

Learning Git
A Hands-On and Visual Guide to the Basics of Git

Anna Skoulikari

Learning Git
by Anna Skoulikari

Copyright © 2023 Anna Skoulikari. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Development Editor: Shira

Evans

Acquisition Editor: Melissa

Duffield

Production Editor: Christopher

Faucher

Copyeditor: Rachel Head

Proofreader: Piper Editorial

Consulting, LLC

Indexer: nSight, Inc.

Cover Designer: Karen

Montgomery

Interior Designers: Ron

Bilodeau and
Monica Kamsvaag

Illustrator: Kate Dullea

May 2023: First Edition

Revision History for the First Edition:

2023-05-16 First Release

See https://www.oreilly.com/catalog/errata.csp?isbn=0636920728078 for
release details.

http://oreilly.com/
https://www.oreilly.com/catalog/errata.csp?isbn=0636920728078

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Learning Git and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

Although the publisher and author have used reasonable care in preparing
this book, the information it contains is distributed “as is” and without
warranties of any kind. This book is not intended as legal or financial
advice, and not all of the recommendations may be suitable for your
situation. Professional legal and financial advisors should be consulted, as
needed. Neither the publisher nor the author shall be liable for any costs,
expenses, or damages resulting from use of or reliance on the information
contained in this book.

978-1-098-13391-7

[LSI]

[Preface]

I never thought I would write a book teaching Git. But through a fortunate
series of events, I found myself with a creative idea for how I could teach
this technology in a simple way.

My journey started when I attended a coding bootcamp to learn web
development. The teachers at the bootcamp briefly introduced Git to the
students, but given that all our projects were done individually, we didn’t
have to use it extensively.

After the coding bootcamp, I got a job as a junior frontend developer
working on a website in a big company. My real Git learning journey began
on the first day of my new job. In those first months, working as part of a
team in a large company, I realized I was terrified of it. Any time I had to
do something that seemed remotely complicated using Git, I thought I was
going to destroy the repository or seriously mess something up.

To be able to work properly with my coworkers, I decided to teach myself
the ins and outs of Git. But as I read through various online resources, it
quickly became clear to me that most of the material out there was not
designed for people who were just starting out. Once I understood the
basics, an idea started to form in my mind of how I could teach this
technology in a simpler way using visuals and colors.

I ended up creating an online course that I uploaded to the web. While
working on the course, in the back of my mind, I thought to myself that
someday I might write a book about it as well.

I got a lot of positive feedback about the course, and finally, in the summer
of 2021, I decided it was time to get started on that project. The book you’re

reading now is the product of that decision, and I hope it helps you on your
Git learning journey!

Who This Book Is For
This book is for anyone who wants to learn the basics of how Git works. It
is especially designed for individuals that are just getting started learning
technical skills, or that work in nontechnical roles but need to use Git to
collaborate with their technical counterparts. Some examples of individuals
that may benefit from this book include (but are not limited to) coding
bootcamp students, computer science students, technical writers, product
managers, designers, junior developers, data scientists, and self-taught
programmers.

The book is written for people with no experience using Git, as well as
those with a bit of experience using Git. If you have no experience with Git,
that’s not a problem since this book starts from zero. We’ll begin with
installing Git and how to use the command line, and build from there.

If you already have some experience using Git or the command line, the
first chapter may be a bit of review. However, I encourage you not to skip it
because it sets up the Rainbow project that you will be using throughout the
rest of the book.

Using This Book
This book is a hands-on learning experience, where you will be carrying out
exercises on your computer while learning the basic concepts of Git.
Throughout the book, you will come across two projects: the Rainbow
project and the Book project.

The Rainbow project is a hands-on project that you will work on by going
through the exercises in the book. It is a simplified project that is intended
only for learning purposes. The Book project is an imaginary project that
I’ll use to demonstrate how certain features of Git might be used for a more
realistic project. Let’s take a closer look at each of these, and at the way the
book is structured.

[NOTE]
Don’t worry if this preface contains terminology that you are not yet familiar with, like

repository and commit. I’ll explain all of these concepts in the chapters to come.

THE RAINBOW PROJECT
To learn the basics of Git, throughout this book you are going to be working
on the Rainbow project. To follow along, you should read the book from
Chapter 1 to Chapter 12 in a linear fashion, and you should complete each
and every exercise on your computer. For example, exercises in Chapter 4
will assume that you’ve already completed the exercises in Chapters 1, 2,
and 3.

Repositories

On a basic level, a repository is a copy of a Git project. At first, you will
create one local repository called rainbow to work on the Rainbow project.

Subsequently (in Chapter 7), you will create a remote repository called
rainbow-remote. And finally, in Chapter 8, you will simulate that you are

collaborating with a friend on the Rainbow project, and you will create a
second local repository called friend-rainbow. From Chapter 8 onward,

whenever a reference is made to your “friend” doing something, you will
have to carry out the action in the friend-rainbow repository.

[NOTE]
When I refer to the Rainbow project with a capital R, I’m referring to the entire project

that starts off with one repository and in the end contains three repositories. When I

refer to the rainbow project directory or the rainbow repository (with a lowercase r), I’m

referring to the specific local repository that is part of the Rainbow project.

Commits
In the Rainbow project, you are going to create and edit files to list the
colors of the rainbow, and some colors that are not part of the rainbow. This
is not meant to be a realistic example of a project version controlled by Git.
It’s a simplified project that enables you to focus on learning instead of
building something complicated.

Throughout the book, I’ll use diagrams to illustrate what is happening in the
Rainbow project. Every time you add a color to the Rainbow project, you
are going to make a commit in a repository. A commit basically represents a
version of your project. In the diagrams, the commit will be represented by
a circle in the color you added, and we will use the name of the color as the

name of the commit as well. For example, the first color that you will add to
your Rainbow project is red, so the circle that will represent that commit
will be colored red, and we will refer to it as the red commit.

To make the book accessible to readers with color vision deficiency, I’ll
include the name of the commit (or an abbreviation of the name) in the
diagrams. See Figure P-1 for an example of the red commit.

Table P-1 contains a list of all the commits you will make in the Rainbow
project in this book, showing their full names and their abbreviations.

TA B L E P - 1 . Full list of commits made in the Rainbow project

COMMIT FULL NAME COMMIT ABBREVIATION

red R

orange O

yellow Y

green G

blue B

brown Br

F I G U R E P - 1

An example of a commit with its full name

COMMIT FULL NAME COMMIT ABBREVIATION

merge commit 1 M1

indigo I

violet V

merge commit 2 M2

gray Gr

black Bl

rainbow Ra

pink P

merge commit 3 M3

Figure P-2 is a diagram of all the commits.

APPENDIXES

F I G U R E P - 2

The 15 commits you will make in the Rainbow project by the end of this book

While the book is designed to be read from Chapter 1 to Chapter 12 in a
linear way, there may be some situations in which you want or need to start
off from a specific chapter. For example:

• You have gone through the exercises in the entire book once and you
want to review from a specific chapter onward.

• Something went wrong in the Rainbow project in a previous chapter
that you were not able to troubleshoot, and you want to continue from
a new chapter afresh.

In this case, you can use the instructions in Appendix A to re-create what
the Rainbow project should look like at the start of the chapter you want to
begin from.

Appendix B contains a quick-reference guide to the commands introduced
in each chapter.

Appendix C is a guide to the visual language used in the diagrams in the
book.

THE BOOK PROJECT
The Book project is an imaginary project that I will use to demonstrate how
Git can be used for more realistic projects. For this project, we’ll pretend
that I’m writing a book and I want to use Git to version control the files.
The book will consist of 10 chapters represented by 10 text files, one for
each chapter: chapter_one.txt, chapter_two.txt, and so on. At times, I will also

simulate what it would be like to work on the Book project with a coauthor
and/or an editor. These discussions will take place in Example Book Project
sections.

You will not actively work on or build the Book project. It will only be used
to provide further examples and descriptions of how certain features of Git
are used.

Apart from the Example Book Project sections in the book, you will also
come across some other sections. We’ll look at those next.

SECTIONS IN THE BOOK
Here’s a quick guide to the different types of sections you will encounter in
this book:

Example Book Project
As mentioned previously, Example Book Project sections provide
additional context and examples about using Git features and
commands, based on the Book project.

Follow Along
Follow Along sections present numbered lists of steps that you should
carry out on your computer. If a step includes a command in bold, then
you must enter and execute that command in the command line. Sample

output is provided for all commands that produce output. This output is
based on the Rainbow project that I worked on while creating this book;
it was generated by the macOS operating system, but the output of Git
commands should be the same on Microsoft Windows. When there are
significant differences between the output of a command on Microsoft
Windows and macOS, this is stated in the text.

Save the Command
Save the Command sections introduce useful commands, some of which
you will use in the Follow Along sections.

A full list of all important commands grouped by chapter is also
available as a reference in Appendix B.

Visualize It
Visualize It sections show diagrams of what is happening in the
Rainbow project. Two important diagrams that are used in these
sections (as well as Figures) are the Git Diagram and the Repository
Diagram. I’ll introduce the Git Diagram in Chapter 2, and we will start
using the Repository Diagram in Chapter 4. Every diagram in the book
is built step by step, with explanations in the text.

A summary of the visual language used throughout this book is also
available as a reference in Appendix C.

Note
Note sections provide useful information related to the material in the
text.

THE LEARNING GIT REPOSITORY
While I aim to provide most of the information that you need in order to go
through the Learning Git experience within the book itself, there are some

technologies and processes that change too often to document in the book.
I’ve created the public Learning Git repository
(https://github.com/gitlearningjourney/learning-git) on GitHub to provide
up-to-date information about these technologies and processes. Among
other things, the repository contains:

• Information about downloading Git

• Links to resources related to working with hosting services

• Information about setting up HTTPS or SSH access to remote
repositories

Throughout the book, I will mention when you may need to consult the
Learning Git repository for more guidance.

https://github.com/gitlearningjourney/learning-git

WHAT THIS BOOK ISN’T
This is not a reference book. I won’t cover every single Git command (trust
me, there are a lot!). It also isn’t an advanced guide to Git. There are a lot of
features of Git that won’t be discussed in this book because they are not
necessary to carry out the basic actions I want to teach you to perform. I
have been very selective in what I have included in the book. My aim is to
give you a clear mental model of the basics of Git so that you can go on to
learn about any additional features you need with a solid foundation in
place.

This book also won’t tell you what your Git workflow should be or how
you should use the features of Git. As much as possible, I try to stay away
from giving any opinions on these matters, and instead I focus on teaching
you how the tool works. Depending on your individual context and
preferences, the tool can be used in different ways.

Where possible, this book aims not to be prescriptive. For example, you are
allowed to use whichever text editor or hosting service you prefer to carry
out the exercises in the book.

CHAPTER SUMMARY
The book is split into two logical parts. In the first part of the book
(Chapters 1 through 5), you will learn about working with local repositories
on your computer. In Chapters 6 through 12, you will additionally learn
about working with hosting services and remote repositories. Following is a
brief summary of what we’ll cover in each chapter:

• In Chapter 1, you’ll get ready to work on a project using Git by
installing it, learning some command line basics, preparing Git
settings, making one of the project directories you will use throughout
the rest of the book, and preparing a text editor.

• In Chapter 2, you’ll turn your project directory into a Git repository.
I’ll introduce the Git Diagram that represents the different areas of Git,
including the working directory, staging area, commit history, and
local repository. At the end of the chapter you’ll create the first file in
your project directory.

• In Chapter 3, you’ll learn about and carry out the two main steps to
make the first commit in your local repository.

• In Chapter 4, you’ll learn about branches: what they are, how to make
them, how to switch branches, and how to identify which branch
you’re on.

• In Chapter 5, you’ll learn about the two types of merges and carry out
a fast-forward merge.

• In Chapter 6, you’ll prepare to work with remote repositories by
choosing a hosting service and setting up authentication details to
connect to these repositories over either HTTPS or SSH.

• In Chapter 7, we’ll discuss the different ways to work with local and
remote repositories. You’ll learn how to create a remote repository and
upload data to it.

• In Chapter 8, we’ll start simulating what it’s like to work with others
on a Git project. In order to do so, you’ll create a second local
repository; you’ll pretend that it belongs to a friend of yours who will
be helping you on the Rainbow project and is on their computer. In the
process, you’ll learn about cloning remote repositories and fetching
data.

• In Chapter 9, you’ll carry out a three-way merge and learn about the
difference between fetching data and pulling data.

• In Chapter 10, we’ll go over an example of resolving merge conflicts
during a three-way merge.

• In Chapter 11, you’ll learn about rebasing. This is an alternative way
of incorporating changes from one branch to another, as opposed to
merging.

• In Chapter 12, you’ll learn about pull requests (also known as merge
requests) and how they facilitate collaboration in Git projects.

• The book also includes three appendixes, whose contents are discussed
in “Appendixes” on page xv.

Conventions Used In This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, and emphasis.

Constant width

Used for commands, command output, filenames, directory names, branch
names, repository names, and other text on screen.

Constant width bold

Shows commands or other text that should be typed or entered by the user.

<Constant width angle brackets>

Shows text that should be replaced with user-supplied values or by values
determined by context.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.xhtml

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/learning-
git.

Visit http://oreilly.com for news and information about our books and
courses.

Find us on LinkedIn: http://linkedin.com/company/oreilly-media

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
I’d like to thank all the people who have supported me throughout the
process of writing this book. This includes friends and family, some of
whom were forced to user test earlier versions of the book. It also includes
the entire O’Reilly team that has supported me throughout this creative
project, and finally all the technical reviewers and user testers that read
various iterations of the book and provided me with priceless feedback. Oh,
and my partner, who was patient as I delayed my publication date multiple
times!

[1]

Git and the Command Line

In this chapter, I will introduce what Git is and why we use it,
and you’ll make sure you have it installed on your computer. You
will also set some Git configuration variables (aka settings). I’ll
introduce the graphical user interface and the command line,
which are the two tools you will use to interact with Git and the
hands-on Rainbow project. To get you comfortable working in
the command line, we will go over how to carry out some basic
actions such as viewing the current directory location, navigating
into and out of directories, and making directories. Finally, at the
end of the chapter, you will prepare the text editor you will use to
work on the Rainbow project in Chapter 2.

If you already have some experience working in the command
line, then you may already know some of the information in this
chapter. However, I don’t recommend skipping the chapter
because it prepares the setup you will use for the rest of the book.

[NOTE]
To understand how to use this book, you must have read "Using This Book" on page

xii. If you have not read that section, I strongly recommend that you go back and do

that now.

What Is Git?
Git is a technology that can be used to track changes to a project and to help
multiple people to collaborate on a project. At a basic level, a project
version controlled by Git consists of a folder with files in it, and Git tracks
the changes that are made to the files in the project. This allows you to save
different versions of the work you’re doing, which is why we call Git a
version control system.

Git was created by Linus Torvalds to version control the work done on a
large software development project called the Linux kernel. However, since
Git can track changes to all sorts of files, it can be used for a wide variety of
projects.

Git is a powerful technology, and the abundance of features it provides—as
well as the fact that it was originally designed to be used in the command
line—means that using it is a bit more complicated than just selecting
File→Save on your computer.

To summarize, Git is a version control system that you can download onto
your computer that allows you to track the history of a project and
collaborate with other people. Next, let’s take a look at Example Book
Project 1-1 to see an example of how I might use Git for my Book project.

Example Book Project 1-1
Suppose I am writing a book, and I want to use Git to version control all
the files in my Book project. Every time I make changes to the book, I
can save a version of it using Git. For example, suppose I make changes
to the book on Monday, Wednesday, and Friday, and I save one version
on each of those days. This means I have at least three versions of my
project. A version of a project in Git is called a commit. In Chapter 2,
you will learn more about commits. For now, all you need to know is
that in my example I have at least three commits.

These three commits allow me to look at the different versions of the
book that I had at the end of my Monday work session, my Wednesday
work session, and my Friday work session. Git also allows me to
compare any of those commits (or saved versions of my project) to one
another to check what changed between the different versions. This
illustrates how Git helps me track the history of my project.

Now, suppose I decide to work on my Book project together with a
coauthor. Git allows me and my coauthor to work on the same project at
the same time and combine our work when we are ready. For example, I
can work on chapter 1 and my coauthor can work on chapter 2, and
when we’re ready, we can combine the work we have done.

If we get an editor to review the book, they can also make edits to all
the chapters of the book we have written, and we can integrate those
changes into the main version of the book as well. This illustrates how
Git is a useful tool for collaboration.

Next, let’s learn about some of the other tools you will use in this learning
experience and how you will be interacting with Git.

The Graphical User Interface and the Command
Line
The two main ways to interact with a computer are by using the graphical
user interface or the command line.

The graphical user interface (GUI) is the set of graphical representations of
objects (icons, buttons, etc.) that allows you to interact with your computer.
You can think of it as the point-and-click interface. For example, the folders
represented by folder icons on your desktop are part of your computer’s
GUI.

The command line—also known as the command line interface (CLI),
terminal, or shell—is a place where you can type text-based commands to
interact with your computer.

The default way to work with Git is through the command line. However,
there are also ways in which you can work with Git using a GUI: for
example, by using a Git GUI client or a text editor that has Git integrations.
This means you can carry out Git actions by clicking buttons and selecting
options instead of entering commands in the command line.

In this book you will learn how to use Git in the command line, because this
allows you to build a solid mental model of how it works and gives you
access to all of its functionality. You will use your computer’s GUI only for
other actions, for example to look at files in the filesystem or to work in
your text editor to manage your files. We’ll take a closer look at the
command line in the next section.

[NOTE]
Throughout this book, I will provide some specific instructions for macOS and

Microsoft Windows users. If you are a Linux user, I will assume you already know

some command line basics.

Opening a Command Line Window
To use the command line, you must open a command line window using a
command line application. At any given point in time, in a command line
window, you are in one particular directory, which we refer to as the current
directory. A directory, for our purposes, is the same thing as a folder.

When you open a command line window there will be a command prompt
in the upper-left corner. This is a short piece of text whose exact contents
will differ depending on your operating system and computer settings. By
default, however, the command prompt indicates the directory location in
the command line (in other words, your current directory). When you open
a new command line window, the directory location starts off at the current
user directory (also known as the home folder), which is represented by the
tilde sign (~). This directory location will be the only important part of the

command prompt that you will have to identify for the exercises in this
book. After the command prompt, there is a cursor that indicates where you
are typing in the command line.

See Figure 1-1 for an annotated example of a generic command prompt. In
the examples in this book, we use a dollar sign ($) at the end of the

command prompt, but this is just one example of how a command prompt
may end. Your command prompt may end with a different character or
symbol.

The command line application you will use to complete the exercises in this
book will depend on the operating system you are using:

• macOS—the command line application is called Terminal.

• Microsoft Windows—the command line application is called Git Bash.
It will only be available if you have Git installed on your computer.

F I G U R E 1 - 1

An example of a command prompt

[NOTE]
If you are a Microsoft Windows user and you don’t have Git installed, then you will

need to go to the Learning Git repository

(https://github.com/gitlearningjourney/learning-git) and follow the steps to install Git

for Microsoft Windows in order to have access to Git Bash before continuing with the

rest of this chapter.

If you are a macOS user and you don’t have Git installed, then you may continue with

the rest of this section. You will install Git in "Installing Git" on page 7.

To open a command line window, you may use the search function on your
computer to look up the command line application, select it, and open it. Go
to Follow Along 1-1 to open a command line window and view the
command prompt.

[FOLLOW ALONG 1-1]

Use your command line application to open a command line window.

Look at the command prompt in your command line window.

What to notice:

• The command prompt indicates the directory location.

Now that you have opened a command line window, let’s cover how you
will execute your first command in the command line.

https://github.com/gitlearningjourney/learning-git

Executing Commands in the Command Line
At the end of the command prompt in your command line window is the
cursor that indicates where you will type commands. In the Terminal
(macOS), by default, the cursor is on the same line as the command prompt,
while in Git Bash (Microsoft Windows) it is on the line below. After you
type a command, to execute it you have to press the Enter (Return) key.

If a step in a Follow Along section in this book includes a command in bold
after a dollar sign ($), then you must execute it in the command line. If the

command produces output, it will be shown below the command (not in
bold). If the command is supposed to be executed in a directory other than
the current user directory, the directory location will be indicated before the
dollar sign.

Figure 1-2 shows an example of what it will look like when you execute a
command in a Follow Along. In this case, I am executing the pwd command

while in the desktop directory. You’ll learn what the pwd command does later

in this chapter; for now, take a look at Figure 1-2 to identify where it shows
the directory location, the command to execute, and the output.

In the print version of this book, some longer commands are wrapped
because of page width constraints. If you see a command line like the
following:

rainbow $ git remote add origin https://github.com/gitlearningjou

rney/rainbow-remote.git

you should enter the entire command on one line, with a single space before
the wrapped part (in this case, the URL). Reminders will be included in the

F I G U R E 1 - 2

How to execute a command included in a Follow Along section

appropriate places. If you’re reading a version of this book that does not
suffer from this line length constraint, you can ignore these reminders.

COMMAND OUTPUT
Some commands produce output, and some don’t. For commands that
produce output, I will provide sample output that is based on the Rainbow
project I worked on in creating this book. This output was produced by the
macOS operating system, but the output for Git-related commands does not
differ between operating systems. In the few cases where non-Git-related
command output differs between operating systems in a significant way, I
will point it out in the text.

If, while carrying out the exercises in a Follow Along section, you see
output that looks drastically different than the output in this book or you get
an unexpected error, then you may have done something different than what
the instructions indicate, and you may need to review the Follow Along
steps.

[NOTE]
It is possible that Git will undergo updates in the future that may affect output in small

ways. If I become aware of any significant changes, I will aim to document these

situations on the errata page in the Learning Git repository

(https://github.com/gitlearningjourney/learning-git).

From now on, whenever you encounter a command in a Follow Along
exercise, you should enter the command in bold in the command line and
execute it.

https://github.com/gitlearningjourney/learning-git

EXECUTING THE FIRST COMMAND IN THE COMMAND LINE
The first command you will practice executing in the command line is the
git version command. If you have Git installed on your computer, then it will

provide the version number that you have installed. If you don’t have Git
installed on your computer, then the output will provide you with a message
indicating that it is not installed.

To have access to all the commands used in the exercises in this book, I
recommend you have a version of Git greater than 2.28. Go to Follow
Along 1-2 to check if you have Git installed and what version it is.

[FOLLOW ALONG 1-2]

$ git version

git version 2.35.1

What to notice:

• If you have Git installed, you see the version of it installed on your
computer.

• If you don’t have Git installed, you will instead see an error message.

If the git version command output indicates that you have a version of Git

installed that is greater than 2.28, then you may skip the “Installing Git”
section and go to the “Command Options and Arguments” section.

If the git version command output indicates you don’t have Git installed on

your computer or that the version of Git is older than 2.28, then you should

continue ono the next section to install an up-to-date version of Git on your
computer.

Installing Git
If you don’t yet have Git (version 2.28 or greater) installed, go to Follow
Along 1-3. Otherwise, go to the next section.

[FOLLOW ALONG 1-3]

Go to the Learning Git repository

(https://github.com/gitlearningjourney/learning-git) and follow the steps to

download Git for your operating system.

Now that you’ve installed an up-to-date version of Git on your computer,
let’s continue learning a bit more about the commands you will be using in
the Follow Along sections in this book.

Command Options and Arguments
Sometimes you will use commands with options and/or arguments. Options
are settings that change the behavior of a command. An option follows a
single dash (-) or a double dash (--).

Arguments are values that provide information to the command. They will
be denoted by angle brackets (<>), indicating that these items should be

replaced with user-supplied values. In the exercises, you will have to pass in
a value for the argument, without including the angle brackets.

https://github.com/gitlearningjourney/learning-git

An example of a command with an option and an argument that you will
use is git commit -m "<message>". In this example, -m is the option and <message>

is the argument, as shown in Figure 1-3. We will cover what this command
does in Chapter 3.

In addition to entering commands in the command line, it is also important
to learn how to clear them.

Clearing the Command Line
Every time you enter a command in the command line window, it will be
listed directly under the previous command you entered (or its output).
After you’ve entered a lot of commands, the command line window gets
quite cluttered. To clear the contents of the command line window, you can
use the clear command.

F I G U R E 1 - 3

An example of a command with an option and an argument

[SAVE THE COMMAND]

clear

Clear the command line window

Go to Follow Along 1-4 to practice using the clear command.

[FOLLOW ALONG 1-4]

$ clear

What to notice:

• The command line window is clear.

We’ve covered entering commands and clearing them from the command
line window. Now it’s time to prepare the next tool that will help you in
your learning journey, the filesystem window.

Opening the Filesystem Window
You will use a filesystem application to open a filesystem window, which is
part of the GUI. Throughout your learning journey, you will interact with
both the filesystem window and the command line window. Therefore, it is
useful to have both windows open side-by-side on your computer screen.

The filesystem application you will use will depend on your operating
system:

• macOS—the filesystem application is Finder.

• Microsoft Windows—the filesystem application is File Explorer (or
Windows Explorer).

Go to Follow Along 1-5 to open a filesystem window.

[FOLLOW ALONG 1-5]

Find your filesystem application and open up a filesystem window next to your

command line window.

Now that you have both windows open, let’s get back to some command
line basics.

Working with Directories
As mentioned previously, at any given point in time in a command line
window you are in one particular directory (the current directory).
Assuming you haven’t changed any default settings, when you first open
the command line application you will start off in the current user directory
(your home folder), indicated by the tilde sign (~) in the command prompt.

When you navigate to other directories in the command line, the command
prompt will change to indicate the directory you are in. You can also use the
pwd command, which stands for “print working directory,” to see the path to

the current directory.

[SAVE THE COMMAND]

pwd

Show the path to the current directory

Go to Follow Along 1-6 to practice using the pwd command.

[FOLLOW ALONG 1-6]

$ pwd

/Users/annaskoulikari

What to notice:

• You are in your current user directory.

[NOTE]
In Follow Along 1-6, the output of the pwd command for Microsoft Windows users will

be similar to /c/Users/annaskoulikari, which is slightly different from the output for

macOS users. Keep this in mind when going through the rest of the exercises in this

chapter.

The output of the pwd command prints the path to the current directory. In

Follow Along 1-6, /Users/annaskoulikari is an example of a path. My name is

Anna Skoulikari and annaskoulikari is my username on my computer. Users

and annaskoulikari are two directories. Directories in a path are separated by a

slash (/). The annaskoulikari directory is inside the Users directory.

Knowing the directory location in a command line window is useful
because many commands show you information about or affect the current
directory when you execute them. It also helps you with navigating through
your filesystem, which we will cover later in this chapter.

Now that we have covered how to identify your current directory, let’s
explore how to view the actual contents of a directory.

VIEWING THE CONTENTS OF DIRECTORIES
You can view the contents of a directory in the GUI and the command line
window. But before we get to that, I want to mention that there are two
types of files and directories that exist in the filesystem: visible files and
directories and hidden files and directories. Visible files and directories are
always visible in the filesystem. Hidden files and directories are visible
only in the filesystem if you change your settings to view them. They are
often files or directories that store information that we, as users, don’t need
to access, such as application configurations and various system settings.

I do not recommend modifying or deleting hidden files or directories,
unless you really know what you’re doing. Once you change your settings
to view hidden files and directories, they appear partially transparent
(grayed out). Their names often start with a dot (.).

There are some important hidden files and directories that you will want to
be aware of in your Git learning journey, so you need to know how to view
them, both in the GUI and the command line.

In the GUI, to view hidden files and directories in a filesystem window you
have to explicitly make them visible:

• macOS—to toggle between viewing and hiding hidden files and
directories, press Cmd-Shift-dot.

• Microsoft Windows—you must alter the filesystem settings to view
hidden files and directories. Consult online resources if necessary for
step-by-step instructions for your computer.

Go to Follow Along 1-7 to view the hidden files and directories in your
filesystem.

[FOLLOW ALONG 1-7]

Make hidden files and directories visible in your filesystem.

In the command line, to view a list of the visible files and directories in the
current directory you use the ls command (which stands for “list”).

To view both visible and hidden files and directories in the current directory
you use the ls command with the -a option: ls -a.

[SAVE THE COMMAND]

ls

List visible files and directories

ls -a

List hidden and visible files and directories

Go to Follow Along 1-8 to practice using these commands to list different
kinds of files.

[FOLLOW ALONG 1-8]

$ ls

$ ls -a

What to notice:

• The names of many hidden files and directories start with a dot (.).

• The visible and hidden files and directories shown in the output in this
book will be different from the ones on your computer because the
contents of everyone’s computers are different.

Now that we have covered how to identify the current directory and view its
contents in the command line, let’s explore how to move between
directories.

NAVIGATING INTO AND OUT OF A DIRECTORY
In the GUI, to go into a directory you can double-click on it. In the
command line, to go into a directory you use the cd command, which stands

for “change directory,” and pass in either the name of the directory or the
path to the directory.

[SAVE THE COMMAND]

cd <path_to_directory>

Change directory

Go to Follow Along 1-9 to practice by navigating into the desktop directory.

[FOLLOW ALONG 1-9]

$ cd desktop

desktop $ pwd

/Users/annaskoulikari/desktop

What to notice:

• In step 1, the cd command does not produce any output.

• In step 2, the command prompt and the pwd command output indicate

that you are in the desktop directory.

Earlier in this chapter, I mentioned that the command prompt shows the
directory location. In Follow Along 1-9, notice that the command prompt
updates to show that your current directory is the desktop directory. By

default, the way the directory location is presented differs depending on the
operating system you use:

• macOS—in the Terminal, the name of the current directory is
displayed.

• Microsoft Windows—in Git Bash, the path to the current directory is
displayed.

[NOTE]
Navigating into and out of directories in the command line does not affect what you

are viewing in the filesystem. For example, navigating into the desktop directory in the

command line will not automatically cause your filesystem to display the contents of

the desktop directory.

In the GUI, to go back to the parent directory you can select the back
button. In the command line, to go back to the parent directory you can pass
in two dots (..) to the cd command. Two dots represents the parent directory

of the current directory. Go to Follow Along 1-10 to try this out.

[FOLLOW ALONG 1-10]

desktop $ cd ..

$ pwd

/Users/annaskoulikari

What to notice:

• In step 2, the command prompt and the pwd output indicate that you are

back in the current user directory.

Now that we have covered how to navigate into and out of directories, let’s
go over how to create a new one.

CREATING A DIRECTORY
In the GUI, you can create a directory by right-clicking or selecting the
relevant menu option or icon. In the command line, to create a directory you
will use a command called mkdir, which stands for “make directory.” The

directory will be created inside the current directory when you execute the
command.

[SAVE THE COMMAND]

mkdir <directory_name>

Create a directory

To keep things simple, avoid including spaces in your directory names. If a
directory name contains spaces, then you have to make modifications to
how you use certain commands in the command line, which makes your
tasks more complicated.

[NOTE]
In general, when working in the command line you should avoid using spaces in the

names of any files, directories, or other things you create because it can cause

complications when you use commands.

As mentioned in the Preface, throughout this book you will work on one
project in which you will create and edit files to list the colors of the
rainbow, as well as some colors that are not part of the rainbow. This is not

a realistic example of a project typically version controlled with Git; it’s a
simplified example that will allow you to focus on learning how Git works.

Since the main objective of the sample project is to list the colors of the
rainbow, you will give your project directory the name rainbow. You will

create this project directory in the desktop directory so that you can easily see

it from the desktop on your computer screen. Go to Follow Along 1-11 to
create your directory.

[FOLLOW ALONG 1-11]

$ cd desktop

desktop $ mkdir rainbow

desktop $ ls

rainbow

What to notice:

• In step 3, the ls output will show the rainbow project directory you just

created along with any other directories or files you have in your
desktop directory. These are not displayed in the sample output, as the

contents on your computer will differ from mine.

If you look on the desktop of your computer, you should see the rainbow

project directory you just created, as shown in Figure 1-4.

Next, you’ll notice that just because you created the rainbow project

directory, this does not mean you navigated into it in the command line. Go
to Follow Along 1-12 to explicitly navigate into the rainbow project directory

in the command line.

F I G U R E 1 - 4

An example of your desktop before and after you create the rainbow project directory

[FOLLOW ALONG 1-12]

desktop $ cd rainbow

rainbow $ pwd

/Users/annaskoulikari/desktop/rainbow

What to notice:

• In step 2, the command prompt and the output from the pwd command

indicate you are in the rainbow directory.

You have created and navigated into the rainbow directory. Now, what

happens if you close the command line window and open it back up again?

Closing the Command Line
By default, if you close the command line window and then open it up
again, the directory location will reset to the current user directory.
Therefore, you will have to navigate to the directory you want to work in
again. Go to Follow Along 1-13 to test this out.

[FOLLOW ALONG 1-13]

rainbow $ pwd

/Users/annaskoulikari/desktop/rainbow

Close your command line window and then open a new command line window.

$ pwd

/Users/annaskoulikari

$ cd desktop

desktop $ cd rainbow

rainbow $ pwd

/Users/annaskoulikari/desktop/rainbow

At this point, we have covered several command line basics. Next, you will
set some basic Git configurations.

Setting Git Configurations
Git configurations are settings that allow you to customize how Git works.
They consist of variables and their values, and they are stored in a couple of
different files. To work with Git, you must set a few configuration variables
related to user settings.

Before setting any variables, you’ll check if a global Git configuration file
exists in your filesystem and, if so, which variables have been set. To do so
you will use the git config command, passing in the --global and --list

options.

Note that the git config command with the --global option is an example of a

command where it does not matter what your current directory is when you
execute it; it will only ever show information about or change information
in the global Git configuration file. This is a hidden file called .gitconfig that

is usually created in the current user directory.

[SAVE THE COMMAND]

git config --global --list

List the variables in the global Git configuration file and their values

Go to Follow Along 1-14 to try this out.

[FOLLOW ALONG 1-14]

$rainbow $ git config --global --list

fatal: unable to read config file '/Users/annaskoulikari/.gitconfig': No

such file or directory

What to notice:

• The output shown here indicates what you will see if you have never
set any variables in your global Git configuration file. In this case, you
will get an error indicating that the file does not exist. If you have set
variables in your global Git configuration file, then your output will
display the variables you have set and their values.

The two variables we are interested in for this book are user.name and

user.email. Every time someone saves a version of a project (or in other

words, makes a commit), Git will note the name and email address of the
individual and associate it with that saved version. The user.name and

user.email variables are used to set the name and email address that will be

saved for the commits you make. This means that you can see who worked
on what in a Git project. Configuring these variables is required in order to
work with Git. Keep in mind that anyone who is able to see a list of your
commits in any project will be able to view your email address, so make
sure to use an address you don’t mind other people viewing.

To set these variables in your global Git configuration file, you pass them as
arguments to the git config command, entering your desired values inside

quotation marks (remember, you should not include the angle brackets
around the values).

[SAVE THE COMMAND]

git config --global user.name “<name>”

Set your name in the global Git configuration file

git config --global user.email “<email>”

Set your email address in the global Git configuration file

If in the output of Follow Along 1-14 these variables are set to the values
you want them to be, then you may skip Follow Along 1-15. If these
variables do not appear or are not set to the values you want them to be,
decide what name and email address you want to associate with the work
you do on the Rainbow project, and go to Follow Along 1-15. Be sure to
swap in the values you want to use in place of my username and email
address.

[FOLLOW ALONG 1-15]

rainbow $ git config --global user.name "annaskoulikari"

rainbow $ git config --global user.email "gitlearningjourney@gmail.com"

rainbow $ git config --global --list

user.name=annaskoulikari

user.email=gitlearningjourney@gmail.com

What to notice:

• In step 3, in the git config --global --list output, the user.name and

user.email variables are set to the values you entered.

Now that you’ve installed Git and prepared your user settings, the final tool
you need to work on a Git project is a text editor.

Preparing a Text Editor

A Git project consists of files and directories that are version controlled. Git
can version control all kinds of file types. In the Rainbow project, you will
use a text editor to work with simple text files (that have an extension of
.txt).

A text editor is a program that allows a user to edit plain text. You will need
a text editor to carry out many of the Follow Along exercises in this book.
A text editor is different from a word processor, which is mainly used to
edit rich text. Examples of word processors are Microsoft Word and Google
Docs; these cannot be used to manage the files of a Git project. Rich text is
text with styles attached to or embedded within it. If you can see that text is
bold or italicized, then that is rich text.

Some text editors make it a lot easier to work on Git projects than others.
This book is written in a way that allows you to use whichever text editor
you prefer. If you already have a text editor installed that you have used to
work on Git projects, then feel free to use that for the exercises in this book.
If you’re not sure which text editor to use, I highly recommend Visual
Studio Code (https://code.visualstudio.com): it’s a popular text editor, and it
is the one I used when working on the Rainbow project in this book. Go to
Follow Along 1-16 to prepare a text editor.

https://code.visualstudio.com/

[FOLLOW ALONG 1-16]

Choose your preferred text editor. If you don’t already have one installed, then

download a text editor.

Open the rainbow project directory in a text editor window.

Integrated Terminals
Some advanced text editors (also referred to as integrated development
environments, or IDEs), such as Visual Studio Code, include a version of a
command line within them, usually referred to as an integrated terminal, in
which you can execute the commands you would normally use in your
command line window.

When you use an integrated terminal it may be easier to manage your
screen space, because the terminal is already part of the text editor window.
However, this depends on personal preference. If your text editor has an
integrated terminal, you may choose to use that instead of a separate
command line window to execute the Git commands in the rest of the
exercises in this book. Either will work just fine, so it is up to you to decide
what you prefer.

In the rest of this book, whenever I want to refer to the place where you
need to execute commands I will refer to the command line window;
however, keep in mind that this also includes the integrated terminal.

Now, with Git installed and your text editor ready to go, you are ready to
start working on the Rainbow project!

Summary
In this chapter, you learned a little about Git and saw that it is a useful tool
for tracking the history of a project and collaborating with others. You
prepared to work on a project using Git by installing an up-to-date version
on your computer and setting some basic Git configuration variables.

You also learned some command line basics, such as how to view the
contents of directories, how to navigate into and out of them, and how to
make them in the first place. Along the way, you created the project
directory that you will be using throughout this learning journey, called
rainbow.

Finally, you prepared a text editor so that you can create and edit files for
any Git project you want to work on.

Now you’re ready to move on to Chapter 2, where you will actually turn
your rainbow project directory into a Git repository and start learning about

the most important areas when working with Git.

[2]

Local Repositories

In the last chapter, you learned some command line basics and
you prepared to work with Git by downloading it and configuring
some settings.

In this chapter, you will turn the rainbow project directory you

created in Chapter 1 into a Git repository. You will also learn
about four important areas when working with Git: the working
directory, the staging area, the commit history, and the local
repository. To help you visualize how each of these areas works
together, we will build a Git Diagram that will include a
representation of each area.

Finally, at the end of this chapter you will add the first file to the
rainbow project directory, and in the process learn about untracked

and tracked files. Let’s get started!

Current Setup
At the start of this chapter you should have:

• Downloaded or updated Git on your computer. (You will need a
version equal to or greater than 2.28.)

• Created an empty project directory called rainbow on your desktop.

• Opened a command line window and navigated into the rainbow

directory.

• Decided on a text editor to use and opened the rainbow project directory

in a text editor window.

• Set the user.name and user.email global Git configuration variables to

your name and email address.

Introducing Repositories
A repository (also known as a repo) is how we refer to a project version
controlled by Git. In reality, there are two types of repositories:

• A local repository is a repository that is stored on a computer.

• A remote repository is a repository that is hosted on a hosting service.

A hosting service is a company that provides hosting for projects using Git.
As of the time of writing, the main hosting services are GitHub
(https://github.com), GitLab (https://about.gitlab.com), and Bitbucket
(https://bitbucket.org/product).

In the first part of this book, up through Chapter 5, you will learn about and
work only with local repositories. In the second part of the book, from
Chapter 6 onward, you will learn how to work with remote repositories as
well.

Now that we’ve distinguished between local and remote repositories, you’ll
learn about initializing a local repository.

Initializing a Local Repository
A local repository is represented by a hidden directory called .git that exists

within a project directory. It contains all the data on the changes that have

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/product

been made to the files in a project.

To turn a project directory into a local repository you have to initialize, or
create, the repository. When you initialize a repository, the .git directory is

automatically created inside the project directory. Because the .git directory

is a hidden directory, you won’t be able to see it unless you explicitly make
hidden files and directories visible.

[NOTE]
You should never touch any files or directories inside your .git directory. Doing this

could have undesirable consequences for your repository. You should never delete

this directory unless you want to delete your repository.

In Follow Along 2-1, you will make sure you have your settings configured
to be able to view hidden files and directories. (If you need a reminder of
how to do this, refer to “Viewing the Contents of Directories” on page 10.)
You will then check both in your filesystem window and your command
line window to see if there are any visible or hidden files or directories in
the rainbow project directory.

[FOLLOW ALONG 2-1]

Make hidden files and directories visible in your filesystem.

Open the rainbow project directory in a filesystem window and look at its

contents. There should be no visible or hidden files or directories.

rainbow $ ls -a

. ..

What to notice:

• In step 2, in the filesystem window, you can see that the rainbow project

directory is empty.

• In step 3, in the command line window, you see that the rainbow project

directory is empty.

To prepare to build the Git Diagram, we will create a representation of the
empty rainbow project directory as seen in Visualize it 2-1.

[VISUALIZE IT 2-1]

A representation of the empty rainbow project directory that will contain the Git

Diagram

To initialize a Git repository, you use the git init command. Your current

directory must be the project directory you want to turn into a repository
when you execute this command.

Normally Git users initialize a Git repository by using just the git init

command with no additional options; however, in the Rainbow project, you

will initialize the repository by using the git init command with the -b

option (which is short for --initial-branch) and pass in the name main. We will

cover what branches are in more depth in Chapter 4. For now, all you need
to know is that by default Git will create a branch called master when you

initialize a new local repository. From Git version 2.28 onwards, the name
of the initial branch is configurable. I have chosen to use the name main

instead of master in this book, because “master” is not considered inclusive

terminology. We will discuss this topic more in “A Bit of Git History:
master and main” on page 48.

[NOTE]
If you decide that you want the initial branch in all of your repositories to have a name

other than “master,” then you may set a variable called init.defaultBranch in your

global configuration file. The process is similar to how you set the user.name and

user.email variables in “Setting Git Configurations” on page 17. If the

init.defaultBranch variable is defined, you can initialize Git repositories with the git

init command, and the initial branch will have the name that is defined in the

configuration.

[SAVE THE COMMAND]

git init

Initialize a Git repository

git init -b <branch_name>

Initialize a Git repository and set the name for the initial branch to be

<branch_name>

Go to Follow Along 2-2 to turn your rainbow project directory into a Git

repository.

[FOLLOW ALONG 2-2]

To see the .git directory being created, make sure you have a view of the

contents of your rainbow project directory in a filesystem window with hidden

files and directories enabled.

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Go to the rainbow project directory in the filesystem window and look at the

.git directory that was just created. Open the .git directory to view the

contents inside.

What to notice:

• Git created the .git directory inside the rainbow project directory.

The first area for which we will add a representation in the Git Diagram is
the local repository, represented by the .git directory itself. This can be seen

in Visualize it 2-2.

[VISUALIZE IT 2-2]

The Git Diagram with a representation of the local repository

Inside the .git directory are various files and directories. Some of them

represent the areas of Git that you are going to learn about next. In the
following section, we will add representations of these to the Git Diagram
as well. As you continue working in the rainbow repository, more files and

directories will be created in the .git directory; you’ll learn about some of

these as we go along.

Figure 2-1 shows an example of the contents of a .git directory in a newly

initialized repository.

F I G U R E 2 - 1The contents of a .git directory right after executing the git init command

Next, let’s explore the different areas you’ll interact with when working
with Git.

The Areas of Git
There are four important areas to be aware of when you are working with
Git:

• Working directory

• Staging area

• Commit history

• Local repository

You learned about the local repository in the previous section. In this
section we will cover the rest of the areas and how they all relate to one
another, and we will continue building the Git Diagram. Let’s start with the
working directory.

INTRODUCING THE WORKING DIRECTORY
The working directory contains the files and directories in the project
directory that represent one version of a project. It is sort of like a
workbench. It is where you add, edit, and delete files and directories.

Let’s take a look at Example Book Project 2-1 to explore how files are
managed in the working directory.

Example Book Project 2-1
Suppose the Book project that I am working on has 10 chapters, and I
have 10 text files, one for each chapter: chapter_one.txt, chapter_two.txt,

and so on.

To add each of these chapter files to my project, I would create these
files in the working directory.

If I wanted to make any changes to the content of those chapters, I
would start by editing the files in the working directory.

And finally, if I decided I wanted to remove an entire chapter of my
book, the first step would be to delete the corresponding file in the
working directory.

From Example Book Project 2-1, you can conclude that the working
directory is where you make all the modifications to the content of a
project.

In the case of the rainbow repository, the working directory is currently

empty. To continue building the Git Diagram, we will add a representation
of the working directory to it. This is illustrated in Visualize it 2-3.

[VISUALIZE IT 2-3]

The Git Diagram with a representation of the working directory and local repository

In Visualize It 2-3, the rainbow project directory contains the local repository

within it. However, it is important to know that when people refer to a
project version controlled with Git, they will typically refer to the project
directory as the repository. For example, in our case, we will make
references to “the rainbow repository.”

Within the local repository, there are two important areas we want to
explore further: the staging area and the commit history. We’ll take a look at
those next and also discuss the concept of a commit in a little more detail.

INTRODUCING THE STAGING AREA
The staging area is similar to a rough draft space. It is where you can add
and remove files, when you are preparing what you want to include in the
next saved version of your project (your next commit). The staging area is
represented by a file in the .git directory called index.

[NOTE]
The index file is created only if you have added at least one file to the staging area in

your project. In the rainbow project directory, you have not yet added any files to the

staging area; therefore, the index file is not yet visible in the .git directory. In Chapter

3, you will add a file to the staging area and you will see the index file being created.

You will learn more about why the staging area is so helpful when you
practice adding a file to it in Chapter 3. For now, we will add a
representation of it inside the local repository in the Git Diagram, as shown
in Visualize it 2-4.

[VISUALIZE IT 2-4]

The Git Diagram with a representation of the working directory, staging area, and

local repository

The Git Diagram now includes representations of the working directory, the
staging area, and the local repository. The final area I want to introduce is
the commit history, but before I do that, let’s properly explore the concept
of a commit.

WHAT IS A COMMIT?

A commit in Git is basically one version of a project. You can think of it as
a snapshot of a project, or a standalone version of a project that contains
references to all the files that are part of that commit.

Every commit has a commit hash (sometimes called a commit ID). This is a
unique 40-character hash composed of letters and numbers that acts like a
name for the commit, providing a way to refer to it.

An example of a commit hash is 51dc6ecb327578cca503abba4a56e8c18f3835e1.

In reality, you only need the first seven characters of a commit hash to refer
to a commit. So, for the example hash just given, you can just use 51dc6ec to

refer to the commit.

[NOTE]
Since commit hashes are unique, your commit hashes in the Rainbow project will be

different than the ones shown in this book. Keep this in mind while going through the

Follow Along exercises in the book.

Now that you have an idea of what commits are, let’s introduce the final
area that we will add to our Git Diagram, the commit history.

INTRODUCING THE COMMIT HISTORY
The commit history is where you can think of your commits existing. It is
represented by the objects directory inside the .git directory. To understand

the commit history in depth we would have to dive into the internals of Git,
but that is a complex topic that you don’t need to know about when learning
the basics of how to use Git. For our purposes, all you need to know is that
every time you make a commit, it is saved in the commit history.

Go to Follow Along 2-3 to identify the commit history in the rainbow

repository.

[FOLLOW ALONG 2-3]

In your filesystem window, inside your rainbow project directory, look inside the

.git directory and find the objects directory.

In Visualize it 2-5, we add a representation of the commit history to the Git
Diagram inside the local repository. This completes the Git Diagram.

[VISUALIZE IT 2-5]

The complete Git Diagram with representations of the working directory, staging area,

commit history, and local repository

Now that we have a complete Git Diagram showing the most important
areas when working with Git, let’s add the first file to the Rainbow project
and use a text editor to edit it.

Adding a File to a Git Project

As mentioned earlier in the book, throughout this learning journey you will
work on a project in which you list the colors of the rainbow and some
colors that are not part of the rainbow. Every time you add a color, you will
make a commit to keep track of how the project progresses.

Your first step will be to create a file called rainbowcolors.txt, in which you

will list the colors. As mentioned in “Creating a Directory” on page 14, it is
important that the filename does not include spaces. Then, using the text
editor that you prepared in Chapter 1, you will add “Red is the first color of
the rainbow.” on line 1 in that file. Go to Follow Along 2-4 to create and
edit your file.

[FOLLOW ALONG 2-4]

Use your text editor to create a file called rainbowcolors.txt inside your

rainbow project directory.

On line 1, add “Red is the first color of the rainbow.” and save the file.

What to notice:

• The rainbowcolors.txt file is inside the rainbow project directory;

therefore, it is in the working directory.

Even though the rainbowcolors.txt file is in the working directory, it is not

part of your repository. It has not been added to the staging area and it has
not yet been included in a commit in the commit history. We illustrate this
in Visualize It 2-6.

[VISUALIZE IT 2-6]

The rainbow project directory after you add the rainbowcolors.txt file to the working

directory

Since the rainbowcolors.txt file is not yet in your repository, it is an untracked

file. An untracked file is a file in the working directory that Git is not
version controlling. It has never been added to the staging area and it has
never been included in a commit; therefore, it is not part of the repository.

Once you add a file to the staging area and include it in a commit, the file
becomes a tracked file. This is a file that is version controlled (in other
words, a file that Git tracks).

Every new file in a project version controlled by Git needs to be explicitly
added to the staging area and then included in a commit in order to become
a tracked file. You will carry out these steps in Chapter 3.

[NOTE]
In the Preface, I mentioned that creating and editing files listing the colors of the

rainbow and some colors that are not part of the rainbow is not a very realistic

example of a project version controlled with Git. Recall that the aim of this project is to

keep the learning journey simple, so that you can focus on how Git works instead of

the contents of the files you are editing. The changes you will be making to files in

real projects will look very different.

Summary
In this chapter, you turned your rainbow project directory into a repository by

initializing the repository. We also built a Git Diagram visualizing the four
important areas of Git: the working directory, the staging area, the commit
history, and the local repository.

You added your first file to your rainbow project directory, and you learned

about the important distinction between untracked files and tracked files.

In the next chapter, we will walk through the steps involved in making a
commit. Along the way, we will touch upon how each of the areas in the Git
Diagram is involved in the commiting process.

[3]

Making a Commit

In the last chapter, you learned about the different areas you will
interact with when working with Git: the working directory, the
staging area, the commit history, and the local repository . We
built a Git Diagram of these areas, and you ended the chapter by
adding the first file to your rainbow project directory.

In this chapter, you will go through the process of making a
commit in the Rainbow project and observe how each of the
areas in the Git Diagram is involved. I will also introduce two
important commands that will assist you in your day-to-day work
with Git. The first command will allow you to check the state of
your working directory and staging area, and the second will
allow you to view a list of commits.

Current Setup
You now have a project directory called rainbow that has a .git directory

inside it, and you also have one file, called rainbowcolors.txt, in your working

directory. The staging area and commit history are empty because you have
not yet made any commits in the rainbow repository. This can all be seen in

Visualize it 3-1.

[VISUALIZE IT 3-1]

The rainbow project directory at the start of Chapter 3 has one untracked file in the

working directory

Why Do We Make Commits?
In Chapter 2, you learned that a commit basically represents one version of
a project. Every time you want to save a new version of a project, you can
make a commit.

Committing is important because it allows you to back up your work and
avoid the frustration of losing unsaved work. Once you’ve made a commit,
that work is saved, and you’ll be able to go back and look at that commit to
see what your project looked like at that point in time.

In terms of when to make commits, there is no strict rule. This can depend
on many factors, such as whether you’re working on a project on your own
or with other people, and what type of project you’re working on (e.g.,
whether you’re writing code that needs to compile or documentation for a
feature). Finally, if you’re working in a team, it may depend on the
workflow your team uses and what conventions that team has agreed to (for
example, how they use branches, which we’ll discuss in Chapter 4).

A common adage in the world of Git is “commit early, commit often.” If
you’re just getting started with Git, then I think this is good advice. At this
stage, it is preferable to have too many commits than too few commits.
Also, once you have a good grasp of Git basics, you can learn about
additional tools that Git provides for cleaning up commits.

The Two Steps to Make a Commit
Now that we have touched upon why to commit, let’s go over how to
commit. Making a commit is a two-step process:

1. Add all the files you want to include in the next commit to the staging
area.

2. Make a commit with a commit message.

Throughout this process you will be interacting with the four different areas
of Git introduced in Chapter 2: the local repository, the working directory,
the staging area, and the commit history.

A useful command in the committing process is the git status command.

Among other things, it tells you the state of the working directory and the
staging area. This is useful because in a project with many files it is easy to
lose track of what state the files in your working directory are in (i.e., which
ones you have edited) and which files you’ve added to the staging area.

[SAVE THE COMMAND]

git status

Show the state of the working directory and the staging area

In a project with many files, it can be hard to remember which files are
untracked, which files are tracked, and which files you’ve edited. In the
Rainbow project at the moment, you only have one file, but let’s take a look
at Example Book Project 3-1 to consider the case of a project with more
files.

Example Book Project 3-1
The Book project I’m working on consists of 10 files, one for each
chapter in the book. After working on the book for a while in between
commits, I may forget which chapter files I have edited. I know I
worked on chapters 2 and 3, but did I make any changes in chapter 4? If
so, I don’t want to lose them.

In this case, the git status command can help me by telling me which

chapter files I’ve edited, which ones I’ve added to the staging area, and
which ones I have yet to add.

The git status command only provides information; it never actually

changes anything in your repository. Feel free to use it at any time while
you’re working on a Git project to learn more about the state of your
working directory and staging area.

Go to Follow Along 3-1 to practice using the git status command and check

on the state of the working directory and staging area in the rainbow

repository. To carry out the steps in this Follow Along, you must be in the
rainbow project directory in the command line, as indicated by the command

prompt.

[FOLLOW ALONG 3-1]

rainbow $ git status

On branch main

No commits yet

Untracked files:

 (use "git add <file>..." to include in what will be committed)

rainbowcolors.txt

nothing added to commit but untracked files present (use "git add" to

track)

What to notice:

• The git status output informs you there are No commits yet. In other

words, the commit history does not contain any commits at this time.

• The rainbowcolors.txt file is an untracked file.

• Git gives you the instructions that you need to add the untracked file to
the staging area: use "git add <file>..." to include in what will be

committed.

In Chapter 2, I mentioned that rainbowcolors.txt is an untracked file and that

for it to become a tracked file it must be added to the staging area and
included in a commit. So, let’s carry out the first step in the process to make
a commit, which is to add any files you want to include in the commit to the
staging area.

ADDING FILES TO THE STAGING AREA

To add files to the staging area, you use the git add command. If you only

want to add individual files that you have edited to the staging area, then
you can pass in the filename or filenames to the git add command as

arguments. To add all the files you have edited or changed in your working
directory, you can use the git add command with the -A option (which stands

for “all”). This may be helpful if you have edited many files and don’t want
to write out each individual filename in the command line.

[SAVE THE COMMAND]

git add <filename>

Add one file to the staging area

git add <filename> <filename> ...

Add multiple files to the staging area

git add -A

Add all the files in the working directory that have been edited or changed to the

staging area

As mentioned in Chapter 2, the staging area allows you to choose which
updated files (or changes) will be included in your next commit. The
general rule is to group related changes together. This allows you to keep
your commits more organized. As you will see in the next section, every
commit also has an associated commit message. This can be used to provide
a description of what was updated in a specific commit.

This first step of the committing process allows you to be very specific
about what you include in a commit. This means that you can edit many

files in your project, but you don’t have to save them all in one commit.
Let’s explore this in Example Book Project 3-2.

Example Book Project 3-2
The Book project that I’m working on has 10 chapters represented by
10 files. Imagine a scenario where I work on chapters 1, 2, and 3
(therefore, I edit chapter_one.txt, chapter_two.txt, and chapter_three.txt).

If I decide that the work I have done on chapter 2 is ready to be
committed (saved) but the work on chapters 1 and 3 is not something I
want to include in my next commit, then I can add the updated version
of the chapter 2 file to the staging area without adding the updated
versions of the chapter 1 and chapter 3 files to the staging area. This
means that only the changes in the chapter 2 file will be included in my
next commit and officially “saved” in the local repository.

Example Book Project 3-2 illustrates how the staging area gives you a lot of
control over what the saved versions of your project (your commits) look
like.

In the Rainbow project, the rainbowcolors.txt file is the first file you will add

to the staging area. This means that when you add this file, the index file

(which represents the staging area in the .git directory) will be created. As

you learned in Chapter 2, this file does not exist until you add a file to the
staging area.The index file is a binary file, which means the actual contents

look like gibberish to a human and are not easily understandable. For our
purposes, we only need to understand that it represents the staging area. Go

to Follow Along 3-2 to add the rainbowcolors.txt file to the staging area and

create the index file.

[FOLLOW ALONG 3-2]

To see the index file being created, make sure to have a view of your rainbow

project directory in the filesystem window with the hidden files and directories

enabled and the contents of the .git directory visible.

rainbow $ git add rainbowcolors.txt

rainbow $ git status

On branch main

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

new file: rainbowcolors.txt

Using your filesystem window, look at the contents of the .git directory and

identify the newly created index file.

What to notice:

• You added the rainbowcolors.txt file to the staging area, and in step 3 it

is listed under the Changes to be committed: section. This is illustrated in

Visualize It 3-2.

[VISUALIZE IT 3-2]

The rainbow project directory after you add the rainbowcolors.txt file to the staging

area

The rainbowcolors.txt file is now both in the working directory and in the

staging area. This is because the git add command does not move a file from

the working directory to the staging area. It copies the file from the working
directory into the staging area.

With the rainbowcolors.txt file in the staging area, you are now ready to move

on to the second step in the committing process, which is to actually make a
commit with a commit message.

MAKING A COMMIT
It’s important to note that commit is both a verb and a noun. In Git, the verb
to commit means to save something, and the noun (a commit) means a
version of our project. So, to make a commit means to save a version of a
project.

To make a commit, you will use the git commit command and pass in the -m

option (which stands for “message”), typing in a message inside quotation
marks. The message should usually be a brief description of the changes
you made in this version of the project.

[SAVE THE COMMAND]

git commit -m “<message>”

Create a new commit with a commit message

Let’s consider a sample commit message in Example Book Project 3-3.

Example Book Project 3-3
In my Book project, if I worked on chapter 2, added just that file to the
staging area, and wanted to make a commit only with the updates to
chapter 2, I might use the commit message “Updated chapter 2”.

Keep in mind that different individuals and teams may have different rules
about what to include in a commit message. If you’re working on a Git
project with other people, you should check with your collaborators so
you’re sure what they expect you to include in these messages.

For the Rainbow project, you will simply be passing in the name of the
color you add to the project as the commit message, so that we can easily
represent the commits in the Visualize It diagrams. Since the first color you
added to the list of rainbow colors was red, in Follow Along 3-3 you will
make a commit with the commit message “red”.

[FOLLOW ALONG 3-3]

rainbow $ git commit -m "red"

[main (root-commit) c26d0bc] red

1 file changed, 1 insertion(+)

create mode 100644 rainbowcolors.txt

What to notice:

• The output of the git commit command shows the first seven characters

of the commit hash for the red commit, which is c26d0bc in this book.

The first seven characters of your commit hash will be different, since,
as you learned in “What Is a Commit?” on page 28, commit hashes are
unique.

In Visualize it 3-3 you can see the red commit in the commit history, with
the first seven characters of the commit hash.

[VISUALIZE IT 3-3]

The rainbow project directory after you make the red commit

You also learned in the previous chapter that when a new file that was
untracked is added to the staging area and included in a commit, it becomes
a tracked file, because Git now knows about it. Therefore, the
rainbowcolors.txt file is now a tracked file.

The rest of the output following the git commit command is not really

important for our purposes. It simply gives more information about what
changed in this commit, and in my experience it’s not something most Git
users need to examine in detail.

Now that you’ve made the first commit in the rainbow repository, let’s take a

look at the information you can find about this commit in the commit
history.

Viewing a List of Commits
To see a list of commits in the commit history, you use the git log

command. The git log command lists the commits in a local repository in

reverse chronological order. It displays four pieces of information about
each commit:

1. Commit hash

2. Author name and email address

3. Date and time commit was made

4. Commit message

[SAVE THE COMMAND]

git log

Show a list of commits in reverse chronological order

[NOTE]
If the output of the git log command goes beyond the size of the command line

window, to view the rest of the commits you must press Enter (Return) or use the

down arrow. To exit the command, you must enter Q. Right now you have only one

commit, so your git log output will be very short. However, as you add commits to

the Rainbow project, your git log output will get longer and you will need to use

these keys.

Go to Follow Along 3-4 to practice listing commits.

[FOLLOW ALONG 3-4]

rainbow $ git log

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• The git log output shows that at the moment you have only one

commit, the red commit.

• The full commit hash of the red commit in this book is
c26d0bc371c3634ab49543686b3c8f10e9da63c5. The commit hash in your project

will be different.

• The author of the red commit should match the name and email
address you provided in Chapter 1 when you set the user.name and

user.email Git configuration variables.

• The date and time at which the commit was made are displayed.

• Below the date is the commit message, which in this case is red.

In the Visualize It diagrams, I will represent commits as circles. Each
commit will be displayed in the color used in the commit message, and
labeled with its full name or abbreviation (e.g., R for the red commit). Keep
in mind that these circles each represent an individual commit that you can
see listed in the git log output. This is made clear in Figure 3-1.

There’s one more thing that shows up in the git log output in Follow Along

3-4 that we have not covered yet. Next to the commit hash, inside the
parentheses, you can see the text HEAD -> main. main is a branch; you’ll learn

F I G U R E 3 - 1

In this book, commits are represented by circles in the diagrams

what branches are and how to work with them in the next chapter, and
you’ll also learn what HEAD is.

Summary
This chapter introduced the two steps of making a commit, namely adding
files to the staging area and making a commit with a commit message, and
you went ahead and made your first commit in the rainbow repository. To

assist in the process I introduced the git status command, which provides

you with information about the state of the files in the working directory
and staging area.

You also learned how to list the commits in a local repository using the git

log command. In the git log output, you saw a mention of main in parentheses

next to the commit hash. In Chapter 4, you’ll learn that main is a branch, and

we will explore why and how branches are used in Git.

[4]

Branches

In the last chapter, you learned about the process of making a
commit and you made your first commit in the rainbow repository.

In this chapter, you’ll learn what branches are and why we use
them. You will continue making commits in the rainbow repository

and see how this affects the branches in your project. Finally, you
will make a new branch and learn how to switch (or change) onto
it. In addition, in the process of making more commits in the
rainbow repository you will learn about the concept of unmodified

and modified files and how commits are linked to one another.

State of the Local Repository
In Chapter 2, we built a Git Diagram with the four important areas of Git:
the working directory, the staging area, the commit history, and the local
repository. Visualize it 4-1 uses the Git Diagram to show the state of the
rainbow repository at the start of this chapter.

[VISUALIZE IT 4-1]

The Git Diagram showing the state of the rainbow repository at the start of Chapter 4,

with one commit, the red commit

[NOTE]
From this point forward, the Visualize It diagrams will only display the name of the

color in the commit, or an abbreviation of the name. I will no longer include the first

seven characters of the commit hash.

To focus on the commit history, I’m now going to introduce a new diagram
called the Repository Diagram. The Repository Diagram includes only a
representation of the commit history of a repository and the relevant
branches and references. The local repository is represented by a rectangle,
with the name of the repository in the top-left corner. Visualize it 4-2 shows
the current state of the rainbow repository in the form of a Repository

Diagram.

[VISUALIZE IT 4-2]

The Repository Diagram showing the current state of the rainbow repository with one

commit, the red commit

Why Do We Use Branches?

Before we get into the specifics of branches in Git, I want to explain why
they’re so useful. There are two main reasons to use branches:

• To work on the same project in different ways.

• To help multiple people work on the same project at the same time.

You can think of a branch like a line of development. A Git project can
have multiple branches (or lines of development). Each of these branches is
a standalone version of the project. Different Git projects can use branches
in different ways, depending on the needs of the people working on the
project.

One common pattern for working with branches is to have one official
primary line of development—the main or primary branch—and off of that
to create secondary branches, called topic branches or feature branches,
that are used to work on just a specific part of the project. These topic
branches are short-lived; they are ultimately combined or incorporated back
into the primary branch and then deleted. The two processes you can use to
integrate one branch into another are called merging and rebasing. We will
cover these in more depth in Chapters 5, 9, 10, 11, and 12 (yup, they are big
topics!).

This pattern of having one primary line of development is the approach you
will take in the Rainbow project. To make this a little more concrete, let’s
take a look at Example Book Project 4-1 to see how branching might be
used in the Book project.

Example Book Project 4-1
Suppose the official branch of my Book project is the main branch. I

don’t want to add work to the official line of development until my
editor has reviewed and approved it. So, each time I work on a chapter, I
can make a secondary branch, work on that branch, and then submit it to
be reviewed by my editor. Once they’ve approved the work that I have
done in that secondary branch, I can combine that branch into the main

branch.

If at some point I decide to work on the book with a coauthor, we can
each work on our own secondary branches. Then, only when the work
on a given secondary branch has been approved by both the other author
and the editor will it be considered ready to be combined with the main

branch.

Now that you have an idea of why we use branches, let’s get a clearer sense
of how they work in Git.

WHAT EXACTLY ARE BRANCHES IN GIT?
Branches in Git are movable pointers to commits. When you list the
commits in a local repository using the git log command, you can see

information about which branches point to which commits. Go to Follow
Along 4-1 to see this explicitly in the rainbow repository.

[FOLLOW ALONG 4-1]

rainbow $ git log

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• In the git log output, next to the commit hash inside the parentheses

you see HEAD -> main.

The branch or branches that appear inside the parentheses next to a
particular commit hash in the git log output are the branches that point to

that commit.

[NOTE]
HEAD (in capital letters) is not a branch. We’ll discuss what it is in “What Is HEAD?” on

page 55.

In the rainbow repository, the main branch points to the red commit. This is

illustrated in Visualize it 4-3.

[VISUALIZE IT 4-3]

The main branch points to the red commit in the rainbow repository

Later in this chapter, you will continue making commits on the main branch,

and you will see how the main branch will move to point to the new

commits.

[NOTE]
The main branch in the rainbow repository is a local branch. In the first part of this

book, when you are working only with a local repository in the Rainbow project, you

will work only with local branches. In the second part of the book, once we introduce

remote repositories, you will learn about the concept of remote branches and remote-

tracking branches.

To get a better idea of the concept of branches as movable pointers to
commits, go to Follow Along 4-2.

[FOLLOW ALONG 4-2]

In a filesystem window, go to the rainbow project directory.

Reveal all the hidden files and directories in the rainbow project directory. For

more information on how to view hidden files and directories, see “Viewing the

Contents of Directories” on page 10.

Within the rainbow project directory in your filesystem window, go to .git >

refs > heads > main.

Open the main file. On macOS, the file will automatically open in a basic text

editor called TextEdit. On Microsoft Windows, you can choose to open the file

with a basic text editor called Notepad.

You will only use TextEdit and Notepad to view the contents of some of the

files in the .git directory. These text editors are separate from the text editor

you are using to manage the files in the Rainbow project.

What to notice:

• In step 4, inside the main file you will see the commit hash for the red

commit in your rainbow repository.

In step 3 of Follow Along 4-2, in order to get to the main file, you navigated

into the .git directory, the refs directory, and then the heads directory. The

term “refs” stands for “references.” The heads directory stores a file for each

local branch in your local repository. At the moment you only have one
local branch, the main branch, so there is only one file in this directory. You

can think of that file as storing the “head” of that branch; in other words,
the latest commit on that branch.

Now that you understand a bit about what branches are and how they work,
let’s take a quick look at naming conventions for the primary branch.

A BIT OF GIT HISTORY: MASTER AND MAIN
Normally when you initialize a local repository using just the git init

command with no options, behind the scenes Git creates a branch called
master. However, “master” is not considered inclusive terminology, so in

recent years, a large part of the Git community has decided to transition to
using main (or other names) as the default branch name.

This is why in Chapter 2 when you initialized the rainbow repository, you

used the git init command with the -b option and passed in the value main.

The actual word main is not special in any way; you could have chosen to
give the first branch any other name by passing in another value to the git

init -b command. When you made the first commit in the rainbow repository,

this updated the main branch to point to the first commit. In the Rainbow

project, the main branch is the primary line of development.

In your Git learning journey you will come across many learning resources
that still refer to the master branch. It is important to understand that there is

nothing special about this branch; it’s just the default name for the first
branch created in Git.

At this point, you’re ready to add a new color to the rainbowcolors.txt file and

make another commit. But before we get to that, I’d like to introduce a few
additional states that a file in a Git project can be in.

Unmodified and Modified Files
In Chapter 2, I introduced the concept of untracked files and tracked files.
Git knows about the rainbowcolors.txt file because it has been included in a

commit, and therefore it is a tracked file.

Tracked files in the working directory can be in one of two states.
Unmodified files are files in the working directory that have not been edited
since the last commit. Once a file in the working directory has been edited
(and saved in the text editor), it becomes a modified file. Since your last
commit, you have not edited the rainbowcolors.txt file; therefore, it is an

unmodified file.

[NOTE]
For Git to know that a file has been edited, the file must have been saved in the text

editor. If you have made edits to a file but you have not saved those changes in your

text editor, then Git will view it as an unmodified file.

In Chapter 3 you learned about the git status command, which shows you

the state of the working directory and the staging area and the difference
between the two. The git status command actually shows a list of all

modified files and tells you whether or not they have been added to the
staging area. It does not, however, list unmodified files.

Go to Follow Along 4-3 to use the git status command to see that the

rainbowcolors.txt file is an unmodified file, then edit and save the file and use

git status again to see how its state changes.

[FOLLOW ALONG 4-3]

rainbow $ git status

On branch main

nothing to commit, working tree clean

In the rainbow project directory in your text editor, open the rainbowcolors.txt

file, add “Orange is the second color of the rainbow.” on line 2, and save the

file.

rainbow $ git status

On branch main

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: rainbowcolors.txt

no changes added to commit (use "git add" and/or "git commit -a")

What to notice:

• In step 1, the rainbowcolors.txt file is an unmodified file. It is not yet

listed in the git status output.

• In step 3, the rainbowcolors.txt file is a modified file. It is now listed in

the git status output.

• The rainbowcolors.txt file is not staged for commit; in other words, it has

not been added to the staging area.

You just saw how the rainbowcolors.txt file went from being an unmodified

file to a modified file when you edited it and saved your changes. See
Figure 4-1 for an example of what your rainbowcolors.txt file should look like

now.

In Follow Along 4-4, you will add the rainbowcolors.txt file to the staging

area so that it can be included in your next commit, and you will observe
how the git status output changes.

F I G U R E 4 - 1

The rainbowcolors.txt file after you add a sentence about the color orange

[FOLLOW ALONG 4-4]

rainbow $ git add rainbowcolors.txt

rainbow $ git status

On branch main

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: rainbowcolors.txt

What to notice:

• The rainbowcolors.txt file is staged for commit; in other words, it has

been added to the staging area.

You have just completed the first step of the committing process, which is
to add files to the staging area. Next, you’ll make another commit and see
how that affects your main branch.

Making Commits on a Branch
You are ready to make your second commit in the rainbow repository. This

time you will add the color orange, so the commit message will be
“orange”. Go to Follow Along 4-5 to make your commit.

[NOTE]
If the output of the git log command extends beyond the size of the command line

window, you must press Enter (Return) or use the down arrow to view the rest of the

commits. To exit the command you must type Q.

[FOLLOW ALONG 4-5]

rainbow $ git commit -m "orange"

[main 7acb333] orange

1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git log

commit 7acb333f08e12020efb5c6b563b285040c9dba93 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• You made a new commit, the orange commit. In the rainbow repository

in this book the commit hash for the orange commit is
7acb333f08e12020efb5c6b563b285040c9dba93. Your commit hash will be

different.

• The text HEAD -> main appears in parentheses next to the orange commit.

Visualize it 4-4 shows the state of the rainbow repository after Follow Along

4-5.

[VISUALIZE IT 4-4]

The rainbow repository after you make the orange commit

What to notice:

• There is a second commit, the orange commit.

• The orange commit points back to the red commit.

• The main branch points to the orange commit.

In Visualize it 4-4, you can see that there is a gray arrow pointing from the
orange commit back to the red commit. This gray arrow represents the
parent link. Every commit, other than the very first one in a repository, has
a parent commit (some commits can have more than one parent; we will
cover that in Chapter 5). The parent commit of the orange commit is the red
commit; this is why the orange commit points back to the red commit.

These parent links describe how commits are linked to one another.
Understanding these links allows you to visualize the commit history and
keep track of what work has been done on which branches.

[NOTE]
In the Visualize It diagrams, gray arrows are used to represent parent links and black

arrows are used to represent branch pointers.

To check which commit is the parent of a given commit, you can use the git

cat-file command with the -p option and pass in a commit hash: git cat-file

-p <commit_hash>. Most Git users probably won’t use this command in their

day-to-day work, but since it’s a good learning tool, let’s see it in action.

Go to Follow Along 4-6 to retrieve the commit hash of the parent of the
orange commit. To do this, you’ll need to pass in the orange commit’s
commit hash to the git cat-file -p command. The easiest way to retrieve the

commit hash for a particular commit is to look at the list of commits
produced by the git log command and copy the entire commit hash in the

command line. Alternatively, you can look back at the git commit output in

Follow Along 4-5 and pass in the first seven characters of the commit hash,
which is shown there.

[FOLLOW ALONG 4-6]

Retrieve the commit hash for the orange commit (you can copy this from the

git log output in Follow Along 4-5). You must pass this commit hash as an

argument to the git cat-file -p command in step 2 of this Follow Along. You

may copy and paste the entire commit hash or just enter the first seven

characters, as shown here.

rainbow $ git cat-file -p 7acb333

tree 407fe6a858cd7f157405e013a088fdc1c61f0a40

parent c26d0bc371c3634ab49543686b3c8f10e9da63c5

author annaskoulikari <gitlearningjourney@gmail.com> 1645260127 +0100

committer annaskoulikari <gitlearningjourney@gmail.com> 1645260127 +0100

orange

What to notice:

• In the git cat-file -p output, you can see that next to parent it references

the commit hash of the red commit in this book. In your output, it will
reference the commit hash of your red commit.

You’ve now made a second commit in your rainbow repository, and in

Visualize it 4-4 you observed that as you make commits on a branch, the

branch pointer moves to point to the latest commit. Next, let’s go over how
to make other branches so that you can work on other lines of development.

Creating a Branch
At the moment, you only have one local branch, called main, in your rainbow

repository. To list the branches in a local repository, you can use the git

branch command. To create a new branch, you can pass the name of a branch

that doesn’t exist yet to this command. Note that branch names cannot
contain spaces.

[SAVE THE COMMAND]

git branch

List local branches

git branch <new_branch_name>

Create a branch

As with commit messages, as discussed in Chapter 3, if you’re working
with other people on a project you should check if there are any existing
rules that determine how to name your branches. Since there are no specific
branch naming rules in the Rainbow project, you will use the generic name
feature for the branch you will create in Follow Along 4-7. Keep in mind,

however, that in a real Git project the branch name would usually be more
descriptive, relating to the feature or topic you’re working on.

[FOLLOW ALONG 4-7]

rainbow $ git branch

* main

rainbow $ git branch feature

rainbow $ git branch

 feature

* main

rainbow $ git log

commit 7acb333f08e12020efb5c6b563b285040c9dba93 (HEAD -> main, feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

Using your filesystem window, go to .git > refs > heads to see which files are

in there now.

Open the feature file. The file should contain a commit hash.

What to notice:

• In step 2, you made a new branch called feature that points to the

orange commit.

The state of the rainbow repository after you complete Follow Along 4-7 is

illustrated in Visualize it 4-5.

[VISUALIZE IT 4-5]

The rainbow repository after you make the feature branch

In Visualize it 4-5 you can see that there are now two arrows, representing
the main and feature branches, pointing to the orange commit. A new branch

will initially point to the commit that you were on when you made the

branch. In this case, you can say that you “made the feature branch off of the

main branch.” That is why the feature branch and main branch both now point

to the same commit.

In the git log output from Follow Along 4-7, in the parentheses next to the

orange commit, you should see HEAD —> main, feature. As you know, main and

feature are branches—but what is HEAD?

What Is HEAD?
At any given point in time, you are looking at a particular version of your
project. Therefore, you are on a particular branch which is pointing to a
commit. HEAD is simply a pointer that tells you which branch you are on. The

name HEAD is always in capital letters, but this is simply a convention; it is

not an acronym.

[NOTE]
There are times where you can be on a commit that is not pointed to by a branch. Git

calls this “detached HEAD state.” We’ll explore this further in “Checking Out Commits”

on page 80.

Go to Follow Along 4-8 to explore what HEAD is by taking a look at the .git

directory.

[FOLLOW ALONG 4-8]

Using your filesystem window, go to rainbow > .git > HEAD.

Open the HEAD file. The contents should be ref: refs/heads/main.

What to notice:

• The HEAD file contains ref: refs/heads/main, which is a reference to the

main file that represents the main branch.

This is illustrated in Visualize it 4-6.

[VISUALIZE IT 4-6]

In the rainbow repository, HEAD is pointing to main

In Visualize it 4-6, an arrow shows HEAD is pointing to main. This indicates

you’re currently on the main branch.

[NOTE]
HEAD (in capital letters) should not be confused with the heads directory that can be

found in .git > refs > heads. The heads directory stores a file for every local branch

in your local repository, while HEAD indicates which branch you are on by referencing

one of the files inside the heads directory. You can distinguish them because HEAD is

always in capital letters.

Another way of knowing which branch you’re currently on is to look at the
output of either the git branch command or the git log command. In the git

branch output, the branch you are currently on will have an asterisk next to it.

If you look at the output in Follow Along 4-7, you can see the asterisk is
next to the main branch. In the git log output, HEAD will point to the branch

you are on inside the parentheses.

Now that you’ve created a new branch, you’re ready to start using it—but
for the time being, you’re still on the main branch. Next, you will switch

branches, moving the HEAD pointer to your new feature branch.

Switching Branches
To work on another branch (or line of development) in a Git project, you
have to switch onto that branch. Another way of saying this in Git
terminology is that you have to “check out” another branch.

You currently have two branches, main and feature. But as you’ve just seen,

just because you make a branch in Git does not mean that you automatically
switch onto that branch. You must explicitly instruct Git that you want to
switch onto a branch. You can do this using either the git switch command

or the git checkout command, passing in the name of the branch that you

want to switch onto.

[NOTE]
If you have a version of Git that is older than version 2.23, then you won’t have

access to the git switch command and you must use the git checkout command.

The git checkout command is available to all Git users.

[SAVE THE COMMAND]

git switch <branch_name>

Switch branches

git checkout <branch_name>

Switch branches

The only purpose of the git switch command is to switch branches, while the

git checkout command can do more things. We will talk more about git

checkout in “Checking Out Commits” on page 80.

From now on, in the Follow Alongs in this book you will use the git switch

command, as this is the specialized command included in the latest versions
of Git for this purpose. However, you can always choose to use the git

checkout command instead, as they are equivalent.

The git switch (or git checkout) command does three things when used to

switch branches:

1. It changes the HEAD pointer to point to the branch you are switching

onto.

2. It populates the staging area with a snapshot of the commit you are
switching onto.

3. It copies the contents of the staging area into the working directory.

[NOTE]
If you need a refresher on what the staging area and working directory are, refer back

to “The Areas of Git” on page 26.

In short, when you change branches you end up changing the commit that
you’re looking at, provided that the two branches point to two different
commits. At the moment, both of the branches you have in the rainbow

repository point to the same commit, so only the first action will take place,
and the commit you are on will not change. In Chapter 5, you will go over
an example where all three of the actions listed here take place.

Go to Follow Along 4-9 to switch onto the feature branch.

[FOLLOW ALONG 4-9]

rainbow $ git branch

 feature

* main

rainbow $ git switch feature

Switched to branch 'feature'

rainbow $ git branch

* feature

 main

rainbow $ git log

commit 7acb333f08e12020efb5c6b563b285040c9dba93 (HEAD -> feature, main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

Using your filesystem window, go to rainbow > .git > HEAD, and open the HEAD

file in a new window. You will see that the contents of the file have changed

and it now refers to the feature branch, refs/heads/feature.

What to notice:

• In step 4, the git log output shows that HEAD points to the feature branch.

• You have switched onto the feature branch, so this is where you’ll be

working now.

These observations are illustrated in Visualize it 4-7.

[VISUALIZE IT 4-7]

The rainbow repository after you switch onto the feature branch

As you can see, switching branches changed the contents of the HEAD file in

the .git directory. This is illustrated in Figure 4-2.

Now that you have switched onto the feature branch, let’s see what happens

when you work on it.

Working on a Separate Branch
You are now on the feature branch, and in Follow Along 4-10 you’re going

to add the color yellow to the rainbow repository.

F I G U R E 4 - 2

The contents of the HEAD file before and after you switch from the main branch onto the

feature branch in the rainbow repository

[FOLLOW ALONG 4-10]

In the rainbow project directory in your text editor, in the rainbowcolors.txt file,

add “Yellow is the third color of the rainbow.” on line 3. Then save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "yellow"

[feature fc8139c] yellow

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git log

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93 (main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• The feature branch points to the latest commit, the yellow commit.

• The main branch still points to the orange commit.

These observations are illustrated in Visualize it 4-8.

[VISUALIZE IT 4-8]

The rainbow repository after you make the yellow commit

As mentioned previously, when you make a commit, it is the branch you’re
currently on that updates to point to the new commit. The main and feature

branches no longer point to the same commit because feature has updated to

point to the new yellow commit. HEAD continues to point to the feature

branch.

Summary
This chapter introduced the concept of branches as different lines of
development and showed how, in practice, they are movable pointers to
commits. We explored why you might want to use them, and you learned
how to list, create, and change branches. We covered why the first branch in
the rainbow repository is called main, and why in other learning resources

teaching Git you may come across a branch called master. You also learned

that HEAD is a pointer to the branch you’re currently on.

While making more commits, you observed how tracked files change state
from unmodified to modified when they are edited. You also observed that
it’s the branch you’re on that moves to point to the latest commit you make
in a local repository, and you saw how commits are linked to each other
through parent links.

Now that we’ve covered how to use branches to work on different lines of
development simultaneously, let’s continue on to Chapter 5 to start learning
how to combine these different lines of development by merging.

[5]

Merging

In the last chapter, you learned about branches, and we discussed
how they allow you to work on the same project in different ways
and to collaborate with other people on a project.

In this chapter, you are going to learn about integrating changes
from one branch into another. In Git, there are two ways to do
this: merging and rebasing. We will cover rebasing in Chapter 11;
for now we will focus on merging. This chapter will introduce
the two types of merges (fast-forward merges and three-way
merges), and you will carry out a fast-forward merge.

In the process, you will also learn about how Git protects you
from losing any uncommitted changes, how changing branches
may change the contents of the working directory, and how to
check out commits directly.

State of the Local Repository
At the start of this chapter, you should have three commits and two
branches in your rainbow repository, and you should be on the feature branch.

The current state of the rainbow repository is illustrated in Visualize it 5-1.

[VISUALIZE IT 5-1]

The rainbow repository at the start of Chapter 5, with three commits and two branches

Introducing Merging
In Chapter 4, you created your first branch, feature, and started working on

that branch. Branches are a powerful feature of Git, and it’s great that they

allow us to work on different parts of a project independently. But how can
you then combine the work you have done with the main branch once you’re

ready?

Merging in Git is one way you can integrate the changes made in one
branch into another branch. In any merge, there is one branch that you are
merging, called the source branch, and one branch that you’re merging into,
called the target branch. The source branch is the branch that contains the
changes that will be integrated into the target branch. The target branch is
the branch that receives the changes and is therefore the only one that is
altered in this operation. Let’s take a look at how to use merging in
Example Book Project 5-1.

Example Book Project 5-1
Suppose that in my Book project, I decide together with my editor that
every time I start to work on one of the chapters, I will make a
secondary branch off the main branch. I also agree with my editor that I

will merge the secondary branch into main only after they have reviewed

my work on the branch.

For example, let’s say that I decide to work on chapter 4. I can make a
branch called chapter_four off the main branch, work on this branch, and

then, when I think I’ve made significant headway, submit my work to
my editor. Once they approve the changes, I can merge the chapter_four

branch into the main branch in my local repository.

Example Book Project 5-1 illustrates that when you use branches, it’s also
essential to learn how to merge your work back together. Now, let’s explore
the different types of merges that exist.

Types of Merges
There are two types of merges:

• Fast-forward merges

• Three-way merges

The factor that determines which of these types of merges will take place
when you merge the source branch into the target branch is whether the
development histories of the two branches have diverged. A branch’s
development history can be traced by following the parent links of
commits.

In Chapter 4, I explained that in the Repository Diagrams a gray arrow
pointing from one commit to another indicates a parent link (that is, the
arrow points backward from the child commit to the parent commit). In
Visualize it 5-2, you can see that in the rainbow repository, the parent commit

of the orange commit is the red commit. By the same logic, the orange
commit is the parent commit of the yellow commit.

[VISUALIZE IT 5-2]

Parent links in the rainbow repository

The development history of a branch begins with the commit it points to,
and extends backward through the chain of commits. In Visualize it 5-2,
you can see that the development history of the main branch is therefore

made up of the orange commit and the red commit, while the development
history of the feature branch is made up of the yellow commit, the orange

commit, and the red commit.

To illustrate the difference between fast-forward merges and three-way
merges, let’s start by going over an example of a fast-forward merge in
Example Book Project 5-2.

From Example Book Project 5-2 we can see that a fast-forward merge is a
type of merge that occurs when the development histories of the branches
involved in the merge have not diverged—in other words, when it is
possible to reach the target branch by following the parent links that make
up the commit history of the source branch. During a fast-forward merge,
Git takes the pointer of the target branch and moves it to the commit of the
source branch.

Example Book Project 5-2
Suppose there are two commits on the main branch in my Book project

repository, commits A and B, as seen in Figure 5-1.

Next, let’s assume I create the chapter_six branch to work on chapter 6 of

my book and I add commits C, D, and E to the chapter_six branch, as

F I G U R E 5 - 1

The commit history of the book repository with one branch, the main branch

seen in Figure 5-2.

If I follow the parent links of the main branch backward, I can see that

the branch is made up of commits A and B. In other words, the
development history of the main branch consists of commits A and B. On

the other hand, the development history of the chapter_six branch

consists of commits A, B, C, D, and E.

F I G U R E 5 - 2

The commit history of the book repository after I work on the chapter_six branch

If we can reach one branch through the commit history of another
branch, we say that the development histories of the branches have not
diverged. If I follow the parent links from the chapter_six branch, which

points to commit E, backward, I reach the main branch, which points to

commit B. Therefore, the main branch and the chapter_six branch have not

diverged.

If I were to now merge the chapter_six branch into the main branch, a fast-

forward merge would occur. During the fast-forward merge, the main

branch pointer would move forward to point to the commit that the
chapter_six branch points to, which is commit E, as seen in Figure 5-3.

In this merge example, chapter_six is the source branch and main is the

target branch. Figure 5-3 shows that the main branch pointer simply

moved forward from commit B to commit E. This is why these kinds of
merges are called “fast-forward” merges.

Next, let’s go over an example of a three-way merge in Example Book
Project 5-3.

From Example Book Project 5-3 we can see that a three-way merge is a
type of merge that occurs when the development histories of the branches
involved in the merge have diverged. Development histories have diverged
when it is not possible to reach the target branch by following the commit
history of the source branch. In this case when you merge the source branch
into the target branch, Git performs a three-way merge, creating a merge
commit to tie the two development histories together; it then moves the
pointer of the target branch to the merge commit.

F I G U R E 5 - 3

The commit history after I merge the chapter_six branch into the main branch in the

book repository

Example Book Project 5-3
Suppose that the last two commits on the main branch in my book

repository are commits F and G, as seen in Figure 5-4.

Now suppose I decide to make a chapter_eight branch to work on chapter

8 of my book, and I make commits H, I, and J. At the same time,

F I G U R E 5 - 4

The commit history of the book repository with the last two commits on the main branch

however, I add some work to the main branch, and it now points to

commit L. This is illustrated in Figure 5-5.

In Figure 5-5, you can see that the development history of the
chapter_eight branch is made up of commits F, G, H, I, and J. On the

other hand, the commit history of the main branch is made up of commits

F, G, K, and L. There is no way to follow the parent links (represented

F I G U R E 5 - 5

An example of a commit history where work has been added to the main branch and

the chapter_eight branch

by gray arrows) of the chapter_eight branch backward to reach the

commit that the main branch points to, which is commit L. In Git, to

describe this situation, we say that the development histories of the
branches have diverged.

If I merge the chapter_eight branch into the main branch, it can’t be a fast-

forward merge because there is no way to just move the branch pointer
forward to combine these two development histories. Instead, a merge
commit (represented by commit M) will be created to tie the two
development histories together, as shown in Figure 5-6. A merge
commit is a commit that has more than one parent. This is an example
of a three-way merge.

In Figure 5-6, commit M points back to both commit J and commit L.
The reason that this kind of merge is called a three-way merge is
because in order to carry out the merge, Git will take a look at the two
commits that the branches involved in the merge are pointing to—in the
case of the book repository, commit J and commit L—as well as the

commit that is the common ancestor of these two commits, which in this
case is commit G. Hence the name, “three-way” merge.

Three-way merges are a more complex type of merge where you may
experience merge conflicts. These arise when you merge two branches
where different changes have been made to the same parts of the same
file(s), or if in one branch a file was deleted that was edited in the other
branch.

Chapter 9 of this book is dedicated to explaining three-way merges in more
depth, and in Chapter 10 you will learn more about merge conflicts. In each
chapter, you will go through a hands-on example. In this chapter, you will
practice carrying out a fast-forward merge in the Rainbow project.

Doing a Fast-Forward Merge
To practice merging in the rainbow repository, you will merge the feature

branch into the main branch. The feature branch is the source branch and the

main branch is the target branch. In Visualize it 5-3, you can see that you can

F I G U R E 5 - 6

The commit history after I merge the chapter_eight branch into the main branch

reach the main branch by following the commit history of the feature branch;

therefore, this will be a fast-forward merge.

[VISUALIZE IT 5-3]

In the rainbow repository, the development histories of the main branch and the

feature branch have not diverged

There are two steps involved in doing a merge:

1. Switch onto the branch that you want to merge into (the target branch).

2. Use the git merge command and pass in the name of the branch you’re

merging (the source branch).

[SAVE THE COMMAND]

git merge <branch_name>

Integrate changes from one branch into another branch

This section will walk you through performing your first merge. In the
process, you will learn two more important lessons about Git: first, that Git
protects you from losing any work you have done in files that you have not
committed, and second, that changing branches may cause the contents of
the working directory to change.

SWITCHING ONTO THE BRANCH YOU ARE MERGING INTO
The first step of doing a merge is to switch onto the target branch. You are
going to merge feature into main, so you need to switch onto the main branch.

Recall the three things that happen when you use the git switch (or git

checkout) command to switch onto a branch:

1. It changes the HEAD pointer to point to the branch you are switching

onto.

2. It populates the staging area with all the files and directories that are
part of the commit you are switching onto.

3. It copies the contents of the staging area into the working directory.

As these three steps indicate, if the branches point to different commits,
changing branches also changes the contents of your working directory.
You’ll see this in practice momentarily, but first let’s look at the other
important feature I mentioned.

Git protects you from losing uncommitted changes
I just mentioned that switching branches changes the contents of your
working directory. But what if you have modified files in your working
directory (in other words, files that you have edited) that you have not yet
committed? Will you lose all the work you’ve done in those files if you
switch branches? Thankfully not! Git protects you from losing uncommitted
changes.

If Git detects that switching branches will cause you to lose uncommitted
changes in your working directory, then it will stop you from switching
branches and present you with an error message. However, this happens
only if the files that contain uncommitted changes have conflicting changes
in the branch you are switching onto.

To illustrate why this is important, let’s look at Example Book Project 5-4.

Example Book Project 5-4
Suppose I want to work on two different approaches for chapter 5 in my
book repository. This means I’ll be working on the chapter_five.txt file. I

make two branches off the main branch, once called chapter_five_approach_a

and one called chapter_five_approach_b.

First I go onto the chapter_five_approach_a branch and work on approach

A. I make a couple commits. In these commits I’m editing the
chapter_five.txt file.

Next, I decide to switch onto the chapter_five_approach_b branch to work

on approach B in my text editor. While on the chapter_five_approach_b

branch, I edit the chapter_five.txt file extensively, but I forget to actually

make any commits on the branch (in other words, to properly save my
work).

At some point, I decide I want to switch back to the
chapter_five_approach_a branch to check something I had done on that

branch. If Git simply allowed me to switch branches, then the version of
the chapter_five.txt file in my working directory that I was working on in

the chapter_five_approach_b branch would be replaced by the version of the

file in the chapter_five_approach_a branch, and I would lose all my changes

that I had worked on in approach B because I forgot to commit them.

Luckily, Git won’t let this happen. Instead, it will warn me that I have
uncommitted changes and it will remind me to make a commit so I
won’t lose them.

For a hands-on example in the Rainbow project of editing a file and
witnessing how Git protects you from losing uncommitted changes, go on
to Follow Along 5-1.

[FOLLOW ALONG 5-1]

rainbow $ git status

On branch feature

nothing to commit, working tree clean

In the rainbow project directory in your text editor, in the rainbowcolors.txt file,

add “Green is the fourth color of the rainbow.” on line 4. Then save the file.

rainbow $ git status

On branch feature

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: rainbowcolors.txt

no changes added to commit (use "git add" and/or "git commit -a")

rainbow $ git switch main

error: Your local changes to the following files would be overwritten by

checkout:

 rainbowcolors.txt

Please commit your changes or stash them before you switch branches.

Aborting

What to notice:

• In step 1, the git status output shows you that there are no modified

files in the working directory.

• In step 3, the git status output indicates that the rainbowcolors.txt file is a

modified file in the working directory.

• In step 4, you witness how Git does not allow you to switch branches.
It warns you that Your local changes to the following files would be

overwritten by checkout and it tells you to Please commit your changes or stash

them before you switch branches.

If Git had allowed you to switch branches, then the version of the
rainbowcolors.txt file in the working directory that mentions the colors red,

orange, yellow, and green would have been replaced by the version of the
rainbowcolors.txt file in the orange commit that the main branch points to,

which only mentions the colors red and orange. This means that you would
have lost all the work you did in adding the color green to your list of
colors.

Instead, Git protects you from losing your work in the rainbowcolors.txt file

by warning you to commit your changes.

[NOTE]
Git will not prevent you from switching branches if you make changes to files without

saving them in the text editor, because those files will be considered unmodified files.

So, always remember to save files in your text editor when you’re done working on

them!

Now, you’ll continue with carrying out the first merge in the Rainbow
project. In this case, let’s assume you aren’t yet ready to add notes about the
color green. Go ahead to Follow Along 5-2 and remove the sentence about
that color, so that there are no modified files in your working directory.

[FOLLOW ALONG 5-2]

In the rainbow project directory in your text editor, remove the line “Green is the

fourth color of the rainbow.” from the rainbowcolors.txt file and save the file.

Make sure to remove any extra lines or spaces that you might have added.

rainbow $ git status

On branch feature

nothing to commit, working tree clean

What to notice:

• The git status command indicates that your working directory no

longer has any modified files.

Next, you’re going to carry out the first step of a merge, which is to switch
onto the branch you are merging into. While you do this, you will witness
how switching branches changes the files in your working directory.

Switching branches changes files in the working directory
To see how switching branches changes the files in the working directory,
take a look at Visualize it 5-4, which uses the Git Diagram introduced in
Chapter 2 to show what the different areas of the rainbow project directory

look like at the moment.

[NOTE]
In Visualize It diagrams where there isn’t enough space to include the full name of a

commit, I’ll use an abbreviated form of the name instead: for example, R for red, O for

orange, and so on. For a full list of the abbreviations used for each commit, see Table

P-1 in the Preface.

[VISUALIZE IT 5-4]

The rainbow project directory before you switch from the feature branch onto the main

branch

What to notice:

• The version of the rainbowcolors.txt file in the working directory and

staging area is the one that mentions the colors red, orange, and
yellow. It is represented as version 3 (v3) of the file.

Now, go to Follow Along 5-3 to switch from the feature branch onto the main

branch in the rainbow repository (which points to a different commit) and

observe how the contents of your working directory change.

[FOLLOW ALONG 5-3]

Make sure you have the rainbowcolors.txt file open in your text editor

window, and place it next to your command line window so that you have a

view of both of them when you execute the upcoming commands. Look at the

contents of the rainbowcolors.txt file.

rainbow $ git switch main

Switched to branch 'main'

Look at the contents of the rainbowcolors.txt file.

rainbow $ git log

commit 7acb333f08e12020efb5c6b563b285040c9dba93 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• The version of the rainbowcolors.txt file that was in your text editor

before you switched onto the main branch mentioned the colors red,

orange, and yellow. The version of the rainbowcolors.txt file that is in

your text editor after you switch onto the main branch mentions only the

colors red and orange. This is illustrated in Visualize It 5-5.

• In step 4, the git log output shows only the red and orange commits. It

no longer shows the yellow commit.

[VISUALIZE IT 5-5]

The rainbow project directory after you switch from the feature branch onto the main

branch

What to notice:

• You are on the main branch and it points to the orange commit, which

includes the version of the rainbowcolors.txt file that mentions the colors

red and orange. This is represented as version 2 (v2).

• v3 of the rainbowcolors.txt file has been replaced by v2 of the file in

both the staging area and the working directory.

You have just explicitly observed that switching branches changes the
contents of the working directory. Before you go on to the second step of
doing the merge, let’s briefly touch upon why the git log output in step 4 of

Follow Along 5-3 shows only the red and orange commits.

Viewing a list of all commits
In “Viewing a List of Commits” on page 40, I mentioned that the git log

command shows a list of commits in reverse chronological order. However,
in reality, it shows only a list of commits that are reachable by following the
parent links from the commit you are on when you execute the command.
To see a list of commits for all the branches in your local repository, you
must use the git log command with the --all option.

[SAVE THE COMMAND]

git log --all

Show a list of commits in reverse chronological order for all branches in a local

repository

Go to Follow Along 5-4 to see a list of the commits for all the branches in
your local repository.

[FOLLOW ALONG 5-4]

rainbow $ git log --all

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• The git log --all output shows the red, orange, and yellow commits.

Now that you are on the main branch, you can move on to the second step of

doing a merge.

USING THE GIT MERGE COMMAND TO EXECUTE A MERGE

Go to Follow Along 5-5 to execute the merge by passing the name of the
branch you are merging—the source branch, which is feature—to the git

merge command.

[FOLLOW ALONG 5-5]

Make sure your text editor window with a view of the rainbowcolors.txt file is

open next to your command line window so that you can see both of them

when you execute the upcoming commands. Look at the contents of the

rainbowcolors.txt file.

rainbow $ git merge feature

Updating 7acb333..fc8139c

Fast-forward

 rainbowcolors.txt | 3 ++-

 1 file changed, 2 insertions(+), 1 deletion(-)

Look at the contents of the rainbowcolors.txt file.

rainbow $ git log

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> main, feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• The git merge output mentions Updating 7acb333..fc8139c and Fast-forward.

This tells you that Git updated the commit the main branch points to,

and it tells you that this was a fast-forward merge. Note that the
commit hashes in your output will be different from the ones in this
book.

• The git log output shows that main points to the yellow commit. In your

text editor, you can see that your working directory contains the
version of the rainbowcolors.txt file that is part of the yellow commit.

• You merged the feature branch into the main branch, but it still exists; it

did not get automatically deleted.

All of these observations are illustrated in Visualize it 5-6.

[VISUALIZE IT 5-6]

The working directory and the local repository after merging feature into main

You merged feature into main, but in Git, merging a branch does not delete

the branch. You must explicitly delete a branch if you no longer want to use
it. For now, you will keep the feature branch, and we will go over how to

delete branches in Chapter 8. The next topic I want to cover here is how to
check out commits.

Checking Out Commits
In Chapter 4, I mentioned that the git checkout command may be used to

switch branches as well as to carry out other actions. One of the other things
you can do with the git checkout command is check out commits.

At the moment, you are on the main branch, which points to the yellow

commit. But what if you want to look at an older version of your project?
For example, what if you want to see the state of your project at the orange
commit?

There is currently no branch pointing to the orange commit, so you can’t
switch onto it by switching onto a branch. Instead, you can choose to check
out that commit by using the git checkout command and passing in the

commit hash of the orange commit.

[SAVE THE COMMAND]

git checkout <commit_hash>

Check out a commit

When you do this, the git checkout command will carry out three actions that

are similar to the ones described in Chapter 4 and earlier in this chapter:

1. It changes the HEAD pointer to point to the commit you are switching

onto.

2. It populates the staging area with all the files and directories that are
part of the commit you are switching onto.

3. It copies the contents of the staging area into the working directory.

The main difference between these steps and the steps mentioned
previously is that in step 1 the HEAD pointer will point directly to a commit

instead of pointing to a branch. This means that you will be in something
that Git (scarily) calls detached HEAD state. This allows you to look at any
commit—or, in other words, any version of your project—in your entire
repository.

As these steps indicate, checking out commits changes the contents of the
working directory in the same way that switching branches does.

[NOTE]
It is not recommended to make any changes to a repository while in detached HEAD

state (that is, while not on a branch). You will usually want to make commits on

branches because branches are easier to remember and refer to than commit

hashes, and because Git was designed to be used with branches. Therefore, if you

check out a commit, it is common to make and switch onto a new branch that will

point to that commit, so that you’re no longer in detached HEAD state.

Go to Follow Along 5-6 to check out the orange commit and observe what
it’s like to be in detached HEAD state.

[FOLLOW ALONG 5-6]

Retrieve the commit hash for your orange commit (you can copy this from your

git log output). Make sure to use your commit hash in step 2 of this Follow

Along.

rainbow $ git checkout 7acb333f08e12020efb5c6b563b285040c9dba93

Note: switching to '7acb333f08e12020efb5c6b563b285040c9dba93'.

You are in 'detached HEAD' state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in

this state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -c with the switch command. Example:

 git switch -c <new-branch-name>

Or undo this operation with:

 git switch -

Turn off this advice by setting config variable advice.detachedHead to

false

HEAD is now at 7acb333 orange

[FOLLOW ALONG 5-6]

rainbow $ git log --all

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (main, feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93 (HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

Look at the contents of the rainbowcolors.txt file.

What to notice:

• In step 2, the git checkout output tells you that You are in ‘detached HEAD’

state. The output also refers to a modification of the git switch

command, which we will touch upon in the following section.

• In step 3, the git log output shows you that HEAD now points to the

orange commit.

• The version of the rainbowcolors.txt file in your working directory is the

version that is part of the orange commit, which mentions only the

colors red and orange (represented by v2).

These observations are illustrated in Visualize it 5-7.

[VISUALIZE IT 5-7]

The working directory and the local repository after you check out the orange commit

and enter detached HEAD state

[NOTE]
It may seem scary that the contents of the working directory change every time you

switch branches or check out a commit directly—but remember that you have not lost

anything. All of your commits are safely stored in the commit history, and you can

always choose to switch to another branch or to check out another commit to see

what you were looking at before.

You just observed what it is like to check out a commit directly instead of
checking out a branch. Next, go to Follow Along 5-7 to switch back onto
the main branch and exit detached HEAD state.

[FOLLOW ALONG 5-7]

rainbow $ git switch main

Previous HEAD position was 7acb333 orange

Switched to branch 'main'

rainbow $ git log

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> main, feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

Look at the contents of the rainbowcolors.txt file.

What to notice:

• The version of the rainbowcolors.txt file in your working directory is the

version that is part of the yellow commit, which mentions the colors
red, orange, and yellow (represented by v3).

• You are back on the main branch.

This is illustrated in Visualize it 5-8.

[VISUALIZE IT 5-8]

The working directory and the local repository after you switch onto the main branch

and exit detached HEAD state

Creating a Branch and Switching onto It in One
Go
In Chapter 4, you learned to make a new branch by using the git branch

command and to use the git switch (or git checkout) command to change onto

that branch.

In step 2 of Follow Along 5-6, the git checkout output stated: If you want to

create a new branch to retain commits you create, you may do so (now or later) by

using -c with the switch command. Example: git switch -c <new-branch-name>.

This is because it is actually possible to use the git switch or git checkout

command to create a branch and switch onto it in one go. If you use the git

switch command you must use the -c option (which stands for “create”), and

if you use the git checkout command you must use the -b option.

[SAVE THE COMMAND]

git switch -c <new_branch_name>

Create a new branch and switch onto it

git checkout -b <new_branch_name>

Create a new branch and switch onto it

You will practice using this command in “Preparing to Make a Pull
Request” on page 240, when you make a new branch.

Summary

In this chapter, we covered what merging is and why we do it. I introduced
the two types of merges—fast-forward merges and three-way merges—and
explained how the type of merge that will be carried out depends on the
development histories of the branches involved in the merge.

Finally, you performed a fast-forward merge yourself in the rainbow

repository, learning in the process that Git protects you from losing
uncommitted changes, that changing branches may change the contents of
the working directory, and how to check out commits.

This chapter marks the end of the first part of this book, in which you
worked exclusively with local repositories. Next, in Chapter 6, you are
going to prepare your hosting service account and authentication details in
order to start working with remote repositories.

[6]

Hosting Services and
Authentication

In the last chapter, you learned about merging and how this
feature of Git allows you to integrate changes from one branch
into another.

Up until this point we have discussed working only in local
repositories, and you have worked only on the rainbow repository,

which is a local repository. This chapter marks the start of the
second part of this book, in which you will work with hosting
services and remote repositories.

In this chapter, you will choose a hosting service and prepare the
authentication details you will use to connect to remote
repositories on that hosting service by using either the HTTPS
(Hypertext Transfer Protocol Secure) or SSH (Secure Shell)
protocol. The information that you will need to carry out these
tasks is contained in this chapter as well as in the resources in the
Learning Git repository
(https://github.com/gitlearningjourney/learning-git).

https://github.com/gitlearningjourney/learning-git

[NOTE]
If you work at a company that uses Git and a hosting service, you may already have a

hosting service account using your company email address. However, I recommend

using a personal account with a hosting service for the exercises in this book instead

of a company account. This is because your company may have configured additional

settings on the company hosting service account that could complicate exercises later

in the book.

If you already work with a hosting service that you want to use to complete
the exercises in this book and you already have authentication details set up
to connect to remote repositories over a secure protocol, then you may skip
this chapter and move on to Chapter 7 to learn more about how to create
and push to remote repositories.

If you haven’t yet chosen which hosting service you want to use, have not
set up authentication details for a specific protocol, or want to learn more
about the available protocols, then keep reading.

Hosting Services and Remote Repositories
In Chapter 2 I mentioned two types of repositories: local repositories and
remote repositories. Local repositories are found on a computer, while
remote repositories are hosted on a hosting service in the cloud.

I also mentioned that hosting services are companies that provide hosting
for projects using Git. In this book, I will provide information about the
three main Git hosting services: GitHub, GitLab, and Bitbucket.

To transfer data between a local repository and a remote repository on a
hosting service, you must connect and authenticate using either SSH or

HTTPS. From Chapter 7 onward, you will be uploading and downloading
data to and from a remote repository using commands such as git push, git

clone, git fetch, and git pull. To use these commands and connect to the

remote repository you will have to have prepared authentication details for
the protocol you want to use beforehand.

In this chapter, first you will choose a hosting service, and then you will set
up authentication details to connect to remote repositories over HTTPS or
SSH.

Setting Up a Hosting Service Account
As mentioned previously, if you already work with a hosting service and
know you want to use that one for the exercises in this book, you can
simply log in to your account on the hosting service website.

If you’ve never worked with a hosting service, you will have to choose
which one you want to use and create an account. The three main hosting
services are GitHub, GitLab, and Bitbucket. If you’re not sure which one to
use, then I recommend using GitHub since it is the most popular one and
the one I use for the example output for the Rainbow project in this book.

Go to Follow Along 6-1 to make your choice of hosting service and log in.

[FOLLOW ALONG 6-1]

Choose the hosting service on which you want to create a remote repository,

and go to the website. Either log in or create an account. In these examples,

we will use GitHub.

Now that you have chosen and logged in to your hosting service, you must
choose which protocol you want to use to connect to remote repositories
and prepare your authentication details for that protocol.

Setting Up Authentication Credentials
When you create a remote repository, there will be two ways to make
changes to it:

1. By logging in to the hosting service via its website and making
changes there directly.

2. By making changes in your local repository and uploading those
changes to the remote repository on the hosting service.

In both cases, you will need to authenticate, or verify your identity.
Authentication is important, to control who logs in to your hosting service
account and who uploads changes to a remote repository.

In the first case, you will use your username or email address and password
to authenticate and log in to your hosting service account.

But what about in the second case? How will your hosting service know
that it should allow you to upload things from a local repository to a remote
repository?

The answer is that you will have to authenticate through the protocol you
choose to use. In this chapter, we will cover the HTTPS and SSH protocols.
You need to set up only one of these, and you can choose which one you
prefer.

[NOTE]
In Chapter 7 you will go through the process to create a remote repository for your

Rainbow project, which will produce two URLs: an HTTPS URL and an SSH URL.

You will have to use the URL for the protocol you decide to use.

We’ll cover the HTTPS protocol first. If you only want to learn about and
use the SSH protocol, then you may skip the following section and go
straight to “Using SSH” on page 93. Keep in mind that you don’t need to
understand these protocols in depth in order to use them.

If you’re not sure which protocol to choose, I recommend setting up the
HTTPS protocol to carry out the exercises in this book because the process
is slightly simpler and the examples in this book will use the HTTPS
protocol. Whichever protocol you choose to set up, you can always choose
to set up the other one as well in your future work with Git, so this isn’t a
critical decision right now.

USING HTTPS
The HTTPS protocol uses a username and some sort of password (or
authentication credential) to allow you to securely connect to remote
repositories. In the past, all the hosting services allowed you to use the
password you use to log in to your account on the hosting service (which
we will refer to as the account password) for HTTPS authentication as well.
However, GitHub and Bitbucket no longer allow this; they require you to
create another authentication credential.

In GitHub, the authentication credential is called a personal access token. In
Bitbucket, it’s called an app password. With GitLab, you can still simply
use your account password to authenticate. See Table 6-1 for an overview

of the three most common hosting services and the access credentials
necessary to authenticate over HTTPS.

TA B L E 6 - 1 . Hosting services and necessary access credentials for authenticating over

HTTPS

HOSTING SERVICE USERNAME PASSWORD

GitHub Email address or username Personal access token

GitLab Email address or username Account password

Bitbucket Email address or username App password

Go to Follow Along 6-2 to prepare your authentication credential.

[FOLLOW ALONG 6-2]

If you are using GitHub or Bitbucket and you have chosen to use the HTTPS

protocol, then go to the Learning Git repository

(https://github.com/gitlearningjourney/learning-git) for more information on how

to set up your authentication credential. You may skip the following section.

If you have decided to use the SSH protocol, continue on to “Using SSH.”

USING SSH
The SSH protocol uses a public and private SSH key pair to allow you to
securely connect to remote repositories. The three main steps to setting up
SSH access are:

1. Create an SSH key pair on your computer.

2. Add the private SSH key to the SSH agent.

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_ch06.xhtml

3. Add the public SSH key to the hosting service account.

Go to Follow Along 6-3 to carry out the three steps to set up SSH access.

[FOLLOW ALONG 6-3]

If you have chosen to use the SSH protocol, then go to the Learning Git

repository (https://github.com/gitlearningjourney/learning-git) for more

information on how to set up authentication details to connect over SSH.

Now that you have prepared your authentication details to connect to
remote repositories over either HTTPS or SSH, you may continue to the
next chapter to create the first remote repository for the Rainbow project.

Summary
In this chapter, you chose which hosting service you wanted to use to
complete the rest of the exercises in this book, and you prepared the

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_ch06.xhtml

authentication details you will need to connect to remote repositories over
either HTTPS or SSH. In Chapter 7, you will learn about creating remote
repositories and start exploring how you can work with others on Git
projects.

[7]

Creating and Pushing to a
Remote Repository

In the last chapter, we went over choosing which hosting service
you want to use, creating an account, and setting up
authentication details to securely connect to remote repositories
over HTTPS or SSH.

In this chapter, we will look at the different ways you can use
either local or remote repositories to start working on a Git
project and why remote repositories are useful. You will carry out
the steps to create a remote repository for the Rainbow project,
and you’ll upload some data to it. Additional resources to assist
you as you work through this chapter are available in the
Learning Git repository
(https://github.com/gitlearningjourney/learning-git).

State of the Local Repository
At the start of this chapter you should have three commits and two branches
in your rainbow repository, and you should be on the main branch. The current

state of the rainbow repository is illustrated in Visualize it 7-1.

https://github.com/gitlearningjourney/learning-git

[VISUALIZE IT 7-1]

The rainbow repository at the start of Chapter 7

The Two Ways to Start Work on a Git Project
In Chapter 2 you learned that there are two types of repositories: local
repositories, which are stored on a computer, and remote repositories, which

are hosted on a hosting service. You can start working on a project using Git
from either a local or a remote repository. Up until now in the Rainbow
project, you have taken the first approach because you started working on
your project from a local repository. In Chapter 8, you will walk through a
hands-on example of starting to work on a Git project from a remote
repository. I’ll provide a brief overview of each approach in this section.

STARTING FROM A LOCAL REPOSITORY
To start to work on a Git project from a local repository, you must first
create a local repository on a computer using the git init command and

make at least one commit. Next, you must create a remote repository on a
hosting service. Finally, you may upload data from the local repository to
the remote repository.

In Git, we use the term push or pushing to refer to the process of uploading
data from a local repository to a remote repository, and the command we
use to do this is git push.

[SAVE THE COMMAND]

git push

Upload data to a remote repository

This is the approach you are going to take with the Rainbow project in this
chapter, and it is illustrated in Figure 7-1.

An example of a situation where you would start to work on a Git project
from a local repository is if you have a project on your computer that
you’ve been working on for a while that is not a repository—in other
words, you are not using Git to version control it—and then you decide that
you want to start version controlling it with Git. In this case, you would use
the git init command to initialize the local repository on your computer,

make an initial commit, and then carry out the rest of the steps to create a
remote repository and upload data to it.

F I G U R E 7 - 1

Starting to work on a Git project from a local repository

The other way to start working on a Git project is to start from a remote
repository.

STARTING FROM A REMOTE REPOSITORY
To start to work on a Git project from a remote repository, you can either
find a remote repository that you want to work on or create a new remote
repository on a hosting service. Then, you clone (in other words, copy) the
remote repository to your computer, which will create a local repository.
This is the approach we will cover in Chapter 8, and it is illustrated in
Figure 7-2.

F I G U R E 7 - 2

Starting to work on a Git project from a remote repository

An example of when you would start working on a project from a remote
repository is if your friend is working on a project that has a remote
repository, and they ask you to contribute to it. In this case, you would ask
your friend to tell you where to find the remote repository, and then you
would clone (or copy) it to your computer and start working on it.

Up to this point, with the Rainbow project you’ve been working exclusively
with a local repository. Later in this chapter, you will create a remote
repository and upload data to it. But first, I want to make a quick point
about the interaction between local repositories and remote repositories.

The Interaction Between Local and Remote
Repositories
Local repositories and remote repositories act separately. When it comes to
working with them, it’s important to understand that no interaction between
them happens automatically. In other words, no updates from the local
repository to the remote repository will happen automatically, and
conversely, no updates from the remote repository to the local repository
will happen automatically.

There is no live connection between the two. Any changes in either will be
the result of you explicitly executing commands. In this and the following
chapters, you will learn what these commands are.

Before you go on to create a remote repository, let’s discuss why you would
want to create one in the first place.

Why Do We Use Remote Repositories?

There are three main reasons why remote repositories are useful and
important when working on a Git project. They allow you to:

• Easily back up your project somewhere other than your computer.

• Access a Git project from multiple computers.

• Collaborate with others on Git projects.

Let’s take a look at Example Book Project 7-1 to see why you might want
to create a remote repository for a Git project.

Example Book Project 7-1
Suppose I had only a local repository on my computer for my Book
project, and no remote repository. If someone stole my laptop or the
hard drive died, I would lose all the work I had done on my book.
Remote repositories are a good backup mechanism.

A remote repository also will allow me to access my project from other
computers. Imagine I have two laptops—one at home and one in my
office that I work on during the day—and my Book project is stored on
the laptop at home. If I have a remote repository for it as well, I can also
access the Book project from my work laptop. Then I can either make
changes to it directly on the hosting service website, or I can clone the
remote repository onto my work laptop to create a local repository. An
additional benefit is that I can show my progress on the book to my
coworkers.

A remote repository also allows me to collaborate easily with others on
my Book project. I can give access to the remote repository to anyone
that wants to view my progress on it or contribute to it. Other people
will then have the ability to either clone the remote repository onto their
computer to make a local repository, or to simply view the contents of
the remote repository directly on the hosting service website. For
example, I need a remote repository to collaborate on my Book project
with my coauthor and my editor.

Example Book Project 7-1 illustrates why working with remote repositories
is so useful. Now that you understand this, let’s go over how to create one.
Suppose you’ve told a friend about your experience working on the

Rainbow project, and they want to see what you’ve been doing. To make
this possible, you’ll need to create a remote repository. Let’s do that now.

Creating a Remote Repository with Data
The Rainbow project currently consists of one local repository: your rainbow

repository, shown in Visualize it 7-2.

[NOTE]
From this point forward in the book, we are going to expand the Repository Diagram

to include a space at the top to represent what is happening in the remote repository,

as seen in Visualize It 7-2.

[VISUALIZE IT 7-2]

The Rainbow project currently consists of one local repository, called rainbow

Your friend wants to see what you’ve been working on. To enable this, you
need to create a remote repository and upload some data to it. There are
three steps to this process:

1. Create the remote repository on the hosting service.

2. Add a connection to the remote repository in the local repository.

3. Upload (or push) data from the local repository to the remote
repository.

In the following sections we’ll walk through each of these, and along the
way I’ll introduce some new kinds of branches.

CREATING THE REMOTE REPOSITORY
When you create a remote repository on a hosting service, you will give it a
remote repository project name and the hosting service will provide a
remote repository URL. The remote repository URL will automatically
include the remote repository project name. As you learned in Chapter 6,
the hosting service will generate an SSH URL and an HTTPS URL for your
repository. You should use the one for the protocol you have chosen to use.

The process of creating the remote repository is done entirely on the hosting
service’s website. You will need to consult your hosting service’s
documentation for details on the specific steps to follow. For additional
resources, go to the Learning Git repository
(https://github.com/gitlearningjourney/learning-git).

Here, I’ll provide you with some general guidance. As mentioned
previously, when you create your remote repository you will have to

https://github.com/gitlearningjourney/learning-git

provide the project name. For the Rainbow project, this will be rainbow-

remote.

[NOTE]
It is common for a remote repository and a local repository to share the same name.

However, to make it easier for you to distinguish between the local and remote

repositories in the Rainbow project, we’ll give them distinct names.

You also will have to choose whether the remote repository will be public
or private. This is a setting you can adjust on a hosting service for each
repository. A public repository is visible to anyone on the internet. A
private repository is visible only to the individuals given access to it. In
both cases, you can contribute to the repository only if you are provided
with access. Since the repository you are working on in this book is for
learning purposes only, I recommend you make it private. This way you can
control who is able to view it (for example, you can grant access to the
friend who wants to see what you’ve been working on).

Some hosting services may ask if you want to include any files when you
create the repository, such as a README or .gitignore file. For the purposes of

this book, you should not include any files; if the option to include them is
selected, make sure to deselect it. Since you will be uploading data from
your local repository to the remote repository, you want your remote
repository to be empty.

If the hosting service provides an option to choose a license, you can ignore
this (i.e., don’t select a license), as this is just a learning exercise.

Finally, some hosting services may ask you to enter a value for the default
branch name. For the exercises in this book, you may either leave this value
blank or enter main as the value.

Now, go to Follow Along 7-1 to create your remote repository.

[FOLLOW ALONG 7-1]

Log in to your account on your hosting service of choice.

Complete the steps to create a remote repository. For more information on

this, go to the Learning Git repository

(https://github.com/gitlearningjourney/learning-git) or consult your hosting

service’s documentation directly.

When creating the repository for this exercise:

• For the repository name, use rainbow-remote.

• You may choose to make the repository public or private. I recommend

making it private.

• Do not include any files. For example, do not include a README file or a

.gitignore file.

• If you are asked to provide a default branch name, you may leave the field

blank or set it to main.

Once you’ve finished the steps to create the remote repository, locate the

remote repository URL. There will be two versions of the URL, one for HTTPS

and one for SSH. In an upcoming exercise, you will have to use the URL for

the protocol you set up in Chapter 6. In the examples in this book, the two

remote repository URLs are:

• HTTPS: https://github.com/gitlearningjourney/rainbow-remote.git

• SSH: git@github.com:gitlearningjourney/rainbow-remote.git

What to notice:

• You created a remote repository called rainbow-remote; however, there is

no data in the remote repository.

https://github.com/annaskoulikari/learninggit

The state of the Rainbow project after completing the Follow Along is
illustrated in Visualize it 7-3.

[NOTE]
From this point forward, in the Repository Diagram, we use a rectangle with normal

90-degree corners to represent a local repository and a rectangle with rounded

corners to represent a remote repository.

[VISUALIZE IT 7-3]

The Rainbow project after you create the empty remote repository, rainbow-remote

You’ve now created a remote repository on your hosting service, but as this
Visualize It shows, it’s currently empty. Creating a remote repository on a
hosting service does not upload any data to it. To upload data, you need to
first add a connection to the remote repository in your local repository. Let’s
take a look at how to do this.

ADDING A CONNECTION TO THE REMOTE REPOSITORY
A local repository can communicate with a remote repository when the
local repository has a connection to the remote repository stored within it.
This connection will have a name, which we refer to as the remote
repository shortname or just shortname. A local repository can have
connections to multiple remote repositories, although this isn’t very
common.

If a local repository was initialized locally, to set up a connection to a
remote repository you must explicitly associate the remote repository URL
to the remote repository shortname. To do this you use the git remote add

command, passing in the shortname followed by the remote repository
URL.

[SAVE THE COMMAND]

git remote add <shortname> <URL>

Add a connection to a remote repository named <shortname> at <URL>

[NOTE]
The examples in this book will use the HTTPS URL; however, you may choose to use

either your SSH URL or your HTTPS URL, depending on which protocol you have

chosen to use. Be sure to use the URL provided by your hosting service, which will be

different from the URL used in this book’s examples.

Once a connection to a remote repository is stored in a local repository, you
are able to connect to the remote repository by referring to the shortname
rather than the URL in the command line.

[NOTE]
When you clone a remote repository to create a local repository, Git automatically

adds a connection to the remote repository with the default shortname origin. You

will see this in practice in “Cloning a Remote Repository” on page 114. It is common

even when a local repository is initialized locally to use origin for the shortname, as

this is the default shortname for a repository when it is cloned.

This is a similar concept to how, as mentioned in “A Bit of Git History: master and

main” on page 48, when we initialize a repository using the git init command with

no additional options Git automatically creates a branch with the default name master.

Again, there is nothing special about the terms origin or master; they are simply the

current default naming conventions used by Git.

The rainbow repository was initialized locally, so you are going to have to

add a connection to the remote repository in the local repository explicitly.
Before you go ahead and do that, let’s first go over some additional useful
commands.

[NOTE]
In the official Git documentation, a connection to a remote repository stored in a local

repository is simply referred to as a remote.

To see the list of connections to remote repositories stored in a local
repository by shortname, you may use the git remote command. If you pass

in the -v option (which stands for “verbose”) to the git remote command,

then it lists the connections to remote repositories stored in a local
repository by shortname along with their URLs.

[SAVE THE COMMAND]

git remote

List the remote repository connections stored in the local repository by

shortname

git remote -v

List the remote repository connections in the local repository with shortnames

and URLs

Go to Follow Along 7-2 now, and associate your URL to the shortname
origin in the rainbow repository. In step 4, be sure to enter the entire command

on a single line.

[FOLLOW ALONG 7-2]

Using a filesystem window, go to rainbow > .git > config. Open the config

file. You will see that at the moment there are no connections to remote

repositories listed in the file. In other words, you will not see any mentions of

your remote repository URL or shortname in the file.

Go to your hosting service and copy the remote repository URL for the

protocol you have chosen (either SSH or HTTPS). You will need to use this

URL in step 4 of this Follow Along.

rainbow $ git remote

rainbow $ git remote add origin https://github.com/gitlearningjo

urney/rainbow-remote.git

rainbow $ git remote

 origin

rainbow $ git remote –v

origin https://github.com/gitlearningjourney/rainbow-remote.git (fetch)

origin https://github.com/gitlearningjourney/rainbow-remote.git (push)

Close the config file and open it again in a new window. You will see that there

is one connection to a remote repository listed in the file. It should look similar

to:

[remote "origin"]

 url = https://github.com/gitlearningjourney/rainbow-remote.git

 fetch = +refs/heads/*:refs/remotes/origin/*

What to notice:

• In step 3, there are no shortnames listed under the git remote output.

• In step 5, there is one shortname listed under the git remote output,

which is origin.

The addition of this connection is illustrated in Visualize it 7-4.

[VISUALIZE IT 7-4]

The Rainbow project after you add a connection to the rainbow-remote repository in

your rainbow repository

What to notice:

• The rainbow repository has a shortname associated with the remote

repository URL, called origin.

• The rainbow-remote repository still does not have any data in it.

In Visualize it 7-4, you can see that the arrow that represents the shortname
stored in the rainbow repository that relates to the rainbow-remote repository is

going in only one direction. This is because the connection between a local
and a remote repository goes from the local repository to the remote
repository but not the other way around. In a local repository, you can find a
list of all the remote repositories it has stored a connection to; however, in a
remote repository you cannot find a list of local repositories that store a
connection to that remote repository.

Notice as well that just because you added a connection to the remote
repository in your local repository does not mean that any data from the
local repository was uploaded to the remote repository. To upload data to a
remote repository, you must push a branch to the remote repository. This
process will upload all the commits that are part of that branch.

To help you understand what happens when you carry out this final step, I
need to introduce a few other kinds of branches.

INTRODUCING REMOTE BRANCHES AND REMOTE-TRACKING
BRANCHES
In Chapter 4 you learned about branches, which as you saw are movable
pointers to commits. Up until now, you have worked only with local
branches. When you push a local branch to a remote repository, you will
create a remote branch. A remote branch is a branch in a remote repository.

Remote branches do not automatically update when you make more
commits on local branches. You have to explicitly push commits from a
local branch to a remote branch. Every remote branch (that a local
repository knows about) also has a remote-tracking branch. This is a
reference in a local repository to the commit a remote branch pointed at the
last time any network communication happened with the remote repository.
You can think of it as being like a bookmark.

You can set up a tracking relationship between a local branch and a remote
branch by defining which remote branch a local branch should track. This is
referred to as the upstream branch. There are some cases where Git will set
the upstream branch automatically, but in other cases you have to set it
explicitly.

When you push work from a local branch to a remote branch, Git needs to
know which remote branch you want to push to. If the local branch has an
upstream branch defined for it, you can use git push with no arguments, and

Git will automatically push the work to that branch. However, if no
upstream branch is defined for the local branch you’re working on, you’ll
need to specify which remote branch to push to when you enter the git push

command. (If you don’t, you’ll get an error message.)

In this chapter, we will show how to specify the remote branch you want to
push to when using the git push command. In Chapter 9, you will learn how

to define an upstream branch.

You’re now ready to complete the third step of creating a remote repository:
pushing a local branch to the remote repository.

PUSHING TO A REMOTE REPOSITORY
To push a local branch to your remote repository, you will use the git push

command and pass in the shortname for the remote repository and the name
of the branch that you want to push. For the rainbow repository, the

shortname you will use is origin and the branch you will push is main.

[SAVE THE COMMAND]

git push <shortname> <branch_name>

Upload content from <branch_name> to the <shortname> remote repository

After you execute the git push command, two things will happen:

1. A remote branch will be created in your remote repository.

2. A remote-tracking branch will be created in your local repository.

[NOTE]
To push data to a remote repository, you must be connected to the internet and have

either SSH access or HTTPS access to your hosting service of choice.

In Chapter 4, you used the git branch command to list all the local branches.

Now you will use the git branch command with the --all option to list all the

local and remote-tracking branches in your local repository.

[SAVE THE COMMAND]

git branch --all

List local branches and remote-tracking branches

Go to Follow Along 7-3 to push your branch to the remote repository.

[FOLLOW ALONG 7-3]

Using a filesystem window, go to rainbow > .git > refs and look at the

directories that are inside the refs directory. There should be two directories:

heads and tags.

rainbow $ git push origin main

Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.

Delta compression using up to 4 threads

Compressing objects: 100% (5/5), done.

Writing objects: 100% (9/9), 747 bytes | 373.00 KiB/s, done.

Total 9 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), done.

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] main -> main

In the filesystem window, look at the directories that are inside the refs

directory again. There should now be three directories: heads, tags, and

remotes.

Go to your rainbow-remote repository on your hosting service and refresh the

page. Go to the page that lists your commits. You should see your three

commits there now.

rainbow $ git branch --all

 feature

* main

 remotes/origin/main

[FOLLOW ALONG 7-3]

rainbow $ git log

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> main,

origin/main, feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

commit c26d0bc371c3634ab49543686b3c8f10e9da63c5

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:23:18 2022 +0100

 red

What to notice:

• In step 2, the output of the git push command indicates that you have

pushed your branch to the remote repository. Note that it doesn’t
matter if the numbers in your output are slightly different.

• In step 3, you can see that the refs directory has a new directory inside

it called remotes. Inside the remotes directory is a directory called origin,

and inside this directory is a file called main. This represents the new

origin/main remote-tracking branch.

• In step 4, you can see that in the rainbow-remote repository, there is a

remote main branch. If you go to your hosting service, you will find the

three commits of the local main branch.

• There is no feature branch in the remote repository.

All of these observations are illustrated in Visualize it 7-5.

[VISUALIZE IT 7-5]

The Rainbow project after you push your local main branch to the remote repository

[NOTE]
For commands like git commit, git push, and git merge, it doesn’t matter if your

output has slightly different numbers than the output in this book. The same goes for

other commands you’ll use in later chapters in this book such as git clone, git

fetch, and git pull.

Notice that when you push a specific branch to a remote repository, only the
data from that branch is uploaded to the remote repository. You pushed the
main branch to the remote repository, but the feature branch was not pushed

to the remote repository.

At the moment, in your rainbow repository, the main and feature branches have

the same commits. In other words, their development histories, which can
be traced by following the commits and the parents links backward, consist
of the same commits. Therefore, it is not so obvious in Visualize it 7-5 that
the feature branch is not in the remote repository. However, in real-world

projects, your branches will often have different development histories and
therefore consist of different commits. This means that if you don’t push a
particular branch to the remote repository, you won’t have some of the
commits in your remote repository.

If you also want to push your feature branch to the remote repository, you

have to do so explicitly. Go to Follow Along 7-4 and do this now.

[FOLLOW ALONG 7-4]

rainbow $ git switch feature

Switched to branch 'feature'

rainbow $ git push origin feature

Total 0 (delta 0), reused 0 (delta 0), pack-reused 0

remote:

remote: Create a pull request for 'feature' on GitHub by visiting:

remote: https://github.com/gitlearningjourney/rainbow-

remote/pull/new/feature

remote:

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] feature -> feature

rainbow $ git branch --all

* feature

 main

 remotes/origin/feature

 remotes/origin/main

Go to your rainbow-remote repository on your hosting service and refresh the

page. Look at the list of branches.

[FOLLOW ALONG 7-4]

rainbow $ git log

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> feature,

origin/main, origin/feature, main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

[NOTE]
From this point forward in the book, the git log output in Follow Alongs will display

only the last few commits that were made in a given repository.

What to notice:

• In step 3, you can see that in the rainbow repository there are two

remote-tracking branches, origin/main and origin/feature.

• In step 4, you can see that in the rainbow-remote repository there are two

remote branches, main and feature.

This is illustrated in Visualize it 7-6.

[VISUALIZE IT 7-6]

The Rainbow project after you push the local feature branch to the remote repository

You have now created a remote repository with data in it. In Chapter 6, I
mentioned that there are two ways to make changes to a remote repository:

1. By logging in to the hosting service via its website and making
changes there directly.

2. By making changes in your local repository and uploading those
changes to the remote repository on the hosting service.

In this chapter we covered an example of the second situation, but let’s talk
briefly about the first one.

Working on a Remote Repository Directly on a
Hosting Service
Up until now, you have learned how to use your local repository to make
commits (Chapter 3), work with branches (Chapter 4), and carry out a basic
merge (Chapter 5).

However, it is also possible to use the UI of a hosting service’s website to
carry out a lot of actions (and many more) that are similar to these. For
example, on a hosting service you can make commits directly on a remote
repository, you can create remote branches, and, as you will see in Chapter
12, you can merge branches through a feature called a pull request.

Because this book focuses on teaching how to use Git in the command line,
we won’t cover how to carry out all the corresponding actions in a hosting

service. However, all of these features will be comprehensively documented
in your hosting service’s documentation. These features may be helpful for
collaborators you work with in the future that don’t know how to use Git.

Now that you have learned the basics of working with local and remote
repositories and you have created a remote repository for the Rainbow
project and pushed some branches to it, the next step in your learning
journey is to start collaborating on the project.

Summary
This chapter introduced what remote repositories are, why we use them, and
the three steps to create a remote repository with data in it when you‘re
starting from a local repository. You set up a remote repository on your
hosting service, added a connection to the remote repository in your local
repository, and pushed data from the local repository to the remote
repository. Along the way, you learned about the concepts of remote
branches, remote-tracking branches, and upstream branches.

Next, in Chapter 8, your friend will start helping you work on your project
by cloning the remote repository.

[8]

Cloning and Fetching

In the last chapter, you learned about remote repositories and you
created one for the Rainbow project.

In this chapter, you are going to start simulating what it would be
like to work with a friend on the Rainbow project. To do that, you
are going to learn about cloning remote repositories and how this
differs from initializing repositories locally. You will also learn
more about defining upstream branches, deleting branches, and
fetching data from a remote repository.

[NOTE]
Some text editors that have Git integrations allow you to define certain settings for

Git. This chapter assumes that you have not enabled any special settings that will

cause Git to deviate from its default behavior.

For example, Visual Studio Code has a feature called Autofetch (git.autofetch) that

will periodically fetch changes from a remote repository. (You will learn about fetching

later in this chapter.) This feature is disabled by default, and for you to be able to do

the exercises in this chapter properly it should remain disabled. If you have enabled it

in the past, then please disable it before continuing.

If you have never configured any special Git settings for your text editor, you don’t

need to worry about this.

State of the Local and Remote Repositories
At the start of this chapter, you should have a local repository called rainbow

and a remote repository called rainbow-remote. These two repositories should

be in sync; that is, they should contain the same commits and branches. The
expected current state of the two repositories is illustrated in Visualize it 8-
1.

[VISUALIZE IT 8-1]

The Rainbow project at the start of Chapter 8, with a local repository called rainbow

and a remote repository called rainbow-remote

Cloning a Remote Repository
In the previous chapter you created a remote repository on a hosting service
so you could show your friend the work you’ve been doing on the Rainbow
project. Now, let’s pretend that your friend has decided they want to help
you work on the project. If they’re going to contribute to the project, they
will need to clone (that is, copy) your remote repository. In the following
section I will describe how you will simulate this scenario.

At the start of the book, you learned that Git is a useful tool for
collaboration. Cloning remote repositories is an essential part of being able
to collaborate with other people on a Git project, since it allows them to
work with their own copy of the repository on their computer. An unlimited
number of people can clone a remote repository (as long as they are
provided with access to it).

Let’s take a look at Example Book Project 8-1 for an illustration.

Example Book Project 8-1
Suppose I initially planned to work on my Book project on my own,
then later changed my mind and decided that I wanted to work with a
coauthor.

My coauthor will need to clone the remote repository to have their own
copy of the Book project on their computer so they can start working
with me on the book. To enable this, they will need to have an account
with whichever hosting service is hosting the remote repository. Then, I
will have to grant them editing access to the repository so they can
comment and contribute, regardless of whether it is public or private.

If at some point I want my editor to review my work, we’ll need to
follow the same steps: they’ll set up an account with the hosting service,
then I’ll grant them access to the repository and tell them where to find
it, and they will clone the repository onto their computer.

Example Book Project 8-1 shows why cloning repositories is such an
important part of collaborating with others on any Git project. Next, we’ll
look at how you are going to simulate the experience of working with
someone else on the Rainbow project.

THE COLLABORATION SIMULATION
Normally, if two people are working on the same project, each will have a
local repository on their own computer and each will contribute to one
remote repository. Given that you may not have two computers or another
person available to help you work through the collaboration exercises in
this and the following chapters, you are going to clone the remote

repository onto your computer and create a second local repository, which
you will call friend-rainbow to distinguish it from the rainbow repository.

You will then pretend that this second local repository is on your friend’s
computer. From now on, when we refer to your friend completing some
action, you will perform the action yourself in the friend-rainbow repository.

After your friend clones the remote repository, you will be working with
two local repositories. I recommend working with two separate text editor
windows, one for each project directory. I also recommend working with
two separate command line windows (or integrated terminals), one for each
repository, rather than navigating into and out of each project directory in
one command line window.

In Git, we use the term clone or cloning to refer to the process of copying a
remote repository onto a computer to create a local repository and the
command we use to do this is git clone. To clone a remote repository, you

use the git clone command and pass in the remote repository URL and,

optionally, a project directory name.

[SAVE THE COMMAND]

git clone <URL> <directory_name>

Clone a remote repository

If you don’t pass a project directory name, then the local repository will be
assigned the remote repository project name. For example, if you don’t pass
a project directory name in the upcoming Follow Along when you clone the
rainbow-remote repository, then your friend’s local repository will also be

called rainbow-remote. Because that would make this learning exercise very

confusing, instead you are going to pass the project directory name friend-

rainbow to the git clone command as an argument to create a local repository

of that name.

The git clone command does the following:

1. Create a project directory inside the current directory.

2. Create (initialize) the local repository.

3. Download all the data from the remote repository.

4. Add a connection to the remote repository that was cloned; by default
it will have the shortname origin in the new local repository.

To explicitly see the repository being created, you can clone it into your
desktop directory. This will allow you to see the new project directory appear

on the desktop of your computer.

Go to Follow Along 8-1 to clone the remote repository. In step 3, be sure to
enter the entire command on a single line.

[FOLLOW ALONG 8-1]

Open a new command line window and navigate to the desktop directory.

Go to your hosting service and copy your remote repository URL for the

protocol you have chosen to use, either SSH or HTTPS. You will use this URL

in step 3 of this Follow Along.

desktop $ git clone https://github.com/gitlearningjourney/rai

nbow-remote.git friend-rainbow
Cloning into 'friend-rainbow'...

remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (4/4), done.

Receiving objects: 100% (9/9), done.

Resolving deltas: 100% (1/1), done.

remote: Total 9 (delta 1), reused 9 (delta 1), pack-reused 0

Locate the newly created friend-rainbow project directory in your filesystem or

on your desktop.

What to notice:

• You cloned the remote repository onto your computer and created a
second local repository called friend-rainbow.

• You are not in the friend-rainbow directory in the command line, because

cloning a Git repository does not mean you automatically navigate into
it.

Go to Follow Along 8-2 to navigate into the new friend-rainbow project

directory to explore its contents and setup.

[FOLLOW ALONG 8-2]

desktop $ cd friend-rainbow

Open the friend-rainbow project directory in a new text editor window.

friend-rainbow $ git remote -v

origin https://github.com/gitlearningjourney/rainbow-remote.git (fetch)

origin https://github.com/gitlearningjourney/rainbow-remote.git (push)

friend-rainbow $ git branch --all

* main

 remotes/origin/HEAD -> origin/main

 remotes/origin/feature

 remotes/origin/main

friend-rainbow $ git log

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> main,

origin/main, origin/feature, origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

What to notice:

• In step 1, you used the cd command to navigate into the friend-rainbow

repository in the command line. This is necessary because cloning a
repository does not mean you navigate into it automatically.

• In step 3, in the git remote output, the origin remote repository

shortname is already listed.

• In step 4, the git branch output shows a pointer called origin/HEAD that

points to the origin/main remote-tracking branch, and that you have an

origin/feature remote-tracking branch. You can also see that there is no

local feature branch.

All of the preceding observations are illustrated in Visualize it 8-2.

[NOTE]
From now on, I’ll expand the Repository Diagrams to depict the state of the two local

repositories, rainbow and friend-rainbow, as well as the remote repository, rainbow-

remote.

[VISUALIZE IT 8-2]

The Rainbow project after your friend clones the remote repository and creates a

local repository called friend-rainbow

In the next sections, we will dive deeper into what happens during the
cloning process and answer the following questions:

• What is the origin/HEAD pointer?

• Why is there no local feature branch in the new friend-rainbow local

repository?

• Why was the origin shortname automatically created for the new local

repository?

WHAT IS ORIGIN/HEAD?
Earlier, you noticed that there is a pointer called origin/HEAD in the friend-

rainbow repository. What is this?

When you clone a repository, Git needs to know which branch it should be
on when it’s done cloning. The origin/HEAD pointer determines which branch

this is. In the Rainbow project, origin/HEAD points to the main branch, which is

why your friend that cloned the repository is on the main branch in the friend-

rainbow repository.

[NOTE]
For simplicity, I will not include the origin/HEAD pointer in the Visualize It diagrams.

By contrast, notice that in the rainbow repository you are currently on the

feature branch—but in the friend-rainbow repository, the local feature branch

doesn’t even exist. You’ll learn why that is in the next section.

CLONING REPOSITORIES AND DIFFERENT TYPES OF
BRANCHES
In the git log output produced by step 5 of Follow Along 8-2, you can see

that in the friend-rainbow repository there is no reference to the local feature

branch. However, there is a reference to the origin/feature remote-tracking

branch. This is because when you clone a repository the git clone command

will create remote-tracking branches for all the branches currently present
in the remote repository that is being cloned, but the only local branch that
is created is the branch that origin/HEAD points to.

For your friend to work on the feature branch, they must switch onto it.

Then Git will create a local feature branch based on where the remote-

tracking branch was pointing.

Go to Follow Along 8-3 to simulate your friend switching onto the feature

branch.

[FOLLOW ALONG 8-3]

friend-rainbow $ git branch --all

* main

 remotes/origin/HEAD -> origin/main

 remotes/origin/feature

 remotes/origin/main

friend-rainbow $ git switch feature

branch 'feature' set up to track 'origin/feature'.

Switched to a new branch 'feature'

friend-rainbow $ git branch --all

* feature

 main

 remotes/origin/HEAD -> origin/main

 remotes/origin/feature

 remotes/origin/main

What to notice:

• In step 3, in the git branch --all output, you can see that there is a new

local feature branch and your friend is on it.

This is illustrated in Visualize it 8-3.

[VISUALIZE IT 8-3]

The Rainbow project after your friend switches onto the feature branch

YOU’VE JUST LEARNED HOW TO SWITCH ONTO AND CREATE
NEW LOCAL BRANCHES BASED OFF REMOTE-TRACKING
BRANCHES THAT YOU DOWNLOADED FROM A REMOTE
REPOSITORY. NEXT, LET’S DISCUSS WHY THE FRIEND-RAINBOW
REPOSITORY ALREADY HAS THE ORIGIN SHORTNAME
ASSIGNED TO THE CONNECTION TO THE REMOTE
REPOSITORY.

THE ORIGIN SHORTNAME
Recall that in Chapter 7, you learned that for a local repository to
communicate with a remote repository, the local repository must have a
connection with a shortname to the remote repository stored within it. To
work with the remote repository, you had to explicitly associate its URL
with a shortname using the git remote add <shortname> <URL> command. This is

because you created the rainbow repository locally using the git init

command, and it had not yet had any interaction with the remote repository.

However, in step 3 of Follow Along 8-2, in the git remote output, you saw

that you already have the origin shortname listed. This means the friend-

rainbow repository already has the remote repository URL associated with the

shortname origin. This is because your friend’s local repository did not

originate locally; it was directly cloned from a remote repository. At the
time of cloning the remote repository URL was associated with a shortname
in the local repository, and origin is the default shortname Git associates

with a remote repository when you clone it.

Now that you know a bit more about the cloning process, let’s talk some
more about branches. In Chapter 4, you learned how to create and switch
between branches. Next, you’ll learn how to delete them.

Deleting Branches
The main reason to delete branches is to keep a Git project organized and
uncluttered. Before deleting a branch, you should always make sure that
either you have merged it into another branch or you’re sure you don’t want
to use any of the work that is found only on that branch.

[NOTE]
When you delete a branch with commits that are not part of any other branch, you

don’t delete the commits that are part of that branch. The commits still exist in your

commit history. However, they are no longer easy to reach, because there is no

simple branch reference to them and they are not part of the development history of

any existing branch.

To demonstrate how branch deletion works, let’s assume that your friend
decides they don’t need the feature branch, so they want to remove it. To

fully delete a branch, you need to delete the remote branch, the remote-
tracking branch, and the local branch. To delete a remote branch and a
remote-tracking branch, you use the git push <shortname> -d <branch_name>

command (where -d stands for “delete”). With this command, you

essentially upload a deletion to the remote repository. You must pass it the
name of a remote branch.

[SAVE THE COMMAND]

git push <shortname> -d <branch_name>

Delete a remote branch and the associated remote-tracking branch

[NOTE]
You can also delete a remote branch directly on the website of a hosting service, but

keep in mind that this will not delete the remote-tracking branch. We’ll walk through

this process in “Deleting Remote Branches” on page 249.

To delete a local branch, you use the git branch command with the -d option,

passing in the name of the branch you want to delete.

[SAVE THE COMMAND]

git branch -d <branch_name>

Delete a local branch

Go to Follow Along 8-4 to carry out the branch deletion on behalf of your
friend. Note that you cannot be on a branch when you delete it, so you
(acting as your friend) will have to switch from the feature branch to the main

branch in the friend-rainbow repository to delete the local feature branch.

[FOLLOW ALONG 8-4]

friend-rainbow $ git branch --all

* feature

 main

 remotes/origin/HEAD -> origin/main

 remotes/origin/feature

 remotes/origin/main

friend-rainbow $ git push origin -d feature

To github.com:gitlearningjourney/rainbow-remote.git

 - [deleted] feature

Go to the rainbow-remote repository on your hosting service, refresh the page,

and look at the list of branches. The feature branch should no longer be there.

friend-rainbow $ git branch --all

* feature

 main

 remotes/origin/HEAD -> origin/main

 remotes/origin/main

friend-rainbow $ git switch main

Switched to branch 'main'

Your branch is up to date with 'origin/main'.

friend-rainbow $ git branch -d feature

Deleted branch feature (was fc8139c).

friend-rainbow $ git branch --all

* main

 remotes/origin/HEAD -> origin/main

 remotes/origin/main

What to notice:

• In step 2, you deleted the remote feature branch and the origin/feature

remote-tracking branch.

• In step 3, you can see there is no remote feature branch in the rainbow-

remote repository.

• In step 6, you deleted the local feature branch.

• In step 7, the git branch --all output indicates that there is no local

feature branch in the friend-rainbow repository.

Visualize it 8-4 illustrates the state of the local and remote repositories after
making these changes.

[VISUALIZE IT 8-4]

The Rainbow project after your friend deletes the remote feature branch, the

origin/feature remote-tracking branch, and the local feature branch

As you can see, in the rainbow repository there still is a feature branch and an

origin/feature remote-tracking branch. The fact that your friend deleted the

feature and origin/feature branches in their friend-rainbow repository does not

affect your rainbow repository. You’ll delete these branches in the rainbow

repository later in this chapter, but for now, let’s learn about how the
collaboration works when your friend starts contributing to the Rainbow
project.

Git Collaboration and Branches
Now that you’re going to start collaborating with others on the Rainbow
project, you may want to discuss what some of your Git conventions should
be. For example, in Chapter 3 I mentioned that some teams may have rules
about what to include in a commit message, and in Chapter 4 you learned
that some teams may also have conventions about how they name their
branches.

Teams also may have rules about how to manage branches. For example,
there may be conventions about:

• Which branches are allowed to be merged into one another.

• When branches need to be created.

• What the review process for work on a branch should be.

An example of a rule that you may encounter in a Git project is that
individuals should work only on their own topic branches and avoid
working on other people’s topic branches. This helps avoid merge conflicts
(which we will cover in Chapter 10). We won’t apply this rule to the
Rainbow project in this book, to keep things simple and allow you to focus
on the new concepts you are learning in each chapter rather than branch

management. However, keep in mind that you may set or encounter
different branching rules in future Git projects that you work on. It’s
important to communicate with your collaborators about branching
conventions and to have a good understanding of what branches are and
how working in local and remote repositories with other people affects
branches.

Now, let’s walk through some examples to see how the collaboration on the
Rainbow project works.

MAKING A COMMIT IN THE LOCAL REPOSITORY
In this section, your friend is going to add a note about the color green to
the rainbowcolors.txt file and make a commit on the main branch of their local

repository. Remember that you’re acting as your friend now, which means
you’ll be working in their project directory, friend-rainbow. As discussed

earlier, you should have this project directory open in a separate text editor
window.

Go to Follow Along 8-5 to simulate your friend making a commit.

[NOTE]
In the git log output of step 4 in Follow Along 8-5, you are the author of both the

yellow commit and the green commit. This is because you are simulating that you are

your friend contributing to the Rainbow project. However, in reality, if someone else

had made the green commit, then they would be the author of the commit, and their

name and email address would be displayed in the output. Keep this in mind for the

rest of the chapters in this book.

[FOLLOW ALONG 8-5]

Open the rainbowcolors.txt file in the friend-rainbow project directory in your

text editor, add “Green is the fourth color of the rainbow.” on line 4, and save

the file.

friend-rainbow $ git add rainbowcolors.txt

friend-rainbow $ git commit -m "green"

[main 6987cd2] green

 1 file changed, 2 insertions(+), 1 deletion(-)

friend-rainbow $ git log

commit 6987cd2996e245ec24ee9c5ea99874f0a01a31cd (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 11:49:03 2022 +0100

 green

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (origin/main,

origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

Go to the rainbow-remote repository on your hosting service and refresh the

page. The green commit won’t be there yet.

What to notice:

• In step 4, the git log output indicates that in the friend-rainbow

repository:

○ The local main branch has updated to point to the green commit.

○ The origin/main remote-tracking branch still points to the yellow

commit.

Visualize it 8-5 illustrates the changes in the friend-rainbow repository.

[VISUALIZE IT 8-5]

The Rainbow project after your friend makes the green commit on the main branch in

the friend-rainbow repository

As you can see, the green commit does not yet appear in the rainbow-remote

repository. This is because remote repositories do not update automatically;
work done in local repositories needs to be explicitly pushed to them.

Notice also that origin/main remote-tracking branch still points to the yellow

commit. This is because, as mentioned in Chapter 7, remote-tracking
branches represent the state of remote branches. Since your friend has not
yet pushed their changes to the remote repository, the remote main branch

has not updated, and therefore the origin/main remote-tracking branch has not

updated either.

At this point there is no way for you to have the green commit in the rainbow

repository, because updating one local repository with the changes made in
another local repository is a two-step process. First, the local repository
with the changes has to explicitly push those changes to a remote
repository. Then, the local repository without the changes has to explicitly
fetch and integrate the changes from the remote repository.

Next, let’s see how your friend will push the work they’ve done to the
remote repository.

PUSHING TO THE REMOTE REPOSITORY
In Chapter 7, you learned that when you push work from a local branch to a
remote branch, Git needs some way to know which remote branch you want
to push to. If the local branch has an upstream branch defined for it, you can
use git push with no arguments and Git will automatically push the work to

that branch. However, if no upstream branch is defined for the local branch
you’re working on, you’ll need to specify which remote branch to push to
when you enter the git push command.

The last time you used the git push command in the rainbow repository, you

passed in the shortname and the branch name. This was because you had
not defined an upstream branch for your local branch. Recall that an
upstream branch is the remote branch that a particular local branch tracks.
When you clone a repository, upstream branches are automatically set up
for the branches that exist in the cloned repository.

The command to use to see whether upstream branches are defined is git

branch with the -vv option (which stands for “very verbose”). This command

also tells you whether a local branch is ahead of or behind an upstream
branch, if it is defined.

[SAVE THE COMMAND]

git branch -vv

List the local branches and their upstream branches, if they have any

There are two main benefits to defining upstream branches:

1. If you have fetched (downloaded) the remote repository commits, you
can check if your repository is ahead of or behind the remote
repository by using either the git branch -vv command or the git status

command. (We will cover the process of fetching in the next section in
this chapter.)

2. You can simplify the commands you use with the remote repository
because you don’t need to specify the branch name and remote
repository shortname. For example, you can use the git push command

on its own without passing any arguments.

We will observe both of these benefits in the upcoming Follow Alongs.

Since your friend cloned their repository, the upstream branch for their local
main branch is already set to be the remote main branch. Go to Follow Along

8-6 to see how your friend can check the status of the remote repository.

[FOLLOW ALONG 8-6]

friend-rainbow $ git branch -vv

* main 6987cd2 [origin/main: ahead 1] green

friend-rainbow $ git status

On branch main

Your branch is ahead of 'origin/main' by 1 commit.

 (use "git push" to publish your local commits)

nothing to commit, working tree clean

What to notice:

• In step 1, the git branch -vv output shows that the upstream branch set

up for the local main branch is the remote main branch in the remote

repository with shortname origin and that the local main branch is ahead

by one commit.

• In step 2, the git status output also indicates that the local main branch is

ahead of the origin/main upstream branch by one commit.

Next, go to Follow Along 8-7 to see how your friend can simply use the git

push command without any arguments to update the remote repository.

[FOLLOW ALONG 8-7]

friend-rainbow $ git push

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 4 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 295 bytes | 295.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

To github.com:gitlearningjourney/rainbow-remote.git

 fc8139c..6987cd2 main -> main

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

friend-rainbow $ git log

commit 6987cd2996e245ec24ee9c5ea99874f0a01a31cd (HEAD -> main,

origin/main, origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 11:49:03 2022 +0100

 green

commit fc8139cbf8442cdbb5e469285abaac6de919ace6

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

Go to the rainbow-remote repository on your hosting service and refresh the

page. The green commit should now be there.

What to notice:

• In step 3, the git log output indicates that in the friend-rainbow

repository, the origin/main remote-tracking branch has updated to point

to the green commit.

• In step 4, you can see that in the rainbow-remote repository, the remote

main branch has been updated to point to the green commit.

Visualize it 8-6 illustrates these observations.

[VISUALIZE IT 8-6]

The Rainbow project after your friend pushes the green commit to the remote

repository

Notice that the rainbow repository does not yet have the green commit, and

that the local main branch and origin/main remote-tracking branch in this

repository still point to the yellow commit.

Next, you want to make sure that the local main branch in your rainbow

repository is in sync with the main branch in the rainbow-remote repository and

the friend-rainbow repository. For that, you’ll need to learn about fetching.

Incorporating Changes from the Remote
Repository
The reason the local main branch and origin/main remote-tracking branch in

the rainbow repository still point to the yellow commit is because local

repositories do not automatically update with new data from remote
repositories. Just as you need to take explicit actions to update a remote
repository with changes in a local repository, you need to take explicit
actions to update local branches and remote-tracking branches with changes
from a remote repository.

Incorporating changes from a remote branch into a local branch is a two-
step process: first you fetch the changes from the remote repository, then
you integrate those changes into the local branch in the local repository.
Let’s start by exploring the first step.

FETCHING CHANGES FROM THE REMOTE REPOSITORY
In Git, we use the term fetch or fetching to refer to the process of
downloading data from a remote repository to a local repository, and the
command we use to do this is git fetch. The git fetch command downloads

all the necessary commits to update all the remote-tracking branches in the

local repository to reflect the state of the remote branches in the remote
repository that is specified. When no remote repository shortname is
provided as an argument to the git fetch command, by default the remote

repository with shortname origin will be used, unless there’s an upstream

branch defined for the current branch.

[SAVE THE COMMAND]

git fetch <shortname>

Download data from the <shortname> remote repository

git fetch

Download data from the remote repository with shortname origin

The git fetch command affects only remote-tracking branches. It does not

affect local branches. In other words, it only fetches (downloads) data; it
doesn’t actually integrate the data into any local branches. Thus, nothing in
your working directory will change when you fetch data from a remote
repository.

You’ll integrate the changes in the next section; for now, go to Follow
Along 8-8 to fetch the data from the remote repository.

[FOLLOW ALONG 8-8]

Go to the rainbow project directory in your command line window.

rainbow $ git log --all

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> feature,

origin/main, origin/feature, main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

commit 7acb333f08e12020efb5c6b563b285040c9dba93

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 09:42:07 2022 +0100

 orange

rainbow $ git fetch

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (1/1), done.

remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0

Unpacking objects: 100% (3/3), 275 bytes | 91.00 KiB/s, done.

From github.com:gitlearningjourney/rainbow-remote

 fc8139c..6987cd2 main -> origin/main

[FOLLOW ALONG 8-8]

rainbow $ git log --all

commit 6987cd2996e245ec24ee9c5ea99874f0a01a31cd (origin/main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 11:49:03 2022 +0100

 green

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (HEAD -> feature,

origin/feature, main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

What to notice:

• In step 2, the git log output shows that:

○ The local main branch and the origin/main remote-tracking branch

are pointing to the yellow commit.

• In step 4, the git log output shows that:

○ The origin/main remote-tracking branch is pointing to the green

commit.

○ The local main branch is still pointing to the yellow commit.

Visualize it 8-7 illustrates these observations.

[VISUALIZE IT 8-7]

The Rainbow project after you fetch the data from the rainbow-remote repository to

the rainbow repository

You just saw how the git fetch command updated the remote-tracking

branches in the local repository for any remote branches that exist in the
remote repository. Now, you are ready for the second step in the process:
incorporating the changes from the remote repository into a local branch.

INTEGRATING CHANGES INTO A LOCAL BRANCH
Once you have fetched the changes from a remote repository and updated
the remote-tracking branches in a local repository, you’re ready to update a
local branch. Recall that in Chapter 5, I mentioned that Git provides two
ways to integrate changes: merging and rebasing. We will cover rebasing in
Chapter 11. For now, you will continue using merging.

In “Types of Merges” on page 64, you learned about two kinds of merges:
fast-forward merges and three-way merges. In the fast-forward merge you
carried out in Chapter 5, you merged a branch called feature into main. Both

feature and main were local branches in the rainbow repository. In this section,

you are going to merge the origin/main remote-tracking branch into the local

main branch in the rainbow repository. The types of branches involved in the

merge are different, but the process of executing the merge is the same. This
will once again be a fast-forward merge.

As you learned in Chapter 5, when you execute a merge you must be on the
branch you’re merging into, which in this case will be the main branch in the

rainbow repository. Therefore, in Follow Along 8-9, you will first switch onto

the main branch before executing the merge.

To integrate the commits that were on the main branch in the remote

repository into your local main branch, you will use the git merge command.

This time you will pass in the name of a remote-tracking branch, origin/main.

Go to Follow Along 8-9 to execute the merge.

[FOLLOW ALONG 8-9]

rainbow $ git switch main

Switched to branch 'main'

rainbow $ git merge origin/main

Updating fc8139c..6987cd2

Fast-forward

 rainbowcolors.txt | 3 ++-

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git log

commit 6987cd2996e245ec24ee9c5ea99874f0a01a31cd (HEAD -> main,

origin/main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 11:49:03 2022 +0100

 green

commit fc8139cbf8442cdbb5e469285abaac6de919ace6 (origin/feature,

feature)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 10:09:59 2022 +0100

 yellow

What to notice:

• In step 3, the git log output indicates that the local main branch points to

the green commit.

This is illustrated in Visualize it 8-8.

[VISUALIZE IT 8-8]

The Rainbow project after you merge the origin/main remote-tracking branch into the

local main branch in the rainbow repository

You have just observed how the local branch updates once you complete the
merge. In Visualize it 8-8, you can also see that in the rainbow repository you

still have the feature branch. Next, let’s carry out some more branch

deletions to declutter the rainbow repository.

Deleting Branches (Continued)
In the rainbow repository, you still have the local feature branch and the

origin/feature remote-tracking branch. For simplicity, moving forward you

will work on the main branch, so you can now delete those branches.

In “Deleting Branches” on page 122, you used the git push <shortname> -d

<branch_name> command to delete the remote feature branch and the

origin/feature remote-tracking branch in the friend-rainbow repository in one

go. Now there is no remote feature branch any more, so to delete the

origin/feature remote-tracking branch in the rainbow repository you can use

the git fetch command with the -p option (which stands for “prune”). This

command with this option will delete any remote-tracking branches that
correspond to remote branches that have been deleted in the remote
repository.

[SAVE THE COMMAND]

git fetch -p

Remove remote-tracking branches that correspond to deleted remote branches

and download data from the remote repository

To delete the local feature branch, you will use the same command you used

earlier in this chapter. Go to Follow Along 8-10 to carry out the branch
deletions.

[FOLLOW ALONG 8-10]

rainbow $ git branch --all

 feature

* main

 remotes/origin/feature

 remotes/origin/main

rainbow $ git fetch -p

From github.com:gitlearningjourney/rainbow-remote

 - [deleted] (none) -> origin/feature

rainbow $ git branch --all

 feature

* main

 remotes/origin/main

rainbow $ git branch -d feature

Deleted branch feature (was fc8139c).

rainbow $ git branch --all

* main

 remotes/origin/main

What to notice:

• In step 2, you deleted the origin/feature remote-tracking branch.

• In step 4, you deleted the local feature branch.

• In step 5, the git branch --all output indicates that you no longer have a

local feature branch or an origin/feature remote-tracking branch in the

rainbow repository.

This is illustrated in Visualize it 8-9.

[VISUALIZE IT 8-9]

The Rainbow project after you delete the local feature branch and the origin/feature

remote-tracking branch in the rainbow repository

Summary
In this chapter, you started simulating what it would be like to work with
other people on a Git project. Your “friend” cloned the rainbow-remote

repository and created a second local repository, which you called friend-

rainbow. Through this process, you observed that origin is the default

shortname that Git associates with a remote repository when it is cloned.

After your friend made the green commit in the friend-rainbow repository and

pushed it to the remote repository, you learned about the process of
updating a local branch with changes from a remote branch in a remote
repository, which involves fetching the changes from the remote repository
and then integrating them. In the rainbow repository, you integrated the

changes by carrying out a fast-forward merge. Next, in Chapter 9, you will
learn more about the other kind of merge mentioned in Chapter 5: the three-
way merge.

[9]

Three-Way Merges

In Chapter 8, you learned about cloning and what it’s like to
collaborate with another person on a Git project. You walked
through an example of a friend contributing work to the Rainbow
project, pushing the work to the remote repository, and you
fetching and merging the work in order to keep your repositories
in sync.

All of the merges you have done up until this point in the
Rainbow project have been fast-forward merges. In this chapter,
you will learn how to carry out a three-way merge. In the
process, you will also go over an example of defining upstream
branches and you will learn about what happens when you edit
files multiple times in your working directory between commits.
Finally, you will learn about pulling from a remote repository,
and we will discuss how pulling is different from fetching.

State of the Local and Remote Repositories
At the start of this chapter, you should have two local repositories called
rainbow and friend-rainbow and one remote repository called rainbow-remote. All

three of these repositories should be in sync; in other words, they should
contain the same commits and branches. I recommend that you continue

using two separate text editor windows and command line windows for the
rainbow repository and the friend-rainbow repository as you work through the

examples in this chapter, as discussed in “The Collaboration Simulation” on
page 115.

Visualize it 9-1 shows the state of the local and remote repositories in the
Rainbow project with all the commits that were made from Chapter 1
through Chapter 8.

To focus on the commits you are going to make in this chapter, from here
on I will simplify the Visualize It diagrams and show only the last two
commits that are part of the main branch in all the repositories, which are the

yellow commit and the green commit. This representation is shown in
Visualize it 9-2.

[VISUALIZE IT 9-1]

The Rainbow project at the start of Chapter 9 with all the commits since Chapter 1

[VISUALIZE IT 9-2]

A simplified representation of the Rainbow project at the start of Chapter 9, showing

just the last two commits on the main branch in all the repositories

Why Are Three-Way Merges Important?
In Chapter 5, I explained that merging involves integrating the changes
made in one branch, called the source branch, into another branch, called
the target branch. I also introduced two types of merges: fast-forward
merges and three-way merges. Up until now, you’ve only carried out fast-
forward merges, but it is important to learn about three-way merges as well
because they are a regular part of a Git user’s day-to-day activities.

Three-way merges are a bit more complicated than fast-forward merges
because they create merge commits and they may lead to merge conflicts.
Merge conflicts arise when you merge two branches where different
changes have been made to the same parts in the same file(s), or if in one
branch a file was deleted that was edited in the other branch.

In Chapter 10, we will discuss merge conflicts in more depth and go over an
example of a three-way merge with a merge conflict. In the three-way
merge example in this chapter, your friend will edit a different file than the
one you will edit, and therefore you won’t have any merge conflicts.

As you learned in Chapter 5, three-way merges occur when the
development histories of the branches involved in the merge have diverged
—in other words, when it is not possible to reach the target branch by
following the commit history (parents links) of the source branch. Let’s
explore an example of how this situation might arise in Example Book
Project 9-1.

Example Book Project 9-1
Suppose that while working on the Book project, my coathor and I both
decide to make a branch off the main branch at the same time, to work on

different chapters. I make the chapter_five branch and my coauthor

makes the chapter_six branch, as seen in Figure 9-1.

We each work independently on our chapters. My coauthor finishes
their work on the chapter_six branch first and proceeds to merge their

work into the main branch and push the updated main branch to the remote

repository. In Figure 9-2, I represent the work my coathor did as commit
C and show the state of all the repositories.

F I G U R E 9 - 1

The Book project after my coauthor and I make branches to work on different chapters

When I finish working on the chapter_five branch, which I will represent

as commit D, I also want to merge my work into the main branch. But my

coauthor lets me know that they’ve already added work to the remote

F I G U R E 9 - 2

The Book project after my coauthor pushes their changes to the remote repository

main branch, so I first need to update my local main branch with the work

that my coauthor added to the remote main branch, as seen in Figure 9-3.

F I G U R E 9 - 3
The Book project after I contribute work to my local chapter_five branch and fetch and

In Figure 9-3, you can see that the development history of the local main

branch in the book repository is made up of commits A, B, and C, while

the development history of the chapter_five branch is made up of

commits A, B, and D. Since it is not possible to follow the development
history of the chapter_five branch to reach the main branch, this means the

development histories of these branches have diverged. Next, I have a
couple of options.

One option is to merge my local chapter_five branch into the local main

branch, which will be a three-way merge, and then push the updated main

branch to the remote repository.

The other option is to carry out a merge in the remote repository
through a hosting service feature called a pull request. You’ll learn
about pull requests in Chapter 12; for the purposes of this chapter, let’s
assume I decide to go ahead with the first option and carry out a three-
way merge in my local repository.

Figure 9-4 illustrates the state of the repositories when I integrate the
chapter_five branch into main through a three-way merge. The merge

commit produced by the three-way merge is represented as commit M.

integrate the changes from the remote main branch

F I G U R E 9 - 4

The Book project after I merge the chapter_five branch into the main branch through a

three-way merge

As you can see in Example Book Project 9-1, three-way merges produce
merge commits, which are commits that can have more than one parent
commit.

[NOTE]
Some people don’t like three-way merges because they find that merge commits

make the commit history more complicated. To avoid three-way merges you may use

the process of rebasing, which you will learn about in Chapter 11.

Next, you’ll set up a situation in the Rainbow project where you will have
to do a three-way merge. Along the way, you will learn about defining
upstream branches and some characteristics of modified files in the working
directory.

Setting Up a Three-Way Merge Scenario
First, go to Follow Along 9-1 to start listing colors that are not part of the
rainbow in a new file called othercolors.txt in the rainbow project directory.

[FOLLOW ALONG 9-1]

In the rainbow project directory in your text editor, create a new file called

othercolors.txt. Type “Brown is not a color in the rainbow.” on line 1 in the

file, and save it.

rainbow $ git add othercolors.txt

rainbow $ git commit -m "brown"

[main 7f0a87a] brown

 1 file changed, 1 insertion(+)

 create mode 100644 othercolors.txt

rainbow $ git log

commit 7f0a87a318e50638eec50a484bf8dfa76b76d08e (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 12:46:29 2022 +0100

 brown

commit 6987cd2996e245ec24ee9c5ea99874f0a01a31cd (origin/main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 11:49:03 2022 +0100

 green

What to notice:

• You have made the brown commit in the rainbow repository.

This is illustrated in Visualize it 9-3.

[VISUALIZE IT 9-3]

The Rainbow project after you make the brown commit in the rainbow repository

Next, before you push your commit to the remote repository, let’s learn
about defining upstream branches.

Defining Upstream Branches
In Chapters 7 and 8, I mentioned that when you push work from a local
branch to a remote branch, Git needs a way to know which remote branch
you want to push the work to. If no upstream branch is defined for the local
branch you’re working on, you’ll need to specify which remote branch to
push to when you enter the git push command. If a local branch has an

upstream branch defined for it, you can use git push with no arguments and

Git will automatically push the work to that branch.

You also learned that upstream branches are automatically set up when you
clone a repository, but not when a repository is initialized locally. The
rainbow repository was initialized locally, and you have not defined any

upstream branches yet.

To avoid specifying the remote repository shortname and the branch every
time you use the git push command on the main branch in your rainbow

repository, you can define an upstream branch for the main branch and

thereafter simply use the git push command with no arguments.

[NOTE]
Once an upstream branch has been defined for a local branch, you can also use

other commands, such as git pull, without arguments. You will learn about the git

pull command at the end of this chapter.

To set up the upstream branch you will use the git branch command with the

-u option, which is short for --set-upstream-to. You’ll pass in the name of the

remote branch as an argument, specifying the remote repository shortname,
a slash, and then the remote branch name (for example, origin/main.) Then,

you will witness how you can use the git push command without any

additional arguments.

[SAVE THE COMMAND]

git branch -u <shortname>/<branch_name>

Define an upstream branch for the current local branch

To check whether an upstream branch has been defined, you will use the git

branch -vv command introduced in Chapter 7.

Go to Follow Along 9-2 to define the upstream branch for the local main

branch.

[FOLLOW ALONG 9-2]

rainbow $ git branch -vv

* main 7f0a87a brown

rainbow $ git branch -u origin/main

branch 'main' set up to track 'origin/main'.

rainbow $ git branch -vv

* main 7f0a87a [origin/main: ahead 1] brown

What to notice:

• In step 1, the git branch -vv output shows that there is no upstream

branch set for the local main branch.

• In step 2, the command output explicitly states that an upstream branch
has been set (branch 'main' set up to track 'origin/main').

• In step 3, the git branch -vv output shows that the main branch from the

remote repository with shortname origin has been set as the upstream

branch for the local main branch.

Now that you have defined an upstream branch for your local main branch,

go to Follow Along 9-3 to use the git push command without any arguments.

[FOLLOW ALONG 9-3]

rainbow $ git push

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 4 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 310 bytes | 310.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:gitlearningjourney/rainbow-remote.git

 6987cd2..7f0a87a main -> main

rainbow $ git log

commit 7f0a87a318e50638eec50a484bf8dfa76b76d08e (HEAD -> main,

origin/main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 12:46:29 2022 +0100

 brown

commit 6987cd2996e245ec24ee9c5ea99874f0a01a31cd

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 11:49:03 2022 +0100

 green

Go to the rainbow-remote repository on your hosting service and refresh the

page. You should see the brown commit.

What to notice:

• You pushed your local main branch to the remote repository.

This is illustrated in Visualize it 9-4.

[VISUALIZE IT 9-4]

The Rainbow project after you push your local main branch to the rainbow-remote

repository

You have just learned how to define upstream branches in a local repository,
and you have made the brown commit in the rainbow repository and pushed it

to the remote repository. To end up in a situation where you will have to
carry out a three-way merge, there must be divergent development histories
between two branches.

Next, your friend will continue working on the local main branch in their

local repository without fetching the changes you pushed to the remote main

branch, which will cause the local main branch in the friend-rainbow repository

and the main branch in the rainbow-remote repository to diverge.

While your friend is working on the local main branch, you are also going to

learn about some characteristics of modified files in the working directory
and what happens when you edit a file multiple times between commits.

Editing the Same File Multiple Times Between
Commits
Up until now, you’ve been editing files just once and adding them to the
staging area. However, it is important to understand that if you add a file to
the staging area and then make another change to the file, Git will interpret
this as a new version of the file and it will mark the file as modified. Then,
if you want the latest version of the file to be included in your next commit,
you will have to add the updated version of the file to the staging area
again.

To see this in action, in this section your friend is going to add the color
blue to the list of colors in rainbowcolors.txt and add the edited file to their

staging area—but they will make a typo, writing “Bloo is the fifth color of
the rainbow.” When they notice this they will edit the file again to fix the
typo, and you will see how the file will need to be added to the staging area
a second time in order for their latest changes to be included in the next
commit.

The upcoming Visualize It diagrams will use the Git Diagram we created in
Chapter 2, and we will zoom in on the friend-rainbow repository to illustrate

all of this happening. First, go to Follow Along 9-4 to check the state of the
friend-rainbow working directory and staging area at the moment.

[FOLLOW ALONG 9-4]

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

nothing to commit, working tree clean

What to notice:

• The git status output states nothing to commit, working tree clean, which

indicates that the state of the working directory and staging area are
the same. There are no modified files in the working directory and
there are no newly staged files in the staging area.

This observation is illustrated in Visualize it 9-5.

[VISUALIZE IT 9-5]

Git Diagram showing the current state of the friend-rainbow project directory

What to notice:

• The version of the rainbowcolors.txt file in the working directory and

staging area mentions the colors red, orange, yellow, and green. We
represent it as version A (vA).

Next, in Follow Along 9-5, your friend is going to edit the rainbowcolors.txt

file and add the color blue.

[FOLLOW ALONG 9-5]

Open the rainbowcolors.txt in the friend-rainbow project directory in a text

editor window, add “Bloo is the fifth color of the rainbow.” on line 5, and save

the file. Note that you are including the sentence with a typo here on purpose

for learning purposes.

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: rainbowcolors.txt

no changes added to commit (use "git add" and/or "git commit -a")

What to notice:

• In step 2, the git status output indicates that there is now one modified

file in the working directory, which is not yet staged for commit.

This observation is illustrated in Visualize it 9-6.

[VISUALIZE IT 9-6]

The friend-rainbow project directory after your friend edits the rainbowcolors.txt file

in the working directory

What to notice:

• The version of the rainbowcolors.txt file in the staging area is still vA; it

hasn’t changed.

• The version of the rainbowcolors.txt file in the working directory has

changed: it mentions the colors red, orange, yellow, green, and blue.
We represent it as version B (vB).

Next, in Follow Along 9-6, let’s see what happens when your friend adds
the file to the staging area.

[FOLLOW ALONG 9-6]

friend-rainbow $ git add rainbowcolors.txt

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: rainbowcolors.txt

What to notice:

• In step 2, the git status output indicates that there is now one modified

file in the working directory that is also staged for commit.

This is illustrated in Visualize it 9-7.

[VISUALIZE IT 9-7]

The friend-rainbow project directory after your friend adds the modified

rainbowcolors.txt file to the staging area

What to notice:

• The version of the rainbowcolors.txt file in the staging area has changed

from vA to vB.

• The version of the rainbowcolors.txt file in the staging area is the same

as the one in the working directory.

Your friend has added the updated version of the rainbowcolors.txt file to the

staging area, and it is ready to be committed. Now, go to Follow Along 9-7
to see what happens when your friend goes back to edit the file again to fix
the typo, changing it from “Bloo” to “Blue”.

[FOLLOW ALONG 9-7]

In the friend-rainbow project directory in your text editor, fix the typo on line 5

of the rainbowcolors.txt file so the sentence reads “Blue is the fifth color of

the rainbow.” Save the file.

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: rainbowcolors.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: rainbowcolors.txt

What to notice:

• In the git status output in step 2, one version of the rainbowcolors.txt file

is listed as a modified file that is staged for commit and another
version of the rainbowcolors.txt file is listed as a modified file that is not

staged for commit.

This is illustrated in Visualize it 9-8.

[VISUALIZE IT 9-8]

The friend-rainbow project directory after your friend edits the rainbowcolors.txt file

for the second time

What to notice:

• The version of the rainbowcolors.txt file in the staging area is vB. This is

the version of the file with the typo.

• The version of the rainbowcolors.txt file in the working directory has

changed from vB to version C (vC). The vC file is the version without
the typo.

From these observations, you can see that just because a file with a
particular name is staged for commit doesn’t mean it is automatically
updated with any other changes you make to it. You need to explicitly add
each updated version of a file to the staging area to include the latest
changes in your next commit. Go to Follow Along 9-8 to see this in
practice.

[FOLLOW ALONG 9-8]

friend-rainbow $ git add rainbowcolors.txt

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: rainbowcolors.txt

What to notice:

• In the git status output in step 2, the rainbowcolors.txt file is listed as a

modified file staged for commit. There are no more modified files that
can be added to the staging area.

This is illustrated in Visualize it 9-9.

[VISUALIZE IT 9-9]

The friend-rainbow project directory after your friend adds the rainbowcolors.txt file

to the staging area again

What to notice:

• The version of the rainbowcolors.txt file in the staging area has changed

from vB to vC, indicating that the latest version of the rainbowcolors.txt

file has been added to the staging area.

Next, your friend is going to finish making the blue commit and attempt to
push their work to the remote repository. However, since their local main

branch is out of sync with the remote main branch, they will come across an

error. You’ll see this in the next section.

Working at the Same Time as Others on
Different Files
In Visualize it 9-10, you can see that your friend has not fetched the brown
commit that you made on the main branch in the rainbow repository and

pushed to the remote repository.

[VISUALIZE IT 9-10]

The current state of the local and remote repositories

The local main branch in the friend-rainbow repository is out of sync with the

remote main branch. Your friend is ready to make their blue commit and to

try to share their work, but when they try to push their work to the remote
repository they will get an error. Let’s see this in action in Follow Along 9-
9.

[FOLLOW ALONG 9-9]

friend-rainbow $ git commit -m "blue"

[main 342bbfc] blue

 1 file changed, 2 insertions(+), 1 deletion(-)

friend-rainbow $ git push

To github.com:gitlearningjourney/rainbow-remote.git

 ! [rejected] main -> main (fetch first)

error: failed to push some refs to 'github.com:gitlearningjou

rney/rainbow-remote.git'

hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by hint: another

repository pushing

hint: to the same ref. You may want hint: to first integrate the remote

changes

hint: (e.g., 'git pull hint: ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for

details.

friend-rainbow $ git log

commit 342bbfc96bb03053f23ea7f7564ca207c58ceab2 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:00:56 2022 +0100

 blue

commit 6987cd2996e245ec24ee9c5ea99874f0a01a31cd (origin/main,

origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 11:49:03 2022 +0100

 green

What to notice:

• In step 2, the output of the git push command shows that your friend

gets an error. They are not able to push their changes to the remote
repository.

The development histories of the local main branch and the remote main

branch have diverged, and Git is not able to merge changes from one into
the other with a simple fast-forward merge. The addition of the blue commit
and the divergent development histories are illustrated in Visualize it 9-11.

[VISUALIZE IT 9-11]

The Rainbow project after your friend makes the blue commit in the friend-rainbow

repository

What to notice:

• In the friend-rainbow repository, the local main branch points to the blue

commit.

• In the rainbow-remote repository, the main branch points to the brown

commit.

Let’s take a closer look at the error message your friend received:

error: failed to push some refs to
'https://github.com/gitlearningjourney/rainbow-remote.git' hint: Updates
were rejected because the remote contains work that you do not have
locally. This is usually caused by another repository pushing to the same
ref. You may want to first integrate the remote changes (e.g., 'git pull ...')
before pushing again. See the 'Note about fast-forwards' in 'git push --help'
for details.

Git is telling your friend that there are commits on the remote main branch

that they have not yet fetched (or pulled). It advises your friend that they
have to fetch (or pull) the remote work and integrate it into their local main

branch before they can push to the remote repository. Note that pulling is
similar to fetching, with some differences; we’ll cover pulling later in this
chapter. For now, to integrate the remote changes, your friend is going to
execute a three-way merge.

Three-Way Merge in Practice

In Chapter 8, you learned that incorporating changes from a remote
repository is a two-step process:

1. First, you fetch the changes from the remote repository.

2. Second, you integrate the changes into the local branch in the local
repository.

Your friend is going to follow the same steps right now, except at step 2,
they’ll end up carrying out a three-way merge instead of a fast-forward
merge because the development histories of the two branches involved in
the merge have diverged.

When performing a three-way merge, Git will create a merge commit. To
do that, it will enter a text editor in the command line. Let’s learn a bit more
about how you’re going to work with this command line text editor.

INTRODUCING VIM, THE COMMAND LINE TEXT EDITOR
Git, by default, uses a text editor in the command line called Vim to write
commit messages. If a commit is being made (whether a regular commit or
a merge commit) and a commit message is not specified, Git will enter Vim
in the command line. You have not yet come across Vim in this book
because every time you have made a commit using the git commit command

in the Rainbow project you have passed in the -m option and explicitly

specified a commit message.

[NOTE]
Git allows you to change the default command line text editor it uses from Vim to

another text editor. For example, you can set it to the same text editor you use to edit

files in your project.

Vim may appear scary because the command line will look different, and
unless you know some Vim basics it is not intuitive to use. Let’s cover the
necessary basics to navigate Vim.

When Git enters Vim in the command line, you have the choice to enter
text, edit text, or approve and save text. In the case of a three-way merge,
Git will draft a default commit message for the merge commit and Vim will
present it to you, as seen in Figure 9-5.

F I G U R E 9 - 5

An example of a default commit message drafted by Git and presented in Vim in the

For the purposes of this example, we’ll simply cover how to accept and
save the default commit message. To do that you must press the Escape key,
type a colon (:), then press the W key, the Q key, and the Enter key one
after another in order, as seen in Figure 9-6. The w stands for “write” in Vim,

which means save, and the q stands for “quit,” which means exit. (If

anything goes wrong, you can press Escape to try again.)

command line

This saves the commit message and exits the Vim command line text editor.
These instructions will be repeated in every Follow Along that requires you
to exit Vim.

Now that we’ve covered some basics of how to work with Vim, your friend
is ready to carry out the two steps to incorporate the remote changes into

F I G U R E 9 - 6

The command to enter to save and quit Vim

their local branch.

EXECUTING THE THREE-WAY MERGE
Having read the error message Git presented, your friend is now going to
fetch the changes from the remote main branch into their local repository.

This will update the origin/main remote-tracking branch. Then they will

merge the origin/main remote-tracking branch into their local main branch.

Go to Follow Along 9-10 to carry out the two steps to incorporate the
remote changes into the local main branch in the friend-rainbow repository.

[FOLLOW ALONG 9-10]

friend-rainbow $ git fetch

remote: Enumerating objects: 4, done.

remote: Counting objects: 100% (4/4), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 3 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), 290 bytes | 145.00 KiB/s, done.

From github.com:gitlearningjourney/rainbow-remote

 6987cd2..7f0a87a main -> origin/main

friend-rainbow $ git merge origin/main

The command line will enter Vim after the git merge command is executed.

The default commit message that Git drafts for you will either be Merge remote-

tracking branch 'refs/remotes/origin/main' or Merge remote-tracking

branch 'origin/main'. To accept the default message in the Vim editor and

exit the editor, you must press the Escape key, type :wq, and then press the

Enter key. You will see the following output:

Merge made by the 'ort' strategy.

 othercolors.txt | 1 +

 1 file changed, 1 insertion(+)

 create mode 100644 othercolors.txt

[FOLLOW ALONG 9-10]

friend-rainbow $ git log

commit 225839938563c7458af81daca7beb782dfcbfb27 (HEAD -> main)

Merge: 342bbfc 7f0a87a

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:05:46 2022 +0100

 Merge remote-tracking branch 'refs/remotes/origin/main'

commit 342bbfc96bb03053f23ea7f7564ca207c58ceab2

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:00:56 2022 +0100

 blue

commit 7f0a87a318e50638eec50a484bf8dfa76b76d08e (origin/main,

origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 12:46:29 2022 +0100

 brown

What to notice:

• In step 3, the git merge output says Merge made by the 'ort' strategy. This

indicates that this was a three-way merge instead of a fast-forward
merge. (If you have an older version of Git, your output may say that
the merge was made by the “recursive” strategy; this is also correct.)

• Git drafted a default commit message for you which was either Merge

remote-tracking branch 'refs/remotes/origin/main' or Merge remote-tracking

branch 'origin/main'. Both are correct.

• In step 4, the git log output shows the merge commit 2258399 and lists

the two parent commits in the Merge field: 342bbfc (the blue commit) and

7f0a87a (the brown commit). The commit hashes for your commits will

be different from the ones in this book, because commit hashes are
unique.

Visualize it 9-12 shows the state of the Rainbow project after Follow Along
9-10.

[VISUALIZE IT 9-12]

The Rainbow project after your friend fetches the brown commit and carries out a

three-way merge

What to notice:

• In the friend-rainbow repository, we illustrate the merge commit as M1

and show how it ties the two development histories together.

The M1 merge commit has two parent commits. Recall that in Chapter 4,
you used the command git cat-file -p <commit_hash> to view the parent

commits of a commit. In the upcoming Follow Along, your friend will use
the same command, passing in the commit hash of the M1 merge commit,
to see its parent commits (represented by their commit hashes). To retrieve
the commit hash of the M1 merge commit, you can use the output of the git

log command. Recall that you must use the commit hash of your M1 merge

commit, not the commit hash in this book (because commit hashes are
unique).

After that, your friend will push their changes to the remote repository to
make sure it’s updated. Go to Follow Along 9-11 to perform these actions
now.

[FOLLOW ALONG 9-11]

Retrieve the commit hash for the M1 merge commit (you can copy this from

the git log output in Follow Along 9-10). You must pass this commit hash as

an argument to the git cat-file -p command in step 2 of this Follow Along.

You may copy and paste the entire commit hash or just enter the first seven

characters, as shown here.

friend-rainbow $ git cat-file -p 2258399

tree 45330906e6041a0cd07849617a25443a9a5b08bd

parent 342bbfc96bb03053f23ea7f7564ca207c58ceab2

parent 7f0a87a318e50638eec50a484bf8dfa76b76d08e

author annaskoulikari <gitlearningjourney@gmail.com> 1645272346 +0100

committer annaskoulikari <gitlearningjourney@gmail.com> 1645272346 +0100

Merge remote-tracking branch 'refs/remotes/origin/main'

friend-rainbow $ git push

Enumerating objects: 9, done.

Counting objects: 100% (8/8), done.

Delta compression using up to 4 threads

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 586 bytes | 586.00 KiB/s, done.

Total 5 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

To github.com:gitlearningjourney/rainbow-remote.git

 7f0a87a..2258399 main -> main

[FOLLOW ALONG 9-11]

friend-rainbow $ git log

commit 225839938563c7458af81daca7beb782dfcbfb27 (HEAD -> main,

origin/main, origin/HEAD)

Merge: 342bbfc 7f0a87a

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:05:46 2022 +0100

 Merge remote-tracking branch 'refs/remotes/origin/main'

commit 342bbfc96bb03053f23ea7f7564ca207c58ceab2

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:00:56 2022 +0100

 blue

Go to the rainbow-remote repository on your hosting service and refresh the

page. The merge commit should be there.

What to notice:

• In step 2, the git-cat file -p output shows the two commits listed as

parents: 342bbfc96bb03053f23ea7f7564ca207c58ceab2 (the blue commit) and

7f0a87a318e50638eec50a484bf8dfa76b76d08e (the brown commit).

• In step 5, you can see that the merge commit is in the remote
repository.

These observations are illustrated in Visualize it 9-13.

[VISUALIZE IT 9-13]

The Rainbow project after your friend pushes their changes to the remote repository

The M1 merge commit is now in the friend-rainbow repository and the rainbow-

remote repository. The next step is for you to sync your rainbow repository

with the remote repository, updating your local main branch with the merge

commit as well. To do that, you will learn about pulling in Git.

Pulling Changes from a Remote Repository
Up until now, in the Rainbow project, when you wanted to update your
local repository with changes from the remote repository you did it in two
steps: first you fetched the data from the remote repository (using the git

fetch command), and then you merged the data (using the git merge

command) into the local branch. Pulling data allows you to do both in one
go.

In Git, we use the term pull or pulling to refer to the process of fetching
data from a remote repository and integrating it into a branch in a local
repository in one go, and the command we use to do it is git pull. If you

don’t have an upstream branch defined for your local branch, then you must
specify the shortname of the remote repository and the name of the branch
that you want to update. If you do have an upstream branch defined, you
can just use git pull without any arguments.

[SAVE THE COMMAND]

git pull <shortname> <branch_name>

Fetch and integrate changes from the <shortname> remote repository for the

specified <branch_name>

git pull

If an upstream branch is defined for the current branch, fetch and integrate

changes from the defined upstream branch

There’s one more thing you need to know about the git pull command. As

you’ve learned, in Git there are two ways to integrate changes: merging and
rebasing. Which method the git pull command uses will depend on whether

the development histories of the branches have diverged and, if so, on the
option you choose when entering the command:

• If the development histories of the local branch and remote branch in a
git pull have not diverged, then by default a fast-forward merge will

occur.

• If the development histories of the local branch and the remote branch
in a git pull have diverged, then you must tell Git whether you want to

integrate the changes by merging or rebasing (otherwise, you’ll get an
error). To tell Git to integrate the changes by merging, you must pass
in the --no-rebase option. To tell Git to integrate the changes by

rebasing, you must pass in the --rebase option.

As illustrated in Figure 9-7, the git pull command effectively combines the

git fetch command and either the git merge or the git rebase command.

Now the question is, when should you fetch and integrate changes in two
steps by using the git fetch command and then either the git merge or the git

rebase command, and when should you carry out both of those steps in one

go by just using the git pull command?

It is common for Git users to use the git pull command when the

development histories of the local and remote branches have not diverged,
and therefore a simple fast-forward merge will happen. If the development
histories of the local and remote branches have diverged, Git users often
prefer to use the git fetch command then choose whether to rebase or merge

in a separate step. By carrying out the process in two steps, they give
themselves more time to look at what is going to change in their local
branch and to prepare for the integration process.

In this book you will follow this common practice, and therefore you will
use only the git pull command when a fast-forward merge will update your

local branch.

F I G U R E 9 - 7

The git pull command fetches and integrates changes in one go

Go to Follow Along 9-12 to practice using the git pull command by pulling

the changes from the remote main branch to the local main branch in the

rainbow repository.

[FOLLOW ALONG 9-12]

rainbow $ git pull

remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (8/8), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 5 (delta 1), reused 5 (delta 1), pack-reused 0

Unpacking objects: 100% (5/5), 566 bytes | 141.00 KiB/s, done.

From github.com:gitlearningjourney/rainbow-remote

 7f0a87a..2258399 main -> origin/main

Updating 7f0a87a..2258399

Fast-forward

 rainbowcolors.txt | 3 ++-

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git log

commit 225839938563c7458af81daca7beb782dfcbfb27 (HEAD -> main,

origin/main)

Merge: 342bbfc 7f0a87a

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:05:46 2022 +0100

 Merge remote-tracking branch 'refs/remotes/origin/main'

commit 342bbfc96bb03053f23ea7f7564ca207c58ceab2

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:00:56 2022 +0100

 blue

What to notice:

• The first half of the git pull output in step 1 shows the data is being

fetched or downloaded. The second half of the output indicates that a
Fast-forward merge was carried out.

• The git log output in step 2 shows that you now have the blue commit

and the merge commit in the rainbow repository, and the origin/main

remote-tracking branch and the main branch have been updated to point

to the merge commit.

Visualize it 9-14 illustrates these observations.

[VISUALIZE IT 9-14]

The Rainbow project after you pull changes from the remote repository into the main

branch in the rainbow repository

All three repositories in the Rainbow project are now in sync.

State of the Local and Remote Repositories
Visualize it 9-15 shows the state of the local and remote repositories in the
Rainbow project with all the commits that were made from Chapter 1 all the
way to the end of this chapter.

[VISUALIZE IT 9-15]

The Rainbow project at the end of Chapter 9 with all the commits since Chapter 1

Summary
In this chapter you learned about three-way merges. To see how they work,
you made changes in the Rainbow project that resulted in the histories of
the local main branch in the friend-rainbow repository and the remote main

branch diverging.

In the process of creating these divergent histories you learned how to
define upstream branches, and you saw how after defining them you were
able to use commands such as git push without specifying any additional

arguments.

You also learned an important detail about editing files in your working
directory multiple times between commits: namely, every time you make a
change to a file and save it, Git will interpret this as a new version of the
file and will mark the file as modified. To include the latest version of the
file in the next commit, you will need to add that version of the file to the
staging area.

When it came time to carry out the three-way merge, you learned about the
Vim command line text editor and covered the basics of how to save Git’s
proposed commit message and exit Vim. At the end of the merge process,
you saw how the merge commit tied the two divergent development
histories together.

Finally, you learned about the process of pulling and how it allows you to
carry out the two steps of incorporating the changes from a remote
repository into a local repository in one go.

The three-way merge you carried out in this chapter didn’t have any merge
conflicts. In Chapter 10, you’re going to learn about merge conflicts and
how to resolve them.

[10]

Merge Conflicts

In Chapter 9, you carried out a three-way merge in which you did
not experience any merge conflicts.

In this chapter, you’re going to learn about merge conflicts, how
they arise, and how to resolve them by walking through a hands-
on example of a three-way merge with a merge conflict.

State of the Local and Remote Repositories
At the start of this chapter, you should have two local repositories called
rainbow and friend-rainbow and one remote repository called rainbow-remote. All

three of these repositories should be in sync, with the same commits and
branches. As usual, I recommend that you use two separate text editor
windows and command line windows for working with the rainbow

repository and the friend-rainbow repository.

Visualize it 10-1 shows the state of the local and remote repositories in the
Rainbow project with all the commits that were made from Chapter 1
through Chapter 9.

To focus on the commits you are going to make in this chapter, from here
on I’ll simplify the Visualize It diagrams and show only the last three
commits that are part of the main branch in all the repositories: the blue

commit, the brown commit, and the M1 merge commit. This representation
is shown in Visualize it 10-2.

[VISUALIZE IT 10-1]

The Rainbow project at the start of Chapter 10 with all the commits since Chapter 1

[VISUALIZE IT 10-2]

A simplified representation of the Rainbow project at the start of Chapter 10, showing

just the last three commits on the main branch in all the repositories

Introducing Merge Conflicts
In Chapter 9, we covered what happens when you work on a project at the
same time as someone else but you each make changes to different files:
you edited the othercolors.txt file, while your friend edited the

rainbowcolors.txt file. This meant that you were able to do a three-way merge

without any merge conflicts.

Now, we will cover what happens when you want to integrate work where
there will be a merge conflict. As you learned in the previous chapter,
merge conflicts arise when you merge two branches where different
changes have been made to the same parts in the same file(s), or if in one
branch a file was deleted that was edited in the other branch. In these cases
Git is unable to automatically merge the files, and therefore you must do it
manually.

Merge conflicts can arise during the process of merging as well as the
process of rebasing. In this chapter we will cover an example of a merge
conflict in the Rainbow project while merging, and in Chapter 11 we will
cover an example of a merge conflict in the Rainbow project while
rebasing.

Bear in mind that it is normal for merge conflicts to arise, and if they do, it
does not mean that someone did something wrong while working on a
project. Resolving merge conflicts is a regular part of working on Git
projects. Let’s take a look at Example Book Project 10-1 to see an example
of how such a situation might occur.

Example Book Project 10-1
Let’s imagine a couple of scenarios where I may experience merge
conflicts in my Book project. As you know, the project consists of 10
text files, one for each chapter of the book, called chapter_one.txt,

chapter_two.txt, and so on. My primary line of development is the main

branch, and I’ve decided together with my editor and my coauthor that
whenever I work on a chapter I will make a branch off the main branch;

then, after they have both approved the work I have done on that
branch, I can merge the branch back into the main branch. I’ve also

agreed with my coauthor that only one of us should work on any one
chapter at a time, and this way we can often avoid merge conflicts.

But now, let’s imagine what happens if my coauthor and I accidentally
miscommunicate. We both decide to edit chapter 3 at the same time, and
we both make branches off the main branch to work on this chapter at the

same time. I make the chapter_three branch, and my coauthor makes the

chapter_three_coauthor branch. In this case, we are both going to edit the

same file, chapter_three.txt.

Now, let’s assume that my coauthor merges their work on the
chapter_three_coauthor branch into the main branch first. When I go to

merge my chapter_three branch into the most up-to-date version of the

main branch, I will find that not only do I have to carry out a three-way

merge, but I will also have to resolve merge conflicts.

This is because the version of the chapter_three.txt file in my chapter_three

branch and the version of the file in the main branch have both been

edited in different ways since I made my branch off the main branch. Git

isn’t able to automatically merge the work. It needs me to go in and
decide exactly what the final version of the chapter_three.txt file that will

be included in the merge commit should look like.

This is one scenario in which I may experience merge conflicts. It
occurs when the same file has been edited in different ways in the two
branches involved in the merge.

Next, let’s explore another scenario in which a merge conflict might
arise. Let’s imagine that my coauthor and I both agree that the last
chapter in the book, chapter 10, isn’t any good. However, we again
miscommunicate about what we should do about it.

We accidentally both make branches off the main branch at the same

time: I make the chapter_ten branch and my coauthor makes the

chapter_ten_coauthor branch. In my chapter_ten branch, I decide to delete

the chapter_ten.txt file because I think we should simply remove that

chapter from our book. However, my coauthor, working on their
chapter_ten_coauthor branch, instead decides to edit the chapter_ten.txt file

to make it better.

Again, my coauthor merges their branch into the main branch first. And

when I go to merge my branch into the most up-to-date main branch

through a three-way merge, I will again encounter a merge conflict. This
is another scenario where Git isn’t able to automatically merge the
work; it can’t determine whether it should delete the chapter_ten.txt file

or retain the edited version. To recap, this situation occurs when I am
integrating two branches where in one branch a specific file has been
edited and in the other branch that same file has been deleted.

Example Book Project 10-1 described a couple of scenarios where merge
conflicts might arise. Now let’s take a look at how you can resolve them.

How to Resolve Merge Conflicts
When merge conflicts happen, you will see a set of special markers in each
of the files involved that indicate where the conflicts occur. These markers,
called conflict markers, consist of seven left angle brackets (<<<<<<<), seven

equals signs (=======), and seven right angle brackets (>>>>>>>), as well as

references to the branches involved in the merge. Figure 10-1 shows an
example. Above the row of equals signs you will see the content of the
target branch, and below it you will see the content of the source branch.

There are two steps to resolving merge conflicts:

F I G U R E 1 0 - 1

An example of the conflict markers that appear when there is a merge conflict

1. Decide what to keep, edit the content, and remove the conflict
markers.

2. Add the file(s) you have edited to the staging area and commit your
changes.

We will cover each of these steps in detail when you practice resolving
merge conflicts in the Rainbow project later in this chapter. To prepare for
that, you need to create a situation with divergent development histories in
your local repositories. You’ll do that next.

Setting Up a Merge Conflict Scenario
To set up a three-way merge with merge conflicts, you and your friend have
to make different changes to the same part in the same file. First, go to
Follow Along 10-1 to add the color indigo to the list of colors in the
rainbowcolors.txt file in your rainbow repository and push the updated main

branch to the remote repository.

[FOLLOW ALONG 10-1]

In the rainbow project directory in your text editor, in the rainbowcolors.txt file,

add “Indigo is the sixth color of the rainbow.” on line 6. Then save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "indigo"

[main 9b0a614] indigo

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git push

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 4 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 326 bytes | 326.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

To github.com:gitlearningjourney/rainbow-remote.git

 2258399..9b0a614 main -> main

[FOLLOW ALONG 10-1]

rainbow $ git log

commit 9b0a61461c8e8d74ed358e65b2662e3697b94de6 (HEAD -> main,

origin/main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:36:11 2022 +0100

 indigo

commit 225839938563c7458af81daca7beb782dfcbfb27

Merge: 342bbfc 7f0a87a

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:05:46 2022 +0100

 Merge remote-tracking branch 'refs/remotes/origin/main'

Go to the rainbow-remote repository on your hosting service and refresh the

page. You should see the indigo commit there.

What to notice:

• In the rainbow repository and in the rainbow-remote repository, there is an

indigo commit.

These changes are illustrated in Visualize it 10-3.

[VISUALIZE IT 10-3]

The Rainbow project after you make the indigo commit in your rainbow repository and

push the updated main branch to the remote repository

Now, to create a situation where you will have a merge conflict, in Follow
Along 10-2 your friend will add the color violet to the same line in the
rainbowcolors.txt file and make a commit without first pulling the changes

you made from the rainbow-remote repository into their local main branch.

[FOLLOW ALONG 10-2]

In the the rainbowcolors.txt file in the friend-rainbow project directory in your

text editor, add “Violet is the seventh color of the rainbow.” on line 6. Save the

file.

friend-rainbow $ git add rainbowcolors.txt

friend-rainbow $ git commit -m "violet"

[main 6ad5c15] violet

 1 file changed, 2 insertions(+), 1 deletion(-)

friend-rainbow $ git log

commit 6ad5c15f033b68ad27f2c9bce8bfa93329b3c23e (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:41:25 2022 +0100

 violet

commit 225839938563c7458af81daca7beb782dfcbfb27 (origin/main,

origin/HEAD)

Merge: 342bbfc 7f0a87a

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sat Feb 19 13:05:46 2022 +0100

 Merge remote-tracking branch 'refs/remotes/origin/main'

What to notice:

• Your friend made the violet commit.

This is illustrated in Visualize it 10-4.

[VISUALIZE IT 10-4]

The Rainbow project after your friend makes the violet commit in the friend-rainbow

repository without first pulling the latest work on the main branch in the remote

repository

What to notice:

• In the friend-rainbow repository, the local main branch points to the violet

commit.

• In the rainbow repository, the local main branch points to the indigo

commit.

At this point, your friend will need to fetch your changes from the remote
repository and integrate them before they can push their changes to the
remote repository. As you learned in “Pushing to the Remote Repository”
on page 129, they can use the git status command after fetching your

changes to check whether their local main branch has diverged from the

remote main branch. Go to Follow Along 10-3 to see this in action.

[FOLLOW ALONG 10-3]

friend-rainbow $ git fetch

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 1), reused 3 (delta 1), pack-reused 0

Unpacking objects: 100% (3/3), 322 bytes | 53.00 KiB/s, done.

From github.com:gitlearningjourney/rainbow-remote

 c5941f8..6f2ea44 main -> origin/main

friend-rainbow $ git status

On branch main

Your branch and 'origin/main' have diverged,

and have 1 and 1 different commits each, respectively.

 (use "git pull" to merge the remote branch into yours)

nothing to commit, working tree clean

friend-rainbow $ git log --all

commit 6ad5c15f033b68ad27f2c9bce8bfa93329b3c23e (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:41:25 2022 +0100

 violet

commit 9b0a61461c8e8d74ed358e65b2662e3697b94de6 (origin/main,

origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:36:11 2022 +0100

 indigo

What to notice:

• In step 2, the output of the git status command states that Your branch

and 'origin/main' have diverged, and have 1 and 1 different commits each,

respectively.

• In the friend-rainbow repository, the origin/main remote-tracking branch

points to the indigo commit; however, the remote changes have not yet
been merged into the local main branch.

These observations are shown in Visualize it 10-5.

[VISUALIZE IT 10-5]

The Rainbow project after your friend fetches the changes from the remote repository

to the friend-rainbow repository

Next, your friend is going to carry out a three-way merge to integrate the
latest changes on the remote main branch into their local main branch so they

can push the updated main branch to the remote repository. Before they

perform the merge and resolve the merge conflicts in the friend-rainbow

repository, let’s take a closer look at what that process entails.

The Merge Conflict Resolution Process
As mentioned earlier in this chapter, there are two steps to resolving merge
conflicts. In this section we’ll walk through them in more detail. As a
reminder, the first step is to decide what to keep, edit the content, and
remove the conflict markers, and the second is to add all the changes to the
staging area and commit. Let’s go over each of them in turn.

STEP 1
After you execute the git merge command in a situation where a merge

conflict arises, Git will identify the conflict and will insert conflict markers
indicating the location(s) of the conflicting content. The first step in
resolving merge conflicts is to decide what to keep, edit the content in the
file(s) where the conflicts occur, and remove the conflict markers. Once
you’re done making the necessary changes, you must also make sure to
save the file or files in your text editor. In the Rainbow project there will be
a merge conflict in only one file, but in other Git projects you work on there
may be merge conflicts in multiple files.

To resolve the merge conflict in the Rainbow project, your friend will keep
both the sentence about the indigo color and the sentence about the violet
color. They want to make sure they’re in the correct order, so they will put
the sentence about indigo first (which will end up being on line 6) and the
sentence about violet second (this will end up on line 7). See Figure 10-2
for an example of what the rainbowcolors.txt file will look like before and

after your friend makes this change.

F I G U R E 1 0 - 2

The rainbowcolors.txt file before and after your friend decides what to keep and edits the

content

Next, your friend will need to remove the conflict markers from the
rainbowcolors.txt file, as seen in Figure 10-3, and save the file.

F I G U R E 1 0 - 3

The rainbowcolors.txt file before and after your friend removes the conflict markers

STEP 2
After your friend has finished editing the content, they’re ready for the
second step: adding the updated file(s) to the staging area and making a
commit. In the Rainbow project there is only one file with a merge conflict,
so they’ll need to add only one file to the staging area. However, as
mentioned previously, it’s common to have merge conflicts in multiple files,
in which case you have to add all the modified files to the staging area.

In Figure 10-4, you can see an example of what the commit history in the
friend-rainbow repository will look like before and after your friend completes

the merge. This merge will result in the M2 merge commit, because this is a
three-way merge.

Now that you’re familiar with the two steps involved in resolving merge
conflicts, let’s briefly go over what to do if you decide you don’t want to
continue with a merge.

ABORTING A MERGE

F I G U R E 1 0 - 4

The commit history before and after your friend completes the three-way merge

If at any point during a merge with conflicts you decide that you don’t want
to continue integrating two branches, you can choose to stop or “abort” the
merge by using the git merge command with the --abort option. This will

return all your files to the state they were in before the merge.

[SAVE THE COMMAND]

git merge --abort

Stop the merge process and go back to the state before the merge

Now that you know how to resolve merge conflicts and what to do if you
ever want to abort a merge and the conflict resolution process, let’s see an
example of resolving merge conflicts in practice.

Resolving Merge Conflicts in Practice
In Follow Along 10-4, your friend is going to carry out the three-way merge
and resolve the merge conflicts. Throughout the merge operation, they will
use the git status command to see information about the conflict resolution

process.

[FOLLOW ALONG 10-4]

friend-rainbow $ git merge origin/main

Auto-merging rainbowcolors.txt

CONFLICT (content): Merge conflict in rainbowcolors.txt

Automatic merge failed; fix conflicts and then commit the result.

friend-rainbow $ git status

On branch main

Your branch and 'origin/main' have diverged,

and have 1 and 1 different commits each, respectively.

 (use "git pull" to merge the remote branch into yours)

You have unmerged paths.

 (fix conflicts and run "git commit")

 (use "git merge --abort" to abort the merge)

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: rainbowcolors.txt

no changes added to commit (use "git add" and/or "git commit -a")

Take a deep breath, go to the friend-rainbow project directory in your text

editor, and look at the rainbowcolors.txt file. Find the conflict markers and the

conflicting content.

Carry out step 1 of resolving merge conflicts, which is to choose what to keep,

edit the content, and remove the conflict markers. In your case, you are going

to keep all of the content; that is, the changes from violet commit and the

changes from the indigo commit. The comment about the color indigo will go

on line 6, and the comment about the color violet will go on line 7. Make sure

to save the rainbowcolors.txt file when you’re done making your edits.

[FOLLOW ALONG 10-4]

friend-rainbow $ git add rainbowcolors.txt

friend-rainbow $ git status

On branch main

Your branch and 'origin/main' have diverged,

and have 1 and 1 different commits each, respectively.

 (use "git pull" to merge the remote branch into yours)

All conflicts fixed but you are still merging.

 (use "git commit" to conclude merge)

Changes to be committed:

 modified: rainbowcolors.txt

friend-rainbow $ git commit -m "merge commit 2"

[main f10f972] merge commit 2

[FOLLOW ALONG 10-4]

friend-rainbow $ git log

commit f10f9725e3319af840a3d891ca8950436a219eb0 (HEAD -> main)

Merge: 6ad5c15 9b0a614

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:11:06 2022 +0100

 merge commit 2

commit 6ad5c15f033b68ad27f2c9bce8bfa93329b3c23e

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:41:25 2022 +0100

 violet

commit 9b0a61461c8e8d74ed358e65b2662e3697b94de6 (origin/main,

origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:36:11 2022 +0100

 indigo

What to notice:

• In step 8, the git log output shows:

○ The local main branch points to merge commit 2.

○ The two parent commits of merge commit 2 are 6ad5c15 (the violet

commit) and 9b0a614 (the indigo commit). Recall that the commit

hashes in your friend-rainbow repository will be different from the

ones in this book because commit hashes are unique.

These observations are illustrated in Visualize it 10-6, where the new merge
commit is represented as M2.

[VISUALIZE IT 10-6]

The Rainbow project after your friend resolves the merge conflicts in the friend-

rainbow repository and makes another merge commit

Your friend successfully carried out the three-way merge and resolved the
merge conflicts. Next, let’s discuss the importance of staying up to date
with a remote repository.

Staying Up to Date with a Remote Repository
It is more time-consuming to integrate changes from one branch into
another when there are merge conflicts. In the Rainbow project example,
there was only one file with a small merge conflict. However, in real-world
projects there may be many more files with way more complicated merge
conflicts to resolve. Staying up to date with changes made on relevant
branches in a remote repository is important because it can help limit the
number of potential merge conflicts you may have to resolve later down the
road.

Whenever you create a new branch, it is recommended that you base it off
the most up-to-date version of the relevant remote branch in the remote
repository. Often this will be the main branch (or whichever branch your

team uses as the primary line of development). However, depending on
your team’s Git workflow, it may be another branch.

If you’re working on an existing branch on your own, it is recommended to
update your branch with the changes made to the relevant remote branch in
the remote repository by merging. And if you find yourself in a situation
where you’re working on the same branch as someone else, then you must
always make sure to fetch and merge any changes that have been made on
that branch in the remote repository before continuing to work on it.

With this reminder about staying up to date in mind, let’s now make sure
that your friend pushes the work they’ve done on their local main branch to

the remote repository and that you sync your local main branch in the rainbow

repository with the remote main branch.

Syncing the Repositories
For all the repositories to be in sync, your friend will need to push the new
commits on their local main branch to the remote repository, and you will

need to pull down all the changes into your local main branch in the rainbow

repository. Go to Follow Along 10-5 to complete these steps now.

[FOLLOW ALONG 10-5]

friend-rainbow $ git push

Enumerating objects: 10, done.

Counting objects: 100% (10/10), done.

Delta compression using up to 4 threads

Compressing objects: 100% (6/6), done.

Writing objects: 100% (6/6), 614 bytes | 614.00 KiB/s, done.

Total 6 (delta 2), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (2/2), completed with 1 local object.

To github.com:gitlearningjourney/rainbow-remote.git

 9b0a614..f10f972 main -> main

friend-rainbow $ git log

commit f10f9725e3319af840a3d891ca8950436a219eb0 (HEAD -> main,

origin/main, origin/HEAD)

Merge: 6ad5c15 9b0a614

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:11:06 2022 +0100

 merge commit 2

commit 6ad5c15f033b68ad27f2c9bce8bfa93329b3c23e

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:41:25 2022 +0100

 violet

Go to the command line window where you’re in the rainbow repository to

execute the following command.

[FOLLOW ALONG 10-5]

rainbow $ git pull

remote: Enumerating objects: 10, done.

remote: Counting objects: 100% (10/10), done.

remote: Compressing objects: 100% (4/4), done.

Unpacking objects: 100% (6/6), 594 bytes | 99.00 KiB/s, done.

remote: Total 6 (delta 2), reused 6 (delta 2), pack-reused 0

From github.com:gitlearningjourney/rainbow-remote

 9b0a614..f10f972 main -> origin/main

Updating 9b0a614..f10f972

Fast-forward

 rainbowcolors.txt | 5 ++++-

 1 file changed, 4 insertions(+), 1 deletion(-)

rainbow $ git log

commit f10f9725e3319af840a3d891ca8950436a219eb0 (HEAD -> main,

origin/main)

Merge: 6ad5c15 9b0a614

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:11:06 2022 +0100

 merge commit 2

commit 6ad5c15f033b68ad27f2c9bce8bfa93329b3c23e

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 08:41:25 2022 +0100

 violet

All three repositories in the Rainbow project are now in sync, as illustrated
in Visualize it 10-7.

[VISUALIZE IT 10-7]

The Rainbow project after your friend pushes their changes to the remote repository

and you pull their changes down to your rainbow repository

What to notice:

• In the rainbow-remote repository the remote main branch points to the M2

merge commit.

• In the rainbow repository, the local main branch and the origin/main

remote-tracking branch point to the M2 merge commit.

• In the friend-rainbow repository, the origin/main remote-tracking branch

has updated to point to the M2 merge commit.

State of the Local and Remote Repositories
Visualize it 10-8 shows the state of the local and remote repositories in the
Rainbow project with all the commits that were made from Chapter 1 all the
way to the end of this chapter.

[VISUALIZE IT 10-8]

The Rainbow project at the end of Chapter 10 with all the commits since Chapter 1

Summary
In this chapter you learned about merge conflicts, which arise when you
merge two branches where different changes have been made to the same
parts in the same file(s), or if in one branch a file was deleted that was
edited in the other branch. You also learned about the two steps involved in
resolving them: deciding what content to keep, removing the conflict
markers, and saving the files, then adding the edited files to the staging area
and making a commit.

Merge conflicts can arise either during a three-way merge or during the
process of rebasing. Up until now we have focused on merging; in Chapter
11 you will learn about rebasing and you will work through a hands-on
example in the Rainbow project.

[11]

Rebasing

As you know, Git offers two main ways to integrate changes
from one branch to another: merging and rebasing. In Chapters 5
and 9 you learned about fast-forward merges and three-way
merges, respectively. In Chapter 10, you learned about merge
conflicts and found out that they can arise both during a three-
way merge and during a rebase.

In this chapter, you will learn about rebasing and walk through an
example. I’ll introduce the five stages of the rebase process and
show you how to resolve merge conflicts during this process.
We’ll look at how merging and rebasing differ, and in which
cases you may prefer to rebase instead of merge. I’ll also
introduce the golden rule of rebasing, which will help you
determine when not to rebase. Additionally, you will learn a bit
more about the staging area and how to use it as a rough draft
space for organizing what you want to include in your next
commit.

State of the Local and Remote Repositories
At the start of this chapter, you should have two local repositories called
rainbow and friend-rainbow and one remote repository called rainbow-remote. All

three of these repositories should contain the same commits and branches.
As usual, when working through the examples in this chapter I recommend
that you use two separate text editor windows and command line windows
for the rainbow repository and the friend-rainbow repository.

Visualize it 11-1 shows the state of the local and remote repositories in the
Rainbow project with all the commits that were made from Chapter 1to
Chapter 10.

[VISUALIZE IT 11-1]

The Rainbow project at the start of Chapter 11 with all the commits since Chapter 1

To focus on the commits you are going to make in this chapter, from here
on I will simplify the Visualize It diagrams and show only the last commit
that was made on the main branch in all the repositories, which is the M2

merge commit. This representation is shown in Visualize it 11-2.

[VISUALIZE IT 11-2]

A simplified representation of the Rainbow project at the start of Chapter 11, showing

just the last commit on the main branch in all the repositories

Integrating Changes in Git
Up until now, we have focused on merging as a way of integrating changes
in Git. You have seen in practice that a fast-forward merge simply moves
the branch pointer of the target branch to point to the latest commit,
whereas a three-way merge creates a merge commit that ties the
development histories of the source branch and the target branch together
(and may sometimes also lead to merge conflicts).

If you look at the state of the various repositories in Visualize it 11-1, you
can see that up until the green commit you had a linear project history, but
after the green commit the commit history is nonlinear due to the merge
commits created by the three-way merges. Some teams and individuals
prefer to maintain a linear project history because they find it is more
organized and simpler. You can use the process of rebasing to avoid three-
way merges and merge commits and maintain a linear project history.

Rebasing takes all the work you have done in the commits on one branch
and reapplies the work on another branch, creating entirely new commits.
This can make it appear as though you have created a branch from an
entirely different commit than the original commit you created it from.

To carry out a rebase, you need to be on the branch you want to rebase. You
use the git rebase command and pass in the name of the branch that you

want to rebase onto.

[SAVE THE COMMAND]

git rebase <branch_name>

Reapply commits on top of another branch

Given that rebasing creates entirely new commits, this means it changes the
commit history. It’s important to be careful when using Git operations that
do this. We’ll discuss situations where it is not recommended to rebase a
branch in “The Golden Rule of Rebasing” on page 223. First, however, I’m
going to show you how rebasing may be used in a Git project, and you’ll
work through a hands-on example in the Rainbow project. Let’s get started
by exploring why you might want to take this approach.

Why Is Rebasing Helpful?
To illustrate how rebasing can help you avoid three-way merges and
maintain a linear project history, let’s revisit the example introduced in
Example Book Project 9-1. Take a look at Example Book Project 11-1.

Example Book Project 11-1
Using the example scenario from Chapter 9, suppose my coauthor and I
each make a different branch based on the main branch when it is

pointing to commit B, to work on separate chapters. I make the
chapter_five branch and my coauthor makes the chapter_six branch, as

seen in Figure 11-1.

My coauthor works on chapter 6 of the book and makes commit C.
They merge their work into the main branch of their local repository and

push the updated main branch to the remote repository. At the same time,

I work on chapter 5 and make commit D in my local repository.
However, I have not yet merged or shared my work. These
developments are illustrated in Figure 11-2.

F I G U R E 1 1 - 1

The Book project when my coauthor and I each make branches to work on different

chapters

When I decide that my changes to chapter 5 are ready to be merged into
my local main branch, I now have a couple of options. One option is to

fetch the changes on the remote
main branch from the remote repository and then do a three-way merge to

F I G U R E 1 1 - 2

The Book project after my coauthor pushes their changes to the remote repository

merge chapter_five into main, which will ultimately produce a merge

commit (represented as commit M
in Figure 11-3). This is the option presented in Chapter 9.

F I G U R E 1 1 - 3

The Book project if I were to integrate the changes from the remote repository using a

Another option is to pull the changes from the remote repository, which
means my local main branch will update to point to commit C, with the

intent of rebasing my branch afterward. Figure 11-4 shows the state of
the Book project after I pull the changes from the remote main branch.

three-way merge

Next, I can rebase my chapter_five branch on top of the updated main

branch. As mentioned previously, rebasing will take all the commits I

F I G U R E 1 1 - 4

The Book project after I pull the changes from the remote main branch

have made on the chapter_five branch and reapply them onto the main

branch, creating entirely new commits. In this example, the only
commit that I made on the chapter_five branch since it diverged from the

main branch is commit D. When the branch is rebased, a new D’ commit

will be created, as seen in Figure 11-5. The apostrophe (‘) in the
identifier indicates that this is a rebased commit.

F I G U R E 1 1 - 5
The Book project after I integrate the changes from the remote repository by rebasing

The D’ commit represents the new version of commit D that was
created during the rebase process. It includes all the changes I made in
the original D commit, but it is an entirely new commit with a new
commit hash.

After I have rebased my chapter_five branch, I can merge it into main with

a simple fast-forward merge, as seen in Figure 11-6.

my chapter_five branch onto the main branch

By rebasing my branch I’m able to maintain a linear commit history and
avoid making additional merge commits.

F I G U R E 1 1 - 6

The Book project after I merge the chapter_five branch into the main branch with a

simple fast-forward merge

Note that the original D commit still exists in the commit history;
however, it is no longer part of any of the branches in the book

repository, which is why it is not shown in Figure 11-6. Rebasing a
branch does not delete the commits on that branch; it simply re-creates
them. The old commits still exist in the commit history.

Now that you’ve seen a hypothetical example of how rebasing can be used
to maintain a linear project history, let’s create a situation in the Rainbow
project where you have divergent development histories between two
branches so you can go over a hands-on example.

Setting Up the Rebasing Example
To practice rebasing, you’ll need to create divergent histories. You are
going to make one commit in the rainbow repository and push it to the remote

repository. Then your friend, without fetching the changes from the remote
repository, is going to make two commits in their friend-rainbow repository.

After they have made their commits, they will fetch the changes from the
remote repository and decide to rebase their branch.

Go to Follow Along 11-1 to make a commit in the rainbow repository.

[FOLLOW ALONG 11-1]

Open the othercolors.txt in the rainbow project directory in a text editor

window. Add “Gray is not a color in the rainbow.” on line 2, and save the file.

rainbow $ git add othercolors.txt

rainbow $ git commit -m "gray"

[main 6f2cf36] gray

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git push

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 4 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 327 bytes | 327.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:gitlearningjourney/rainbow-remote.git

 f10f972..6f2cf36 main -> main

[FOLLOW ALONG 11-1]

rainbow $ git log

commit 6f2cf3698e6bf9078e8e0340ec9948f590405091 (HEAD -> main,

origin/main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:27:58 2022 +0100

 gray

commit f10f9725e3319af840a3d891ca8950436a219eb0

Merge: 6ad5c15 9b0a614

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:11:06 2022 +0100

 merge commit 2

What to notice:

• You have made the gray commit and pushed it to the remote
repository.

This is illustrated in Visualize it 11-3.

[VISUALIZE IT 11-3]

The Rainbow project after you make the gray commit on the local main branch in the

rainbow repository and push it to the remote repository

Next, your friend will add some work in the friend-rainbow repository on the

same branch, which will lead to divergent histories between your main

branch and your friend’s main branch. This also provides a good opportunity

to introduce some helpful features of the staging area.

Unstaging and Staging Files
In this section, your friend is going to make changes to both of the files in
the friend-rainbow repository and add them both to the staging area. But then

they will realize they want to make two separate commits for the different
pieces of work. Therefore, they will have to unstage a file.

Let’s take a look at Example Book Project 11-2, in which we revisit the
scenario that we explored in Example Book Project 3-2 to see why we
might need to unstage a file.

Example Book Project 11-2
Suppose I work on chapters 1, 2, and 3, of my book, editing the files
corresponding to those chapters: chapter_one.txt, chapter_two.txt, and

chapter_three.txt. I add all the chapter files to the staging area, which

means all the changes I have made to chapters 1, 2, and 3 will be saved
in my next commit. My plan is for my editor to review all of my
changes.

Before I make the commit, however, I realize that only the changes in
chapter 2 are actually ready to be reviewed. In other words, I want only
the changes that I made in chapter_two.txt to be included in my next

commit. Since the staging area is a rough draft space where I can add
and remove modified files in order to craft what will be included in the
next commit, I’m free to remove the modified chapter_two.txt and

chapter_three.txt files from this area, so that only the changes in the

modified chapter_two.txt file are included in my next commit. This means

my editor will review only those changes.

Now that you have an idea of why it is important to know how to unstage a
file from the staging area, you’re ready to practice unstaging a file in the
Rainbow project.

To explore what happens in the upcoming example, we will focus on the
friend-rainbow repository in the Visualize It diagrams, using the Git Diagram

introduced in Chapter 2. The current state of the friend-rainbow repository is

shown in Visualize it 11-4.

[VISUALIZE IT 11-4]

The friend-rainbow project directory before your friend edits any files

What to notice:

• The current versions of the rainbowcolors.txt file and othercolors.txt file

that are in the working directory and staging area are represented as
version A (vA).

Next, in Follow Along 11-2, your friend is going to make some changes to
the files.

[FOLLOW ALONG 11-2]

In the friend-rainbow project directory in your text editor:

In the othercolors.txt file, add “Black is not a color in the rainbow.” on line 2

and save the file.

In the rainbowcolors.txt file, add “These are the colors of the rainbow.” on line

8 and save the file.

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: othercolors.txt

 modified: rainbowcolors.txt

no changes added to commit (use "git add" and/or "git commit -a")

What to notice:

• Your friend edited both the rainbowcolors.txt file and the othercolors.txt

file, and they are listed as modified files that have not been added to
the staging area.

This is illustrated in Visualize it 11-5.

[VISUALIZE IT 11-5]

The friend-rainbow project directory after your friend edits the rainbowcolors.txt and

othercolors.txt files in the working directory

What to notice:

• The modified versions of the rainbowcolors.txt file and the othercolors.txt

file that your friend edited are represented as version B (vB).

• The versions of the othercolors.txt and rainbowcolors.txt files in the

staging area (vA) are different from the versions in the working
directory (vB).

Now, in Follow Along 11-3, your friend will add the updated files to the
staging area to include them in the next commit.

[FOLLOW ALONG 11-3]

friend-rainbow $ git add rainbowcolors.txt othercolors.txt

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: othercolors.txt

 modified: rainbowcolors.txt

What to notice:

• Your friend added both the modified rainbowcolors.txt file and the

modified othercolors.txt file to the staging area.

This is illustrated in Visualize it 11-6.

[VISUALIZE IT 11-6]

The friend-rainbow project directory after your friend adds the updated versions of

the rainbowcolors.txt and othercolors.txt files to the staging area

What to notice:

• The versions of the othercolors.txt and rainbowcolors.txt files in the

staging area have changed from vA to vB.

Now, let’s assume that your friend decides they want to make separate
commits for the work they did adding the color black to the list of non-
rainbow colors and the work they did commenting on the rainbow.

In “Introducing the Staging Area” on page 27, I mentioned that the staging
area is like a rough draft space where you can add and remove modified
files to craft what will be included in your next commit. Up until now, you
have been using the git add command to add files to the staging area. Now

you’re going to see how to remove a modified file from the staging area, or
in other words, change the version of the file in the staging area. In the git

status command output in Follow Along 11-3, Git provides the instructions

for how to unstage a file: (use "git restore --staged <file>..." to unstage). As

this output indicates, to remove files from the staging area you can use the
git restore command with the --staged option, passing in the names of any

files you want to unstage, separated by spaces.

[SAVE THE COMMAND]

git restore --staged <filename>

Restore a file to another version of the file in the staging area

[NOTE]
If you have a version of Git that is older than version 2.23, then you won’t have

access to the git restore command. Your output may suggest you use the git reset

command, which is another command that can unstage a file. In the upcoming Follow

Along, in step 1, you will have to enter git reset HEAD rainbowcolors.txt instead of

git restore --staged rainbowcolors.txt to unstage the rainbowcolors.txt file. Keep

in mind that in Git there are often many different ways to achieve the same outcome.

In Follow Along 11-4, your friend will use the git restore command with the

--staged option, as directed in the git status output in Follow Along 11-3,

passing in the name of the rainbowcolors.txt file to unstage it. This means

their next commit will include only the changes they made in the
othercolors.txt file.

[FOLLOW ALONG 11-4]

friend-rainbow $ git restore --staged rainbowcolors.txt

friend-rainbow $ git status

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: othercolors.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: rainbowcolors.txt

What to notice:

• The git status output shows that the updated version of the

othercolors.txt file is still in the staging area, whereas the updated

version of the rainbowcolors.txt file has been unstaged and is no longer

in the staging area.

We illustrate this in Visualize it 11-7.

[VISUALIZE IT 11-7]

The friend-rainbow project directory after your friend unstages the

rainbowcolors.txt file

What to notice:

• Your friend unstaged the rainbowcolors.txt file, so the version in the

staging area went back to vA.

• The updated version of othercolors.txt (vB) is still in the staging area.

• The version of rainbowcolors.txt with your friend’s most recent changes

(vB) is still in the working directory.

Next, in Follow Along 11-5, your friend will make a commit that will
include only the change to the othercolors.txt file.

[FOLLOW ALONG 11-5]

friend-rainbow $ git commit -m "black"

[main 29bdadd] black

 1 file changed, 2 insertions(+), 1 deletion(-)

friend-rainbow $ git status

On branch main

Your branch is ahead of 'origin/main' by 1 commit.

 (use "git push" to publish your local commits)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: rainbowcolors.txt

no changes added to commit (use "git add" and/or "git commit -a")

friend-rainbow $ git log

commit 29bdadd50ddea41c75b476e776b6204a555b3d54 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:07:38 2022 +0100

 black

commit f10f9725e3319af840a3d891ca8950436a219eb0 (origin/main,

origin/HEAD)

Merge: 6ad5c15 9b0a614

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:11:06 2022 +0100

 merge commit 2

What to notice:

• Your friend made the black commit.

• In step 2, the git status output mentions that the rainbowcolors.txt file is a

modified file in the working directory.

Visualize it 11-8 shows the state of the friend-rainbow project directory after

Follow Along 11-5.

[VISUALIZE IT 11-8]

The friend-rainbow project directory after your friend makes the black commit

Now, in Follow Along 11-6, your friend will add the changes that they
made to the
rainbowcolors.txt file to the staging area and make another commit.

[FOLLOW ALONG 11-6]

friend-rainbow $ git add rainbowcolors.txt

friend-rainbow $ git commit -m "rainbow"

[main 51dc6ec] rainbow

 1 file changed, 1 insertion(+), 1 deletion(-)

friend-rainbow $ git log

commit 51dc6ecb327578cca503abba4a56e8c18f3835e1 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:10:11 2022 +0100

 rainbow

commit 29bdadd50ddea41c75b476e776b6204a555b3d54

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:07:38 2022 +0100

 black

commit f10f9725e3319af840a3d891ca8950436a219eb0 (origin/main,

origin/HEAD)

Merge: 6ad5c15 9b0a614

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:11:06 2022 +0100

 merge commit 2

What to notice:

• Your friend made the rainbow commit.

This is illustrated in Visualize it 11-9.

[VISUALIZE IT 11-9]

The friend-rainbow project directory after your friend adds the rainbowcolors.txt file

to the staging area and makes a commit

What to notice:

• The version of the rainbowcolors.txt file in the staging area is now vB,

which is the version that is part of the rainbow commit.

You just saw how your friend was able to add files to and remove them
from the staging area in order to craft exactly the commits they wanted. The
local main branch in the rainbow repository and the local main branch in the

friend-rainbow repository now have divergent development histories. Before

your friend continues with the rebasing example, they need to make sure to
fetch all the work you have pushed to the remote main branch from the

remote repository.

Preparing to Rebase
As you saw in Example Book Project 11-1 earlier in this chapter, to rebase a
branch you first have to fetch all the work that has been done on the branch
that you want to rebase onto. So, in preparation for rebasing their branch, in
Follow Along 11-7 your friend is going to fetch the latest updates from the
remote repository.

[FOLLOW ALONG 11-7]

friend-rainbow $ git fetch

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 0), reused 3 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), 307 bytes | 153.00 KiB/s, done.

From github.com:gitlearningjourney/rainbow-remote

 f10f972..6f2cf36 main -> origin/main

friend-rainbow $ git log --all

commit 51dc6ecb327578cca503abba4a56e8c18f3835e1 (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:10:11 2022 +0100

 rainbow

commit 29bdadd50ddea41c75b476e776b6204a555b3d54

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:07:38 2022 +0100

 black

commit 6f2cf3698e6bf9078e8e0340ec9948f590405091 (origin/main,

origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:27:58 2022 +0100

 gray

What to notice:

• Your friend fetched the gray commit from the remote repository, and
the origin/main remote-tracking branch was updated to point to it.

This is illustrated in Visualize it 11-10.

[VISUALIZE IT 11-10]

The Rainbow project after your friend updates the friend-rainbow repository by

fetching your work from the remote repository

The origin/main remote-tracking branch in the friend-rainbow repository

represents the latest version of the remote main branch. Your friend is now

ready to rebase their local main branch onto the origin/main remote-tracking

branch. Next, we’ll go over the stages of the rebase process itself.

The Five Stages of the Rebase Process
This section will walk you through the five stages of the rebase process. To
provide a visual illustration of the stages, I’ll include Visualize It diagrams
previewing the hands-on example that you will carry out later in this
chapter, when your friend rebases their local main branch in the friend-rainbow

repository onto the origin/main remote-tracking branch.

To initiate the rebase process, you use the git rebase command. Git will then

carry out the five stages of the process itself; the only time you have to
actively get involved is if there are any merge conflicts. We will discuss this
situation in further detail in “Rebasing and Merge Conflicts” on page 217.

STAGE 1: FIND THE COMMON ANCESTOR
In the first stage of the process, Git will identify the common ancestor of
the two branches involved in the rebase: the branch you’re on and the
branch you’re rebasing onto.

In the Rainbow project example, the branch your friend will be on is the
local main branch in the friend-rainbow repository and the branch they will be

rebasing onto will be the origin/main remote-tracking branch. The common

ancestor will be the M2 merge commit, as shown in Visualize it 11-11.

[VISUALIZE IT 11-11]

Stage 1: Locate the common ancestor of the branches involved in the rebase (here,

the M2 merge commit)

STAGE 2: STORE INFORMATION ABOUT THE BRANCHES
INVOLVED IN THE REBASE
In stage 2, Git will save the changes introduced by each commit of the
branch you’re on to a temporary area. It will also save additional

information in this temporary area, such as which branch you’re rebasing
onto and where it was pointing when you initiated the rebase.

In the Rainbow project example, the changes introduced by the black
commit and the rainbow commit will be saved in the temporary area along
with information about the remote main branch, as illustrated in Visualize it

11-12.

[NOTE]
In the following Visualize It diagrams, triangles (△) are used to represent the changes

introduced by commits.

[VISUALIZE IT 11-12]

Stage 2: Save information about the rebase in a temporary area

STAGE 3: RESET HEAD
In stage 3, Git will reset HEAD to point to the same commit as the branch you

are rebasing onto.

In the Rainbow project example, it will reset HEAD to the same commit that

the origin/main remote-tracking branch is pointing to, which is the gray

commit, as illustrated in Visualize it 11-13.

[VISUALIZE IT 11-13]

Stage 3: Reset HEAD to the same commit as the branch you are rebasing onto (here,

the gray commit)

STAGE 4: APPLY AND COMMIT THE CHANGES
In stage 4, Git will apply the set of changes from each commit in turn,
making a commit after it applies each set.

In the Rainbow project example, first it will apply the changes introduced
by the black commit and create a new commit, and then it will apply the
changes introduced by the rainbow commit and make a new commit, as
shown in Visualize it 11-14.

[VISUALIZE IT 11-14]

Stage 4: Apply and commit the changes from each commit (here, the black and

rainbow commits)

In Visualize it 11-14, the new black commit and the new rainbow commit
are represented as Bl’ and Ra’ (with an apostrophe), because they are
entirely new commits.

STAGE 5: SWITCH ONTO THE REBASED BRANCH

In stage 5, Git will make the branch you rebased point to the last commit it
reapplies, and it will check out that branch so that HEAD points to it.

In the Rainbow project example, the main branch will point to the new

rainbow commit, as illustrated in Visualize it 11-15.

[VISUALIZE IT 11-15]

Stage 5: Switch onto the branch you rebased

This concludes our walkthrough of the five stages of the rebase process. As
mentioned at the beginning of this section, Git carries out the entire process
itself; all you need to do is initiate it with the git rebase command. I also

mentioned that the only time you’ll need to get involved in the rebase

process is if Git encounters merge conflicts. We’ll look briefly at that
scenario in the next section.

Rebasing and Merge Conflicts
In Chapter 10 you learned about merge conflicts, which arise when you
integrate two branches where different changes have been made to the same
parts in the same file(s), or if in one branch a file was deleted that was
edited in the other branch.

Git will carry out the entire rebase process independently, unless it
encounters merge conflicts. In this case, you must step in and resolve them.
The process for resolving merge conflicts while rebasing is similar to the
process when doing a three-way merge, with a few small differences.

When resolving merge conflicts in a three-way merge, all the merge
conflicts are presented to you at the same time; once you’ve resolved all the
conflicts and added all the updated files to the staging area, you make the
final merge commit. By contrast, in the process of rebasing, as Git applies
the changes from each commit one by one, it will pause the process if it
encounters merge conflicts in any reapplied commit. This means that you
may have to resolve merge conflicts several times when rebasing,
depending on how many commits contain merge conflicts.

Once you’re done resolving the merge conflicts in a specific commit, you
need to add the updated files to the staging area and then instruct Git to
resume the rebase process by entering the git rebase command with the --

continue option. Git will then continue rebasing the rest of the commits. You

don’t have to explicitly make any commits, as you do in a three-way merge
with conflicts.

As with a merge, if at any point during the process of resolving merge
conflicts in a rebase you decide you don’t want to continue the rebase
process, you can choose to stop or abort the process by using the git rebase

command with the --abort option. This will return all your files to the state

they were in before the rebase.

[SAVE THE COMMAND]

git rebase --continue

Continue with the rebase process after having resolved merge conflicts

git rebase --abort

Stop the rebase process and go back to the state before the rebase

Now that we’ve covered what to expect when rebasing, it’s time to practice
with the Rainbow project.

Rebasing a Branch in Practice
Go to Follow Along 11-8, where your friend will rebase the main branch in

their local repository onto the origin/main remote-tracking branch.

[FOLLOW ALONG 11-8]

In the friend-rainbow project directory, make a note of the commit hashes for

the black commit and the rainbow commit. You may use the git log command

for this, which will include the commit hashes in its output. In the example in

this book, the commit hashes are:

Black commit: 29bdadd50ddea41c75b476e776b6204a555b3d54

Rainbow commit: 51dc6ecb327578cca503abba4a56e8c18f3835e1

friend-rainbow $ git rebase origin/main

Auto-merging othercolors.txt

CONFLICT (content): Merge conflict in othercolors.txt

error: could not apply 29bdadd... black

hint: Resolve all conflicts manually, mark them as resolved with

hint: "git add/rm <conflicted_files>", then run "git rebase --continue".

hint: You can instead skip this commit: run "git rebase --skip".

hint: To abort and get back to the state before "git rebase", run "git

rebase --abort".

Could not apply 29bdadd... black

[FOLLOW ALONG 11-8]

friend-rainbow $ git status

interactive rebase in progress; onto 6f2cf36

Last command done (1 command done):

 pick 29bdadd black

Next command to do (1 remaining command):

 pick 51dc6ec rainbow

 (use "git rebase --edit-todo" to view and edit)

You are currently rebasing branch 'main' on 'bcb1dc0'.

 (fix conflicts and then run "git rebase --continue")

 (use "git rebase --skip" to skip this patch)

 (use "git rebase --abort" to check out the original branch)

Unmerged paths:

 (use "git restore --staged <file>..." to unstage)

 (use "git add <file>..." to mark resolution)

 both modified: othercolors.txt

no changes added to commit (use "git add" and/or "git commit -a")

What to notice:

• The rebase operation was interrupted because when Git was applying
the changes that were included in the black commit, it encountered a
merge conflict.

• In step 2, the git rebase command hints to you that you must Resolve all

conflicts manually, mark them as resolved with "git add/rm <conflicted_files>",

then run "git rebase --continue".

• In step 3, the git status command also shows you information about the

rebase and which files you need to resolve merge conflicts in.

In Follow Along 11-9, your friend is going to apply the steps you learned in
Chapter 10 to resolve the merge conflicts. Once they’re done, they will
execute the git rebase --continue command.

[FOLLOW ALONG 11-9]

Carry out step 1 of resolving merge conflicts, which is to choose what to keep,

edit the content, and remove the conflict markers. You will keep all the

changes from both branches. Keep the “Gray is not a color in the rainbow.”

sentence above the “Black is not a color in the rainbow.” sentence. Make sure

to save the othercolors.txt file when you’re done making your edits.

friend-rainbow $ git add othercolors.txt

friend-rainbow $ git status

interactive rebase in progress; onto 6f2cf36

Last command done (1 command done):

 pick 29bdadd black

Next command to do (1 remaining command):

 pick 51dc6ec rainbow

 (use "git rebase --edit-todo" to view and edit)

You are currently rebasing branch 'main' on 'bcb1dc0'.

 (all conflicts fixed: run "git rebase --continue")

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: othercolors.txt

friend-rainbow $ git rebase --continue

[FOLLOW ALONG 11-9]

Accept the default commit message in the Vim editor, and exit the editor. As

you learned in Chapter 9, to do this you must press the Escape key, type :wq,

and press Enter. You will see the following output:

[detached HEAD e055f2b] black

 1 file changed, 3 insertions(+), 1 deletion(-)

Successfully rebased and updated refs/heads/main.

friend-rainbow $ git log

commit 7c09136bcbfdd9f638ed13c6653e06451579d21c (HEAD -> main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:10:11 2022 +0100

 rainbow

commit e055f2bc66aed1f3627041900a8c825c7a875206

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:07:38 2022 +0100

 black

commit 6f2cf3698e6bf9078e8e0340ec9948f590405091 (origin/main,

origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 09:27:58 2022 +0100

 gray

What to notice:

• In step 3, the git status output informs you all conflicts fixed: run "git

rebase --continue".

• In step 6, the git log output indicates that the rebase process created a

new rainbow commit and a new black commit. The commit hashes are
new, as are the timestamps (the date and time of each commit).

The result of this process is illustrated in Visualize it 11-16.

[VISUALIZE IT 11-16]

The Rainbow project after your friend rebases their local main branch onto the

origin/main remote-tracking branch

What to notice:

• We represent the new black commit and the new rainbow commit as
Bl’ and Ra’ (with an apostrophe).

• In the friend-rainbow repository, the gray commit, the new black commit,

and the new rainbow commit form a linear project history. In other
words, there is no merge commit.

Figure 11-7 compares the commit hashes of the old black and rainbow
commits and the new black and rainbow commits in this book. The commit
hashes in your repositories will be different from the ones in this book
because commit hashes are unique.

From this exercise, you have observed that rebasing rewrites history—and
that brings us to the golden rule of rebasing.

The Golden Rule of Rebasing
As you saw in the Rainbow project example, rebasing creates entirely new
commits. This means that rebasing changes the commit history. You must
always be careful when you change the commit history because it can lead
to complications in your project, especially when you’re working with other
people.

F I G U R E 1 1 - 7

The commit hashes for the old black and rainbow commits are different from the commit

hashes for the new black and rainbow commits

The golden rule of rebasing states that you should not rebase a branch that
other people may have based work on. For example, if you have pushed a
branch to the remote repository, then it is considered a public branch. This
means that other collaborators may also be working on this branch in their
local repositories, or they may be pushing work to this branch in the remote
repository.

In this case, you should refrain from rebasing the branch. To explore the
importance of the golden rule of rebasing, let’s take a look at Example
Book Project 11-3, in which we revisit the situation discussed in Example
Book Project 11-1.

Example Book Project 11-3
In Example Book Project 11-1, I introduced a situation where there
were two commits on the main branch (commits A and B) when I made

the chapter_five branch and my coauthor made the chapter_six branch.

Subsequently, my coauthor merged commit C from their chapter_six

branch into their main branch and pushed the updated main branch to the

remote expository. At the same time, I added commit D to the
chapter_five branch in my local repository. This initial scenario is

illustrated in Figure 11-8.

Now, suppose that I push the chapter_five branch to the remote

repository, and then, in violation of the golden rule of rebasing, I also
pull commit C from the remote repository and update my local main

branch because I plan to rebase my chapter_five branch onto the latest

version of the main branch. This situation is depicted in Figure 11-9.

F I G U R E 1 1 - 8

The Book project when the local chapter_five branch and the remote main branch have

diverged

I don’t realize my mistake, and I go ahead with my plan to rebase the
chapter_five branch onto the main branch. Figure 11-10 shows the state of

F I G U R E 1 1 - 9

The Book project after I push the chapter_five branch to the remote repository and pull

the commits on the main branch

the remote and local repositories after the rebase. D’ in the book

repository represents the re-created commit D after the rebase.

F I G U R E 1 1 - 1 0

The Book project after I rebase the chapter_five branch onto the main branch

I have not yet pushed my updated chapter_five branch to the remote

repository. Now let’s assume my coauthor sees the remote chapter_five

branch in the remote repository and decides to contribute to it. They pull
the chapter_five branch into their coauthor-book repository, add commits E

and F to it, and then push them up to the remote repository. This
situation is illustrated in Figure 11-11.

When I try to push my chapter_five branch to the remote repository I will

receive the following error:

F I G U R E 1 1 - 1 1

The Book project after my coauthor contributes to the remote chapter_five branch

error: failed to push some refs to 'github.com:gitlearningjourney/rainbow-

remote.git'

hint: Updates were rejected because the tip of your current branch is behind its

remote counterpart. Integrate the remote changes (e.g. 'git pull ...') before

pushing again. See the 'Note about fast-forwards' in 'git push --help' for

details.

This error informs me that I am not able to push my changes to the
remote repository. As you can see in Figure 11-11, the commit histories
of the remote chapter_five branch and the local chapter_five branch no

longer contain the same commits: the remote chapter_five branch is made

up of commits A, B, D, E, and F, while the local chapter_five branch is

made up of commits A, B, C, and D’.

This is a sticky situation, because now my coauthor and I have no easy
way of resolving this issue. We will have to communicate to
troubleshoot and see how we can resolve the disparities between our
branches.

Example Book Project 11-3 illustrates why you should follow the golden
rule of rebasing when using the rebase operation. To conclude, you may
safely rebase a branch if:

• You have a local branch that has never been pushed to the remote
repository.

• You have a local branch that you’ve pushed to a remote repository that
you’re 100% sure nobody has based work on or contributed to.

That’s it. If there is a possibility that someone else has worked on the
branch, then it is recommended that you avoid rebasing.

Syncing the Repositories
To make sure the repositories in the Rainbow project are in sync, your
friend will have to push their changes to the remote repository and you will
have to pull the changes down into the rainbow repository. Go to Follow

Along 11-10 to do this now.

[FOLLOW ALONG 11-10]

friend-rainbow $ git push

Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.

Delta compression using up to 4 threads

Compressing objects: 100% (6/6), done.

Writing objects: 100% (6/6), 652 bytes | 652.00 KiB/s, done.

Total 6 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

To github.com:gitlearningjourney/rainbow-remote.git

 6f2cf36..7c09136 main -> main

friend-rainbow $ git log

commit 7c09136bcbfdd9f638ed13c6653e06451579d21c (HEAD -> main,

origin/main, origin/HEAD)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:10:11 2022 +0100

 rainbow

commit e055f2bc66aed1f3627041900a8c825c7a875206

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:07:38 2022 +0100

 black

Go to the command line window where you’re in the rainbow repository to

execute the command in step 4.

[FOLLOW ALONG 11-10]

rainbow $ git pull

remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 6 (delta 1), reused 6 (delta 1), pack-reused 0

Unpacking objects: 100% (6/6), 632 bytes | 105.00 KiB/s, done.

From github.com:gitlearningjourney/rainbow-remote

 6f2cf36..7c09136 main -> origin/main

Updating 6f2cf36..7c09136

Fast-forward

 othercolors.txt | 4 +++-

 rainbowcolors.txt | 2 +-

 2 files changed, 4 insertions(+), 2 deletions(-)

rainbow $ git log

commit 7c09136bcbfdd9f638ed13c6653e06451579d21c (HEAD -> main,

origin/main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:10:11 2022 +0100

 rainbow

commit e055f2bc66aed1f3627041900a8c825c7a875206

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:07:38 2022 +0100

 black

All three repositories in the Rainbow project are now in sync, as illustrated
in Visualize it 11-17.

[VISUALIZE IT 11-17]

The Rainbow project after your friend pushes their local main branch to the remote

repository and you pull from the remote repository to update your local main branch

State of the Local and Remote Repositories
Visualize it 11-18 shows the state of the local and remote repositories in the
Rainbow project with all the commits that were made from Chapter 1 all the
way to the end of this chapter.

[VISUALIZE IT 11-18]

The Rainbow project at the end of Chapter 11 with all the commits since Chapter 1

Summary
In this chapter you learned about rebasing—the second way of integrating
changes from one branch to another in Git—and how it can be used to
avoid three-way merges and merge commits. You learned about the five
stages of the rebase process that Git carries out, then you practiced rebasing
with an example in the Rainbow project. During the process, you also
practiced resolving merge conflicts.

Because rebasing rewrites the commit history, I introduced the golden rule
of rebasing, which states that you should not rebase branches that other
collaborators may have based work on. Additionally, you learned how to
unstage files, or remove modified files from the staging area, so you can
customize exactly what you include in a commit.

To this point, we have covered how you can integrate changes from one
branch into another when working with a local repository through either
merging or rebasing. Next, in Chapter 12, we’re going to explore a helpful
collaboration tool for Git projects that allows you to integrate changes
remotely, called a pull request.

[12]

Pull Requests (Merge Requests)

Up until now, we have only covered how to integrate changes
from one branch into another when working with a local
repository.

In this chapter you are going to learn about pull requests, a
helpful tool for collaboration that allows you to integrate changes
from one branch into another in a remote repository. Along the
way, you will also learn a handy trick for how to more easily
define upstream branches for new local branches.

Additional resources to assist you as you work through this
chapter are available in the Learning Git repository
(https://github.com/gitlearningjourney/learning-git).

State of the Local and Remote Repositories
At the start of this chapter, you should have two local repositories called
rainbow and friend-rainbow and one remote repository called rainbow-remote. All

three of these repositories should be in sync, with the same commits and
branches.

Visualize it 12-1 shows the state of the local and remote repositories in the
Rainbow project with all the commits that were made from Chapter 1 to

https://github.com/gitlearningjourney/learning-git

Chapter 11.

[VISUALIZE IT 12-1]

The Rainbow project at the start of Chapter 12 with all the commits since Chapter 1

To focus on the commits you are going to make in this chapter, from here
on I will simplify the Visualize It diagrams and show only the last two
commits that are a part of the main branch in all the repositories, which are

the black commit and the rainbow commit. This representation is shown in
Visualize it 12-2.

[VISUALIZE IT 12-2]

A simplified representation of the Rainbow project at the start of Chapter 12, showing

just the last two commits on the main branch in all the repositories

Introducing Pull Requests
A pull request (also referred to as a merge request) is a feature offered by a
hosting service that allows you to share work you have done on a branch
with your collaborators, potentially gather feedback on that work, and
finally integrate that work into the project remotely on the hosting service.
Although pull requests are not a feature of Git but of the hosting services
that host projects using Git, they are so useful in day-to-day work with Git
that I wanted to introduce them.

Pull requests can be integrated by merging or rebasing, but the default (and
most common) option is merging, so we will stick to that for the example in
this chapter. Throughout the rest of the chapter I will refer to the process of
integrating a pull request as “merging a pull request.”

When you create a pull request, you may say that you “open” a pull request.
Once the pull request has been reviewed, approved, and merged, you
“close” it. You may also close a
pull request if you decide not to merge it and you want to remove it from
the list of open pull requests (for example, if the pull request does not get
approved).

The pull request process can be split into nine steps:

1. Create a branch in the local repository.

2. Add work by making commits on the branch.

3. Push the branch to the remote repository.

4. Create (or open) a pull request in the hosting service.

5. Get the pull request reviewed and potentially incorporate any feedback
from other people into the pull request.

6. Get the pull request approved.

7. Merge the pull request.

8. If it is a topic branch (feature branch), delete the remote branch.

9. Pull the changes to sync your local repository with the remote
repository, and clean up by deleting the local branch and the remote-
tracking branch.

[NOTE]
If there are merge conflicts between the branches in the pull request, you will not be

able to merge it. You must first resolve the merge conflicts. Some hosting services

provide support for resolving merge conflicts on their website; however, it is most

common to resolve merge conflicts in your local repository, using the process outlined

in Chapter 10.

Before we get into an example, let’s briefly touch upon some things you’ll
need to keep in mind when working with a hosting service.

Hosting Service Specifics
The specific steps for creating and managing pull requests with GitHub,
GitLab, and Bitbucket are different, and you may need to consult your
hosting service’s documentation to complete some of the Follow Along
exercises in this chapter. For additional resources, go to the Learning Git
repository (https://github.com/gitlearningjourney/learning-git).

https://github.com/gitlearningjourney/learning-git

Terminology may also differ between hosting services: notably, while
GitHub and Bitbucket use the term “pull request,” GitLab refers to the same
feature as a “merge request.” Keep these differences in mind when carrying
out the Follow Along exercises in this chapter.

[NOTE]
Even though “pull” is in the name, pull requests are not actually related to the git

pull command.

Finally, in Chapter 6, when we walked through choosing a hosting service
and setting up HTTPS or SSH access, I recommended that you use a
personal hosting service account rather than a company account. This is
because it is possible to configure additional settings in a hosting service for
the pull request creation and approval process. For example, you (or the
company you work for) may define certain requirements for creating a pull
request, or you may set restrictions on who is able to approve pull requests
or how many individuals in a team need to approve a pull request before it
can be merged.

The examples in this book assume that no extra settings have been
configured. However, keep this in mind if you’re using a company account,
as there may be additional requirements and restrictions in place that affect
your ability to create and manage pull requests.

Next, let’s discuss why you might want to use pull requests in the first
place.

Why Use Pull Requests?

Pull requests facilitate communication and collaboration on Git projects by
providing an easy mechanism to review work. They have a useful
commenting feature that allows you and your collaborators to add
comments to specific lines in the files of a project, respond to these
comments, and start discussion threads. This helps organize the review
process.

Since pull requests are managed entirely in the hosting service UI, they also
allow non-Git users to provide feedback on Git projects—you don’t need to
know how to use Git to make comments on a pull request! Let’s look at
Example Book Project 12-1 to see an example of how using pull requests
can be useful.

Example Book Project 12-1
Suppose I make a branch off the main branch called chapter_nine to work

on chapter 9 of my book. I make two commits on that branch, commit
W and commit X, then I push my local chapter_nine branch to the remote

repository, creating a remote chapter_nine branch. The state of the local

and remote repositories is illustrated in Figure 12-1.

Recall that I’ve agreed with my editor that they must review my work
before I merge it into the main branch. This means they need to review

the new chapter_nine branch. One option is for them to clone the remote

repository on their local computer and check out the branch there, in
order to view my updated file. However, this doesn’t give them an easy
way of providing me with feedback and comments. Also, let’s assume
that my editor hasn’t yet learned how to use Git and therefore would
struggle with cloning and working in a local repository.

Instead, I’ll make sure my editor has access to the remote repository,
then I’ll make a pull request in the remote repository to merge the
remote chapter_nine branch into the remote main branch. I can either send

my editor the URL to the pull request or simply tell them to go to the
remote repository and find the pull request titled “Chapter 9 updates.”

My editor can then use the commenting feature to ask questions and
provide feedback. Suppose they notice an inconsistency in the chapter
that I need to fix, so they leave a comment in the pull request and let me
know that I should review their feedback. After fixing the issue in the
chapter in my local repository, I make another commit on the local
chapter_nine branch (commit Y) and push it to the remote repository. This

will automatically update the remote chapter_nine branch, and it will

therefore also automatically update the pull request. Figure 12-2 shows
the updated state of the local and remote repositories.

F I G U R E 1 2 - 1

The Book project after I push the chapter_nine branch to the remote repository

The fact I made the pull request makes it easy for my editor to provide
me with feedback on my Book project, and for me to share my updates
after I incorporate their feedback.

Example Book Project 12-1 illustrates why pull requests are so useful.
Next, let’s take a look at how pull requests actually integrate work.

Understanding How Pull Requests Are Merged
As you know, there are two types of merges in Git: a fast-forward merge
happens when the developmental histories of the source branch and the
target branch have not diverged, whereas if they have, a three-way merge
happens and a merge commit is made. You walked through examples of
performing both kinds of merges in Chapters 5 and 9, respectively.

By default, merging remotely is different from merging locally. The default
setting for most hosting services is that a remote merge with a pull request
happens with a merge option called non-fast-forward. With this option,
even if the development histories of the source branch and the target branch
have not diverged, a merge commit will still be made.

Merges made with the non-fast-forward option are sometimes referred to as
explicit merges. This is because they always explicitly show where a merge
happened with a merge commit.

F I G U R E 1 2 - 2

The Book project after I make commit Y on the chapter_nine branch and push it to the

remote repository

It is possible to change the setting on a hosting service to merge with a
different option or approach. However, since the non-fast-forward option is
the most common, that’s what we will cover in this book. Let’s revisit the
scenario from Example Book Project 12-1 in Example Book Project 12-2 to
see how pull requests usually merge work.

Example Book Project 12-2
InExample Book Project 12-11, I described how I made a pull request
titled “Chapter 9 updates” so my editor could review the work I had
done on the chapter_nine branch that I wanted to merge into the main

branch. Figure 12-3 shows the state of the Book project at this point.

After my editor reviews the latest work that I pushed to the remote
chapter_nine branch, which is represented by commit Y, they no longer

have any more feedback for me. So, they select the button on the
hosting service’s website to approve the pull request.

This means that I can merge the remote chapter_nine branch into the

remote main branch by selecting the button on the website to merge the

pull request. Since I have the default settings in place, this will be a
non-fast-forward merge. Even though the development histories of the
remote chapter_nine branch and the remote main branch have not diverged,

a merge commit will still be made. This is represented as commit M in
Figure 12-4.

F I G U R E 1 2 - 3

The state of the local and remote repositories in the Book project

F I G U R E 1 2 - 4

The Book project after I merge the pull request to merge the chapter_nine branch into

the main branch

The parent commits of the merge commit M are commit V, where the
main branch was pointing before the merge, and commit Y, the latest

commit on the chapter_nine branch.

The final actions I need to take are to delete the chapter_nine branch and

pull the most up-to-date version of the main branch from the remote

repository to my local repository, so that my local main branch is in sync

with the remote repository. This is illustrated in Figure 12-5.

F I G U R E 1 2 - 5

The Book project after I delete the chapter_nine branch and pull the changes from the

remote main branch to my local main branch

Now that we have covered an example of a pull request in Example Book
Project 12-2, let’s turn to the Rainbow project so you can practice going
through the pull request process.

Preparing to Make a Pull Request
To go over an example of a pull request, you will start by completing steps
1 and 2 of the pull request process (described in “Introducing Pull
Requests” on page 233) in the rainbow repository.

In Follow Along 12-1, you will use the git switch command with the -c

option, introduced in “Creating a Branch and Switching onto It in One Go”
on page 86, to create and immediately switch onto a new branch called
topic. Then you will add work to it.

[NOTE]
The reason you will use the generic name topic for the new branch is because, as

mentioned in “Why Do We Use Branches?” on page 44, it is common to refer to

branches that are created to work on a specific part of a project in Git as topic

branches (or feature branches). In a real Git project, the branch name would usually

contain a brief description of the feature or topic you’re working on.

[FOLLOW ALONG 12-1]

rainbow $ git switch -c topic

Switched to a new branch 'topic'

Open the rainbow project directory in your text editor. In the othercolors.txt

file, on line 4, add “Pink is not a color in the rainbow.” and save the file.

rainbow $ git add othercolors.txt

rainbow $ git commit -m "pink"

[topic 4c35a5c] pink

 1 file changed, 1 insertion(+), 1 deletion(-)

rainbow $ git log

commit 4c35a5c02c3dc03f044cbdfdbb0ae55161af6a86 (HEAD -> topic)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Jul 3 14:16:01 2022 +0200

 pink

commit 7c09136bcbfdd9f638ed13c6653e06451579d21c (origin/main, main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:10:11 2022 +0100

 rainbow

What to notice:

• You created the pink commit on the topic branch in the rainbow

repository.

This is illustrated in Visualize it 12-3.

[VISUALIZE IT 12-3]

The Rainbow project after you make the pink commit on the topic branch in the

rainbow repository

The topic branch is a new local branch. It does not have an upstream branch

defined for it. (Recall that an upstream branch is the remote branch that a
particular local branch tracks; you learned about this concept in Chapter 7,
and you learned about defining an upstream branch in Chapter 9.)

Next, you will carry out step 3 of the pull request process, which is to push
your work to the remote repository. In the process, I’ll introduce an easier
way to define upstream branches.

An Easier Way to Define Upstream Branches
In Chapter 9, you learned how to use the git branch -u

<shortname>/<branch_name> command to define an upstream branch. But now, as

we near the end of this book, I’ll let you in on a little secret. It’s really
common for Git users to forget to define upstream branches. Or to skip
setting them up out of sheer laziness.

However, there is a helpful trick that Git users often use to define upstream
branches when they first push a new branch to a remote repository. If you
use the git push command without any arguments on a branch that does not

have an upstream branch defined, then Git will issue a warning in the
output of the command. The warning will provide you with the command to
use to set one (git push --set-upstream <shortname> <branch_name>), and it will

suggest a shortname and branch name that you might want to use (Git
assumes that you’ll want the remote branch to have the same name as the

local branch). If you copy and paste this command into the command line
and execute it, then you can accomplish two tasks in one go: you push the
local branch to the remote repository and define an upstream branch for it.

Go to Follow Along 12-2 to carry out a hands-on example of this.

[FOLLOW ALONG 12-2]

rainbow $ git branch -vv

 main 7c09136 [origin/main] rainbow

* topic 4c35a5c pink

rainbow $ git push

fatal: The current branch topic has no upstream branch.

To push the current branch and set the remote as upstream, use

 git push --set-upstream origin topic

Copy the git push --set-upstream origin topic command included in the

output of the git push command in step 2, and paste it in the command line.

rainbow $ git push --set-upstream origin topic

Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Delta compression using up to 4 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 314 bytes | 314.00 KiB/s, done.

Total 3 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), completed with 1 local object.

remote:

remote: Create a pull request for 'topic' on GitHub by visiting:

remote: https://github.com/gitlearningjourney/rainbow-

remote/pull/new/topic

remote:

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] topic -> topic

branch 'topic' set up to track 'origin/topic'.

[FOLLOW ALONG 12-2]

rainbow $ git branch -vv

 main 7c09136 [origin/main] rainbow

* topic 4c35a5c [origin/topic] pink

rainbow $ git log

commit 4c35a5c02c3dc03f044cbdfdbb0ae55161af6a86 (HEAD -> topic,

origin/topic)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Jul 3 14:16:01 2022 +0200

 pink

commit 7c09136bcbfdd9f638ed13c6653e06451579d21c (origin/main, main)

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Feb 20 10:10:11 2022 +0100

 rainbow

Go to the rainbow-remote repository on your hosting service and refresh the

page. You should see the new topic branch you created and if you select to

view the commits on the topic branch, you will also see the pink commit.

What to notice:

• In step 2, the output of the git push command provides a warning: The

current branch topic has no upstream branch. It also provides the following

instructions: To push the current branch and set the remote as upstream, use

git push --set-upstream origin topic.

• In step 4, the git push output recommends that you make a pull request

for the new branch: Create a pull request for 'topic' on GitHub by visiting:

https://github.com/gitlearningjourney/rainbow-remote/pull/new/topic.

The current state of the repositories after Follow Along 12-2 is illustrated in
Visualize it 12-4.

[VISUALIZE IT 12-4]

The Rainbow project after you push the topic branch to the rainbow-remote repository

and define the upstream branch for the local topic branch in one go

You just saw how you can use the git push command to easily define an

upstream branch while pushing a branch to the remote repository. Next, you
will carry out step 4 of the pull request process.

[NOTE]
This trick assumes that you want the upstream branch of your local branch to be a

remote branch of the same name in the remote repository. If this is not the case, you

may have to edit the git push command that Git provides you to indicate the

alternative remote branch that you want to set as the upstream branch.

Creating a Pull Request on a Hosting Service
When you create a pull request, you have to define the source branch and
the target branch. In the Rainbow project example, topic is the source

branch and main is the target branch. In other words, you are merging topic

into main. To create the pull request, you will have to use your hosting

service’s UI. For additional resources, go to the Learning Git repository
(https://github.com/gitlearningjourney/learning-git).

On the web page to create the pull request, you will have the opportunity to
enter information about the pull request. The only required field for most
hosting services is a title. As with commit messages and the names of
branches, if you’re working with a team on a Git project you should check

https://github.com/gitlearningjourney/learning-git

with them about whether they have conventions established for pull request
titles. For the Rainbow project example in this book you will use the
“Adding the color pink” and leave all the other fields empty.

In GitLab and Bitbucket, when making a pull request you may also select
an option that will automatically delete the branch that you’re merging after
the pull request is merged. It’s up to you whether you want to select this
option (if it is available on your hosting service). In any case, after you
merge the pull request you will make sure the remote branch is deleted (if it
is still there), as this is step 8 in the pull request process.

Now, go to Follow Along 12-3 to create your pull request.

[FOLLOW ALONG 12-3]

Go to your remote repository on your hosting service. Follow the steps to

create a pull request to merge topic (the source branch) into main (the target

branch). The hosting service may prefill the pull request title field with the

commit message of your last commit, which in your case is “pink”. You should

change the title to “Adding the color pink”. For additional resources, go to the

Learning Git repository (https://github.com/gitlearningjourney/learning-git).

Now that you have created your first pull request, it’s time to move on to
steps 5 and 6 of the pull request process and get it reviewed and approved.

Reviewing and Approving a Pull Request
Pull requests provide an opportunity for collaborators on a project to review
your work, contribute to it, or simply approve it. The hosting service UI

https://github.com/gitlearningjourney/learning-git

usually provides a way to view the lines that have been changed in each file
that has been modified and how they have been changed, using colors and
symbols to display this information. Figure 12-6 shows how a hosting
service might indicate that you added a sentence on line 4 of the
othercolors.txt file about the color pink.

When collaborators review your work, they can choose to leave comments
on the pull request. If your pull request has comments, you can review
them, potentially make changes, and push one or more additional commits
to the branch that you are merging. This will automatically update the pull
request with the new commits.

F I G U R E 1 2 - 6

An example of how a hosting service displays the files changed in a pull request

A collaborator can also decide to pull the branch to their local repository
and make additional changes on the branch by adding commits and pushing
them to the remote repository. Again, the pull request will automatically
update with their additional commits.

In the Rainbow project example, suppose you’ve told your friend that you
made the pull request and asked them to review it. Your friend will go to the
pull request and take a look at it, decide that they’re happy with the changes
you made as they are, and approve the pull request.

Normally if you had a collaborator reviewing your pull request, they would
log into their own account on the hosting service, then review and approve
it by selecting the “approve” button in the hosting service’s UI. However,
since you’re simulating that you are two people, this “approve” button
might not appear in the UI. In this case, you will just have to pretend that
your friend approves the pull request.

Go to Follow Along 12-4 now to simulate your friend reviewing and
approving the pull request.

[FOLLOW ALONG 12-4]

Pretend you are your friend, and go to the pull request on your hosting service.

In the pull request, view the files that were changed. If necessary, consult the

hosting service’s documentation for details on how to do this.

“Approve” the pull request.

Once the pull request has been approved (figuratively, if not literally), you
may proceed to step 7 of the pull request process.

Merging a Pull Request
Acting as yourself again, you can now go back to your hosting service and
carry out the steps to merge the pull request. This usually just consists of
going to the pull request in the UI and selecting the relevant button. Go to
Follow Along 12-5 to merge your pull request now.

[FOLLOW ALONG 12-5]

Follow the steps for your hosting service to merge the pull request.

Review the list of commits in the remote repository. Find the latest merge

commit and select it. Make a note of its commit hash as well as the commit

hashes of its two parent commits.

What to notice:

• You merged the remote topic branch into the remote main branch and

created a merge commit.

This is represented in Visualize it 12-5; the new merge commit is labeled
M3.

[VISUALIZE IT 12-5]

The Rainbow project after you merge the pull request in the remote repository

As mentioned earlier in this chapter, this merge is performed with the
default non-fast-forward option. This means that even though the
development histories of the remote topic branch and the remote main branch

had not diverged, the merge still created a merge commit.

In Visualize it 12-5, you can see that the remote topic branch is still in the

rainbow-remote repository and the local topic branch and origin/topic remote-

tracking branch are still in the rainbow repository. Moving on to the eighth

step of the pull request process, let’s go ahead and delete the remote topic

branch.

Deleting Remote Branches
If the branch you have merged in a pull request is a topic branch, it is
common to delete it after the pull request is merged because you can
assume that the work on that branch has been completed. For new pieces of
work, you will make new branches and go through the pull request process
again. This keeps the remote repository organized and uncluttered by old
branches.

When you created your pull request, if your hosting service offered you the
option of automatically deleting the branch once the pull request was
merged, then you may no longer have a remote topic branch. If this is not

the case, or you chose not to select that option, go on to Follow Along 12-6
to delete the remote topic branch.

[FOLLOW ALONG 12-6]

Go to your remote repository on your hosting service and delete the remote

topic branch. If necessary, consult the hosting service’s documentation for

details on how to do this.

Visualize it 12-6 illustrates the state of the repositories after the deletion of
the remote topic branch.

[VISUALIZE IT 12-6]

The Rainbow project after you delete the remote topic branch

As you can see, the local main branches in both of the local repositories are

now out of sync with the main branch in the remote repository. Also, the

local topic branch and origin/topic remote-tracking branch are still in the

rainbow repository. Next, you’ll make sure everyone pulls the latest changes

from the remote repository so that the primary line of development in the
Rainbow project, the main branch, is up to date in both local repositories.

You’ll also clean up the rainbow repository by deleting the local topic branch

and the origin/topic remote-tracking branch.

Syncing the Local Repositories and Cleaning Up
The final step of the pull request process is for you and your friend to sync
your local repositories with the remote repository. First you will sync the
rainbow repository, and since the topic branch has been merged you will also

delete the local topic branch and the origin/topic remote-tracking branch.

Recall that in Chapter 8, you used the git fetch command with the -p (which

stands for “prune”) option to delete any remote-tracking branches that
correspond to remote branches that have been deleted in the remote
repository. This time around you will use the -p option with the git pull

command, and it will have the same effect. Go to Follow Along 12-7 to
sync the rainbow repository.

[FOLLOW ALONG 12-7]

rainbow $ git switch main

Switched to branch 'main'

Your branch is up to date with 'origin/main'.

rainbow $ git pull -p

From github.com:gitlearningjourney/rainbow-remote

 - [deleted] (none) -> origin/topic

remote: Enumerating objects: 1, done.

remote: Counting objects: 100% (1/1), done.

Unpacking objects: 100% (1/1), 626 bytes | 626.00 KiB/s, done.

remote: Total 1 (delta 0), reused 0 (delta 0), pack-reused 0

 7c09136..2f833d6 main -> origin/main

Updating 7c09136..2f833d6

Fast-forward

 othercolors.txt | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

rainbow $ git branch -d topic

Deleted branch topic (was 4c35a5c).

[FOLLOW ALONG 12-7]

rainbow $ git log

commit 2f833d6fa783882c5f832da9e1eafe6d405d3468 (HEAD -> main,

origin/main)

Merge: 7c09136 4c35a5c

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Mon Jul 4 05:50:08 2022 +0200

 Merge pull request #1 from gitlearningjourney/topic

 Adding the color pink

commit 4c35a5c02c3dc03f044cbdfdbb0ae55161af6a86

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Jul 3 14:16:01 2022 +0200

 pink

What to notice:

• You deleted the local topic branch and the origin/topic remote-tracking

branch.

• You updated your local main branch.

• The merge commit (M3) has a commit message and a description that
were automatically generated by the hosting service. In the example in
this book the commit message is Merge pull request #1 from

gitlearningjourney/topic and the commit description is Adding the color

pink, which was the title of the pull request you created. Each hosting

service may have a slightly different template on which they base this
default commit message.

• The parents of the M3 merge commit are 7c09136 (the rainbow commit)

and 4c35a5c (the pink commit). As usual, the commit hashes in your

repository will be different from the ones in this book because commit
hashes are unique.

The state of the Rainbow project after Follow Along 12-7 is illustrated in
Visualize it 12-7.

[VISUALIZE IT 12-7]

The Rainbow project after you pull the changes from the remote main branch to the

local main branch in the rainbow repository and delete the local topic branch and the

origin/topic remote-tracking branch

What to notice:

• In the rainbow repository, the main branch points to the latest M3 merge

commit.

Next, in Follow Along 12-8, your friend will sync their local main branch

with the changes from the remote repository.

[FOLLOW ALONG 12-8]

friend-rainbow $ git pull

remote: Enumerating objects: 6, done.

remote: Counting objects: 100% (6/6), done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 1), reused 2 (delta 0), pack-reused 0

Unpacking objects: 100% (4/4), 831 bytes | 166.00 KiB/s, done.

From github.com:gitlearningjourney/rainbow-remote

 7c09136..2f833d6 main -> origin/main

Updating 7c09136..2f833d6

Fast-forward

 othercolors.txt | 3 ++-

 1 file changed, 2 insertions(+), 1 deletion(-)

friend-rainbow $ git log

commit 2f833d6fa783882c5f832da9e1eafe6d405d3468 (HEAD -> main,

origin/main, origin/HEAD)

Merge: 7c09136 4c35a5c

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Mon Jul 4 05:50:08 2022 +0200

 Merge pull request #1 from gitlearningjourney/topic

 Adding the color pink

commit 4c35a5c02c3dc03f044cbdfdbb0ae55161af6a86

Author: annaskoulikari <gitlearningjourney@gmail.com>

Date: Sun Jul 3 14:16:01 2022 +0200

 pink

What to notice:

• Your friend updated their local main branch.

This is illustrated in Visualize it 12-8.

[VISUALIZE IT 12-8]

The Rainbow project after your friend pulls the changes from the remote main branch

to the local main branch in the friend-rainbow repository

State of the Local and Remote Repositories
You have come to the end of the Learning Git experience. Visualize it 12-9
shows the state of the local and remote repositories in the Rainbow project
with all the commits that were made from Chapter 1 all the way to the end
of Chapter 12.

[VISUALIZE IT 12-9]

The Rainbow project at the end of Chapter 12 with all the commits since Chapter 1

Summary
In this chapter, you learned about pull requests. We discussed why they’re a
helpful tool for collaborating on Git projects with multiple people, because
they facilitate communication and the review process. You carried out all
nine steps of the pull request process in a hands-on example in the Rainbow
project. While working through this example, you witnessed how by default
pull requests are merged with the non-fast-forward option, which produces
a merge commit even in the case of a fast-forward merge when the branches
involved in the merge have not diverged. You also learned about a simple
trick to get Git to generate a command you can use to push a branch to a
remote repository and define an upstream branch for it in one go.

Check out the Epilogue for some closing thoughts, and be sure to take a
look at the appendixes for some useful reference material.

[Epilogue]

Congratulations—you have reached the end of Learning Git! I hope this
book has helped you in your Git learning journey and that you now feel you
have a solid mental model of the basics of how Git works.

Although we’re at the end of the book, this is just the beginning of your Git
adventure. The next step for you is to start using Git to version control your
projects. In the process, you will learn to use many more of the features that
exist in the world of Git. You’ll also need to figure out what Git workflow
will work for you or your team, or, if you’re already part of a team, learn
how their Git workflow works.

Now that you have gone through the entire learning journey working on the
Rainbow project from Chapters 1 through 12, you may want to revisit the
content in a specific chapter or try some of the hands-on exercises again. In
that case, feel free to consult Appendix A to learn how to create the
minimum setup for the Rainbow project that you’ll need to start fresh from
any of the chapters.

Finally, if this book helped you, feel free to share it with someone else so it
can help them on their Git learning journey.

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_epilogue.xhtml

[Appendix A]

Chapter Prerequisites

Learning Git is a hands-on learning experience designed to be read from
Chapter 1 through Chapter 12 in a linear way. Throughout the book, you
will work on the Rainbow project to learn how Git works.

However, there may be some situations in which you want or need to start
from a specific chapter. For example:

• You have gone through the exercises in the entire book once and you
want to review from a specific chapter onward.

• Something went wrong in the Rainbow project in a previous chapter
that you were not able to troubleshoot, and you want to continue from
a new chapter afresh.

In this case, you can use the instructions in the relevant section of this
appendix to re-create an approximation of what the Rainbow project should
look like at the start of the chapter you want to begin from. This will
provide the minimum setup you need to be able to continue working on the
Rainbow project from your chapter of choice. For more information and in-
depth explanations about the steps in each Follow Along, refer to the
relevant chapter’s contents.

[NOTE]
For Chapters 9 to 11, you will not re-create all the commits that were made in the

previous chapters. You will only re-create a commit similar to the last commit that was

made before the chapter you want to start from. This means that your Rainbow

project repositories will have fewer commits than the Rainbow project repositories

illustrated in the Visualize It diagrams in the chapter contents. Keep this in mind while

working through those chapters.

All of the instructions assume you have carried out the actions in Chapter 1
on the computer you are using for the Rainbow project exercises at least
once before. This consists of installing Git, choosing a text editor, and
setting the user.name and user.email variables. If this is not the case, you’ll

need to start with the Follow Along in “Prerequisite Setup for All Chapters”
on page 260.

The instructions use the same names for the repositories that were used in
the rest of the book: rainbow, friend-rainbow, and rainbow-remote. If you still have

those repositories on your local computer and your hosting service, then
you will have to use slightly different names; for example, rainbow1, friend-

rainbow1, and rainbow-remote1. I recommend you stick with similar names,

because these names are referred to throughout each chapter’s contents.

Prerequisite Setup for All Chapters
If you don’t have Git installed or a text editor ready to be used, complete
the steps in Follow Along A-1. Otherwise, you may skip it.

[FOLLOW ALONG A-1]

Go to the Learning Git repository

(https://github.com/gitlearningjourney/learning-git) and follow the steps to

download Git for your operating system.

Choose your preferred text editor. If you don’t already have a text editor on

your computer, then download one. For more information, see “Preparing a

Text Editor” on page 19.

Next, you must set the user.name and user.email configuration variables to the

appropriate values. If you have not done this yet, go to Follow Along A-2.
For more information about Git configuration variables, see “Setting Git
Configurations” on page 17. Make sure to provide your name and email
address in place of the placeholders in the Follow Along.

[FOLLOW ALONG A-2]

$ git config --global user.name "<name>"

$ git config --global user.email "<email>"

https://github.com/annaskoulikari/learninggit

Chapter 2 Prerequisite Setup
In Follow Along A-3, you will prepare the basic setup to start working from
Chapter 2.

[FOLLOW ALONG A-3]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

Open the rainbow project directory in a text editor window.

Chapter 3 Prerequisite Setup
In Follow Along A-4, you will prepare the basic setup for the rainbow

repository to start working from Chapter 3.

[FOLLOW ALONG A-4]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt inside this directory.

In the rainbowcolors.txt file in your text editor, add “Red is the first color of the

rainbow.” on line 1 and save the file.

At the end of this process the rainbow repository you have created will

contain the rainbowcolors.txt file in the working directory, as shown in

Visualize it A-1.

[VISUALIZE IT A-1]

The re-created rainbow repository to start working from Chapter 3, without having

gone through Chapter 2

Chapter 4 Prerequisite Setup
In Follow Along A-5, you will prepare the basic setup for the rainbow

repository to start working from Chapter 4.

[FOLLOW ALONG A-5]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt inside this directory.

In the rainbowcolors.txt file in your text editor, add “Red is the first color of the

rainbow.” on line 1 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "red"

[main (root-commit) c26d0bc] red

 1 file changed, 1 insertion(+)

 create mode 100644 rainbowcolors.txt

At the end of this process the rainbow repository you have created will

contain the red commit, as shown in Visualize it A-2.

[VISUALIZE IT A-2]

The re-created rainbow repository to start working from Chapter 4, without having

gone through Chapter 3

Chapter 5 Prerequisite Setup
In Follow Along A-6, you will prepare the basic setup for the rainbow

repository to start working from Chapter 5.

[FOLLOW ALONG A-6]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt inside this directory.

In the rainbowcolors.txt file in your text editor, add “Red is the first color of the

rainbow.” on line 1 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "red"

[main (root-commit) c26d0bc] red

 1 file changed, 1 insertion(+)

 create mode 100644 rainbowcolors.txt

[FOLLOW ALONG A-6]

In the rainbowcolors.txt file in your text editor, add “Orange is the second

color of the rainbow.” on line 2 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m “orange”

[main 7acb333] orange

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git branch feature

rainbow $ git switch feature

Switched to branch 'feature'

In rainbowcolors.txt file in your text editor, add “Yellow is the third color of the

rainbow.” on line 3 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "yellow"

[feature fc8139c] yellow

 1 file changed, 2 insertions(+), 1 deletion(-)

At the end of this process the rainbow repository you have created will

contain the red, orange, and yellow commits, as shown in Visualize it A-3.

[VISUALIZE IT A-3]

The re-created rainbow repository to start working from Chapter 5, without having

gone through Chapter 4

Chapter 6 and 7 Prerequisite Setup
In Follow Along A-7, you will prepare the basic setup for the rainbow

repository to start working from Chapters 6 or 7.

[FOLLOW ALONG A-7]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt inside this directory.

In the rainbowcolors.txt file in your text editor, add “Red is the first color of the

rainbow.” on line 1 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "red"

[main (root-commit) c26d0bc] red

 1 file changed, 1 insertion(+)

 create mode 100644 rainbowcolors.txt

[FOLLOW ALONG A-7]

In the rainbowcolors.txt file in your text editor, add “Orange is the second

color of the rainbow.” on line 2 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "orange"

[main 7acb333] orange

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git branch feature

rainbow $ git switch feature

Switched to branch 'feature'

In the rainbowcolors.txt file in your text editor, add “Yellow is the third color of

the rainbow.” on line 3 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "yellow"

[feature fc8139c] yellow

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git switch main

Switched to branch 'main'

[FOLLOW ALONG A-7]

rainbow $ git merge feature

Updating 7acb333..fc8139c

Fast-forward

 rainbowcolors.txt | 3 ++-

 1 file changed, 2 insertions(+), 1 deletion(-)

[NOTE]
If you are using this section to start at Chapter 7 and you don’t yet have a hosting

service account and/or authentication details set up for HTTPS or SSH access, then

you must go to Chapter 6 and carry out the exercises in that chapter before

continuing. Following the instructions in this section will not be sufficient to complete

the exercises in Chapter 7.

At the end of this process the rainbow repository you have created will

contain the red, orange, and yellow commits, as shown in Visualize it A-4.

[VISUALIZE IT A-4]

The re-created rainbow repository to start working from Chapters 6 or 7, without

having gone through Chapter 5

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_appa.xhtml

Chapter 8 Prerequisite Setup
In Follow Along A-8, you will prepare the basic setup for the Rainbow
project to start working from Chapter 8. In step 24, be sure to enter the
entire command on a single line.

[FOLLOW ALONG A-8]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt inside this directory.

In the rainbowcolors.txt file in your text editor, add “Red is the first color of the

rainbow.” on line 1 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "red"

[main (root-commit) c26d0bc] red

 1 file changed, 1 insertion(+)

 create mode 100644 rainbowcolors.txt

[FOLLOW ALONG A-8]

In the rainbowcolors.txt file in your text editor, add “Orange is the second

color of the rainbow.” on line 2 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "orange"

[main 7acb333] orange

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git branch feature

rainbow $ git switch feature

Switched to branch 'feature'

In the rainbowcolors.txt file in your text editor, add “Yellow is the third color of

the rainbow.” on line 3 and save the file.

rainbow $ git add rainbowcolors.txt

rainbow $ git commit -m "yellow"

[feature fc8139c] yellow

 1 file changed, 2 insertions(+), 1 deletion(-)

rainbow $ git switch main

Switched to branch 'main'

[FOLLOW ALONG A-8]

rainbow $ git merge feature

Updating 7acb333..fc8139c

Fast-forward

 rainbowcolors.txt | 3 ++-

 1 file changed, 2 insertions(+), 1 deletion(-)

If you don’t yet have a hosting service account and/or authentication details

set up for HTTPS or SSH access, then you must go to Chapter 6 to complete

this part of the process now. Return to this Follow Along once that is done.

Log in to your hosting service account.

Create a remote repository. For more information on how to do this, go to the

Learning Git repository (https://github.com/gitlearningjourney/learning-git) or

go directly to your hosting service’s documentation.

When creating the repository for this exercise:

• For the repository name, use rainbow-remote.

• You may choose to make the repository public or private. I recommend

making it private.

• Do not include any files. For example, do not include a README file or a

.gitignore file.

• If you are asked to provide a default branch name, you may leave the field

blank or set it to main.

https://github.com/annaskoulikari/learninggit

[FOLLOW ALONG A-8]

Once you’ve finished the steps to create the remote repository, locate the

remote repository URL. If you’re unsure of where to find this, consult your

hosting service’s documentation.

There will be two versions of the URL, one for HTTPS access and one for SSH

access. In the examples in this book, the two remote repository URLs are:

• HTTPS: https://github.com/gitlearningjourney/rainbow-remote.git

• SSH: git@github.com:gitlearningjourney/rainbow-remote.git

Copy the URL for the protocol you have chosen to use. In the following steps,

wherever you see my URL you must use your URL instead.

rainbow $ git remote add origin https://github.com/gitlearnin

gjourney/rainbow-remote.git

rainbow $ git push origin main

Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.

Delta compression using up to 4 threads

Compressing objects: 100% (5/5), done.

Writing objects: 100% (9/9), 747 bytes | 373.00 KiB/s, done.

Total 9 (delta 1), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (1/1), done.

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] main -> main

rainbow $ git switch feature

Switched to branch ‘feature’

[FOLLOW ALONG A-8]

rainbow $ git push origin feature

Total 0 (delta 0), reused 0 (delta 0), pack-reused 0

remote:

remote: Create a pull request for 'feature' on GitHub by visiting:

remote: https://github.com/gitlearningjourney/rainbow-

remote/pull/new/feature

remote:

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] feature -> feature

At the end of this process the Rainbow project you have created will
contain the red, orange, and yellow commits in all the repositories, as
shown in Visualize it A-5.

[VISUALIZE IT A-5]

The re-created Rainbow project to start working from Chapter 8, without having gone

through Chapter 7

Chapter 9 Prerequisite Setup
In Follow Along A-9, you will prepare the basic setup for the Rainbow
project to start working from Chapter 9. In steps 14 and 17, be sure to enter
the entire command on a single line.

[FOLLOW ALONG A-9]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt inside this directory.

Add the following text to the rainbowcolors.txt file in your text editor, and save

the file:

Red is the first color of the rainbow.

Orange is the second color of the rainbow.

Yellow is the third color of the rainbow.

Green is the fourth color of the rainbow.

rainbow $ git add rainbowcolors.txt

[FOLLOW ALONG A-9]

rainbow $ git commit -m "green"

[main (root-commit) 4e59074] "green"

 1 file changed, 4 insertions(+)

 create mode 100644 rainbowcolors.txt

If you don’t yet have a hosting service account and/or authentication details

set up for HTTPS or SSH access, then you must go to Chapter 6 to complete

this part of the process now. Return to this Follow Along once that is done.

Log in to your hosting service account.

Create a remote repository. For more information on how to do this, go to the

Learning Git repository (https://github.com/gitlearningjourney/learning-git) or

go directly to your hosting service’s documentation.

When creating the repository for this exercise:

• For the repository name, use rainbow-remote.

• You may choose to make the repository public or private. I recommend

making it private.

• Do not include any files. For example, do not include a README file or a

.gitignore file.

• If you are asked to provide a default branch name, you may leave the field

blank or set it to main.

https://github.com/annaskoulikari/learninggit

[FOLLOW ALONG A-9]

Once you’ve finished the steps to create the remote repository, locate the

remote repository URL. If you’re unsure of where to find this, consult your

hosting service’s documentation.

There will be two versions of the URL, one for HTTPS access and one for SSH

access. In the examples in this book, the two remote repository URLs are:

• HTTPS: https://github.com/gitlearningjourney/rainbow-remote.git

• SSH: git@github.com:gitlearningjourney/rainbow-remote.git

Copy the URL for the protocol you have chosen to use. In the following steps,

wherever you see my URL you must use your URL instead.

rainbow $ git remote add origin https://github.com/gitlearnin

gjourney/rainbow-remote.git

rainbow $ git push origin main

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 4 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 311 bytes | 311.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] main -> main

Open a new command line window to navigate to the desktop directory to

simulate that you are your friend now.

[FOLLOW ALONG A-9]

desktop $ git clone https://github.com/gitlearningjourney/rainbo

w-remote.git friend-rainbow

Cloning into 'friend-rainbow'...

remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 3 (delta 0), pack-reused 0

Receiving objects: 100% (3/3), done.

desktop $ cd friend-rainbow

Open the friend-rainbow project directory in a new text editor window.

At the end of this process the minimum setup for the Rainbow project you
have created will contain just one commit, the green commit, in all the
repositories, as shown in Visualize it A-6.

[VISUALIZE IT A-6]

The re-created Rainbow project to start working from Chapter 9, without having gone

through Chapter 8

Chapter 10 Prerequisite Setup
In Follow Along A-10, you will prepare the basic setup for the Rainbow
project to start working from Chapter 10. In steps 15 and 19, be sure to
enter the entire command on a single line.

[FOLLOW ALONG A-10]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt and a file called othercolors.txt inside this directory.

Add the following text to the rainbowcolors.txt file in your text editor and save

the file:

Red is the first color of the rainbow.

Orange is the second color of the rainbow.

Yellow is the third color of the rainbow.

Green is the fourth color of the rainbow.

Blue is the fifth color of the rainbow.

Add the following text to the othercolors.txt file in your text editor and save

the file:

Brown is not a color in the rainbow.

[FOLLOW ALONG A-10]

rainbow $ git add rainbowcolors.txt othercolors.txt

rainbow $ git commit -m "fake merge commit 1"

 2 files changed, 6 insertions(+)

 create mode 100644 othercolors.txt

 create mode 100644 rainbowcolors.txt

If you don’t yet have a hosting service account and/or authentication details

set up for HTTPS or SSH access, then you must go to Chapter 6 to complete

this part of the process now. Return to this Follow Along once that is done.

Log in to your hosting service account.

Create a remote repository. For more information on how to do this, go to the

Learning Git repository (https://github.com/gitlearningjourney/learning-git) or

go directly to your hosting service’s documentation.

When creating the repository for this exercise:

• For the repository name, use rainbow-remote.

• You may choose to make the repository public or private. I recommend

making it private.

• Do not include any files. For example, do not include a README file or a

.gitignore file.

• If you are asked to provide a default branch name, you may leave the field

blank or set it to main.

https://github.com/annaskoulikari/learninggit

[FOLLOW ALONG A-10]

Once you’ve finished the steps to create the remote repository, locate the

remote repository URL. If you’re unsure of where to find this, consult your

hosting service’s documentation.

There will be two versions of the URL, one for HTTPS access and one for SSH

access. In the examples in this book, the two remote repository URLs are:

• HTTPS: https://github.com/gitlearningjourney/rainbow-remote.git

• SSH: git@github.com:gitlearningjourney/rainbow-remote.git

Copy the URL for the protocol you have chosen to use. In the following steps,

wherever you see my URL you must use your URL instead.

rainbow $ git remote add origin https://github.com/gitlearnin

gjourney/rainbow-remote.git

rainbow $ git push origin main

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 4 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (4/4), 394 bytes | 394.00 KiB/s, done.

Total 4 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] main -> main

rainbow $ git branch -u origin/main

branch 'main' set up to track 'origin/main'.

Open a new command line window to navigate to the desktop directory to

simulate that you are your friend now.

[FOLLOW ALONG A-10]

desktop $ git clone https://github.com/gitlearningjourney/rai

nbow-remote.git friend-rainbow
Cloning into 'friend-rainbow'...

remote: Enumerating objects: 4, done.

remote: Counting objects: 100% (4/4), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 4 (delta 0), reused 4 (delta 0), pack-reused 0

Receiving objects: 100% (4/4), done.

desktop $ cd friend-rainbow

Open the friend-rainbow project directory in a new text editor window.

At the end of this process the minimum setup for the Rainbow project you
have created will contain just one commit, the fake merge commit 1 (M1),
in all the repositories, as shown in Visualize it A-7.

[NOTE]
The last commit created in Chapter 9 was merge commit 1 (M1), which has two

parents. Your commit will be the first and only one in the repositories, so it won’t have

any parent commits. Therefore, it is a fake merge commit.

[VISUALIZE IT A-7]

The re-created Rainbow project to start working from Chapter 10, without having

gone through Chapter 9

Chapter 11 Prerequisite Setup
In Follow Along A-11, you will prepare the basic setup for the Rainbow
project to start working from Chapter 11. In steps 15 and 19, be sure to
enter the entire command on a single line.

[FOLLOW ALONG A-11]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt and a file called othercolors.txt inside this directory.

Add the following text to the rainbowcolors.txt file in your text editor and save

the file:

Red is the first color of the rainbow.

Orange is the second color of the rainbow.

Yellow is the third color of the rainbow.

Green is the fourth color of the rainbow.

Blue is the fifth color of the rainbow.

Indigo is the sixth color of the rainbow.

Violet is the seventh color of the rainbow.

Add the following text to the othercolors.txt file in your text editor and save

the file:

Brown is not a color in the rainbow.

[FOLLOW ALONG A-11]

rainbow $ git add rainbowcolors.txt othercolors.txt

rainbow $ git commit -m "fake merge commit 2"

[main (root-commit) 32fa0b7] fake merge commit 2

 2 files changed, 8 insertions(+)

 create mode 100644 othercolors.txt

 create mode 100644 rainbowcolors.txt

If you don’t yet have a hosting service account and/or authentication details

set up for HTTPS or SSH access, then you must go to Chapter 6 to complete

this part of the process now. Return to this Follow Along once that is done.

Log in to your hosting service account.

Create a remote repository. For more information on how to do this, go to the

Learning Git repository (https://github.com/gitlearningjourney/learning-git) or

go directly to your hosting service’s documentation.

When creating the repository for this exercise:

• For the repository name, use rainbow-remote.

• You may choose to make the repository public or private. I recommend

making it private.

• Do not include any files. For example, do not include a README file or a

.gitignore file.

• If you are asked to provide a default branch name, you may leave the field

blank or set it to main.

https://github.com/annaskoulikari/learninggit

[FOLLOW ALONG A-11]

Once you’ve finished the steps to create the remote repository, locate the

remote repository URL. If you’re unsure of where to find this, consult your

hosting service’s documentation.

There will be two versions of the URL, one for HTTPS access and one for SSH

access. In the examples in this book, the two remote repository URLs are:

• HTTPS: https://github.com/gitlearningjourney/rainbow-remote.git

• SSH: git@github.com:gitlearningjourney/rainbow-remote.git

Copy the URL for the protocol you have chosen to use. In the following steps,

wherever you see my URL you must use your URL instead.

rainbow $ git remote add origin https://github.com/gitlearningjo

urney/rainbow-remote.git

rainbow $ git push origin main

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 4 threads

Compressing objects: 100% (3/3), done.

Writing objects: 100% (4/4), 413 bytes | 413.00 KiB/s, done.

Total 4 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] main -> main

rainbow $ git branch -u origin/main

branch 'main' set up to track 'origin/main'.

Open a new command line window to navigate to the desktop directory to

simulate that you are your friend now.

[FOLLOW ALONG A-11]

desktop $ git clone https://github.com/gitlearningjourney/rainbo

w-remote.git friend-rainbow
Cloning into 'friend-rainbow'...

remote: Enumerating objects: 4, done.

remote: Counting objects: 100% (4/4), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 4 (delta 0), reused 4 (delta 0), pack-reused 0

Receiving objects: 100% (4/4), done.

desktop $ cd friend-rainbow

Open the friend-rainbow project directory in a new text editor window.

At the end of this process the minimum setup for the Rainbow project you
have created will contain just one commit, the fake merge commit 2 (M2),
in all the repositories, as shown in Visualize it A-8.

[NOTE]
The last commit created in Chapter 10 was merge commit 2 (M2), which has two

parents. Your commit will be the first and only one in the repositories, so it won’t have

any parent commits. Therefore, it is a fake merge commit.

[VISUALIZE IT A-8]

The re-created Rainbow project to start working from Chapter 11, without having

gone through Chapter 10

Chapter 12 Prerequisite Setup
In Follow Along A-12, you will prepare the basic setup for the Rainbow
project to start working from Chapter 12. In steps 15 and 19, be sure to
enter the entire command on a single line.

[FOLLOW ALONG A-12]

Use your command line application to open a command line window.

$ cd desktop

desktop $ mkdir rainbow

desktop $ cd rainbow

rainbow $ git init -b main

Initialized empty Git repository in

/Users/annaskoulikari/desktop/rainbow/.git/

Open the rainbow project directory in a text editor window and create a file

called rainbowcolors.txt and a file called othercolors.txt inside this directory.

Add the following text to the rainbowcolors.txt file in your text editor and save

the file:

Red is the first color of the rainbow.

Orange is the second color of the rainbow.

Yellow is the third color of the rainbow.

Green is the fourth color of the rainbow.

Blue is the fifth color of the rainbow.

Indigo is the sixth color of the rainbow.

Violet is the seventh color of the rainbow.

These are the colors of the rainbow.

[FOLLOW ALONG A-12]

Add the following text to the othercolors.txt file in your text editor and save

the file:

Brown is not a color in the rainbow.

Gray is not a color in the rainbow.

Black is not a color in the rainbow.

rainbow $ git add rainbowcolors.txt othercolors.txt

rainbow $ git commit -m "rainbow"

[main (root-commit) 56b92dc] "rainbow"

 2 files changed, 11 insertions(+)

 create mode 100644 othercolors.txt

 create mode 100644 rainbowcolors.txt

If you don’t yet have a hosting service account and/or authentication details

set up for HTTPS or SSH access, then you must go to Chapter 6 to complete

this part of the process now. Return to this Follow Along once that is done.

Log in to your hosting service account.

[FOLLOW ALONG A-12]

Create a remote repository. For more information on how to do this, go to the

Learning Git repository (https://github.com/gitlearningjourney/learning-git) or

go directly to your hosting service’s documentation.

When creating the repository for this exercise:

• For the repository name, use rainbow-remote.

• You may choose to make the repository public or private. I recommend

making it private.

• Do not include any files. For example, do not include a README file or a

.gitignore file.

• If you are asked to provide a default branch name, you may leave the field

blank or set it to main.

Once you’ve finished the steps to create the remote repository, locate the

remote repository URL. If you’re unsure of where to find this, consult your

hosting service’s documentation.

There will be two versions of the URL, one for HTTPS access and one for SSH

access. In the examples in this book, the two remote repository URLs are:

• HTTPS: https://github.com/gitlearningjourney/rainbow-remote.git

• SSH: git@github.com:gitlearningjourney/rainbow-remote.git

Copy the URL for the protocol you have chosen to use. In the following steps,

wherever you see my URL you must use your URL instead.

rainbow $ git remote add origin https://github.com/gitlearnin

gjourney/rainbow-remote.git

https://github.com/annaskoulikari/learninggit

[FOLLOW ALONG A-12]

rainbow $ git push origin main

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 4 threads

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 445 bytes | 445.00 KiB/s, done.

Total 4 (delta 0), reused 0 (delta 0), pack-reused 0

To github.com:gitlearningjourney/rainbow-remote.git

 * [new branch] main -> main

rainbow $ git branch -u origin/main

branch 'main' set up to track 'origin/main'.

Open a new command line window to navigate to the desktop directory to

simulate that you are your friend now.

desktop $ git clone https://github.com/gitlearningjourney/rai

nbow-remote.git friend-rainbow

Cloning into 'friend-rainbow'...

remote: Enumerating objects: 4, done.

remote: Counting objects: 100% (4/4), done.

remote: Compressing objects: 100% (4/4), done.

remote: Total 4 (delta 0), reused 4 (delta 0), pack-reused 0

Receiving objects: 100% (4/4), done.

desktop $ cd friend-rainbow

Open the friend-rainbow project directory in a new text editor window.

At the end of this process the minimum setup for the Rainbow project you
have created will contain just one commit, the rainbow commit, in all the
repositories, as shown in Visualize it A-9.

[NOTE]
The rainbow commit at the start of Chapter 12 is the rebased rainbow commit, which

is why it is labeled Ra’ in the Visualize It diagrams in that chapter.

Your rainbow commit at the end of this process is a regular commit. Keep this in mind

as you work through the chapter. See Appendix C for a summary of the visual

language of the book, if you would like a refresher.

[VISUALIZE IT A-9]

The re-created Rainbow project, to start working from Chapter 12 without having

gone through Chapter 11

[Appendix B]

Command Quick Reference

CHAPTER 1

clear Clear the command line screen

pwd Show the path of the current working directory

ls List visible files and directories

ls -a List hidden and visible files and directories

cd <path_to_directory> Change directory

mkdir <directory_name> Make a directory

git config --global --list List the variables in the global Git configuration file
and their values

git config --global user.name

"<name>"

Set your name in the global Git configuration file

git config --global user.email

"<email>"

Set your email address in the global Git
configuration file

CHAPTER 2

git init Initialize a Git repository

git init -b

<branch_name>

Initialize a Git repository and set the name for the initial branch
to be <branch_name>

CHAPTER 3

git status Show the state of the working directory and the staging area

git add <filename> Add one file to the staging area

CHAPTER 3

git add <filename>

<filename> ...

Add multiple files to the staging area

git add -A Add all the files in the working directory that have been edited
or changed to the staging area

git commit -m "

<message>"

Create a new commit with a commit message

git log Show a list of commits in reverse chronological order

CHAPTER 4

git branch List local branches

git branch <new_branch_name> Create a branch

git switch <branch_name> Switch branches

git checkout <branch_name> Switch branches

CHAPTER 5

git merge

<branch_name>

Integrate changes from one branch into another branch

git log --all Show a list of commits in reverse chronological order for all
branches in a local repository

git checkout

<commit_hash>

Check out a commit

git switch -c

<new_branch_name>

Create a new branch and switch onto it

git checkout -b

<new_branch_name>

Create a new branch and switch onto it

CHAPTER 7

git push Upload data to a remote repository

CHAPTER 7

git remote add

<shortname> <URL>

Add a connection to a remote repository named <shortname>

at <URL>

git remote List the remote repository connections stored in the local
repository by shortname

git remote -v List the remote repository connections in the local repository
with shortnames and URLs

git push <shortname>

<branch_name>

Upload content from <branch_name> to the <shortname>

remote repository

git branch --all List local branches and remote-tracking branches

CHAPTER 8

git clone <URL>

<directory_name>

Clone a remote repository

git push

<shortname> -d

<branch_name>

Delete a remote branch and the associated remote-tracking
branch

git branch -d

<branch_name>

Delete a local branch

git branch -vv List the local branches and their upstream branches, if they have
any

git fetch

<shortname>

Download data from the <shortname> remote repository

git fetch Download data from the remote repository with shortname origin

git fetch -p Remove remote-tracking branches that correspond to deleted
remote branches and download data from the remote repository

CHAPTER 9

git branch -u

<shortname>/<branch_name>

Define an upstream branch for the current local branch

CHAPTER 9

git pull <shortname>

<branch_name>

Fetch and integrate changes from the <shortname> remote

repository for the specified <branch_name>

git pull If an upstream branch is defined for the current branch,
fetch and integrate changes from the defined upstream
branch

CHAPTER 10

git merge --abort Stop the merge process and go back to the state before the merge

CHAPTER 11

git rebase <branch_name> Reapply commits on top of another branch

git restore --staged

<filename>

Restore a file to another version of the file in the staging
area

git rebase --continue Continue with the rebase process after having resolved
merge conflicts

git rebase --abort Stop the rebase process and go back to the state before
the rebase

[Appendix C]

Visual Language Reference

Commits
In the diagrams in this book, commits are represented as circles. Regular
commits in the Rainbow project are one solid color and contain the full
name or an abbreviation of the name (the only exception is the rainbow
commit, which contains all the colors of the rainbow). See Figure C-1 for
an example.

If a regular commit is re-created because of a rebase operation (discussed in
Chapter 11), then we add an apostrophe to the name of the re-created
commit to distinguish it from the original commit. See Figure C-2 for an
example.

F I G U R E C - 1

Example of regular Rainbow project commits using color and commit name abbreviations to

distinguish them from one another

Throughout the book, merge commits are represented by a white circle with
a thick black border and the letter M (sometimes they may also include a
number). An example of this can be seen in Figure C-3.

Regular commits in the Book project are represented by blue circles, with
letters of the alphabet used to distinguish one from another. See Figure C-4
for an example.

F I G U R E C - 2

Example of rebased commits in the Rainbow project, with apostrophes in the abbreviations

to distinguish them from the original commits

F I G U R E C - 3

Example of a merge commit

F I G U R E C - 4

Example of regular Book project commits using letters of the alphabet to distinguish them

Git Diagram
The Git Diagram, introduced in Chapter 2, represents one Git project
directory. It consists of the four areas of Git: the working directory, the
staging area, the commit history, and the local repository. The working
directory and staging area may contain files, and the commit history may
contain commits and branches. Branches and the HEAD pointer (reference) are

represented by black arrows, and parent links between commits are
represented by gray arrows. An example of a Git Diagram is shown in
Figure C-5.

from one another

F I G U R E C - 5

An example of a Git Diagram with representations of the working directory, staging area,

commit history, and local repository, showing the state of the Rainbow project at the start of

Chapter 5

Repository Diagram
The Repository Diagram represents either one repository or multiple
repositories. Local repositories are always represented by normal
rectangles. Remote repositories are represented by rectangles with rounded
corners. The repositories may contain commits and branches. The
Repository Diagram is built up from Chapter 4 onward.

In Figure C-6, you can see an example of a Repository Diagram with one
local repository.

In Figure C-7, you can see an example of a Repository Diagram with two
local repositories and one remote repository.

F I G U R E C - 6

An example of a Repository Diagram with one local repository, representing the state of the

Rainbow project at the end of Chapter 4

F I G U R E C - 7

An example of a Repository Diagram with two local repositories and one remote repository,

representing the state of the Rainbow project at the end of Chapter 8

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_appc.xhtml

[Index]

A
--all (git branch), 107, 285
--all (git log), 77, 284
ancestors of branches, rebasing and, 213
-A option (git add), 36
-a option (ls command), 11
app password, 92
arguments, 7
authentication

app password, 92
credentials, 91–93
personal access tokens, 92

author information, 40

B
Bitbucket, 22, 90

app password, 92
HTTPS, 92
pull requests, 234

-b option (git checkout), 86
-b option (git init), 23
branches

as pointers, 45
collaboration, 125–131
commits, 45, 51–54

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

creating, 53–55
and switching to, 86, 241

default, 24
naming conventions, 48

deleting, 122–124, 137–139
development history, 65
feature branches, 45
git log command, 45
HEAD, 55
listing, 49, 53, 80
local

deleting, 123
integrating changes, 135–136
pushing to remote repository, 107–112
tracking, 106

main, 23, 48
managing, team rules, 125
master, 23
merging, 64–65
origin/HEAD pointer, 120
primary, 45
rebasing and, 195

information, saving, 214
in practice, 218–223
preparations, 211–213

remote, 106
deleting, 123, 249–251
tracking, 106

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

remote-tracking, 106, 120
source branch, 64
switching, 57–60

creating and, 86, 241
merges and, 71–73
working directory and, 75–77

target branch, 64
topic branches, 45, 126
upstream, 129, 147–150, 242–245
uses, 44–45
visualizing, 57

C
cd command, 12, 283
checking out commits, 80–85
clear command, 8, 283
clearing command line, 8
CLI (command line interface), 3
cloning, 134

origin shortname, 103
project directory names, 116
upstream branches and, 147

collaboration, 2
branches and, 125–131
simulation, 118–119

command line window, 3. See also integrated terminals
applications, 4
clearing, 8

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

closing, 16–17
command execution, 5
command prompt, 3
current directory, 3
cursor, 5
directories, 9–10
opening, 3–4
Vim text editor, 161–163

command prompt, 3
directories, 5

commands, 5
arguments, 7
cd, 12, 283
clear, 8, 283
git add, 36, 38, 284
git branch, 53, 123, 148, 284, 285, 286
git cat-file, 52
git checkout, 57–58, 80–85, 284
git clone, 116, 285
git commit, 8, 38, 284
git config, 17, 283
git fetch, 133, 285
git init, 23, 96, 97, 283
git log, 40–42, 284
git merge, 70, 78, 284, 286
git pull, 168–171, 286
git push, 96, 106, 123, 129, 147, 285
git rebase, 195, 213, 286

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

git remote, 104, 285
git restore, 205–206, 206
git status, 34–36, 49, 73, 185–187, 205, 284
git switch, 57–58, 71, 284
git version, 6, 7
ls, 11, 283
mkdir, 14, 283
options, 7
output, 6
pwd, 5, 9, 283

comments, pull requests, 236–237, 247
commit history, 29

Git Diagram, 29
commit ID, 28. See also commit hash, under commits
commit message, 36, 38–39
commits, 28–29

author information, 40
branches and, 45
checking out, 80–85
commit hash, 28, 51
date and time, 41
git commit command, 38
git log command, 45
git status command, 34–37
list, 40–42, 77
parents, 52, 64–65
uses, 34
visual representation, 52, 287

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

configuration setting, 17–20
conflict markers, 176, 182
-c option (git switch), 86, 240
cursor, command line window, 5

D
default branch, 48, 100

naming conventions, 48
deleting branches, 122–124, 137–139
desktop directory, 13
detached HEAD state, 56, 81–84
development history, 67, 143, 159, 211
directories, 9

command prompt, 3
contents, viewing, 10
creating, 14–16
current directory, 3
desktop, 13
friend-rainbow, 115
.git, 22
heads, 47, 57
hidden, 22
navigating into and out of, 12–15
objects, 29
rainbow, 15, 21
working directory, 26

-d option (git branch), 123

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

E
editors. See text editors
email. See user.email variable
explicit merges, 238

F
fast-forward merges, 64, 65, 70–78
feature branch, 61–62

development history, 65
main branch and, 55–56
merges and, 70
pushing to remote repository, 110

feature branches, 45
File Explorer (Microsoft Windows), 9
files

adding to projects, 30–32
editing

multiple times between commits, 151–158
save in text editor, 48

.gitconfig, 17
hidden, viewing, 22
index, staging area, 27–28, 36–38, 205
merge conflict markers, 176
modified, 48–51
staging, 201–211
state, 49
tracked, 35, 36, 40
unmodified, 48–51

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

unstaging, 201–211
untracked, 31, 35, 40
working simultaneously, 158–161

filesystem window, 9
Finder (macOS), 9
friend-rainbow repository, 115–116

origin/HEAD pointer, 120
origin shortname, 122

G
.git directory, 22
Git

installing, 7
overview, 1
version number, 7

git add command, 36, 284
Git Bash, 4
git branch command, 53, 123, 148–149, 284, 285, 286
git cat-file command, 52
git checkout command, 57–58, 80–85, 284
git clone command, 116, 285
git commit command, 8, 38, 284
git config command, 17, 283
.gitconfig file, 17
Git Diagram, 288

building, 23–31
commit history, 29
local repository, 25

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

staging area, 27–28
working directory, 26–27

git fetch command, 133, 285
GitHub, 22, 90

HTTPS and, 92
personal access token, 92
pull requests, 234

git init command, 23, 96, 97, 283
GitLab, 22, 90

HTTPS and, 92
passwords, 92
pull requests, 234–235

git log command, 40–42, 284
branches, 45
output, 41

git merge command, 70, 78–80, 284, 286
git pull command, 168–171
git push command, 96, 106, 123, 129, 147, 285
git rebase command, 168, 195, 213, 286
git remote command, 104, 285
git restore command, 205–206, 286
git status command, 34, 49, 185–187, 205, 284
git switch command, 57–58, 71, 284
git version command, 6, 7
--global option (git config), 17–19
GUI (graphical user interface), 3

H

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

hashes, 28
HEAD, 55–57, 81–85

rebasing, 215
heads directory, 47, 57
hidden directories, 22
hidden files, 22
histories. See commit history; development history
hosting services, 22, 89

account setup, 90
authentication, 91
Bitbucket, 22, 90
GitHub, 22, 90
GitLab, 22, 90
HTTPS (Hypertext Transfer Protocol Secure), 91, 92
licenses, 100
pull requests, 234–235

creating, 245
remote repositories, 90

creating, 100
direct work, 112

SSH (Secure Shell), 89, 93–94
HTTPS (Hypertext Transfer Protocol Secure), 89, 92

I
index file, staging area, 27, 37–38
init.defaultBranch variable, 24
initializing repositories, 22–25
integrated terminals, 19

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

L
licenses, hosting services, 100
--list (git config), 17
local branches

creating, 53–55
deleting, 123
merges, 64–69, 135–136
pushing to remote repository, 107–112
switching, 57–60
tracking, 106

local repositories, 21
cloning from remote, 114–122
connections

listing, 104
multiple, 102

friend-rainbow, 115
Git Diagram, 25
initializing, 22–26, 97
interaction with remote repositories, 97
name same as remote repository, 100
rainbow, 24
Repository Diagram, 44–45, 288
starting work from, 96–97

ls command, 11, 283

M
macOS, 4

command line application, 4

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

command prompt, 3
filesystem application, 9
installing Git, 9
viewing hidden files and directories, 22

main branch, 23, 48
commits, 47
feature branch and, 55

master branch, 23, 48. See also main branch
merge conflicts, 69, 143, 175–177

aborting merge, 184
markers, 176, 182
rebasing, 175, 217–218
resolution process, 176, 182–184

git status and, 185–187
scenario setup, 177–183

merge requests, 234. See also pull requests
merges, 64–65

aborting, 184
explicit, 238
fast-forward merges, 64, 65, 70–78
git merge command, 70, 78–80
non-fast-forward merges, 239
pull requests and, 233, 237–240, 248–249
source branch, 64
steps, 70
switching branches, 71–73
target branch, 64
three-way merges, 64, 67–70, 182

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

executing, 163–168
histories and, 143
importance, 143–146
merge conflicts, 175–176
scenario setup, 146–147
Vim and, 161–163

types of merges, 64–69
Microsoft Windows, 4

command line application, 4
command prompt, 3
filesystem application, 9
installing Git, 9
viewing hidden files and directories, 22

mkdir command, 14, 283
modified files, 48–51
-m option (git commit), 38, 161

N
naming conventions, default branch, 48
non-fast-forward merges, 239

O
objects directory, 29
options, 7
origin/feature remote-tracking branch, 111, 118, 120, 124, 137–138
origin/HEAD pointer, 120
origin/main remote-tracking branch, 109–110, 118, 128–130, 135
origin shortname, 122

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

origin/topic remote-tracking branch, 249–250

P
parent of commit, 52
password, GitLab, 92
personal access tokens, 92
-p option (git cat-file), 52
-p option (git fetch), 137
-p option (git pull), 250
prerequisites

all chapters, 260
chapter 2, 261
chapter 3, 261–263
chapter 4, 262–263
chapter 5, 263–265
chapter 6, 265–267
chapter 7, 265–267
chapter 8, 267–271
chapter 9, 270–273
chapter 10, 273–276
chapter 11, 276–280
chapter 12, 279–282

private repositories, 100
project directories

cloning names, 116
converting to local repository, 22

projects
files, adding, 30–32

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

sample, 15
public repositories, 100
pulling data, from remote repository, 167–171
pull requests, 233. See also merge requests

approving, 246–248
benefits, 235–238
closing, 233
collaborators and, 247
comments, 247
hosting services, 234–235

creating on, 245
merging, 237–240, 248–249
opening, 233
preparations, 240–242
reviewing, 246–248
steps, 234

pushing to remote repository, 96, 129
pwd command, 5, 9, 283

R
rainbow directory, 15–16, 21

convert to Git repository, 24
empty, 23
rainbowcolors.txt file, 30–32

Rainbow project, 6
collaboration, 115–119
othercolors.txt file, 146, 175, 204–208
rainbowcolors.txt file, 30–31

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

as tracked file, 40, 48
as unmodified file, 49

text editor, 19–20
rainbow-remote repository, 100–102

cloning, 116
rainbow repository, 22

commit history, 29
Repository Diagram, 44, 288
working directory, 26

remote branches, 106
deleting, 123, 249–251
tracking, 106

remote repositories, 21
authentication, 91–93
cloning, 114, 116

local, 103
connections

adding, 102–106
listing, 104

creating with data, 99–103
fetching changes, 133
hosting services and, 90
interaction with local repositories, 97
project names, 100
public versus private, 100
pulling data, 167–171
pushing local branches to, 107–112
reasons to use, 98

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

shortname, 102
starting work from, 97
URLs/URIs, 100, 102, 268
working directly on hosting service, 112

repositories
cloning, upstream branches, 129
friend-rainbow, 115

origin shortname, 122
initializing

git init command, 23
master branch, 23

interactions, 97
local, 21

connections, multiple, 102
friend-rainbow, 115
Git Diagram, 25, 288
initializing, 22–26, 97
rainbow, 24
Repository Diagram, 44–45, 288

rainbow, 27, 115
commit history, 29
Repository Diagram, 44, 288
working directory, 26

remote, 21, 268
cloning, 114, 116
connections, adding, 102–106
creating with data, 99–103
fetching changes, 133

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

hosting services and, 90
project names, 100
public versus private, 100
pulling data, 167–171
pushing local branches to, 107–112
reasons to use, 98
starting work from, 97
URLs, 100, 102
working directly on hosting service, 112

Repository Diagram, 44, 288–289
local repository, 44–45

S
settings, special, 113
--set-upstream option (git push), 242
--set-upstream-to option (git branch), 148
shortnames, 102

origin shortname, 122
snapshot, 28
source branch, 64
SSH (Secure Shell), 89, 93–94
--staged option (git restore), 205
staging area, 27

files
adding, 36
modified, 205

Git Diagram, 27–28
rainbowcolors.txt file, 37–39, 50

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

unstaging, 205

T
target branch, 64, 175
Terminal (macOS), 4
text editors, 19–20

integrated terminals, 19–20
modified files, 48
special settings, 113
unmodified files, 48
Vim, 161–163
Visual Studio Code, 19

three-way merges, 64, 67–70, 145
executing, 163–167
histories, and, 143
importance, 143–146
merge conflicts, 175–176
scenario setup, 146–147
Vim and, 161–163

topic branch, 241–242, 248–250
topic branches, 45, 126
tracked files, 40

U
unmodified files, 48–51
unstaging files, 201–211
untracked files, 40
-u option (git branch), 148

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

upstream branches, 106
cloning and, 147
defining, 129, 147–150, 242–245

URLs, remote repositories, 100
user.email variable, 17
user.name variable, 17

V
version control system, 1
Vim, 161–163
Visual Studio Code, 19
-v option (git remote), 104
-vv option (git branch), 129

W
Windows Explorer (Microsoft Windows), 9
word processors, 19
working directory, 26

files
modified, 48
unmodified, 48

git add command, 38
Git Diagram, 26–27
switching branches and, 75–77

file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml
file:///tmp/calibre_4.99.4_tmp_2kuyh4oi/8_2o2led_pdf_out/OEBPS/lg_index.xhtml

About the Author

Anna Skoulikari is a creative who has used her communication skills to
teach Git in a simple, tangible, and visual manner. She teaches Git through
a variety of media including her highly rated online course. Throughout her
tech journey, she has worked as a UX designer, frontend developer, and
technical writer.

Colophon

The animal on the cover of Learning Git is a gold-fronted green leafbird
(Chloropsis aurifrons), a bird native to the Indian subcontinent,
southwestern China, and southeast Asia.

This species of leaf bird is a small, bright-green bird with a black face and
throat with a patch of orange and gold on its forehead. Long, sharp beaks
and brush-tipped tongues helps them feed on insects from bark and tree
leaves. This bird is a common sight in tropical forests and gardens, where it
feeds on insects, fruit, and even—when hovering in a hummingbird-like
holding pattern—nectar.

This bird is very territorial and aggressive towards other birds, and it is
known to attack other animals, including humans, if it feels threatened.
Chloropsis aurifrons breeds in the spring, building a small, cup-shaped nest
from sticks and leaves. The female lays two or three eggs, which the male
incubates for two weeks. The chicks stay in the nest for another two weeks
before fledging.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.The cover illustration is by Karen Montgomery,
based on a black and white engraving from Lydekker’s Royal Natural
History. The cover fonts are Gilroy Semibold and Guardian Sans. The text
fonts are Scala Pro and Gotham Narrow; the heading fonts are Gotham
Condensed and Gotham Narrow; and the code font is Courier Prime.

I dedicate this book to my parents.

Mom, Dad, thank you for all your support
through this crazy journey we call life.

[contents]

[Preface] xi

Chapter 1. Git and the Command Line 1

What Is Git? 1

The Graphical User Interface and the Command Line 2

Opening a Command Line Window 3

Executing Commands in the Command Line 5

Installing Git 7

Command Options and Arguments 7

Clearing the Command Line 8

Opening the Filesystem Window 9

Working with Directories 9

Closing the Command Line 16

Setting Git Configurations 17

Preparing a Text Editor 19

Integrated Terminals 19

Summary 20

Chapter 2. Local Repositories 21

Current Setup 21

Introducing Repositories 21

Initializing a Local Repository 22

The Areas of Git 26

Adding a File to a Git Project 30

Summary 31

Chapter 3. Making a Commit 33

Current Setup 33

Why Do We Make Commits? 34

The Two Steps to Make a Commit 34

Viewing a List of Commits 40

Summary 42

Chapter 4. Branches 43

State of the Local Repository 43

Why Do We Use Branches? 44

Unmodified and Modified Files 48

Making Commits on a Branch 51

Creating a Branch 53

What Is HEAD? 55

Switching Branches 57

Working on a Separate Branch 61

Summary 62

Chapter 5. Merging 63

State of the Local Repository 63

Introducing Merging 64

Types of Merges 64

Doing a Fast-Forward Merge 70

Checking Out Commits 80

Creating a Branch and Switching onto It in One Go 86

Summary 87

Chapter 6. Hosting Services and Authentication 89

Hosting Services and Remote Repositories 90

Setting Up a Hosting Service Account 90

Setting Up Authentication Credentials 91

Summary 93

Chapter 7. Creating and Pushing to a Remote Repository 95

State of the Local Repository 95

The Two Ways to Start Work on a Git Project 96

The Interaction Between Local and Remote Repositories 97

Why Do We Use Remote Repositories? 98

Creating a Remote Repository with Data 99

Working on a Remote Repository Directly on a Hosting Service 112

Summary 112

Chapter 8. Cloning and Fetching 113

State of the Local and Remote Repositories 113

Cloning a Remote Repository 114

Deleting Branches 122

Git Collaboration and Branches 125

Incorporating Changes from the Remote Repository 132

Deleting Branches (Continued) 137

Summary 139

Chapter 9. Three-Way Merges 141

State of the Local and Remote Repositories 141

Why Are Three-Way Merges Important? 143

Setting Up a Three-Way Merge Scenario 146

Defining Upstream Branches 147

Editing the Same File Multiple Times Between Commits 151

Working at the Same Time as Others on Different Files 158

Three-Way Merge in Practice 161

Pulling Changes from a Remote Repository 167

State of the Local and Remote Repositories 170

Summary 171

Chapter 10. Merge Conflicts 173

State of the Local and Remote Repositories 173

Introducing Merge Conflicts 175

How to Resolve Merge Conflicts 176

Setting Up a Merge Conflict Scenario 177

The Merge Conflict Resolution Process 182

Resolving Merge Conflicts in Practice 185

Staying Up to Date with a Remote Repository 187

Syncing the Repositories 188

State of the Local and Remote Repositories 191

Summary 191

Chapter 11. Rebasing 193

State of the Local and Remote Repositories 193

Integrating Changes in Git 195

Why Is Rebasing Helpful? 196

Setting Up the Rebasing Example 199

Unstaging and Staging Files 201

Preparing to Rebase 211

The Five Stages of the Rebase Process 213

Rebasing and Merge Conflicts 217

Rebasing a Branch in Practice 218

The Golden Rule of Rebasing 223

Syncing the Repositories 226

State of the Local and Remote Repositories 229

Summary 229

Chapter 12. Pull Requests (Merge Requests) 231

State of the Local and Remote Repositories 231

Introducing Pull Requests 233

Hosting Service Specifics 234

Why Use Pull Requests? 235

Understanding How Pull Requests Are Merged 237

Preparing to Make a Pull Request 240

An Easier Way to Define Upstream Branches 242

Creating a Pull Request on a Hosting Service 245

Reviewing and Approving a Pull Request 246

Merging a Pull Request 248

Deleting Remote Branches 249

Syncing the Local Repositories and Cleaning Up 250

State of the Local and Remote Repositories 254

Summary 255

[Epilogue] 257

Appendix A: Chapter Prerequisites 259

Appendix B: Command Quick Reference 283

Appendix C: Visual Language Reference 287

[Index] 291

	[Preface]
	Chapter 1. Git and the Command Line
	What Is Git?
	The Graphical User Interface and the Command Line
	Opening a Command Line Window
	Executing Commands in the Command Line
	Installing Git
	Command Options and Arguments
	Clearing the Command Line
	Opening the Filesystem Window
	Working with Directories
	Closing the Command Line
	Setting Git Configurations
	Preparing a Text Editor
	Integrated Terminals
	Summary

	Chapter 2. Local Repositories
	Current Setup
	Introducing Repositories
	Initializing a Local Repository
	The Areas of Git
	Adding a File to a Git Project
	Summary

	Chapter 3. Making a Commit
	Current Setup
	Why Do We Make Commits?
	The Two Steps to Make a Commit
	Viewing a List of Commits
	Summary

	Chapter 4. Branches
	State of the Local Repository
	Why Do We Use Branches?
	Unmodified and Modified Files
	Making Commits on a Branch
	Creating a Branch
	What Is HEAD?
	Switching Branches
	Working on a Separate Branch
	Summary

	Chapter 5. Merging
	State of the Local Repository
	Introducing Merging
	Types of Merges
	Doing a Fast-Forward Merge
	Checking Out Commits
	Creating a Branch and Switching onto It in One Go
	Summary

	Chapter 6. Hosting Services and Authentication
	Hosting Services and Remote Repositories
	Setting Up a Hosting Service Account
	Setting Up Authentication Credentials
	Summary

	Chapter 7. Creating and Pushing to a Remote Repository
	State of the Local Repository
	The Two Ways to Start Work on a Git Project
	The Interaction Between Local and Remote Repositories
	Why Do We Use Remote Repositories?
	Creating a Remote Repository with Data
	Working on a Remote Repository Directly on a Hosting Service
	Summary

	Chapter 8. Cloning and Fetching
	State of the Local and Remote Repositories
	Cloning a Remote Repository
	Deleting Branches
	Git Collaboration and Branches
	Incorporating Changes from the Remote Repository
	Deleting Branches (Continued)
	Summary

	Chapter 9. Three-Way Merges
	State of the Local and Remote Repositories
	Why Are Three-Way Merges Important?
	Setting Up a Three-Way Merge Scenario
	Defining Upstream Branches
	Editing the Same File Multiple Times Between Commits
	Working at the Same Time as Others on Different Files
	Three-Way Merge in Practice
	Pulling Changes from a Remote Repository
	State of the Local and Remote Repositories
	Summary

	Chapter 10. Merge Conflicts
	State of the Local and Remote Repositories
	Introducing Merge Conflicts
	How to Resolve Merge Conflicts
	Setting Up a Merge Conflict Scenario
	The Merge Conflict Resolution Process
	Resolving Merge Conflicts in Practice
	Staying Up to Date with a Remote Repository
	Syncing the Repositories
	State of the Local and Remote Repositories
	Summary

	Chapter 11. Rebasing
	State of the Local and Remote Repositories
	Integrating Changes in Git
	Why Is Rebasing Helpful?
	Setting Up the Rebasing Example
	Unstaging and Staging Files
	Preparing to Rebase
	The Five Stages of the Rebase Process
	Rebasing and Merge Conflicts
	Rebasing a Branch in Practice
	The Golden Rule of Rebasing
	Syncing the Repositories
	State of the Local and Remote Repositories
	Summary

	Chapter 12. Pull Requests (Merge Requests)
	State of the Local and Remote Repositories
	Introducing Pull Requests
	Hosting Service Specifics
	Why Use Pull Requests?
	Understanding How Pull Requests Are Merged
	Preparing to Make a Pull Request
	An Easier Way to Define Upstream Branches
	Creating a Pull Request on a Hosting Service
	Reviewing and Approving a Pull Request
	Merging a Pull Request
	Deleting Remote Branches
	Syncing the Local Repositories and Cleaning Up
	State of the Local and Remote Repositories
	Summary

	[Epilogue]
	Appendix A: Chapter Prerequisites
	Appendix B: Command Quick Reference
	Appendix C: Visual Language Reference
	[Index]

