constraints.
3. Define the necessary business rules for the relationship.
4. Establish the rule by modifying the appropriate relationship characteristics.
5. Determine what actions will test the rule.
6. Record the rule on a Business Rule Specifications sheet.

As you can see, this procedure is similar to the one you used for field-specific
business rules. Now, let’s take a look at each step in more detail.

Note
You can apply this entire procedure to both self-referencing and dual-table
relationships. I’ve based the remainder of the discussion on a dual-table
relationship, however, because it is the type of relationship you are likely to
work with the majority of the time.

Step 1: Select a Relationship

Which relationship you choose is a relatively trivial matter because you’ll eventually
apply this procedure to every relationship anyway. Once you select a specific
relationship, review its relationship diagram. Then think about what the tables
represent and why they are related and pose the following questions:

What kind of information do these tables provide?
Why is the relationship between these two tables important?

The answer to these questions will help you define any necessary business rules for
the relationship, and keeping them in mind will prepare you for the next step.

Step 2: Review the Relationship and Determine Whether It Requires Any Constraints

Briefly review each relationship characteristic and keep its current setting in mind.
Then examine the relationship as a whole and determine whether it requires some
form of constraint. As you review the relationship, remember the answers to the
questions you posed in Step 1. You now pose a question such as this to help you
determine whether a constraint is necessary:

Is there a need to impose some type of limitation on this
relationship based on the way the organization functions or
conducts its business?

If the answer is yes, then go to the next step; otherwise, review the next relationship
and perform this step once again. For example, assume you’re designing a database
for a small dance studio, and you’re working with the relationship between the
INSTRUCTORS and INSTRUCTOR CLASSES tables in Figure 11.9.

Figure 11.9. A relationship diagram for tables from a dance studio database

Now, pose a question to help you determine whether the relationship requires a
constraint:

Is there a need to impose some type of limitation on this
relationship based on the way the dance studio functions or
conducts its business?

Move to the next step if you receive an answer such as this:
Yes, there is. We require all instructors to teach at least one

class. We limit them, however, to teaching no more than eight
classes.

You’ll use this response as the basis of a business rule in the next step.

Step 3: Define the Necessary Business Rules for the Relationship

Next, define an appropriate business rule based on the response you received in Step
2. Identify the constraint the response implies and then transform it into a business
rule. For example, you can infer two constraints from the response: The minimum
number of classes an instructor can teach is one, and the maximum number is eight.
Transform these constraints into a business rule by composing a statement such as
this one:

An instructor must teach one class, but no more than eight
classes.

After you’ve defined the rule, continue with the next step.

Step 4: Establish the Rule by Modifying the Appropriate Relationship Characteristics

Establish the business rule you just defined by modifying the appropriate
characteristics in the relationship diagram. Before you make any modifications,
consider the business rule statement once again and identify which relationship
characteristics the rule affects:

An instructor must teach one class, but no more than eight
classes.

The constraint affects the number of classes an instructor can teach, so you modify
the degree of participation characteristic of the INSTRUCTOR CLASSES table by
setting it to “(1,8).” This rule also affects the type of participation characteristic of the
INSTRUCTOR CLASSES table. You must set the table’s type of participation to
“Mandatory” because a single record in the INSTRUCTORS table must be associated
with at least one record in the INSTRUCTOR CLASSES table. Figure 11.10 shows
the revised relationship diagram with your modifications.

Figure 11.10. The revised relationship diagram that establishes the new business
rule

Step 5: Determine What Actions Will Test the Rule

As you know, the constraint the business rule imposes is tested when you attempt to
insert, delete, or update a table record or field value. Now that you’ve established the
business rule and understand how it affects the relationship, determine what actions
test the rule by identifying when a violation of the rule is most likely to occur. Use the
following questions to help you make your decision:

Are there circumstances under which this rule will be violated if
I enter a new record into this table?
Will this rule be violated if I do not enter a new record into this
table?
Will this rule be violated if I delete a record from this table?

Once you’ve determined which actions will trigger a violation of the rule, make note
of them; you’ll use them in the next step. This information will also help you to
establish this rule in the most effective manner possible when you implement the
database in your RDBMS.
Here’s an important point to note: When you determine that a rule will be violated
when you attempt to delete a record, you must alter the current deletion rule for the
relationship accordingly or add a new deletion rule to the relationship.
You learned in Chapter 10, “Table Relationships,” that you don’t need to worry about
deleting records in the child table of a relationship because there can be no adverse
effects from doing so. We must now amend this assertion by stating that an exception
occurs when deleting a record in the child table would violate a required business rule.
You handle this exception by establishing a Restrict deletion rule for the child table.
Make absolutely certain that you keep this in mind as you’re determining when a rule
will be tested.
The new business rule for the dance studio database will be tested when you attempt
to insert a record into the INSTRUCTOR CLASSES table; you can associate a
maximum of only eight records with a particular instructor. The rule will also be
tested when you attempt to delete a record from the INSTRUCTOR CLASSES
table; each instructor must be associated with at least one class. As a result, you must
establish a Restrict deletion rule for this table. Figure 11.11 shows the modifications
you’ve made to this relationship’s diagram.

Figure 11.11. Establishing a Restrict deletion rule for the INSTRUCTOR
CLASSES table to support the new business rule

Step 6: Record the Rule on a Business Rule Specifications Sheet

Finally, fill out a Business Rule Specifications sheet for the business rule you
established in Step 4. Figure 11.12 shows the completed Business Rule Specifications
sheet for your new rule.

Figure 11.12. The completed Business Rule Specifications sheet for the new
business rule

Validation Tables
As you define field-specific business rules, there will be instances in which a rule
imposes a constraint that defines a distinct set of valid values for a given field’s range
of values. (This affects the field’s Range of Values element in its field specification.)
This set of values commonly comprises a relatively fixed number of entries, and the
values themselves will rarely change. If the number of entries is rather high, however,
you might discover that it’s going to be slightly difficult for you to implement this rule.
For example, you’ll probably run out of room very quickly when you attempt to
enumerate each of the values within the Range of Values element on the Field
Specifications sheet, and implementing the entire set of values within the RDBMS
could prove to be somewhat complicated. You can avoid problems such as these by
storing all of the values in a validation table.

What Are Validation Tables?
As you learned in Chapter 3, “Terminology,” a validation table (also known as a
lookup table) stores data that you specifically use to implement data integrity. You
won’t often insert, update, or delete any records within the table once you populate
the table with the data you require. Validation tables usually (but not always) comprise
two fields: The first acts as the primary key and is what you’ll use to help you
enforce data integrity, and the second is simply a non-key field that stores a set of
values required by some other field in the database. Figure 11.13 shows two examples
of validation tables.

Figure 11.13. Examples of validation tables

In this section, you’ll learn how to use the primary key field to help enforce a
business rule. You’ll learn how to use the non-key field in Chapter 12, “Views.”

Using Validation Tables to Support Business Rules
When a business rule limits a field’s range of values, you can enforce the constraint
by using a validation table; the field will then draw its values from an appropriate field
in the validation table. Establishing this type of rule involves two steps: defining a
relationship between the parent table of the field affected by the rule and the
validation table, and making a modification to the Range of Values element of the field
specifications for the affected field in the parent table.
For example, assume you’re working with the SUPPSTATE field of a SUPPLIERS
table, and you’ve defined the following business rule:

Any supplier we use must be based in one of the 11 contiguous

western states, Alaska, or Hawaii.
You can see that this rule imposes a constraint on the SUPPSTATE field’s range of
values, limiting them to AK, AZ, CA, CO, HI, ID, MT, NM, NV, OR, UT, WA, and
WY. (According to the rule, you can’t use a supplier based in some other state.) The
easiest and most efficient way to establish this rule is to store these values in a
validation table called STATES, and then to use the validation table as the source of
the SUPPSTATE field’s range of values.
Consider the tables in Figure 11.14. (Note the new symbol that is used to represent a
validation table.) The SUPPLIERS table stores all the requisite data on the
SUPPLIERS engaged by the organization, and the STATES table is a new validation
table that will store the names and abbreviations of the specified states.

Figure 11.14. The SUPPLIERS table and the STATES validation table

Your first order of business (no pun intended) is to establish a relationship between
these tables. As you can see, there is a one-to-many relationship between them—a
single record in STATES can be associated with one or more records in SUPPLIERS,
but a single record in SUPPLIERS will be associated with only one record in
STATES. You already know that you establish a one-to-many relationship by taking a
copy of the parent table’s primary key and incorporating it within the structure of the
child table where it becomes a foreign key. Although the SUPPLIERS table already
has a field named SUPPSTATE, you’ll replace it with the STATE field from the STATES
validation table. (This is a reasonable modification because it is in accordance with the

Elements of the Ideal Field and is consistent with the manner in which you establish
one-to-many relationships.) Figure 11.15 shows the new relationship diagram for
these two tables.

Figure 11.15. A relationship diagram for the SUPPLIERS and STATES tables

Now that the STATE field is a foreign key in the SUPPLIERS table, make certain that
it conforms to the Elements of a Foreign Key (as outlined in Chapter 10) and set its
field specification in the appropriate manner. Then set the relationship’s characteristics
in this manner.

• Deletion Rule: Define a Restrict deletion rule for this relationship. You do not
want to delete a state in the STATES table that is being referenced by records
in the SUPPLIERS table.

• Type of Participation: Designate an Optional type of participation for the
SUPPLIERS table and a Mandatory type of participation for the STATES
table. Although it’s unnecessary for the SUPPLIERS table to contain any
records before you can enter a new record in the STATES table, there must be
at least one record in the STATES table before you can enter records into the
SUPPLIERS table.

• Degree of Participation: Assign a (1,1) degree of participation for the
STATES table; as you already know, there must be at least one record in the
STATES table before you can enter records into the SUPPLIERS table. Assign

a (0,N) degree of participation for the SUPPLIERS table; any number of
records in this table can be associated with a particular record in the STATES
table.

Next, modify the Range of Values element of the field specification for the STATE field
in the SUPPLIERS table using a setting such as this:

Any value within the STATE field of the STATES table.
Figure 11.16 shows the settings you’ve made within the Logical Elements category of
the Field Specifications sheet for this field.

Figure 11.16. Setting the Logical Elements category for the STATE foreign key
field in the SUPPLIERS table

Now you must decide which actions test the rule. When you use a validation table to
enforce a business rule, you typically want to test the rule when a user attempts to

insert a new value into the field or update an existing value within the field. In either
case, a violation will occur when the user attempts to enter a value that does not exist
in the validation table.
Finally, fill out a Business Rule Specifications sheet for the business rule you’ve just
established. Be sure to indicate the modifications you’ve made to both the field and
the new relationship. Figure 11.17 shows the completed Business Rule Specifications
sheet for your new rule.

Figure 11.17. A completed Business Rule Specifications sheet for the new
business rule

Reviewing the Business Rule Specifications Sheets
After you’ve established the business rules you believe to be appropriate, review their
specification sheets. Carefully examine each specification sheet and make certain that
you’ve properly established the rule and that you’ve clearly marked all of the
appropriate areas on the sheet. If you find an error, make the necessary modifications
and review it once more. Repeat this process until you’ve reviewed every business
rule.
Business rules are an important component of the database. They contribute to
overall data integrity and impose integrity constraints that are specific to the
organization. As you’ve seen, these rules help to ensure the validity and consistency
of the data according to the manner in which the organization functions or conducts
its business. Additionally, these rules will eventually influence the manner in which
you implement the database within your RDBMS and how you design and develop
end-user application programs for the database.
It’s important to understand that you will revisit these rules quite often. As you review
the final structure, for example, you may determine that additional business rules are
necessary. You may discover that some of the rules will not provide the results you
had initially envisioned, so you’ll need to modify them. It’s also possible for you to
determine that some of the rules aren’t necessary after all. (In this instance, be
absolutely sure to examine the rules carefully before you remove them.)
Keep in mind that the business rules you define now are bound to require
modifications in the future; you will most likely need to add business rules in due
course because of changes in the way the organization functions or conducts its
business. The need to modify existing business rules or develop new ones is quite
normal—the organization inevitably grows and matures, and so does the manner in
which it acts upon or reacts to external forces. These forces affect the manner in
which the organization perceives and uses its data, which, in turn, changes the nature
of the organization’s business rule requirements.
The task of defining and establishing business rules is—as are so many other tasks
within the database design process—ongoing. Don’t be discouraged if you have to

perform this task several times. Your efforts will pay great dividends in the long run.

Case Study
Now it’s time to establish business rules for Mike’s database. You schedule a meeting
with Mike and his staff to review the tables and relationships in their database. The
first order of business is to define and establish field-specific business rules.
You start the process by reviewing the PRODUCTS table. As you examine each field,
you determine whether it requires any constraints. When you come upon the
CATEGORY field, you remember that there was some question regarding its range of
values. (Refer to the Case Study in Chapter 9, “Field Specifications.”) You discuss
this issue once again with Mike and his staff, and you finally come to a consensus on
a distinct list of categories. Mike then decides that the values for the CATEGORY field
should be limited to those on this list to make certain that the staff does not arbitrarily
invent new categories. Based on Mike’s decision, you define an appropriate business
rule to establish the constraint:

Invalid product categories are not allowed.
There are a number of items in the list of possible categories, so you decide that the
best way to establish this rule is to use a validation table. You create a new table
called CATEGORIES and then establish a relationship between it and the
PRODUCTS table. Next, you diagram the relationship and set the relationship’s
characteristics in the appropriate manner. Figure 11.18 shows the results of your
work.

Figure 11.18. The relationship diagram for the PRODUCTS and CATEGORIES
tables

Here are the settings you used for the relationship’s characteristics.
• There is a Restrict deletion rule for the relationship.
• The CATEGORIES table has a mandatory type of participation.
• The PRODUCTS table has an optional type of participation.
• The CATEGORIES table has a (1,1) degree of participation.
• The PRODUCTS table has a (0,N) degree of participation.

Remember that by establishing this relationship, you’ve replaced the existing
CATEGORY field in the PRODUCTS table with a copy of the CATEGORY ID field from
the new CATEGORIES table. You must now make certain that the CATEGORY ID
field in the PRODUCTS table conforms to the Elements of a Foreign Key and then
make the appropriate modifications to its field specification. Finally, set the field’s
Range of Values element to something such as this:

Any value within the CATEGORY ID field in the CATEGORIES
table.

Figure 11.19 shows the settings you’ve made to the Logical Elements category of the
field specifications for the CATEGORY ID field in the PRODUCTS table.

Figure 11.19. Logical Elements settings for the CATEGORY ID foreign key field in
the PRODUCTS table

Now you must decide when the rule should be tested. As you already know, you
typically want to test a rule established with a validation table if the user attempts to
insert a value into the field or update an existing value within the field.
Finally, you complete a Business Rule Specifications sheet for this new business rule.
This specification sheet will reflect the modifications you’ve made to the field
specifications for the CATEGORY ID field, as well as the characteristics of the
relationship between the CATEGORIES and PRODUCTS tables. Figure 11.20 shows
the completed Business Rule Specifications sheet.

Figure 11.20. The completed Business Rule Specifications sheet for the new
business rule

You repeat this process for the remaining fields in this table and for the fields in the
remaining tables. After you’re finished, you move on to the next task.
The next order of business is to establish relationship-specific business rules. You
begin by reviewing the relationship between the EMPLOYEES and INVOICES
tables, and you review the relationship diagram to determine whether the relationship
requires any constraints. Everything seems to be in order, so you move to the
relationship between the VENDORS and PRODUCTS tables. Figure 11.21 shows the
relationship diagram for these tables.

Figure 11.21. The relationship diagram for the VENDORS and PRODUCTS
tables

As you and Mike discuss whether you should impose any constraints on this
relationship, Mike determines that there should be a constraint on the PRODUCTS
table. He wants to make sure that every vendor in the VENDORS table is associated
with at least one product; he figures that it’s unnecessary to keep data on a vendor
who’s not supplying him with any products. So you define the following business rule
for this constraint:

Every vendor must supply at least one product.

Now you establish the rule by modifying the appropriate relationship characteristics.
You begin by designating a Mandatory type of participation and assigning a (1,N)
degree of participation to the PRODUCTS table. You then define a Restrict deletion
rule for the relationship based on the PRODUCTS table; this will keep you from
accidentally deleting the only product associated with a given vendor. Figure 11.22
shows the results of your modifications.

Figure 11.22. The revised relationship diagram for the VENDORS and
PRODUCTS tables

You already know that this type of business rule will be tested when a user attempts
to insert a record into or delete a record from the PRODUCTS table, so you
complete this process by filling out a Business Rule Specifications sheet for this rule.
Figure 11.23 shows the completed specification sheet.

Figure 11.23. A completed Business Rule Specifications sheet

Now you repeat this process for the remaining relationships. When you’re finished,
the process is complete and you’re ready for the next stage of the database design
process.

Summary
This chapter opened with a definition of business rules. You learned that a business
rule is a constraint imposed on a field or a relationship that is based on the way the
organization perceives and uses its data and that it is derived from the manner in
which the organization functions or conducts its business. You now know that there
are two major types of business rules: database oriented and application oriented.
Although our focus here is on database-oriented business rules, you know that you
can at least record the basic elements of application-oriented business rules for use
later in the implementation process.
You then learned that database-oriented business rules are divided into two categories:
field-specific business rules, which affect the elements of a field specification for a
particular field; and relationship-specific business rules, which affect the
characteristics of a relationship.
The chapter continued with a discussion of defining and establishing business rules.
Here you learned that you work with users and management to define the business
rules required by the organization. You also learned that it is best to establish the field-
specific business rules first, followed by the relationship-specific business rules.
Next, you learned the steps necessary to define and establish each type of business
rule. You now know that, in general, you work with a field or relationship, review the
field or relationship in light of the rule to determine whether any constraints are
necessary, define the appropriate business rule, establish the rule by modifying the
appropriate field specification elements or relationship characteristics, decide which
actions test the rule, and then complete a Business Rule Specifications sheet for the
rule.
The chapter continued with a discussion of the elements of the Business Rule
Specifications sheet, and how each element on the sheet is defined. As you now
know, using Business Rule Specifications sheets allows you to document all of your
rules and provides you with a standard method for recording and reviewing them.

We closed the chapter by discussing validation tables. You learned that you can
create and use a validation table to support a business rule that limits the range of
values for a particular field. In this manner, the validation table helps to enforce data
integrity. You also learned that you need to establish new relationships when you use
validation tables and that these relationships have the same types of characteristics as
any other types of relationships in the database.

Review Questions
1. What is a business rule?
2. Name the two major types of business rules.
3. Can you establish application-oriented business rules within the logical design

of the database?
4. What are the two categories of database-oriented business rules?
5. What is a field-specific business rule?
6. When is a business rule tested?
7. How do you document a business rule?
8. State two advantages a Business Rule Specifications sheet provides.
9. What is the purpose of the Action Taken section of a Business Rule

Specifications sheet?
10. What is the purpose of a validation table?
11. What is the typical structure of a validation table?
12. What is the association between a business rule and a validation table?
13. Why should you review all of your completed Business Rule Specifications

sheets?

12. Views

There is no object on earth which cannot be looked at from a cosmic point
of view.

—FYODOR MIKHAYLOVICH DOSTOYEVSKY

Topics Covered in This Chapter
What Are Views?
Anatomy of a View
Determining and Defining Views
Case Study
Summary
Review Questions

What Are Views?
As you learned in Chapter 3, “Terminology,” a view is a virtual table composed of
fields from one or more tables in the database; it can also include fields from other
views. The tables and views that comprise a given view are known as the view’s base
tables. A view is “virtual” because it draws data from base tables rather than storing
data on its own. In fact, the only information about a view that is stored in the
database is its structure; the RDBMS rebuilds and “repopulates” the view every time
you access the view in some manner. Many major RDBMS programs support views,
but some refer to them as saved queries. Your specific RDBMS program will
determine whether you refer to this object as a query or a view.

Note
Although every major database vendor supports the view I’ve just described,
several vendors support what is known as an indexed (or materialized) view.
An indexed view is different from a regular view in that it does store data, and
its fields can be indexed to improve the speed at which the RDBMS processes
the view’s data. A full discussion of indexed views is beyond the scope of this
book because it is a vendor-specific implementation issue. However, you
should research this topic further if you are working with a client/server or
mainframe RDBMS program.

Views enable you to see the information in your database from many different
aspects, providing you with a great amount of flexibility when you work with your
data. You can create views in a variety of ways, and they are especially useful when
you base them on multiple related tables.
There are several reasons why you should define and use views in your database.

• You can use them to work with data from multiple tables simultaneously.
During the database design process, you established relationships between
various pairs of tables bearing one-to-many or many-to-many relationships to
each other. (Recall that you resolved the many-to-many relationships via
linking tables.) A view provides the mechanism that allows you to work with
data from two or more related tables simultaneously.

• They reflect the most current information. Because the RDBMS rebuilds and
repopulates the view every time you access it, the information displayed by the
view exhibits the most recent changes to the data in its base tables.

• You can customize them to the specific needs of an individual or group of
individuals. You can build a view to suit any set of requirements, such as
providing the data for a particular report or providing a means of examining
specific information that is common to several departments within an
organization.

• You can use them to help enforce data integrity. You can define a validation
view that works in the same manner as a validation table—its purpose is to
provide a valid range of values for a given field in the database.

• You can use them for security or confidentiality purposes. You can determine

what data is available to a particular user or group of users by defining a view
on select fields from the view’s base tables.

Define your views carefully and skillfully, and they will become a valuable asset after
you’ve implemented the database within your RDBMS.

Anatomy of a View
There are three types of views (data, aggregate, and validation) that you can define
as you design the logical structure of the database and two types of views
(materialized and partitioned) that you can define as you implement your database
within an RDBMS. The ability to define the latter two types of views and the manner
in which you do so are highly dependent upon your RDBMS, so they are beyond the
scope of this book. We will, therefore, focus our attention on the first three types of
views.

Data View
You use this type of view to examine and manipulate data from a single base table or
multiple base tables.

Single-Table Data View

Although you could use all of the fields from the base table to build this type of view,
you’ll usually just use selected fields. (Building a view using all of the base table’s
fields would simply produce a virtual copy of the base table.) For example, say you
want to make a list of employee names and phone numbers available to everyone in
the organization. You can construct an EMPLOYEE PHONE LIST view based on
the EMPLOYEES table using just the EMPLOYEE ID, EMPFIRST NAME, EMPLAST
NAME, and EMPPHONE NUMBER fields. Figure 12.1 shows a diagram of this particular
view. (Note the new symbol used to indicate a view.)

Figure 12.1. The EMPLOYEE PHONE LIST view

Your RDBMS will rebuild and repopulate the EMPLOYEE PHONE LIST view each
time you access it, and the view will reflect the latest changes you’ve made to the
data in the EMPLOYEES table. Figure 12.2 shows how an RDBMS will typically
display the data within a view. Note that the view’s appearance is quite similar to that
of a table; this is yet another reason why a view is known as a “virtual table.”

Figure 12.2. Information from the EMPLOYEE PHONE LIST view

You can modify the data within a single-table data view at any time, and the
modifications you make will flow through the view and into the base table. Keep in
mind, however, that field specifications and business rules will determine what types
of modifications you can make to the data. For example, you won’t be able to delete
a last name in the EMPLOYEE PHONE LIST view if the Null Support element of
the field specification for the EMPLAST NAME field is set to “No Nulls.”

Note
View implementation varies to some degree among most RDBMS software.
Make sure you examine your RDBMS’s documentation to determine how
fully the RDBMS supports views and what types of constraints it imposes (if
any) on modifying the data in a view.

Multitable Data View

As I mentioned at the beginning of this section, you can define a data view using two
or more tables. The only requirement is that the tables you use to create the view
must bear a relationship to each other; this helps ensure that the information the view
presents is both valid and meaningful. For example, assume you’re designing a
database for a local community college and that the tables in Figure 12.3 are part of
the database. You’ve just decided that you need to create a view called CLASS
ROSTER that shows the name of each class and the names of the students who are
currently registered to attend it. This will be an easy task for you to perform because

you can use the three tables as the basis of the view; they contain the fields that you
need to define the view and they bear a relationship to one another.

Figure 12.3. Base tables for the CLASS ROSTER view

Now you define the CLASS ROSTER view by using the CLASS NAME field from the
CLASSES table and the STUDFIRST NAME and STUDLAST NAME fields from the
STUDENTS table. The appropriate student names will appear for each class because
CLASSES and STUDENTS are related (and therefore connected) through the
STUDENT CLASSES linking table. Figure 12.4 shows the diagram for the CLASS
ROSTER view. Note that no changes have been made to any of the base tables.

Figure 12.4. The diagram for the CLASS ROSTER view

Every time you access the CLASS ROSTER view, the RDBMS will rebuild and
repopulate it using the most current data from the view’s base tables. Figure 12.5
shows a sample of the view’s data.

Figure 12.5. A partial sample of data from the CLASS ROSTER view

You can modify most of the data within a multitable data view at any time, and the
modifications you make will flow through the view and into the base tables. Quite
obviously, you can’t modify the value of any primary keys that you incorporate from
the base tables. As in the case of a single-table view, field specifications and business
rules will determine what types of modifications you can make to the data. (Again, be
sure to check your RDBMS documentation for any further constraints it may place
upon your views.)
The redundant data in the CLASS ROSTER view (which you should have noticed) is
the result of merging a record from the CLASSES table with two or more records
from the STUDENTS table; the number of times a particular class name appears is
equal to the number of students that are registered to attend that class. This apparent
redundancy is acceptable because the data is not physically stored in the view—
rather, it is drawn from the view’s base tables, where it is stored in accordance with
the rules of proper database design. RDBMSs commonly display data from multitable
views in this fashion.

Another point to note is that a data view does not contain its own primary key. It
lacks a primary key because it is not a table; a true table stores data and requires a
primary key to serve as a unique identifier for each of its records. You can
incorporate a primary key from any (or all) of the base tables within the view,
however, when you determine it will contribute to the information the view provides.

Note
In order to avoid any unnecessary ambiguity or confusion, make certain you
do not have any primary key indicators within the view symbol when you
diagram a data view.

Aggregate View
You use this type of view to display information produced by aggregating a particular
set of data in a specific manner. As with a data view, you can define an aggregate
view using one or more base tables. You can then include one or more calculated
fields that incorporate the functions that aggregate the data and one or more data
fields (drawn from the view’s base tables) to group the aggregated data. Sum,
Average (arithmetic mean), Minimum, Maximum, and Count are the most common
aggregate functions that you can apply to a set of data, and every major RDBMS
supports them.
Let’s say that you wanted to know how many students are registered for each class,
and you’re using the tables from the school example shown in Figure 12.3. Your first
impulse is to define a data view called CLASS REGISTRATION that will provide the
information you need to answer your question. So, you use the CLASS NAME field
from the CLASSES table and the STUDENT ID field from the STUDENT CLASSES
table to build the view. Figure 12.6 shows a diagram for the new CLASS
REGISTRATION view.

Figure 12.6. View diagram for the new CLASS REGISTRATION view

Now you access the view so that you can answer your question. Figure 12.7 shows a
partial sample of the data in the view.

Figure 12.7. A partial sample of data from the CLASS REGISTRATION view

In order to answer your question, you must now count each instance of a given class
name so that you can determine how many students are registered for that class.
Imagine the work you have ahead of you—this will not be an easy task! Rather than
going through all this tedious work, you can answer your question quite easily (and
more efficiently) using an aggregate view.
There’s no need to define a new view because you can modify the one you have just
now. Remove the STUDENT ID field from the view and replace it with a calculated
field called TOTAL STUDENTS REGISTERED that counts the number of students per
class. (When you work with a calculated field, make certain that you give it a name
that is meaningful and that will distinguish it from other calculated fields in the view.)
The calculated field will use a Count function to count the number of STUDENT IDs in
the STUDENT CLASSES table that are associated with each CLASS ID in the
STUDENT CLASSES table. (Later, you’ll learn how to document a view and record
the expression the calculated field will use.) Figure 12.8 shows the revised diagram for
the CLASS REGISTRATION view.

Figure 12.8. Revised diagram for the CLASS REGISTRATION view

As was the case with the data view, the RDBMS will rebuild and repopulate the
CLASS REGISTRATION view every time you access it, using the most current data
from the view’s base tables. Figure 12.9 shows a sample of the view’s data.

Figure 12.9. A sample of data from the revised CLASS REGISTRATION view

There are three things to note about this view.
1. The TOTAL STUDENTS REGISTERED field displays a single number for each

class name, which represents the total number of students registered for that
class.

2. The redundancy within the CLASS NAME field has been eliminated; all instances
of a given class name have been grouped into a single instance. As a result,
CLASS NAME is now a grouping field, and its values cannot be modified in any
way.

Note
All data fields in an aggregate view are grouping fields.

3. Because an aggregate view is composed entirely of grouping fields and
calculated fields, you cannot modify any of its data.

An aggregate view is most useful as the basis of a report or as a means of providing
various types of statistical information. You’ll learn later that you can apply filtering
criteria to this (or any) view in order to control and restrict the data that the view
displays.

Validation View
A validation view is similar to a validation table in that it can help implement data
integrity. When a business rule limits a particular field’s range of values, you can
enforce the constraint just as easily with a validation view as you can with a validation
table. The difference between the two lies in their construction—a validation table
stores its own data, whereas a validation view draws data from its base tables.
Although you can define a validation view using one or more base tables, you’ll
commonly define a validation table using a single base table and incorporate only two
or three of the base table’s fields. (This structure is quite similar to that of a validation
table.)
For example, let’s say you’re designing a database for a small contractor and you’re
working with the tables in Figure 12.10.

Figure 12.10. Tables from a database for a small contractor

As you can see, the SUBCONTRACTOR ID field in the SUBCONTRACTORS table
provides the range of values for the SUBCONTRACTOR ID field in the PROJECT
SUBCONTRACTORS table. (Recall that a foreign key draws its values from the
primary key to which it refers.) You’ve determined, however, that you want to
restrict the access users currently have to certain fields in the SUBCONTRACTORS
table; you’ve decided that the only fields users should be able to access are the
SUBCONTRACTOR ID, SCNAME, SCPHONE NUMBER, and SCEMAIL fields. So, you
define a validation view called APPROVED SUBCONTRACTORS that will

incorporate these fields and still provide the range of values for the SUBCONTRACTOR
ID field in the PROJECT SUBCONTRACTORS table. Figure 12.11 shows a revised
diagram of the tables, including the new view.

Figure 12.11. Revised table diagram; note the new APPROVED
SUBCONTRACTORS view.

The APPROVED SUBCONTRACTORS view now gives users access only to those
fields that you’ve indicated and provides the appropriate range of values for the
SUBCONTRACTOR ID field in the PROJECT SUBCONTRACTORS table.
Additionally, the view will still enforce the relationship characteristics that exist for the
SUBCONTRACTORS table because it (as you will recall) is the view’s base table.

Determining and Defining Views
By now you’ve probably realized that views can be a substantial asset to the
database. During this stage of the database design process, you’ll define a
fundamental set of views for the database. Your definition of views won’t stop here—
you’ll probably define more views when you implement the database within your
RDBMS and as you create your end-user application programs. In these instances,
you’ll use views as a tool to support particular aspects of the implementation or
application program. The views you define during the database design process,
however, will focus strictly on data access and information retrieval issues.

Working with Users and Management
You’ll work once again with the organization’s representative group of users and
management to identify the types of views the organization requires. After you
identify these views, you’ll establish and document them, and then you and the group

will review the views to make certain that they are properly defined.
Before you conduct your first meeting with the group, review the notes you’ve taken
throughout the entire design process. Your objective is to get an idea of the types of
views the organization might need. Almost every organization spends a large amount
of time producing and reading reports, so you should focus on that aspect of your
notes. You should also review the report samples you assembled during the analysis
process.
When you and the group meet, consider the following points to help you identify view
requirements.

• Review your notes with the group. In many instances, talking about a specific
topic will spark an idea for a new or required view. For example, someone may
realize a need for a view during a discussion of mission objectives.

• Review the data entry, report, and presentation samples you gathered during
the early stages of the design process. Examining these samples, especially
summary-style reports, could easily illuminate the need for certain types of
views.

• Examine the tables and the subjects they represent. Some individuals in the
group may identify the need for a view based solely on a specific subject. If
someone mentions a subject, such as Employees, it may cause someone else to
say, “We definitely need a view that restricts certain employee data for
confidentiality reasons.”

• Analyze the table relationships. You’ll most likely identify a number of
multitable views that you should create for many of the relationships. Several
of these views will coincide with views you identified for the report samples.

• Study the business rules. As you already know, you can use a validation view
to enforce a rule that imposes a constraint on a particular field’s range of
values.

You and the group should be able to identify a number of views by going over the
items on this list. After you’ve identified as many of the required views as possible,
your next task is to define them.

Defining Views
You’ll now define each view that you’ve identified using the appropriate tables and

fields. Review the relationship diagrams to identify which tables and fields you need
for the view’s structure. When you’ve determined what you need, define the view
and record it in a view diagram.
For example, say you’ve determined that you can use a view for the report shown in
Figure 12.12; the name of the new view will be CUSTOMER CALL LIST.

Figure 12.12. Report sample requiring a view

The notes you’ve taken throughout the design process become useful once again. You
reviewed this report during the analysis stage of the design process, and you’ve noted
that this report represents information about customers and their orders; it is from the
order data that you can determine when a given customer made his last purchase.
Now, review the relationship diagram for the CUSTOMERS and ORDERS tables;

you’ll use fields from these tables to create the CUSTOMER CALL LIST view.
Figure 12.13 shows the relationship diagram for these tables.

Figure 12.13. Relationship diagram for the CUSTOMERS and ORDERS tables

After examining the relationship diagram, you determine you need to use five fields to
build this view: CUSTFIRST NAME, CUSTLAST NAME, CUSTPHONE NUMBER, and
CUSTCITY from the CUSTOMERS table, and ORDER DATE from the ORDERS table.
You now define the CUSTOMER CALL LIST view by assigning the fields to the
view and then recording them in a view diagram. When you’re finished, your diagram
should look like the one in Figure 12.14.

Figure 12.14. View diagram for the CUSTOMER CALL LIST view

Using Calculated Fields Where Appropriate

Earlier in the database design process, you learned that tables couldn’t contain
calculated fields for a number of good reasons. But one of the characteristics of a
view that makes it so useful is that it can contain calculated fields. Recall that
calculated fields will display the result of a concatenation, expression, or aggregate

function; this makes them an extremely flexible structure to include in a view.
For example, consider the new CUSTOMER CALL LIST view. Although you have
the fields you need for the view, you’ll have to make one minor modification to the
view so that it can display the appropriate data. One of the requirements for this view
is that it must display the date of the last purchase made by each customer. In order
to retrieve and display the proper date, you’ll have to add a calculated field to the
view. This field will use the Maximum function [commonly known as Max()] to
retrieve the correct date from the ORDER DATE field. Name the new field LAST
PURCHASE DATE and add it to the CUSTOMER CALL LIST view diagram. (You no
longer need the ORDER DATE field in the view, so you can remove it from the view’s
structure.) This is the expression you’ll use in the calculated field to retrieve the
appropriate date:

Max(Order Date)
Later in this section, you’ll learn where and how to record this expression.

Note
Be sure to refer to your RDMBS’s documentation to determine the correct
syntax for this function and all of the other functions used in this chapter.

Another calculated field you might include in this view is one that displays the
complete customer name by concatenating CUSTFIRST NAME and CUSTLAST NAME.
Say, for example, that you want to display the customer name in this manner:
“Hernandez, Michael.” Create a calculated field called CUSTOMER NAME and use the
following concatenation expression:

CustLast Name & “, “ & CustFirst Name
Add the new calculated field to the CUSTOMER CALL LIST view diagram and
remove the CUSTFIRST NAME and CUSTLAST NAME fields from the view; you don’t
need these fields anymore because you’re now using the CUSTOMER NAME calculated
field. (You’ll soon properly record this expression as well.)
Figure 12.15 shows how your revised view diagram should look after you’ve
completed these modifications.

Figure 12.15. Revised view diagram for the CUSTOMER CALL LIST

As you’ve just learned, a calculated field can be quite an asset because you can use it
to enhance the information a view provides. You also learned earlier in this chapter
that calculated fields are particularly crucial in aggregate views. A good rule of thumb
to follow when you think you may need calculated fields is to use them if they will
provide pertinent and meaningful information or if they will enhance the manner in

which the view uses its data.
If you recall, you created a calculated field list earlier in the design process (refer to
Chapter 6, “Analyzing the Current Database”). You can now use this list as a source
of calculated fields that you might (or should) use in your views. Review the list as
you define each new view and determine whether you can use one of the calculated
fields on the list. When you find one that you can use, create it in the same manner as
you did in the preceding examples. (If you create a new calculated field that does not
appear on your list, however, be sure to add it to the list. This will help you keep your
calculated field list current and in order.)

Imposing Criteria to Filter the Data

Views have another characteristic that makes them extremely useful: You can impose
criteria against one or more fields in the view to filter the records it displays. For
example, say that the CUSTOMER CALL LIST view included the CUSTSTATE field.
Although the view would continue to display the set of records it did before, you
would also see the state in which each customer lives. Assume, however, that you
want the view to show a particular set of records, such as those for customers who
live in Washington. You can accomplish this by setting a specific criterion on the
CUSTSTATE field that will filter the data so that the view displays only those records of
customers from Washington.

Note
In database work, the word criterion refers to an expression that is tested
against the value of a particular field. The view will include a given record if
the value of the field meets the criterion.

This is the expression you will use to filter the records for the CUSTOMER CALL
LIST view:

CustState = “WA”
Now the view will display only customers from Washington. If you want to filter the
records further to show only those customers who live in specific cities, you add a
criterion such as this:

CustCity In (“Bellevue,” “Olympia,” “Redmond,” “Seattle,”
“Spokane,” “Tacoma”)

The view will now display Washington customers who live in the cities specified in
the expression. You may wonder why both criteria are necessary—the criterion for
the CUSTCITY field should retrieve the appropriate records by itself. The trouble is
that many cities are named for other cities, so cities in two or three different states
could have the same name. For example, there is a Portland, Oregon, and a Portland,
Maine, both named after Portland, England. The point to remember is that you must
use your best judgment when you establish criteria for a view—use the minimum
number of criteria that will cause the view to display the records you require.
When you use a criterion in a view, you must make certain that the field you’re
testing in the criterion is included in the view’s structure. If you do not include the
field in the view, you have no way of imposing the criterion. This is an important
point to remember because it is a requirement when you logically define a view and
when you implement the view in your RDBMS.
The one problem with applying a filter to a view is that there is no way to indicate it
on a view diagram; therefore, you must record it on a View Specifications sheet.

Using a View Specifications Sheet to Record the View

A View Specifications sheet must accompany each view diagram you create. It is on
this sheet that you will record the characteristics of the view. The View Specifications
sheet contains the following items.

• Name: This is where you indicate the name of the view. Before you record the
name, however, test it against the guidelines for creating table names you
learned in Chapter 7, “Establishing Table Structures.” These guidelines govern
the naming of views as well, with one exception: The name of a view can
implicitly or explicitly identify more than one subject. This is because you can
define views from two or more base tables, so they do, indeed, represent more
than one subject.

• Type: This is where you indicate whether you’re defining a data, aggregate, or
validation view.

• Base tables: This is where you specify the names of the view’s base tables.
Although the view diagram shows these tables, they appear here as a matter of
convenience. The View Specifications sheet does not include field names,
however, because you can record and display them more easily and efficiently
on the view diagram.

• Calculated field expressions: This is where you record the expressions for the
calculated fields you included in the view. As you record the name of the
calculated field, test it against the guidelines for creating field names you
learned in Chapter 7. Calculated field names are governed by these guidelines
with two exceptions: You can implicitly or explicitly identify more than one
characteristic in a name, and you can use the plural form of the name. But it’s
still desirable to use the singular form of the name whenever possible.

• Filters: This is where you record the criteria that the view will use to filter the
records it displays. You’ll record both the field being tested and the expression
used to test it.

Note
When you fill out the Calculated Field Expressions and Filters sections of a
View Specifications sheet, use the expressions with which you are most
familiar. You’ll modify them as necessary when you implement the database
in an RDBMS.

Fill out a View Specifications sheet for each view that you create, and attach the sheet
to the proper view diagram. Both of these items will serve to document the view fully.
Figure 12.16 shows a completed View Specifications sheet for the CUSTOMER
CALL LIST view. (Keep in mind that the view has been updated to include the
CUSTSTATE field.)

Figure 12.16. Completed View Specifications sheet for the CUSTOMER CALL
LIST view

Reviewing the Documentation for Each View
Once you’ve completed the task of defining and documenting each view, review all of
your views once more—ensuring that the quality of the information each view
provides is well worth the effort. As you review each view, keep the following points
in mind.

• Make certain that you’ve defined the view properly. Think about the
information the view should provide. Are you establishing the correct type of
view for the required information? Did you use the appropriate base tables to
define the view? Did you include all the necessary fields within the view’s
structure? Are only the necessary fields included in the view’s structure?

• Make certain that the calculated fields you’ve created are suitable for the
view. Do they provide pertinent and meaningful information? Do they serve to
enhance the manner in which the view displays its data?

• Make certain that the filters will retrieve the required records. First of all, do
you need a filter for this view? If the answer is yes, do you know exactly
which records you want the view to display? Do you believe that the filter will
work correctly?

• Above all, make certain that you have a view diagram and View
Specifications sheet for each view. This documentation will be very useful
when you finally implement the database in an RDBMS.

Case Study
Your work on Mike’s database is finally nearing an end. You meet with Mike and his
staff to determine whether there is a need to establish views for the database. The
agenda you’ve set up for the meeting involves the following steps.

1. Review the notes you’ve compiled during the design process.
2. Review each of the various samples you gathered during the early stages of the

design process.
3. Examine the subjects represented by the tables in the database.
4. Analyze the table relationships.

5. Review and study the business rules.
As the meeting progresses, you identify several views that you need to define,
including a PREFERRED CUSTOMERS view and a VENDOR PRODUCT
COUNT view. The first view will provide the name and phone number of each
customer who has a “Preferred” status, and the second view will provide information
on the total number of different products each vendor supplies.
You base the PREFERRED CUSTOMERS view on the CUSTOMERS table and use
the CUSTOMERID, CUSTFIRST NAME, CUSTLAST NAME, CUSTHOME PHONE, and
STATUS fields for the view’s structure. Before you construct the view, however, Mike
asks if there’s any way to display the first name and last names together. You respond
that it can be done, so you create a calculated field called CUSTOMER NAME that
concatenates both of the fields together; this field will now replace the CUSTFIRST
NAME and CUSTLAST NAME fields. Figure 12.17 shows the view diagram for the
PREFERRED CUSTOMERS view.

Figure 12.17. View diagram for the PREFERRED CUSTOMERS view

After you create the view diagram, you make note of the expression that you’ll use to
filter the view’s data:

Status = “Preferred”
Then you complete a View Specifications sheet for the PREFERRED CUSTOMERS
view. Figure 12.18 shows the results of your work.

Figure 12.18. The View Specifications sheet for the PREFERRED CUSTOMERS
view

Now you define the VENDOR PRODUCT COUNT view using the VENDORS and
PRODUCTS tables as the view’s base tables. You use the VENDOR NAME field from
the VENDORS table to display the names of the vendors. Next, you create a
calculated field called PRODUCT COUNT to display the total number of products each
vendor supplies. This is the expression the field uses to calculate the total:

Count(ProdName)
Now you create a diagram for the view, as shown in Figure 12.19.

Figure 12.19. View diagram for the VENDOR PRODUCT COUNT view

After determining that a filter is unnecessary for this view, you finish documenting the
view by completing the View Specifications sheet shown in Figure 12.20.

Figure 12.20. View Specifications sheet for the VENDOR PRODUCT COUNT
view

You then repeat this process for every view you’ve identified for Mike’s database.

Summary
We began this chapter with a definition of a view, and you learned that it is a virtual
table that does not contain or store data. Views are useful for several reasons—they
provide a means for you to work with data from multiple tables, they help enforce
data integrity, and they help keep data secure or confidential.
We then discussed the three types of views: data, aggregate, and validation. You
learned that each type of view could be based on one or more tables, other views, or
a combination of both. Your RDBMS will rebuild and repopulate a view every time
you access it, using the most current data from the view’s base tables. As you now
know, there must be relationships between tables in a multitable view (thus making
the view’s information valid and meaningful), and the characteristics of those
relationships are carried forth through the view. Additionally, you can modify most
views, and all the modifications you make to the data are passed through the view to
the base tables. You also learned that validation views work in the same manner as
validation tables and that they have distinct advantages over validation tables. For
instance, validation views can incorporate data from multiple tables.
The chapter then continued with a discussion of determining and defining views for
the database. Here you learned several specific points to keep in mind while you work
with users and management to identify the organization’s view requirements. Next,
we discussed how to define a view, and you learned how to create a view diagram to
document the view. Now you know how to select fields from the base tables and
assign them to the view.
We then discussed how to use calculated fields in a view. You learned that you could
use them to help provide pertinent information and to enhance how the view displays
its data. You also learned that calculated fields are especially crucial in aggregate
views and that each calculated field uses an expression to derive the value it displays.
Next, you learned how to apply a filter to a view so that it will retrieve and display a
specific set of records. The view will display a given record only if it meets the
criteria you’ve imposed against one or more fields in the view. You frame each

criterion as an expression and use it to test the value of a particular field.
The chapter closed with a discussion of the View Specifications sheet. Here you
learned how to document the characteristics of the view, such as its name and type.
You also learned about the items that compose the View Specifications sheet and how
you use them to record the view’s characteristics.

Review Questions
1. Why can you refer to a view as a virtual table?
2. State two reasons why views are valuable.
3. Name the types of views you can define as you design the logical structure of

the database.
4. What does your RDMBS do each time you access a data view (or any type of

view, for that matter)?
5. What determines the type of modifications you can make to a view’s data?
6. What is the only requirement you must fulfill in order to define a multitable

data view?
7. Why doesn’t a data view contain its own primary key?
8. What is the purpose of an aggregate view?
9. What are the most common aggregate functions that you can apply to a set of

data?
10. What is a grouping field?
11. True or False: You can modify the data in an aggregate view.
12. What is the difference between a validation table and a validation view?
13. Name two points you would consider when identifying view requirements.
14. When should you use calculated fields?
15. How do you define a view that displays only science-fiction books?
16. Why must you complete a View Specifications sheet for every view in the

database?

13. Reviewing Data Integrity

When you have eliminated the impossible, whatever remains, however
improbable, must be the truth.

—SHERLOCK HOLMES, THE SIGN OF FOUR

Topics Covered in This Chapter
Why You Should Review Data Integrity
Reviewing and Refining Data Integrity
Assembling the Database Documentation
Done at Last!
Case Study—Wrap-Up
Summary

You are now at the final stage of the database design process. You’ve accomplished
many things since you started the process. Thus far you have

• Perceived the advantages of the relational database model and how it compares
to other database models

• Created a mission statement for a new database
• Defined mission objectives for the new database
• Performed a complete analysis of an old database
• Identified the organization’s information requirements
• Defined all the appropriate table structures
• Assigned a primary key to each table
• Established field specifications for each field
• Established table relationships
• Defined and established business rules
• Defined all the appropriate views
• Established overall data integrity

For all intents and purposes, your new database is complete; nevertheless, it would be

to your advantage to perform one final review of the overall data integrity of your
database.

Why You Should Review Data Integrity
You’re probably wondering why you should review the database structure one last
time, given that you’ve paid attention to every detail and have focused on data
integrity throughout the entire design process. The answer is simple: You want to
make certain that the data integrity you’ve been so careful to establish is absolutely as
sound as possible. As you well know, a crack in the integrity could result in
inconsistent data or inaccurate information. However improbable, it is possible that
you may have overlooked something. The peace of mind you gain from knowing that
you have a solidly designed database is well worth the investment of your time and
effort of this final review.

Note
Remember: Garbage in, garbage out!

Reviewing and Refining Data Integrity
Reviewing data integrity is a simple task if you take a modular approach, that is, if
you sequentially review each component of overall data integrity: table-level, field-
level, and relationship-level integrity and business rules. You should encounter very
few problems here if you have carefully followed the design method presented in this
book. The following sections briefly outline the points you should keep in mind as
you conduct the review, and they contain references to earlier chapters in case you
encounter any problems.

Table-Level Integrity
In order to ensure that you’ve properly established table-level integrity, review each
table and make certain that the table conforms to all of the following points.

• There are no duplicate fields in the table.
• There are no calculated fields in the table.
• There are no multivalued fields in the table.
• There are no multipart fields in the table.

• There are no duplicate records in the table.
• Every record in the table is identified by a primary key value.
• Each primary key conforms to the Elements of a Primary Key.

If you believe you have problems with any of these items, resolve them using the
techniques and concepts discussed in Chapter 6, “Analyzing the Current Database,”
Chapter 7, “Establishing Table Structures,” and Chapter 8, “Keys.”

Field-Level Integrity
You can ensure that you’ve properly established field-level integrity after you’ve done
the following:

• Made sure each field conforms to the Elements of the Ideal Field
• And made certain you’ve defined a set of field specifications for each field

You can resolve field-level integrity problems with the techniques discussed in
Chapter 9, “Field Specifications.”

Relationship-Level Integrity
Examine each table relationship to ensure that you’ve properly established
relationship-level integrity. You’ve achieved this level of integrity when you’ve
completed these tasks:

• Properly established the relationship
• Defined the appropriate deletion rules
• Correctly identified the type of participation for each table
• And established the proper degree of participation for each table

If you identify a problem with a relationship, use the techniques in Chapter 10, “Table
Relationships,” to resolve it.

Business Rules
You can ensure that your business rules are sound by making certain these tasks are
complete.

• You’re sure that each rule imposes a meaningful constraint.
• You’ve determined the proper category for the rule.
• You’ve properly defined and established each rule.

• You’ve modified the appropriate field specification elements or table
relationship characteristics.

• You’ve established the appropriate validation tables.
• You’ve completed a Business Rule Specifications sheet for each rule.

If you encounter problems with any of your business rules, refer to Chapter 11,
“Business Rules,” for the techniques necessary to solve them.

Views
Although views are not directly connected to any component of data integrity, you
should nevertheless review all of your view structures. As you examine each view,
make certain you’ve addressed these items.

• Each view contains the base tables necessary to provide the required
information.

• You’ve assigned the appropriate fields to each view.
• Each calculated field provides pertinent information or enhances the manner in

which the view presents its data.
• Each filter returns the appropriate set of records.
• Each view has a view diagram.
• Each view diagram is accompanied by a View Specifications sheet.

If you encounter problems with any view, resolve them by using the techniques
discussed in Chapter 12, “Views.”
Once you’ve completed this entire review, you can be confident that the database
structure is sound, the data within the database is consistent and valid, and the
information you retrieve from the database will be accurate.

Assembling the Database Documentation
Throughout the database design process, you’ve generated a number of lists,
specification sheets, and diagrams used to record various aspects of the database
design. You should now assemble them into a central repository, preferably in a set of
binders or in an organized set of folders and files on a computer. The design
repository should consist of the following sets of documents:

• Final table list

• Field Specifications sheets
• Calculated field list
• Table structure diagrams
• Relationship diagrams
• Business Rule Specifications sheets
• View diagrams
• And View Specifications sheets

Two additional sets of items you may consider keeping with this documentation are
the notes you compiled during the design process and the samples you gathered
during the analysis stage of the design process. You can keep each of these items in a
separate appendix at the end of the documentation.
All of these items constitute the complete set of documentation for the logical design
of the database. This documentation is vital for three reasons.

1. It provides a complete record of the database structure. You can find every
aspect of the logical structure of the database within the documentation.
Additionally, you can answer almost any question concerning the database
simply by referring to the documentation.

2. It provides a complete set of specifications and instructions on how the
database should be created during the implementation process. This
documentation is similar to an architect’s blueprints: It indicates how the
database is to be constructed. It also identifies the integrity that needs to be
established for the database. Because the database design is not directed to a
particular RDBMS, the individuals implementing the database have full latitude
concerning the manner in which they physically implement the database.

3. Should it seem necessary to modify the database structure during the
implementation process, the design documentation can be used to determine
the effects and consequences of any modifications. Any modifications you
make to the database structure should be the result of an informed decision.
You can make certain that a proposed modification will not have an adverse
effect on the database structure by referencing the documentation first.

Done at Last!

Now that you’ve completed the integrity review and assembled all of the
documentation for the database, the logical database design process is complete. You
can rest assured that you have a properly designed database and that its
implementation will proceed smoothly. On to the next client and the next database
design!

Case Study—Wrap-Up
This is your last meeting with Mike and his staff. Your objective is to review his
database and its integrity one final time. Although you’re confident that you will not
find any problems, you want to give the database one final quality-control review.
During the meeting, you review each of the database structures to ensure that they
are in accordance with the various elements that govern them. Then you review each
component of overall data integrity to make certain that you’ve properly established
table-level, field-level, and relationship-level integrity, as well as business rules.
Finally, you gather all of the documentation you’ve generated throughout the design
process. After you’ve assembled all of the documentation into a set of binders, you
give the binders to Mike and declare that his database is now complete. Mike
expresses his thanks and gratitude for a job well done and promises your check will
be in the mail by the fifteenth of the month. You express your thanks to Mike and his
staff, say your good-byes, and depart for new horizons. As you leave, Mike stares in
your direction; one final thought occurs to him:

“Now, if I could just get you to implement my database for me
. . .”

Summary
The chapter opened with a list of your accomplishments since you began the database
design process. It then continued with a discussion of why you should review overall
data integrity one final time. This was followed by a brief discussion of the points to
keep in mind as you review each component of overall data integrity. We closed the
chapter by discussing the importance of the documentation you’ve assembled during
the entire design process.

Part III: Other Database Design Issues

14. Bad Design—What Not to Do

Mistakes are always initial.
—CESARE PAVESE

Topics Covered in This Chapter
Flat-File Design
Spreadsheet Design
Database Design Based on the Database Software
A Final Thought
Summary

You may have wondered why this chapter appears at the end of the book instead of
at the beginning. The reason is simple: You can appreciate the dangers presented by a
poorly designed database now that you’ve learned how to design a database properly.
Additionally, you will be able to determine for yourself why a particular design is bad
—you’ll look at the design and be able to identify the problems with the structure
immediately. You also possess the knowledge required to identify possible solutions to
these problems.
In this chapter, you’ll see the three most common design approaches that lead to
poorly structured databases. The discussions are brief because they are only meant to
illustrate types of design you should avoid. It should now be obvious that the way to
resolve an improperly designed database is to take it through the complete design
process you’ve just learned.

Flat-File Design
This type of design (sometimes known as the “throw-everything-into-one-big-table”
design) has been in existence for many years and is common in databases that have
been designed for implementation in nonrelational database management systems. A
flat-file design is fraught with problems, as you can see by examining the structure in
Figure 14.1.

Figure 14.1. An example of a flat-file structure

This diagram represents the structure of a single table. (Imagine how other tables
within the database are structured!) You can readily see that this structure will
inevitably cause problems with redundant data and inconsistent data and that it suffers
from a lack of data integrity. As you’ve probably already noted, there are a few other
problems with this structure.

• Multipart fields: SALES REP NAME includes the sales rep’s first and last names,
CUSTOMER NAME includes the customer’s first and last names, and CUSTOMER
ADDRESS includes the customer’s street address, city, state, and zip code.

• Calculated fields: The ORDER AMOUNT field contains a value that is most
likely manually calculated, especially if the customer is ordering more than
three items. The ITEM # EXTENSION fields are also all likely to be manually
calculated. The value for a given ITEM # EXTENSION field is the result of
multiplying the value of a related QUANTITY # field by the value of a related

PRICE # field. (For example: ITEM 3 EXTENSION = QUANTITY 3 ∴ PRICE 3)
• Unnecessary duplicate fields: Each of the fields pertaining to a particular item

is a duplicate. For example, the ITEM 1, ITEM 2, and ITEM 3 fields are
unnecessary duplicate fields.

• No true primary key: There is no field or group of fields that can uniquely
identify a single record in this table. The ORDER NUMBER field is not a primary
key in this table; if a customer orders more than three items, you’ll have to
enter another record into the table using the same order number.

• The table represents more than one subject. This table represents three
subjects: customers, orders, and items. (Depending on your point of view, it
also represents sales reps.)

Now that you know the elements of good database design, you’re sure to avoid a
design such as this.

Spreadsheet Design
A spreadsheet is certainly a good tool if you use it properly and for the purpose for
which it was designed. For example, it is quite suitable for work that involves complex
mathematical calculations and statistical analysis. Contrary to popular myth, however,
a spreadsheet does not make a good relational database. If your organization has a
need to collect, store, maintain, and manipulate various types of data, then use the
proper tool for the job by designing and implementing a real database. For example,
consider the spreadsheet in Figure 14.2.

Figure 14.2. An example of a typical spreadsheet “database”

This spreadsheet is being used to keep track of store managers for a small chain of
retail stores. As you can see, this approach has problems as well.

• Duplicate fields: Each field on this spreadsheet is a duplicate field. If you take
the fields at face value, there are basically three fields in each instance: STORE
NUMBER, MANAGER NAME, and ASSISTANT MANAGER NAME.

• Multipart fields: Each field holds two values. The first field stores the store
number and phone number, the second field stores the manager’s first and last
names, and the third field stores the assistant manager’s first and last names.

• Multivalued fields: The ASSISTANT MANAGER field is a multivalued field
because there can be more than one assistant manager assigned to a particular
store.

• Difficult to use: Data-oriented tasks that can be performed with ease in an
RDBMS program are tedious and time-consuming to carry out in a
spreadsheet. For example, it would take you some time to create a list

containing only the name of each store manager and his or her phone number.
After seeing the problems associated with a simple spreadsheet “database” such as
this one, you can imagine the types of problems you would encounter with a more
complex database. If you’re currently using a spreadsheet as a database, you can
improve the database’s quality, speed, and versatility if you remove it from the
spreadsheet, take it through the entire database design process, and implement it in a
suitable RDBMS.

Dealing with the Spreadsheet View Mind-set
When you begin to work with a true database and RDBMS, you must break away
from a spreadsheet view mind-set. This means that you’ll have to resign yourself to
the fact that certain ways of viewing the data are now unavailable—you can no longer
use typical spreadsheet layouts. For example, consider a typical spreadsheet report
shown in Figure 14.3.

Figure 14.3. An example of a typical spreadsheet report

You cannot produce a report with this type of layout using a database. Whereas a
spreadsheet stores the data exactly as you see it on the report, a database would store
it in four separate fields within a table. Figure 14.4 shows an example of a database
report you could generate for the same data. The database presentation is not the
same as the spreadsheet presentation, but it is just as clear.

Figure 14.4. An example of a typical database report

The point to remember is that you’ll have to adjust the manner in which you think
about working with the data in your database. In the end, there are many more
advantages to storing and using your data in an actual database than trying to use a
spreadsheet in a similar manner. A database gives you much more control over data
integrity and the consistency and validity of the data. It also provides an almost
unlimited number of ways to retrieve the data, enabling you to obtain a wide variety
of information.

Database Design Based on the Database Software
An RDBMS does not provide a basis or procedure or even a reason for designing a

database in a particular fashion—it only provides the tools that you need to implement
a design. In contrast, a formal database design method provides both the principles
and rationale necessary to define a database properly and effectively.
Many people unwittingly fall into the trap of designing a database based solely on the
RDBMS software they will use for its implementation. In many cases, they do so
because they are already somewhat familiar and skilled with a particular RDBMS or
their company or organization is already using a particular RDMBS. This is an unwise
approach that you should avoid (as much as possible) for several reasons.

• You’re likely to make design decisions based on your perceptions of what
your RDBMS can or can’t do. For example, you may decide not to impose a
degree of participation for a given relationship because you believe the
RDBMS does not provide you with the means to do so.

• You’ll inadvertently let the RDBMS dictate the design of the database as
opposed to driving the design strictly from the organization’s information
requirements. This usually occurs when you discover that your RDBMS
provides only limited support for certain aspects of the database, such as field
specifications and relationship characteristics.

• Your design will be constrained by your knowledge of the RDBMS. For
example, you may decide not to implement relationship characteristics simply
because you don’t know how to do so.

• Your design will be constrained by how skilled you are with your RDBMS.
Your skill level affects how efficiently and effectively you can implement
various aspects of the database, such as field specifications and business rules.

• Using this approach to design a database commonly results in improper
structural design, insufficient data integrity, and problems with inconsistent
data and inaccurate information. Defining a database within an RDBMS can
be deceptively easy. You may create a database that works, but you’re very
likely to have a poor design without knowing it.

• In the end, the RDBMS that you know and love so well may not be suitable
for your organization’s database requirements.

You should always design the logical structure of your database without regard to any
RDBMS. By doing so, you’re more likely to design a sound structure because you’ll
be focused on the organization’s information requirements. Once your design is

complete, you can then clearly determine how you should implement the database
(single-user application, client/server, web-based, and so on) and which RDBMS you
should use to facilitate the implementation.

A Final Thought
Through years of teaching database design and instructing people in how to use
various RDBMS software programs, I’ve observed an interesting phenomenon:
People who are familiar with the fundamental principles of proper database design
have a better comprehension of their RDBMS and the tools it provides than those
who know little at all about database design. I believe this is due to the fact that the
people who know database design are able to understand why the RDBMS provides
certain tools and how they can (and should) use them. For this reason—as well as the
many others presented in this book—it is to your distinct advantage to learn and
understand good database design techniques. This book does not map the only road,
but it is, I believe, the straightest, surest, and most easily traveled.

Summary
This chapter contrasted relational database design with weaker, less effective design
formats. First, we looked at flat-file design. You learned that there are numerous fatal
problems with this approach and that it should be completely avoided. We then
examined spreadsheet design and you saw how constrained this approach can be. The
chapter closed with a discussion of designing a database using RDBMS software. You
learned that this type of design is perilously dependent on your familiarity and skill
level with the software. Unlike a good database design method, designing a database
around an RDBMS does not provide you with principles and a rationale for designing
a proper database structure. Superficially, in the short run, the software product looks
as good—it just doesn’t work as well in the long run as the design method discussed
in this book.

15. Bending or Breaking the Rules

Nature never breaks her own laws.
—LEONARDO DA VINCI

Topics Covered in This Chapter
When May You Bend or Break the Rules?
Documenting Your Actions
Summary

I always advocate following proper database design techniques. As you’ve already
learned, there are numerous reasons for doing so. But first and foremost, you should
use a good design method to ensure the integrity of the database. I cannot overstate
how important this is. You now know the consequences of improperly establishing
data integrity, so following the rules is of paramount importance.

When May You Bend or Break the Rules?
There are only two specific circumstances under which it is at all permissible to bend
or break the rules of proper database design. Unless either of these is an inescapable
imperative, you should use proper database design techniques when designing your
database.

Designing an Analytical Database
As you learned in Chapter 1, “Relational Databases,” an analytical database stores
and tracks historical and time-dependent data. This type of database often contains
calculated fields within some of its table structures. The expressions used in many of
these fields are meant to record the state of a particular set of data at a given moment
in time; other fields store the results of aggregate functions.
You may have already surmised from the description that this type of database
violates proper database design because its tables contain calculated fields (refer to
Chapter 7, “Establishing Table Structures”). In this particular instance, the violation
is acceptable because of the manner in which the data in the database is being used. I
recommend that you properly design the database first and then break the rules only
after judicious consideration—you should make a deliberate decision to break a rule

and understand why doing so is necessary in the specific instance.

Note
Designing an analytical database requires a radically different design
methodology than the one you learned in this book. If you determine that your
organization requires an analytical database, I strongly recommend that you
acquire a good book on the subject and learn how to design such a database
properly.

Improving Processing Performance
This is still the most common reason that people feel compelled to bend or break the
rules. Whenever an RDBMS takes what seems to be an inordinate amount of time to
process multitable queries or complex reports, many people believe that the solution
to the problem is to alter the underlying table structures. For example, they would
have you modify a table in such a way that it includes every field necessary for the
query or report. While this modification does indeed increase the speed at which the
RDBMS processes the query or report (particularly in older systems), it also
introduces a number of new problems, such as unnecessary duplicate fields and
redundant data. This is clearly not a desirable solution, because it violates proper
database design.
Unfortunately, real life is not as ideal as we would like it to be, so you will sometimes
find that you must decide between improving processing performance and holding to
proper design principles.

Is It Worth It?

When you take a moment to really think about this dilemma, you’ll soon realize that
the question really isn’t about performance; it’s about data integrity. Anytime you
break the rules for the sake of performance (or any other reason, for that matter),
you are surely going to introduce data-integrity problems. The question you must ask
yourself, then, is this: Is the perceived increase in processing performance worth the
price of reduced (and, therefore, weakened) data integrity? As you well know, the
consequences of making imprudent modifications to your data structures will
eventually spread, like ripples in a pond, throughout your database. Here are just a
few of the problems you’ll encounter.

• Inconsistent data: This is a result of introducing unnecessary duplicate fields
into a table. It will be your responsibility (or that of your application program)
to ensure that the data in these fields is synchronized; if you modify the value
in a particular duplicate field, you’ll have to make certain that the same
modification is made to the remaining duplicate fields.

• Redundant data: Redundant data is also a result of introducing unnecessary
duplicate fields into a table. When you edit a particular value in a field that
contains redundant data, you must be sure to make the same modification for
each instance of that value.

• Impaired data integrity: Bending or breaking the rules often violates one or
more components of overall data integrity, such as table-level integrity and
relationship-level integrity. It will be your responsibility (or that of your
application program) to compensate for the lack of integrity—in whatever way
it manifests itself—as best as you can.

• Inaccurate information: You cannot possibly expect the database to provide
accurate information if it has any of the aforementioned problems.

Improving Performance by Other Means First

If you still think you want to pursue this course of action in order to improve
processing performance, do it only as a last resort. Before you take these measures,
however, try to improve performance by some other means first. Consider these
alternatives.

• Enhance or upgrade the computer hardware. Cost is not quite the issue it used
to be, so this is still the easiest way to increase processing performance. Items
such as a faster CPU, more memory, faster and more efficient disk drives, and
a printer that better meets your printing requirements will all help to greatly
decrease the time it takes the RDBMS to process a complex query or report.

• Fine-tune the operating system software. Make certain that the computer’s
operating system is optimized for peak performance. This is especially
important for networked computers and server hardware. You can greatly
enhance general processing performance by working with the configuration
options settings. The types of modifications you make to the operating system
in general will depend on your operating system, so you’ll have to refer to your
documentation to determine what types of modifications you can make.

• Review the database structure. Make absolutely certain that the database is
properly designed. It makes quite a difference. Poorly designed databases
actually contribute to poor processing performance.

• Review the database’s implementation. Examine how the database is currently
implemented within the RDBMS. Make certain you’ve taken full advantage of
the RDBMS’s capabilities and defined the database as efficiently and
completely as possible.

• Review the application program used to work with the database. Here’s
another area you should examine very closely. Is the application program well
written? Does it make the best use of the tools the RDBMS provides? Are the
application’s components well defined? In some cases, a report may print more
slowly because it is poorly designed—there may be more effective ways to
design and generate the same report. Queries may run slowly because they are
improperly defined. Make certain that each query is defined correctly and in
the most efficient way possible.

If you believe you must depart from proper database design techniques, carefully
examine your situation. As I mentioned earlier, it’s acceptable to suspend the rules if
you are designing an analytical database. But I still strongly recommend that you
design your database properly and thoroughly and relax the rules only for very
specific reasons.

Documenting Your Actions
If you’ve exhausted all other options and still come to the conclusion that you need to
bend or break the rules, then you must document each rule you break and each
action you take! It is important that you document your changes because doing so
will compel you to think about the consequences of what you are about to do and it
provides a means of recording the changes you make to the database structure.
Should you decide later that the modifications did not provide significant benefits, you
can use the documentation as a guide to reverse the modifications you initially made.
These are the items that you should record.

• The reason you’re breaking the rules: Increasing processing performance and
decreasing the time it takes to print complex reports are two of the most
common reasons for breaking the rules. Whatever your reason, be sure to state
it thoroughly and clearly.

• The design principle you’re violating: Recording how you’ve altered the
database design will give you the means to reverse these changes later should
you determine that performance did not significantly improve. You might
indicate that you’re altering the structure of a table, for example.

• The aspect of the database that you’re modifying: Indicate which particular
field, table, relationship, or view you are going to alter. Once again, this
information will be valuable should you decide to reverse the modifications.

• The specific modifications you are making: Once you determine which item
you need to modify, record the exact modifications you make to that item. For
example, if you need to modify a relationship, note the exact changes you
make to its characteristics.

• The anticipated effects on the database and the application program: Any
modifications you make to the database are going to affect all accompanying
end-user application programs. For example, altering the structure of a
particular table can affect data integrity, view structures, data entry forms and
reports built upon the table (either partially or totally), and programming code
that refers to the table. You must be sure to list every effect.

Add this document to the documentation you compiled for the database. Even if you
reverse the changes later, this record could prevent you from yielding to a future
impulse to attempt the same types of changes.

Summary
The chapter opened by examining the two circumstances under which you might feel
compelled to depart from proper database design techniques. You learned that
breaking the rules is acceptable if you are designing an analytical database; otherwise,
you should design the database properly first and then make deliberate decisions to
break or bend specific rules. You then learned that the most common reason for
departing from proper design techniques is to improve processing performance.
Although this is not a satisfactory reason for breaking the rules, there are times when
circumstances dictate that you must consider such changes.
We then continued with a discussion of the alternate measures you can take to
improve processing performance, such as enhancing or upgrading the hardware and
reviewing the implementation of the database. You learned that you should do all you
can to improve performance first and depart from proper design techniques only as a

last resort. The chapter then closed with a list of items you should record if you need
to break the rules.

In Closing

I’m not a teacher: only a fellow-traveller of whom you asked the way. I
pointed ahead—ahead of myself as well as you.

—GEORGE BERNARD SHAW

I’ve always believed that you shouldn’t have to be a rocket scientist in order to design
a database properly. It should be a relatively straightforward task that can be
performed by anyone possessing a good amount of common sense. As long as you
follow a good database design method, you should be able to design a sound and
reliable database structure.
You now possess the knowledge and skills necessary to design a relational database.
You know how to define the necessary structures, establish table relationships, and
implement various levels of data integrity. If you encounter improperly or poorly
designed structures, you now know how to improve them.
Learning about database design is an ever-continuing process. You can learn enough
to design the types of databases you require, you can turn it into a profession, or you
can even make it a lifelong study. Whatever your approach, you’ll encounter one
inescapable fact: The more you learn, the more you realize you don’t know it all. But
don’t be discouraged; this is true of any major subject you endeavor to learn, such as
music, art, philosophy—or rocket science!
I sincerely hope you’ve enjoyed reading this book as much as I’ve enjoyed writing it.
I know that most technical books of this nature can be a little dry, so I tried to inject a
little humor every now and then, particularly in the interview and meeting dialogues.
Those of you who thought the conversations were relatively realistic are quite
perceptive—they were very loosely based on a number of interviews and
conversations I’ve had with my clients over the years.
As a parting piece of advice, let me leave you with two words: Always learn. Never
be afraid or intimidated or reluctant to learn something new. Learning opens the door
to fresh ideas, different concepts, and new perceptions. It encourages participation
and communication between individuals and broadens everyone’s horizons.
Learning is a journey that begins with but one step. You’ve taken the first step by
reading this book. Now you will continue your journey by learning about other facets
of database management.

My book ends here, but your journey is just beginning. . . .

Part IV: Appendixes

A. Answers to Review Questions

Chapter 1
1. The two main types of databases in use today are operational and analytical.
2. An analytical database stores static data.
3. True. An operational database is used primarily in OLTP scenarios.
4. The hierarchical and network database models were commonly used in the

days before the relational database model.
5. In a parent/child relationship, a parent table can be associated with one or

more child tables, but a single child table can be associated with only one
parent table.

6. A set structure is a transparent construction that establishes and represents a
relationship in a network database.

7. The relational model is based on two branches of mathematics—set theory and
first-order predicate logic.

8. A relational database stores data in relations, which the user perceives as
tables.

9. These are the types of relationships in a relational database:
a. One-to-one
b. One-to-many
c. Many-to-many

10. You retrieve data in a relational database by using SQL.
11. These are the advantages of a relational database:

a. Built-in multilevel integrity
b. Logical and physical data independence from database applications
c. Guaranteed data consistency and accuracy
d. Easy data retrieval

12. A relational database management system, or RDBMS, is a software program
you use to create, maintain, modify, and manipulate a relational database.

13. The object-relational model extends the relational database model by
incorporating various object-oriented elements and characteristics, such as
classes, encapsulation, and inheritance.

14. A data warehouse allows organizations to access data stored in any number of
relational and nonrelational databases.

Chapter 2
1. The best time to use an RDBMS program’s design tools is after you design the

logical structure of the database.
2. True. Design is crucial to the consistency, integrity, and accuracy of data.
3. The most detrimental result of improper database design is inaccurate

information.
4. The fact that the relational database model is based on set theory and first-

order predicate logic makes the relational database structurally sound and able
to guarantee accurate information.

5. These are the advantages to learning a design methodology.
a. It gives you the skills you need to design a sound database structure.
b. It provides you with an organized set of techniques that will guide you step-

by-step through the design process.
c. It helps you keep your missteps and design reiterations to a minimum.
d. It makes the design process easier and reduces the amount of time you

spend designing the database.
e. It will help you understand and use your RDBMS software more fully and

effectively.
6. True. Understanding database design will help you use your RDBMS program

more effectively.
7. These are the objectives of good design.

a. The database supports required and ad hoc information retrieval.
b. The tables are constructed properly and efficiently.
c. Data integrity is imposed at the field, table, and relationship levels.
d. The database supports business rules relevant to the organization.

e. The database lends itself to future growth.
8. Data integrity helps to guarantee that data structures and their values are valid

and accurate at all times.
9. These are the benefits of applying good design techniques.

a. The database structure is easy to modify and maintain.
b. The data is easy to modify.
c. Information is easy to retrieve.
d. End-user applications are easy to develop and build.

10. False. You cannot take shortcuts through some of the design processes and still
arrive at a good, sound design.

Chapter 3
1. Terminology is important for the following reasons.

a. It is used to express and define the special ideas and concepts of the
relational database model.

b. It is used to express and define the database design process itself.
c. It is used anywhere a relational database or RDBMS is discussed.

2. The four categories of terms are value-related, structure-related, relationship-
related, and integrity-related.

3. The values you store in the database are data. Information is data that you
process in a manner that makes it meaningful and useful to you when you
work with it or view it.

4. A null represents a missing or unknown value.
5. The major disadvantage of nulls is that they have an adverse effect on

mathematical operations.
6. Tables are the chief structures in the database.
7. The three types of tables are data tables, linking tables, and validation tables.
8. A view is a virtual table composed of fields from one or more base tables in

the database.
9. A key is a logical structure that you use to identify records within a table, and

an index is a physical structure that you use to optimize data processing.

10. The three types of relationships that can exist between a pair of tables are one-
to-one, one-to-many, and many-to-many.

11. You can characterize every relationship in three ways: by the type of
relationship that exists between the tables, the manner in which each table
participates, and the degree to which each table participates.

12. A field specification represents all the elements of a field.
13. A field specification incorporates the following three types of elements:

general, physical, and logical.
14. Data integrity refers to the validity, consistency, and accuracy of the data in a

database.
15. The four types of data integrity are field-level, table-level, relationship-level,

and business rules.

Chapter 4
1. It is important to complete the design process thoroughly because it helps you

ensure a sound structure and data integrity.
2. True. The level of structural integrity is in direct proportion to how thoroughly

you follow the design process.
3. The mission statement identifies the purpose of your database.
4. Mission objectives are statements that represent the general tasks your users

can perform against the data in the database.
5. The list of fields and calculations that you compile during the second phase of

the design process constitutes your organization’s fundamental data
requirements.

6. You determine the various subjects that the tables will represent from the
mission objectives you wrote during the first phase of the design process and
the data requirements you gathered during the second phase.

7. False. You establish field specifications for each field in the database during the
third phase of the database design process.

8. You establish a logical connection between the tables in a relationship either
with a primary key or with a linking table.

9. The manner in which your organization views and uses its data will determine

a set of limitations and requirements that you must build into the database.
10. You can define and implement validation tables as necessary to support

certain business rules.
11. You identify the types of views you need to build in the database by

interviewing users and management and determining how they work with their
respective data.

12. You can implement the logical database structure in an RDBMS program after
you’ve completed the entire database design process.

Chapter 5
1. Interviews are important because they provide a valuable communication link

between you (the developer) and the people for whom you’re designing the
database. They help ensure the success of your design efforts, and they
provide critical information that can affect the design of the database structure.

2. The problem that arises when you conduct an interview with a large number of
people is that the intimidation level of some of the participants will rise in direct
proportion to the number of participants taking part in the interview as a whole.

3. The primary reason for conducting separate interviews with users and
management is that each group has a different perspective on the organization
as a whole and on how the organization uses its data on a daily basis.

4. False. You’ll commonly use open-ended questions in your interviews.
5. You should try to elicit complete, descriptive responses from the interview

participants.
6. The single most important guideline for every interview you conduct is to

always maintain control of the interview.
7. A mission statement declares the specific purpose of the database in general

terms.
8. A well-written mission statement has the following characteristics.

a. It is unambiguous.
b. It is succinct and to the point.
c. It is free of phrases or sentences that explicitly describe specific tasks.

9. False. You must learn about the organization in order to compose a mission

statement.
10. Your mission statement is complete when you have a sentence that describes

the specific purpose of the database and is understood and agreed on by
everyone concerned.

11. A mission objective is a statement that represents a single, general task
supported by the data maintained in the database.

12. A well-written mission objective has the following characteristics.
a. It is a declarative sentence that clearly defines a general task and is free

from unnecessary details.
b. It is expressed in general terms.
c. It is succinct and to the point.
d. It is unambiguous.

13. True. You should interview users and management to help you define mission
objectives.

14. The staff’s daily work relates to the mission objectives in that many of the
tasks they perform will become mission objectives.

15. False. A mission objective cannot describe more than one task.
16. A mission objective can be derived from a response either explicitly or

implicitly.
17. A mission objective is complete when it is both properly defined and well

defined, and when it makes sense to you and to those for whom you are
designing the database.

Chapter 6
1. The goals of analyzing the current database are to determine the following:

a. What types of data the organization uses
b. How the organization uses its data
c. How the organization manages and maintains its data

2. False. You should not adopt the current database structure as the basis for the
new structure.

3. A legacy database is a database that has been in existence and in use for five

years or more.
4. The analysis process incorporates these three steps:

a. Reviewing the way data is collected
b. Reviewing the manner in which information is presented
c. Conducting interviews with users and management

5. The types of computer software programs you should review during the
analysis include word processors, spreadsheets, databases, and web pages.

6. You should conduct interviews after you gather data collection and information
presentation samples for these reasons.
a. They provide details about the samples you assembled during the previous

reviews.
b. They provide information on the way the organization uses its data.
c. They are instrumental in defining preliminary field and table structures.
d. They help to define future information requirements.

7. You use open-ended questions to focus on specific subjects and closed
questions to focus on specific details of a certain subject.

8. The Subject-Identification Technique allows you to identify subjects within a
participant’s response to a given question.

9. You identify specific attributes for a particular subject by using the
Characteristic-Identification Technique.

10. False. You should interview users and management separately.
11. The three basic types of information requirements you must identify are

current, additional, and future.
12. The Preliminary Field List represents the organization’s fundamental data

requirements and constitutes the core set of fields that you must define in the
database.

13. Each item on the Preliminary Field List should have a unique name to ensure
that the characteristic appears only once on the list.

14. A value list specifies the acceptable range of values for a particular
characteristic and often enforces a given business rule.

15. A calculated field stores the result of a string concatenation or mathematical

expression as its value. You should remove calculated fields from the
Preliminary Field List and place them on a dedicated Calculated Field List.

Chapter 7
1. You identify and establish tables for a new database using the Preliminary

Table List.
2. You use the Preliminary Field List to help you define tables for the database

because the fields on the list may imply subjects that the database needs to
track.

3. When an item on the list of subjects and a differently named item on the
Preliminary Table List both represent the same subject, you select the name
that best represents the subject and use it as the sole identifier for that subject.

4. The Final Table List provides the name, type, and description of each table in
the database.

5. These are the guidelines for creating table names.
a. Create a unique, descriptive name that is meaningful to the entire

organization.
b. Create a name that accurately, clearly, and unambiguously identifies the

subject of the table.
c. Use the minimum number of words necessary to convey the subject of the

table.
d. Do not use words that convey physical characteristics.
e. Do not use acronyms and abbreviations.
f. Do not use proper names or other words that will unduly restrict the data

that can be entered into the table.
g. Do not use a name that implicitly or explicitly identifies more than one

subject.
h. Use the plural form of the name.

6. These are the guidelines for composing table descriptions.
a. Include a statement that accurately defines the table.
b. Include a statement that explains why this table is important to the

organization.
c. Compose a description that is clear and succinct.
d. Do not include implementation-specific information in your table

description, such as how or where the table is used.
e. Do not make the table description for one table dependent upon the table

description for another table.
f. Do not use examples in a table description.

7. You assign fields to a table on the Final Table List by determining which fields
best represent characteristics of the table’s subject.

8. These are the guidelines for creating field names.
a. Create a unique, descriptive name that is meaningful to the entire

organization.
b. Create a name that accurately, clearly, and unambiguously identifies the

characteristic a field represents.
c. Use the minimum number of words necessary to convey the meaning of the

characteristic the field represents.
d. Do not use acronyms, and use abbreviations judiciously.
e. Do not use words that could confuse the meaning of the field name.
f. Do not use names that implicitly or explicitly identify more than one

characteristic.
g. Use the singular form of the name.

9. Poorly designed fields can cause problems with duplicate data and redundant
data.

10. You can resolve field anomalies by ensuring that the field complies with the
Elements of the Ideal Field.

11. These are the Elements of the Ideal Field.
a. It represents a distinct characteristic of the subject of the table.
b. It contains only a single value.
c. It cannot be deconstructed into smaller components.
d. It does not contain a calculated or concatenated value.

e. It is unique within the entire database structure.
f. It retains a majority of its characteristics when it appears in more than one

table.
12. Redundant data is acceptable when it is the result of resolving a multivalued

field or an unnecessary duplicate field.
13. In general terms, these are the three steps you follow to resolve a multivalued

field.
a. Remove the field from the table and use it as the basis for a new table.
b. Use a field (or set of fields) from the original table to relate the original

table to the new table.
c. Assign an appropriate name, type, and description to the new table and add

it to the Final Table List.
14. The only instance in which it is necessary to use a duplicate field in a table is

when the field serves to establish a relationship between two tables.
15. You can refine table structures by ensuring that each table complies with the

Elements of the Ideal Table.
16. These are the Elements of the Ideal Table.

a. It represents a single subject, which can be an object or event.
b. It has a primary key.
c. It does not contain multipart or multivalued fields.
d. It does not contain calculated fields.
e. It does not contain unnecessary duplicate fields.
f. It contains only an absolute minimum amount of redundant data.

17. A subset table is a table that represents a subordinate subject of a particular
data table.

Chapter 8
1. Keys are important for the following reasons.

a. They ensure that each record in a table is properly identified.
b. They help establish and enforce various types of integrity.

c. They serve to establish table relationships.
2. The four main types of keys are candidate, primary, foreign, and non.
3. The purpose of a candidate key is to uniquely identify a single instance of the

table’s subject.
4. These are the Elements of a Candidate Key.

a. It cannot be a multipart field.
b. It must contain unique values.
c. It cannot contain null values.
d. Its value is not optional in whole or in part.
e. It comprises a minimum number of fields necessary to define uniqueness.
f. Its values must uniquely and exclusively identify each record in the table.
g. Its value must exclusively identify the value of each field within a given

record.
h. Its value can be modified only in rare or extreme cases.

5. True. A candidate key can be composed of more than one field.
6. Yes, a table can have more than one candidate key.
7. A field you create for the sole purpose of serving as a candidate key is known

as an artificial candidate key. You create this type of key when there are no
“naturally occurring” candidate keys in a table.

8. The primary key is the most important key you assign to a table.
9. The primary key is important for the following reasons.

a. A primary key field exclusively identifies the table throughout the database
structure and helps establish relationships with other tables.

b. A primary key value uniquely identifies a given record within a table and
exclusively represents that record throughout the entire database. It also
helps to guard against duplicate records.

10. You establish a primary key by examining the table’s pool of available
candidate keys and then selecting one as the primary key.

11. These are the Elements of a Primary Key.
a. It cannot be a multipart field.

b. It must contain unique values.
c. It cannot contain null values.
d. Its value is not optional in whole or in part.
e. It comprises a minimum number of fields necessary to define uniqueness.
f. Its values must uniquely and exclusively identify each record in the table.
g. Its value must exclusively identify the value of each field within a given

record.
h. Its value can be modified only in rare or extreme cases.

12. Before you finalize your selection of a primary key, you must make absolutely
certain that it exclusively identifies the value of each field within a given record.

13. An alternate key is a candidate key that was not chosen to serve as the
primary key of the table.

14. By establishing table-level integrity, you ensure the following.
a. There are no duplicate records in a table.
b. The primary key exclusively identifies each record in a table.
c. Every primary key value is unique.
d. Primary key values are not null.

15. You should review the initial table structures for the following reasons:
a. To ensure that the appropriate subjects are represented in the database
b. To make certain that the table names and table descriptions are suitable and

meaningful to everyone
c. To make certain that the field names are suitable and meaningful to

everyone
d. To verify that all the appropriate fields are assigned to each table

Chapter 9
1. Field specifications are important for these reasons.

a. They help establish and enforce field-level integrity.
b. They help enhance overall data integrity.
c. They compel you to acquire a complete understanding of the nature and

purpose of the data in the database.
d. They constitute the “data dictionary” of the database.

2. Field-level integrity warrants the following.
a. The identity and purpose of a field is clear, and all of the tables in which it

appears are properly identified.
b. Field definitions are consistent throughout the database.
c. The values of a field are consistent and valid.
d. The types of modifications, comparisons, and operations that can be applied

to the values in the field are clearly identified.
3. The three categories of elements within a field specification are general,

physical, and logical.
4. The three types of specifications are Unique, Generic, and Replica.
5. Composing a proper field description is extremely beneficial because it forces

you (and everyone in the organization) to think carefully about the nature of
the data that will be stored in the field.

6. The Data Type element indicates the nature of the data that the field stores.
7. The Character Support element indicates the type of characters that a user can

enter into a given field value.
8. The Display Format element governs the appearance of a field’s value when it

is displayed on a screen or printed within a document.
9. The types of keys indicated on a field specification are non, primary,

alternate, and foreign.
10. False. Null does not represent a blank—it represents a missing or unknown

value.
11. The Range of Values element specifies every possible valid value for a field.
12. An Edit Rule designates at what point in time a user can enter a value into a

field and whether he can modify that value.
13. The Comparisons Allowed element indicates the types of comparisons a user

can apply to a given field value when he’s retrieving information from the field.
14. A value expression is some form of operation involving field values, literal

values, or a combination of both, and it returns a single value that you can then

use for a comparison operation.
15. You use a generic specification for a field that serves as a template for other

fields within the database.

Chapter 10
1. A relationship is important for the following reasons.

a. It establishes a connection between a pair of tables that are logically related
to each other.

b. It helps to refine table structures and minimize redundant data further.
c. It is the mechanism that enables you to draw data from multiple tables

simultaneously.
2. The three types of relationships are one-to-one, one-to-many, and many-to-

many.
3. The many-to-many relationship will pose the most problems.
4. You could possibly encounter problems such as these with a many-to-many

relationship.
a. It will be tedious and somewhat difficult for you to retrieve information

from one of the tables.
b. One of the tables will contain a large amount of redundant data.
c. Duplicate data will exist within both tables.
d. It will be difficult to insert, update, and delete data.

5. A self-referencing relationship is a relationship that exists between the records
within a given table.

6. You begin the process of identifying the relationships among the tables in the
database by creating a matrix of all the tables.

7. The two types of questions you can ask to help you identify existing
relationships are associative and contextual.

8. You use a 1:N shorthand symbol to designate a one-to-many relationship in the
table matrix.

9. You determine what type of relationship officially exists between each pair of
tables in the matrix using formulas that correspond to the three relationship-

type definitions.
10. You establish a one-to-many relationship by taking a copy of the primary key

from the table on the “one” side of the relationship and incorporating it within
the table structure on the “many” side, where it then becomes a foreign key.

11. True. Retrieving information from tables with a self-referencing relationship
can be tedious and somewhat difficult.

12. You establish a self-referencing many-to-many relationship as you would a
dual-table many-to-many relationship—with a linking table.

13. You refine the foreign keys in the database by ensuring that each one complies
with the Elements of a Foreign Key.

14. The two element categories you must modify for a foreign key’s field
specification are the General Elements and Logical Elements categories.

15. A deletion rule determines what your RDBMS should do when you place a
request to delete a given record in the parent table of the relationship.

16. The two types of participation you can designate for a table are Mandatory
and Optional.

17. The degree of participation indicates the minimum number of records that a
given table must have associated with a single record in the related table and
the maximum number of records that the table is allowed to have associated
with a single record in the related table.

18. A relationship attains relationship-level integrity after you’ve verified that it is
properly established and its characteristics are suitably set.

Chapter 11
1. A business rule is a statement that imposes some form of constraint on a

specific aspect of the database, such as the elements within a field specification
for a particular field or the characteristics of a given relationship.

2. The two major types of business rules are database oriented and application
oriented.

3. No. Application-oriented business rules impose constraints that you cannot
establish within the logical design of the database.

4. The two categories of database-oriented business rules are field specific and

relationship specific.
5. A field-specific business rule is one that imposes constraints on the elements

of a field specification for a particular field.
6. The constraint the business rule imposes is tested when you attempt to

perform one of three actions: inserting a record into the table or an entry into a
field, deleting a record from the table or a value within a field, or updating a
field’s value.

7. You document a business rule by filling out a Business Rule Specifications
sheet for the rule.

8. The Business Rule Specifications sheet provides these advantages.
a. It allows you to document every database-oriented business rule.
b. It allows you to document every application-oriented business rule.
c. It provides a standard method for recording all business rules.

9. The Action Taken section of a Business Rule Specifications sheet is the area
where you indicate the modifications you’ve made to the elements of a field
specification or to a relationship diagram.

10. A validation table (also known as a lookup table) stores data that you
specifically use to implement data integrity.

11. Validation tables usually (but not always) comprise two fields: The first acts as
the primary key and is what you’ll use to help you enforce data integrity, and
the second is simply a non-key field that stores a set of values required by
some other field in the database.

12. You can use a validation table to enforce a constraint that a business rule
imposes on a given field’s range of values.

13. You should review each Business Rule Specifications sheet to ensure that
you’ve properly established the rule it records and that you’ve clearly marked
all of the appropriate areas on the sheet.

Chapter 12
1. You can refer to a view as a virtual table because it draws data from base

tables rather than storing data on its own.
2. Views are valuable for the following reasons.

a. You can use them to work with data from multiple tables simultaneously.
b. They reflect the most current information.
c. You can customize them to the specific needs of an individual or group of

individuals.
d. You can use them to help enforce data integrity.
e. You can use them for security or confidentiality purposes.

3. The types of views you can define as you design the logical structure of the
database are data, aggregate, and validation views.

4. Each time you access a view your RDBMS will rebuild and repopulate it using
the most current data from the view’s base tables.

5. Field specifications and business rules determine the types of modifications
you can make to a view’s data.

6. The only requirement you must fulfill in order to define a multitable data view
is that the tables you use to create the view must bear a relationship to each
other.

7. A data view does not contain its own primary key because it is not a table; a
true table stores data and requires a primary key to serve as a unique identifier
for each of its records.

8. The purpose of an aggregate view is to display information produced by
aggregating a particular set of data in a specific manner.

9. Sum, Average (arithmetic mean), Minimum, Maximum, and Count are the
most common aggregate functions that you can apply to a set of data.

10. A grouping field is a data field within an aggregate view that “groups” multiple
instances of a given value into a single instance of the value.

11. False. You cannot modify the data in an aggregate view because it is composed
entirely of grouping fields and calculated fields.

12. The difference between a validation table and a validation view lies in their
construction—a validation table stores its own data, whereas a validation view
draws data from its base tables.

13. You would keep the following points in mind as you identify view
requirements.

a. Review your notes with the group.
b. Review the data entry, report, and presentation samples you gathered during

the early stages of the design process.
c. Examine the tables and the subjects they represent.
d. Analyze the table relationships.
e. Study the business rules.

14. You should use calculated fields when they will provide pertinent and
meaningful information or when they will enhance the manner in which the
view uses its data.

15. You define a view that displays only science-fiction books by applying a filter
to the appropriate field within the view.

16. You must complete a View Specifications sheet for every view in the database
because it is on this sheet that you will record the characteristics of the view.

B. Diagram of the Database Design Process

The diagram on the following pages provides you with a map of the entire database
design process. It indicates each design phase, procedures within the phase, tasks
within the procedure, and in some cases, subtasks within a task.
This legend shows the type of symbols you’ll see in the diagram.

C. Design Guidelines

Here, in alphabetical order, are the various sets of design guidelines that appear
throughout the book.

Defining and Establishing Field-Specific Business Rules
1. Select a table.
2. Review each field and determine whether it requires any constraints.
3. Define the necessary business rules for the field.
4. Establish the rules by modifying the appropriate field specification elements.
5. Determine what actions test the rule.
6. Record the rule on a Business Rule Specifications sheet.

Defining and Establishing Relationship-Specific Business Rules
1. Select a relationship.
2. Review the relationship and determine whether it requires any constraints.
3. Define the necessary business rules for the relationship.
4. Establish the rule by modifying the appropriate relationship characteristics.
5. Determine what actions will test the rule.
6. Record the rule on a Business Rule Specifications sheet.

Elements of a Candidate Key
• It cannot be a multipart field.
• It must contain unique values.
• It cannot contain null values.
• Its value cannot cause a breach of the organization’s security or privacy rules.
• Its value is not optional in whole or in part.
• It comprises a minimum number of fields necessary to define uniqueness.
• Its values must uniquely and exclusively identify each record in the table.

• Its value must exclusively identify the value of each field within a given record.
• Its value can be modified only in rare or extreme cases.

Elements of a Foreign Key
• It has the same name as the primary key from which it was copied.
• It uses a replica of the field specifications for the primary key from which it

was copied.
• It draws its values from the primary key to which it refers.

Elements of a Primary Key
• It cannot be a multipart field.
• It must contain unique values.
• It cannot contain null values.
• Its value cannot cause a breach of the organization’s security or privacy rules.
• Its value is not optional in whole or in part.
• It comprises a minimum number of fields necessary to define uniqueness.
• Its values must uniquely and exclusively identify each record in the table.
• Its value must exclusively identify the value of each field within a given record.
• Its value can be modified only in rare or extreme cases.

Rules for Establishing a Primary Key
• Each table must have one—and only one—primary key.
• Each primary key within the database must be unique—no two tables should

have the same primary key unless one of them is a subset table.

Elements of the Ideal Field
• It represents a distinct characteristic of the subject of the table.
• It contains only a single value.
• It cannot be deconstructed into smaller components.
• It does not contain a calculated or concatenated value.
• It is unique within the entire database structure.

• It retains the majority of its characteristics when it appears in more than one
table.

Elements of the Ideal Table
• It represents a single subject, which can be an object or event.
• It has a primary key.
• It does not contain multipart or multivalued fields.
• It does not contain calculated fields.
• It does not contain unnecessary duplicate fields.
• It contains only an absolute minimum amount of redundant data.

Field-Level Integrity
This type of integrity ensures the following.

• The identity and purpose of a field is clear, and all of the tables in which it
appears are properly identified.

• Field definitions are consistent throughout the database.
• The values of a field are consistent and valid.
• The types of modifications, comparisons, and operations that can be applied to

the values in the field are clearly identified.

Guidelines for Composing a Field Description
• Use a statement that accurately identifies the field and clearly states its

purpose.
• Write a clear and succinct statement.
• Refrain from restating or rephrasing the field name.
• Avoid using technical jargon, acronyms, or abbreviations.
• Do not include implementation-specific information.
• Do not make this description dependent upon the description of another field.
• Do not use examples.

Guidelines for Composing a Table Description

• Include a statement that accurately defines the table.
• Include a statement that explains why this table is important to the

organization.
• Compose a description that is clear and succinct.
• Do not include implementation-specific information in your table description,

such as how or where the table is used.
• Do not make the table description for one table dependent upon the table

description for another table.
• Do not use examples in a table description.

Guidelines for Creating Field Names
• Create a unique, descriptive name that is meaningful to the entire organization.
• Create a name that accurately, clearly, and unambiguously identifies the

characteristic a field represents.
• Use the minimum number of words necessary to convey the meaning of the

characteristic the field represents.
• Do not use acronyms, and use abbreviations judiciously.
• Do not use words that could confuse the meaning of the field name.
• Do not use names that implicitly or explicitly identify more than one

characteristic.
• Use the singular form of the name.

Guidelines for Creating Table Names
• Create a unique, descriptive name that is meaningful to the entire organization.
• Create a name that accurately, clearly, and unambiguously identifies the subject

of the table.
• Use the minimum number of words necessary to convey the subject of the

table.
• Do not use words that convey physical characteristics.
• Do not use acronyms and abbreviations.
• Do not use proper names or other words that will unduly restrict the data that

can be entered into the table.
• Do not use a name that implicitly or explicitly identifies more than one subject.
• Use the plural form of the name.

Identifying Relationships
Use this procedure to identify the official relationship between a pair of tables within a
table matrix.

1. Select a pair of tables and note the entry at the junction of the first table and
the second table.

2. Locate the second table on the same side of the matrix you’re working on and
note the entry and the junction between it and the first table on the opposite
side of the matrix.

3. Apply the appropriate formula (shown below) to the two entries and identify
the official relationship between the tables.
1:1 + 1:1 = 1:1
1:N + 1:1 = 1:N
1:N + 1:N = M:N

4. Diagram the relationship in the appropriate manner.
5. Cross out both entries on the matrix.

Identifying View Requirements
Use this procedure to identify your organization’s view requirements.

• Review your notes with the group of user/management representatives.
• Review the data entry, report, and presentation samples you gathered during

the early stages of the design process.
• Examine the tables and the subjects they represent.
• Analyze the table relationships.
• Study the business rules.

Interview Guidelines

Participant Guidelines

• Make the participants aware of your intentions.
• Let the participants know that you appreciate their taking part in the interview

and that their responses to the interview questions are valuable to the overall
design project.

• Make sure everyone understands that you are the official arbitrator if and when
a dispute arises.

Interviewer Guidelines
• Conduct the interview in a well-lit room, separated from distracting noise, with

a large table and comfortable chairs.
• Set a limit of ten people or fewer for each interview.
• Conduct separate interviews for users and management.
• When you have to interview several groups of people, designate a group leader

for each group.
• Prepare your questions prior to the interview.
• If you’re not very good at taking notes, either assign that task to a dependable

transcriber for each interview or get the group’s permission to use a voice
recorder or digital recording device to record the interview.

• Give everyone your equal and undivided attention.
• Keep the pace of the interview moving.
• Always maintain control of the interview.

Mission Statements
A well-written mission statement has the following attributes.

• It expresses its point succinctly and immediately.
• It avoids unnecessary statements or details and is well defined.
• It avoids phrases or sentences that explicitly describe specific tasks.
• It makes sense to you (the database developer) and to those for whom you are

designing the database.

Mission Objectives
A well-written mission objective has the following attributes.

• It comprises a declarative sentence that clearly defines a general task and is
free from unnecessary details.

• It expresses itself in general terms that are succinct, to the point, and
unambiguous.

• It makes sense to you and to those for whom you are designing the database.

Relationship-Level Integrity
This type of integrity ensures the following.

• The connection between the two tables (or key fields) in a relationship is
sound.

• You can insert new records into each table in a meaningful manner.
• You can delete an existing record without producing any adverse effects.
• There is a meaningful limit to the number of records that can be interrelated

within the relationship.

Resolving a Multivalued Field
Use this generic procedure to resolve a multivalued field.

1. Remove the field from the table and use it as the basis for a new table. If
necessary, rename the field in accordance with the field name guidelines that
you learned earlier.

2. Take the primary key from the original table and incorporate it into the new
table structure. This field will perform two specific functions in the new table:
It will serve as part of the table’s composite primary key, and it will serve as a
foreign key that helps to establish the relationship between the new table and
the original table.

3. Assign an appropriate name, type, and description to the new table and add it
to the Final Table List.

Table-Level Integrity
This type of integrity ensures the following.

• There are no duplicate records in a table.
• The primary key exclusively identifies each record in a table.

• Every primary key value is unique.
• Primary key values are not null.

D. Documentation Forms

I’ve provided blank copies of the Field Specifications sheet, Business Rule
Specifications sheet, and View Specifications sheet here for you to copy and use on
your database projects.
There are also Microsoft Word 2010 templates included on the CD that you can use
to create the specifications in Word.

E. Database Design Diagram Symbols

The symbols I’ve used throughout the book to diagram data structures, relationships,
relationship characteristics, and key designations are presented here for quick and
easy reference.

F. Sample Designs

I’ve provided these sample designs to serve as ideas for databases you may want or
need to create. I emphasize the word ideas because five people can look at the same
design and come up with five distinct variations based on their needs, backgrounds,
and personal points of view. Remember that there is no right or wrong way to design
a given database, but you do have to ensure that the tables, fields, relationships, and
views all conform to the guidelines you’ve learned from this book.
I intentionally omitted all but the primary and foreign key fields from each table
because I did not want to greatly influence you in any way as to how the tables
should be populated. I also omitted a majority of the relationship characteristics for
the same reason.
Should you see a design that you might be able to use, run it through the entire
database design process and treat it like an existing database. At the end of the
process, you should have a database that suits your needs.

G. On Normalization

I will always cherish the initial misconceptions I had about you.
—UNKNOWN

People often wonder why I didn’t cover Normalization in the previous editions of this
book, given that it has been part of traditional database design for such a long time.
The fact is that it’s unnecessary for me to discuss it for two reasons.

1. A thorough discussion that would do justice to the subject is beyond the scope
of this work, especially given the nontraditional design methodology I present
here and the “for mere mortals” nature of the approach to the material.

2. Normalization is actually incorporated into my design process anyway. (I’ll
explain how in a moment.)

I still get questions about this issue and see comments about it on the book’s
Amazon.com page, so I decided to include a discussion on how the traditional
Normalization process is incorporated into my design process. Those of you currently
studying the traditional design and Normalization process will most likely understand
my design methodology more clearly once you’ve read through this material.

Please Note . . .
There are a few points I want to make perfectly clear before you continue reading.

• Please read “The Design Method Presented in This Book” and the
“Normalization” sections toward the end of Chapter 2, “Design Objectives,”
before you read anything else in this appendix. These sections provide an
overall explanation of why and how I came up with my design methodology.
They will also provide you with the context you need for the points I discuss in
the sections that follow.

• This is not a formal discussion or tutorial on the traditional Normalization
process. There are books I’ve recommended in Appendix H, “Recommended
Reading,” that discuss this topic quite well and very thoroughly.

• I assume that you already understand the traditional Normalization process
and its associated concepts and terminology. Throughout the lifespan of this
book, I’ve found that the only people who are typically interested in this

http://Amazon.com

discussion are either database application programmers, people who already
know Normalization, or students who are studying Normalization. As such, I
assume that you are in one or more of these groups if you are reading this
appendix.

• There is no literal one-to-one mapping between the Normalization process as
a whole and my design methodology. Normalization is indeed integrated into
my methodology, but not in any distinct sequential manner. Whereas
Normalization is a specific step of the tradition logical design process, it is
transparently integrated throughout the entire design process in my
methodology. This will become clearer as you read through the material.

• My design methodology will yield fully normalized tables. This is true,
however, only if you follow my methodology as faithfully as you would the
traditional methodology or any other methodology. Taking shortcuts or failing
to follow parts of the process will result in poor table structures and poor
integrity. But this is also true if you do the same in any other methodology,
traditional or otherwise.

Hopefully, you’ve just finished reading the two sections in Chapter 2. Now I’ll explain
how I integrated Normalization into my design methodology.

A Brief Recap
I’ll start with a short review on how I came up with my methodology, which you
learned when you read those two sections in Chapter 2.
Let’s begin, however, by reviewing the overall steps in the traditional design method.

• Identify major entities.
• Identify relationship types.
• Determine Primary Keys.
• Determine Foreign Keys.
• Associate attributes with entity or relationship types.
• Determine attribute domains.
• Validate the model using Normalization.
• Define integrity constraints.

The two things that bothered me the most about this methodology were the

Normalization process (as a whole) and the seemingly endless iterations it took to
arrive at a proper design.
I already knew that the purpose of Normalization is to transform a set of improperly
or poorly designed tables into tables with sound structures. I also understood the
process: Take a given table and test it against normal forms to determine whether it is
properly designed. If it isn’t designed properly, make the appropriate modifications,
retest it, and repeat the entire process until the table structure is sound. Figure G.1
shows how I visualized the process at this point.

Figure G.1. How I viewed the general Normalization process

There are a number of normal forms, and each one is used to test for a particular set
of problems or characteristics, such as modification anomalies, functional
dependencies, transitive dependencies, multivalued dependencies, join dependencies,
domains, and keys. The problem with normal forms is that they can be quite
confusing to anyone who has not taken the time to study formal relational database
theory.
At one point, I asked myself, “Why do we take the time to create the database almost

three-quarters of the way through, come to a screeching halt, and then determine
whether we designed our structures correctly?” I thought this was a ridiculous way to
do things.

Keeping the purpose of Normalization in mind, I then posed the following questions.
1. If we assume that a thoroughly normalized table is properly and efficiently

designed, shouldn’t we be able to identify the specific characteristics of such a
table and state these to be the attributes of an ideal table structure?

2. Couldn’t we then use that ideal table as a model for all tables we create for the
database throughout the design process?

The answer to both questions, of course, is yes, so I used this premise as the basis for
my “new” design methodology. I first compiled distinct sets of guidelines for creating
sound structures by identifying the final characteristics of a well-defined database that
successfully passed the tests of each normal form. I then conducted a few tests, using
the new guidelines to create table structures for a new database and to correct flaws
in the table structures of an existing database. These tests went very well, so I
decided to apply this technique to the entire traditional design methodology. I
formulated guidelines to address other issues associated with the traditional design
method, such as domains, subtypes, relationships, data integrity, and referential
integrity. After I completed the new guidelines, I performed more tests and found that
my methodology worked quite well.

My design methodology removes many aspects of the traditional design methodology
that new database developers find intimidating. For example, Normalization, in the
traditional sense, is now transparent to the developer because it is incorporated (via
the new guidelines) throughout the design process. The methodology is also clear and
easy to implement, which I believe is due to the fact that the guidelines are in plain
English, making them easy for most anyone to understand.
I believe that the process of designing a database is not and should not be hard to
understand. As long as the process is presented in a straightforward manner and each
concept or technique is clearly explained, anyone should be able to design a database
properly.

How Normalization Is Integrated into My Design Methodology
As I mentioned earlier, there is no direct one-to-one mapping between Normalization
and my design methodology. Rather, various elements of my methodology
transparently work together to resolve the issues usually addressed by the
Normalization process. My approach additionally and transparently addresses and
resolves other traditional design issues such as scalar values, determinates, functional
dependencies, domains, modification anomalies, referential integrity, cardinality, and
optionality.
Let’s first look at the fundamental issues each Normal Form addresses before I show
you how my system specifically deals with them (see Table G.1).

Table G.1 Fundamental Issues Addressed by Each Normal Form

Keeping this in mind (along with the other issues I referenced earlier), I originally
strove to develop a design methodology that incorporated all this and addressed it in a
more efficient and far less repetitive manner. I also wanted my methodology to be
clear and easily understood by anyone deciding to adopt it. That is why I specifically
decided to move away from the traditional jargon and mathematical approach and
instead use plain English to describe the processes I developed.
Table G.2 shows how various components of my design methodology address
traditional Normalization and design issues.

Table G.2. How My Methodology Addresses Traditional Normalization and
Design Issues

As I’ve said all along, my approach does indeed deal with all of the issues you would
typically address with the Normalization process, and it will yield fully normalized
tables. It will only do so, however, if you follow my methodology as faithfully as you
would the traditional methodology or any other methodology. Keep in mind that

you’re actually dealing with all of these issues as you develop the database instead
of waiting to deal with them until you’re about two-thirds of the way through the
process in the traditional method. I’ve found this to be a much better approach to
design—there’s less repetitiveness and it certainly takes less time overall to design the
database.

Logical Design versus Physical Design and Implementation
I’m occasionally asked why I didn’t include more discussion on SQL and
implementation issues such as indexing, partitioning, and distribution. The answer is
quite simple: I’ve always believed that the logical design process and the physical
design and implementation processes should be kept separate.
I still believe that many people unwittingly fall into the trap of designing a database
based solely on the RDBMS software they will use for its implementation. In many
cases, they do so because they are already somewhat familiar and skilled with a
particular RDBMS or their company or organization is already using a particular
RDBMS. This is an unwise approach that you should avoid (as much as possible) for
several reasons.

• You’re likely to make design decisions based on your perceptions of what
your RDBMS can or can’t do. For example, you may decide not to impose a
degree of participation for a given relationship because you believe the
RDBMS does not provide you with the means to do so.

• You’ll inadvertently let the RDBMS dictate the design of the database as
opposed to driving the design strictly from the organization’s information
requirements. This usually occurs when you discover that your RDBMS
provides only limited support for certain aspects of the database, such as field
specifications and relationship characteristics.

• Your design will be constrained by your knowledge of the RDBMS. For
example, you may decide not to implement relationship characteristics simply
because you don’t know how to do so.

• Your design will be constrained by how skilled you are with your RDBMS.
Your skill level affects how efficiently and effectively you can implement
various aspects of the database, such as field specifications and business rules.

• Using this approach to design a database commonly results in improper
structural design, insufficient data integrity, and problems with inconsistent

data and inaccurate information. Defining a database within an RDBMS can
be deceptively easy. You may create a database that works, but you’re very
likely to have a poor design without knowing it.

• In the end, the RDBMS that you know and love so well may not be suitable
for your organization’s database requirements.

I believe you should always design the logical structure of your database without
regard to any RDBMS. By doing so, you’re more likely to design a sound structure
because you’ll be focused on the organization’s information requirements. Once your
design is complete, you can then clearly determine how you should implement the
database (single-user application, client/server, web-based, and so on) and which
RDBMS you should use to facilitate the implementation.

(The preceding content is in the “Database Design Based on the Database
Software” section in Chapter 14, “Bad Design—What Not to Do,” but I
thought it bore repeating here.)

I hope this finally clears any confusion and answers any questions you may have
regarding my design methodology and Normalization. I’ve certainly accomplished my
goal if you now at least understand my approach a little more clearly and see how it
does address the same issues as Normalization.

H. Recommended Reading

Should you be interested in pursuing an in-depth study of database technology, here
are my recommendations for books on this subject. I’ve chosen these particular
books because they have stood the test of time and have become “standard reading”
within the database industry and academic institutions. (I’m pleased to state that my
book has become part of this notable list.) Keep in mind that most of these books are
going to be challenging to read; the authors presume that you have a fair amount of
background in computers and programming or are pursuing a degree in computer
science.

Codd, E. F. (1990) The Relational Model for Database Management: Version 2.
Reading, MA: Addison-Wesley. ISBN: 0201141922 (Note: This book is hard to
find, but it’s worth having in your library if you’re going to become a serious
database developer. Written by the “Father of the Relational Database” himself.)
Connolly, Thomas, and Carolyn Begg. (2009) Database Systems—A Practical
Approach to Design, Implementation, and Management, Fifth Edition. Boston:
Addison-Wesley. ISBN: 0321523067
Date, C. J. (2001) The Database Relational Model—A Retrospective Review and
Analysis. Boston: Addison-Wesley. ISBN: 0201612941
——(2003) An Introduction to Database Systems, Eighth Edition. Boston:
Addison-Wesley. ISBN: 0321197844
——(2006) Databases, Types and the Relational Model, Third Edition. Boston:
Addison-Wesley. ISBN: 0321399420
——(2005) Database In Depth—Relational Theory for Practitioners. Sebastopol,
CA: O’Reilly Media, ISBN: 0596100124
——(2012) Database Design and Relational Theory: Normal Forms and All That
Jazz. Sebastopol, CA: O’Reilly Media. ISBN: 1449328016
Hoffer, Jefferey A., Mary B. Prescott, and Fred R. McFadden. (2010) Modern
Database Management, Tenth Edition. Upper Saddle River, NJ: Prentice Hall.
ISBN: 0136088392
Kroenke, David M. (2011) Database Processing, Twelfth Edition. Upper Saddle
River, NJ: Prentice Hall. ISBN: 0132145375

Glossary

Ad Hoc Information Retrieval The process of using ad hoc queries to retrieve
information that currently does not appear in any existing reports or data
management screens.
Ad Hoc Query A nonpredefined query that you pose to the database application.
Aggregate Function A snippet of programming code that executes a particular type
of mathematical aggregation on a set of data and returns a single value.
Aggregate View A view used to display information produced by aggregating a
particular set of data in a specific manner.
Alternate Key A candidate key that has not been designated as a primary key.
Analytical Database A type of database that stores static data and is used when
there is a need to track trends, view statistical data over a long period of time, or
make tactical or strategic business projections; it is typically associated with OLAP.
Application A commercial or custom-built software program that is typically used to
provide a user-friendly interface for a database.
Application Development The process of designing and creating an application that
will serve as the user interface for a database.
Application-Oriented Business Rule A rule that imposes constraints that you must
establish within the physical design of the database or within the design of the
database application.
Application Program Commercial or custom-built software that serves as the user
interface to a database.
Artificial Candidate Key A field created for the sole purpose of serving as a
candidate key. Its existence is due to an absence of any “naturally occurring”
candidate keys within the table.
Associative Table See Linking Table.
Attribute The relational model’s equivalent of a field.
Base Tables Tables that form the basis of a view.
Business Rule Specification Represents all of the characteristics of a business rule,

such as the rule statement, the constraint it imposes, the structures it affects, and so
on.
Business Rules Restrictions or limitations on certain aspects of a database based on
the ways an organization perceives and uses its data.
Calculated Field A field that contains a concatenated text value or the result of a
mathematical expression.
Calculated Field List A list of fields that can be defined only within an RDBMS.
(Recall that you cannot define calculated fields within a table structure.)
Cardinality The type of relationship that exists between a pair of tables in a
relational database. See Relationship.
Child Table Within a given relationship, a table containing records that are explicitly
dependent upon the existence of records in the related table.
Client/Server RDBMS A type of RDBMS in which data resides on a computer
acting as a database server and users interact with the data through applications
residing on their own computer, known as the database client.
Closed Question A question that has a definitive, finite set of answers. This type of
question leaves little opening for further follow-up questions.
Composite Primary Key A primary key composed of two or more fields.
Data The values stored in the database.
Data Consistency Every occurrence of a given field value throughout the entire
database is exactly the same.
Data Entry Form A screen within an application program used to gather and collect
data.
Data Integrity A set of rules or guidelines that governs the validity, consistency, and
accuracy of the data in a database. There are four types of data integrity: table-level,
field-level, relationship-level, and business rules.
Data Structure A particular construct used to store data, such as a field or table.
Data Table A table that stores data used to supply information; it is the most
common type of table in a relational database.
Data View A view used to examine and manipulate data from one or more base
tables.

Data Warehouse A relational database designed for interrogation and analysis rather
than for transaction processing.
Database Application Program See Application Program.
Database Design Process The set of actions required to design the logical structure
of a database.
Database-Oriented Business Rule A rule that imposes constraints that you can
establish within the logical design of the database.
DBMS (Database Management System) A software program that is used to create,
maintain, modify, and manipulate a database.
Degree of Participation Considering a given relationship between a pair of tables
within a relational database, this is the minimum and maximum number of records
that one table can have associated with a single record in the related table.
Deletion Rule A rule that determines what the RDBMS should do when a user
places a request to delete a given record in the parent table of a relationship.
Domain See Field Specification.
Domain Integrity See Field-Level Integrity.
Duplicate Data A nonprimary key value that appears in more than one table within
the database.
Duplicate Field A field that appears in two or more tables for any of these reasons:
It is used to relate a set of tables together; it indicates multiple occurrences of a
particular type of value; or there is a perceived need for supplemental information.
Dynamic Data Data that changes constantly and always reflects up-to-the-minute
information.
Elements of a Candidate Key A set of guidelines used to determine whether a given
field is fit to serve as a candidate key.
Elements of a Foreign Key A set of guidelines used to determine whether a given
field is fit to serve as a foreign key.
Elements of a Primary Key A set of guidelines used to determine whether a given
candidate key field is fit to serve as a primary key.
Elements of the Ideal Field A set of guidelines used to create sound field structures
and to help identify poorly designed fields.

Elements of the Ideal Table A set of guidelines used to create sound table structures
and to help identify poorly designed tables.
End User A person who uses and works with a database or database application
program.
End-User Application Commercial or custom-built software that serves as the user
interface to a database.
Entity Integrity See Table-Level Integrity.
Event Something that occurs at a given point in time (such as a doctor’s appointment
or stock transaction) that can be represented by a table.
Explicit Information Information that is clearly stated within the response to a given
question.
Extended Data Types Additional data types provided by many RDBMS programs
that go beyond those specified by the SQL Standard.
Field The smallest structure in the database. It represents a characteristic of the
subject of the table to which it belongs and is the only structure that actually stores
data within the database.
Field-Level Integrity This type of data integrity warrants the following: The identity
and purpose of a field is clear and all of the tables in which it appears are properly
identified; field definitions are consistent throughout the database; the values of a
field are consistent and valid; and the types of modifications, comparisons, and
operations that can be applied to the values in the field are clearly identified.
Field Specification Represents all of the general, physical, and logical elements of a
field. (This is traditionally known as a domain.)
Field-Specific Business Rule A rule that imposes constraints on the elements of a
field specification for a given field.
Filter A set of one or more constraints imposed on a view that causes it to return a
specific set of information.
Final Table List This list contains key information (name, type, and description) on
every table in the database.
First-Order Predicate Logic One of the two branches of mathematics upon which
the relational model is based.

Hierarchical Database A database in which data is structured hierarchically and is
typically diagrammed as an inverted tree.
Implementation Process The set of actions required to take a logical database
design and incorporate it within a specific RDBMS.
Implicit Information Information that is not expressly stated within a response to a
given question; you must derive it from your examination of the response.
Index A structure within an RDBMS program that can be used to improve data
processing.
Information Data that is processed in a manner that makes it meaningful and useful
to the person working with it or viewing it.
Information Requirements Information that must be supported by the data in the
database in order for the organization to function properly, effectively, and
efficiently.
Inherited Database See Legacy Database.
Keys Special fields that play very specific roles within a table; the type of key
determines its purpose within the table. There are four significant types of key:
candidate, primary, alternate, and foreign.
LAN See Local Area Network.
Legacy Database A database that has been in existence and in use for several years
or more.
Linking Table A table that helps to establish a many-to-many relationship between a
given pair of tables.
List of Characteristics A collection of nouns that imply various attributes of the
items on the List of Subjects.
List of Subjects A collection of nouns that represent subjects that may be of interest
to the organization.
Local Area Network (LAN) A group of computers and peripherals located within a
relatively limited geographical area that share services and resources.
Logical Child Relationship A relationship that exists between a given table in one
hierarchical database and another table in a second hierarchical database.
Logical Data Independence Changes made to the logical design of the database will

not adversely affect the applications built upon the database.
Lookup Table See Validation Table.
Mainframe Computer A large, high-end, extremely powerful computer designed to
handle literally millions of highly intensive computations simultaneously.
Many-to-Many Relationship A relationship between a pair of tables in a relational
database in which a single record in the first table can be related to many records in
the second table and a single record in the second table can be related to many
records in the first table.
Member The subordinate node in a given relationship within a network database.
Missing Value A data value that has not been entered into a given field due to
human error.
Mission Objective A statement that represents a general task that a user will perform
against the data in the database.
Mission Statement A statement that establishes the purpose of the database and
provides a distinct focus for your design work.
Multilevel Integrity This incorporates two or more of the following: field-level
integrity, table-level integrity, relationship-level integrity, and business rules.
Multipart Field A field that contains more than one type of distinct value.
Multivalued Field A field that contains multiple instances of the same type of value.
Network Database A database in which data is structured hierarchically and is
typically diagrammed as an inverted tree. Unlike the hierarchical database, however,
it can contain several inverted trees that share branches.
Node A given collection of records within a network database.
Non-key A field that does not serve as a candidate, primary, alternate, or foreign key.
Normal Form A specific set of rules that can be used to test a table structure to
ensure that it is sound and free of problems.
Normalization The process of decomposing large tables into smaller ones in order to
eliminate redundant data and duplicate data.
Null This represents a missing or unknown value; it does not represent a zero or a
text string of one or more blank spaces.

Object A tangible item (such as a person, place, or thing) that can be represented by
a table.
OLAP (Online Analytical Processing) A method of presenting data from an
analytical database in which the data is summarized and presented in the form of a
table or cube.
OLTP (Online Transaction Processing) A system for processing transactions as
soon as the computer receives them and updating master files immediately in a
database management system.
One-to-Many Relationship A relationship between a pair of tables in a relational
database in which a single record in the first table can be related to many records in
the second table, but a single record in the second table can be related to only one
record in the first table.
One-to-One Relationship A relationship between a pair of tables in a relational
database in which a single record in the first table is related to only one record in the
second table, and a single record in the second table is related to only one record in
the first table.
Online Analytical Processing See OLAP.
Online Transaction Processing See OLTP.
Open-Ended Question A question that can be answered in a variety of ways and can
lead to further follow-up questions.
Operating System The complete set of software required to manage and provide
services for the computer’s hardware, peripheral equipment (such as printers and
scanners), and all other software programs. The computer cannot function without
the operating system.
Operational Database A type of database that stores dynamic data and is used in
situations where there is a need to collect, modify, and maintain data on a daily basis;
it is typically associated with OLTP.
Orphaned Record Given two related tables, this is a record in one table that is not
associated with any record in the other table.
Owner The main node in a given relationship within a network database.
Owner/Member Relationship A type of relationship in a network database in which
an owner table can be associated with one or more member tables, but a single

member table must be associated with a specific owner table.
Paper-Based Database A loose collection of forms, index cards, manila folders, and
so on, used to collect and maintain data.
Parent/Child Relationship A type of relationship in a hierarchical database in which
a parent table can be associated with one or more child tables, but a single child table
can be associated with only one parent table.
Parent Table Within a given relationship, a table containing records that are not
dependent upon the existence of records in the related table.
Parse To decompose a given data value into smaller, distinct parts.
Physical Data Independence Changes the database software vendor makes to the
physical implementation of the database will not adversely affect the applications
built upon the database.
Pointer A mechanism that explicitly links a parent table to a child table in a
hierarchical database.
Preliminary Field List A list of fields that represents the organization’s fundamental
data requirements and constitutes the core set of fields that must be defined in the
database.
Preliminary Table List The core set of tables that must be defined in the database.
Primary Key A field or group of fields that uniquely identifies each record within a
table.
Programming Environment The combination of a given computing platform (PC,
client/server, mainframe, and so on), operating system, and programming language.
Programming Language A software program that can be used to define sets of
instructions that will ultimately be processed and executed by the computer.
Query A request for information posed to the database via a SQL query statement.
Query Builder A tool within a database software program that allows a user to build
a query via an easy-to-use graphical interface.
RDBMS (Relational Database Management System) A software program that is
used to create, maintain, modify, and manipulate a relational database.
Record A structure that is composed of a complete set of singular values (regardless
of whether any are null) for every field within a table and represents a unique

instance of the table’s subject.
Recursive Relationship See Self-Referencing Relationship.
Redundant Data A value that is repeated in a field as a result of the field’s
participation in relating two tables or as a result of some field or table anomaly.
Reference Field See Duplicate Field.
Referential Integrity See Relationship-Level Integrity.
Relation The relational model’s equivalent of a table.
Relational Database A type of database that stores data in relations (perceived by
the user as tables). Each relation is composed of tuples (records) and attributes
(fields).
Relational Database Management System See RDBMS.
Relational Model A data model based on set theory and first-order predicate logic
invented by Dr. Edgar F. Codd.
Relationship An interdependence that exists between two tables when records in the
first table can in some way be associated with records in the second table. There are
three types of relationships in a relational database: one-to-one, one-to-many, and
many-to-many.
Relationship Diagram A graphic representation of the relationship between a given
pair of tables or between a given set of records within a table.
Relationship-Level Integrity A type of data integrity that ensures that the
relationship between a pair of tables is sound and that the records in the tables are
synchronized whenever data is entered into, updated in, or deleted from either table.
Relationship-Specific Business Rule A rule that imposes constraints that affect the
characteristics of a relationship.
Report Any handwritten, typed, or computer-generated document used to arrange
and present data in such a way that it is meaningful to the person or people viewing
it.
Root Table The topmost table in a hierarchical database structure.
Screen Presentation A series of screens that discuss various topics in an organized
manner.
Self-Referencing Many-to-Many Relationship A relationship that exists when a

given record in a table can be related to one or more other records within the table
and one or more records can themselves be related to the given record.
Self-Referencing One-to-Many Relationship A relationship that exists when a given
record in a table can be related to one or more other records within the table.
Self-Referencing One-to-One Relationship A relationship that exists when a given
record in a table can be related to only one other record within the table.
Self-Referencing Relationship A relationship that exists between the records within
a table. Similar to its dual-table counterpart, a self-referencing relationship can be
one-to-one, one-to-many, or many-to-many.
Set Structure A transparent construction that establishes and represents a
relationship within a network database.
Set Theory One of the two branches of mathematics upon which the relational
model is based.
SQL (Structured Query Language) A standardized language used to create,
maintain, modify, and query relational databases.
Static Data Data that is never (or very rarely) modified.
Structural Integrity A set of rules or guidelines that governs the manner in which
fields, tables, and views are defined.
Structured Query Language See SQL.
Subset Table A table that represents a subordinate subject of a particular data table.
Table The chief structure in a database. It is composed of fields and records and
always represents a single, specific subject.
Table Description A statement that provides a clear definition of the subject
represented by the table and states why the subject is important to the organization.
Table-Level Integrity This type of data integrity ensures that a table is free of
duplicate records and that the values of the table’s primary key are unique, are never
null, and exclusively identify the table records.
Tuple The relational model’s equivalent of a record.
Type of Participation The manner in which a table participates within a given
relationship in a relational database. The type of participation can be either
mandatory or optional.

Type of Relationship The manner in which a given pair of tables can be related
(one-to-one, one-to-many, many-to-many).
Unknown Value A value for a specific field that has yet to be determined or defined.
URL An acronym for Uniform Resource Locator. It represents an address for a
given resource on the Internet, such as www.ForMereMortals.com.
Validation Table A table that stores data specifically used to implement data integrity.
(This is also known as a lookup table.)
Validation View A view used specifically to implement data integrity.
View A virtual table composed of fields from one or more base tables in the
database.
View Specification Represents all of the characteristics of a view, such as the name,
type, base tables, and so on.
WAN See Wide Area Network.
Web Page A document consisting of a Hypertext Markup Language (HTML) file and
associated support files that can be accessed via the Internet.
Wide Area Network (WAN) A group of computers and peripherals located over a
widespread geographic area that depends on various communications devices to
share services and resources.
Zero-Length String Two consecutive single quotes with no space in between them.

http://www.ForMereMortals.com

References

Codd, E. F. (1990) “Relational Philosopher.” DBMS. December 1990, 34–40, 60.

———. (1990) The Relational Model for Database Management Version 2.
Reading, MA: Addison-Wesley.

Connolly, Thomas, and Carolyn Begg. (2002) Database System: A Practical
Approach to Design, Implementation and Management, Third Edition. Boston:
Addison-Wesley.

Date, C. J. (1994) “According to Date: Many Happy Returns!” Database
Programming and Design. September 1994, 19–22.

———. (2000) An Introduction to Database Systems, Seventh Edition. Boston:
Addison-Wesley.

Fleming, Candace C., and Barbara von Halle. (1989) Handbook of Relational
Database Design. Reading, MA: Addison-Wesley.

Hoffer, Jeffrey A., Mary B. Prescott, and Fred R. McFadden. (2002) Modern
Database Management, Sixth Edition. Upper Saddle River, NJ: Prentice Hall.

Kalman, David. (1994) “Moving Forward with Relational.” DBMS. October 1994,
62–74, 109.

Kroenke, Dr. David M. (2000) Database Processing Fundamentals, Design and
Implementation, Seventh Edition. Upper Saddle River, NJ: Prentice Hall.

McGoveran, David. (1994) “The Relational Model Turns 25.” DBMS. October 1994,
46–61.

Pascal, Fabian. (2000) Practical Issues in Database Management: A Reference for
the Thinking Practitioner. Boston: Addison-Wesley.

Stephens, Ryan K., and Ronald R. Plew. (2001) Database Design. Indianapolis:
Sams.

Teorey, Toby J. (1999) Database Modeling & Design, Third Edition. San Francisco:
Morgan Kaufmann.

Index

A
Abbreviations

in field names, 289, 294
in Field Specifications. 284
in table names, 188-189, 204

Accuracy of data, 17, 26
Acronyms

in field names, 511, 548
in Field Specifications, 284
in table names, 188-189, 204

Action-oriented questions, 335–336
Aggregate functions, effects of nulls, 49
Aggregate views, 442–446
Aliases element, 281–283
Alphanumeric data type, 288
Alternate keys, 260
Analytical databases, 4, 489–490
Analyzing current databases

adopting the current structure, 117–118
case study, 166–171
conducting interviews, 129–137
data collection, 121–124
in the design process, 78–79
goals of analysis, 117
human-knowledge databases, 117
information presentation, 125–129
legacy databases, 116–117, 119–121
overview, 115–118

paper-based databases, 116, 118–119
reports, 125–126
screen presentations, 125, 126–128
slide shows, 125
web pages, 125, 128–129

Anomalies, using ideal field to resolve, 206-218
Ansa Software, 19
Answers to review questions, 501–523
Application-oriented business rules, 397–399
Approximate Numeric data type, 287
Artificial candidate keys, 251–253
Ashton-Tate, 19
Associative questions, 335
Associative tables. See Linking tables.
Attributes. See Fields.

B
Bad design

design based on RDBMS capability, 485–486
flat-file design, 480–481
improper design methodology, 26
spreadsheet design, 481–485

Base tables, 54, 435
Binary data type, 287
Blank values, 228–229
Books and publications

recommended reading, 577–578
SQL Queries for Mere Mortals, 15

Boolean data type, 287
Bowling league, sample database design, 564
Business Rules

application-oriented, 397–399

case study, 426–431
categories of, 399–402
constraints, 408
data integrity, 472
database-oriented, 397–399
defining and establishing, 402–417
in the design process, 81–82
determining and defining, 81–82
example, 394–397
field-specific, 399–400, 403–411, 543
overview, 393–394
relationship-specific, 401–402, 412–417, 543–544
types of, 397–399

Business Rules Specifications sheet
advantages of, 409
case study, 429
contents of, 409–410
examples, 411, 418, 424, 429, 555
reviewing, 425–426

Business rules, validation tables
description, 419–420
examples, 419
overview, 417, 419
sample Business Rule Specifications sheet, 418
supporting business rules, 420–424

Business-specific range of values, 295

C
Calculated field lists

compiling, 164–165
interviews with management, 165–166
reviewing with users and management, 165–166

Calculated fields
definition, 53
in views, 452–455

Candidate keys
artificial, 251–253
composite candidate keys, 249
elements of, 245–246, 544
establishing, 246–249
identifying, 250–251
overview, 245
Social Security numbers as, 247–248

Car rental, sample database design, 565
Cascade deletion rule, 372–377
Case study (Mike’s Bikes)

analyzing current databases, 166–171
business rules, 426–431
data integrity, 475–476
field specifications, 308–310
fields, in table structure, 233–240
final table list, 233–240
keys, 263–269
mission objectives, 111–112
mission statement, 104–105
overview, 98–99
preliminary table list, 233–240
table relationships, 384–389
views, 460–464

Character data type, 286
Character Support element, 289–290
Characteristic-Identification Technique, 136
Characteristics

current, identifying, 134–136

items representing, 159–160
new, identifying, 161–164
review and refine, 157–160

Child tables, 5–9, 60–61
Closed questions, in interviews, 131
Codd, Edgar F., 12
Comparisons Allowed element, 296–298
Composite candidate keys, 249
Composite primary keys, 56, 63, 352
Concatenation, 165, 172, 298, 302
Consistency, data, 17, 26
Contextual questions, 335
Controlling interviews, 97
Criteria, 83, 86, 159, 455
Criterion, 455
Crows foot symbol, 321
Current databases, analyzing

adopting the current structure, 117–118
case study, 166–171
conducting interviews, 129–137
data collection, 121–124
in the design process, 78–79
goals of analysis, 117
human-knowledge databases, 117
information presentation, 125–129
legacy databases, 116–117, 119–121
overview, 115–118
paper-based databases, 116, 118–119
reports, 125–126
screen presentations, 125, 126–128
slide shows, 125
web pages, 125, 128–129

D
Data

accuracy, 17, 26
consistency, 17, 26
definition, 43
inconsistent, 119, 470, 480, 486, 491, 576
redundant, 7, 29, 34, 59-67, 206, 214–217, 219–221, 242

Data collection, analyzing current methods, 121–124
Data dictionary, 275
Data independence, advantages of relational databases, 17
Data integrity

advantages of relational databases, 16–17
bending or breaking the rules, 491–492
business rules, 472
case study, 475–476
design methodology, 26
field-level, 275–276, 471–472, 546
integrity-specific range of values, 294
objectives of good design, 31
related terminology, 67–69. See also specific terms.
relationship-level, 384, 472, 551–552
reviewing and refining, 83–84, 469–473
table-level, 261, 471, 552
views, 473

Data modeling phase, 33–34
Data structures in the design process, 80–81
Data table symbol, 316
Data tables, final table list, 186
Data types

alphanumeric, 288
approximate numeric, 287

binary, 287
Boolean, 287
character, 286
DateTime, 287, 288
exact numeric, 287
extended, 287
general, 288
interval, 287
national character, 286
numeric, 288
SQL standard, 286–288

Data Types element, 286–288
Data views, 437–442
Data warehousing, 21–22
Database-oriented business rules, 397–399
Database design See also Design methodology.
Database models

hierarchical, 5–9, 584
network, 9–12, 586
relational, 3, 12-19, 590

Databases
analytical, 4, 489–490
analyzing. See Analyzing current databases.
data models, 5–12. See also Relational databases.
designing. See Design methodology; Design process.
examples of. See Case study (Mike’s Bikes); Sample designs.
operational, 4
types of, 4

DateTime data type, 287, 288
Decimal Places element, 289
Default Value element, 294
Degree of table participation in relationships, 66–67

Deletion rules, defining, 372–377
Deny deletion rule, 372–377
Design methodology. See also Design process; Sample designs.

advantages of, 29–32
bending or breaking the rules, 489–493
data modeling phase, 33–34
importance of, 25–27
improper, results of, 26. See also Bad design.
objectives of good design, 30–31
requirements analysis phase, 32
theory, importance of, 27–29
traditional methods, 32–34
as used in this book, 34–35
using tools, 26

Design methodology, normalization
definition, 34
description, 35–38
in the design process, 34, 567–576
implementation issues, 575–576
logical design versus physical design, 575–576

Design process. See also Design methodology.
analyzing current databases, 78–79
business rules, 81–82
data structures, 80–81
importance of, 76–77
mission objectives, 77–78
mission statements, 77–78
reviewing data integrity, 83–84
table relationships, 81
validation tables, 82
views, 82

Diagrams

database design process, 525–541
symbols for, 557–558

Diagrams, self-referencing relationships
many-to-many, 332
one-to-many, 331
one-to-one, 330

Diagrams, table relationships
crows foot symbol, 321
data table symbol, 316
many-to-many, 323–324
one-to-many, 321, 350
one-to-one, 318
self-referencing many-to-many, 332
self-referencing one-to-many, 331
self-referencing one-to-one, 330
subset table symbol, 316
table structure, 343

Direct relationships, 334
Display Format element, 291
Dispute arbitration, interviews, 92
Documentation

of bent or broken rules, 493–494
database, assembling, 473–475
database design process diagrams, 525–541
importance of, 474
types of, 473–474
view diagrams, 452, 457–458
View Specifications sheet, 457–458, 556

Documentation, Business Rule Specifications sheet
advantages of, 409
case study, 429
contents of, 409–410

examples, 411, 418, 424, 429, 555
reviewing, 425–426

Documentation, Field Specifications sheet
case study, 309–310
example, 554
full sheet, 278
general elements, 285
generic field specifications, 303
logical elements, 299
physical elements, 292
replica field specifications, 305
unique field specifications, 301

Documentation, self-referencing relationship diagrams
many-to-many, 332
one-to-many, 331
one-to-one, 330

Documentation, table relationship diagrams
crows foot symbol, 321
data table symbol, 316
many-to-many, 323–324
one-to-many, 321, 350
one-to-one, 318
self-referencing many-to-many, 332
self-referencing one-to-many, 331
self-referencing one-to-one, 330
subset table symbol, 316
table structure, 343

Documentation, View Specifications sheet
advantages of, 458
case study, 460
contents of, 457–458
examples, 459, 462, 464

reviewing, 458
Domain integrity, 68, 574, 582
Duplicate fields, 219–220, 222–227
Duplicate items, 178–182

E
Edit Rule element, 296–297, 369–370
Entertainment agency, sample database design, 560
Entity integrity, 68, 583
Enumerated lists. See Value lists.
Events versus objects, in tables, 50–51
Exact Numeric data type, 287
Examples. See Case study (Mike’s Bikes); Sample designs.
Extended data type, 287

F
Field Description element, 283–285, 368, 547
Field lists, compiling, 157–166. See also Calculated field lists; Preliminary field lists.
Field names, 277, 279, 548
Field specifications

case study, 308–310
for each field in the database, 306–308
for foreign keys, 368–371
generic, 280, 300–305
guidelines for, 283–285
importance of, 274–275
overview, 273–274
replica, 280, 300–305
unique, 280, 300–305

Field specifications, general elements
aliases, 281–283
field descriptions, 283–285, 368

field names, 277, 279
label, 279
overview, 277
parent table, 279, 368
shared by, 281
source specification, 281, 368
specification type, 368

Field specifications, logical elements
comparisons allowed, 296–298
default value, 294
edit rule, 296–297, 369–370
key structure, 292
key type, 292, 368
null support, 293
operations allowed, 298–299
range of values, 294–295, 369
required value, 294
specification sheet example, 299
uniqueness, 292–293, 368–369
values entered by, 293, 369

Field specifications, physical elements
character support, 289–290
data types, 286–288
decimal places, 289
display format, 291
input mask, 290–291
length, 289
overview, 285

Field Specifications sheet, examples
case study, 309–310
full sheet, 278, 554
general elements, 285

generic field specifications, 303
logical elements, 299
physical elements, 292
replica field specifications, 305
unique field specifications, 301

Field-level integrity, 275–276, 471–472, 546
Fields

associating with tables, 199–201
calculated, 53
multipart, 53
multivalued, 53, 350–352
overview, 52–53
types of, 53

Fields, in table structure
anomalies, resolving, 206–210
case study, 233–240
duplicates, 219–220, 222–227
ideal, 206–210
multipart, resolving, 210–212
multivalued, resolving, 212–218
naming conventions, 202–206
reference, 222

Field-specific business rules, 399–400, 403–411, 543
File systems. See Paper-based databases.
Filtering data in views, 455–456
Final table list. See also Preliminary table list.

case study, 233–240
data tables, 186
definition, 184
example, 185
interviewing users and management, 196–199
linking tables, 186

subset tables, 186
table descriptions, 186, 192–199
table names, naming conventions, 187–191
table types, 186, 192
validation tables, 186

First-order predicate logic, 13, 28
Flat-file design, 480–481
Foreign keys. See also Primary keys.

elements of, 365–371, 544
example, 57
field specifications, 368–371
one-to-one relationships, 346
overview, 58
refining, 365–371

Fox Software, 19

G
General data type, 288
General elements, field specifications

aliases, 281–283
field descriptions, 283–285, 368
field names, 277, 279
label, 279
overview, 277
parent table, 279, 368
shared by, 281
source specification, 281, 368
specification type, 368

General range of values, 294
Generic field specifications, 280, 300–305
Grouping fields, 446

H
Hierarchical databases, 5–9
Human-knowledge databases, 117

I
IBM

data warehousing, 21–22
object-oriented databases, 20–21
object-relational databases, 21
RDBMS programs, 18
System R, 18

Ideal fields, 206–210, 545–546
Ideal table elements, 364–365, 546
Implicit information, 110-111
Implied subjects, 176-177, 529
Inconsistent data, 80, 81–84
Indexed views, 56, 436
Indexes, 58–59
Indirect relationships, 334
Information, definition, 43–44
Information presentation, analyzing current methods, 125–129
Information requirements, reviewing with

management, 153–157
users, 144–152

INGRES (Interactive Graphics Retrieval System), 18
Inherited database. See Current database.
Inmon, Bill, 21
Input Mask element, 290–291
Integrity. See Data integrity.
Interval data type, 287
Interviewer guidelines, 91–93, 550–551

Interviews
about current databases, 129–137
in the analysis phase, 129–137
closed questions, 131
controlling, 97
in the design phase, 89–98
dispute arbitration, 92
group leadership, 94–95
guidelines for, 91–93, 550–551
importance of, 90–91
interviewer guidelines, 91–93
number of participants, 93
open-ended questions, 95, 131
overview, 89–90
pacing, 97
participant guidelines, 91–93
separating users from management, 94
setting, 93
taking notes, 95–96

Interviews, basic techniques
characteristic-identification technique, 136
characteristics, identifying, 134–136
closed questions, 131
importance of questions, 130
interview process, 131
open-ended questions, 131
subject-identification technique, 133
subjects, identifying, 132–133

Interviews, with management
business rules, defining and establishing, 402–417
calculated field lists, reviewing, 165–166
compiling field lists, 157–166

defining views, 449–450
final table list, 196–199
information requirements, reviewing, 153–157
keys, 261–263
main issues, 152
preliminary field lists, reviewing, 165–166
separating from user interviews, 94
separating from users, 94
verifying table relationships, 383

Interviews, with users
business rules, defining and establishing, 402–417
calculated field lists, reviewing, 165–166
data type and usage, 138–139
defining views, 449–450
final table list, 196–199
information requirements, reviewing, 144–152
keys, 261–263
main issues, 137
preliminary field lists, reviewing, 165–166
sample conversation, 138–139
samples, reviewing, 140–144
separating from management, 94
table descriptions, 196–199
verifying table relationships, 383

K
Key structure element, 292
Key Type element, 292, 368
Keyboard characters, field specifications, 289–290
Keys

alternate, 260
case study, 263–269

importance of, 244
versus indexes, 59
non-key fields, 261
reviewing with users and management, 261–263
Social Security numbers as, 247–248
table-level integrity, 261
types of, 244. See also specific types.

Keys, candidate
artificial, 251–253
composite candidate keys, 249
elements of, 245–246, 544
establishing, 246–249
identifying, 250–251
overview, 245
surrogate, 251–253

Keys, foreign. See also Keys, primary.
elements of, 365–371, 544
example, 57
field specifications, 368–371
one-to-one relationships, 346
overview, 58
refining, 365–371

Keys, primary. See also Keys, foreign.
elements of, 255–256
fields, 253
overview, 253–255
rules for establishing, 259, 545
selecting, 254–259
unnecessary fields, 256
values, 253

L

Label element, 279
Leadership, interviews with, 94–95
Legacy databases, 116–117, 119–121. See also Current databases.
Length element, 289
Letters, field specifications, 289–290
Linking tables

definition, 59
final table list, 186
many-to-many relationships, 63, 352–358

Logical elements, field specifications
comparisons allowed, 296–298
default value, 294
edit rule, 296–297, 369–370
key structure, 292
key type, 292, 368
null support, 293
operations allowed, 298–299
range of values, 294–295, 369
required value, 294
specification sheet example, 299
uniqueness, 292–293, 368–369
values entered by, 293, 369

Lookup tables. See Validation tables.

M
Management, interviewing. See Interviews, with management.
Mandatory participation, 377
Mandatory table participation in relationships, 65–66
Many-to-many relationships

composite primary keys, 352
diagramming, 323–324
establishing, 352–358

linking tables, 352–358
overview, 63–65, 321–324
problems with, 324–329
redundant data, 355–356
self-referencing, 331–332, 362–364

Materialized views, 56, 436–437
Microrim, 19
Microsoft

object-relational databases, 21
RDBMS programs, 19

Microsoft Access, saved queries, 54
Mike’s Bikes. See Case study (Mike’s Bikes).
Missing values, 46
Mission objectives

case study, 111–112
characteristics of, 106–107, 551
composing, 108–111
in the design process, 77–78
overview, 105–106
reviewing for preliminary table list, 182–184

Mission statements
case study, 104–105
characteristics of, 100–102, 551
completeness, 103
composing, 102–104
in the design process, 77–78

Multipart fields
definition, 53
resolving, 210–212

Multitable data views, 439–442
Multivalued fields

definition, 53

resolving, 212–218, 350–352, 552

N
National Character data type, 286
Network databases, 9–12
Non-key fields, 261
Normal forms, 34–36, 570
Normalization

definition, 34
description, 35–38
in the design process, 34, 567–576
implementation issues, 575–576
logical design versus physical design, 575–576

Null Support element, 293
Nullify deletion rule, 372–377
Nulls

definition, 45
disadvantages of, 47–49
effects on aggregate functions, 49
missing values, 46
problems with, 47-49
reasons for, 45–46
support for, 46–47
unknown values, 46
value of, 46–47

Numbers, field specifications, 289–290
Numeric data type, 288

O
Object-oriented databases, 20–21
Object-relational databases, 20–21
Objects versus events, in tables, 50–51

Office inventory, sample database design, 563
OMG (Object Management Group), 20
One-to-many relationships

diagramming, 321, 350
establishing, 349–350
multivalued fields, resolving, 350–352
overview, 61–62, 319–321
self-referencing, 330–331, 358–362

One-to-one relationships
diagramming, 318
establishing, 345–349
foreign keys, 346
overview, 60–61, 316–319
parent/child relationships, 60–61
self-referencing, 330, 358–362
subset tables, 317

Open-ended questions, in interviews, 95, 131
Operational databases, 4
Operations Allowed element, 298–299
Optional participation, 377
Optional table participation in relationships, 65–66
Oracle, RDBMS programs, 18–19
Orphaned records, preventing, 372–377
Ownership-oriented questions, 335–336

P
Paper-based databases, 116, 118–119. See also Current databases.
Parent table element, 279, 368
Parent tables, 6
Parent/child relationships, 6, 60–61
Participant guidelines, interviews, 91–93
Participation degree, identifying, 380–382

Participation type, identifying, 377–380
Performance

improving, 490–493
relational databases, 17

Physical elements, field specifications
character support, 289–290
data types, 286–288
decimal places, 289
display format, 291
input mask, 290–291
length, 289
overview, 285

Prefixes
in field lists, 157–159
in field names, 202–203, 205
refining items with same name, 158, 162, 202

PostgreSQL Global Development Group, 21
Preliminary field lists

case study, 166–171
definition, 157
generic items, 158
identifying new characteristics, 161–164
items representing characteristics, 159–160
items with same name, 158–159
review and refine characteristics, 157–160
reviewing with users and management, 165–166
value lists, 163–164

Preliminary table list. See also Final table list.
case study, 233–240
duplicate items, 178–180
example, 184
implied subjects, identifying, 176–178

items representing same subject, 180–181
list of subjects, merging, 178–184
mission objectives, reviewing, 182–184

Primary keys. See also Foreign keys.
composite, 56, 63
in data views, 442
definition, 50
elements of, 255–256, 545
example, 57
fields, 253
overview, 56–57, 253–255
rules for establishing, 259, 545
selecting, 254–259
Social Security numbers as, 247–248
unnecessary fields, 256
values, 253

Publications
recommended reading, 577–578
SQL Queries for Mere Mortals, 15

Q
Questions, in interviews, 95, 130–131

R
Range of Values element, 294–295, 369
Ranges of values

business-specific, 295
general, 294
integrity-specific, 294

RDBMS (relational database management systems), 18–19. See also specific
RDBMS programs.
Readings. See Books and publications.

Records, 53–54
Recursive relationships. See Self-referencing relationships.
Redundant data, 219–220, 355–356
Reference fields, 222–227
Referential integrity, 7, 37, 68, 571–575
Relational databases

advantages of, 16–18
data storage, 13. See also Fields; Records; Tables.
disadvantages of, 17
mathematical roots, 12–13, 28
object-oriented model, 20–21
object-relational model, 20–21
performance issues, 17
table relationships, 13. See also specific relationships.

Relations, definition, 13, 49
Relationship-level data integrity, 472, 551–552
Relationship-related terminology, 59–67. See also specific terms.
Relationships. See Table relationships.
Relationship-specific business rules, 401–402, 412–417, 543–544
Replica field specifications

defining, 300–305
overview, 280

Reports, analyzing current methods, 125–126
Required Value element, 294
Requirements analysis phase, 32
Restrict deletion rule, 372–377
Retrieving data. See also SQL (Structured Query Language).

advantages of relational databases, 17
overview, 15–16

Reviewing table structure, 364–365
Rules

bending or breaking, 489–493

business. See Business rules.
cascade deletion, 372–377
deletion, 372–377
deny deletion, 372–377
edit, 296–297, 369–370
establishing primary keys, 259
nullify deletion, 372–377
restrict deletion, 372–377
set default deletion, 373–377

S
Sales orders, sample database design, 562
Sample designs

bowling league, 564
car rental, 565
entertainment agency, 560
office inventory, 563
sales orders, 562
school, 561

Saved queries, 54. See also Views.
School, sample database design, 561
Screen presentations, analyzing current, 125, 126–128
Self-referencing relationships

identifying, 338–340
many-to-many, 331–332, 362–364
one-to-many, 330–331, 358–362
one-to-one, 330, 358–362
overview, 329

Self-referencing relationships, diagramming
many-to-many, 332
one-to-many, 331
one-to-one, 330

Self-referencing relationships, establishing
many-to-many, 362–364
one-to-many, 358–362
one-to-one, 358–362

Set default deletion rule, 373–377
Set structures, 9–12
Set theory, 13, 28
Shared By element, 281
Single-table data views, 438–439
Slide shows, analyzing current, 125
Social Security numbers as keys, 247–248
Source Specification element, 281, 368
Special Characters, field specifications, 289–290
Specification Type element, 368
Spreadsheet design, 481–485
Spreadsheet view mind-set, 483–485
SQL (Structured Query Language), 15–16. See also Retrieving data.
SQL Queries for Mere Mortals, 15
SQL standard data types, 286–288
Structure-related terminology, 49–59. See also specific terms.
Subject-Identification Technique, 133
Subjects, identifying current, 132–133
Subset table symbol, 316
Subset tables

final table list, 186
one-to-one relationships, 317
subordinate subjects, 229–232
table structure, 228–232

Surrogate candidate keys, 251–253
System R, 18

T

Table descriptions
composing, 547
final table list, 186, 192–199

Table names, 187–191, 548–549
Table relationships

case study, 384–389
deletion rules, defining, 372–377
in the design process, 81
ideal table elements, 364–365
identifying, 549
importance of, 314–315
linking tables, 59, 63
mandatory participation, 377
most common type, 62
optional participation, 377
participation degree, identifying, 380–382
participation type, identifying, 377–380
between records within a table. See Self-referencing relationships.
reviewing table structure, 364–365
types of, 60, 315–316. See also specific types.
unlimited degree of participation, 382
verifying with users and management, 383

Table relationships, diagramming
crows foot symbol, 321
data table symbol, 316
many-to-many, 323–324
one-to-many, 321, 350
one-to-one, 318
self-referencing many-to-many, 332
self-referencing one-to-many, 331
self-referencing one-to-one, 330
subset table symbol, 316

table structure, 343
Table relationships, identifying

action-oriented questions, 335–336
associative questions, 335
contextual questions, 335
direct relationships, 334
indirect relationships, 334
overview, 333–334
ownership-oriented questions, 335–336
relationship type, determining, 340–343
relationships between tables, 333–338
relevant questions, 335–338
self-referencing relationships, 338–340

Table relationships, table participation
degree of, 66–67
mandatory, 65–66
minimum/maximum record count, 66–67
optional, 65–66
types of, 65–66

Table structure
associating fields with tables, 199–201
blank values, 228–229
case study, 233–240
diagramming, 343
duplicate fields, 219–220, 222–227
final table list, 184–199
ideal tables, 220–227
preliminary table list, 176–184
redundant data, 219–220
reference fields, 222–227
refining, 219–232
refining fields, 202–218

reviewing, 364–365
subset tables, 228–232
types of, 184-199

Table-level data integrity, 471, 552
Tables. See also Foreign keys; Primary keys.

data, 51
examples of, 14
objects versus events, 50–51
overview, 49–52
typical structure, 50
validation, 51–52

Taking notes, interviews, 95–96
Terminology. See also specific terms.

importance of, 41–42
integrity-related, 67–69
relationship-related, 59–67
structure-related, 49–59
value-related, 43–49

Tuples. See Records.

U
Unique field specifications

defining, 300–305
overview, 280

Uniqueness element, 292–293, 368–369
Unknown values, 46
Unlimited degree of participation, 382
Unresolved many-to-many relationships, 63–65
Users, interviewing. See Interviews, with users.

V
Validation tables

in the design process, 82
final table list, 186
overview, 51–52
versus validation views, 446–447

Validation tables, business rules
description, 419–420
examples, 419
overview, 417, 419
sample Business Rule Specifications sheet, 418
supporting business rules, 420–424

Validation views, 56, 446–448
Value lists, 163–164
Value-related terminology, 43–49. See also specific terms.
Values Entered By element, 293, 369
Versant Corporation, 20–21
View diagrams, 452, 457–458
View Specifications sheet, 457–458, 556
Views

aggregate, 442–446
base tables, 54, 435
case study, 460–464
data, 437–442
data integrity, 473
in the design process, 82
documenting, 452, 457–458
grouping fields, 446
importance of, 55–56
indexed, 56, 436
materialized, 56, 436–437
multitable data, 439–442
overview, 54–56, 435–437
primary keys, 442

purpose of, 436–437
reviewing documentation, 458–460
single-table data, 438–439
types of, 437. See also specific types.
validation, 56, 446–448

Views, creating
calculated fields, 452–455
defining views, 450–452
documentation, 452, 457–458
filtering data, 455–456
interviewing users and management, 449–450
requirements, identifying, 449–450, 549–550
view diagrams, 452, 457–458
View Specifications sheet, 457–458

W
Web pages, analyzing current, 125, 128–129

Z
Zero, 45, 288
Zero-length string, 45

Footnotes

Chapter 1
1. Edgar F. Codd, “A Relational Model of Data for Large Shared Databanks,” Communications of the

ACM, June 1970, 377–87.

Chapter 2
1. C. J. Date, An Introduction to Database Systems, 7th ed. (Boston: Addison-Wesley, 2000), 362;

emphasis added.

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	Contents
	Foreword
	To the Third Edition

	Preface
	Acknowledgments
	Introduction
	What’s New in the Third Edition
	Who Should Read This Book
	The Purpose of This Book
	How to Read This Book
	How This Book Is Organized
	A Word About the Examples and Techniques in This Book

	Part I: Relational Database Design
	1. The Relational Database
	Topics Covered in This Chapter
	Types of Databases
	Early Database Models
	The Relational Database Model
	Relational Database Management Systems
	Beyond the Relational Model
	What the Future Holds
	Summary
	Review Questions

	2. Design Objectives
	Topics Covered in This Chapter
	Why Should You Be Concerned with Database Design?
	The Importance of Theory
	The Advantage of Learning a Good Design Methodology
	Objectives of Good Design
	Benefits of Good Design
	Database Design Methods
	Normalization
	Summary
	Review Questions

	3. Terminology
	Topics Covered in This Chapter
	Why This Terminology Is Important
	Value-Related Terms
	Structure-Related Terms
	Relationship-Related Terms
	Integrity-Related Terms
	Summary
	Review Questions

	Part II: The Design Process
	4. Conceptual Overview
	Topics Covered in This Chapter
	The Importance of Completing the Design Process
	Defining a Mission Statement and Mission Objectives
	Analyzing the Current Database
	Creating the Data Structures
	Determining and Establishing Table Relationships
	Determining and Defining Business Rules
	Determining and Defining Views
	Reviewing Data Integrity
	Summary
	Review Questions

	5. Starting the Process
	Topics Covered in This Chapter
	Conducting Interviews
	Defining the Mission Statement
	Defining the Mission Objectives
	Summary
	Review Questions

	6. Analyzing the Current Database
	Topics Covered in This Chapter
	Getting to Know the Current Database
	Conducting the Analysis
	Looking at How Data Is Collected
	Looking at How Information Is Presented
	Conducting Interviews
	Interviewing Users
	Interviewing Management
	Compiling a Complete List of Fields
	Summary
	Review Questions

	7. Establishing Table Structures
	Topics Covered in This Chapter
	Defining the Preliminary Table List
	Defining the Final Table List
	Associating Fields with Each Table
	Refining the Fields
	Refining the Table Structures
	Summary
	Review Questions

	8. Keys
	Topics Covered in This Chapter
	Why Keys Are Important
	Establishing Keys for Each Table
	Table-Level Integrity
	Reviewing the Initial Table Structures
	Summary
	Review Questions

	9. Field Specifications
	Topics Covered in This Chapter
	Why Field Specifications Are Important
	Field-Level Integrity
	Anatomy of a Field Specification
	Using Unique, Generic, and Replica Field Specifications
	Defining Field Specifications for Each Field in the Database
	Summary
	Review Questions

	10. Table Relationships
	Topics Covered in This Chapter
	Why Relationships Are Important
	Types of Relationships
	Identifying Existing Relationships
	Establishing Each Relationship
	Refining All Foreign Keys
	Establishing Relationship Characteristics
	Relationship-Level Integrity
	Summary
	Review Questions

	11. Business Rules
	Topics Covered in This Chapter
	What Are Business Rules?
	Categories of Business Rules
	Defining and Establishing Business Rules
	Validation Tables
	Reviewing the Business Rule Specifications Sheets
	Summary
	Review Questions

	12. Views
	Topics Covered in This Chapter
	What Are Views?
	Anatomy of a View
	Determining and Defining Views
	Summary
	Review Questions

	13. Reviewing Data Integrity
	Topics Covered in This Chapter
	Why You Should Review Data Integrity
	Reviewing and Refining Data Integrity
	Assembling the Database Documentation
	Done at Last!
	Summary

	Part III: Other Database Design Issues
	14. Bad Design—What Not to Do
	Topics Covered in This Chapter
	Flat-File Design
	Spreadsheet Design
	Database Design Based on the Database Software
	A Final Thought
	Summary

	15. Bending or Breaking the Rules
	Topics Covered in This Chapter
	When May You Bend or Break the Rules?
	Documenting Your Actions
	Summary

	In Closing

	Part IV: Appendixes
	A. Answers to Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	B. Diagram of the Database Design Process
	C. Design Guidelines
	Defining and Establishing Field-Specific Business Rules
	Defining and Establishing Relationship-Specific Business Rules
	Elements of a Candidate Key
	Elements of a Foreign Key
	Elements of a Primary Key
	Elements of the Ideal Field
	Elements of the Ideal Table
	Field-Level Integrity
	Guidelines for Composing a Field Description
	Guidelines for Composing a Table Description
	Guidelines for Creating Field Names
	Guidelines for Creating Table Names
	Identifying Relationships
	Identifying View Requirements
	Interview Guidelines
	Mission Statements
	Mission Objectives
	Relationship-Level Integrity
	Resolving a Multivalued Field
	Table-Level Integrity

	D. Documentation Forms
	E. Database Design Diagram Symbols
	F. Sample Designs
	G. On Normalization
	Please Note . . .
	A Brief Recap
	How Normalization Is Integrated into My Design Methodology
	Logical Design versus Physical Design and Implementation

	H. Recommended Reading
	Glossary
	References

	Index
	Footnotes
	Chapter 1
	Chapter 2

