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Preface

This book gives an introduction to the design and analysis of algorithms. It is

intended to introduce the reader to the theories of algorithm correctness and

performance analysis, as well as to give a broad overview of algorithm design

techniques. As the proper organization of data is essential to the efficiency

of many algorithms, a significant portion of the text is devoted to design and

analysis of data structures.

This book is motivated in part by the author’s belief that people do not

fully understand an algorithm until they are able to prove its correctness.

For this reason, all of Chapter 2 and much of Chapter 4 are devoted to

techniques for proving correctness. Outside of these two chapters, however,

very few correctness proofs are given, as they would needlessly clutter the

presentation with tedious details. Instead, all algorithms are presented in

such a way as to facilitate a correctness proof. The particular approach

used is top-down. This approach fits well with mathematical techniques of

induction, proving loop invariants, and applying previously-shown theorems.

By having an understanding of the mechanics of proving correctness, readers

are equipped to gain a thorough understanding of an algorithm presented in

a top-down way.

Correct use of notation, particularly asymptotic notation, is emphasized

throughout. Although asymptotic notation is routinely abused in the

literature, the author’s experience is that students find such abuse confusing

and misleading. As others have argued, nothing is gained by this abuse, so

it is avoided in this book.

Algorithms are presented in a pseudo language defined with enough rigor

to facilitate both performance analyses and correctness proofs. The essence
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vi Algorithms: A Top-Down Approach

of an algorithm is not tied to a particular programming language; hence, we

have chosen a computational model and corresponding notation that we feel

are appropriate for communicating algorithms to humans.

This text contains sufficient material for both an advanced undergrad-

uate course and an introductory graduate-level course on the design and

analysis of algorithms.

Prerequisite Material

This book is intended to be reasonably self-contained. However, a certain

degree of maturity is assumed regarding the audience. Readers are expected

to have enough experience in writing programs so as to be able to understand

algorithms presented in a pseudo language. Experience with basic data

structures, including stacks, queues, lists, and trees, will be helpful, as will

experience in manipulating finite and infinite sums, solving recurrences, and

performing combinatorial analyses. Though calculus and number theory are

used occasionally, background in these fields of study is not assumed.

Organization

The outline of this book is as follows:

I. Fundamentals — the foundational material upon which the remainder

of the text is based.

1. Introduction — introduction to the ideas of specification, correct-

ness, and analysis of algorithms, as well as to the top-down approach.

2. Proving Algorithm Correctness — introduction to techniques

for proving algorithm correctness.

3. Analyzing Algorithms — introduction to asymptotic notation and

its use in analyzing worst-case performance of algorithms.

II. Data Structures — data structures commonly used with algorithms,

including algorithms presented later in this text.

4. Basic Techniques for Data Structures — techniques for reason-

ing about and analyzing data structures. A more detailed discussion

of the computational model and notation is presented. Amortized

analysis is introduced.

5. Priority Queues — binary heaps, leftist heaps, skew heaps, and

randomized heaps. Randomized algorithms and expected-case anal-

ysis are introduced.
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6. Storage/Retrieval I: Ordered Keys — ordered arrays, binary

search trees, AVL trees, splay trees, and skip lists.

7. Storage/Retrieval II: Unordered Keys — virtually initialized

arrays and hashing, including universal hashing.

8. Disjoint Sets — structures for supporting Merge and Find

operations on disjoint sets.

9. Graphs — introduction to graph theory and implementations of

graphs.

III. Algorithm Design Techniques — an in-depth look at standard

algorithmic design techniques.

10. Divide and Conquer — algorithms for sorting, selecting the

kth smallest, multiplying polynomials, and multiplying/dividing

integers.

11. Optimization I: Greedy Algorithms — algorithms for finding

a minimum-cost spanning tree, finding shortest paths, scheduling,

and generating Huffman codes.

12. Optimization II: Dynamic Programming — algorithms for

finding shortest paths, optimal ordering of chained matrix multi-

plication, and knapsack problems.

IV. Common Reduction Targets — algorithms for problems to which

many other problems can be reduced.

13. Depth-First Search — algorithms for topological sort, articula-

tion points, and strongly connected components.

14. Network Flow and Matching — a study of network flow

algorithms and their applications.

15. * The Fast Fourier Transform — a study of the Fast Fourier

Transform algorithm and its application to problems such as integer

multiplication.

V. Intractable Problems — dealing with problems for which we cannot

find efficient solutions.

16. NP-Completeness — an introduction to the theory of NP-
completeness, including proofs of NP-completeness.

17. Approximation Algorithms — an introduction to design and

analysis of approximation algorithms for NP-complete problems.

Sections which may be omitted due to more mathematical content have

titles prefixed with a “∗”.
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An undergraduate course would consist of all of Part I (except Section

3.11) and most of Parts II and III. Parts IV and V are targeted more for

graduate students, though selected topics could be used in an undergraduate

course. A graduate-level course should also include all of Part I (though it

could probably be covered rather quickly) and perhaps selected topics from

Part II. The core of this course would come from Part III, supplemented by

some or all of Parts IV and V.

Exercises

Each chapter includes a section of exercises intended to reinforce the chapter

material. Some of the exercises are more challenging, and are therefore

marked with “∗” or “∗∗” to indicate their level of difficulty. Exercises marked

“∗” will be challenging for most undergraduates, and exercises marked “∗∗”
will be challenging for most graduate students.

Web Site and Feedback

Various supplemental materials may be accessed online at

https://www.worldscientific.com/worldscibooks/10.1142/13069

Please send any feedback to rhowell@ksu.edu.

https://www.worldscientific.com/worldscibooks/10.1142/13069
rhowell@ksu.edu
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Chapter 1

Introduction

A large software system consists of many components, each designed to

perform a specific task. The overall quality of a given system is determined

largely by how well these components function individually and interact

with each other and the external environment. The focus of this book is

on individual components — algorithms and data structures — that can be

used in a wide variety of software systems. In this chapter, we will present

an overview of what these components are and how we will study them

throughout the remainder of the book. In the course of this overview, we

will illustrate a top-down approach for thinking about both algorithms and

data structures. This approach will provide an essential framework for both

designing and understanding algorithms and data structures.

1.1 Specifications

Before we can design or analyze any software component — including an

algorithm or a data structure — we must first know what it is supposed

to accomplish. A formal statement of what a software component is meant

to accomplish is called a specification. Here, we will discuss specifically the

specification of an algorithm. The specification of a data structure is similar,

but a bit more involved. For this reason, we will wait until Chapter 4 to

discuss the specification of data structures in detail.

Suppose, for example, that we wish to find the kth smallest element

of an array of n numbers. Thus, if k = 1, we are looking for the smallest

element in the array, or if k = n, we are looking for the largest. We will refer

to this problem as the selection problem. Even for such a seemingly simple

problem, there is a potential for ambiguity if we are not careful to state the

problem precisely. For example, what do we expect from the algorithm if k

3
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is larger than n? Do we allow the algorithm to change the array? Do all of

the elements in the array need to be different? If not, what exactly do we

mean by the kth smallest?

Specifically, we need to state the following:

• a precondition, which is a statement of the assumptions we make about the

input to the algorithm and the environment in which it will be executed;

and

• a postcondition, which is a statement of the required result of executing

the algorithm, assuming the precondition is satisfied.

The precondition and postcondition, together with a function header giving

a name and parameter list, constitute the specification of the algorithm. We

say that the algorithm meets its specification if the postcondition is satisfied

whenever the precondition is satisfied. Note that we guarantee nothing about

the algorithm if its precondition is not satisfied.

We adopt the convention
that if the last index is
smaller than the first (e.g.,
A[1..0]), then the array has
no elements.

The selection problem will have two parameters,

an array A and a positive integer k. The precondition

should specify what we are assuming about these

parameters. For this problem, we will assume that

the first element of A is indexed by 1 and the last element is indexed by some

natural number (i.e., nonnegative integer) n; hence, we describe the array

more precisely using the notation A[1..n]. We will assume that each element

of A[1..n] is a number; hence, our precondition must include this requirement.

Furthermore, we will not require the algorithm to verify that k is within a

proper range; hence, the precondition must require that 1 ≤ k ≤ n, where

k ∈ N (N is the mathematical notation for the set of natural numbers).

Now let us consider how we might specify a postcondition. We need to

come up with a precise definition of the kth smallest element of A[1..n].

Consider first the simpler case in which all elements of A[1..n] are distinct.

In this case, we would need to return the element A[i] such that exactly k

elements of A[1..n] are less than or equal to A[i]. However, this definition

of the kth smallest element might be meaningless when A[1..n] contains

duplicate entries. Suppose, for example, that A[1..2] contains two 0s and

that k = 1. There is then no element A[i] such that exactly 1 element of

A[1..2] is less than or equal to A[i].

To better understand the case in which elements of A might be dupli-

cated, let us consider a specific example. Let A[1..8] = 〈1, 5, 6, 9, 9, 9, 9, 10〉,
and let k = 5. An argument could be made that 10 is the kth smallest
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because there are exactly k distinct values less than or equal to 10. However,

if we were to adopt this definition, there would be no kth smallest element

for k = 6. Because A is sorted, it would be better to conclude that the

kth smallest is A[k] = 9. Note that all elements strictly less than 9 are

in A[1..4]; i.e., there are strictly fewer than k elements less than the kth

smallest. Furthermore, rearranging A would not change this fact. Likewise,

observe that all the elements in A[1..5] are less than or equal to 9; i.e.,

there are at least k elements less than or equal to the kth smallest. Again,

rearranging A would not change this fact.

The above example suggests that the proper definition of the kth smallest

element of an array A[1..n] is the value x such that

• there are fewer than k elements A[i] < x and

• there are at least k elements A[i] ≤ x.

It is possible to show, though we will not do so here, that for any array A[1..n]

and any positive integer k ≤ n, there is exactly one value x satisfying both

of the above conditions. We will therefore adopt this definition of the kth

smallest element.

The complete specification for the selection problem is shown in

Figure 1.1. To express the data types of n and the elements of A, we use Nat

to denote the natural number type and Number to denote the number type.

Note that Nat is a subtype of Number — every Nat is also a Number. In

order to place fewer constraints on the algorithm, we have included in the

postcondition a statement that the elements of A[1..n] may be permuted (i.e.,

rearranged). In order for a specification to be precise, the postcondition must

state when side-effects such as this may occur. In order to keep specifications

from becoming overly wordy, we will adopt the convention that no values

may be changed unless the postcondition explicitly allows the change.

Figure 1.1 Specification for the selection problem
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1.2 Algorithms

Once we have a specification, we need to produce an algorithm to implement

that specification. This algorithm is a precise statement of the computational

steps taken to produce the results required by the specification. An algorithm

differs from a program in that it is usually not specified in a programming

language. In this book, we describe algorithms using a notation that is precise

enough to be implemented as a programming language, but which is designed

to be read by humans.

A straightforward approach to solving the selection problem is as follows:

1. Sort the array in non-decreasing order.

2. Return the kth element.

If we already know how to sort, then we have solved our problem; otherwise,

we must come up with a sorting algorithm. By using sorting to solve the

selection problem, we say that we have reduced the selection problem to the

sorting problem.

Solving a problem by reducing it to one or more simpler problems is the

essence of the top-down approach to designing algorithms. One advantage to

this approach is that it allows us to abstract away certain details so that we can

focus on the main steps of the algorithm. In this case, we have a selection

algorithm, but our algorithm requires a sorting algorithm before it can be fully

implemented. This abstraction facilitates understanding of the algorithm at a

high level. Specifically, if we know what is accomplished by sorting — but not

necessarily how it is accomplished — then because the selection algorithm

consists of very little else, we can readily understand what it does.

When we reduce the selection problem to the sorting problem, we need

a specification for sorting as well. For this problem, the precondition will be

that A[1..n] is an array of Numbers, where n ∈ N. Our postcondition will be

that A[1..n] is a permutation of its initial values such that for 1 ≤ i < j ≤ n,

A[i] ≤ A[j] — i.e., that A[1..n] contains its initial values in nondecreasing

order. Our selection algorithm is given in Figure 1.2. Note that Sort is only

specified — its algorithm is not provided.

Let us now refine the SimpleSelect algorithm of Figure 1.2 by designing

a sorting algorithm. We will reduce the sorting problem to the problem of

inserting an element into a sorted array. In order to complete the reduction,

we need to have a sorted array in which to insert. We have thus returned to

our original problem. We can break this circularity, however, by using the

top-down approach in a different way. Specifically, we reduce larger instances
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Figure 1.2 An algorithm implementing the specification of Figure 1.1

Figure 1.3 An algorithm implementing the specification of Sort, given in Figure 1.2

of sorting to smaller instances. In this application of the top-down approach,

the simpler problem is actually a smaller instance of the same problem.

The algorithm is given in Figure 1.3. Though this application of the top-

down approach may at first seem harder to understand, we can think about

it in the same way as we did for SimpleSelect. If n ≤ 1, the postcondition

for Sort(A[1..n]) (given in Figure 1.2) is clearly met. For n > 1, we use the

specification of Sort to understand that InsertSort(A[1..n − 1]) sorts

A[1..n − 1]. Thus, the precondition for Insert(A[1..n]) is satisfied. We

then use the specification of Insert(A[1..n]) to understand that when the

algorithm completes, A[1..n] is sorted.

The thought process outlined above might seem mysterious because

it doesn’t follow the sequence of steps in an execution of the algorithm.

However, it is a much more powerful way to think about algorithms.
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Figure 1.4 An algorithm implementing the specification of Insert, given in

Figure 1.3

To complete the implementations of SimpleSelect and InsertSort,

we need an algorithm for Insert. We can again use the the top-down

approach to reduce an instance of Insert to a smaller instance of the same

problem. According to the precondition (see Figure 1.3), A[1..n−1] must be

sorted in nondecreasing order; hence, if either n = 1 or A[n] ≥ A[n− 1], the

postcondition is already satisfied. Otherwise, A[n − 1] must be the largest

element in A[1..n]. Therefore, if we swap A[n] with A[n − 1], A[1..n − 2] is

sorted in nondecreasing order and A[n] is the largest element in A[1..n]. If we

then solve the smaller instance A[1..n− 1], we will satisfy the postcondition.

The algorithm is shown in Figure 1.4. In this book, we will assume

that a logical and or or is evaluated by first evaluating its first operand,

then if necessary, evaluating its second operand. Thus, in evaluating the if

statement in RecursiveInsert, if n ≤ 1, the second operand will not be

evaluated, as the value of the expression must be false. We use the notation

x↔ y to swap the values of variables x and y.

1.3 Proving Algorithm Correctness

Once we have an algorithm, we would like some assurance that it meets

its specification. We have argued somewhat informally that the three

algorithms, SimpleSelect, InsertSort, and RecursiveInsert, meet

their respective specifications; however, these arguments may not convince

everyone. For example, it might not be clear that it is valid to assume that

the recursive call to InsertSort in Figure 1.3 meets its specification. After

all, the whole point of that discussion was to argue that InsertSort meets

its specification. That argument might therefore seem circular.

In the next chapter, we will show how to prove formally that an algo-

rithm meets its specification. These proofs will rest on solid mathematical

foundations, so that a careful application of the techniques should give us

confidence that a given algorithm is, indeed, correct. In particular, we will
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formally justify the reasoning used above — namely, that we can assume

that a recursive call meets its specification, provided its input is of a smaller

size than that of the original call, where the size is some natural number.

The ability to prove algorithm correctness is quite possibly the most

underrated skill in the entire discipline of computing. First, knowing how

to prove algorithm correctness also helps us in the design of algorithms.

Specifically, once we understand the mechanics of correctness proofs, we can

design the algorithm with a proof of correctness in mind. This approach

makes designing correct algorithms much easier. Second, the exercise of

working through a correctness proof — or even sketching such a proof —

often uncovers subtle errors that would be difficult to find with testing alone.

Third, this ability brings with it a capacity to understand specific algorithms

on a much deeper level. Thus, the ability to prove algorithm correctness is

a powerful tool for designing and understanding algorithms. Because these

activities are closely related to programming, this ability greatly enhances

programming abilities as well.

The proof techniques we will introduce fit nicely with the top-down

approach to algorithm design. As a result, the top-down approach itself

becomes an even more powerful tool for designing and understanding

algorithms.

1.4 Algorithm Analysis

Once we have a correct algorithm, we need to be able to evaluate how

well it does its job. This evaluation essentially boils down to an analysis

of the resource usage of the algorithm, where the resources might be time or

memory, for example. In Chapter 3, we will present tools for mathematically

analyzing such resource usage. For now, let us discuss this resource usage

less formally.

Consider the InsertSort algorithm given in Figures 1.3 and 1.4, for

example. If we were to implement this algorithm in a programming language

and run it on a variety of examples, we would discover that for sufficiently

large inputs — typically a few thousand elements — the program will

terminate abnormally due to a stack overflow. This problem is not, strictly

speaking, an error in the algorithm, but instead is a reflection of the fact

that it uses the machine’s runtime stack inefficiently. Using the analysis

tools of Chapter 3, it is possible to show that this algorithm’s stack usage

is linear in the size of the array. Because the runtime stack is usually much

smaller than the total memory available, we usually would like the stack
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usage to be bounded by a slow-growing function of the size of the input — a

logarithmic function, for example. Thus, if we were to do the analysis prior

to implementing the algorithm, we could uncover the inefficiency earlier in

the process.

Having uncovered an inefficiency, we would like to eliminate it. The

runtime stack is used when performing function calls. Specifically, each time a

function call is made, information is placed onto the stack. When the function

returns, this information is removed. As a result, when an algorithm uses

the runtime stack inefficiently, the culprit is almost always recursion. This

in not to say that recursion always uses the stack inefficiently — indeed,

we will see many efficient recursive algorithms in this book. The analysis

tools of Chapter 3 will help us to determine when recursion is or is not used

efficiently. For now, however, we will focus on removing the recursion.

It turns out that while recursion is the most obvious way to implement

an algorithm designed using the top-down approach, it is by no means

the only way. One alternative is to implement the top-down solution in

a bottom-up way. The top-down solution for InsertSort is to reduce a

large instance to a smaller instance and an instance of Insert by first

sorting the smaller instance, then applying Insert. We can apply this same

idea in a bottom-up fashion by observing that the first element of any

nonempty array is necessarily sorted, then extending the sorted portion of

the array by applying Insert. In other words, we repeatedly apply Insert

to A[1..2], A[1..3], . . . , A[1..n]. This can be done using a loop.

The bottom-up implementation works well for InsertSort because the

recursive call is essentially the first step of the computation. However, the

recursive call in RecursiveInsert is necessarily the last step. Fortunately,

there is a fairly straightforward way of removing the recursion from this type

of algorithm, as well. When a reduction has the form that the solution to

the simpler problem solves the original problem, we call this reduction a

transformation. When we transform a large instance to a smaller instance of

the same problem, the natural recursive algorithm is tail recursive, meaning

that the last step is a recursive call.

Figure 1.5 illustrates how a typical tail recursive algorithm can be

converted to an iterative algorithm. The loop iterates as long as the condition

indicating the base case (i.e., the end of the recursion) is false. Each iteration

performs all the computation in the recursive case except the recursive call.

To simulate the recursive call, the formal parameters p1, . . . , pk are given

the values of their corresponding actual parameters, q1, . . . , qk, and the loop

continues (a statement of the form “x ← y” assigns the value of y to the



Introduction 11

Figure 1.5 Translation of a typical tail recursive algorithm to an iterative algorithm

Figure 1.6 Iterative algorithm implementing the specification of Insert, given in

Figure 1.3

variable x). Once the condition indicating the base case is true, the loop

terminates, the base case is executed, and the algorithm terminates.

Figure 1.6 shows the result of eliminating the tail recursion from

RecursiveInsert. Because RecursiveInsert is structured in a slightly

different way from what is shown in Figure 1.5, we could not apply this

translation verbatim. The tail recursion occurs, not in the else part, but

in the if part, of the if statement in RecursiveInsert. For this reason,

we did not negate the condition when forming the while loop. The base

case is then the empty else part of the if statement. Because there is no

code in the base case, there is nothing to place after the loop. In order to

avoid changing the value of n, we have copied its value to j, and used j in

place of n throughout the algorithm. Furthermore, because the meaning of

the statement “A[1..j] ← A[1..j − 1]” is not clear, we instead simulated the

recursion by the statement “j ← j − 1”.
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Figure 1.7 Insertion sort implementation of Sort, specified in Figure 1.1

We consider each test of
a loop exit condition to
mark the beginning/end of
an iteration.

Prior to the loop in IterativeInsert, we have

given a loop invariant, which is a statement that must

be true at the beginning and end of each iteration of

the loop. Loop invariants will be an essential part of

the correctness proof techniques that we will introduce in the next chapter.

For now, however, we will use them to help us to keep track of what the loop

is doing.

The resulting sorting algorithm, commonly known as insertion sort, is

shown in Figure 1.7. Besides removing the two recursive calls, we have also

combined the two functions into one. Also, we have started the for loop at 1,

rather than at 2, as our earlier discussion suggested. As far as correctness

goes, there is no difference which starting point we use, as the inner loop

will not iterate when i = 1; however, it turns out that the correctness proof,

which we will present in the next chapter, is simpler if we begin the loop at 1.

Furthermore, the impact on performance is minimal.

While analysis techniques can be applied to analyze stack usage, a far

more common application of these techniques is to analyze running time. For

example, we can use these techniques to show that while InsertionSort is

not, in general, a very efficient sorting algorithm, there are important cases

in which it is a very good choice. In Section 1.6, we will present a case study

that demonstrates the practical utility of running time analysis.

1.5 Data Structures

One of the major factors influencing the performance of an algorithm is

the way the data items it manipulates are organized. For this reason, it is
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essential that we include data structures in our study of algorithms. The

themes that we have discussed up to this point all apply to data structures,

but in a somewhat different way.

For example, a specification of a data structure must certainly include

preconditions and postconditions for the operations on the structure. In

addition, the specification must in some way describe the information

represented by the structure, and how operations on the structure affect

that information. As a result, proofs of correctness must take into account

this additional detail.

While the analysis techniques of Chapter 3 apply directly to operations

on data structures, it will be necessary to introduce a new technique that

analyzes sequences of operations on a data structure. Furthermore, even the

language we are using to express algorithms will need to be enriched in order

to allow design and analysis of data structures. We will present all of these

extensions in Chapter 4.

1.6 A Case Study: Maximum Subsequence Sum

We conclude this chapter by presenting a case study that illustrates the

practical impact of algorithm efficiency. The inefficiencies that we will

address all can be discovered using the analysis techniques of Chapter 3. This

case study will also demonstrate the usefulness of the top-down approach in

designing significantly more efficient algorithms.

Let us consider the problem of computing the maximum sum of any

contiguous sequence in an array of numbers (see Figure 1.8). The numbers

in the array may be positive, negative, or zero, and we consider the empty

sequence to have a sum of 0. More formally, given an array A[0..n − 1] of

numbers, where n ∈ N, the maximum subsequence sum of A is defined to be

max

{
j−1∑
k=i

A[k] | 0 ≤ i ≤ j ≤ n

}
.

Similar conventions hold for
products, except that an
empty product is assumed
to have a value of 1.

Note that when i = j, the sum has a beginning

index of i and an ending index of i−1. By convention,

we always write summations so that the index (k in

this case) increases from its initial value (i) to its

final value (j − 1). As a result of this convention, whenever the final value

is less than the initial value, the summation contains no elements. Again by

convention, such an empty summation is defined to have a value of 0. Thus,

in the above definition, we are including the empty sequence and assuming
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Figure 1.8 The subsequence with maximum sum may begin and end anywhere in

the array, but must be contiguous

Figure 1.9 Specification for the maximum subsequence sum problem

its sum is 0. The specification for this problem is given in Figure 1.9. Note

that according to this specification, the values in A[0..n − 1] may not be

modified.

Example 1.1. Suppose A[0..5] = 〈−1, 3,−2, 7,−9, 7〉. Then the subse-

quence A[1..3] = 〈3,−2, 7〉 has a sum of 8. By exhaustively checking all other

contiguous subsequences, we can verify that this is, in fact, the maximum.

For example, the subsequence A[1..5] has a sum of 6.

Example 1.2. Suppose A[0..3] = 〈−3,−4,−1,−5〉. Then all nonempty

subsequences have negative sums. However, any empty subsequence (e.g.,

A[0..−1]) by definition has a sum of 0. The maximum subsequence sum of

this array is therefore 0.

We can easily obtain an algorithm for this problem by translating the

definition of a maximum subsequence sum directly into an iterative solution.

The result is shown in Figure 1.10. By applying the analysis techniques

of Chapter 3, it can be shown that the running time of this algorithm is

proportional to n3, where n is the size of the array.

In order to illustrate the practical ramifications of this analysis, we

implemented this algorithm in the JavaTM programming language and ran

it on a personal computer using randomly generated data sets of size 2k for
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Figure 1.10 A simple algorithm implementing the specification given in Figure 1.9

various values of k. On a data set of size 210 = 1024, MaxSumIter required

about 0.038 seconds, which seems reasonably fast. However, as the size of

the array increased, the running time degraded quickly:

• 211 = 2048 elements: 0.36 seconds,

• 212 = 4096 elements: 3.0 seconds,

• 213 = 8192 elements: 24 seconds.

Note that as the size of the array doubles, the running time increases by

roughly a factor of 8. This is not surprising if we realize that the running time

should be cn3 for some c, and c(2n)3 = 8cn3. We can therefore estimate that

for a data set of size 218 = 262,144, the running time should be 85 = 32,768

times as long as for 213. This running time is over a week!

If we want to solve this problem on large data sets, we clearly would like

to improve the running time. A careful examination of Figure 1.10 reveals

some redundant computation. Specifically, the inner loop computes sums of

successively longer subsequences. Much work can be saved if we compute

sums of successive sequences by simply adding the next element to the

preceding sum. Furthermore, a small optimization can be made by running

the outer loop to n−1, as the inner loop would not execute on this iteration.

The result of this optimization is shown in Figure 1.11.

It turns out that this algorithm has a running time proportional to n2,

which is an improvement over n3. To show how significant this improvement

is, we again coded this algorithm and timed it for arrays of various sizes.

The difference was dramatic — for an input of size 218, which we estimated

would require over a week for MaxSumIter to process, the running time
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Figure 1.11 An algorithm for maximum subsequence sum (specified in Figure 1.9),

optimized by removing an unnecessary loop from MaxSumIter (Figure 1.10)

of MaxSumOpt was only 18 seconds. However, because c(2n)2 = 4cn2, we

would expect the running time to increase by a factor of 4 each time the

array size is doubled. This prediction proved to be true, as a data set of

size 219 = 524,288 required about 70 seconds. Extrapolating this behavior,

we would expect a data set of size 224 = 16,777,216 to require nearly

20 hours. (MaxSumIter would require over 6,000 years to process a data

set of this size.)

While MaxSumOpt gives a dramatic speedup over MaxSumIter, we

would like further improvement if we wish to solve very large problem

instances. Note that neither MaxSumIter nor MaxSumOpt was designed

using the top-down approach. Let us therefore consider how we might solve

the problem in a top-down way. For ease of presentation let us refer to the

maximum subsequence sum of A[0..n−1] as sn. Suppose we can obtain sn−1

(i.e., the maximum subsequence sum of A[0..n−2]) for n > 0. Then in order

to compute the overall maximum subsequence sum we need the maximum

of sn−1 and all of the sums of subsequences A[i..n − 1] for 0 ≤ i ≤ n. Thus,

we need to solve another problem, that of finding the maximum suffix sum

(see Figure 1.12), which we define to be

max

{
n−1∑
k=i

A[k] | 0 ≤ i ≤ n

}
.

In other words, the maximum suffix sum is the maximum sum that we

can obtain by starting at any index i, where 0 ≤ i ≤ n, and adding together

all elements from index i up to index n− 1. (Note that by taking i = n, we

include the empty sequence in this maximum.) We then have a top-down

solution for computing the maximum subsequence sum:
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Figure 1.12 The suffix with maximum sum may begin anywhere in the array, but

must end at the end of the array

sn =

⎧⎨
⎩
0 if n = 0

max(sn−1, tn) if n > 0,
(1.1)

where tn is the maximum suffix sum of A[0..n − 1].

Let us consider how to compute the maximum suffix sum tn using the

top-down approach. Observe that every suffix of A[0..n − 1] — except the

empty suffix — ends with A[n − 1]. If we remove A[n − 1] from all of these

suffixes, we obtain all of the suffixes of A[0..n−2]. Thus, tn−1+A[n−1] = tn
unless tn = 0. We therefore have

tn = max(0, A[n − 1] + tn−1). (1.2)

Using (1.1) and (1.2), we obtain the recursive solution given in Figure 1.13.

Note that we have combined the algorithm for MaxSuffixTD with its

specification.

Unfortunately, an analysis of this algorithm shows that it also has

a running time proportional to n2. What is worse, however, is that an

analysis of its stack usage reveals that it is linear in n. Indeed, the program

implementing this algorithm threw a StackOverflowError on an input

of size 215.

While these results are disappointing, we at least have some techniques

for improving the stack usage. Note that in both MaxSumTD and

MaxSuffixTD, the recursive calls don’t depend on any of the rest of the

computation; hence, we should be able to implement both algorithms in a

bottom-up fashion in order to remove the recursion. Furthermore, we can

simplify the resulting code with the realization that once ti is computed

(using (1.2)), we can immediately compute si using (1.1). Thus, we can

compute both values within a single loop. The result is shown in Figure 1.14.

Because this algorithm uses no recursion, its stack usage is fixed (i.e., it

does not grow as n increases). Furthermore, an analysis of its running time
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Figure 1.13 A top-down solution for maximum subsequence sum, specified in

Figure 1.9

Figure 1.14 A bottom-up calculation of the maximum subsequence sum, specified

in Figure 1.9

reveals that it runs in a time linear in n. The program implementing this

algorithm bears out that this is a significant improvement — this program

used about a second on an array of size 230 = 1,073,741,824. By comparison,

we estimate that on an array of this size, MaxSumOpt would require nearly

10 years, and that MaxSumIter would require over a billion years!

The running times of the JavaTM implementations of all four algorithms

are plotted on the graph in Figure 1.15. The code used to generate these

results can be found on the textbook’s web page.

Note that the performance improvement of MaxSumBU over either

MaxSumIter or MaxSumOpt is better than what we can expect to obtain
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Figure 1.15 Experimental comparison of maximum subsequence sum algorithms

simply by using faster hardware. For example, to achieve with MaxSumOpt

the running time we measured for MaxSumBU on an array of size 224 would

require hardware over 4,000,000 times faster. Even then, we would be able

to process much larger inputs with MaxSumBU. MaxSumBU also has the

advantage of being simpler than the other algorithms. Furthermore, because

it makes only one pass through the input, it does not require that the data

be stored in an array. Rather, it can simply process the data as it reads each

element. As a result, it can be used for very large data sets that might not

fit into main memory.

Thus, we can see the importance of efficiency in the design of algorithms.

Furthermore, we don’t have to code the algorithm and test it to see

how efficient it is. Instead, we can get a fairly good idea of its efficiency

by analyzing it using the techniques presented in Chapter 3. Finally,

understanding these analysis techniques will help us to know where to look

to improve algorithm efficiency.

1.7 Summary

The study of algorithms encompasses several facets. First, before an algo-

rithm or data structure can be considered, a specification of the requirements

must be made. Having a specification, we can then design the algorithm or
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data structure with a proof of correctness in mind. Once we have convinced

ourselves that our solution is correct, we can then apply mathematical

techniques to analyze its resource usage. Such an analysis gives us insight

into how useful our solution might be, including cases in which it may or

may not be useful. This analysis may also point to shortcomings upon which

we might try to improve.

The top-down approach is a useful framework for designing correct,

efficient algorithms. Furthermore, algorithms presented in a top-down fash-

ion can be more easily understood. Together with the top-down approach,

techniques such as bottom-up implementation and elimination of tail

recursion — along with others that we will present later — give us a rich

collection of tools for algorithm design. We can think of these techniques as

algorithmic design patterns, as we use each of them in the design of a wide

variety of algorithms.

In Chapters 2 and 3, we will provide the foundations for proving

algorithm correctness and analyzing algorithms, respectively. In Part II, we

will examine several of the most commonly-used data structures, including

those that are frequently used by efficient algorithms. In Part III, we examine

the most common approaches to algorithm design. In Part IV, we will

study several specific algorithms to which many other problems can be

reduced. Finally, in Part V, we will consider a class of problems believed

to be computationally intractable and introduce some techniques for coping

with them.

1.8 Exercises

Exercise 1.1. We wish to design an algorithm that takes an array A[0..n−1]
of numbers in nondecreasing order and a number x, and returns the location

of the first occurrence of x in A[0..n − 1], or the location at which x could

be inserted without violating the ordering if x does not occur in the array.

Give a formal specification for this problem. The algorithm shown in Figure

1.16 should meet your specification.

Exercise 1.2. Give an iterative algorithm that results from removing the

tail recursion from the algorithm shown in Figure 1.16. Your algorithm

should meet the specification described in Exercise 1.1.

Exercise 1.3. Figure 1.17 gives a recursive algorithm for computing the

dot product of two vectors, represented as arrays. Give a bottom-up

implementation of this algorithm.
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Figure 1.16 An algorithm satisfying the specification described in Exercise 1.1

Figure 1.17 Algorithm for Exercise 1.3

Exercise 1.4. Figure 1.18 gives a specification for Copy.

(a) Show how to reduce Copy to a smaller instance of itself by giving

a recursive algorithm. You may assume that A and B are distinct,

non-overlapping arrays. Your algorithm should contain exactly one

recursive call and no loops.

(b) Convert your algorithm from part (a) to an iterative algorithm

by either removing tail recursion or implementing it bottom-up,

whichever is more appropriate. Explain how you did your conversion.

(c) The specification of Copy does not prohibit the two arrays from

sharing elements, for example, Copy(A[1..n − 1], A[2..n]). Modify

your algorithm from part (a) to handle any two arrays of the same

size. Specifically, you cannot assume that the recursive call does not

change A[1..n]. Your algorithm should contain exactly one recursive

call and no loops.
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Figure 1.18 Specification of Copy

Figure 1.19 Specification for FindMax

Exercise 1.5. A palindrome is a sequence of characters that is the same

when read from left to right as when read from right to left. We wish to design

an algorithm that recognizes whether an array of characters is a palindrome.

(a) Give a formal specification for this problem. Use Char to denote the

data type for a character.

(b) Using the top-down approach, give an algorithm to solve this problem.

Your algorithm should contain a single recursive call.

(c) Give an iterative version of your algorithm from part (b) by either

implementing it bottom-up or eliminating tail recursion, whichever

is appropriate.

Exercise 1.6. FindMax is specified in Figure 1.19.

(a) Using the top-down approach, give an algorithm for FindMax. Note

that according to the specification, your algorithm may not change

the values in A. Your algorithm should contain exactly one recursive

call.

(b) Give an iterative version of your algorithm from part (a) by either

implementing it bottom-up or eliminating tail recursion, whichever

is appropriate.

* (c) Show how to reduce the sorting problem to FindMax (as specified

in part (a)) and a smaller instance of sorting. Use the technique of
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transformation, and remove the resulting tail recursion, so that your

algorithm is iterative.

* Exercise 1.7. AppendToAll and SizeOf are specified in Figure 1.20.

(a) Show how to reduce AppendToAll to Copy (specified in

Figure 1.18), SizeOf, and a smaller instance of itself, by giving a

recursive algorithm. Your algorithm should contain no loops and a

single recursive call.

(b) Convert your algorithm from part (a) to an iterative algorithm

by either removing tail recursion or implementing it bottom-up,

whichever is more appropriate. You do not need to provide algorithms

for either Copy or SizeOf.

* Exercise 1.8. AllSubsets is specified in Figure 1.21.

(a) Show how to reduce to AllSubsets to Copy (specified in

Figure 1.18), AppendToAll (specified in Figure 1.20), SizeOf

(specified in Figure 1.20), and a smaller instance of itself. Note that

according to the specification, your algorithm may not change A[1..n].

Your algorithm should contain exactly one recursive call and no loops.

(When calling Copy, your first array index does not need to be 1.)

(b) Give an iterative version of your algorithm from part (a) by either

implementing it bottom-up or eliminating tail recursion, whichever

Figure 1.20 Specifications of AppendToAll and SizeOf
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Figure 1.21 Specification for AllSubsets

is appropriate. You do not need to provide algorithms for Copy,

AppendToAll, or SizeOf.

1.9 Notes

The elements of top-down software design were introduced by Dijkstra [28]

and Wirth [122] in the late 1960s and early 1970s. As software systems

grew, however, these notions were found to be insufficient to cope with the

sheer size of large projects. As a result, they were eventually superseded by

object-oriented design and programming. The study of algorithms, however,

does not focus on large software systems, but on small components. Conse-

quently, a top-down approach provides an ideal framework for designing and

understanding algorithms.

The maximum subsequence sum problem, as well as the algorithms

MaxSumIter,MaxSumOpt, andMaxSumBU, was introduced by Bentley

[12]. The sorting algorithm suggested by Exercise 1.6 is selection sort.

Java is a registered trademark of Oracle and/or its affiliates.



Chapter 2

Proving Algorithm Correctness

In Chapter 1, we specified several problems and presented various algorithms

for solving these problems. For each algorithm, we argued somewhat

informally that it met its specification. In this chapter, we introduce a

mathematical foundation for more rigorous proofs of algorithm correctness.

Such proofs not only give us more confidence in the correctness of our

algorithms, but also help us to find subtle errors. Furthermore, some of the

tools we introduce here are also used in the context of analyzing algorithm

performance.

2.1 The Basics

First consider the algorithm SimpleSelect, shown in Figure 1.2 on page 7.

This algorithm is simple enough that ordinarily we would not bother to give

a formal proof of its correctness; however, such a proof serves to illustrate the

basic approach. Recall that in order for an algorithm to meet its specification,

it must be the case that whenever the precondition is satisfied initially, the

postcondition is also satisfied when the algorithm finishes.

Theorem 2.1. SimpleSelect meets the specification given in Figure 1.1.

Proof. First, we assume that the precondition for SimpleSelect(A[1..n])

is satisfied initially; i.e., we assume that initially A[1..n] is an array of

numbers, 1 ≤ k ≤ n, and both k and n are natural numbers. This assumption

immediately implies the precondition for Sort(A[1..n]), namely, that A[1..n]

is an array of numbers, and that n is a natural number. In order to talk about

both the initial and final values of A without confusion, let us represent the

final value of A by A′ and use A only to denote its initial value. Because

25
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Sort permutes A (we know this from its postcondition), A′ contains the

same collection of values as does A.

Suppose A′[i] < A′[k] for some i, 1 ≤ i ≤ n. Then i < k, for if k < i,

A′[k] > A′[i] violates the postcondition of Sort. Hence, there are fewer than

k elements of A′, and hence of A, with value less than A′[k].
Now suppose 1 ≤ i ≤ k. From the postcondition of Sort, A′[i] ≤ A′[k].

Hence, there are at least k elements of A with value less than or equal to A′[k].
The returned value A′[k] therefore satisfies the postcondition of Select. �

If the precondition is
defined to be true, we don’t
need to assume it, because
we know that true is true.

Because of what it means for an algorithm to

meet its specification, any proof of correctness will

begin by assuming the precondition. The goal of

the proof is then to prove that the postcondition is

satisfied when the algorithm finishes. In order to reach this goal, we reason

about the effect of each statement in turn. If a statement is a call to another

algorithm, we use that algorithm’s specification. Specifically, we must first

make sure its precondition is satisfied (for otherwise, we cannot know what

the algorithm does), then we conclude that its postcondition is satisfied when

it finishes. We can then use this postcondition to continue our reasoning.

The proof of Theorem 2.1 illustrates a common difficulty with correctness

proofs. In algorithms, variables typically change their values as the algorithm

progresses. However, in proofs, a variable must maintain a single value in

order to maintain consistent reasoning. In order to avoid confusion, we

introduce different names for the value of the same variable at different

points in the algorithm. It is customary to use the variable name from the

algorithm to denote the initial value, and to add a “prime” (′) to denote its

final value. If intermediate value must be considered, “double-primes” (′′),
superscripts, or subscripts can be used.

Although a variable should not change its value over the course of a proof,

we do sometimes use the same variable with different values when proving

different facts. For example, the variable i in the proof of Theorem 2.1 can

have different values in the second and third paragraphs, respectively. It

might be helpful to think of such usage as multiple local variables, each

having the same name. Within each scope, the value of the variable does

not change.

The proof of Theorem 2.1 is straightforward because the algorithm

is straight-line — the flow of control proceeds sequentially from the first

statement in the algorithm to the last. The addition of if statements
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complicates matters only slightly — we must simply apply case analysis.

However, the addition of recursion and/or loops requires some additional

machinery, which we will develop over the remainder of this chapter.

2.2 Handling Recursion

Let us now consider InsertSort from Figure 1.3 on page 7. To handle the

if statement, we can consider two cases, depending on whether n > 1. In

case n > 1, however, there is a recursive call to InsertSort. As is suggested

in Section 1.2, we might simply use the specification of Sort just like we

would for a call to any other algorithm. However, this type of reasoning is

logically suspect — we are assuming the correctness of InsertSort in order

to prove the correctness of InsertSort.

In order to break this circularity, we use the principle of mathematical

induction. We will be using this principle throughout this text, so we will now

take the time to present and prove it. The version we present is a technique

for proving properties of the natural numbers. The property that we wish

to prove in this case is that InsertSort(A[1..n]) satisfies its specification

for every natural number n. Let us now formally define what we mean by

a property of the natural numbers, so that our statement of the induction

principle will be clear.

Definition 2.2. A property of the natural numbers is a mapping

P : N→ {true, false};
i.e., for a natural number n, P (n) is either true or false.

Theorem 2.3 (Mathematical Induction Principle). Let P (n) be a

property of the natural numbers. Suppose that every natural number n

satisfies the following Induction Property:

• whenever P (i) is true for every natural number i < n, P (n) is also true.

Then P (n) is true for every natural number n.

Before we prove this theorem, let us consider how we can use it. Suppose

we wish to prove a property P (n) for every natural number n. Theorem 2.3

tells us that it is sufficient to prove the Induction Property. We can break

this proof into two parts:
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1. The induction hypothesis. We assume that for some arbitrary n ∈ N, P (i)

is true for every natural number i < n.

2. The induction step. Using the induction hypothesis, we prove that P (n)

is true.

Some readers may be familiar with another version of induction consist-

ing of three steps:

1. The base case. P (0) is shown to be true.

2. The induction hypothesis. P (n) is assumed to be true for some arbitrary

natural number n.

3. The induction step. Using the induction hypothesis, P (n+ 1) is proved.

Though this technique is also valid, the version given by Theorem 2.3 is more

appropriate for the study of algorithms. To see why, consider how we are

using the top-down approach. We associate with each input a natural number

that in some way describes the size of the input. We then recursively apply

the algorithm to one or more inputs of strictly smaller size. Theorem 2.3

tells us that in order to prove that this algorithm is correct for inputs of all

sizes, we may assume that for arbitrary n, the algorithm is correct for all

inputs of size less than n. Thus, we may reason about a recursive algorithm

in the same way we reason about an algorithm that calls other algorithms,

provided the size of the parameters is smaller for the recursive calls.

Now let us turn to the proof of Theorem 2.3.

Proof of Theorem 2.3. Suppose every natural number n satisfies the

Induction Property given in the statement of the theorem. In order to derive

a contradiction, assume that for some n ∈ N, P (n) = false. Specifically,

let n be the smallest such value. Then for every i < n, P (i) = true. By the

Induction Property, P (n) = true — a contradiction. We conclude that our

assumption was invalid, so that P (n) = true for every natural number n.�
Before we illustrate the use of this principle by proving the correctness

of InsertSort, let us briefly discuss an element of style regarding induction

proofs. One of the distinguishing features of this particular induction

principle is the absence of a base case. However, in most proofs, there

are special cases in which the induction hypothesis is not used. These are

typically the smallest cases, where the induction hypothesis gives us little or

no information. It would be a bit of a misnomer to use the term, “induction

step”, for such cases. It is stylistically better to separate these cases into

one or more base cases. Hence, even though a base case is not required, we

usually include one (or more).
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Now we will illustrate the principle of induction by proving the correct-

ness of InsertSort.

Theorem 2.4. InsertSort, given in Figure 1.3, satisfies the specification

of Sort, given in Figure 1.2.

Proof. By induction on n.

Base: n ≤ 1. In this case the algorithm does nothing, but its postcondition

is vacuously satisfied (i.e., there are no i, j such that 1 ≤ i < j ≤ n).

Induction Hypothesis: Assume that for some n > 1, for every k < n,

InsertSort(A[1..k]) satisfies its specification.

Induction Step: We first assume that initially, the precondition for Insert-

Sort(A[1..n]) is satisfied. Then the precondition for InsertSort(A[1..n−1])
is also initially satisfied. By the Induction Hypothesis, we conclude that

InsertSort(A[1..n − 1]) satisfies its specification; hence, its postcondition

holds when it finishes. Let A′′ denote the value of A after Insert-

Sort(A[1..n−1]) finishes. Then A′′[1..n−1] is a permutation of A[1..n−1] in
nondecreasing order, and A′′[n] = A[n]. Thus,A′′ satisfies the precondition of

Insert. Let A′ denote the value of A after Insert(A[1..n]) is called. By the

postcondition of Insert,A′[1..n] is a permutation of A[1..n] in nondecreasing

order. InsertSort therefore satisfies its specification. �

Because the algorithm contains an if statement, the proof requires a

case analysis. The two cases are handled in the Base and the Induction

Step, respectively. Note that the way we prove the Induction Step is very

similar to how we proved Theorem 2.1. The only difference is that we have the

Induction Hypothesis available to allow us to reason about the recursive call.

2.3 Handling Iteration

Let us now consider MaxSumBU, shown in Figure 1.14 on page 18. This

algorithm contains a for loop. As we did with recursion, we would like to

be able to apply straight-line reasoning techniques. In Chapter 1, we used

invariants in order to focus on a single loop iteration. Because we already

know how to handle code without loops, focusing on a single iteration allows

us to apply techniques we have already developed. Loop invariants therefore

give us the power to reason formally about loops.
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Suppose we wish to show that property P holds upon completion of a

given loop. Suppose further that we can show each of the following:

1. Initialization: The invariant holds prior to the first loop iteration.

2. Maintenance: If the invariant holds at the beginning of an arbitrary

loop iteration, then it must also hold at the end of that iteration.

3. Termination: The loop always terminates.

4. Correctness: Whenever the loop invariant and the loop exit condition

both hold, then P must hold.

It is not hard to show by induction on the number of loop iterations that

if both the initialization and maintenance steps hold, then the invariant

holds at the end of each iteration. If the loop always terminates, then the

invariant and the loop exit condition will both hold when this happens. The

correctness step then guarantees that property P will hold after the loop

completes. The above four steps are therefore sufficient to prove that P

holds upon completion of the loop.

We now illustrate this proof technique by showing correctness of Max-

SumBU. In our informal justification of this algorithm, we used equations

(1.1) and (1.2); however, because we did not prove these equations, our proof

of correctness should not use them.

Theorem 2.5. MaxSumBU satisfies its specification.

Proof. Suppose the precondition holds initially. We will show that when

the loop finishes, m contains the maximum subsequence sum of A[0..n− 1],

so that the postcondition is satisfied. Note that the loop invariant states that

m is the maximum subsequence sum of A[0..i − 1].

Initialization: Before the loop iterates the first time, i has a value of 0.

The maximum subsequence sum of A[0..−1] is defined to be 0. m is initially

assigned this value. Likewise, the maximum suffix sum of A[0..−1] is defined

to be 0, and msuf is initially assigned this value. Therefore, the invariant

initially holds.

Maintenance: Suppose the invariant holds at the beginning of some

iteration. We first observe that because the iteration occurs, 0 ≤ i ≤ n− 1;

hence, A[i] is a valid array location. Let msuf ′, m′ and i′ denote the values

of msuf , m and i, respectively, at the end of this iteration. Then
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• msuf ′ = max(0,msuf +A[i]);

• m′ = max(m,msuf ′); and
• i′ = i+ 1.

For 0 ≤ j ≤ n, let sj denote the maximum subsequence sum of A[0..j − 1],

and let tj denote the maximum suffix sum of A[0..j−1]. From the invariant,

msuf = ti, and m = si. We need to show that msuf ′ = ti′ and m
′ = si′ .

Using the definition of a maximum suffix sum, we have

msuf ′ = max(0,msuf +A[i])

= max(0, ti +A[i])

= max

(
0,max

{
i−1∑
k=l

A[k] | 0 ≤ l ≤ i
}

+A[i]

)

= max

{
0, A[i] +

i−1∑
k=l

A[k] | 0 ≤ l ≤ i
}

= max

{
0,

i∑
k=l

A[k] | 0 ≤ l ≤ i
}

= max

{
i′−1∑
k=l

A[k] | 0 ≤ l ≤ i′
}

= ti′ .

Likewise, using the definitions of a maximum subsequence sum and a

maximum suffix sum, we have

m′ = max(m,msuf ′)

= max(si, ti′)

= max

(
max

{
h−1∑
k=l

A[k] | 0 ≤ l ≤ h ≤ i
}
,max

{
i′−1∑
k=l

A[k] | 0 ≤ l ≤ i′
})

= max

{
h−1∑
k=l

A[k] | 0 ≤ l ≤ h ≤ i′
}

= si′ .
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In this textbook, a for loop
always contains a single
index variable, which either
is incremented by a fixed
positive amount each itera-
tion until it exceeds a fixed
value or is decremented by a
fixed positive amount each
iteration until it is less than
a fixed value. The index
cannot be changed other-
wise. Such loops will always
terminate.

Therefore, the invariant holds at the end of the

iteration.

Termination: Because the loop is a for loop, it

clearly terminates.

Correctness: The loop exits when i = n. Thus, from

the invariant, m is the maximum subsequence sum of

A[0..n − 1] when the loop terminates. �

As can be seen from the above proof, initialization and maintenance

can be shown using techniques we have already developed. Furthermore,

the correctness step is simply logical inference. In the case of Theorem 2.5,

termination is trivial, because for loops always terminate. Note, however,

that in order for such a proof to be completed, it is essential that a proper

loop invariant be chosen. Specifically, the invariant must be chosen so that:

• it is true every time the loop condition is tested;

• it is possible to prove that if it is true at the beginning of an arbitrary

iteration, it must also be true at the end of that iteration; and

• when coupled with the loop exit condition, it is strong enough to prove

the desired correctness property.

Thus, if we choose an invariant that is too strong, it may not be true each

time the loop condition is tested. On the other hand, if we choose an invariant

that is too weak, we may not be able to prove the correctness property.

Furthermore, even if the invariant is true on each iteration and is strong

enough to prove the correctness property, it may still be impossible to prove

the maintenance step. We will discuss this issue in more detail shortly.

For while loops, the proof of termination is usually nontrivial and

in some cases quite difficult. An example that is not too difficult is

IterativeInsert in Figure 1.6 (page 11). To prove termination of this

loop, we need to show that each iteration makes progress toward satisfying

the loop exit condition. The exit condition for this loop is that j ≤ 1 or

A[j] ≥ A[j − 1]. Usually, the way in which a loop will make progress toward

meeting such a condition is that each iteration will decrease the difference

between the two sides of an inequality. In this case, j is decreased by each

iteration, and therefore becomes closer to 1. (The other inequality in the

exit condition is not needed to prove termination — if it becomes true, the
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loop just terminates that much sooner.) We can therefore prove the following

theorem.

Theorem 2.6. The while loop in IterativeInsert always terminates.

Proof. We first observe that each iteration of the while loop decreases j

by 1. Thus, if the loop continues to iterate, eventually j ≤ 1, and the loop

then terminates. �

Proving termination of a while loop can be much more difficult than

the proof of the above theorem. For example, consider the while loop shown

in Figure 2.1. The mod operation, when applied to positive integers, gives

the remainder obtained when an integer division is performed; thus, the if

statement tests whether n is even. Though many people have studied this

computation over a number of years, as of this writing, it is unknown whether

this loop terminates for all initial integer values of n. This question is known

as the Collatz problem.

On the other hand, when algorithms are designed using the top-down

approach, proving termination of any resulting while loops becomes much

easier. Even if an examination of the while loop condition does not help

us to find a proof, we should be able to derive a proof from the reduction

we used to solve the problem. Specifically, a loop results from the reduction

of larger instances of a problem to smaller instances of the same problem,

where the size of the instance is a natural number. We should therefore be

able to prove that the expression denoting the size of the instance is a natural

number that is decreased by every iteration. Termination will then follow.

For example, consider again the algorithm IterativeInsert. In the

design of this algorithm (see Section 1.4), we reduced larger instances to

smaller instances, where the size of an instance was n, the number of array

elements. In removing the tail recursion from the algorithm, we replaced n

by j. j should therefore decrease as the size decreases. We therefore base our

correctness proof on this fact.

Figure 2.1 A loop whose termination for all n is unknown
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Let us now consider an algorithm with nested loops, such as Insertion-

Sort, shown in Figure 1.7 on page 12. When loops are nested, we apply

the same technique to each loop as we encounter it. Specifically, in order

to prove maintenance for the outer loop, we need to prove that the inner

loop satisfies some correctness property, which should in turn be sufficient

to complete the proof of maintenance for the outer loop. Thus, nested within

the maintenance step of the outer loop is a complete proof (i.e., initialization,

maintenance, termination and correctness) for the inner loop.

When we prove initialization for the inner loop, we are not simply

reasoning about the code leading to the first execution of that loop. Rather,

we are reasoning about the code that initializes the loop on any iteration of

the outer loop. For this reason, we cannot consider the initialization code for

the outer loop when proving the initialization step for the inner loop. Instead,

because the proof for the inner loop is actually a part of the maintenance

proof for the outer loop, we can use any facts available for use in the proof

of maintenance for the outer loop. Specifically, we can use the assumption

that the invariant holds at the beginning of the outer loop iteration, and

we can reason about any code executed prior to the inner loop during this

iteration. We must then show that the invariant of the inner loop is satisfied

upon executing this code.

We will now illustrate this technique by giving a complete proof that

InsertionSort meets its specification.

Theorem 2.7. InsertionSort meets its specification.

Proof. We must show that when the for loop finishes, A[1..n] is a

permutation of its original values in nondecreasing order.

Initialization: (Outer loop) When the loop begins, i = 1 and the contents

of A[1..n] have not been changed. Because A[1..i − 1] is an empty array, it

is in nondecreasing order.

Maintenance: (Outer loop) Suppose the invariant holds at the beginning

of some iteration. Let A′[1..n] denote the contents of A at the end of the

iteration, and let i′ denote the value of i at the end of the iteration. Then

i′ = i+1. We must show that thewhile loop satisfies the correctness property

that A′[1..n] is a permutation of the original values of A[1..n], and that

A′[1..i′ − 1] = A′[1..i] is in nondecreasing order.



Proving Algorithm Correctness 35

Initialization: (Inner loop) Because A[1..n] has not been changed since the

beginning of the current iteration of the outer loop, from the outer loop

invariant, A[1..n] is a permutation of its original values. From the outer loop

invariant, A[1..i−1] is in nondecreasing order; hence, because j = i, we have

for 1 ≤ k < k′ ≤ i, where k′ �= j, A[k] ≤ A[k′].

Maintenance: (Inner loop) Suppose the invariant holds at the beginning

of some iteration. Let A′[1..n] denote the contents of A[1..n] following the

iteration, and let j′ denote the value of j following the iteration. Hence,

(i) A′[j] = A[j − 1];

(ii) A′[j − 1] = A[j];

(iii) A′[k] = A[k] for 1 ≤ k ≤ n, k �= j, and k �= j − 1; and

(iv) j′ = j − 1.

Thus, A′[1..n] is a permutation of A[1..n]. From the invariant, A′[1..n] is
therefore a permutation of the original values of A[1..n]. Suppose 1 ≤ k <

k′ ≤ i, where k′ �= j′ = j−1. We must show that A′[k] ≤ A′[k′]. We consider

three cases.

Case 1: k′ < j−1. Then A′[k] = A[k] and A′[k′] = A[k′]. From the invariant,

A[k] ≤ A[k′]; hence, A′[k] ≤ A′[k′].

Case 2: k′ = j. Then A′[k′] = A[j − 1]. If k = j − 1, then A′[k] = A[j], and

from the while loop condition, A[j] < A[j − 1]. Otherwise, k < j − 1 and

A′[k] = A[k]; hence, from the invariant, A[k] ≤ A[j − 1]. In either case, we

conclude that A′[k] ≤ A′[k′].

Case 3: k′ > j. Then A′[k′] = A[k′], and A′[k] = A[l], where l is either k, j,

or j−1. In each of these cases, l < k′; hence, from the invariant, A[l] ≤ A[k′].
Thus, A′[k] ≤ A′[k′].
Termination (Inner loop): Each iteration decreases the value of j by 1;

hence, if the loop keeps iterating, j must eventually be no greater than 1.

At this point, the loop will terminate.

Correctness (Inner loop): Let A′[1..n] denote the contents of A[1..n] when
the while loop terminates, and let i and j denote their values at this point.

From the invariant, A′[1..n] is a permutation of its original values. We must
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show that A′[1..i] is in nondecreasing order. Let 1 ≤ k < k′ ≤ i. We consider

two cases.

Case 1: k′ = j. Then j > 1. From the loop exit condition, it follows that

A′[j − 1] ≤ A′[j] = A′[k′]. From the invariant, if k �= j − 1, then A′[k] ≤
A′[j − 1]; hence, regardless of whether k = j − 1, A′[k] ≤ A′[k′].

Case 2: k′ �= j. Then from the invariant, A′[k] ≤ A′[k′].

This completes the proof for the inner loop, and hence the proof of

maintenance for the outer loop.

Termination (Outer loop): Because the loop is a for loop, it must

terminate.

Correctness (Outer loop): Let A′[1..n] denote its final contents. From the

invariant, A′[1..n] is a permutation of its original values. From the loop exit

condition (i = n + 1) and the invariant, A′[1..n] is in non-decreasing order.

Therefore, the postcondition is satisfied. �

Now that we have shown that InsertionSort is correct, let us consider

how we might have found the invariant for the inner loop. The inner loop

implements a transformation of larger instances of the insertion problem,

specified in Figure 1.3 on page 7, to smaller instances of the same problem.

The loop invariant should therefore be related to the precondition for Insert.

The current instance of the insertion problem is represented by A[1..j].

Therefore, a first choice for an invariant might be that A[1..j] is a

permutation of its original values, and that A[1..j − 1] is sorted. However,

this invariant is not strong enough to prove the correctness property. To see

why, observe that the loop exit condition allows the loop to terminate when

j = 1. In this case, A[1..j] has only one element, A[1..j − 1] is empty, and

the invariant tells us almost nothing.

Clearly, we need to include in our invariant that A[1..n] is a permutation

of its initial values. Furthermore, we need more information about what has

already been sorted. Looking at the invariant for the outer loop, we might

try saying that both A[1..j − 1] and A[j..i] are in nondecreasing order. By

coupling this invariant with the loop exit condition (i.e, either j = 1 or

A[j − 1] ≤ A[j]), we can then show that A[1..i] is sorted. Furthermore, it is

possible to show that this invariant is true every time the loop condition is

tested. However, it still is not sufficient to prove the maintenance step for

this loop. To see why, observe that it tells us nothing about how A[j − 1]
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compares with A[j+1]. Thus, when A[j−1] is swapped with A[j], we cannot

show that A[j] ≤ A[j + 1].

We need to express in our invariant that when we choose two indices

k < k′, where k′ �= j, we must have A[k] ≤ A[k′]. The invariant in Figure 1.7

states precisely this fact. Arriving at this invariant, however, required some

degree of effort.

We mentioned in Section 1.4 that starting the for loop with i = 1,

rather than i = 2, simplifies the correctness proof without affecting the

correctness. We can now explain what we meant. Note that if we were to

begin the for loop with i = 2, its invariant would no longer be established

initially if n = 0. Specifically, A[1..i − 1] = A[1..1], and if n = 0, A[1] is not

a valid array location. A more complicated invariant — and consequently

a more complicated proof — would therefore be required to handle this

special case. By instead beginning the loop at 1, we have sacrificed a

very small amount of run-time overhead for the purpose of simplifying the

invariant.

2.4 Combining Recursion and Iteration

In this section, we will present an alternative approach to solving the

selection problem, specified in Figure 1.1 on page 5. This approach will

ultimately result in a recursive algorithm that also contains a loop. We will

then show how to combine the techniques presented in the last two sections

in order to prove such an algorithm to be correct.

Figure 2.2 uses the notation
�x�, pronounced the ceiling
of x, to denote the small-
est integer no smaller than
x. Thus, �3/2� = 2, and
�−3/2� = −1. Likewise,
�x�, pronounced the floor
of x, denotes the largest
integer no larger than x.
Thus, �3/2� = 1, and
�−3/2� = −2.

We will reduce the selection problem to the

following three problems:

• the Dutch national flag problem, defined below;

• the problem of finding the median of a nonempty

array of numbers (see Figure 2.2 for a specification

of this problem); and

• a smaller instance of the selection problem.

Somewhat informally, the input to the Dutch national flag problem is an

array of items, each of which is colored either red, white, or blue. The goal

is to arrange the items so that all of the red items precede all of the white

items, which in turn precede all of the blue items. This order is the order

of the colors appearing on the Dutch national flag, from top to bottom. We

will modify the problem slightly by assuming that all items are numbers,
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Figure 2.2 Specification of the median problem

Figure 2.3 Specification of DutchFlag

and that a number is red if it is strictly less than some given value p, white

if it is equal to p, or blue if it is strictly greater than p.

The formal specification of this problem is given in Figure 2.3. Note that

we use the type Int to represent an integer. Notice also that because it may

be important to know the number of items of each color, these values are

returned in a 3-element array.

We can then find the kth smallest element in a nonempty array as follows:

1. Let p be the median element of the array.

2. Solve the resulting Dutch national flag problem.

3. If there are at least k red elements, return the kth smallest red element.

4. Otherwise, if there are at least k red and white elements combined,

return p.

5. Otherwise, return the (k − j)th smallest blue element, where j is the

number of red and white elements combined.

Note that after we have solved the Dutch national flag problem, all

elements less than p appear first in the array, followed by all elements equal

to p, followed by all elements greater than p. Furthermore, because steps 3
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and 5 apply to portions of the array that do not contain p, these steps solve

strictly smaller problem instances.

In what follows, we will develop a solution to the Dutch national flag

problem. We will then combine that solution with the above reduction

to obtain a solution to the selection problem (we will simply use the

specification for Median). We will then prove that the resulting algorithm

is correct.

In order to conserve resources, we will constrain our solution to the Dutch

national flag problem to rearrange items by swapping them. We will reduce

a large instance of the problem to a smaller instance. We begin by examining

the last item. If it is blue, then we can simply ignore it and solve what is

left. If it is red, we can swap it with the first item and again ignore it and

solve what is left. If it is white, we need to find out where it belongs; hence,

we temporarily ignore it and solve the remaining problem. We then swap it

with the first blue item, or if there are no blue items, we can leave it where

it is. This algorithm is shown in Figure 2.4.

If we were to implement this solution, or to analyze it using the

techniques of Chapter 3, we would soon discover that its stack usage is too

high. Furthermore, none of the recursive calls occur at either the beginning

or the end of the computation; hence, the recursion is not tail recursion, and

we cannot implement it bottom-up.

We can, however, use a technique called generalization that will allow

us to solve the problem using a transformation. We first observe that

the only reason we must wait until after the recursive calls to increment

Figure 2.4 A top-down implementation DutchFlag, specified in Figure 2.3
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the appropriate element of N is that the recursive call is responsible for

constructing and initializing N . If instead, we could provide initial values

for N [1..3] to the recursive calls, we could then incorporate the color of the

last element into these initial values. We therefore generalize the problem by

requiring as input initial values for the number of items of each color. The

returned array will then contain values representing the number of items of

the corresponding color, plus the corresponding initial value from the input.

By using 0 for all three initial values, we obtain the number of each color in

the entire array; hence, we have defined a more general problem.

We can use this generalization to make two of the calls tail recursion.

In order to be able to handle a white item, though, we need to modify our

generalization slightly. Specifically, we need to know in advance where to put

a white item. In order to be able to do this, let us specify that if w is given

as the initial value for the number of white items, then the last w items in

the array are white. Note that this variation is still a generalization of the

original problem, because if w = 0, no additional constraints are placed on

the input array.

Suppose we have an instance of this more general problem. If the initial

value for the number of white items is equal to the number of elements in the

array, then we can copy the initial values into N [1..3] and return. Otherwise,

we examine the item preceding the first known white item (see Figure 2.5).

If it is red, we swap it with the first item and solve the smaller problem

Figure 2.5 The transformation for Dutch national flag.
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Figure 2.6 Tail recursive solution to a generalization of the Dutch national flag

problem

obtained by ignoring the first item. If it is white, we solve the problem that

results from incrementing the initial number of white items. If it is blue, we

swap it with the last element, and solve the smaller problem obtained by

ignoring the last item. A recursive implementation of this strategy is shown

in Figure 2.6.

The way we handle the case in which an item is white is suspicious in

that the reduced instance is an array with the same number of elements.

However, note that in each case, the number of elements of unknown color is

decreased by the reduction. Thus, if we choose our definition of “size” to be

the number of elements of unknown color, then our reduction does decrease

the size of the problem in each case. Recall that our notion of size is any

natural number which decreases in all “smaller” instances. Our reduction is

therefore valid.
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Figure 2.7 An algorithm for solving the selection problem, specified in Figure 1.1,

using the median

Figure 2.7 shows the result of eliminating the tail recursion from Dutch-

FlagTailRec, incorporating it into the selection algorithm described earlier

in this section, and making some minor modifications. First, lo and hi

have been replaced by 1 and n, respectively. Second, the array N has been

removed, and r, w, b are used directly instead. Finally, referring to Figure 2.6,

note that when a recursive call is made, lo is incremented exactly when r is

incremented, and hi is decremented exactly when b is incremented. Because

we are replacing lo with 1, which cannot be changed, and hi with n, which

we would rather not change, we instead use the expressions r+1 and n− b,
respectively. Thus, for example, instead of having a while loop condition of

w < hi− lo+1, we replace lo with r+1 and hi with n− b, rearrange terms,

and obtain r + w + b < n.

As we have already observed, the invariant for a loop implementing

a transformation is closely related to the precondition for the problem.

Thus, in order to obtain the loop invariant, we take the precondition for

DutchFlagTailRec, remove “A[lo..hi] is an array of Numbers”, as this

is understood, and replace lo with r + 1 and hi with n − b. This gives us
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most of the invariant. However, we must also take into account that the

iterations do not actually change the size of the problem instance; hence,

the invariant must also include a characterization of what has been done

outside of A[r + 1..n − b]. The portion to the left is where red items have

been placed, and the portion to the right is where blue items have been

placed. We need to include these constraints in our invariant.

Note that in Figure 2.7, the last line of SelectByMedian contains a

recursive call in which the first parameter is A[1 + r + w..n]. However, the

specification given in Figure 1.1 (page 5) states that the first parameter

must be of the form A[1..n]. To accommodate such a mismatch, we adopt

a convention that allows for automatic re-indexing of arrays when the

specification requires a parameter to be an array whose beginning index

is a fixed value. Specifically, we think of the sub-array A[1 + r+w..n] as an

array B[1..n− (r+w)]. B is then renamed to A when it is used as the actual

parameter in the recursive call.

Let us now prove the correctness of SelectByMedian. Because

SelectByMedian contains a loop, we must prove this loop’s correctness

using the techniques of Section 2.3. Specifically, we need the following lemma,

whose proof we leave as an exercise.

Lemma 2.8. If the precondition for SelectByMedian is satisfied, then its

while loop always terminates with A[1..n] being a permutation of its original

elements such that

• A[i] < p for 1 ≤ i ≤ r;
• A[i] = p for r < i ≤ r + w; and

• A[i] > p for r + w < i ≤ n.
Furthermore, when the loop terminates, r, w, and b are natural numbers such

that r + w + b = n.

We can then prove the correctness of SelectByMedian using

induction.

Theorem 2.9. SelectByMedian meets the specification of Select given

in Figure 1.1.

Proof. By induction on n.

Induction Hypothesis: Assume that for some n ≥ 1, whenever 1 ≤
m < n, SelectByMedian(A[1..m], k) meets its specification, where A[1..m]

denotes (by re-indexing if necessary) any array with m elements.
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Induction Step: Suppose the precondition is satisfied. By Lemma 2.8, the

while loop will terminate with A[1..n] being a permutation of its original

elements such that A[1..r] are less than p, A[r+1..r+w] are equal to p, and

A[r + w + 1..n] are greater than p. We consider three cases.

Case 1: k ≤ r. In this case, there are at least k elements less than p,

so the kth smallest is less than p. Because A[1..r] are all the elements

smaller than p, the kth smallest of A[1..n] is the kth smallest of A[1..r].

Because p is an element of A[1..n] that is not in A[1..r], r < n. Furthermore,

because k ≤ r, the precondition of Select is satisfied by the recursive call

SelectByMedian(A[1..r], k). By the Induction Hypothesis, this recursive

call returns the kth smallest element of A[1..r], which is the kth smallest of

A[1..n].

Case 2: r < k ≤ r + w. In this case, there are fewer than k elements less

than p and at least k elements less than or equal to p. p is therefore the kth

smallest element.

Case 3: r + w < k. In this case, there are fewer than k elements less than

or equal to p. The kth smallest must therefore be greater than p. It must

therefore be in A[r + w + 1..n]. Because every element in A[1..r + w] is

less than the kth smallest, the kth smallest must be the (k − (r + w))th

smallest element in A[r + w + 1..n]. Because p is an element of A[1..n] that

is not in A[r + w + 1..n], r + w + 1 > 1, so that the number of elements in

A[r + w + 1..n] is less than n. Let us refer to A[r + w + 1..n] as B[1..n −
(r + w)]. Then because r + w < k, 1 ≤ k − (r + w), and because k ≤ n,

k− (r+w) ≤ n− (r+w). Therefore, the precondition for Select is satisfied

by the recursive call SelectByMedian(B[1..n− (r +w)], k − (r+w)). By

the Induction Hypothesis, this recursive call returns the (k − (r + w))th

smallest element of B[1..n− (r +w)] = A[r +w + 1..n]. This element is the

kth smallest of A[1..n]. �

In some cases, a recursive call might occur inside a loop. For such

cases, we would need to use the induction hypothesis when reasoning about

the loop. As a result, it would be impossible to separate the proof into a

lemma dealing with the loop and a theorem whose proof uses induction

and the lemma. We would instead need to prove initialization, maintenance,

termination, and correctness of the loop within the induction step of the

induction proof.
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2.5 Mutual Recursion

The techniques we have presented up to this point are sufficient for proving

the correctness of most algorithms. However, one situation can occur which

reveals a flaw in these techniques. Specifically, it is possible to prove

correctness using these techniques, when in fact the algorithm is incorrect.

The situation leading to this inconsistency is known as mutual recursion. In

a simple case, we have one algorithm, A, which calls another algorithm, B,

which in turn calls A. More generally, we may have a sequence of algorithms,

A1, . . . , An, where Ai calls Ai+1 for 1 ≤ i < n, and An calls A1.

For example, suppose we were to implement Median, as specified in

Figure 2.7, by reducing it to the selection problem. This reduction is

straightforward, as it is easily seen that the median is just the �n/2�nd
smallest element. We therefore have the algorithm shown in Figure 2.8. Its

proof of correctness is trivial.

We therefore have the algorithm SelectByMedian, which correctly

implements Select if we use a correct implementation of Median. We also

have the algorithmMedianBySelect, which correctly implementsMedian

if we use a correct implementation of Select. The problem arises when

we use both of these implementations together. The proof of correctness

for the resulting implementation contains circular reasoning. In fact, the

implementation is not correct, as can be seen if we replace the call toMedian

in Figure 2.7 with the call, SelectByMedian(A[1..n], �n/2�). We now have

a recursive call whose argument is no smaller than that of the original call.

As a result, we have infinite recursion.

Though we will not prove it here, it turns out that nontermination is

the only way in which combining correct algorithms in a mutually recursive

fashion can result in an incorrect implementation. Thus, if we can prove

that the implementation terminates, we can conclude that it is correct. In

Chapter 3, we will present techniques for showing not just termination, but

the time it takes for an algorithm to terminate. These techniques will be

general enough to apply to mutually recursive algorithms.

Figure 2.8 An implementation of Median, specified in Figure 2.7, using Select, as

specified in Figure 1.1
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In Chapter 15, we will present algorithms that use mutual recursion.

As we will see there, mutual recursion is sometimes useful for breaking a

complicated algorithm into manageable pieces. Apart from that chapter, we

will not dwell on mutual recursion. We should always be careful, however,

when we combine algorithms, that we do not inadvertently introduce mutual

recursion without proving termination of the implementation.

2.6 Finding Errors

The process of proving correctness of an algorithm is more than just an

academic exercise. A proper correctness proof should give us confidence that

a given algorithm is, in fact, correct. It therefore stands to reason that if

a given algorithm is incorrect, the proof of correctness should fail at some

point. The process of proving correctness can therefore help us to find errors

in algorithms.

Suppose, for example, that in MaxSumBU (see Figure 1.14 on page 18),

we had miscalculated msuf using the statement

msuf ← msuf +A[i].

We could have made such an error by forgetting that there is a suffix of

A[0..i] — the empty suffix — that does not end with A[i]. We would expect

that a proof of correctness for such an erroneous algorithm should break

down at some point.

This error certainly wouldn’t affect the Initialization part of the proof, as

the initialization code is unchanged. Likewise, the Correctness part doesn’t

depend directly on code within the loop, but only on the invariant and the

loop exit condition. Because the Termination part is trivial, we are left with

the Maintenance part. Because we have changed the calculation of msuf ,

we would expect that we would be unable to prove that the second part of

the invariant is maintained (i.e., that msuf is the maximum suffix sum for

A[0..i − 1]).

Let us consider how this statement changes the Maintenance part of the

proof of Theorem 2.5. The first change is that now msuf ′ = msuf + A[i].

This affects the derivation from msuf ′ in the following way:

msuf ′ = msuf +A[i]

= ti +A[i]
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= max

{
i−1∑
k=l

A[k] | 0 ≤ l ≤ i
}

+A[i]

= max

{
A[i] +

i−1∑
k=l

A[k] | 0 ≤ l ≤ i
}

= max

{
i∑

k=l

A[k] | 0 ≤ l ≤ i
}

= max

{
i′−1∑
k=l

A[k] | 0 ≤ l ≤ i′ − 1

}
.

However,

ti′ = max

{
i′−1∑
k=l

A[k] | 0 ≤ l ≤ i′
}
.

Note that the set on the right-hand side of this last equality has one

more element than does the set on the right-hand side of the preceding

equality. This element is generated by l = i′, which results in an empty sum

having a value of 0. All of the remaining elements are derived from values

l ≤ i′ − 1, which result in nonempty sums of elements from A[0..i]. Thus, if

A[0..i] contains only negative values, msuf ′ < ti′ . It is therefore impossible

to prove that these values are equal.

A failure to come up with a proof of correctness does not necessarily

mean the algorithm is incorrect. It may be that we have not been clever

enough to find the proof. Alternatively, it may be that an invariant has

not been stated properly, as discussed in Section 2.3. Such a failure always

reveals, however, that we do not yet understand the algorithm well enough

to prove that it is correct.

2.7 Summary

We have introduced two main techniques for proving algorithm correctness,

depending on whether the algorithm uses recursion or iteration:

• The correctness of a recursive algorithm should be shown using induction.

• The correctness of an iterative algorithm should be shown by proving

initialization, maintenance, termination, and correctness for each of the

loops.
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Some algorithms might contain both recursion and iteration. In such

cases, both techniques should be used. Because the algorithm is recursive,

its correctness should be shown using induction. In order to complete the

induction, the loops will need to be handled by proving initialization,

maintenance, termination, and correctness. In Chapter 4, we will see

how these techniques can be extended to proving the correctness of data

structures.

Though correctness proofs are useful for finding errors in algorithms

and for giving us confidence that algorithms are correct, they are also quite

tedious. On the other hand, if an algorithm is fully specified and designed in

a top-down fashion, and if proper loop invariants are provided, working out

the details of a proof is usually not very hard. For this reason, we will not

provide many correctness proofs in the remainder of this text, but will leave

them as exercises. We will instead give top-down designs of algorithms and

provide invariants for most of the loops contained in them.

2.8 Exercises

Exercise 2.1. Induction can be used to prove solutions for summations.

Use induction to prove each of the following:

(a) The arithmetic series:

n∑
i=1

i =
n(n+ 1)

2
. (2.1)

(b) The geometric series:

n∑
i=0

xi =
xn+1 − 1

x− 1
, (2.2)

for any real x �= 1.

Exercise 2.2. Let

f(n) =

⎧⎪⎪⎨
⎪⎪⎩

1 if n = 0

n−1∑
i=0

f(i) if n > 0.

Use induction to prove that for all n > 0, f(n) = 2n−1.



Proving Algorithm Correctness 49

* Exercise 2.3. The Fibonacci sequence is defined as follows:

Fn =

⎧⎨
⎩
n if 0 ≤ n ≤ 1

Fn−1 + Fn−2 if n > 1.
(2.3)

Use induction to prove each of the following properties of the Fibonacci

sequence:

(a) For every n > 0,

Fn−1Fn + FnFn+1 = F2n (2.4)

and

F 2
n + F 2

n+1 = F2n+1. (2.5)

[Hint: Prove both equalities together in a single induction argument.]

(b) For every n ∈ N,

Fn =
φn − (−φ)−n√

5
, (2.6)

where φ is the golden ratio:

φ =
1 +
√
5

2
.

Exercise 2.4. Prove thatRecursiveInsert, shown in Figure 1.4 on page 8,

meets is specification, given in Figure 1.3 on page 7.

Exercise 2.5. Prove that MaxSuffixTD and MaxSumTD, given in

Figure 1.13 (page 18), meet their specifications. For MaxSumTD, use the

specification of MaxSum given in Figure 1.9 (page 14).

Exercise 2.6. Prove that DotProduct, shown in Figure 1.17 on page 21,

meets its specification.

Exercise 2.7. Prove that Factorial, shown in Figure 2.9, meets its

specification. n! (pronounced, “n factorial”) denotes the product 1 · 2 · · · n
(0! is defined to be 1).

Exercise 2.8. A minor modification of MaxSumOpt is shown in

Figure 2.10 with its loop invariants. Prove that it meets the specification

of MaxSum, given in Figure 1.9 (page 14).
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Figure 2.9 Algorithm for Factorial

Figure 2.10 A minor modification of MaxSumOpt with loop invariants

Exercise 2.9. A minor modification of MaxSumIter is shown in Figure

2.11 with its loop invariants. Prove that it meets the specification of

MaxSum, given in Figure 1.9 (page 14).

Exercise 2.10. Prove that DutchFlagTD, given in Figure 2.4 (page 39),

meets its specification, given in Figure 2.3 (page 38).

* Exercise 2.11. Figure 2.12 shows a slightly optimized version of Inser-

tionSort. Prove that InsertionSort2 meets the specification given in

Figure 1.2 on page 7. You will need to find appropriate invariants for each

of the loops.
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Figure 2.11 A minor modification of MaxSumIter with invariants

Figure 2.12 A slightly optimized version of InsertionSort

Exercise 2.12. Prove that DutchFlagTailRec, shown in Figure 2.6 on

page 41, meets its specification.

Exercise 2.13. Prove Lemma 2.8 (page 43).

* Exercise 2.14. Prove that Permutations, shown in Figure 2.13,

meets it specification. Use the specifications of Copy, AppendToAll, and

Factorial from Figures 1.18, 1.20, and 2.9, respectively.

Exercise 2.15. Prove that SwapColors, shown in Figure 2.14, meets

its specification. Note that the second conjunct in the while condition is

comparing two boolean values; thus, it is true whenever exactly one of A[i]

and A[j] equals p.
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Figure 2.13 Algorithm for Permutations

Figure 2.14 The algorithm for Exercise 2.15
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Figure 2.15 Buggy algorithm for Exercise 2.16

Exercise 2.16. Figure 2.15 contains an algorithm for reducing the Dutch

national flag problem to the problem solved in Figure 2.14. However, the

algorithm contains several errors. Work through a proof that this algorithm

meets its specification (given in Figure 2.3 on page 38), pointing out each

place at which the proof fails. At each of these places, suggest a small change

that could be made to correct the error. In some cases, the error might be

in the invariant, not the algorithm itself.

* Exercise 2.17. Reduce the sorting problem to the Dutch national flag

problem and one or more smaller instances of itself.

2.9 Notes

The techniques presented here for proving correctness of algorithms are based

on Hoare logic [63]. More complete treatments of techniques for proving
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program correctness can be found in Apt and Olderog [6] or Francez [44]. Our

presentation of proofs using invariants is patterned after Cormen, et al. [25].

A discussion of the Dutch national flag problem and the iterative solution

used in SelectByMedian are given by Dijkstra [29]. The Collatz problem

was first posted by Lothar Collatz in 1937. An up-to-date summary of its

history is maintained by Eric Weisstein [119].



Chapter 3

Analyzing Algorithms

In Chapter 1, we saw that different algorithms for the same problem can

have dramatically different performance. In this chapter, we will introduce

techniques for mathematically analyzing the performance of algorithms.

These analyses will enable us to predict, to a certain extent, the performance

of programs using these algorithms.

3.1 Motivation

Perhaps the most common performance measure of a program is its running

time. The running time of a program depends not only on the algorithms it

uses, but also on such factors as the speed of the processor(s), the amount

of main memory available, the speeds of devices accessed, and the impact of

other software utilizing the same resources. Furthermore, the same algorithm

can perform differently when coded in different languages, even when all

other factors remain unchanged. When analyzing the performance of an

algorithm, we would like to learn something about the running time of any

of its implementations, regardless of the impact of these other factors.

Suppose we divide an execution of an algorithm into a sequence of steps,

each of which does some fixed amount of work. For example, a step could be

comparing two values or performing a single arithmetic operation. Assuming

the values used are small enough to fit into a single machine word, we could

reasonably expect that any processor could execute each step in a bounded

amount of time. Some of these steps might be faster than others, but for

any given processor, we should be able to identify both a lower bound l > 0

and an upper bound u ≥ l on the amount of time required for any single

execution step, assuming no other programs are being executed by that

55
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processor. Thus, if we simply count execution steps, we obtain an estimate

on the running time, accurate to within a factor of u/l.

Obviously, these bounds will be different for different processors. Thus, if

an analysis of an algorithm is to be independent of the platform on which the

algorithm runs, the analysis must ignore constant factors. In other words,

our analyses will be unable to conclude, for example, that algorithm A is

twice as fast (or a million times as fast) as algorithm B. By ignoring constant

factors, we therefore lose a great deal of precision in measuring performance.

However, we will see that this loss of precision leads us to focus on the

more dramatic differences in algorithm performance. These differences are

important enough that they tend to transcend the differences in platforms

on which an algorithm is executed.

Because we are ignoring constant factors, it only makes sense to consider

the behavior of an algorithm on an infinite set of inputs. To see why, consider

that the execution times of two algorithms on the same single input are

always related by a constant factor — we simply divide the number of steps

in one execution by the number of steps in the other. This argument can be

extended to any finite set of inputs by dividing the number of steps in the

longest execution of one algorithm by the number of steps in the shortest

execution of the other.

Mathematically, we will describe the running time of an algorithm by a

function f : N→ N. The input to f is a natural number representing the size

of an input. f(n) then represents the number of steps taken by the algorithm

on some particular input of size n. The context will determine which input of

size n we are considering, but usually we will be interested in the worst-case

input — an input of size n resulting in the maximum number of execution

steps.

Our analysis will then focus on this function f , not its value at specific

points. More precisely, we will focus our attention on the behavior of f(n) as

n increases. This behavior is known as the asymptotic behavior of f . Most

algorithms behave well enough if their inputs are small enough. By focusing

on asymptotic behavior, we can see how quickly the algorithm’s performance

will degrade as it processes larger inputs.

Throughout the remainder of this chapter, we will define various nota-

tions that allow us to relate the asymptotic behaviors of various functions

to each other. In this context, all functions will be of the form f : N→ R
≥0,

where R
≥0 denotes the set of nonnegative real numbers (likewise, we will

use R to denote the set of all real numbers and R
>0 to denote the set of

positive real numbers). Each of the notations we introduce will relate a set
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of functions to one given function f based on their respective asymptotic

growth rates. Typically, f will be fairly simple, e.g., f(n) = n2. In this

way, we will be able describe the growth rates of complicated — or even

unknown — functions using well-understood functions like n2.

3.2 Big-O Notation

O(f(n)) is pronounced
“big-Oh of f of n”.

Definition 3.1. Let f : N→ R
≥0. O(f(n)) is defined

to be the set of all functions g : N → R
≥0 such that

for some natural number n0 and some strictly positive

real number c, g(n) ≤ cf(n) whenever n ≥ n0.
The above definition formally defines big-O notation. Let us now dissect

this definition to see what it means. We start with some specific function f

which maps natural numbers to nonnegative real numbers. O(f(n)) is then

defined to be a set whose elements are all functions. Each of the functions in

O(f(n)) maps natural numbers to nonnegative real numbers. Furthermore,

if we consider any function g(n) in O(f(n)), then for every sufficiently large

n (i.e., n ≥ n0), g(n) cannot exceed f(n) by more than some fixed constant

factor (i.e., g(n) ≤ cf(n)). Thus, all of the functions in O(f(n)) grow no

faster than some constant multiple of f as n becomes sufficiently large. Note

that the constants n0 and c may differ for different f and g, but are the same

for all n.

Note that big-O notation is defined solely in terms of mathematical

functions — not in terms of algorithms. Presently, we will show how it can be

used to analyze algorithms. First, however, we will give a series of examples

illustrating some of its mathematical properties.

Example 3.2. Let f(n) = n2, and let g(n) = 2n2. Then g(n) ∈ O(f(n))

because g(n) ≤ 2f(n) for every n ≥ 0. Here, the constant n0 is 0, and the

constant c is 2.

Example 3.3. Let f(n) = n2, and let g(n) = 3n + 10. We wish to show

that g(n) ∈ O(f(n)). Hence, we need to find a positive real number c and

a natural number n0 such that 3n + 10 ≤ cn2 whenever n ≥ n0. If n > 0,

we can divide both sides of this inequality by n, obtaining an equivalent

inequality, 3+ 10/n ≤ cn. The left-hand side of this inequality is maximized

when n is minimized. Because we have assumed n > 0, 1 is the minimum

value of n. Thus, if we can satisfy cn ≥ 13, the original inequality will be

satisfied. This inequality can be satisfied by choosing c = 13 and n ≥ 1.

Therefore, g(n) ∈ O(f(n)).
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Example 3.4. n3 �∈ O(n2) because n3 = n(n2), so that whatever values we

pick for n0 and c, we can find an n ≥ n0 such that n(n2) > cn2. Note that

in this example, we are using n3 and n2 to denote functions.

Example 3.5. 1000 ∈ O(1). Here, 1000 and 1 denote constant functions

— functions whose values are the same for all n. Thus, for every n ≥ 0,

1000 ≤ 1000(1).

Example 3.6. O(n) ⊆ O(n2); i.e., every function in O(n) is also in O(n2).

To see this, note that for any function f(n) ∈ O(n), there exist a positive real

number c and a natural number n0 such that f(n) ≤ cn whenever n ≥ n0.

Furthermore, n ≤ n2 for all n ∈ N. Therefore, f(n) ≤ cn2 whenever n ≥ n0.
Example 3.7. O(n2) = O(4n2 + 7n); i.e., the sets O(n2) and O(4n2 + 7n)

contain exactly the same functions. It is easily seen that O(n2) ⊆ O(4n2+7n)

using an argument similar to that of Example 3.6. Consider any function

f(n) ∈ O(4n2 + 7n). There exist a positive real number c and a natural

number n0 such that f(n) ≤ c(4n2 + 7n) whenever n ≥ n0. Furthermore,

4n2+7n ≤ 11n2 for all n ∈ N. Letting c′ = 11c, we therefore have f(n) ≤ c′n2
whenever n ≥ n0. Therefore, f(n) ∈ O(n2). Note that although O(n2) and

O(4n2+7n) denote the same set of functions, the preferred notation is O(n2)

because it is simpler.

We have chosen to use functions that map natural numbers to non-

negative real numbers because these functions make our definitions clean.

Furthermore, they fit what we would expect a function describing the

running time of an algorithm to look like — the size of the problem is

a natural number, and the running time is a non-negative real number.

However, we sometimes want to express a running time as being in a set

such as O(2n/n). Strictly speaking, this doesn’t make sense because 20/0 is

undefined. However, because asymptotic notation focuses on the behavior

of the function for sufficiently large n, this single undefined function value

doesn’t affect anything. To accommodate such exceptions to our definition,

we will assume that such functions are “patched” so that undefined or

negative values are replaced by 0 (e.g., we assume that 20/0 = 0). We must

be careful, however, that the functions have only a finite number of negative

or undefined values.

Let us now illustrate the use of big-O notation by analyzing the running

time of MaxSumBU from Figure 1.14 on page 18. The initialization
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statements prior to the loop, including the initialization of the loop index i,

require a fixed number of steps. Their running time is therefore bounded

by some constant a. Likewise, the number of steps required by any single

iteration of the loop (including the loop test and the increment of i) is

bounded by some constant b. Because the loop iterates n times, the total

number of steps required by the loop is at most bn. Finally, the last loop

condition test and the return statement require a number of steps bounded

by some constant c. The running time of the entire algorithm is therefore

bounded by a + bn + c, where a, b, and c are fixed positive constants. The

running time of MaxSumBU is in O(n), because a+ bn+ c ≤ (a+ b+ c)n

for all n ≥ 1.

We can simplify the above analysis somewhat using the following

theorem.

Theorem 3.8. Suppose f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)). Then

1. f1(n)f2(n) ∈ O(g1(n)g2(n)); and

2. f1(n) + f2(n) ∈ O(max(g1(n), g2(n))).

(By f1(n)f2(n), we mean the function that maps n to the product of f1(n)

and f2(n). Likewise, max(g1(n), g2(n)) denotes the function that maps n to

the maximum of g1(n) and g2(n).)

Proof. Because f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), there exist

positive real numbers c1 and c2 and natural numbers n1 and n2 such that

f1(n) ≤ c1g1(n) whenever n ≥ n1 (3.1)

and

f2(n) ≤ c2g2(n) whenever n ≥ n2. (3.2)

Because both of the above inequalities involve only nonnegative numbers,

we may multiply the inequalities, obtaining

f1(n)f2(n) ≤ c1c2g1(n)g2(n),
whenever n ≥ max(n1, n2). Let c = c1c2 and n0 = max(n1, n2). Then

f1(n)f2(n) ≤ cg1(n)g2(n),
whenever n ≥ n0. Therefore, f1(n)f2(n) ∈ O(g1(n)g2(n)).
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If we add inequalities (3.1) and (3.2), we obtain

f1(n) + f2(n) ≤ c1g1(n) + c2g2(n)

≤ c1 max(g1(n), g2(n)) + c2 max(g1(n), g2(n))

= (c1 + c2)max(g1(n), g2(n)),

whenever n ≥ max(n1, n2). Therefore, f1(n)+f2(n) ∈ O(max(g1(n), g2(n))).

�

Let us now apply these two theorems to obtain a simpler analysis of

the running time of MaxSumBU. Recall that in our original analysis, we

concluded that the running time of a single iteration of the loop is bounded

by a fixed constant. We can therefore conclude that the running time of a

single iteration is in O(1). Because there are n iterations, the running time

for the entire loop is bounded by the product of n and the running time of

a single iteration. By Theorem 3.8 part 1, the running time of the loop is in

O(n). Clearly, the running times of the code segments before and after the

loop are each in O(1). The total running time is then the sum of the running

times of these segments and that of the loop. By applying Theorem 3.8 part

2 twice, we see that the running time of the algorithm is in O(n) (because

max(1, n) ≤ n whenever n ≥ 1).

Recall that the actual running time of the program implementing

MaxSumOpt (Figure 1.11 on page 16) was much slower than that of

MaxSumBU. Let us now analyze MaxSumOpt to see why this is the case.

We will begin with the inner loop. It is easily seen that each iteration

runs in O(1) time. The number of iterations of this loop varies from 1 to n.

Because the number of iterations is in O(n), we can conclude that this loop

runs in O(n) time. It is then easily seen that a single iteration of the outer

loop runs in O(n) time. Because the outer loop iterates n times, this loop,

and hence the entire algorithm, runs in O(n2) time.

It is tempting to conclude that this analysis explains the difference in

running times of the implementations of the algorithms; i.e., because n2

grows much more rapidly than does n, MaxSumOpt is therefore much

slower than MaxSumBU. However, this conclusion is not yet warranted,

because we have only shown upper bounds on the running times of the two

algorithms. In particular, it is perfectly valid to conclude that the running

time of MaxSumBU is in O(n2), because O(n) ⊆ O(n2). Conversely, we

have not shown that the running time of MaxSumOpt is not in O(n).
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In general, big-O notation is useful for expressing upper bounds on the

growth rates of functions. In order to get a complete analysis, however, we

need additional notation for expressing lower bounds.

3.3 Big-Ω and Big-Θ

Ω(f(n)) is pronounced
“big-Omega of f of n”.

Definition 3.9. Let f : N→ R
≥0. Ω(f(n)) is defined

to be the set of all functions g : N → R
≥0 such that

for some natural number n0 and some strictly positive

real number c, g(n) ≥ cf(n) whenever n ≥ n0.
Note that the definition of Ω is identical to the definition of O, except

that the inequality, g(n) ≤ cf(n), is replaced by the inequality, g(n) ≥ cf(n).
Thus, Ω notation is used to express a lower bound in the same way that O

notation is used to express an upper bound. Specifically, if g(n) ∈ Ω(f(n)),

then for sufficiently large n, g(n) is at least some constant multiple of f(n).

This constant multiple is only required to be a positive real number, so it

may be very close to 0.

Example 3.10. Let f(n) = 3n + 10 and g(n) = n2. We wish to show that

g(n) ∈ Ω(f(n)). We therefore need to find a positive real number c and a

natural number n0 such that n2 ≥ c(3n + 10) for every n ≥ n0. We have

already found such values in Example 3.3: c = 1/13 and n0 = 1.

The above example illustrates a duality between O and Ω, namely, that

for any positive real number c, g(n) ≤ cf(n) iff f(n) ≥ g(n)/c. The following
theorem summarizes this duality.

Theorem 3.11. Let f : N → R
≥0 and g : N → R

≥0. Then g(n) ∈ O(f(n))

iff f(n) ∈ Ω(g(n)).

By applying Theorem 3.11 to Examples 3.2, 3.4, 3.6, and 3.7, we can see

that n2 ∈ Ω(2n2), n2 �∈ Ω(n3), Ω(n2) ⊆ Ω(n), and Ω(n2) = Ω(4n2 + 7n).

When we analyze the growth rate of a function g, we would ideally like

to find a simple function f such that g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n)).

Doing so would tell us that the growth rate of g(n) is the same as that of

f(n), within a constant factor in either direction. We therefore have another

notation for expressing such results.

Θ(f(n)) is pronounced
“big-Theta of f of n”.

Definition 3.12. Let f : N → R
≥0. Θ(f(n)) is

defined to be

O(f(n)) ∩ Ω(f(n)).
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Figure 3.1 Venn diagram depicting the relationships between the sets O(f(n)),

Ω(f(n)), and Θ(f(n))

In other words, Θ(f(n)) is the set of all functions belonging to both

O(f(n)) and Ω(f(n)) (see Figure 3.1). We can restate this definition by

the following theorem, which characterizes Θ(f(n)) in terms similar to the

definitions of O and Ω.

Theorem 3.13. g(n) ∈ Θ(f(n)) iff there exist positive constants c1 and c2
and a natural number n0 such that

c1f(n) ≤ g(n) ≤ c2f(n) (3.3)

whenever n ≥ n0.
Proof. We must prove the implication in two directions.

⇒: Suppose g(n) ∈ Θ(f(n)). Then g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n)).

By the definition of Ω, there exist a positive real number c1 and a natural

number n1 such that c1f(n) ≤ g(n) whenever n ≥ n1. By the definition of

O, there exist a positive real number c2 and a natural number n2 such that

g(n) ≤ c2f(n) whenever n ≥ n2. Let n0 = max(n1, n2). Then (3.3) holds

whenever n ≥ n0.
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⇐: Suppose (3.3) holds whenever n ≥ n0. From the first inequality, g(n) ∈
Ω(f(n)). From the second inequality, g(n) ∈ O(f(n)). Therefore, g(n) ∈
Θ(f(n)). �

The definition of Θ also gives us the following corollary to Theorem 3.11.

Corollary 3.14. Let f : N → R
≥0 and g : N → R

≥0. Then g(n) ∈ Θ(f(n))

iff f(n) ∈ Θ(g(n)).

In order to apply these definitions to the analysis of algorithms, a

few more results regarding manipulation of the notation are helpful. The

following theorem is analogous to Theorem 3.8. Its proof is left as an exercise.

Theorem 3.15. Suppose f1(n) ∈ Ω(g1(n)) and f2(n) ∈ Ω(g2(n)). Then

1. f1(n)f2(n) ∈ Ω(g1(n)g2(n)); and

2. f1(n) + f2(n) ∈ Ω(max(g1(n), g2(n))).

By combining Theorems 3.8 and 3.15, we obtain the following corollary.

Corollary 3.16. Suppose f1(n) ∈ Θ(g1(n)) and f2(n) ∈ Θ(g2(n)). Then

1. f1(n)f2(n) ∈ Θ(g1(n)g2(n)); and

2. f1(n) + f2(n) ∈ Θ(max(g1(n), g2(n))).

The following two theorems are also useful for simplifying expressions

using asymptotic notation. The proofs of both are left as exercises.

Theorem 3.17. Let f(n) : N→ R
≥0 and g(n) : N→ R

≥0 such that f(n) ∈
O(g(n)) (or equivalently, g(n) ∈ Ω(f(n))). Then:

1. O(f(n)) ⊆ O(g(n)).

2. Ω(g(n)) ⊆ Ω(f(n)).

Theorem 3.18. Let f(n) : N→ R
≥0 and g(n) : N→ R

≥0 such that f(n) ∈
Θ(g(n)). Then Θ(f(n)) = Θ(g(n)).

Let us now use the above definitions and results to continue our analysis

of MaxSumBU. Clearly, the body of the loop must take some positive

number of steps, so its running time is in Ω(1). Furthermore, the loop iterates

n times. We may therefore use Theorem 3.15 to conclude that the running

time of the algorithm is in Ω(n). Because we have already shown the running

time to be in O(n), it therefore is in Θ(n).

Let us now analyze the lower bound for MaxSumOpt. Again, the inner

loop has a running time in Ω(1). Its number of iterations ranges from 1 to n,

so the best lower bound we can give on the number of iterations is in Ω(1).
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Using this lower bound, we conclude that the running time of the inner loop

is in Ω(1). Because the outer loop iterates n times, the running time of the

algorithm is in Ω(n).

Unfortunately, this lower bound does not match our upper bound of

O(n2). In some cases, we may not be able to make the upper and lower

bounds match. In most cases, however, if we work hard enough, we can

bring them together.

Clearly, the running time of a single iteration of the inner loop will

require a constant number of steps in the worst case. Let a > 0 denote that

constant. The loop iterates n − i times, so that the total number of steps

required by the inner loop is (n− i)a. An iteration of the outer loop requires

a constant number of steps apart from the inner loop. Let b > 0 denote that

constant. The loop iterates n times. However, because the number of steps

required for the inner loop depends on the value of i, which is different for

each iteration of the outer loop, we must be more careful in computing the

total number of steps required by the outer loop. That number is given by

b+

n−1∑
i=0

(n− i)a = b+ a

n−1∑
i=0

(n− i).

The above summation can be simplified if we observe that the quantity

(n− i) takes on the values n, n− 1, . . . , 1. We can therefore rewrite the sum

by taking the terms in the opposite order:

1 + 2 + · · ·+ n =
n∑

i=1

i.

Thus, the number of steps required by the inner loop is

b+ a
n∑

i=1

i.

We can now use (2.1) from page 48 to conclude that the number of steps

taken by the outer loop is

b+
an(n+ 1)

2
.

The above expression is a polynomial in n with degree 2. The following

theorem gives us a way to characterize polynomials using asymptotic

notation.
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We state the theorem in
this way to make it clear
that p(n) is allowed to be
negative for n < n0. f(n)
can be the “patched” ver-
sion of p(n), though this is
not required.

Theorem 3.19. Let p(n) be a polynomial of degree

k whose coefficient for nk is positive, and let f(n) :

N → R
≥0 such that for some n0 ∈ N, f(n) = p(n)

whenever n ≥ n0. Then f(n) ∈ Θ(nk).

Proof. Let

p(n) =
k∑

i=0

ain
i.

Then let A = max{ai | 0 ≤ i ≤ k} and n1 = max{1, n0}. Note that because

ak > 0, A > 0. Then whenever n ≥ n1,

f(n) = p(n)

=

k∑
i=0

ain
i

≤
k∑

i=0

Ani

≤ A
k∑

i=0

nk

because n ≥ 1. Thus,

f(n) ≤ A
k∑

i=0

nk

= A(k + 1)nk.

Letting c1 = A(k + 1), we have f(n) ≤ c1nk whenever n ≥ n1.
Now let A′ = min{0, ai | 0 ≤ i < k}. Then whenever n ≥ n1,

f(n) = p(n)

= akn
k +

k−1∑
i=0

ain
i

≥ aknk +
k−1∑
i=0

A′ni
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= akn
k +A′

k−1∑
i=0

ni

≥ aknk +A′
k−1∑
i=0

nk−1

because A′ ≤ 0 and n ≥ 1. Because the summation in the above expression

evaluates to knk−1, we have

f(n) ≥ (akn+A′k)nk−1.

Now let n2 = max{n1, �−2A′k/ak�. When n ≥ n2, we have

n ≥
⌈−2A′k

ak

⌉

≥ −2A
′k

ak
−akn
2
≤ A′k.

Thus,

f(n) ≥ (akn+A′k)nk−1

≥ (akn− akn

2
)nk−1

=
akn

k

2
.

Letting c2 = ak/2, f(n) ≥ c2n
k whenever n ≥ n2. From Theorem 3.13,

f(n) ∈ Θ(nk). �

By the above theorem, the running time of MaxSumOpt is in Θ(n2).

This is a rather tedious analysis for such a simple algorithm. Fortunately,

there are techniques for simplifying analyses. In the next two sections, we

will present some of these techniques.

3.4 Operations on Sets

Asymptotic analysis can be simplified if we extend operations on functions to

operations on sets of functions. Such an extension will allow us to streamline

our notation without the need to introduce new constants or functions

representing the running times of various code segments.
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Definition 3.20. Let ◦ be a binary operation on functions of the form

f : N → R
≥0 (for example, ◦ might represent addition or multiplication).

Let f be such a function, and let A and B be sets of such functions. We then

define:

• f ◦ A = {f ◦ g | g ∈ A};
• A ◦ f = {g ◦ f | g ∈ A}; and
• A ◦B = {g ◦ h | g ∈ A,h ∈ B}.

Example 3.21. n2 + Θ(n3) is the set of all functions that can be written

n2 + g(n) for some g(n) ∈ Θ(n3). This set includes such functions as

• n2 + 3n3;

• (n3+1)/2, which can be written n2+(n
3+1
2 −n2) (note that n3+1

2 −n2 ≥ 0

for all natural numbers n); and

• n3 + 2n, which can be written n2 + (n3 + 2n− n2).

Because all functions in this set belong to Θ(n3), n2 +Θ(n3) ⊆ Θ(n3).

Example 3.22. O(n2) + O(n3) is the set of functions that can be written

f(n) + g(n), where f(n) ∈ O(n2) and g(n) ∈ O(n3). Functions in this set

include:

• 2n2 + 3n3;

• 2n, which can be written as n+ n; and

• 2n3, which can be written as 0 + 2n3.

Because all functions in this set belong to O(n3), O(n2) +O(n3) ⊆ O(n3).

Definition 3.23. Let A be a set of functions of the form f : N→ R
≥0. We

define

n∑
i=k

A(i)

to be the set of all functions g : N→ R
≥0 such that

g(n) =

n∑
i=k

f(i)

for some f ∈ A. We define products analogously.
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Example 3.24.

n∑
i=1

Θ(i2)

is the set of all functions of the form
n∑

i=1

f(i)

such that f(i) ∈ Θ(i2).

Example 3.25. f(n) ∈ f(n − 1) + Θ(n) for n ≥ 1. This is an example of

an asymptotic recurrence. The meaning is that f is a function satisfying a

recurrence of the form

f(n) =

⎧⎨
⎩
f(n− 1) + h(n) for n ≥ 1

h(n) otherwise,

for some h(n) ∈ Θ(n). Note that because h(0) may have any nonnegative

value, so may f(0).

We can use the above definitions to simplify our analysis of the lower

bound for MaxSumOpt. Instead of introducing the constant a to represent

the running time of a single iteration of the inner loop, we can simply use

Ω(1) to represent the lower bound for this running time. We can therefore

conclude that the total running time of the inner loop is in

n−1∑
k=i

Ω(1).

While this notation allows us to simplify the expression of bounds on

running times, we still need a way of manipulating such expressions as the

one above. In the next section, we present powerful tools for performing such

manipulation.

3.5 Smooth Functions and Summations

Asymptotic analysis involving summations can be simplified by applying a

rather general property of summations. This property relies on the fact that

our summations typically involve well-behaved functions — functions that

obey three important properties. The following definitions characterize these

properties.
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Definition 3.26. Let f : N→ R
≥0. f is said to be eventually non-decreasing

if there is a natural number n0 such that f(n) ≤ f(n+ 1) whenever n ≥ n0.
Definition 3.27. Let f : N → R

≥0. f is said to be eventually positive if

there is a natural number n0 such that f(n) > 0 whenever n ≥ n0.
Definition 3.28. Let f : N → R

≥0 be an eventually non-decreasing and

eventually positive function. f is said to be smooth if there exist a real

number c and a natural number n0 such that f(2n) ≤ cf(n) whenever

n ≥ n0.
Example 3.29. f(n) = n is a smooth function. Clearly, f is eventually

non-decreasing and eventually positive, and f(2n) = 2f(n) for all n ∈ N.

Example 3.30. f(n) = 2n is not smooth. f is eventually non-decreasing,

and eventually positive, but f(2n) = 22n = f2(n) for all n ∈ N. Because f

is unbounded, for any real c, f(2n) > cf(n) for all sufficiently large n.

We will soon discuss in more detail which functions are smooth. First,

however, let’s see why this notion is important. Suppose we want to give

asymptotic bounds for a summation of the form

g(n)∑
i=1

Ω(f(i))

for some smooth function f . The following theorem, whose proof is outlined

in Exercise 3.13, can then be applied.

Theorem 3.31. Let f : N → R
≥0 be a smooth function, g : N → N be an

eventually non-decreasing and unbounded function, and let X denote either

O, Ω, or Θ. Then

g(n)∑
i=1

X(f(i)) ⊆ X(g(n)f(g(n))).

We leave as an exercise the
proof that this containment
is proper.

Thus, if we know that f is smooth, we have an

asymptotic solution to the summation. We therefore

need to examine the property of smoothness more

closely. The following theorem can be used to show a

wide variety of functions to be smooth.

Theorem 3.32. Let f : N → R
≥0 and g : N → R

≥0 be smooth functions,

and let c ∈ R
≥0. Then the following functions are smooth:

• f(n) + g(n);

• f(n)g(n);
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• f c(n); and
• f(g(n)), provided g is unbounded.

The proof is left as an exercise. Knowing that f(n) = n is smooth, we

can apply Theorem 3.32 to conclude that any polynomial is smooth. In fact,

such functions as
√
n and n

√
2 are also smooth. We can extend this idea to

logarithms as well. In particular, let lg x denote the base-2 logarithm; i.e.,

2lg x = x (3.4)

for all positive x.

Example 3.33. lg n is smooth. Clearly lg n is eventually non-decreasing and

eventually positive. Furthermore, lg(2n) = 1 + lg n ≤ 2 lg n whenever n ≥ 2.

Thus far, the only example we have seen of a non-smooth function

is 2n. Indeed, almost any polynomial-bounded, eventually non-decreasing,

eventually positive function we encounter will turn out to be smooth.

However, we can contrive exceptions. For example, we leave it as an exercise

to show that 22
�lg lg n� ∈ O(n), but is not smooth.

We can now continue the analysis of the lower bound for MaxSumOpt.

As we showed in the previous section, the lower bound on the running time

of the inner loop is in

n−1∑
k=i

Ω(1).

In order to apply Theorem 3.31, we need to rewrite the sum so that the

summation index begins at 1:

n−1∑
k=i

Ω(1) =

n−i∑
k=1

Ω(1).

Theorem 3.31 still does not quite apply because the upper limit, n − i,

is not a function of one variable. In order to overcome this difficulty, we

can introduce an auxiliary variable N , which we define to be n− i. Because
i < n in the algorithm, this definition makes sense — N is a natural number.

The lower bound can now be expressed as

N∑
k=1

Ω(1).
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We can now apply Theorem 3.31 by letting g(N) = N and f(k) = 1. Because

N is eventually non-decreasing and unbounded, and because 1 is smooth, we

can conclude that the running time of the inner loop is in Ω(g(N)f(g(N))) =

Ω(N). The lower bound for the algorithm is therefore in

n−1∑
i=0

Ω(N).

Again, Theorem 3.31 does not immediately apply to this summation. First,

the lower limit of the index i is 0, not 1 as required by Theorem 3.31.

Furthermore, the theorem requires the expression inside the asymptotic

notation to be a function of the summation index i, not of N .

In order to take care of the latter problem, we observe that as i ranges

from 0 to n− 1, N (or n− i) takes on each of the integer values from n to 1.

We can therefore write the above sum as:
n∑

N=1

Ω(N).

In order to apply Theorem 3.31, we let g(n) = n and f(N) = N . g(n)f(g(n))

is therefore n2. From Theorem 3.31 the running time of MaxSumOpt is in

Ω(n2). Note that this is the same bound that we obtained in Section 3.3,

but instead of using Equation (2.1), we used the more general (and hence,

more widely applicable) Theorem 3.31.

To further illustrate the power of Theorem 3.31, let’s now analyze the

running time of MaxSumIter, given in Figure 1.10 on page 15. A single

iteration of the inner loop has a running time in Θ(1). The total running

time of this loop is therefore in

j−1∑
k=i

Θ(1) =

j−i∑
k=1

Θ(1).

Letting J = j − i, which is a natural number because j ≥ i, from Theorem

3.31, this running time is in Θ(J). The total running time of the middle loop

is then in

n∑
j=i

Θ(J) =

n−i∑
J=0

Θ(J).
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This summation does not immediately fit the form of Theorem 3.31, as the

starting value of the summation index J is 0, not 1. We can rewrite this

sum as

n−i∑
J=0

Θ(J) =

n−i+1∑
J=1

Θ(J − 1).

What we have done here is simply to shift the range of J upward by 1 (i.e.,

from 0, . . . , n − i to 1, . . . , n − i + 1), and to compensate for this shift by

subtracting 1 from each occurrence of J in the expression being summed.

Now from Theorem 3.19, J − 1 ∈ Θ(J), and from Theorem 3.18, Θ(J − 1) =

Θ(J); hence, the running time of the middle loop is in

n−i−1∑
J=1

Θ(J).

Finally, we let N = n− i+ 1, which is a natural number because i ≤ n.
This gives us a running time of

N∑
J=1

Θ(J).

Applying Theorem 3.31 to the above sum, we find that the running time of

the middle loop is in Θ(N2). The running time of the outer loop is then in

n∑
i=0

Θ(N2) =

n+1∑
N=1

Θ(N2).

Applying Theorem 3.31 to this sum, we find that the running time of this

loop is in

Θ((n+ 1)3) = Θ(n3)

by Theorems 3.19 and 3.18.

3.6 Analyzing While Loops

To analyze algorithms with while loops, we can use the same techniques as

we have used to analyze for loops. For example, consider InsertionSort,

shown in Figure 1.7 on page 12. Let us consider the while loop. The value

of j begins at i and decreases by 1 on each loop iteration. Furthermore, if

its value reaches 1, the loop terminates. The loop therefore iterates at most
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i − 1 times. Because each iteration runs in Θ(1) time, the while loop runs

in O(i) time in the worst case.

In order to be able to conclude that the loop runs in Θ(i) time in the

worst case, we must determine that for arbitrarily large i, the loop may

iterate until j = 1. This is certainly the case if, prior to the beginning of the

loop, A[i] is strictly less than every element in A[1..i − 1]. Thus, the while

loop runs in Θ(i) time in the worst case.

It is now tempting to use Theorem 3.31 to conclude that the entire

algorithm’s running time is in

Θ(1) +

n∑
i=1

Θ(i) ⊆ Θ(1) + Θ(n2)

= Θ(n2).

However, we must be careful, because we have not shown that the while

loop runs in Ω(i) time for every iteration of the for loop; hence the running

time of the for loop might not be in

n∑
i=1

Θ(i).

We must show that there are inputs of size n, for every sufficiently

large n, such that the while loop iterates i − 1 times for each iteration

of the for loop. It is not hard to show that an array of distinct elements in

decreasing order will produce the desired behavior. Therefore, the algorithm

indeed operates in Θ(n2) time.

3.7 Analyzing Recursion

Before we consider how to analyze recursion, let us first consider how to

analyze non-recursive function calls. For example, consider SimpleSelect

from Figure 1.2 on page 7. This algorithm is easy to analyze if we know the

running time of Sort. Suppose we use InsertionSort (Figure 1.7, page

12). We saw in the last section that InsertionSort runs in Θ(n2) time.

The running time of SimpleSelect is therefore in

Θ(1) + Θ(n2) ⊆ Θ(n2).

Suppose now that we wish to analyze an algorithm that makes one or more

recursive calls. For example, consider MaxSuffixTD from Figure 1.13 on

page 18. We analyze such an algorithm in exactly the same way. Specifically,
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this algorithm has a running time in Θ(1) plus whatever is required by the

recursive call. The difficulty here is in how to determine the running time of

the recursive call without knowing the running time of the algorithm.

The solution to this difficulty is to express the running time as a

recurrence. Specifically, let f(n) denote the worst-case running time of

MaxSuffixTD on an array of size n. Then for n > 0, we have the equation,

f(n) = g(n) + f(n− 1) (3.5)

where g(n) ∈ Θ(1) is the worst-case running time of the body of the function,

excluding the recursive call. Note that f(n− 1) has already been defined to

be the worst-case running time of MaxSuffixTD on an array of size n− 1;

hence, f(n− 1) gives the worst-case running time of the recursive call.

The solution of arbitrary recurrences is beyond the scope of this book.

However, asymptotic solutions are often much simpler to obtain than are

exact solutions. First, we observe that (3.5) can be simplified using set

operations:

f(n) ∈ f(n− 1) + Θ(1) (3.6)

for n > 0.

It turns out that most of the recurrences that we derive when analyzing

algorithms fit into a few general forms. With asymptotic solutions to these

general forms, we can analyze recursive algorithms without using a great

deal of detailed mathematics. (3.6) fits one of the most basic of these forms.

The following theorem, whose proof is outlined in Exercise 3.23, gives the

asymptotic solution to this form.

Theorem 3.34. Let

f(n) ∈ af(n− 1) +X(bng(n))

for n > n0, where n0 ∈ N, a ≥ 1 and b ≥ 1 are real numbers, g(n) is a

smooth function, and X is either O, Ω, or Θ. Then

f(n) ∈

⎧⎪⎪⎨
⎪⎪⎩

X(bng(n)) if a < b

X(nang(n)) if a = b

X(an) if a > b.

When we apply this theorem to the analysis of algorithms, a in the

recurrence denotes the number of recursive calls. The set X(bng(n)) contains

the function giving the running time of the algorithm, excluding recursive

calls. Note that the expression bng(n) is general enough to describe a wide
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variety of functions. However, the main restriction on the applicability of

this theorem is that f(n) is in terms of f(n − 1), so that it applies only to

those algorithms whose recursive calls reduce the size of the problem by 1.

Let us now see how Theorem 3.34 can be applied to the analysis of

MaxSuffixTD. (3.6) fits the form given in Theorem 3.34, where a = 1,

b = 1, g(n) = 1, and X = Θ. Therefore, the second case of Theorem 3.34

applies. Substituting the values for X, a, and g(n) in that solution, we obtain

f(n) ∈ Θ(n).

Knowing that MaxSuffixTD operates in Θ(n) time, we can now

analyze MaxSumTD in the same way. In this case, the time required

excluding the recursive call is in Θ(n), because a call to MaxSuffixTD

is made. Letting f(n) denote the running time for MaxSumTD on an array

of size n, we see that

f(n) ∈ f(n− 1) + Θ(n)

for n > 0. Again, this recurrence fits the form of Theorem 3.34 with a = 1,

b = 1, g(n) = n, and X = Θ. The second case again holds, so that the

running time is in Θ(n2).

It is no coincidence that both of these analyses fit the second case of

Theorem 3.34. Note that unless a and b are both 1, Theorem 3.34 yields an

exponential result. Thus, efficient algorithms will always fit the second case

if this theorem applies. As a result, we can observe that an algorithm that

makes more than one recursive call of size n−1 will yield an exponential-time

algorithm.

We have included the first and third cases in Theorem 3.34 because they

are useful in deriving a solution for certain other types of recurrences. To

illustrate how these recurrences arise, we consider another solution to the

maximum subsequence sum problem (see Section 1.6).

The technique we will use is called divide-and-conquer. This technique,

which we will examine in detail in Chapter 10, involves reducing the size of

recursive calls to a fixed fraction of the size of the original call. For example,

we may attempt to make recursive calls on arrays of half the original size.

We therefore begin this solution by dividing a large array in half, as

nearly as possible. The subsequence giving us the maximum sum can then

lie in one of three places: entirely in the first half, entirely in the second

half, or partially in both halves, as shown in Figure 3.2. We can find the

maximum subsequence sum of each half by solving the two smaller problem

instances recursively. If we can then find the maximum sum of any sequence
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Figure 3.2 When applying divide-and-conquer, the maximum subsequence sum may

not lie entirely in either half

0 n − 1

that begins in the first half and ends in the second half, then the maximum

of these three values is the overall maximum subsequence sum.

For example, consider again the array A[0..5] = 〈−1, 3,−2, 7,−9, 7〉 from
Example 1.1 (page 14). The maximum subsequence sum of the first half,

namely, of A[0..2] = 〈−1, 3,−2〉, has a value of 3. Likewise, the maximum

subsequence sum of the second half, 〈7,−9, 7〉, is 7. In examining the two

halves, we have missed the actual maximum, A[1..3] = 〈3,−2, 7〉, which

resides in neither half. However, notice that such a sequence that resides in

neither half can be expressed as a suffix of the first half followed by a prefix

of the last half; e.g., 〈3,−2, 7〉 can be expressed as 〈3,−2〉 followed by 〈7〉.
Let us define the maximum prefix sum analogously to the maximum

suffix sum as follows:

max

{
i−1∑
k=0

A[k] | 0 ≤ i ≤ n
}
.

It is not hard to see that the maximum sum of any sequence crossing

the boundary is simply the maximum suffix sum of the first half plus

the maximum prefix sum of the second half. For example, returning to

Example 1.1, the maximum suffix sum of the first half is 1, obtained from

the suffix 〈3,−2〉. Likewise, the maximum prefix sum of the second half is 7,

obtained from the prefix 〈7〉. The sum of these two values gives us 8, the

maximum subsequence sum.

Note that when we create smaller instances by splitting the array in half,

one of the two smaller instances — the upper half — does not begin with

index 0. For this reason, let us describe the input array more generally, as

A[lo..hi]. We can then modify the definitions of maximum subsequence sum,

maximum suffix sum, and maximum prefix sum by replacing 0 with lo and

n− 1 with hi. We will discuss the ranges of lo and hi shortly.
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We must be careful that each recursive call is of a strictly smaller size.

We wish to divide the array in half, as nearly as possible. We begin by finding

the midpoint between lo and hi; i.e.,

mid =

⌊
lo + hi

2

⌋
.

Note that if hi > lo, then lo ≤ mid < hi. In this case, we can split

A[lo..hi] into A[lo..mid] and A[mid+1..hi], and both sub-arrays are smaller

than the original. However, a problem occurs when lo = hi — i.e., when the

array contains only one element — because in this case mid = hi. In fact, it is

impossible to divide an array of size 1 into two subarrays, each smaller than

the original. Fortunately, it is easy to solve a one-element instance directly.

Furthermore, it now makes sense to consider an empty array as a special

case, because it can only occur when we begin with an empty array, and not

as a result of dividing a nonempty array in half. We will therefore require in

our precondition that lo ≤ hi, and that both are natural numbers.

We can compute the maximum suffix sum as in MaxSumBU (see

Figure 1.14 on page 18), and the maximum prefix sum in a similar way.

The entire algorithm is shown in Figure 3.3. Note that the specification has

been changed from the one given in Figure 1.9. However, it is a trivial matter

to give an algorithm that takes as input A[0..n−1] and calls MaxSumDC if

n > 0, or returns 0 if n = 0. Such an algorithm would satisfy the specification

given in Figure 1.9.

This algorithm contains two recursive calls on arrays of size �n/2� and
�n/2�, respectively. In addition, it calls MaxSuffixBU on an array of size

�n/2� and MaxPrefixBU on an array of size �n/2�. These two algorithms

are easily seen to have running times in Θ(n); hence, if f(n) denotes the

worst-case running time of MaxSumDC on an array of size n, we have

f(n) ∈ f(�n/2�) + f(�n/2�) + Θ(n) (3.7)

for n > 1.

This equation does not fit the form of Theorem 3.34. However, suppose

we focus only on those values of n that are powers of 2; i.e., let n = 2k for

some k > 0, and let g(k) = f(2k) = f(n). Then

g(k) = f(2k)

∈ 2f(2k−1) + Θ(2k)

= 2g(k − 1) + Θ(2k) (3.8)
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Figure 3.3 Divide-and-conquer algorithm for maximum subsequence sum, specified

in Figure 1.9

for k > 0. Theorem 3.34 applies to (3.8), yielding g(k) ∈ Θ(k2k). Because

n = 2k, we have k = lg n, so that

f(n) = g(k) = g(lg n). (3.9)
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It is now tempting to conclude that because g(lg n) ∈ Θ(n lg n), f(n) ∈
Θ(n lg n); however, (3.9) is valid only when n is a power of 2. In order to

conclude that f(n) ∈ Θ(n lg n), we must know something about f(n) for

every sufficiently large n. However, we can show by induction on n that

f(n) is eventually non-decreasing (the proof is left as an exercise). This

tells us that for sufficiently large n, when 2k ≤ n ≤ 2k+1, f(2k) ≤ f(n) ≤
f(2k+1). From the fact that f(2k) = g(k) ∈ Θ(k2k), there exist positive real

numbers c1 and c2 such that c1k2
k ≤ f(n) ≤ c2(k + 1)2k+1. Furthermore,

because n lg n is smooth, there is a positive real number d such that for

sufficiently large m, 2m lg(2m) ≤ dm lgm. Hence, substituting 2k for m, we

have 2k+1(k + 1) ≤ d2kk. Putting it all together, we have

f(n) ≤ c2(k + 1)2k+1

≤ c2dk2k

≤ c2dn lg n
∈ O(n lg n).

Likewise,

f(n) ≥ c1k2k

≥ c1(k + 1)2k+1

d

≥ c1n lg n

d

∈ Ω(n lg n).

Thus, f(n) ∈ Θ(n lg n). The running time of MaxSumDC is therefore

slightly worse than that of MaxSumBU.

The above technique is often useful when we have a recurrence which is

not of a form for which we have a solution. More importantly, however, we

can generalize this technique to prove the following theorem; the details are

left as an exercise.

Theorem 3.35. Let a ≥ 1 and q ≥ 0 be real numbers, and let n0 ≥ 1 and

b ≥ 2 be integers. Let g : N → R
≥0 be such that g′(n) = g(n0b

n) is smooth.

Finally, let f : N→ R
≥0 be an eventually non-decreasing function satisfying

f(n) ∈ af(n/b) +X(nqg(n)),
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whenever n = n0b
k for a positive integer k, where X is either O, Ω, or Θ.

Then

f(n) ∈

⎧⎪⎪⎨
⎪⎪⎩

X(nqg(n)) if a < bq

X(nqg(n) lg n) if a = bq

X(nlogb a) if a > bq.

Let us first see that (3.7) fits the form of Theorem 3.35. As we

have already observed, f is eventually non-decreasing (this requirement is

typically met by recurrences obtained in the analysis of algorithms). When

n = 2k, (3.7) simplifies to

f(n) ∈ 2f(n/2) + Θ(n).

Therefore, we can let n0 = 1, a = b = 2, q = 1, and g(n) = 1. This yields

g′(n) = g(2n) = 1, which is smooth. Therefore, the second case applies,

yielding f(n) ∈ Θ(n lg n).

An important prerequisite for applying Theorem 3.35 is that g(n0b
n)

is smooth. Due to the exponential term, any function that satisfies this

property must be in O(lgk n) for some fixed k. This is not really a restriction,

however, because the term expressing the non-recursive part of the analysis

may be in X(nqg(n)) for arbitrary real q ≥ 0; hence, we can express most

polynomially-bounded functions. What is important is that we separate this

function into a polynomial part and a “polylogarithmic” part, because the

degree of the polynomial affects the result.

Example 3.36. Let f : N→ R
≥0 be an eventually non-decreasing function

such that

f(n) ∈ 3f(n/2) + Θ(n2 lg n),

whenever n = 2k for a positive integer k. We then let n0 = 1, a = 3, b = 2,

q = 2, and g(n) = lg n. Then

g′(n) = g(2n)

= lg 2n

= n

is smooth. We can therefore apply Theorem 3.35. Because bq = 22 = 4 and

a = 3, the first case applies. Therefore, f(n) ∈ Θ(n2 lg n).
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Example 3.37. Let f : N→ R
≥0 be an eventually non-decreasing function

such that

f(n) ∈ 4f(n/3) +O(n lg2 n),

whenever n = 5 ·3k for a positive integer k. We then let n0 = 5, a = 4, b = 3,

q = 1, and g(n) = lg2 n. Then

g′(n) = g(5 · 3n)
= lg2(5 · 3n)
= lg2 5 + n2 lg2 3

is smooth. We can therefore apply Theorem 3.35. Because bq = 3 and a = 4,

the third case applies. Therefore, f(n) ∈ O(nlog3 4) (log3 4 is approximately

1.26).

3.8 Analyzing Space Usage

As we mentioned earlier, running time is not the only performance measure

we may be interested in obtaining. For example, recall that the implemen-

tation of MaxSumTD from Figure 1.13 on page 18 terminated with a

StackOverflowError on an input of 32,768 elements. As we explained in

Section 1.6, this error was caused by high stack usage due to the recursion. In

contrast, the implementation of MaxSumDC can handle an input of several

million elements, even though it, too, is recursive. In order to see why, we

can analyze the space usage of these algorithms using the techniques we have

already developed.

Let us first consider MaxSuffixTD from Figure 1.13. Because there

is no need to copy the array in order to perform the recursive call, this

algorithm requires only a constant amount of space, ignoring that needed

by the recursive call. (We typically do not count the space occupied by the

input or the output in measuring the space usage of an algorithm.) Thus,

the total space usage is given by

f(n) ∈ f(n− 1) + Θ(1) (3.10)

for n > 0. From Theorem 3.34, f(n) ∈ Θ(n).

Already this is enough to tell us why MaxSumTD has poor space

performance. If MaxSuffixTD requires Θ(n) space, then MaxSumTD

surely must require Ω(n) space. Furthermore, it is easily seen from the

above analysis that the space used is almost entirely from the runtime stack;
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hence, the stack usage is in Θ(n). We typically would not have a runtime

stack capable of occupying space proportional to an input of, say, a million

elements.

Let us now complete the analysis of MaxSumTD. Ignoring the space

usage of the recursive call, we see that MaxSumTD uses Θ(n) space, due to

the space usage of MaxSuffixTD. However, this does not mean that the

following recurrence describes the total space usage:

f(n) ∈ f(n− 1) + Θ(n),

for n > 0. The reason is that the call made to MaxSuffixTD can

reuse the space used by the recursive call. Furthermore, any calls made to

MaxSuffixTD as a result of the recursive call will be on arrays of fewer than

n elements, so they may reuse the space used byMaxSuffixTD(A[0..n−1]).
Therefore, the total space used by all calls to MaxSuffixTD is in Θ(n).

Ignoring this space, the space used by MaxSumTD is given by

f(n) ∈ f(n− 1) + Θ(1),

for n > 0, so that f(n) ∈ Θ(n). The total space used is therefore in Θ(n) +

Θ(n) = Θ(n).

Now let’s consider MaxSumDC. MaxSuffixBU and MaxPrefixBU

each use Θ(1) space. Because the two recursive calls can reuse the same

space, the total space usage is given by

f(n) ∈ f(�n/2�) + Θ(1)

for n > 1. Applying Theorem 3.35, we see that f(n) ∈ Θ(lg n). Because lg n is

such a slow-growing function (e.g., lg 106 < 20), we can see thatMaxSumDC

is a much more space-efficient algorithm than MaxSumTD. Because the

space used by both algorithms is almost entirely from the runtime stack,

MaxSumDC will not have the stack problems that MaxSumTD has.

3.9 Multiple Variables

Consider the algorithm AddMatrices shown in Figure 3.4. Applying the

techniques we have developed so far, we can easily see that the inner loop

runs in Θ(n) time. Furthermore, the outer loop iterates exactly m times.

It is tempting at this point to say that the algorithm runs in Θ(mn)

time; however, we must be careful here because we have defined asymptotic

notation for single-variable functions only. In this section, we discuss how to

apply asymptotic analysis to functions on more than one variable.
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Figure 3.4 An algorithm to add two matrices

For sets A and B, A ×
B denotes the set of all
ordered pairs (a, b) such
that a ∈ A and b ∈ B.

We would like to extend the definitions to mul-

tiple variables in as straightforward a manner as

possible. For example, we would like for O(f(m,n))

to include all functions g : N×N→ R
≥0 such that for

some c ∈ R
>0 and n0 ∈ N, g(m,n) ≤ cf(m,n) whenever certain conditions

hold. The question is what exactly these “certain conditions” should be.

Should the inequality be required to hold whenever at least one of m or n is

at least n0? Or should it be required to hold only when both m and n are

at least n0?

Suppose first that we were to require that the inequality hold whenever

at least one of m or n is at least n0. Unfortunately, a consequence of such a

definition would be thatmn+1 �∈ O(mn). To see why, observe that whatever

values we choose for c and n0, when m = 0 and n ≥ n0, mn+1 > cmn. As a

result, working with asymptotic notation would become much messier with

multiple variables than with a single variable.

On the other hand, only requiring the inequality to hold when both m

and n are at least n0 also presents problems. Consider, for example, how we

would analyze the rather silly algorithm shown in Figure 3.5. We can observe

that the first of the inner loops iterates 2n times, and that the second iterates

in times. However, the first loop is only executed when i = 0; hence, when

both i and n are sufficiently large, only the second loop is executed. We

could therefore legitimately conclude that the body of the outer loop runs

in O(in) time. Unfortunately, this would lead to an incorrect analysis of the

algorithm because the first inner loop will always execute once, assuming m

is a Nat.
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Figure 3.5 An algorithm illustrating difficulties with asymptotic notation with

multiple variables

Thus, we can see that if we want to retain the properties of asymptotic

notation on a single variable, we must extend it to multiple variables in a way

that is not straightforward. Unfortunately, the situation is worse than this

— it can be shown that it is impossible to extend the notation to multiple

variables in a way that retains the properties of asymptotic notation on

a single variable. What we can do, however, is to extend it so that these

properties are retained whenever the function inside the asymptotic notation

is strictly non-decreasing. Note that restricting the functions in this way

does not avoid the problems discussed above, as the functions inside the

asymptotic notation in this discussion are all strictly non-decreasing. We

therefore must use some less straightforward extension.

We say that a function f :
N × N → R

≥0 is strictly
non-decreasing if, for every
m ∈ N and n ∈ N,
f(m,n) ≤ f(m + 1, n)
and f(m,n) ≤ f(m,n +
1).

The definition we propose for O(f(m,n)) con-

siders all values of a function g(m,n), rather than

ignoring values whenm and/or n are small. However,

it allows even infinitely many values of g(m,n) to be

large in comparison to f(m,n), provided that they

are not too large in comparison to the overall growth

rate of f . In order to accomplish these goals, we first give the following

definition.

Definition 3.38. For a function f : N×N→ R
≥0, we define f̂ : N×N→ R

≥0

so that

f̂(m,n) = max{f(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤ n}.
Using the above definition, we can now define big-O for 2-variable

functions.
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Definition 3.39. For a function f : N×N→ R
≥0, we define O(f(m,n)) to

be the set of all functions g : N × N → R
≥0 such that there exist c ∈ R

>0

and n0 ∈ N so that

g(m,n) ≤ cf(m,n)

and

ĝ(m,n) ≤ cf̂(m,n),

whenever m ≥ n0 and n ≥ n0.
Likewise, we can define big-Ω and big-Θ for 2-variable functions.

Definition 3.40. For a function f : N×N→ R
≥0, we define Ω(f(m,n)) to

be the set of all functions g : N × N → R
≥0 such that there exist c ∈ R

>0

and n0 ∈ N so that

g(m,n) ≥ cf(m,n)

and

ĝ(m,n) ≥ cf̂(m,n),

whenever m ≥ n0 and n ≥ n0.
Definition 3.41. For a function f : N× N→ R

≥0,

Θ(f(m,n)) = O(f(m,n)) ∩ Ω(f(m,n)).

We extend these definitions to more than two variables in the obvious

way. Using the above definitions, it is an easy matter to show that Theorem

3.11 extends to more than one variable. The proof is left as an exercise.

Theorem 3.42. Let f : N×N→ R
≥0 and g : N×N→ R

≥0. Then g(m,n) ∈
O(f(m,n)) iff f(m,n) ∈ Ω(g(m,n)).

We would now like to show that the theorems we have presented for single

variables extend to multiple variables, provided the functions within the

asymptotic notation are strictly non-decreasing. Before we do this, however,

we will first prove a theorem that will allow us to simplify the proofs of the

individual properties.

Theorem 3.43. Let f : N×N→ R
≥0 be a strictly non-decreasing function.

Then
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1. O(f(m,n)) is the set of all functions g : N × N → R
≥0 such that there

exist c ∈ R
>0 and n0 ∈ N such that

ĝ(m,n) ≤ cf̂(m,n),
whenever m ≥ n0 and n ≥ n0.

2. Ω(f(m,n)) is the set of all functions g : N × N → R
≥0 such that there

exist c ∈ R
>0 and n0 ∈ N such that

g(m,n) ≥ cf(m,n),
whenever m ≥ n0 and n ≥ n0.

Proof. From the definitions, for any function g(m,n) in O(f(m,n)) or

in Ω(f(m,n)), respectively, there are a c ∈ R
>0 and an n0 ∈ N such that

wheneverm ≥ n0 and n ≥ n0, the corresponding inequality above is satisfied.

We therefore only need to show that if there are c ∈ R
>0 and n0 ∈ N such

that whenever m ≥ n0 and n ≥ n0, the given inequality is satisfied, then

g(m,n) belongs to O(f(m,n)) or Ω(f(m,n), respectively.

We first observe that if f is strictly non-decreasing, then

f̂(m,n) = f(m,n),

for all natural numbers m and n. Furthermore, for any function g : N×N→
R
≥0,

ĝ(m,n) ≥ g(m,n).
Now suppose c ∈ R

>0 and n0 ∈ N such that whenever m ≥ n0 and

n ≥ n0, ĝ(m,n) ≤ cf̂(m,n). Then for m ≥ n0 and n ≥ n0,
g(m,n) ≤ ĝ(m,n)

≤ cf̂(m,n)
= cf(m,n).

Hence, g(m,n) ∈ O(f(m,n)).

Likewise, suppose now that c ∈ R
>0 and n0 ∈ N such that whenever

m ≥ n0 and n ≥ n0, g(m,n) ≥ cf(m,n). Then for m ≥ n0 and n ≥ n0,
ĝ(m,n) ≥ g(m,n)

≥ cf(m,n)
= cf̂(m,n).

Therefore, g(m,n) ∈ Ω(f(m,n)). �
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As a result of the above theorem, in order to prove properties about

either O(f(m,n)) or Ω(f(m,n)), where f is strictly non-decreasing, we only

need to prove one of the two inequalities in the definition. Consider, for

example, the following extension to Theorem 3.8.

Theorem 3.44. Suppose f1(m,n) ∈ O(g1(m,n)) and f2(m,n) ∈
O(g2(m,n)), where g1 and g2 are strictly non-decreasing. Then

1. f1(m,n)f2(m,n) ∈ O(g1(m,n)g2(m,n)); and

2. f1(m,n) + f2(m,n) ∈ O(max(g1(m,n), g2(m,n))).

Proof. We will only show part 3.44; part 3.44 will be left as an exercise.

Because f1(m,n) ∈ O(g1(m,n)) and f2(m,n) ∈ O(g2(m,n)), there exist

positive real numbers c1 and c2 and natural numbers n1 and n2 such that

whenever m ≥ n1 and n ≥ n1,

f̂1(m,n) ≤ c1ĝ1(m,n),

and whenever m ≥ n2 and n ≥ n2,

f̂2(m,n) ≤ c2ĝ2(m,n).

In what follows we will let

f̂1f2(m,n) = max{f1(i, j)f2(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤ n}.

We first observe that for any natural numbers m and n,

f̂1f2(m,n) ≤ f̂1(m,n)f̂2(m,n).

Furthermore, because both g1 and g2 are strictly non-decreasing, so is g1g2.

Let n0 = max(n1, n2). Then whenever m ≥ n0 and n ≥ n0,

f̂1f2(m,n) ≤ f̂1(m,n)f̂2(m,n)
≤ c1ĝ1(m,n)c2ĝ2(m,n)
= c1c2ĝ1(m,n)ĝ2(m,n)

= cĝ1g2(m,n),

where c = c1c2. From Theorem 3.43,

f1(m,n)f2(m,n) ∈ O(g1(m,n)g2(m,n)).
�
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In a similar way, the following extension to Theorem 3.15 can be shown.

The proof is left as an exercise.

Theorem 3.45. Suppose f1(m,n) ∈ Ω(g1(m,n)) and f2(m,n) ∈
Ω(g2(m,n)), where g1 and g2 are strictly non-decreasing. Then

1. f1(m,n)f2(m,n) ∈ Ω(g1(m,n)g2(m,n)); and

2. f1(m,n) + f2(m,n) ∈ Ω(max(g1(m,n), g2(m,n))).

We therefore have the following corollary.

Corollary 3.46. Suppose f1(m,n) ∈ Θ(g1(m,n)) and f2(m,n) ∈
Θ(g2(m,n)), where g1 and g2 are strictly non-decreasing. Then

1. f1(m,n)f2(m,n) ∈ Θ(g1(m,n)g2(m,n)); and

2. f1(m,n) + f2(m,n) ∈ Θ(max(g1(m,n), g2(m,n))).

Before we can extend Theorem 3.31 to more than one variable, we must

first extend the definition of smoothness. In order to do this, we must first

extend the definitions of eventually non-decreasing and eventually positive.

Definition 3.47. Let f : N × N → R
≥0. f is said to be eventually non-

decreasing if there is a natural number n0 such that f(m,n) ≤ f(m+ 1, n)

and f(m,n) ≤ f(m,n+ 1) whenever both m ≥ n0 and n ≥ n0.
Definition 3.48. Let f : N×N→ R

≥0. f is said to be eventually positive if

there is a natural number n0 such that f(m,n) > 0 whenever both m ≥ n0
and n ≥ n0.
Definition 3.49. Let f : N × N → R

≥0 be an eventually non-decreasing

and eventually positive function. f is said to be smooth if there exist a

real number c and a natural number n0 such that f(2m,n) ≤ cf(m,n) and

f(m, 2n) ≤ cf(m,n) whenever both m ≥ n0 and n ≥ n0.
The following extension to Theorem 3.31 can now be shown — the proof

is left as an exercise.

Theorem 3.50. Let f : N × N → R
≥0 be a strictly non-decreasing smooth

function. Let g : N → N be an eventually non-decreasing and unbounded

function, and let X denote either O, Ω, or Θ. Then

g(m)∑
i=1

X(f(i, n)) ⊆ X(g(m)f(g(m), n)).
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Having the above theorems, we can now complete the analysis of Add-

Matrices. Because we are analyzing the algorithm with respect to two

parameters, we view n as the 2-variable function f(m,n) = n, and we view

m as the 2-variable function g(m,n) = m. We can then apply Corollary 3.46

to Θ(m)Θ(n) to obtain a running time in Θ(mn). Alternatively, because n

is smooth, we could apply Theorem 3.50 to obtain
m∑
i=1

Θ(n) ⊆ Θ(mn).

The results from this section give us the tools we need to analyze iterative

algorithms with two natural parameters. Furthermore, all of these results

can be easily extended to more than two parameters. Recursive algorithms,

however, present a greater challenge. In order to analyze recursive algorithms

using more than one natural parameter, we need to be able to handle

asymptotic recurrences in more than one variable. This topic is beyond the

scope of this book.

3.10 Little-o and Little-ω

Occasionally, we would like to use asymptotic notation without ignoring

constant factors. Consider, for example, f(n) = 3n2+7n+2. As n increases,

the 7n + 2 term becomes less relevant. In fact, as n increases, the ratio

3n2/f(n) approaches 1. We might therefore wish to say that f(n) is 3n2,

plus some low-order terms. We would like to be able to express the fact that

these low-order terms are insignificant as n increases. To this end, we give

the following definitions.

o(f(n)) is pronounced
“little-oh of f of n”.

Definition 3.51. Let f : N → R
≥0. o(f(n)) is the

set of all functions g : N → R
≥0 such that for every

positive real number c, there is a natural number n0
such that g(n) < cf(n) whenever n ≥ n0.

ω(f(n)) is pronounced
“little-omega of f of n”.

Definition 3.52. Let f : N → R
≥0. ω(f(n)) is the

set of all functions g : N → R
≥0 such that for every

positive real number c, there is a natural number n0
such that g(n) > cf(n) whenever n ≥ n0.
Example 3.53. 7n+ 2 ∈ o(n2). In proof, suppose c > 0. We need to find a

natural number n0 such that 7n+2 < cn2 whenever n ≥ n0. We first observe

that this inequality holds if n > 0 and (7 + 2/n)/c < n. The left-hand side

of this inequality is maximized when n = 1; therefore, if n ≥ �9/c� + 1,

7n + 2 < cn2.
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Figure 3.6 Venn diagram depicting the relationships between the sets O(f(n)),

Ω(f(n)), Θ(f(n)), o(f(n)), and ω(f(n))

Thus, if f(n) = 3n2 + 7n+ 2, then f(n) ∈ 3n2 + o(n2).

These definitions are similar to the definitions of O and Ω, respectively,

except that the inequalities hold for every positive real number c, rather than

for some positive real number c. Thus, g(n) ∈ o(f(n)) is a strictly stronger

statement than g(n) ∈ O(f(n)), and g(n) ∈ ω(f(n)) is a strictly stronger

statement than g(n) ∈ Ω(f(n)) (see Figure 3.6). This idea is formalized by

the following theorem.

Theorem 3.54. Let f : N→ R
≥0 be an eventually positive function. Then

1. o(f(n)) ⊆ O(f(n)) \Θ(f(n)); and

2. ω(f(n)) ⊆ Ω(f(n)) \Θ(f(n)),

where A \B denotes the set of elements in A but not in B.

Proof. We will only prove part 1; the proof of part 2 is symmetric. Let

g(n) ∈ o(f(n)), and let c be any positive real number. Then there is a

natural number n0 such that g(n) < cf(n) whenever n ≥ n0. Hence, g(n) ∈
O(f(n)). Furthermore, because the choice of c is arbitrary, we can conclude

that g(n) �∈ Ω(f(n)); hence, g(n) �∈ Θ(f(n)). �
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It may seem at this point that the above theorem could be strengthened

to say that o(f(n)) = O(f(n)) \Θ(f(n)) and ω(f(n)) = Ω(f(n)) \Θ(f(n)).

Indeed, for functions f and g that we typically encounter in the analysis

of algorithms, it will be the case that if g(n) ∈ O(f(n)) \Θ(f(n)) then

g(n) ∈ o(f(n)). However, there are exceptions. For example, let f(n) = n,

and let g(n) = 22
�lg lgn�

. Then g(n) ∈ O(f(n)) because g(n) ≤ f(n) for all

n ∈ N. Furthermore, when n = 22
k − 1 for k > 0, g(n) = 22

k−1
=
√
n+ 1;

hence, g(n) �∈ Θ(f(n)). Finally, when n = 22
k
, g(n) = n, so g(n) �∈ o(f(n)).

Note that we have the same duality between o and ω as between O and

Ω. We therefore have the following theorem.

Theorem 3.55. Let f : N → R
≥0 and g : N → R

≥0. Then g(n) ∈ o(f(n))
iff f(n) ∈ ω(g(n)).

Given the above results, we might expect o and ω to have some properties

similar to those of other forms of asymptotic notation. One example of such

a property is expressed in the following theorem, which is analogous to

Theorems 3.8 and 3.15. Its proof is left as an exercise.

Theorem 3.56. Suppose f1(n) ∈ o(g1(n)), f2(n) ∈ o(g2(n)), f3(n) ∈
ω(g3(n)), and f4(n) ∈ ω(g4(n)). Then
1. f1(n)f2(n) ∈ o(g1(n)g2(n)).
2. f1(n) + f2(n) ∈ o(max(g1(n), g2(n))).

3. f3(n)f4(n) ∈ ω(g3(n)g4(n)).
4. f3(n) + f4(n) ∈ ω(max(g3(n), g4(n))).

The following theorems express relationships between common functions

using o-notation.

Theorem 3.57. Let p, q ∈ R
≥0 such that p < q, and suppose f(n) ∈ O(np)

and g(n) ∈ Ω(nq). Then f(n) ∈ o(g(n)).
Proof. Because f(n) ∈ O(np), there exist a positive real number c1 and a

natural number n1 such that

f(n) ≤ c1np (3.11)

whenever n ≥ n1. Because g(n) ∈ Ω(nq), there exist a positive real number

c2 and a natural number n2 such that

g(n) ≥ c2nq (3.12)



92 Algorithms: A Top-Down Approach

whenever n ≥ n2. Combining (3.11) and (3.12), we have

f(n) ≤ c1g(n)

c2nq−p

whenever n ≥ max(n1, n2). Let c be an arbitrary positive real number. Let

n0 = max(n1, n2, �(c1/(c2c))1/(q−p)�)+1. Then when n ≥ n0, nq−p > c1/(c2c)

because q > p. We therefore have,

f(n) ≤ c1g(n)

c2nq−p

< cg(n).

Therefore, f(n) ∈ o(g(n)). �

Theorem 3.58. Let p and q be any positive real numbers. Then

1. O(lgp n) ⊆ o(nq); and
2. O(np) ⊆ o(2qn).

The proof of Theorem 3.58 requires some additional techniques, which

we present in the next section.

3.11 * Use of Limits in Asymptotic Analysis

The astute reader may have noticed a relationship between asymptotic

analysis and the concept of a limit. Both of these concepts involve the

behavior of a function f(n) as n increases. In order to examine this

relationship precisely, we now give the formal definition of a limit.

Definition 3.59. Let f : N→ R, and let u ∈ R. We say that

lim
n→∞ f(n) = u,

if for every positive real number c, there is a natural number n0 such that

|f(n) − u| < c whenever n ≥ n0. Likewise, for a function g : R≥0 → R, we

say that

lim
x→∞ g(x) = u,

if for every positive real number c, there is a real number x0 such that

|g(x) − u| < c whenever x ≥ x0.
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Note that for f : N → R and g : R≥0 → R, if f(n) = g(n) for every

n ∈ N, it follows immediately from the above definition that

lim
n→∞ f(n) = lim

x→∞ g(x),

whenever the latter limit exists. It is also possible to define infinite limits,

but for our purposes we only need finite limits as defined above. Given this

definition, we can now formally relate limits to asymptotic notation.

Theorem 3.60. Let f : N→ R
≥0 and g : N→ R

≥0. Then

1. g(n) ∈ o(f(n)) iff limn→∞ g(n)/f(n) = 0 and

2. g(n) ∈ Θ(f(n)) if limn→∞ g(n)/f(n) = x > 0.

Note that part 3.60 is an “if and only if”, whereas part 3.60 is an “if”.

The reason for this is that there are four possibilities, given arbitrary f and

g:

1. limn→∞ g(n)/f(n) = 0. In this case g(n) ∈ o(f(n)) and f(n) ∈ ω(g(n)).
2. limn→∞ f(n)/g(n) = 0. In this case f(n) ∈ o(g(n)) and g(n) ∈ ω(f(n)).
3. limn→∞ g(n)/f(n) = x > 0. In this case, g(n) ∈ Θ(f(n)) and f(n) ∈

Θ(g(n)). (Note that limn→∞ f(n)/g(n) = 1/x > 0.)

4. Neither limn→∞ g(n)/f(n) nor limn→∞ f(n)/g(n) exists. In this case, we

can only conclude that g(n) �∈ o(f(n)) and f(n) �∈ o(g(n)) — we do not

have enough information to determine whether g(n) ∈ Θ(f(n)).

Proof of Theorem 3.60

1. This follows immediately from the definitions of limit and o.

2. Suppose limn→∞ g(n)/f(n) = x > 0. Then for every positive real number

c, there is a natural number n0 such that

x− c < g(n)/f(n) < x+ c

whenever n ≥ n0. Multiplying the above inequalities by f(n), we have

(x− c)f(n) < g(n) < (x+ c)f(n).

Because these inequalities hold for every positive real number c, and

because x > 0, we may choose c = x/2, so that both x − c and x + c

are positive. Therefore, g(n) ∈ Θ(f(n)). �

A powerful tool for evaluating limits of the form given in Theorem 3.60

is L’Hôpital’s rule, which we present without proof in the following theorem.
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We are implicitly assuming
that for sufficiently large x,
the derivatives are defined
and f ′(x) �= 0.

Theorem 3.61 (L’Hôpital’s rule). Let f : R≥0 →
R and g : R

≥0 → R be functions such that

limx→∞ 1/f(x) = 0 and limx→∞ 1/g(x) = 0.

Let f ′ and g′ denote the derivatives of f and g,

respectively. If limx→∞ g′(x)/f ′(x) = u ∈ R, then

limx→∞ g(x)/f(x) = u.

With this theorem, we can now prove Theorem 3.58.

Proof of Theorem 3.58

1. We will use L’Hôpital’s rule to show that limx→∞ lg x/xq/p = 0. It will

therefore follow that limx→∞ lgp x/xq = 0. From Theorem 3.60, it will

then follow that lgp n ∈ o(nq). We leave it as an exercise to show that if

g(n) ∈ o(f(n)), then O(g(n)) ⊆ o(f(n)).
We first note that because both lg x and xq/p are non-decreasing and

unbounded (because q and p are both positive), limx→∞ 1/ lg x = 0 and

limx→∞ 1/xq/p = 0. In order to compute the derivative of lg x, we first

observe that lg x ln 2 = lnx, where ln denotes the natural logarithm

or base-e logarithm, where e ≈ 2.718. Thus, the derivative of lg x is

1/(x ln 2). The derivative of xq/p is

qx
q
p
−1/p.

Using L’Hôpital’s rule,

lim
x→∞

lg x

xq/p
= lim

x→∞
1

qx
q
p
−1x ln 2/p

= lim
x→∞

p

qx
q
p ln 2

= 0.

Hence, limx→∞ lgp x/xq = 0. Therefore, lgp n ∈ o(nq) and O(lgp n) ⊆
o(nq).

2. Because limx→∞ lgp x/xq = 0 and 2x is non-decreasing and unbounded,

it follows that

lim
x→∞x

p/2qx = lim
x→∞ lgp(2x)/(2x)q

= 0.

Therefore, np ∈ o(2qn) and O(np) ⊆ o(2qn). �
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3.12 Summary

Asymptotic notation can be used to express the growth rates of functions

in a way that ignores constant factors and focuses on the behavior as the

function argument increases. We can therefore use asymptotic notation to

analyze performance of algorithms in terms of such measures as worst-case

running time or space usage. O and Ω are used to express upper and lower

bounds, respectively, while Θ is used to express the fact that the upper and

lower bounds are tight. o gives us the ability to abstract away low-order terms

when we don’t want to ignore constant factors. ω provides a dual for o.

Analysis of iterative algorithms typically involves summations. Theo-

rem 3.31 gives us a powerful tool for obtaining asymptotic solutions for

summations. Analysis of recursive algorithms, on the other hand, typically

involves recurrence relations. Theorems 3.34 and 3.35 provide asymptotic

solutions for the most common forms of recurrences.

The analyses of the various algorithms for the maximum subsequence

sum problem illustrate the utility of asymptotic analysis. We saw that the

five algorithms have worst-case running times shown in Figure 3.7. These

results correlate well with the actual running times shown in Figure 1.15.

The results of asymptotic analyses can also be used to predict perfor-

mance degradation. If an algorithm’s running time is in Θ(f(n)), then as n

increases, the running time of an implementation must lie between cf(n) and

df(n) for some positive real numbers c and d. In fact, for most algorithms,

this running time will approach cf(n) for a single positive real number c.

Assuming that this convergence occurs, if we run the algorithm on sufficiently

large input, we can approximate c by dividing the actual running time by

f(n), where n is the size of the input.

Figure 3.7 Asymptotic worst-case running times of maximum subsequence sum

algorithms
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The results of floating-point
computations in this discus-
sion are all rounded to two
significant digits.

For example, our implementation of MaxSum-

Iter took 24 seconds to process an input of size

213 = 8,192. Dividing 24 by (8,192)3, we obtain a

value of c = 4.4× 10−11. Evaluating cn3 for n = 212,

we obtain a value of 3.0 seconds. This matches the actual running time

measured on an input of size 213. Thus, the running time does appear to be

converging to cn3 for sufficiently large n.

Figure 3.8 shows a plot of the functions estimating the running times

of the various maximum subsequence sum implementations, along with the

measured running times from Figure 1.15. The functions were derived via

the technique outlined above using the timing information from Figure 1.15,

taking the largest data set tested for each algorithm. We have extended

both axes to show how these functions compare as n grows as large as 230 =

1,073,741,824.

For example, consider MaxSumIter and MaxSumBU. As we have

already shown, the function estimating the running time of MaxSumIter is

f(n) = (4.4×10−11)n3. We were able to run MaxSumBU on an array of size

230 — it ran in 0.99 seconds. On the other hand, we estimate the running time

for MaxSumIter on an array of this size to be f(230) = 5.4× 1016 seconds,

Figure 3.8 Estimated performance of implementations of maximum subsequence

sum algorithms
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or over 1.7 billion years! Even if we could speed up the processor by a factor

of one million, this implementation would still require over 1700 years.

Though this example clearly illustrates the utility of asymptotic analysis,

a word of caution is in order. Asymptotic notation allows us to focus on

growth rates while ignoring constant factors. However, constant factors

can be relevant. For example, two linear-time algorithms will not yield

comparable performance if the hidden constants are very different.

For a more subtle example, consider the functions lg16 n and
√
n, shown

in Figure 3.9. From Theorem 3.58, O(lg16 n) ⊆ o(√n), so that as n increases,

lg16 n grows much more slowly than does
√
n. However, consider n = 232 =

4,294,967,296. For this value,
√
n = 216 = 65,536, whereas

lg16 n = 3216 = 1,208,925,819,614,629,174,706,176.

lg16 n remains larger than
√
n until n = 2256 — a 78-digit number. After

that,
√
n does grow much more rapidly than does lg16 n, but it is hard to

see any practical value in studying the behaviors of these functions at such

large values.

Finally, the running time analyses we have seen in this chapter have all

been worst-case analyses. For some algorithms, the worst case is much worse

than typical cases, so that in practice, the algorithm performs much better

than a worst-case analysis would suggest. Later, we will see other kinds of

Figure 3.9 Functions illustrating the practical limitations of asymptotic notation
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analyses that may be more appropriate in such cases. However, we must

realize that there is a limit to what can be determined analytically.

3.13 Exercises

Exercise 3.1. Prove that if g(n) ∈ O(f(n)), then O(g(n)) ⊆ O(f(n)).

Exercise 3.2. Prove that for any f : N→ R
≥0, f(n) ∈ Θ(f(n)).

Exercise 3.3. Prove that if f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then

f(n) ∈ O(h(n)).

Exercise 3.4. Suppose f(n) ∈ Θ(g(n)). Prove that for each X ∈ {O,Ω,Θ},
X(f(n)) = X(g(n)).

Exercise 3.5. Prove Theorem 3.15.

Exercise 3.6. Prove Theorem 3.17.

Exercise 3.7. Prove Theorem 3.18. [Hint: You might find Theorem 3.17

useful for showing containment in one direction.]

Exercise 3.8. For each of the following, give functions f(n) ∈ Θ(n) and

g(n) ∈ Θ(n) that satisfy the given property.

a. f(n)− g(n) ∈ Θ(n).

b. f(n)− g(n) �∈ Θ(n).

Exercise 3.9. Suppose that g1(n) ∈ Θ(f1(n)) and g2(n) ∈ Θ(f2(n)), where

g2 and f2 are eventually positive. Prove that g1(n)/g2(n) ∈ Θ(f1(n)/f2(n)).

Exercise 3.10. Show that the result in Exercise 3.9 does not necessarily

hold if we replace Θ by O.

Exercise 3.11. Let f : N → R
≥0 and g : N → R

≥0, where g is eventually

positive. Prove that f(n) ∈ O(g(n)) iff there is a positive real number c such

that f(n) ≤ cg(n) whenever g(n) > 0.

* Exercise 3.12. Let f(n) = 22
�lg lgn�

, where we assume that f(n) = 0 for

n ≤ 1.

a. Show that f(n) ∈ O(n).

b. Show that f(n) is not smooth; i.e., show that for every c ∈ R
>0 and

every n0 ∈ N, there is some n ≥ n0 such that f(2n) > cf(n). [Hint:

Consider a sufficiently large value of n having the form 22
k−1.]
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* Exercise 3.13. The goal of this exercise is to prove Theorem 3.31. Let

f : N → R
≥0 be a smooth function, g : N → N be an eventually non-

decreasing and unbounded function, and h : N→ R
≥0.

a. Show that if h(n) ∈ O(f(n)), then there exist natural numbers n0 and

n1, a positive real number c, and a non-negative real number d such that

for every n ≥ n1,
g(n)∑
i=1

h(i) ≤ d+
g(n)∑
i=n0

cf(g(n)).

b. Use part (a) to prove that

g(n)∑
i=1

O(f(i)) ⊆ O(g(n)f(g(n))).

c. Show that if h(n) ∈ Ω(f(n)), then there exist natural numbers n0 and n1
and positive real numbers c and d such that for every n ≥ n0,

f(n) ≥ f(2n)/d,

and for every n ≥ n1, both
g(n)∑
i=1

h(i) ≥
g(n)∑

i=�g(n)/2�
cf(�g(n)/2�),

and

g(n) ≥ 2n0

hold.

d. Use part (c) to prove that

g(n)∑
i=1

Ω(f(i)) ⊆ Ω(g(n)f(g(n))).

e. Use parts (b) and (d) to prove that

g(n)∑
i=1

Θ(f(i)) ⊆ Θ(g(n)f(g(n))).



100 Algorithms: A Top-Down Approach

* Exercise 3.14. Prove that for every smooth function f : N → R
≥0 and

every eventually non-decreasing and unbounded function g : N → N, and

every X ∈ {O,Ω,Θ},
g(n)∑
i=1

X(f(i)) �= X(g(n)f(g(n))).

[Hint: First identify a property that every function in the set on the left-hand

side must satisfy, but which functions in the set on the right-hand side need

not satisfy.]

Exercise 3.15. Prove Theorem 3.32.

Exercise 3.16. Analyze the worst-case running time of the following code

fragments, assuming that n represents the problem size. Express your result

as simply as possible using Θ-notation.

a. for i← 0 to 2n

for j ← 0 to 3n

k ← k + i+ j

b. for i← 1 to n2

for j ← i to i3

k ← k + 1

* c. i← n

while i > 0

for j ← 1 to i2

x← (x+ j)/2

i← �i/2�

Exercise 3.17. Give asymptotic solutions to the following asymptotic

recurrences. In each case, you may assume that f : N→ R
≥0 is an eventually

non-decreasing function.

a.

f(n) ∈ 2f(n− 1) + Θ(1),

for n > 0.
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b.

f(n) ∈ f(n− 1) + Ω(n lg n),

for n > 0.

c.

f(n) ∈ 4f(n/2) +O(lg2 n),

whenever n = 3 · 2k for a positive integer k.

d.

f(n) ∈ 5f(n/3) + Θ(n2),

whenever n = 3k for a positive integer k.

e.

f(n) ∈ 3f(n/2) +O(n),

whenever n = 8 · 2k for a positive integer k.

Exercise 3.18. Analyze the worst-case running time of SelectByMedian,

shown in Figure 2.7, assuming that Median is implemented to run in Θ(n)

time. Express your result as simply as possible using Θ-notation.

Exercise 3.19. Analyze the worst-case running time of the following

functions. Express your result as simply as possible using Θ-notation.

a. SlowSort(A[1..n])

if n = 2 and A[1] > A[2]

A[1]↔ A[2]

else if n > 2

SlowSort(A[1..n− 1])

SlowSort(A[2..n])

SlowSort(A[1..n− 1])

b. FindMax(A[1..n])

if n = 0

error

else if n = 1

return A[1]

else

return Max(FindMax(A[1..�n/2�]),FindMax(A[�n/2�+1..n]))
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c. FindMin(A[1..n])

if n = 0

error

else if n = 1

return A[1]

else

B ← new Array[1..�n/2�]
for i← 1 to �n/2�
B[i]←Min(A[2i− 1], A[2i])

if n mod 2 = 1

B[�n/2�]← A[n]

return FindMin(B[1..�n/2�])

Exercise 3.20. Analyze the worst-case space usage of each of the functions

given in Exercise 3.19. Express your result as simply as possible using Θ-

notation.

* Exercise 3.21. Prove that if f : N → R≥0 is smooth and g(n) ∈ Θ(n),

then f(g(n)) ∈ Θ(f(n)).

* Exercise 3.22. Prove that for any smooth function g : N → R
≥0, there

is a natural number k such that g(n) ∈ O(nk).

* Exercise 3.23. The goal of this exercise is to prove Theorem 3.34. Let

f(n) ∈ af(n− 1) +X(bng(n))

for n > n0, where n0 ∈ N, a ≥ 1 and b ≥ 1 are real numbers, g(n) is a smooth

function, and X is either O, Ω, or Θ. In what follows, let n1 be any natural

number such that n1 ≥ n0 and whenever n ≥ n1, 0 < g(n) ≤ g(n + 1).

a. Prove by induction on n that if X is O, then there is a positive real

number c such that for n ≥ n1,

f(n) ≤ an−n1f(n1) + can
n∑

i=n1+1

(b/a)ig(i).

b. Prove by induction on n that if X is Ω, then there is a positive real

number d such that

f(n) ≥ an−n1f(n1) + dan
n∑

i=n1+1

(b/a)ig(i).
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c. Use parts (a) and (b), together with Equation (2.2), to show that if a < b,

then f(n) ∈ X(bng(n)).

d. Use parts (a) and (b), together with Theorem 3.31, to show that if a = b,

then f(n) ∈ X(nang(n)).

e. Suppose a > b, and let r =
√
a/b. Show that there is a natural number

n2 ≥ n0 such that for every n ≥ n2, 0 < g(n) ≤ g(n + 1) and

n∑
i=n2+1

(b/a)ig(i) ≤ r

r − 1
.

[Hint: Use the result of Exercise 3.22 and Theorem 3.58 to show that for

sufficiently large i, g(i) ≤ ri; then apply Equation (2.2).]

f. Use parts (a), (b), and (e) to show that if a > b, then f(n) ∈ X(an).

Exercise 3.24. Let f : N → R
≥0 be a function satisfying (3.7). Prove by

induction on n that f(n) ≤ f(n+ 1) for n ≥ 1.

Exercise 3.25. Prove Theorem 3.35.

Exercise 3.26. Show that Copy, specified in Figure 1.18 on page 22, can be

implemented to run in Θ(n) time, Θ(n) space, and Θ(1) stack space, where

n is the size of both of the arrays. Note that function calls use space from the

stack, but constructed arrays do not. Also recall that the parameters A[1..n]

and B[1..n] should not be included in the analysis of space usage. Your

algorithm should work correctly even for calls like Copy(A[1..n−1], A[2..n])

(see Exercise 1.4).

Exercise 3.27. Prove Theorem 3.42.

Exercise 3.28. Complete the proof of Theorem 3.44.

Exercise 3.29. Prove Theorem 3.45.

* Exercise 3.30. Prove Theorem 3.50. [Hint: First work Exercise 3.13, but

note that not all parts of that exercise extend directly to multiple variables.]

Exercise 3.31. Let A[1..n] be an array of numbers. An inversion is a pair

of indices 1 ≤ i < j ≤ n such that A[i] > A[j]. The number of inversions

in A is a way to quantify how nearly sorted A is — the fewer inversions A

has, the more nearly sorted it is. Let I denote the number of inversions in A.

Show that InsertionSort (Figure 1.7, page 12) runs in Θ(n + I) time in

the worst case. (Thus, InsertionSort is very efficient when the array is

nearly sorted.) Note that because the analysis is in terms of two variables,

“worst case” refers to the worst-case input for each pair of values n and I.
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Exercise 3.32. Prove Theorem 3.56.

Exercise 3.33. Prove that if g(n) ∈ o(f(n)), then O(g(n)) ⊆ o(f(n)).
** Exercise 3.34. Find two smooth functions f : N → R

≥0 and g : N →
R
≥0 such that g(n) ∈ O(f(n)), but g(n) is in neither Θ(f(n)) nor o(f(n)).

Exercise 3.35. Prove that for any real numbers a > 1 and b > 1,

O(loga n) = O(logb n).

* Exercise 3.36. Prove that

lg(n!) ∈ Θ(n lg n).

3.14 Notes

Asymptotic notation predates electronic computing by several decades.

Big-O notation was introduced by Bachman [7] in 1894, but with a meaning

slightly different from our definition. In the original definition, O(f(n)) was

used to denote a specific, but unknown, function belonging to the set we have

defined to be O(f(n)). According to the original definition, it was proper to

write,

2n2 + 7n− 4 = O(n2).

However, one would never have written,

O(n2) = 2n2 + 7n− 4.

Thus, the “=” symbol was used to denote not equality, but a relation that

is not even symmetric.

Over the years, many have observed that a set-based definition, as we

have given here, is more sound mathematically. In fact, Brassard [16] claims

that as long ago as 1962, a set-based treatment was taught consistently

in Amsterdam. It was Brassard’s paper [16], however, that in 1985 first

made a strong case for using set-based notation consistently. Though we

are in full agreement with his position, use of the original definition is

still widespread. Alternatively, some authors give set-based definitions, then

abuse the notation by using “=” instead of “∈” or “⊆”. For a justification of

this practice, see Knuth [82] or Cormen, et al. [25]. For more information on

the development of asymptotic notation, including variations not discussed

here, see Brassard [16].



Analyzing Algorithms 105

The definitions of asymptotic notation on multiple variables are from

[67]. We have been careful to use multiple variables in asymptotic notation

only when the problem being analyzed has multiple natural parameters.

Otherwise, it makes sense to avoid the additional overhead of multiple

variables and to introduce auxiliary variables instead. This avoids problems

such as the expression potentially becoming negative when it includes a

difference of two values.

The first edition of Knuth [82] introduced the study of the analysis of

running times of algorithms. The notion of a smooth function is due to

Brassard [16]. Many techniques exist for solving summations and recurrences;

a good resource is Graham et al. [59].
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Chapter 4

Basic Techniques for Data Structures

Algorithms must manipulate data, often in large quantities. Therefore, the

way in which an algorithm stores and accesses data can have a significant

impact on performance. The principles developed in the first three chapters

apply to data structures, but in a somewhat different way than to algorithms.

In this chapter, we will examine the ways in which top-down design, correct-

ness proofs, and performance analysis can be applied to data structures. We

will use rather simple data structures as examples. In succeeding chapters,

we will apply these techniques to more involved structures.

4.1 Stacks

One of the strengths of both top-down design and object-oriented design is

their use of abstraction to express high-level solutions to problems. In fact,

we can apply abstraction to the problems themselves to obtain high-level

solutions to many similar problems. Such high-level solutions are known

as design patterns. For example, consider the “undo” operation in a word

processor. We have some object that is undergoing a series of modifications.

An application of the “undo” operation restores the object to its state prior

to the last modification. Subsequent applications of “undo” restore the object

to successively earlier states in its history.

We have captured the essence of the “undo” operation without specifying

any of the details of the object being modified or the functionality of the

document formatter in which it will appear. In fact, our description is general

enough that it can apply to other applications, such as a spreadsheet or the

search tree viewer on this book’s web site. We have therefore specified a

design pattern for one aspect of functionality of an application.

109
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We may apply the top-down approach to designing an implementation

of the undo operation specified above. We first observe that we need to

store a history of the edits applied to the edited object. These edits must be

represented in such a way that we can undo or invert them. Furthermore, we

only need last-in-first-out (LIFO) access to the history of edits. This suggests

that the history of edits should be stored in a stack. We can then implement

undo by popping the top edit from the stack, and applying its inverse to the

edited object. If the stack is empty, then no undo is possible. Likewise, when

edits are performed, each edit must be pushed onto the stack.

Let us now make these ideas a bit more formal. In order to be able

to reason about this solution, we must have a formal definition of a stack

and its operations. We therefore define a stack as a finite sequence of

elements 〈a1, . . . , an〉, together with the operations specified in Figure 4.1. A

mathematical structure, together with a specification of operations on that

structure, is known as an abstract data type (ADT). The operations specified

are the interface of the ADT. If we have a stack S, we refer to its Pop

operation by S.Pop(). We refer to the Pop operation of the Stack ADT

by Stack.Pop(). The Stack() operation is a specification of a constructor,

meaning that it is possible to construct an instance of any implementation

without supplying any arguments.

Figure 4.1 The Stack ADT
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In practice, we might want additional operations such as an operation

that returns the top element without changing the sequence; however, the

above operations are sufficient for now. Later, we will add to this set.

Note that the definition of an ADT is purely mathematical; i.e., it defines

a stack as a sequence, which is a mathematical object. It says nothing about

how a stack is to be implemented. Such a mathematical definition is sufficient

for proving the correctness of Undo, shown in Figure 4.3, together with

the specification of the Editable ADT in Figure 4.2. Such a proof is, in

fact, trivial. Note that by specifying in the precondition that the stack is

nonempty, we place on the caller the responsibility of checking this condition

prior to calling Undo.

Continuing with the top-down approach, we need to design an implemen-

tation for the Stack ADT. In what follows, we will first consider a simple

approach that does not quite meet the specification. We will then consider

two full implementations of the Stack ADT.

Figure 4.2 Specification of the Editable ADT

Figure 4.3 An algorithm to undo an editing operation
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4.2 A Simple Stack Implementation

The first step in designing an implementation for a data structure is to decide

upon a representation of the data. Perhaps the simplest representation of a

stack is an array storing the sequence of elements. Because we will want to

push additional elements onto the stack, we should use an array larger than

the number of elements. We therefore need a way to find the last element

of the sequence, or the top element of the stack. We can accomplish this by

keeping track of the number of elements in the stack.

Such a representation is a bit too simple, because the size of the array

limits the size of the stack — i.e., once we have constructed the array, we have

limited the size of the sequence we can represent. In order to accommodate

this shortcoming, we will associate with each of these stacks a capacity, which

gives the maximum number of elements it can hold. Later, we will consider

how this restriction might be removed. As a result of this restriction, we must

modify our specification of the Push operation so that if n is strictly less

than the stack’s capacity, then Push(a) adds a to the end of the sequence.

In order to be able to check this condition, we will replace the IsEmpty

operation with a more general Size operation that returns the number of

elements in the stack.

Our representation, therefore, consists of:

• an Array elements[1..M ] for some M ≥ 0; and

• a Nat size.

The value M above is not an explicit part of the representation, but we

assume that we can obtain its value by using the function SizeOf, specified

in Figure 1.20 on page 23.

In order to make sense of a given representation, we need an inter-

pretation, which relates a given set of values for the variables in the

representation to a specific instance of the formal definition. The variables

used by the interpretation may include not only the representation vari-

ables, but also variables that may be accessed using the representation

variables. In our present example, elements[1..size] describes the stack

〈elements[1], . . . , elements[size]〉, and SizeOf(elements) gives the capacity

of the stack.

The above interpretation is problematic when size is outside the bounds

of the array. We therefore need a mechanism to ensure that the values of

a given representation are valid. To this end we use a structural invariant.

This invariant is a statement about the values of the representation variables,
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and perhaps other variables that can be accessed using the representation

variables. It should be true at virtually all times. The only exception is that

we allow it to be temporarily violated while an operation is modifying the

structure, provided that it is true by the time the operation completes. The

structural invariant for our present example will be:

0 ≤ size ≤ SizeOf(elements). (4.1)

The values of the representation variables, together with all values used

by the interpretation and the structural invariant, comprise the state of the

data structure. Thus, the state of our stack implementation consists of the

value of size, the array elements, and the values stored in elements[1..size].

(We will clarify shortly the distinction between the array and the values

stored in the array.)

We can now complete our implementation by giving algorithms for the

SimpleStack constructor and operations. These algorithms are shown in

Figure 4.4.

Note that the preconditions and postconditions for the constructor and

operations are stated in terms of the definition of a stack, not in terms of our

chosen representation. For example, the precondition for the Push operation

could have been stated as,

size < SizeOf(elements).

However, preconditions and postconditions for operations on data structures

should specify the externally observable behavior of the operation, and

hence should not refer to the representation of the structure. Thus, the

preconditions and postconditions still make sense even if we change the

representation.

The performance of these operations can be analyzed using the tech-

niques given in Chapter 3. It is easily seen that each of the operations Push,

Pop, and Size operate in Θ(1) time. Analysis of the constructor is more

problematic because we must include the time for constructing an array.

This time depends on such factors as how the operating system allocates

memory and whether the elements are initialized to some default value. For

the sake of simplicity, we will assume that the memory can be allocated in

constant time, and that the array will not be initialized. Thus, the time to

construct a new array is in Θ(1), and the constructor operates in Θ(1) time.

Proving correctness of operations on a data structure is similar to proving

correctness of ordinary algorithms. There are five parts:
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Figure 4.4 The data type SimpleStack, which does not quite implement the Stack

ADT

1. Initialization: If the precondition holds at the beginning of a constructor

invocation, then the postcondition holds upon completion of the construc-

tor. If the constructor terminates normally, then the structural invariant

holds after the data structure has been constructed, regardless of the

truth of the precondition. (If the constructor terminates abnormally,
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i.e., with an error condition, then we assume the structure has not been

constructed.)

2. Maintenance: If the structural invariant holds prior to the beginning of

an operation, then it holds following completion of that operation.

3. Security: If the structural invariant holds, then the state can only be

modified by invoking one of this structure’s operations.

4. Termination: Each operation and constructor terminates.

5. Correctness: If the structural invariant and the precondition hold prior

to the beginning of an operation, then the postcondition holds following

the completion of that operation.

We have already seen four of these five parts in proofs of algorithm

correctness. Security is needed not only to make sure that malicious or

untrusted code cannot violate the intended purpose of the data structure,

but also to guarantee that the structural invariant is maintained between

operations. In order to guarantee security, we need a mechanism for

restricting access to the representation variables. Before we can discuss

this mechanism, however, we first need to provide some details about the

computational model we are assuming. We will tackle all of this shortly;

however, let us first give an example of the other four parts via a correctness

proof for SimpleStack. We will first state security as a lemma to be proved

later, then we will show that SimpleStack meets its specification.

Lemma 4.1. Security holds for SimpleStack.

Theorem 4.2. SimpleStack meets its specification.

Proof. We must show initialization, maintenance, security, termination,

and correctness.

Initialization: First, suppose the precondition to the constructor is met;

i.e., that cap is a Nat. Then the constructor will terminate normally with

size = 0, which we interpret as meaning the represented sequence is empty.

Because we interpret SizeOf(elements), which is cap, to be the capacity of

the stack, the postcondition is therefore met. Furthermore, regardless of the

truth of the precondition, if the constructor terminates without error, size

will be 0 and elements will refer to an array. Because an array cannot have a

negative number of elements, its size is at least 0. Therefore, the structural

invariant holds (0 ≤ size ≤ SizeOf(elements)).
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Maintenance: Suppose the structural invariant holds prior to the execution

of an operation. We will only consider the operation Push(a); proofs for the

other two operations are left as an exercise.

The size of elements is not changed by this operation. The value of size

is only changed if it is strictly less than the size of elements. In this case,

because it is incremented by 1, the value of size will remain nonnegative,

but will not exceed the size of elements. The structural invariant therefore

holds after this operation completes.

Security: Follows from Lemma 4.1.

Termination: Because there are no loops or recursive calls, all constructors

and operations terminate.

Correctness: Suppose the structural invariant holds prior to the execution

of an operation. We will only consider the operation Push(a); proofs for the

other two operations are left as an exercise.

Suppose the precondition holds, i.e., that the number of elements in

the stack is strictly less than the stack’s capacity. Because we interpret the

size of elements to be the stack’s capacity and the value of size to be the

number of elements in the stack, it follows that size < SizeOf(elements).

The if condition is therefore true. size is therefore incremented by 1, which

we interpret as increasing the number of elements on the stack by 1. a is

then assigned to elements[size], which we interpret as the last element of the

represented sequence. The postcondition is therefore met. �

As the above proof illustrates, initialization, maintenance, termination,

and correctness can be shown using the techniques introduced in Chapter 2,

although the specific statements to be shown are somewhat different. Proving

security, on the other hand, not only uses different techniques, it also requires

a more detailed specification of the underlying computational model that

we are assuming. We have chosen a model that is reasonably simple and

consistent, and which may be implemented easily in a variety of programming

languages. In what follows, we will give its details.

One characteristic of our model involves the way in which data items

are associated with variables. With each data item, there is a reference that

uniquely identifies it (i.e., two distinct references may not identify the same

data item). Furthermore, a reference may not itself be a data item; i.e., a

reference may not refer to another reference. It is the reference, not the data

item itself, that will be stored in a variable. We do not specify anything
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else regarding the reference, but often a reference will be implemented as

the address in memory at which the data item resides. However, we will

assume that a constant like the integer 3 also has a reference. In this case

the reference may simply be the binary encoding of 3.

Such a distinction between a data constant and its reference may seem

artificial, but it allows for a uniform treatment of variables and data. Thus,

when variable assignments are made, the reference to the assigned data item

is stored in the modified variable. Likewise, when formal parameters take

their values from actual parameters, the references are copied from the actual

parameters to the formal parameters.

Given the distinction between a data item and its reference, we can now

define more precisely the state of a SimpleStack. It must first include the

values of the reference variables, namely size (a reference to an integer) and

elements (a reference to an array). Because the interpretation uses the values

of elements[1..size], these values, which are references to arbitrary data items,

are also part of the state. However, the values of the data items to which

the references in elements[1..size] refer are not included in the state. Thus,

if elements[size] contains a reference to an array A, that reference is a part

of the state of the stack, but the contents of A are not. In particular, if the

value stored in elements[size] changes, then the stack contents change, but

if the contents of A change, the stack contents do not change — A is still

the item at the top of the stack.

Our model uses a simple hierarchical type system. Each implementation

has a unique type. This type may be a subtype of one or more interfaces (i.e.,

ADTs) that it implements. Thus, if an implementation A implements ADTs

B and C, then any instance of type A also belongs to types B and C. We do

not allow implementations to be subtypes of other implementations, so our

model includes no inheritance. Our algorithms will not always specify the

type of a data item if its type is irrelevant to the essence of the algorithm.

For example, we have not specified the type of the parameter a for the

Stack.Push operation in Figure 4.4 because we do not care what kind of

data is stored in the stack.

When the data type of a parameter is important, we can specify it in the

precondition, as we have done for the constructor in Figure 4.4. Unless we

explicitly state otherwise, when we state in a precondition that a variable

refers to an item of some particular type, we mean that this variable must

be non-nil. Note, however, that a precondition does not affect the execution

of the code. When it is important that the type actually be checked (e.g., for

maintaining a structural invariant), we will attach a type declaration in the
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parameter list, as in the two-argument constructor in Figure 4.10 (page 129).

A type declaration applies to a single parameter only, so that in this example,

L is of type ConsList, but a is untyped. We interpret a type declaration as

generating an error if the value passed to that parameter is not nil and does

not refer to an instance of the declared type.

As we have already suggested, the elements of a particular data type

may have operations associated with them. Thus, each instance of the Stack

type has a Push operation and a Pop operation. For the sake of consistency,

we will consider that when a constructor is invoked, it belongs to the data

item that it is constructing. In addition, the elements of a data type may

have internal functions associated with them. Internal functions are just like

operations, but with restricted access, as described below.

In order to control the way in which a data structure can be changed, we

place the following restrictions on how representation variables and internal

functions can be accessed:

• Write access to a representation variable of an instance of data type A is

given only to the operations, constructors, and internal functions of that

instance.

• Read access to a representation variable of an instance of data type A is

given only to operations, constructors, and internal functions of instances

of type A.

• Access to an internal function of an instance of a data type A is given

only to operations, constructors, and internal functions of that instance.

These restrictions are severe enough that we will often need to relax

them. In order to relax either of the first two restrictions, we can provide

accessor operations. Because we frequently need to do this, we will adopt

some conventions that allow us to avoid cluttering our algorithms with trivial

code.

• If we want to provide read access to a variable var in the representation of

type A, we define the operation A.Var(), which simply returns var. Using

this convention, we could have omitted operation SimpleStack.Size()

from Figure 4.4.

• If we want to provide write access to var, we define the operation

A.SetVar(x), which assigns the value of x to var.

Explicitly allowing write access does not technically violate security,

because any changes are made by invoking operations of the data structure.

What can be problematic is allowing read access. For example, suppose we
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were to allow read access to the variable elements in the representation of a

stack. Using this reference, a user’s code could change the contents of that

array. Because this array’s contents belong to the state of the data structure,

security would then be violated. We must therefore check for the following

conditions, each of which might compromise security:

• An operation returns a reference to a portion of the state of the structure.

This condition can include an operation that gives explicit read access to a

representation variable. This condition will violate security if the reference

refers to a data item whose value can change.

• An operation causes the data item to which one of its parameters refers

to be a part of the state of the structure. Under this condition, the code

that invokes the operation has a copy of the parameter, and hence has

access to the state of the structure. If the data item in question can be

changed, security is violated.

• A reference to a portion of the state is copied to the state of another

instance of the same type. For example, if S and T are of type

SimpleStack, and their elements variables have the same value, then the

operation S.Push(x) could change the contents of T . Thus, if a shared

data item can be changed, security is violated.

We can now illustrate the technique of proving security by proving

Lemma 4.1.

Specifically, the variable
size can receive a different
value, and hence refer to
a different Nat; however,
the Nats themselves can-
not change.

Proof of Lemma 4.1 Read access is explicitly

given to size. However, size refers to a Nat, which

cannot be changed. The only other values returned

are references to elements stored in the stack, and the

values of these elements are not part of the state of

the stack. Likewise, the only parameters are the capacity and the parameter

to Push, neither of which refers to a data item that becomes a part of

the state of the stack. Finally, no operations copy any part of the state of

a SimpleStack to the state of another SimpleStack. We therefore can

conclude that SimpleStack is secure. �

Designing secure data structures is sometimes rather challenging. In fact,

there are occasions when security becomes too much of a burden — for

example, when we are designing a data structure to be used only locally

within some algorithm. In such a case, it may be easier to prove that our

algorithm doesn’t violate the security of the data structure, rather than to

prove that such a violation is impossible. If we define a data structure for
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which we can prove initialization, maintenance, termination, and correctness,

we say that this structure is insecure, but otherwise satisfies its specification.

Together, initialization, maintenance, and security are almost sufficient

to prove that the structural invariant holds between execution of any opera-

tions on the structure. The only caveat is similar to the difficulty associated

with mutual recursion, as was discussed in Section 2.5. Suppose that during

execution of some operation x.Op1, a function call is made while the

structural invariant is false. Suppose that through some sequence of nested

Figure 4.5 Illustration of a callback — when x.Op2() is called, the structural

invariant of x is false
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calls, some operation x.Op2 is then called (see Figure 4.5). At this point,

the structural invariant is false, and the operation’s correctness cannot be

guaranteed. This scenario is known as a callback. Note that it does not matter

how long the sequence of nested calls is. In particular, the function call made

by x.Op1 may be a direct call to x.Op2, or it may be a recursive call.

Though callbacks are common in software systems, they are more

problematic than beneficial in the design of data structures. Furthermore, as

is the case for mutual recursion, callbacks may be impossible to detect when

we are designing a single data structure, as we may need to call a function

whose implementation we don’t have. For these reasons, we will assume that

if a callback is attempted, a runtime error results. Our correctness proofs

will then rest on the assumption that data structures and algorithms are not

combined in such a way as to result in a callback.

A locking mechanism can
be used to cause any call-
back to generate a runtime
error.

Given this assumption, once initialization, main-

tenance, and security are shown, it can be shown by

induction that the structural invariant holds between

execution of any operations that construct or alter an

instance of the data structure. Note that the structural invariant will hold

after the structure is constructed, regardless of whether preconditions to

operations are met. Thus, we can be convinced that a structural invariant

holds even if operations are not invoked properly. Because we can know

that the structural invariant holds, we can then use it in addition to the

precondition in proving the correctness of an individual operation.

4.3 Expandable Arrays

SimpleStack does not quite implement the Stack ADT because each

SimpleStack must be constructed with a fixed capacity. We will now

present a true implementation of Stack.

We can use the basic idea from SimpleStack if we have a way to perform

a Push when the array is full. Our solution will be to construct a new, larger

array, and to copy the elements in the stack to this new array. This new array

then replaces the original array. We now have room to add the new element.

Though this idea is simple, there are some performance issues to consider.

In particular, Θ(n) time is required to copy n elements from one array to

another. We might be willing to pay this performance price occasionally, but

if we are not careful, the overall performance of manipulating a stack may

be significantly degraded. Suppose, for example, that the new array contains

only one more location than the original array. Consider what happens if we
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push n elements onto such a stack, where n is much larger than the size of

the original array. After the original array is filled, each Push requires Θ(i)

time, where i is number of elements currently in the stack. It is not hard to

see that the total time for pushing all n elements is in Θ(n2), assuming the

size of the original array is a fixed constant.

In order to avoid this bad performance, when we need to allocate a new

array, we should make sure that it is significantly larger than the array we

are replacing. As we will see shortly, we can achieve this goal by doubling

the size of the array. The ExpandableArrayStack implementation shown

in Figure 4.6 implements this idea. In order for this to work, however, the

size of the array must always be non-zero; hence, we will need to include

this restriction in the structural invariant. Note that we have added a

constructor that was not specified in the interface (Figure 4.1). The no-

argument constructor simply invokes this new constructor with a default

value for its argument.

At this point it is tempting to apply the top-down design principle

by defining an ADT for an expandable array. However, when an idea is

simple enough, designing an ADT often becomes more cumbersome than it

is worth. To attain the full functionality of an expandable array, we would

need operations to perform each of the following tasks:

• reading from and writing to arbitrary locations;

• obtaining the current size of the array; and

• explicitly expanding the array (we might want to do this before the array

is full) to a size we choose.

Furthermore, we might wish to redistribute the data in the larger array when

we expand it. It therefore seems best to characterize the expandable array

design pattern as the practice of moving data from one array to a new one

of at least twice the size whenever the current array becomes too full.

Clearly, the worst-case running time of the Push operation shown in

Figure 4.6 is in O(n), where n is the number of elements in the stack.

Furthermore, for any n > 0, if we construct a stack with the constructor call

ExpandableArrayStack(n), then when the (n + 1)-st element is pushed

onto the stack, Ω(n) time is required. Therefore, the worst-case running

time of the Push operation is in Θ(n). All other operations clearly require

Θ(1) time.

The above analysis seems inadequate because in any actual use of

a stack, the Θ(n) behavior will occur for only a few operations. If an

ExpandableArrayStack is used by some algorithm, the slow operations
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Figure 4.6 ExpandableArrayStack implementation of Stack
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may be few enough that they do not significantly impact the algorithm’s

overall performance. In such a case, it makes sense to consider the worst-

case performance of an entire sequence of operations, rather than a single

operation. This idea is the basis for amortized analysis.

With amortized analysis, we consider an arbitrary sequence of operations

performed on an initially empty data structure. We then do a form of worst-

case analysis of this sequence of operations. Clearly, longer sequences will

have longer running times. In order to remove the dependence upon the

length of the sequence, we amortize the total running time of the sequence

over the individual operations in the sequence. For the time being, this

amortization will simply be to compute the average running time for an

individual operation in the sequence; later in this chapter we will generalize

this definition. The analysis is still worst-case because the sequence is

arbitrary — we are finding the worst-case amortized time for the operations

on the data structure.

For example, consider any sequence of n operations on an initially empty

stack constructed with ExpandableArrayStack(k). We first analyze the

worst-case running time of such a sequence. We can use the techniques

presented in Chapter 3, but the analysis is easier if we apply a new technique.

We first analyze the running time ignoring all iterations of the for loop in

the Push operation and any loop overhead that results in the execution of

an iteration. Having ignored this code, it is easily seen that each operation

requires Θ(1) time, so that the entire sequence requires Θ(n) time.

We now analyze the running time of all iterations of the for loop

throughout the entire sequence of operations. In order to accomplish this,

we must compute the total number of iterations. The array will be expanded

to size 2k the first time the stack reaches size k+1. For this first expansion,

the for loop iterates k times. The array will be expanded to size 4k the first

time the stack reaches size 2k + 1. For this expansion, the loop iterates 2k

times. In general, the array will be expanded to size 2i+1k the first time the

stack reaches size 2ik + 1, and the loop will iterate 2ik times during this

expansion. Because the sequence contains n operations, the stack can never

exceed size n. Therefore, in order to compute an upper bound on the total

number of iterations, we must sum 2ik for all i ≥ 0 such that

2ik + 1 ≤ n
2i ≤ (n− 1)/k

i ≤ lg(n− 1)− lg k.
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The total number of iterations is therefore at most

�lg(n−1)−lg k�∑
i=0

2ik = k

�lg(n−1)−lg k�∑
i=0

2i

= k(2�lg(n−1)−lg k�+1 − 1) by (2.2)

≤ k2lg(n−1)−lg k+1

=
k2lg(n−1)+1

2lg k

= 2(n− 1).

Because each loop iteration requires Θ(1) time, the time required for all

loop iterations is in O(n). Combining this result with the earlier analysis

that ignored the loop iterations, we see that the entire sequence runs in

Θ(n) time.

Now to complete the amortized analysis, we must average the total

running time over the n operations in the sequence. By Exercise 3.9 on page

98, if f(n) ∈ Θ(n), then f(n)/n ∈ Θ(1). Therefore, the worst-case amortized

time for the stack operations is in Θ(1). We conclude that, although an

individual Push operation may be expensive, the expandable array yields

a stack that performs well on any sequence of operations starting from an

initially empty stack.

4.4 The CONSLIST ADT

On this textbook’s web site is a search tree viewer that allows users to insert

and remove strings from various kinds of search trees (see Chapter 6) and

to view the results. Included are “Back” and “Forward” buttons that allow

the user to step through the history of the trees created. Two stacks are

used, one to store the history, and one to store the “future” after the user

has stepped back into the history. Also included is a “Clone” button, which

causes an identical window to be created, with identical history and future.

This new window can be manipulated independently from the first. In order

to accomplish this independence, the two stacks must be cloned.

Let us consider how we might clone an ExpandableArrayStack. In

order to simplify the discussion, we will restrict our attention to shallow

cloning. Shallow cloning consists of cloning only the state of the structure,

and not the items contained in the structure. Thus, if a data item is

stored in a stack which is then cloned, any subsequent changes to that
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data item will be reflected in both stacks. However, changes to one of the

stacks will not affect the other. In order to perform a shallow clone of an

ExpandableArrayStack, the array must clearly be copied, so that the

two stacks can be manipulated independently. Copying one array to another

requires Θ(n) time, where n is the number of elements copied.

We might be able to improve on this running time if we can use a data

structure that facilitates non-destructive updates. An update is said to be

non-destructive if it does not change any of the existing structure, but instead

builds a new structure, perhaps using some or all of the existing structure.

If all updates are non-destructive (i.e., the structure is immutable), it is

possible for different structures to share substructures that are common to

both. This sharing can sometimes lead to improved efficiency; for example, to

clone an immutable structure all that we need to copy is the reference to it.

In order to apply this idea to stacks, it is helpful to think of a finite

sequence as nested ordered pairs. In particular, a sequence of length n > 0

is an ordered pair consisting of a sequence of length n − 1 followed by an

element. As a special case, the sequence of length 0 is denoted (). Thus, the

sequence 〈a1, a2, a3〉 can be thought of as the pair ((((), a1), a2), a3). If we

think of this sequence as a Stack S, then we can think of S.Push(a4) as

a function returning a new sequence (((((), a1), a2), a3), a4). Note that this

new sequence can be constructed simply by pairing S with a4, leaving S

unchanged.

Nested pairs form the basic data structure in the programming language

Lisp and its derivatives. The Lisp function to build an ordered pair is called

cons. Based on this background is the ADT known as a ConsList. It is

useful to think of a nonempty ConsList as a pair (head, tail), where head

is an element and tail is a ConsList. (Note that the two components of the

pair are in the reverse order of that described in the above paragraph.)

We use Bool to denote the
type whose only values are
true and false.

More formally, we define a ConsList to be a

finite sequence 〈a1, . . . , an〉, together with the opera-

tions specified in Figure 4.7. Note that none of these

operations changes the ConsList. We therefore say that a ConsList is an

immutable structure, meaning that though the elements in the sequence may

change their state, the sequence itself will not change.

In what follows, we will show how to implement Stack using a Cons-

List. We will have thus applied top-down design to the task of implementing

Stack, as we will have reduced this problem to the problem of implementing

ConsList. The resulting Stack implementation will support constant-time

Push, Pop, and shallow cloning, which we will support via an additional
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Figure 4.7 The ConsList ADT

constructor. We will then complete the design by showing how to implement

ConsList.

Our Stack representation will be a ConsList elements. We interpret

elements as storing the stack in reverse order; i.e., the head of elements is

the top element on the stack. The structural invariant will be that elements

refers to a ConsList. The implementation is shown in Figure 4.8. The one-

argument constructor is used to construct a shallow clone.

Again, all constructors and operations can easily be seen to run in Θ(1)

time, and proving initialization, maintenance, termination, and correctness

is straightforward. Regarding security, we note that elements is shared when

the one-argument constructor is used; however, because a ConsList is

immutable, this sharing cannot violate security. The full correctness proof is

left as an exercise.
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Figure 4.8 ConsListStack implementation of Stack

We will now complete the implementation of ConsListStack by

implementing ConsList. Our representation consists of the following:

• a readable Bool isEmpty ;

• a readable element head; and

• a readable ConsList tail.

If isEmpty is true, then we interpret the ConsList to represent an empty

sequence. Otherwise, we interpret head as the first element of the sequence,

and tail as the remainder of the sequence. As our structural invariant,

we require a ConsList to represent a finite sequence according to the

above interpretation. The representation of the ConsList 〈a1, a2, a3, a4〉 is
illustrated in Figure 4.9.
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Figure 4.9 An illustration of the representation of a ConsList

Figure 4.10 Implementation of ConsList

Because our representation fits so closely with the definition of a

ConsList, the implementation is trivial — the operations are simply the

accessors for the three representation variables. Note that our specification

says nothing about the contents of head and tail when isEmpty is true;

hence, if these accessors are called for an empty list, arbitrary values may

be returned. The implementation is shown in Figure 4.10. Because we will

only present a single implementation of ConsList, we use the same name

for the implementation as for the interface.

It is easily seen that each constructor and operation runs in Θ(1) time.

We will now prove that the implementation meets its specification.

Theorem 4.3. The ConsList implementation meets its specification.

Proof.

Initialization: We consider the two constructors as separate cases.

Case 1: ConsList(). Because isEmpty is set to true, we interpret the

constructed ConsList as representing an empty sequence. The structural

invariant and postcondition therefore hold.
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Case 2: ConsList(a, L : ConsList). If this constructor terminates

normally, then L refers to a ConsList. Let us therefore assume that this

is the case. Let L represent the sequence 〈a1, . . . , an〉. isEmpty is set to

false, so the constructed instance is interpreted to be the nonempty sequence

〈a, a1, . . . , an〉. Because this is a finite sequence, the structural invariant and

postcondition both hold.

Maintenance: Because no operations change any representation variables,

maintenance holds trivially.

Security: Read access is explicitly given to the three representation

variables. However, isEmpty and tail are immutable, so this read access

cannot result in changes to either of them. Because head refers to a data

item that is not a part of the state, changes that may result from reading this

reference do not affect the security of the ConsList. Finally, although the

parameter L to the two-argument constructor is copied to a representation

variable, because it refers to an immutable data item, security is not violated.

Termination: Because there are no loops or recursion, all constructors and

operations terminate.

Correctness: The only operations simply provide read access, and so are

trivially correct. �

Example 4.4. Suppose we construct an empty ConsListStack S, then

push data items a1, a2, and a3 in sequence onto S. Figure 4.11(a)

illustrates the result of these operations. Suppose we then construct

T using ConsListStack(S). At this point T.elements is equal to

S.elements. If we then execute T.Pop() twice, T.elements is assigned

T.elements.Tail().Tail(), as shown in Figure 4.11(b). Note that this does

not affect the contents of S. If we then push a4 onto T , we obtain the result

shown in Figure 4.11(c). Again, the contents of S are unchanged.

We conclude our discussion of ConsLists by noting that there are

some disadvantages to this implementation of Stack. The running time

of the Push operations is likely to be slower than either of the other

implementations because new memory is always allocated. Furthermore, this

memory is never explicitly released, so this implementation should only be

coded in a language that provides automatic garbage collection.
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Figure 4.11 Example of stacks implemented with ConsLists

The idea behind aConsList can be modified to form a mutable structure

if we allow the value of tail to be modified. It is difficult to define a general-

purpose ADT based on this idea other than to allow write access to tail. If we

do this, then there is little security; i.e., the user can construct complicated

linked structures that share data or perhaps form loops. Nevertheless, if we

are careful, we can use this idea as a building block for several more advanced

data structures. We will therefore refer to this idea as the linked list design

pattern.

4.5 Amortized Analysis Using Potential Functions

In Section 4.3, we introduced the technique of amortized analysis. The

actual analysis was rather straightforward, mainly because the worst case

is easily identifiable. For many data structures, amortized analysis is not

so straightforward. Furthermore, we would like to be able to amortize in a

more general way than simply averaging over all operations in a sequence.

Specifically, we would like to be able to amortize in such a way that

operations on small structures receive smaller amortized cost than operations

on large structures. For example, if n represents the size of a structure, we

would like to be able to speak about an amortized running time in O(lg n).

In this section, we introduce a more general notion of amortized cost and

present a corresponding technique for performing amortized analysis.



132 Algorithms: A Top-Down Approach

In order to motivate this technique, it is helpful to think of amortized

analysis using an analogy. Suppose we have a daily budget for gasoline for a

car. We want to track our gasoline purchases to ensure that we don’t exceed

this budget. Further suppose that we begin tracking these expenses when the

tank is full. We may then have several days in which we spend no money on

gasoline. At some point, we will refill the tank, thus incurring a large expense

which may be greater than our daily budget. However, if we amortize this

cost over all of the days since we last filled the tank, we will hopefully find

that we have remained within our daily budget for each of these days.

One way to monitor our budget more closely is to consider the potential

cost of filling the tank at the end of each day. Specifically, suppose that we

have a very precise gas gauge on our car. In order to keep the analogy simple,

we will also suppose that the cost of gasoline remains constant. At the end

of each day, we could then measure the amount of gasoline in the tank and

compute the cost of potentially filling the tank at that point.

For example, suppose gasoline costs $3 per gallon. Further suppose that

on consecutive days, we find that our 10-gallon tank contains 8 gallons and

6.5 gallons, respectively. On the first day, the potential cost of filling the

tank was $6, as the tank would hold 2 additional gallons (see Figure 4.12).

On the second day, the potential cost was $10.50, as the tank would hold 3.5

additional gallons. Assuming that no gasoline was added to the tank that

day, the cost of the gasoline used that day was then $4.50 — the difference

in the two potential costs.

On days in which we fill the tank, the computation is only slightly more

complicated. Note that on these days, the potential cost is likely to decrease.

For example, suppose that the previous day’s level (day 4 in Figure 4.12)

was 3 gallons, today’s level is 9 gallons, and that we spent $24 to purchase 8

gallons of gasoline. The potential cost of filling the tank has decreased from

$21 to $3; hence, the change in potential cost is negative $18. However, we

should include the cost of the gasoline we actually purchased, resulting in

an amortized cost of $6 for that day. In general, we compute the amortized

cost by adding the actual cost to the change in potential cost.

Note that this amortization process is somewhat pessimistic, as we are

assessing costs before we actually incur them; however, it is a safe way of

verifying our budget. Specifically, suppose we sum up the amortized costs

for any sequence of days, beginning with a day in which the tank is full.

The sum of changes in potential costs will be the net change in potential

cost. Because the tank is initially full, the initial potential cost is 0; hence

the net change in potential cost is the final potential cost. The remainder of
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Figure 4.12 Example of actual, potential, and amortized costs for gasoline

the sum of amortized costs is the sum of actual costs of gasoline purchases.

Thus, the sum of amortized costs is the sum of actual costs plus the final

potential cost. Because the potential cost can never be negative (the tank

can’t be “overfull”), the sum of the amortized costs will be at least the sum

of the actual costs.

Let us now consider how we might apply this technique to the amortized

analysis of a data structure such as an ExpandableArrayStack. The

potential gasoline cost is essentially a measure of how “bad” the state of

the gas tank is. In a similar way, we could measure how “bad” the state of

an ExpandableArrayStack is by considering how full the array is — the

closer the array is to being filled, the closer we are to an expensive operation.

We can formalize this measure by defining a potential function Φ, which maps

states of a data structure into the nonnegative real numbers, much like the

potential gasoline cost maps “states” of the gas tank into nonnegative real

numbers.
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As we assumed our potential gasoline cost to be initially 0, so also we

require that Φ maps the initial state (usually an empty data structure) to 0.

Each operation, by changing the state of the data structure, also changes the

value of Φ. An increase in Φ corresponds to using gasoline, whereas a decrease

in Φ corresponds to adding gasoline to the tank (though not necessarily filling

it, as Φ might not reach 0). Thus, for ExpandableArrayStack, we would

want the potential function to increase when a Push that does not expand

the array is performed, but to decrease when either a Pop or a Push that

expands the array is performed.

Let σ denote the state of a data structure prior to some operation, and

let σ′ denote the state of that structure following the operation. We then

define the change in Φ to be Φ(σ′)− Φ(σ). We further define the amortized

cost of the operation relative to Φ to be the actual cost plus the change in Φ.

The above defines what a potential function is and suggests how it might

be used to perform amortized analysis. It does not, however, tell us precisely

how we can obtain a potential function. We will address this issue in detail

shortly; for now however, we will show that an amortized analysis using any

valid potential function will give a true upper bound on amortized cost. The

proof is essentially the same argument that we gave justifying our use of the

potential gasoline cost for amortized analysis.

Theorem 4.5. Let Φ be a valid potential function for some data structure;

i.e., if σ0 is the initial state of the structure, then Φ(σ0) = 0, and if σ is any

state of the structure, then Φ(σ) ≥ 0. Then for any sequence of operations

from the initial state σ0, the sum of the amortized costs of the operations

relative to Φ is at least the sum of the actual costs of the operations.

Proof. Let o1, . . . , om be a sequence of operations from σ0, and let σi be

the state of the data structure after operation oi has been performed. Also,

let ci be the actual cost of oi applied to state σi−1. Then
m∑
i=1

(ci +Φ(σi)−Φ(σi−1)) =
m∑
i=1

ci +
m∑
i=1

Φ(σi)−
m−1∑
i=0

Φ(σi)

=

m∑
i=1

ci +Φ(σm)− Φ(σ0)

≥
m∑
i=1

ci,

because Φ(σm) ≥ 0 and Φ(σ0) = 0. �
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This notion of amortized cost is therefore meaningful and more general

than the one introduced in Section 4.3. Specifically, because an amortized

cost is defined for each operation, we can analyze this cost much like we

would analyze the actual running time of an operation. Note, however, that

this notion of amortization only provides an upper bound. For this reason,

we only use O-notation (not Ω or Θ) when we perform this type of analysis.

This technique can now be used to analyze the amortized performance

of ExpandableArrayStack. However, finding an appropriate potential

function for this analysis turns out to be a bit tricky. As Theorem 4.5 implies,

we can perform an amortized analysis using any valid potential function;

however, a poor choice of potential function may result in a poor upper bound

on the amortized cost. For example, we could choose as our potential function

the constant function 0 — i.e., for each state, the potential is 0. This function

meets the requirements of a potential function; however, because the change

in potential will always be 0, the amortized cost relative to this potential

function is the same as the actual cost. Finding a potential function that

yields constant amortized cost for theExpandableArrayStack operations

requires a bit of insight.

For this reason, before we give a potential-function analysis for Expand-

ableArrayStack, we will begin with a simpler example. In particular,

consider the ADT BinaryCounter, specified in Figure 4.13. A Bina-

ryCounter maintains a value that is initially 1. The Increment operation

can be used to increment the value by 1, and the Value operation can be

used to retrieve the value as a ConsList of 1s and 0s, least significant

bit first. It is unlikely that this ADT has any useful purpose; however, the

implementation shown in Figure 4.14 yields an amortized analysis that is

simple enough to illustrate clearly the potential-function technique.

This implementation uses a single readable representation variable,

value. The structural invariant states that value refers to the ConsList

specified by the Value operation. We leave it as an exercise to show that

this implementation satisfies its specification.

Let us now analyze the worst-case running time of Increment. In the

worst case, the first loop can iterate n times, where n is the length of value.

This case occurs when value consists entirely of 1s; however, when value

begins with a 0, this loop will not iterate at all. It is easily seen that the

second loop always iterates the same number of times as the first loop; hence,

in the worst case, the Increment operation runs in Θ(n) time, or in Θ(lg v)

time, where v is the value represented.
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Figure 4.13 Specification of the BinaryCounter ADT

We wish to show that the amortized costs of the IterBinCounter

operations are in O(1). We first need to identify the actual costs. Observe

that the Value operation runs in Θ(1) time and does not change the

structure; hence, we can ignore this operation (we will be ignoring only some

constant time for each operation). Because the two loops in Increment

iterate the same number of times, the running time of Increment is

proportional to the number of iterations of the while loop, plus some

constant. We can therefore use the number of iterations of the while loop

as the actual cost of this operation. Note that the actual cost varies from 0

to n, depending on the current value represented.

The next step is to define an appropriate potential function. This step is

usually the most challenging part of this technique. While finding a suitable

potential function requires some creativity, there are several guidelines we

can apply.

First, we can categorize operations of a data structure according to two

criteria relevant to amortized analysis:

• the actual cost of the operation; and

• how much it degrades or improves future performance of the data

structure.
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Figure 4.14 IterBinCounter implementation of BinaryCounter, specified in

Figure 4.13

Using the above criteria, we can divide operations into four categories:

1. Operations that cost little and improve future performance. IterBin-

Counter contains no such operation; however, we needn’t be too

concerned with operations of this type because they cause no problems

for our analysis.

2. Operations that cost little but degrade future performance. The Incre-

ment operation when the head of value is 0 is an example of this type.

It performs no loop iterations, but causes value to have at least one

leading 1, so that the next Increment will perform at least one iteration.

3. Operations that cost much but improve future performance. The Incre-

ment operation when value has many leading 1s is an example of this

type. It performs a loop iteration for each leading 1, but replaces these

leading 1s with 0s. Thus, the next Increment will not perform any
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iterations. In fact, a number of Increment operations will be required

before we encounter another expensive one.

4. Operations that cost much and degrade future performance. Our

IterBinCounter includes no operations of this type. In fact, operations

of this type usually make amortized analysis futile.

The key to finding an appropriate potential function is in striking a good

balance between operations of types 2 and 3 above. Consider an operation

of type 3. The potential function needs to decrease enough to cancel out the

high cost of the operation. On the other hand, it cannot increase too much on

an operation of type 2, or this operation’s amortized cost will be too high. We

are trying to show that the Increment operation has a constant amortized

cost. Therefore, an operation of type 2 must increase the potential function

by at most a constant value. Furthermore, an operation of type 3 requires

k iterations, so our potential function must have a decrease of roughly k for

such an operation. In addition, any potential function must be 0 initially

and always nonnegative.

Based upon the above discussion, it would appear that the number of

leading 1s in value would be a good measure of the structure’s degradation.

Let us therefore consider using as our potential function the number of

leading 1s. Unfortunately, we immediately encounter a problem with this

function — it is not initially 0, because an IterBinCounter initially has

one leading 1. This function is therefore not a valid potential function. We

could make a small adjustment by subtracting 1 from the number of leading

1s; however, the resulting function will then go negative whenever there are

no leading 1s.

Before we look for an alternative potential function, we should make one

more observation regarding the number of leading 1s. Suppose value begins

with a 0, which is followed by a large number of 1s. When an Increment

is performed on this state, the leading 0 is replaced by a 1, thus causing

the number of leading 1s to increase by a large amount. Hence, even if the

number of leading 1s qualified as a valid potential function, it wouldn’t be

an appropriate one — the amortized cost of this operation would be high

due to the large increase in potential caused by a single operation.

This observation suggests that it is not just the leading 1s that degrade

the structure, but that all of the 1s in value contribute to the degradation.

We might therefore consider using the total number of 1s in value as our

potential function. Again, this number is initially 1, not 0; however, from

the structural invariant, value will always contain at least one 1. Therefore,
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if we subtract 1 from the number of 1s in value, we obtain a valid potential

function.

Let us now analyze the amortized cost of Increment relative to this

potential function. Suppose the actual cost is k (i.e., the loops both iterate

k times). The change in potential is simply the number of 1s in value after

the operation, minus the number of 1s in value before the operation (the

two −1s cancel each other when we subtract). The while loop removes k 1s

from c. The if statement adds a 1. The for loop does not change the number

of 1s. The total change is therefore 1 − k. The amortized cost is then the

actual cost plus the change in potential, or

k + (1− k) = 1.

We can therefore conclude that the amortized running time of the IterBin-

Counter operations is in O(1).

Let us now use this technique to analyze the amortized performance of

ExpandableArrayStack. We first observe that operations which result

in an error run in Θ(1) time and do not change the state of the structure;

hence, we can ignore these operations. As we did in Section 4.3, we will

again amortize the number of loop iterations; i.e., the actual cost of an

operation will be the number of loop iterations performed by that operation.

An operation that does not require expanding the array performs no loop

iterations, and an operation that requires expanding the array performs n

loop iterations, where n is the size of the stack prior to the operation.

We now need an appropriate potential function. We first note that the

Pop operation not only is cheap, but it also improves the state of the stack

by making more array locations available. We therefore don’t need to focus

on this operation when looking for a potential function. Instead, we need

to focus on the Push operation. A Push that does not expand the array is

inexpensive, but degrades the future performance by reducing the number of

available array locations. We therefore want the potential function to increase

by at most a constant in this case. A Push that requires an array expansion

is expensive — requiring n iterations — but improves the performance of

the structure by creating additional array locations. We want the potential

function to decrease by roughly n in this case.

We mentioned earlier that we wanted the potential function to be a

measure of how full the array is. Perhaps the most natural measure is n/k,

where n is the number of elements in the stack and k is the size of the array.

This function is 0 when n is 0 and is always nonnegative. Furthermore,

because n ≤ k, n/k never exceeds 1; hence, no operation can increase this
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function by more than 1. However, this also means that no operation causes

it to decrease by more than 1. Therefore, it does not fit the characteristics

we need for a tight amortized analysis.

In order to overcome this problem, let us try multiplying n/k by some

value in order to give it more of a range. Because we need for the function to

decrease by about n when we expand the array, it will need to have grown

by about n after we have done n Pushes; hence, it needs to exhibit at least

linear growth. n/k is bounded by a constant; hence, to cause it to be linear

in n, we would want to multiply it by a function that is linear in n. This

suggests that we might want to try some function of the form an2/k, where

a is some positive real number to be determined later.

Using this potential function, consider the amortized cost of a Push

operation that expands the array. Prior to the operation, n = k. Therefore,

the change in potential is

a(n+ 1)2

2n
− an2

n
=
an2 + 2an+ a− 2an2

2n

= −an
2

+ a+
a

2n

≤ −an
2

+ a+
a

2

= −an
2

+
3a

2
.

When we add the actual cost of n, we need the result to be bounded by

a fixed constant. We can accomplish this by setting a = 2. The potential

function 2n2/k therefore results in an amortized cost of no more than 3 in

this case.

Now let us consider the amortized cost of a Push operation that does

not expand the array. Because n increases by 1 and k does not change, the

change in the potential function 2n2/k is

2(n + 1)2

k
− 2n2

k
=

2n2 + 4n+ 2− 2n2

k

=
4n+ 2

k

= 4

(
n+ 1

2

k

)

< 4
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because k must be strictly larger than n, and both are integers. Because no

loop iterations are performed in this case, the actual cost is 0; hence, the

amortized cost is less than 4.

In order to complete the analysis, we must consider the Pop operation.

Because n is initially positive and decreases by 1, and because k remains the

same, the change in potential is

2(n − 1)2

k
− 2n2

k
=

2n2 − 4n+ 2− 2n2

k

=
2− 4n

k

< 0.

The actual cost is 0. The amortized cost is therefore less than 0.

In each case, the amortized cost is in O(1). Because the time for each

loop iteration and the time required by each operation apart from the loop

iterations are both in O(1), we conclude that the amortized running time of

the stack operations is in O(1).

4.6 Summary

We have shown how the top-down design paradigm can be applied to the

design of data structures. In many cases, we can reduce the implementation

of an ADT to the implementation of simpler or lower-level ADTs. In other

cases, we can reduce the implementation to a common design pattern. The

algorithms we have used for implementing the operations of ADTs have been

quite simple. As we examine more advanced data structures in the following

chapters, we will see that the algorithms in the implementations also use the

top-down approach as presented in Chapter 1.

Applying the top-down approach yields clean techniques for proving

that implementations of ADTs meet their specifications. The techniques are

similar to those presented in Chapter 2, but additionally require proving

security of the implementations. Borrowing some ideas from modular and

object-oriented languages, we have supplied a computational model that

facilitates security in a straightforward way. This model also facilitates

the implementation of immutable structures, which in some cases yield

performance benefits by eliminating the need to copy data. However, use

of immutable structures tends to increase the amount of dynamic memory

allocation and requires the presence of an automatic garbage collector.
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The analysis techniques of Chapter 3 can be applied to data structures

as well. In addition, amortized analysis is sometimes useful for analyzing

structures for which operations are occasionally expensive. By amortizing

the cost, we can see that sequences of operations may be less expensive than

a simple worst-case analysis would suggest. Potential functions provide a

general approach to amortized analysis.

4.7 Exercises

Exercise 4.1. Complete the proof of Theorem 4.2 by giving proofs of

maintenance and correctness for the two missing cases.

Exercise 4.2. Prove that ConsListStack, shown in Figure 4.8 on

page 128, meets its specification, given in Figure 4.1 on page 110.

* Exercise 4.3. Give an algorithm for Append, specified in Figure 4.15.

Your algorithm should run in O(n) time, where n is the number of elements

in x.

Exercise 4.4. Prove that IterBinCounter, shown in Figure 4.14

(page 137), meets the specification shown in Figure 4.13 (page 136).

Exercise 4.5. Let f(n) denote the number of 1s in value after n calls to

Increment on a new IterBinCounter. Prove by induction on n that the

total number of iterations of the while loop in these n calls is

n− f(n) + 1.

Exercise 4.6. Figure 4.16 gives an alternative implementation of the

Increment operation for the BinaryCounter ADT.

a. Prove that the implementation that uses this algorithm meets its

specification.

Figure 4.15 Specification for Append
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Figure 4.16 Implementation of the Increment operation for BinaryCounter,

specified in Figure 4.13

b. It is easily seen that the running time of Increment is proportional to the

number of calls made (including recursive calls) to the internal function

Inc. Using a potential function, show that the amortized number of calls

to Inc is in O(1).

Exercise 4.7. Analyze the amortized cost of the ExpandableAr-

rayStack operations using the number of iterations performed as the actual

cost and

4n3

3k2

as the potential function, where n is the number of elements in the stack

and k is the size of the array.

Exercise 4.8. Let c > 1 be a fixed real number. Suppose we modify Figure

4.6 so that the new array is of size �c · size�. Using the potential function

approach, show that the amortized running time of the stack operations is

in O(1).

Exercise 4.9. With ExpandableArrayStack, it is possible that the

stack reaches a state in which it is using much more space than it requires.
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This can happen if a large number of elements are pushed onto the stack,

then most are removed. One solution is to modify the Pop operation so that

if the number of elements drops below half the size of the array, then we copy

the elements to a new array of half the size. Give a convincing argument that

this solution would not result in O(1) amortized running time.

Exercise 4.10. An alternative to the solution sketched in the above exercise

is to reduce the size of the array by half whenever it becomes less than 1/4

full, but is still non-empty.

a. Give a modified Pop operation to implement this idea.

* b. Using the technique of Section 4.3, show that the stack operations have

an amortized running time in O(1) when this scheme is used. You may

assume that the array is initially of size 4.

** c. Repeat the above analysis using a potential function. [Hint: Your

potential function will need to increase as the size of the array diverges

from 2n, where n is the number of elements in the stack.]

Exercise 4.11. A queue is similar to a stack, but it provides first in first out

(FIFO) access to the data items. Instead of the operations Push and Pop,

it has operations Enqueue and Dequeue — Enqueue adds an item to the

end of the sequence, and Dequeue removes the item from the beginning of

the sequence.

a. Give an ADT for a queue.

b. Using the linked list design pattern, give an implementation of your ADT

for which all operations run in Θ(1) time.

c. Prove that your implementation meets its specification.

Exercise 4.12. A certain data structure contains operations that each

consists of a sequence of zero or more Pops from a stack, followed by a

single Push. The stack is initially empty, and no Pop is attempted when

the stack is empty.

a. Prove that in any sequence of n operations on an initialized structure,

there are at most 2n stack operations (i.e., Pushes and Pops).

b. Use a simple potential function to show that the amortized number of

stack operations is bounded by a constant.

Exercise 4.13. A String, as specified in Figure 4.17, represents a finite

sequence of Chars, or characters.

a. Give an implementation of String for which
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Figure 4.17 The String ADT

• the constructor runs in O(n) amortized time;

• Append runs in O(m) amortized time, where m is the length of x;

• Substring runs in O(len) amortized time; and

• GetCharacter and Length run in Θ(1) time in the worst case.

For the purpose of defining amortized running times, think of the

constructor and the Substring operation as appending Chars to an

empty string. Prove the above running times for your implementation.

b. Prove that your implementation meets its specification.

Exercise 4.14. Figure 4.18 gives an ADT for an immutable arbitrary-pre-

cision natural number. Such an ADT is useful for defining algorithms for
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Figure 4.18 BigNum ADT
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operating on natural numbers which may not fit in a single machine word. We

can implement this ADT using a single representation variable, bits[0..n−1],
which is an array of 0s and 1s. The structural invariant is that all elements

of bits are either 0 or 1, and that if SizeOf(bits) 	= 0,

bits[SizeOf(bits)− 1] = 1.

If n = SizeOf(bits), the represented number is then

n−1∑
i=0

bits[i]2i.

Note that the least significant bit has the lowest index; hence, it might

be helpful to think of the array with index 0 at the far right, and indices

increasing from right to left.

a. Complete this implementation of BigNum such that

• NumBits runs in Θ(1) time;

• Shift and GetBits run in Θ(n) time, where n is the number of bits

in the result;

• the constructor and the remaining operations run in Θ(n) time, where

n is the number of bits in the largest number involved in the operation.

b. Prove that your implementation meets its specification.

4.8 Notes

The phenomenon that occurs when multiple copies are made of the same

reference is known in the literature as aliasing. The problem is thoroughly

discussed by, e.g., Aho et al. [3] and Muchnick [94].

Use of immutable structures has its roots in functional programming,

though it has carried over to some degree to languages from other paradigms.

Paulson [97] gives a nice introduction to functional programming using ML,

where immutable data types are the norm.

The search tree viewer posted on this textbook’s web site contains

complete Java implementations of ConsList and ConsListStack. Deep

cloning is simulated in this code because only immutable items are placed

on the stacks.

Exercise 4.12 is due to Tarjan [113], who gives an excellent survey of

amortized analysis. He credits D. Sleator for the potential function method

of amortized analysis.
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Chapter 5

Priority Queues

In many applications, we need data structures which support the efficient

storage of data items and their retrieval in order of a pre-determined priority.

Consider priority-based scheduling, for example. Jobs become available for

execution at various times, and as jobs complete, we wish to schedule the

available job having highest priority. These priorities may be assigned, for

example, according to the relative importance of each job’s being executed

in a timely manner. In order to support this form of storage and retrieval, we

define a PriorityQueue as a set of items, each having an associated number

giving its priority, together with the operations specified in Figure 5.1.

Strictly speaking, we should
use a multiset, because we
do not prohibit multiple
occurrences of the same
item. However, because we
ordinarily would not insert
multiple occurrences, we
will call it a set.

We sometimes wish to have operations MinPri-

ority() and RemoveMin() instead of MaxPri-

ority() and RemoveMax(). The specifications of

these operations are the same as those of MaxPri-

ority and RemoveMax, respectively, except that

minimum priorities are used instead of maximum

priorities. We call the resulting ADT an InvertedPriorityQueue. It is a

straightforward matter to convert any implementation of PriorityQueue

into an implementation of InvertedPriorityQueue.

In order to facilitate implementations of PriorityQueue, we will use a

data structure Keyed for pairing data items with their respective priorities.

This structure will consist of two readable representation variables, key and

data. We will use a rather general interpretation, namely, that key and data

are associated with each other. This generality will allow us to reuse the

structure in later chapters with somewhat different contexts. Its structural

invariant will simply be true. It will contain a constructor that takes two

inputs, x and k, and produces an association with k as the key and x as the

data. It will contain no additional operations.

149
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Figure 5.1 The PriorityQueue ADT

5.1 Sorted Arrays

Our first implementation of PriorityQueue maintains the data in an

expandable array, sorted in nondecreasing order of priorities. The repre-

sentation consists of two variables:

• elements[0..M −1]: an array of Keyed items, each containing a data item

with its associated priority as its key, in order of priorities; and

• size: an integer giving the number of data items.

Implementation of the RemoveMax operation is then trivial — after

verifying that size is nonzero, we simply decrement size by 1 and then return

elements[size].Data(). Clearly, this can be done in Θ(1) time. Similarly, the

MaxPriority operation can be trivially implemented to run in Θ(1) time.

In order to implement Put(x, p), we must find the correct place to insert

x so that the order of the priorities is maintained. Let us therefore reduce
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the Put operation to the problem of finding the correct location to insert a

given priority p. This location is the index i, 0 ≤ i ≤ size, such that

• if 0 ≤ j < i, then elements[j].Key() < p; and

• if i ≤ j < size, then p ≤ elements[j].Key().

Because the priorities are sorted, elements[i].Key() = p iff there is an item

in the array whose priority is p. Furthermore, if no such item exists, i gives

the location at which such an item should be inserted.

We can apply the top-down approach to derive a search technique called

binary search. Assume we are looking for the insertion point in an array

A[lo..hi − 1]; i.e., the insertion point i will be in the range lo ≤ i ≤ hi.

Further assume that lo < hi, for otherwise, we must have lo = i = hi. Recall

that the divide-and-conquer technique, introduced in Section 3.7, reduces

large instances to smaller instances that are a fixed fraction of the size of the

original instance. In order to apply this technique, we first look at the priority

of the middle data item — the item with indexmid = �(lo+hi)/2�. If the key
of this item is greater than or equal to p, then i can be no greater than mid,

which in turn is strictly less than hi. Otherwise, i must be strictly greater

than mid, which in turn is greater than or equal to lo. We will therefore

have reduced our search to a strictly smaller search containing about half

the elements from the original search.

Note that this reduction is actually a transformation — a reduction in

which the solution to the smaller problem is exactly the solution to the

original problem. Recall from Section 2.4 that a transformation can be

implemented as a loop in a fairly straightforward way. Specifically, each

iteration of the loop will reduce a large instance to a smaller instance. When

the loop terminates, the instance will be the base case, where lo = hi.

Prior to the loop, lo and hi must have values 0 and size, respectively.

Our invariant will be that 0 ≤ lo ≤ hi ≤ size, that items with indices less

than lo have a key less than p, and that elements with indices greater than

or equal to hi have a key greater than or equal to p. Thus, the index i to be

returned will always be in the range lo ≤ i ≤ hi. When the loop terminates,

we will have lo = hi; hence, we can return either lo or hi. This algorithm is

given as the Find function in Figure 5.2, where a partial implementation of

SortedArrayPriorityQueue is given. The Expand function copies the

contents of its argument into an array of twice the original size, as in Section

4.3. The remainder of the implementation and its correctness proof are left

as an exercise.
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Figure 5.2 SortedArrayPriorityQueue implementation (partial) of the Prior-

ityQueue ADT

Let us now analyze the running time of Find. Clearly, each iteration of

the while loop runs in Θ(1) time, as does the code outside the loop. We

therefore only need to count the number of iterations of the loop.

Let f(n) denote the number of iterations, where n = hi − lo gives the

number of elements in the search range. One iteration reduces the number of

elements in the range to either �n/2� or �n/2� − 1. The former value occurs
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whenever the key examined is greater than or equal to p. The worst case

therefore occurs whenever we are looking for a key smaller than any key in

the set. In the worst case, the number of iterations is therefore given by the

following recurrence:

f(n) = f(�n/2�) + 1

for n > 1. From Theorem 3.35, f(n) ∈ Θ(lg n). Therefore, Find runs in

Θ(lg n) time.

Let us now analyze the running time of Put. Let n be the value of

size. The first statement requires Θ(lg n) time, and based on our analysis

in Section 4.3, the Expand function should take O(n) time in the worst

case. Because we can amortize the time for Expand, let us ignore it for now.

Clearly, everything else outside the for loop and a single iteration of the

loop run in Θ(1) time. Furthermore, in the worst case (which occurs when

the new key has a value less than all other keys in the set), the loop iterates

n times. Thus, the entire algorithm runs in Θ(n) time in the worst case,

regardless of whether we count the time for Expand.

5.2 Heaps

The SortedArrayPriorityQueue has very efficient MaxPriority and

RemoveMax operations, but a rather slow Put operation. We could speed

up the Put operation considerably by dropping our requirement that the

array be sorted. In this case, we could simply add an element at the

end of the array, expanding it if necessary. This operation is essentially

the same as the ExpandableArrayStack.Push operation, which has an

amortized running time in Θ(1). However, we would no longer be able to

take advantage of the ordering of the array in finding the maximum priority.

As a result, we would need to search the entire array. The running times

for the MaxPriority and RemoveMax operations would therefore be in

Θ(n) time, where n is the number of elements in the priority queue.

In order to facilitate efficient implementations of all three operations,

let us try applying the top-down approach to designing an appropriate data

structure. Suppose we have a non-empty set of elements. Because we need

to be able to find and remove the maximum priority quickly, we should

keep track of it. When we remove it, we need to be able to locate the new

maximum quickly. We can therefore organize the remaining elements into two

(possibly empty) priority queues. (As we will see, using two priority queues

for these remaining elements can yield significant performance advantages
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Figure 5.3 A heap — each priority is no smaller than any of its children

over a single priority queue.) Assuming for the moment that both of these

priority queues are nonempty, the new overall maximummust be the larger of

the maximum priorities from each of these priority queues. We can therefore

find the new maximum by comparing these two priorities. The cases in which

one or both of the two priority queues are empty are likewise straightforward.

We can implement the above idea by arranging the priorities into a heap,

as shown in Figure 5.3. This structure will be the basis of all of the remaining

PriorityQueue implementations presented in this chapter. In this figure,

integer priorities of several data items are shown inside circles, which we

will call nodes. The structure is referenced by its root node, containing the

priority 89. This value is the maximum of the priorities in the structure.

The remaining priorities are accessed via one of two references, one leading

to the left, and the other leading to the right. Each of these two groups

of priorities forms a priority queue structured in a similar way. Thus, as

we follow any path downward in the heap, the values of the priorities are

non-increasing.

A heap is a special case of a more general structure known as a tree. Let

N be a finite set of nodes, each containing a data item. We define a rooted

tree comprised of N recursively as:

• a special object which we will call the empty tree if N = ∅; or

• a root node x ∈ N , together with a finite sequence 〈T1, . . . , Tk〉 of children,
where
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– each Ti is a rooted tree comprised of some (possibly empty) set Ni ⊆
N \{x} (i.e., each element of each Ni is an element of N , but not the

root node);

–
⋃k

i=1 Ni = N \{x} (i.e., the elements in all of the sets Ni together form

the set N , without the root node); and

– for i �= j, Ni ∩Nj = ∅ (i.e., no two of these sets have any elements in

common).

Thus, the structure shown in Figure 5.3 is a rooted tree comprised of 10

nodes. Note that the data items contained in the nodes are not all distinct;

however, the nodes themselves are distinct. The root node contains 89. Its

first child is a rooted tree comprised of six nodes and having a root node

containing 53.

When a node c is a child of a node p, we say that p is the parent of c.

Also, two children of a given node are called siblings. Thus, in Figure 5.3,

the node containing 48 has one node containing 53 as its parent and another

as its sibling. We refer to a non-empty tree whose children are all empty as

a leaf. Thus, in Figure 5.3, the subtree whose root contains 13 is a leaf.

We define the size of a rooted tree to be the number of nodes which

comprise it. Another important measure of a non-empty rooted tree is its

height, which we define recursively to be one plus the maximum height of

its non-empty children; if it has no non-empty children, we say its height

is 0. Thus, the height is the maximum of the distances from the root to the

leaves, where we define the distance as the number of steps we must take to

get from one node to the other. For example, the tree in Figure 5.3 has size

10 and height 4.

When we draw rooted trees, we usually do not draw empty trees. For

example, in Figure 5.3, the subtree whose root contains 24 has two children,

but the first is empty. This practice can lead to ambiguity; for example, it is

not clear whether the subtree rooted at 13 contains any children, or if they

might all be empty. For this and other reasons, we often consider restricted

classes of rooted trees. Here, we wish to define a binary tree as a rooted tree

in which each non-empty subtree has exactly two children, either (or both)

of which may be empty. In a binary tree, the first child is called the left

child, and the other is called the right child. If we then state that the rooted

tree in Figure 5.3 is a binary tree, it is clear that the subtree rooted at 13,

because it is nonempty, has two empty children.

It is rather difficult to define an ADT for either trees or binary trees

in such a way that it can be implemented efficiently. The difficulty is in
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Figure 5.4 Constructor for BinaryTreeNode

enforcing as a structural invariant the fact that no two children have nodes

in common. In order for an operation to maintain this invariant when adding

a new node, it would apparently need to examine the entire structure to see if

the new node is already in the tree. As we will see, maintaining this invariant

becomes much easier for specific applications of trees. It therefore seems best

to think of a rooted tree as a mathematical object, and to mimic its structure

in defining a heap implementation of PriorityQueue.

In order to build a heap, we need to be able to implement a single

node. For this purpose, we will define a data type BinaryTreeNode. Its

representation will contain three variables:

• root: the Keyed data item stored in the node;

• leftChild: the BinaryTreeNode representing the root of the left child;

and

• rightChild: theBinaryTreeNode representing the root of the right child.

We will provide read/write access to all three of these variables, and

our structural invariant is simply true. The only constructor is shown in

Figure 5.4, and no additional operations are included. Clearly, Binary-

TreeNode meets its specification (there is very little specified), and each

operation and constructor runs in Θ(1) time.

We can now formally define a heap as a binary tree containing Keyed

elements such that if the tree is non-empty, then

• the item stored at the root has the maximum key in the tree and

• both children are heaps.

Based on the above definition, we can define a representation for Priori-

tyQueue using two variables:

• elements: a BinaryTreeNode; and

• size: a natural number.
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Our structural invariant will be that elements is a heap whose size is given by

size. We interpret the contents of the nodes comprising this heap as the set of

items stored in the priority queue, together with their associated priorities.

Implementation of MaxPriority is now trivial — we just return the

key of the root. To implement RemoveMax, we must remove the root

(provided the heap is non-empty) and return the data from its contents.

When we remove the root, we are left with the two children, which must

then be combined into one heap. We therefore will define an internal function

Merge, which takes as input two heaps h1 and h2 with no nodes in common

(i.e., the two heaps share no common structure, though they may have keys

in common), and returns a single heap containing all of the nodes from h1
and h2. Note that we can also use the Merge function to implement Put

if we first construct a single-node heap from the element we wish to insert.

Let us consider how to implement Merge. If either of the two heaps h1
and h2 is nil (i.e., empty), we can simply return the other heap. Otherwise,

the root of the result must be the root of either h1 or h2, whichever root

contains a Keyed item with larger key (a tie can be broken arbitrarily). Let

L denote the heap whose root contains the maximum key, and let S denote

the other heap. Then we must form a heap whose root is the root of L and

whose two children are heaps containing the nodes in the following three

heaps:

• the left child of L;

• the right child of L; and

• S.

We can form these two children by recursively merging two of these three

heaps.

A simple implementation, which we call SimpleHeap, is shown in

Figure 5.5. Note that we can maintain the structural invariant because we

can ensure that the precondition toMerge is always met (the details are left

as an exercise). Note also that the above discussion leaves some flexibility in

the implementation of Merge. In fact, we will see shortly that this particular

implementation performs rather poorly. As a result, we will need to find a

better way of choosing the two heaps to merge in the recursive call, and/or

a better way to decide which child the resulting heap will be.

Let us now analyze the running time of Merge. Suppose h1 and h2
together have n nodes. Clearly, the running time excluding the recursive

call is in Θ(1). In the recursive call, L.RightChild() has at least one fewer

node than does L; hence the total number of nodes in the two heaps in the
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Figure 5.5 SimpleHeap implementation of PriorityQueue
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recursive call is no more than n − 1. The total running time is therefore

bounded above by

f(n) ∈ f(n− 1) +O(1)

⊆ O(n)

by Theorem 3.34.

At first it might seem that the bound of n−1 on the number of nodes in

the two heaps in the recursive call is overly pessimistic. However, upon close

examination of the algorithm, we see that not only does this describe the

worst case, it actually describes every case. To see this, notice that nowhere

in the algorithm is the left child of a node changed after that node is created.

Because each left child is initially empty, no node ever has a nonempty left

child. Thus, each heap is single path of nodes going to the right.

The SimpleHeap implementation therefore amounts to a linked list in

which the keys are kept in non-increasing order. The Put operation will

therefore require Θ(n) time in the worst case, which occurs when we add a

node whose key is smaller than any in the heap. In the remainder of this

chapter, we will examine various ways of taking advantage of the branching

potential of a heap in order to improve the performance.

5.3 Leftist Heaps

In order to improve the performance of merging two heaps, it would make

sense to try to reach one of the base cases as quickly as possible. In

SimpleHeap.Merge, the base cases occur when one of the two heaps is

empty. In order to simplify the discussion, let us somewhat arbitrarily decide

that one of the two heaps to be merged in the recursive call will always be

S. We therefore need to decide which child of L to merge with S. In order

to reach a base case as quickly as possible, it would make sense to use the

child having an empty subtree nearest to its root.

Let us define, for a given binary tree T , the null path length to be the

length of the shortest path from the root to an empty subtree. Specifically, if

T is empty, then its null path length is 0; otherwise, it is 1 plus the minimum

of the null path lengths of its children. Now if, in the recursive call, we were

to merge S with the child of L having smaller null path length, then the

sum of the null path lengths of the two heaps would always be smaller for

the recursive call than for the original call. The running time is therefore

proportional to the sum of the null path lengths. This is advantageous due

to the following theorem.
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Theorem 5.1. For any binary tree T with n nodes, the null path length of

T is at most lg(n+ 1).

The proof of this theorem is typical of many proofs of properties of trees.

It proceeds by induction on n using the following general strategy:

• For the base case, prove that the property holds when n = 0 — i.e., for

an empty tree.

• For the induction step, apply the induction hypothesis to one or more of

the children of a nonempty tree.

Proof of Theorem 5.1. By induction on n.

Base: n = 0. Then by definition, the null path length is 0 = lg 1.

Induction Hypothesis: Assume for some n > 0 that for 0 ≤ i < n, the

null path length of any tree with i nodes is at most lg(i+ 1).

Induction Step: Let T be a binary tree with n nodes. Then because the two

children together contain n− 1 nodes, they cannot both contain more than

(n−1)/2 nodes; hence, one of the two children has no more than �(n−1)/2�
nodes. By the induction hypothesis, this child has a null path of at most

lg(�(n − 1)/2� + 1). The null path length of T is therefore at most

1 + lg(�(n− 1)/2� + 1) ≤ 1 + lg((n + 1)/2)

= lg(n+ 1).

�

The term “leftist” refers to
the tendency of these struc-
tures to be heavier on the
left.

By the above theorem, if we can always choose

the child with smaller null path length for the

recursive call, then the merge will operate in O(lg n)

time, where n is the number of nodes in the larger of

the two heaps. We can develop slightly simpler algorithms if we build our

heaps so that the right-hand child always has the smaller null path length, as

in Figure 5.6(a). We therefore define a leftist tree to be a binary tree which, if

nonempty, has two leftist trees as children, with the right-hand child having

a null path length no larger than that of the left-hand child. A leftist heap

is then a leftist tree that is also a heap.

In order to implement a leftist heap, we will use an implementation of

a leftist tree. The leftist tree implementation will take care of maintaining

the proper shape of the tree. Because we will want to combine leftist trees
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Figure 5.6 Example of performing a LeftistHeap.RemoveMax operation

to form larger leftist trees, we must be able to handle the case in which

two given leftist trees have nodes in common. The simplest way to handle

this situation is to define the implementation to be an immutable structure.
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Because no changes can be made to the structure, we can treat all nodes

as distinct, even if they are represented by the same storage (in which case

they are the roots of identical trees).

In order to facilitate fast computation of null path lengths, we will record

the null path length of a leftist tree in one of its representation variables.

Thus, when forming a new leftist tree from a root and two existing leftist

trees, we can simply compare the null path lengths to decide which tree

should be used as the right child. Furthermore, we can compute the null

path length of the new leftist tree by adding 1 to the null path length of its

right child.

For our representation of LeftistTree, we will therefore use four

variables:

• root: a Keyed item;

• leftChild: a LeftistTree;

• rightChild: a LeftistTree; and

• nullPathLength: a Nat.

We will allow read access to all variables. Our structural invariant will be

that this structure is a leftist tree such that

• nullPathLength gives its null path length; and

• root = nil iff nullPathLength = 0.

Specifically, we will allow the same node to occur more than once in the

structure — each occurrence will be viewed as a copy. Because the structure

is immutable, such sharing is safe. The implementation of LeftistTree is

shown in Figure 5.7. Clearly, each of these constructors runs in Θ(1) time.

We now represent our LeftistHeap implementation of Priori-

tyQueue using two variables:

• elements: a LeftistTree; and

• size: a natural number.

Our structural invariant is that elements is a leftist heap whose size is given

by size, and whose nodes are Keyed items. We interpret these Keyed

items as the represented set of elements with their associated priorities. The

implementation of LeftistHeap is shown in Figure 5.8.

Based on the discussion above, Merge runs in O(lg n) time, where n is

the number of nodes in the larger of the two leftist heaps. It follows that

Put and RemoveMax operate in O(lg n) time, where n is the number of
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Figure 5.7 The LeftistTree data structure.

items in the priority queue. Though it requires some work, it can be shown

that the lower bound for each of these running times is in Ω(lg n).

It is easy to see that the stack space usage of Merge is proportional to

the depth of recursion, which in turn is proportional to the running time.
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Figure 5.8 LeftistHeap implementation of PriorityQueue
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Therefore, Merge, and hence Put and RemoveMax, uses Θ(lg n) stack

space in the worst case. The remaining space usage is in Θ(1).

Example 5.2. Consider the leftist heap shown in Figure 5.6(a). Suppose

we were to perform a RemoveMax on this heap. To obtain the resulting

heap, we must merge the two children of the root. The larger of the two keys

is 15; hence, it becomes the new root. We must then merge its right child

with the original right child of 20 (see Figure 5.6(b)). The larger of the two

roots is 13, so it becomes the root of this subtree. The subtree rooted at 7 is

then merged with the empty right child of 13. Figure 5.6(c) shows the result

without considering the null path lengths. We must therefore make sure that

in each subtree that we’ve formed, the null path length of the right child is

no greater than the null path length of the left child. This is the case for the

subtree rooted at 13, but not for the subtree rooted at 15. We therefore must

swap the children of 15, yielding the final result shown in Figure 5.6(d).

A Put operation is performed by creating a single-node heap from the

element to be inserted, then merging the two heaps as in the above example.

The web site that accompanies this textbook contains a program for viewing

and manipulating various kinds of heaps, including leftist heaps and the

heaps discussed in the remainder of this chapter. This heap viewer can be

useful for generating other examples in order to understand the behavior of

heaps.

It turns out that in order to obtain O(lg n) worst-case performance, it

is not always necessary to follow the shortest path to a nonempty subtree.

For example, if we maintain a tree such that for each of its n nodes, the

left child has at least as many nodes as the right child, then the distance

from the root to the rightmost subtree is still no more than lg(n+ 1). As a

result, we can use this strategy for obtaining O(lg n) worst-case performance

for the PriorityQueue operations (see Exercise 5.7 for details). However,

we really don’t gain anything from this strategy, as it is now necessary to

maintain the size of each subtree instead of each null path length. In the

next two sections, we will see that it is possible to achieve good performance

without maintaining any such auxiliary information.

5.4 Skew Heaps

In this section, we consider a simple modification to SimpleHeap that yields

good performance without the need to maintain auxiliary information such as

null path lengths. The idea is to avoid the bad performance of SimpleHeap
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Figure 5.9 The SkewHeap.Merge internal function

by modifying Merge to swap the children after the recursive call. We call

this modified structure a skew heap. The Merge function for SkewHeap is

shown in Figure 5.9; the remainder of the implementation of SkewHeap is

the same as for SimpleHeap.

Example 5.3. Consider again the heap shown in Figure 5.6(a), and suppose

it is a skew heap. Performing a RemoveMax on this heap proceeds as shown

in Figure 5.6 through part (c). At this point, however, for each node at which

a recursive Merge was performed, the children of this node are swapped.

These nodes are 13 and 15. The resulting heap is shown in Figure 5.10.

In order to understand why such a simple modification might be advan-

tageous, observe that in Merge, when S is merged with L.RightChild(),

we might expect the resulting heap to have a tendency to be larger than

L.LeftChild(). As we noted at the end of the previous section, good worst-

case behavior can be obtained by ensuring that the left child of each node

has at least as many nodes as the right child. Intuitively, we might be able

to approximate this behavior by swapping the children after every recursive

call. However, this swapping does not always avoid expensive operations.

Suppose, for example, that we start with an empty skew heap, then insert

the sequence of keys 2, 1, 4, 3, . . . , 2i, 2i − 1, 0, for some i ≥ 1. Figure 5.11
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Figure 5.10 The result of performing a RemoveMax on the skew heap shown in

Figure 5.6(a)

Figure 5.11 Construction of a bad skew heap
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shows this sequence of insertions for i = 3. Note that each time an even

key is inserted, because it is the largest in the heap, it becomes the new

root and the original heap becomes its left child. Then when the next key

is inserted, because it is smaller than the root, it is merged with the empty

right child, then swapped with the other child. Thus, after each odd key is

inserted, the heap will contain all the even keys in the rightmost path (i.e.,

the path beginning at the root and going to the right until it reaches an

empty subtree), and for i ≥ 1, key 2i will have key 2i − 1 as its left child.

Finally, when key 0 is inserted, because it is the smallest key in the heap,

it will successively be merged with each right child until it is merged with

the empty subtree at the far right. Each of the subtrees on this path to the

right is then swapped with its sibling. Clearly, this last insertion requires

Θ(i) running time, and i is proportional to the number of nodes in the heap.

The bad behavior described above results because a long rightmost

path is constructed. Note, however, that 2i Put operations were needed

to construct this path. Each of these operations required only Θ(1) time.

Furthermore, after the Θ(i) operation, no long rightmost paths exist from

any node in the heap (see Figure 5.11). This suggests that a skew heap might

have good amortized running time.

A good measure of the actual cost of the SkewHeap operations is the

number of calls to Merge, including recursive calls. In order to derive a

bound on the amortized cost, let us try to find a good potential function.

Based upon the above discussion, let us say that a node is good if its left

child has at least as many nodes as its right child; otherwise, it is bad. We

now make two key observations, whose proofs are left as exercises:

• In any binary tree with n nodes, the number of good nodes in the rightmost

path is no more than lg(n+ 1).

• In the Merge function, if L is a bad node initially, it will be a good node

in the resulting heap.

Due to these observations, we use as our potential function the number

of bad nodes in the heap. Because the number of good nodes in each of the

two rightmost paths is logarithmic, the potential function can increase by

only a logarithmic amount on any Merge. Furthermore, because any bad

node encountered becomes good, the resulting change in potential will cancel

the actual cost associated with this call, leaving only a logarithmic number

of calls whose actual costs are not canceled. As a result, we should expect

the amortized costs of the SkewHeap operations to be in O(lg n), where n

is the number of elements in the priority queue (the details of the analysis
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are left as an exercise). Thus, a SkewHeap provides a simple, yet efficient,

implementation of PriorityQueue.

We should caution, however, that it does not make sense to amortize

space usage, as this usage does not accumulate over time. Specifically, the

worst-case stack space usage of Merge, as for leftist heaps, is proportional

to its worst-case running time. Hence, the worst-case stack space usage is

in Θ(n). On the other hand, it is possible to reorganize this algorithm so

that it uses iteration, rather than recursion. Although the algorithm given

in Figure 5.9 is not tail recursive, it is possible to order the operations so

that the recursion can be removed in a similar way. We leave the details

as an exercise. Removing the recursion in this way reduces the total space

usage to Θ(1).

5.5 Randomized Heaps

For all of the heap implementations we have seen so far, the merge uses

the right child in the recursive call. This choice is not necessary for the

correctness of any of the algorithms, but does impact their performance.

Figure 5.12 The RandomizedHeap.Merge internal function
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SimpleHeap.Merge performs badly because all recursive calls use right

children, and their results all form right children. Leftist heaps and skew

heaps avoid this bad performance by using the results of the recursive calls

as left children, at least part of the time. Another approach is to use different

children in different calls. Specifically, when we make a recursive call, we can

flip a coin to determine which child to use.

The resulting Merge function is shown in Figure 5.12; the remainder

of the implementation of RandomizedHeap is identical to the implemen-

tations of SimpleHeap and SkewHeap. We assume that the FlipCoin

function returns heads or tails randomly with uniform probability. Thus, each

call to FlipCoin returns heads with probability 1/2, regardless of the results

of any prior calls. This function can typically be implemented using a built-

in random number generator. Most platforms provide a function returning

random values uniformly distributed over the range of signed integers on

that platform. In a standard signed integer representation, the negative

values comprise exactly half the range. The FlipCoin function can therefore

generate a random integer and return heads iff that integer is negative.

It usually makes no sense to analyze the worst-case running time for a

randomized algorithm, because the running time usually depends on random

events. For example, if a given heap consists of a single path with n nodes, the

algorithm could follow exactly that path. However, this could only happen

for one particular sequence of n coin flips. If any of the flips differ from

this sequence, the algorithm reaches a base case and terminates at that

point. Because the probability of flipping this exact sequence is very small

for large n, a worst-case analysis seems inappropriate. Perhaps more to the

point, a worst-case analysis would ignore the effect of randomization, and so

does not seem appropriate for a randomized algorithm.

Instead, we can analyze the expected running time of a randomized

algorithm. The goal of expected-case analysis is to bound the average

performance over all possible executions on a worst-case input. For an

ordinary deterministic algorithm, there is only one possible execution on

any given input, but for randomized algorithms, there can be many possible

executions depending on the random choices made.

A set is said to countable if
each element can be labeled
with a unique natural num-
ber.

Expected-case analysis is based on the expected

values of random variables over discrete probability

spaces. A discrete probability space is a countable

set of elementary events, each having a probability.

For an elementary event e in a discrete probability space S, we denote the

probability of e by P (e). For any discrete probability space S, we require
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that 0 ≤ P (e) ≤ 1 and that

∑
e∈S

P (e) = 1.

As a simple example, consider the flipping of a fair coin. The probability

space is {heads, tails}, and each of these two elementary events has probabil-

ity 1/2. For a more involved example, let T be a binary tree, and consider

the probability space PathT consisting of paths from the root of T to empty

subtrees. We leave as an exercise to show that if T has n nodes, then it

has n + 1 empty subtrees; hence PathT has n + 1 elements. In order that

it be a probability space, we need to assign a probability to each path. The

probability of a given path of length k should be the same as the probability

of the sequence of k coin flips that yields this path in the Merge algorithm;

thus, if the path corresponds to k flips, its probability should be 2−k. We

leave as an exercise to prove that the sum of these probabilities is 1 for any

binary tree.

An important element of expected-case analysis is the notion of a

discrete random variable, which is a function f : S → R, where S is a

discrete probability space. In this text, we will restrict our random variables

to nonnegative values. For an example of a random variable, let lenT (e)

give the length of a path e in the probability space PathT defined above.

More precisely, lenT (e) is
the number of coin flips
that are needed to generate
e.

The expected value of a random variable f over a

probability space S is defined to be

E[f ] =
∑
e∈S

f(e)P (e).

Thus, by multiplying the value of the random variable for each elementary

event by the probability of that elementary event, we obtain an average value

for that variable. Note that it is possible for an expected value to be infinite.

If the summation converges, however, it converges to a unique value, because

all terms are nonnegative.

Example 5.4. Let T be a binary tree with n nodes, such that all paths from

the root to empty subtrees have the same length. Because the probability of

each path is determined solely by its length, all paths must have the same

probability. Because there are n+1 paths and the sum of their probabilities

is 1, each path must have probability 1/(n+1). In this case, E[lenT ] is simply
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the arithmetic mean, or simple average, of all of the lengths:

E[lenT ] =
∑

e∈PathT

lenT (e)P (e)

=
1

n+ 1

∑
e∈PathT

lenT (e).

Furthermore, because the lengths of all of the paths are the same, E[lenT ]

must be this length, which we will denote by k.

We have defined the probability of a path of length k to be 2−k.
Furthermore, we have seen that all probabilities are 1/(n+1). We therefore

have

2−k = 1/(n + 1).

Solving for k, we have

k = lg(n + 1).

Thus, E[lenT ] = lg(n+ 1).

The discrete random variable lenT is always a natural number. When

this is the case, its expected value is often easier to analyze. To show why,

we first need to define an event, which is any subset of the elementary events

in a discrete probability space. The probability of an event A is the sum of

the probabilities of its elementary events; i.e.,

P (A) =
∑
e∈A

P (e).

Note that because the sum of the probabilities of all elementary events in

a discrete probability space is 1, the probability of an event is never more

than 1.

The following theorem gives a technique for computing expected values

of discrete random variables that range over the natural numbers. It uses

predicates like “f = i” to describe events; e.g., the predicate “f = i” defines

the event in which f has the value i, and P (f = i) is the probability of this

event.

Theorem 5.5. Let f : S → N be a discrete random variable. Then

E[f ] =

∞∑
i=1

P (f ≥ i).
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The idea behind the proof is that P (f = i) = P (f ≥ i)− P (f ≥ i + 1).

The definition of E[f ] then yields

E[f ] =
∑
e∈S

f(e)P (e)

=

∞∑
i=0

iP (f = i)

=
∞∑
i=0

i(P (f ≥ i)− P (f ≥ i+ 1))

=

∞∑
i=0

(iP (f ≥ i)− iP (f ≥ i+ 1)).

In the above sum, the negative portion iP (f ≥ i+1) of the ith term cancels

most of the positive portion (i+1)P (f ≥ i+1) of the (i+1)st term. The result

of this cancellation is the desired sum. However, in order for this reasoning

to be valid, it must be the case that the “leftover” term, −iP (f ≥ i + 1),

converges to 0 as i approaches infinity if E[f ] is finite. We leave the details

as an exercise.

Example 5.6. Let T be a binary tree in which each of the n nodes has

an empty left child; i.e., the nodes form a single path going to the right.

Again, the size of PathT is n + 1, but now the probabilities are not all the

same. The length of the path to the rightmost empty subtree is n; hence, its

probability is 2−n. For 1 ≤ i ≤ n, there is exactly one path that goes right

i− 1 times and left once. The probabilities for these paths are given by 2−i.
We therefore have

E[lenT ] =
∑

e∈PathT

lenT (e)P (e)

= n2−n +

n∑
i=1

i2−i.

Because we have no formula to evaluate the above summation, let us

instead apply Theorem 5.5. The probability that a given path has length at

least i, for 1 ≤ i ≤ n, is the probability that i−1 coin flips all yield tails. This

probability is 21−i. The probability that a given path has length at least i
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for i > n is 0. By Theorem 5.5, we therefore have

E[lenT ] =

∞∑
i=1

P (lenT ≥ i)

=

n∑
i=1

21−i

=
n−1∑
i=0

(1/2)i

=
(1/2)n − 1

(1/2) − 1
(by (2.2))

= 2− 21−n.

Thus, E[lenT ] < 2.

In order to be able to analyze the expected running time of Random-

izedHeap.Merge, we need to know E[lenT ] for a worst-case binary tree T

with n nodes. Examples 5.4 and 5.6 give two extreme cases — a completely

balanced tree and a completely unbalanced tree. We might guess that the

worst case would be one of these extremes. Because lg(n + 1) ≥ 2 − 21−n

for all n ∈ N, a good guess would be that lg(n + 1) is an upper bound for

the worst case. We can show that this is indeed the case, but we need to

use the following theorem relating the sum of logarithms to the logarithm

of a sum.

Theorem 5.7. If x and y are positive real numbers, then

lg x+ lg y ≤ 2 lg(x+ y)− 2.

Proof. We first note that lg x+ lg y = lg xy. We will therefore show that

the right-hand side of the inequality is at least lg xy. Using the fact that

lg 4 = 2, we have

2 lg(x+ y)− 2 = lg((x+ y)2)− lg 4

= lg

(
x2 + 2xy + y2

4

)
.
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In order to isolate lg xy, let us now subtract xy from the fraction in the

above equation. This yields

2 lg(x+ y)− 2 = lg

(
x2 + 2xy + y2

4

)

= lg

(
xy +

x2 − 2xy + y2

4

)

= lg

(
xy +

(x− y)2

4

)

≥ lg xy,

because (x − y)2/4 is always nonnegative and the lg function is non-

decreasing. �

We can now show that lg(n + 1) is an upper bound for E[lenT ] when T

is a binary tree with n nodes.

Theorem 5.8. Let T be any binary tree with size n, where n ∈ N. Then

E[lenT ] ≤ lg(n+ 1).

Proof. By induction on n.

Base: n = 0. Then only one path to an empty tree exists, and its length

is 0. Hence, E[lenT ] = 0 = lg 1.

Induction Hypothesis: Assume that for some n > 0, if S is any binary

tree with size i < n, then E[lenS ] ≤ lg(i+ 1).

Induction Step: Suppose T has size n. Because n > 0, T is nonempty. Let

L and R be the left and right children, respectively, of T . We then have

E[lenT ] =
∑

e∈PathT

lenT (e)P (e)

=
∑

e∈PathL

(lenL(e) + 1)
P (e)

2
+

∑
e∈PathR

(lenR(e) + 1)
P (e)

2
, (5.1)

because the probability of any path from the root of a child of T to any

empty subtree is twice the probability of the path from the root of T to the

same empty subtree, and its length is one less.
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Because the two sums in (5.1) are similar, we will simplify just the first

one. Thus,

∑
e∈PathL

(lenL(e) + 1)
P (e)

2
=

1

2

⎛
⎝ ∑

e∈PathL

lenL(e)P (e) +
∑

e∈PathL
P (e)

⎞
⎠

=
1

2

⎛
⎝ ∑

e∈PathL

lenL(e)P (e) + 1

⎞
⎠ ,

because in PathL, the sum of the probabilities is 1. We now observe that
∑

e∈PathL

lenL(e)P (e) = E[lenL].

Applying a similar simplification to the second sum in 5.1, we have

E[lenT ] = 1 + (E[lenL] + E[lenR])/2.

Suppose L has size i. Then R has size n− i− 1. Because 0 ≤ i < n, the

Induction Hypothesis applies to both L and R. Thus,

E[lenT ] ≤ 1 + (lg(i+ 1) + lg(n− i))/2

≤ 1 + (2 lg(n+ 1)− 2)/2 (by Theorem 5.7)

= lg(n+ 1). �
The fact that the expected length of a randomly chosen path in a binary

tree of size n is never more than lg(n+1) gives us reason to believe that the

expected running time of RandomizedHeap.Merge is in O(lg n). However,

Merge operates on two binary trees. We therefore need a bound on the

expected sum of the lengths of two randomly chosen paths, one from each of

two binary trees. Hence, we will combine two probability spaces PathS and

PathT to form a new discrete probability space PathsS,T . The elementary

events of this space will be pairs consisting of an elementary event from

PathS and an elementary event from PathT .

We need to assign probabilities to the elementary events in PathsS,T . In

so doing, we need to reflect the fact that the lengths of any two paths from

S and T are independent of each other; i.e., knowing the length of one path

tells us nothing about the length of the other path. Let e1 and e2 be events

over a discrete probability space S. We say that e1 and e2 are independent

if P (e1 ∩ e2) = P (e1)P (e2).
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Suppose we were to define a new discrete probability space Se2 including

only those elementary events in the event e2. The sum of the probabilities of

these elementary events is P (e2). If we were to scale all of these probabilities

by dividing by P (e2), we would achieve a total probability of 1 while

preserving the ratio of any two probabilities. The probability of event e1
within Se2 would be given by

P (e1 | e2) = P (e1 ∩ e2)

P (e2)
, (5.2)

where the probabilities on the right-hand side are with respect to S. We call

P (e1 | e2) the conditional probability of e1 given e2. Note that if P (e2) �=
0, independence of e1 and e2 is equivalent to P (e1) = P (e1 | e2). Thus,
two events are independent if knowledge of one event does not affect the

probability of the other.

The definition of independence tells us how to assign the probabilities

in PathsS,T . Let e1 be the event such that the path in S is s, and

let e2 be the event such that the path in T is t. Then e1 ∩ e2 is the

elementary event consisting of paths s and t. We need P (e1 ∩ e2) =

P (e1)P (e2) in order to achieve independence. However, P (e1) should be

the probability of s in PathS , and P (e2) should be the probability of

t in PathT . Thus the probability of an elementary event in PathsS,T
must be the product of the probabilities of the constituent elementary

events from PathS and PathT . It is then not hard to verify that P (e1)

and P (e2) are the probabilities of s in PathS and of t in PathT ,

respectively.

We now extend the discrete random variables lenS and lenT to the space

PathsS,T so that lenS gives the length of the path in S and lenT gives

the length of the path in T . Because neither the lengths of the paths nor

their probabilities change when we make this extension, it is clear that their

expected values do not change either.

The running time of RandomizedHeap.Merge is clearly proportional

to the lengths of the paths followed in the two heaps S and T . These paths

may or may not go all the way to an empty subtree, but if not, we can extend

them to obtain elementary events s and t in PathS and PathT , respectively.

The running time is then bounded above by c(lenS(s) + lenT (t)), where

c is some fixed positive constant. The expected running time of Merge

is therefore bounded above by E[c(lenS + lenT )]. In order to bound this

expression, we need the following theorem.



178 Algorithms: A Top-Down Approach

Theorem 5.9 (Linearity of Expectation). Let f , g, and hi be discrete

random variables for all i ∈ N, and let a ∈ R
≥0. Then

E[af + g] = aE[f ] + E[g],

and

E

[ ∞∑
i=0

hi

]
=
∞∑
i=0

E[hi].

The proof of this theorem is straightforward and left as an exercise.

It is important to realize not only what this theorem says, but also what it

doesn’t say. For example, it is not necessarily the case that E[fg] = E[f ]E[g],

or that E[2f ] = 2E[f ] — see Exercise 5.18 for specific counterexamples. We

must therefore be very careful in working with expected values, as they do

not always behave as our intuition might suggest.

Applying Theorems 5.9 and 5.7 to our analysis, we now see that

E[c(lenS + lenT )] = c(E[lenS ] + E[lenT ])

≤ c(lg(|S|+ 1) + lg(|T |+ 1))

≤ 2c lg(|S|+ |T |+ 2),

where |S| and |T | denote the sizes of S and T , respectively. Thus, the

expected running time of Merge is in O(lg n), where n is the total number

of nodes in the two heaps. It follows that the expected running times of Put

and RemoveMax are also in O(lg n).

A close examination of Example 5.4 reveals that the bound of lg(n+ 1)

on E[lenT ] is reached when n + 1 is a power of 2. Using the fact that lg is

smooth, we can then show that the expected running time of Merge is in

Ω(lg n); the details are left as an exercise. Thus, the expected running times

of Put and RemoveMax are in Θ(lg n).

It is also clear that the stack space usage of Merge is proportional to the

depth of recursion, which is proportional to the running time. As a result, the

expected stack space usage of Merge, and hence of Put and RemoveMax,

is in Θ(lg n). While this result is positive, it might be worthwhile to consider

the worst-case stack space usage, as high stack space usage will cause a

program to terminate abnormally. In the worst case, all nodes in a single

tree can be in the same path, and Merge can follow this path to the end.

Hence, in the worst case, Merge, Put, and RemoveMax can use Θ(n)

stack space. On the other hand, the recursion can be removed in a similar
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way as we suggested for SkewHeap.Merge. Doing so would reduce the

total space usage to Θ(1).

5.6 Sorting and Binary Heaps

In Section 3.6, we saw how to sort an array in Θ(n2) time. A priority queue

can be used to improve this performance. Using either a LeftistHeap or a

SkewHeap, we can insert n elements in Θ(n lgn) time, by Theorem 3.31.

We can then sort the items in the heap by removing the maximum in Θ(lg n)

time and sorting the remainder. It is easily seen that this entire algorithm

runs in Θ(n lg n) time.

In order to improve further the performance of sorting, we would like

to avoid the need to use an auxiliary data structure. Specifically, we would

like to keep the data items in a single array, which is partitioned into an

unsorted part followed by a sorted part, as illustrated in Figure 5.13(a). The

unsorted part will, in essence, be a representation of a priority queue — we

will explain the details of this representation in what follows. This priority

queue will contain keys that are no larger than any of the keys in the sorted

part. When we remove the maximum element from the priority queue, this

frees up an array location, as shown in Figure 5.13(b). We can put the

element that we removed from the priority queue into this location. Because

Figure 5.13 Illustration of sorting using a priority queue represented in an array
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Figure 5.14 A binary heap

this key is at least as large as any key in the priority queue, but no larger

than any key in the sorted part, we can extend the sorted part to include

this location (see Figure 5.13(c)).

We therefore need to be able to represent a heap using an array. One way

to accomplish this is to number the nodes left-to-right by levels, as shown

in Figure 5.14. The numbers we have assigned to the nodes can be used

as array indices. In order to avoid ambiguity, there should be no “missing”

nodes; i.e., each level except possibly the last should be completely full, and

all of the nodes in the last level should be as far to the left as possible. This

scheme for storing a heap is known as a binary heap.

Note that a binary heap is very nearly balanced. We saw in Example 5.4

that in a completely balanced binary tree with n nodes, the length of any

path to an empty subtree is lg(n+1). This result holds only for tree sizes that

can be completely balanced. However, it is not hard to show that for any n,

if a binary tree with n nodes is balanced as nearly as possible, the length

of the longest path to an empty subtree is �lg(n + 1)� (or equivalently, the

height is �lg(n+1)�−1). We will show that this fact allows us to implement

both Put and RemoveMax for a binary heap in Θ(lg n) time.

Note that each level of a binary heap, except the first and possibly the

last, contains exactly twice as many nodes as the level above it. Thus, if we

were to number the levels starting with 0 for the top level, then each level i

(except possibly the last) contains exactly 2i nodes. It follows from (2.2)
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that levels 0 through i− 1, where i is strictly less than the total number of

levels, have a total of 2i− 1 nodes. Let x be the jth node on level i. x would

then have index 2i−1+ j. Suppose x has a left child, y. In order to compute

its index, we observe that level i has j − 1 nodes to the left of x. Each of

these nodes has two children on level i+ 1 to the left of node y. Therefore,

the index of y is

2i+1 − 1 + 2(j − 1) + 1 = 2i+1 + 2j − 2,

or exactly twice the index of its parent. Likewise, if x has a right child, its

index is 1 greater than that of y.

As a result of these relationships, we can use simple calculations to find

either child or the parent of a node at a given location. Specifically, the left

and right children of the element at location i are the elements at locations

2i and 2i + 1, respectively, provided they exist. Furthermore, the parent of

the element at location i > 1 is at location �i/2�.
Let us consider how we can implement a binary heap as a data structure.

We will use two representation variables:

• elements[0..m]: an array of Keyed items; and

• size: a Nat.

A sentinel element is an
extra element added to a
data structure in order to
indicate when a traversal of
that structure has reached
the end.

We allow read access to size. For reasons that

will become clear shortly, elements[0] will act as

a sentinel element, and will have as its key the

maximum allowable value. For convenience, we will

use a constant sentinel to represent such a data item.

Note because �1/2� = 0, we can treat elements[0] as if it were the parent of

elements[1].

The structural invariant will be:

• size ≤ SizeOf(elements);

• elements[0] = sentinel; and

• for 1 ≤ i ≤ size, elements[i].Key() ≤ elements[�i/2�].Key().

We interpret elements[1..size ] as the elements of the set being represented,

together with their associated priorities.

Unfortunately, the algorithms for merging heaps don’t work for binary

heaps because they don’t maintain the balanced shape. Therefore, let us

consider how to insert an element x into a binary heap. If size is 0, then we

can simply make x the root. Otherwise, we need to compare x.Key() with

the key of the root. The larger of the two will be the new root, and we can
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then insert the other into one of the children. We select which child based

on where we need the new leaf.

In this insertion algorithm, unless the tree is empty, there will always

be a recursive call. This recursive call will always be on the child in the

path that leads to the location at which we want to add the new node. Note

that the keys along this path from the root to the leaf are in nonincreasing

order. As long as the key to be inserted is smaller than the key to which it

is compared, it will be the inserted element in the recursive call. When it is

compared with a smaller key, that smaller key is used in the recursive call.

When this happens, the key passed to the recursive call will always be at

least as large as the root of the subtree in which it is being inserted; thus,

it will become the new root, and the old root will be used in the recursive

call. Thus, the entire process results in inserting the new key at the proper

point in the path from the root to the desired insertion location.

For example, suppose we wish to insert the priority 35 into the binary

heap shown in Figure 5.15(a). We first find the path to the next insertion

point. This path is 〈89, 32, 17〉. The proper position of 35 in this path is

between 89 and 32. We insert 35 at this point, pushing the following priorities

downward. The result is shown in Figure 5.15(b).

Because we can easily find the parent of a node in a BinaryHeap, we

can implement this algorithm bottom-up by starting at the location of the

Figure 5.15 Example of inserting 35 into a binary heap
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new leaf and shifting elements downward one level until we reach a location

where the new element will fit. This is where having a sentinel element is

convenient — we know we will eventually find some element whose key is at

least as large as that of x. The resulting algorithm is shown in Figure 5.16.

We assume that Expand(A) returns an array of twice the size of A, with

the elements of A copied to the first half of the returned array.

The RemoveMax operation is a bit more difficult. We need to remove

the root because it contains the element with maximum priority, but in order

to preserve the proper shape of the heap, we need to remove a specific leaf.

We therefore first save the value of the root, then remove the proper leaf. We

need to form a new heap by replacing the root with the removed leaf. In order

to accomplish this, we use the MakeHeap algorithm shown in Figure 5.17.

For ease of presentation, we assume t is formed with BinaryTreeNodes,

rather than with an array. If the key of x is at least as large as the keys of

the roots of all children of t, we can simply replace the root of t with x, and

we are finished. Otherwise, we need to move the root of the child with larger

key to the root of t and make a heap from this child and x. This is just a

smaller instance of the original problem.

We can simplify MakeHeap somewhat when we use it with a binary

heap. First, we observe that once we have determined that at least one child

is nonempty, we can conclude that the left child must be nonempty. We also

observe that the reduction is a transformation to a smaller instance; i.e.,

Figure 5.16 The BinaryHeap.Put operation
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Figure 5.17 The MakeHeap algorithm

MakeHeap is tail recursive. We can therefore implement it using a loop.

In order to simplify the statement of the loop invariant, we make use of

the fact that the entire tree is initially a heap, so that the precondition of

MakeHeap could be strengthened to specify that t is a heap. (Later we will

use MakeHeap in a context in which we need the weaker precondition.)

Figure 5.18 gives the entire RemoveMax operation without a separate

MakeHeap function. Note that elements[size+1] in Figure 5.18 corresponds

to x in Figure 5.17, elements[i] corresponds to t, and j corresponds to

largerChild.

Notice that in RemoveMax, i is initialized to 1, the root of the heap,

and on each iteration that does not cause the while condition to be false,

i is set to j, the index of its larger child. Furthermore, on each iteration,

elements[i] is set to either elements[size + 1] or elements[j]. In the latter

case, the larger child of elements[i] is copied to elements[i], and in the former

case, the removed leaf is placed in its proper location. Thus, as in the Put
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Figure 5.18 The BinaryHeap.RemoveMax operation.

operation, an element is inserted into a path in the heap; however, in this

case, the path follows the larger of the children of a node, and the elements

preceding the insertion location are moved upward.

For example, suppose we were to perform a RemoveMax on the binary

heap shown in Figure 5.19(a). We would remove 89 and find the path that

follows the larger child of each node. This path is 〈65, 48, 33〉. We would

then insert 41, the last leaf, into this path between 48 and 33, moving the

preceding priorities upward. The result is shown in Figure 5.19(b).

It is easily seen that both Put andRemoveMax operate in Θ(lg n) time,

excluding any time needed to expand the array. Furthermore, as we saw in

Section 4.3, we can amortize the cost of array expansion to constant time

per insertion. The amortized running time for Put is therefore in Θ(lg n),

and the worst-case time for RemoveMax is in Θ(lg n).

We now return to the sorting problem. In order to sort an array A, we

first need to arrange it into a binary heap. One approach is first to make
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Figure 5.19 Example of the RemoveMax operation for a binary heap

A[1..n − 1] into a heap, then to insert A[n]. We can easily implement this

bottom-up. The resulting algorithm does n− 1 insertions into heaps of sizes

ranging from 1 to n− 1. The total running time is therefore in

n−1∑
i=1

Θ(lg i) ⊆ Θ((n− 1) lg(n− 1)) (from Theorem 3.31)

= Θ(n lg n).

We can do better, however, by viewing the array A[1..n] as a binary tree

in which the parent of A[i] is A[�i/2�] for i > 1. With this view in mind, the

natural approach seems to be to make the children into heaps first, then use

MakeHeap to make the entire tree into a heap. The resulting algorithm is

easiest to analyze when the tree is completely balanced — i.e., when n + 1

is a power of 2. Let N = n + 1, and let f(N) give the worst-case running

time for this algorithm. When N is a power of 2, we have

f(N) ∈ 2f(N/2) + Θ(lgN).

From Theorem 3.35, f(N) ∈ Θ(N) = Θ(n).

This implementation of MakeHeap must be more general than the

implementation used for BinaryHeap. Specifically, we must be able to

apply MakeHeap to arbitrary subtrees in order to be able to use it to
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form the heap initially. In order to allow us to express the specification

of Figure 5.17 in terms of a binary heap, we introduce the notation

Tree(A, k, n) to denote the binary tree formed by using A[k] as the root,

Tree(A, 2k, n) as the left child, and Tree(A, 2k + 1, n) as the right child,

provided k ≤ n. If k > n, Tree(A, k, n) denotes an empty tree. Thus,

Tree(A, 1, n) denotes the binary tree T implied by the array A[1..n], and

for k ≤ n, Tree(A, k, n) denotes the subtree of T rooted at A[k]. The full

implementation of HeapSort is shown in Figure 5.20.

It is not hard to show that MakeHeap operates in Θ(lg(n/k)) time in

the worst case. It is easily seen that the first for loop in HeapSort operates

in O(n lg n) time, though in fact a careful analysis shows that it runs in

Θ(n) time, as suggested by the above discussion. It is not hard to show,

using Theorem 3.31, that the second for loop operates in Θ(n lgn) time in

the worst case. Therefore, HeapSort runs in Θ(n lg n) time in the worst

case.

The only BinaryHeap method that uses more than O(1) space is the

recursive method MakeHeap. This algorithm uses stack space proportional

to its depth of recursion, which is in turn proportional to its running time.

Thus, it uses Θ(lg(n/k)) stack space, which in the worst case is in Θ(lg n).

The stack space usage for HeapSort is therefore in Θ(lg n).

5.7 Summary

A heap provides a clean framework for implementing a priority queue.

Although LeftistHeaps yield Θ(lg n) worst-case performance for the

operations Put and RemoveMax, the simpler SkewHeaps and Random-

izedHeaps yield O(lg n) amortized and Θ(lg n) expected costs, respectively,

for these operations. On the other hand, stack space usage for these two

implementations may be problematic unless the algorithms are restructured

to use iteration rather than recursion. BinaryHeaps, while providing no

asymptotic improvements over LeftistHeaps, nevertheless tend to be more

efficient in practice because they require less dynamic memory allocation.

They also provide the basis for HeapSort, a Θ(n lg n) in-place sorting

algorithm that uses Θ(lg n) stack space in the worst case. A summary

of the running times of the PriorityQueue operations for the various

implementations is shown in Figure 5.21.

For the implementations that use a Merge function, it is possible

to provide Merge as an operation. However, this operation is not very

appropriate for the PriorityQueue ADT because we may need to require
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Figure 5.20 HeapSort implementation of Sort, specified in Figure 1.1
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Figure 5.21 Running times for the PriorityQueue operations for various imple-

mentations.

Notes:

• n is the number of elements in the priority queue.

• Unless otherwise noted, all running times are worst-case.

• The constructor and the MaxPriority and Size operations all run is

Θ(1) worst-case time for all implementations.

the two priority queues to be of the same type. For example, if we added

a Merge operation to LeftistHeap, we would need to require that the

parameter is also a LeftistHeap — Merge(PriorityQueue) would be

insufficient. Furthermore, we would need to be concerned with security

because the resulting heap would share storage with the original heaps.

Using an immutable structure, as we did for LeftistHeap, would take

care of the security issue. With such implementations, the Merge operation

could be done in Θ(lg n) worst-case time for a LeftistHeap, or in Θ(lg n)

expected time for a RandomizedHeap, where n is the sum of the sizes of the

two priority queues. The amortized time for SkewHeap.Merge, however,

is not in O(lg n) unless we restrict the sequences of operations so that after

two priority queues are merged, the original priority queues are not used in

any subsequent operations; otherwise, we can repeatedly perform the same

expensive Merge.
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In Section 5.5, we introduced the basics of expected-case analysis

for randomized algorithms. Specifically, we showed how discrete random

variables can be defined and manipulated in order to analyze expected

running time. In Section 6.4, we will develop this theory more fully.

5.8 Exercises

Exercise 5.1. Complete the implementation of SortedArrayPriority-

Queue shown in Figure 5.2 by adding a constructor and implementations

of the MaxPriority and RemoveMax operations. Prove that your

implementation meets its specification.

Exercise 5.2. Prove that SimpleHeap, shown in Figure 5.5, meets its

specification.

Exercise 5.3. Show the result of first inserting the sequence of priorities

below into a leftist heap, then executing one RemoveMax.

34, 12, 72, 15, 37, 49, 17, 55, 45

Exercise 5.4. Prove that LeftistTree, shown in Figure 5.7, meets its

specification.

Exercise 5.5. Prove that LeftistHeap, shown in Figure 5.8, meets its

specification.

* Exercise 5.6. Prove that for any n ∈ N, if we insert a sequence of n

strictly decreasing priorities into an initially empty leftist heap, we obtain a

leftist heap with null path length �lg(n+ 1)�.
Exercise 5.7. Instead of keeping track of the null path lengths of each

node, a variation on LeftistTree keeps track of the number of nodes in

each subtree, and ensures that the left child has as many nodes as the right

child. We call this variation a LeftHeavyTree.

a. Give an implementation of LeftHeavyTree. The structure must be

immutable, and each constructor must require only Θ(1) time.

b. Prove by induction on the number of nodes n in the tree that in any

LeftHeavyTree, the distance from the root to the rightmost empty

subtree is no more than lg(n+ 1).

c. Using the result of part 5.7, show that if we use LeftHeavyTrees

instead of LeftistTrees in the implementation of LeftistHeap, the

running times of the operations are still in O(lg n), where n is the number

of elements in the priority queue.
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Figure 5.22 The HasPriority interface

Exercise 5.8. Repeat Exercise 5.3 using a skew heap instead of a leftist

heap.

Exercise 5.9. Prove that SkewHeap, obtained by replacing the Merge

function in SimpleHeap (Figure 5.5) with the function shown in Figure 5.9,

meets its specification.

* Exercise 5.10. Another way of specifying a priority queue is to define

an interface HasPriority, as shown in Figure 5.22. Rather than supplying

two arguments to the Put operation, we could instead specify that it takes

a single argument of type HasPriority, where the priority of the item is

given by its Priority operation. Discuss the potential security problems for

this approach. How could these problems be avoided if such a specification

were adopted?

Exercise 5.11. The goal of this exercise is to complete the analysis of the

amortized running times of the SkewHeap operations.

a. Prove by induction on n that in any binary tree T with n nodes, the

number of good nodes on its rightmost path is no more than lg(n + 1),

where the definition of a good node is as in Section 5.4.

b. Prove that in the SkewHeap.Merge operation (shown in Figure 5.9

on page 166) if L is initially a bad node, then it is a good node in the

resulting heap.

c. Given two skew heaps to be merged, let us define the potential of each

node to be 0 if the node is good, or 1 if the node is bad. Using the results

from parts (a) and (b) above, prove that the actual cost of the Merge

operation, plus the sum of the potentials of the nodes in the resulting

heap, minus the sum of potentials of the nodes in the two original heaps,

is in O(lg n) where n is the number of keys in the two heaps together.

d. Using the result of part (c), prove that the amortized running times

of the SkewHeap operations are in O(lg n), where n is the number of

nodes in the heap.
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* Exercise 5.12. Restructure SkewHeap.Merge to replace the recursion

with a loop. Your algorithm should use only Θ(1) space (apart from the

space already used by the heaps). Prove that the data structure obtained

by replacing the Merge function in SimpleHeap with this revised function

meets the specification given in Figure 5.1.

Exercise 5.13. Prove that RandomizedHeap, obtained by replacing the

Merge function in SimpleHeap (Figure 5.5) with the function shown in

Figure 5.12, meets specification given in Figure 5.1.

Exercise 5.14. Prove by induction on n that any binary tree with n nodes

has exactly n+ 1 empty subtrees.

Exercise 5.15. Prove by induction on the number of nodes in a binary tree

T , that the sum of the probabilities in PathT is 1.

Exercise 5.16. The goal of this exercise is to prove Theorem 5.5. Let f :

S → N be a discrete random variable.

a. Prove by induction on n that

n∑
i=0

iP (f = i) =
n∑

i=1

P (f ≥ i)− nP (f ≥ n+ 1).

b. Prove that for every n ∈ N ,

∞∑
i=0

iP (f = i) ≥
n∑

i=0

iP (f = i) + nP (f ≥ n+ 1).

c. Using the fact that if g(i) ≥ 0 for all i, then

∞∑
i=0

g(i) = lim
n→∞

n∑
i=0

g(i),

prove that if E[f ] is finite, then

lim
n→∞nP (f ≥ n+ 1) = 0.

d. Prove Theorem 5.5.

Exercise 5.17. Prove Theorem 5.9.

Exercise 5.18. Let S be the set of all sequences of four flips of a fair coin,

where each sequence has probability 1/16. Let h be the discrete random

variable giving the number of heads in the sequence.
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a. Compute E[h].

b. Compute E[h2], and show that E[h2] �= (E[h])2.

c. Compute E[2h], and show that E[2h] �= 2E[h].

Exercise 5.19. Use Example 5.4 to show that the expected running time of

RandomizedHeap.Merge, shown in Figure 5.12, is in Ω(lg n) in the worst

case, where n is the number of elements in the two heaps combined.

Exercise 5.20. Complete the implementation of BinaryHeap by adding

a constructor and a MaxPriority operation to the operations shown in

Figures 5.16 and 5.18. Prove that the resulting implementation meets its

specification.

Exercise 5.21. Repeat Exercise 5.3 using a binary heap instead of a leftist

heap. Show the result as both a tree and an array.

Exercise 5.22. Prove that HeapSort, shown in Figure 5.20, meets its

specification.

Exercise 5.23. Prove that the first loop in HeapSort runs in Θ(n) time

in the worst case.

Exercise 5.24. Prove that HeapSort runs in Θ(n lg n) time in the worst

case.

Exercise 5.25. We can easily modify the Sort specification (Figure 1.2 on

page 7) so that instead of sorting numbers, we are sorting Keyed items in

nondecreasing order of their keys. HeapSort can be trivially modified to

meet this specification. Any sorting algorithm meeting this specification is

said to be stable if the resulting sorted array always has elements with equal

keys in the same order as they were initially. Show that HeapSort, when

modified to sort Keyed items, is not stable.

Exercise 5.26. Consider the following scheduling problem. We have a

collection of jobs, each having a natural number ready time ri, a positive

integer execution time ei, and a positive integer deadline di, such that

di ≥ ri + ei. At each natural number time instant t, we wish to schedule

the job with minimum deadline satisfying the following conditions

• t ≥ ri (i.e., the job is ready);

• if the job has already been executed for a < ei time units, then t+ei−a ≤
di (i.e., the job can meet its deadline).

Note that this scheduling strategy may preempt jobs, and that it will discard

jobs that have been delayed so long that they can no longer meet their



194 Algorithms: A Top-Down Approach

deadlines. Give an algorithm to produce such a schedule, when given a

sequence of jobs ordered by ready time. Your algorithm should store the

ready jobs in an InvertedPriorityQueue. (You do not need to give an

implementation of InvertedPriorityQueue.) Show that your algorithm

operates in O(k lg n) time, where k is length of the schedule and n is the

number of jobs. You may assume that k ≥ n and that Put and RemoveMin

both operate in Θ(lg n) time in the worst case.

Exercise 5.27. The game of craps consists of a sequence of rolls of two six-

sided dice with faces numbered 1 through 6. The first roll is known as the

come-out roll. If the come-out roll is a 7 or 11 (the sum of the top faces of the

two dice), the shooter wins. If the come-out roll is a 2, 3, or 12, the shooter

loses. Otherwise, the result is known as the point. The shooter continues to

roll until the result is either the point (in which case the shooter wins) or a

7 (in which case the shooter loses).

a. For each of the values 2 through 12, compute the probability that any

single roll is that value.

b. A field bet can be made on any roll. For each dollar bet, the payout is

determined by the roll as follows:

• 2 or 12: $3 (i.e., the bettor pays $1 and receives $3, netting $2);

• 3, 4, 9, 10 or 11: $2;

• 5, 6, 7, or 8: 0.

Calculate the expected payout for a field bet.

c. A pass-line bet is a bet, placed prior to the come-out roll, that the shooter

will win. For each dollar bet, the payout for a win is $2, whereas the

payout for a loss is 0. Compute the expected payout for a pass-line bet.

[Hint: The problem is much easier if you define a finite probability space,

ignoring those rolls that don’t affect the outcome. In order to do this you

will need to use conditional probabilities (e.g., given that the roll is either

a 5 or a 7, the probability that it is a 5).]

Exercise 5.28. Let S be a discrete probability space, and let f be a discrete

random variable over S. Let a be any positive real number. Prove Markov’s

Inequality :

P (f ≥ a) ≤ E[f ]/a. (5.3)
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5.9 Notes

Both heaps and heap sort were introduced by Williams [121]. The linear-

time construction of a binary heap is due to Floyd [41]. Leftist heaps were

introduced by Crane [26]; see also Knuth [84]. Skew heaps were introduced

by Sleator and Tarjan [108]. Randomized heaps were introduced by Gambin

and Malinowski [48].

Other implementations of priority queues have been defined based on the

idea of a heap. For example, binomial queues were introduced by Vuillemin

[116]. Lazy binomial queues and Fibonacci heaps, each of which provide

Put and RemoveMax operations with amortized running times in O(1)

and O(lg n), respectively, were introduced by Fredman and Tarjan [46].

The information on craps in Exercise 5.27 is taken from Silberstang [106].
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Chapter 6

Storage/Retrieval I: Ordered Keys

In this chapter, we begin an examination of data structures for general

storage and retrieval. We will assume that with each data item is associated

a key that uniquely identifies the data item. An example of this kind of key

might be a bank account number. Thus, if we provide a bank’s database with

a customer’s account number, we should be able to retrieve that customer’s

account information.

We will letKey denote the type to which the keys belong. We will assume

that, even though the Key may not be a numeric type, it is still possible

to sort elements of this type using a comparison operator ≤. Moreover, we

assume that we need an efficient way to obtain data items in order of their

keys. In the next chapter, we will examine data structures that do not require

these two assumptions.

In order to facilitate arbitrary processing of all of the items in the data

structure, we provide the Visitor interface, shown in Figure 6.1. We can

then define an implementation of Visitor so that its Visit() operation

does whatever processing we wish on a data item. (The use of this interface

is known as the visitor pattern.)

We then define a Dictionary as a finite set of data items, each

having a unique key of type Key, together with the operations shown

in Figure 6.2. In the next chapter, we will examine implementations of

this ADT. In this chapter, we will explore several implementations of the

OrderedDictionary ADT, which is the extension of the Dictionary

ADT obtained by adding the interface shown in Figure 6.3.

Example 6.1. Suppose we would like to print all of the data items in an

instance of OrderedDictionary in order of keys. We can accomplish this

by implementing Visitor so that its Visit operation prints its argument.

197
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Figure 6.1 The Visitor interface

Figure 6.2 The Dictionary ADT

Such an implementation, Printer, is shown in Figure 6.4. Note that we have

strengthened the postcondition over what is specified in Figure 6.1. This is

allowable because an implementation with a stronger postcondition and/or a

weaker precondition is still consistent with the specification. Having defined

Printer, we can print the contents of the OrderedDictionary d with
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Figure 6.3 Interface extending Dictionary to OrderedDictionary

Figure 6.4 Printer implementation of Visitor

the statement,

d.VisitInOrder(new Printer()).

In order to implement OrderedDictionary, it is possible to store the

data items in a sorted array, as we did with SortedArrayPriorityQueue

in Section 5.1. Such an implementation has similar advantages and disad-

vantages to those of SortedArrayPriorityQueue. Using binary search,

we can find an arbitrary data item in Θ(lg n) time, where n is the number

of items in the dictionary. Thus, the Get operation can be implemented

to run in Θ(lg n) time. However, to add or remove an item requires Θ(n)

time in the worst case. Thus, Put and Remove are inefficient using such

an implementation. The fact that the elements of an array are located

contiguously allows random access, which, together with the fact that the

elements are sorted, facilitates the fast binary search algorithm. However, it

is exactly this contiguity that causes updates to be slow, because in order

to maintain sorted order, elements must be moved to make room for new

elements or to take the place of those removed.

If we were to use a linked list instead of an array, we would be able

to change the structure without moving elements around, but we would no

longer be able to use binary search. The “shape” of a linked list demands
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a sequential search; hence, look-ups will be slow. In order to provide

fast updates and retrievals, we need a linked structure on which we can

approximate a binary search.

6.1 Binary Search Trees

Consider the binary tree structure shown in Figure 6.5. Integer keys of several

data items are shown in the nodes. Note that the value of the root is roughly

the median of the keys in the structure; i.e., about half of the remaining keys

are smaller. The smaller keys are all in the left child, whereas the larger keys

are all in the right child. The two children are then structured in a similar

way. Thus, if our search target is smaller than the key at the current node,

we look in the left child, and if it is larger, we look in the right child. Because

this type of search approximates a binary search, this structure is called a

binary search tree.

More formally we define a binary search tree (BST) to be a binary tree

satisfying the following properties:

• Each node contains a data item together with its key.

• If the BST is nonempty, then both of its children are BSTs, and the key

in its root node is

Figure 6.5 A binary search tree
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– strictly larger than all keys in its left child;

– strictly smaller than all keys in its right child.

We can represent a binary search tree with the following variables:

• elements, which refers to a BinaryTreeNode (see Section 5.2);

• size, which is an integer giving the number of data items in the set.

We interpret elements as representing a binary search tree as follows. If

its root variable is nil, then the represented BST is empty. Otherwise, its

root variable is a Keyed item (see page 149) containing the data item

stored in the root with its associated key, and its leftChild and rightChild

variables represent the left and right children, respectively. Our structural

invariant is that elements refers to a binary search tree according to the above

interpretation, and that size gives the number of nodes in the represented

binary search tree. Note that this invariant implies that all non-nil root

variables in the BinaryTreeNodes refer to Keyed items.

Because both Get and Remove require that we find a node with a given

key, we will design an internal function Find(k, t) to find the node in the

BST rooted at t with key k. If no such key exists in the tree, Find(k, t) will

return a reference to the empty subtree in which it could be inserted; thus,

we can also use Find in implementing Put.

Consider how we might implement Find(k, t). If t is empty, then

obviously it does not contain the key. Otherwise, we should first check the

root. If we don’t find our key, we should see how it compares with the key

at the root. Proceeding top-down, we can then find the key in either the left

or right child, depending on the outcome of the comparison. This algorithm

is a transformation, and so can be implemented as a loop, as is shown in

Figure 6.6.

Complete implementations of Get and Put are shown in Figure 6.6.

The implementation of Remove requires a bit more work, however. Once

we find the node containing the key k, we need to be able to remove that

node t while maintaining a binary search tree. If t has no nonempty children,

all we need to do is remove it (i.e., make the subtree empty). If t has only

one nonempty child, we can safely replace the node to which t refers by that

child. The difficulty comes when t has two nonempty children. In order to

take care of this case, we replace t with the node in its right child having

smallest key. That node must have an empty left child, so we can easily

remove it. Furthermore, because it is in the right child of t, its key is greater
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Figure 6.6 BSTDictionary implementation of OrderedDictionary, part 1
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than any key in the left child of t; hence, moving it to the root of t maintains

the BST structure.

We can find the smallest key in a nonempty BST by first looking at the

left child of the root. If it is empty, then the root contains the smallest key.

Otherwise, the smallest key is in the left child. This is a transformation,

and so can be implemented using a loop. The complete implementation of

Remove is shown in Figure 6.7. Figure 6.8 shows the result of deleting 54

from the BST shown in Figure 6.5. Specifically, because 54 has two children,

it is replaced by the smallest key (64) in its right child, and 64 is replaced

by its right child (71).

The VisitInOrder operation requires us to apply v.Visit to each data

item in the BST, in order of keys. If the BST is empty, then there is

nothing to do. Otherwise, we must visit all of the data items in the left

child prior to visiting the root, then we must visit all of the data items in

the right child. Because the left and right children are themselves BSTs,

they comprise smaller instances of this problem. Applying the top-down

approach in a straightforward way, we obtain the recursive internal function

TraverseInOrder shown in Figure 6.7.

The above algorithm implemented by TraverseInOrder is known as

an inorder traversal. Inorder traversal applies strictly to binary trees, but two

other traversals apply to rooted trees in general. A preorder traversal visits

the root prior to recursively visiting all of its children, whereas a postorder

traversal visits the root after recursively visiting all of its children.

Let us now analyze the running time of Find. Let n be the number

of data items in the BST. Clearly, the time required outside the loop and

the time for a single iteration of the loop are each in Θ(1). We therefore

need to analyze the worst-case number of iterations of the loop. Initially, t

refers to a BST with n nodes. A single iteration has the effect of resetting t

to refer to one of its children. In the worst case, this child may contain all

nodes except the root. Thus, in the worst case, the loop may iterate n times.

This can happen, for example, if all left children are empty, so that elements

refers to a BST that consists of a single chain of nodes going to the right

(see Figure 6.9). The worst-case running time is therefore in Θ(n).

Example 6.2. Suppose we build a BSTDictionary by inserting n items

with integer keys 1, 2, . . . , n, in that order. As each key is inserted, it is

larger than any key already in the BST. It is therefore inserted to the right

of every key already in the BST. The result is shown in Figure 6.9. It is

easily seen that to insert key i requires Θ(i) time. The total time to build

the BSTDictionary is therefore in Θ(n2), by Theorem 3.31.
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Figure 6.7 BSTDictionary implementation of OrderedDictionary, part 2
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Figure 6.8 The result of deleting 54 from the BST shown in Figure 6.5 — 54 is

replaced by 64, which in turn is replaced by 71.

Figure 6.9 A worst-case binary search tree

The worst-case performance of a binary search tree is no better than

either a sorted array or a sorted linked list for implementing Ordered-

Dictionary. In fact, in the worst case, a binary search tree degenerates

into a sorted linked list, as Figure 6.9 shows. However, the performance of a

binary search tree is not nearly as bad as the worst-case analysis suggests.

In practice, binary search trees often yield very good performance.
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In order to help us to understand better the performance of a binary

search tree, let us analyze the worst-case running time of Find in a somewhat

different way. Instead of analyzing the running time in terms of the number

of data items, let us instead analyze it in terms of the height of the tree.

The analysis is similar, because again in the worst case the child selected in

the loop has height one less than the entire subtree. Thus, the worst-case

running time of Find is in Θ(h), where h is the height of the tree.

What this analysis tells us is that in order to achieve good performance

from a binary search tree, we need a tree whose height is not too large.

In practice, provided the pattern of insertions and deletions is somewhat

random, the height of a binary search tree tends to be in Θ(lg n). It is not

hard to see that the worst-case running time of Get, Put, and Remove

are all in Θ(h). Thus, if the height of the tree is logarithmic, we can achieve

good performance. In the next section, we will show how we can modify

our implementation to guarantee logarithmic height in the worst case, and

thereby achieve logarithmic performance from these three operations.

Before we leave ordinary binary search trees, however, let us analyze

the worst-case running time of TraverseInOrder, which does not use the

Find function. We cannot analyze this operation completely because we

cannot analyze v.Visit without knowing how it is implemented. Assuming

the correctness of TraverseInOrder (whose proof we leave as an exercise),

we can nevertheless conclude that v.Visit is called exactly once for each data

item, and so must take at least Ω(n) time. What we would like to analyze is

the time required for everything else. This amounts to analyzing the overhead

involved in applying v.Visit to every data item.

Ignoring the call to v.Visit and the recursive calls, it is easily seen that

the remaining code runs in Θ(1) time. However, setting up a recurrence

describing the worst-case running time, including the recursion but excluding

calls to v.Visit, is not easy. We must make two recursive calls, but all we

know about the sizes of the trees in these calls is that their sum is one less

than the size of the entire tree.

Let us therefore take a different approach to the analysis. As we

have already argued, v.Visit is called exactly once for each data item.

Furthermore, it is easily seen that, excluding the calls made on empty trees,

v.Visit is called exactly once in each call to TraverseInOrder. A total

of exactly n calls are therefore made on nonempty trees. The calls made

on empty trees make no further recursive calls. We can therefore obtain

the total number of recursive calls (excluding the initial call made from

VisitInOrder) by counting the recursive calls made by each of the calls on
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nonempty trees. Because each of these calls makes two recursive calls, the

total number of recursive calls is exactly 2n. Including the initial call the

total number of calls made to TraverseInOrder is 2n + 1. Because each

of these calls runs in Θ(1) time (excluding the time taken by v.Visit), the

total time is in Θ(n). Note that we cannot hope to do any better than this

because the specification requires that v.Visit be called n times.

Because TraverseInOrder is recursive, we should also consider the

stack space usage. Again, analyzing the stack space in terms of the number

of nodes is rather difficult, but it turns out to be much easier to do the

analysis in terms of the height of the tree. As with Find, this analysis also

gives us useful information about the performance of TraverseInOrder.

Let f(h) be the worst-case stack space used by TraverseInOrder on

a tree of height h. Then if h > 0, f(h) is in Θ(1) plus the maximum of the

amount of space used the two recursive calls in the worst case. Because at

least one of the two children has height h− 1, f(h) ≥ f(h− 1); i.e., f(h) is

nondecreasing. Then in the worst case, the maximum space used by one of

the recursive calls is f(h− 1). We therefore have the following recurrence:

f(h) ∈ f(h− 1) + Θ(1),

for h > 0. By Theorem 3.34, f(h) ∈ Θ(h). In the worst case, h = n − 1,

where n is the number of data items; hence, the worst-case stack space usage

is in Θ(n).

The above analysis tells us that if we want to keep the stack space usage

for TraverseInOrder reasonable, we need to ensure that the heights of

the trees are small. Thus, ensuring that the height of a binary tree is in

Θ(lg n) would ensure not only good performance for Find, but also good

stack space usage for TraverseInOrder.

6.2 AVL Trees

In this section, we present a variant of binary search trees that guarantees

logarithmic height. As a result, we obtain an implementation of Ordered-

Dictionary for which the Get, Put, and Remove operations all run in

Θ(lg n) time.

The key to keeping the height of a binary tree relatively small is in

maintaining balance. The trick is to be able to achieve balance without too

much overhead; otherwise the overhead in maintaining balance may result in

poor overall performance. Consequently, we need to be careful how we define

“balance”, so that our balance criterion is not too difficult to maintain.
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Figure 6.10 An AVL tree

The balance criterion that we choose is that in any subtree, the heights

of the two children differ by at most 1. For the purpose of this definition, we

consider an empty tree to have height −1, or one less than the height of a tree

containing a single node. A binary search tree obeying this balance criterion

is known as an AVL tree; “AVL” stands for the names of its inventors,

Adel’son-Vel’skĭı and Landis.

Figure 6.10 shows an AVL tree of height 4 containing integer keys. Note

that its balance is not perfect – it is not hard to construct a binary tree of

height 3 with even more nodes. Nevertheless, the children of each nonempty

subtree have heights differing by at most 1, so it is an AVL tree.

Before we begin designing an AVL tree implementation of Ordered-

Dictionary, let us first derive an upper bound on the height of an AVL

tree with n nodes. We will not derive this bound directly. Instead, we will

first derive a lower bound on the number of nodes in an AVL tree of height

h. We will then transform this lower bound into our desired upper bound.

Consider an AVL tree with height h having a minimum number of

nodes. By definition, both children of a nonempty AVL tree must also be

AVL trees. By definition of the height of a tree, at least one child must have

height h− 1. By definition of an AVL tree, the other child must have height

at least h − 2. In order to minimize the number of nodes in this child, its

height must be exactly h−2, provided h ≥ 1. Thus, the two children are AVL

trees of heights h− 1 and h− 2, each having a minimum number of nodes.

The above discussion suggests a recurrence giving the minimum number

of nodes in an AVL tree of height h. Let g(h) give this number. Then for
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h ≥ 1, the number of nodes in the two children are g(h − 1) and g(h − 2).

Then for h ≥ 1,

g(h) = g(h − 1) + g(h − 2) + 1, (6.1)

where g(−1) = 0 (the number of nodes in an empty tree) and g(0) = 1 (the

number of nodes in a tree of height 0).

Example 6.3. Consider the subtree rooted at 25 in Figure 6.10. It is of

height 1, and its two children are minimum-sized subtrees of height 0 and

−1, respectively. It is therefore a minimum-sized AVL tree of height 1, so

g(1) = 2. Likewise, the subtrees rooted at 53 and 74 are also minimum-sized

AVL trees of height 1. The subtrees rooted at 31 and 79 are then easily seen

to be minimum-sized AVL trees of height 2, so g(2) = 4. In like manner it

can be seen that g(3) = 7, g(4) = 12, and the entire tree is a minimum-sized

AVL tree of height 4.

Recurrence (6.1) does not fit any of the forms we saw in Chapter 3.

However, it is somewhat similar to the form of Theorem 3.34. Recall that we

only need a lower bound for g(n). In what follows, we will derive a recurrence

that fits the form of Theorem 3.34 and gives a lower bound for g(n).

We first observe that g must be a nondecreasing function. Thus, for

h ≥ 1, if

g1(h) = 2g1(h− 2) + 1,

where g1(h) = g(h) for h < 1, then

g1(h) ≤ g(h), (6.2)

for all h ≥ −1.
Now if we let g2(h) = g1(2h) for all h, we obtain

g2(h) = g1(2h)

= 2g1(2h− 2) + 1

= 2g1(2(h − 1)) + 1

= 2g2(h− 1) + 1.

g2 then fits the form of Theorem 3.34. Applying this theorem, we obtain

g2(h) ∈ Θ(2h).
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Thus, for sufficiently large h, there is a positive real number c1 such that

g1(2h) = g2(h)

≥ c12
h.

Then for sufficiently large even h,

g1(h) ≥ c12
h/2.

For sufficiently large odd h, we have

g1(h) ≥ g1(h− 1)

≥ c12
(h−1)/2 (because h− 1 is even)

=
c1√
2
2h/2,

so that for some positive real number c2 and all sufficiently large h,

g1(h) ≥ c22
h/2. (6.3)

Combining (6.3) with (6.2), we obtain

c22
h/2 ≤ g(h),

for sufficiently large h. Applying lg to both sides and rearranging terms, we

obtain

h ≤ 2(lg g(h) − lg c2)

∈ O(lg g(h)).

Because g(h) is the minimum number of nodes in an AVL tree of height h, it

follows that the height of an AVL tree is in O(lg n), where n is the number of

nodes. By a similar argument, it can be shown that the height is in Ω(lg n)

as well. We therefore have the following theorem.

Theorem 6.4. The worst-case height of an AVL tree is in Θ(lg n), where n

is the number of nodes.

By Theorem 6.4, if we can design operations that run in time linear in

the height of an AVL tree, these operations will run in time logarithmic

in the size of the data set. Certainly, adding or deleting a node will change

the heights of some of the subtrees in an AVL tree; hence, these operations

must re-establish balance. Computing the height of a binary tree involves

finding the longest path, which apparently requires examining the entire tree.

However, we can avoid recomputing heights from scratch if we record the
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height of each subtree. If the heights of both children are known, computing

the height of the tree is straightforward.

We therefore define the data type AVLNode, which is just like Binary-

TreeNode, except that it has an additional representation variable, height.

This variable is used to record the height of the tree as an integer. As for the

other three variables, we allow read/write access to height. The constructor

for AVLNode is just like the constructor for BinaryTreeNode, except

that it also initializes height to −1.
To represent an OrderedDictionary using an AVL tree, we again

use two variables, elements and size, as we did for BSTDictionary. In

this representation, however, elements will refer to an AVLNode. Our

structural invariant is that elements represents an AVL tree. We interpret

this statement as implying that each height variable gives the height of the

subtree at which it is rooted, or −1 if that subtree is empty.

We can define a Find function for this implementation as we did for

BSTDictionary; in fact, because an AVL tree is a binary search tree, the

same function will work. As we have already shown the running time of

BSTDictionary.Find to be in Θ(h), where h is the height of the tree,

we can conclude that this function has a running time in Θ(lg n). However,

this function is not useful in implementing the Put or Remove operations

because we might need to change the shape of the tree at some other location

in order to maintain the balance criterion.

Let us therefore consider how Put might be implemented. More

generally, let us consider how a data item x might be inserted into an

arbitrary AVL tree t, which may be a subtree of a larger AVL tree. If t is

empty, we can replace it with a single-node AVL tree containing x. Otherwise,

we’ll need to compare keys and insert into the appropriate child. However, we

are not yet finished, because the insertion into the child will have changed its

shape; hence, we need to compare the heights of the two children and restore

balance if necessary. Note that this reduction is not a transformation, due

to the additional work required following the insertion into the child.

In order to complete the insertion function, we need to be able to restore

the balance criterion after an insertion into one of the children. Clearly,

if we insert into one particular child, the other child will be unchanged.

Furthermore, if we specify the insertion function to cause the result to be

an AVL tree, we know that both children will be AVL trees; hence, we only

need to worry about restoring balance at the root. Before we can talk about

how to restore balance at the root, we should consider how much difference

there might be in the heights of the children. It stands to reason that an
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Figure 6.11 A single rotate right

insertion should either leave the height unchanged or increase it by 1. We

will therefore include this condition in the postcondition of our insertion

function.

Based on the above discussion, it suffices to show how to balance a

binary search tree whose children are AVL trees having a height difference of

exactly 2. This restoration of balance is accomplished via rotations. Consider,

for example, the rotation shown in Figure 6.11. In this figure, circles denote

single nodes, and triangles denote arbitrary subtrees, which in some cases

may be empty. All nodes and subtrees are labeled in a way that corresponds

to the order of nodes in a BST (e.g., subtree c is to the right of node b

and to the left of node d). The rotation shown is known as a single rotate

right. It is accomplished by promoting node b to the root, then filling in the

remaining pieces in the only way that maintains the ordering of keys in the

BST. Suppose that in the “before” picture, the right child (e) has height h

and the left child has height h+2. Because the left child is an AVL tree, one

of its two children has a height of h+ 1 and the other has a height of either

h or h + 1. Suppose subtree a has a height of h + 1. Then it is easily seen

that this rotation results in an AVL tree.

The rotation shown in Figure 6.11 does not restore balance, however,

if subtree a has height h. Because the left child in the “before” picture has

height h+2, subtree c must have height h+1 in this case. After the rotation,

the left child has height h, but the right child has height h+2. To take care

of this case, we need another kind of rotation called a double rotate right,

shown in Figure 6.12. It is accomplished by promoting node d to the root

and again filling in the remaining pieces in the only way that maintains the

ordering of keys. Suppose that subtrees a and g have height h and that the

subtree rooted at d in the “before” picture has height h + 1. This is then

the case for which a single rotate fails to restore balance. Subtrees c and e
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Figure 6.12 A double rotate right

may have heights of either h or h − 1 (though at least one must have

height h). It is therefore easily seen that following the rotation, balance

is restored.

These two rotations handle the cases in which the left child has height

2 greater than the right child. When the right child has height 2 greater

than the left child a single rotate left or a double rotate left may be applied.

These rotations are simply mirror images of the rotations shown in Figures

6.11 and 6.12.

To complete our discussion of the insertion function, we must convince

ourselves that if it changes the height of the tree, then it increases it by

exactly 1. This is clearly the case if no rotation is done. Let us then consider

the rotations shown in Figures 6.11 and 6.12. If either of these rotations

is applied, then the data item must have been inserted into the left child,

causing its height to increase from h+1 to h+2. The overall height of the tree

had to have been h+2 prior to the insertion. Following a single rotate right,

it is easily seen that the height is either h+2 or h+3. Likewise, following a

double rotate right, it is easily seen that the height is h+2. Thus, the result

of the insertion is to either leave the height unchanged or increase it by 1.

The insertion algorithm is shown as AVLDictionary.Insert in

Figure 6.13. The Balance function can also be used by the deletion algo-

rithm. The remainder of the AVLDictionary implementation, including

the rotations, is left as an exercise. Note that the rotations must ensure

that all height values except that of the root are correct. Specifically, the

heights of node d in Figure 6.11 and nodes b and f in Figure 6.12 must be

recomputed.
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Figure 6.13 Some internal functions for AVLDictionary implementation of

OrderedDictionary
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Example 6.5. Suppose we were to insert the key 39 into the AVL tree shown

in Figure 6.14(a). Using the ordinary BST insertion algorithm, 39 should be

made the right child of 35, as shown in Figure 6.14(b). To complete the

insertion, we must check the balance along the path to 39, starting at the

bottom. Both 35 and 23 satisfy the the balance criterion; however, the left

child of 42 has height 2, whereas the right child has height 0. We therefore

need to perform a rotation at 42. To determine which rotation is appropriate,

we compare the height of the left child of the left child of 42 (i.e., the subtree

rooted at 11) with the right child of 42. Because both of these subtrees have

height 0, a double rotate right is required at 42. To accomplish this rotation,

we promote 35 to the root of the subtree (i.e., where 42 currently is), and

place the nodes 23 and 42, along with the subtrees rooted at 11, 39, and 50,

at the only locations that preserve the order of the BST. The result of this

rotation is shown in Figure 6.14(c). Because the balance criterion is satisfied

at 54, this tree is the final result.

It is not hard to see that each of the rotations can be implemented to

run in Θ(1) time, and that Balance therefore runs in Θ(1) time. Let us

Figure 6.14 Example of inserting 39 into an AVL tree
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now analyze Insert. Excluding the recursion, this function clearly runs in

Θ(1) time. At most one recursive call is made, and its second parameter has

height strictly less than the height of t; in the worst case, it is 1 less. If h is

the height of t, then the worst-case running time of Insert is given by

f(h) ∈ f(h− 1) + Θ(1),

for h > 0. By Theorem 3.34, f(h) ∈ Θ(h). By Theorem 6.4, Insert therefore

runs in Θ(lg n) time, where n is the size of the data set. Clearly, Put can

be written to operate in Θ(lg n) time.

The same analysis shows that the stack space usage of Put is in Θ(lg n).

We leave as an exercise the design and analysis of an algorithm for Remove.

6.3 Splay Trees

While a worst-case bound of Θ(lg n) for OrderedDictionary accesses

is good, bounding the worst case does not always result in the best

performance. For example, in many applications, the so-called “80-20” rule

holds; i.e., 80% of the accesses involve roughly 20% of the data items. This

rule then applies recursively, so that 64% of the accesses involve roughly 4%

of the data items. In order to get good performance in such an environment,

we would like to structure the data so that the most commonly-accessed

data items can be accessed more quickly.

One variation of a binary search tree that attempts to achieve this kind

of performance is a splay tree. Structurally, a splay tree is simply a binary

search tree. Operationally, however, it is self-adjusting — when it accesses

an item, it brings that item to the root of the tree via a series of rotations.

(The VisitInOrder operation is an exception to this rule, as it accesses all

of the data items.) As a result, the more frequently accessed items tend to

remain closer to the root.

No attempt is made to ensure any sort of balance in a splay tree. As a

result, the operations run in Θ(n) time in the worst case. However, when

a long path is traversed, the rotations have the effect of shortening it by

roughly half. Thus, an expensive operation improves future performance. As

a result, the amortized running times of Get, Put, and Remove are all in

O(lg n).

To get a rough idea of how rotations improve the data structure, suppose

we have a long zig-zag path from the root to some node b; i.e., by starting

from the root, then taking first the left child, then the right child, and

continuing to alternate, we eventually reach b. We could then bring b to
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the root of the tree by a series of double rotations, each promoting b by two

levels. Now referring to Figure 6.12, note that the distance between the root

and any descendant of d decreases by 1 for each rotation. The number of

rotations is half the distance from the root to d, so each descendant of d ends

up closer to the root by half the original distance between the root and d.

Unfortunately, single rotations are not as effective in improving the

structure. Notice that in Figure 6.11, nodes in subtree c do not get any

closer to the root as a result of the rotation. As a result, we need a new kind

of double rotation that can be applied when the node to be promoted is

not a “zig-zag” from its grandparent. So that we might distinguish between

the various double rotations, we will refer to the rotation of Figure 6.12 as

a zig-zag right, and to its mirror image as a zig-zag left. A zig-zig right is

shown in Figure 6.15. Note that by this rotation, the distance between the

root and any descendant of a is decreased by at least 1.

Our representation, interpretation, and structural invariant will be the

same as for BSTDictionary. The only differences will occur in the actual

implementations of the operations. In fact, the implementation of VisitIn-

Order will also be the same as for BSTDictionary.

Let us consider how we can implement a Find function. First, we observe

that no value needs to be returned, because if the key we are looking for

exists, we will bring it to the root of the tree. Hence, after invoking the

Find function, the Get operation only needs to look in the root to see if the

desired key is there. Second, we don’t want to bring a node representing an

empty subtree to the root. For this reason, we will need to verify that a node

is nonempty at some point before rotating it to the root. It therefore seems

reasonable to include as part of the precondition that the tree is nonempty.

Figure 6.15 A zig-zig right rotation
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We therefore begin by comparing the given key k to the key at the root

of the given tree t. If the keys don’t match, we will need to look in the

appropriate child, after verifying that it is nonempty. However, we want to

do a double rotation whenever possible, so rather than using a recursive call

at this point, we should go ahead and make another comparison. If we find

the key k, or if the appropriate grandchild is empty, we do a single rotation.

Otherwise, we recursively look for k in the appropriate grandchild and do a

double rotation. The algorithm is shown in Figure 6.16.

Example 6.6. Suppose we were to do a Find on 60 in the splay tree shown

in Figure 6.17(a). Because the length of the path to 60 is odd, we must begin

with a single rotation. Figure 6.17(b) shows the result of doing a single rotate

left at 53. We then proceed with double rotations to bring 60 to the root.

In this case, only one rotation — a zig-zag left — is required. The result is

shown in Figure 6.17(c).

The insertion algorithm cannot use Find because it must insert a new

data item when an empty subtree is found. However, it can be patterned

after the Find algorithm. The main difference is that because a data item

is inserted into an empty tree, we will always rotate that node to the root.

We therefore do not need to restrict its use to nonempty trees. The details

are left as an exercise.

The deletion algorithm can, however, use Find. Suppose we want to

delete key k. We can use Find(k, elements) to move k to the root if

it is present. If the right child is empty, we can simply make the left

child the new root. Otherwise, we can use another internal function,

FindMin(elements.RightChild()), to move the minimum key m in the

right child to the root of the right child. At this point, the right child has

an empty left child, because there are no keys with values between k and its

right child. The result is shown in Figure 6.18. We can therefore complete

the deletion by making A the left child of m and making m the root (see

Figure 6.18). The algorithm is given in Figure 6.19.

Let us now analyze the amortized running times of Get, Put, and

Remove for SplayDictionary. It is not hard to see that all of the

recursive algorithms have constant running time, excluding recursive calls.

Furthermore, each time a recursive call is made, a rotation is done. It is

therefore sufficient to analyze the total number of rotations. Each rotation,

therefore, will have an actual cost of 1.

In order to amortize the number of rotations, we need to find an

appropriate potential function. Intuitively, an operation involving many
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Figure 6.16 The Find internal function for the SplayDictionary implementation

of OrderedDictionary.

rotations should improve the overall balance of the tree. The potential

function should in some way measure this balance, decreasing as the balance

increases. If the tree is very unbalanced, as in Figure 6.9, many of the subtrees
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Figure 6.17 Example of doing a Find on 60 in a splay tree
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Figure 6.18 The splay tree after the calls to Find and FindMin in Remove

Figure 6.19 The Remove operation for the SplayDictionary implementation of

OrderedDictionary
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have a comparatively large number of nodes, whereas in a balanced tree,

most of the subtrees have only a few nodes. It would therefore make sense

to define the potential function to depend on the number of nodes in each

subtree.

An example of such a potential function is the sum of the sizes of all of

the subtrees. However, this potential function will not work. Consider what

happens when 0 is inserted into the tree in Figure 6.9. It is inserted to the

left of 1, then rotated to the root via a single rotate right. The original

tree therefore ends up as the right child of the result. The potential function

therefore increases by the number of nodes in the result. With an increase this

large, we cannot achieve a logarithmic amortized cost.

In order to scale back the growth of the potential function, let us try

applying the lg function to the size of each nonempty subtree. Specifically,

let |t| denote the number of nodes in a subtree t. We then define our potential

function Φ(T ) to be the sum of all lg |t| such that t is a nonempty subtree

of the entire tree T . In what follows, we will show that for each of the three

operations, the amortized cost with respect to Φ is in O(lg n).

Because most of the rotations will be double rotations, let us begin by

analyzing a zig-zag rotation. We will be focusing on the three subtrees that

are changed by the zig-zag rotation, as shown in Figure 6.20; thus Ta, Tb, and

Tc denote the subtrees rooted at a, b, and c, respectively, prior to the rotation,

and T ′a, T ′b, and T ′c denote the subtrees rooted at these nodes following the

rotation. The amortized cost of the rotation will be the actual cost (i.e., 1)

Figure 6.20 The subtrees that are modified by a zig-zag rotation
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plus the change in the potential function Φ. Noting that |T ′b| = |Tc|, we
conclude that the change in Φ is

lg |T ′a|+ lg |T ′c| − lg |Ta| − lg |Tb|. (6.4)

We need to simplify the above expression. It will be much easier to use

if we can bound it in terms of subtrees of the original tree. In particular, we

would like to get an expression involving only |Tb| and |Tc| so that, when the

amortized costs of all rotations in one operation are added together, perhaps

most terms will cancel out.

Let us therefore apply Theorem 5.7 (page 174) to lg |T ′a|+lg |T ′c| in (6.4).

We know that |T ′a|+ |T ′c| ≤ |Tc|. By Theorem 5.7, we have lg |T ′a|+ lg |T ′c| ≤
2 lg |Tc|− 2. Using the fact that |Ta| > |Tb| and adding in the actual cost, we

obtain the following upper bound on the amortized cost of a zig-zag rotation:

2 lg |Tc| − 2− 2 lg |Tb|+ 1 = 2(lg |Tc| − lg |Tb|)− 1. (6.5)

Let us now analyze the amortized cost of a zig-zig rotation. Referring to

Figure 6.21 and adopting the same notational conventions as above, we see

that the change in Φ is

lg |T ′b|+ lg |T ′c| − lg |Ta| − lg |Tb|. (6.6)

In order to get a tight bound for this expression in terms of lg |Tc| − lg |Ta|,
we need to be a bit more clever. We would again like to use Theorem 5.7.

Note that |Ta|+ |T ′c| ≤ |Tc|; however, lg |Ta|+ lg |T ′c| does not occur in (6.6).

Figure 6.21 The subtrees that are modified by a zig-zig rotation
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Let us therefore both add and subtract lg |Ta| to (6.6). Adding in the actual

cost, applying Theorem 5.7, and simplifying, we obtain the following bound

on the amortized cost of a zig-zig rotation:

lg |T ′b|+ lg |T ′c|+ lg |Ta| − 2 lg |Ta| − lg |Tb|+ 1

≤ lg |T ′b|+ 2 lg |Tc| − 2− 2 lg |Ta| − lg |Tb|+ 1

≤ 3 lg |Tc| − 3 lg |Ta| − 1

= 3(lg |Tc| − lg |Ta|)− 1. (6.7)

Finally, let us analyze the amortized cost of a single rotate. We refer to

Figure 6.22 for this analysis. Clearly, the amortized cost is bounded by

lg |T ′b| − lg |Ta|+ 1 ≤ lg |Tb| − lg |Ta|+ 1. (6.8)

Because each operation will do at most two single rotations (recall that a

deletion can do a single rotation in both the Find and the FindMin), the

“+ 1” in this bound will not cause problems.

We can now analyze the amortized cost of a Find. We first combine

bounds (6.5), (6.7), and (6.8) into a single recurrence defining a function

f(k, t) bounding the amortized cost of Find(k, t). Suppose Find(k, t) makes

a recursive call on a subtree s and performs a double rotation. We can then

combine (6.5) and (6.7) to define:

f(k, t) = 3(lg |t| − lg |s|) + f(k, s).

Figure 6.22 The subtrees that are modified by a single rotation

Tb

a

bA

B C

b

a C

A B

Tb Ta

Ta
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For the base of the recurrence, suppose that either no rotation or a single

rotate is done. Using (6.8), we can define

f(k, t) = 3(lg |t| − lg |s|) + 1,

where s is the child rotated upward or t if no rotation is done.

It is easily seen that the above recurrence telescopes; i.e., when the value

for f(k, s) is substituted into the value for f(k, t), the lg |s| terms cancel.

The entire recurrence therefore simplifies to

f(k, t) = 3(lg |t| − lg |s|) + 1

where s is the subtree whose root is rotated to the root of t. Clearly, f(k, t) ∈
O(lg n), where n is the number of nodes in t. The amortized cost of Find,

and hence of Get, is therefore in O(lg n).

The analysis of Put is identical to the analysis of Find, except that we

must also account for the change in Φ when the new node is added to the

tree. When the new node is added, prior to any subsequent rotations, it is a

leaf. Let s denote the empty subtree into which the new leaf is inserted. The

insertion causes each of the ancestors of s, including s itself, to increase in

size by 1. Let t be one of these ancestors other than the root, and let t′ be the
same subtree after the new node is inserted. Note that t′ has no more nodes

than does the parent of t. If we think of the insertion as replacing the parent

of t by t′, then this replacement causes no increase in Φ. The only node for

which this argument does not apply is the root. Therefore, the increase in Φ

is no more than lg(n + 1), where n is the number of nodes in the tree prior

to the insertion. The entire amortized cost of Put is therefore in O(lg n).

Finally, let us consider the Remove operation. The Find has an

amortized cost in O(lg n). Furthermore, the amortized analysis of Find also

applies to FindMin, so that it is also in O(lg n). Finally, it is easily seen

that the actual removal of the node does not increase Φ. The amortized cost

of Remove is therefore in O(lg n) as well.

As we observed for skew heaps (see Section 5.4), amortized analysis is

inappropriate for analyzing stack space usage. We leave it as an exercise to

show that the worst-case stack space usage for Put is in Θ(n). To avoid this

large stack space usage, the algorithms can be reformulated to use iteration

with an explicit stack, rather than using the runtime stack for recursive calls.

As a result, the total space usage is still in Θ(n), but the stack space usage

is in Θ(1). We leave the details as an exercise.
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6.4 Skip Lists

We conclude this chapter by returning to the idea of using an ordered linked

list to implement OrderedDictionary. Recall that the difficulty with this

idea is that items must be accessed sequentially, so that a binary search

cannot be used to find an item. A skip list overcomes this difficulty by using

additional references to skip over portions of the list (see Figure 6.23). Using

these additional references, a binary search can be approximated.

The main building block for a skip list is the data type SkipListNode,

which represents a data item, its key, a level n ≥ 1, and a sequence of n

values, each of which is either a SkipListNode or empty. The representation

consists of three variables:

• data: a data item; and

• key : a Key;

• links[1..n]: an array of (possibly nil) SkipListNodes.

We interpret data as the represented data item, key as its associated key,

SizeOf(links) as the level of the SkipListNode, and links[i] as the ith

element of the sequence, where empty is represented by nil. We allow

read access to key and data. The complete implementation is shown in

Figure 6.24.

We represent the OrderedDictionary with four variables:

• start: a non-nil SkipListNode;

• end: a non-nil SkipListNode;

• maxLevel: a Nat; and

• size: a Nat.

Figure 6.23 A skip list

Note:
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Figure 6.24 The data type SkipListNode

We interpret the represented set to be the data items in the linked list

beginning with start and ending with end, using the variables links[1] to

obtain the next element in the list; the data items in start and end are

excluded from the set.

Our structural invariant is:

• Both start and end have a level of M ≥ maxLevel.

• start.key = minKey, which is the smallest possible key.

• end.key = maxKey , which is the largest possible key.
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• There is a sequence of SkipListNodes with length size + 2 obtained

by starting with start and following the links[1] reference in each

SkipListNode until end is reached. We will refer to this sequence as

the level-1 sequence.

• For 1 < i ≤ M , there is a sequence obtained in the same way as above,

but using the links[i] variables instead of the links[1] variables. We will

refer to this sequence as the level-i sequence. The level-i sequence is the

subsequence of the level-(i−1) sequence containing those SkipListNodes

having level i or greater.

• The keys in each sequence are strictly increasing in value.

• maxLevel is the maximum level of any SkipListNode in the above

sequences, excluding start and end. If start and end are the only

SkipListNodes in the sequences, maxLevel = 1.

In order to be able to approximate a binary search with this data

structure, the level-i sequence should include roughly every second node from

the level-(i − 1) sequence, for 1 < i ≤ maxLevel. However, as is suggested

by Figure 6.23, we will not explicitly maintain this property. Instead, we

will use randomization to produce a structure that we expect, on average,

to approximate this property.

When we insert a new data item, we first determine the level of its

SkipListNode via a series of flips of a fair coin. As long as the outcome of

a coin flip is heads, we continue flipping. We stop flipping when the outcome

is tails. The level of the SkipListNode is the total number of flips. Because

we flip the coin at least once, every level will be at least 1. Because the coin

is fair, the probability of tails is 1/2; hence, we would expect about half of

the SkipListNodes to have level 1. The probability of flipping heads then

tails is (1/2)2 = 1/4, so we would expect about 1/4 of the SkipListNodes

to have level 2. In general, the probability of flipping i− 1 heads followed by

1 tails is 2−i. We would therefore expect the fraction of nodes having level i

to be about 2−i. Because the coin is fair, these levels should be randomly

distributed over the level-1 sequence.

Suppose a given SkipListNode has level l. In order to insert it into the

skip list, we need to insert it into its proper location in the level-i sequence

for each i, 1 ≤ i ≤ l. For the purpose of finding these insertion points, we

will design a function Find(k, l), which will return an array of references

such that at index i, 1 ≤ i ≤ l, is the reference to the SkipListNode of

level at least i having the largest key strictly less than k. We will then be

able to use this function not only in the Put operation, but also in the Get

and Remove operations. The Put operation is shown in Figure 6.25.
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Figure 6.25 SkipListDictionary implementation (partial) of OrderedDic-

tionary
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The partial implementation shown in Figure 6.25 does not explicitly

handle the case in which the level of a new node exceeds the level of start

and end. In what follows, we will assume that these arrays are expanded as

needed using the expandable array design pattern. Later, we will argue that

for all practical purposes, a fixed-sized array can be used. In the meantime,

we note that the time needed to expand the array is proportional to the

number of iterations of the while loop in Put, so we need not amortize

this cost.

We will devote the remainder of this section to analyzing the expected

running time of Put. This analysis is rather involved, but it uses some

important new tools for analyzing expected running times. Furthermore,

much of this analysis can be applied directly to the analyses of Get

and Remove; we therefore leave these analyses as exercises. In view of

the sometimes counter-intuitive nature of expected values, we will proceed

with care.

We will partition the algorithm into five parts:

• the while loop;

• the call to Find;

• the construction of a new SkipListNode;

• the for loop; and

• the remainder of the algorithm for the case in which x �= nil.

At this point, let us observe that a worst-case input must have x �= nil and k

as a new key, not already in the set. On any such input, the overall running

time is the sum of the running times of the above five parts. By the linearity

of expectation, the expected running time of the algorithm on a worst-case

input is therefore the sum of the expected running times of these five parts

on a worst-case input.

We begin by analyzing thewhile loop. We define the discrete probability

space Seq to be the set of all finite sequences of flips containing zero or more

heads, followed by exactly one tails. Note that for each positive integer i, there

is exactly one sequence in Seq with length i; hence, Seq is countable. As we

have already argued, the probability of achieving a sequence of length i is

2−i. In order to conclude that Seq is a discrete probability space, we must

show that

∞∑
i=1

2−i = 1.

This fact follows from the following theorem, using c = 2 and a = −1.
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Theorem 6.7. For any real numbers a and c such that c > 1,

∞∑
i=0

ca−i =
ca+1

c− 1
.

Proof.
∞∑
i=0

ca−i = lim
n→∞

n∑
i=0

ca−i

= ca lim
n→∞

n∑
i=0

(1/c)i

= ca lim
n→∞

(1/c)n+1 − 1
1
c − 1

from (2.2)

= ca lim
n→∞

c− (1/c)n

c− 1

=
ca+1

c− 1

because 1/c < 1. �

We now define the discrete random variable len over Seq such that len(e)

is the length of the sequence of flips. Note that E[len] gives us the expected

number of times the while loop condition is tested, as well as the expected

final value of l. As a result, it also gives us the expected number of iterations

of the for loop, provided k is not already in the set.

Because len(e) is always a natural number, we can apply Theorem 5.5

(page 172) to obtain E[len]. The probability that a sequence has length at

least i is the probability that i− 1 flips all result in heads, or 21−i. Thus,

E[len] =
∞∑
i=1

21−i

= 2

from Theorem 6.7. We can therefore expect the while loop in Put to iterate

once, yielding an expected value of 2 for l, on average. Hence, the for loop,

if it executes, iterates twice on average. The expected running times of both

loops are therefore in Θ(1) for a worst-case input.

In order to determine the expected running time of the SkipListNode

constructor, we need to analyze it again, but this time doing an expected-

case analysis using len as its third parameter. Using the same analysis as
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we did for the for loop in Put, we see that its expected running time is in

Θ(1).

In order to complete the expected-case analysis of Put, we need to

analyze Find. We will begin by defining an appropriate discrete probability

space. Let Seqn be the set of all n-tuples of elementary events from Seq; i.e.,

each elementary event in Seqn is an n-tuple 〈e1, . . . , en〉 such that each ei is

a sequence of coin flips containing zero or more heads, followed by exactly

one tails. Such an n-tuple describes the “shape” of a skip list by recording,

for each of the n data elements, the sequence of coin flips which generated

the level of the SkipListNode containing it.

In order to show that Seqn is countable, we can label each n-tuple

〈e1, . . . , en〉 ∈ Seqn with the natural number

p
len(e1)
1 p

len(e2)
2 · · · plen(en)n ,

where pi is the ith prime. Because each elementary event in Seq is uniquely

identified by its length, and because each positive integer has a unique prime

factorization, each tuple has a unique label; hence, Seqn is countable.

We need to define the probabilities of elements in Seqn. In order to do

this properly, we need to extend the definition of independence given in

This
∏

-notation denotes
the product of the proba-
bilities P (e) for all events
e in T .

Section 5.5 to more than two events. We say that a

set S of events is pairwise independent if for every

pair of events e1, e2 ∈ S, e1 and e2 are independent.

If for every subset T ⊆ S containing at least two

events,

P

(⋂
e∈T

e

)
=
∏
e∈T

P (e),

then we say the events in S are mutually independent. We leave as an

exercise to show that pairwise independence does not necessarily imply

mutual independence, even for 3-element sets of events.

In other words, the proba-
bility that all of the events
in T occur is the product of
the probabilities for each of
these events.

Returning to Seqn, let lenij denote the event that

component i has length j, for 1 ≤ i ≤ n, j > 1. In

any set {leni1j1 , . . . , lenimjm} with 2 ≤ m ≤ n and

all the iks different, the events should be mutually

independent. Furthermore, in order to be consistent with Seq, we want

P (lenij) = 2−j for 1 ≤ i ≤ n and j > 1. We can satisfy these constraints by

setting the probability of elementary event 〈e1, . . . , en〉 to the product of the
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probabilities in Seq of e1, . . . , en; i.e.,

P (〈e1, . . . , en〉) =
n∏

i=1

2−len(ei).

It can be shown by a straightforward induction on n that the sum of the

probabilities of the elementary events in Seqn is 1. Seqn is therefore a discrete

probability space.

We now need to determine what comprises a worst-case input to Find.

As we suggested earlier, the components of an elementary event in Seqn

correspond to the n data elements in a skip list. The length of a component

gives the level of the skip list element. Apart from the number of elements in

the structure, the shape of a skip list is determined completely at random,

independent of the data elements inserted or the order in which they are

inserted. Specifically, the keys in the data elements determine their order,

but their levels are determined solely by coin flips. Thus, in order to

determine a worst-case input, we needn’t worry about how the structure

was constructed — we need only concern ourselves with the parameters to

Find. Both of these values can affect the running time.

In order to determine the worst-case input, we need to consider the

behavior of the while loop. For a given value of i, the while loop iterates

once for each key at level i that is

• less than k; and

• greater than the largest key less than k at any level j > i (or −∞ if there

is no such key).

It is easily seen that at any level i, the expected number of iterations is

maximized when the number of keys less than k is maximized, because the

levels of these keys are determined randomly. The worst-case input therefore

has k greater than any key in the data set.

We therefore define taili(e), where e = 〈e1, . . . , en〉 ∈ Seqn, to be the

largest natural number j such that some suffix of e contains j components

with length exactly i and no components longer than i. Thus, if e contains at

least one component strictly longer than i, then taili(e) is the number of com-

ponents with length i that follow the last component strictly longer than i.

Otherwise, taili(e) is simply the number of components with length i.

Example 6.8. Let e represent the skip list shown in Figure 6.23 on page 226.

Then

• tail1(e) = 0 because there are no level-1 nodes following the last node with

level greater than 1;
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• tail2(e) = 2 because there are 2 level-2 nodes following the last node with

level greater than 2; and

• tail3(e) = 1 because there is 1 level-3 node, and there are no nodes with

level greater than 3.

Suppose e describes some skip list with n elements, and suppose this

skip list’s Find function is called with a key larger than any in the list. The

running time of Find is then proportional to the number of times the while

loop condition is tested. On iteration i of the for loop, the while loop will

iterate exactly taili(e) times, but will be tested taili(e) + 1 times, including

the test that causes the loop to terminate. The expected running time of

Find on a worst-case input is therefore proportional to:

E

⎡
⎣
max(maxLevel,l)∑

i=1

(taili + 1)

⎤
⎦

= E

⎡
⎣
⎛
⎝

max(maxLevel,l)∑
i=1

taili

⎞
⎠+max(maxLevel, l)

⎤
⎦

= E

⎡
⎣
max(maxLevel,l)∑

i=1

taili

⎤
⎦+ E[max(maxLevel, l)]. (6.9)

Let us first consider the first term in (6.9). It is tempting to apply

linearity of expectation to this term; however, note that maxLevel is a

random variable, as its value depends on the levels of the nodes in the skip

list. Theorem 5.9 therefore does not apply to this term. In particular, note

that for any positive n and i, there is a non-zero probability that there is at

least one node at level i; hence, there is a non-zero probability that taili is

positive.

The proper way to handle this kind of a summation, therefore, is to

convert it to an infinite sum. The term inside the summation should be

equal to taili when i ≤ max(maxLevel, l), but should be 0 for all larger i. In

this case, it is easy to derive such a term, as taili = 0 when i > maxLevel.

We therefore have:

E

⎡
⎣
max(maxLevel,l)∑

i=1

taili

⎤
⎦ = E

[ ∞∑
i=1

taili

]

=
∞∑
i=1

E[taili]. (6.10)
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By Theorem 5.5,

E[taili] =
∞∑
j=1

P (taili ≥ j).

Suppose that there are at least j components with length at least i. In

order for taili ≥ j, the ith coin flip in each of the last j of these components

must be tails. The probability that j independent coin flips are all tails is 2−j .
However, this is not the probability that taili ≥ j, but rather the conditional

probability given that there are at least j components with length at least i.

Let numi denote the number of components whose length is at least i. We

then have

P (taili ≥ j | numi ≥ j) = 2−j .

Fortunately, this conditional probability is closely related to P (taili ≥ j).

Specifically, in order for taili ≥ j, it must be the case that numi ≥ j. Thus,

the event taili ≥ j is a subset of the event numi ≥ j. Therefore, from (5.2)

we have

P (taili ≥ j) = P ((taili ≥ j) ∩ (numi ≥ j))

= P (numi ≥ j)P (taili ≥ j | numi ≥ j)

= P (numi ≥ j)2−j .

Unfortunately, computing the exact value of P (numi ≥ j) is rather

difficult. We will therefore content ourselves with observing that because

it is a probability, it can be no more than 1. We therefore have,

E[taili] =

∞∑
j=1

P (taili ≥ j)

=
∞∑
j=1

P (numi ≥ j)2−j

≤
∞∑
j=1

2−j

= 1

from Theorem 6.7.

This bound seems quite good, perhaps even surprisingly so. It tells us

that on any iteration of the for loop, we can expect the while loop to iterate
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no more than once, on average. Still, this bound does not give a finite bound

for (6.10). However, we have already observed that for any e ∈ Seqn, taili(e)

will be 0 for all but finitely many i. This follows because there are only

finitely many nonempty levels. Consequently, we might want to use the fact

that taili(e) ≤ numi(e); hence, E[taili] ≤ E[numi].

While this bound would yield a finite bound for (6.10), it unfortunately

is still too loose, as num1(e) = n for every e ∈ Seqn. We would like to derive

a logarithmic upper bound, if possible. However, we can use a combination of

the two bounds. In particular, the bound of 1 seems to be a good upper bound

as long as it is less than E[numi]. Once i is large enough that E[numi] ≤ 1,

E[numi] would be a better bound. If we can determine the smallest value of

i such that E[numi] ≤ 1, we should be able to break the infinite sum into

two sums and derive tight bounds for each of them.

In order to analyze E[numi], we observe that for e ∈ Seqn, numi(e) is a

count of the number of components whose lengths are at least i. Furthermore,

we can express the fact that a component has a length of at least i as an event

in Seq. The standard technique for counting events is to use an indicator

random variable. Specifically, consider the event in Seq that len ≥ i; i.e.,

this event is the set of sequences of coin flips consisting of at least i − 1

heads, followed by exactly one tails. The indicator for this event is then

defined to be

I(len ≥ i)(ej) =

{
1 if len(ej) ≥ i

0 otherwise.

We can then express numi as follows:

numi(〈e1, . . . , en〉) =
n∑

j=1

I(len ≥ i)(ej).

The utility of indicator random variables is shown by the following

theorem, whose proof follows immediately from Theorem 5.5.

Theorem 6.9. Let e be any event in a discrete probability space. Then

E[I(e)] = P (e).

Applying the above theorem, we obtain

E[numi] = E

⎡
⎣

n∑
j=1

I(len ≥ i)

⎤
⎦

= E[nI(len ≥ i)]
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= nE[I(len ≥ i)]

= nP (len ≥ i)

= n21−i.

Clearly, E[numi] > 1 iff i < 1+lg n. This suggests that maxLevel should

typically be about lg n (however, this is not a proof of the expected value

of maxLevel). Because we already know that the while loop is expected

to iterate no more than once for each level, this suggests that the overall

running time is logarithmic in n (assuming l is sufficiently small). While we

don’t have quite enough yet to show this, we can now show a logarithmic

bound on the first term in (6.9):

∞∑
i=1

E[taili] ≤
∞∑
i=1

(min(1, E[numi]))

=

�lgn�∑
i=1

1 +
∞∑

i=�lgn�+1

n21−i

= �lg n+ n
∞∑
i=0

2−�lgn�−i

= �lg n+ n21−�lg n�

≤ �lg n+ n21−lgn

= �lg n+ 2. (6.11)

In order to complete the analysis of Find, we must consider the second

term in (6.9), namely, E[max(maxLevel, l)]. It would be nice if we could use a

property like the linearity of expectation to conclude that this value is equal

to max(E[maxLevel], E[l]); however, such a property does not necessarily

hold (see Exercise 6.16). On the other hand, because maxLevel and l are

nonnegative, we can use the fact that max(maxLevel, l) ≤ maxLevel + l.

Therefore,

E[max(maxLevel, l)] ≤ E[maxLevel + l]

= E[maxLevel] + E[l]. (6.12)

For the case in which Find is called from Put, we know that E[l] = 2. We

therefore need to evaluate E[maxLevel]. Note that maxLevel is the number



238 Algorithms: A Top-Down Approach

of nonempty levels. We can therefore use another indicator random variable

to express maxLevel — specifically,

maxLevel =
∞∑
i=1

I(numi > 0).

We therefore have

E[maxLevel] = E

[ ∞∑
i=1

I(numi > 0)

]

=

∞∑
i=1

E[I(numi > 0)]. (6.13)

Clearly, I(numi > 0)(e) ≤ 1 for all e ∈ Seqn, so that E[I(numi > 0)] ≤ 1.

Furthermore, I(numi > 0)(e) ≤ numi(e), so that E[I(numi > 0)] ≤ E[numi].

We therefore have E[I(numi > 0)] ≤ min(1, E[numi]), which is the same

upper bound we showed for E[taili]. Therefore, following the derivation of

(6.11), we have

E[maxLevel] ≤ �lg n+ 2. (6.14)

Now combining (6.9), (6.10), (6.11), (6.12), and (6.14), it follows that

the expected number of tests of the while loop condition is no more than

2(�lg n+ 2) + 2 ∈ O(lg n),

for a worst-case input when Find is called by Put. The expected running

time of Find in this context is therefore in O(lg n).

A matching lower bound for the expected running time of Find can

also be shown — the details are outlined in Exercise 6.18. We can therefore

conclude that the expected running time of Find when called from Put on

a worst-case input is in Θ(lg n).

We can now complete the analysis of Put. We have shown that the

expected running times for both loops and the constructor for SkipList-

Node are all in Θ(1). The expected running time of Find(k, l) is in Θ(lg n).

The remainder of the algorithm clearly runs in Θ(1) time. The total time

is therefore expected to be in Θ(lg n) for a worst-case input. We leave as

exercises to design Get and Remove to run in Θ(lg n) expected time,

as well.
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Earlier, we suggested that for all practical purposes, fixed-sized arrays

could be used for both start.elements and end.elements. We can now justify

that claim by observing that

P (numi > 0) = E[I(numi > 0)]

≤ E[numi]

= n21−i.

Thus, the probability that some element has a level strictly greater than 100

is at most n2−100. Because 2−20 < 10−6, this means that for n ≤ 280 ≈ 1024,

the probability that a level higher than 100 is reached is less than one in a

million. Such a small probability of error can safely be considered negligible.

6.5 Summary

A summary of the running times of the operations for the various imple-

mentations of OrderedDictionary is given in Figure 6.26. Θ(lg n)-

time implementations of the Get, Put, and Remove operations for the

OrderedDictionary interface can be achieved in three ways:

• A balanced binary search tree, such as an AVL tree, guarantees Θ(lg n)

performance in the worst case.

• A splay tree is a binary search tree that guarantees O(lg n) amortized

performance by rotating the items accessed to the root. This has an

additional benefit of leaving frequently accessed items near the root, so

that they are accessed more quickly.

• A skip list uses randomization to achieve Θ(lg n) expected performance

for worst-case inputs.

The worst-case stack space usage for each of the AVL tree operations

is in Θ(lg n). Because the skip list implementation uses no recursion, its

worst-case stack space usage is in Θ(1). However, unless the splay tree

implementation is revised to remove the recursion (see Exercise 6.14), its

worst-case stack space usage is in Θ(n).

Section 6.4 introduced the use of indicator random variables for analyzing

randomized algorithms. The application of this technique involves converting

the expected value of a random variable to the expected values of indicator

random variables and ultimately to probabilities. Theorems 5.5, 5.9, and 6.9

are useful in performing this conversion. The probabilities are then computed

using the probabilities of the elementary events and the laws of probability
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Figure 6.26 Running times of the OrderedDictionary operations for various

implementations

Notes:

• n is the number of elements in the dictionary.

• The constructor and the Size operation each run in Θ(1) worst-case

time for each implementation.

• The VisitInOrder operation runs in Θ(n) worst-case time for each

implementation, assuming that the Visit operation for the given

Visitor runs in Θ(1) time.

• Unless otherwise noted, all running times are worst-case.

theory. Because we are only interested in asymptotic bounds, probabilities

which are difficult to compute exactly can often be bounded by probabilities

that are easier to compute.

6.6 Exercises

Exercise 6.1. Prove the correctness of BSTDictionary.TraverseInOr-

der, shown in Figure 6.7.

Exercise 6.2. Draw the result of inserting the following keys in the order

given into an initially empty binary search tree:

34, 65, 75, 54, 19, 45, 11, 23, 90, 15

Exercise 6.3. Draw the result of deleting each of the following keys from

the tree shown in Figure 6.10, assuming that it is an ordinary binary search

tree. The deletions are not cumulative; i.e., each deletion operates on the

original tree.

a. 55

b. 74

c. 34
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Exercise 6.4. Repeat Exercise 6.2 for an AVL tree.

Exercise 6.5. Repeat Exercise 6.3 assuming the tree is an AVL tree.

Exercise 6.6. Repeat Exercise 6.2 for a splay tree.

Exercise 6.7. Repeat Exercise 6.3 assuming the tree is a splay tree.

Exercise 6.8. Complete the implementation of AVLDictionary, shown

in Figure 6.13, so that Get, Put, and Remove run in Θ(lg n) time in the

worst case, and so that Put and Remove use Θ(lg n) stack space in the

worst case. Prove the correctness, running time, and stack space usage of

the resulting implementation.

Exercise 6.9. The depth of a node in a tree is its distance from the root;

specifically the root has depth 0 and the depth of any other node is 1 plus

the depth of its parent. Prove by induction on the height h of any AVL tree

that every leaf has depth at least h/2.

* Exercise 6.10. Prove that when a node is inserted into an AVL tree, at

most one rotation is performed.

** Exercise 6.11. Prove that if 2m − 1 keys are inserted into an AVL tree

in increasing order, the result is a perfectly balanced tree. [Hint: You will

need to describe the shape of the tree after n insertions for arbitrary n, and

prove this by induction on n.]

Exercise 6.12. A red-black tree is a binary search tree whose nodes are

colored either red or black such that

• if a node is red, then the roots of its non-empty children are black; and

• from any given node, every path to any empty subtree has the same

number of black nodes.

We call the number of black nodes on a path from a node to an empty subtree

to be the black-height of that node. In calculating the black-height of a node,

we consider that the node itself is on the path to the empty subtree.

a. Prove by induction on the height of a red-black tree that if the black-

height of the root is b, then the tree has at least 2b − 1 black nodes.

b. Prove that if a red-black tree has height h, then it has at least 2h/2 − 1

nodes.

c. Prove that if a red-black tree has n nodes, then its height is at most

2 lg(n+ 1).
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Exercise 6.13. Give a splay-tree implementation of Put based on Splay-

Dictionary.Find, shown in Figure 6.16. You do not need to include

algorithms for the rotations. Prove its correctness, assuming the rotations

are correct.

* Exercise 6.14. Give a splay-tree implementation that does not use

recursion. Instead, use loops with an explicit stack. You do not need to

include algorithms for the rotations. Prove its correctness, assuming the

rotations are correct.

Exercise 6.15. Prove by induction on n that the sum of the probabilities

of the elementary events in Seqn is 1.

Exercise 6.16. Let S = {heads, tails} be the discrete probability space in

which P (heads) = P (tails) = 1/2.

a. Using the definition of expected value, compute

E[max(I(heads), I(tails))].

b. Using Theorem 6.9, compute

max(E[I(heads)], E[I(tails)]).

Your answer should be different from your answer in part (a).

Exercise 6.17. Prove that if f and g are discrete random variables in a

discrete probability space, then

E[max(f, g)] ≥ max(E[f ], E[g]).

* Exercise 6.18. The goal of this exercise is to show a lower bound on the

expected running time of SkipListDictionary.Find.

a. Prove that P (numi > 0) = 1−(1−21−i)n. [Hint: First compute P (numi =

0).]

b. Prove the binomial theorem, namely, for any real a, b, and natural

number n,

(a+ b)n =

n∑
j=0

(
n

j

)
an−jbj, (6.15)

where (
n

j

)
=

n!

j!(n − j)!

are the binomial coefficients for 0 ≤ j ≤ n. [Hint: Use induction on n.]
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c. Using the results of parts (a) and (b), prove that for i ≤ lg n+ 1,

P (numi > 0) > 1/2.

d. Using the result of part (c), Exercise 6.17, and (6.13), prove that

E[max(maxLevel, l)] ∈ Ω(lg n),

and hence, the expected running time of Find is in Ω(lg n).

Exercise 6.19. Give algorithms for SkipListDictionary.Get and Skip-

ListDictionary.Remove. Prove that they meet their specifications and

run in expected Θ(lgn) time for worst-case input. Note that in both cases,

you will need to modify the analysis of SkipListDictionary.Find to use

the appropriate value for E[l]. You may use the result of Exercise 6.18 for

the lower bounds.

Exercise 6.20. Suppose we define a discrete probability space consisting

of all ordered pairs of flips of a fair coin. This probability space contains

four elementary events, each having probability 1/4. We define the following

three events:

• e1: the first flip is heads;

• e2: the second flip is heads; and

• e3: the two flips are different.

Show that the three events are pairwise independent, but not mutually

independent.

* Exercise 6.21. Let len be as defined in Section 6.4. For each of the

following, either find the expected value or show that it diverges (i.e., that

it is infinite).

a. E[2len].

b. E[
√
2len].

Exercise 6.22. Let A[1..n] be a random permutation of the positive integers

less than or equal to n, such that each permutation is equally likely. Recall

from Exercise 3.31 (page 103) that an inversion is a pair of indices 1 ≤ i <

j ≤ n such that A[i] > A[j]. Determine the expected number of inversions

in A. [Hint: Use an indicator random variable for the event that (i, j) is an

inversion.]
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Exercise 6.23. As in the above exercise, let A[1..n] be a random per-

mutation of the positive integers less than or equal to n, such that each

permutation is equally likely. What is the expected number of indices i such

that A[i] = i?

6.7 Notes

AVL trees, which comprise the first balanced binary search tree scheme, were

introduced by Adel’son-Vel’skĭı and Landis [1]. Splay trees were introduced

by Sleator and Tarjan [107]. Red-black trees, mentioned in Exercise 6.12,

were introduced by Bayer [8] (see also Gubias and Sedgewick [60]). Balance

in red-black trees is maintained using the same rotations as for splay trees.

As a result, keys can be accessed in Θ(lgn) time in the worst case. Because

heights don’t need to be calculated, they tend to perform better than AVL

trees and are widely used in practice. A somewhat simpler version of red-

black trees, known as AA-trees, was introduced by Andersson [5].

All of the above trees can be manipulated by the tree viewer on this

textbook’s web site. The implementations of these trees within this package

are all immutable.

Another important balanced search tree scheme is the B-tree, introduced

by Bayer and McCreight [9]. A B-tree is a data structure designed for

accessing keyed data from an external storage device. B-trees therefore have

high branching factor in order to minimize the number of device accesses

needed. Red-black trees and AA-trees are actually simulations of B-trees

with a maximum branching factor of 4 (called 2-3-4 trees) and 3 (called 2-3

trees), respectively.

Skip lists were introduced by Pugh [100].



Chapter 7

Storage/Retrieval II: Unordered Keys

In the last chapter, we considered the problem of storage and retrieval,

assuming that we also need to be able to access keys in a predefined

order. In this chapter, we drop this assumption; i.e., we will be considering

implementations of Dictionary (see Figure 6.2, p. 204) rather than

OrderedDictionary. The structures we defined in the last chapter all

utilized the ordering on the keys to guide the searches. Hence, it might seem

that there is nothing to be gained by neglecting to keep the keys in order.

However, we will see that disorder can actually be more beneficial when it

comes to locating keys quickly.

7.1 Arrays with Virtual Initialization

A simple implementation of Dictionary is to store all of the elements in

an array indexed by keys. Though this approach is simple, it has several

difficulties. The first difficulty is in using a key as an array index. For

example, if our keys are strings, we must somehow be able to interpret them

as natural numbers. Another difficulty is that we may have no fixed bound

on the size of our keys. In this case, we would not know how large an array

to construct. An expandable array would not yield a satisfactory solution

because however we determine the size of the array, the next key can be so

large that a new array must be constructed. Thus, we would have to expand

the array each time a new key is inserted. Such an approach is clearly too

expensive.

In spite of these difficulties, there is still a theoretically interesting

approach using keys as array indices, provided we are willing to make

some assumptions. First, we assume that each key is a natural number

245
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(or equivalently, each key can be treated as a natural number). Second,

we assume that there is a known upper bound on the values of all of the

keys. Even with these assumptions, it can still be the case that the range

of the keys is much larger than the number of keys. For example, suppose

our data set consists of 5,000 items keyed by 9-digit natural numbers (e.g.,

Social Security Numbers). An array of 1 billion elements is required to store

these 5,000 items. Initializing such an array would be very expensive.

Note, however, that once an array is initialized, storage and retrieval

can both be done in Θ(1) time in the worst case. What we need is a

technique for initializing an array in Θ(1) time while maintaining constant-

time accesses to elements. We will now present such a technique, known

as virtual initialization. This technique involves keeping track of which

array elements have been initialized in a way that facilitates making this

determination quickly. We assume that the environment provides a facility

for allocating an array in Θ(1) time without initializing its locations. We will

call the resulting data structure a VArray.

In addition to an array elements[0..n− 1] to store the data, we also need

an array used[0..n− 1] of Nats to keep track of which locations of elements

are used to store data. We use a Nat num to keep track of how many

locations of elements store data items. Thus, used[0..num−1] will be indices

at which data items are stored in elements. Finally, in order to facilitate a

quick determination of whether elements[i] contains a data element, we use

a third array loc[0..n − 1] such that loc[i] stores the index in used at which

i is stored, if indeed i is in used[0..num− 1]. The structural invariant is that

0 ≤ num ≤ n, and for 0 ≤ i < num, loc[used[i]] = i. We interpret elements[i]

as giving the data item at location i if 0 ≤ loc[i] < num and used[loc[i]] = i;

otherwise, we interpret the value stored at location i as nil.

For example, Figure 7.1 shows a VArray with 10 locations, storing 35

at location 4, 17 at location 7, and nil at all other locations. Note that for

i = 4 or i = 7, 0 ≤ loc[i] < num and used[loc[i]] = i. For other values of i,

it is possible that loc[i] stores a natural number less than num; however, if

this is the case, then used[loc[i]] is either 4 or 7, so that used[loc[i]] �= i.

To initialize all locations of the VArray to nil, we simply set num to 0.

In this way, there is no possible value of loc[i] such that 0 ≤ loc[i] < num,

so we interpret all locations as being nil. To retrieve the value at location

i, we first determine whether 0 ≤ loc[i] < num and used[loc[i]] = i. Note,

however, that loc[i] may not yet have been initialized, so that it may not

even refer to a Number. Therefore, we must first verify that it is a Nat. If

all these tests are passed, we return elements[i]; otherwise, we return nil.
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Figure 7.1 An example of a VArray

1

35 17? ? ? ? ? ? ? ?

0 1 3 5 6 7 8 92 4

elements:

used:

loc:

num = 2

? ?7 4 ? ? ? ? ? ?

0? ? ? ? ? ? ? ?

To store x at location i of the VArray, we must first determine as

above whether elements[i] is currently being used to store a data item —

i.e., whether 0 ≤ loc[i] < num and used[loc[i]] = i. If so, we can simply store

x in elements[i]. Otherwise, we must also update the other representation

variables to reflect the fact that we are using location i to store a data

item. In particular, we must store i in used[num], store num in loc[i], and

increment num. As a result, we interpret elements[i] as storing x, and the

structural invariant is maintained. The entire implementation of VArray is

shown in Figure 7.2.

It is easily seen that the constructor and all operations of VArray

operate in Θ(1) time. However, it uses Θ(n) space, where n is the size of

the range of indices, not the number of elements stored. Thus, if a VArray

is used to implement a Dictionary, its space usage will be proportional

to the number of possible keys. This number may be much larger than the

number of keys actually stored in the Dictionary.

In the remainder of this chapter, we will examine techniques for

improving the space usage while maintaining fast storage and retrieval.

Though we cannot guarantee Θ(1) worst-case access time when we reduce

the space usage, we can achieve amortized expected access time proportional

to the length of the key, even if the keys are not natural numbers and have

an unbounded range. Consequently, if the keys do have a fixed range, the

amortized expected access time is in Θ(1).
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Figure 7.2 Implementation of VArray

7.2 Hashing

The technique we will develop over the remainder of this chapter is known

as hashing. The basic idea behind hashing is to convert each key k to an

index h(k) using a hash function h, so that for all k, 0 ≤ h(k) < m for some

positive integer m. h(k) is then used as an index into a hash table, which is

an array T [0..m− 1]. We then store the data item at that index.
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Typically, the universe of keys is much larger thanm, the size of the hash

table. By choosing our array size m to be close to the number of elements

we need to store, we eliminate the space usage problem discussed in Section

7.1. However, because the number of possible keys will now be greater than

m, we must deal with the problem that h must map more than one potential

key to the same index. When two actual keys map to the same index, it is

known as a collision.

The potential for collisions is not just a theoretical issue unlikely to

occur in practice. Suppose, for example, that we were to randomly and

independently assign indices to n keys, so that for any given key k and

index i, 0 ≤ i < m, the probability that k is assigned i is 1/m. We can

model this scenario with a discrete probability space consisting of the mn

n-tuples of natural numbers less than m. Each tuple is equally likely, and

so has probability m−n. We can then define the random variable coll as the

number of collisions; i.e., coll(〈i1, . . . , in〉) is the number of ordered pairs

(ij , ik) such that ij = ik and j < k.

coll can be expressed as the sum of indicator random variables as follows:

coll(〈i1, . . . , in〉) =
n−1∑
j=1

n∑
k=j+1

I(ij = ik).

Therefore,

E[coll] = E

⎡
⎣
n−1∑
j=1

n∑
k=j+1

I(ij = ik)

⎤
⎦

=

n−1∑
j=1

n∑
k=j+1

E[I(ij = ik)]

=

n−1∑
j=1

n∑
k=j+1

P (ij = ik).

For each choice of i, j, and ij , ik can take on m possible values, one of which

is ij . Because the probabilities of all elementary events are equal, it is easily

seen that P (ij = ik) = 1/m for j < k. Hence,

E[coll] =
n−1∑
j=1

n∑
k=j+1

1/m
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=
1

m

n−1∑
j=1

(n− j)

=
1

m

n−1∑
j=1

j (reversing the sum)

=
n(n− 1)

2m

by (2.1).

For example, if our hash table has 500,000 locations and we have more

than a thousand data elements, we should expect at least one collision, on

average. In general, it requires too much space to make the table large enough

so that we can reasonably expect to have no collisions.

Several solutions to the collision problem exist, but the most common is

to use a linked list to store all data elements that are mapped to the same

location. The approach we take here is similar, but we will use a ConsList

instead of a linked list. Using a ConsList results in somewhat simpler code,

and likely would not result in any significant performance degradation. This

approach is illustrated in Figure 7.3.

In the remainder of this section, we will ignore the details of specific

hash functions and instead focus on the other implementation details of a

Figure 7.3 Illustration of a hash table.
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Figure 7.4 The HashFunction ADT

hash table. In order to approach the use of hash functions in a general way,

we use the HashFunction ADT, shown in Figure 7.4. Note that because

there are no operations to change the hash function, the HashFunction

ADT specifies an immutable data type. In remaining sections of this chapter,

we will consider various ways of implementing a HashFunction. As we

will see in the next section, not all hash table sizes are appropriate for

every HashFunction implementation. For this reason, we allow the user to

select an approximate table size, but leave it up to the HashFunction to

determine the exact table size.

Our HashTable representation of Dictionary then consists of three

variables:

• hash: a HashFunction whose associated table size is some positive

integer m;

• table[0..m − 1]: an array of ConsLists; and

• size: a readable Nat.

Our structural invariant is that:

• for 0 ≤ i < hash.Size(), table[i] is a ConsList containing only Keyed

items;

• for each Keyed item x in table[i], 0 ≤ i < m, hash.Index(x.Key()) = i;

and

• the total number of Keyed items in the ConsLists is given by size.
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Figure 7.5 The HashTable implementation of Dictionary (partial)

We interpret the Keyed items in the ConsLists to contain the elements of

the data set together with their associated keys.

Accessing a data item given a key k is now straightforward — we simply

compute hash.Index(k) and search the ConsList at this location in table;

see Figure 7.5. The worst-case time for any such operation is easily seen to

be proportional to the time to compute the index plus the length of the

ConsList.

Let us now consider the worst-case length of a ConsList in table.

Unfortunately, it can be quite bad. The following theorem shows that under

reasonable assumptions, all keys can map to the same index; hence, in the

worst case, the running time of a hash table access is in Ω(n).

Theorem 7.1. Let T be a hash table with m locations, and suppose the

universe U of possible keys contains more than m(n− 1) elements. Then for

any function h mapping U to natural numbers less than m, there is some

natural number i < m such that h maps at least n keys in U to i.
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The proof of the above theorem is simply the observation that if it were

not true — i.e., if h maps at most n− 1 elements to each i — then the size

of U could be at most m(n− 1). Though this result looks bad, what it tells

us is that we really want h to produce a random distribution of the keys so

that the list lengths are more evenly distributed throughout the table.

For the remainder of this section, therefore, we will assume that the

key distribution is modeled by a discrete probability space hashDist. The

elementary events in hashDist are the same as those in the probability

distribution defined above: all n-tuples of natural numbers less than m.

Again, the n positions in the tuple correspond to n keys, and their values

give their indices in the hash table. Regarding probabilities, however, we

will make a weaker assumption, namely, the probability that any two given

distinct positions are equal is at most ε, where 0 < ε < 1. Our earlier

probability space satisfies this property for ε = 1/m, but we will see in

Sections 7.4 and 7.5 that other spaces do as well.

In what follows, we will analyze the expected length of the ConsList

searched for an arbitrary key, assuming a distribution modeled by hashDist.

In the next section we will show how to define deterministic hash functions

that approximate this distribution well enough to work very well in practice.

Then in Sections 7.4 and 7.5, we will show how to guarantee this behavior

using randomization.

For a given search in the hash table, suppose there are a total of n keys

in the table together with the key for which we are searching. Thus, if the

given key is in the hash table, there are n keys in the hash table; otherwise,

there are n − 1. We will use hashDist to model the distribution of these n

keys, where the nth key is the one for which we are searching. Let len be the

discrete random variable giving the number of positions equal to position n in

a given element of hashDist. Then if the given key is in the hash table, E[len]

gives the expected length of the ConsList searched; otherwise, E[len] − 1

gives this expected length.

We can express len as the sum of indicator random variables as follows:

len =

n∑
j=1

I(ij = in),

where ij denotes position j of an elementary event. Applying linearity of

expectation, we have

E[len] =

n∑
j=1

E[I(ij = in)]
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=

n∑
j=1

P (ij = in).

Now using the fact that P (ij = in) ≤ ε when j �= n, we have

E[len] =

n∑
j=1

P (ij = in)

≤ P (in = in) +

n−1∑
j=1

ε

= 1 + ε(n− 1).

The above value is the expected length of the ConsList searched when

the key is found in a table containing n keys. If the key is not in the table,

n − 1 gives the number of keys in the table, and E[len] is one greater than

the expected length of the ConsList. Thus, if we let n denote the number of

keys in the table, the length of the ConsList searched is expected to be nε.

In either case, the length of the ConsList is linear in n if ε is a fixed

constant. However, ε may depend uponm. Thus, if ε ≤ c/m for some positive

constant c and we use an expandable array for the table, we can keep the

expected length bounded by a constant. Let λ = n/m be known as the load

factor of the hash table. Using the expandable array design pattern, we can

ensure that λ ≤ d, where d is a fixed positive real number of our choosing.

Thus, the expected list length is bounded by

1 + εn ≤ 1 + cn/m

= 1 + cλ

≤ 1 + cd

∈ O(1).

In order to implement the expandable array pattern for a hash table, we

will need to change the hash function to take advantage of the larger range of

indices. In copying elements to the new table, we therefore need to apply the

new hash function to each element in order to find its proper location. This

technique is called rehashing. We leave it as an exercise to show that as long

as the size of the table increases by at least a factor of 2 and at most a factor

of 6, the amortized cost of rehashing is proportional to the cost of hashing

a single key. The HashTable.Put operation, which employs rehashing, is

shown in Figure 7.6.
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Figure 7.6 The Put operation for HashTable

We conclude that as long as the hash function is designed so that the

probability of two arbitrary keys colliding is no more than c/m, where m

is the number of locations in the hash table and c is a positive real number,

the amortized expected running time of a hash table access is in Θ(1) plus

the time needed to compute the hash function. We can keep the constant

bounding the look-up time quite small by bounding λ by a small constant,

provided c is not much larger than 1. A bound of 3/4 on λ, for example,

gives a nice trade-off between space and time.

7.3 Deterministic Hash Functions

In this section, we will consider the design of a deterministic hash function.

Theorem 7.1 guarantees that any realistic deterministic hash function will

result in linear-time accesses in the worst case. However, it is possible to

construct a deterministic hash function for which such cases are very unlikely

to occur in practice.
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We will assume that our keys are represented as natural numbers. This

assumption does not result in any loss of generality, because all data types

can be viewed as sequences of bytes, or more generally, as w-bit components.

We can view each component as a natural number less than 2w. The sequence

〈k1, . . . , kl〉 then represents the natural number

l∑
i=1

ki2
w(l−i);

thus, we view the key as encoding a natural number in radix 2w. We must

realize, however, that the keys may be very large, so that they do not fit in

a single machine word.

The basic idea of the division method is simple. For a natural number k,

we define

h(k) = k mod m,

where m is the number of array locations in the hash table. Thus, 0 ≤
k mod m < m. The table shown in Figure 7.3 uses the division method.

It is not hard to show that

(xy + z) mod m = (x(y mod m) + z) mod m

(see Exercise 7.5). This relationship gives us a top-down solution to the

problem of computing h(k) for large k. If z is the last w-bit component of k,

we can write k = 2wy + z, where y is the value obtained by removing the

component z from k. We then have

h(k) = (2wy + z) mod m

= (2w(y mod m) + z) mod m

= (2wh(y) + z) mod m.

We can therefore compute h(k) bottom-up by starting with the first com-

ponent of k and repeatedly multiplying by 2w, adding the next component,

and taking the result mod m.

The division method is illustrated in Figure 7.7, where an implementa-

tion of HashFunction is presented. The representation of HashFunction

is a Nat size, and the structural invariant is size > 0. We assume the

existence of a function ToArray(x,w), which returns an array of Nats,

each strictly less than 2w, and which together give a representation of x. It

is easily seen that Index runs in time linear in the length of the key.
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Figure 7.7 The Index operation for the DivisionMethod implementation of

HashFunction

One advantage of the division method is that it can be applied quickly.

Because the multiplication is by a power of 2, it can be implemented by

shifting to the left by w bits. The addition then adds a w-bit number to

a number whose binary representation ends in w zeros; hence, the addition

can be accomplished via a bitwise or. Otherwise, there is only an application

of the mod operator for each word of the key.

The effectiveness of the division method as a hash function depends on

the value chosen for the table size. Knowing that we cannot prevent bad

cases from ever occurring, the best we can do is to try to avoid bad behavior

on cases which may be likely to occur. If data were random, our job would

be much simpler, because we could take advantage of this randomness to

generate a random distribution in the table. Real data sets, however, tend to

contain patterns. We need our hash function to perform well in the presence

of these patterns.

Suppose, for example, that the table size m = 255, and that each byte of

the key is a character encoded in ASCII. From the binomial theorem ((6.15)

on page 242), we can write the key as

l∑
i=1

256l−iki =
l∑

i=1

(255 + 1)l−iki

=
l∑

i=1

l−i∑
j=0

(
l − i
j

)
255jki.

Each term of the inner sum such that j > 0 is divisible by 255; hence,

computing the key mod 255 yields:

(
l∑

i=1

256i−1ki

)
mod 255 =

l∑
i=1

ki mod 255.
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Thus, applying this hash function to the key is equivalent to applying it

to the sum of the bytes in the key. Because addition is commutative, we can

see that the hash function would yield the same value for any permutation

of the bytes in the key; hence every permutation of the same bytes would

hash to the same location. Such behavior is undesirable. Similar behavior

can occur for other values very near powers of 2.

As another example, suppose that all of the keys are even numbers. If

m is even, then k mod m will always be even. As a result, only half the

locations in the table are used, so we could expect the lists to be at least

twice as long. More generally, if even keys are more likely than odd keys,

even m will cause the division method to perform poorly. This tells us that

m should not be even.

We can generalize the above arguments to conclude thatm should ideally

be a prime number — a number with no factors other than itself and 1 —

and not too close to a power of two. It turns out that these restrictions are

nearly always sufficient to yield good performance from the division method.

The constructor DivisionMethod(n) therefore needs to select a table

size m that is a prime number in the range n ≤ m < 3n, such that m is

not too close to a power of 2. Searching for such a number can be somewhat

expensive.

Fortunately, we can simplify the search in practice. Consider the

following sequence of prime numbers:

2 5 11 23 47 97

197 397 797 1597 3203 6421

12853 25717 51437 102877 205759 411527

823117 1646237 3292489 6584983 13169977 26339969

52679969 105359939 210719881 421439783 842879579 1685759167

Suppose we were to initialize an array with these values, beginning with

index 1. Then for 2 ≤ n ≤ 230 = 1,073,741,824, the value at location �lg n� is
at least n and strictly less than 3n. Thus, by adding an extra 2 at location 0,

we can easily find a prime table size in the correct range for all n ≤ 230, which

is sufficiently large for most applications. Furthermore, except for the first

three or four of these values, none are close to any power of 2. We can avoid

using the first three or four sizes by setting the initial size to be sufficiently

large, but even if we were to use them, rehashing guarantees that they will

only be used for very small data sets.
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One drawback to the Put operation as shown in Figure 7.6, is that

when rehashing is performed, all of the hash values must be recomputed

from scratch. When the division method is used on long keys, this can lead

to a significant amount of computation.

An improvement is to use a combination of two hash functions. The

first hash function produces an index in a range that may be too large

to be used as a table size, but which is small enough to fit into a single

machine word. This first hash function is called a compression map. The

second hash function is then applied to the result of the compression map

to produce an index into the actual table. Because the compression map

generates an index that will fit into a single machine word, the computation

of the hash table index from the compression map index can be done quickly;

for example the division method would consist of a single mod operation.

Thus, if we save the result of the compression map with the element we are

storing, we can perform rehashing by applying a new hash function to the

stored compression map index. We leave the implementation details of such

a scheme as an exercise.

The division method could be used for both of the hash functions

in such a scheme. However, if the modulus is near the maximum value

that can be stored in a single machine word, double-word arithmetic is

required. An alternative that avoids double-word arithmetic for computing

the compression map is polynomial hashing.

In order to motivate polynomial hashing, let’s consider what happens

when we pack four bytes, k1, k2, k3, and k4, into a 4-byte word. If we wish

to retain all of the information, we might produce the value

k1256
3 + k2256

2 + k3256 + k4.

Polynomial hashing generalizes this technique by producing, for a given key

〈k1, . . . , kl〉,
(

l∑
i=1

kir
l−i
)

mod 2w,

where w is the number of bits in a machine word, excluding any sign bit. The

final “mod 2w” describes the effect of overflow in a w-bit unsigned integer.

Thus, if an unsigned integer is used, this operation need not be explicitly

performed.
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One reason this technique is popular is that it can be computed quickly.

Note that

l∑
i=1

kir
l−i = kl +

l−1∑
i=1

kir
l−i

= kl + r

l−1∑
i=1

kir
l−1−i.

This gives us a top-down solution that can be applied bottom-up in the same

way as we applied the division method directly to large keys. Specifically,

we start with k1 and repeatedly multiply by r and add the next ki. This

procedure requires one multiplication and one addition for each component

of the key. Furthermore, all computation can be done with single-word

arithmetic.

In order for this method to work well, r must be chosen properly. We first

note that 256 is a poor choice, because 256i mod 2w = 0 for all i ≥ w/8;

thus only the first w/8 components of the key are used in computing the hash

value. More generally, r should never be even, because (c2j)i mod 2w = 0

for j > 0 and i ≥ w/j. Furthermore, not all odd values work well. For

example, r = 1 yields ri = 1 for all i, so that the result is simply the

sum of the components, mod 2w. This has the disadvantage of causing all

permutations of a key to collide.

More generally, if r is odd, ri mod 2w will repeat its values in a cyclic

fashion. In other words, for every odd r there is a natural number n such

that rn+i mod 2w = ri for all i ∈ N. Fortunately, there are only a few values

of r (like 1) that have short cycles. In order to avoid these short cycles, we

would like to choose r so that this cycle length is as large as possible. It is

beyond the scope of this book to explain why, but it turns out that this cycle

length is maximized whenever r mod 8 is either 3 or 5.

We can run into other problems if r is small and the component size

is smaller than w. Suppose, for example that r = 3, w = 32, and each

component is one byte. For any key containing fewer than 15 components,

the polynomial-hash value will be less than 231. We have therefore reduced

the range of possible results by more than half — much more for shorter

keys. As a result, more collisions than necessary are introduced. A similar

phenomenon occurs if r is very close to 2w.

If we avoid these problems, polynomial hashing usually works well as

a compression map. To summarize, we should choose r so that r mod 8 is

either 3 or 5, and not too close to either 0 or 2w. This last condition can
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typically be satisfied if we choose an r with 5-9 bits (i.e., between 16 and

512). The division method can then be used to obtain an index into the

table. Because it will be applied to a single word, its computation consists

of a single mod operation.

7.4 Universal Hashing

Though the techniques discussed so far are widely used and work well in

practice, we cannot prove much of anything useful about their performance.

In this section, we consider how to use randomization to yield a hashing

strategy with provably good expected behavior.

We cannot simply store data items in random array locations because

we would then be unable to find them quickly. We can, however, randomly

select a hash function from a set of alternatives. If the set of potential hash

functions is chosen well, we can prove that the resulting hash table will be

expected to have few collisions.

Let U be our universe of keys, and let H be some countable set of hash

functions of the form h : U →M , whereM is the set of natural numbers less

than m. Let us also suppose that each element of H has some probability, so

that H is a discrete probability space. Two distinct keys k1 and k2 collide for

h ∈ H iff h(k1) = h(k2). Taking h(k1) and h(k2) as random variables over

H, we see that the probability that these keys collide is P (h(k1) = h(k2)). If

two values from M are chosen independently with uniform probability, then

the probability that they are the same is 1/m. We therefore say that a H is

a universal family of hash functions if for any two keys in U , the probability

that they collide is no more than 1/m. As we showed in Section 7.2, this

probability bound implies that for any hash table access, the expected length

of the list searched is in Θ(1).

Several universal families of hash functions have been defined, but most

of them require some number theory in order to prove that they are universal

families. In what follows, we present a universal family that is easier to

understand at the cost of requiring a bit more computational overhead. Then

in the next section, we will show how number theory can be utilized to define

universal families whose hash functions can be computed more efficiently.

Suppose each key k ∈ U is encoded by l bits. Ideally, we would like to

generate each function mapping U into M with equal probability. However,

doing so is too expensive. There are 2l keys in U , and m possible values to

which each could be mapped. The total number of possible hash functions is

therefore m2l . Uniquely identifying one of these functions therefore requires
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at least lgm2l = 2l lgm bits. If, for example, each key is 32 bits and our hash

table size is 256, four gigabytes of storage would be needed just to identify

the hash function.

Instead, we will randomly generate a table location for each of the l bit

positions. Let these locations be t1, . . . , tl. We will assume that m is a power

of 2 so that each of these locations is encoded using lgm bits. A given key

k will select the subsequence of 〈t1, . . . , tl〉 such that ti is included iff the

ith bit of k is a 1. Thus, each key selects a unique subsequence of locations.

The hash table location of k is then given by the bitwise exclusive-or of the

locations in the subsequence; in other words, the binary encoding of the hash

location has a 1 in position j iff the number of selected locations having a 1

in position j is odd.

Example 7.1. Suppose our keys contain 4 bits, and we want to use a hash

table with 8 locations. We then randomly generate 4 table locations, one for

each of the 4 bit positions in the keys:

• t1 = 3, or 011 in binary;

• t2 = 6, or 110 in binary;

• t3 = 0, or 000 in binary;

• t4 = 3, or 011 in binary.

Note that these locations don’t need to be distinct.

Now let us compute the hash value for the keys 5 and 11, whose binary

encodings are 0101 and 1011. The key 5 selects the locations t2 and t4, whose

binary encodings are 110 and 011, respectively. The bitwise exclusive-or of

these two values is 101 because the first and third bit positions each have an

odd number of 1, but the second has an even number. The key 5 therefore

is placed in location 5. Likewise, the key 11 selects the locations t1, t3, and

t4, whose binary encodings are 011, 000, and 011, respectively. The bitwise

exclusive-or of these three values is 000 because each of the three bit positions

contains an even number of 1s. The hash value for 11 is therefore 0.

To see why we use the exclusive-or operation, suppose we have a bit

value x that is 1 with probability p, 0 ≤ p ≤ 1. Suppose we then assign a

value to bit y by flipping a fair coin; i.e., y has a value of 1 with probability

1/2, independent of the value of x. The exclusive-or of x and y is 1 iff the

values of x and y are different. The probability of this event is therefore

p

2
+

1− p
2

=
1

2
.
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Thus, the probability distribution of the exclusive-or of two independent

random bits is uniform if at least one of the two has uniform probability

distribution. We can easily conclude that the method outlined above for

selecting a hash function results in each key mapping to any given table

location with probability 1/m.

However, knowing that each key maps to any given table location with

probability 1/m is not sufficient to conclude that any two keys collide with

probability at most 1/m. Suppose, for example, that we were to select a

hash function by randomly generating a natural number i < m with uniform

probability. The hash function then maps all keys to i. For any given key k,

this strategy maps k to any given location with probability 1/m. However,

because all keys map to the same location, the probability that two given

keys collide is 1 for each pair of keys.

Before we try to prove that this family of hash functions is universal, we

will define it more formally. In order to accommodate a formal definition,

we must first define a discrete probability space that will represent the set of

hash functions. Let Sl,m be the set of all l-tuples of bit strings of length lgm,

where l is a positive integer and m is a power of 2. Each of these l-tuples

will represent a hash function. Note that Sl,m has ml elements. We therefore

assign each element of Sl,m a probability of m−l; hence, Sl,m is a discrete

probability space in which each elementary event has the same probability.

We can now formally define a hash function corresponding to each

element in Sl,m. Let select be the function that takes a sequence s =

〈t1, . . . , tn〉 of bit strings all having the same length, together with a bit

string k1 · · · kn, and returns the subsequence of s such that ti is included

iff ki = 1. Furthermore, let X be the function that takes a sequence of bit

strings each having the same length and returns their bitwise exclusive-or.

Given s = 〈t1, . . . , tl〉 ∈ Sl,m, let hs : U →M such that

hs(k) = X(select(s, k)).

We now define

H1
l,m = {hs | s ∈ Sl,m}.

Each element h ∈ H1
l,m corresponds to the event consisting of all sequences

s ∈ Sl,m such that h = hs. We leave it as an exercise to show that for each h ∈
H1

l,m, there is exactly one such s; hence, there is a one-to-one correspondence

between elementary events in Sl,m and hash functions in H1
l,m. We will now

show that for every distinct k, k′ ∈ U , P (h(k) = h(k′)) = 1/m, so that H1
l,m
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is a universal family of hash functions. In the proof and the implementation

that follows, we use ⊗ to denote bitwise exclusive-or.

Theorem 7.2. Let l be a positive integer and m be a power of 2. Then H1
l,m

is a universal family of hash functions.

Proof. Suppose k and k′ are two keys differing in bit position i. Without

loss of generality, suppose the ith bit of k is 0 and the ith bit of k′ is 1.

Let k′′ be the key obtained from k′ by changing the ith bit to 0. Let tj be

the discrete random variable giving the value of the jth component of s for

s ∈ Sl,m, and let h(x) be the random variable giving the hash value of x ∈ U .

Then h(k′) = h(k′′)⊗ ti. Thus, h(k) = h(k′) iff h(k) = h(k′′)⊗ ti.
Because the ith bits of both k and k′′ are 0, we can evaluate h(k) and

h(k′′) knowing only t1, . . . , ti−1, ti+1, . . . tl. For each choice of these values,

there is exactly one value of ti for which h(k) = h(k′′) ⊗ ti, namely ti =

h(k)⊗h(k′′). There are then ml−1 hash functions for which k and k′ collide.
Because each hash function occurs with probability m−l,

P (h(k) = h(k′)) = ml−1m−l

= 1/m. �

To represent an instance of this family, we use a readable Nat size and

an array indices[1..l] of Nats; we assume for now that l, the number of bits

in a key, is fixed. Our structural invariant is that size = 2i for some natural

number i, and that for 1 ≤ j ≤ l, indices[j] < size. The implementation

is shown in Figure 7.8. It uses a function Random, which takes a positive

integer n as input and returns, with uniform probability, any natural number

strictly less than n. It is easily seen that both the constructor and the Index

operation run in Θ(l) time, assuming Random runs in Θ(1) time.

If we use this implementation of HashFunction with the HashTable

implementation shown in Figures 7.5 and 7.6, the expected search time is in

Θ(1). Furthermore, it is not hard to show that the expected amortized cost

of rehashing is in Θ(l).

In many applications, the key lengths may vary, and we may not know the

maximum length in advance. Such situations can be handled easily, provided

we may pad keys with zeros without producing other valid keys. This padding

may be done safely if the length of the key is encoded within the key, or if

each key is terminated by some specific value. We can therefore consider each

key as having infinite length, but containing only finitely many 1s. We can

ensure that we have bit strings for indices[1..i] for some i. If we encounter a

key with a 1 in bit position j > i, we can generate bit strings for positions
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Figure 7.8 UniversalHash1 implementation of HashFunction

i + 1 through j at that time. Note that neither of these strategies add any

significant overhead — they simply delay the generation of the bit strings.

We leave the implementation details as an exercise.

7.5 Number Theoretic Universal Hash Families

In this section, we will use some elementary number theory to obtain

universal families whose hash functions resemble those of Section 7.3. The

resulting functions may require less overhead than do the functions in H1
l,m.

We first need the following fact from number theory:

Theorem 7.3. Let a, b, and m be natural numbers such that 0 < a < m

and b < m. Then the equation

ai mod m = b

has a unique solution in the range 0 ≤ i < m iff a and m are relatively prime

(i.e., 1 is the greatest common divisor of a and m).

Proof. Because we will only need to use this theorem in one direction, we

will only prove one implication and leave the other as an exercise.
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⇐: Suppose a and m are relatively prime. We will show that if ai mod m =

aj mod m, where 0 ≤ i < m and 0 ≤ j < m, then i = j. Thus, each of the

m possible values of i will result in a distinct value of ai mod m. Because

only m distinct values of ai mod m are possible, it will follow that one of the

values of i must yield ai mod m = b.

Suppose ai mod m = aj mod m. Then there exist natural numbers q1
and q2 such that

ai− q1m = aj − q2m
a(i− j) = (q1 − q2)m,

so that a(i − j) is divisible by m. Because a and m are relatively prime, it

must be the case that (i− j) is divisible by m. Given the ranges for i and j,

it must be the case that |i − j| < m. The only multiple of m with absolute

value strictly less than m is 0; hence, i = j. �

For our next universal family, we will interpret the keys as natural

numbers and assume that there is some maximum value for a key. Let

p be a prime number strictly larger than this maximum key value. Our

hash functions will consist of two steps. The first step will map each key

to a unique natural number less than p. We will design this part so that,

depending on which hash function is used, a distinct pair of keys will be

mapped with uniform probability to any of the pairs of distinct natural

numbers less than p. The second step will apply the division method to scale

the value to an appropriate range.

For the first step, let

hp,a,b(k) = (ak + b) mod p, (7.1)

for a and b strictly less than p. Consider distinct keys k and k′. We then

have

(hp,a,b(k)− hp,a,b(k′)) mod p = ((ak + b) mod p− (ak′ + b) mod p) mod p

= a(k − k′) mod p,

from Exercise 7.5. Because k − k′ �= 0 and p is prime, Theorem 7.3 tells us

that for each natural number j < p, there is a unique a, 0 ≤ a < p, such

that

j = a(k − k′) mod p

= (hp,a,b(k)− hp,a,b(k′)) mod p,
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independent of the value of b. Because hp,0,b(k) − hp,0,b(k
′) = 0, each

positive a < p yields a distinct positive value of (hp,a,b(k)−hp,a,b(k′)) mod p.

Furthermore, for a given positive a, each choice of b clearly results in a

distinct value for hp,a,b(k).

Each choice of a and b, where 0 < a < p and 0 ≤ b < p, therefore

results in a unique pair of distinct values hp,a,b(k) and hp,a,b(k
′). Because the

number of choices of a and b is exactly the same as the number of pairs of

distinct values hp,a,b(k) and hp,a,b(k
′), each of these pairs can be produced

by exactly one choice of a and b. We therefore have the following lemma.

Lemma 7.4. Let p be a prime number, and let k and k′ be distinct natural

numbers strictly less than p. If a and b are chosen independently and

uniformly such that 1 ≤ a < p and 0 ≤ b < p, then hp,a,b(k) and hp,a,b(k
′)

are any pair of distinct natural numbers less than p with uniform probability.

To apply the second step of the hash function, let

fm(i) = i mod m,

where m is a positive integer and i is a natural number. We then define

H2
p,m = {fm ◦ hp,a,b | 0 < a < p, 0 ≤ b < p},

where ◦ denotes function composition (i.e., fm ◦ hp,a,b(k) = fm(hp,a,b(k))).

We define the probability of each element of H2
p,m by selecting a and b

independently with uniform probability. We can then show the following

theorem.

Theorem 7.5. For any prime number p and positive integer m, H2
p,m is a

universal family of hash functions.

Proof. Let k and k′ be two distinct keys. As we argued above, hp,a,b(k)

and hp,a,b(k
′) are distinct natural numbers less than p, and each possible

pair of distinct values can be obtained by exactly one pair of values for a

and b. fm(hp,a,b(k)) = fm(hp,a,b(k
′)) iff hp,a,b(k) mod m = hp,a,b(k

′) mod m

iff hp,a,b(k)−hp,a,b(k′) is divisible by m. For any natural number i < p, there

are strictly fewer than p/m natural numbers j < p (other than i) such that

i− j is divisible by m. Because the number of these values of j is an integer,

it is at most (p − 1)/m. Because there are p possible values of hp,a,b(k) and

p(p − 1) possible pairs of values for hp,a,b(k) and hp,a,b(k
′), each of which is
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equally likely, the probability that fm(hp,a,b(k)) = fm(hp,a,b(k
′)) is at most

p
(
p−1
m

)

p(p− 1)
=

1

m
.

�

Note that by the above theorem, H2
p,m is universal for any positive m.

As a result, the size of the hash table does not need to be a particular kind

of number, such as a prime number or a power of 2, in order for this strategy

to yield good expected performance. However, the restriction that p is a

prime number larger than the value of the largest possible key places some

limitations on the effectiveness of this approach. Specifically, if there is no

upper bound on the length of a key, we cannot choose a p that is guaranteed

to work. Furthermore, even if an upper bound is known, unless it is rather

small, the sizes of p, a, and b would make the cost of computing the hash

function too expensive.

Let us therefore treat keys as sequences of natural numbers strictly

smaller than some value p, which we presume to be not too large (e.g.,

small enough to fit in a single machine word). Furthermore, let us choose p

to be a prime number. Let 〈k1, . . . , kl〉 be a key, and let s = 〈a1, . . . , al〉 be a
sequence of natural numbers, each of which is strictly less than p. We then

define

hp,s(〈k1, . . . , kl〉) =
(

l∑
i=1

aiki

)
mod p.

We first observe that we cannot guarantee that hp,s(k) �= hp,s(k
′) for

each distinct pair of keys k and k′. The reason for this is that there are

potentially more keys than there are values of hp,s. However, suppose k and

k′ are distinct keys, and let ki �= k′i, where 1 ≤ i ≤ l. Let us arbitrarily fix

the values of all aj such that j �= i, and let

c =

⎛
⎝

i−1∑
j=1

ajk
′
j +

l∑
j=i+1

ajk
′
j −

i−1∑
j=1

ajkj −
l∑

j=i+1

ajkj

⎞
⎠ mod p.

Then

(hp,s(k)− hp,s(k′)) mod p =

⎛
⎝

l∑
j=1

ajkj −
l∑

j=1

ajk
′
j

⎞
⎠ mod p

= (ai(ki − k′i)− c) mod p.
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Because 0 ≤ c < p, the above value is 0 iff

ai(ki − k′i) mod p = c.

Because ki �= k′i and p is prime, ki − k′i and p are relatively prime.

From Theorem 7.3, the above equation has a unique solution for ai such

that 0 ≤ ai < p. Thus, for each choice of a1, . . . , ai−1, ai+1, . . . , al, there

is exactly one choice of ai such that (hp,s(k) − hp,s(k
′) mod p) = 0. Note

that from the range of hp,s, the only way (hp,s(k)− hp,s(k′)) mod p = 0 is if

hp,s(k) = hp,s(k
′). We therefore have the following lemma.

Lemma 7.6. Let p be a prime number and l a positive integer. In addition,

let s = 〈a1, . . . , al〉, where each aj is chosen independently and uniformly

such that 0 ≤ aj < p. Then the probability that hp,s(k) = hp,s(k
′) for distinct

keys k and k′ is 1/p.

We now define

H3
p,l = {hp,s | s = 〈a1, . . . , al〉, 0 ≤ ai < p for 1 ≤ i ≤ l}. (7.2)

We define the probability of each element of H3
p,l by selecting each ai

independently with uniform probability. Note that the range of each hash

function in H3
p,l is the set of natural numbers strictly less than p. Therefore,

based on the above discussion, we have the following theorem.

Theorem 7.7. For any prime number p and positive integer l, H3
p,l is a

universal family of hash functions.

If we know in advance the approximate size of our data set and the

maximum key length, we can select an appropriate prime value for p and

randomly select the appropriate hash function from H3
p,l. Because we can

apply the mod operation after each addition, we are always working with

values having no more than roughly twice the number of bits as p; hence, we

can compute this hash function reasonably quickly for each key. Furthermore,

even if we don’t know the maximum key length, we can generate the

multipliers ai as we need them.

However, if we don’t know in advance the approximate size of the data

set, we may need to use rehashing. For the sake of efficiency, we would like to

avoid the need to apply a new hash function to the entire key. Furthermore,

as we will see in the next section, it would be useful to have a universal family

that is appropriate for large keys and for which the table size is unrestricted.
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A straightforward attempt to achieve these goals is to combine H3
p,l with

H2
p,m. Specifically, we define

H4
p,l,m = {h1 ◦ h2 | h1 ∈ H2

p,m, h2 ∈ H3
p,l}.

Hash functions in this family are of the form,

h(k) = hp,a,b(hp,s(k)) mod m

=

(
a

l∑
i=1

aiki + b

)
mod p mod m, (7.3)

where a, b, and each ai are natural numbers, and a �= 0. We define

the probability of each element of H4
p,l,m by selecting a, b, and each ai

independently with uniform probability. (We leave it as an exercise to show

that the same probability distribution for H4
p,l,m can be achieved by setting

a = 1 and selecting b and each ai independently with uniform probability.)

Because H2
p,m is a universal family, it causes any pair of distinct keys to

collide with probability at most 1/m. However, H3
p,l also causes distinct keys

to collide with probability 1/p. When the function from H2
p,m is applied to

equal values, it yields equal values. We must therefore be careful in analyzing

the probability of collisions for H4
p,l,m.

Let us first consider the case in which two distinct keys k and k′ are
mapped to distinct values by hp,s ∈ H3

p,l. From Lemma 7.6, the probability

that this occurs is

1− 1

p
=
p− 1

p
.

Furthermore, from Lemma 7.4, hp,a,b(hp,s(k)) and hp,a,b(hp,s(k
′)) are with

uniform probability any pair of distinct natural numbers less than p, provided

a and b are chosen independently with uniform probability such that 1 ≤
a < p and 0 ≤ b < p. Because there are p(p − 1) pairs of distinct natural

numbers less than p, this probability is

1

p(p− 1)
.

Therefore, given any two distinct keys k and k′, and any two distinct natural

numbers i and j strictly less than p, the probability that hp,a,b(hp,s(k)) = i
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and hp,a,b(hp,s(k
′)) = j is

(
p− 1

p

)(
1

p(p− 1)

)
=

1

p2
.

Now consider the case in which hp,s(k) = hp,s(k
′). From Lemma 7.6, this

case occurs with probability 1/p. For any value of a, 1 ≤ a < p, and any

value of i, 0 ≤ i < p, there is exactly one value of b such that 0 ≤ b < p and

(ahp,s(k) + b) mod p = i.

Thus, each value of i is reached with probability 1/p. Therefore, for each

natural number i < p, the probability that hp,a,b(hp,s(k)) = hp,a,b(hp,s(k
′)) =

i is 1/p2.

Thus, for a hash function h chosen from H4
p,l,m, h(k) = i mod m and

h(k′) = j mod m, where i and j are natural numbers less than p chosen

independently with uniform probability. Furthermore, i mod m = j mod m

iff i− j is divisible by m. Because p− (p mod m) is divisible by m, for any i,

exactly 1 of every m values j such that 0 ≤ j < p− (p mod m) is such that

i − j is divisible by m. Likewise, for any j, exactly 1 of every m values i

such that 0 ≤ i < p − (p mod m) is such that i − j is divisible by m (see

Figure 7.9). Thus, of the p2 − (p mod m)2 pairs in which at least one value

is less than p− (p mod m), exactly

p2 − (p mod m)2

m

pairs result in collisions. Of the remaining (p mod m)2 pairs, only those in

which i = j result in collisions. There are exactly p mod m such pairs. Thus,

the probability of a collision is exactly

p2 − (p mod m)2

mp2
+
p mod m

p2
=
p2 +m(p mod m)− (p mod m)2

mp2

=
1

m
+

(m− (p mod m))(p mod m)

mp2
. (7.4)

Clearly, m − (p mod m) is always positive and p mod m is always

nonnegative. Furthermore, because p is prime, the only way p mod m can

be 0 is if m = 1 or m = p. A hash table of size 1 is simply a ConsList,

and selecting m = p would defeat the purpose of combining H3
p,l with H2

p,m.

Thus, for all reasonable values of m, the second fraction on the right-hand

side of (7.4) is strictly positive; therefore, H4
p,l,m is not a universal family.
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Figure 7.9 Pairs resulting in collisions when applying mod

However, recall from Section 7.2 that Θ(1) amortized expected perfor-

mance can be achieved using rehashing if the probability of collisions is

bounded by c/m for some positive real number c. We therefore define a

family of hash functions to be c-universal if for each pair of distinct keys,

the probability of a collision is at most c/m. In what follows, we will derive

a c such that H4
p,l,m is c-universal whenever 1 < m < p.

Specifically, we need to find a real number c such that whenever p is

prime and 1 < m < p,

c

m
≥ 1

m
+

(m− (p mod m))(p mod m)

mp2

c ≥ 1 +
(m− (p mod m))(p mod m)

p2
. (7.5)
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Let us fix p at an arbitrary prime value and try to maximize the right-hand

side of (7.5). Suppose m < p/2. Then p− (p mod m) > m, and

p mod (p − p mod m) = p mod m.

Thus, by replacing m with p − p mod m in (7.5), we increase the value of

the expression. In order to maximize its value, we therefore need m ≥ p/2.

Because p is prime, we cannot have m = p/2, so we can assume m > p/2.

If m > p/2, then p mod m = p−m. It therefore suffices to maximize

(m− (p−m))(p −m) = (2m− p)(p−m)

= −(2m2 − 3mp+ p2),

or equivalently, to minimize

f(m) = 2m2 − 3mp+ p2.

There are several ways to find the minimum value of a quadratic, but

one way that does not involve calculus is by the technique of completing the

square. A quadratic of the form (ax−b)2 is clearly nonnegative for all values

of a, x, and b. Furthermore, it reaches a value of 0 (its minimum) at x = b/a.

We can therefore minimize f(m) by finding a value d such that f(m)− d is

of the form

(am− b)2 = a2m2 − 2abm+ b2.

Because f(m)− d reaches a minimum value of 0 at m = b/a, f(m) reaches

a minimum value of d at the same point.

In order to make the coefficient of m2 have a value of 2, a must be
√
2.

To find the coefficient b, we must solve

3mp = 2
√
2bm,

b =
3p

2
√
2
.

To find d, we must then solve

p2 − d =

(
3p

2
√
2

)2

=
9p2

8
,

d = −p
2

8
.
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Thus, −f(m) — and hence the numerator of the second term in the right-

hand side of (7.5) — is never more than p2/8. Furthermore, this value is

achieved (assuming for the moment that m varies over the real numbers)

when

m =

3p

2
√
2√
2

=
3p

4
.

We conclude that the right-hand side of (7.5) is bounded above by

1 +
p2/8

p2
= 9/8.

We therefore have the following theorem.

Theorem 7.8. For any prime number p and positive integers l and m such

that 1 < m < p, H4
p,l,m is 9/8-universal.

The upper bound of 9/8 can be reached when m = 3p/4; however, in

order for this equality to be satisfied, p must be a multiple of 4, and hence

cannot be prime. We can, however, come arbitrarily close to this bound by

using a sufficiently large prime number p and setting m to either �3p/4� or
�3p/4�. Practically speaking, though, such values for m are much too large.

In practice, m would be much smaller than p, and as a result, the actual

probability of a collision would be much closer to 1/m.

By choosing p to be of an appropriate size, we can choose a single h of

the form

h(k) =

(
a

l∑
i=1

aiki + b

)
mod p,

and change m as we need to rehash. For example, if the maximum array

size on a given platform is 231 − 1, which by happy coincidence is prime,

we can set p to this value. We can then break the keys into 2- or 3-byte

components and randomly select a, b, and a1, . . . , al. We can select any value

of m < 231 − 1 as our table size, but a power of 2 works particularly well,

because h(k) mod m is just the low-order lgm bits of h(k). As we compute

the hash value h(k) mod m for each key k, we save the value h(k). Note that

this value can be computed using 64-bit arithmetic and stored as a 32-bit

(signed or unsigned) integer. If we need to rehash, we double the size of the
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table. We can then compute the new hash values for each k by looking up

h(k) and computing h(k) mod 2m.

If p = 231−1 and m is a power of 2, then p mod m = m−1. Substituting

this value into (7.4), we see that the probability of a collision is

1

m
+
m− 1

mp2
<

1

m
+

1

(231 − 1)2

<
1

m
+ 2−61.

7.6 Perfect Hashing

In this section, we consider a restricted form of Dictionary for which

Put and Remove are not allowed; i.e., updates will never be made to the

structure after it is created. In order for such a structure to be useful, we

need to modify the constructor to receive as input the elements to be stored.

The formal specification of the ImmutableDictionary ADT is shown in

Figure 7.10.

If we expect to make a large number of accesses to an ImmutableDic-

tionary, it might make sense to invest more time in constructing it if we

Figure 7.10 The ImmutableDictionary ADT
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can then guarantee that accesses will be fast. To achieve this goal, we use a

technique called perfect hashing.

One of the drawbacks to hashing is that we can’t guarantee that there

will be no collisions. In fact, we can’t even guarantee that all of keys don’t

hash to the same location. Universal hashing gives us an expectation that the

resulting hash table will not have too many collisions. Thus, even though we

might be unlucky and choose a hash function that yields poor performance

on our data set, if we randomly select several different hash functions, we

can expect to find one that yields a small number of collisions.

With perfect hashing, our goal is to produce a hash table with no

collisions. Unfortunately, as we saw in Section 7.2, unless the size of the

hash table is much larger than the number of keys, we can expect to have

at least one collision. With a reasonable table size, we would probably need

to try many different hash functions before we found one that yielded no

collisions.

We can avoid this difficulty, however, by employing a two-level approach

(see Figure 7.11). Instead of using a ConsList to store all of the elements

that hash to a certain location, we use a secondary hash table with its own

hash function. The secondary hash tables that store more than one element

are much larger than the number of elements they store. As a result, we

will be able to find a hash function for each secondary hash table such that

no collisions occur. Furthermore, we will see that the sizes of the secondary

hash tables can be chosen so that the total number of locations in all of the

hash tables combined is linear in the number of elements stored.

Let us first determine an appropriate size m for a secondary hash table

in which we need to store n distinct keys. We saw in Section 7.2 that in order

for the expected number of collisions to be less than 1, if the probability that

two keys collide is 1/m, then m must be nearly n2. We will therefore assume

that m ≥ n2.
Let Hm be a c-universal family of hash functions. We wish to determine

an upper bound on the number of hash functions we would need to select

from Hm before we can expect to find one that produces no collisions among

the given keys. Let coll be the discrete random variable giving the total

number of collisions, as defined in Section 7.2, produced by a hash function

h ∈ Hm on distinct keys k1, . . . , kn. As we showed in Section 7.2,

E[coll] =

n−1∑
i=1

n∑
j=i+1

P (h(ki) = h(kj)).
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Figure 7.11 The structure of a perfect hash table
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Second level

Because the probability that any two distinct keys collide is no more than

c/m ≤ c/n2, we have

E[coll] ≤
n−1∑
i=1

n∑
j=i+1

c

n2

=
c

n2

n−1∑
i=1

(n− i)

=
c

n2

n−1∑
i=1

i (reversing the sum)

=
cn(n− 1)

2n2
(by (2.1))

< c/2.

From Markov’s Inequality (5.3) on page 194, the probability that there is at

least one collision is therefore less than c/2.

Suppose, for example, that c = 1, as for a universal hash family. Then the

probability that a randomly chosen hash function results in no collisions is
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greater than 1/2. If c = 9/8, as forH4
p,l,m, then the probability is greater than

7/16. Suppose we repeatedly select hash functions and try storing the keys

in the table. Because the probability that there are no collisions is positive

whenever c < 2, we will eventually find a hash function that produces no

collisions.

Let us now determine how many hash functions we would expect to

try before finding one that results in no collisions. Let reps be the discrete

random variable giving this number. For a given positive integer i, P (reps ≥
i) is the probability that i− 1 successive hash functions fail; i.e.,

P (reps ≥ i) < (c/2)i−1

= (2/c)1−i.

From Theorem 5.5,

E[reps] =

∞∑
i=1

P (reps ≥ i)

<

∞∑
i=1

(2/c)1−i.

Suppose c < 2. Then we can re-index the sum to begin at 0 and apply

Theorem 6.7, yielding

E[reps] <

∞∑
i=0

(2/c)−i

=
2/c

(2/c) − 1

=
2

2− c .

Note that the above value is a fixed constant for fixed c < 2. Thus,

the expected number of attempts at finding an appropriate secondary hash

function is bounded by a fixed constant. For example, with c = 1, the value

of this constant is less than 2, or with c = 9/8, the value is less than 16/7.

As a result, we would expect that the number of times a secondary hash

function is applied to any key during the process placing keys in secondary

hash tables is bounded by a constant.

We must now ensure that the total space used by the primary and

secondary hash tables (and hence the time needed to initialize them) is

linear in n, the total number of keys. Suppose the primary hash table has
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m locations. Further suppose that ni keys are mapped to index i in the

primary hash table. We will then construct a HashFunction by passing

n2i to the constructor of an implementation providing a c-universal hash

family. Due to the specification of the HashFunction constructor, the

actual HashFunction constructed may contain up to 3n2i − 1 locations

when ni > 0. The size of the table constructed is therefore linear in n2i . The

actual space used by all of the secondary hash tables is therefore linear in

m−1∑
i=0

n2i .

Let sumsq be a discrete random variable denoting the above sum. The

expected space usage of the secondary hash tables is then linear in E[sumsq].

In order to analyze E[sumsq], we first observe that n2i is closely related to

the number of collisions at index i. The number of collisions at index i is

ni(ni − 1)/2, so that

E[coll] = E

[
m−1∑
i=0

ni(ni − 1)

2

]

=
1

2

(
E

[
m−1∑
i=0

n2i

]
− E

[
m−1∑
i=0

ni

])

= (E[sumsq]− E[n])/2

= (E[sumsq]− n)/2.

Rearranging terms, we have

E[sumsq] = 2E[coll] + n.

By reasoning as in Section 7.2, it is easily seen that if the probability

that two keys collide is at most c/m, then

E[coll] ≤ cn(n− 1)

2m
.

Hence,

E[sumsq] = 2E[coll] + n

≤ cn(n− 1)

m
+ n. (7.6)
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Thus, if m ∈ Θ(n), the expected number of locations in the primary hash

table and all of the secondary hash tables is in Θ(n). In particular, if m ≥ n,
then E[sumsq] ≤ (c+ 1)n. It turns out that the value of m that minimizes

cn(n− 1)

m
+ n+m,

is roughly n (see Exercise 7.17); hence, we will construct our primary hash

function by passing n to constructor for an appropriate implementation of

HashFunction.

Of course, we could be unlucky in selecting a primary hash function, so

that the number of secondary locations is much larger than what we expect.

For example, if it happens that all keys hash to the same location, then a

single secondary hash table with at least n2 locations will be used. In order

to guarantee linear space usage in the worst case, we therefore need to select

primary hash functions repeatedly until we get one that yields a reasonable

total space usage. Because the space usage is linear in sumsq, we don’t need

to construct the actual secondary hash tables in order to determine whether

the space usage is reasonable — we can instead simply compute sumsq. We

should therefore determine some maximum acceptable value for sumsq.

In order to ensure a reasonable probability of success, we don’t want

this maximum value to be too small. From Markov’s Inequality (5.3), the

probability that a discrete random variable is at least twice its expected

value is at most 1/2, provided its expected value is strictly positive. Based

on (7.6) above, because we will be using a primary table size of at least

n, it makes sense to use 2(c + 1)n as the maximum allowable value for

sumsq. Furthermore, our derivations have assumed that c < 2; hence, we

can simplify the maximum allowable value to 6n. By using this maximum,

we would expect to select no more than 2 primary hash functions, on average,

and still guarantee linear space usage.

We represent an ImmutableDictionary with the following variables:

• table[0..m − 1]: an array of (possibly nil) arrays of (possibly nil) Keyed

elements;

• hash: a HashFunction;

• functions[0..m− 1]: an array of (possibly nil) HashFunctions; and

• size: a readable Nat.

Our structural invariant is that:

• the size of hash is the number of locations m in table;

• for 0 ≤ i < m, table[i] is nil iff functions[i] is nil;
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• if table[i] �= nil, then the array stored there is indexed 0..s− 1, where s is

the size of functions[i];

• if an element with key k is stored at table[i][j], then hash.Index(k) = i

and functions[i].Index(k) = j; and

• size = n, the total number of keys stored.

We interpret the Keyed items stored as the elements of the Immutable-

Dictionary, together with their associated keys.

The implementation of the constructor is shown in Figure 7.12. Based

on the above discussion, the first repeat loop is expected to iterate no more

than twice. Furthermore, it is easily seen that each iteration of this loop runs

in Θ(nf(l) + g(n)) time in the worst case, where g(n) is the time required

by the HashFunction constructor, and f(l) is the time required by the

Index operation on keys of length l. In order to simplify the discussion that

follows, we will assume that the HashFunction constructor runs in O(n)

time; consequently, the expected running time of this loop is in Θ(nf(l)).

The effect of this loop is to create a HashFunction hash and an array

t[0..hash.Size()− 1] that is essentially an ordinary hash table for hash.

The analysis of the remainder of the algorithm is somewhat more

involved, but again relies heavily on the above discussion. The outer loop

constructs a secondary hash table for each t[i] and places it in table[i]. Each

iteration of the repeat loop generates a hash function and attempts to

construct a secondary hash table for the elements at t[i]. It iterates until it

has a secondary hash table with no collisions. By the above discussion, the

expected number of iterations is in Θ(1). Let ni be the number of elements

at t[i]. Then the for loop iterates n2i times, and the while loop iterates ni
times in the worst case. Therefore, the repeat loop requires Θ(n2i + nif(l))

expected time.

The expected running time of the entire for loop is then in

m−1∑
i=0

Θ(n2i + nif(l)) =

m−1∑
i=0

Θ(n2i ) +

m−1∑
i=0

Θ(nif(l))

= Θ

(
m−1∑
i=0

n2i

)
+Θ

(
f(l)

m−1∑
i=0

ni

)

= Θ((c+ 1)n) + Θ(nf(l))

= Θ(nf(l)).

The total expected running time of the constructor is therefore in Θ(nf(l)).
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Figure 7.12 Constructor for PerfectHash implementation of ImmutableDic-

tionary
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Thus, for H2
p,m, the constructor runs in Θ(n) expected time, and for

H4
p,l,m, the constructor runs in Θ(nl) expected time. It is not hard to show

that the constructor runs in Θ(nl) expected time for H1
l,m as well; the details

are left as an exercise.

It is easily seen that the space required by the ImmutableDictionary

is in Θ(n) in the worst case. However, the hidden constants can be rather

large. Specifically, the primary hash table can contain nearly 3n locations,

and the secondary hash tables can contain a total of nearly 18n locations.

As a result, nearly 21n array locations can be used to store n data items.

However, observe that the constructor for the family H1
l,m will return a hash

function with size less than 2n, and the constructors for the families H2
p,m

and H4
p,l,m both return hash functions with size n. Furthermore, if we were

to fix a specific c-universal family of hash functions, we could reduce the

bound on the first repeat loop to 2(c + 1)n.

Combining the above results, we see that the worst-case total number of

array locations can be reduced to:

• 10n for H1
l,m;

• 5n for H2
p,m; or

• 21n/4 for H4
p,l,m.

Finally, we observe that because E[sumsq] < (c + 1)n, the expected total

number of array locations is no more than

• 6n for H1
l,m;

• 3n for H2
p,m; or

• 25n/8 for H4
p,l,m.

These last bounds hold regardless of whether we change the bound on the

first repeat loop.

The Get operation is shown in Figure 7.13. It clearly runs in Θ(f(l))

time, where f(l) is the time needed to compute the hash function on a key

of length l.

7.7 Summary

If keys are natural numbers, we can implementDictionary using aVArray

and thus achieve constant-time accesses in the worst case. However, the space

usage of a VArray makes it impractical. For this reason, hash tables are

the preferred implementation in practice. Furthermore, hashing can be done

for arbitrary types of keys.
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Figure 7.13 The PerfectHash.Get operation

Deterministic hashing yields data accesses that, in practice, run in

amortized time proportional to the length of the key, independent of

the number of data items in the set. This compares very well to the

structures presented in Chapter 6, which give Θ(lg n) access times, where

n is the number of data items in the set. In our analyses in Chapter 6,

we did not consider the key length. Our analyses thus implicitly assumed

that keys could be compared in constant time. Each of the structures in

Chapter 6 require Θ(lg n) comparisons in either the worst, amortized, or

expected case, depending on the structure. In the worst case, each of these

comparisons requires a time proportional to the length of the key. As a result,

the performance of deterministic hashing is usually significantly better in

practice than those structures given in Chapter 6. The trade-off is that hash

tables do not permit fast access to all of the keys in a predetermined order.

The division method, which computes the value of the key mod the table

size, is the most common type of hash function. In order for this method to

work well, the table size should be a prime number that is not too close to a

power of 2. The division method is often combined with polynomial hashing

in order to produce a single-word index, which can then be converted to

locations in tables of different sizes. Polynomial hashing involves multiplying

each component of the key by a radix raised to successively higher powers,

retaining only those bits that will fit in a single machine word. The radix r

should use 5 to 9 bits, and should be such that r mod 8 is either 3 or 5.

Though it works very well in practice, in the worst case, deterministic

hashing results in accesses having a running time in Θ(n). We can achieve

better theoretical results using universal hashing, in which a hash function is

selected at random from a universal family of hash functions. When universal

hashing is used, data accesses have an expected amortized running time

proportional to the key length.

Perfect hashing is an application of universal hashing which produces

an ImmutableDictionary. Using the inherent randomization in universal
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hashing, we can construct an ImmutableDictionary in expected time

linear in the sum of the key lengths. Retrievals can then be performed by

computing two hash functions — no searching is required. However, if the

keys are long, the cost of computing a second hash function may exceed the

cost of searching for the key in an ordinary hash table.

7.8 Exercises

Exercise 7.1. Prove that VArray, shown in Figure 7.2, meets its

specification.

Exercise 7.2. Give an algorithm that takes as input an array A[1..n] of

natural numbers and returns an array B[1..n] such that for 1 ≤ i ≤ n, B[i]

gives the last location in A that contains A[i]. Your algorithm must run in

O(n) time in the worst case, and you may make no assumptions about how

large the elements in A are. Prove the correctness and time complexity of

your algorithm. [Hint: Use a VArray.]

Exercise 7.3. Complete the implementation of HashTable shown in

Figures 7.5 (p. 252) and 7.6 (p. 255) by adding a Remove operation as

specified in Figure 6.2 (p. 204).

Exercise 7.4. Prove that if the cost of rehashing, as implemented in

Figure 7.6 (p. 255), is amortized over all Put and Remove operations,

the amortized cost of rehashing is proportional to the cost of computing the

index for a single key.

Exercise 7.5. Prove the following for all integers x and y and all positive

integers m:

a. (x+ (y mod m)) mod m = (x+ y) mod m.

b. (x(y mod m)) mod m = (xy) mod m.

c. (−(x mod m)) mod m = (−x) mod m.

Exercise 7.6. Show the hash table that results from inserting the following

keys in the order listed, assuming the division method is used with a table

of size 13:

27, 36, 14, 40, 42, 15, 25, 2.

You may assume that no rehashing is done. How does the number of

collisions, as defined by the random variable coll in Section 7.2, compare with

the expected number, assuming that distinct keys collide with probability

1/13?
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Exercise 7.7. Give a modified version of HashTable.Put(x, k) (see Figure

7.6) which uses a compression map, as described in Section 7.3. Use the

HashFunction ADT to represent both hash functions (i.e., both the

compression map and the function to compute the index in the hash table).

You may need to define an additional data structure in order to save results

of the compression map for use in rehashing (you need to be able to retrieve

these values quickly).

Exercise 7.8. Give an implementation of HashFunction that uses poly-

nomial hashing, as described in Section 7.3. You may assume that the

variable r contains an appropriate value to use as the radix, and that the

variable w contains the number of bits in a machine word. The size should

be the smallest power of 2 that is no smaller than the parameter given to

the constructor. For clarity, your implementation should include the mod

operation rather than relying on overflow (we don’t assume any explicit

bounds on integer variables in our algorithms).

* Exercise 7.9. Prove that for each h ∈ H1
l,m there is exactly one s ∈ Sl,m

such that hs = h. [Hint: Prove that if s �= s′, then hs �= hs′ . In order to do

this, it is sufficient to find a k such that hs(k) �= hs′(k).]

* Exercise 7.10. Modify UniversalHash1 (Figure 7.8) to handle varying-

length keys of unbounded length. Use the expandable-array design pattern to

store the randomly-generated indices. Show that when this implementation

is used with HashTable (shown in Figures 7.5 and 7.6), the amortized

expected running time of the Dictionary operations is in O(l), where l is

the number of bits in the longest key in the table. You may assume that the

actual running time of Remove(k) is proportional to the running time of

hash.Index(k) plus the length of the ConsList at the resulting index.

* Exercise 7.11. Complete the proof of Theorem 7.3.

Exercise 7.12. Implement HashFunction to provide H2
p,m. You may

assume the variable p contains a prime number larger than any key. You

may also assume that all values will fit into integer variables.

Exercise 7.13. Implement HashFunction to provide H3
p,l. You may

assume the variable p contains a prime number larger than w bits, where w

is another variable. You may also assume that if a, b, and c are all natural

numbers less than p, then ab + c will fit in an integer variable; however,

you may not assume that arbitrarily many of these values added together

will fit.



Storage/Retrieval II: Unordered Keys 287

* Exercise 7.14. Suppose we were to modify the definition of H3
p,l (7.2) so

that for each ai, 1 ≤ ai < p. Show that for every l ≥ 2 and prime number

p, the resulting family of hash functions is not universal. Specifically, show

that there are two distinct keys that collide with probability strictly greater

than 1/p. [Hint: First consider l = 2, then generalize.]

Exercise 7.15. Implement HashFunction to provide H4
p,l,m using the

same assumptions as for Exercise 7.13.

Exercise 7.16. Let p be a prime number and l and m be positive integers

such that m < p.

*a. Prove that for every h ∈ H4
p,l,m and every positive integer a < p, there is

exactly one choice of natural numbers b, a1, . . . , al less than p such that

h(〈k1, . . . , kl〉) =
(
a

l∑
i=1

aiki + b

)
mod p mod m

for every l-tuple 〈k1, . . . , kl〉 of natural numbers less than p.

b. Consider the following two methods of randomly selecting a hash

function h of the form given by equation (7.3):

i. Select a with uniform probability from the positive integers less than

p, and select b, a1, . . . , al independently with uniform probability from

the natural numbers less than p.

ii. Set a to 1, and select b, a1, . . . , al independently with uniform

probability from the natural numbers less than p.

Prove that for any h ∈ H4
p,l,m, h is chosen with the same probability by

both methods.

* Exercise 7.17. In terms of c and n, find the value of m ∈ R
≥0 that

minimizes

cn(n− 1)

m
+ n+m,

assuming c ∈ R
>0, n ∈ N, and n > 1.

Exercise 7.18. Prove that the constructor for PerfectHash runs in Θ(nl)

expected time if H1
l,m is used as the universal hash family, wherem is a power

of 2.



288 Algorithms: A Top-Down Approach

7.9 Notes

Virtual initialization was suggested by Aho et al. [2, Exercise 2.12].

The first description of hashing in the literature was by Dumey [33],

who also introduced the division method. However, the concept appears

to have been discovered a few years earlier at IBM by H. P. Luhn and

independently by Gene M. Amdahl, Elaine M. Boehme, N. Rochester, and

Arthur L. Samuel. Knuth [84] gives a detailed treatment of deterministic

hashing.

Universal hashing was introduced by Carter and Wegman [19]. They

presented the universal families H1
l,m and H2

p,m. The notion of a c-universal

family is closely related to the notion of an ε-universal family defined by

Cormen et al. [25].

The perfect hashing strategy given in Section 7.6 is due to Fredman

et al. [45].



Chapter 8

Disjoint Sets

In order to motivate the topic of this chapter, let us consider the following

problem. We want to design an algorithm to schedule a set of jobs on a

single server. Each job requires one unit of execution time and has its own

deadline. We must assign a job with deadline d to some time slot t, where

1 ≤ t ≤ d. Furthermore, no two jobs can be assigned to the same time slot. If

we can’t find a time slot for some jobs, we simply won’t schedule them. One

way to construct such a schedule is to assign each job in turn to the latest

available time slot prior to its deadline, provided there is such a time slot.

The challenge here is to find an efficient way of locating the latest available

time slot prior to the deadline.

One way to think about this problem is to partition the time slots into

disjoint sets — i.e., a collection of sets such that no two sets have any element

in common. In this case, each set will contain a non-empty range of time slots

such that the first has not been assigned to a job, but all the rest have been

assigned to jobs. In order to be able to handle the case in which time slot 1

has been assigned a job, we will also include a time slot 0, which we will

consider to be always available.

Suppose, for example, that we have scheduled jobs in time slots 1, 2, 5,

7, and 8. Each set must have a single available time slot, which must be the

smallest time slot in that set; thus, the elements 0, 3, 4, 6, and all elements

greater than 8 must be in different sets and must each be the smallest element

of its set. If 10 is the latest deadline, our disjoint sets will therefore be

{0, 1, 2}, {3}, {4, 5}, {6, 7, 8}, {9}, and {10}. If we then wish to schedule

a job with deadline 8, we need to find the latest available time slot prior

to 8. This is simply the first time slot in the set containing 8 — namely, 6.

Thus, in order to find this time slot, we need to be able to determine which

set contains the deadline 8, and what is the first time slot in that set.

289
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When we then schedule the job at time slot 6, the set {6, 7, 8} no longer

contains an available time slot. We therefore need to merge the set {6, 7, 8}
with the set containing 5, namely, {4, 5}.

The operations of finding the set containing a given element and merging

two sets are typical of many algorithms that manipulate disjoint sets. The

operation of finding the smallest element of a given set is not as commonly

needed, so we will ignore this operation for now; however, as we will see

shortly, it is not hard to use an array to keep track of this information.

Furthermore, we often need to manipulate objects other than Nats; however,

we can always store these objects in an array and use their indices as the

elements of the disjoint sets. For this reason, we will simplify matters by

assuming that the elements of the disjoint sets are the Nats 0..n−1. In gen-

eral, the individual sets will be allowed to contain non-consecutive integers.

The DisjointSets ADT, shown in Figure 8.1, specifies the data

structure we need. Each of the sets contains an element that is distinguished

as its representative. The Find operation simply returns that representative.

Thus, if two calls to Find return the same result, we know that both elements

belong to the same set. The Merge operation takes two representatives,

combines the sets identified by these elements, and returns the resulting

set’s representative. In this chapter, we will consider how the DisjointSets

ADT can be implemented efficiently. Before we do this, however, let us take

a closer look at how the DisjointSets ADT can be used to implement the

scheduling algorithm outlined above.

Figure 8.1 The DisjointSets ADT
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8.1 Using DISJOINTSETS in Scheduling

We will use an instance of the DisjointSets ADT to maintain the disjoint

sets in the scheduling algorithm outlined above. In order to find the time slot

in which to schedule a job, we first need to find the time interval containing

the last time slot prior to the job’s deadline. We can use the Find operation

for this purpose. Assuming that we can obtain the available time slot in a

given partition, and assuming this time slot is not 0, we have the time slot i

in which to schedule the job. We then need to combine this partition with

the one immediately preceding it. We can find the preceding partition with

Find(i− 1). We can then combine the two partitions using Merge.

We need one additional data structure in order to be able to find the

available slot in an interval, given the representative of that interval. For this

purpose, we can use an array avail[0..n] such that if j is the representative of

an interval, then avail[j] is the available time slot in that interval. Initially,

avail[i] = i for all i. Suppose we schedule a job at time i. We then merge the

interval containing i with the preceding interval. Let j be the representative

of the preceding interval prior to the merger. Then avail[j] is the available

element in the resulting interval. If k is the value returned by the call to

Merge, then we can update avail by assigning to avail[k] the value avail[j].

Because no other representatives change, no other updates are needed. The

entire algorithm is shown in Figure 8.2.

8.2 A Tree-Based Implementation

In this section, we will consider a tree-based implementation of the

DisjointSets ADT, as illustrated in Figure 8.3. Each partition will be

represented by a tree. The nodes of the tree will be the elements of the

partition. The element at the root of the tree will be the representative of

that partition. Because we will need to find the root from an arbitrary node

in the tree, the children will maintain references to their parents, rather than

vice versa. Note that because parents do not need to reference children, a

node can have arbitrarily many children.

Given a value k, we need to be able to find the parent of the node

representing k. In order to accommodate this functionality, we will use an

array parent[0..n − 1] to represent the trees. Specifically, parent[k] will give

the parent of k in its tree, or if k is the root, parent[k] will be k. Thus, parent

will be the only representation variable. Our structural invariant will be that

for 0 ≤ i < n:
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Figure 8.2 Scheduling algorithm using DisjointSets

Figure 8.3 A tree-based implementation of DisjointSets.

• 0 ≤ parent[i] < n; and

• there is a finite sequence parent[i],parent[parent[i]], . . . , k such that

parent[k] = k.

Note that this invariant implies that the values in the universe are grouped

into trees, where the root k of a tree is denoted by parent[k] = k.
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Figure 8.4 TreeDisjointSets implementation of DisjointSets

The Merge and Find operations are now straightforward. Merge

simply makes one tree a child of the root of the other, and Find follows

the parent references until the root is reached. The full implementation is

shown in Figure 8.4.

Clearly, the constructor operates in Θ(n) time, and Merge operates in

Θ(1) time. The number of iterations of the while loop in Find is the depth

of k, which in the worst case is the height of the tree. Clearly, the height is

at most n− 1. Unfortunately, this height can be achieved by the sequence

Merge(0, 1),Merge(1, 2), . . . ,Merge(n− 2, n− 1).

Thus, the worst-case running time for Find is in Θ(n).

Because the constructor will only be executed once for each structure,

Θ(n) is not a bad running time. However, we will probably need to execute
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Find repeatedly. We would therefore like to improve its performance. In the

next section we will examine a simple way to do this.

8.3 A Short Tree Implementation

Because the worst-case running time for Find is proportional to the height of

the tree, we can improve the worst-case performance by controlling heights

of the trees. In order to accomplish this, when we merge two trees, we will

always make the tree with smaller height the child of the root of the other

tree. If both trees have the same height, we arbitrarily choose one as the

child. Note that by using this technique, the only way we can increase the

height of a tree is to merge it with another tree of the same height. We will

show that as a result, the heights of the trees are always at most logarithmic

in their number of nodes.

As we did in analyzing the heights of AVL trees (Section 6.2), let us

compute the minimum number of nodes required to achieve a tree of height h,

assuming we always make the tree with smaller height the child. Let f(h)

give this number. Then f(0) = 1. In order to build a tree with height h > 0

using the fewest nodes, we must merge two trees of height h−1, each having

the fewest nodes possible. Thus, each of the two merged trees must have

f(h− 1) nodes. The total number of nodes is given by the recurrence

f(h) = 2f(h− 1).

It is easily seen that f(h) = 2h, so that h = lg f(h). Thus, if k is the

number of nodes in a tree of height h, we have

h = lg f(h)

≤ lg k.

We conclude that if the universe contains n elements, then no tree has a

height greater than lg n.

In order to be able to merge trees in this way, we need to keep track of the

height of each tree. For this purpose, we include an additional representation

variable height[0..n − 1]. Our structural invariant will then be that for

0 ≤ i < n, height[i] is the maximum of 0 and height[j] + 1 for all j �= i

such that parent[j] = i, and that 0 ≤ parent[i] < n. Note that because

height[parent[i]] > height[i] whenever parent[i] �= i, each value i must have

an ancestor j such that parent[j] = j; thus, the elements of the universe

must be grouped into trees rooted at nodes with parent[i] = i.
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Figure 8.5 ShortDisjointSets implementation of DisjointSets

The constructor and Merge operation for this implementation are

shown in Figure 8.5. The Find operation is implemented exactly as

TreeDisjointSets.Find in Figure 8.4.

As in the previous implementation, the constructor runs in Θ(n) time,

and Merge runs in Θ(1) time. Based on the above discussion, Find runs in

Θ(lg n) time.

8.4 * Path Compression

An internal function is used
in order to avoid making a
callback.

In order to improve the performance of a Find, we

would like to decrease the distance from a node to

the root as much as possible. An effective way of

accomplishing this is to modify the Find so that it changes the parent of

every node it encounters to be the root of its tree. This technique is called

path compression. We implement this technique using a recursive internal

function, Compress. If the given node k is not the root, Compress first
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performs a recursive Compress on k’s parent. If we treat the distance

between a node and the root as the size of a call to Find, we see that

such a recursive call is valid. Furthermore, it compresses the path from k’s

parent to the root and returns the root. It can therefore complete its task

by making k a child of the root and returning the root. The resulting Find

algorithm is shown in Figure 8.6.

The rest of the implementation is the same as for ShortDisjointSets;

however, because path compression can decrease the height of a node i

without updating height[i], this value is no longer guaranteed to give the

height of node i. For this reason, we will change the name of this array to

rank and weaken the structural invariant so that rank[i] is at least the height

of i. The precise meaning of rank[i] is now rather elusive, other than the fact

that it gives an upper bound on the height of i.

Clearly, the running time of CompressedDisjointSets.Find is in

O(h), where h is the height of the tree. Furthermore, the height of a

tree in this implementation can certainly be no larger than it would

have been if no path compression had been done; hence, the upper

bound of O(lg n) shown for ShortDisjointSets.Find also holds for

Figure 8.6 The Find algorithm for the CompressedDisjointSets implementation

of DisjointSets
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CompressedDisjointSets.Find. Because we can still construct a tree

with height in Θ(lg n) with a sequence of Merges, we conclude that

CompressedDisjointSets.Find runs in Θ(lg n) time in the worst case.

Clearly, CompressedDisjointSets.Merge runs in Θ(1) time, so that in

the worst case, the asymptotic performance of CompressedDisjointSets

is identical to that of ShortDisjointSets.

On the other hand, because each path compression has the tendency

to improve the performance of subsequent Finds, we might suspect that

the amortized performance of this structure is improved. Indeed, we will

show that the amortized performance of the Merge and Find operations

for CompressedDisjointSets is “almost” constant.

In order to perform an amortized analysis, we need to assign actual costs

to the operations. The running time of Find(i) is proportional to the number

of nodes on the path from i to the root of its tree. Another way to say this

is that the running time is proportional to the number of locations of the

parent array that are accessed. Let us therefore define the actual cost of an

operation to be the number of locations accessed in the parent array. The

actual cost of Merge is therefore 2.

The key to a good amortized analysis is finding a good potential function.

Let S be the set of all possible states of some CompressedDisjointSets

with size n. We need a function Φ : S → R
≥0 such that the initial state

is mapped to 0. To arrive at this function, we will define, for a given state

s ∈ S, a potential for each node; i.e., we will define a function φs : U → N,

where U = {i ∈ N | i < n}. We will then define the potential function to be

the sum of the potentials of all of the nodes:

Φ(s) =

n−1∑
i=0

φs(i).

Let ranks and parents denote the values of the rank and parent arrays

in state s. We will define our potential function based on these values. Let ε

denote the initial state. Thus, for 0 ≤ i < n, rankε[i] = 0. In order for Φ to

be a valid potential function, we need Φ(ε) = 0. To accomplish this, we let

φs(i) = 0 if ranks[i] = 0 for 0 ≤ i < n and any state s. Note that a node can

only obtain a non-zero rank when a Merge makes it the parent of another

node; thus, ranks[i] = 0 iff i is a leaf.

We have two operations we need to consider as we define φs(i) for non-

leaf i. Merge is a cheap operation, having an actual cost of 2, whereas Find

is more expensive in the worst case. We therefore need to amortize the cost

of an expensive Find over preceding Merges. This means that we need
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the potential function to increase by some amount — say α(n), where α is

some appropriate function — for at least some of the Merges. The Merge

operation only operates on roots, so let us focus our attention there. When

a Merge is performed, the rank of one node — a root — may increase by 1,

but otherwise, no ranks increase (see Figure 8.5, and recall that the rank

array replaces the height array in this algorithm). Therefore, let us define

φs(i) to be α(n)ranks[i] if i is a root (i.e., if parents[i] = i).

Note that the above definitions are consistent with each other: if i is both

a leaf and a root, its rank is 0, and hence its potential is 0 by either of the

above definitions. Furthermore, if we can ensure that a Merge causes the

potential of no node other than the root of the resulting tree to increase, we

will have a bound of α(n) + 2 on the amortized cost of Merge with respect

to Φ. We still need to define the potentials for nodes that are neither leaves

nor roots in such a way that an expensive Find causes Φ to decrease enough

to offset much of the actual cost.

Consider the effect of Find(j) on a node i that is neither a leaf nor a

root. i’s rank doesn’t change, but its parent may. In particular, it may receive

a parent with different rank than its original parent. It is not hard to show

as a structural invariant that if parent[i] �= i, then rank[parent[i]] > rank[i].

We would therefore like the potential of i to decrease, generally speaking, as

rank[parent[i]] increases. Furthermore, in order that its potential does not

increase when a Merge changes it from a root to a non-root, we should

have φs(i) ≤ α(n)ranks[i] for all states s and nodes i.

As a first approximation to a definition of φs(i), where i is neither a leaf

nor a root, suppose we let φs(i) = (α(n) − f(s, i))ranks[i], where f is some

function that depends on the ranks of i and its parent in s and obeys the

constraint

0 ≤ f(s, i) < α(n).

If f does not decrease when i receives a parent of higher rank, φs
would satisfy the constraints outlined above. However, it would suffer the

disadvantage that its value is always a multiple of ranks[i]. In order to give

us more control over how much the potential function changes, we would like

for this function to have a larger range when ranks[i] is fixed, as it is when

i is not a root. Therefore, we wish to find, for each state s, a function

φs(i) = (α(n)− f(s, i))ranks[i]− g(s, i),
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where f is as above and g is some function that depends on the ranks of i

and its parent in s and obeys the constraint

0 < g(s, i) ≤ ranks[i].

Let us consider the nodes examined during the operation Find(j) on

some state s. These nodes are the ancestors of j. Let us restrict our attention

to those ancestors that have nonzero rank and are not the root. (Note that as

a result, we ignore at most two ancestors.) Let Ak be a function describing

the relationship between the ranks of i and its parent for any non-root i,

where k = f(s, i); i.e., ranks[parents[i]] ≥ Af(s,i)(ranks[i]). When the path

compression is done, the parent of i may have the same rank (if i had already

been a child of the root), or it may be very little more than the rank of i’s

original parent. However, suppose that in the original state s, i has a proper

ancestor i′ other than the root such that f(s, i′) = f(s, i) = k. Because i′

is not a root, the rank of i’s new parent is at least the rank of the original

parent of i′. Therefore, if Ak is nondecreasing, we have

ranks′ [parents′ [i]] ≥ ranks[parents[i
′]]

≥ Ak(ranks[i
′])

≥ Ak(ranks[parents[i]]).

Thus, each time a path compression moves a non-leaf i having a proper

ancestor i′ (other than the root) with f(s, i) = f(s, i′) = k, the rank of i’s

parent increases by at least the application of the function Ak. Furthermore,

because 0 ≤ f(s, i) < α(n), there can be at most α(n) nodes i on the path

from j to the root, other than leaves or the root, that do not have a proper

ancestor i′ with f(s, i′) = f(s, i). Thus, if we can decrease the potential of

each i having a proper ancestor i′ with f(s, i′) = f(s, i), without increasing

any potentials, then we will have a bound of α(n) + 2 on the amortized cost

of a Find with respect to Φ.

The behavior described above gives us some insight into how we might

define f , g, and each Ak. First, we would like g to give the maximum number

of times Af(s,i) can be applied to the rank of i without exceeding the rank

of i’s parent. Thus, if i has a proper ancestor i′ with f(s, i′) = f(s, i), and

if f(s′, i) = f(s, i), then g(s′, i) > g(s, i). As a result, the potential of i

decreases. In order to keep g(s, i) within the proper range, we should define

f(s, i) and Ak so that if we applyAf(s,i) more than ranks(i) times to ranks(i),
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we must attain a value of at least Af(s,i)+1(ranks[i]). Then if we define f(s, i)

to be the maximum k such that ranks[parents[i]] ≥ Ak(ranks[i]), we can

never have ranks[parents[i]] ≥ Af(s,i)+1(ranks[i]).

We still need to define the functions Ak. In order to facilitate this

definition, we first define the iteration operator for functions. Let F : N→ N.

We then define

F (0)(n) = n

F (k)(n) = F (F (k−1)(n)) for k > 0.

For example, if F (n) = 2n, then F (2)(n) = 4n and F (3)(n) = 8n; more

generally, F (k)(n) = 2kn.

We now define:

Ak(n) =

{
n+ 1 if k = 0

A
(n+1)
k−1 (n) if k ≥ 1.

We can then define, for each node i that is neither a leaf nor a root,

f(s, i) = max{k | ranks[parents[i]] ≥ Ak(ranks[i])}
and

g(s, i) = max{k | ranks[parents[i]] ≥ A(k)
f(s,i)(ranks[i])}.

Finally, we need f(s, i) < α(n) whenever i is neither a leaf nor a root.

Thus, we need to ensure that whenever i is neither a leaf nor a root, we have

Aα(n)(ranks[i]) > ranks[parents[i]].

We have shown that without path compression, the height of a tree never

exceeds lg n; hence, with path compression, the rank of a node never exceeds

lg n. It therefore suffices to define

α(n) = min{k | Ak(1) > lg n}.
As the subscript k increases, Ak(1) increases very rapidly. We leave it as

an exercise to show that

A4(1) ≥ 22
···

2

,

where there are 2051 2s on the right-hand side. It is hard to comprehend

just how large this value is, for if the right-hand side contained only six 2s,

the number of bits required to store it would be 265536 +1. By contrast, the

number of elementary particles in the universe is currently estimated to be
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no more than about 2300. Hence, there is not nearly enough matter in the

universe to store A4(1) in binary. Because α(n) ≤ 4 for all n < 2A4(1), we

can see that α grows very slowly.

To summarize, we define our potential function Φ so that

Φ(s) =
n−1∑
i=0

φs(i),

where

φs(i) =

⎧⎨
⎩
0 if ranks[i] = 0

α(n)ranks[i] if parents[i] = i

(α(n)− f(s, i))ranks[i]− g(s, i) otherwise,

for α, f , and g as defined above. Before we can complete the amortized

analysis, we need to show that both f and g satisfy the properties outlined

in the discussion above.

Lemma 8.1. Let s be a state of a CompressedDisjointSets of size n,

and let 0 ≤ i < n such that parents[i] �= i and ranks[i] > 0. Then

0 ≤ f(s, i) < α(n).

Proof. First, because the rank of the parent of i is strictly larger than that

of i, we have

ranks[parents[i]] ≥ ranks[i] + 1

= A0(ranks[i]),

from the definition of A0. Thus, from the definition of f , f(s, i) ≥ 0.

It is not hard to show that each Ak is nondecreasing — we leave the

details as an exercise. Using this fact, along with the definition of α and the

fact that no rank exceeds lg n, we have

Aα(n)(ranks[i]) ≥ Aα(n)(1)

> lg n

≥ ranks[parents[i]].

Thus, from the definition of f , f(s, i) < α(n). �

Lemma 8.2. Let s be a state of a CompressedDisjointSets of size n,

and let 0 ≤ i < n such that parents[i] �= i and ranks[i] > 0. Then

0 < g(s, i) ≤ ranks[i].
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Proof. First, from the definition of f , we have

ranks[parents[i]] ≥ Af(s,i)(ranks[i])

= A
(1)
f(s,i)(ranks[i]).

Thus, from the definition of g, g(s, i) > 0.

Now from the definitions of A and f , we have

A
(ranks[i]+1)
f(s,i) (ranks[i]) = Af(s,i)+1(ranks[i])

> ranks[parents[i]].

Thus, g(s, i) ≤ ranks[i]. �

We are now ready to show that the amortized costs of Merge and Find

are in O(α(n)).

Theorem 8.3. With respect to Φ, the amortized cost of Merge on a

CompressedDisjointSets of size n is in O(α(n)).

Proof. Suppose we do Merge(i, j) in state s, yielding state s′. Without

loss of generality, assume j is made the parent of i. Then i is the only node

whose parent changes, and j is the only node whose rank may change; hence,

the potentials for all other nodes remain unchanged. The change in potential

for node i is given by

φs′(i)− φs(i) = (α(n) − f(s′, i))ranks′ [i]− g(s′, i) − α(n)ranks[i]

< α(n)(ranks′ [i]− ranks[i])

= 0.

The change in potential for node j is given by

φs′(j) − φs(j) = α(n)ranks′ [j] − α(n)ranks[j]

≤ α(n),
because the rank of j can increase by at most 1. The change in Φ is therefore

less than α(n). Because the actual cost is 2, the amortized cost is less than

α(n) + 2 ∈ O(α(n)). �

Theorem 8.4. With respect to Φ, the amortized cost of Find on a

CompressedDisjointSets of size n is in O(α(n)).

Proof. Suppose we perform Find(j) on state s. Let s′ be the resulting

state. Suppose there are d nodes on the path from j to the root in s. Then

the actual cost of the operation is d. We will show that as a result of this
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operation, at least d − α(n) − 2 nodes decrease in potential, and no nodes

increase in potential. As a result, we will have shown the amortized cost to

be at most α(n) + 2 ∈ O(α(n)).

First, we will show that no potentials increase as a result of Find(j).

Because the Find operation does not change any ranks and does not change

which nodes are roots, no leaves or roots can change potential. The potential

for any other node i can change only due to changes in f and g. Because i

cannot receive a parent with a smaller rank as a result of path compression,

f(s′, i) ≥ f(s, i). If f(s′, i) = f(s, i), then clearly g(s′, i) ≥ g(s, i). In this

case, the potential does not increase. If, on the other hand, f(s′, i) > f(s, i),

from Lemma 8.2 and the fact that path compression leaves all ranks

unchanged, g(s, i)− g(s′, i) < ranks[i]. Then

φs′(i)− φs(i) = (α(n)− f(s′, i))ranks′ [i]− g(s′, i)
− (α(n)− f(s, i))ranks[i] + g(s, i)

< (f(s, i)− f(s′, i))ranks[i] + ranks[i]

≤ 0.

In this case, the potential of i decreases.

The only nodes whose parents change are ancestors of j, and no ranks

change. Hence, the only nodes whose potentials change are ancestors of

j. The ancestors of j include a root and at most one leaf. For the other

ancestors i, from Lemma 8.1, there can be at most α(n) distinct values for

f(s, i). For a given value k, each node i with f(s, i) = k except the one

nearest the root has a proper ancestor i′ with f(s, i′) = k. We will show that

all of these nodes — i.e., at least d − α(n) − 2 of the d ancestors of j —

decrease in potential as a result of the Find.

Let i be an ancestor of j in s such that i is neither a leaf nor a root

and such that for some proper ancestor i′ of i other than the root, f(s, i) =

f(s, i′) = k. We have already shown that if f(s′, i) > f(s, i), the potential of

i decreases. Therefore, suppose f(s′, i) = f(s, i) = k. Then

ranks′ [parents′ [i]] ≥ ranks[parents[i
′]]

≥ Ak(ranks[i
′]) (definition of f)

≥ Ak(ranks[parents[i]])

≥ Ak(A
(g(s,i))
k (ranks[i])) (definition of g)

= A
(g(s,i)+1)
k (ranks[i])

= A
(g(s,i)+1)
k (ranks′ [i]).
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Because f(s′, i) = k, g(s′, i) > g(s, i), so that φs′(i) < φs(i). �

The above theorems show that the amortized running times of Merge

and Find are in O(α(n)). However, α appears to be a somewhat contrived

function. We have argued intuitively that α increases very slowly, but we

have not formally compared it with any better-known slow-growing function

like lg or lg lg. We address this issue more formally in the Exercises. For now,

we will simply state that the collection of functions Ak form a variation of

Ackermann’s function, and that α is one way of defining its inverse. There

have actually been several different 2- or 3-variable functions that have been

called Ackermann’s function, and all grow at roughly the same rapid rate.

8.5 Summary

Tree-based implementations of disjoint sets provide very efficient Merge

and Find operations, particularly when path compression is used. The worst-

case running times for these operations are in Θ(1) and Θ(lg n), respectively,

for both ShortDisjointSets and CompressedDisjointSets. The latter

implementation yields nearly constant amortized running time. A summary

of the running times of the operations for the different implementations is

shown in Figure 8.7. As we will see in later chapters, these structures are

very useful in the design of efficient algorithms.

Figure 8.7 Comparison of running times of the DisjointSets operations for various

implementations

Notes:
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8.6 Exercises

Exercise 8.1. Draw the trees that result from the following sequence of

operations:

t← new TreeDisjointSets(8)

t.Merge(0, 1)

t.Merge(t.Find(1), 2)

t.Merge(3, 4)

t.Merge(5, 6)

t.Merge(t.Find(3), t.Find(6))

t.Merge(t.Find(3), t.Find(0))

Exercise 8.2. Repeat Exercise 8.1 using a ShortDisjointSets

implementation.

Exercise 8.3. Repeat Exercise 8.1 using a CompressedDisjointSets

implementation.

Exercise 8.4. Prove that Schedule, shown in Figure 8.2, meets its

specification.

Exercise 8.5. Prove that an algorithm that returns an array sched[1..n]

containing all 0s meets the specification of Schedule (Figure 8.2).

Exercise 8.6. Analyze the worst-case running time of Schedule (Figure

8.2) assuming the TreeDisjointSets implementation of DisjointSets.

Your analysis should be in terms of n, and you may assume that m ≤ n.

Express your result as simply as possible using Θ-notation.

Exercise 8.7. Repeat Exercise 8.6 assuming the ShortDisjointSets

implementation of DisjointSets.

Exercise 8.8. Repeat Exercise 8.7 assuming the CompressedDisjoint-

Sets implementation of DisjointSets. Express the best result you can as

simply as possible using big-O notation.

Exercise 8.9. Prove that TreeDisjointSets, shown in Figure 8.4, meets

the DisjointSets specification, given in Figure 8.1.

Exercise 8.10. Prove that ShortDisjointSets, shown in Figure 8.5,

meets the DisjointSets specification, given in Figure 8.1.

Exercise 8.11. Prove that CompressedDisjointSets, described in Sec-

tion 8.4, meets the DisjointSets specification, given in Figure 8.1. Use as

the structural invariant that for 0 ≤ i < n,
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• if rank[i] = 0 then there is no j, such that 0 ≤ j < n, j �= i, and

parent[j] = i; and

• if rank[i] > 0, then

– there is some j such that 0 ≤ j < n, j �= i, and parent[j] = i; and

– rank[i] > max{rank[j] | 0 ≤ j < n, j �= i,parent[j] = i}.
Exercise 8.12. Suppose that we modify ShortDisjointSets so that in

the Merge operation we make the tree with fewer nodes a child of the root

of the other tree (choosing arbitrarily if both trees have the same number of

nodes). Prove by induction on k that any tree with k > 0 nodes formed in

this way will have height at most lg k.

* Exercise 8.13. Suppose that we modify TreeDisjointSets so that in

the Merge operation we flip a fair coin to determine which node will be

the new root. Analyze the worst-case expected running time of Find for

such an implementation. Express your answer as simply as possible using Θ-

notation. In showing the lower bound, describe a sequence of operations for

an arbitrarily large universe of elements such that the last Find is expected

to require the stated running time.

Exercise 8.14. Prove by induction on i that A
(i)
0 (n) = n+i, so that A1(n) =

2n + 1.

Exercise 8.15. Using the result of Exercise 8.14, prove by induction on i

that A
(i)
1 (n) = 2i(n+ 1)− 1, so that A2(n) = 2n+1(n+ 1)− 1.

Exercise 8.16. Prove by induction on k that each Ak is non-decreasing.

Exercise 8.17. Using the results of Exercises 8.15 and 8.16, prove by

induction on i that

A
(i)
2 (n) ≥ 22

···
2n

,

where the right-hand side has i 2s.

Exercise 8.18. Using the result of Exercise 8.15, evaluate A3(1).

Exercise 8.19. Using the result of Exercises 8.17 and 8.18, show that

A4(1) ≥ 22
···

2

,

where the right-hand side has 2051 2s.

Exercise 8.20. For the following, you may use the results of Exercises 8.15

and 8.16.
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a. Prove by induction on i that for each i ∈ N,

lg(i)(n) ≥ min{k | A(i)
2 (k) ≥ n}.

b. Prove by induction on k that for k ≥ 4, Ak(1) ≥ A(k)
2 (k).

c. Using the results of parts (a) and (b), prove that for each i ∈ N, there is

an ni ∈ N such that whenever n ≥ ni, α(n) ≤ lg(i)(n).

d. Using the result of part (c), prove that for each i ∈ N, α(i) ∈ o(lg(i) n).
* Exercise 8.21. Let

lg∗ n = min{k | lg(k) n ≤ 1}.
Prove that α(n) ∈ o(lg∗ n).

8.7 Notes

The TreeDisjointSets implementation of DisjointSets is due to Galler

and Fischer [47]. The improvement of Section 8.3 is presented by Hopcroft

and Ullman [66], who credit McIlroy and Morris with having implemented it.

The improvement using path compression is credited to Tritter by Knuth

[82]. The amortized analysis of this structure yielding results similar to those

presented here was done by Tarjan [111,112]. The analysis given here is based

on the presentation by Cormen et al. [25], which is based on a proof due to

Kozen [87].

Exercise 8.12 is from Brassard and Bratley [17].
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Chapter 9

Graphs

Often we need to model relationships that can be expressed using a

set of pairs. Examples include distances between points on a map, links

in a communications network, precedence constraints between tasks, and

compatibility of items or people. In some cases, the relationship is symmetric;

e.g., if A is compatible with B, then B is compatible with A. In other cases,

the relationship is asymmetric; e.g., the requirement that A precedes B is

not the same as the requirement that B precedes A. All of these relationships

can be modeled using graphs. Having modeled the relationship, we can then

apply graph algorithms for extracting such information as a shortest path

between two points or a valid ordering of tasks.

There are two kinds of graphs, depending on whether the relationship

to be modeled is symmetric or asymmetric. For symmetric relationships, we

define an undirected graph to be a pair (V,E), where V is a finite set of

vertices (or nodes) and E is a set of 2-element subsets of V . We refer to the

elements of E as edges. We can represent undirected graphs pictorially as in

Figure 9.1, where vertices are denoted by circles and edges are denoted by

line segments or curves connecting their constituent vertices. We often say

that an edge {u, v} is incident on vertices u and v, and that u and v are

therefore adjacent.

In some cases, we drop the
requirement that the ele-
ments be distinct.

For modeling asymmetric relationships, we define

a directed graph to be a pair (V,E), where again V

is a finite set of vertices or nodes, but E is a set of

ordered pairs of distinct elements of V. Again, we refer to the elements of E

as edges. In order to differentiate the edges of an undirected graph from the

edges of a directed graph, we sometimes refer to the former as undirected

edges and to the latter as directed edges. We can represent directed graphs

in a manner similar to our depiction of undirected graphs, using arrows to

309
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Figure 9.1 An undirected graph

Figure 9.2 A directed-graph-figure

indicate the directions of the edges. Conventionally, we draw the edge (u, v)

as an arrow from u to v (see Figure 9.2). For a directed edge (u, v) we say

that v is adjacent to u, but not vice versa (unless (v, u) is also an edge in

the graph).

We usually want to associate some additional information with the

vertices and/or the edges. For example, if the graph is used to represent

distances between points on a map, we would want to associate a distance

with each edge. In addition, we might want to associate the name of a city

with each vertex. In order to simplify our presentation, we will focus our

attention on the edges of a graph and any information associated with them.

Specifically, as we did for disjoint sets in the previous chapter, we will adopt

the convention that the vertices of a graph will be designated by natural

numbers 0, . . . , n − 1. If additional information needs to be associated with

vertices, it can be stored in an array indexed by the numbers designating the

vertices. While some applications might require more flexibility, this scheme

is sufficient for our purposes.
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Figure 9.3 The Graph ADT

Although in practice it may be beneficial to define separate ADTs for

directed and undirected graphs, respectively, it will simplify our presentation

if we specify a single Graph ADT, as shown in Figure 9.3. This actually

specifies a directed graph, but we can use it to represent an undirected graph

if we make sure that whenever (i, j) is an edge, then (j, i) is an edge with the

same associated information. We can therefore use the same ADT for both

types of graph, though the specification itself will never guarantee that the

graph is undirected.

This specification uses the data type Edge, which is implemented by

three readable representation variables, source, dest, and data. We assume

that it contains a constructor Edge(i, j, x), which sets source to i, dest to j,

and data to x. It contains no other operations other than the three accessor

operations, so it is an immutable structure. Although we place no restrictions

on the values stored in its representation variables, the specification of
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Graph.AllFrom ensures that any Edge in the ConsList returned by

this operation will have natural numbers for source and dest and a non-nil

value for data.

In the next two sections, we will consider two applications of the Graph

ADT. Each of these applications will result in a graph algorithm. We will

then examine two implementations of Graph and analyze the running

times of their operations. We will also analyze the space usage of each

implementation. Using these analyses, we will analyze the running times

of the two algorithms with each of these implementations.

9.1 Universal Sink Detection

Our first example is somewhat contrived, but it serves as a useful introduc-

tion to graph algorithms. To begin, we define a sink in a directed graph

G = (V,E) to be a vertex v with no outgoing edges. A universal sink is a

sink v such that for every vertex u �= v, (u, v) ∈ E. In this section, we will

examine the problem of finding a universal sink in a directed graph, if one

exists.

We first observe that a directed graph can have at most one universal

sink. Let us therefore consider the related problem of returning a universal

sink in a nonempty graph if one exists, or returning an arbitrary vertex

otherwise. We will then reduce the universal sink detection problem to this

variant. Suppose we consider any two distinct vertices, u and v (if there is

only one vertex, clearly it is a universal sink). If (u, v) ∈ E, then u cannot be

a sink. Otherwise, v cannot be a universal sink. Let G′ be the graph obtained

by removing from G one vertex x that is not a universal sink, along with

all edges incident on x. If G has a universal sink w, then w must also be a

universal sink in G′. We have therefore transformed this problem to a smaller

instance. Because this reduction is a transformation, we can implement it

using a loop.

In order to implement this algorithm using the Graph ADT, we need to

generalize the problem to a subgraph of G comprised of the vertices i, . . . , j

and all edges between them. If j > i, we can then eliminate either i or j

from the range of vertices, depending on whether (i, j) is an edge. Note that

by generalizing the problem in this way, we do not need to modify the graph

when we eliminate vertices — we simply keep track of i and j, the endpoints

of the range of vertices we are considering. If there is an edge (i, j), we

eliminate vertex i by incrementing i; otherwise, we eliminate vertex j by

decrementing j. When all vertices but one have been eliminated (i.e., when

i = j), the remaining vertex must be the universal sink if there is one.
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Figure 9.4 An algorithm to find a universal sink in a directed graph

We can therefore solve the original universal sink detection problem for a

nonempty graph by first finding a candidate vertex i as described above. We

know that if there is a universal sink, it must be i. We then check whether

i is a universal sink by verifying that for every j �= i, (j, i) is an edge but

(i, j) is not. The resulting algorithm is shown in Figure 9.4.

9.2 Topological Sort

A cycle in a directed graph G = (V,E) is a finite sequence of vertices

v0, . . . , vk such that (vk, v0) ∈ E, and for 0 ≤ i < k, (vi, vi+1) ∈ E. A

directed graph with no cycles is said to be acyclic. These two terms apply

analogously to undirected graphs as well, except that in this case all the

edges in the sequence must be distinct. In either type of graph, a cycle in

which all the vertices in the sequence are distinct is said to be simple.

Directed acyclic graphs are often used to model precedence relationships

between objects or activities. Suppose, for example, that we have four jobs,

A, B, C, and D. We must schedule these jobs sequentially such that A

precedes C, B precedes A, and B precedesD. These precedence relationships
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Figure 9.5 A directed acyclic graph modeling precedence relationships

can be modeled by the directed acyclic graph shown in Figure 9.5. We need

to find an ordering of the vertices such that for every edge (u, v), u precedes

v in the ordering. Such an ordering is called a topological sort of the graph.

Examples of topological sorts of the graph in Figure 9.5 are 〈B,A,C,D〉
and 〈B,D,A,C〉. In this section, we will present an algorithm for finding a

topological sort of a given directed acyclic graph. First, we will show that

every directed acyclic graph has a topological sort.

Lemma 9.1. Every nonempty directed acyclic graph has at least one vertex

with no incoming edges.

Proof. By contradiction. Suppose every vertex in some nonempty directed

acyclic graph G has incoming edges. Then starting from any vertex, we may

always traverse an incoming edge backwards to its source. Because G has

finitely many vertices, if we trace a path in this fashion, we must eventually

repeat a vertex. We will have then found a cycle — a contradiction. �

Theorem 9.2. Every directed acyclic graph G = (V,E) has a topological

sort.

Proof. By induction on the size of V.

Base: V = ∅. Then the empty ordering is a topological sort.

Induction Hypothesis: Suppose that for some n > 0, every directed

acyclic graph with fewer than n vertices has a topological sort.

Induction Step: Let G = (V,E) be a directed acyclic graph with n vertices.

Because G is nonempty, it must have at least one vertex v0 with no incoming

edges. Let G′ be the graph obtained from G by removing v0 and all of

its outgoing edges. By the induction hypothesis, G′ has a topological sort

v1, . . . , vn−1. Because v0 has no incoming edges in G, v0, . . . , vn−1 must

therefore be a topological sort for G. �
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The proof of Theorem 9.2 is constructive; i.e., it gives an algorithm for

finding a topological sort. First, we find a vertex v0 with no incoming edges.

v0 will come first in the topological sort. The remainder of the topological

sort is obtained by removing v0 and finding a topological sort of the resulting

graph. We have therefore transformed the problem to a smaller instance.

The above sketch is missing a few details. For example, we need to know

how to find a vertex with no incoming edges. Also, ourGraph ADT provides

no mechanism for removing vertices. In order to overcome these problems, we

will maintain an array incount[0..n − 1] so that incount[i] gives the number

of edges to i from vertices not yet in the topological sort. When we add

a vertex i to the topological sort, we do not need to remove it from the

graph; instead, we can simply decrement incount[j] for all j adjacent to i.

To initialize incount, we can simply examine each edge (i, j) and increment

incount[j].

In order to speed up finding the next vertex in the topological sort, let

us keep track of all vertices i for which incount[i] = 0. We can use a Stack

for this purpose. After we initialize incount, we can traverse it once and

push each i such that incount[i] = 0 onto the stack. Thereafter, when we

decrement an entry incount[i], we need to see if it reaches 0, and if so, push

it onto the stack. The algorithm is shown in Figure 9.6.

9.3 Adjacency Matrix Implementation

Our first implementation of Graphwill have a single representation variable:

• edges[0..n − 1, 0..n − 1].

Our structural invariant will be that edges[i, i] = nil for 0 ≤ i < n. We

interpret edges[i, j] as giving the information associated with edge (i, j),

provided this value is non-nil. We interpret a nil value for edges[i, j] as

indicating the absence of an edge (i, j). The full implementation is shown in

Figure 9.7.

Each of the operations Size, Put, and Get runs in Θ(1) time. The

constructor is easily seen to run in Θ(n2) time. The AllFrom operation

clearly runs in Θ(n) time, where n is the number of vertices in the graph.

The space usage is clearly in Θ(n2).

We can now analyze the running times of the algorithms given in the

previous two sections. We will first consider UniversalSink from Figure

9.4. Let n be the number of vertices in G. The while loop begins with

j − i = n− 1 and decreases j − i each iteration. Because it terminates when
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Figure 9.6 Topological sort algorithm

j − i = 0 it iterates n− 1 times. Because MatrixGraph.Get runs in Θ(1)

time, the entire loop runs in Θ(n) time. The for loop iterates at most n

times, and each iteration runs in Θ(1) time. The entire algorithm therefore

operates in Θ(n) time.

Let us now consider TopSort from Figure 9.6. We will need to break

the algorithm into the four for loops.

In the body of the second for loop, MatrixGraph.AllFrom runs in

Θ(n) time. The body of the while loop runs in Θ(1) time. Each iteration

decreases the number of elements in L by 1 until L is empty. Because there

can be at most n− 1 edges from any vertex, the while loop iterates at most

n − 1 times. Its running time is therefore in O(n). The body of the second
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Figure 9.7 MatrixGraph implementation of Graph

for loop therefore runs in Θ(n) time. Because it iterates n times, its running

time is in Θ(n2).

The first and third for loops clearly run in Θ(n) time. Furthermore, the

analysis of the fourth for loop is similar to that of the second. Therefore,

the entire algorithm runs in Θ(n2) time.

Note that the second and fourth for loops in TopSort each contain a

nested while loop. Each iteration of this while loop processes one of the

edges. Furthermore, each edge is processed at most once by each while

loop. The total number of iterations of each of the while loops is therefore

the number of edges in the graph. While this number can be as large as

n(n− 1) ∈ Θ(n2), it can also be much smaller.
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The number of edges does not affect the asymptotic running time,

however, becauseMatrixGraph.AllFrom runs in Θ(n) time, regardless of

how many edges it retrieves. If we can make this operation more efficient, we

might be able to improve the running time for TopSort on graphs with few

edges. In the next section, we will examine an alternative implementation

that accomplishes this.

9.4 Adjacency List Implementation

In this section, we consider an implementation designed to improve the

efficiency of the AllFrom operation. The two-dimensional array used in

the adjacency matrix implementation can be thought of as an array of

arrays each containing the adjacency information for a single vertex. In

the adjacency list implementation, we still use an array indexed by vertices

to store the adjacency information for each vertex; however, we maintain

this adjacency information in a ConsList instead of an array. In such a

representation, the ConsList for vertex i is exactly the ConsList that

needs to be returned by AllFrom(i). Furthermore, because a ConsList is

immutable, we can return it without violating security.

We again use a single representation variable:

• elements[0..n − 1]: an array of ConsLists.

Our structural invariant will be that for 0 ≤ i < n, elements[i] refers to a

ConsList containing Edges representing at most one (i, j) for each j such

that 0 ≤ j < n and j �= i, where each Edge has a non-nil data item (see the

specification for Graph.AllFrom in Figure 9.3 for an explanation of this

representation). We interpret the Edges in this structure as representing the

edges in the graph, along with the information associated with each edge.

A partial implementation of ListGraph is shown in Figure 9.8. In

addition, the Size operation returns the size of elements, and AllFrom(i)

returns elements[i].

It is easily seen that the Size andAllFrom operations run in Θ(1) time,

and that the constructor runs in Θ(n) time. Each iteration of the while loop

in the Get operation reduces the size of L by 1. The length of L is initially

the number of vertices adjacent to i. Because each iteration runs in Θ(1)

time, the entire operation runs in Θ(m) time in the worst case, where m is

the number of vertices adjacent to i. The worst case for Get occurs when

vertex j is not adjacent to i. Similarly, it can be seen that the Put operation
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Figure 9.8 ListGraph implementation (partial) of Graph
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runs in Θ(m) time. Note that Θ(m) ⊆ O(n). The space usage of ListGraph

is easily seen to be in Θ(n+a), where a is the number of edges in the graph.

Let us now revisit the analysis of the running time of TopSort (Figure

9.6), this time assuming that G is a ListGraph. Consider the second for

loop. Note that running time of the nested while loop does not depend on

the implementation of G; hence, we can still conclude that it runs in O(n)

time. We can therefore conclude that the running time of the second for

loop is in O(n2). However, because we have reduced the running time of

AllFrom from Θ(n) to Θ(1), it is no longer clear that the running time of

this loop is in Ω(n2). Indeed, if there are no edges in the graph, then the

nested while loop will not iterate. In this case, the running time is in Θ(n).

We therefore need to analyze the running time of the nested while

loop more carefully. Note that over the course of the for loop, each edge

is processed by the inner while loop exactly once. Therefore, the body of

the inner loop is executed exactly a times over the course of the entire outer

loop, where a is the number of edges in G. Because the remainder of the

outer loop is executed exactly n times, the running time of the outer loop is

in Θ(n+ a).

We now observe that the fourth loop can be analyzed in exactly the same

way as the second loop; hence, the fourth loop also runs in Θ(n + a) time.

In fact, because the structure of these two loops is quite common for graph

algorithms, this method of calculating the running time is often needed for

analyzing algorithms that operate on ListGraphs.

To complete the analysis of TopSort, we observe that the first and

third loops do not depend on how G is implemented; hence, they both run

in Θ(n) time. The total running time of TopSort is therefore in Θ(n+ a).

For graphs in which a ∈ o(n2), this is an improvement over the Θ(n2) running

time when G is implemented as a MatrixGraph.

Let us now consider the impact of the ListGraph implementation on

the analysis of UniversalSink (Figure 9.4). Due to the increased running

time of Get, the body of the while loop runs in Θ(m) time, where m is the

number of vertices adjacent to i. This number cannot be more than n − 1,

nor can it be more than a. Because this loop iterates Θ(n) times, we obtain

an upper bound of O(nmin(n, a)). Likewise, it is easily seen that the for

loop runs in O(nmin(n, a)) time.

To see that this bound is tight for the while loop, let us first consider

the case in which a ≤ n(n− 1)− �n/2	. Suppose that from vertex 0 there is

an edge to each of the vertices 1, . . . ,min(a, �(n−1)/2	), but no edge to any

other vertex. From vertices other than 0 we may have edges to any of the
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other vertices. Note that with these constraints, we can have up to n(n −
1) − �n/2	 edges. For such a graph, the first �n/2	 iterations of the while

loop will have i = 0, while j ranges from n− 1 down to �(n− 1)/2	+1. For

each of these iterations, Get(i, j) runs in Θ(min(a, n)) time, because there

are Θ(min(a, n)) vertices adjacent to 0, but j is not adjacent to 0. Because

the number of these iterations is in Θ(n), the total time is in Θ(nmin(n, a)).

Now let us consider the case in which a > n(n− 1)−�n/2	. In this case,

we make sure that from each of the vertices 0, . . . , �n/2	 − 1, there is an

edge to every other vertex. Furthermore, we make sure that in each of the

ConsLists of edges from these first �n/2	 vertices, the edge to vertex n− 1

occurs last. From the remaining vertices we may have any edges listed in any

order. For such a graph, the first �n/2	 iterations of the while loop will have

j = n − 1, while i ranges from 0 to �n/2	 − 1. For each of these iterations,

Get(i, j) runs in Θ(n) time, because there are Θ(n) vertices adjacent to i,

and n − 1 is the last of these. Because the total number of iterations is

in Θ(n), the total time is in Θ(n2). Because a ≥ n, this is the same as

Θ(nmin(a, n)).

Based on the analyses of the two algorithms, we can see that neither

implementation is necessarily better than the other. If an algorithm relies

more heavily on Get than on AllFrom, it is better to use MatrixGraph.

If an algorithm relies more heavily on AllFrom, it is probably better to use

ListGraph, particularly if there is a reasonable expectation that the graph

will be sparse — i.e., that it will have relatively few edges. Note also that

for sparse graphs, a ListGraph will use considerably less space.

9.5 Multigraphs

Let us briefly consider the building of a ListGraph. We must first construct

a graph with no edges, then add edges one by one using the Put operation.

The constructor runs in Θ(n) time. The Put operation runs in Θ(m)

time, where m is the number of vertices adjacent to the source of the

edge. It is easily seen that the time required to build the graph is in

O(n+ amin(n, a)), where a is the number of edges. It is not hard to match

this upper bound using graphs in which the number of vertices with outgoing

edges is minimized for the given number of edges. An example of a sparse

graph (specifically, with a ≤ n) that gives this behavior is a graph whose

edge set is

{(0, j) | 1 ≤ j < a}.
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A dense graph giving this behavior is a complete graph — a graph in which

every possible edge is present. Note that in terms of the number of vertices,

the running time for building a complete graph is in Θ(n3).

Building a ListGraph is expensive because the Put operation must

check each edge to see if it is already in the graph. We could speed this

activity considerably if we could avoid this check. However, the check

is necessary not only to satisfy the operation’s specification, but also to

maintain the structural invariant. If we can modify the specification of Put

and weaken the structural invariant so that parallel edges (i.e., multiple

edges from a vertex i to a vertex j) are not prohibited, then we can build

the graph more quickly.

We therefore extend the definitions of undirected and directed graphs

to allow parallel edges from one vertex to another. We call such a structure

a multigraph. We can then define the Multigraph ADT by modifying the

following postconditions in the specification of Graph:

• Put(i, j, x): Adds the edge (i, j) and associates x with it.

• Get(i, j): Returns the data item associated with an edge (i, j), or nil if

(i, j) is not in the graph.

We could also specify additional operations for retrieving all edges (i, j) or

modifying the data associated with an edge, but this specification is sufficient

for our purposes.

We will represent aMultigraph using adjacency lists in the same way as

in the ListGraph implementation. The structural invariant will be modified

to allow parallel edges (i, j) for the same i and j. The implementation of

the operations remains the same except for Put, whose implementation is

shown in Figure 9.9. It is easily seen that a ListMultigraph can be built in

Θ(n+a) time, where n is the number of vertices and a is the number of edges.

Because it is more efficient to build a ListMultigraph than to build

a ListGraph, it may be advantageous to represent a graph using a

Figure 9.9 The Put operation in the ListMultigraph implementation of Multi-

graph
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ListMultigraph. If we are careful never to add parallel edges, we can

maintain an invariant that the ListMultigraph represents a graph. This

transfers the burden of maintaining a valid graph structure from the Put

operation to the code that invokes the Put operation.

Although we can use a ListMultigraph to represent a graph, an

interesting problem is how to construct a ListGraph from a given

ListMultigraph. Specifically, suppose we wish to define a ListGraph

constructor that takes a ListMultigraph as input and produces a List-

Graph with the same vertices and edges, assuming the ListMultigraph

has no parallel edges. We may be able to do this more efficiently than simply

calling ListGraph.Put repeatedly.

One approach would be to convert the ListMultigraph to a Matrix-

Graph, then convert the MatrixGraph to a ListGraph. In fact, we do

not really need to build a MatrixGraph — we could simply use a two-

dimensional array as a temporary representation of the graph. As we examine

each edge of the ListMultigraph, we can check to see if it has been added

to the array, and if not, add it to the appropriate adjacency list. If we ever find

parallel edges, we can immediately terminate with an error. Each edge can

therefore be processed in Θ(1) time, for a total of Θ(a) time to process the

edges. Unfortunately, Θ(n2) time is required to initialize the array, and the

space usage of Θ(n2) is rather high, especially for sparse graphs. However,

the resulting time of Θ(n2) is still an improvement (in most cases) over the

Θ(amin(n, a)) worst-case time for repeatedly calling ListGraph.Put.

In the above solution, the most natural way of processing the edges of

the ListMultigraph is to consider each vertex i in turn, and for each i,

to process all edges proceeding from i. As we are processing the edges from

vertex i, we only need row i of the array. We could therefore save a significant

amount of space by replacing the 2D array with a singly-dimensioned array

A[0..n − 1]. Before we consider any vertex i, we initialize A. For each edge

(i, j), we check to see if it has been recorded in A[j]. If so, we have found a

parallel edge; otherwise, we record this edge in A[j]. Thus, we have reduced

our space usage to Θ(n). However, because A must be initialized each time

we consider a new vertex, the overall running time is still in Θ(n2).

Note that if we ignore the time for initializing A, this last solution

runs in Θ(n + a) time in the worst case. We can therefore use the virtual

initialization technique of Section 7.1 to reduce the overall running time to

Θ(n + a). However, the technique of virtual initialization was inspired by

the need to avoid initializing large arrays, not to avoid initializing small

arrays many times. If we are careful about the way we use the array, a
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single initialization should be sufficient. Thus, if we can find a way to avoid

repeated initializations of A, we will be able to achieve Θ(n + a) running

time without using virtual initialization.

Consider what happens if we simply omit every initialization of A except

the first. If, when processing edge (i, j), we find edge (i′, j), for some i′ < i,

recorded in A[j], then we know that no other edge (i, j) has yet been

processed. We can then simply record (i, j) in A[j], as if no edge had

been recorded there. If, on the other hand, we find that (i, j) has already

been recorded in A[j], we know that we have found a parallel edge.

As a final simplification to this algorithm, we note that there is really

no reason to store Edges in the array. Specifically, the only information we

need to record in A[j] is the most recent (i.e., the largest) vertex i for which

an edge (i, j) has been found. Thus, A can be an array of integers. We can

initialize A to contain only negative values, such as −1, to indicate that

no such edge has yet been found. The resulting ListGraph constructor is

shown in Figure 9.10. It is easily seen to run in Θ(n+ a) time and use Θ(n)

Figure 9.10 Constructor for building a ListGraph from a ListMultigraph
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temporary space in the worst case, where n and a are the number of vertices

and unique edges, respectively, in the given ListMultigraph.

9.6 Summary

Graphs are useful for representing relationships between data items. Various

algorithms can then be designed for manipulating graphs. As a result, we

can often use the same algorithm in a variety of different applications.

Graphs may be either directed or undirected, but we can treat undirected

graphs as directed graphs in which for every edge (u, v), there is a reverse

edge (v, u). We then have two implementations of graphs. The adjacency

matrix implementation has Get and Put operations that run in Θ(1) time,

but its AllFrom operation runs in Θ(n) time, where n is the number of

vertices in the graph. Its space usage is in Θ(n2). On the other hand, the

adjacency list implementation has an AllFrom operation that runs in Θ(1)

time, but its Get and Put operations run in Θ(m) time in the worst case,

where m is the number of vertices adjacent to the given source vertex. Its

space usage is in Θ(n + a) where n is the number of vertices and a is the

number of edges.

In order to improve the running time of the Put operation — and

hence of building a graph — when using an adjacency list, we can relax

our definition to allow parallel edges. The resulting structure is known

as a multigraph. We can always use a multigraph whenever a graph is

required, though it might be useful to maintain an invariant that no

parallel edges exist. Furthermore, we can construct a ListGraph from a

ListMultigraph with no parallel edges in Θ(n+ a) time and Θ(n) space,

where n is the number of vertices and a is the number of edges. Figure 9.11

shows a summary of the running times of these operations for each of the

implementations of Graph, as well as for ListMultigraph.

9.7 Exercises

Exercise 9.1. Prove that UniversalSink, shown in Figure 9.4, meets its

specification.

Exercise 9.2. Prove that TopSort, shown in Figure 9.6, meets its

specification.

Exercise 9.3. Give an algorithm that takes as input a directed graph G =

(V,E) and returns a directed graph G′ = (V,E′), where

E′ = {(u, v) | (v, u) ∈ E}.
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Figure 9.11 Comparison of running times for two implementations of Graph, along

with ListMultigraph

Notes:

Thus, G′ contains the same edges as does G, except that they are reversed

in G′. Express the running time of your algorithm as simply as possible using

Θ-notation in terms of the number of vertices n and the number of edges a,

assuming the graphs are implemented using

a. MatrixGraph

b. ListGraph

c. ListMultigraph.

Exercise 9.4. Give an algorithm to compute the number of edges in a given

graph. Express the running time of your algorithm as simply as possible using

Θ-notation in terms of the number of vertices n and the number of edges a,

assuming the graph is implemented using

a. MatrixGraph

b. ListGraph

Exercise 9.5. A directed graph is said to be transitively closed if whenever

(u, v) and (v,w) are edges, then (u,w) is also an edge. Give an O(n3)
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algorithm to determine whether a given directed graph is transitively closed.

You may assume the graph is implemented as a MatrixGraph.

Exercise 9.6. An undirected graph is said to be connected if for every pair

of vertices u and v, there is a path of edges leading from u to v. A tree

is a connected undirected acyclic graph. Prove each of the following for an

undirected graph G with n vertices:

a. If G is a tree, then G has exactly n− 1 edges.

b. If G is connected and has exactly n− 1 edges, then G is a tree.

c. If G is acyclic and has exactly n− 1 edges, then G is a tree.

Exercise 9.7. Prove that MatrixGraph, shown in Figure 9.7, meets its

specification.

Exercise 9.8. Prove that the ListGraph constructor shown in Figure 9.10

meets its specification.

Exercise 9.9. Give an algorithm that takes as input a graph G and returns

true iff G is undirected; i.e., if for every edge (u, v), (v, u) is also an edge.

Give the best upper bound you can on the running time, expressed as

simply as possible using big-O notation in terms of the number of vertices

n and the number of edges a, assuming the graph is implemented using

MatrixGraph.

* Exercise 9.10. An Euler path in a connected undirected graph G is a

path that contains every edge in G exactly once. Give an efficient algorithm

to find an Euler path in a connected undirected graph, provided one exists.

Your algorithm should return some representation of the Euler path, or nil if

no Euler path exists. Your algorithm should run in O(a) time, where a is the

number of edges in G, assuming that G is implemented as a ListGraph.

9.8 Notes

The study of graph theory began in 1736 with Leonhard Euler’s famous

study of the Königsberg Bridge Problem [38], which is simply the problem

of finding an Euler path in a connected undirected graph (see Exercise 9.10).

Good references on graph theory and graph algorithms include Even [39],

Kocay and Kreher [85], and Tarjan [112]. In the early days of electronic

computing, graphs were typically implemented using adjacency matrices.

Hopcroft and Tarjan [65] first proposed using adjacency lists for sparse

graphs. The topological sort algorithm of Section 9.2 is due to Knuth [82].
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Chapter 10

Divide and Conquer

In Part I of this text, we introduced several techniques for applying the top-

down approach to algorithm design. We will now take a closer look at some

of these techniques. In this chapter, we will look at the divide-and-conquer

technique.

As we stated in Chapter 3, the divide-and-conquer technique involves

reducing a large instance of a problem to one or more instances having a

fixed fraction of the size of the original instance. For example, recall that

the algorithm MaxSumDC, shown in Figure 3.3 on page 78, reduces large

instances of the maximum subsequence sum problem to two smaller instances

of roughly half the size.

Though we can sometimes convert divide-and-conquer algorithms to

iterative algorithms, it is usually better to implement them using recursion.

One reason is that typical divide-and-conquer algorithms implemented using

recursion require very little stack space to support the recursion. If we divide

an instance of size n into instances of size n/b whenever n is divisible by b,

we can express the total stack usage due to recursion with the recurrence

f(n) ∈ f(n/b) + Θ(1).

Applying Theorem 3.35 to this recurrence, we see that f(n) ∈ Θ(lg n). The

other reason for retaining the recursion is that when a large instance is

reduced to more than one smaller instance, removing the recursion can be

difficult and usually requires the use of a stack to simulate at least one

recursive call.

Because divide-and-conquer algorithms are typically expressed using

recursion, the analysis of their running times usually involves the asymptotic

solution of a recurrence. Theorem 3.35 almost always applies to this

recurrence. Not only does this give us a tool for analyzing running times,

331
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it also can give us some insight into what must be done to make an algorithm

more efficient. We will explain this concept further as we illustrate the

technique by applying it to several problems.

10.1 Polynomial Multiplication

Suppose we are given two polynomials:

p(x) =
n−1∑
i=0

aix
i,

q(x) =
n−1∑
i=0

bix
i.

We wish to compute the product polynomial:

pq(x) =

2n−2∑
i=0

⎛
⎝

i∑
j=0

ajbi−j

⎞
⎠xi,

where we define aj = bj = 0 for n ≤ j < 2n. We can clearly compute each of

the 2n − 1 coefficients in pq in Θ(n) time; hence, by Theorem 3.31, we can

compute the entire product in Θ(n2) time.

We wish to apply the divide-and-conquer technique to obtain a more

efficient solution. Observe that if n > 1, then we can divide each polynomial

into two smaller polynomials:

p(x) = p0(x) + xmp1(x),

q(x) = q0(x) + xmq1(x),

where

p0(x) =

m−1∑
i=0

aix
i,

p1(x) =

n−m−1∑
i=0

am+ix
i,

q0(x) =
m−1∑
i=0

bix
i,

q1(x) =
n−m−1∑

i=0

bm+ix
i.
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If we set m = �n/2�, then each of the smaller polynomials has roughly n/2

terms.

The product polynomial is now

pq(x) = p0(x)q0(x) + xm(p0(x)q1(x) + p1(x)q0(x)) + x2mp1(x)q1(x). (10.1)

To obtain the coefficients of pq, we can first compute the four products

of the smaller polynomials. We can then obtain any given coefficient of pq

by performing at most two additions. We can therefore obtain all 2n − 1

coefficients in Θ(n) time after the four smaller products are computed.

Setting m = �n/2�, we can describe the running time of this divide-and-

conquer algorithm with the following recurrence:

f(n) ∈ 4f(n/2) + Θ(n), (10.2)

when n > 1 is a power of 2. Unfortunately, applying Theorem 3.35 yields

f(n) ∈ Θ(n2), which is the same running time as the brute-force calculation.

This exercise illustrates an important point about the divide-and-

conquer technique, namely, that the technique by itself does not guarantee

improved running times. In order for the technique to be effective, it must

save some work. Sometimes, as withMaxSumDC, the savings in work comes

about naturally. In such cases, it may be rather hard to see how work was

saved. In other cases, we must be more clever in order to save work.

As we suggested earlier, Theorem 3.35 can give insight into how a divide-

and-conquer solution might be designed or improved. For example, consider

recurrence (10.2). Because the third case of Theorem 3.35 applies, we cannot

obtain a more efficient solution by reducing the Θ(n) overhead outside of the

recursive calls. In order to improve the performance, we need either to reduce

the number of recursive calls or decrease the size of the smaller instances.

We will focus on reducing the number of recursive calls. In the exercises,

we explore alternative solutions involving decreasing the size of the smaller

instances.

The following observation gives us the insight we need in order to reduce

the number of recursive calls:

(p0(x) + p1(x))(q0(x) + q1(x))

= p0(x)q0(x) + p0(x)q1(x) + p1(x)q0(x) + p1(x)q1(x).

Note that all four of the terms in the right-hand-side above appear in the

product pq (see (10.1)). In order to make this fact useful, however, we need

to be able to separate out the first and last terms. We can do this by
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computing the products p0(x)q0(x) and p1(x)q1(x), then subtracting. Thus,

we can compute the product pq using the following three products:

P1(x) = p0(x)q0(x),

P2(x) = (p0(x) + p1(x))(q0(x) + q1(x)),

P3(x) = p1(x)q1(x)

We can then compute any given coefficient of pq with at most two

subtractions and one addition.

The algorithm is shown in Figure 10.1. This implementation uses the

Copy function specified in Figure 1.18 on page 22. Note that when we divide

the polynomials, the low-order parts will be of degree m− 1, and the high-

order parts will be of degree n−m−1. We cannot select m so that these two

Figure 10.1 Divide-and-conquer polynomial multiplication algorithm
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degrees are the same if n is odd. Therefore, we need to be careful to note the

degrees of each polynomial we construct. By choosing m = �n/2�, we ensure
that m ≥ n −m. Thus, we can add the two halves of a polynomial by first

recording the low-order half, then adding in the high-order half, yielding a

polynomial of degree m − 1. After the recursive multiplications, P1 and P2

will both have degree 2(m − 1), but P3 will have degree 2(n − m − 1). To

construct P , we can first copy P1 and P3 to the proper locations, and fill

in 0 for the coefficient of x2m−1. We can then add P2[i] − P1[i] − P3[i] to

the coefficient of xm+i; however, because P3 has a different degree than P1

and P2, we use a separate loop to subtract this polynomial.

From Figure 10.1 and Exercise 3.26 (page 103), it is evident that a total

of Θ(n) time is needed apart from the recursive calls. Thus, we can describe

the running time with the following recurrence:

f(n) ∈ 3f(n/2) + Θ(n),

whenever n > 1 is a power of 2. From Theorem 3.35, f(n) ∈ Θ(nlg 3).

Because lg 3 ≈ 1.59, this algorithm is an improvement over the brute-force

calculation.

10.2 Merge Sort

In Section 5.6, we saw that we can sort using a worst-case running time

in Θ(n lg n) using heap sort (Figure 5.20). However, as was suggested by

Exercise 5.25, heap sort is not stable when sorting Keyed items; i.e., items

with equal keys can be reordered by heap sort. In this section, we will apply

divide-and-conquer to obtain a stable sorting algorithm that also runs in

Θ(n lg n) time in the worst case.

We can apply divide-and-conquer to sorting by first dividing in half any

array with more than one element and sorting the two halves. We then need

to combine the two sorted halves into a single sorted array. We have therefore

reduced the sorting problem to the problem of merging two sorted arrays into

a single sorted array. Furthermore, in order to ensure stability, we require

the following behavior for a merging algorithm:

• If two elements in the same input array have equal keys, they remain in

the same order in the output array.

• If an element x from the first input array has a key equal to some element

y in the second input array, then x must precede y in the output array.
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Figure 10.2 The MergeSort algorithm

Suppose we are given two sorted arrays. If either is empty, we can simply

use the other. Otherwise, the element with minimum key in the two arrays

needs to be first in the sorted result. The element with minimum key in each

array is the first element in the array. We can therefore determine the overall

minimum by comparing the keys of the first elements of the two arrays. If

the keys are equal, in order to ensure stability, we must take the element

from the first array. To obtain the remainder of the result, we merge the

remainder of the two input arrays. We have therefore transformed a large

instance of merging to a smaller instance.
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Putting it all together, we have the MergeSort algorithm shown in

Figure 10.2. Note that in the Merge function, when the loop terminates,

either i > m or j > n. Hence, either A[i..m] or B[j..n] is empty. As a

result, only one of the two calls to Copy (see Figure 1.18 on page 22 for its

specification) will have any effect.

It is easily seen that Merge runs in Θ(m+n) time. Therefore, the time

required for MergeSort excluding the recursive calls is in Θ(n). For n > 1

a power of 2, the following recurrence gives the worst-case running time of

MergeSort:

f(n) ∈ 2f(n/2) + Θ(n).

From Theorem 3.35, f(n) ∈ Θ(n lg n).

10.3 Quick Sort

Though merge sort and heap sort both run in Θ(n lg n) time in the worst

case, another divide-and-conquer algorithm is more commonly used when

stability is not required. As was suggested in Exercise 2.17, sorting can be

reduced to the Dutch national flag problem, which was introduced in Section

2.4. We first select from the array to be sorted a pivot element p, which we

use to determine the colors of the elements, as follows:

• If x.Key() < p.Key(), then x is red.

• If x.Key() = p.Key(), then x is white.

• If x.Key() > p.Key(), then x is blue.

By solving the resulting Dutch national flag problem, we will have parti-

tioned the array into three sections:

• The first section consists of all elements with keys less than p.Key().

• The second section consists of all elements with keys equal to p.Key().

• The third section consists of all elements with keys greater than p.Key().

By sorting the first and third sections, we will have sorted the array. This

general strategy is known as quick sort.

Following the divide-and-conquer paradigm, we would like to select the

pivot so that after the array has been partitioned, the first and third sections

have roughly the same number of elements. Thus, the median element would

be a good choice for p. As we will show in the next section, it is possible to

find the median in Θ(n) time in the worst case. We saw in Section 3.6 that

the Dutch national flag problem can be solved in Θ(n) time. Because each
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of the two subproblems is at most half the size of the original problem, we

can bound the running time of this sorting algorithm with the recurrence

f(n) ∈ 2f(n/2) + Θ(n).

From Theorem 3.35, f(n) ∈ Θ(n lg n).

However, it turns out that the overhead of choosing the median as the

pivot is too expensive in practice, so that heap sort, for example, outperforms

this algorithm. On the other hand, choosing an arbitrary element, such as the

first, degrades the worst case performance. For example, suppose that the

input array is already sorted and that all keys are distinct. If we always

choose the first element as the pivot, then we always choose the smallest

element. As a result, one of the two subproblems is empty, and the other

contains all but one of the original elements. Because the empty subproblem

can be sorted in Θ(1) time, we can describe the running time for such a case

with the following recurrence:

f(n) ∈ f(n− 1) + Θ(n).

From Theorem 3.34, f(n) ∈ Θ(n2), so that the running time for this

algorithm is in Ω(n2) in the worst case. Observing that each element is chosen

as a pivot at most once, we can easily see that O(n2) is an upper bound on

the running time, so that the algorithm runs in Θ(n2) time in the worst

case. Because of this bad worst case, the most common implementations of

this algorithm combine it with a Θ(n lg n) algorithm, usually heap sort, in

order to achieve Θ(n lg n) performance in the worst case (see Exercise 10.10).

For the remainder of this section, we will focus on improving the quick sort

algorithm without combining it with another sorting algorithm.

Choosing the first element (or the last element) as the pivot is a bad

idea, because an already-sorted array yields the worst-case performance.

Furthermore, the performance is nearly as bad on a nearly-sorted array.

To make matters worse, it is not hard to see that when the running time

is in Θ(n2), the stack usage is in Θ(n). Because we often need to sort a

nearly-sorted array, we don’t want an algorithm that performs badly in such

cases.

The above analyses illustrate that it is better for the pivot element to be

chosen to be near the median than to be near the smallest (or equivalently,

the largest) element. More generally, it illustrates why divide-and-conquer is

often an effective algorithm design strategy: when a problem is reduced to

multiple subproblems, it is best if these subproblems are the same size. For
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Figure 10.3 The randomized QuickSort algorithm

quick sort, we need a way to choose the pivot element quickly in such a way

that it tends to be near the median.

One way to accomplish this is to choose the pivot element randomly.

This algorithm is shown in Figure 10.3. In order to make the presentation

easier to follow, we have specified the algorithm so that the array is indexed

with arbitrary endpoints.

Let us now analyze the expected running time of QuickSort on an

array of size n. We first observe that for any call in which lo < hi, the loop

will execute at least once. Furthermore, by an easy induction on n, we can
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show that at most n + 1 calls have lo ≥ hi. Because each of these calls

requires Θ(1) time, a total of at most O(n) time is used in processing the

base cases. Otherwise, the running time is proportional to the number of

times the loop executes over the course of the algorithm.

Each iteration of the loop involves comparing one pair of elements. For a

given call to QuickSort, the pivot is compared to all elements currently in

the array, then is excluded from the subsequent recursive calls. Thus, once a

pair of elements is compared, they are never compared again on subsequent

loop iterations (though they may be compared twice in the same iteration —

once in each if statement). The total running time is therefore proportional

to the number of pairs of elements that are compared. We will only concern

ourselves with pairs of distinct elements, as this will only exclude O(n) pairs.

Let F [1..n] be the final sorted array, and let comp be a discrete random

variable giving the number of pairs (i, j) such that 1 ≤ i < j ≤ N and F [i] is

compared with F [j]. We wish to compute E[comp]. Let cij denote the event

that F [i] is compared with F [j]. Then

E[comp] = E

⎡
⎣

n∑
i=1

n∑
j=i+1

I(cij)

⎤
⎦

=

n∑
i=1

n∑
j=i+1

E[I(cij)]

=

n∑
i=1

n∑
j=i+1

P (cij).

We observe that F [i] is compared with F [j] iff one of them is in the

subarray being sorted when the other is chosen as the pivot. Furthermore,

two elements F [i] and F [j] are in the same subarray as long as no element k

such that

F [i].Key() ≤ F [k].Key() ≤ F [j].Key()

is chosen as the pivot. Thus, the probability that F [i] and F [j] are compared

is the probability that one of them is chosen as pivot before any other F [k]

satisfying the above inequality. Because there are at least j − i+1 elements

F [k] satisfying the above inequality when j > i,

P (cij) ≤ 2

j − i+ 1
.
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We therefore have

E[comp] =
n∑

i=1

n∑
j=i+1

P (cij)

≤
n∑

i=1

n∑
j=i+1

2

j − i+ 1

= 2

n∑
i=1

n−i+1∑
j=2

1

j
. (10.3)

The inner sum above is closely related to the harmonic series:

Hn =
n∑

i=1

1

i
.

Tight bounds for Hn are given by the following theorem, whose proof is left

as an exercise.

Theorem 10.1. For all n ≥ 1:

ln(n+ 1) ≤ Hn ≤ 1 + lnn.

Applying Theorem 10.1 to inequality (10.3), we have

E[comp] ≤ 2
n∑

i=1

n−i+1∑
j=2

1

j

= 2

n∑
i=1

(Hn−i+1 − 1)

≤ 2
n∑

i=1

ln(n− i+ 1)

= 2
n∑

i=1

ln i

∈ O(n lg n),

from Theorem 3.31. For an array of distinct elements, a similar analysis shows

that E[comp] ∈ Ω(n lg n); hence, the expected running time of QuickSort

on any array of n elements is in Θ(n lg n).

The expected-case analysis of QuickSort suggests that it would work

well in practice, and indeed, there are versions that outperform both heap

sort and merge sort. The most widely-used versions, however, are not
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randomized. Instead of choosing the pivot element randomly, they use

heuristics, such as choosing the median of the first, middle, and last elements.

Such heuristics tend to choose pivot elements nearer to the median than

those chosen randomly. Furthermore, they typically involve less overhead

than generating a random (or pseudorandom) number.

Because of the Θ(n2) worst-case running time and Θ(n) worst-case

stack space usage of deterministic versions of quick sort, the most common

implementations combine quick sort with two other sorting algorithms. In

order to avoid the bad worst case, heap sort is typically used to handle

subproblems in which the recursion gets too deep (see Exercise 10.10). In

order to speed up sorting of small subproblems, insertion sort is typically

used to sort small base cases. The most basic combination of these algorithms

is called introsort .

10.4 Selection

In Section 1.1, we introduced the selection problem. Recall that this problem

is to find the kth smallest element of an array of n elements. We showed

that it can be reduced to sorting. Using either heap sort or merge sort, we

therefore have an algorithm for this problem with a running time in Θ(n lg n).

In this section, we will improve upon this running time.

Section 2.4 shows that the selection problem can be reduced to the Dutch

National Flag problem and a smaller instance of itself. This reduction is

very similar to the reduction upon which quick sort is based. Specifically, we

choose a pivot element p and solve the resulting Dutch national flag problem

as we did for the quick sort reduction. Let r and w denote the numbers of

red items and white items, respectively. We then have three cases:

• If r ≥ k, we return the kth smallest red item.

• If r < k and r + w ≥ k, we return p.

• If r + w < k, we return the (k − r − w)th smallest blue element.

Due to the similarity of this algorithm to quick sort, some of the same

problems arise in choosing the pivot element appropriately. For example, if

we always use the first element as the pivot, then selecting the nth smallest

element in a sorted array of n distinct elements always results in a recursive

call with all but one of the original elements. As we saw in Section 10.3,

this yields a running time in Θ(n2). On the other hand, it is possible to

show that selecting the pivot at random yields an expected running time in

Θ(n) — the details are left as an exercise.
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Our goal is to construct a deterministic algorithm with worst-case

running time in O(n). As we saw in Section 10.3, quick sort achieves a better

asymptotic running time if the median is chosen as the pivot. It stands to

reason that such a choice might be best for the selection algorithm. We men-

tioned in Section 10.3 that it is possible to find the median in O(n) time. The

way to do this is to use our linear-time selection algorithm to find the �n/2�nd
smallest element. However, this doesn’t help us in designing the linear-time

selection algorithm because the reduction is not to a smaller instance.

Instead, we need a way to approximate the median well enough so that

the resulting algorithm runs in O(n) time. Consider the following strategy

for approximating the median. First, we arrange the n elements into an

M × �n/M� array, where M is some fixed odd number. If n is not evenly

divisible by M , we will have up to M − 1 elements that will not fit in

the array — we will ignore these elements for now. Suppose we sort each

column in nondecreasing order. Further suppose that we order the columns

(keeping each column intact) so that the middle row is in nondecreasing

order. We then select an element in the center of the array as the pivot p

(see Figure 10.4).

By choosing p in this fashion, we ensure that all elements above and to

the left of p are no greater than p, and that all elements below and to the

right of p are no less than p. In other words, no more than about 3/4 of the

elements can be greater than p, and no more than about 3/4 of the elements

can be less than p. Thus, if we can find this p in O(n) time, we have the

following recurrence giving the running time of the algorithm:

f(n) ∈ f(�3n/4�) + Θ(n).

Figure 10.4 Finding an approximate median
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Unfortunately, Theorem 3.35 does not apply to this recurrence, as we

would need b = 4/3, which is not a natural number. However, given Theorem

3.35, we might suspect that f(n) ∈ Θ(n), as this is the solution yielded by

the theorem if we could use b = 4/3. We will soon show that this is, in fact,

the case.

Let us now consider the time needed to find p. SortingM elements using

either heap sort or merge sort uses Θ(M lgM) time. Because M is a fixed

constant, however, M lgM is also a fixed constant, so that the time is in

Θ(1). This must be done for each of the �n/M� columns, so that the time

to sort all of the columns is in O(n). However, the time to sort the �n/M�
elements in the middle row is in Θ(n lgn). On the other hand, we really don’t

need to sort the middle row in order to find p — we only need to find the

median of this row. If M > 1, this row has strictly fewer than n elements,

so that finding its median is a smaller instance of the selection problem.

If we use this technique for finding the median, we need two recursive

calls — one to find the median of �n/M� elements, and one to solve the

smaller selection problem after the Dutch national flag algorithm has been

applied. This latter recursive call has no more than about 3n/4 elements.

The recurrence describing the running time is therefore of the form

f(n) ∈ f(�3n/4�) + f(�n/M�) + Θ(n), (10.4)

for some odd number M .

We don’t have a theorem that applies to the above recurrence. We can

gain some intuition by comparing this recurrence with recurrences of the

form

g(n) ∈ ag(�n/b�) + Θ(n),

where b is an integer greater than 1. From Theorem 3.35, g(n) ∈ Θ(n) iff

a < b, or equivalently, iff a/b < 1. If a is a positive integer, this condition is

equivalent to

a∑
i=1

1

b
< 1.

The following theorem generalizes this condition to a sum of several different

positive real numbers.
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Theorem 10.2. Let n0 ≥ 1 and m ≥ 1 be integers, and let c1, . . . , cm be

positive real numbers such that

m∑
i=1

ci < 1.

Let f : N→ R
≥0 be an eventually non-decreasing function satisfying

f(n) ∈
m∑
i=1

f(�cin�) +X(n)

whenever n ≥ n0, where X is either O, Ω, or Θ. Then f(n) ∈ X(n).

Proof. If X is Ω, clearly we have f(n) ∈ Ω(n). In what follows, we will

show that if X is O, then f(n) ∈ O(n). It will then follow that if X is Θ,

then f(n) ∈ Θ(n).

Suppose X is O. Then for some natural number n1 and some positive

real number a, we have

f(n) ≤
m∑
i=1

f(�cin�) + an

whenever n ≥ n0 and n ≥ n1. By Exercise 3.11, it is sufficient to show that

for some positive real number b, f(n) ≤ bn whenever n > 0.

The technique we will use to prove this fact is called constructive

induction. With this technique, we use the constant b as if it had already been

fixed. As the proof progresses, we will need to assume certain constraints

on b. Once the proof is finished, if the assumed constraints are consistent,

we can then fix a value for b that satisfied all of the constraints.

Induction Hypothesis: Assume that for some n, if 0 < k < n, then

f(k) ≤ bk.

Induction Step: First, we will assume that n is large enough to apply

the recurrence, then to apply the induction hypothesis to each term in the

resulting summation. If n ≥ max(n0, n1),

f(n) ≤
m∑
i=1

f(�cin�) + an.
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In order to be able to apply the induction hypothesis to each f(�cin�), we
need �cin� > 0. Therefore we assume that n ≥ n2, where

n2 ≥ max{n0, n1, 1/ci | 1 ≤ i ≤ m}.
Let

c =
m∑
i=1

ci.

By the Induction Hypothesis,

f(n) ≤
m∑
i=1

b�cin�+ an

≤ bn
m∑
i=1

ci + an

= bcn+ an

= (bc+ a)n.

Thus, f(n) ≤ bn if

bc+ a ≤ b
a ≤ b(1− c)

a

1− c ≤ b,
as 1− c > 0.

Base: We must still show the claim for 0 < n < n2. In other words, we need

b ≥ f(n)/n for 0 < n < n2. We can satisfy this constraint and the one above

if b = max{a/(1 − c), f(n)/n | 0 < n < n2} (note that because this set is

finite and nonempty, it must have a maximum element). �

Returning to recurrence 10.4, we see that Theorem 10.2 applies ifM > 4.

Thus, if we set M = 5, we have f(n) ∈ O(n). The entire algorithm is shown

in Figure 10.5.

Now that we have described the algorithm precisely, let us analyze its

running time more carefully to be sure that it is, in fact in Θ(n). It is easily

seen that the running time is in Ω(n). We need for the recurrence

f(n) ∈ f(�n/5�) + f(�3n/4�) +O(n) (10.5)
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Figure 10.5 A linear-time algorithm for the selection problem

to give an upper bound on the running time of the algorithm for sufficiently

large n. Clearly, the number of elements in the first recursive call is �n/5�.
Furthermore, if we ignore the recursive calls, the time needed is in O(n) (note

that the time needed to sort 5 elements is bounded by a constant because

the number of elements is constant). However, the number of elements in the

second recursive call is not always bounded above by �3n/4�. Consider, for
example, the array A[1..13] with A[i] = i for 1 ≤ i ≤ 13. The values 3 and

8 will be placed in T [1] and T [2], respectively. The value assigned to p will

therefore be 3. If k > 3, ten elements will be passed to the second recursive

call, but �3 · 13/4� = 9.
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Returning to Figure 10.4, and taking the number of rows to be 5, we

see that for each two columns (ten elements) that we add, at least three

elements are excluded from the second recursive call. For example, when

5 ≤ n ≤ 14, at least three elements are excluded, and when 15 ≤ n ≤ 24, at

least six elements are excluded. In general, at least 3i elements are excluded

if 10i − 5 ≤ n ≤ 10i + 4. We need to find the largest value of n such that

3i < n/4, if such an n exists. If we can do so, then for all larger values of n,

the number of elements in the second recursive call will be no more than

3n/4. Because the number of elements must be an integer, it will then be

bounded above by �3n/4�.
We therefore need to find the largest i such that

3i < (10i + 4)/4

12i < 10i+ 4

i < 2.

The largest such n is therefore 10 + 4 = 14. Then for all n ≥ 15, recurrence

(10.5) gives an upper bound on the running time of LinearSelect. From

Theorem 10.2, the running time is in O(n), and hence in Θ(n).

Various performance improvements can be made to LinearSelect. For

example, if n = 5, there is no reason to apply the Dutch national flag

algorithm after sorting the array — we can simply return A[k]. In other

words, it would be better if the base case included n = 5, and perhaps some

larger values as well. Furthermore, sorting is not the most efficient way to

solve the selection problem for small n. We explore some alternatives in the

exercises.

Even with these performance improvements, however, LinearSelect

does not perform nearly as well as the randomized algorithm outlined at

the beginning of this section. Better still is using a quick approximation

of the median, such as finding the median of the first, middle, and last

elements, as the value of p. This approach yields an algorithm whose worst-

case running time is in Θ(n2), but which typically performs better than even

the randomized algorithm.

10.5 Integer Division

Exercise 4.14 on page 145 discussed an implementation of a BigNum ADT

(specified in Figure 4.18, page 146) for arbitrary-precision natural numbers.

This ADT is rather limited, in that its only arithmetic operations are

addition and subtraction. Figure 10.6 specifies multiplication and division
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Figure 10.6 Multiplication and division functions for use with the BigNum ADT

defined in Figure 4.18 on page 146

functions for operating on BigNums. We leave it as an exercise to show that

the polynomial multiplication algorithm of Section 10.1 can be adapted to

form a BigNum multiplication algorithm that runs in Θ(nlg 3) time, where

n is the number of bits in the product. In this section and the next, we

consider implementations of Divide.

Digits (or bits) are signifi-
cant if they are not to the
left of the leftmost nonzero
digit (or bit, respectively).
The most significant digit
(or bit) is the leftmost of
the significant digits (or
bits, respectively).

Let us first consider the familiar long division

algorithm from elementary school. Suppose the divi-

dend u hasm digits and the divisor v has n digits. We

begin by finding the smallest prefix of the significant

digits of u that gives us a number no smaller than v.

If there is no such prefix, the quotient is 0. Otherwise,

the next step is to obtain an approximation for the most significant digit of

the result. Let k be the number of digits in the prefix formed above. We

obtain the approximation by dividing the k − n + 1 most significant digits

of u by the most significant digit of v. (Note that because k will always

be either n or n + 1, k − n + 1 will be either 1 or 2.) This quotient is our

approximation of the first significant digit of the result.

Because we only used one digit of v in approximating the first significant

digit of the result, this approximation may be too large. We determine

whether this is the case by multiplying this approximation by v, then

comparing the product with the prefix of u. If the product is larger, we

repeatedly subtract 1 from the approximation and recompute the product

until the product is no larger than the prefix of u. The resulting digit is the

first significant digit of the result.

Having obtained the first significant digit of the result, we need to

obtain the rest of the result. We begin by subtracting the last product
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obtained above from the prefix of u. We then append the rest of u to

this difference. Finally, we obtain the remaining digits of the quotient by

dividing the resulting value by v. If we ensure that the result of this last

division has exactly m− k digits (by padding with zeros if necessary), then

the digits we obtain complete the quotient. We have therefore reduced the

division problem to a smaller instance of itself. The reduction is not quite a

transformation, but it can easily be expressed as a loop.

This algorithm can easily be applied to the division of an m-bit binary

number u by an n-bit binary number v. In fact, we really don’t need to

approximate the first significant bit — it can’t be a 0, so it must be a 1. We

do, however, need to determine the prefix of u as described above. We then

subtract v from the prefix and append the remainder of u. We obtain the

remaining bits by dividing this value by v and inserting zeros if necessary.

In the above algorithm, we perform a Θ(n)-bit subtraction for each 1 bit

of the quotient. Furthermore, each subtraction is preceded by at least one

Θ(n)-bit comparison. Because the number of 1 bits in the quotient may be as

many asm−n+1, the worst-case number of comparisons and subtractions of

Θ(n)-bit numbers is (m−n+1). The running time is therefore in Θ(n(m−n)),
which is worse than what we would like.

We can instead group the bits of u and v into digits of some radix r,

where r is a power of 2. However, for any fixed radix r, this decreases the

number of comparisons by at most a constant factor, so that the asymptotic

running time does not improve. Applying the divide-and-conquer principle,

we might try breaking v into two digits. For now, let’s assume the number of

bits n in v is even. Our radix is therefore 2n/2. To obtain an approximation

of the first digit of the quotient, we recursively divide the first one or two

digits of u by the first digit of v.

If n is odd and greater than 1, we can multiply both u and v by 2 without

changing the quotient. These multiplications have the effect of appending a

zero as the least significant bit, so that the resulting length is even. Because

n is greater than 1, dividing the length of the resulting divisor by 2 yields

a smaller subproblem. For n = 1, v = 1, so the quotient is simply u. We

have therefore reduced the division problem to smaller instances of itself.

The resulting algorithm is shown in Figure 10.7. We assume the existence of

two constants zero and one, which refer to BigNums with values of 0 and 1,

respectively.

We will now analyze the running time of DivideDC. We begin with the

while loop. In order to analyze this loop, we need to know how large prod,

rem, and approx might be. From the invariant of the main loop, rem ≤ v−1
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Figure 10.7 Divide-and-conquer implementation of Divide, specified in Figure 10.6

at the top of the main loop. Before the while loop is executed, the value

of rem is multiplied by 2n/2, and next is added. Because next contains at

most n/2 significant bits, next < 2n/2. Thus, when the while loop executes,

rem < v2n/2. Because v contains n significant bits, rem contains at most
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3n/2 significant bits. Likewise, it is not hard to show that at the beginning

of the while loop, approx contains at most n/2+1 significant bits, and that

prod contains at most 3n/2+ 1 significant bits. The body of the while loop

therefore runs in Θ(n) time in the worst case.

In order to get a tight bound on the number of iterations of the while

loop, we need a tighter bound on approx. In particular, we need to know

how close approx is to �rem/v�. Let r = �rem×2−n/2�. We first observe that

⌊
r

vFirst + 1

⌋
=

⌊
r × 2n/2

(vFirst + 1)× 2n/2

⌋

=

⌊
rem

(vFirst + 1)× 2n/2

⌋
,

because the n/2 low-order bits of the numerator do not affect the value of

the expression. Furthermore, the right-hand side above is no larger than

�rem/v�. Thus,

approx − �rem/v� ≤
⌊ r

vFirst

⌋
−
⌊

r

vFirst + 1

⌋

≤ r

vFirst
− r − vFirst

vFirst + 1

=
r(vFirst + 1)− vFirst(r − vFirst)

vFirst(vFirst + 1)

=
r + vFirst2

vFirst(vFirst + 1)
.

Now because rem < v2n/2, it follows that r < vFirst×2n/2. We therefore

have

approx − �rem/v� ≤ r + vFirst2

vFirst(vFirst + 1)

<
vFirst × 2n/2 + vFirst2

vFirst(vFirst + 1)

=
2n/2 + vFirst

vFirst + 1

=
2n/2

vFirst + 1
+

vFirst

vFirst + 1
.

Because vFirst contains n/2 significant bits, its value must be at least

2n/2−1. The value of the first term on the right-hand side above is therefore

strictly less than 2. Clearly, the value of the second term is strictly less than
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1, so that the right-hand side is strictly less than 3. Because the left-hand

side is an integer, its value must therefore be at most 2. It follows from

the while loop invariant that the loop terminates when approx = �rem/v�.
Because this loop decrements approx by 1 each iteration, it must iterate at

most twice. Its running time is therefore in Θ(n).

It is now easily seen that, excluding the recursive call, the running time

of the body of the main loop is dominated by the running time of the

multiplication. Because the result of the multiplication contains at most

3n/2 + 1 significant bits, this multiplication can be done in Θ(nlg 3) time

using the multiplication algorithm suggested at the beginning of this section.

If m ≥ n, the number of iterations of the main loop is easily seen to be

numDig − 1 = �m/digLen� − 1

=

⌈
m

n/2

⌉
− 1

= �2m/n� − 1.

Thus, the running time of the main loop, excluding the recursive call, is in

Θ(nlg 3m/n) = Θ(mnlg 3−1).

We now observe that for even n, there are in the worst case �2m/n� − 1

recursive calls. For odd n, the worst-case number of recursive calls is �2(m+

1)/(n + 1)� − 1. The resulting recurrence is therefore quite complicated.

However, consider the parameters of the recursive call. We have already

shown that rem < v2n/2, and vFirst = �v2−n/2�. This recursive call therefore
divides a value strictly less than v by �v2−n/2�. Thus, in any of these calls,

the dividend is less than the divisor plus 1, multiplied by 2n, where n is the

number of bits in the divisor. In addition, it is easily seen that the dividend is

never less than the divisor. Furthermore, if these relationships initially hold

for odd n, they hold for the recursive call in this case as well. We therefore

will first restrict our attention to this special case.

Let n, the number of significant bits in v, be even. If

v ≤ u < (v + 1)2n,

then m, the number of significant bits in u, is at most 2n. The number of

iterations of the outer loop is therefore at most

�2m/n� − 1 ≤ �4n/n� − 1

= 3.
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Because each iteration may contain a recursive call, this suggests that there

are a total of at most 3 recursive calls. However, note that whenever a

recursive call is made, the dividend is no less than the divisor, so that a

nonzero digit results in the quotient. Suppose the first of the three digits of

the quotient is nonzero. Because the first n bits of u are at most v, the only

possible nonzero result for the first digit is 1. The remainder of the quotient

is then formed by dividing a value strictly less than 2n by v, which is at

least 2n−1. This result is also at most 1, so that the second digit must be 0.

We conclude that no more than two recursive calls are ever made. In each

of these recursive calls, the divisor has n/2 bits.

If n is odd and greater than 1, we increase the number of bits in v by 1.

The above reasoning then applies to n + 1, where n denotes the original

number of bits in v. We can therefore express the overall running time in

terms of n via the recurrence

f(n) ∈ 2f(�n/2�) + Θ(nlg 3)

for n > 1. Applying Theorem 3.35, we see that f(n) ∈ Θ(nlg 3).

Let us now turn to the more general case. If m < n, it is easily seen

that the running time is in Θ(n). If m ≥ n, as we have already shown, the

worst-case number of recursive calls is in Θ(m/n), and the overhead is in

Θ(mnlg 3−1). Because each of these recursive calls satisfies the special case

analyzed above, each runs in Θ(nlg 3) time. Thus, the overall running time

is in Θ(mnlg 3−1).
If we wish to express the running time in terms of the number of bits in

the larger of the two operands, it is easily seen that the worst case occurs

when m is larger, but n is a fixed fraction of m. If N denotes the number of

bits in the larger operand, we then see that the running time is in Θ(N lg 3),

which is asymptotically the same as multiplication. Furthermore, it is not

hard to see that if we can improve the running time of multiplication to

O(N1+ε) for any fixed positive ε, the running time of division will also be in

O(N1+ε) (or O(mnε)).

In a later chapter, we will show that the running time of multiplication

can be improved to O(N lgN lg lgN). When we use this running time, the

recurrence for the case in which

v ≤ u < (v + 1)2n,

becomes

f(n) ∈ 2f(�n/2�) +O(n lg n lg lg n)
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for n > 1. Applying Theorem 3.35 to this recurrence yields

f(n) ∈ O(n lg2 n lg lg n).

The running time of the division algorithm is then in O(N lg2N lg lgN),

which is slightly worse than the running time of the multiplication algorithm

used. In the next section, we will design a division algorithm whose asymp-

totic running time matches that of multiplication even for the asymptotically

fastest known multiplication algorithm.

10.6 * Newton’s Method

We can reduce division to multiplication in a straightforward way if we

can compute a reciprocal. A reciprocal of an arbitrary positive integer is

a fraction that may or may not have a finite binary representation. We

therefore will have to settle for an approximation. In order to simplify the

discussion of fixed-point fractions, it helps to scale the value of the divisor

v to an appropriate range. Specifically, suppose v consists of n bits; i.e.,

2n−1 ≤ v < 2n. Then

⌊u
v

⌋
=

⌊
u2−n

(
1

v2−n

)⌋
.

Note that 1/2 ≤ v2−n < 1. Thus, if we can compute a close fixed-point

approximation for the reciprocal of a value y such that 1/2 ≤ y < 1, we can

reduce the integer division problem to the integer multiplication problem.

Note that due to the given range of y, the binary encoding of y has no bits to

the left of the radix point, and the first bit to the right is a 1. Furthermore,

because 1 < 1/y ≤ 2, we can approximate 1/y with a value z such that

1 ≤ z < 2; i.e., z has a single 1 bit to the left of the radix point. We can

therefore use BigNums to represent both y and 1/y with the interpretation

that each contains a radix point at the appropriate position.

Because multiplying an approximation of the reciprocal of v2−n by u2−n

gives only an approximation of �u/v�, we may need to correct our result.

Suppose we can approximate the reciprocal to enough accuracy that the

result of the multiplication is a value q such that
∣∣∣q − u

v

∣∣∣ ≤ 1.

Then it is not hard to see that∣∣∣�q� −
⌊u
v

⌋∣∣∣ ≤ 1.
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Then if v�q� ≤ u−v, we know that the actual quotient is �q�+1. If v�q� > u,

we know that the quotient is �q� − 1. Otherwise, the quotient is �q�.
Suppose an error of ε is introduced in approximating the reciprocal. Then

we need ∣∣∣∣u2−n
(

1

v2−n
+ ε

)
− u

v

∣∣∣∣ ≤ 1

∣∣∣u
v
+ εu2−n − u

v

∣∣∣ ≤ 1

|ε| ≤ 2n/u.

Suppose u consists of m bits, so that u < 2m. Then we can ensure that

the approximation of u/v differs from the actual value of u/v by no more

than 1 if our approximation of the reciprocal of v2−n differs from the actual

reciprocal by at most 2n−m.

The resulting algorithm is shown in Figure 10.8. We handle the case

in which u < v separately in order to ensure that the precondition for

u.Subtract(v) is met. As in the previous section, we use constants zero and

one, which refer to BigNum representing 0 and 1, respectively. It is easily

seen that the running time is simply the time for Reciprocal plus the time

to do the two multiplications. The time to do the first multiplication depends

on the size of the value returned by Reciprocal. Because the accuracy of

the approximation is 2n−m, we would expect the value to be not much more

than m− n significant bits.

In the remainder of this section, we will consider how to implement the

Reciprocal function specified in Figure 10.8. The technique we apply is

Newton’s method for approximating a root of a function. Let I be some

interval of the real numbers, and suppose f : I → R has at least one root

— a value x ∈ I such that f(x) = 0. For example, if y is a fixed positive

real number, the function f(x) = 1/x − y over R
>0 has exactly one root,

namely, x = 1/y. Newton’s method is an iterative approach to finding an

approximation of a root of f .

Newton’s method begins with an initial estimate x0 of the root. If f(x0)

is not sufficiently close to 0, a better approximation is found using the

derivative of f , which we will denote by f ′. Recall that f ′(x0) gives the

slope of the line tangent to f at x0 (see Figure 10.9). We can easily find

the intersection x1 of this line with the x-axis, and for many functions,

this intersection will be a better approximation to the root than the initial

estimate. We then apply Newton’s method using x1 as the initial estimate.

For many functions, this approach is guaranteed to approach a root very

quickly. As we will see, the function f(x) = 1/x− y is such a function.
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Figure 10.8 Partial implementation of Divide, specified in Figure 10.6, using an

approximate reciprocal

The line tangent to f at x0 has slope f ′(x0) and includes the point

(x0, f(x0)). To find its x-intercept, we need to go to the left of x0 a distance

of f(x0)/f
′(x0) (or if this value is negative, we go to the right a distance of

−f(x0)/f ′(x0)). The new estimate x1 is therefore given by

x1 = x0 − f(x0)/f ′(x0).

If f(x) = 1/x− y, then f ′(x) = −x−2. The new estimate is therefore

x1 = x0 − 1/x0 − y
−x−20

= x0 + x0 − yx20
= 2x0 − yx20.
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Figure 10.9 The Newtonian iteration

In order to see how quickly the Newtonian iteration converges to 1/y,

suppose we have an estimate x0 = (1 + ε)/y, where ε is some real number.

Applying the iteration, we have

x1 = 2x0 − yx20
=

2(1 + ε)

y
− y

(
1 + ε

y

)2

=
2 + 2ε− 1− 2ε− ε2

y

=
1− ε2
y

. (10.1)

Thus, each iteration squares the error term ε. For 1/2 ≤ y < 1, it is not hard

to show that an initial estimate of 3/2 yields

−1/4 ≤ ε < 1/2;

hence, the number of bits of accuracy doubles with each iteration.

Although this technique does converge rapidly to 1/y, the number of

iterations depends on the degree of accuracy we require. Unfortunately, each

iteration requires a multiplication by y, so that the time required cannot be

proportional to the time for a single multiplication of values having roughly
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the same size as y. However, note that successive iterations give successively

better approximations. For the earlier approximations, which will probably

not be very accurate anyway, we need not use all of the bits of y in the

computation.

This suggests the following approach. Suppose we need an approximation

that differs from the actual reciprocal by no more than 2−k. We will use k as

the size of this problem instance. If k is not too small, we first solve a smaller

instance in order to obtain a less-accurate approximation. The accuracy that

we require of this approximation needs to be such that a single application

of the Newtonian iteration will yield an accuracy of within 2−k. In applying

this iteration, we only use as many bits of y as we need in order to ensure

the required accuracy. Finally, in order to keep the number of bits in the

approximation from growing too rapidly, we return only as many bits as we

need to ensure the required accuracy.

Let α ∈ R denote the absolute error of some estimate; i.e., our estimate is

1/y + α. Let β ∈ R
≥0 denote the absolute error introduced by truncating y,

so that the value we use for y in the iteration is y − β. Finally, let γ ∈ R
≥0

denote the absolute error introduced by truncating the result. The value

computed by the iteration is therefore

2

(
1

y
+ α

)
− (y − β)

(
1

y
+ α

)2

− γ =
1

y
+
β

y2
+

2αβ

y
+ α2β − yα2 − γ.

We need for this value to differ from 1/y by at most 2−k; i.e., we need
∣∣∣∣
β

y2
+

2αβ

y
+ α2β − yα2 − γ

∣∣∣∣ ≤ 2−k. (10.2)

Note that because y > 0, β ≥ 0, and γ ≥ 0, all terms except the second

are always non-negative. In order to ensure that the inequality holds when

the value inside the absolute value bars is non-negative, we can therefore

ignore the last two terms. We therefore need

β

y2
+

2αβ

y
+ α2β ≤ 2−k.

If we replace α by |α| in the above inequality, the left-hand side does not

decrease. For fixed α and β, the resulting left-hand side is maximized when

y is minimized. Setting y to its minimum possible value of 1/2, it therefore

suffices to ensure that

4β + 4|α|β + α2β ≤ 2−k.
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In order to keep the first term sufficiently small, we need β < 2−k−2. In
order to leave room for the other two terms, let us take β ≤ 2−k−3. In other

words, we will use the first k+3 bits of y in applying the iteration. Then as

long as |α| ≤ 1/2, we have

4β + 4αβ + α2β ≤ 2−k−1 + 2−k−2 + 2−k−5

≤ 2−k.

Let us now consider the case in which the value inside the absolute value

bars in (10.2) is negative. We can now ignore the first and third terms. We

therefore need

yα2 + γ − 2αβ

y
≤ 2−k.

Here, we can safely replace α by −|α|. For fixed α, β, and γ in the resulting

inequality, the first term is maximized when y is maximized, but the third

term is maximized when y is minimized. It therefore suffices to ensure that

α2 + γ + 4|α|β ≤ 2−k.

Again taking β ≤ 2−k−3, we only need |α| ≤ 2−(k+1)/2 and γ ≤ 2−k−2. We

then have

α2 + γ + 4|α|β ≤ 2−k−1 + 2−k−2 + 2k−1−(k+1)/2

≤ 2−k,

provided k ≥ 1.

We can satisfy the constraints on α and γ by finding an approximation

within 2−�(k+1)/2�, and returning k + 3 bits of the result of applying the

iteration (recall that the result has one bit to the left of the radix point).

Note that if we take k as the size of the problem instance, we are reducing

the problem to an instance roughly half the original size. We therefore have

a divide-and-conquer algorithm.

In order to complete the algorithm, we need to handle the base cases.

Because �(k + 1)/2� < k only when k > 2, these cases occur for k ≤ 2. It

turns out that these cases are important for ensuring that the approximation

is at least 1 and strictly less than 2. From (10.1), the result of the iteration

is never more than 1/y (here y denotes the portion we are actually using

in computing the iteration). Thus, if y > 1/2, the estimate is less than 2.

Furthermore, if y = 1/2, an initial estimate less than 2 will ensure that some

error remains, so that the result is still strictly less than 2. Finally, provided

ε < 1, the result is always closer to 1/y than the initial estimate. Thus, if we
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make sure that our base case gives a value that is less than 2 and no worse

an estimate than 1 would be, the approximation will always be in the proper

range.

We leave it as an exercise to show that the estimate

11− �8y�
4

satisfies the specification and the requirements discussed above for k ≤ 2.

�8y� is simply the first 3 bits of y. Because 1/2 ≤ y < 1, 4 ≤ �8y� < 8. The

numerator is therefore always a 3-bit natural number. The final division by

4 simply puts the radix point in the proper place.

The algorithm is shown in Figure 10.10. We use the variable len to store

the value k + 3, which, except in the base case, is both the number of bits

we use from y and the number of bits we return. We assume the existence

of a constant eleven referring to a BigNum with value 11. Before we do the

subtraction, we must make sure the radix points in the operands line up.

The approximation x0 has one bit to the left of the implicit radix point. The

multiplication of x0 by 2 simply moves the radix point to the right one place.

As a result, the implicit radix point in 2x0 is x0.NumBits()−2 from the right

in x0. The implicit radix point in the product yx20 is len+2(x0.NumBits()−1)
bits from the right. In order for the radix points to line up, we therefore

need to pad the value stored in x0 with len + x0.NumBits() zeros prior to

subtracting.

Let us now analyze the running time of RecipNewton. Suppose we use

a multiplication algorithm that runs in O(M(n)) time, where n is the number

Figure 10.10 Implementation of Reciprocal, specified in Figure 10.8, using

Newton’s method with divide-and-conquer
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of bits in the product. For now, we will assume that M(n) is a smooth

function in Ω(n), but we will strengthen this assumption as the analysis

proceeds. It is easily seen that for k ≥ 3, the number of bits returned by

RecipNewton is k+3. Therefore, for k ≥ 4, the worst-case number of bits

in the first product is 2k + 6. Because we use k + 3 bits of y, the worst-case

number of bits in the second product is 3k + 9. Because M is smooth, from

Exercise 3.21, the time required for the two multiplications is in O(M(k)).

Because the remainder of the operations, excluding the recursive call,

run in linear time, the total time excluding the recursive call is in O(M(k)).

The total running time is therefore given by the recurrence

f(k) ∈ f
(⌈

k + 1

2

⌉)
+O(M(k)),

for k ≥ 4. We can simplify this recurrence by defining f1(k) = f(k + 1).

Thus, for k ≥ 4,

f1(k) = f(k + 1)

∈ f
(⌈

k + 2

2

⌉)
+O(M(k + 1))

= f

(⌈
k

2

⌉
+ 1

)
+O(M(k + 1))

= f1(�k/2�) +O(M(k + 1))

= f1(�k/2�) +O(M(k)),

because M is smooth.

In order to be able to apply Theorem 3.35 to f1, we need additional

assumptions on M . We therefore assume that M(k) = kqg(k), where q ≥ 1

and g1(k) = g(2k+2) is smooth. (Note that the functions klg 3 and k lg k lg lg k

both satisfy these assumptions on M .) Then from Theorem 3.35, f1(k) ∈
O(M(k)). Because M is smooth, f(k) = f1(k − 1) ∈ O(M(k)).

We can now analyze the running time of DivideRecip. If m < n, the

running time is clearly in Θ(1). Supposem ≥ n. Then the value r returned by

Reciprocal(v,m−n) has m−n+3 bits in the worst case. Hence, the result

of the first multiplication has 2m− n+ 3 bits in the worst case. The worst-

case running time of this multiplication is therefore in O(M(m)). q then has

m − n + 1 bits in the worst case. The result of the second multiplication

therefore has m + 1 bits in the worst case, and hence runs in O(M(m))

time. Because Reciprocal runs in O(M(m − n)) time, and the remaining

operations run in O(m) time, the overall running time is in O(M(m)). The
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running time for DivideRecip is therefore the same as for multiplication,

even if our multiplication algorithm runs in O(n lg n lg lg n) time.

10.7 Summary

The divide-and-conquer technique involves reducing large instances of a

problem to one or more smaller instances, each of which is a fraction of

the size of the original problem. The running time of the resulting algorithm

can typically be analyzed by deriving a recurrence to which Theorem 3.35

applies. Theorem 3.35 can also suggest how to improve a divide-and-conquer

algorithm.

Some variations of the divide-and-conquer technique don’t completely fit

the above description. For example, quick sort does not necessarily produce

subproblems whose sizes are a fraction of the size of the original array. As

a result, Theorem 3.35 does not apply. However, we still consider quick

sort to be a divide-and-conquer algorithm because its goal is to partition

an array into two arrays of approximately half the size of the input array,

and to sort these arrays recursively. Likewise, in LinearSelect, the sizes

of the two recursive calls are very different, but because they are both

fractions of the original size, the analysis ends up being related to that of a

more standard divide-and-conquer algorithm. Finally, DivideDC does not

divide the problem into a bounded number of subproblems; however, all of

the recursive calls in turn yield at most two recursive calls, so we can analyze

these calls using standard divide-and-conquer techniques.

10.8 Exercises

Exercise 10.1. Prove that PolyMult, shown in Figure 10.1, meets its

specification.

Exercise 10.2. PolyMult is not particularly efficient when one polyno-

mial has a degree much larger than that of the other. For example, if p

has degree n and q has degree 1, a straightforward implementation of the

definition of the product yields Θ(n) running time. Devise an algorithm that

runs in Θ(mnlg 3−1) time on polynomials of degreem and n withm ≥ n. Your
algorithm may use PolyMult. Analyze the running time of your algorithm.

[Hint: If m > n, divide the larger polynomial into polynomials of degree at

most n.]

* Exercise 10.3. Construct a divide-and-conquer polynomial multiplica-

tion algorithm that performs 5 recursive calls on polynomials of 1/3 the size
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of the original polynomials. Show that your algorithm has a running time in

Θ(nlog3 5). (Note that log3 5 < lg 3.)

** Exercise 10.4. Generalize Exercise 10.3 by showing that for sufficiently

large n and any k ≥ 2, the product of two degree-(n−1) polynomials can be

computed from the products of 2k − 1 polynomials of degree approximately

(n/k)−1. Using this result, show that for any ε ∈ R
>0, there is an algorithm

to multiply two degree-(n − 1) polynomials in O(n1+ε) time.

Exercise 10.5. Adapt PolyMult to implement Multiply, as specified in

Figure 10.6, in Θ(nlg 3) time, where n is the number of bits in the product.

Exercise 10.6. Prove that MergeSort, shown in Figure 10.2, meets its

specification.

Exercise 10.7. Suppose we are given a tape containing a large number of

Keyed items to be sorted. The number of items is too large to fit into main

memory, but we have three additional tapes we can use, and we can rewrite

the input tape. Give a bottom-up version of merge sort that produces the

sorted output on one of the tapes. You may not assume that data items on

the tapes can be accessed “randomly” — they must be accessed in sequence.

Your algorithm must make at most O(lg n) passes through each tape.

Exercise 10.8. Prove that QuickSort, shown in Figure 10.3, meets its

specification.

Exercise 10.9. Notice that one of the recursive calls in QuickSort is

tail recursion. Taking advantage of this fact, convert one of the recursive

calls to iteration. Notice that the calls can be made in either order, and so

either may be converted to iteration. Make the proper choice so that the

resulting algorithm uses Θ(lg n) stack space in the worst case on an array of

n elements.

Exercise 10.10. Suppose we modify QuickSort by introducing a second

parameter d giving the depth of recursion and a third parameter giving the

length N of the entire array (not just the portion currently being sorted).

Then prior to selecting the pivot element, if d ≥ 2 lgN , instead of sorting

using the given algorithm, sort A[lo..hi] using a Θ(n lg n) algorithm such as

heap sort or merge sort. Show that this modification results in an algorithm

that runs in Θ(n lg n) in the worst case, even if A[lo] is always used as the

pivot element.
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* Exercise 10.11. The goal of this exercise is to prove Theorem 10.1.

a. For x ≤ y, let [x, y] denote the set of all real numbers a such that x ≤
a ≤ y. For natural numbers m < n, let f : [m,n]→ R

≥0 be a continuous

function such that whenever m ≤ x < y ≤ n, f(x) ≥ f(y) (i.e., f is

nonincreasing). Prove that

n∑
i=m+1

f(i) ≤
∫ n

m
f(x)dx ≤

n−1∑
i=m

f(i).

b. Use the result of part (a). to prove Theorem 10.1.

Exercise 10.12. Prove that for an array of size n, QuickSort (shown in

Figure 10.3) makes a total of at most n + 1 calls (including the initial call

and all recursive calls, as appropriate) in which lo ≥ hi.

Exercise 10.13. A randomized algorithm for the selection problem can

be obtained by replacing the the first assignment statement of SelectBy-

Median (Figure 2.7 on page 42) with the statement:

p← A[RandomInteger(1, n)]

Show that the expected running time of this algorithm is in Θ(n). [Hint:

Your analysis should be similar to the analysis of QuickSort in Sec-

tion 10.3.]

Exercise 10.14. Let n0 ≥ 1 and m ≥ 1 be integers, let q be a positive real

number, and let c1, . . . , cm be positive real numbers such that

m∑
i=1

cqi < 1.

Let f : N→ R
≥0 be an eventually non-decreasing function satisfying

f(n) ∈
m∑
i=1

f(�cin�) +X(nq)

whenever n ≥ n0, where X is either O, Ω, or Θ. Prove that f(n) ∈ X(nq).

* Exercise 10.15. Let n0 ≥ 1 and m ≥ 2 be integers, let q be a positive

real number, and let c1, . . . , cm be positive real numbers such that

m∑
i=1

cqi = 1.
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Let f : N→ R
≥0 be an eventually non-decreasing function satisfying

f(n) ∈
m∑
i=1

f(�cin�) +O(nq)

whenever n ≥ n0. Prove that f(n) ∈ O(nq lg n).

Exercise 10.16. Prove that LinearSelect, shown in Figure 10.5, meets

the specification given in Figure 1.2 (p. 7).

Exercise 10.17. Determine the number of comparisons used by each of the

following algorithms when sorting 4 elements.

a. InsertionSort, shown in Figure 1.7 on page 12.

b. MergeSort, shown in Figure 10.2.

Exercise 10.18. Repeat Exercise 10.17 for 5 elements.

Exercise 10.19. Show that it is possible to find either the smallest or largest

of n elements using at most n− 1 comparisons.

* Exercise 10.20. Show that it is possible to find either the second largest

or second smallest of n elements using at most n+ �lg n� − 2 comparisons.

* Exercise 10.21. Show that it is possible to find the median of five

elements using at most six comparisons.

* Exercise 10.22. Prove that DivideDC, shown in Figure 10.7, meets is

specification as given in Figure 10.6.

Exercise 10.23. Prove that DivideRecip, shown in Figure 10.8, meets its

specification as given in Figure 10.6.

* Exercise 10.24. Let 1/2 ≤ y < 1.

a. Show that if

x0 =
11 − �8y�

4
,

then ∣∣∣∣
1

y
− x0

∣∣∣∣ ≤
1

4
.

b. Show that if x0 is as defined in part 10.24, then∣∣∣∣
1

y
− x0

∣∣∣∣ ≤
∣∣∣∣
1

y
− 1

∣∣∣∣ .
c. Prove that RecipNewton meets is specification as given in Figure 10.8.
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Figure 10.11 Additional functions for BigNums

Exercise 10.25. Design a divide-and-conquer algorithm that implements

Power as specified in Figure 10.11. Your algorithm should run in O(M(n))

time, where n is the number of bits in the result and M(n) is the time

needed for Multiply when the product contains n bits. You may make

reasonable assumptions about M(n), provided nlg 3 and n lg n lg lg n satisfy

these assumptions.

* Exercise 10.26. Design a divide-and-conquer algorithm that implements

ToString as specified in Figure 10.11. Your algorithm should run in O(nq)

time, where n is the number of bits in u, assuming Multiply needs O(nq)

time to produce an n-bit product. You may assume q is a real number strictly

larger than 1.

* Exercise 10.27. Given two natural numbers u and v which are not both

0, the greatest common divisor of u and v (or gcd(u, v)) is the largest integer

that evenly divides both u and v.

a. Prove that for any positive integers u and v, gcd(u, v) = gcd(v, u mod v).

b. Design a divide-and-conquer algorithm that takes as input two positive

integers u and v and returns gcd(u, v). Your algorithm should run in

O(lgmax(u, v)) time.

* Exercise 10.28. Given two positive integers u and m such that u < m,

a multiplicative inverse of u mod m is any positive integer v such that 1 ≤
v < m and (uv) mod m = 1.

a. Prove that for any positive integers u and v, there exist integers a and b

such that au+ bv = gcd(u, v).



368 Algorithms: A Top-Down Approach

b. Prove that u has a multiplicative inverse mod m iff gcd(u,m) = 1. [Hint:

See Lemma 7.4 on page 267.]

c. Prove that for 1 ≤ u < m, u has at most one multiplicative inverse

mod m.

d. Give a efficient divide-and-conquer algorithm that takes as input positive

integers u andm such that u < m and returns the multiplicative inverse of

u mod m, or nil if no inverse exists. Your algorithm should run in O(lgm)

time. [Hint: Modify the algorithm for Exercise 10.27 to find a and b as

described in part (a).]

Exercise 10.29. The Manhattan Skyline Problem can be stated as follows.

We are given a description of n rectangular buildings on the horizon. Each

description is a triple, 〈li, wi, hi〉, where li is the x-coordinate of the building’s
left-hand edge, wi is the width of the building, and hi is the height above

the horizon of the building’s roof. (Note that the buildings may overlap.)

We wish to construct the skyline produced by these buildings. The skyline

is represented by a sequence of points 〈(x1, y1), . . . , (xk, yk)〉, ordered by

x-coordinate, representing the locations where a vertical segment of the

skyline meets a horizontal segment leading to the right (see Figure 10.12).

Note that the value of yk must always be 0. Give a divide-and-conquer

Figure 10.12 Manhattan skyline problem example.
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algorithm to compute the Manhattan skyline, and show that your algorithm

runs in Θ(n lg n) time.

Exercise 10.30. A majority element of an array A[1..n] is an element that

occurs more than n/2 times in the array. Construct an efficient divide-and-

conquer algorithm to find the majority element of A if one exists. Your

algorithm may only compare elements for equality (hence, it may not sort

the elements). Analyze the worst-case running time of your algorithm. (Θ(n)

is possible.)

Exercise 10.31. Give a divide-and-conquer algorithm to construct a round-

robin tournament involving n competitors. The tournament consists of a

series of rounds. In each round, every competitor plays one other competitor

if n is even; if n is odd, exactly one competitor is idle each round. Every

competitor must play every other competitor exactly once in the tournament.

Therefore, the number of rounds is n−1 if n is even, or n if n is odd. Let the

competitors be identified by the natural numbers 0, . . . , n−1. Your algorithm
should produce a 2D array A of natural numbers such that A[i, j] indicates

j’s opponent in round i; if j is idle in round i, A[i, j] should be n. Your

algorithm should run in Θ(n2) time. A possible output for n = 5 is shown

below.

0 1 2 3 4

0 1 0 5 4 3

1 2 4 0 5 1

2 3 2 1 0 5

3 4 5 3 2 0

4 5 3 4 1 2

* Exercise 10.32. Give a Θ(n lg n) divide-and-conquer algorithm for

determining the closest pair of points in a given collection. You may assume

that the points are given via two arrays: x[1..n] and y[1..n], where n ≥ 2.

The n points are then (x[1], y[1]), (x[2], y[2]), . . . , (x[n], y[n]). The distance

between a pair of points (x, y) and (x′, y′) is given by

√
(x− x′)2 + (y − y′)2.

Your algorithm should return the minimum distance separating any two

distinct points.
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* Exercise 10.33. Give a divide-and-conquer algorithm for computing

�√n�, where n is a BigNum. Your algorithm’s running time should be in

O(M(lg n)), where M(n) is as defined in Section 10.6.

** Exercise 10.34. Give a Θ(nlg 7) divide-and-conquer algorithm for

multiplying two n × n matrices of real numbers. [Hint: Find a way to

multiply two 2 × 2 matrices using only 7 scalar multiplications. Use this

technique as the basis for a divide-and-conquer algorithm.]

* Exercise 10.35. A Hamiltonian path in a (directed or undirected) graph

is a path that contains each vertex exactly once. A directed graph is said to

be complete if for each pair of distinct vertices i and j, either (i, j) or (j, i)

is an edge in the graph. It turns out that every complete directed graph

has a Hamiltonian path. Give a divide-and-conquer algorithm that finds a

Hamiltonian path in a given complete directed graph. Your algorithm should

run in O(n lg n) time in the worst case, where n is the number of vertices in

the graph, assuming the graph is implemented as a MatrixGraph.

10.9 Notes

The PolyMult algorithm is based on a Θ(nlg 3) large-integer multiplication

algorithm by Karatsuba and Ofman [76]. The DivideDC algorithm is due

to Burnikel and Ziegler [18]. The RecipNewton algorithm is a top-down

adaptation of an algorithm given by Knuth [83]; he credits the idea to Cook.

Solutions to Exercises 10.3, 10.4, 10.25, and 10.26, can be found in Knuth

[83].

Merge sort was one of the earliest algorithms developed for electronic

computers, being developed by von Neumann in 1945 [80,114]. Exercise 10.7

is based on work by Eckert and Mauchly [34]. Quick sort was developed

by Hoare [62]. Introsort was developed by Musser [95]. Pattern-defeating

quicksort, or pdqsort, is an important variation of introsort developed by

Peters [98].

Algorithm LinearSelect is due to Blum, et al. [14]. The solution to

Exercise 10.20 is due to Aigner [4].

The solution to Exercise 10.32 is due to Bentley [11]. The solution to

Exercise 10.34 is due to Strassen [109].



Chapter 11

Optimization I: Greedy Algorithms

In this chapter and the next, we consider algorithms for optimization

problems. We have already seen an example of an optimization problem —

the maximum subsequence sum problem from Chapter 1. We can char-

acterize optimization problems as admitting a set of candidate solutions.

In the maximum subsequence sum problem, the candidate solutions are

the contiguous subsequences in the input array. An objective function then

typically maps these candidate solutions to numeric values. The objective

function for the maximum subsequence sum problem maps each contiguous

subsequence to its sum. The goal is to find a candidate solution that either

maximizes or minimizes, depending on the problem, the objective function.

Thus, the goal of the maximum subsequence problem is to find a candidate

solution that maximizes the objective function.

In this chapter, we will examine optimization problems which admit

greedy solutions. A greedy algorithm builds a specific candidate solution

incrementally. The aspect of a greedy algorithm that makes it “greedy” is

how it chooses from among the different ways of incrementing the current

partial solution. In general, the different choices are ordered according to

some criterion, and the best choice according to this criterion is taken. Thus,

the algorithm builds the solution by always taking the step that appears

to be most promising at that moment. Though there are many problems

for which greedy strategies do not produce optimal solutions, when they

do, they tend to be quite efficient. In the next chapter, we will examine

a more general technique for solving optimization problems when greedy

strategies fail.

371
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11.1 Job Scheduling

Consider the job scheduling problem discussed in Chapter 8. Recall that

we are given n jobs, each requiring one unit of execution time and having

its own deadline. Suppose that, in addition, each job has a positive integer

value. We wish to schedule the jobs on a single server so as to maximize the

total value of those jobs which meet their deadlines. Because jobs which do

not meet their deadlines do not contribute any value, we will assume that no

jobs are scheduled after their deadlines — if a job can’t meet its deadline, we

simply don’t schedule it. At this point, we are not assuming any particular

scheduling strategy, such as the one given in Chapter 8; instead, we are

trying to find an optimal strategy.

In deriving a greedy algorithm in a top-down fashion, the first step is to

generalize the problem so that a partial solution is given as input. We assume

as a precondition that this partial solution can be extended to an optimal

solution. Our task is then to extend it in some way so that the resulting

partial solution can be extended to an optimal solution. If we characterize

the size of such an instance as the difference between the size of a complete

solution and the given partial solution, we will have reduced a large instance

to a smaller instance.

The input to the generalized scheduling problem is a set X =

{x1, . . . , xm} of jobs and a partial schedule sched of these jobs. To be

more precise, let sched[1..n] be an array of natural numbers such that if

sched[t] = 0, then no job has been scheduled in the time slot ending at

time t; otherwise, if sched[t] = i, then job xi is scheduled in this time slot.

If all the jobs in X either have been scheduled or cannot be scheduled, we

are finished — the precondition that this schedule can be extended to an

optimal schedule implies that it must be an optimal schedule. Otherwise,

our task is to schedule some job xi so that the resulting partial schedule can

be extended to a schedule of maximum value. If we take the size of a partial

schedule to be the number of unscheduled jobs in X, we will have reduced a

large instance to a smaller instance.

We must now decide upon the criterion to use to extend a partial

schedule. Of the remaining jobs that can meet their deadlines, it would make

sense to schedule the one with the highest value. Furthermore, in order to

impact the fewest deadlines of other jobs, it would make sense to schedule it

as late as possible. In what follows, we will show that this selection criterion

always results in an optimal schedule.
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In order to simplify reasoning about this strategy, let us observe that

because we will not be changing any scheduling decisions that have already

been made, the values of the jobs scheduled so far have no effect on future

decisions — their values are simply added to the total value of the schedule.

As a result, all we really need to know about the schedule constructed so far

is what time slots are still available. Furthermore, maximizing the values of

jobs scheduled in the remaining slots will maximize the total value, because

the values of all scheduled jobs are simply added together.

We can therefore focus our attention on the following version of the

problem. The input consists of a set X of (unscheduled) jobs and an array

avail[1..n] of boolean values. A valid schedule either assigns a job xi into

a time slot t such that t is no more than the deadline of xi and avail[t] =

true, or it does not schedule xi. The goal is to maximize the total value of

scheduled jobs. The following theorem shows that an optimal schedule can

be constructed by selecting the job with maximum value and scheduling it

at the latest possible time, assuming it can be scheduled.

Theorem 11.1. Let X = {x1, . . . , xm} be a set of jobs, and let avail[1..n]

be an array of boolean values indicating the time slots at which jobs may

be scheduled. Let xk be a job having maximum value, and suppose there is

some t no greater than the deadline of xk such that avail[t] = true. Let t0
be the maximum such t. Then there is an optimal schedule in which xk is

scheduled at the time slot ending at time t0.

Proof. Let sched[1..n] be an optimal schedule and suppose sched[t0] �= k.

We consider two cases.

Case 1: sched[t1] = k. Because t0 is the latest available time slot for

xk, t1 < t0. Therefore, by swapping the values of sched[t1] and sched[t0],

we violate no deadlines and do not change the value of the schedule. The

resulting schedule must therefore be optimal.

Case 2: xk is not scheduled in sched. Let j = sched[t0]. We first observe

that j �= 0, because in this case we could obtain a schedule with higher value

by scheduling xk in sched[t0]. Because xk is a job having maximum value,

the value of xk is at least the value of xj . Therefore, by scheduling xk at

sched[t0] instead of xj , we retain an optimal schedule. �
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Theorem 11.1 tells us that our greedy strategy results in an optimal

schedule. To implement this strategy, we need to consider the jobs in

non-increasing order of their values, and schedule each schedulable job at the

latest time possible. Therefore, we should first sort the jobs in non-increasing

order of their values. Using heap sort or merge sort, this can be done in

Θ(m lgm) time. Schedule, shown in Figure 8.2, then implements the greedy

strategy. Because Schedule can be implemented to run in O(n + m lg n)

time, if m ∈ Θ(n), the entire algorithm runs in Θ(n lgn) time.

11.2 Minimum-Cost Spanning Trees

Suppose we wish to construct a communications network connecting a given

set of nodes. Given the distances separating each pair of nodes, we wish to

find the network topology that connects all of the nodes using as little cable

as possible.

We can state the above problem as a graph problem. In Exercise 9.6,

we defined a tree to be connected, acyclic, undirected graph. (Note that a

tree is different from a rooted tree as defined on page 154, though we can

form a rooted tree from a tree by selecting any vertex as the root.) Given a

connected undirected graph G = (V,E), a spanning tree is a tree (V, T ) such

that T ⊆ E; i.e., a spanning tree is a tree consisting of all of the vertices of

G and a subset of the edges. Let cost : E → N give a cost for each edge. We

wish to find a minimum-cost spanning tree (MST) for G — i.e., a spanning

tree whose edges have minimum total cost.

In order to develop a greedy algorithm, we first generalize the problem

so that a portion of an MST is given as input. This partial MST will be a

subset E′ ⊆ E such that (V,E′) is acyclic, but not necessarily connected.

In order to keep the cost as small as possible, we will use as our selection

criterion the cost of the edge; i.e., we will always select a least-cost edge that

does not introduce a cycle.

We need to show that the above strategy will result in an MST. In order

to state the theorem that guarantees this fact, we need one definition. Let

G = (V,E) be an undirected graph. A connected component of G is any

connected subset C ⊆ V such that no vertex in C is adjacent to any vertex

in V \C. Thus, the connected component containing a vertex v is the set of

all vertices reachable from v using zero or more edges. We can now state the

following theorem, which validates our selection strategy.
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Theorem 11.2. Let G = (V,E) be a connected undirected graph with cost

function cost : E → N, and let E′ ⊂ E be such that for some MST (V, T ) of

G, E′ ⊆ T . Suppose that (V,E′) is not connected, and let C be a connected

component of (V,E′). If {u, v} ∈ E \E′ is a minimum-cost edge such that

u ∈ C and v �∈ C, then there is an MST of G containing all the edges in

E′ ∪ {{u, v}}.
Before we prove Theorem 11.2, we note that it is stronger than we

require. We state it in this way in order to justify a second greedy algorithm,

which we will discuss a bit later. Note, however, that a minimum-cost edge

that does not introduce a cycle certainly qualifies as the edge {u, v} in the

statement of the theorem.

Proof of Theorem 11.2. If {u, v} ∈ T , then there is nothing to show.

Suppose {u, v} �∈ T . We will show how to construct a set T ′ such that

E′ ∪ {{u, v}} ⊆ T ′ and (V, T ′) is an MST.

Because (V, T ) is a tree, there is a path from u to v in T . However, this

path cannot contain the edge {u, v}, because {u, v} �∈ T . This path must

therefore consist of:

• a (possibly empty) path in C from u to some vertex w;

• an edge {w, x}, where x �∈ C; and

• a (possibly empty) path from x to v.

Note that even though either path above might be empty, they cannot

both be empty, or we would have {w, x} = {u, v}. By the choice of {u, v},
cost({w, x}) ≥ cost({u, v}). Let T ′ = (T ∪ {{u, v}}) \{{w, x}}. Then the

total cost of T ′ is no more than the total cost of T . From Exercise 9.6 a, T ,

and hence T ′, has exactly |V |−1 edges. Furthermore, (V, T ′) is connected, as
any path in T that contains {w, x} can be modified to use the edge {u, v} and
the paths from u to w and x to v in T . From Exercise 9.6 b, (V, T ′) is a tree.

Because its cost is no more than the cost of the MST (V, T ), (V, T ′) is an

MST containing all of the edges in E′ ∪ {{u, v}}. �

In order to implement this algorithm, we need an efficient way to

determine whether two vertices belong to the same connected component

of (V,E′), where E′ is the set of edges we have collected so far. The

connected components form disjoint subsets of V . We can therefore maintain

these connected components using a DisjointSets structure. In order
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Figure 11.1 Kruskal’s algorithm for finding an MST

Precondition: G refers to a Graph which is undirected and connected,
and whose edges contain their costs as data.
Postcondition: Returns a ConsList of Edges representing an MST of
G. Each edge will occur once in the list.

Kruskal(G)
n ← G.Size(); comp ← new DisjointSets(n)
q ← new InvertedPriorityQueue(); T ← new ConsList()
for i ← 0 to n − 1

L ← G.AllFrom(i)
while not L.IsEmpty()

e ← L.Head(); q.Put(e, e.Data()); L ← L.Tail()
// Invariant: T is a subset of the edges of an MST of G, the sets in
// comp are the connected components of T , and q contains a subset of
// the edges of G ordered by cost, including at least all {u, v} such that
// u and v are in different sets in comp.
while not q.IsEmpty()

e ← q.RemoveMin()
c1 ← comp.Find(e.Source()); c2 ← comp.Find(e.Dest())
if c1 = c2

T ← new ConsList(e, T ); comp.Merge(c1, c2)
return T

to determine whether u and v belong to the same component, we see if

Find(u) = Find(v). If not, we include {u, v} and merge the two components.

The algorithm, known as Kruskal’s algorithm, is shown in Figure 11.1.

Note that in using an InvertedPriorityQueue, we process the edges in

nondecreasing order of cost. We could have achieved the same effect by

sorting the edges by cost, but this presentation is somewhat simpler, and in

fact amounts to sorting the edges with heap sort.

For the purpose of analyzing Kruskal, let n be the number of vertices

in G, and let a be the number of edges. Let us first assume that G is

implemented using ListGraph. In the initialization code preceding the first

loop, Θ(n) time is required to construct a new DisjointSets structure,

whereas the other operations each run in Θ(1) time. The for loop with the

nested while simply traverses G in a manner similar to the loops found

in TopSort (Figure 9.6). If we ignore for the moment the cost of the Put

operations on q, we see that this nested structure runs in Θ(n+a) time. Each

edge is inserted into q; hence, because InvertedPriorityQueue.Put runs

in Θ(lg i) time when there are i elements in the queue, the total time for all
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insertions is in Θ(a lg a). Because G is connected, n − 1 ≤ a ≤ n(n − 1)/2.

Furthermore, lg(n(n−1)/2) < 2 lg n, so that Θ(n+a) +Θ(a lg a) = Θ(a lg n).

The last while loop is easily seen to run in Θ(a lg n) time as well.

If G is implemented using MatrixGraph, the AllFrom operation

requires Θ(n) time, so that the for loop requires Θ(n2). The total running

time is therefore in Θ(n2+a lg n), which is worse than Θ(a lg n) for sufficiently

sparse graphs (i.e., when a ∈ o(n2/ lg n)). Kruskal’s algorithm therefore tends

to be better-suited for the ListGraph implementation, particularly when

the graph is sparse.

As we suggested earlier, Kruskal’s algorithm isn’t the only greedy

algorithm for finding MSTs. We arrive at a different algorithm if we

generalize the original problem in a slightly different way. Rather than

allowing our input to consist of any set of edges that can be extended to

an MST, we instead require that this set of edges form a spanning tree on

some subset of the vertices. Thus, when we add an edge, it must extend

this spanning tree to another vertex; i.e., it must connect a vertex in the

spanning tree to one that is not in the spanning tree. Our selection criterion

will be to select such an edge having minimum cost. Theorem 11.2 tells us

that such a strategy results in an MST.

The data structures needed to implement this algorithm, which is known

as Prim’s algorithm, are simpler than those needed to implement Kruskal’s

algorithm. We need to partition the vertices into two disjoint sets — the set

of vertices in the spanning tree and those not in the spanning tree. A boolean

array inTree[0..n − 1] will suffice for this purpose. For each vertex k not in

the spanning tree, we need an efficient way to find a least-cost edge {i, k}
such that i is in the spanning tree. For this purpose, we use two arrays:

• an array bestCost[1..n− 1] such that if k is not in the spanning tree, then

bestCost[k] is the minimum cost of any edge to k from a vertex in the

spanning tree, or ∞ if there is no such edge; and

• an array best[1..n − 1] such that if k is not in the spanning tree and

bestCost[k] �=∞, then {best[k], k} is a least-cost edge from the spanning

tree to k.

The spanning tree will initially contain only the vertex 0; hence, it is

unnecessary to include the index 0 for the arrays best and bestCost. We

can then initialize each best[k] to 0 and each bestCost[k] to the cost of edge

{0, k}, or to ∞ if there is no such edge. In order to find an edge to add

to the spanning tree we can find the minimum bestCost[k] such that k is

not in the spanning tree. If we denote this index by next, then the edge
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Figure 11.2 Prim’s algorithm for finding an MST

Precondition: G refers to a Graph which is undirected and connected,
and whose edges contain their costs as data.
Postcondition: Returns a ConsList of Edges representing an MST of
G. Each edge will occur once in the list.

Prim(G)
n ← G.Size(); inTree ← new Array[0..n − 1]; inTree[0] ← true
best ← new Array[1..n − 1]; bestCost ← new Array[1..n − 1]
T ← new ConsList()
for k ← 1 to n − 1

inTree[k] ← false; best[k] ← 0; bestCost[k] ← G.Get(0, k)
if bestCost[k] = nil

bestCost[k] ← ∞
// Invariant: T contains count edges forming a spanning tree for the
// vertices k such that inTree[k] is true, and there is an MST of G
// containing all of the edges in T . For each k such that inTree[k] is false,
// bestCost[k] is the minimum cost of any edge {i, k} such that inTree[i]
// is true, or ∞ if there is no such edge. For each k such that inTree[k]
// is false and bestCost[k] = ∞, {best[k], k} is a least-cost edge
// leading to k from any vertex i such that inTree[i] is true.
for count ← 0 to n − 2

m ← ∞
for k ← 1 to n − 1

if not inTree[k] and bestCost[k] < m
next ← k; m ← bestCost[k]

e ← new Edge(best[next], next, m)
T ← new ConsList(e, T ); inTree[next] ← true
for k ← 1 to n − 1

if not inTree[k]
d ← G.Get(next, k)
if d = nil and d < bestCost[k]

best[k] ← next; bestCost[k] ← d
return T

{best[next],next} is the next edge to be added, thus connecting next to the

spanning tree. For each k that is still not in the spanning tree, we must then

update bestCost[k] by comparing it to the cost of {next, k}, and update

best[k] accordingly. The algorithm is shown in Figure 11.2.

It is easily seen that if G is a MatrixGraph, the running time

is in Θ(n2). This is an improvement over Kruskal’s algorithm when a

MatrixGraph is used. If a ListGraph is used, however, the running time

is still in Ω(n2), and can be as bad as Θ(n3) for dense graphs. Thus, Kruskal’s
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algorithm is preferred when a ListGraph is used, but Prim’s algorithm is

preferred when a MatrixGraph is used. If we have the freedom of choosing

the Graph implementation, we should choose a ListGraph and Kruskal’s

algorithm for sparse graphs, but a MatrixGraph and Prim’s algorithm for

dense graphs.

11.3 Single-Source Shortest Paths

Consider a route finding program that we might find online or within GPS

software. There are typically many possible routes leading from a given

starting point to a given destination, but the software will typically try

to optimize a particular objective function such as the total expected time.

We can model such a problem as an instance of a shortest path problem.

We model the various road segments as edges of a directed graph G whose

vertices are the road intersections. We represent the starting point with a

start vertex u and the destination with an end vertex v. A cost (representing,

for example, the expected time) is associated with each edge. We wish to

find a least-cost path from u to v in G.

We will use the term length to refer to the cost of an edge, regardless of

what kind of cost is being represented. A least-cost path is then a shortest

path. We will assume that edge lengths are positive integers. Note that if

we have found a shortest path from u to v, and if vertex w occurs on this

path, then the subpath from u to w is also a shortest path from u to w.

As a result, when we find a shortest path from u to v, we typically find

many other shortest paths from u as well. For this reason, it simplifies the

discussion to generalize the problem to that of finding, for every vertex w,

a shortest path from u to w.

We first observe that for each vertex w �= u, if we consider only a single

shortest path from u to w, then there is a unique predecessor x of w on

this path. Furthermore, we can select the shortest paths in such a way that

x precedes w on any shortest path on which w occurs. Thus, for each vertex

in G, there is a unique sequence of these predecessors leading back to u.

This predecessor relationship therefore gives the parent relationship of a tree

rooted at u. This rooted tree can be used to represent the shortest paths.

Let us now generalize the problem so that a tree T rooted at u and

containing a subset of the edges and vertices of the graph is provided as

additional input. Suppose that this tree is a proper subtree of a shortest

path tree; i.e., suppose that for each vertex w in the tree, the path from u to

w in the tree is a shortest path from u to w in G. We need to add a vertex x
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and an edge (w, x), where w is a vertex in T , so that the path from u to x

in the resulting tree is a shortest path in G from u to x.

For each vertex w in T , let dw give the length of the path from u to

w in T . For each edge (x, y) in G, let len(x, y) give the length of (x, y). Let

(w, x) be an edge in G such that

• w is in T ;

• x is not in T ; and

• dw + len(w, x) is minimized.

Clearly, the path from u to w in T , followed by the edge (w, x) is a shortest

path from u to x in G, as there can be no shorter paths from u to any vertex

not in T .

Building a shortest path tree in this way is very similar to the way

Prim’s algorithm builds an MST. While Prim’s algorithm is for undirected

graphs, this algorithm — Dijkstra’s algorithm — is for directed graphs. The

computation for updating the bestCost array must use dw+ len(w, x), rather

than the cost of (w, x) (we assume that len(w, x) will be stored in the data

variable for edge (w, x)). Hence, the value dw must be computed and stored

as vertices are added to the tree. The resulting algorithm runs in Θ(n2) time,

the same as for Prim’s algorithm; we leave the details as an exercise.

11.4 Huffman Codes

Compression algorithms are often used for data archival or for improving

data transmission rates. In this section, we examine one of the key

components of data compression. In order to simplify the discussion, we

will assume we are dealing with character data, though the techniques apply

more generally.

In a typical English-language text, some characters like “e” occur much

more frequently than other characters like “X” or “π”. It makes sense, then,

to use a variable-width encoding when storing text in files, so that the more

frequently occurring characters have shorter codes.

For example, consider the popular UTF-8 encoding scheme. In this

scheme, each possible character is encoded using a number of bytes deter-

mined by expected character frequencies. For example, each of the English

characters, the Arabic numerals, and common punctuation and special

characters are encoded using one byte. Characters from other languages,

such as Greek or Cyrillic characters, require two bytes, whereas most Chinese
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Figure 11.3 A Huffman tree for the string, “Mississippi”

p
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characters require three bytes. Various symbols and emoticons even require

four bytes.

Two improvements to this approach can be made to reduce the length of

a specific document. First, we can choose the encoding based on the actual

character frequencies within that document. Second, we can use a variable

number of bits, rather than a variable number of bytes. If we can make these

improvements, the characters occurring most frequently in the document are

likely to be encoded using fewer than eight bits.

The difficulty with variable-width encodings is choosing the encoding so

that it is clear where one character ends and the next begins. For example,

if we encode “n” with 11 and “o” with 111, then the encoding 11111 would

be ambiguous — it could encode either “no” or “on”. To overcome this

difficulty, we arrange the characters as the leaves of a binary tree in which

each non-leaf has two non-empty children (see Figure 11.3). The encoding

of a character is determined by the path from the root to the leaf containing

that character: each left child on the path denotes a 0 in the encoding, and

each right child on the path denotes a 1 in the encoding. Thus, in Figure 11.3,

“M” is encoded as 100. Because no path from the root to a leaf is a proper

prefix of any other path from the root to a leaf, no ambiguity results.

Example 11.1. For example, we can use the tree in Figure 11.3 to

encode “Mississippi” as 100011110111101011010. We parse this encoding by

traversing the tree according to the paths specified by the encoding. Starting

at the root, we go right-left-left, arriving at the leaf “M”. Starting at the

root again, we go left, arriving at the leaf “i”. Continuing in this manner, we

see that the bit-string decodes into “Mississippi”. Note that because there

are four distinct characters, a fixed-width encoding would require at least
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two bits per character, yielding a bit string of length 22. However, the bit

string produced by the given encoding has length 21.

The specific problem we wish to address in this section is that of

producing a tree that yields a minimum-length encoding for a given text.

We will not concern ourselves with the counting of the characters in the

text; rather, we will assume that a frequency table has been produced and is

provided as our input. This frequency table gives the number of occurrences

of each character in the text. To simplify matters, we will assume that none

of the characters in the table has a frequency of 0. Furthermore, we will not

concern ourselves with producing the encoding from the tree; i.e., our output

consists solely of a binary tree storing the information we need in order to

extract each character’s code.

We first need to consider how we can determine the length of an encoded

string for a particular encoding tree. Note that when we decode a bit string,

we traverse exactly one edge in the tree for each bit of the encoding. One way

to determine the length of the encoding is therefore to compute the number

of times each edge would be traversed during decoding. A given edge (u, v)

is traversed once for each occurrence of each character in the subtree rooted

at v. For a subtree t, let us therefore define weight(t) to be the total number

of occurrences of all characters in t. For an encoding tree T , we can then

define cost(T ) to be the sum of the weights of all proper subtrees of T .

(Note that weight(T ) will always be the length of the given text.) cost(T )

then gives the length of the encoding based on T . For a given frequency

table, we define a Huffman tree to be an encoding tree with minimum cost

for that table.

Let us now generalize the problem so that the input is a collection of

trees, t1, . . . , tn, each of which encodes a portion of the frequency table. We

assume that each character in the frequency table occurs in exactly one

of the input trees, and that the frequency table has a Huffman tree that

contains all of the input trees as subtrees. Note that if all of the trees are

single nodes, this input is just the information from the frequency table. If

the input consists of more than one tree, we need to merge two of the trees

by making them the children of a new root. Furthermore, we need to be able

to do this so that the frequency table has a Huffman tree containing all of

the resulting trees as subtrees. We claim that merging two trees of minimum

weight will produce such a tree.

Theorem 11.3. Let T be a Huffman tree for a frequency table F , and let

t1, . . . , tn be subtrees of T such that n > 1 and each leaf of T occurs in exactly
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one of t1, . . . , tn. Suppose weight(t1) ≤ weight(t2) ≤ · · · ≤ weight(tn). Let

tn+1 be the binary tree formed by making t1 and t2 the left and right children,

respectively, of a new root. Then there is a Huffman tree T ′ for F containing

t3, t4, . . . , tn+1 as subtrees.

Proof. If tn+1 is a subtree of T , then we can let T ′ = T . Furthermore, if

T has a subtree with t1 as the right child and t2 as the left child, we can

simply swap t1 with t2 and let the resulting tree be T ′. Otherwise, t1 and

t2 are not siblings in T . Furthermore, neither can be a subtree of the other

because they have no leaves in common. Let node x be the lowest common

ancestor of t1 and t2 in T ; i.e., x is an ancestor of both t1 and t2, but neither

child of x is. We consider two cases.

Case 1: The path from x to t1 is no longer than the path from x to t2. Let

t be the sibling of t2 in T . Without loss of generality, assume t is the left

child and t2 is the right child (otherwise, we can swap them). Clearly, t can

be neither t1 nor t2. Furthermore, it cannot be a proper subtree of any of

t1, . . . , tn, because then t2 would also be a proper subtree of the same tree.

Finally, t cannot contain t1 as a proper subtree, because then the path from

x to t1 would be longer than the path from x to t2. We conclude that t must

contain one or more of t3, . . . , tn. We can therefore swap t1 with t, letting

the result be T ′.
Because t contains one or more of t3, . . . , tn, weight(t1) ≤ weight(t);

hence, weight(t) − weight(t1) ≥ 0. The swap then causes the weights of all

nodes except x on the path from x to the parent of t1 in T to increase

by weight(t) − weight(t1). Furthermore, it causes the weights of all nodes

except x on the path from x to the parent of t2 in T to decrease by weight(t)−
weight(t1). No other nodes change weight. Because there are at least as many

nodes on the path from x to t2 in T as on the path from x to t1 in T , the

swap cannot increase the cost of the tree. Therefore T ′ is a Huffman tree.

Case 2: The path from x to t1 is longer than the path from x to t2. In

this case we assume without loss of generality that t1 is a left child, and

we swap its sibling with t2. Because Case 1 doesn’t rely on the fact that

weight(t1) ≤ weight(t2), the same reasoning holds for this case. �

We assume the frequency table is provided via two arrays:

• chars[1..n], which contains the characters in the table; and

• freq[1..n], which contains positive integers giving the frequencies of the

corresponding characters.
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Figure 11.4 Algorithm for constructing a Huffman tree

Precondition: chars[1..n] is an array of Chars, n ≥ 1, and freq[1..n] is an
array of positive Nats.
Postcondition: Returns a BinaryTreeNode representing a Huffman tree
for text including freq[i] occurrences of char[i], for 1 ≤ i ≤ n.

HuffmanTree(chars[1..n], freq[1..n])
q ← new InvertedPriorityQueue()
for i ← 1 to n

t ← new BinaryTreeNode(); t.SetRoot(chars[i])
q.Put(t, freq[i])

// Invariant: q contains BinaryTreeNodes which are subtrees of
// some Huffman tree for the given frequency table, and whose priorities
// are their weights as defined by the frequencies of the characters
// contained in their leaves. Each character in chars[1..n] occurs in
// exactly one leaf of one tree.
while q.Size() > 1

w1 ← q.MinPriority(); t1 ← q.RemoveMin()
w2 ← q.MinPriority(); t2 ← q.RemoveMin()
t ← new BinaryTreeNode(); t.SetLeft(t1); t.SetRight(t2)
q.Put(t, w1 + w2)

return q.RemoveMin()

The algorithm should then return a BinaryTreeNode representing a

Huffman tree for the frequency table. The data in the leaves are characters,

and all other data items in the tree are nil. The algorithm is shown in

Figure 11.4. We maintain the trees in an InvertedPriorityQueue using

the weights of the trees as priorities.

Because each iteration of the for loop adds an element to an initially

empty priority queue, iteration i runs in Θ(lg i) time. The for loop therefore

runs in Θ(n lg n) time. After the for loop completes, q contains n elements.

Each iteration of the while loop removes two elements from q and adds

one element. The loop therefore iterates n− 1 times. Each iteration runs in

O(lg n) time. The running time of the while loop is therefore in O(n lg n),

so that the algorithm runs in Θ(n lg n) time.

11.5 Summary

Greedy algorithms provide an efficient mechanism for solving certain opti-

mization problems. The major steps involved in the construction of a greedy

algorithm are:



Optimization I: Greedy Algorithms 385

• Generalize the problem so that a partial solution is given as input.

• Decide upon a selection criterion for incrementally extending partial

solutions.

• Prove that if a given partial solution can be extended to an optimal

solution, then after extending this partial solution using the chosen

selection criterion, the resulting partial solution can also be extended to

an optimal solution.

• Implement the transformation suggested by the incremental extension

using a loop.

Priority queues are often useful in facilitating quick access to the best

extension, as determined by the selection criterion. In many cases, the

extension involves joining pieces of a partial solution in a way that can be

modeled effectively using a DisjointSets structure.

Proving that the incremental extension can be extended to an optimal

solution is essential, because it is not true for all selection criteria. In fact,

there are optimization problems for which there is no greedy solution. In

the next chapter, we will examine a more general, though typically more

expensive, technique for solving optimization problems.

11.6 Exercises

Exercise 11.1. Prove that Kruskal, shown in Figure 11.1, meets its

specification.

Exercise 11.2. Prove that Prim, shown in Figure 11.2, meets its

specification.

Exercise 11.3. Instead of using the arrays best and bestCost, Prim’s

algorithm could use a priority queue to store all of the edges from vertices in

the spanning tree. As vertices are added to the spanning tree, all edges from

these vertices would be added to the priority queue. As edges are removed

from the priority queue, they would need to be checked to see if they connect

a vertex in the spanning tree with one that is not in the spanning tree.

Implement this algorithm and analyze its running time assuming the graph

is implemented as a ListGraph.

Exercise 11.4. Implement the single-source shortest path algorithm as

outlined in Section 11.3. Your algorithm should take a Graph G and a

natural number u < G.Size() and return an array pred[0..G.Size()−1] such
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that pred[i] gives the parent of i in the shortest paths tree; pred[u] should

be −1.
Exercise 11.5. Modify your algorithm from Exercise 11.4 to use a priority

queue as suggested in Exercise 11.3. Analyze its running time assuming the

graph is implemented as a ListGraph.

Exercise 11.6. Suppose we wish to solve the single-source shortest path

problem for a graph with unweighted edges; i.e., each edge is understood to

have a length of 1. Prove that the algorithm for Exercise 11.5 can be modified

by replacing the priority queue with a queue (see Exercise 4.11, page 144) to

yield an algorithm for the unweighted single-source shortest path problem.

Analyze the running time of the resulting algorithm, assuming the graph

is implemented as a ListGraph. (This algorithm is known as breadth-first

search.)

Exercise 11.7. Construct a Huffman tree for the string, “banana split”,

and give its resulting encoding in binary. Don’t forget the blank character.

Exercise 11.8. Prove that HuffmanTree, shown in Figure 11.4, meets its

specification.

Exercise 11.9. Suppose we have a set of jobs, each having a positive integer

execution time. We must schedule all of the jobs on a single server so that at

most one job occupies the server at any given time and each job occupies the

server for a length of time equal to its execution time. Our goal is to minimize

the sum of the finish times of all of the jobs. Design a greedy algorithm to

accomplish this and prove that it is optimal. Your algorithm should run in

O(n lg n) time, where n is the number of jobs.

Exercise 11.10. Extend the above exercise to k servers, so that each job is

scheduled on one of the servers.

Exercise 11.11. Suppose we are given a set of events, each having a start

time and a finish time. Each event requires a single room. We wish to assign

events to rooms using as few rooms as possible so that no two events in the

same room overlap (they may, however, be scheduled “back-to-back” with

no break in between). Give a greedy algorithm to accomplish this and prove

that it is optimal. Your algorithm should run in O(n lg n) time.

Exercise 11.12. Repeat the above exercise with the constraint that only

one room is available. The goal is to schedule as many events as possible.

Exercise 11.13. We wish to plan a trip across country in a car that can go d

miles on a full tank of gasoline. We have identified all of the gas stations along
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the proposed route. We wish to plan the trip so as to make as few stops for

gasoline as possible. Design a greedy algorithm that gives an optimal set of

stops when given d and an array dist[1..n] such that dist[i] gives the distance

from the starting point to the ith gas station. Your algorithm should operate

in O(n) time.

* Exercise 11.14. The fractional knapsack problem is as follows. We are

given a set of n items, each having a positive weight wi ∈ N and a positive

value vi ∈ N. We are also given a weight bound W ∈ N. We wish to carry

some of these items in a knapsack without exceeding the weight bound. Our

goal is to maximize the total value of the items we carry. Furthermore, the

items are such that we can take a fraction of the item if we wish. Thus, we

wish to maximize
n∑

i=1

aivi,

for rational a1, . . . , an such that for 1 ≤ i ≤ n, 0 ≤ ai ≤ 1, and subject to

the constraint that
n∑

i=1

aiwi ≤W.

a. Give a greedy algorithm to find an optimal packing, and prove that your

algorithm is correct. Your algorithm should run in O(n lg n) time.

b. Show using a specific example that this greedy algorithm does not always

give an optimal solution if we require that each ai be either 0 or 1.

c. Using techniques from Chapter 10, improve the running time of your

algorithm to O(n).

11.7 Notes

Greedy algorithms were first identified in 1971 by Edmonds [36], though

they actually existed long before then. The theory that underlies greedy

algorithms — matroid theory — was developed by Whitney [120] in the

1930s. See, e.g., Lawler [89] or Papadimitriou and Steiglitz [96] for more

information on greedy algorithms and matroid theory.

The first MST algorithm was given by Boru̇vka [15] in 1926. What is

now known as Prim’s algorithm was first discovered by Jarńık [70], and

over 25 years later rediscovered independently by Prim [99] and Dijkstra

[27]; the latter paper also includes the single-source shortest paths algorithm

outlined in Section 11.3. Kruskal’s algorithm was given by Kruskal [88].
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Other MST algorithms have been given by Yao [124], Cheriton and Tarjan

[21], Tarjan [112], Karger [77], and Chazelle [20]. Other improvements for

single-source shortest paths have been given by Johnson [74, 75], Tarjan

[112], and Fredman and Tarjan [46].

Huffman coding was developed by Huffman [68]. See Lelewer and

Hirschberg [90] and Sayood [103] for surveys of compression algorithms. On

the website for this textbook is a tool for constructing and displaying a

Huffman tree for a given text.



Chapter 12

Optimization II: Dynamic Programming

In the last chapter, we saw that greedy algorithms are efficient solutions to

certain optimization problems. However, there are optimization problems for

which no greedy algorithm exists. In this chapter, we will examine a more

general technique, known as dynamic programming, for solving optimization

problems.

Dynamic programming is a technique of implementing a top-down

solution using bottom-up computation. We have already seen several exam-

ples of how top-down solutions can be implemented bottom-up. Dynamic

programming extends this idea by saving the results of many subproblems

in order to solve the desired problem. As a result, dynamic programming

algorithms tend to be more costly, in terms of both time and space, than

greedy algorithms. On the other hand, they are often much more efficient

than straightforward recursive implementations of the top-down solution.

Thus, when greedy algorithms are not possible, dynamic programming

algorithms are often the most appropriate.

12.1 Making Change

Suppose we wish to produce a specific value n ∈ N from a given set of coin

denominations d1 < d2 < · · · < dk, each of which is a positive integer. Our

goal is to achieve a value of exactly n using a minimum number of coins. To

ensure that it is always possible to achieve a value of exactly n, we assume

that d1 = 1 and that we have as many coins in each denomination as we need.

An obvious greedy strategy is to choose at each step the largest coin that

does not cause the total to exceed n. For some sets of coin denominations,

this strategy will result in the minimum number of coins for any n. However,

suppose n = 30, d1 = 1, d2 = 10, and d3 = 25. The greedy strategy

389
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first takes 25. At this point, the only denomination that does not cause the

total to exceed n is 1. The greedy strategy therefore gives a total of six coins:

one 25 and five 1s. This solution is not optimal, however, as we can produce

30 with three 10s.

Let us consider a more direct top-down solution. If k = 1, then dk = 1,

so the only solution contains n coins. Otherwise, if dk > n, we can reduce

the size of the problem by removing dk from the set of denominations, and

the solution to the resulting problem is the solution to the original problem.

Finally, suppose dk ≤ n. There are now two possibilities: the optimal solution

either contains dk or it does not. In what follows, we consider these two cases

separately.

These two possibilities are
not exclusive — there could
be one optimal solution that
contains dk and another
that does not.

Let us first consider the case in which the optimal

solution does not contain dk. In this case, we do not

change the optimal solution if we remove dk from the

set of denominations. We therefore have reduced the

original problem to a smaller problem instance.

Now suppose the optimal solution contains dk. Suppose we remove one

dk coin from this optimal solution. What remains is an optimal solution

to the instance with the same set of denominations and a target value of

n− dk. Now working in the other direction, if we have the optimal solution

to the smaller instance, we can obtain an optimal solution to the original

instance by adding a dk coin. Again, we have reduced the original problem

to a smaller problem instance.

To summarize, when dk ≤ n, the optimal solution can be obtained from

the optimal solution to one of two smaller problem instances. We have no

way of knowing in advance which of these smaller instances is the right one;

however, if we obtain both of them, we can compare the two resulting candi-

date solutions. The one with fewer coins is the optimal solution. In fact, if we

could quickly determine which of these smaller instances would yield fewer

coins, we could use this test as the selection criterion for a greedy algorithm.

Therefore, let us focus for now on the more difficult aspect of this problem

— that of determining the minimum number of coins in an optimal solution.

Based on the above discussion, the following recurrence gives the mini-

mum number of coins needed to obtain a value of n from the denominations

d1, . . . , dk:

C(n, k) =

⎧⎪⎨
⎪⎩

n if k = 1

C(n, k − 1) if k > 1, dk > n

min(C(n, k − 1), C(n − dk, k) + 1) if k > 1, n ≥ dk.

(12.1)
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This recurrence gives us a recursive algorithm for computing C(n, k).

However, the direct recursive implementation of this recurrence is inefficient.

In order to see this, let us consider the special case in which di = i for 1 ≤
i ≤ k and n ≥ k2. Then for k > 1, the computation of C(n, k) requires the

computation of C(n, k− 1) and C(n− k, k). The computation of C(n− k, k)

then requires the computation of C(n− k, k − 1). Furthermore,

n− k ≥ k2 − k

= k(k − 1)

≥ (k − 1)2,

for k ≥ 1. Thus, when n ≥ k2, the computation of C(n, k) requires the

computation of two values, C(n1, k−1) and C(n2, k−1), where n1 ≥ (k−1)2
and n2 ≥ (k − 1)2. It is then easily shown by induction on k that C(n, k)

requires the computation of 2k−1 values C(ni, 1), where ni ≥ 1 for 1 ≤ i ≤
2k−1. In such cases, the running time is exponential in k.

A closer look at the above argument reveals that a large amount of

redundant computation is taking place. For example, the subproblem C(n−
2k + 2, k − 2) must be computed twice:

1. C(n, k) requires the computation of C(n, k−1), which requires C(n−k+

1, k − 1), which requires C(n− 2k + 2, k − 1), which requires C(n− 2k +

2, k − 2); and

2. C(n, k) also requires C(n − k, k), which requires C(n − k, k − 1), which

requires C(n− k, k − 2), which requires C(n− 2k + 2, k − 2).

Applying this reasoning again to both computations of C(n− 2k+2, k− 2),

we can see that C(n − 4k + 8, k − 4) must be computed four times. More

generally, for even i < k, C(n− ik+ i2/2, k− i) must be computed 2i/2 times

for n ≥ k2.

In order to avoid the redundant computation that leads to exponential

running time, we can compute all values C(i, j) for 0 ≤ i ≤ n, 1 ≤ j ≤ k,

saving them in an array. If we compute recurrence (12.1) bottom-up, rather

than top-down, we will have all of the values we need in order to compute

each C(i, j) in constant time. All (n + 1)k of these values can therefore be

computed in Θ(nk) time. Once all of these values have been computed, then

the optimal collection of coins can be constructed in a greedy fashion, as

suggested above. The algorithm is shown in Figure 12.1. This algorithm is

easily seen to use Θ(nk) time and space.
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Figure 12.1 Algorithm for computing the minimum number of coins needed to

achieve a given value

Precondition: d[1..k] is an array of Ints such that 1 = d[1] < d[2] < · · · <
d[k], and n is a Nat.
Postcondition: Returns an array A[1..k] such that A[i] gives the number
of coins of denomination d[i] in a minimum-sized collection of coins with
value n.

Change(d[1..k], n)
C ← new Array[0..n, 1..k]; A ← new Array[1..k]
for i ← 0 to n

C[i, 1] ← i
for i ← 0 to n

for j ← 2 to k
if i < d[j]

C[i, j] ← C[i, j − 1]
else

C[i, j] ← Min(C[i, j − 1], C[i − d[j], j] + 1)
for j ← 1 to k

A[j] ← 0
i ← n; j ← k
// Invariant: k

l=1 A[l]d[l] = n − i, and there is an optimal solution
// that includes all of the coins in A[1..k], but no additional coins from
// d[j + 1..k].
while j > 1

if i < d[j] or C[i, j − 1] < C[i − d[j], j] + 1
j ← j − 1

else
A[j] ← A[j] + 1; i ← i − d[j]

A[1] ← i
return A[1..k]

A characteristic of this problem that is essential in order for the dynamic

programming approach to work is that it is possible to decompose a large

problem instance into smaller problem instances in a way that optimal

solutions to the smaller instances can be used to produce an optimal solution

to the larger instance. This is, of course, one of the main principles of the

top-down approach. However, this characteristic may be stated succinctly

for optimization problems: For any optimal solution, any portion of that

solution is itself an optimal solution to a smaller instance. This principle

is known as the principle of optimality. It applies to the change-making
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problem because any sub-collection of an optimal collection of coins is itself

an optimal collection for the value it yields; otherwise, we could replace

the sub-collection with a smaller sub-collection yielding the same value, and

obtain a better solution to the original instance.

A simple path in a graph is
a path in which each vertex
appears at most once.

The principle of optimality usually applies to

optimization problems, but not always in a con-

venient way. For example, consider the problem of

finding a longest simple path in a graph from a given vertex u to a given

vertex v. If we take a portion of the longest path, say from x to y, this

subpath is not necessarily the longest simple path from x to y in the original

graph. However, it is guaranteed to be the longest simple path from x to y

in the subgraph consisting of only those vertices on that subpath and all

edges between them in the original graph. Thus, a subproblem consists of

a start vertex, a final vertex, and a subset of the vertices. Because a graph

with n vertices has 2n subsets of vertices, there are an exponential number

of subproblems to solve. Thus, in order for dynamic programming to be an

effective design technique, the principle of optimality must apply in a way

that yields relatively few subproblems.

One characteristic that often leads to relatively few subproblems, while

at the same time causing direct recursive implementations to be quite

expensive, is that the top-down solution results in overlapping subproblems.

As we have already discussed, the top-down solution for the change-

making problem can result in two subproblems which have a subproblem

in common. This overlap results in redundant computation in the direct

recursive implementation. On the other hand, it reduces the total number of

subproblems, so that the dynamic programming approach is more efficient.

12.2 Chained Matrix Multiplication

Recall that the product AB, where A is a k ×m matrix and B is an m× n

matrix, is the k × n matrix C such that

Cij =

m∑
l=1

AilBlj for 1 ≤ i ≤ k, 1 ≤ j ≤ n.

If we were to compute the matrix product by directly computing each of the

kn sums, we would perform a total of kmn scalar multiplications.

Now suppose we wish to compute the product,

M1M2 · · ·Mn,
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whereMi is a di−1×di matrix for 1 ≤ i ≤ n. Because matrix multiplication is

associative, we have some choice over the order in which the multiplications

are performed. For example, to compute M1M2M3, we may either

• first compute M1M2, then multiply on the right by M3; or

• first compute M2M3, then multiply on the left by M1.

In other words, we may compute either (M1M2)M3 or M1(M2M3).

Now suppose d0 = 2, d1 = 3, d2 = 4, and d3 = 1. Then the three matrices

are dimensioned as follows:

• M1: 2× 3;

• M2: 3× 4; and

• M3: 4× 1.

If we compute (M1M2)M3, we first multiply a 2×3 matrix by a 3×4 matrix,

then we multiply the resulting 2 × 4 matrix by a 4 × 1 matrix. The total

number of scalar multiplications is

2 · 3 · 4 + 2 · 4 · 1 = 32.

On the other hand, if we compute M1(M2M3), we first multiply a 3 × 4

matrix by a 4× 1 matrix, then we multiply the resulting 3× 1 matrix by a

2× 3 matrix. The total number of scalar multiplications is

3 · 4 · 1 + 2 · 3 · 1 = 18.

Thus, the way in which the matrices are parenthesized can affect

the number of scalar multiplications performed in computing the matrix

product. This fact motivates an optimization problem: Given a sequence of

positive integer dimensions d0, . . . , dn, determine the minimum number of

scalar multiplications needed to compute the product M1 . . .Mn, assuming

Mi is a di−1 × di matrix for 1 ≤ i ≤ n, and that the number of scalar

multiplications required to multiply two matrices is as described above.

Various greedy strategies might be applied to this problem, but none

can guarantee an optimal solution. Let us therefore look for a direct

top-down solution to the problem of finding the minimum number of

scalar multiplications for a product Mi . . .Mj . Let us focus on finding the

last matrix multiplication. This multiplication will involve the products

Mi . . .Mk and Mk+1 . . .Mj for some k, 1 ≤ k < n. The sizes of these two

matrices are di−1 × dk and dk × dj. Therefore, once these two matrices are

computed, an additional di−1dkdj scalar multiplications must be performed.

The principle of optimality clearly holds for this problem, as a better way
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Figure 12.2 Chained matrix multiplication algorithm

Precondition: d[0..n] is an array of positive Nats, and n is a positive Nat.
Postcondition: Returns the minimum number of scalar multiplications
needed to compute the product M1 · · ·Mn, where Mi is a d[i − 1] × d[i]
matrix for 1 ≤ i ≤ n.

ChainedMatrixMult(d[0..n])
m ← new Array[1..n, 1..n]
for i ← n to 1 by −1

m[i, i] ← 0
for j ← i + 1 to n

m[i, j] ← ∞
for k ← i to j − 1

m[i, j] ← Min(m[i, j], m[i, k] + m[k + 1, j] + d[i − 1]d[k]d[j])
return m[1, n]

of computing either sub-product results in fewer total scalar multiplications.

Therefore, the following recurrence gives the minimum number of scalar

multiplications needed to compute Mi · · ·Mj :

m(i, j) =

{
0 if i = j

min
i≤k<j

(m(i, k) +m(k + 1, j) + di−1dkdj) if i < j. (12.2)

In order to compute m(i, j), 2(j− i) subproblems need to be solved. It is

easily seen that there is a great deal of overlap between these subproblems.

Therefore, dynamic programming is appropriate for computing m(i, j). We

need a matrix m[1..n, 1..n]. In order to compute m[i, j], we need to use

values in row i to the left of column j and values in column j below row i.

It therefore makes sense to compute m by rows from bottom to top, and left

to right within each row. The algorithm is given in Figure 12.2. It is easily

seen to run in Θ(n3) time and to use Θ(n2) space.

12.3 All-Pairs Shortest Paths

In Section 11.3, we discussed the single-source shortest paths problem for

directed graphs. In this section, we generalize the problem to all pairs of

vertices; i.e., we wish to find, for each pair of vertices u and v, a shortest

path from u to v. An obvious solution is to apply Dijkstra’s algorithm n

times, each time using a different vertex as the source. This would result

in an algorithm with running time in Θ(n3). Although the algorithm we
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present in this section is no faster asymptotically, it serves as a good example

of how certain space optimizations can sometimes be made for dynamic

programming algorithms. It also serves as an illustration of how dynamic

programming can be applied to problems that are not optimization problems

in the strictest sense of the word.

Let G = (V,E) be a directed graph, and let len : V 2 → N ∪ {∞} be a

function giving the length of each edge, so that

• len(u, u) = 0 for u ∈ V ; and

• len(u, v) =∞ iff u �= v and (u, v) �∈ E, for (u, v) ∈ V 2.

We wish to find, for each ordered pair (u, v) ∈ V 2, the length of the shortest

path from u to v; if there is no such path, we define the length to be ∞.

Note that we have simplified the problem so that instead of finding the actual

paths, we will only be finding their lengths.

This optimization problem is somewhat nonstandard in that the objec-

tive function is not a numeric-valued function. Instead, its range can be

thought of as a matrix of values. However, the optimum is well-defined, as

it occurs when all values are simultaneously minimized, and this is always

possible.

Let p be a shortest path from i to j, and consider any vertex k other

than i or j. Then either k is in p or it isn’t. If k is not in p, then p remains

the shortest path from i to j if we remove k from the graph. Otherwise, we

can break p into a path from i to k and a path from k to j. Clearly, each

of these paths are shortest paths between their endpoints. Thus, if we can

find the shortest path from i to k and the shortest path from k to j, we can

determine the shortest path from i to j.

A shortcoming to this approach is that we haven’t actually reduced

the size of the problem, as the shortest paths from i to k and k to j are

with respect to the original graph. One way to avoid this shortcoming is to

generalize the problem so that a set of possible intermediate vertices is given

as additional input. The problem is then to find, for each ordered pair (i, j)

of vertices, the length of the shortest path from i to j such that all vertices

other than i and j on this path belong to the given set. If the given set is

V, then the result is the solution to the all-pairs shortest paths problem.

In order to keep the number of subproblems from being too large, we can

restrict the sets we allow as input. Specifically, our additional input can be a

natural number k, which denotes the set of all natural numbers strictly less

than k.
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Let Lk(i, j) denote the length of the shortest path from i to j with

intermediate vertices strictly less than k, where 0 ≤ i < n, 0 ≤ j < n, and

0 ≤ k ≤ n. Using the above reasoning, we have the following recurrence for

Lk(i, j):

Lk(i, j) =

{
len(i, j) if k = 0

min(Lk−1(i, j), Lk−1(i, k − 1) + Lk−1(k − 1, j)) if k > 0.
(12.3)

We can then implement a dynamic programming algorithm to compute

all Lk(i, j) using a 3D array. However, we can save a great deal of space by

making some observations. Note that in order to compute an entry Lk(i, j),

for k > 0, we only use entries Lk−1(i, j), Lk−1(i, k−1), and Lk−1(k−1, j). We

claim that Lk−1(i, k−1) = Lk(i, k−1) and that Lk−1(k−1, j) = Lk(k−1, j).
To see this, note that

Lk(i, k − 1) = min(Lk−1(i, k − 1), Lk−1(i, k − 1) + Lk−1(k − 1, k − 1))

= Lk−1(i, k − 1),

and

Lk(k − 1, j) = min(Lk−1(k − 1, j), Lk−1(k − 1, k − 1) + Lk−1(k − 1, j))

= Lk−1(k − 1, j).

As a result, we can use a 2D array L[0..n − 1, 0..n − 1] to represent

Lk−1. We can then transform this array into Lk by updating each value in

turn. The algorithm, known as Floyd’s algorithm, is shown in Figure 12.3.

We assume that the length of each edge is given by its key. It is easily

seen that, regardless of whether G is implemented as a MatrixGraph or

a ListGraph, the algorithm runs in Θ(n3) time and uses only a constant

amount of space other than what is required for input and output.

12.4 The Knapsack Problem

In Exercise 11.14 (page 387), we introduced the fractional knapsack problem.

One part of this exercise was to show that the greedy algorithm for the

fractional knapsack problem does not extend to the so-called 0-1 knapsack

problem — the variation in which the items cannot be broken. Specifically,

in this variation we are given a set of n items, each having a positive weight

wi ∈ N and a positive value vi ∈ N, and a weight bound W ∈ N. We wish to
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Figure 12.3 Floyd’s algorithm for all-pairs shortest paths

Precondition: G refers to a Graph in which the data associated with each
edge is a Nat giving its length.
Postcondition: Returns an array L[0..n − 1, 0..n − 1] such that L[i, j] is
the length of the shortest path from i to j in G.

Floyd(G)
n ← G.Size(); L ← new Array[0..n − 1, 0..n − 1]
for i ← 0 to n − 1

for j ← 0 to n − 1
if i = j

L[i, j] ← 0
else

d ← G.Get(i, j)
if d = nil

L[i, j] ← ∞
else

L[i, j] ← d
for k ← 1 to n

for i ← 0 to n − 1
for j ← 0 to n − 1

L[i, j] ← Min(L[i, j], L[i, k − 1] + L[k − 1, j])
return L[0..n − 1, 0..n − 1]

find a subset S ⊆ {1, . . . , n} that maximizes

∑
i∈S

vi,

subject to the constraint that

∑
i∈S

wi ≤W.

To solve this problem, first note that either item n is in an optimal

solution, or it isn’t. If it is, then we can obtain an optimal solution by solving

the problem in which item n has been removed and the weight bound has

been decreased by wn. Otherwise, we can obtain an optimal solution by

solving the problem in which item n has been removed. We therefore have

the following recurrence giving the optimal value Vi(j) that can be obtained

from the first i items with a weight bound of j, where 0 ≤ i ≤ n and
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0 ≤ j ≤W :

Vi(j) =

⎧⎨
⎩
0 if i = 0

Vi−1(j) if i > 0, j < wi

max(Vi−1(j), Vi−1(j −wi) + vi) otherwise.

(12.4)

The optimal value is then given by Vn(W ).

It is not hard to see that the optimal value can be computed in Θ(nW )

time and space using dynamic programming — the details are left as an

exercise. However, suppose W is much larger than the values of the items.

In this case, another approach might be more appropriate. Let

V =

n∑
i=1

vi.

Let us then compute the minimum weight required to achieve each possible

value v ≤ V . The largest value v yielding a minimum weight no larger than

W is then our optimal value.

Taking this approach, we observe that item n is either in the set of items

for which value v can be achieved with minimum weight, or it isn’t. If it

is, then the minimum weight can be computed by removing item n and

finding the minimum weight needed to achieve a value of v− vn. Otherwise,

the minimum weight can be computed by removing item n. The following

recurrence therefore gives the minimum weight Wi(j) needed to achieve a

value of exactly j from the first i items, for 0 ≤ i ≤ n, 0 ≤ j ≤ V :

Wi(j) =

⎧⎪⎪⎨
⎪⎪⎩

0 if j = 0

∞ if i = 0, j > 0

Wi−1(j) if i > 0, 0 < j < vi
min(Wi−1(j),Wi−1(j − vi) + wi) otherwise.

(12.5)

The optimal value is then the maximum j ≤ V such that Wn(j) ≤W .

It is not hard to see that a dynamic programming algorithm based on

this recurrence can find the optimal value in Θ(nV ) time and space. Again,

we leave the details as an exercise. Note that we could potentially improve

the algorithm further if we could first find a better upper bound than V for

the optimal value. This would allow us to reduce the number of columns we

need to compute in our array. We will explore this idea further in Chapter 17.
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12.5 Summary

Dynamic programming algorithms provide more power for solving optimiza-

tion problems than do greedy algorithms. Efficient dynamic programming

algorithms can be found when the following conditions apply:

• The principle of optimality can be applied to decompose the problem into

subinstances of the same problem.

• There is significant overlap between the subinstances.

• The total number of subinstances, including those obtained by recursively

decomposing subinstances, is relatively small.

Although dynamic programming algorithms proceed bottom-up, the first

step in formulating a dynamic programming algorithm is to formulate a top-

down solution. This top-down solution usually takes the form of a recurrence

for computing the optimal value of the objective function. The top-down

solution is then implemented bottom-up, storing all of the solutions to the

subproblems. In some cases, we optimize the space usage by discarding some

of these solutions.

Because dynamic programming algorithms typically solve subinstances

that are not used in the optimal solution, they tend to be less efficient than

greedy algorithms. Hence, greedy algorithms are preferred when they exist.

However, for many problems, there are no greedy algorithms that guarantee

optimal solutions. In such cases, dynamic programming algorithms may be

the most efficient.

Although the examples in this chapter have all been optimization

problems, it is not hard to see that dynamic programming can be applied

to other problems as well. Any computation that can be expressed as a

recurrence can be computed bottom-up, yielding a dynamic programming

solution. We explore some examples in the exercises.

12.6 Exercises

Exercise 12.1. Prove by induction on n + k that C(n, k), as defined in

recurrence (12.1), gives the minimum number of coins needed to give a value

of exactly n if the denominations are d1 < d2 < · · · < dk and d1 = 1.

Exercise 12.2. Prove that Change, shown in Figure 12.1, meets its

specification. You do not need to focus on the first half of the algorithm;

i.e., you can assume that C(i, j), as defined in recurrence (12.1), is assigned

to C[i, j]. Furthermore, you may use the result of Exercise 12.1 in your proof.
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* Exercise 12.3. As we have seen, the greedy algorithm suggested in

Section 12.1 works for some sets of coin denominations but not for others.

a. Prove that for denominations d1 < d2 < · · · < dk, where k > 1, if the

greedy algorithm fails for some value, then it must fail for some value

n < dk + dk−1.
b. Devise an efficient dynamic programming algorithm which takes as input

a set of denominations and returns true if the greedy algorithm always

works for this set, or returns false otherwise. You may assume that the

denominations are given in increasing order. Your algorithm should use

O(Mk) time and space, where M is the largest denomination and k is

the number of denominations.

Exercise 12.4. Prove by induction on j − i that m(i, j), as defined in

recurrence 12.2, is the minimum number of scalar multiplications needed to

compute a product Mi · · ·Mj , where Mk is a dk−1× dk matrix for i ≤ k ≤ j.

Exercise 12.5. Prove by induction on k that Lk(i, j), as defined in

recurrence 12.3, gives the length of the shortest path from i to j in which all

intermediate vertices are strictly less than k.

Exercise 12.6.

a. Modify Floyd’s algorithm (Figure 12.3) so that it returns an array S[0..n−
1, 0..n− 1] such that for i �= j, S[i, j] gives the vertex k such that (i, k) is

the first edge in a shortest path from i to j. If there is no path from i to

j, or if i = j, then S[i, j] should be −1.
b. Give an algorithm that takes the array S[0..n−1, 0..n−1] defined above,

along with i and j such that 0 ≤ i < n and 0 ≤ j < n, and prints the

vertices along a shortest path from i to j. The first vertex printed should

be i, followed by the vertices in order along the path, until the last vertex

j is printed. If i = j, only i should be printed. If there is no path from i

to j, a message to that effect should be printed. Your algorithm should

run in O(n) time.

Exercise 12.7. Give an algorithm for the 0-1 knapsack problem that runs

in O(nW ) time and space, where n is the number of items and W is the

weight bound. Your algorithm should use dynamic programming to compute

recurrence (12.4) for 0 ≤ i ≤ n and 0 ≤ j ≤ W , then use these values to

guide a greedy algorithm for selecting the items to put into the knapsack.

Your algorithm should return an array selected[1..n] of booleans such that

selected[i] is true iff item i is in the optimal packing.
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Exercise 12.8. Repeat Exercise 12.7 using recurrence (12.5) instead of

(12.4). Your algorithm should use Θ(nV ) time and space, where n is the

number of items and V is the total value of all the items.

Exercise 12.9. Let A[1..n] be an array of integers. An increasing subse-

quence of A is a sequence of indices 〈i1, . . . , ik〉 such that ij < ij+1 and

A[ij ] < A[ij+1] for 1 ≤ j < k. (Note that the indices in the subsequence

are not necessarily contiguous.) A longest increasing subsequence of A is an

increasing subsequence of A with maximum length.

a. Give a recurrence for L(i), the length of the longest increasing subse-

quence of A[1..i] that ends with i, where 1 ≤ i ≤ n.

b. Give a dynamic programming algorithm that prints the indices of a

longest increasing subsequence of A[1..n]. Your algorithm should operate

in O(n2) time.

Exercise 12.10. Let A[1..m] and B[1..n] be two arrays. An array C[1..k]

is a common subsequence of A and B if there are two sequences of indices

〈i1, . . . , ik〉 and 〈j1, . . . , jk〉 such that

• i1 < i2 < · · · < ik;

• j1 < j2 < · · · < jk; and

• C[l] = A[il] = B[jl] for 1 ≤ l ≤ k.

A longest common subsequence of A and B is a common subsequence of A

and B with maximum size.

a. Give a recurrence for L(i, j), the length of the longest common subse-

quence of A[1..i] and B[1..j].

b. Give a dynamic programming algorithm that returns the longest common

subsequence of A[1..m] and B[1..n]. Your algorithm should operate in

O(mn) time.

Exercise 12.11. A palindrome is a string that reads the same from right

to left as it does from left to right (“abcba”, for example). Give a dynamic

programming algorithm that takes a String (see Figure 4.17 on page 145) s

as input, and returns a longest palindrome contained as a substring within s.

Your algorithm should operate in O(n2) time, where n is the length of s. You

may use the results of Exercise 4.13 (page 144) in analyzing your algorithm.

[Hint: For each pair of indices i ≤ j, determine whether the substring from

i to j is a palindrome.]
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* Exercise 12.12. Suppose we have two k-dimensional boxes A and B

whose k dimensions are a1, . . . , ak and b1, . . . , bk, respectively. We say that

A fits inside of B if there is a permutation ai1 , . . . , aik of the dimensions

of A such that aij < bj for 1 ≤ j ≤ k. Design a dynamic programming

algorithm that takes as input a positive integer k and the dimensions of n k-

dimensional boxes, and returns the maximum size of any subset of the boxes

that can be ordered such that each box (except the last) in the ordering fits

inside of the next. Your algorithm should run in O(max(n2k, nk lg k)) time

in the worst case. Note that your algorithm doesn’t need to return a subset

or an ordering — only the size of the subset.

Exercise 12.13. Let G = (V,E) be a directed graph. The transitive closure

of G is a directed graph G′ = (V,E′), where E′ is the set of all (u, v) ∈ V 2

such that u �= v and there is a path from u to v in G. Give an O(n3) dynamic

programming algorithm to produce a MatrixGraph that is the transitive

closure of a given MatrixGraph.

Exercise 12.14. A convex polygon is a polygon whose interior angles are

all less than 180 degrees. For example, in Figure 12.4, polygon a is convex,

but polygon b is not. A triangulation of a convex polygon is a set of non-

intersecting diagonals that partition the polygon into triangles, as shown in

Figure 12.4 (c). Give a dynamic programming algorithm that takes as input

a convex polygon and produces a triangulation that minimizes the sum of

the lengths of the diagonals, where the length of an edge (x1, y1), (x2, y2) is

given by

√
(x1 − x2)2 + (y1 − y2)2.

You may assume that the polygon is represented as a sequence of points in

the Cartesian plane 〈p1, p2, . . . , pn〉 such that the edges of the polygon are

(p1, p2), (p2, p3), . . . , (pn−1, pn), and (pn, p1). You may further assume that

n ≥ 3. Your algorithm should run in O(n3) time.

Figure 12.4 Polygons illustrating Exercise 12.14

(a) (b) (c)
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Figure 12.5 An example illustrating Exercise 12.15

Processor 2: Weight = 17
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* Exercise 12.15. A chain is a rooted tree with exactly one leaf. We are

given a chain representing a sequence of n pipelined processes. Each node i

in the chain represents a process and has a positive execution time ei ∈ N.

Each edge (i, j) has a positive communication cost cij ∈ N. For edge (i, j),

if processes i and j are executed on separate processors, the time needed to

send data from process i to process j is cij ; if the processes are executed on

the same processor, this time is 0. We wish to assign processes to processors

such that each processor has total weight no more than a given value B ∈ N.

The weight of a processor is given by the sum of the execution times of the

processes assigned to that processor, plus the sum of the communication

costs of edges between tasks on that processor and tasks on other processors

(see Figure 12.5). The communication cost of an assignment is the sum of

the communication costs of edges that connect nodes assigned to different

processors.

Give a dynamic programming algorithm that finds the minimum com-

munication cost of any assignment of processes to processors such that each

processor has weight no more than B. Note that we place no restriction on

the number of processors used. Your algorithm should run in O(n2) time.

Prove that your algorithm is correct.

Exercise 12.16. Given two strings x and y, we define the edit distance from

x to y as the minimum number of operations required to transform x into y,

where the operations are chosen from the following:
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• insert a character;

• delete a character; or

• change a character.

**a. Prove that there is an optimal sequence of operations transforming x

to y in which the edits proceed from left to right.

b. Using the above result, give a dynamic programming algorithm that

takes as input x and y and returns the edit distance from x to y. Your

algorithm should run in O(mn) time, where m is the length of x and

n is the length of y. Prove that your algorithm is correct.

The depth of a node in a
tree is the number of edges
in the path from the root to
that node.

Exercise 12.17. Suppose we wish to store n keys,

k1 < k2 < · · · < kn, in a binary search tree (see

Chapter 6). We define the cost of a look-up of key ki
as di+1, where di is the depth of ki in the tree. Thus,

the cost of a look-up is simply the number of nodes

examined. Suppose further that we are given, for 1 ≤ i ≤ n, the probability

pi ∈ R
>0 that any given look-up is for key ki. We assume that

n∑
i=1

pi = 1.

We say that a binary search tree containing these keys is optimal if the

expected cost of a look-up in this tree is minimum over the set of all binary

search trees containing these keys.

a. Let us extend the definition of the cost of a look-up to pertain to a

specific subtree, so that the cost with respect to subtree T is the number

of nodes in T examined during that look-up. For i ≤ j, let Sij be the

set of all binary search trees with keys k1, . . . , kn such that there is

a subtree containing exactly the keys ki, . . . , kj . Let Cij denote the

minimum over Sij of the expected cost of a look-up with respect to the

subtree containing keys ki, . . . , kj . Prove that

Cij =

⎧⎪⎨
⎪⎩

pi if i = j

min
i≤k≤j

(Ci,k−1 + Ck+1,j) +

j∑
k=i

pk if i < j

*b. Give a dynamic programming algorithm that takes as input p1, . . . , pn
and returns the expected cost of a look-up for an optimal binary search

tree whose keys k1 < k2 < · · · < kn have the given probabilities. (Note
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that we don’t need the values of the keys in order to compute this

value.) Your algorithm should run in O(n3) time and O(n2) space.

**c. Suppose rij is the root of an optimal binary search containing the keys

ki, . . . , kj , where i ≤ j. Prove that ri,j−1 ≤ rij ≤ ri+1,j for 1 ≤ i < j ≤
n.

*d. Using the above result, improve your algorithm to run in O(n2) time.

Exercise 12.18. Give a dynamic programming algorithm that takes as

input two natural numbers k ≤ n and returns the probability that flipping a

fair coin n times yields at least k heads. Your algorithm should run in O(n)

time. Prove that your algorithm is correct.

* Exercise 12.19. Give a dynamic programming algorithm that takes as

input a natural number n and returns the number of different orderings of n

elements using < and/or =. For example, for n = 3, there are 13 orderings:

x < y < z x < z < y y < x < z y < z < x

z < x < y z < y < x x = y < z z < x = y

x = z < y y < x = z y = z < x x < y = z

x = y = z.

Your algorithm should run in O(n2) time and use O(n) space. Prove that

your algorithm is correct.

* Exercise 12.20. Suppose we have a mathematical structure containing

three elements, a, b, and c, and a multiplication operation given by the

following table:

a b c

a a c a

b c b b

c a c b

Note that this multiplication operation is neither commutative nor associa-

tive. Give a dynamic programming algorithm that takes as input a string

over a, b, and c, and returns a boolean indicating whether it is possible

to parenthesize the string so that the result is a. (For example, if we

parenthesize abca as (a(bc))a, we get a result of a.) Your algorithm should

run in O(n3) time, where n is the length of the input string. Prove that your

algorithm is correct.

* Exercise 12.21. Suppose we are given an array L[1..n] of positive integers

representing the lengths of successive words in a paragraph. We wish to
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format the paragraph so that each line contains no more than m characters,

including a single blank character between adjacent words on the same line.

Furthermore, we wish to minimize a “sloppiness” criterion. Specifically, we

wish to minimize the following objective function:

k−1∑
i=1

f(m− ci),

where k is the total number of lines used, f : N→ N is some nondecreasing

function, and ci is the number of characters (including blanks between

adjacent words) on line i. Give an efficient dynamic programming algorithm

for computing the optimal arrangement. Your algorithm should run in O(n2)

time and use O(n) space. [Hint: Reduce this problem to the problem for

which the measure of sloppiness includes the last line — i.e., the optimization

function is as above, but with k − 1 replaced by k.]

* Exercise 12.22. We are given a set of n points (xi, yi), where each xi
and yi is a real number and all the xis are distinct. A bitonic tour of these

points is a cycle that begins at the rightmost point, proceeds strictly to

the left to the leftmost point, then proceeds strictly to the right to return

to the rightmost point; furthermore, this cycle contains every point exactly

once (see Figure 12.6). We wish to find the bitonic tour having minimum

Euclidean length; i.e., the distance between two points (x1, y1) and (x2, y2)

is given by
√

(x1 − x2)2 + (y1 − y2)2.

Give an efficient dynamic programming algorithm for finding a minimum-

length bitonic tour. Your algorithm should use O(n2) time and space. [Hint:

Reduce this problem to that of finding a minimum-length bitonic path that

includes all the points exactly once, but does not return to the starting

point.]

* Exercise 12.23. Suppose we were to modify the scheduling problem of

Section 11.1 so that each job also has a natural number execution time, which

must be fulfilled without interruption. Thus, a schedule including job i must

have job i scheduled for ei contiguous time units lying between time 0 and

time di, where ei is the execution time and di is the deadline of job i. Give

an efficient dynamic programming algorithm to generate a schedule with

maximum value. Your algorithm should use O(n(m+lg n)) time and O(mn)

space, where n is the number of jobs and m is the maximum deadline.
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Figure 12.6 Bitonic and non-bitonic tours

b) A tour that is not bitonic.a) A bitonic tour.

12.7 Notes

The mathematical foundation for dynamic programming was given by

Bellman [10]. The Change algorithm in Figure 12.1 is due to Wright [123].

The ChainedMatrixMult algorithm in Figure 12.2 is due to Godbole

[56]. Floyd’s algorithm (Figure 12.3) is due to Floyd [40], but is based on

a theorem due to Warshall [118] for computing the transitive closure of a

boolean matrix. Because a boolean matrix can be viewed as an adjacency

matrix for a directed graph, this is the same as finding the transitive closure

of a directed graph (Exercise 12.13).

The algorithm suggested by Exercise 12.3 is due to Kozen and Zaks [86].

Exercise 12.10 is solved by Chvatal et al. [22]. Wagner and Fischer [117]

solved Exercise 12.16 and provided an alternative solution to Exercise 12.10.

Exercise 12.17 is solved by Gilbert and Moore [55] and Knuth [81], but a

more elegant solution is given by Yao [125]. Exercises 12.19 and 12.20 are

from Brassard and Bratley [17].
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Chapter 13

Depth-First Search

As we have seen in earlier chapters, many problems can be characterized as

graph problems. Graph problems often require the searching of the graph

for certain structural characteristics. For example, one problem which we

will examine in this chapter is searching a connected undirected graph for

vertices whose removal would disconnect the graph. Such vertices are called

articulation points.

In order to find articulation points, an algorithm must extract a great

deal of information involving the paths connecting the various vertices in

the graph. One way of organizing this information is by constructing a

certain kind of rooted spanning tree, called a depth-first spanning tree. One

advantage to processing a rooted spanning tree as opposed to a graph is that

a rooted tree fits more naturally with the top-down approach. Furthermore,

as we will see later in this chapter, a depth-first spanning tree has properties

that are helpful for extracting connectivity information. We therefore find

that many problems can be reduced to finding one or more depth-first

spanning trees. These spanning trees are found using a technique called

depth-first search.

Because algorithms using depth-first search operate on rooted trees, we

begin by studying the problem of determining ancestry in rooted trees. The

technique we use to solve this problem will motivate the depth-first search

technique. We will then show how depth-first search can be used to find

articulation points in a connected undirected graph. Finally, we will show

how the technique can be extended to problems for directed graphs.

411
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13.1 Ancestry in Rooted Trees

Suppose we are given two nodes, x and y, in a rooted tree T . We wish to

determine whether x is an ancestor of y. By traversing the subtree rooted

at x (see Section 6.1), we can determine whether y is in that subtree. In the

worst case, y is not in the subtree, so we have to traverse the entire subtree.

If the subtree contains most of the nodes in T , the traversal will take Θ(n)

time, where n is the number of nodes in the tree.

It seems unlikely that we would be able to solve this problem in o(n)

time. However, note that we can traverse the entire tree in Θ(n) time. This

fact might help us to solve efficiently the problem of determining ancestry

for several pairs of nodes. Perhaps we can do a single traversal in Θ(n) time,

and save enough information that only constant additional time is needed

to decide ancestry for any pair of nodes in the tree.

We can get some insight into how to accumulate the necessary infor-

mation by reviewing preorder and postorder traversals, as outlined in

Section 6.1. A preorder traversal visits a node x before visiting any of its

proper descendants, whereas a postorder traversal visits x after visiting all

of its proper descendants. Therefore, if x is a proper ancestor of y, a preorder

traversal will visit x before visiting y, and a postorder traversal will visit x

after visiting y. If we could combine a preorder traversal with a postorder

traversal and keep track of the order in which the visits were made, we could

then efficiently check a necessary condition for x being a proper ancestor of y.

We will show that the above condition is also sufficient for x being

a proper ancestor of y. First, however, let us present an algorithm for

calculating this information in order to be able to reason about it more

precisely. In order to describe the algorithm, we need a simple data structure

called a VisitCounter, whose definition is shown in Figure 13.1. It has

two representation variables, an integer count and an array num[0..n − 1].

Its structural invariant is that for 0 ≤ i < n, num[i] is a natural number,

and that

count = max
0≤i<n

num[i].

We interpret the size of the structure to be the size of num, and we interpret

the value of num[i] as the value associated with i. Clearly, the constructor

runs in Θ(n) time, and the operations all run in Θ(1) time.

The algorithm shown in Figure 13.2 combines the preorder and postorder

traversals of the tree T . We use a (directed) Graph to represent T . pre is

a VisitCounter that records the order in which nodes are visited in the
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Figure 13.1 The data structure VisitCounter

Structural Invariant: For 0 ≤ i < n, num[i] is a Nat, and

count = max
0≤i<n

num[i].

Precondition: n is a Nat.
Postcondition: Constructs a VisitCounter of size n, all of whose
values are 0.

VisitCounter(n)
count ← 0; num ← new Array[0..n − 1]
for i ← 0 to n − 1

num[i] ← 0

Precondition: i is a Nat strictly less than Size().
Postcondition: Associates with i a value of m + 1, where m is the largest
value initially associated with any j, 0 ≤ j < Size().

VisitCounter.Visit(i)
count ← count + 1; num[i] ← count

Precondition: i is a Nat strictly less than Size().
Postcondition: Returns the value associated with i.

VisitCounter.Num(i)
return num[i]

Precondition: true.
Postcondition: Returns the size of this VisitCounter.

VisitCounter.Size()
return SizeOf(num)

preorder traversal, and post is a VisitCounter that records the order in

which nodes are visited in the postorder traversal.

Note that PrePostTraverse is different from most recursive algo-

rithms in that there is no explicit base case. However, a base case does

exist — the case in which i has no outgoing edges. In this case, the loop will

not iterate, and no recursive call will be made. The lack of an explicit base

case is reflected in the following correctness proof, which likewise does not

contain a separate base case.
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Figure 13.2 Preprocessing algorithm for ancestry test

Precondition: T is a Graph representing a rooted tree with edges directed
from parents to children. pre and post are VisitCounters whose size n is
the number of nodes in T , and i is a Nat strictly less than n.
Postcondition: Let S be the set of descendants of i. For every j ∈ S
and every node k S, pre.Num(j) > pre.Num(k) and post.Num(j) >
post.Num(k). For any j, k ∈ S, j is a proper ancestor of k iff pre.Num(j) <
pre.Num(k) and post.Num(j) > post.Num(k). If node k S, then
pre.Num(k) and post.Num(k) are unchanged.

PrePostTraverse(T, i,pre, post)
pre.Visit(i); L ← T.AllFrom(i)
// Invariant: The postcondition holds with S denoting the set of
// proper descendants of i that are not descendants of any node in L,
// except that pre.Num(i) has been changed to be larger than
// pre.Num(k) for every k S ∪ {i}.
while not L.IsEmpty()

next ← L.Head().Dest(); L ← L.Tail()
PrePostTraverse(T, next, pre, post)

post.Visit(i)

Theorem 13.1. PrePostTraverse satisfies its specification.

Proof. By induction on n, the size of T .

Induction Hypothesis: Assume that PrePostTraverse satisfies its

specification for every tree with strictly fewer than n nodes.

Induction Step: Assume the precondition is satisfied. We must show the

correctness of the invariant.

Initialization: The call to pre.Visit(i) makes pre.Num(i) larger than any

other values in pre. Otherwise, no other values in pre or post have been

changed from their initial values. At the beginning of the loop, L contains

the children of i and S = ∅. The invariant is therefore satisfied.

Maintenance: Suppose the invariant holds at the beginning of an iteration.

Clearly, the precondition holds for the recursive call. Because the subtree
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rooted at next has strictly fewer nodes than does T , from the Induction

Hypothesis, the recursive call satisfies the postcondition with S denoting

the set of descendants of next. Let R be the set of descendants of next. Let

S′ denote the value of S at the end of the iteration; i.e., S′ = S ∪ R. We

must show that the invariant holds for S′ at the end of the iteration.

Let us first determine the values in pre and post that have changed

from their initial values by the time the iteration completes. From the

invariant, only pre.Num(i), pre.Num(j), and post.Num(j) such that j ∈ S

have changed prior to the beginning of the iteration. From the Induction

Hypothesis, the recursive call only changes the values of pre.Num(j) and

post.Num(j) for j ∈ R. Thus, the only values to have changed from

their initial values are pre.Num(i), pre.Num(j), and post.Num(j) such

that j ∈ S′. Furthermore because only values for j ∈ R are changed by

the iteration, it is still the case that pre.Num(i) > pre.Num(k) for all

k �∈ S′ ∪ {i}.
Let j ∈ S′ and k �∈ S′. If j �∈ R, then pre.Num(j), post.Num(j),

pre.Num(k) and post.Num(k) are unchanged by the iteration. Therefore,

because j ∈ S, from the invariant, it is still the case that pre.Num(j) >

pre.Num(k) and post.Num(j) > post.Num(k). On the other hand, suppose

j ∈ R. Because k �∈ R, by the Induction Hypothesis, pre.Num(j) >

pre.Num(k) and post.Num(j) > post.Num(k) at the end of the iteration.

Now let j, k ∈ S′. We must show that j is a proper ancestor of k iff

pre.Num(j) < pre.Num(k) and post.Num(j) > post.Num(k).

⇒: Suppose j is a proper ancestor of k. Then either j and k are both in

R or neither is in R. If neither j nor k is in R, then the iteration changes

none of their pre or post values. Hence, from the invariant, pre.Num(j) <

pre.Num(k) and post.Num(j) > post.Num(k). On the other hand, if

j, k ∈ R then from the Induction Hypothesis, pre.Num(j) < pre.Num(k)

and post.Num(j) > post.Num(k).

⇐: Suppose pre.Num(j) < pre.Num(k) and post.Num(j) > post.Num(k). If

j ∈ R, then from the Induction Hypothesis, k ∈ R, for if not, pre.Num(j) >

pre.Num(k). Thus, from the Induction Hypothesis, j is a proper ancestor of

k. If j �∈ R, then from the Induction Hypothesis, k �∈ R, for otherwise,

post.Num(k) > post.Num(j). Then none of their pre or post values is

changed by the iteration. From the invariant, j is a proper ancestor of k.
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Termination: Because L contains finitely many elements and each iteration

removes one element from L, the loop must eventually terminate.

Correctness: Assume the invariant holds and that L is empty when the

loop terminates. We need to show that the postcondition holds when the

algorithm finishes. Let S denote the set of descendants of i.

Let us first consider which values in pre and post have been changed

by the algorithm. From the invariant, only pre.Num(i), pre.Num(j), and

post.Num(j), where j ∈ S \{i}, have changed by the time the loop

terminates. The final call to post.Visit(i) changes post.Num(i). Therefore,

the only values to have been changed by the algorithm are pre.Num(j) and

post.Num(j) such that j ∈ S.

Let j ∈ S and k �∈ S. If j �= i, then from the invariant, pre.Num(j) >

pre.Num(k) and post.Num(j) > post.Num(k). If j = i, then from the

invariant pre.Num(j) > pre.Num(k). Furthermore, the call to post.Visit(i)

makes post.Num(j) > post.Num(k).

Now let j, k ∈ S. We must show that j is a proper ancestor of k iff

pre.Num(j) < pre.Num(k), and post.Num(j) > post.Num(k).

⇒: Suppose j is a proper ancestor of k. Then k �= i, because i is an

ancestor of every node in S. If j �= i, then it follows from the invariant

that pre.Num(j) < pre.Num(k) and post.Num(j) > post.Num(k). If j = i

then from the invariant pre.Num(j) < pre.Num(k), and the final call to

post.Visit(i) makes post.Num(j) > post.Num(k).

⇐: Suppose pre.Num(j) < pre.Num(k) and post.Num(j) > post.Num(k).

If neither j = i nor k = i, then from the invariant, j is a proper ancestor of

k. If j = i, then clearly j is a proper ancestor of k. Finally, k �= i because the

final call to post.Visit(i) would then make post.Num(k) > post.Num(j).

�

In order to analyze the running time of PrePostTraverse, let us

assume that T is represented as a ListGraph. Then the call to AllFrom

runs in Θ(1) time. Furthermore, the while loop iterates exactly m times,

where m is the number of children of i. Because each iteration of the while

loop results in one recursive call, it is easily seen that the running time is

proportional to the total number of calls to PrePostTraverse. It is easily

shown by induction on n, the number of nodes in the subtree rooted at i,

that a call in which the second parameter is i results in exactly n total calls.

The running time is therefore in Θ(n).
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Figure 13.3 Algorithm for testing ancestry for multiple pairs of nodes in a rooted

tree

Precondition: T refers to a Graph representing a tree rooted at i with
edges directed from parents to children, and x[1..m] and y[1..m] are arrays
of Nats less than T.Size().
Postcondition: Returns an array ancestor[1..m] of Bools such that
ancestor[i] is true iff x[i] is a proper ancestor of y[i].

Ancestors(T, i, x[1..m], y[1..m])
n ← T.Size(); ancestor ← new Array[1..m]
pre ← new VisitCounter(n); post ← new VisitCounter(n)
PrePostTraverse(T, i,pre, post)
for j ← 1 to m

condPre ← pre.Num(x[j]) < pre.Num(y[j])
condPost ← post.Num(x[j]) > post.Num(y[j])
ancestor[j] ← condPre and condPost

return ancestor

The algorithm for testing ancestry for multiple pairs of nodes is given

in Figure 13.3. The initialization prior to the call to PrePostTraverse

clearly runs in Θ(n) time, as does the call to PrePostTraverse. The

body of the loop runs in Θ(1) time. Because the loop iterates m times, the

entire algorithm runs in Θ(n+m) time.

13.2 Reachability in a Graph

We will now show how the technique used in the last section can be applied

to graph problems. Consider the problem of determining whether there is

a path from a given vertex i to a given vertex j in an undirected graph.

Viewing the problem top-down, we first note that there is a path if i = j.

Otherwise, we can retrieve all of the vertices adjacent to i and remove i from

the graph. For each vertex k that was adjacent to i, we can then determine

whether there is a path from k to j in the resulting graph. We must be

careful, however, because each of these tests is destructive — it removes all

of the vertices it reaches. As a result, we must be sure a node k is still in the

graph before we solve that subproblem. Note that if it has been removed,

then it must have been reachable from one of the other vertices adjacent

to i; hence all nodes reachable from k have been removed. Thus, if j were

reachable from k, we would have already found that it was reachable from i.
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In order to avoid deleting vertices from the graph, we need a mechanism

for selecting a subgraph based on a given subset of the vertices. More

precisely, let G = (V,E) be a (directed or undirected) graph, and let V ′ ⊆ V .

We define the subgraph of G induced by V ′ to be G′ = (V ′, E′), where E′ is
the set of edges connecting vertices from V ′. We therefore need a mechanism

for selecting a subset of the vertices in the graph.

For this purpose, we define the data structure Selector. A Selector

represents a set of n elements numbered 0, . . . , n − 1, each of which is

either selected or unselected. The constructor and operations for Selector

are specified in Figure 13.4. It is a straightforward matter to implement

Selector using an array of booleans so that the constructor, SelectAll,

and UnselectAll run in Θ(n) time, where n is the number of elements

represented, and so that the remaining operations run in Θ(1) time.

Figure 13.4 Specification of the Selector data structure

Precondition: n is a Nat.
Postcondition: Constructs a Selector of size n, all of whose elements
are selected.

Selector(n)

Precondition: true.
Postcondition: Selects all elements.

Selector.SelectAll()

Precondition: true.
Postcondition: Unselects all elements.

Selector.UnselectAll()

Precondition: i is a Nat less than the number of elements.
Postcondition: Selects element i.

Selector.Select(i)

Precondition: i is a Nat less than the number of elements.
Postcondition: Unselects element i.

Selector.Unselect(i)

Precondition: i is a Nat less than the number of elements.
Postcondition: Returns true if element i is selected, or false otherwise.

Selector.IsSelected(i)
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Figure 13.5 Reachability algorithm for undirected graphs

Precondition: G refers to an undirected Graph, and i and j are Nats
strictly less than G.Size().
Postcondition: Returns true iff there is a path in G from i to j.

Reachable(G, i, j)
n ← G.Size(); sel ← new Selector(n)
pre ← new VisitCounter(n); post ← new VisitCounter(n)
ReachDFS(G, i, sel, pre, post)
return not sel.IsSelected(j)

Precondition: G refers to an undirected graph, i is a Nat such that
i < G.Size(), sel refers to a Selector of size G.Size(), pre and post refer
to VisitCounters of size G.Size(), and sel.IsSelected(i) = true.
Postcondition: Unselects each j such that j is reachable from i in G ,
where G denotes the subgraph of G induced by the set of selected vertices.

ReachDFS(G, i, sel, pre, post)
sel.Unselect(i); pre.Visit(i); L ← G.AllFrom(i)
while not L.IsEmpty()

next ← L.Head().Dest(); L ← L.Tail()
if sel.IsSelected(next)

ReachDFS(G, next, sel, pre, post)
post.Visit(i)

We can now traverse the graph using almost the same algorithm as

PrePostTraverse — the only differences are that pre and post are not

needed, and we must check that a vertex has not already been visited before

we traverse it. We call this traversal a depth-first search (DFS). The entire

algorithm is shown in Figure 13.5. We retain pre and post in order to

maintain a close relationship between ReachDFS and PrePostTraverse.

Let G be an undirected Graph, and let i ∈ N such that i < G.Size().

Further let sel be a Selector of size G.Size() in which all elements are

selected, and let pre and post be VisitCounters of size G.Size() in which

all values are 0. Suppose we invokeReachDFS(G, i, sel,pre,post). We define

a directed graph G′ as follows, based on the behavior of this invocation:

• G′ has the same vertices as G;

• G′ has the edge (j, k) iff a call ReachDFS(G, j, sel,pre,post) is made,

which in turn calls ReachDFS(G, k, sel,pre,post).
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Let us consider the structure of G′. We first observe that for each

vertex k �= i, there is some edge (j, k) in G′ iff k is reachable from

i in G. Furthermore, a call to ReachDFS(G, k, sel,pre,post) can be

made only if sel.IsSelected(k) = true. Because this call immediately

unselects k, and because the algorithm never selects a vertex, it follows

that ReachDFS(G, k, sel,pre,post) can be called at most once. Hence, each

vertex in G′ has at most one incoming edge. Finally, i can have no incoming

edges. Therefore, G′ forms a tree rooted at i. The vertices of G′ are exactly

the vertices reachable from i in the subgraph of G induced by the selected

vertices. G′ is therefore a rooted spanning tree of the connected component

containing i in the subgraph of G induced by the selected vertices.

It should now be clear that the calls to ReachDFS(G, i, sel,pre,post)

and PrePostTraverse(G′, i,pre,post) produce exactly the same values

in pre and post. In essence, ReachDFS performs both a preorder traversal

and a postorder traversal on a rooted tree. This rooted tree is a spanning

tree of a particular connected component of a given graph. The given graph

is the subgraph of the input graph G induced by the selected vertices, and

the connected component is specified by the input vertex i. The spanning

tree is not specified, but is implied by the behavior of ReachDFS. We

call this spanning tree the depth-first spanning tree generated by the call to

ReachDFS(G, i, sel,pre,post).

We can use the correspondence between ReachDFS and PrePostTra-

verse in order to analyze the running time of ReachDFS. Suppose G is

implemented as a ListGraph. Let G′ be the subgraph of G induced by the

selected vertices, and let G′′ be the connected component of G′ containing i;

thus, the vertices in G′′ are the vertices visited by ReachDFS. Let n be

the number of vertices in G′′. Certainly, ReachDFS runs in Ω(n) time. The

only difference in the two algorithms is that in ReachDFS, the loop may

iterate more times. Thus, if we ignore the iterations in which no recursive

call is made, the running time is the same as that of PrePostTraverse:

Θ(n).

In the call ReachDFS(G, j, sel,pre,post), the loop iterates m times,

where m is the number of vertices adjacent to j in G. The total number of

iterations in all recursive calls is therefore 2a1 + a2, where a1 is the number

of edges in G′′ and a2 is the number of edges in G from vertices in G′′ to
vertices not in G′′. The time for a single iteration that does not make a

recursive call is in Θ(1). Because G′′ is connected, a1 ≥ n − 1; hence, the

total running time of ReachDFS(G, i, sel,pre,post) is in Θ(a), where a is

the number of edges in G incident on vertices in G′′.
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13.3 A Generic Depth-First Search

Due to its hierarchical nature, a rooted tree is more amenable to the top-

down approach to algorithm design than is a graph. Furthermore, as we

will see shortly, a depth-first spanning tree has several additional properties

that can prove useful for designing graph algorithms. For this reason, it

makes sense to generalize ReachDFS to a general-purpose depth-first search

algorithm. With such an algorithm, we can then design our algorithms as

traversals of depth-first spanning trees.

In order to generalize this algorithm, we need an ADT for defining various

ways of processing a depth-first spanning tree. Upon examining ReachDFS,

we see that there are five places where processing might occur:

• Preorder processing of vertices can occur prior to the loop.

• Preorder processing of tree edges might occur prior to the recursive call.

• Postorder processing of tree edges might occur following the recursive call.

• Though the if statement in ReachDFS has no else-block, we might

include an else-block for processing other edges.

• Postorder processing of vertices can occur following the loop.

We therefore have the ADT specified in Figure 13.6. The generic depth-first

search is shown in Figure 13.7.

Let us now consider the useful properties of depth-first spanning trees.

These properties concern the non-tree edges. First, we show the following

theorem regarding undirected graphs.

Theorem 13.2. Let G be a connected undirected graph with n vertices, and

let sel be a Selector of size n in which all elements are selected. Suppose

we call Dfs(G, i, sel, s), where s is a Searcher of size n. Then for every

edge {j, k} processed as a non-tree edge, either j is an ancestor of k or k is

an ancestor of j.

Proof. Without loss of generality, assume j is unselected before k is.

Consider the call to Dfs on vertex j. Initially, j is preorder processed while

k is still selected. We consider two cases.

Case 1: {j, k} is processed as a non-tree edge in the call to Dfs on j. Then

when this happens, k must be unselected. There must therefore have been

a call to Dfs on k which unselected k. This call resulted in k being both

preorder processed and postorder processed after j was preorder processed,

but before j was postorder processed. j is therefore a proper ancestor of k.
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Figure 13.6 The Searcher ADT for facilitating depth-first search

Precondition: n is a Nat.
Postcondition: Constructs a new Searcher of size n.

Searcher(n)

Precondition: i is a Nat less than the size of this Searcher.
Postcondition: true.

Searcher.PreProc(i)

Precondition: i is a Nat less than the size of this Searcher.
Postcondition: true.

Searcher.PostProc(i)

Precondition: e is an Edge whose vertices are less than the size of this
Searcher.
Postcondition: true.

Searcher.TreePreProc(e)

Precondition: e is an Edge whose vertices are less than the size of this
Searcher.
Postcondition: true.

Searcher.TreePostProc(e)

Precondition: e is an Edge whose vertices are less than the size of this
Searcher.
Postcondition: true.

Searcher.OtherEdgeProc(e)

Case 2: {j, k} is processed as a tree edge in the call to Dfs on j, but is

processed as a non-tree edge in the call to Dfs on k. In this case, k is by

definition a child of j. �

The above theorem gives the property of depth-first spanning trees that

makes depth-first search so useful for connected undirected graphs. Given

a connected undirected graph G and a depth-first spanning tree T of G,

let us refer to edges of G that correspond to edges in T as tree edges. We

will call all other edges back edges. By definition, tree edges connect parents

with children. Theorem 13.2 tells us that back edges connect ancestors with

descendants.
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Figure 13.7 A generic depth-first search algorithm

Precondition: G refers to a Graph, i is a Nat less than G.Size(), sel
refers to a Selector with size G.Size() such that i is selected, and s refers
to a Searcher with size G.Size().
Postcondition: Traverses a depth-first spanning tree rooted at i on
the connected component containing i in the subgraph of G induced by
the selected vertices. Each vertex j in this tree is processed by calling
s.PreProc(j) before any of j’s proper descendants are processed and by
calling s.PostProc(j) after all of j’s descendants are processed. Each
edge (j, k) in the tree is processed by calling s.TreePreProc((j, k)) be-
fore k is processed and by calling s.TreePostProc((j, k)) after k is pro-
cessed. All other edges e from j to any node in G are processed by calling
s.OtherEdgeProc(e).

Dfs(G, i, sel, s)
sel.Unselect(i); s.PreProc(i); L ← G.AllFrom(i)
while not L.IsEmpty()

edge ← L.Head(); next ← edge.Dest(); L ← L.Tail()
if sel.IsSelected(next)

s.TreePreProc(edge)
Dfs(G, next, sel, s)
s.TreePostProc(edge)

else
s.OtherEdgeProc(edge)

s.PostProc(i)

However, Theorem 13.2 does not apply to depth-first search on a directed

graph. To see why, consider the graph shown in Figure 13.8. The solid edges

in part (b) show a depth-first search tree for the graph in part (a); the

remaining edges of the graph are shown with dashed lines in part (b). Because

0 is the root and all other vertices are reachable from 0, all other vertices

are descendants of 0. Suppose (0, 1) is the first edge from 0 to be processed.

Because 2 is the only vertex reachable from 1, it is the only proper descendant

of 1. Of the remaining edges from 0, only (0, 3) leads to a vertex that has

not yet been reached, so 3 is the only other child of 0. Finally, because 4 is

reachable from 3, 3 is the parent of 4. In the resulting depth-first spanning

tree, 3 is neither an ancestor nor a descendant of 1, but there is an edge

(3, 1) in the graph.
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The point at which the proof of Theorem 13.2 fails for directed graphs

is the initial assumption that j is unselected before k is. For an undirected

graph, one of the endpoints of the edge will be unselected first, and it doesn’t

matter which endpoint we call j. However, with a directed edge, either the

source or the destination may be unselected first, and we must consider both

cases. Given the assumption that the source is unselected first, the remainder

of the proof follows. We therefore have the following theorem.

Theorem 13.3. Let G be a directed graph with n vertices such that all

vertices are reachable from i, and let sel be a Selector of size n in which

all elements are selected. Suppose we call Dfs(G, i, sel, s), where s is a

Searcher of size n. Then for every edge (j, k) processed as a non-tree edge,

if j is unselected before k is, then j is an ancestor of k.

Thus, if we draw a depth-first spanning tree with subtrees listed from

left to right in the order we unselect them (as in Figure 13.8), there will be

no edges leading from left to right. As we can see from Figure 13.8, all three

remaining possibilities can occur, namely:

• edges from ancestors to descendants (we call these forward edges if they

are not in the tree);

• edges from descendants to ancestors (we call these back edges); and

• edges from right to left (we call these cross edges).

Theorem 13.3 gives us the property we need to make use of depth-first search

with directed graphs.

As a final observation, we note that back edges in directed graphs always

form cycles, because there is always a path along the tree edges from a vertex

to any of its descendants. Hence, a directed acyclic graph cannot have back

edges.

Figure 13.8 Example of depth-first search on a directed graph

0

2 4

1 3 1 3

2 4

0

(b)(a)
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In the next three sections, we will show how to use depth-first search to

design algorithms for connected undirected graphs, directed acyclic graphs,

and directed graphs.

13.4 Articulation Points

As we mentioned at the beginning of this chapter, an articulation point in

a connected undirected graph is any vertex whose removal yields a discon-

nected graph. If, for example, a given graph represents a communications

network, then an articulation point is a node whose failure would partition

the network. It would therefore be desirable to know if a given network

contains any articulation points.

Let G be a connected undirected graph, and let T be a depth-first

spanning tree for G. We first note that it is easy to tell if the root of T

is an articulation point. If T has only one child, then the removal of its

root from G cannot disconnect G — the tree edges continue to connect the

graph. On the other hand, from Theorem 13.2, G can have no edges between

different subtrees of T . Thus, if T has more than one child, its root must be

an articulation point of G. We therefore conclude that the root of T is an

articulation point of G iff it has more than one child.

The above property suggests the following algorithm. Let n be the

number of vertices and a be the number of edges in G. We do n separate

depth-first searches, using a different vertex as the root for each search. As

we process the tree edges (either in preorder or in postorder), we count the

number of children of the root. After the search completes, we then determine

whether the root is an articulation point by examining the number of children

it has. It is not hard to see that we could construct such an algorithm with

running time in Θ(na), provided G is implemented as a ListGraph.

In order to obtain a more efficient algorithm, let us consider some vertex

i other than the root of T . If there are no back edges in G, then the removal

of i disconnects G if i has at least one child. In this case, G is partitioned into

one connected component for each child of i, plus a connected component

containing all vertices that are not descendants of i. If, however, there are

back edges, these back edges may connect all of these partitions together.

Note, however, that from Theorem 13.2, no back edge can connect partitions

containing two different children of i. In particular, if a back edge does

connect a partition containing a child of i with another partition, it leads

from a proper descendant of i to a proper ancestor of i. We therefore conclude

that i is an articulation point iff i has at least one child j in T such that no

descendant of j is adjacent to a proper ancestor of i.
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If we can efficiently test the above property, then we should be able

to find all articulation points with a single depth-first search. Note that

it is sufficient to know, for each vertex j other than the root, the highest

ancestor k of j that is adjacent to some descendant of j. The parent i of

j is an articulation point if k = i. On the other hand, if for each child

j of i, the highest ancestor k adjacent to some descendant of j is a proper

ancestor of i, then i is not an articulation point. Because a vertex is preorder

processed before all of its descendants, we can determine which of a given set

of ancestors of a vertex is the closest to the root by determining which was

preorder processed first. Thus, let us use a VisitCounter pre to keep track

of the order the vertices are preorder processed. We then need to compute

the following value for each vertex i other than the root:

highest[i] = min{pre.Num(k) | k is adjacent to a descendant of i}. (13.1)

Let us consider a top-down approach to computing highest[i]. We first

observe that if j is a child of i, then highest[i] ≤ highest[j]. Furthermore,

the vertex k determining highest[i] is adjacent to either i or some proper

descendant of i. If k is adjacent to a proper descendant of i, then highest[i] =

highest[j] for some child j of i. Finally, because i is adjacent to its parent,

which has a smaller value in pre than does any child of i, we can ignore

the pre values of the children of i in computing highest[i]. We therefore

conclude that

highest[i] = min({pre.Num(k) | {i, k} is a back edge}
∪ {highest[j] | j is a child of i}). (13.2)

We can now build a Searcher s so that Dfs(G, 0, sel, s) will find the

articulation points of G, where sel is an appropriate Selector. (Note that

it doesn’t matter which node is used as the root of the depth-first search,

so we will arbitrarily use 0.) Let n be the number of vertices in G. We

need as representation variables a VisitCounter pre of size n, an array

highest[0..n−1], a readable array artPoints[0..n−1] of booleans to store the

results, and a natural number rootChildren to record the number of children

of the root. Note that making artPoints readable makes this data structure

insecure, because code that can read the reference to the array can change

values in the array. We will discuss this issue in more detail shortly.

To implement the Searcher operations, we only need to determine

when the various calculations need to be done. Initialization should go in the

constructor; however, because the elements of the arrays are not needed until
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the corresponding vertices are processed, we can initialize these elements in

PreProc. We want the processing of a vertex i to compute highest[i]. In

order to use recurrence (13.2), we need pre.Num(k) for each back edge {i, k}
and highest[j] for each child j of i. We therefore include the code to compute

highest[i] in OtherEdgeProc and TreePostProc. The determination of

whether a vertex i other than the root is an articulation point needs to occur

once we have computed highest[j] for each child j of i; hence, we include this

code in TreePostProc. To be able to determine whether the root is an

articulation point, we count its children in TreePostProc. We can then

make the determination once all of the processing is complete, i.e., in the

call to PostProc for the root.

The implementation of ArtSearcher is shown in Figure 13.9. We have

not given an implementation of the TreePreProc operation — it does

Figure 13.9 ArtSearcher implementation of Searcher

ArtSearcher(n)
artPoints ← new Array[0..n − 1]; highest ← new Array[0..n − 1]
pre ← new VisitCounter(n); rootChildren ← 0

ArtSearcher.PreProc(i)
pre.Visit(i); artPoints[i] ← false; highest[i] ← ∞

ArtSearcher.TreePostProc(e)
i ← e.Source(); j ← e.Dest(); highest[i] ← Min(highest[i], highest[j])
if i = 0

rootChildren ← rootChildren + 1
else if highest[j] = pre.Num(i)

artPoints[i] ← true

ArtSearcher.OtherEdgeProc(e)
i ← e.Source(); k ← e.Dest()
highest[i] ← Min(highest[i], pre.Num(k))

ArtSearcher.PostProc(i)
if i = 0 and rootChildren > 1

artPoints[i] ← true
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Figure 13.10 Algorithm for finding articulation points in a connected undirected

graph

Precondition: G refers to a connected undirected Graph.
Postcondition: Returns an array A[0..G.Size() − 1] of booleans such that
A[i] is true iff i is an articulation point in G.

ArtPts(G)
n ← G.Size(); s ← new ArtSearcher(n); sel ← new Selector(n)
Dfs(G, 0, sel, s)
return s.ArtPoints()

nothing. We have also not specified any preconditions or postconditions

for the constructor or any of the operations. The reason for this is that

we are only interested in what happens when we use this structure with a

depth-first search. It therefore doesn’t make sense to prove its correctness

in every context. As a result, we don’t need to make this structure secure.

Furthermore, the code in each of the operations is so simple that specifying

preconditions and postconditions is more trouble than it is worth. As we will

see, it will be a straightforward matter to prove that the algorithm that uses

this structure is correct.

We can now construct an algorithm that uses depth-first search to find

the articulation points in a connected undirectedGraphG. The algorithm is

shown in Figure 13.10. Let n be the number of vertices and a be the number

of edges in G, and suppose G is implemented as a ListGraph. Because each

of the operations in ArtSearcher runs in Θ(1) time, it is easily seen that

the call to Dfs runs in Θ(a) time, the same as ReachDFS. The remaining

statements run in Θ(n) time. Because G is connected, n ∈ O(a), so the entire

algorithm runs in Θ(a) time.

To prove that ArtPts is correct, we need to show that the call to Dfs

results in s.artPoints containing the correct boolean values. In order to prove

this, it is helpful to prove first that s.highest contains the correct values. This

proof uses the fact that Dfs performs a traversal of a depth-first spanning

tree of G.

Lemma 13.4. Let G be a connected undirected Graph with n vertices. Let

sel be a Selector of size n in which all elements are selected, and let s be

a newly-constructed ArtSearcher of size n. Then Dfs(G, 0, sel, s) results

in s.highest[i] having the value specified in Equation (13.1) for 1 ≤ i < n.
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Proof. Let 1 ≤ i < n. We first observe that s.highest[i] is only changed

by PreProc(i), TreePostProc(e), and OtherEdgeProc(e), where e

is an edge from i; i.e., s.highest[i] is only changed during the processing of

vertex i. We will show by induction on m, the number of descendants of i in

the depth-first spanning tree, that the processing of vertex i gives s.highest[i]

the correct value.

Induction Hypothesis: Assume that for any j with fewer than m

descendants, the processing of vertex j gives s.highest[j] the correct value.

Induction Step: Suppose i has m descendants. It is easily seen that the

processing of vertex i assigns to s.highest[i] the value,

min({s.pre.Num(k) | {i, k} is a back edge} ∪
{s.highest[j] | j is a child of i}).

We are denoting edges as
directed edges because a
Graph uses only directed
edges (see p. 321).

We must show that s.pre.Num(k) and s.highest[j]

have the correct values when they are used.

s.pre.Num(k) is used in OtherEdgeProc(e),

where e = (i, k). This operation is only called

when k is unselected, and hence after PreProc(k) has been called.

s.pre.Num(k) has therefore been set to its correct value. s.highest[j] is used

in TreePostProc(e), where e = (i, j). Hence, j is a child of i that has

been processed. Because j is a child of i, it has strictly fewer than m

descendants. Thus, by the Induction Hypothesis, its processing sets it to

its correct value. Thus, the processing of vertex i sets s.highest[i] to the

value given in Equation (13.2), which we have shown to be equivalent to

Equation (13.1). �

The proof of Lemma 13.4 relies heavily on known properties of depth-first

search and depth-first spanning trees. As a result, it is quite straightforward.

Often proofs of correctness for algorithms using depth-first search don’t even

require induction. Such is the case for the proof of the following theorem.

Theorem 13.5. ArtPts satisfies its specification.

Proof. Let 0 ≤ i < n. We must show that the call to Dfs results in

s.artPoints[i] being true if i is an articulation point, or false otherwise.

We first note that artPoints[i] is changed only during the processing of i.

Furthermore, it is initialized to false in PreProc(i). We must therefore show

that it is set to true iff i is an articulation point. We consider two cases.
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Case 1: i = 0. Then artPoints[i] is set to true iff rootChildren > 1 in the

call to PostProc(0). rootChildren is only changed during the processing

of vertex 0. It is initialized in PreProc(0) to 0 and incremented by 1 in

TreePostProc(e) for each tree edge (0, j). When PostProc(0) is called,

rootChildren therefore contains the number of children of vertex 0, which is

the root of the depth-first spanning tree. As we have observed earlier, the

root is an articulation point iff it has more than one child.

Case 2: i > 0. Then artPoints[i] is set to true iff s.highest[j] has a value

equal to s.pre.Num(i) in the call to TreePostProc(e), where e = (i, j)

for some vertex j. Because (i, j) is passed to TreePostProc, j must be

a child of i. From Lemma 13.4, the call to Dfs sets s.highest[j] to the

correct value, as defined in Equation (13.1). Furthermore, an examination of

the proof of Lemma 13.4 reveals that this value is set by the processing of

vertex j. This processing is done prior to the call to TreePostProc(e), so

that s.highest[j] has the correct value by the time it is used. Furthermore,

s.pre.Num(i) is set to its proper value by PreProc(i), which is also called

before TreePostProc(e). As we have already shown, i is an articulation

point iff s.highest[j] = s.pre.Num(i) for some child j of i. �

13.5 Topological Sort Revisited

In Section 9.2, we gave an algorithm for finding a topological sort of a

directed acyclic graph. This algorithm ran in Θ(n+a) time for a ListGraph

with n vertices and a edges. In this section, we give an alternative algorithm

that illustrates the use of depth-first search on directed acyclic graphs.

We first note that a shortcoming of the Dfs algorithm is that it only

processes vertices that are reachable from the root. In an arbitrary graph,

there may be no vertex from which every vertex is reachable; hence it may

be impossible to find a depth-first spanning tree (or any spanning tree) for

the graph.

To remedy this shortcoming, we provide the algorithm DfsAll, shown

in Figure 13.11. In order to understand its postcondition, it helps compare

its behavior with that of Dfs. In particular, suppose G has n vertices, and

let G′ be the graph obtained by adding a new vertex n to G and edges from n

to every other vertex in the graph. Notice that the behavior of the for loop

in DfsAll(G, s) is exactly the same as the behavior of Dfs(G′, n, sel, s),
except thatDfsAll only processes the vertices and edges in G. In particular,

each time Dfs is called by DfsAll, it traverses a subtree of G′ rooted
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Figure 13.11 Algorithm for processing an entire graph with depth-first search

Precondition: G is a Graph and s is a Searcher with size G.Size().
Postcondition: Traverses a depth-first spanning forest on G. Each ver-
tex j in this forest is processed by calling s.PreProc(j) before any of
j’s proper descendants are processed and by calling s.PostProc(j) after
all of j’s descendants are processed. Each edge (j, k) in the forest is pro-
cessed by calling s.TreePreProc((j, k)) before k is processed and by call-
ing s.TreePostProc((j, k)) after k is processed. All other edges e from j
to any node in G are processed by calling s.OtherEdgeProc(e).

DfsAll(G, s)
n ← G.Size(); sel ← new Selector(n)
for i ← 0 to n − 1

if sel.IsSelected(i)
Dfs(G, i, sel, s)

at a child of the root n. For this reason, we call the collection of trees

traversed by DfsAll a depth-first spanning forest. In particular, note that

either Theorem 13.2 or Theorem 13.3, depending on whether G is undirected

or directed, can be extended to apply to this forest.

Let G be a ListGraph with n vertices and a edges. A graph G′

constructed by adding a new vertex and n − 1 new edges to G then has

n+ a− 1 edges. Therefore, the running time of DfsAll(G, s) is easily seen

to be in Θ(n+a), provided each of the vertex and edge processing operations

in s runs in Θ(1) time.

Now consider the depth-first spanning forest for a directed acyclic graph.

Because there are no cycles, the spanning forest can have no back edges. This

leaves only tree edges, forward edges and cross edges. Furthermore, for each

of these types of edge (i, j), j is postorder processed before i. This property

suggests a straightforward algorithm for topological sort, namely, to order

the vertices in the reverse of the order in which they are postorder processed

by a depth-first search.

The Searcher for this algorithm needs as representation variables a

readable array order[0..n−1] for storing the listing of vertices in topological

order and a natural number loc for storing the location in order of the last

vertex to be inserted. Only the constructor and the PostProc operation are

nonempty; these are shown in Figure 13.12. The topological sort algorithm is

shown in Figure 13.13. If G is implemented as a ListGraph, the algorithm’s
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Figure 13.12 TopSortSearcher implementation of Searcher

TopSortSearcher(n)
order ← new Array[0..n − 1]; loc ← n

TopSortSearcher.PostProc(i)
loc ← loc − 1; order[loc] ← i

Figure 13.13 Topological sort algorithm using depth-first search

Precondition: G is a directed acyclic graph.
Postcondition: Returns an array listing the vertices of G in topological
order.

DfsTopSort(G)
n ← G.Size(); s ← new TopSortSearcher(n)
DfsAll(G, s)
return s.Order()

running time is clearly in Θ(n+ a), where n is the number of vertices and a

is the number of edges in G. We leave the proof of correctness as an exercise.

13.6 Strongly Connected Components

Let G = (V,E) be a directed graph. We say that G is strongly connected

if for each pair of vertices u and v, there is a path from u to v. For an

arbitrary directed graph G, let S ⊆ V . We say that S is a strongly connected

component of G if

• the subgraph of G induced by S is strongly connected; and

• for any subset S′ ⊆ V , if S ⊆ S′ and the subgraph of G induced by S′ is
strongly connected, then S′ = S.

Thus, the strongly connected component containing a given vertex i is the

set of vertices j such that there are paths from i to j and from j to i.

It is easily seen that the strongly connected components of a directed

graph G = (V,E) partition the V into disjoint subsets. We wish to design

an algorithm to find this partition.
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Let us consider a depth-first spanning forest of a directed graph G. We

will begin by trying to find one strongly connected component. We first note

that from any vertex i, we can reach all descendants of i. Depending on which

back edges exist, we may be able to reach some ancestors of i. Depending

on which cross edges exist, we may be able to reach some other vertices as

well; however, we cannot reach any vertices in a tree to the right of the tree

containing i (i.e., vertices in a tree that is processed later).

This suggests that we might focus on either the first or the last tree

processed. Consider the last tree processed. Let i be the root, and let j be

any vertex such that there is a path from j to i. Then j must be in the same

tree as i, and hence must be a descendant of i. There is therefore a path

from i to j. As a result, the strongly connected component containing i is

the set of vertices j such that there is a path from j to i. We generalize this

fact with the following theorem.

Theorem 13.6. Let G be a directed graph, and let F be a depth-first

spanning forest of G. Let S be a strongly connected component of G, and let

i be the vertex in S that is postorder processed last. Let G′ be the subgraph

of G induced by set of vertices postorder processed no later than i. Then S

is the set of vertices j such that there is a path from j to i in G′.

Proof. Clearly, for every vertex j ∈ S, there is a path from j to i that

stays entirely within S. Because i is postorder processed last of the vertices

in S, this path stays within G′. Therefore, let j be a vertex such that there

is a path from j to i in G′. We will show that j ∈ S. Specifically, we will

show that j is a descendant of i, so that there is a path from i to j. The

proof is by induction on n, the length of the shortest path from j to i in G′.

Base: n = 0. Then j = i, so that j is a descendant of i.

Induction Hypothesis: Let n > 0, and assume that for every m < n, if

there is a path of length m from k to i in G′, then k is a descendant of i.

Induction Step: Suppose there is a path of length n from j to i in G′. Let
(j, k) be the first edge in this path. Then there is a path of length n−1 from

k to i in G′. From the Induction Hypothesis, k is a descendant of i. We now

have three cases.

Case 1: (j, k) is a back edge. Then j is clearly a descendant of i.
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Case 2: (j, k) is either a forward edge or a tree edge. Then i and j are both

ancestors of k. Because j is in G′, it can be postorder processed no later

than i. Therefore, j cannot be a proper ancestor of i. j must therefore be a

descendant of i.

Case 3: (j, k) is a cross edge. Then k is postorder processed before j

is. Because j is postorder processed between k and i, and because k is a

descendant of i, j must also be a descendant of i. �

The above theorem suggests the following approach to finding the con-

nected components of G. We first do a depth-first search on the entire graph

using a postorder VisitCounter post. We then select all of the vertices. To

see how we might find an arbitrary strongly-connected component, suppose

some of the components have been found and unselected. We find the selected

vertex i that has maximum post.Num(i). We then find all vertices j from

among the selected vertices such that there is a path from j to i containing

only selected vertices.

We have to be careful at this point because the set of selected vertices

may not be exactly the set of vertices that are postorder processed no later

than i. Specifically, there may be a vertex j that belongs to one of the

components that have already been found, but which is postorder processed

before i. However, Theorem 13.6 tells us that because j belongs to a different

component than i, there is no path from j to i. Therefore, eliminating such

nodes will not interfere with the correct identification of a strongly connected

component. We conclude that the vertices that we find comprise the strongly

connected component containing i.

In order to be able to implement this algorithm, we need to be able to

find all vertices j from which i is reachable via selected vertices. This is

almost the same as the reachability problem covered in Section 13.2, except

that the edges are now directed, and we must follow the edges in the wrong

direction. It is not hard to see that we can use depth-first search to find all

vertices reachable from a given vertex i in a directed graph. In order to be

able to use this algorithm to find all vertices j from which i is reachable, we

must reverse the direction of the edges.

Because DfsAll processes all of the edges in the graph, we can use it

to build a new graph in which all of the edges have been reversed. In fact,

we can use the same depth-first search to record the order of the postorder

processing of the vertices. We use three representation variables:



Depth-First Search 435

• a readable ListMultigraph reverse (recall from Section 9.5 that if we

know we will not attempt to add parallel edges, it is more efficient to add

edges to a ListMultigraph and construct a ListGraph from it);

• a readable array order[0..n − 1]; and

• a natural number loc.

As we process each edge, we add its reverse to reverse. As we postorder

process each vertex, we add it to order as we did for topological sort

(Figure 13.12). The resulting RevSearcher is shown in Figure 13.14.

Once DfsAll is called with a RevSearcher, we need to perform

a second depth-first search on the entire reversed graph. The Searcher

we need for this search uses a readable array components[0..n − 1] in

which it will store values indicating the component to which a given vertex

belongs, along with a natural number count to keep track of the number

of strongly connected components completely found. It also includes an

operationNextComp, used to indicate that a strongly connected component

has been found completely. Its implementation is shown in Figure 13.15.

Because the second depth-first search must start each tree at a particular

vertex, we need to modifyDfsAll slightly. The resulting algorithm is shown

in Figure 13.16. We leave it as an exercise to show that this algorithm runs

Figure 13.14 RevSearcher implementation of Searcher

RevSearcher(n)
reverse ← new ListMultigraph(n)
order ← new Array[0..n − 1]; loc ← n

RevSearcher.TreePreProc(e)
reverse.Put(e.Dest(), e.Source(), e.Data())

RevSearcher.OtherEdgeProc(e)
reverse.Put(e.Dest(), e.Source(), e.Data())

RevSearcher.PostProc(i)
loc ← loc − 1; order[loc] ← i
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Figure 13.15 SccSearcher implementation of Searcher

SccSearcher(n)
components ← new Array[0..n − 1]; count ← 0

SccSearcher.PreProc(i)
components[i] ← count

SccSearcher.NextComp()
count ← count + 1

Figure 13.16 An algorithm for finding strongly connected components in a directed

graph

Precondition: G refers to a directed Graph.
Postcondition: Returns an array C[0..n − 1], where n is the number of
vertices in G, such that C[i] = C[j] iff i and j belong to the same strongly
connected component.

StronglyConnComp(G)
n ← G.Size(); rs ← new RevSearcher(n)
DfsAll(G, rs)
order ← rs.Order(); G ← new ListGraph(rs.Reverse())
ss ← new SccSearcher(n); sel ← new Selector(n)
for i ← 0 to n − 1

if sel.IsSelected(order[i])
Dfs(G , order[i], sel, ss); ss.NextComp()

return ss.Components()

in Θ(n+ a) time, where n is the number of vertices and a is the number of

edges.

13.7 Summary

Many graph problems can be reduced to depth-first search. In performing the

reduction, we focus on a depth-first spanning tree or a depth-first spanning

forest. Because a rooted tree is more amenable to the top-down approach

than is a graph, algorithmic design is made easier. Furthermore, depth-first

spanning trees have structural properties that are often useful in designing

graph algorithms.
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The implementation of a reduction to depth-first search consists mainly

of defining an implementation of the Searcher ADT. This data structure

defines what processing will occur at the various stages of the traversal of

the depth-first spanning tree. Proofs of correctness can then focus on the

traversal, utilizing induction as necessary.

13.8 Exercises

Exercise 13.1. Analyze the worst-case running time of the algorithm Pre-

PostTraverse, shown in Figure 13.2, assuming the tree T is implemented

as a MatrixGraph.

Exercise 13.2. Prove thatDfsTopSort, shown in Figures 13.12 and 13.13,

meets its specification.

Exercise 13.3. Show that StronglyConnComp, shown in Figures 13.14–

13.16, runs in Θ(n+ a) time, where n is the number of vertices and a is the

number of edges in the given graph, assuming the graph is implemented as

a ListGraph.

Exercise 13.4. Prove that StronglyConnComp, shown in Figures 13.14–

13.16, meets its specification.

Exercise 13.5. Give an algorithm that decides whether a given directed

graph G contains a cycle. Your algorithm should return a boolean value

that is true iff G has a cycle. Assuming G is implemented as a ListGraph,

your algorithm should run in O(n+a) time, where n is the number of vertices

and a is the number of edges in G.

Exercise 13.6. A bridge in a connected undirected graph is an edge whose

removal disconnects the graph. Give an algorithm that returns a ConsList

containing all bridges of a given connected undirected graph. Your algorithm

should run in O(a) time in the worst case, where a is the number of edges

in the graph, assuming the graph is implemented as a ListGraph.

Exercise 13.7. A connected undirected graph is said to be biconnected if

it is impossible to disconnect the graph by removing a single vertex; i.e., it

is biconnected iff it has no articulation points. A biconnected component of

a connected undirected graph G is a maximal biconnected subgraph G′ of
G (by “maximal”, we mean that there is no biconnected subgraph of G that

contains all of G′ plus other vertices and/or edges).

a. Prove that each edge in a connected undirected graph G belongs to

exactly one biconnected component of G.
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* b. Give an algorithm to identify the biconnected components of a given

connected undirected graph G. Specifically, your algorithm should set

the data field of each Edge in G to a natural number so that e.data =

f.data iff e and f belong to the same biconnected component. Your

algorithm should run in O(a) time in the worst case, where a is the

number of edges in the graph, assuming the graph is implemented as

a ListGraph.

* Exercise 13.8. A directed graph is semiconnected if for each pair of

vertices i and j, there is either a path from i to j or a path from j to i. Give

an algorithm to decide whether a given directed graph G is semiconnected.

Your algorithm should return a boolean that is true iff G is semiconnected.

Your algorithm should run in O(n+a) time, where n is the number of vertices

and a is the number of edges in G.

* Exercise 13.9. An arborescence of a directed graph G = (V,E) is a

subset E′ ⊆ E such that (V,E′) is a rooted tree with edges directed from

parents to children. Give an algorithm to determine whether a given directed

graph G contains an arborescence, and if so, returns one. If G contains an

arborescence, your algorithm should return an array parent[0..n − 1] such

that parent[i] gives the parent of vertex i for all vertices other than the root,

and such that parent[i] = −1 if i is the root of the arborescence. If G does

not contain an arborescence, your algorithm should return nil. You algorithm

should operate in O(n+ a) time, where n is the number of vertices and a is

the number of edges in G.

* Exercise 13.10. Give an algorithm that takes a connected undirected

graph G = (V,E) as input and produces as output a strongly connected

directed graph G′ = (V,E′) such that

• if {i, j} ∈ E, then exactly one of (i, j) and (j, i) is in E′; and
• if {i, j} �∈ E, then neither (i, j) nor (j, i) is in E′.

Thus, G′ is obtained from G by assigning a direction to each edge of G. If

no such G′ exists, your algorithm should return nil. Your algorithm should

run in O(a) time, where a is the number of edges in the graph, assuming G

is implemented as a ListGraph.

* Exercise 13.11. A directed graph is singly connected if for each pair

of vertices i and j, there is at most one simple path from i to j. Give an

efficient algorithm to determine whether a given directed graph G is singly

connected. Your algorithm should return a boolean that is true iff G is singly
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connected. Analyze the worst-case running time of your algorithm assuming

that G is implemented as a ListGraph.

* Exercise 13.12. A coloring of an undirected graph is an assignment of

labels to the vertices such that no two adjacent vertices have the same label.

A k-coloring is a coloring that uses no more than k distinct labels. Give

an efficient algorithm to find a 3-coloring for a given connected undirected

graph G such that no vertex in G is adjacent to more than 3 vertices, and

at least one vertex is adjacent to strictly fewer than 3 vertices (a 3-coloring

always exists for such a graph). Your algorithm should run in O(n) time,

where n is the number of vertices in G, assuming G is implemented as a

ListGraph.

Exercise 13.13. An undirected graph is said to be bipartite if its vertices

can be partitioned into two disjoint sets such that no two vertices belonging

to the same partition are adjacent. (Note that such a partitioning is a

2-coloring, as defined in Exercise 13.12.) Give an efficient algorithm to find

such a partitioning if one exists. Your algorithm should run in O(n+a) time,

where n is the number of vertices and a is the number of edges in the graph.

13.9 Notes

The depth-first search technique was developed in the nineteenth century

by Trémaux, as reported by Lucas [92]. Its properties were studied by

Tarjan [110], who presented an algorithm he credits to Hopcroft for finding

articulation points and biconnected components (Exercise 13.7); see also

Hopcroft and Tarjan [65]. The algorithm given in Section 13.6 for finding

strongly connected components is due to Sharir [105].
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Chapter 14

Network Flow and Matching

In this chapter, we examine the network flow problem, a graph problem to

which many problems can be reduced. In fact, some problems that don’t

even appear to be graph problems can be reduced to network flow, yielding

efficient algorithms. We begin by defining the problem.

Let Z denote the set of integers, and let Z
>0 denote the set of positive

integers. A flow network is a 4-tuple (G,u, v, C), where

• G = (V,E) is a directed graph;

• u ∈ V is the source vertex ;

• v ∈ V is the sink vertex ; and

• C : E → Z
>0 gives a positive integer capacity for each edge.

For example, Figure 14.1 shows a flow network whose source is 0, whose sink

is 5, and whose edges all have capacity 1. Intuitively, the capacities represent

the maximum flow that the associated edges can support. We are interested

in finding the maximum total flow from u to v that the network can support.

The above definition is more general than what is typical. The standard

definition prohibits incoming edges to the source and outgoing edges from

the sink. However, this more general definition is useful for the development

of our algorithms.

In order to define formally a network flow, we need some additional

notation. For a vertex x in a directed graph, let

• x← = {(w, x) ∈ E}, the set of incoming edges to x; and

• x→ = {(x, y) ∈ E}, the set of outgoing edges from x.

A flow for a flow network ((V,E), u, v, C) is function F : E → N such that

• for each e ∈ E, F (e) ≤ C(e); and

441
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Figure 14.1 A flow network
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• for each vertex x ∈ V \{u, v},
∑
e∈x←

F (e) =
∑
e∈x→

F (e).

Thus, the flow on each edge is no more than that edge’s capacity, and the

total flow into a vertex other than the source or the sink is the same as the

total flow out of that vertex. An example of a flow on the network shown

in Figure 14.1 would have a flow of 1 on every edge except (4, 1); this edge

would have a flow of 0.

We leave it as an exercise to show that for any flow F of a flow network

(G,u, v, C),

∑
e∈u→

F (e)−
∑
e∈u←

F (e) =
∑
e∈v←

F (e)−
∑
e∈v→

F (e). (14.1)

We therefore define the value of a flow to be the above difference — the

net flow out of the source, or equivalently, the net flow into the sink. Thus,

the flow described above for the network in Figure 14.1 has a value of 2.

Given a flow network, the network flow problem is to find a network flow

with maximum value. Clearly, 2 is the maximum value of any flow for the

network in Figure 14.1.

In the next two sections, we will examine algorithms for the network

flow problem. In the remainder of the chapter, we will consider the bipartite

matching problem, and show how to reduce it to network flow.
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14.1 The Ford–Fulkerson Algorithm

A flow for a given network can be found by finding a simple path (i.e., one

in which no vertices are repeated) from the source to the sink. We will refer

to such a path as anaugmenting path. If no augmenting path exists, then the

maximum flow must be 0. Otherwise, suppose m is the minimum capacity

of any edge in some particular augmenting path. We can clearly place a flow

of m on each edge in that path. We can then solve the smaller network flow

problem obtained by reducing the capacity of each edge on the augmenting

path by m, and removing any edge whose capacity would become 0. If we

measure the size of a problem instance as the value of a maximum flow, then

the resulting problem instance is clearly smaller. We can then combine the

flow obtained from the solution to the smaller problem with the first flow

we obtained.

The above approach clearly finds a flow for a given network. Unfor-

tunately, that flow is not guaranteed to be a maximum flow. To see why,

consider the flow network in Figure 14.1. Suppose the first augmenting path

found is 〈0, 2, 4, 1, 3, 5〉. We can put a flow of 1 on each of these edges. In

the smaller instance, each of these edges would be removed, so that there is

no augmenting path in the resulting network. The flow found on the smaller

instance is therefore empty, so that the final flow has value 1. As we have

already seen, a maximum flow for this network has value 2.

The most obvious approach to repairing this algorithm is to be more

careful in how we choose the augmenting path. However, it turns out that a

more straightforward approach is to be more careful in how we construct the

smaller problem instance. The problem with the reduction described above

is that once we decide to place a flow on an edge, we cannot reverse that

decision. If we are more careful, we can construct a smaller instance that

allows us to reverse these decisions.

Specifically, when we decrease the capacity of an edge by m, we also

increase by m the capacity of the edge going the opposite direction. If there

is no such edge, we add it to the graph. When we combine the two flows, we

allow flows in opposite directions to cancel each other; i.e., if edge (x, y) has

flow k and edge (y, x) has flow k′ ≤ k, we set the flow on (x, y) to k− k′ and
the flow on (y, x) to 0. Note that because any edge added to the graph by

the reduction will have a capacity of m, and the initial flow will be m in the

opposite direction, the combination of the two flows will result in no flow on

any edge that was added to the graph. We can therefore remove these edges

from the resulting flow.
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Figure 14.2 Examples of residual graphs
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Let us now formalize the construction outlined above. Let (G,u, v, C)

be a flow network, and let P be the set of edges in some augmenting path.

Let m be the minimum capacity of any edge in P . We define the residual

network of (G,u, v, C) with respect to P to be the flow network (G′, u, v, C ′),
where G′ and C ′ are defined as follows:

• G′ is constructed from G by removing any edges in P with capacity m

and by adding edges (y, x) such that (x, y) ∈ P and (y, x) is not an edge

in G.

• C ′((x, y)) is defined as follows for each edge (x, y) ∈ G′:

– If (x, y) ∈ P , C ′((x, y)) = C((x, y))−m.

– If (y, x) ∈ P and (x, y) is an edge in G, C ′((x, y)) = C((x, y)) +m.

– If (y, x) ∈ P and (x, y) is not an edge in G, C ′((x, y)) = m.

– Otherwise, C ′((x, y)) = C((x, y)).

Thus, Figure 14.2(a) shows the residual network for the flow network in

Figure 14.1 with respect to the augmenting path 〈0, 2, 4, 1, 3, 5〉. This graph
has an augmenting path: 〈0, 1, 4, 5〉. The residual network with respect to

this augmenting path is shown in Figure 14.2(b). There is no augmenting

path in this graph. If we combine the flows obtained by assigning a flow of

1 to each edge in the respective paths, the flows on the edges (4, 1) in the

original graph and (1, 4) in the graph in Figure 14.2(a) cancel each other

out. The resulting flow therefore has a flow of 1 on each edge except (4, 1)

in the original network. This flow has a value of 2, which is maximum.
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We now need to prove the correctness of this reduction. We begin by

showing the following lemma.

Lemma 14.1. Let (G,u, v, C) be a flow network, and let P be the set of

edges on some augmenting path. Let F1 be the flow obtained by adding a

flow of m to each edge in P , where m is the minimum capacity of any edge

in P . Let F2 be a maximum flow on the residual graph of (G,u, v, C) with

respect to P , and suppose F2 has value k. Then the combination of F1 and

F2 is a flow with value k +m on (G,u, v, C).

Proof. We must first show that the combination of the two flows does not

give a flow where there is no edge in G. This can only happen if there is a

flow in F2 on an edge (x, y) that is not in G. Then (y, x) must be an edge

in P . The capacity of (x, y) in the residual graph is therefore m. Because

the flow on (y, x) in F1 is m, the combination of F1 and F2 cannot give a

positive flow on (x, y).

We will now show that in the combination of F1 with F2, the flow on

each edge (x, y) is no more than C((x, y)). The only way this can happen is

if there is positive flow on (x, y) in F2. We consider three cases.

Case 1: (x, y) ∈ P . Then C ′((x, y)) = C((x, y)) −m. The sum of the two

flows on (x, y) is therefore at most C((x, y)).

Case 2: (y, x) ∈ P . Then C ′((x, y)) = C((x, y)) +m. In the combination of

F1 with F2, the flow on (x, y) is its flow in F2, minus m. This total flow can

be no more than C((x, y)).

Case 3: (x, y) �∈ P and (y, x) �∈ P . Then C ′((x, y)) = C((x, y)). In the

combination of F1 with F2, the flow on (x, y) is simply its flow in F2, which

can be no more than C((x, y)).

Finally, it is clear that for each vertex w in G other than u and v, the

total flow into w must equal the total flow out of w, and that the total flow

out of u is k +m. �

Using the above Lemma, we can prove the theorem below. Combined

with Lemma 14.1, this theorem ensures that the reduction yields a maximum

flow for the given network.

Theorem 14.2. Let (G,u, v, C) be a flow network with maximum flow k,

and let P be the set of edges in some augmenting path. Let m be the minimum
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capacity of any edge in P , and let (G′, u, v, C ′) be the residual network of

(G,u, v, C) with respect to P . Then the maximum flow for (G′, u, v, C ′) has
value k −m.

Proof. Let F1 be a maximum flow for (G,u, v, C). Then F1 has value k.

To simplify our discussion, let us interpret F1 as a function F1 : V ×V → Z,

where V is the set of vertices in G, such that F1(x, y) gives the flow over

(x, y) minus the flow over (y, x); if either of these edges does not exist, we

use 0 for this edge’s flow.

Let us assign flows to the edges of G′ as follows:

1. If (x, y) ∈ P and F1(x, y) ≥ m, assign a flow of F1(x, y) − m to (x, y).

Because C ′((x, y)) = C((x, y))−m, the flow on this edge does not exceed

the capacity.

2. If (x, y) ∈ P and F1(x, y) < m, assign a flow of m − F1(x, y) to (y, x).

Because C ′((y, x)) = C((y, x)) + m if (y, x) ∈ G, or C ′((y, x)) = m if

(y, x) �∈ G, the flow on this edge does not exceed the capacity.

3. If (x, y) �∈ P , (y, x) �∈ P , and F1(x, y) > 0, assign a flow of F1(x, y)

to (x, y). Because C ′((x, y)) = C((x, y)), the flow on this edge does not

exceed its capacity.

4. Assign a flow of 0 to all other edges.

Because the above construction essentially reduces the flow F1 by m

along P , the sum of incoming flows equals the sum of outgoing flows for all

vertices in G′ except u and v. This assignment is therefore a network flow,

which we will denote F2. Furthermore, P contains exactly one edge incident

on u — the first edge, which we will call (u,w). The effect of Steps 1 and 2

therefore decreases the net flow from u by m. The value of F2 is therefore

k − m. From Lemma 14.1, the combination of F2 with a flow of m along

P gives a flow of k for (G,u, v, C). Because this is true for any flow on

(G′, u, v, C ′), and because k is the maximum flow for (G,u, v, C), we conclude

that F2 must be a maximum flow for (G′, u, v, C ′). �

Though this reduction is not a transformation, we can implement it using

a loop by maintaining a graph in which the flows on augmenting paths are

combined as they are found. The resulting algorithm, known as the Ford–

Fulkerson algorithm, is shown in Figure 14.3. Because the Graph ADT (see

Figure 9.3 on page 311) provides no operation for removing an edge, we

will allow the residual graph to have edges with capacity 0. The proof of

correctness is easily shown using Theorem 14.2; the details are left as an

exercise.
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Figure 14.3 The Ford–Fulkerson algorithm for network flow

Precondition: G is directed Graph in which each edge contains a Nat
giving its capacity, and source and sink are distinct Nats less than the
number of vertices in G.
Postcondition: Returns a directed graph F in which the contents of the
edges give a maximum flow for G from source to sink.

NetworkFlow(G, source, sink)
F ← CopyGraph(G, true); R ← CopyGraph(G, false)
P ← FindPath(R, source, sink)
// Invariant: F combined with a maximum flow for R gives a maximum
// flow for G. P is a ConsList containing the Edges of a path from
// source to sink in R if there is such a path; otherwise, P = nil.
while P = nil

m ← MinVal(P ); AddFlow(F, P, R, m)
P ← FindPath(R, source, sink)

return F

Precondition: G is a Graph, and zeroEdges is a boolean.
Postcondition: Returns a copy of G. If zeroEdges is true, the contents of
all edges are set to 0; otherwise, they are unchanged.

CopyGraph(G, zeroEdges)

Precondition: G is a Graph whose edges contain natural numbers, and i
and j are distinct natural numbers strictly less than the number of vertices
in G.
Postcondition: Returns a ConsList P containing the Edges in a simple
path of non-zero Edges from i to j in G. If no such path exists, returns nil.

FindPath(G, i, j)

Precondition: L is a ConsList of Edges containing positive integers.
Postcondition: Returns the minimum integer stored on any Edge in L.

MinVal(L)

Precondition: F and R are directed Graphs having the same number
of vertices and whose edges contain natural numbers, P is a ConsList of
Edges forming a simple path in R, and m is a positive integer.
Postcondition: Adds a flow of m to each edge in F that appears in P and
sets R to the resulting residual graph. Edges are added to each Graph if
necessary.

AddFlow(F, P, R, m)
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Four auxiliary functions are specified in Figure 14.3. We leave it as

exercises to show that if G is represented as a ListGraph, then

• CopyGraph can be implemented to return a ListGraph and to run in

O(n + a) time, where n is the number of vertices and a is the number of

edges in G; and

• AddFlow can be implemented to run in O(n + a) time, where n is the

number of vertices in F (or equivalently R) and a is the number of edges

in F and R together, assuming F and R are implemented as ListGraphs.

Furthermore, MinVal can clearly be implemented to run in O(n) time,

where n is the number of Edges in L, and FindPath can be implemented

to run in O(n+a) time using either depth-first search or breadth-first search

(see Exercise 11.6), where n is the number of vertices and a is the number

of edges in its first argument G.

Note that FindPath does not specify which augmenting path will be

chosen. As a result, the Ford–Fulkerson algorithm can perform very poorly.

Consider, for example, the flow network shown in Figure 14.4(a), where k

is some large integer. It is easily seen by inspection that the maximum flow

is 2k. Suppose the algorithm first selects the augmenting path 〈0, 1, 2, 3〉.
The minimum capacity on this path is 1, and the resulting residual graph is

shown in Figure 14.4(b). Suppose the algorithm then chooses the augmenting

path 〈0, 2, 1, 3〉. The minimum capacity is again 1, and the resulting residual

graph is shown in Figure 14.4(c). It is easily seen that this process can

continue increasing the flow by 1 until the maximum flow of 2k is achieved.

On the other hand the algorithm could have achieved the same flow with

two augmenting paths: 〈0, 1, 3〉 and 〈0, 2, 3〉.

Figure 14.4 A flow network on which NetworkFlow can perform poorly
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In Section 14.2, we will consider how to make good augmenting path

choices. For now, we note that in the worst case, the loop in NetworkFlow

can iterate M times, where M is the value of the maximum flow. Assuming

the initialization and the body of the loop are implemented to run in Θ(n+a)

time, where n is the number of vertices and a is the number of edges in G,

the algorithm runs in Θ(M(n + a)) time in the worst case. If we assume

that all vertices are reachable from the source, then a ≥ n − 1, and we can

simplify the running time to Θ(Ma).

Before we move on to a discussion on finding augmenting paths, we note

one additional property of the Ford–Fulkerson algorithm. As long as each

augmenting path found is simple — and there is no reason a path-finding

algorithm would find a path containing a cycle — the path will not contain

any edges to the source or any edges from the sink. The obvious consequence

is that if the graph contains edges into the source or out of the sink, they

will not be used. A less obvious consequence is that after such edges are

introduced into the residual graph, they will not be used. Thus, once a flow

is added to an edge from the source or to the sink, the flow on that edge will

never be decreased.

14.2 The Edmonds–Karp Algorithm

We have seen that the way augmenting paths are chosen by the Ford–

Fulkerson algorithm can significantly impact its performance. In this section,

we consider how to select augmenting paths in order to avoid very bad

performance. One might suppose that we should try to select edges with

high capacity; however, the approach we take does not even consider the

edge capacities. Rather, we instead select a shortest augmenting path, in

terms of the number of edges. The resulting network flow algorithm is known

as the Edmonds–Karp algorithm.

Exercise 11.6 on page 386 outlined the breadth-first search technique for

finding a shortest path in Θ(n+a) time, where n is the number of vertices and

a is the number of edges. We will therefore focus on analyzing the running

time of the Edmonds–Karp algorithm. We first show the following lemma.

Lemma 14.3. No iteration of the Edmonds–Karp algorithm can bring any

vertex nearer to the source.

Proof. By contradiction. Let R be the residual graph at the beginning of

an iteration, and let R′ be the residual graph at the end of the iteration.

Suppose some vertex x is closer to the source u in R′ than in R. Specifically,
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let x be a vertex that is closest to u in R′ of all such vertices. There must

be some edge on the shortest path from u to x in R′ that is not in R, for

otherwise this path would also be a path from u to x in R. Specifically,

the last edge (w, x) on this path must have been added, for otherwise w,

which is closer than x to u in R′, would also be closer to u in R′ than in R.

This means that (x,w) is on a shortest augmenting path in R, so that x is

closer than w to u in R. Therefore, w is closer to u in R′ than in R — a

contradiction. �

Knowing that no vertex ever gets any closer to the source over the course

of the Edmonds–Karp algorithm, we will now prove a lemma that shows

when a vertex must get farther away from the source. If a vertex is farther

than n− 1 edges from the source, where n is the number of vertices, then it

must be unreachable. By Lemma 14.3, once a vertex becomes unreachable,

it will never become reachable. This next lemma will therefore enable us to

bound the number of iterations of the Edmonds–Karp algorithm.

Lemma 14.4. Suppose that when some vertex x is at a distance d from the

source u, the Edmonds–Karp algorithm removes an edge (x, y). Suppose that

later this edge is added again. Then after this edge is added, the distance

from u to x is at least d+ 2.

Proof. If (x, y) is removed, then this edge must be on a shortest

augmenting path. Then before this edge is removed, the distance from u to y

is d+1. When (x, y) is added again, (y, x) must be on a shortest augmenting

path. From Lemma 14.3, the distance from u to y is still at least d+1 when

this path is found. The distance to x is therefore at least d+2. From Lemma

14.3, the distance from u to x must still be at least d+2 after the edge (x, y)

is added. �

Theorem 14.5. In the worst case, the Edmonds–Karp algorithm iterates no

more than na times, where n is the number of vertices and a is the number

of edges in G.

Proof. Because a flow equal to the minimum edge capacity on a shortest

augmenting path is added by each iteration, each iteration removes at least

one edge. By Lemmas 14.3 and 14.4, no edge can be removed more than

n/2 times. When edges are added, they are always added in the opposite

direction of an existing edge; hence, at most 2a distinct edges ever appear

in the residual graph. The loop can therefore iterate at most na times. �

If the initialization and the body of the loop are implemented to run in

Θ(n+a) time, we can conclude that the algorithm runs in O(na(n+a)) time
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in the worst case. Furthermore, the analysis of the last section still applies,

so that the running time is in O(min(M,na)(n + a)), where M is the value

of the maximum flow. If we assume that every vertex is reachable from the

source, we can simplify this to O(min(Ma,na2)).

14.3 Bipartite Matching

A matching in an undirected graph is a subset of the edges such that no

two edges are incident on the same vertex. In this section, we consider the

problem of finding a matching of maximum size in a given bipartite graph,

as defined in Exercise 13.13 on page 439. Specifically, we will show that this

problem can be reduced to the network flow problem.

As an example, consider the bipartite graph shown in Figure 14.5.

We claim that the heavier edges, namely, {0, 4}, {2, 5}, and {3, 7}, form a

matching of maximum size. Clearly, these edges form a matching because

no two of them share a common vertex. To see that it is of maximum size,

we first note that any larger matching must contain all of the vertices in

{0, 1, 2, 3} as endpoints. However, the only edges incident on 1 and 3 are

{1, 7} and {3, 7}, respectively, and they share a common vertex. Hence, any

matching must exclude either 1 or 3. Therefore, there is no matching of size

larger than 3.

We will now show how to reduce bipartite matching to network flow.

Given a bipartite graph G, we construct an instance of network flow as

follows. For simplicity, we will assume that the vertices of the bipartite graph

have already been partitioned into the sets V1 and V2 (see Exercise 13.13).

We first direct all of the edges from V1 to V2. We then add a new source

vertex u and edges from u to each vertex in V1. Next, we add a new sink

vertex v and edges from each vertex in V2 to v. Finally, we assign a capacity

of 1 to each edge. See Figure 14.6 for the result of applying this reduction

to the graph in Figure 14.5.

Figure 14.5 A maximum-sized matching in a bipartite graph

8
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4 5 6 7
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Figure 14.6 The flow network constructed from the bipartite graph shown in

Figure 14.5
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source

sink

All edge capacities are 1.

Consider any matching in the given bipartite graph. We can construct

a flow in the constructed network by adding a flow of 1 to each edge in the

matching, as well as to each edge leading to a matched vertex in V1 and

to each edge leading from a matched vertex in V2. Clearly, any unmatched

vertex from the bipartite graph will have a flow of 0 on all of its incoming

and outgoing edges. Furthermore, each matched vertex in V1 will have a flow

of 1 on its incoming edge and a flow of 1 on the single outgoing edge in the

matching. Likewise, each matched vertex in V2 will have a flow of 1 on the

single incoming edge in the matching and a flow of 1 on its outgoing edge.

Thus, we have constructed a flow whose value is the number of edges in the

matching.

Conversely, consider any flow on the constructed network. Because any

vertex in V1 can have an incoming flow of at most 1, at most one of its

outgoing edges will contain a positive flow. Likewise, because any vertex in

V2 can have an outgoing flow of at most 1, at most one of its incoming edges

will contain a positive flow. The edges from V1 to V2 containing positive flow

therefore correspond to a matching in the bipartite graph. Furthermore, the

value of the flow is the number of edges in the matching.

We conclude that the edges from V1 to V2 in a maximum flow for the

constructed network are the edges in a maximum-sized matching for the

given bipartite graph. The resulting flow network has n+2 vertices and n+a



Network Flow and Matching 453

edges, where n and a are the number of vertices and edges, respectively, in

the bipartite graph. The Edmonds–Karp algorithm will therefore solve the

constructed network flow instance in O(M(n + a)) time, where M is the

number of edges in the maximum-sized matching. Because M can be no

more than n/2, if we assume that each vertex is incident on at least one

edge, the running time is in O(na). Furthermore, it is not hard to construct

the flow network in O(n + a) time, so the bipartite matching problem can

be solved in O(na) time.

Rather than presenting the code for the reduction, let us first examine

the reduction more carefully to see if we can optimize the bipartite matching

algorithm. For example, the addition of new vertices and edges is only

needed to form a flow network. We could instead adapt one of the network

flow algorithms to operate without the source and/or the sink explicitly

represented.

We also note that as flow is added, the edges containing the flow — which

are the edges of a matching — have their direction reversed. Rather than

explicitly reversing the direction of the edges, we could keep track of which

edges have been included in the matching in some other way. For example,

we could use an array matching [0..n − 1] such that matching [i] gives the

vertex to which i is matched, or is −1 if i is unmatched. Because a matching

has at most one edge incident on any vertex, this may end up being a more

efficient way of keeping track of the vertices adjacent (in the flow network)

to vertices in V2. The maximum-sized matching could also be returned via

this array.

As we observed at the end of Section 14.1, once flow is added to any

edge from the source or to any edge to the sink, that flow is never removed.

To put this in terms of the matching algorithm, once a vertex is matched, it

remains matched, although the vertex to which it is matched may change.

Furthermore, we claim that if we ever attempt to add a vertex w ∈ V1 to the

current matching M and are unable to do so (i.e., there is no path from w

to an unmatched vertex in V2), then we will never be able to add w to the

matching.

To see why this is true, notice that if there were a maximum-sized

matching containing all currently matched vertices and w, then there is

a matching M ′ containing no other vertices from V1. If we delete all

vertices from V1 that are unmatched in M ′, then M ′ is clearly a maximum-

sized matching for the resulting graph. The Ford–Fulkerson algorithm must

therefore be able to find a path that yields M ′ from M .
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Figure 14.7 The MatchingGraph for the bipartite graph shown in Figure 14.5

with matching {{0, 5}, {3, 7}}
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As a result, we only need to do a single search from each vertex in V1.

The following theorem summarizes this property.

Theorem 14.6. Let G be a bipartite graph, and let S be the set of vertices

in some matching on G. Suppose some maximum-sized matching includes

all of the vertices in S. Let i be some vertex not in S. Then there is a

maximum-sized matching including S ∪ {i} if there is a matching including

S ∪ {i}.
In order to implement the above optimizations, it is helpful to define

a data structure called MatchingGraph, which implements the Graph

ADT. Its purpose is to represent a particular directed graph G′ derived from

a given bipartite graph G and a matching on G. Suppose G has vertices

0, 1, . . . , n− 1. G′ then contains the vertices 0, 1, . . . , n. If {i, j} is an edge in

G and j is unmatched, then G′ will contain the edge (i, n). Every other edge

in G′ will represent two edges in G — an edge not in the matching followed

by an edge in the matching. Thus, for 0 ≤ i < n, 0 ≤ j < n, and i �= j,

G′ contains the edge (i, j) iff there is a vertex k in G such that {k, j} is in

the matching and {i, k} is an edge in G. For example, Figure 14.7 shows

the MatchingGraph for the bipartite graph of Figure 14.5 with matching

{{0, 5}, {3, 7}}.
Suppose the two partitions of G are V1 and V2. Then augmenting paths

in the flow network constructed by the reduction correspond to paths from

unmatched vertices in V1 to n in G′. In order to find an augmenting path in
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the flow network, we need to find a path to n in G′ from an unmatched vertex

in G. For example, consider the MatchingGraph shown in Figure 14.7.

We can add vertex 2 to the matching by finding a path from 2 to 9 in G′.
Taking the path 〈2, 0, 9〉 could yield the augmenting path 〈2, 5, 0, 4〉, which
produces the matching shown in Figure 14.5. This path could also yield the

augmenting path 〈2, 5, 0, 6〉 because 0 is adjacent to two unmatched vertices,

4 and 6. Alternatively, taking the path 〈2, 9〉 would yield the augmenting

path 〈2, 8〉.
Note that G′ actually represents two flow networks. If (i, j) is an edge in

G′ and j �= n, then i and j must both be in the same partition. Therefore,

the subgraph induced by V1∪{n} represents the flow network in which edges

in the matching lead from V2 to V1. Symmetrically, the subgraph induced

by V2 ∪ {n} represents the flow network in which edges in the matching

lead from V1 to V2 — i.e., the flow network that would be constructed by

swapping V1 with V2. Thus, 4 could be added to the matching by finding a

path from 4 to 9 in G′. The only such path, 〈4, 5, 9〉, would also yield the

matching shown in Figure 14.5.

To implement a MatchingGraph, we need two representation vari-

ables:

• a Graph bipartite representing the bipartite graph; and

• a readable array matching [0..n − 1] representing the matching, so that

matching [i] gives the vertex to which i is matched, or −1 if i is unmatched.

Its structural invariant will be that for 0 ≤ i < n, if matching [i] �= −1, then
matching [matching [i]] = i.

A partial implementation is shown in Figure 14.8 — we only include

implementations of those operations we will actually be using. These oper-

ations include an additional operation for adding an edge to the matching,

while removing any edges that might be incident on either endpoint. We

also include a constructor that constructs a MatchingGraph from a given

bipartite graph with an empty matching. We use the data variable of an

Edge to store the intermediate vertex between the two edges of the bipartite

graph represented by that Edge.

Note that this implementation is not secure, because its constructor

allows an outside reference to bipartite, and because matching is readable.

We could easily modify the implementation so that the constructor stores

a copy of its input graph and the Matching operation returns a copy of

matching ; however, if we write our matching algorithm so that it doesn’t
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Figure 14.8 MatchingGraph implementation of Graph (partial)

Structural Invariant: For 0 ≤ i < n, if matching[i] = −1, then
matching[matching[i]] = i.

Precondition: G refers to a bipartite Graph.
Postcondition: Constructs a MatchingGraph representing G with an
empty matching.

MatchingGraph(G)
n ← G.Size(); bipartite ← G; matching ← new Array[0..n − 1]
for i ← 0 to n − 1

matching[i] ← −1

MatchingGraph.Size()
return bipartite.Size() + 1

MatchingGraph.AllFrom(i)
n ← bipartite.Size(); L ← new ConsList()
if i < n

foundUnmatched ← false; adj ← bipartite.AllFrom(i)
while not adj.IsEmpty()

e ← adj.Head(); adj ← adj.Tail()
k ← e.Dest(); j ← matching[k]
if j = −1 and not foundUnmatched

L ← new ConsList(new Edge(i, n, k), L)
foundUnmatched ← true

else if j = −1
L ← new ConsList(new Edge(i, j, k), L)

return L

Precondition: i and j are distinct Nats representing vertices in the
bipartite graph.
Postcondition: Adds {i, j} to the matching, removing from the matching
any edge incident on i or j.

MatchingGraph.Match(i, j)
if matching[i] = −1

matching[matching[i]] ← −1
if matching[j] = −1

matching[matching[j]] ← −1
matching[i] ← j; matching[j] ← i
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Figure 14.9 PathSearcher implementation of Searcher

PathSearcher(n)
incoming ← new Array[0..n − 1]

PathSearcher.TreePreProc(e)
incoming[e.Dest()] ← e

change these items except via operations in MatchingGraph, we can avoid

this extra copying.

In order to complete the matching algorithm, we need to be able to

find a path from i to j in a directed graph. Because the maximum flow on

the constructed flow network is no more than n/2, where n is the number

of vertices in the bipartite graph, the Ford–Fulkerson algorithm will not

perform badly. Therefore, we will use depth-first search to find paths. (We

leave it as an exercise to implement the algorithm using breadth-first search.)

We therefore need a Searcher with the following representation variable:

• incoming [0..n − 1]: a readable array of Edges giving the incoming edge

in the depth-first spanning tree for each vertex reached.

The implementation of PathSearcher is shown in Figure 14.9.

By Theorem 14.6, a depth-first search of aMatchingGraph can be used

to determine whether a given vertex can be safely matched. Note that this

theorem doesn’t specify which partition the vertex comes from. In particular,

we really don’t need to know the partition to which any vertex belongs — we

can simply test them in any order, and add the ones that can be safely added.

We therefore no longer need to require that the first k vertices form the first

partition. The algorithm is shown in Figure 14.10. Note that in and M

maintain references to the incoming variable in s and the matching variable

of matchGraph, respectively (this would not be possible if PathSearcher

andMatchingGraph were secure). Note also that as long as an augmenting

path is not found, we do not need to select any unselected nodes because no

unselected node leads to n.

Let n be the number of vertices and a be the number of edges in G. To

simplify the analysis of the running time, suppose each vertex has at least

one incident edge, so that n ∈ O(a). Let us first focus on a single iteration

of the for loop. Clearly, the running time of the call to Dfs is in O(a).



458 Algorithms: A Top-Down Approach

Figure 14.10 Bipartite matching algorithm

Precondition: G is a bipartite graph.
Postcondition: Returns an array M [0..n− 1] describing a maximum-sized
matching of G, so that M [i] = j if j and i are matched, and M [i] = −1 if i
is unmatched.

Matching(G)
n ← G.Size(); sel ← new Selector(n)
s ← new PathSearcher(n + 1)
matchGraph ← new MatchingGraph(G)
in ← s.Incoming(); M ← matchGraph.Matching()
// Invariant: M represents a matching, and there is no matching
// containing the matched vertices in M and any unmatched vertex j < i.
for i ← 0 to n − 1

if M [i] = −1
Dfs(matchGraph, i, sel, s)
if not sel.IsSelected(n)

j ← n
while j = i

e ← in[j]; k ← e.Source()
matchGraph.Match(k, e.Data()); j ← k

sel.SelectAll()
return M

The number of iterations of the inner loop is at most the current size of the

matching, so its running time is in O(n) ⊆ O(a). The call to SelectAll

also runs in O(n) ⊆ O(a) time. We therefore conclude that a single iteration

of the for loop runs in O(a) time, so that the entire algorithm runs in O(na)

time.

To show that the running time of the algorithm is in Ω(na), we will first

construct a graph with 4k vertices and 4k − 1 edges for k ∈ N. We will

show that the algorithm runs in Ω(k2) time for these graphs. We will then

generalize the construction to an arbitrary number n of vertices and a edges

such that n − 1 ≤ a < n(n+ 20)/32. We will show that the algorithm runs

in Ω(na) time for these graphs.

We begin by setting V = {i | 0 ≤ i < 4k} (refer to Figure 14.11 for the

case in which k = 4). We then add the following edges:

• for 0 ≤ i < k, the edges {2i, 2k + i} and {2i+ 1, 2k + i};
• for 0 < i < k, the edge {2i, 2k + i− 1}; and
• for 0 ≤ i < k, the edge {2k − 1, 3k + i}.



Network Flow and Matching 459

Figure 14.11 An illustration of the lower bound for Matching
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We arrange the edges so that when we try to add vertex 2i for 0 ≤ i < k,

we first encounter the edge {2i, 2k + i}. Because 2k + i is not in the

matching, it is added. It will then be impossible to add vertex 2i + 1,

but each node 2k + j, for 0 ≤ j < i, will be reached in the search for

an augmenting path. (For example, consider the search when trying to add

5 to the matching {{0, 8}, {2, 9}, {4, 10}} in Figure 14.11.) Constructing this

matching therefore uses Ω(k2) time.

We can now generalize the above construction to arbitrary n by adding

or removing a few vertices adjacent to 2k−1. Furthermore, we can add edges

{2i, 2k + j} for 0 ≤ i < k and 0 ≤ j < i − 1 without increasing the size of

the maximum-sized matching. However, these additional edges must all be

traversed when we try to add vertex 2i+1 to the matching. This construction

therefore forces the algorithm to use Ω(na) time. Furthermore, the number

of edges added can be as many as

k−1∑
i=0

(i− 1) =
k(k − 1)

2
− k

=
k2 − 3k

2

=
n2 − 12n

32
.

Including the n−1 original edges, the total number of edges a is in the range

n− 1 ≤ a <
n(n+ 20)

32
.

The above construction is more general than we really need, but its

generality shows that some simple modifications to the algorithm won’t

improve its asymptotic running time. For example, the graph is connected,

so processing connected components separately won’t help. Also, the two

partitions are the same size, so processing the smaller (or larger) partition
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first won’t help either. Furthermore, using breadth-first search won’t help

because it will process just as many edges when no augmenting path exists.

On the other hand, this algorithm is not the most efficient one known for

this problem. In the exercises, we explore how it might be improved.

Although the optimizations we made over a direct reduction to network

flow did not improve the asymptotic running time of the algorithm, the

resulting algorithm may have other advantages. For example, suppose we are

trying to match jobs with job applicants. Each applicant may be qualified

for several jobs. We wish to fill as many jobs as possible, but still assign

jobs so that priority is given to those who applied earlier. If we process the

applicants in the order in which they applied, we will obey this priority.

14.4 Summary

The network flow problem is a general combinatorial optimization problem

to which many other problems can be reduced. Although the Ford–Fulkerson

algorithm can behave poorly when the maximum flow is large in comparison

to the size of the graph, its flexibility makes it useful for those cases in which

the maximum flow is known to be small. For cases in which the maximum

flow may be large, the Edmonds–Karp algorithm, which is simply the Ford–

Fulkerson algorithm using breadth-first search to find augmenting paths,

performs adequately.

The bipartite matching problem is an example of a problem which occurs

quite often in practice and which can be reduced to network flow to yield a

reasonably efficient algorithm. Furthermore, a careful study of the reduction

yields insight into the problem that leads to a more general algorithm.

14.5 Exercises

Exercise 14.1. Prove Equation (14.1) on page 442. [Hint: Show by

induction that the net flow out of any set of vertices including the source

but not the sink is equal to the left-hand side.]

Exercise 14.2. Prove that NetworkFlow, shown in Figure 14.3, meets

its specification.

Exercise 14.3. Implement CopyGraph, specified in Figure 14.3, to return

a ListGraph and run in O(n + a) time, where n is the number of vertices

and a is the number of edges in the given graph.
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Exercise 14.4. Implement AddFlow, specified in Figure 14.3, to run in

O(n + a) time, where n is the number of vertices in F and a is the number

of edges in F and R together. For the purposes of your analysis, you may

assume that F and R are implemented as ListGraphs, and that the Edges

in P form a simple path in R.

* Exercise 14.5. Suppose we generalize the network flow problem to allow

positive rational edge capacities. Prove that the Ford–Fulkerson algorithm

always finds a maximum flow for such a network.

** Exercise 14.6. Suppose we generalize the network flow problem to allow

positive real edge capacities. Give such a flow network for which the Ford–

Fulkerson algorithm does not terminate and does not converge to a maximum

flow.

Exercise 14.7. Implement the matching algorithm using breadth-first

search (see Exercise 11.6) to find augmenting paths.

** Exercise 14.8. Let G be a bipartite graph whose partitions are {i | 0 ≤
i < k} and {i | k ≤ i < n}, and let M be a matching on G smaller than the

maximum size. Suppose the minimum length of any augmenting path in G

is l. Let S = {P1, . . . , Pm} be a maximal set of vertex-disjoint augmenting

paths of length l; i.e., any augmenting path of length l shares at least one

vertex with some path in S. We define the symmetric difference of two sets

A and B as

A⊕B = (A ∪B) \(A ∩B);

thus, the symmetric difference is the set of elements in exactly one of the

two sets.

a. Prove that M ′ = M ⊕ (P1 ∪ · · · ∪ Pm) is a matching with m more edges

than M .

b. Prove that any augmenting path in M ′, where M ′ is as defined above, has

more than l edges. [Hint: For the case in which P shares a vertex with

some Pi, define T = (M ⊕M ′)⊕ P . Prove that T = (P1 ∪ · · · ∪ Pm)⊕ P

and that T has at least (m+ 1)l edges.]

c. Prove that the size of every matching exceeds the size of M by no more

than n/l.

d. Give an algorithm to find a maximal set of minimum-length augmenting

paths. Your algorithm should run in O(a) time, where a is the number

of edges in G, assuming G is represented as a ListGraph and n ∈ O(a).

[Hint: Use both breadth-first search and a modified depth-first search.]
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e. Give an O(a
√
n) algorithm to find a maximum-sized matching in G.

Exercise 14.9. Suppose we modify the network flow problem so that the

input includes an array cap[0..n − 1] of integers such that for each vertex i,

cap[i] gives an upper bound on the flow we allow to go to and from vertex

i. Show how to reduce this problem to the ordinary network flow problem.

Your reduction must run in O(n+a) time, where n is the number of vertices

and a is the number of edges in the graph.

Exercise 14.10. We define an n× n grid to be an undirected graph (V,E)

where V = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}, and two vertices (i, j) and (i′, j′)
are adjacent iff either i = i′ and j = j′±1 or j = j′ and i = i′±1. Thus, each

vertex in a grid has at most 4 neighbors. We call the vertices with fewer than

4 neighbors boundary vertices (i.e., these are vertices (1, j), (n, j), (i, 1), or

(i, n)). Give an O(mn2) algorithm which takes a value n ∈ N and m ≤ n2

starting vertices (i, j) ∈ [1..n]× [1..n] and determines whether there exists a

set of m vertex-disjoint paths in the n × n grid, each connecting a starting

node with a boundary node. You may assume you have an algorithm for the

problem stated in Exercise 14.9.

* Exercise 14.11. A path cover of a directed graph is a set of paths such

that every vertex is included in exactly one path. The size of a path cover is

the number of paths in the set. Show how to reduce the problem of finding

a minimum-sized path cover in a directed acyclic graph to the problem of

finding a maximum-sized matching in a bipartite graph. The total running

time of the algorithm should be in O(na).

* Exercise 14.12. We are given two arrays of integers, R[1..m] and C[1..n]

such that

m∑
i=1

R[i] =

n∑
i=1

C[i] = k.

Give an O(kmn) algorithm that returns an m× n matrix of 0s and 1s such

that row i contains exactly R[i] 1s and column j contains exactly C[j] 1s,

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. If there is no such matrix, your algorithm

should return nil.

** Exercise 14.13. Given a connected undirected graph G, the edge

connectivity of G is the minimum number of edges whose removal would

disconnect the graph. Give an O(n2a) algorithm to find the edge connectivity

of a given connected undirected Graph with n vertices and a edges. For
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your running time analysis, you may assume the graph is represented as a

ListGraph. Prove the correctness of your algorithm.

14.6 Notes

The NetworkFlow algorithm is due to Ford and Fulkerson [42]. The

running-time analysis of the use of breadth-first search in the Ford–Fulkerson

algorithm is due to Edmonds and Karp [37] and Dinic [30]. Asymptotically

faster algorithms exist — to date, the fastest known is due to Goldberg and

Rao [57]. Their algorithm has a running time in

O(min(n2/3, a1/2)a lg(n2/a+ 2) lgC),

where C is the maximum capacity of any edge.

The technique of finding a maximum-sized matching using augmenting

paths is due to Berge [13]. He showed that in an arbitrary undirected graph,

a matching is of maximum size iff no augmenting path exists. Finding

augmenting paths in arbitrary undirected graphs is more challenging,

however, because we must avoid returning to the same vertex from which we

started. The first efficient algorithm for finding an augmenting path in an

arbitrary undirected graph is due to Edmonds [35]. The algorithm suggested

by Exercise 14.8 is due to Hopcroft and Karp [64], and is the asymptotically

fastest known algorithm for finding a maximum-sized matching in a bipartite

graph. The structure of this exercise is based on a problem in Cormen, et al.

[25]. An O(a
√
n) algorithm for arbitrary undirected graphs was later given

by Micali and Vazirani [93].

A solution to Exercise 14.6 is given by Ford and Fulkerson [43].
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Chapter 15

* The Fast Fourier Transform

In this chapter, we examine an algorithm whose discovery has had a profound

impact on several areas of science and engineering. Although we will not delve

into these application areas, we will show how it has been used to design an

arbitrary-precision natural number multiplication algorithm which runs in

O(n lg n lg lg n) time, where n is the number of bits in the product. Along the

way, we will examine some properties of the complex numbers as well as the

natural numbers. We begin by examining the computation of a convolution,

the fundamental problem that is solved by the fast Fourier transform.

15.1 Convolutions

Let a = 〈a0, . . . , am−1〉 and b = 〈b0, . . . , bn−1〉 be two vectors. We define the

convolution of a and b as the vector c = 〈c0, . . . , cm+n−2〉, where

cj =

min(j,m−1)∑
i=max(0,j−n+1)

aibj−i.

Many applications require the computation of a convolution. For example,

if a and b represent the coefficients of two polynomials, where ai and bi are

the respective coefficients for xi, then the convolution of a and b gives the

coefficients of their product.

We desire an efficient algorithm for computing a convolution. We can

gain some insight into how this might be done by examining the polynomial

multiplication problem. Clearly, the Θ(nlg 3) algorithm of Section 10.1 can

be used to compute a convolution. Furthermore, the solution to Exercise

10.4 shows that this can be done in O(n1+ε) time for any ε ∈ R
>0 (though

465
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in fact the hidden constant becomes quite large as ε approaches 0). We wish

to improve on these algorithms.

It is a well-known fact that a polynomial of degree n − 1 is uniquely

determined by its values at any n distinct points. Therefore, one way to

multiply two polynomials p(x) and q(x) whose product has degree n − 1 is

as follows:

1. Evaluate p(xi) and q(xi) for n distinct values xi, 0 ≤ i < n.

2. Compute r(xi) = p(xi)q(xi) for 0 ≤ i < n.

3. Construct the unique polynomial r(x) of degree n− 1 determined by the

values r(xi) for 0 ≤ i < n.

Note that step 2 can be done in Θ(n) time, assuming each multiplication

can be done in Θ(1) time. We need to show how steps 1 and 3 can be done

efficiently.

The evaluation of a polynomial of degree less than n at n distinct points

can be viewed as a linear transformation — i.e., a multiplication of a 1× n
vector by an n×n matrix. Specifically, let p be the 1×n vector representing

the coefficients of a polynomial p(x) as described above (if the degree is less

than n − 1, we can use coefficients of 0 for the high-order terms). Let A

be the n × n matrix such that Aij = xij for 0 ≤ i < n, 0 ≤ j < n, where

x0, . . . , xn−1 are distinct values. Then the product pA yields the 1×n vector

v = 〈v0, . . . , vn−1〉 such that

vj =

n−1∑
i=0

piAij

=

n−1∑
i=0

pix
i
j

= p(xj).

Furthermore, if A has an inverse A−1, then this transformation is

invertible:

vA−1 = pAA−1

= p.

Thus, given the values of a polynomial at the n points x0, . . . , xn−1, we can

compute the polynomial by multiplying the vector of values by A−1. The
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product of two polynomials p(x) and q(x) is therefore represented by the

vector

(pA · qA)A−1,

where “·” denotes the component-wise product of two vectors of the same

size.

The main problem with this approach is that the multiplications of a 1×n
vector with an n×n array would appear to require Ω(n2) time. However, this

running time can be improved if we choose the points x0, . . . , xn−1 cleverly.

In order to do this, we need to allow them to be chosen from the set of

complex numbers, C. We also need to define, for any n ≥ 1, a principal nth

root of unity as any value ω ∈ C such that

• ωn = 1; and

• for 1 ≤ j < n,

n−1∑
i=0

ωij = 0.

We will show how to find such values in C. First, however, let us consider

why having a principal nth root of unity might be helpful. Given a principal

nth root of unity ω, let A be the n× n matrix such that Aij = ωij . Given a

1×n vector p, the product pA is said to be the discrete Fourier transform of

p with respect to ω. Note that if p is the coefficient vector for a polynomial

p(x), then pA gives the values of p(ωj) for 0 ≤ j < n.

In what follows, we will develop a divide-and-conquer algorithm for

computing a DFT. To simplify matters, let’s assume that n is a power of 2.

The following theorem shows an important property of principal nth roots

of unity when n is a power of 2. We will use this property in designing our

divide-and-conquer algorithm.

Theorem 15.1. Let ω be a principal nth root of unity, where n ≥ 2 is a

power of 2. Then ω2 is a principal (n/2)nd root of unity.

Proof. Because ωn = 1, (ω2)n/2 = 1. Let 1 ≤ j < n/2. Then 1 ≤ 2j < n.

Because ω is a principal nth root of unity, we have

n−1∑
i=0

ωi(2j) = 0.
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Note that for i ≥ n/2,
ωi(2j) = ωnjω(2i−n)j

= ω(2i−n)j ,

because ωn = 1. Therefore, we can write

n−1∑
i=0

ωi(2j) =

n
2
−1∑

i=0

ω2ij +

n−1∑
i=n/2

ω2ij

=

n
2
−1∑

i=0

ω2ij +

n−1∑
i=n/2

ω(2i−n)j

=

n
2
−1∑

i=0

ω2ij +

n
2
−1∑

i=0

ω(2(i+n/2)−n)j

= 2

n
2
−1∑

i=0

ω2ij.

Because the above value is 0, it follows that

n
2
−1∑

i=0

(ω2)ij = 0.

Hence, ω2 is a principal (n/2)nd root of unity. �

Knowing that ω2 is a principal n/2nd root of unity, we can now reduce

the problem of computing a DFT for a 1×n vector to two smaller instances.

We form these two smaller instances by dividing a given 1 × n vector p

into its odd components p′ = 〈p1, p3, . . . , pn−1〉 and its even components

p′′ = 〈p0, p2, . . . , pn−2〉. Thus,
n−1∑
i=0

piω
ij =

n
2
−1∑

i=0

(p2iω
2ij + p2i+1ω

(2i+1)j)

=

n
2
−1∑

i=0

p2iω
2ij + ωj

n
2
−1∑

i=0

p2i+1ω
2ij.
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Note that each sum on the right-hand side is the jth component of the

DFT with respect to ω2 of a 1×n/2 vector. Specifically, let d′ and d′′ be the
DFTs of p′ and p′′, respectively, with respect to ω2, and let d be the DFT of

p with respect to ω. Then for 0 ≤ j < n/2, we have

dj = d′′j + ωjd′j . (15.1)

Furthermore,

dj+n/2 =

n
2
−1∑

i=0

p′′i ω
2i(j+n/2) + ωj+n/2

n
2
−1∑

i=0

p′iω
2i(j+n/2)

=

n
2
−1∑

i=0

p′′i ω
2ij + ωj+n/2

n
2
−1∑

i=0

p′iω
2ij

= d′′j + ωj+n/2d′j. (15.2)

The above equation can be simplified somewhat by applying the following

theorem.

Theorem 15.2. Let n > 1 be a power of 2. Then ω is a principal nth root

of unity iff ωn/2 = −1.
Proof. ⇒ Suppose ω is a principal nth root of unity. It follows from

Theorem 15.1 by induction on n that ωn/2 is a principal 2nd root of unity.

It is therefore sufficient to show that if ω is a principal 2nd root of unity,

then ω = −1.
Suppose ω is a principal 2nd root of unity. Then from the definition, we

have

0 =

1∑
i=0

ωi

= 1 + ω.

Rearranging terms, we have ω = −1.

⇐: Let n = 2k. We will show by induction on k ≥ 1 that if ωn/2 = −1, then
ω is a principal nth root of unity.

Base: k = 1. Then n = 2, and n/2 = 1. Because −1 is a principal 2nd root

of unity, the result follows.
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Induction Hypothesis: Assume for some k > 1 that whenever 1 ≤ k′ < k

and n = 2k
′
, if ωn/2 = −1, then ω is a principal nth root of unity.

Induction Step: Suppose n = 2k and ωn/2 = −1. Clearly, ωn = 1. Let

1 ≤ j < n. We consider two cases.

Case 1: j is odd. We therefore have

n−1∑
i=0

ωij =

n
2
−1∑

i=0

ωij +

n−1∑
i=n/2

ωij

=

n
2
−1∑

i=0

ωij +

n
2
−1∑

i=0

ω(i+n/2)j

=

n
2
−1∑

i=0

ωij +

n
2
−1∑

i=0

ωij(ωn/2)j

=

n
2
−1∑

i=0

ωij +

n
2
−1∑

i=0

ωij(−1)j

= 0.

Case 2: j is even. Then because 1 ≤ j < n, n must be at least 4. We first

observe that

(ω2)n/4 = ωn/2

= −1.
By the Induction Hypothesis, ω2 is a principal (n/2)nd root of unity. We

then have

n−1∑
i=0

ωij =

n−1∑
i=0

(ω2)ij/2

=

n
2
−1∑

i=0

(ω2)ij/2 +

n−1∑
i=n/2

(ω2)ij/2

=
n−1∑
i=n/2

(ω2)ij/2,
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because ω2 is a principal (n/2)nd root of unity. Re-indexing the above

equality, we have

n−1∑
i=0

ωij =

n−1∑
i=n/2

(ω2)ij/2

=

n
2
−1∑

i=0

(ω2)(i+n/2)j/2

=

n
2
−1∑

i=0

(ω2)(n/2)j/2(ω2)ij/2

=

n
2
−1∑

i=0

(ω2)ij/2

= 0.

We conclude that ω is a principal nth root of unity. �

Using the fact that ωn/2 = −1, we can now rewrite (15.2) for 0 ≤ j <

n/2 as

dj+n/2 = d′′j − ωjd′j . (15.3)

We therefore have the divide-and-conquer algorithm, known as the Fast

Fourier Transform, shown in Figure 15.1. Note that we use the type

Complex to represent a complex number.

Because Fft should only be called with a vector whose size n is a power

of 2, n is not a good measure of the size of the problem instance for the

purpose of analyzing the algorithm. Instead, we will use k = lg n. Assuming

each arithmetic operation on complex numbers can be performed in Θ(1)

time, it is easily seen that the running time excluding the recursive calls is

in Θ(2k). The worst-case running time is therefore given by the recurrence

f(k) ∈ 2f(k − 1) + Θ(2k).

From Theorem 3.34, f(k) ∈ Θ(k2k).

In order to use Fft to compute a convolution, we need to be able to

compute the inverse transform. Let A be the n× n matrix defining a DFT.

In order to compute the inverse transform, we need to know that A−1 exists,
and we need an efficient way to multiply a given 1 × n vector on the right

by A−1. The following theorem gives A−1.



472 Algorithms: A Top-Down Approach

Figure 15.1 The Fast Fourier Transform algorithm

Precondition: p[0..n−1] is an array of Complexes, n is a Nat containing
a power of 2, and ω is a Complex containing a principal nth root of unity.
Postcondition: Returns the DFT of p with respect to ω.

Fft(p[0..n − 1], ω)
d ← new Array[0..n − 1]; mid ← n/2
if n = 1

d[0] ← p[0]
else

p ← new Array[0..mid − 1]; p ← new Array[0..mid − 1]
for i ← 0 to mid − 1

p [i] ← p[2i]; p [i] ← p[2i + 1]
d ← Fft(p , ω2)
d ← Fft(p , ω2)
υ ← 1
// Invariant: d[0..i − 1] and d[mid..mid + i − 1] contain the correct
// values for the DFT of p, and υ = ωi.
for i ← 0 to mid − 1

d[i] ← d [i] + υ(d [i])
d[i + mid] ← d [i] − υ(d [i])
υ ← υω

return d

Theorem 15.3. Let A be the n × n matrix such that for 0 ≤ i < n and

0 ≤ j < n, Aij = ωij, where ω is a principal nth root of unity. Then A−1 is

the matrix B, where Bij = ω−ij/n.

Proof. We must show that AB = I, where

Iij =

⎧⎨
⎩
1 if i = j

0 otherwise,

for 0 ≤ i < n and 0 ≤ j < n. Let C = AB. Then

Cij =
n−1∑
k=0

AikBkj

=
n−1∑
k=0

ωikω−kj/n

=
1

n

n−1∑
k=0

ωk(i−j).
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We now consider three cases.

Case 1: i = j. Then

Cij =
1

n

n−1∑
k=0

ωk(i−j)

=
1

n

n−1∑
k=0

ω0

= 1.

Case 2: i > j. Then 1 ≤ i − j < n. Because ω is a principal nth root of

unity, we have

Cij =
1

n

n−1∑
k=0

ωk(i−j)

= 0.

Case 3: i < j. Then 1 ≤ i− j+n < n. Because ωn = 1, ωk(i−j) = ωk(i−j+n).

Hence, as in Case 2, Cij = 0.

We conclude that C = I, so that B = A−1. �

Note that the matrix A−1 can be written A′/n, where A′ij = ω−ij. The
following theorem shows that ω−1 is also a principal nth root of unity, so

that multiplication by A′ is also a DFT. As a result, we can use Fft to

compute the inverse transform.

Theorem 15.4. Let ω be a principal nth root of unity, where n ≥ 2 is a

power of 2. Then ω−1 is a principal nth root of unity.

Proof. From Theorem 15.2, we need only to show that ω−n/2 = −1.
Because ωn = 1, we have

ω−n/2 = ωn−n/2

= ωn/2

= −1
from Theorem 15.2. ω−1 is therefore a principal nth root of unity. �

In order to complete the convolution algorithm, we need a principal nth

root of unity for each n that is a power of 2. The following theorem provides
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these values. The theorem actually holds for all positive n, but the proof is

simpler when n is a power of 2.

Theorem 15.5. Let n be a power of 2. Then

cos
2π

n
+ i sin

2π

n

is a principal nth root of unity.

Proof. We first observe that if n = 1, then

cos
2π

n
+ i sin

2π

n
= 1 + 0i

= 1.

Thus, from Theorem 15.2, it suffices to show that

(
cos

2π

n
+ i sin

2π

n

)n/2

= −1

whenever n > 1 is a power of 2. We proceed by induction on n.

Base: n = 2. Then

(
cos

2π

n
+ i sin

2π

n

)n/2

= cos π + i sinπ

= −1 + 0i

= −1.

Induction Hypothesis: Assume for some n > 2, where n is a power of 2,

that for any k such that 1 < k < n, if k is a power of 2, then

(
cos

2π

k
+ i sin

2π

k

)k/2

= −1.

Induction Step:

(
cos

2π

n
+ i sin

2π

n

)n/2

=

((
cos

2π

n
+ i sin

2π

n

)2
)n/4

=

(
cos2

2π

n
− sin2

2π

n
+ 2i

(
cos

2π

n
sin

2π

n

))n/4

.
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We now apply the following trigonometric identities:

cos2 x− sin2 x = cos 2x

and

2(cos x sinx) = sin 2x.

We therefore have

(
cos

2π

n
+ i sin

2π

n

)n/2

=

(
cos

4π

n
+ i sin

4π

n

)n/4

=

(
cos

2π

n/2
+ i sin

2π

n/2

)n/2
2

= −1

by the Induction Hypothesis. �

Before we give the algorithm for computing a convolution, let us consider

a slight generalization of the problem. We have defined a convolution to be

a vector whose size is the sum of the sizes of two given vectors. In order to

apply Fft, we must pad the two input vectors with enough zeros so that

each has a size n, where n is a power of 2 and is at least as large as the size

of the convolution. It would be somewhat easier to do this if we required the

input vectors to be padded with enough zeros so that they were both the

size of the convolution.

Let us therefore consider the value of the vector (pA · qA)A−1 when

p and q are arbitrary 1 × n vectors over C and A is the DFT matrix with

respect to ω. The jth component of the vector pA is given by

n−1∑
i=0

piAij =

n−1∑
i=0

piω
ij.

The jth component of the component-wise product (pA · qA) is therefore

n−1∑
i=0

piω
ij

n−1∑
k=0

qkω
kj =

n−1∑
i=0

n−1∑
k=0

piqkω
(i+k)j.
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Finally, multiplying the above summation on the right by A−1, we obtain a

vector whose jth component is

n−1∑
l=0

n−1∑
i=0

n−1∑
k=0

piqkω
(i+k)lω−lj/n =

1

n

n−1∑
l=0

n−1∑
i=0

n−1∑
k=0

piqkω
(i+k−j)l

=
1

n

n−1∑
i=0

n−1∑
k=0

piqk

n−1∑
l=0

ω(i+k−j)l.

We now observe that in the exponent for ω above, 1 − n ≤ i + k − j ≤
2n − 2. Because ωn = 1, we can multiply any of the terms by either ωn or

ω−n without changing its value. Hence, because ω is a principal nth root of

unity,

n−1∑
l=0

ω(i+k−j)l =

⎧⎨
⎩
n if i+ k − j = 0 or i+ k − j = n

0 otherwise.

Therefore, the jth component of (pA · qA)A−1 is

j∑
i=0

piqj−i +
n−1∑

i=j+1

piqj−i+n.

We will refer to this vector as the positive wrapped convolution of p and q. We

will denote this operation by p⊗ q. Note that if either pi or qj is 0 whenever

i+ j ≥ n, the second summation in the above definition is 0, so that we can

reduce the problem of computing an ordinary convolution to the problem of

computing a positive wrapped convolution.

Figure 15.2 gives an algorithm for computing a positive wrapped

convolution using the Fast Fourier Transform. Note that m is the smallest

power of 2 no larger than n, so that n ≤ m < 2n. Assuming each arithmetic

operation can be performed in Θ(1) time, the running time excluding the

calls to Fft is in Θ(n). If k = lgm, the running time for each call to Fft is

in Θ(k2k) = Θ(n lg n). The overall running time is therefore in Θ(n lg n). It

is easily seen that this algorithm can be used to multiply two polynomials

over C in Θ(n lg n) time, where n is the degree of the product.

Throughout this discussion, we have been assuming that we can store

arbitrary complex numbers and perform arithmetic operations on them

in Θ(1) time. These assumptions are rather dubious. However, for most

scientific and engineering applications, it is sufficient to use floating-point
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Figure 15.2 Algorithm for computing a positive wrapped convolution over C using

the Fast Fourier Transform

Precondition: p[0..n − 1] and q[0..n − 1] are arrays of Complexes, and n
is a positive Nat.
Postcondition: Returns the positive wrapped convolution of p and q.

Convolution(p[0..n − 1], q[0..n − 1])
m ← 2 lg n ; p ← new Array[0..m − 1]; q ← new Array[0..m − 1]
Copy(p[0..n − 1], p [0..n − 1]); Copy(q[0..n − 1], q [0..n − 1])
for i ← n to m − 1

p [i] ← 0; q [i] ← 0
ω ← cos(2π/m) + i sin(2π/m)
ptrans ← Fft(p , ω); qtrans ← Fft(q , ω)
rtrans ← new Array[0..m − 1]
for i ← 0 to m − 1

rtrans[i] ← ptrans[i]qtrans[i]
r ← Fft(rtrans, 1/ω); r ← new Array[0..n − 1]
for i ← 0 to n − 1

r[i] ← r [i]/m
return r

approximations. The Convolution algorithm is therefore very useful in

practice.

15.2 Commutative Rings

In Exercise 10.5 (page 364), we suggested that the polynomial multiplication

algorithm of Section 10.1 could be adapted to multiply two arbitrary-

precision natural numbers in Θ(nlg 3) time, where n is the number of bits

in the product. Because we now have a Θ(n lg n) algorithm for multiplying

polynomials, we might conclude that it could be used to multiply arbitrary-

precision natural numbers in Θ(n lg n) time. However, there are two problems

with this conclusion. First, Convolution uses complex numbers having

infinite binary representations. It turns out that if we are careful, we can use

finite approximations and still obtain correct results for arbitrary-precision

multiplication. The second problem is more serious, though. Note that both

Convolution and Fft perform multiplications involving values derived

from the vectors they are processing. These values can become much larger

than the original elements of the vectors, so that recursive calls would need

to be made to do these multiplications. This has the effect of increasing the

running time.
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In view of the above complications, we will take a somewhat different

approach. In this section, we will show that the results of the previous

section can be extended to various other mathematical structures, including

some involving only natural numbers. In the next section, we will develop a

multiplication algorithm that uses the Fast Fourier Transform over certain

of these structures. This algorithm will have a running time in O(n lg2 n). In

the following section, we will show how to improve it to achieve a running

time in O(n lg n lg lg n). This algorithm is asymptotically the fastest known

algorithm for arbitrary-precision multiplication.

In order to show how the results of the previous section extend to other

mathematical structures, we need a few definitions. Let S be a set, and let

+ be any binary operation on S; i.e., for every x, y ∈ S, x+ y ∈ S. The pair

〈S,+〉 is said to be a group if the following properties hold:

• Associativity: For every x, y, z ∈ S, (x+ y) + z = x+ (y + z).

• Identity: There is an element 0 ∈ S such that for every x ∈ S, 0 + x =

x+ 0 = x.

• Inverse: For every element x ∈ S, there is an element −x ∈ S such that

x+ (−x) = −x+ x = 0.

If, in addition commutativity holds — for every x, y ∈ S, x + y = y + x —

then we say 〈S,+〉 is an abelian group.

Example 15.1. 〈Z,+〉, the set of integers with addition, is an abelian group.

Example 15.2. 〈N,+〉, the set of natural numbers with addition, is not a

group because only 0 has an inverse.

Example 15.3. For a positive integer m, let Zm denote the set of natural

numbers strictly less than m, and let + denote addition mod m. It is not

hard to see that 〈Zm,+〉 is an abelian group, with 0 being the identity and

m− i being the inverse of i.

Example 15.4. Let S3 be the set of permutations of three distinct elements,

and let ◦ denote composition. We denote a permutation by the result of

applying it to 〈1, 2, 3〉; for example, the permutation that swaps the first and

second elements is denoted by 〈2, 1, 3〉. Then 〈2, 1, 3〉◦〈1, 3, 2〉 = 〈2, 3, 1〉, but
〈1, 3, 2〉 ◦ 〈2, 1, 3〉 = 〈3, 1, 2〉. Hence, 〈S3, ◦〉 is not commutative. However, it

is not hard to see that it is a group, with 〈1, 2, 3〉 being the identity element,

〈2, 3, 1〉 being the inverse of 〈3, 1, 2〉 and vice versa, and every other element

being its own inverse.
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Let 〈S,+〉 be an abelian group, and let · be a binary operation on S.

Then 〈S,+, ·〉 is said to be a ring if the following properties hold for every

x, y, and z in S:

• Associativity: (x · y) · z = x · (y · z).
• Distributivity: x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z.
If, in addition, commutativity holds for ·, 〈S,+, ·〉 is said to be a commutative

ring. If a ring 〈S,+, ·〉 has an element 1 ∈ S such that for every x ∈ S,

x · 1 = 1 · x = x, then 1 is said to be a unit element.

Example 15.5. It is not hard to see that 〈C,+, ·〉, where + and · denote
ordinary addition and multiplication, respectively, is a commutative ring

with unit element 1.

Example 15.6. For a positive integer m, consider 〈Zm,+, ·〉, where +

is addition mod m and · is multiplication mod m. As we observed in

Example 15.3, 〈Zm,+〉 is an abelian group. It is not hard to see that

〈Zm,+, ·〉 is a commutative ring, and that 1 is a unit element. We will be

using commutative rings of this form for the multiplication algorithms of the

next two sections.

Example 15.7. Let S = {0, 2, 4, 6}, and let + and · denote addition and

multiplication, respectively, mod 8. Then it is not hard to see that 〈S,+, ·〉
is a commutative ring. However, it does not have a unit element, because

0 · 2 = 0, 2 · 4 = 0, and 6 · 2 = 4.

Example 15.8. Let S be the set of 2× 2 matrices over R, and let + and ·
denote matrix addition and multiplication, respectively. Then It is not hard

to show that 〈S,+, ·〉 is a ring, and that the identity matrix is a unit element.

However, the ring is not commutative; for example,

(
1 1

0 1

)(
1 0

1 1

)
=

(
2 1

1 1

)
,

but
(
1 0

1 1

)(
1 1

0 1

)
=

(
1 1

1 2

)
.

In what follows, we will show that the results of the previous section

extend to an arbitrary commutative ring R = 〈S,+, ·〉 with unit element 1.

For convenience, we will typically abbreviate x · y as xy. We will also

abbreviate x+ (−y) as x− y.
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We first observe that for x ∈ S and n ∈ N, we can define xn as follows:

xn =

⎧⎨
⎩
1 if n = 0

xxn−1 otherwise.

Hence, the definition of a principal nth root of unity makes sense for R.

Furthermore, the definition of a discrete Fourier transform also makes sense

over this ring. The following theorem states that some familiar properties of

exponentiation must hold for any ring with unit element; its proof is left as

an exercise.

Theorem 15.6. Let R be any ring with unit element. Then the following

properties hold for any x in R and any m,n ∈ N :

a. xmxn = xm+n.

b. (xm)n = x(mn).

Theorem 15.1 can be shown using only the properties given in the

definition of a ring, together with Theorem 15.6. It therefore applies to

R. The derivations of Equations (15.1) and (15.2) use the properties of a

ring, together with commutativity, so that they also hold for R. The proof

of Theorem 15.2 applies for arbitrary rings with unit elements, so equation

(15.3) holds for R. The algorithm Fft therefore can be used to compute a

DFT over R, provided ω is a principal nth root of unity for that ring, and

that addition and multiplication on elements of the ring are the + and ·
operations from R.

In order to extend Theorem 15.3 to R, we must consider what it would

mean to divide by n in that ring. First of all the ring might not contain n as

an element. However, we can always embed the integers into a ring with unit

element as follows. First, if the ring has a unit element 1, it also contains

−1 (the additive inverse of 1) and 0 (the additive identity). For n > 1, if

n− 1 is in the ring, we can give the element (n− 1) + 1 the name n, and we

can give the element −(n− 1)− 1 the name −n. Thus, each integer refers to

some element of the ring. Note that a particular element of the ring might

not correspond to any integer, or it might correspond to more than one. If

it does correspond to more than one integer, it is not hard to show that it

corresponds to infinitely many integers.

Now that we have identified n with some element in the ring, we can

define division by n as multiplication by n−1, provided n has a multiplicative

inverse. We note that if ω is a principal nth root of unity, then ωωn−1 = 1,

so that ω−1 = ωn−1. Then the proof of Theorem 15.3 can easily be seen to
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apply to an arbitrary ring with unit element, provided n has a multiplicative

inverse in that ring. Because the proof of Theorem 15.4 also applies to an

arbitrary ring with unit element, Fft can be used to compute an inverse

DFT over R.

In order to compute a convolution over R, we need to be able to find

a principal nth root of unity when n is a power of 2. Unfortunately, not

every commutative ring with unit element has a principal nth root of

unity whenever n is a power of 2. In the next section, we will focus on

particular commutative rings and determine when they have principal nth

roots of unity. We will then show how to multiply arbitrary-precision natural

numbers by using the fast Fourier transform over these rings.

15.3 Integer Multiplication

Suppose we wish to multiply two BigNums, u and v, as specified in

Exercise 4.14 on page 145. If uv contains n bits, and m ≥ 2n, then the

product uv in the ring 〈Zm,+, ·〉 is the same as the ordinary product

over N. We have therefore reduced arbitrary-precision multiplication to

multiplication in a ring of the form 〈Zm,+, ·〉. In this section and the next,

we show how to use the Fast Fourier Transform to compute a product over

such a ring for specific values of m.

We first need to choose m in such a way that we can find principal nth

roots of unity in the ring, when n is a power of 2. Because Theorem 15.2

holds for any ring with unit element, we need to find m and ω such that

ωn/2 mod m = m− 1, the inverse of 1 in 〈Zm,+〉. One way of satisfying this

constraint is to select m = 2k + 1 for some positive integer k. Then 22k/n is

a principal nth root of unity, provided 2k is divisible by n. Because n is a

power of 2, we should require k to be a power of 2 such that 2k ≥ n.
We also need to be able to find the multiplicative inverse of n in this

ring. Because 22k/n is a principal nth root of unity, 22k = 1 in this ring.

Therefore, n−1 = 22k/n. We therefore have the following theorem.

Theorem 15.7. Let k and n be powers of 2 such that 1 ≤ n ≤ 2k, and let

m = 2k + 1. In the ring 〈Zm,+, ·〉 :

a. 22k/n is a principal nth root of unity; and

b. n−1 = 22k/n.

Note that if k and n are both powers of 2 such that 1 ≤ n ≤ 2k, both

22k/n and 22k/n are also powers of 2. This fact is advantageous because
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Figure 15.3 Implementation of Multiply (specified in Figure 10.6, p. 349) using

modular multiplication

MultFft(u, v)
n ← Max(1, u.NumBits() + v.NumBits()); k ← 2 lg n

return ModMult(u, v, k)

Precondition: u and v are BigNums each having at most k bits, and k is
a Nat containing a power of 2.
Postcondition: Returns a BigNum representing

uv mod (2k + 1).

ModMult(u, v, k)

multiplying a BigNum by a power of 2 can be done very efficiently via the

Shift operation.

In order to complete the reduction of arbitrary-precision multiplication

to multiplication in a ring 〈Zm,+, ·〉, we must select a specific m. Suppose

the natural numbers u and v together have a total of n bits. Then uv will

have at most n bits. We can therefore set k to the smallest power of 2 no

smaller than n, and let m = 2k + 1. The resulting algorithm is shown in

Figure 15.3 (see Figure 10.6 on page 349 for its specification).

Let us consider how to multiply two k-bit numbers, u and v, mod 2k+1,

where k is a power of 2. Suppose we break u and v into b blocks of l bits

each. Let these blocks be u0, . . . , ub−1 and v0, . . . , vb−1, so that

u =
b−1∑
i=0

ui2
il

and

v =
b−1∑
i=0

vi2
il.

The product uv mod (2k + 1) is then given by

uv mod (2k + 1) =

⎛
⎝

2b−1∑
j=0

min(j,b−1)∑
i=max(0,j−b+1)

uivj−i2jl

⎞
⎠ mod (2k + 1).
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Note that the last term in the above sum (i.e., for j = 2b−1) is 0. We include

it in order to simplify the derivation that follows.

Because k = bl, 2bl = −1 in the ring 〈Zm,+, ·〉, where m = 2k + 1. We

can therefore write the product uv in this ring as

uv =

⎛
⎝

b−1∑
j=0

j∑
i=0

uivj−i2jl

⎞
⎠−

⎛
⎝

2b−1∑
j=b

b−1∑
i=j−b+1

uivj−i2(j−b)l

⎞
⎠

=

⎛
⎝

b−1∑
j=0

j∑
i=0

uivj−i2jl

⎞
⎠−

⎛
⎝

b−1∑
j=0

b−1∑
i=j+1

uivj−i+b2
jl

⎞
⎠

=
b−1∑
j=0

2jl

⎛
⎝

j∑
i=0

uivj−i −
b−1∑

i=j+1

uivj−i+b

⎞
⎠ .

Let p = 〈p0, . . . , pb−1〉, where

pj =

j∑
i=0

uivj−i −
b−1∑

i=j+1

uivj−i+b.

Thus, in 〈Zm,+, ·〉,

uv =

b−1∑
j=0

pj2
jl.

Furthermore, the vector p closely resembles the positive wrapped convolution

〈u0, . . . , ub−1〉 ⊗ 〈v0, . . . , vb−1〉. The only difference is that the two sums are

subtracted, rather than added. For this reason, we define p to be the negative

wrapped convolution of the two vectors. The following theorem shows how

computing a negative wrapped convolution can be reduced to computing a

positive wrapped convolution.

Theorem 15.8. Let R be a commutative ring with unit element, and suppose

ψ is a principal (2n)th root of unity in R. Let p and q be 1× n vectors over

R, and let Ψ and Ψ′ be 1×n vectors such that Ψj = ψj and Ψ′j = ψ2n−j for

0 ≤ j < n. Then the negative wrapped convolution of p and q is given by

Ψ′ · ((Ψ · p)⊗ (Ψ · q)), (15.1)

where · denotes the component-wise product of two vectors over R.
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Proof. Let 0 ≤ j < n. Then the jth component (15.1) is

ψ2n−j

⎛
⎝

j∑
i=0

ψipiψ
j−iqj−i +

n−1∑
i=j+1

ψipiψ
j−i+nqj−i+n

⎞
⎠

= ψ2n
j∑

i=0

piqj−i + ψ3n
n−1∑

i=j+1

piqj−i+n

=

j∑
i=0

piqj−1 + ψn
n−1∑

i=j+1

piqj−i+n

=

j∑
i=0

piqj−1 −
n−1∑

i=j+1

piqj−i+n.

�

Let us therefore reduce multiplication in the ring 〈Zm,+, ·〉 to computing

a negative wrapped convolution. In order to do this, the negative wrapped

convolution must be computed over a commutative ring with a principal

(2b)th root of unity. If we are to use a ring 〈Zm′ ,+, ·〉, where m′ = 2k
′
+ 1

and k′ is a power of 2, then from Theorem 15.7, we must have k′ ≥ b.
Furthermore, m′ must be large enough so that

⎛
⎝

j∑
i=0

uivj−i −
b−1∑

i=j+1

uivj−i+b

⎞
⎠ mod m′

uniquely determines

j∑
i=0

uivj−i −
b−1∑

i=j+1

uivj−i+b.

Because each component of u and v is strictly less than 2l, the above

expression is strictly less than b22l and strictly greater than −b22l. We

therefore need

2k
′
+ 1 ≥ 2b22l

k′ ≥ lg(b22l+1 − 1).

The above inequality is satisfied if k′ ≥ lg b + 2l + 1. Because our

convolution algorithm works on vectors whose size is a power of 2, it makes

sense to choose b as a power of 2. Because k is a power of 2, this implies that
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l = k/b is also a power of 2. Because k′ must also be a power of 2, we can

satisfy this inequality by taking k′ ≥ 4l, provided lg b+ 1 ≤ 2l.

In order to make k′ as small as possible and still at least max(b, 4l), we

should choose b and 4l to be roughly equal. If k is an even power of 2, we

can set l =
√
k/2 and b = 2

√
k. In this case, both will be powers of 2, and we

can set k′ = b = 4l. Otherwise, we can set l =
√
k/2 and b =

√
2k. Again,

both are powers of 2, and in this case we can set k′ = 4l. Furthermore, it is

easily seen that for these choices, lg b+ 1 ≤ 2l whenever k ≥ 16.

Finally, the computation of the negative wrapped convolution will involve

arithmetic, including multiplication, over the ring we choose. Thus, this

computation will be reduced to modular multiplication. In order to avoid

a circular reduction, we must make sure we choose k′ < k. It is easily seen

that when k ≥ 16, this constraint is satisfied.

The reduction of modular multiplication to a negative wrapped con-

volution is shown in Figure 15.4. For the base case, it uses some other

multiplication algorithm satisfying the spec given in Figure 10.6. It uses a

function ToRing to apply the mod 2k +1 operation. It also uses a function

Eval, which coverts the negative wrapped convolution into the product mod

2k + 1. We will consider the design of these two functions shortly.

The NegConv function can now be implemented by directly applying

Theorem 15.8. Its implementation is shown in Figure 15.5. In order to

multiply a BigNum x by ψj , which is a power of 2, we shift x to the right

by j lgψ bits. We use the variable lgPsi to store the value lgψ.

NegConv uses the function PosConv, whose implementation is shown

in Figure 15.6. This algorithm is simply a modification of Convolution

for the modular ring; however, because the precondition requires that n

is a power of 2, we don’t need to copy the elements to arrays of such a

size. In order to facilitate multiplication by n−1, we use the variable lgInv to

store lg(n−1). Also, recall that the precondition for ModMult (Figure 15.3)

requires that each argument is at most k bits. However, the discrete Fourier

transforms may contains elements equal to 2k, which has k+1 bits. We must

therefore handle this case separately.

The principal nth root of unity used for computing the DFT will be 22k/n.

For computing the inverse DFT, we therefore must use the multiplicative

inverse of 22k/n. Because 22k mod (2k + 1) = 1, (22k/n)−1 = 22k−2k/n. For
reasons of efficiency and ease of analysis, we use a boolean to indicate which

of these roots the function ModFft is to use.

The implementation of ModFft is shown in Figure 15.7. It is a fairly

straightforward adaptation of Fft (Figure 15.1) to the ring 〈Zm,+, ·〉. We



486 Algorithms: A Top-Down Approach

Figure 15.4 Implementation of ModMult, specified in Figure15.3

ModMultFft(u, v, k)
if k < 16

return ToRing(MultiplyAdHoc(u, v), k)
else

if (lg k) mod 2 = 0
b ← 2

√
k; l ← √

k/2
else

b ← √
2k; l ← k/2

uarray ← new Array[0..b − 1]; varray ← new Array[0..b − 1]
for j ← 0 to b − 1

uarray[j] ← new BigNum(u.GetBits(jl, l))
varray[j] ← new BigNum(v.GetBits(jl, l))

conv ← NegConv(uarray, varray, 4l)
return Eval(conv , k, l)

Precondition: x is a BigNum and k is a positive Nat.
Postcondition: Returns a BigNum representing x mod (2k + 1).

ToRing(x, k)

Precondition: p[0..n − 1] and q[0..n − 1] are arrays of BigNums each
having at most k bits, k is a Nat containing a power of 2, and n is a Nat
containing a power of 2 such that n ≤ k.
Postcondition: Returns a BigNum representing the negative wrapped
convolution of p and q over the ring m, +, , where m = 2k + 1.

NegConv(p[0..n − 1], q[0..n − 1], k)

Precondition: v[0..n− 1] is an array of BigNums no larger than 24l, n, k,
and l are Nats containing powers of 2.
Postcondition: Returns a BigNum representing

⎛
⎝

n−1

j=0

uj2jl

⎞
⎠ mod (2k + 1),

where uj = v[j] if v[j] ≤ 24l−1, or uj = v[j] − (24l + 1) otherwise.

Eval(v[0..n − 1], k, l)

must be careful, however, when subtracting ωid′[i] from d′′[i] in order to

obtain d[i + mid], because ωid′[i] may be greater than d′′[i]. In order to

satisfy the precondition of BigNum.Subtract (Figure 4.18 on page 146),

we first subtract ωid′[i] from m, then add the result, mod m, to d′′[i]. In
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Figure 15.5 Implementation of NegConv, as specified in Figure 15.4

NegConv(p[0..n − 1], q[0..n − 1], k)
lgPsi ← k/n; p ← new Array[0..n − 1]; q ← new Array[0..n − 1]
for j ← 0 to n − 1

p [j] ← ToRing(p[j].Shift(j · lgPsi), k)
q [j] ← ToRing(q[j].Shift(j · lgPsi), k)

r ← PosConv(p , q , k)
r ← new Array[0..n − 1]
for j ← 0 to n − 1

r[j] ← ToRing(r [j].Shift((2n − j)lgPsi), k)
return r

Precondition: p[0..n − 1] and q[0..n − 1] are arrays of BigNums each no
larger than 2k, k is a Nat containing a power of 2, and n is a Nat containing
a power of 2 such that n ≤ k.
Postcondition: Returns a BigNum representing the positive wrapped con-
volution of p and q over the ring m, +, , where m = 2k + 1.

PosConv(p[0..n − 1], q[0..n − 1], k)

order to compute m, we assume the existence of a constant one, which refers

to a BigNum representing 1.

Let us now turn to the implementation of ToRing, specified in

Figure 15.4. A straightforward way of computing x mod m is to divide x

by m using long division, and return the remainder. Fortunately, the form

of m makes this long division easy. Suppose we break m and x into k-bit

digits. Then the representation of m in this radix is 11.

In order to see how each step of the long division can proceed, suppose

x = a2k + b, where b < 2k and a < m. We first approximate the quotient

as a. If a ≤ b, the quotient is, in fact a, and the remainder is b− a. If a > b,

we try a− 1 as the quotient. Then because a < m, a ≤ 2k, so that

(a− 1)(2k + 1) = a2k + a− 2k − 1

≤ a2k − 1

≤ a2k + b.

Then a− 1 is the quotient, and the remainder is

a2k + b− (a− 1)(2k + 1) = b+ 2k − a+ 1

= b+m− a.
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Figure 15.6 Implementation of PosConv, specified in Figure 15.5

PosConv(p[0..n − 1], q[0..n − 1], k)
lgInv ← 2k − lg n
ptrans ← ModFft(p, k, false)
qtrans ← ModFft(q, k, false)
rtrans ← new Array[0..m − 1]
for i ← 0 to n − 1

if ptrans[i].NumBits() > k
rtrans[i] ← ToRing(qtrans[i].Shift(k), k)

else if qtrans[i].NumBits() > k
rtrans[i] ← ToRing[i](ptrans[i].Shift(k), k)

else
rtrans[i] ← ModMult(ptrans[i], qtrans[i], k)

r ← ModFft(rtrans, k, true)
for i ← 0 to n − 1

r[i] ← ToRing(r[i].Shift(lgInv), k)
return r

Precondition: p[0..n − 1] is an array of BigNums, each no larger than 2k,
n and k are Nats containing powers of 2 such that n ≤ 2k, and inv is a
Bool.
Postcondition: Returns the DFT of p over m, +, with respect to 2−2k/n

if inv = true, or with respect to 22k/n otherwise.

ModFft(p[0..n − 1], k, inv)

We can therefore compute x mod m using only addition and subtraction

of BigNums, as shown in Figure 15.8. We assume the existence of a constant

one referring to a BigNum representing 1.

Finally, we need to implement Eval, specified in Figure 15.4. A straight-

forward implementation by adding and shifting would be too inefficient,

because numbers with up to k bits would need to be copied each iteration.

Instead, we should try to generate the result one l-bit block at a time. We

can store the resulting bits in an array, then convert the result to a BigNum.

A difficulty with this approach is that some elements of the input array may

represent negative values. It therefore makes sense to accumulate the positive

terms in one array and the negative terms in another. We can then combine

the two arrays into a single BigNum. The algorithm is shown in Figure 15.9.

To analyze the running time of our multiplication algorithm, we begin by

analyzing ToRing. From the loop invariant, the value of rem never exceeds

2k; hence, the value of next never exceeds 2k+1. Thus, the body of the loop
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Figure 15.7 The Fast Fourier Transform algorithm over a modular ring

ModFft(p[0..n − 1], k, inv)
m ← one.Shift(k).Add(one); d ← new Array[0..n − 1]; mid ← n/2
if n = 1

d[0] ← p[0]
else

p ← new Array[0..mid − 1]; p ← new Array[0..mid − 1]
for i ← 0 to mid − 1

p [i] ← p[2i]; p [i] ← p[2i + 1]
d ← ModFft(p , k, inv)
d ← ModFft(p , k, inv)
for i ← 0 to mid − 1

if inv
oddVal ← ToRing(d [i].Shift(2k − 2ki/n), k)

else
oddVal ← ToRing(d [i].Shift(2ki/n), k)

d[i] ← ToRing(d [i].Add(oddVal), k)
d[i + mid] ← ToRing(d [i].Add(m.Subtract(oddVal)), k)

return d

Figure 15.8 Algorithm for computing x mod (2k + 1)

ToRing(x, k)
numDig x.NumBits()/k ; m ← one.Shift(k).Add(one)
rem ← x.GetBits(k(numDig − 1), k)
// Invariant:
// rem = x.GetBits((i + 1)k, x.NumBits() − (i + 1)k) mod m
for i ← numDig − 2 to 0 by −1

next ← x.GetBits(ik, k)
if rem.CompareTo(next) > 0

next ← next.Add(m)
rem ← next.Subtract(rem)

return rem

clearly runs in Θ(k) time. The number of iterations is �n/k − 1, where n

is the number of bits in x. The loop therefore runs in Θ(n) time, provided

n > k. Because the initialization runs in Θ(k) time, the entire algorithm

runs in Θ(max(n, k)) time.

In order to analyze ModFft, let us first ignore the computations whose

running times depend on k, namely, the calculation of m and the calls to
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Figure 15.9 Implementation of Eval, specified in Figure 15.4

Eval(v[0..n − 1], k, l)
m ← one.Shift(k).Add(one); m ← one.Shift(4l).Add(one)
half ← m .Shift(−1)
pos ← new Array[0..nl − 1]; neg ← new Array[0..nl − 1]
posCarry ← zero; negCarry ← zero
for j ← 0 to n − 1

if v[j].CompareTo(half ) > 0
negCarry ← negCarry.Add(m .Subtract(v[j]))

else
posCarry ← posCarry .Add(v[j])

negBits ← negCarry.GetBits(0, l); negCarry ← negCarry.Shift(l)
posBits ← posCarry .GetBits(0, l); posCarry ← posCarry .Shift(l)
Copy(negBits[0..l − 1], neg [jl..j(l + 1) − 1])
Copy(posBits[0..l − 1], pos[jl..j(l + 1) − 1]);

posNum ← posCarry .Shift(nl).Add(new BigNum(pos))
negNum ← negCarry.Shift(nl).Add(new BigNum(neg))
return ToRing(posNum.Add(m.Subtract(ToRing(negNum, k))), k)

ToRing, Add, and Subtract. Thus, if we let n = 2N , the running time

of the remaining code is in Θ(N2N ). Specifically, we can conclude that the

total number of iterations of each of the for loops is in Θ(N2N ).

Now let k = 2K , and let us analyze the running time of a single iteration

of the second for loop, including the calls to ToRing, Add, and Subtract.

We first observe that for all i, d′[i] ≤ 2k and d′′[i] ≤ 2k. Because the number

of bits added by the Shift is at most 2k, the Shift therefore runs in

O(2K) time. Because the result of the Shift has O(2K) bits, the call to

ToRing runs in Θ(2K) time. Likewise, it is easily seen that the remaining

operations run in O(2K) time as well. A single iteration of the second for

loop therefore runs in Θ(2K) time. We conclude that ModFft runs in

Θ(N2N+K) time.

It is easily seen that the running time of PosConv, excluding the

calls to ModFft and ModMult, is in Θ(2N+K). Because the first two

arguments to ModMult must have at most 2K bits, we can describe the

running time of ModMult in terms of K. In particular, let f(K) denote

the worst-case running time of ModMult, assuming it is implemented

using ModMultFft. Because ModMult is called no more than 2K

times, the running time of PosConv is bounded above by a function in

O(N2N+K) + 2Nf(K). Likewise, it is easily seen that NegConv has the

same asymptotic running time.



* The Fast Fourier Transform 491

In order to analyze Eval, let l = 2L. It is easily seen that excluding

the return statement, this function runs in Θ(max(2K , 2N+L)) time.

Furthermore, it is not hard to see that when the return statement is

executed, posNum and negNum each contain at most n(3 + l) bits; hence,

ToRing(negNum, k) runs in Θ(max(2K , 2N+L)) time. Likewise, it is not

hard to see that the entire return statement runs in Θ(max(2K , 2N+L))

time.

We can now obtain an asymptotic recurrence for f(K), the worst-case

running time of ModMult. In what follows, we assume K ≥ 4. We first

observe that if K is even, then b = 2(K/2)+1 and l = 2(K/2)−1. Likewise, if K
is odd, b = 2(K+1)/2, and l = 2(K−1)/2. We can combine these two cases by

saying that b = 2�(K+1)/2� and l = 2�(K−1)/2�. The running time of the for

loop is therefore in

Θ(bl) = Θ(2�(K+1)/2�+�(K−1)/2�)

= Θ(2K).

In the call to NegConv, the number of elements in the arrays is

b = 2�(K+1)/2�, and the third parameter is 4l = 2�(K−1)/2�+2. Applying the

our analysis of NegConv, we see that the running time of this call is in

O(K2K) + 2�(K+1)/2�f(�(K − 1)/2�+ 2). Likewise, the call to Eval runs in

Θ(2K) time. We therefore have

f(K) ∈ O(K2K) + 2�(K+1)/2�f(�(K − 1)/2� + 2). (15.2)

In order to simplify the above recurrence, let g(K) = f(K + 3)/2K for

K ≥ 1. Then

g(K) ∈ O((K + 3)2K+3) + 2�(K+4)/2�f(�(K + 2)/2� + 2)

2K

= O(K) +
4f(�K/2� + 3)

2�K/2�

= O(K) + 4g(�K/2�). (15.3)

Applying Theorem 3.35, we have g(K) ∈ O(K2). Thus, for K ≥ 4,

f(K) = 2K−4g(K − 3)

∈ 2K−4O(K2)

⊆ O(2KK2).
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The running time of ModMult is therefore in O(2KK2). We can therefore

conclude that the running time of MultFft is in

O(2�lgn��lg n2) = O(n lg2 n),

where n is the number of bits in the product.

The above analysis is almost sufficient to show that the running time of

MultFft is in Θ(n lg2 n). Specifically, we only need to show that there are

inputs for each sufficiently large n such that the call to ModMult is made

on each iteration of the first loop in PosConv. Unfortunately, such a proof

would be quite difficult. On the other hand, it seems unlikely that our upper

bound on this algorithm’s worst-case running time can be improved.

15.4 The Schönhage–Strassen Algorithm

In this section, we will show how to improve the multiplication algorithm of

the preceding section to achieve a running time in O(n lg n lg lg n). In order

to see what we need to improve, consider recurrence (15.2). Specifically,

consider the 2�(K+1)/2�f(�(K − 1)/2� + 2) term. The coefficient is b, the

number of calls made to ModMult in PosConv, and the argument to f is

lg(4l), the size of each recursive call. If we add lg b to the size of the recursive

calls, we get K + 2, where the 2 is the lg of the multiplier for l that we use

to define the ring in which the FFT will be computed.

Let us suppose, more generally, that b = 2�(K+c)/2� and that the size of

the recursive call is �(K − c)/2� + d, where c and d are natural numbers.

Then the recurrence becomes

f(K) ∈ O(K2K) + 2�(K+c)/2�f(�(K − c)/2� + d). (15.1)

Now letting g(K) = f(K − c+ 2d)/2K , we have

g(K) =
f(K − c+ 2d)

2K

∈ O((K − c+ 2d)2K−c+2d) + 2�(K+2d)/2�f(�(K − 2c+ 2d)/2� + d)

2K

= O(K) +
2df(�K/2� − c+ 2d)

2�K/2�

= O(K) + 2dg(�K/2�).
By Theorem 3.35, if d > 1, g(K) ∈ O(Kd), as for recurrence (15.3);

however, if d = 1, then g(K) ∈ O(K lgK). It then follows that f(K) ∈
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O(2KK lgK), and the running time of the resulting multiplication algorithm

would be in O(n lg n lg lg n). Thus, in order to improve the running time of

ModMult, it suffices to reduce the size of the ring we use from 24l + 1 =

22
2l + 1 to 22l + 1.

The difficulty with such an approach is that we have already shown that

�lg(b22l+1−1) bits are required so that the elements of the negative wrapped

convolution over the given ring uniquely determine the negative wrapped

convolution over the integers. We need an additional result result that will

allow us to extract the elements of the negative wrapped convolution over

the integers from their values over a modular ring. This result is the Chinese

Remainder Theorem.

Theorem 15.9 (Chinese Remainder Theorem). Let a1, a2, m1, and

m2 be natural numbers such that a1 < m1, a2 < m2, where m1 and m2 are

relatively prime. Then there is a unique natural number i < m1m2 such that

i mod m1 = a1 and i mod m2 = a2.

Before we prove this theorem, let’s see why it might useful. We need to

compute the negative wrapped convolution of two vectors u and v, each of

size b and consisting of natural numbers less than 2l. Let wj denote the jth

component of the negative wrapped convolution. As we have already shown,

−b22l < wj < b22l. Suppose we were to compute the negative wrapped

convolution over two separate rings 〈Zmi ,+, ·〉, where m1 = 22l + 1 and

m2 = 2b, as shown in Figure 15.10. (As we will see, it is possible to compute

the second convolution with relatively little overhead.) Then the results of

these convolutions give us

conv [j] = wj mod (22l + 1), (15.2)

and

conv ′[j] = wj mod (2b), (15.3)

for 0 ≤ j < b.

Because 2b is a power of 2 and 22l + 1 is odd, they are relatively prime.

Theorem 15.9 therefore guarantees that if wj ≥ 0, then it is the only natural

number less than 2b(22l +1) that satisfies (15.2) and (15.3). Furthermore, it

is not hard to see that wj +2b(22l +1) also satisfies these constraints. Thus,

Theorem 15.9 guarantees that if wj < 0, then wj + 2b(22l + 1) is the only

natural number less than 2b(22l+1) that satisfies these constraints. The proof

of Theorem 15.9 will be constructive, so that we will be able to compute the

value that it guarantees. Finally, because wj < b(22l +1) < wj +2b(22l +1),
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Figure 15.10 Implementation of ModMult, specified in Figure 15.3, using two

negative wrapped convolutions

ModMultSS(u, v, k)
if k < 8

return ToRing(MultiplyAdHoc(u, v), k)
else

if (lg k) mod 2 = 0
b ← √

k; l ← √
k

else
b ← √

2k; l ← k/2
uarray ← new Array[0..b − 1]; varray ← new Array[0..b − 1]
uarray ← new Array[0..b − 1]; varray ← new Array[0..b − 1]
for j ← 0 to b − 1

uarray[j] ← new BigNum(u.GetBits(jl, l))
varray[j] ← new BigNum(v.GetBits(jl, l))
uarray [j] ← new BigNum(u.GetBits(jl, lg b + 1))
varray [j] ← new BigNum(v.GetBits(jl, lg b + 1))

conv ← NegConv(uarray, varray, 2l)
conv ← NegConvSS(uarray , varray , lg b + 1)
return EvalSS(conv , conv , k, l)

Precondition: p[0..n−1] and q[0..n−1] are arrays of BigNums each having
at most k bits, and k and n are Nats such that n is a power of 2.
Postcondition: Returns a BigNum representing the negative wrapped
convolution of p and q over the ring m, +, , where m = 2k.

NegConvSS(p[0..n − 1], q[0..n − 1], k)

Precondition: u[0..n − 1] is an array of BigNums no larger than 22l,
v[0..n − 1] is an array of BigNums less than 2n, and n, k, and l are Nats
containing powers of 2.
Postcondition: Returns a BigNum representing

⎛
⎝

n−1

j=0

wj2jl

⎞
⎠ mod (2k + 1),

where wj mod (22l + 1) = u[j], wj mod 2n = v[j], and −n(22l + 1) ≤ wj <
n(22l + 1).

EvalSS(u[0..n − 1], v[0..n − 1], k, l)

we can determine whether the value guaranteed by Theorem 15.9 is wj or

wj + 2b(22l + 1).

In order to prove Theorem 15.9, we need the following lemma.
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Lemma 15.10. Let a be an integer, and let b and m be positive integers.

Then (a mod bm) mod m = a mod m.

Proof. Let r1 = a mod bm, so that for some integer p, bmp+ r1 = a. Let

r2 = a mod m, so that for some integer q,

mq + r2 = a

= r1 + bmp,

m(q − bp) = r1 − r2.
Because r1 and r2 differ by a multiple of m, and because 0 ≤ r2 < m,

r1 mod m = r2. Thus, (a mod bm) mod m = a mod m. �

Proof of Theorem 15.9 Let f : Zm1m2 → Zm1 × Zm2 be defined so that

f(i) = (i mod m1, i mod m2). We will show that f is a one-to-one and onto

function.

In order to show that f is onto, let a1 ∈ Zm1 and a2 ∈ Zm2 . From

Theorem 7.4,

m1x mod m2 = 1

has a natural number solution x = c. Let

i = (m1c((a2 − a1) mod m2) + a1) mod m1m2. (15.4)

Clearly, 0 ≤ i < m1m2. Because m1c((a2− a1) mod m2) is a multiple of m1,

from Lemma 15.10, i mod m1 = a1. Also, from Lemma 15.10, we have

i mod m2 = (m1c((a2 − a1) mod m2) + a1) mod m2

= ((m1c mod m2)((a2 − a1) mod m2) + a1) mod m2

= a2 mod m2

= a2.

Therefore, f(i) = (a1, a2). Because the choice of a1 and a2 was arbitrary, we

conclude that f is onto.

Because Zm1m2 and Zm1 × Zm2 are finite sets with the same number of

elements, and f is a mapping from Zm1m2 onto Zm1 ×Zm2 , it follows that f

is one-to-one. �
Let us now consider how to implement EvalSS. Let m1 = 22l + 1 and

m2 = 2b. In order to apply (15.4), we need to have a value c such that

m1c mod m2 = 1. Because b ≤ 2l is a power of 2, (22l + 1) mod 2b = 1.

We can therefore use c = 1. Furthermore, because 0 ≤ a1 < m1, 0 ≤
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Figure 15.11 Implementation of EvalSS, specified in Figure 15.10

EvalSS(u[0..n − 1], v[0..n − 1], k, l)
m ← one.Shift(2l).Add(one)
m ← one.Shift(lg n + 1)
half ← m.Shift(lg n); full ← half .Shift(1)
pos ← new Array[0..nl − 1]; neg ← new Array[0..nl − 1]
posCarry ← zero; negCarry ← zero
for j ← 0 to n − 1

if v[j] ≥ u[j]
diff ← v[j].Subtract(u[j])

else
t ← u[j].Subtract(v[j]).GetBits(0, lg n + 1)
diff ← m .Subtract(new BigNum(t))

w ← diff .Shift(2l).Add(diff ).Add(u[j])
if w.CompareTo(half ) > 0

negCarry ← negCarry.Add(full.Subtract(w))
else

posCarry ← posCarry .Add(w)
negBits ← negCarry.GetBits(0, l); negCarry ← negCarry.Shift(l)
posBits ← posCarry .GetBits(0, l); posCarry ← posCarry.Shift(l)
Copy(negBits[0..l − 1], neg [jl..j(l + 1) − 1])
Copy(posBits[0..l − 1], pos[jl..j(l + 1) − 1])

posNum ← posCarry .Shift(nl).Add(new BigNum(pos))
negNum ← negCarry.Shift(nl).Add(new BigNum(neg))
M ← one.Shift(k).Add(1)
return ToRing(posNum.Add(M.Subtract(ToRing(negNum, k))), k)

m1((a2−a1) mod m2)+a1 < m1m2. The value guaranteed by Theorem 15.9

is therefore

(22l + 1)((v[j] − u[j]) mod 2b) + u[j].

We can multiply by 22l + 1 using a bit shift and an addition. We can then

determine wj by comparing the above value with b(22l+1) and subtracting

2b(22l + 1) if necessary. The algorithm is shown in Figure 15.11.

In order to implement NegConvSS, we must be able to compute a

negative wrapped convolution over a ring 〈Zm,+, ·〉, where m is a power

of 2. However, because the values of the vectors are much smaller than those

used in the other convolution, we don’t need to be quite as careful regarding

the efficiency of this algorithm. Specifically, we don’t need to use the FFT.

Instead, we can first compute a non-wrapped convolution mod 2k. Let us
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Figure 15.12 Implementation of NegConvSS, specified in Figure 15.10

NegConvSS(p[0..n − 1], q[0..n − 1], k)
negConv ← new Array[0..n − 1]; m ← one.Shift(k)
conv ← NonWrappedConv(p, q, k)
for j ← 0 to n − 1

if conv [j].CompareTo(conv [n + j])
negConv [j] ← conv [j].Subtract(conv [n + j])

else
negConv [j] ← conv [j].Add(m).Subtract(conv [n + j])

return negConv

Precondition: p[0..n−1] and q[0..n−1] are arrays of BigNums each having
at most k bits, and k is a Nat.
Postcondition: Returns an array r[0..2n− 1] of BigNums giving the non-
wrapped convolution of p and q over the ring m, +, , where m = 2k.

NonWrappedConv(p[0..n − 1], q[0..n − 1], k)

refer to this convolution as conv [0..2b−1]. Element j of the negative wrapped

convolution is then (conv [j]− conv [n+ j]) mod 2k. The algorithm is shown

in Figure 15.12.

Recall that PolyMult (Figure 10.1 on page 334) computes a non-

wrapped convolution of two vectors over 〈Z,+, ·〉. We can therefore modify

this algorithm to operate on BigNums such that all operations are mod

2k. In order for the resulting algorithm to satisfy the specification of

NonWrappedConv, we would also need to modify it to return an array

whose size is larger by one element, whose value will be 0. We leave the

details as an exercise.

In order to analyze the Schönhage–Strassen algorithm, which is simply

the Multiply algorithm of Figure 15.3 with ModMult implemented using

ModMultSS, we first observe that the analysis of EvalSS is similar to

the analysis of Eval in the previous section. Hence, its running time is

in Θ(max(2K , 2N+L)), where k = 2K , n = 2N , and l = 2L. Because

PolyMult runs in Θ(nlg 3) time, where n is the degree of the product,

NonWrappedConv can be implemented to run in O(nlg 3M(k)) time,

where M(k) is the time needed to multiply two k-bit BigNums mod 2k.

Because M(k) must be in Ω(k), NegConvSS then runs in O(nlg 3M(k))

time.



498 Algorithms: A Top-Down Approach

To analyze ModMultSS, we first recall that the running time of

NegConv is in O(N2N+K) + 2Nf(K), where f(K) denotes the worst-

case running time of ModMult; here, we will assume that ModMult is

implemented with ModMultSS. If we now let 2K be the value of k in

the call to ModMultSS, then the call to NegConv runs in O(K2K) +

2�K/2�f(�K/2� + 1), and NegConvSS runs in O(2�K/2� lg 3M(K)) time.

Hence, even if M(K) is in Θ(K2), the running time for these two calls

together is in O(K2K) + 2�K/2�f(�K/2� + 1). Because the call to EvalSS

runs in Θ(2K) time, the total running time of ModMultSS is easily seen

to be given by the recurrence

f(K) ∈ O(K2K) + 2�K/2�f(�K/2� + 1),

when K ≥ 3.

The above recurrence fits the form of (15.7) with d = 1; hence, as we

showed at the beginning of this section, the running time of the Schönhage–

Strassen algorithm is in O(n lg n lg lg n), where n is the number of bits in the

product.

15.5 Summary

The Fast Fourier Transform is an efficient algorithm for computing a con-

volution, a problem which arises in a variety of applications. For numerical

applications, applying the FFT over 〈C,+, ·〉 is appropriate; however, for

number-theoretic applications like arbitrary-precision integer multiplication,

other algebraic structures are more appropriate. The algorithm extends to

any commutative ring containing a principal nth root of unity, and over

which n has a multiplicative inverse, where n is a power of 2 giving the

number of elements in the vectors.

Some rings that are particularly useful for number-theoretic applications

are rings of the form 〈Zm,+, ·〉, wherem is of the form 2k+1. The properties

of these rings contribute in several ways to the efficiency of the Schönhage–

Strassen integer multiplication algorithm. First, we can compute n mod

(2k + 1) efficiently. Second, the principal nth roots of unity in these rings

are powers of 2, so that we can use bit shifting to multiply by these roots.

Third, when n is a power of 2, it has a multiplicative inverse that is also a

power of 2. Fourth, we can compute a product in this ring with a negative

wrapped convolution of vectors with half as many elements as would be

needed to compute a non-wrapped convolution. Finally, because any power

of 2 is relatively prime to 2k + 1, we can reduce by half the number of
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bits we use in computing the negative wrapped convolution if we instead

perform some computation on a few bits of each value and apply the Chinese

Remainder Theorem.

15.6 Exercises

Exercise 15.1. Prove Theorem 15.6. [Hint: Use induction on eitherm or n.]

Exercise 15.2. Suppose that in multiplying two BigNums mod 2k − 1,

where k is a power of 2, instead of making b and 4l as nearly equal as

possible (as in Section 15.3), we were to make b as small as possible. Analyze

the running time of the algorithm that results if we set b to 8 and l to k/8.

Exercise 15.3.

a. Prove Theorem 15.9 by showing that for any a1 ∈ Zm1 and any a2 ∈
Zm2 , if i = (m2c2a1 +m1c1a2) mod m1m2, where (m1c1) mod m2 = 1

and (m2c2) mod m1 = 1, then i mod m1 = a1 and i mod m2 = a2.

* b. Extend the above idea to prove the following. Let m1, . . . ,mn be

positive integers that are all relatively prime to each other, and let

M =

n∏
j=1

mj.

Then for natural numbers a1, . . . , an such that each aj < mj , there is a

unique natural number i < M such that for 1 ≤ j ≤ n, i mod mj = aj .

Exercise 15.4. Modify PolyMult (Figure 10.1 on page 334) to implement

NonWrappedConv, specified in Figure 15.12. Show that the algorithm

runs in O(nlg 3M(k)) time, where M(k) is the time required to multiply to

k-bit BigNums.

* Exercise 15.5. For c ∈ C and p = 〈p0, . . . , pn−1〉 ∈ C
n, the chirp

transform of p with respect to c is the vector q ∈ C
n such that for 0 ≤ i < n,

qj =

n−1∑
i=0

pic
ij .

Thus, if c is a principal nth root of unity, then the chirp transform with

respect to c is a DFT. Show how to reduce the problem of computing a chirp

transform for arbitrary c ∈ C to the problem of computing a convolution.

Using this reduction, give an O(n lg n) algorithm for evaluating a chirp

transform.
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Exercise 15.6. A Toeplitz matrix is an n × n array A such that for 1 ≤
i < n and 1 ≤ j < n, Aij = Ai−1,j−1. Thus, we can describe a Toeplitz

matrix by giving only its first row and its first column. Give an algorithm for

multiplying an n×n Toeplitz matrix over C by an n-element vector over C.

You may choose an appropriate representation for the Toeplitz matrix. Your

algorithm should run in O(n lg n) time, assuming each operation on complex

numbers can be performed in O(1) time.

* Exercise 15.7. Let

p(x) =

n−1∑
i=0

aix
i

be a polynomial of degree strictly less than n, where each ai ∈ R, and let

x0 ∈ R. Give an algorithm for computing all of the derivatives of p(x) at

x0 (i.e., your algorithm should find, for 0 ≤ j < n, the jth derivative of

p(x) at x0). Your algorithm should run in O(n lg n) time, assuming that

all operations on complex numbers run in O(1) time. [Hint: Define q(x) =

p(x0 + x), and find all of the derivatives of q(x) at 0. You will probably find

the Binomial Theorem ((6.15) on page 242) helpful.]

15.7 Notes

Heideman, Johnson, and Burrus [61] credit Gauss with the discovery of the

fast Fourier transform in 1805. Its importance to computation was shown by

Cooley and Tukey [24]. The multiplication algorithm of Section 15.4 is due

to Schönhage and Strassen [104].

Though we have referred to Theorem 15.9 as the Chinese Remainder

Theorem, it is usually stated in the more general form suggested by Exercise

15.3. The process of solving so-called simultaneous congruences in this

way dates back to the third or fourth century AD, when the Chinese

mathematician Sun Zi (or Sun Tsŭ) showed how to solve a specific instance of

simultaneous congruences. The technique was published as a general theorem

by Qin Jiushao (or Chhin Chiu-Shao) in 1247.
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Intractable Problems
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Chapter 16

NP-Completeness

Up to now, we have focused on developing efficient algorithms for solving

problems. The word “efficient” is somewhat subjective, and the degree of

efficiency has varied depending on the problem. Still, in each case, we have

shown a running time that was no worse than a low-order polynomial in

some natural description of the problem size.

It is possible to prove, however, that some problems cannot be solved

by any algorithm with polynomial running time. In fact, it is possible to

prove that some problems cannot be solved by any algorithm at all. We

will not be examining any of these problems, but in this chapter and the

next, we will take a look at a very interesting class of problems for which no

efficient algorithms are known. Part of the reason that this class of problems

is interesting is that if a polynomial-time algorithm were to be found for

any one of these problems, then we could derive polynomial-time algorithms

for all of the problems in this class. Furthermore, no one to date has given

a convincing proof that there are no such algorithms. At the heart of these

issues is the most famous open question in computational complexity theory.

16.1 Boolean Satisfiability

Suppose we are given an expression F containing boolean variables and the

following operators:

• ¬: logical negation;
• ∨: logical or; and
• ∧: logical and.

503
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There are two questions we might ask regarding F :
• Is F valid? That is, does F evaluate to true for every possible assignment

of true or false to the variables in F?
• Is F satisfiable? That is, does there exist some assignment of true or false

to the variables in F so that F evaluates to true?

For example, let F = ¬x∨ (y ∧ x). This expression is not valid, because

setting x to true and y to false yields

¬true ∨ (false ∧ true) = false ∨ false

= false.

However, F is satisfiable — in fact, any other assignment of values to x and

y makes F true.

Note that it follows immediately from the definitions of validity and

satisfiability that for any expression F , F is valid iff ¬F is unsatisfiable.

Because of this duality, we will focus on only one of these problems, the

satisfiability problem. We would like to find a satisfiability algorithm whose

worst-case running time is bounded by some polynomial in the size of

the given expression, where the size is defined to be the total number of

occurrences of variables and operators. However, as of this writing, no such

algorithm has been found. Indeed, as we will see shortly, there is good reason

to believe that no such algorithm is possible. On the other hand, there

currently exists no proof that such an algorithm is impossible.

Before we look at the satisfiability problem in more detail, let us first

consider a simpler problem, that of evaluating a boolean expression F , given
boolean values for its variables. We first observe that F must be of one of

the following forms:

• a single variable;

• the negation of an expression, i.e., ¬F1;

• the or of two expressions, i.e., F1 ∨ F2; or

• the and of two expressions, i.e., F1 ∧ F2.

It is therefore convenient to represent the formula using a binary tree

in which the leaves represent variables and the internal nodes represent

operators. For the ¬ operator, the right-hand child will always be empty.

To make this representation more concrete, we can use special constants

not, and, and or to represent the three operators, and we can represent the

variables using positive integers. In order to avoid unnecessary complications,

we will assume that if j represents a variable in the expression, then for
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Figure 16.1 Binary trees representing the formula ¬x ∨ (y ∧ x)

not

∨

¬

x

∧

xy

or

and

1 2 1

1 ≤ i ≤ j, i represents some variable in the expression (note, however,

that we cannot apply this assumption to arbitrary subtrees). For example,

Figure 16.1 shows the tree representing the formula ¬x ∨ (y ∧ x), first in a

more abstract form, then in a more concrete form using 1 to represent x and

2 to represent y. Finally, we can represent an assignment of truth values to

the variables using an array A[1..n] of boolean values, where A[i] gives the

value assigned to the variable represented by i.

Given an expression tree for F and an array representing an assignment

of truth values, we can then evaluate F using BoolEval, shown in

Figure 16.2. It is not hard to see that this algorithm runs in Θ(m) time,

where m is the number of operators in F (note that the number of leaves in

the expression tree can be no more than m+ 1).

Returning to the satisfiability problem, we now point out some character-

istics that this problem has in common with the other problems we will study

in this chapter. First, it is a decision problem — the output is either “yes”

or “no”. Second, when the answer is “yes”, there is a relatively short proof

of this fact — an assignment of truth values that satisfies the expression.

Third, given a proposed proof of satisfiability (i.e., some assignment of truth

values to the variables), we can efficiently verify whether it does, in fact,

prove the satisfiability of the expression. However, finding such a proof, or

proving that none exists, appears to be an expensive task in the worst case

(note that there are 2n possible assignments of truth values to n variables).

16.2 The Set P
We have suggested that the boolean satisfiability problem may not be

efficiently solvable. However, we have not yet formalized what this means.

In this section we will define a set of decision problems that we will consider

to be those that are efficiently decidable.
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Figure 16.2 Algorithm for evaluating a boolean expression.

Precondition: F is a BinaryTreeNode referring to the root of a
nonempty boolean expression tree, and A[1..n] is an array of Bools.
Postcondition: Returns the value of F assuming that the variable repre-
sented by i has value A[i] if i ≤ n, or false if i > n.

BoolEval(F , A[1..n])
if F .LeftChild() = nil

if F .Root() ≤ n
return A[F .Root()]

else
return false

else if F .Data() = not
return not BoolEval(F .LeftChild(), A)

else
l ← BoolEval(F .LeftChild(), A)
r ← BoolEval(F .RightChild(), A)
if F .Root() = and

return l and r
else

return l or r

An artificially long input
would result in an arti-
ficially low running time
when expressed in terms of
the length of the input.

We will begin by adopting a couple of con-

ventions. First, we will assume that each problem

instance is a bit string. Certainly, we can encode other

types of input data as bit strings, provided the set

of all instances is countable. We do need to ensure,

however, that this encoding is done in such a way that the length of the

encoding is not unnecessarily long. With this convention, we can now express

the running time of an algorithm in terms of the length of its input string.

This gives us a uniform way of expressing the running times of all algorithms

for all problems. Second, we will view a decision problem as a subset of its

instances. Specifically, let I denote the set of all bit strings that encode

boolean expressions. We can then let Sat denote the set of all expressions

in I that are satisfiable. It will also be convenient to use Sat to denote the

problem itself. In general, given a set of instances I, we will refer to any

subset X ⊆ I as a decision problem over I.

We must now address the question of how efficient is “efficient”. We

will somewhat arbitrarily delineate the “efficient” algorithms as those that

operate within a running time bounded by some polynomial in the length
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of the input. This delineation, however, is not entirely satisfactory. On the

one hand, one could make a persuasive argument that an algorithm with

a running time in Θ(n1000) is not “efficient”. On the other hand, suppose

some algorithm has a running time in Θ(n�α(n)/4�), where α is as defined

in Section 8.4. Because n�α(n)/4� ≤ n for every positive n that can be

coded in binary within our universe, such an algorithm might reasonably

be considered to be “efficient”. However, n�α(n)/4� is not bounded above by

any polynomial.

The main reason we equate polynomial running time with efficiency

is that polynomials have several useful closure properties. Specifically, if

p1(n) and p2(n) are polynomials, then so are p1(n) + p2(n), p1(n)p2(n), and

p1(p2(n)). As we will see, these closure properties make the theory much

cleaner. Furthermore, if we can say that a particular decision problem cannot

be solved by any polynomial-time algorithm, then we can be fairly safe in

concluding that there is no algorithm that will terminate in a reasonable

amount of time on large inputs in the worst case.

Before we formalize this idea, we need to be careful about one aspect of

our running-time measures. Specifically, we have assumed in this text that

arithmetic operations can be performed in a single step. This assumption

is valid if we can reasonably expect the numbers to fit in a single machine

word. For larger values, we should use the BigNum type in order to get

an appropriate measure of the running time. Also note that all of the

algorithms in this text except those using real or complex numbers can be

expressed using only booleans and natural numbers as primitive types (i.e.,

those not defined in terms of other types). Furthermore, only the algorithms

of Section 15.1 require real or complex numbers — all other algorithms

can be restricted to rational numbers, which can be expressed as a pair of

natural numbers and a sign bit. Thus, it will make sense to stipulate that

an “efficient” algorithm contains only boolean or natural number variables,

along with other types built from these, and that each natural number

variable will contain only a polynomial number of bits.

We can now formalize our notion of “efficient”. We say that an algorithm

A is a polynomial-time algorithm if there is a polynomial p(n) such that

• A always completes within p(n) steps, where n is the number of bits in

the input string; and

• all primitive variables used by A are either booleans or natural numbers

whose values remain strictly less than 2p(n).

We then define P to be the set of all decision problems X such that there

exists a deterministic (i.e., not randomized) polynomial-time algorithm A
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deciding X. It is this set P that we will consider to be the set of efficiently

solvable decision problems.

The decision to define P using only deterministic algorithms is rather

arbitrary. Indeed, there is a branch of computational complexity theory

that focuses on efficient randomized algorithms. However, the study of

deterministic algorithms is more fundamental, and therefore is a more

reasonable starting point for us.

As one final note on the set P, we should emphasize that we are focusing

on worst-case running time. This focus sometimes is too pessimistic in

practice. For example, we have already seen from Theorem 7.1 that in the

worst case, a hash table provides lookups in Θ(n) time, but that in practice

the lookups tend to run in Θ(1) time. Likewise, there are problems for which

no known algorithm runs in polynomial time in the worst case, but because

the worst case occurs so rarely, practical algorithms exist. We discuss this

issue further in Section 16.11.

16.3 The Set NP
Sat is clearly a decision problem, but as we have suggested, it is currently

not known whether or not it belongs to P. In this section, we will define a

related set called NP that includes all of P, but also includes Sat, as well

as many other problems not known to be in P. Furthermore, NP will have

the property that if Sat is, in fact, in P, then P = NP .
In order to extend the definition of P to include problems like Sat, we

need to formalize the idea that each element of a decision problem X has

a short proof which can be efficiently checked. For the sake of concreteness,

let us assume that all proofs will be encoded as bit strings. We then denote

the set of all bit strings by B.
We now define NP to be the set of all decision problems X for which

there exist:

• a polynomial p(n); and

• a decision problem Y ⊆ I × B, where I is the set of instances for X;

such that

• Y ∈ P;
• for each x ∈ I, x ∈ X iff there is a proof φ ∈ B such that (x, φ) ∈ Y ; and

• for each x ∈ X, there is a proof φ ∈ B such that (x, φ) ∈ Y and |φ| ≤ p(|x|).
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We use |x| to denote the
length of the encoding of x.

From our earlier discussion, it follows that Sat ∈
NP . We can clearly consider any array A[1..n] of

boolean values to be a bit string, and vice versa. We

then let the decision problem Y be the problem solved by BoolEval. Hence,

Y ∈ P. We can then let p(n) = n. Then a given expression F is satisfiable

iff there is a proof φ such that (x, φ) ∈ Y. Because we have assumed that

whenever an integer j represents a variable in F , all positive integers less

than j also represent variables in F , it follows that if a proof φ exists, there

will always be one with length no more than |F|.
We therefore have an example of a problem in NP that may or may not

be in P. The following theorem gives the relationship between P and NP.
Theorem 16.1. P ⊆ NP.
Proof. Let X ∈ P, and let I be the set of instances of X. We then define

Y = X × B. Thus, Y is comprised of all pairs (x, φ) such that x ∈ X and

φ ∈ B. We can therefore decide whether (x, φ) ∈ I × B belongs to Y by

simply deciding whether x ∈ X. Because X ∈ P, it follows that Y ∈ P. Let
p(n) = 1. Then x ∈ X iff (x, 0) ∈ Y, and the length of 0 is 1. Therefore

X ∈ NP . �

It is currently unknown whether the above containment is proper, or

whether P = NP . In fact the “P = NP” question is the most famous open

question in computational complexity theory. Most complexity theorists

believe that these sets are not equal. Though many of the reasons for this

belief are beyond the scope of this book, we will soon see one compelling

reason. For now, let us simply state that we take as a working hypothesis

that P �= NP . Thus, if we can show that some particular statement implies

that P = NP , we take this as strong evidence that the statement is false.

In order to focus on the relationship between P and NP, it is useful

to identify problems that seem more likely to be in NP \P. In some sense,

we want to identify the hardest problems in NP. We can do this using

a refinement of the notion of problem reduction. Specifically, let X and

Y be two decision problems whose instances comprise the sets I and J ,

respectively. We say that X is polynomially many-one reducible to Y, written

X ≤p
m Y, if there is a function f : I → J such that

• for all x ∈ I, x ∈ X iff f(x) ∈ Y ; and

• there is a deterministic polynomial-time algorithm for computing f .

Note that polynomial many-one reductions are transformations — given

an instance x of problem X, we can decide whether x ∈ X simply by
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computing f(x) and deciding whether f(x) ∈ Y. The notation may seem

confusing at first, because when we use the word “reduce”, we usually think

of decreasing the size. As a result, denoting a reduction from X to Y by

X ≤p
m Y seems backwards. The proper way to understand the notation is

to realize that when there is a polynomial many-one reduction from X to Y,

then in some sense, X is no harder than Y. This idea is formalized by the

following theorem.

Theorem 16.2. If X ≤p
m Y and Y ∈ P, then X ∈ P.

Proof. Let I and J be the sets of instances of X and Y, respectively, and

let f : I → J be the function computing the polynomial many-one reduction

from X to Y. Let p1(n) be a polynomial bounding the running time and

the values of variables for some algorithm to compute f , and let p2(n) be a

polynomial bounding the running time and the values of variables for some

algorithm to decide Y. We can then decide whether a given x ∈ I belongs to

X by first computing f(x), then deciding whether f(x) ∈ Y. Let A denote

this algorithm.

The time required to compute f(x) is no more than p1(|x|). The time

required to decide whether f(x) ∈ Y is no more than p2(|f(x)|). Because
f(x) is computed using at most p1(|x|) steps, |f(x)| ≤ cp1(|x|), where c

is some positive integer constant bounding the number of bits that can be

written in a single step. The total time required by A is therefore no more

than

p(|x|) = p1(|x|) + p2(cp1(|x|)),

which is a polynomial in |x|. Furthermore, the values of the variables in

A do not exceed max(p1(|x|), p2(|x|)). Because p(n), p1(n), and p2(n) must

be nonnegative for all n ∈ N, all are bounded above by the polynomial

p(n) + p1(n) + p2(n). Therefore, X ∈ P. �

Note that Theorem 16.2 does not say that if Y can be decided in O(f(n))

time, then X can be decided in O(f(n)) time. Indeed, in the proof of the

theorem, the bound on the time to decide X can be much larger than the

time to decide Y. Thus, if we interpret X ≤p
m Y as indicating that X is no

harder than Y, we must understand “no harder than” in a very loose sense —

simply that if Y ∈ P, then X ∈ P.
We will often utilize Theorem 16.2 in the following equivalent form.

Corollary 16.3. If X ≤p
m Y and X �∈ P, then Y �∈ P.
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Suppose we have some problem Y ∈ NP such that for every X ∈ NP ,
X ≤p

m Y. If P �= NP , then there is some X ∈ NP \P. Because X ≤p
m Y and

X �∈ P, Corollary 16.3 tells us that Y �∈ P. This fact motivates the following

definitions.

Definition 16.3.1. If Y is a decision problem such that for every X ∈ NP ,
X ≤p

m Y, then we say that Y is NP-hard.
Definition 16.3.2. If Y ∈ NP is NP-hard, then we say that Y is NP-
complete.

Suppose we have some NP-hard problem Y, and also suppose that P �=
NP . Then there is some X ∈ NP \P. Because X ∈ NP and Y is NP-
hard, X ≤p

m Y. Hence, from Corollary 16.3, Y �∈ P. We therefore have the

following theorem and its corollary.

Theorem 16.4. If Y is NP-hard and P �= NP, then Y �∈ P.
Corollary 16.5. If Y is NP-complete and P �= NP, then Y ∈ NP \P.

It turns out that thousands of NP-complete problems in a wide variety

of problem domains have been identified. If we could find a polynomial-time

algorithm for any one of these problems, Corollary 16.5 would then imply

that P = NP. The fact that this has not been accomplished is one reason

to suspect that P �= NP . Let us now identify an NP-complete problem.

Theorem 16.6 (Cook’s Theorem). Sat is NP-complete.

The idea of the proof of Cook’s Theorem is to give a method for constructing,

from an arbitrary X ∈ NP , a polynomial-time algorithm that takes as input

an instance x of X and produces as output a boolean expression F such

that F is satisfiable iff x ∈ X. In constructing this algorithm, we can use the

polynomial p(n) bounding the size of a proof φ and the algorithm for deciding

whether φ proves that x ∈ X. In order to complete the construction, we must

carefully define the computational model so that the boolean formula can

encode the algorithm. Due to the large amount of work involved, we will

delay the proof of Cook’s Theorem until Section 16.8.

Fortunately, once we have one NP-complete problem, the task of

showing other problems to be NP-complete becomes much easier. The

reason for this is that polynomial many-one reducibility is transitive, as

we show in the following theorem. Its proof is similar to the proof of

Theorem 16.2, and is therefore left as an exercise. Its corollary then gives
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us a proof technique for showing NP-hardness, provided we already have at

least one NP-hard problem.

Theorem 16.7. If X ≤p
m Y and Y ≤p

m Z, then X ≤p
m Z.

Corollary 16.8. If X is NP-hard and X ≤p
m Y, then Y is NP-hard.

Thus, to show a decision problem Y to be NP-hard, we need only to

show that X ≤p
m Y for some NP-hard problem X. This is the technique

that we will use for all subsequent NP-hardness proofs. Note also that

the more problems we have shown to be NP-complete, the more tools we

have for showing additional problems to be NP-complete. For this reason,

we will devote the next few sections to identifying a variety of NP-complete

problems.

16.4 Restricted Satisfiability Problems

In order to illustrate the technique of proving NP-hardness using a polyno-

mial many-one reduction from a known NP-hard problem, we consider in

this section two special cases of boolean satisfiability. In the first special case,

the expression is in conjunctive normal form (CNF); i.e., the expression is

of the form

n∧
i=1

ki∨
j=1

αij ,

where each αij is a literal — either a variable or the negation of a variable.

Let us refer to this problem as CSat. We will now show that CSat is NP-
complete. The proof of NP-hardness will consist of showing that Sat ≤p

m

CSat.

It makes sense to represent the input for CSat using a data structure

that follows the form of a CNF formula more closely than does an expression

tree. Specifically, we represent a CNF formula as a ConsList of clauses, each

of which is a disjunction of literals. We then represent a clause as a ConsList

of literals. Finally, we represent each literal as an integer as follows. For a non-

negated variable, we simply use a positive integer, as in an expression tree.

For a negated variable ¬x, we use −i, where i is the integer representing the

variable x. We will again assume that for an input formula F , if j represents
a variable in F , then for 1 ≤ i ≤ j, i represents a variable in F . Again, this
assumption will not apply to arbitrary sub-formulas.

One obvious way of reducing Sat to CSat is to convert a given

boolean expression to an equivalent expression in CNF. However, there



NP-Completeness 513

are boolean expressions for which the shortest equivalent CNF expression

has size exponential in the size of the original expression. As a result, any

such conversion algorithm must require at least exponential time in the

worst case.

Fortunately, our reduction doesn’t need to construct an equivalent

expression, but only one that is satisfiable iff the given expression is

satisfiable. In fact, the constructed expression isn’t even required to contain

the same variables. We will use this flexibility in designing our reduction.

For the first step of our reduction, we will construct an equivalent

formula in which negations are applied only to variables. Because of this

restriction, we can simplify our representation for this kind of expression

by allowing leaves to contain either positive or negative integers, as in our

representation of CNF formulas. Using this representation, we no longer need

nodes representing the ¬ operation. We will refer to this representation as a

normalized expression tree.

Fortunately, there is a polynomial-time algorithm for normalizing a bool-

ean expression tree. The algorithm uses DeMorgan’s laws:

• ¬(x ∨ y) = ¬x ∧ ¬y; and
• ¬(x ∧ y) = ¬x ∨ ¬y.
The algorithm is shown in Figure 16.3. This algorithm solves a slightly more

general problem for which the input includes a boolean neg, which indicates

whether the normalized expression should be equivalent to F or ¬F . It is

easily seen that its running time is proportional to the number of nodes in

the tree, which is in O(m), where m is the number of operators in F .
As the second step in our reduction, we need to find the largest integer

used to represent a variable in a normalized expression tree. We need this

value in order to be able to introduce new variables. Such an algorithm is

shown in Figure 16.4. Clearly, its running time is in O(|F|).
As the third step in our reduction, we will construct from a normalized

expression tree F and a value larger than any integer representing a variable

in F , a CNF expression F ′ having the following properties:

P1: F ′ contains all of the variables in F ;
P2: for any satisfying assignment A for F , there is a satisfying assignment

A′ for F ′ in which all the variables in F have the same values as in A; and

P3: for any satisfying assignment A′ for F ′, the assignment A for F in which

each variable in F is assigned its value from A′ satisfies F .
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Figure 16.3 Algorithm to normalize a boolean expression tree

Precondition: F is a BinaryTreeNode referring to the root of a boolean
expression tree, and neg is a Bool.
Postcondition: Returns a normalized expression tree F such that if neg
is false, F ≡ F , and if neg is true, F ≡ ¬F .

Normalize(F , neg)
F ← new BinaryTreeNode(); op ← F .Root()
if F .LeftChild() = nil

if neg
F .SetRoot(−op)

else
F .SetRoot(op)

else if op = not
F ← Normalize(F .LeftChild(),not neg)

else
F .SetLeftChild(Normalize(F .LeftChild(), neg))
F .SetRightChild(Normalize(F .RightChild(), neg))
if (op = and and neg) or (op = or and not neg)

F .SetRoot(or)
else

F .SetRoot(and)
return F

Thus, F ′ will be satisfiable iff F is satisfiable. We consider three cases.

Case 1: F is a literal. Then because F is in CNF, we let F ′ = F .

Case 2: F = F1 ∧ F2. We then construct CNF formulas F ′1 and F ′2 from

F1 and F2, respectively, such that properties P1-P3 are satisfied. Then F ′ =
F ′1 ∧ F ′2 is in CNF and clearly satisfies properties P1-P3 with respect to F .

Case 3: F = F1 ∨ F2. We then construct CNF formulas F ′1 and F ′2 from

F1 and F2, respectively, such that properties P1-P3 are satisfied. Let u be a

variable that is contained in neither F ′1 nor F ′2. We construct F ′′1 by including

u in each clause of F ′, and we construct F ′′2 by including ¬u in each clause

of F ′2. We then let F ′ = F ′′1 ∧ F ′′2 . Clearly, F ′ is in CNF. Furthermore, it is

not hard to show that F ′ satisfies properties P1-P3 with respect to F .
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Figure 16.4 Algorithm to find the largest integer representing a variable in a

normalized expression tree

Precondition: F is a BinaryTreeNode representing a normalized ex-
pression tree.
Postcondition: Returns the largest absolute value of any integer in F .

MaxVar(F)
if F .Root() = and or F .Root() = or

l ← MaxVar(F .LeftChild())
r ← MaxVar(F .RightChild())
return Max(l, r)

else
return |F .Root()|

The algorithm for constructing F ′ is shown in Figure 16.5. It uses a

data type MutableNat, which contains a single readable and writable

representation variable data, which is a Nat. It also uses the function

Append specified in Figure 4.15.

It is not hard to see that AddToClauses operates in O(n) time, where

n is the number of clauses in F . Furthermore, NormalizedToCnf only

constructs a new clause when processing a literal; hence, the number of

clauses in the CNF formula is no more than |F|. As suggested in Exercise

4.3, Append can be implemented to run in O(n) time, where n is the number

of elements in its first argument. It follows that the time for a single call to

NormalizedToCnf, excluding recursive calls, runs in O(|F|) time. Because

NormalizedToCnf is called once for every node in the expression tree F ,
its overall running time is in O(|F|2).

The reduction is implemented in Figure 16.6. It clearly runs in O(|F|2)
time, so that Sat ≤p

m CSat. We can therefore show the following theorem.

Theorem 16.9. CSat is NP-complete.

Proof. By the above discussion, CSat isNP-hard. In order to show CSat

to be in NP , we use essentially the same reasoning as we did in showing Sat

to be in NP. The only difference is that we need an algorithm to evaluate

a CNF expression, rather than an expression tree. It is a straightforward

matter to adapt BoolEval (Figure 16.2) to evaluate a CNF expression F in

O(|F|) time — the details are left as an exercise. It follows that CSat ∈ NP .
CSat is therefore NP-complete. �
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Figure 16.5 Algorithm for constructing a CNF formula from a normalized expression

tree

Precondition: F is a BinaryTreeNode referring to a normalized boolean
expression tree, and m refers to a MutableNat larger than the absolute
value of any variable in F .
Postcondition: Returns a ConsList representing a CNF formula F that
satisfies properties P1-P3 with respect to F . m has a value larger than the
absolute value of any variable in the returned formula.

NormalizedToCnf(F , m)
root ← F .Root()
if root = and or root = or

l ← NormalizedToCnf(F .LeftChild(), m)
r ← NormalizedToCnf(F .RightChild(), m)
if root = or

x ← m.Data(); l ← AddToClauses(l, x)
r ← AddToClauses(r,−x); m.SetData(x + 1)

return Append(l, r)
else

c ← new ConsList(root,new ConsList())
return new ConsList(c,new ConsList())

Precondition: F is a (possibly empty) ConsList representing a CNF
formula, and α is a nonzero Int.
Postcondition: Returns a ConsList obtained by adding the literal α to
each clause in F .

AddToClauses(F , α)
if F .IsEmpty()

return F
else

h ← new ConsList(α,F .Head())
t ← AddToClauses(F .Tail(), α)
return new ConsList(h, t)

As a second example, let us further restrict our inputs by limiting

the number of literals in each clause. We say that a CNF formula is in

k-conjunctive normal form (or k-CNF) if no clause contains more than k

literals. We then define k-Sat to be the problem of determining satisfiability

for a given k-CNF formula. Though we won’t show it here, it turns out that

2-Sat ∈ P. In what follows, we will show that 3-Sat is NP-complete.
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Figure 16.6 The reduction from Sat to CSat

Precondition: F is BinaryTreeNode referring to a boolean expression
tree.
Postcondition: Returns a ConsList representing a CNF formula that is
satisfiable iff F is satisfiable.

SatToCSat(F)
F ← Normalize(F , false)
m ← new MutableInt(); m.SetData(MaxVar(F ) + 1)
return NormalizedToCnf(F , m)

The fact that 3-Sat ∈ NP follows immediately from the fact that

CSat ∈ NP , as 3-Sat is the same problem as CSat, only with more

restrictions placed on the input. Thus, the proof that CSat ∈ NP also

proves that 3-Sat ∈ NP .
In order to show that 3-Sat is NP-hard, we have two choices: we can

reduce either Sat or CSat to 3-Sat. Reducing CSat to 3-Sat would appear

to be less work, as instances of CSat are already in CNF. All that remains

is to ensure that the number of literals in each clause is no more than 3. We

will therefore show that CSat ≤p
m 3-Sat.

As in the previous reduction, we will not produce an equivalent formula.

Instead, we will again introduce new variables. In addition, we will break up

clauses that are too long into clauses containing only 3 literals.

Suppose our formula contains a clause C = α1 ∨ · · · ∨ αm, where m > 3.

We first introduce m−3 new variables, u1, . . . , um−3. We then construct the

following clauses to replace C:

• α1 ∨ α2 ∨ u1;
• ¬ui ∨ αi+2 ∨ ui+1 for 1 ≤ i ≤ m− 4; and

• ¬um−3 ∨ αm−1 ∨ αm.

We first claim that any assignment of boolean values that satisfies C can

be extended to an assignment that satisfies each of the new clauses. To see

why, first observe that if C is satisfied, then αi must be true for some i. We

can then set u1, . . . , ui−2 to true and ui−1, . . . , um−3 to false. Then each of

the first i− 2 clauses is satisfied because u1, . . . , ui−2 are true. The (i− 1)st

clause, ¬ui−2∨αi∨ui−1 is satisfied because αi is true. Finally, the remaining

clauses are satisfied because ¬ui−1, . . . ,¬um−3 are true.
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We now claim that any assignment that satisfies the new clauses will also

satisfy C. Suppose to the contrary that all the new clauses are satisfied, but

that C is not satisfied — i.e., that α1, . . . , αm are all false. Then in order for

the first clause to be satisfied, u1 must be true. Likewise, it is easily shown

by induction on i that each ui must be true. Then the last clause is not

satisfied — a contradiction.

If we apply the above transformation to each clause having more than

3 literals in a CNF formula F and retain those clauses with no more than

3 literals, then the resulting 3-CNF formula is satisfiable iff F is satisfiable.

Furthermore, it is not hard to implement this reduction in O(|F|) time —

the details are left as an exercise. Hence, CSat ≤p
m 3-Sat. We therefore

conclude that 3-Sat is NP-complete.

16.5 Vertex Cover and Independent Set

So far, all of the problems that we have shown to be NP-complete are

satisfiability problems for various kinds of boolean formulas. As we have

seen in earlier chapters, it is sometimes possible to reduce a problem A to

another problem B that at first looks nothing like problem A. By applying

this technique to polynomial many-one reducibility, we can identify NP-
complete problems in other domains.

For example, let us consider the vertex cover problem, which we will

denote VC. Let G = (V,E) be an undirected graph. A vertex cover for G is

a subset C ⊆ V such that for each edge {u, v} ∈ E, C ∩ {u, v} �= ∅; i.e., at

least one endpoint of each edge is contained in the vertex cover. The vertex

cover problem is to decide whether a given undirected graph has a vertex

cover of size k, where k is a given positive integer.

To show that VC ∈ NP, we will treat bit strings as arrays A[0..m−1] of

boolean values. We can interpret an array A[0..m− 1] as describing a subset

S of the vertices {0, 1, . . . , n − 1} such that for 0 ≤ i < n, i ∈ S iff i < m

and A[i] is true. It is then an easy matter to check, in time linear in the size

of a graph G, whether A[0..m−1] denotes a vertex cover of G with size k —

the details are left as an exercise. Therefore, VC ∈ NP .
In order to show that VC is NP-hard, we need to reduce one of the three

satisfiability problems to it. We will use 3-Sat because 3-CNF formulas have

a simpler structure than either CNF or arbitrary boolean formulas. Still, it is

not immediately clear how we can construct, from a given 3-CNF formula F ,
an undirected graph G and a positive integer k such that G has a vertex cover

of size k iff F is satisfiable.



NP-Completeness 519

One rather simplistic approach is first to decide whether F is satisfiable,

then to construct one of two fixed graphs — one that has a vertex cover of

size 1, or one that does not. However, because 3-Sat is NP-hard, we cannot
decide in polynomial time whether F is satisfiable unless P = NP. As a

result, such an approach will probably never work.

Instead, we need to construct an instance of VC whose solution will

give us a solution to our original instance of 3-Sat. In order to do this, we

should try to see what the two problems have in common. A particularly

useful technique is to compare the proofs of membership in NP. Often we

can find a reduction that has the side-effect of transforming each proof φ ∈ B
for one problem to a proof φ′ for the other.

Let F be a given 3-CNF formula with n clauses, C1, . . . , Cn. For

1 ≤ i ≤ n, let αi1, αi2, and αi3 be the three literals in clause Ci (if there are

fewer than three literals in Ci, we set αi3 and, if necessary, αi2 to equal αi1).

A proof for this instance of 3-Sat represents an assignment of boolean values

to the variables. A proof for an instance of VC represents a set of vertices.

Perhaps we can associate the selection of a boolean value to the selection of

one of two possible vertices. In particular, let us construct, for each variable

xi in F , two vertices xi and ¬xi, together with an edge {xi,¬xi}. Then
any vertex cover must include either xi or ¬xi. Furthermore, by choosing

an appropriate size for the vertex cover, we might be able to prohibit the

simultaneous inclusion of both xi and ¬xi.
In order to complete the reduction, we need to ensure that any vertex

cover of size k describes a satisfying assignment for F , and that for any

satisfying assignment for F , there is a vertex cover of size k that describes

it. To this end, we will add more structure to the graph we are constructing.

We know that for a satisfying assignment, each clause contains at least one

true literal. In order to model this constraint with a graph, let us construct,

for each clause Ci, the vertices ci1, ci2, and ci3, along with the edges {ci1, ci2},
{ci2, ci3}, and {ci3, ci1}. Then any vertex cover must contain at least two of

these three vertices.

Finally, for 1 ≤ i ≤ n and 1 ≤ j ≤ 3, we construct an additional edge

{cij , αij}. For example, Figure 16.7 shows the graph constructed from the

3-CNF formula (x1∨¬x2∨x3)∧ (¬x1∨x3). By setting k = m+2n, where m

is the number of variables and n is the number of clauses in F , we force any

vertex cover of size k to contain exactly one of the two vertices constructed

for each variable and exactly two of the three vertices constructed for each

clause. In order to cover all of the edges {cij , αij}, the vertex cover must be

such that in each clause Ci, there is at least one literal αij that belongs to
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Figure 16.7 The graph constructed from (x1∨¬x2∨x3)∧(¬x1∨x3) in the reduction

from 3-Sat to VC
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the vertex cover. Thus, we can represent an assignment of true to a literal

by including it in the vertex cover. We can now show the following lemma.

Lemma 16.10. Let F be a 3-CNF formula with m variables and n clauses,

and let G and k be the graph and positive integer resulting from the above

construction. Then G has a vertex cover of size k iff F is satisfiable.

Proof. We must show the implication in both directions.

⇒: Suppose G has a vertex cover S of size k = m+2n. Then S must contain

at least one of the two vertices xi and ¬xi for 1 ≤ i ≤ m, plus at least

two of the three vertices ci1, ci2, and ci3 for 1 ≤ i ≤ n. Because this gives

a total of at least k vertices, we conclude that S must contain exactly one

of xi and ¬xi and exactly two of ci1, ci2, and ci3. Let us set xi to true iff

xi ∈ S. Consider any clause Ci. Let j be such that cij �∈ S. Because the edge

{cij , αij} must be covered, αij must be in S. Therefore, at least one literal

in Ci is true. We conclude that F is satisfiable.
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⇐: Suppose F is satisfiable. Let A be a satisfying assignment. We can then

construct a vertex cover S as follows. First, for 1 ≤ i ≤ m, if xi is true in

A, we include xi in S; otherwise, we include ¬xi. Thus, each of the edges

{xi,¬xi} is covered. Then for 1 ≤ i ≤ n, we include in S two of ci1, ci2,

and ci3, so that the vertex that is not included is adjacent to an αij ∈ S

(note that because A is a satisfying assignment, such a vertex exists for each

clause). Thus, S is of size m+ 2n = k and covers all edges in G. �

It is easily seen that the above construction can be implemented to run

in O(m+n) time, or linear in the size of the formula — the details are left as

an exercise. From Lemma 16.10, 3-Sat ≤p
m VC. Because 3-Sat is NP-hard,

it follows that VC is NP-hard. Because we have shown that VC ∈ NP, we
have the following theorem.

Theorem 16.11. VC is NP-complete.

A problem closely related to VC is the independent set problem, which we

denote IS. An independent set in an undirected graph G is a subset S of the

vertices such that no pair of vertices in S is adjacent in G. The independent

set problem is to decide, for a given undirected graph G and natural number

k, whether G has an independent set of size k. The relationship between IS

and VC is shown by the following theorem.

Theorem 16.12. Let G = (V,E) be an undirected graph and S ⊂ V . Then

S is an independent set iff V \S is a vertex cover.

Proof. We must show the implication in both directions.

⇐: Suppose S is an independent set. Let {u, v} ∈ E. Because u and v cannot

both be in S, at least one of them is in V \S. It follows that V \S is a vertex

cover.

⇒: Suppose V \S is a vertex cover. Let u and v be two vertices in S. Because

V \S is a vertex cover containing neither u nor v, u cannot be adjacent to v.

It follows that S is an independent set. �

If k > n, we can use n+ 1
instead.

Given this close relationship between the two

problems, it is an easy matter to modify the proof

that VC ∈ NP to show that IS ∈ NP. Furthermore,

it follows from Theorem 16.12 that for an undirected graph G with n vertices

and a positive integer k, G has an independent set of size n− k iff G has a

vertex cover of size k. Clearly, we can construct n − k in polynomial time;

hence, VC ≤p
m IS. We therefore have the following theorem.
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Theorem 16.13. IS is NP-complete.

16.6 Three-Dimensional Matching

In this section, we will study a problem closely related to the bipartite

matching problem of Section 14.3. The input will consist of three non-empty

disjoint sets, X, Y, and Z, each having the same number of elements, and a

set of triples W ⊆ X×Y ×Z. We wish to decide if there is a subset M ⊆W
such that each element of X ∪ Y ∪ Z occurs in exactly one triple in M . We

call this problem the 3D matching (3DM) problem.

Note that if we were to use two disjoint sets instead of three, we could

think of the two sets as the two vertex sets of a bipartite graph. The set of

pairs (instead of triples) would then be directed edges. Our problem would

then be that of deciding whether there is a matching including all the vertices

of this directed graph. 3DM is then the natural extension of this problem to

3D hypergraphs. Using the algorithm Matching (Figure 14.10 on page 458),

we can decide the two-dimensional version (2DM) in O(na) time, where n

is the number of vertices and a is the number of edges in the graph; thus,

2DM ∈ P. However, we will now show that 3DM is NP-complete.

In order to show that 3DM ∈ NP, let us first denote an instance by

X = {x1, . . . , xm}
Y = {y1, . . . , ym}
Z = {z1, . . . , zm}
W = {w1, . . . , wn}.

We interpret a bit string φ as encoding an array A[1..k] such that each block

of b bits encodes an element of A, where b is the number of bits needed

to encode n. Any bit string that does not have length exactly bm will be

considered to be invalid. To verify that the array A encoded by φ is a proof,

we can check that

• φ is valid;

• 1 ≤ A[i] ≤ n for 1 ≤ i ≤ m; and

• each element of X ∪ Y ∪Z belongs to some triple wA[i], where 1 ≤ i ≤ m.

This can easily be done in O(bm2) time — the details are left as an exercise.

Hence, 3DM ∈ NP .
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In order to show that 3DM is NP-hard, we need to reduce some

NP-complete problem to it. So far, we have identified five NP-complete

problems: three satisfiability problems and two graph problems. However,

none of these bears much resemblance to 3DM. We therefore make use of a

principle that has proven to be quite effective over the years: when in doubt,

try 3-Sat.

As we did in showing 3-Sat ≤p
m VC, we will begin by focusing on the

proofs of membership in NP for the two problems. Specifically, we want to

relate the choice of a subset of W to the choice of truth values for boolean

variables. Let’s start by considering two triples, 〈x, ax, bx〉 and 〈¬x, ax, bx〉,
where x is some boolean variable. If these are the only two triples containing

ax or bx, any matching must include exactly one of these triples. This choice

could be used to set the value of x.

If we were to construct two such triples for each variable, we would then

need to construct triples to represent the clauses. Using a similar idea, we

could introduce, for a given clause αi1 ∨ αi2 ∨ αi3, the triples 〈αi1, ci, di〉,
〈αi2, ci, di〉, and 〈αi3, ci, di〉— one triple for each literal in the clause. Again,

any matching must contain exactly one of these triples. If we let x be false

when 〈x, ax, bx〉 is chosen, then the triple chosen for the clause must contain

a true literal.

This construction has a couple of shortcomings, however. First, because

each literal must occur exactly once in a matching, we can use a given

variable to satisfy only one clause. Furthermore, if more than one literal is

true in a given clause, there may remain literals that are unmatched. These

shortcomings should not be too surprising, as we could do essentially the

same construction producing pairs instead of triples — the third components

are redundant. Thus, if this construction had worked, we could have used

the same technique to reduce 3-Sat to 2DM, which belongs to P. We would

have therefore proved that P = NP .
In order to overcome the first shortcoming, we need to enrich our

construction so that we have several copies of each literal. To keep it

simple, we will make one copy for each clause, regardless of whether the

literal appears in the clause. We must be careful, however, so that when we

choose the triples to set the boolean value, we must either take all triples

containing x or all triples containing ¬x. Because we are constructing triples

rather than pairs, we can indeed accomplish these goals.
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Figure 16.8 Triples for setting boolean values in the reduction from 3-Sat to 3DM,

with n = 4
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Let x1, . . . , xn denote all the copies of the literal x, and let ¬x1, . . . ,¬xn
denote all the copies of the literal ¬x. We then introduce the following triples

(see Figure 16.8):

• 〈xi, axi, bxi〉 for 1 ≤ i ≤ n;
• 〈¬xi, axi, bx,i+1〉 for 1 ≤ i ≤ n− 1; and

• 〈¬xn, axn, bx1〉.
It is not too hard to see that in order to match all of the axis and bxis, a

matching must include either those triples containing the xis or those triples

containing the ¬xis.
We can now use the construction described earlier for building triples

from clauses, except that for clause i, we include the ith copy of each literal

in its triple. Thus, in any matching, there must be for each clause at least one

triple containing a copy of a literal. However, there still may be unmatched

copies of literals. We need to introduce more triples in order to match the

remaining copies.

Suppose our 3-CNF formula F has n clauses and m variables. Then our

construction so far contains:
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• 2mn copies of literals;

• mn as and n cs; and
• mn bs and n ds.
In order to make the above three sets of equal size, we add ei to the second

set and fi to the third set, for 1 ≤ i ≤ (m−1)n. We then include all possible

triples 〈xi, ej , fj〉 and 〈¬xi, ej , fj〉 for 1 ≤ i ≤ n and 1 ≤ j ≤ (m−1)n. Using

this construction, we can now show the following theorem.

Theorem 16.14. 3DM is NP-complete.

Proof. We have shown that 3DM ∈ NP . We will show that it is NP-hard
by showing that 3-Sat ≤p

m 3DM. Specifically, we will show that the above

construction is a polynomial-time many-one reduction.

We will first show that the construction can be computed in polynomial

time. It is easily seen that the time required for the construction is

proportional to the number of triples produced. Suppose the CNF formula

F contains m variables and n clauses. The triples produced include

• 2mn triples for setting truth values;

• one triple for each literal in each clause, or at most 3n triples; and

• triples 〈xi, ej , fj〉 and 〈¬xi, ej , fj〉 for each variable x, each i such that

1 ≤ i ≤ n, and each j such that 1 ≤ j ≤ (m−1)n, or 2(m−1)mn2 triples.

Thus, the total number of triples produced is at most

2mn + 3n + 2(m− 1)mn2.

Because this value is polynomial in the size of F , the construction can be

done in polynomial time.

Let W be the set of triples constructed. In order to complete the proof,

we must show that W contains a matching iff F is satisfiable.

⇒: Suppose W contains a matching M . As we have argued above, for each

variable x, M must contain either those triples 〈xi, axi, bxi〉 or those triples

〈¬xi, axi, bxi〉, for 1 ≤ i ≤ n. Let us set x to false iff the triples 〈xi, axi, bxi〉
belong to M . M must also contain some triple 〈αij , ci, di〉 for 1 ≤ i ≤ n.

Because αij cannot also be in another triple in M , αij must be true. Thus,

each clause contains at least one true literal, so that F is satisfiable.

⇐: Suppose F is satisfiable, and let A denote a satisfying assignment of

boolean values to the variables in F . We construct a matching M as follows.

First, if x is false in A, we include 〈xi, axi, bxi〉 for 1 ≤ i ≤ n; otherwise,
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we include 〈¬xi, axi, bxi〉 for 1 ≤ i ≤ n. Thus, each axi and bxi is included

exactly once. Then for clause i, because A is a satisfying assignment there

is at least one literal αij that is true in A. Because αij has not yet been

included in M , we can include the triple 〈αij , ci, di〉 in M . Thus,M includes

each ci and di exactly once.

At this point M includes no item more than once, but does not include

any of the eis or fis. Furthermore, because exactly mn+n of the xis and ¬xis
have been included, (m−1)n have not yet been included. Let β1, . . . , β(m−1)n
denote the xis and ¬xis that have not yet been included. We complete M

by including 〈βi, ei, fi〉 for 1 ≤ i ≤ (m− 1)n. It is now easily seen that M is

a matching. �

16.7 Partitioning and Strong NP-Completeness

In this section, we will look at partitioning problems related to the 0-1

knapsack problem of Section 12.4. These are the firstNP-complete problems

we will have seen in which numbers play a significant role. As we will see, the

NP-completeness of a number problem does not always imply intractability.

For this reason, we will introduce a stronger notion of NP-completeness.

The most basic partitioning problem consists of a set of items, each

having a positive integer weight. The problem is to decide whether the items

can be partitioned into two disjoint subsets having identical total weight.

More formally, let w1, . . . , wn denote the weights of the items. We wish to

decide whether there is a subset S ⊆ {1, . . . , n} such that

∑
i∈S

wi =
∑
i �∈S

wi.

The problem is known as the partition problem, or Part. We leave it as an

exercise to show that Part ∈ NP. We will show that Part is NP-hard,
and therefore NP-complete.

Before showing the NP-hardness of Part, however, we first observe that
this problem is a special case of the 0-1 knapsack problem in which the values

are equal to the weights and the weight boundW is half the total weight. In

Section 12.4, we sketched an algorithm to solve this problem in O(nW ) time.

Clearly, this same algorithm can be applied to Part. This would seem to

imply that Part ∈ P, so that showing Part to be NP-hard would amount

to showing P = NP .
However, the O(nW ) algorithm does not prove that Part ∈ P. The

reason is that we have defined P to be the set of decision problems that
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can be decided in a time polynomial in the length of their inputs. We claim

that nW is not necessarily polynomial in the length of the input to Part.

To see why, note that the number of bits required to encode an integer is

logarithmic in the value of the integer; hence, the value is exponential in the

length of the encoding. Because W is one of the integers given as input, nW

is not bounded by a polynomial in the length of the input.

The relationship between the value of an integer and the length of its

binary encoding is essential to the NP-hardness of Part, as its proof will

illustrate. We will now present that proof, which is a reduction from 3DM.

Let W , X, Y, and Z represent an instance of 3DM, where

• X = {x0, . . . , xm−1};
• Y = {y0, . . . , ym−1};
• Z = {z0, . . . , zm−1}; and
• W = {w0, . . . , wn−1} such that each wi ∈ X × Y × Z.

We will construct a weight for each triple, plus two additional weights.

Suppose 〈xi, yj , zk〉 ∈W . The weight we construct for this triple will be

(n+ 1)2m+i + (n+ 1)m+j + (n+ 1)k.

If we were to express this weight in radix n+ 1, it would consist entirely of

1s and 0s and have exactly three 1s. The positions of the three 1s in this

encoding determine the three components of the triple as follows:

1

i digits︷ ︸︸ ︷
00 · · · 0 00 · · · 01

j digits︷ ︸︸ ︷
00 · · · 0︸ ︷︷ ︸

m digits

00 · · · 01
k digits︷ ︸︸ ︷
00 · · · 0︸ ︷︷ ︸

m digits

.

Consider any subset S ⊆W . Clearly, no element of X ∪Y ∪Z can occur

in more than n triples in S. Thus, when viewed in radix n + 1, the sum

of the weights corresponding to the elements of S describes the number of

occurrences of each element of X ∪ Y ∪ Z in S. Specifically, if we number

the digits beginning with 0 for the least significant digit, then

• digit 2m+ i gives the number of occurrences of xi in S, for 0 ≤ i < m;

• digit m+ j gives the number of occurrences of yj in S, for 0 ≤ j < m; and

• digit k gives the number of occurrences of zk is S, for 0 ≤ k < m.
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It follows that S is a matching iff the sum of its corresponding weights is

M =
3m−1∑
i=0

(n+ 1)i,

which in radix n+ 1 is simply 3m 1s.

In order to complete the construction, we need two more weights. Let

C denote the sum of the n weights constructed so far. We construct the

following two weights:

A = 2C −M
and

B = C +M.

Thus, the sum of all n + 2 weights is 4C. Because A + B = 3C > 2C,

A and B cannot belong to the same subset in a partition. Furthermore, the

subset containing A must also contain items corresponding to elements ofW

having total weight M . Because these elements must form a matching, the

weights we have constructed contain a partition iff W contains a matching.

To see that the time needed to construct the instance of Part is

polynomial in the size of the instance of 3DM, we first observe that

2C ≤ 2

3m−1∑
i=0

n(n+ 1)i

< 2(n + 1)3m.

Therefore, each weight constructed has a binary encoding with no more than

1 + �3m lg(n + 1)� bits. Because addition, subtraction, multiplication, and

exponentiation can all be performed in a time polynomial in the number

of bits in their operands (see Exercise 4.14, Section 10.1, Exercise 10.25,

and Sections 15.3–15.4), the construction can clearly be performed in time

polynomial in the size of the instance of 3DM. We therefore have the

following theorem.

Theorem 16.15. Part is NP-hard.
Note that in the above construction, the weights can become extremely large,

though their lengths are all polynomial in the size of the instance of 3DM.

It is not too hard to imagine that we might want to solve the partition

problem for a large number of weights — thousands or perhaps even millions.

However, when numbers represent physical quantities — including time —
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we don’t expect them to be very long. For example, about 300 bits are

sufficient to encode in binary the estimated number of elementary particles

in the universe. Thus, because there is an algorithm for Part whose running

time is a low-order polynomial in the length of the input and the values

encoded in the input, it seems unreasonable to consider this problem to be

intractable.

In order to accommodate numbers in the input, we say that an algorithm

is pseudopolynomial if its running time is bounded by some polynomial

in the length of the input and the largest integer encoded in the input.

Thus, the O(nW ) algorithm for 0-1 knapsack (and hence partition) is

pseudopolynomial. Whenever the numbers in a decision problem’s input

refer to physical quantities, we consider the problem to be tractable if

it has a pseudopolynomial algorithm. However, if the numbers are purely

mathematical entities (as, for example, in cryptographic applications), we

consider the problem to be tractable only if it belongs to P.
We would also like to extend the notion of NP-hardness to account for

numbers in the input. To this end, we first define a way to restrict a decision

problem so that no integer in an instance is too large. Specifically, for a

decision problem X and a function f : N → R
≥0, we define Xf to be the

restriction of X to instances x in which no integer has a value larger than

f(|x|). We then say that X is NP-hard in the strong sense if there is a

polynomial p such that Xp is NP-hard. If, in addition, X ∈ NP, we say

that X is NP-complete in the strong sense.

Suppose we were to find a pseudopolynomial algorithm for a strongly

NP-hard problem. When we restrict the problem so that its instances

have integers bounded by some polynomial, the pseudopolynomial algorithm

becomes truly polynomial, so that the restricted problem would be in P.
Furthermore, this restricted problem is still NP-hard in the ordinary sense.

Thus, by Theorem 16.4, we would have shown that P = NP . It therefore

seems highly unlikely that there is a pseudopolynomial algorithm for any

strongly NP-hard problem.

In order to show a problem to be NP-hard in the strong sense, we

must ensure that the reduction produces numbers whose values are bounded

above by some polynomial in the length of the instance we construct. The

proof of Cook’s Theorem in Section 16.8 does not construct large integers;

hence, Sat is NP-complete in the strong sense. Furthermore of all of the

NP-hardness proofs we have presented so far, only the proof that Part

is NP-hard constructs integers whose values are not bounded by some

polynomial in the length of the input. As a result, CSat, 3Sat, VC, IS,
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and 3DM are all NP-complete in the strong sense. However, these results

are rather uninteresting because none of their instances contain numbers

that can become large in comparison to the length of the input without

rendering the problem trivial.

In what follows, we will show a problem with potentially large numbers

to be NP-complete in the strong sense. We will use a restricted form of

polynomial many-one reduction motivated by the following theorem.

Theorem 16.16. Let f be a polynomial many-one reduction from problem

X to problem Y, where X is NP-hard in the strong sense. Suppose that f

satisfies the following properties:

(1) there is a polynomial p1 such that p1(|f(x)|) ≥ |x| for every instance x

of X; and

(2) there is a two-variable polynomial p2 such that each integer constructed

has a value no greater than p2(|x|, μ(x)), where μ(x) denotes the

maximum value of any integer in x.

Then Y is NP-hard in the strong sense.

Proof. Because X is NP-hard in the strong sense, there is some poly-

nomial p such that Xp is NP-hard. If the reduction is then applied to

Xp, all numbers constructed will have values bounded by p2(|x|, p(|x|)), by
Property 2. Furthermore, by Property 1, these values are no more than

p2(p1(|f(x)|), p(p1(|f(x)|))), which is a polynomial in the length of the

instance constructed. The reduction from Xp to Y therefore shows that Y

is NP-hard in the strong sense. �

We say that a polynomial many-one reduction is a pseudopolynomial

reduction, denoted by ≤pp
m , if it satisfies the properties given in Theorem

16.16.

Let us now consider other partitioning problems. For a fixed natural

number k > 1, the k-partition problem (k-Part) is defined as follows. The

input consists of kn items, each having a positive integer weight, such that

the sum of the weights is Bn for some positive integer B. Furthermore, each

weight w must satisfy

B

k + 1
< w <

B

k − 1
.

The question we ask is whether the kn items can be partitioned into n disjoint

subsets, each having total weight exactly B. Note that the constraints on

the weights imply that each subset will contain exactly k items.
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In what follows, we will show that 4-Part is NP-hard in the strong

sense. We leave it as exercises to show that

• k-Part ∈ NP for all k > 1;

• 3-Part is NP-complete in the strong sense; and

• 2-Part ∈ P.

We will show that 3DM ≤pp
m 4-Part. The reduction will be somewhat

similar to the reduction from 3DM to Part, but we must be careful that

the weights we construct are not too large. Let us describe an instance of

3DM using the same notation as we did for the earlier reduction. We will

assume that each element occurs in at least one triple. Otherwise, there is

no matching, and we can create an instance with seven items having weight

6 and one item having weight 8, so that the total weight is 50, and B = 25.

Clearly, 25/5 < 6 < 8 < 25/3; hence, this is a valid instance, but there is

clearly no way to form a subset with weight 25.

We will construct, for each triple 〈xi, yj , zk〉 ∈ W , four weights: one

weight for each of xi, yj, and zk, plus one weight for the triple itself. Because

each element of X ∪ Y ∪ Z can occur in several triples, we may construct

several items for each element. Exactly one of these will be a matching

item. All non-matching items constructed from the same element will have

the same weight, which will be different from that of the matching item

constructed from that element. We will construct the weights so that in any

4-partition, the item constructed from a triple must be grouped with either

the matching items constructed from the elements of the triple, or three

non-matching items — one corresponding to each element of the triple. In

this way, a 4-partition will exist iff W contains a matching.

As in the previous reduction, it will be convenient to view the weights

in a particular radix r, which we will specify later. In this case, however,

the weights will contain only a few radix-r digits. We will choose r to

be large enough that when we add any four of the weights we construct,

each column of digits will have a sum strictly less than r; hence, we will be

able to deal with each digit position independently in order to satisfy the

various constraints. Note that if we construct the weights so that for every

triple, the sum of the four weights constructed is the same, then this sum

will be B.

We will use the three low-order digits to enforce the constraint that the

four items within any partition must be derived from some triple and its

three components. To this end, we make the following assignments:
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• For any weight constructed from xi ∈ X, we assign i+ 1 to the first digit

and 0 to the second and third digits.

• For any weight constructed from yj ∈ Y, we assign j + 1 to the second

digit and 0 to the first and third digits.

• For any weight constructed from zk ∈ Z, we assign k+1 to the third digit

and 0 to the first two digits.

• For a triple 〈xi, yj , zk〉, we assign the first three digits the values 2m− i,
2m− j, and 2m− k, respectively.

B will therefore have 2m+ 1 as each of its three low-order digits.

Note that because each weight constructed from a triple has a value of

at least m + 1 in each of its three low-order digits, no two of these weights

can be grouped together. Furthermore, because all three low-order digits of

any weight constructed from an element of X ∪ Y ∪ Z have values no more

than m, and at least two of these values are 0, in order to reach a sum of

B with only four weights, at least one must correspond to a triple. Thus, in

any 4-partition, each group must contain exactly one weight corresponding

to a triple, and the other three weights must correspond to the elements of

that triple.

We will use the fourth digit to enforce the constraint that for any four

items grouped together, the items corresponding to elements from X∪Y ∪Z
are either all matching items or all non-matching items. We therefore assign

the fourth digits as follows:

• for each matching item: 1;

• for each non-matching item from X ∪ Y : 0;

• for each non-matching item from Z: 3; and

• for each item from W : 0.

The fourth digit of B will therefore be 3. Furthermore, because any group

must have one item from each of W , X, Y, and Z, it must contain either

three matching items or three non-matching items. Setting the digits in this

way therefore ensures that the set of weights has a 4-partition iffW contains

a matching.

Finally, in order to ensure that each weight is greater than B/5 and less

than B/3, we set the fifth digit of all weights to 1. As a result, the fifth digit

of B is 4. We will see that by choosing r to be sufficiently large, all weights

will be within the proper range.

To summarize, for a triple 〈xi, yj, zk〉, we have the weight

r4 + (2m− k)r2 + (2m− j)r + 2m− i.
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For the elements xi ∈ X, yj ∈ Y, and zk ∈ Z, we have for the matching

items the weights

r4 + r3 + i+ 1

r4 + r3 + (j + 1)r

r4 + r3 + (k + 1)r2

and for any non-matching item the weights

r4 + + i+ 1

r4 + + (j + 1)r

r4 + 3r3 + (k + 1)r2

Furthermore,

B = 4r4 + 3r3 + (2m+ 1)r2 + (2m+ 1)r + 2m+ 1.

To complete the reduction, we must assign a value to r. As we have

observed, r must be larger than the sum of any four digits occurring in the

same column. Thus, r must be strictly larger than both 8m and 12. Because

m ≥ 1, we can satisfy these constraints by setting r = 13m. We then have

B/5 < (4r4 + 4r3)/5

< (4r4 + r4)/5

= r4,

so that every weight is larger than B/5. Furthermore, each weight is less

than

r4 + 4r3 < r4 + r4/3

= 4r4/3

< B/3.

We must now show that the above reduction is pseudopolynomial. We

first observe that no weight is larger than 2r4 = 2(13m)4, which is polynomial

in the size of the instance of 3DM. Furthermore, it is easily seen that all

the weights can be constructed in a time linear in the size of the instance of

3DM. We therefore have the following theorem.

Theorem 16.17. 4-Part is NP-hard in the strong sense.
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16.8 Proof of Cook’s Theorem

In this section, we will present a proof of Cook’s Theorem, namely, that Sat

is NP-complete. As we have already observed in Section 16.1, Sat ∈ NP . It
therefore remains to be shown that Sat is NP-hard. Furthermore, because

we have used Cook’s Theorem either directly or indirectly to show all of

our NP-hardness results, we cannot use any of these results to prove Cook’s

Theorem. Because we cannot show the NP-hardness of Sat by reducing any

known NP-hard problem to it, we must directly use the definition of NP-
hardness — that is, we must directly show that for every problem X ∈ NP ,
X ≤p

m Sat.

Our proof will therefore involve a generic reduction. This kind of

reduction is more abstract in that we begin with an arbitrary X ∈ NP .
Specifically, the same reduction should work for any problem X that we

might choose from NP . Thus, the only assumption we can make about X

is that it satisfies the definition of NP : there exist a polynomial p(n) and a

decision problem Y ⊆ I × B, where I is the set of instances of X, such that

• Y ∈ P — that is, there exist a polynomial p′(n) and an algorithm A that

takes an element x ∈ I and an element φ ∈ B as its inputs and decides

within p′(|x|+ |φ|) steps whether (x, φ) ∈ Y ;

• for each x ∈ I, x ∈ X iff there is a proof φ ∈ B such that (x, φ) ∈ Y ; and

• for each x ∈ X, there is a proof φ ∈ B such that (x, φ) ∈ Y and |φ| ≤ p(|x|).

For our reduction, we need to construct, for a given instance x ∈ I, a
boolean formula F that is satisfiable iff x ∈ X. Equivalently, F must be

satisfiable iff there is a φ ∈ B such that |φ| ≤ p(|x|) and (x, φ) ∈ Y. Our

reduction therefore will construct from x a formula F that in some sense

simulates the algorithm A on x and some unknown φ, where |φ| ≤ p(|x|).
The input for our reduction is the instance x. However, because our

reduction is generic, it must work for any algorithm A and any polynomials

p(n) and p′(n) satisfying the above constraints. Therefore, A, p, and p′ are
in a sense additional inputs to our reduction. What makes constructing such

a reduction rather difficult is the fact that one of these additional inputs

is an algorithm. In order to be able to handle an algorithm as input to an

algorithm, we need to define more precisely what we mean by an algorithm.

Rather than formalizing all of the constructs we have been using in our

algorithms, we will instead simplify matters by defining a lower-level model

of computation, which we will call a random access machine, or RAM . Thus,

in constructing a boolean formula to simulate a RAM, we will in essence be
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defining an interpreter for a simple machine language. Such a task is much

simpler than defining an interpreter for a high-level language, such as the

notation we have been using to present our algorithms.

In order to maintain some consistency between this computational model

and the algorithms we have designed, we will assume that a RAM consists

of the following:

• a fixed program consisting of a sequence of P > 0 instructions numbered

0 through P − 1;

• a program counter, which is initially 0 and can store any natural number

less than P ;

• countably infinitely many memory locations, each of which is initially 0

and can store any natural number;

• two input streams from which values may be read one bit at a time; and

• a single output bit, which is produced when the program terminates.

Because we will be using this model only for representing an algorithm for

deciding whether (x, φ) ∈ Y, we need exactly two input streams, one for x

and one for φ. Furthermore, we can represent a “yes” output by setting the

output bit to 1.

We will assume that each memory location is addressed by a unique

natural number. Each machine will then have the following instruction set:

• Input(i, l): Stores the next bit from input stream i, where i is either 0

or 1, in memory location l. If all of the input has already been read, the

value 2 is stored.

• Load(n, l): Stores the natural number n at memory location l.

• Copy(l1, l2): Copies the value stored at location l1 into location l2.

• Goto(p): Changes the value of the program counter to p.

• IfLeq(l1, l2, p): If the value at location l1 is less than or equal to the value

at location l2, changes the value of the program counter to p.

• Add(l1, l2): Adds the value in location l1 to the value in location l2, saving

the result in location l2.

• Subtract(l1, l2): Subtracts the value in location l1 from the value in

location l2, saving the result in location l2.

• Shift(l): Replaces the value n stored in location l with �n/2�.
• Halt(b): Terminates the program with output b, which must be either 0

or 1.

In addition, wherever a memory location is used, an indirection operator

“∗” may be added. The expression “∗l” indicates that the location referenced
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by the value stored in location l should be used. Thus, for example, if 21 is

stored at 0, 2 is stored at 1, and 52 is stored at 2, the instruction

Add(0, ∗1)
will add 21 (stored at 0) to 52 (stored at 2, the value referenced by 1), and

store the sum 73 in location 2. Indirection operators cannot be nested.

Each instruction that does not explicitly change the program counter will

increment it by 1. We will assume that any time an instruction cannot be

executed (e.g., because a larger number is subtracted from a smaller number

or the program counter would index beyond the program), the program will

immediately terminate with output 0.

We will now argue somewhat informally that for any decision problem

X, there is a deterministic polynomial-time algorithm deciding X iff there

is a polynomial-time RAM deciding X. First, if we have a deterministic

polynomial-time algorithm A, we can build a RAM to execute A using

standard compiling techniques. Some statements in an algorithm may require

much more time when compiled to a RAM. For example, to implement a

multiplication, we can use the following top-down formulation:

ab =

⎧⎨
⎩
0 if b = 0

(a+ a) b2 if b is positive and even

(a+ a) b−12 + a if b is odd.

To determine whether b = 0, we can simply check whether b ≤ 0. To

determine whether b is even, we can copy b to c, shift c yielding d = �b/2�,
and subtract d + d from b. If the result is less than or equal to 0, then b is

even; otherwise, b is odd. This technique can be implemented with a loop

that runs in time linear in the number of bits in b.

In order to implement data structures, we need a memory manager for

a RAM. Because we have infinitely many memory locations, only finitely

many of which may be in use at any given time, we can use one memory

location l1 to store a value avail such that for every l ≥ avail, l is unused.

If we need to allocate n locations, we can copy l1 to some memory location

l2 and add n to l1. To access the ith of these n locations, we add i to l2
and use the indirection operator on the result. Thus, it is a straightforward

matter to implement the data structures in this text. Specifically, because

we can implement a Stack, we can implement function and operation calls,

including recursion.

It is important to realize that even though some operations are less

efficient on a RAM, there is some polynomial p(n) that bounds the running
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time of any simulation of an algorithmic step. Thus, if we have an algorithm

that runs in p′(n) steps, the RAM simulation will run in no more than

p′(p(n)) steps, which is still polynomial in n. Furthermore, if the values of

the natural numbers in the algorithm are bounded by p′(n), then so are the

values in the memory locations of the RAM.

We must also make sure
that 2p(n) bounds each
constant appearing in the
RAM program.

Conversely, it is not hard to write an algorithm

to simulate a polynomial-time RAM. We can use

variables to store the value of the program counter

and the indices of the next available bits of the two

input streams. In addition, we can use a VArray (see Section 9.5) to store

the memory locations used by the RAM. Note that because the values of

all memory locations must always be less than 2p(n), where p(n) is some

polynomial in the number of bits in the two input streams, all memory

locations that can be accessed have addresses strictly less than 2p(n). We can

therefore use a VArray of size 2p(n) to keep track of the RAM’s memory. It

is then a straightforward matter to simulate the RAM using constant time

for each instruction, plus some constant time for initialization.

Using RAMs, we now have a slightly different characterization of NP .
Specifically, NP is the set of all decision problems X such that there exist

• polynomials p(n) and p′(n); and
• a RAM M deciding a problem Y ⊆ I × B, where I is the set of instances

for X;

such that

• M terminates within p′(|x|+ |φ|) steps on input (x, φ);

• all memory locations of M maintain values strictly less than 2p
′(|x|+|φ|)

given input (x, φ);

• for each x ∈ I, x ∈ X iff there is a proof φ ∈ B such that (x, φ) ∈ Y ; and

• for each x ∈ X, there is a φ ∈ B such that (x, φ) ∈ Y and |φ| ≤ p(|x|).

Thus, to reduce an arbitrary problem X ∈ NP to Sat, we need to

construct from a given x ∈ I, where I is the set of instances of X, a boolean

formula F such that F is satisfiable iff there is a φ ∈ B with |φ| ≤ p(|x|)
such thatM outputs 1 on input (x, φ). Furthermore, the running time of the

construction of F must be bounded by some polynomial in |x|. In designing

the construction, we may utilize p(n), p′(n), and M , which depend only on

the problem X; however, the instance x is the input for the construction, so

that we cannot know it in advance.
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Because we can use any polynomial-time M that decides Y, we can

simplify matters further by making a couple of assumptions about M . First,

we can assume that M contains at least one Halt(1) instruction — if

there is no input yielding a “yes” answer, we can always include such an

instruction at an unreachable location. Second, because statements that

cannot be executed due to error conditions have the same effect as Halt(0),

and because the instruction set is powerful enough to check any run-time

error conditions, we can assume that all statements can be executed without

error.

In addition, we make some simplifying assumptions regarding the

polynomials p and p′. First, we note that by removing any negative terms

from p′, we obtain a polynomial that is nondecreasing and never less than

the original polynomial. Thus, we can assume that p′ is nondecreasing, so

that p′(|x|+p(|x|)) will give an upper bound on the number of steps executed

byM on an input (x, φ) with |φ| ≤ p(|x|). Furthermore, because p′(n+p(n))
is a polynomial, we can assume that p′(n) is an upper bound on the number

of steps taken by M on any input (x, φ) such that |x| = n and |φ| ≤ p(n).

Note that with these assumptions, p′(n) ≥ p(n) for all n. We can therefore

choose p(n) = p′(n), so that we can use a single polynomial p to bound both

|φ| and the number of steps executed by M . Finally, we can choose p so that

p(n) ≥ n for all n ∈ N.

As the first step in our construction, we need boolean variables to

represent the various components of the state of M at various times in its

execution. First, we need variables describing the input sequences x and φ.

For x, we will use the variables x[k] for 1 ≤ k ≤ n, where n is the length

of x. Because φ is unknown, even during the execution of the construction,

we cannot know its exact length; however, we do know that its length is no

more than p(n). We therefore will use the variables φ[k] for 1 ≤ k ≤ p(n) to
represent φ.

We also need variables to keep track of which bits are unread at each

step of the execution of M . For this purpose, we will use the variables

x̂i[k] for 0 ≤ i ≤ p(n) and 0 ≤ k ≤ n, plus the variables φ̂i[k] for

0 ≤ i ≤ p(n) and 0 ≤ k ≤ p(n). We want x̂i[k] to be true iff the kth

bit of x has not been read after i execution steps. Likewise, we want φ̂i[k]

to be true iff the kth bit of φ exists and has not been read after i execution

steps.

We then need to record the value of the program counter at each

execution step. We will use the variables pij for 0 ≤ i ≤ p(n) and 0 ≤ j < P

for this purpose, where P denotes the number of instructions in the program
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of M . We want pij to be true iff the program counter has a value of j after

i execution steps.

Recording the values of the memory locations at each execution step

presents more of a challenge. Because a memory location can contain any

value less than 2p(n), M can access any memory location with an address

less than 2p(n). If we were to construct variables for each of these locations,

we would end up with exponentially many variables. We cannot hope to

construct a formula containing this many variables in a polynomial amount of

time. However, the number of memory locations accessed by any instruction

is at most four — the number accessed by Copy(∗l1, ∗l2) in the worst case.

As a result, M can access a total of no more than 4p(n) different memory

locations. We can therefore use a technique similar to the implementation of

a VArray (see Section 9.5) in order to keep track of the memory locations

actually used.

Specifically, we will let the variables aj [k], for 1 ≤ j ≤ 4p(n) and 1 ≤ k ≤
p(n), denote the value of the kth bit of the address of some location lj, where

the first bit is the least significant bit. Here, we will let true represent 1 and

false represent 0. Then the variables vij[k], for 0 ≤ i ≤ p(n), 1 ≤ j ≤ 4p(n),

and 1 ≤ k ≤ p(n), will record the value of the kth bit of the value stored at

location lj after i execution steps. We will make no requirement that location

lj actually be used by M , nor do we require that lj be a different location

from lj′ when j �= j′.
Finally, we will use the additional variables ci[0..p(n)] and di[1..p(n)] for

1 ≤ i ≤ p(n). We will explain their purposes later.

Before we describe the formula F that we will construct, let us first

define some abbreviations, or “macros”, that will make the description of F
simpler. First, we will define the following:

If(y, z) = ¬y ∨ z.

This abbreviation specifies that if y is true, then z must also be true. However,

if y is false, then no constraint is placed upon z. Note that such an expression

can be constructed in O(1) time.

We can extend the above abbreviation to specify an if-then-else

construct:

IfElse(y, z1, z2) = If(y, z1) ∧ If(¬y, z2).

This specifies that if y is true, then z1 is true, but if not, then z2 is true.

Clearly it can be constructed in O(1) time.



540 Algorithms: A Top-Down Approach

We will now define an abbreviation for the specification that two

variables y and z are equal:

Eq(y, z) = IfElse(y, z,¬z).
Again, such an expression can be constructed in O(1) time.

We can extend this abbreviation in a couple of ways. First, we can use

one of the constants true or false in place of one of the variables. This will

be useful, for example, if we want to specify that some variable has the

same value as some specific bit of the input x, say x[k]. Because x[k] is not a

variable in the formula, it cannot appear in the formula; however, when we’re

designing the construction, we don’t know this value. It would therefore be

convenient to be able to write Eq(y, x[k]), and to let the construction fill in

the appropriate value for x[k]. We then define

Eq(y, true) = y

and

Eq(y, false) = ¬y.
We can also extend the abbreviation to arrays of variables as follows:

Eq(y[1..n], z[1..n]) =
n∧

k=1

Eq(y[k], z[k]).

Such an expression can be constructed in O(n) time. For different sizes of

arrays, the running time will be proportional to the number of elements. To

aid in readability, we will typically drop the range of subscripts when the

entire array is used.

When we specify the behavior of a program step, we need a way of

checking to see if aj records some particular memory location l. Let l[1..p(n)]

be the bits comprising l. We can check whether a given aj[1..p(n)] = l[1..p(n)]

using the Eq abbreviation. However, we may in many cases need to check

whether aj records the memory location indirectly addressed by l. For this

test, we use the following abbreviation:

Ind(i, j, l) =

4p(n)∨
j′=1

(Eq(aj′ , l) ∧ Eq(aj , vij′)).

Because aj, a
′
j , l, and vij′ are arrays of p(n) elements, this expression can be

constructed in O(p2(n)) time.



NP-Completeness 541

Finally, we will need some abbreviations for specifying the behavior of

arithmetic and comparison instructions. We can express all of these behaviors

using the specification of a sum. Thus, we need to express that the sum of

y[1..p(n)] and z[1..p(n)] is s[1..p(n)]. In order to express this constraint,

we will need to represent the “carry” bits used to compute the sum. For

this purpose, we will use the variables ci[0..p(n)] for some i. Specifically, for

1 ≤ k ≤ p(n), ci[k] will be the carry from the sum of y[k], z[k], and ci[k− 1],

and the value of ci[0] will be false, denoting 0.

We first observe that the low-order bit of the sum of y[k], z[k], and

ci[k − 1] is the exclusive-or of the three bits. We therefore first define an

abbreviation for specifying exclusive-or:

Xor(y, z) = (y ∨ z) ∧ ¬(y ∧ z).
We then observe that the carry bit of this sum is 1 iff at least two of the

three bits are 1. Stated another way, the carry bit is 1 iff either

• both y[k] and z[k] are 1; or

• ci[k − 1] is 1 and either y[k] or z[k] is 1.

We therefore define the following abbreviation:

Sum(y, z, s, i) =¬ci[0] ∧ ¬ci[p(n)] ∧
p(n)∧
k=1

(Eq(s[k],Xor(Xor(y[k], z[k]), ci [k − 1])) ∧

Eq(ci[k], (y[k] ∧ z[k]) ∨ (ci[k − 1] ∧ (y[k] ∨ z[k])))).
This expression states that y[1..p(n)] + z[1..p(n)] = s[1..p(n)] and that

ci[0..p(n)] give the carry bits of this sum. This expression can be constructed

in O(p(n)) time.

Let us now begin to construct our formula F . This formula will be the

conjunction of a number of sub-formulas, each of which will specify some

constraint on the values of the boolean variables. These constraints together

will encode the requirement that M gives a “yes” answer on input (x, φ),

where x is the given input for problem X. Because we will not specify the

value of φ, the formula will be satisfiable iff there is some φ with length at

most p(n) such that M yields an output of 1 on (x, φ). Furthermore, we

will show that we can construct this formula within a polynomial amount of

time.

For the first constraint, we will specify that for 0 ≤ i ≤ p(n), there is

at most one j such that pij is true. Thus, there will be no ambiguity as to
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the value of the program counter at each execution step. We specify this

constraint with the sub-formula,

F1 =

p(n)∧
i=0

P−2∧
j=0

P−1∧
j′=j+1

If(pij ,¬pij′).

Because P is a constant depending only on the problem X, this sub-formula

can be constructed in O(p(n)) time.

We now need to specify some initialization constraints. The first is simply

that the program counter has an initial value of 0. We specify this constraint

with the sub-formula,

F2 = p0,0.

Clearly, this sub-formula can be constructed in O(1) time.

We also need to specify that the variables x[1..n] encode the input

string x. Let the kth bit of x be denoted by x[k] for 1 ≤ k ≤ n. We then

construct

F3 = Eq(x, x).

Because x and x are arrays of n elements, this sub-formula can be constructed

in O(n) time.

In addition, we need to specify that all bits in both input streams are

initially unread. Notice that for each i, we have defined a variable x̂i[0], but

there is no x[0]. The purpose of these variables is so that whenever x[k] is the

next bit to be read, x̂i[k−1] is false and x̂i[k] is true. In order to enforce this

constraint initially, we construct

F4 = ¬x̂0[0] ∧
n∧

k=1

x̂0[k].

Clearly, this sub-formula can be constructed in O(n) time.

We need a similar specification for φ; however, we don’t know the exact

length of φ. We want φ̂0[k] to be true iff 1 ≤ k ≤ |φ|. Thus, we need φ̂0[0] to

be false. Then as k increases, φ̂0[k] may be true for a while, but as soon as

we encounter a false φ̂0[k], these variables must be false for all greater values

of k. We can enforce this constraint with the following sub-formula:

F5 = ¬φ̂0[0] ∧
p(n)−1∧
k=1

If(¬φ̂0[k],¬φ̂0[k + 1]).

We can clearly construct this sub-formula in O(p(n)) time.
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As the final initialization specification, we need to specify that all

memory locations are initially 0. We therefore construct

F6 =

4p(n)∧
j=1

p(n)∧
k=1

¬v0,j[k].

Clearly, we can construct this sub-formula in O(p2(n)) time.

We now need a constraint specifying that at some point, a Halt(1)

instruction is executed. Let A be the set of program locations at which a

Halt(1) instruction appears. We then construct

F7 =

p(n)−1∨
i=0

∨
j∈A

pij.

Because the size of A depends only on the problem X, this sub-formula can

be constructed in O(p(n)) time.

To complete the formula, we need constraints specifying the correct

behavior of M . To this end, we will construct one sub-formula for each

instruction in the program of M . These sub-formulas will depend on the

particular instruction. Let 0 ≤ q < P , where P is the number of instructions

in the program. In what follows, we will describe how the sub-formula F ′q is

constructed depending on the instruction at program location q.

Regardless of the specific instruction, the sub-formula will have the same

general form. In each case, F ′q must specify that some particular behavior

occurs whenever the program counter has a value of q. F ′q will therefore have
the following form:

F ′p =
p(n)∧
i=1

If(pi−1,q, ψq(i)), (16.1)

where ψq(i) is a predicate specifying the result of executing the ith

instruction.

Each ψq(i) will be a conjunction of predicates, each specifying some

aspect of the result of executing the ith instruction. In particular, ψq(i) will

be the conjunction of the following predicates:

• Uq(i), which specifies how the memory locations are updated;

• Eq(i), which specifies what memory locations must be represented in F in

order for this instruction to be simulated (this specification is needed to

prevent Uq(i) from being vacuously satisfied);

• Iq(i), which specifies which input bits remain unread; and
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• Pq(i), which specifies the new value of the program counter.

ψq(i) is then defined as follows:

ψq(i) = Uq(i) ∧ Eq(i) ∧ Iq(i) ∧ Pq(i). (16.2)

There are some instances of the above predicates that occur for more

than one type of instruction.

• If the instruction at location q is not an Input instruction, then

Iq(i) = Eq(x̂i, x̂i−1) ∧ Eq(φ̂i, φ̂i−1). (16.3)

• If this instruction is neither a Goto, an IfLeq, nor a Halt, then

Pq(i) = pi,q+1. (16.4)

• If this instruction is either a Goto or a Halt, then

Uq(i) =
4p(n)∧
j=1

Eq(vij , vi−1,j), (16.5)

and

Eq(i) = true. (16.6)

In what follows, we will define the remaining predicates for several of the

possible instructions. We leave the remaining cases as exercises.

Let us first consider an instruction Load(n, l). Because l is the only

memory location that is accessed, we can define

Eq(i) =
4p(n)∨
j=1

Eq(aj , l).

Because its value changes to n, we can define

Uq(i) =
4p(n)∧
j=1

IfElse(Eq(aj , l),Eq(vij , n),Eq(vij , vi−1,j)).

Note that the above expression specifies that every vij such that aj = l has

its value changed to n.

Let us now compute the time needed to construct the resulting sub-

formula F ′q. Because the arrays aj and l each contain p(n) elements, Eq(i, j)
can be constructed in O(p2(n)) time. It is not hard to verify that Uq(i) can
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be constructed in O(p2(n)) time as well. Clearly, Pq(i) as defined in (16.4)

can be constructed in O(1) time. Finally, Iq(i) as defined in (16.3) can be

constructed in O(p(n)) time. Thus, ψq(i) can be constructed in O(p2(n))

time. The sub-formula F ′q can therefore be constructed in O(p3(n)) time.

We can handle an instruction Load(n, ∗l) in a similar way, but using

the Ind abbreviation. Thus, we define

Eq(i) =
4p(n)∨
j=1

Ind(i− 1, j, l),

and

Uq(i) =
4p(n)∧
j=1

If(Ind(i− 1, j, l),Eq(vij , n),Eq(vij , vi−1,j)).

In this case, Eq(i) and Uq(i) can be constructed in O(p3(n)) time, so that F ′q
can be constructed in O(p4(n)) time.

Let us now consider an instruction IfLeq(l1, l2, q
′). Because the memory

locations l1 and l2 are referenced, we define

Eq =
4p(n)∨
j=1

Eq(aj, l1) ∧
4p(n)∨
j=1

Eq(aj , l2).

This statement will cause the program counter to be set to q′ if the

value stored at l1 is less than or equal to the value stored at l2; otherwise,

the program counter will be set to q + 1. We first observe that for natural

numbers v1 and v2, v1 ≤ v2 iff v2− v1 ≥ 0. We can therefore use the variable

di to record |v2 − v1| using the Sum abbreviation as follows:

Uq(i) =
4p(n)∧
j=1

Eq(vij , vi−1,j)

∧
4p(n)∧
j=1

4p(n)∧
j′=1

If(Eq(aj, l1) ∧ Eq(aj′ , l2),

Sum(vij , di, vij′) ∨ Sum(vij′ , di, vij)).
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We can now define Pq(i) as follows:

Pq(i) = IfElse

⎛
⎝

4p(n)∨
j=1

4p(n)∨
j′=1

Eq(aj , l1) ∧Eq(aj′ , l2) ∧ Sum(vij , di, vij′),

piq′ , pi,q+1

⎞
⎠ .

Eq(i) can be constructed in O(p2(n)) time, and both Uq(i) and Pq(i) can
be constructed in O(p3(n)) time. Furthermore, Iq(i) as given in (16.3) can

be constructed in O(p(n)) time. The total time needed to construct F ′q is

therefore in O(p4(n)).

Finally, let us consider a Halt instruction. For a Halt instruction, we

have already defined Iq(i) (16.3), Uq(i) (16.5), and Eq(i) (16.6). To define

Pq(i), we need to specify that for all i′ > i, each pi′j is false:

Pq(i) =
p(n)∧

i′=i+1

P−1∧
j=0

¬pi′j .

Because P is a constant depending only on X, Pq(i) can be constructed

in O(p(n)) time. Furthermore, Iq(i) can be constructed in O(p(n)) time,

Uq(i) can be constructed in O(p2(n)) time, and Eq(i) can be constructed in

O(1) time. The sub-formula F ′q can therefore be constructed in O(p3(n))

time.

We leave it as exercises to show that the sub-formula F ′q can be

constructed for each of the other cases in a time in O(p5(n)). We now define

the formula F as the conjunction of all of the sub-formulas:

F =
7∧

q=1

Fq ∧
P−1∧
q=0

F ′q.

Because P is a constant depending only on X, F can be constructed in

O(p5(n)) time.

We must now show that F is satisfiable iff there is some φ ∈ B such that

M executes a Halt(1) instruction on input (x, φ). Suppose F is satisfiable.

Let us fix some satisfying assignment to the variables of F . Because F5 must

be true by this assignment, there must be some k, 1 ≤ k ≤ p(n), such that

φ̂[k′] is true for 1 ≤ k′ ≤ k and φ̂[k′] is false for k < k′ ≤ p(n). Let φ = φ[1..k].

By the above construction, for 1 ≤ i ≤ p(n) and 0 ≤ j < P , pij is true iff the

ith instruction executed by M on input (x, φ) is the instruction at program
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location j. Finally, because F7 must be satisfied, one of these instructions

must be a Halt(1) instruction.

Now suppose that for some φ ∈ B, M executes a Halt(1) instruction

on input (x, φ). By our choice of the polynomial p(n), we can assume that

|φ| ≤ p(|x|). Let us now set x = x and φ[1..|φ|] = φ. We will also set

φ̂[k] = true for 1 ≤ k ≤ |φ| and φ̂[k] = false for |φ| < k ≤ p(n). We can clearly

assign truth values to the variables in the sub-formulas Fq for 2 ≤ q ≤ 6 so

that all of these sub-formulas are satisfied. By the above construction, we

can then assign truth values to the variables in each of the sub-formulas F ′q
for 1 ≤ q ≤ p(n) so that these formulas, along with F1, are satisfied. Such

an assignment will yield pij = true iff pj is the ith instruction executed by

M on input (x, φ). Because M executes a Halt(1) instruction on this input,

F7 must also be satisfied. Therefore, F is satisfied by this assignment.

We have therefore shown thatX ≤p
m Sat. Because X can be any problem

in NP , it follows that Sat is NP-hard. Because Sat ∈ NP, it follows that
Sat is NP-complete.

16.9 Summary

The NP-complete problems comprise a large class of decision problems

for which no polynomial-time algorithms are known. Furthermore, if a

polynomial time algorithm were found for any one of these problems, we

would be able to construct polynomial-time algorithms for all of them. For

this reason, along with many others that are beyond the scope of this book,

we tend to believe that none of these problems can be solved in polynomial

time. Note, however, that this conjecture has not been proven. Indeed, this

question — whether P = NP — is the most famous open question in

theoretical computer science.

Proofs of NP-completeness consist of two parts: membership in NP
and NP-hardness. Without knowledge of any NP-complete problems, it is

quite tedious to prove a problem to be NP-hard. However, given one or

more NP-complete problems, the task of proving additional problems to be

NP-hard is greatly eased using polynomial-time many-one reductions.

Some general guidelines for finding a reduction from a known

NP-complete problem to a problem known to be in NP are as follows:

• Look for a known NP-complete problem that has similarities with the

problem in question.

• If all else fails, try reducing from 3-Sat.
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• Look at the proofs of membership in NP and try to transform proofs

φ ∈ B for the known NP-complete problem to proofs φ′ ∈ B for the

problem in question.

Large numbers play an interesting role in the theory of NP-complete-

ness. In particular, some problems become NP-hard simply because very

large numbers can be given as input using comparatively few bits. The

definitions of strong NP-completeness and strong NP-hardness exclude

such problems. A refinement of polynomial many-one reducibility, namely,

pseudopolynomial reducibility, is used to prove strong NP-hardness.

16.10 Exercises

Exercise 16.1. Prove that if X, Y, and Z are decision problems such that

X ≤p
m Y and Y ≤p

m Z, then X ≤p
m Z.

Exercise 16.2. Adapt BoolEval (Figure 16.2) to evaluate a CNF expres-

sion F in O(|F|) time.

Exercise 16.3. Implement the reduction from CSat to 3-Sat, as outlined

in Section 16.4, to run in O(n) time, where n is the size of the given CNF

formula.

Exercise 16.4. Give an algorithm that takes as input an undirected graph

G, a natural number k, and an array A[0..m−1] of booleans, and determines

whether A denotes a vertex cover of G with size k. Your algorithm must run

in O(n + a) time, where n and a are the number of vertices and edges,

respectively, of G. For the purpose of analyzing the running time, you may

assume that G is implemented as a ListGraph.

Exercise 16.5. Implement the reduction from 3-Sat to VC, as outlined in

Section 16.5, to run in O(m + n) time, where m is the number of variables

and n is the number of clauses in the given 3-CNF formula.

* Exercise 16.6. Let NotAllEqual-3-Sat be the problem of deciding,

for a given 3-CNF formula f , whether there is an assignment of boolean

variables such that each clause in f contains at least one true literal and at

least one false literal. Prove that this problem is NP-complete.

Exercise 16.7. A clique is a complete undirected graph — i.e., a graph

such that for every pair of distinct vertices u and v, {u, v} is an edge. The

clique problem (Clique) is the problem of deciding, for a given undirected
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graph G and natural number k, if G has a subgraph that is a clique with k

vertices. Show that Clique is NP-complete.

Exercise 16.8. Two graphs G and G′ are said to be isomorphic if the

vertices of G can be renamed so that the resulting graph is G′. Given two

graphs G and G′ and a natural number k, we wish to decide whether G and

G′ contain isomorphic subgraphs with k vertices. Show that this problem is

NP-complete. You may use the result of Exercise 16.7.

** Exercise 16.9. A Hamiltonian cycle in a graph G is a cycle that contains

each vertex in G exactly once. Prove that the problem of deciding whether a

given undirected graph contains a Hamiltonian cycle isNP-complete. [Hint:

Reduce VC to this problem.]

Exercise 16.10. Repeat Exercise 16.9 for directed graphs. You may use the

result of Exercise 16.9.

Exercise 16.11. As was defined in Exercise 10.35, a Hamiltonian path in

a graph G is a simple path that contains each vertex in G exactly once.

Prove that the problem of deciding whether a given undirected graph has

a Hamiltonian path is NP-complete. You may use the results of Exercises

16.9 and 16.10.

Exercise 16.12. Repeat Exercise 16.11 for directed graphs. You may use

the results of Exercises 16.9–16.11.

Exercise 16.13. Given a directed graphG = (V,E) and a positive integer k,

we wish to determine whether there is a subset V ′ ⊆ V of size k such that

every cycle in G contains at least one vertex in V ′. Show that this problem

is NP-complete.

* Exercise 16.14. Given an undirected graph G = (V,E) and a positive

integer k, we wish to decide whether V can be partitioned into two disjoint

sets, V1 and V2, such that V1 contains exactly k vertices and for every vertex

u ∈ V2, there is a vertex v ∈ V1 such that {u, v} ∈ E. Show that this problem

is NP-complete.

Exercise 16.15. Give an algorithm that takes an instance (X,Y,Z,W )

of 3DM and a bit string φ and determines whether φ is a proof that

(X,Y,Z,W ) has a matching, as defined in Section 16.6. You may assume that

(X,Y,Z,W ) is represented by a natural number m and an array W [1..n] of

triples of the form (i, j, k) such that m ≤ n and each i, j, and k is a positive

integer no greater than m. Your algorithm should run in O(m2 lg n) time.
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Exercise 16.16. Given a finite sequence of finite sets and a natural

number k, we wish to decide whether the sequence contains at least k

mutually disjoint sets. Show that this problem is NP-complete.

Exercise 16.17. Prove that Part, as defined in Section 16.7, is in NP .
Exercise 16.18. Suppose we modify the 0-1 knapsack problem (see Section

12.4) by including a target value V as an additional input. The problem then

is to decide whether there is a subset of the items whose total weight does

not exceed the weight bound W and whose total value is at least V . Prove

that this problem is NP-complete.

Exercise 16.19. Suppose we are given a set of items a1, . . . , an, each having

a positive integer weight wi, and positive integers k and W . We wish to

decide whether the items can be partitioned into k mutually disjoint subsets

A1, . . . , Ak, such that

k∑
j=1

⎛
⎝ ∑

ai∈Aj

wi

⎞
⎠

2

≤W.

Show that this problem is NP-complete.

** Exercise 16.20. Suppose we are given a sequence S1, . . . , Sn of finite

sets. We wish to partition

n⋃
i=1

Si

into two disjoint sets S and S′ such that for 1 ≤ i ≤ n, Si �⊆ S and

Si �⊆ S′. Show that this problem is NP-complete. [Hint: Reduce 3-Sat to

this problem.]

** Exercise 16.21. Suppose we are given an undirected graph G = (V,E)

with exactly 3k vertices. We wish to partition V into k disjoint subsets such

that each subset forms a path of length 2 in G. Show that this problem is

NP-complete. [Hint: Reduce 3DM to this problem.]

** Exercise 16.22. Given a directed graph G = (V,E), we wish to decide

whether each vertex vi ∈ V can be assigned a label Li ∈ N such that Li is

the least natural number that is not in the set

{Lj | (vi, vj) ∈ E}.
Show that this problem is NP-complete. [Hint: Reduce 3-Sat to this

problem.]
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** Exercise 16.23. Show that the problem of deciding whether a given

undirected graph has a 3-coloring is NP-complete. (See Exercise 13.12 for

the definition of a 3-coloring.) [Hint: Reduce 3-Sat to this problem.]

Exercise 16.24. Show that the problem of deciding whether a given

undirected graph has a k-coloring is NP-complete for each fixed k ≥ 4.

You may use the result of Exercise 16.23.

** Exercise 16.25. Certain aspects of the board game Axis and AlliesTM

can be modeled as follows. The game is played on an undirected graph.

The playing pieces include fighters and aircraft carriers, each of which has

a natural number range. These pieces are each assigned to a vertex of the

graph. Each vertex may be assigned any number of pieces. A combat scenario

is valid if it is possible to move each piece to a new vertex (possibly the same

one) so that

• for each move, the distance (i.e., number of edges) from the starting vertex

to the ending vertex is no more than the range of piece moved; and

• after the pieces are moved, each vertex has no more than twice as many

fighters as aircraft carriers.

Prove that the problem of determining whether a combat scenario is valid is

NP-complete.

Exercise 16.26. Let k-Part be as defined in Section 16.7.

a. Prove that k-Part ∈ NP for all k ≥ 1.

**b. Prove that 3-Part is NP-complete in the strong sense. [Hint: Show

that 4-Part ≤pp
m 3-Part.]

c. Prove that 2-Part ∈ P.
Exercise 16.27. The bin packing (BP) problem is to decide whether a given

set of items, each having a weight wi, can be partitioned into k disjoint sets

each having a total weight of at most W , where k and W are given positive

integers. Show that BP is NP-complete in the strong sense.

Exercise 16.28. Suppose we are given a complete undirected graph G

with positive integer edge weights and a positive integer k. The traveling

salesperson problem (TSP) is to determine whether there is a Hamiltonian

cycle in G with total weight no more than k. Show that this problem is

NP-complete in the strong sense. You may use the result of Exercise 16.9.

* Exercise 16.29. We are given a set of n tasks, each having an execution

time ei ∈ N, a ready time ri ∈ N, and a deadline di ∈ N. We wish to decide
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whether there is a non-preemptive schedule that meets the constraints of

all of the tasks. In other words, we wish to know if there is a function

f : [1..n]→ N such that for 1 ≤ i ≤ n,
• ri ≤ f(i);
• f(i) + ei ≤ di; and
• for 1 ≤ j ≤ i and j �= i, either f(j) + ej ≤ f(i) or f(j) ≥ f(i) + ei.

Show that this problem is NP-complete in the strong sense.

* Exercise 16.30. We are given an undirected graphG = (V,E), a sequence

〈w1, . . . , w|E|〉 of natural numbers, and a positive integer k. We wish to decide

whether there is a 1-1 function f : E → {1, . . . , |E|} such that if each edge

e ∈ E is assigned a length of wf(e), then for every pair of vertices u and v,

there is a path from u to v with length at most k. Prove that this problem

is NP-complete in the strong sense.

Exercise 16.31. Define the predicate Pq(i) for the case in which the

instruction at location q is Goto(q′). Show that the resulting sub-formula

F ′q can be constructed in O(p(n)) time.

Exercise 16.32. Define the predicates Eq(i) and Uq(i) for the case in which

the instruction at location q is Copy(l1, l2). Show that the resulting sub-

formula F ′q can be constructed in O(p4(n)) time.

Exercise 16.33. Define the predicates Eq(i) and Uq(i) for the case in which

the instruction at location q is Copy(∗l1, ∗l2). Show that the resulting sub-

formula F ′q can be constructed in O(p5(n)) time.

Exercise 16.34. Define the predicates Eq(i), Uq(i), and Pq(i) for the case

in which the instruction at location q is IfLeq(∗l1, ∗l2, q′). Show that the

resulting sub-formula F ′q can be constructed in O(p5(n)) time.

Exercise 16.35. Define the predicates Eq(i) and Uq(i) for the case in which

the instruction at location q is Add(∗l1, ∗l2). Show that the resulting sub-

formula F ′q can be constructed in O(p5(n)) time.

Exercise 16.36. Define the predicates Eq(i) and Uq(i) for the case in which

the instruction at location q is Subtract(∗l1, ∗l2). Show that the resulting

sub-formula F ′q can be constructed in O(p5(n)) time.

Exercise 16.37. Define the predicates Eq(i) and Uq(i) for the case in which

the instruction at location q is Shift(∗l). Show that the resulting sub-

formula F ′q can be constructed in O(p4(n)) time.



NP-Completeness 553

* Exercise 16.38. Define the predicates Iq(i), Eq(i), and Uq(i) for the case
in which the instruction at location q is Input(1, ∗l). Show that the resulting

sub-formula F ′q can be constructed in O(p5(n)) time.

16.11 Notes

NP-completeness was introduced by Cook [23], who proved that Sat and

CSat are NP-complete. Karp [78] then demonstrated the importance of

this topic by proving NP-completeness of 21 problems, including VC, 3DM,

Part, and the problems described in Exercises 16.7, 16.9, 16.10, 16.13, 16.16,

16.18, and 16.23. The original definition of NP was somewhat different from

the one given here — it was based on non-deterministic Turing machines,

rather than on algorithms or RAMs. The definition given in Section 16.1

is based on a definition given by Brassard and Bratley [17]. All of these

definitions are equivalent.

Sat is an example of an NP-complete problem for which practical

algorithms exist. Even though each of these algorithms requires exponential

time in the worst case, they have been used to solve large instances arising

in fields such as software verification and scheduling. For a survey of Sat-

solvers, see Gong and Zhou [58].

The notion of strong NP-completeness was introduced by Garey and

Johnson [53]. They provided the definitions of strong NP-completeness,

pseudopolynomial algorithms, and pseudopolynomial reductions. They had

earlier given NP-completeness proofs for k-Part for k ≥ 3 [51] and for the

problem described in Exercise 16.29 [52]. As it turned out, their reductions

were pseudopolynomial. Their book on NP-completeness [54] is an excellent

resource.

Exercise 16.20 is solved by Lovasz [91]. Exercise 16.21 is solved by

Kirkpatrick and Hell [79]. Exercise 16.22 is solved by van Leeuwen [115].

The solution to Exercise 16.30 is attributed to Perl and Zaks by Garey and

Johnson [54].

Axis and AlliesTM (mentioned in Exercise 16.25) is a registered trade-

mark of Hasbro, Inc.
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Chapter 17

Approximation Algorithms

In Chapter 16, we examined decision problems that appear to be intractable.

As we might expect, there are other types of problems that are also

intractable. For example, consider the following version of the vertex cover

problem (cf. Section 16.5). Instead of being given a target size as input,

we are given simply an undirected graph from which we must find a vertex

cover of minimum size. Let us call this optimization problem VCOpt. We

can easily reduceVC to VCOpt, though because an optimization problem is

not a decision problem, the reduction is not a many-one reduction. However,

it is clear that if VCOpt has a polynomial-time solution, then so does VC.

We can therefore conclude that unless P = NP , VCOpt cannot be solved

in polynomial time.

With hard optimization problems, however, it may not be necessary to

obtain an exact solution. In this chapter, we will explore techniques for

obtaining approximate solutions to hard optimization problems. We will see

that for some problems, we can obtain reasonable approximation algorithms.

On the other hand, we will use the theory of NP-completeness to show

limitations to these techniques. Before looking at specific problems, however,

we must first extend some of the definitions from Chapter 16 to include

problems other than decision problems.

17.1 Polynomial Turing Reducibility

In this section, we will extend the definition of NP-hardness to include

problems that are not decision problems. As we have already observed, we

can reduce VC to VCOpt in a way that proves that VCOpt cannot be

solved in polynomial time unless P = NP; however, this reduction is not a

555
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many-one reduction. We will therefore define a new kind of reducibility that

will include this kind of reduction.

Suppose we can reduce a problem X to another problem Y in such a

way that for some polynomial p(n) and any instance x of X:

• the time required to obtain a solution for x, excluding any time needed to

solve instances of Y , is bounded above by p(|x|); and
• the values of all variables are bounded above by p(|x|).

We then say that X is polynomially Turing reducible to Y, or X ≤p
T Y. Note

that if X ≤p
m Y, then clearly X ≤p

T Y .

It is easily seen that VC ≤p
T VCOpt. More generally, consider any

minimization problem Y with objective function f . We can construct a

decision problemX from Y by adding an additional natural number input, k.

X is simply the set of all pairs (y, k) such that y is an instance of Y with a

candidate solution s for which f(s) ≤ k. It is easily seen that X ≤p
T Y, for

if we can find the minimum value of f for a given instance y, then we can

quickly decide whether there is a candidate solution s for which f(s) ≤ k.
We can now extend the notion of NP-hardness by saying that Y is NP-

hard with respect to Turing reducibility if for every X ∈ NP , X ≤p
T Y.

Note that we have not modified the definition of NP — it contains only

decision problems. As a result, it makes no sense to extend the definition

of NP-completeness beyond decision problems. Because NP-hardness with
respect to Turing reducibility is the natural version of NP-hardness to use

when discussing optimization problems, we will simply refer to this version

as “NP-hardness” in this chapter. The following theorem can now be shown

in a manner similar to the proof of Theorem 16.2.

Theorem 17.1. If X ≤p
T Y and there is a deterministic polynomial-

time algorithm for solving Y, then there is a deterministic polynomial-time

algorithm for solving X.

The above theorem shows that if there is a deterministic polynomial-time

algorithm for solving an NP-hard problem Y, then there is a deterministic

polynomial-time algorithm for deciding every problem in NP . We therefore

have the following corollary, which highlights the importance of the notion

of NP hardness with respect to Turing reducibility.

Corollary 17.2. If Y is NP-hard and there is a deterministic polynomial-

time algorithm for solving Y, then P = NP.
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17.2 Knapsack

The first problem we will examine is the 0-1 knapsack problem, as defined

in Section 12.4. As is suggested by Exercise 16.18, the associated decision

problem is NP-complete; hence, the optimization problem is NP-hard.
Consider the following greedy strategy for filling the knapsack. Suppose

we take an item whose ratio of value to weight is maximum. If this item won’t

fit, we discard it and solve the remaining problem. Otherwise, we include it in

the knapsack and solve the problem that results from removing this item and

decreasing the capacity by its weight. We have thus reduced the problem to a

smaller instance of itself. Clearly, this strategy results in a set of items whose

total weight does not exceed the weight bound. Furthermore, it is not hard

to implement this strategy in O(n lg n) time, where n is the number of items.

Because the problem is NP-hard, we would not expect this greedy

strategy to yield an optimal solution in all cases. What we need is a way

to measure how good an approximation to an optimal solution it provides.

In order to motivate an analysis, let us consider a simple example. Consider

the following instance consisting of two items:

• The first item has weight 1 and value 2.

• The second item has weight 10 and value 10.

• The weight bound is 10.

The value-to-weight ratios of the two items are 2 and 1, respectively. The

greedy algorithm therefore takes the first item first. Because the second item

will no longer fit, the solution provided by the greedy algorithm consists of

the first item by itself. The value of this solution is 2. However, it is easily

seen that the optimal solution is the second item by itself. This solution has

a value of 10.

A common way of measuring the quality of an approximation is to form

a ratio with the actual value. Specifically, for a maximization problem, we

define the approximation ratio of a given approximation to be the ratio of

the optimal value to the approximation. Thus, the approximation ratio for

the above example is 5. For a minimization problem, we use the reciprocal

of this ratio, so that the approximation ratio is always at least 1. As

the approximation ratio approaches 1, the approximation approaches the

optimal value.

Note that for a minimization problem, the approximation ratio cannot

take a finite value if the optimal value is 0. For this reason, we will restrict

our attention to optimization problems whose optimal solutions always make
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their objective functions positive. In addition, we will restrict our attention

to problems whose objective functions have integer values for all candidate

solutions.

We would like to show some fixed upper bound on the approximation

ratio of our greedy algorithm. However, we can modify the above example

by replacing 10 with an arbitrarily large x in order to achieve an arbitrarily

large approximation ratio of x/2. Thus, this approximation algorithm can

perform arbitrarily poorly.

With a bit more work, however, we can modify this algorithm so that it

has a bounded approximation ratio. Specifically, we find n different packings

and take the one with the highest value. For the ith packing, we take the

ith item first, then apply the greedy strategy to finish the packing. Thus,

we expend additional work in making sure that we get started correctly.

The algorithm is shown in Figure 17.1. For simplicity, we assume that the

Figure 17.1 An approximation algorithm for the 0-1 knapsack problem

Precondition: W is a positive Nat, n ≥ 1, and w[1..n] and v[1..n] are
arrays of positive Nats such that for 1 ≤ i ≤ j ≤ n, v[i]/w[i] ≥ v[j]/w[j]
and w[i] ≤ W .
Postcondition: Returns an array A[1..n] of Bools such that if

S = {i | 1 ≤ i ≤ n, A[i] = true},

then

i∈S

w[i] ≤ W.

KnapsackApprox(W, w[1..n], v[1..n])
maxValue ← 0
for i ← 1 to n

A ← new Array[1..n]
for j ← 1 to n

A[j] ← false
A[i] ← true; value ← v[i]; weight ← w[i]
for j ← 1 to n

if j = i and weight + w[j] ≤ W
weight ← weight + w[j]; value ← value + v[j]; A[j] ← true

if value > maxValue
M ← A

return M
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items are given in nondecreasing order of value-to-weight ratios, and that no

item’s weight exceeds the weight bound. It is easily seen that this algorithm

produces a solution in Θ(n2) time. The following theorem shows how well it

approximates an optimal solution in the worst case.

Theorem 17.3. KnapsackApprox yields an approximation ratio of at

most 2 on all inputs that satisfy the precondition. Furthermore, for every

ε ∈ R
>0, there is some input for which the approximation ratio is at least

2− ε.
Proof. We begin by showing the lower bound. Let ε ∈ R

>0, and without

loss of generality, assume ε < 1. We first define the weight bound as

W = 2

⌈
4

ε

⌉
.

We then construct the following set of three items:

• The first item has weight 1 and value 2.

• The second and third items each have a weight and value of W/2.

The optimal solution clearly consists of the second and third items. This

solution has valueW . Each iteration of the outer loop of KnapsackApprox

yields a solution containing the first item and one of the other two. The

solution returned by this algorithm therefore has a value of W/2 + 2. The

approximation ratio is therefore

W
W
2 + 2

=
2W

W + 4

= 2− 8

W + 4

= 2− 8

2�4/ε� + 4

≥ 2− 8

8/ε

= 2− ε.

Now consider an arbitrary input to KnapsackApprox. For a given

solution X, let V (X) denote the value of X. Suppose KnapsackApprox

returns a solution A, and let S be an optimal solution. Let i be the index of

some element with maximum value in S, and consider iteration i of the outer

loop. Let Ai be the solution chosen by this iteration. We will show Ai has
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an approximation ratio of at most 2. Because V (A) ≥ V (Ai), the theorem

will follow.

In computing an upper bound on V (S)− V (Ai), we can ignore all items

that belong to S ∩ Ai. Suppose these common items have a total weight

of C. Suppose further that V (Ai) < V (S). Then the greedy loop must reject

at least one element belonging to S. Let item k be the first element from

S to be rejected by the greedy loop in the construction of Ai. Then the

total weight of all items in Ai \S chosen prior to item k is greater than

W −C−w[k]. Because their value-to-weight ratios are all at least v[k]/w[k],

their total value is greater than

v[k](W − C − w[k])
w[k]

.

The items in S \Ai must have total weight at mostW −C. Furthermore,

all of their value-to-weight ratios are at most v[k]/w[k]; hence their total

value is at most

v[k](W − C)

w[k]
.

We therefore have

V (S)− V (Ai) <
v[k](W − C)

w[k]
− v[k](W − C −w[k])

w[k]

= v[k].

Because items i and k both belong to S and v[i] ≥ v[k], v[k] ≤ V (S)/2.

We therefore have

V (S)− V (Ai) < V (S)/2

V (S) < 2V (Ai)

V (S)/V (Ai) < 2

V (S)/V (A) < 2. �

Though we have a bounded approximation ratio, an approximation ratio

of 2 may seem unsatisfactory, as in the worst case we may only achieve

half the actual maximum value. It turns out that we can improve the

approximation ratio by examining all pairs of items, then using the greedy

algorithm to complete each of these packings. More generally, we can achieve

an upper bound of 1 + 1
k by examining all sets of k items and completing
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each packing using the greedy algorithm. (If there are fewer than k items,

we simply do an exhaustive search and return the optimal solution.) The

proof is a straightforward generalization of the proof of Theorem 17.3 — the

details are left as an exercise.

It is not hard to see that the algorithm outlined above can be

implemented to return a solution in Θ(nk+1) time. If k is a fixed constant,

the running time is polynomial. We therefore have an infinite sequence of

algorithms, each of which is polynomial, such that if an approximation ratio

of 1 + ε is needed (for some positive ε), then one of these algorithms will

provide such an approximation. Such a sequence of algorithms is called a

polynomial approximation scheme.

Although each of the algorithms in the above sequence is polynomial

in the length of the input, it is somewhat unsatisfying that to achieve an

approximation ratio of 1+ 1
k , a running time in Θ(nk+1) is required. We would

be more satisfied with a running time that is polynomial in both n and k.

More generally, suppose we have an approximation algorithm that takes as

an extra input a natural number k such that for any fixed k, the algorithm

yields an approximation ratio of no more than 1 + 1
k . Suppose further that

this algorithm runs in a time polynomial in k and the length of its input.

We call such an algorithm a fully polynomial approximation scheme.

We can obtain a fully polynomial approximation scheme for the 0-1

knapsack problem using one of the dynamic programming algorithms

suggested in Section 12.4. The algorithm based on recurrence (12.5) on page

399 runs in Θ(nV ) time, where n is the number of items and V is the sum

of their values. We can make V as small as we wish by replacing each value

v by �v/d	 for some positive integer d. If some of the values become 0,

we remove these items. Observe that because we don’t change any weights

or the weight bound, any packing for the new instance is a packing for the

original. However, because we take the floor of each v/d, the optimal packing

for the new instance might not be optimal for the original. The smaller we

make d, the better our approximation, but the less efficient our dynamic

programming algorithm.

In order to determine an appropriate value for d, we need to analyze the

approximation ratio of this approximation algorithm. Let S be some optimal

set of items. The optimal value is then

V ∗ =
∑
i∈S

vi.
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With the modified values, this packing has a value of

∑
i∈S

⌊vi
d

⌋
≥
∑
i∈S

vi − d
d

=
∑
i∈S

vi
d
−
∑
i∈S

1

≥ V ∗

d
− n.

If we remove from S the items whose new values are 0, we obtain

a packing for the revised instance with same value as above. Because

the dynamic programming algorithm selects an optimal packing for the

revised instance, it will yield a packing with a value at least this large. If

we substitute the original values into the packing chosen by the dynamic

programming algorithm, we obtain a value of at least V ∗ − nd. The

approximation ratio is therefore at most

V ∗

V ∗ − nd.

We need to ensure that the approximation ratio is at most 1+ 1
k for some

positive integer k. We therefore need

V ∗

V ∗ − nd ≤ 1 +
1

k

V ∗ ≤ V ∗ − nd+ V ∗ − nd
k

0 ≤ V ∗ − (k + 1)nd

k

0 ≤ V ∗ − (k + 1)nd

d ≤ V ∗

(k + 1)n
.

Let v be the largest value of any item in the original instance. Assuming

that no item’s weight exceeds the weight bound, we can conclude that

V ∗ ≥ v. Thus, if v ≥ (k+1)n, we can satisfy the above inequality by setting

d to �v/((k + 1)n)	. However, if v < (k + 1)n, this value becomes 0. In this

case, we can certainly set d to 1, as the dynamic programming algorithm

would then give the optimal solution. We therefore set

d = max

(⌊
v

(k + 1)n

⌋
, 1

)
.
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We can clearly compute the scaled values in O(n) time. If v ≥ 2(k+1)n,

the sum of the scaled values is no more than
nv

d
=

nv⌊
v

(k+1)n

⌋

≤ nv
v−(k+1)n
(k+1)n

=
(k + 1)n2v

v − (k + 1)n

≤ (k + 1)n2v

v/2

= 2(k + 1)n2.

In this case, the dynamic programming algorithm runs in O(kn3) time.

If v < 2(k + 1)n, then d = 1, so that we use the original values. In this

case, the sum of the values is no more than

nv < 2(k + 1)n2,

so that again, the dynamic programming algorithm runs in O(kn3) time.

Thus, the total running time of the approximation algorithm is in O(kn3).

Because this running time is polynomial in k and n, and because the

approximation ratio is no more than 1+ 1
k , this algorithm is a fully polynomial

approximation scheme.

17.3 Bin Packing

Exercise 16.27 introduced the bin packing problem as a decision problem.

Its input consists of a set of items, each having a positive integer weight wi,

a positive integer weight bound W , and a positive integer k. The question

we ask is whether the items can be partitioned into k disjoint subsets, each

having a total weight of no more than W . The corresponding optimization

problem does not include the input k, but instead asks for the minimum

number of subsets into which the items can be partitioned such that the

weight bound is satisfied. As is suggested by Exercise 16.27, the decision

problem BP is strongly NP-complete. As a result, it is easily seen that the

optimization problem is NP-hard in the strong sense.

Ideally, we would like to have a fully polynomial approximation scheme

for bin packing. However, the following theorem tells us that unless P = NP ,
a fully polynomial approximation scheme does not exist.
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Recall that |x| denotes the
number of bits in the encod-
ing of x and µ(x) denotes
the maximum value of any
integer encoded within x.

Theorem 17.4. Let p(x, y) be an integer-valued

polynomial, and let X be an optimization problem

whose optimal value on any input x is a natural

number bounded above by p(|x|, μ(x)). If there is a

fully polynomial approximation scheme for X, then

there is a pseudopolynomial algorithm for obtaining

an optimal solution for X.

Proof. The pseudopolynomial algorithm operates as follows. Given an

input x, it first computes k = p(|x|, μ(x)). It then uses the fully polynomial

approximation scheme to approximate a solution with an approximation

ratio bounded by 1 + 1
k . Let V be the value of the approximation, and let

V ∗ be the value of an optimal solution. If the problem is a minimization

problem, we have

V

V ∗ ≤ 1 +
1

k
,

V ≤ V ∗ +
V ∗

k
,

V − V ∗ ≤ V ∗

k

< 1.

Because both V and V ∗ are natural numbers and V ≥ V ∗, we conclude that
V = V ∗. Furthermore, because the fully polynomial approximation scheme

runs in time polynomial in |x| and p(|x|, μ(x)), it is a pseudopolynomial

algorithm.

An analogous argument applies to maximization problems. �

Because the minimum number of bins needed is clearly no more than

the length of the input to the bin packing problem, Theorem 17.4 applies to

this problem. Indeed, the condition that the optimal solution is bounded by

a polynomial in the length of the input and the largest integer in the input

holds for most optimization problems. In these cases, if the given problem

is strongly NP-hard (as is bin packing), there can be no fully polynomial

approximation scheme unless P = NP .
If we cannot obtain a fully polynomial approximation scheme for bin

packing, we might still hope to find a polynomial approximation scheme.

However, the theory of NP-hardness tells us that this is also unlikely. In

particular, for a fixed positive integer k, let k-BP denote the problem of

deciding whether, for a given instance of bin packing, there is a solution

using at most k bins. It is easily seen that Part ≤p
m 2-BP, so that 2-BP is
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NP-hard. Now for a fixed positive real number ε, let ε-ApproxBP be the

problem of approximating a solution to a given instance of bin packing with

an approximation ratio of no more than 1 + ε. We will now show that for

any ε < 1/2, 2-BP ≤p
T ε-ApproxBP, so that ε-ApproxBP is NP-hard. As

a result, there can be no polynomial approximation scheme for bin packing

unless P = NP .
Theorem 17.5. For 0 < ε < 1/2, ε-ApproxBP is NP-hard.
Proof. As we noted above, we will show that 2-BP ≤p

T ε-ApproxBP.

Given an instance of 2-BP, we first find an approximate solution with

approximation ratio at most 1+ ε. If the approximate solution uses no more

than 2 bins, then we can answer “yes”. If the approximate solution uses 3

or more bins, then the optimal solution uses at least

3

1 + ε
>

3

3/2

= 2

bins. We can therefore answer “no”.

Ignoring the time needed to compute the approximation, this algorithm

runs in Θ(1) time. Therefore, 2-BP ≤p
T ε-ApproxBP, and ε-ApproxBP is

NP-hard. �

From Theorem 17.5, we can conclude that there is no approximation

algorithm for bin packing with approximation ratio less than 3/2 unless

P = NP . As a result, there can be no polynomial approximation scheme for

bin packing unless P = NP .
On the other hand, there do exist approximation algorithms which yield

approximation ratios that come close to the lower bound of 3/2 for bin

packing. The algorithm we will present here is a simple greedy strategy

known as first fit. For each item, we try each bin in turn to see if the item

will fit. If we find a bin in which the item fits, we place it in that bin;

otherwise, we place it in a new bin. The algorithm is shown in Figure 17.2.

This algorithm is easily seen to run in Θ(n2) time in the worst case. We will

now show that it yields an approximation ratio of at most 2.

Theorem 17.6. BinPackingFF yields an approximation ratio of no more

than 2 on all inputs that satisfy the precondition.

Proof. We will first show as an invariant of the for loop that at most one

bin is no more than half full. This clearly holds initially. Suppose it holds at

the beginning of some iteration. If w[i] > W/2, then no matter where w[i]
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Figure 17.2 First-fit approximation algorithm for bin packing

Precondition: W is a positive Nat, and w[1..n] is an array of positive
Nats such that for 1 ≤ i ≤ n, w[i] ≤ W .
Postcondition: Returns an array B[1..k] of ConsLists of Nats i such
that 1 ≤ i ≤ n. For 1 ≤ i ≤ n, i occurs in exactly one ConsList in B[1..k].
For 1 ≤ i ≤ k, if S is the set of integers in B[i], then

j∈S

wj ≤ W.

BinPackingFF(W , w[1..n])
B ← new Array[1..n]; slack ← new Array[1..n]; numBins ← 0
for i ← 1 to n

j ← 1
while j ≤ numBins and w[i] > slack[j]

j ← j + 1
if j > numBins

numBins ← numBins +1; B[j] ← new ConsList(); slack[j] ← W
B[j] ← new ConsList(i, B[j]); slack[j] ← slack[j] − w[i]

return B[1..numBins]

is placed, it cannot increase the number of bins that are no more than half

full. Suppose w[i] ≤ W/2. Then if there is a bin that is no more than half

full, w[i] will fit into this bin. Thus, the only case in which the number of

bins that are no more than half full increases is if there are no bins that are

no more than half full. In this case, the number cannot be increased to more

than one.

We conclude that the packing returned by this algorithm has at most

one bin that is no more than half full. Suppose this packing consists of k

bins. The total weight must therefore be strictly larger than (k − 1)W/2.

The optimal packing must therefore contain more than (k−1)/2 bins. Thus,

the number of bins in the optimal packing is at least

⌊
k − 1

2

⌋
+ 1 =

⌊
k + 1

2

⌋

≥ k/2.

The approximation ratio is therefore at most 2. �
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It can be shown via a much more complicated argument that if the

optimal packing uses B∗ bins, then BinPackingFF gives a packing using

no more than �1710B∗� bins. Thus, as B∗ increases, the upper bound on

the approximation ratio approaches 17/10. If we first sort the items by

nonincreasing weight, it can be shown that this strategy (known as first-

fit decreasing) gives a packing using no more than 11
9 B

∗ + 2
3 bins. Note

that although this upper bound is less than 3/2 as B∗ increases, this does

not give a polynomial-time algorithm for ε-ApproxBP for any ε < 3/2,

as the proof of Theorem 17.5 essentially shows the hardness of deciding

whether B∗ = 2. Furthermore, Theorem 17.5 does not preclude the existence

of a pseudopolynomial algorithm with an approximation ratio bounded by

some value less than 3/2. We leave it as an exercise to show that dynamic

programming can be combined with the first-fit decreasing strategy to yield,

for any positive ε, an approximation algorithm with an approximation ratio

bounded by 11
9 + ε.

17.4 The Traveling Salesperson Problem

Exercise 16.28 introduced the traveling salesperson problem as a decision

problem, TSP. Its input consists of a complete undirected graph G with

positive integer edge weights and a positive integer k. The question we ask

is whether there is a Hamiltonian cycle in G with total weight no more

than k. As is suggested by Exercise 16.28, TSP is strongly NP-complete.

The corresponding optimization problem does not include the input k, but

instead asks for the Hamiltonian cycle in G with minimum weight. It is

easily seen that this problem is NP-hard in the strong sense. Clearly, a

minimum weight Hamiltonian cycle has weight no more than nW , where n

is the number of vertices in G and W is the maximum weight of any edge in

G; hence, by Theorem 17.4, there can be no fully polynomial approximation

scheme for the optimization problem unless P = NP .
For ε > 0, let ε-ApproxTSP be the problem of finding, for a given

undirected graph G with positive integer edge weights, a Hamiltonian cycle

with approximation ratio no more than 1 + ε. In what follows, we will show

that ε-ApproxTSP is NP-hard in the strong sense for every positive ε. As a

result, there can be no polynomial or pseudopolynomial algorithm for finding

an approximation with any bounded approximation ratio unless P = NP .

Theorem 17.7. For every positive ε, ε-ApproxTSP is NP-hard in the

strong sense.
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Proof. Let ε > 0, and let HC be the problem of deciding whether a given

undirected graph G contains a Hamiltonian cycle. By Exercise 16.9, HC

is NP-complete. Since there are no integers in the problem instance, it is

strongly NP-complete. We will show that HC ≤pp
T ε-ApproxTSP, where

≤pp
T denotes a pseudopolynomial Turing reduction. It will then follow that

ε-ApproxTSP is NP-hard in the strong sense.

Let G = (V,E) be an undirected graph. We first construct a complete

undirected graph G′ = (V,E′). Let k = �ε	 + 2. We define the weight of an

edge e ∈ E′ as follows:

• If e ∈ E, then the weight of e is 1.

• If e 
∈ E, then the weight of e is nk, where n is the size of V.

Note that because k is a fixed constant, the weights are bounded by a

polynomial in the size of G.

We now show how we can use an approximation of a minimum-

weight Hamiltonian cycle in G′ to decide whether G has a Hamilton cycle.

Suppose we can obtain an approximation with an approximation ratio of

no more than 1 + ε. If the weight of this approximation is n, then the

corresponding Hamiltonian cycle must contain only edges with weight 1;

hence, it is a Hamiltonian cycle in G, so we can answer “yes”. Otherwise,

the approximation contains at least one edge with weight nk, and n > 0.

The weight of the approximation is therefore at least nk+n−1. Because the

approximation ratio is no more than 1+ε, the minimum-weight Hamiltonian

path has a weight of at least

nk + n− 1

1 + ε
=
n(�ε	+ 2) + n− 1

1 + ε

>
n(1 + ε)

1 + ε

= n.

Hence, there is no Hamiltonian cycle whose edge weights are all 1. Because

this implies that G contains no Hamiltonian cycle, we can answer “no”.

The running time for this algorithm, excluding any time needed to

compute the approximation, is linear in the size of G. Furthermore, all

integers constructed have values polynomial in the size of G. We therefore

conclude that ε-ApproxTSP is NP-hard in the strong sense. �

As a result of Theorem 17.7, we have little hope of finding a polynomial-

time approximation algorithm yielding a bounded approximation ratio for

the traveling salesperson problem. However, if we make a certain restriction
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to the problem, we can find such an algorithm. The metric traveling

salesperson problem is the restriction of the traveling salesperson problem to

inputs in which the edges of the graph satisfy the triangle inequality; i.e., if

u, v, and w are vertices, then

weight({u,w}) ≤ weight({u, v}) + weight({v,w}).
The triangle inequality is satisfied, for example, if the vertices represent

points in the plane, and the edge weights represent distances. In what

follows, we will present a polynomial-time approximation algorithm yielding

an approximation ratio bounded by 2 for this problem.

We first observe that if we remove any edge from a Hamiltonian cycle,

we obtain a spanning tree of the graph. Furthermore, the weight of this

spanning tree must be less than the weight of the Hamiltonian cycle. Hence,

an MST will have a weight strictly less than the weight of a minimum-weight

Hamiltonian cycle. Now consider a tour of an MST that follows a depth-first

search — that is, we go from vertex u to vertex v when the call on u makes

a call on v, and we go from v to u when the call on v returns. In this way,

we traverse each edge exactly twice and reach each vertex at least once,

returning to the vertex from which we started. Clearly, the weight of the

edges in this tour (counting each edge exactly twice) is less than twice the

weight of a minimum-weight Hamiltonian cycle.

We now wish to convert this tour to a Hamiltonian cycle by taking

shortcuts. Specifically, when the tour would return to a vertex that it has

already reached, we skip ahead to the next vertex in the tour that has not

yet been reached (see Figure 17.3). When we have reached all vertices, we

return to the starting point.

It is easily seen by induction that if the triangle inequality is satisfied,

then the weight of edge {u, v} is no more than the sum of the weights of

the edges on any simple path from u to v. It is easily seen that when a path

from u to v is replaced by edge {u, v} in the above conversion, that path is

a simple path, because all edges in the tour that reach vertices that have

already been reached must go from children to parents; hence, the path in

the tour from u to v takes edges from children to parents, followed by a

single edge from a parent to v, which is reached for the first time in the

tour. Clearly, no vertex can be repeated in such a path. As a result, the

weight of this Hamiltonian cycle is less than twice the weight of an optimal

Hamiltonian cycle.

Notice that because this Hamiltonian cycle reaches the vertices in

the same order that they are first reached in the depth-first search, the
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Figure 17.3 Conversion of an MST to a Hamiltonian cycle

Figure 17.4 An implementation of Searcher for use in the metric traveling

salesperson approximation algorithm

MetricTspSearcher(n)
pre ← new VisitCounter(n); order ← new Array[0..n − 1]

MetricTspSearcher.PreProc(i)
pre.Visit(i); order[pre.Num(i)] ← i

vertices are ordered by their preorder traversal numbers. Therefore, it

is easy to construct this Hamiltonian cycle while doing the depth-first

search on the MST. A Searcher for the depth-first search needs only

a VisitCounter pre for recording the preorder traversal numbers and

a readable array order[0..n − 1] such that the Hamiltonian cycle will be

〈order[0], order[1], . . . , order[n − 1], order[0]〉. Such a Searcher is defined

in Figure 17.4.
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Figure 17.5 Approximation algorithm for the metric traveling salesperson problem

Precondition: G is a Graph representing a complete undirected graph
with at least one vertex, whose edges contain positive Nat weights satisfying
the triangle inequality.
Postcondition: Returns an array order[0..n − 1] in which each Nat
less than n occurs exactly once. The sum of the weights of the edges
{order[0], order[1]}, {order[1], order[2]}, . . . , {order[n − 1], order[0]} is less
than twice the weight of an optimal Hamiltonian cycle.

MetricTsp(G)
n ← G.Size; L ← Prim(G)
G ← new ListMultigraph(n)
while not L.IsEmpty()

e ← L.Head(); L ← L.Tail()
i ← e.Source(); j ← e.Dest(); x ← e.Data()
G .Put(i, j, x); G .Put(j, i, x)

G ← new ListGraph(G ); sel ← new Selector(n)
s ← new MetricTspSearcher(n); Dfs(G , 0, sel, s)
return s.Order()

For constructing an MST, we can use either Kruskal’s algorithm

(Figure 11.1, page 376) or Prim’s algorithm (Figure 11.2, page 378). Our

graph is complete, so that the number of edges is in Θ(n2), where n is the

number of vertices. If we are using a ListGraph representation, Kruskal’s

algorithm is more efficient, running in Θ(n2 lg n) time. However, if we are

using a MatrixGraph representation, Prim’s algorithm is more efficient,

running in Θ(n2) time. Because we can construct a MatrixGraph from

a ListGraph in Θ(n2) time, we will use Prim’s algorithm. The entire

algorithm is shown in Figure 17.5.

Assuming G is a MatrixGraph, the call to Prim runs in Θ(n2)

time. The ListMultigraph constructor then runs in Θ(n) time. Because

the ConsList returned by Prim contains exactly n − 1 edges, and the

ListMultigraph.Put operation runs in Θ(1) time, the loop runs in

Θ(n) time. As was shown in Section 9.5, the ListGraph constructor runs

in Θ(n) time. The Selector constructor runs in Θ(n) time, and the

MetricTspSearcher constructor clearly runs in Θ(1) time. Because the

MetricTspSearcher.PreProc operation runs in Θ(1) time and G′′ is a
ListGraph, with n− 1 edges, the call to Dfs runs in Θ(n) time. The total

running time is therefore in Θ(n2).
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17.5 The Maximum Cut and Minimum Cluster Problems

We conclude this chapter by examining two optimization problems that are

essentially the same, but which yield entirely different results with respect to

approximation algorithms. Let G = (V,E) be a complete undirected graph

with positive integer edge weights. For a natural number k ≥ 2, a k-cut for

G is a partition of V into k disjoint sets, S1, S2, . . . , Sk. The weight of this

cut is the sum of the weights of all edges {u, v} ∈ E such that u and v are in

different partitions. The maximum cut problem is to find, for a given natural

number k ≥ 2 and complete undirected graph G = (V,E) with edge weights

and more than k vertices, a k-cut with maximum weight. The minimum

cluster problem is to find a k-cut that minimizes the sum of the weights of

all edges {u, v} ∈ E such that u and v are in the same partition. Clearly, a

k-cut has maximum weight iff it minimizes this latter sum.

Let Cut be the problem of deciding, for given natural numbers k ≥ 2

and B, and complete undirected graph G = (V,E) with positive integer edge

weights and more than k vertices, whether there is a k-cut with weight at

least B. For each k ≥ 2, we also define the k-Cut problem to be the Cut

problem restricted to cuts of exactly k sets (i.e, k is not given as input,

but is fixed). We further define the Cluster and k-Cluster problems

analogously. We leave as exercises to show that k-Cluster is strongly NP-
complete for every k ≥ 2, and that Cluster is strongly NP-complete. It

then follows that Cut and k-Cut for k ≥ 2 are all strongly NP-complete.

Given the above results, the problems of finding either a maximum cut

or a minimum cluster are NP-hard in the strong sense. Thus, from Theorem

17.4, there is no fully polynomial approximation scheme for either of these

problems unless P = NP . However, there is a simple greedy strategy that

yields good approximation ratios for maximum cut. We begin with k empty

sets, and add vertices one by one to the set that gives us the largest cut. The

algorithm is shown in Figure 17.6. Note that this algorithm actually uses

the amount by which the total weight of the clusters would increase when

choosing the set in which to place a given vertex — these values are easier

to compute than the weights of the resulting cuts. It is easily seen that this

algorithm runs in Θ(n2) time, if G is represented by a MatrixGraph. The

following theorem gives bounds for its approximation ratio.

Theorem 17.8. For each k ≥ 2, MaxCut yields an approximation ratio

of no more than

1 +
1

k − 1
;

thus, the approximation ratio is never more than 2.
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Figure 17.6 Approximation algorithm for maximum cut

Precondition: G is a Graph representing a complete undirected graph
with positive Nat edge weights, and k is a Nat such that 2 ≤ k < n, where
n is the number of vertices in G.
Postcondition: Returns an array cut[0..n − 1] such that for 0 ≤ i < n,
1 ≤ cut[i] ≤ k. If W is the sum of the weights of the edges in G, then the
weight of the cut described by cut[0..n − 1] is at least W (k − 1)/k.

MaxCut(G, k)
n ← G.Size(); cut ← new Array[0..n − 1]
clusterInc ← new Array[1..k]
for i ← 0 to n − 1

for j ← 1 to k
clusterInc[j] ← 0

for j ← 0 to i − 1
clusterInc[cut[j]] ← clusterInc[cut[j]] + G.Get(i, j)

m ← 1
for j ← 2 to k

if clusterInc[j] < clusterInc[m]
m ← j

cut[i] ← m
return cut[0..n − 1]

Proof. For a given vertex i, let Wi denote the sum of the weights of all

edges {i, j} such that 0 ≤ j < i. At the end of iteration i, the value of the

cut increases by Wi − clusterInc[m], where clusterInc[m] is the sum of the

weights of the edges from i to other vertices in partition m. m is chosen so

that clusterInc[m] is minimized; hence, for each partition other than m, the

sum of the weights of the edges from i to vertices in that partition is at least

clusterInc[m]. We therefore have

clusterInc[m] ≤Wi/k.

The value of the cut therefore increases by at least Wi(k − 1)/k on

iteration i. Because the value of the cut is initially 0, the final value of the

cut is at least

n−1∑
i=0

Wi(k − 1)

k
=
k − 1

k

n−1∑
i=0

Wi

=
k − 1

k
W,
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where W is the sum of all edge weights in G. Clearly, the maximum cut can

be no more than W . The approximation ratio is therefore bounded above by

W

(k − 1)W/k
=

k

k − 1

= 1 +
1

k − 1
.

�

Though the algorithm MaxCut yields a fixed bound on the approxima-

tion ratio for approximating a maximum cut, it is perhaps surprising that the

same algorithm yields unbounded approximation ratios for approximating a

minimum cluster, even though the two optimization problems are essentially

the same. We can see why this is the case by examining instances that cause

the approximation ratio for MaxCut to approach the upper bound shown

in Theorem 17.8.

For k ≥ 2, consider a complete undirected graph G = (V,E), where

V = {i ∈ N | i < k2}. We partition V into k groups such that for 0 ≤ j < k,

group j is the set {i ∈ N | jk ≤ i < (j + 1)k}; thus, each group contains

k vertices. We now assign weights to the edges in G such that if vertices u

and v are in the same group, then {u, v} has weight 1; otherwise, {u, v} has
weight x, where x is some sufficiently large natural number. (See Figure 17.7

for the case in which k = 2.)

Figure 17.7 A bad case for MaxCut

approximation

10

2 3

x

1

x

x
x

1

max cut
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We claim that if x ≥ k3, the maximum cut for G partitions the vertices

so that each group forms a cluster. To see this, first note that when we

partition G in this way, the resulting cut includes exactly those edges with

weight x. Because the sum of all other edges is less than x, the maximum cut

must contain all of the edges with weight x. Note that connecting any two of

the vertices 0, k, . . . , k2− k is an edge with weight x; hence, a maximum cut

must place all of these k vertices into different clusters. Then for 0 ≤ i < k

and 1 ≤ j < k, there is an edge of weight x between vertex ik + j and i′k
for each i′ 
= i. As a result, vertex ik + j must be placed in the same cluster

as vertex ik. Hence, the maximum cut partitions the vertices so that each

group forms a cluster.

Now consider the behavior of MaxCut on G. It will first place vertices

0, 1, . . . , k − 1 into different clusters. Then vertex k is adjacent to exactly

one vertex in each of the clusters via an edge with weight x. Because placing

k in any of the clusters would increase the weight of that cluster by x, k is

placed in the first cluster with vertex 0. Placing k + 1 in this cluster would

increase its weight by x+1; however, placing k+1 in any other cluster would

increase that cluster’s weight by only x. As a result, k + 1 is placed in the

second cluster with vertex 1. It is easily seen that the algorithm continues

by placing vertices into clusters in round-robin fashion, so that each cluster

ultimately contains exactly one vertex from each group.

We can use symmetry to help us to evaluate the approximation ratio

of MaxCut on G. In the maximum cut, each vertex is adjacent to (k −
1)k vertices in other clusters via edges whose weights are all x. In the cut

produced by MaxCut, each vertex is also adjacent to (k − 1)k vertices in

other clusters; however, only (k−1)2 of these edges have weight x, while the

remaining edges each have weight 1. The approximation ratio is therefore

(k − 1)kx

(k − 1)2x+ k − 1
=

kx

(k − 1)x+ 1
,

which approaches

k

k − 1
= 1 +

1

k − 1

as x approaches ∞. The bound of Theorem 17.8 is therefore tight.

Let us now analyze the approximation ratio for MaxCut as an

approximation algorithm for the minimum cluster problem. Again we can

use symmetry to simplify the analysis. In the optimal solution, each vertex

is adjacent to k− 1 vertices in the same cluster via edges whose weights are

all 1. In the solution given by MaxCut, each vertex is adjacent to k − 1
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vertices in the same cluster via edges whose weights are all x. Thus, the

approximation ratio is x, which can be chosen to be arbitrarily large. We

can therefore see that even though the maximum cut and minimum cluster

optimization problems are essentially the same, the MaxCut algorithm

yields vastly different approximation ratios relative to the two problems.

To carry this idea a step further, we will now show that the minimum

cluster problem has no approximation algorithm with a bounded approxi-

mation ratio unless P = NP . For a given ε ∈ R
>0 and integer k ≥ 2, let the

ε-Approx-k-Cluster problem be the problem of finding, for a given com-

plete undirected graph G with positive integer edge weights, a k-cut whose

sum of cluster weights is at most W ∗(1+ ε), where W ∗ is the minimum sum

of cluster weights. Likewise, let ε-Approx-Cluster be the corresponding

problem with k provided as an input. We will show that for every positive ε

and every integer k ≥ 3, the ε-Approx-k-Cluster problem is NP-hard in

the strong sense. Because ε-Approx-3-Cluster ≤pp
T ε-Approx-Cluster,

it will then follow that this latter problem is also NP-hard in the strong

sense. Whether the result extends to ε-Approx-2-Cluster is unknown at

the time of this writing.

Theorem 17.9. For every ε ∈ R
>0 and every k ≥ 3, ε-Approx-k-Cluster

is NP-hard in the strong sense.

Proof. As is suggested by Exercises 16.23 and 16.24, the problem of

deciding whether a given undirected graph is k-colorable is NP-complete for

each k ≥ 3. Let us refer to this problem as k-Col. Because k-Col contains

no large integers, it is NP-complete in the strong sense. We will now show

that k-Col ≤pp
T ε-Approx-k-Cluster, so that ε-Approx-k-Cluster is

NP-hard in the strong sense for k ≥ 3.

Let G = (V,E) be a given undirected graph. Let n be the number

of vertices in G. We can assume without loss of generality that n > k,

for otherwise G is clearly k-colorable. We construct G′ = (V,E′) to be

the complete graph on V. We assign an edge weight of n2�1 + ε� to edge

{u, v} ∈ E′ if {u, v} ∈ E; otherwise, we assign it a weight of 1. Clearly,

this construction can be completed in time polynomial in n. Furthermore,

because ε is a fixed constant, all integers have values polynomial in n.

Suppose we have a k-cut of G′ such that the ratio of its cluster weight

to the minimum cluster weight is at most 1 + ε. If the given cluster weight

is less than n2�1 + ε�, then all edges connecting vertices in the same cluster

must have weight less than n2�1 + ε�; hence none of them belong to E.
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This k-cut is therefore a k-coloring of G. In this case, we can answer “yes”.

Suppose the cluster weight is at least n2�1 + ε�. Because the approximation

ratio is no more than 1 + ε, the minimum sum of cluster weights is at least

n2. It is therefore impossible to k-color G, for a k-coloring of G would be

a k-cut of G′ in which each cluster contains only edges with weight 1, and

which would therefore have total weight less than n2. In this case, we can

answer “no”. We conclude that k-Col ≤pp
T ε-Approx-k-Cluster, so that

ε-Approx-k-Cluster is NP-hard in the strong sense. �

17.6 Summary

Using Turing reducibility, we can extend the definition of NP-hardness from
Chapter 16 to apply to problems other than decision problems in a natural

way. We can then identify certain optimization problems as being NP-hard,
either in the strong sense or the ordinary sense. One way of coping with

NP-hard optimization problems is by using approximation algorithms.

For some NP-hard optimization problems we can find polynomial

approximation schemes, which take as input an instance x of the problem

and a positive real number ε and return, in time polynomial in |x|, an

approximate solution with approximation ratio no more than 1 + ε. If

this algorithm runs in time polynomial in |x| and 1/ε, it is called a fully

polynomial approximation scheme.

However, Theorem 17.4 tells us that for most optimization problems, if

the problem admits a fully polynomial approximation scheme, then there

is a pseudopolynomial algorithm to solve the problem exactly. As a result,

we can use strong NP-hardness to show for a number of problems that

unless P = NP , that problem cannot have a fully polynomial approximation

scheme. Furthermore, by showing NP-hardness of certain approximation

problems, we can show that unless P = NP, the corresponding optimiza-

tion problem has no approximation algorithm with approximation ratio

bounded by some — or in some cases any — given value.

Finally, there are some pairs of optimization problems, such as the maxi-

mum cut problem and the minimum cluster problem, that are essentially the

same problem, but which yield vastly different results concerning approxi-

mation algorithm. For example, the maximum k-cut, can be approximated

in Θ(n2) time with an approximation ratio of no more than 1+ 1
k−1 ; however,

unless P = NP , there is no polynomial-time algorithm with any bounded

approximation ratio for finding the minimum weight of clusters formed by a

k-cut if k ≥ 3.
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17.7 Exercises

Exercise 17.1. Give an approximation algorithm that takes an instance of

the knapsack problem and a positive integer k and returns a packing with

an approximation ratio of no more than 1 + 1
k . Your algorithm must run in

O(nk+1) time. Prove that both of these bounds (approximation ratio and

running time) are met by your algorithm.

Exercise 17.2. Suppose we were to modify the knapsack problem to allow

as many copies as we wish of any of the items. Show that the greedy

algorithm yields an approximation ratio of no more than 2 for this variation.

Exercise 17.3. The best-fit algorithm for bin packing considers the items

in the given order, always choosing the largest-weight bin in which the item

will fit. Show that the approximation ratio for this algorithm is no more

than 2.

** Exercise 17.4. Let ε be any fixed positive real number. Demonstrate

how dynamic programming can be combined with the first-fit-decreasing

algorithm to obtain a pseudopolynomial-time approximation algorithm for

bin packing with approximation ratio no more than 11
9 + ε. You may use the

fact that the first-fit-decreasing algorithm always produces a packing using

at most 11
9 B

∗ + 2
3 bins, where B∗ is the minimum number of bins possible.

* Exercise 17.5.

a. Prove that NotAllEqual-3-Sat ≤pp
m k-Cluster for each fixed k ≥ 2,

so that, from the result of Exercise 16.6, k-Cluster is NP-hard in the

strong sense for k ≥ 2.

b. Prove that Cluster is strongly NP-complete.

* Exercise 17.6. Give an approximation algorithm with approximation

ratio bounded by 2 for the problem of finding a minimum-sized vertex

cover. Your algorithm should run in O(n + a) time, assuming the graph

is implemented as a ListGraph. Prove both the approximation ratio and

the running time.

* Exercise 17.7.

a. Given an undirected graph G = (V,E), we define G2 = (V 2, E′) such

that for u = 〈u1, u2〉 and v = 〈v1, v2〉 in V 2, {u, v} ∈ E′ iff for every i,

1 ≤ i ≤ 2, either ui = vi or {ui, vi} ∈ E. Prove that the size of the largest

clique in G2 is k2, where k is the size of the largest clique in G.
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b. Use part (a) to prove that if there is a polynomial-time algorithm with

a bounded approximation ratio for approximating the size of a largest

clique in a given graph, then there is a polynomial approximation scheme

for this problem.

17.8 Notes

The concept of a polynomial-time approximation algorithm was first formal-

ized by Gareyet al. [50] and Johnson [73]. In fact, much of the foundational

work in this area is due to Garey and Johnson — see their text [54] for a

summary of the early work. For example, they proved Theorem 17.4 [53]. A

detailed analysis of bin packing, including an 11
9 B

∗ + 4 upper bound on the

approximation ratio for first-fit decreasing, is given by Johnson [72]. This

bound was later improved to 11
9 B

∗+ 2
3 by Dósa [31], who showed this bound

to be tight. The �1710B∗� upper bound for the first-fit algorithm is due to

Garey et al. [49], and a close relationship between best-fit and first-fit was

established by Johnson et al. [71]. Dósa and Sgall [32] later showed that the

upper bound for best-fit is also �1710B∗�.
The polynomial approximation scheme suggested by Exercise 17.1 for the

knapsack problem is due to Sahni [102]. The fully polynomial approximation

scheme of Section 17.2 is due to Ibarra and Kim [69]. Theorem 17.7 was

shown by Sahni and Gonzalez [101].
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