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Glossary

ARM Acorn RISC Machine (ARM) is a family of RISC processors developed by ARM

Holdings R©. ARM processors are designed for light, portable, battery-powered devices,

such as smart phones, tablets, and embedded systems. 25

BSD Berkeley Software Distribution (BSD) is a Unix operation system distributed by the

Computer Systems Research Group (CSRG) of the University of California, Berkeley.

It is a branch of the original Unix known as Berkeley Unix. Unix was originally

developed by by Ken Thompson, Dennis Ritchie, and others in the 1970s at the Bell

Labs research centre. BSD is the basis for all modern BSD derivatives, like FreeBSD,

OpenBSD, NetBSD, and DragonflyBSD. 11, 18, 56, 75, 90, 92, 105, 107, 108, 113, 114

C programming language C is a general purpose and imperative programming language

originally developed by Dennis Ritchie at AT&T Bell Labs and first appeared in 1972.

It has a low-level access to memory and uses manual memory management. For this

reason it is used for implementing operating systems, e.g. BSD or GNU/Linux. 11,

12, 14, 15, 22, 23, 25, 35, 47, 49, 57, 58, 60, 61, 65, 66, 71, 72, 74, 76–78, 80, 81, 90,

94–96, 102, 111, 112

C++ programming language C++ (C plus plus) is an extension of the C programming

language. It has imperative, object-oriented and generic programming features and

shares the low-level memory access with C. C++ was original developed by Bjarne

Stroustrup an first appeared in 1983. As it is a superset of C such combination is

often written as C/C++. 11, 14, 15, 35, 45, 47–49, 58, 61, 71, 72, 74, 76–78, 80, 81,

94, 95, 102, 111, 112

DragonflyBSD DragonflyBSD is a free Unix-like operating system and an FreeBSD off-

spring. It is known for the 64 bit cluster file system named HAMMER. 114

15



Glossary

Elliptic curve cryptography Elliptic curve cryptography (ECC) is a public-key cryp-

tography approach based on elliptic curves over finite fields. This approach allows a

smaller key size at the same security level compared to the discrete logarithm cryp-

tography, e.g. used by DSA. 34

FreeBSD FreeBSD is a free Unix-like operating system with a focus on networking and

storage. It is well known as a server operating systems for different purposes and

implements the FreeBSD Jails to provide a system-level virtualisation. The ZFS

file system is implemented by FreeBSD as well, which is designed for large storage

environments. 114

GNU/Linux Linux is a Unix-like operating system that contains the Linux kernel initially

conceived and created by Linus Torvalds in 1991. The Linux system contains the

kernel itself as well as additional tools, e.g. for adding and manipulating files, known

as the GNU tools. For this reason the name GNU/Linux is suggested by the GNU

project, which originally developed such tools. 11, 18, 19, 21, 22, 37, 49, 56, 75, 90,

92, 93, 105, 107, 108, 112–114

Inode An inode is a data structure that represents a file system object in Unix-style file

systems. Each inode contains the disk block location as well as various attributes.

These attributes include the file owner, the file permission and meta data, like change

, modify, and access time. 77

ISC license This license is a free software license written by the Internet Software Con-

sortium (ISC). It is the preferred license of the OpenBSD project as well as related

projects, such as OpenSSH or OpenSMTPD. 98

Makefile A Makefile is a text file written in a certain prescribed syntax and parsed by the

make(1) utility. Such files are used to compile and link programs written in C/C++.

61, 78, 97, 98

Man page A manual page (man page) is an online software documentation on Unix or

Unix-like operating systems. It is split into different sections, such as system calls (2),

system administration commands and daemons (8), or general commands (1). To refer

to a specific man page the following format is used: <name>(<section number>).

The man(1) command shows a man page: man <section number> <name>. 78, 87,

99, 111, 112
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NetBSD NetBSD is a free Unix-like operating system with a focus on portability, code

clarity, and careful design across many platforms. Its motto is: “Of course it runs

NetBSD”. It is the most ported operating system in the world. 114

OpenBSD OpenBSD is a free Unix-like operating system with a focus on security and

code quality as well as good documentation of its functionality. To achieve more

security, OpenBSD includes additional security features, such as memory protection

and privilege separation, and has a tradition of comprehensive code audits. Its motto

is: “Secure by default” 25, 49, 74, 75, 93, 108, 110, 112, 114

OpenSMTPD OpenSMTPD is an email server developed by OpenBSD developers and

is part of its base system. Its principal goals are being as secure as possible and

providing an easy to understand configuration language. 75, 114

OpenSSH OpenSSH is a free implementation of the Secure Shell (SSH) protocol origi-

nal developed by Tatu Yloenen. This protocol establishes an encrypted connection

between two computers for remote control and is a secure replace for telnet(1). Its

principal goals are being as secure as possible by using state-of-the-art encryption and

signature algorithms. OpenSSH is developed and maintained by OpenBSD develop-

ers. 75, 101, 103, 114

OpenSSL OpenSSL is an open-source software library. It contains implementations for

SSL and TLS protocols. OpenSSL’s core is written in the C programming language

and implements basic cryptographic functions, e.g. for the AES encryption algorithm

or the SHA hashing algorithm. 28, 67–72, 75, 82, 84, 85, 102, 111

Regression test Regression testing is a type of software testing that seeks bugs after

changes have been made. Such tests execute functional or non-functional areas of

an application (mostly automatically) and compare the result with the expected one

defined by the programmer or software tester. If such a test fails. the developer is

notified. 12, 104, 109, 114

Socket A socket connects two processes to share data between them. Each side of a socket

is used for one process. A well known socket implementation are network sockets

which connect a client with a server over a network using protocols like HTTP or

SMTP. Another implementation are Unix domain sockets. Such sockets are used for

local system communication. 41
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Unix file permissions File permissions under GNU/Linux and BSD are split into 1 (ex-

ecute), 2 (write) and 4 (read) for the file owner, the file owner group and others. For

example, the permission 640 means the user has read-write (6), but the group has

only read (4) permissions. Other users or groups are not allowed to access the file (0).

Different permissions can be created by just add the basic ones. 77

User space The user space or userland is separated from the kernel space in modern

operating systems. The kernel space contains the privileged operating system’s kernel

to manage the underlying hardware, while the user space contains the unprivileged

application software. Primarily, this separation provides memory protection to protect

data and functionality. In general, the user space refers to all applications or libraries

that run outside the operating system’s kernel. 22
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Chapter 1

Introduction

Login credentials, like user name and password combinations or certificates, will become

more important these days, since there are more services available which can be used with

different mobile devices. Furthermore, it will be more important to use passwords of a

sufficient length in order to achieve greater security as it is more difficult to guess them.

One the one hand such passwords must be used. On the other hand they must be stored

safely inside a system as well. If a system was compromised and all passwords were stored

in plain text, a random password would not help any more. This is why encrypted or

hashed storage of passwords are a crucial component of a password management system.

Encrypted storage of them is necessary if the user needs the password in plain text on the

client side, e.g. to login into a web application or mailbox, while hashed storage of them is

needed on the server side. The server side itself does not need to know the password in plain

text, as the same password leads to the same hash value, but it is not possible to process

the password back from this value. For security reasons, the server side must always store

passwords in their hashed form and never in plain text.

In general, the problem with passwords is to remember them. In case of a longer

password it is not easy to remember it, hence, some people use the same password for

different services, which can be a security vulnerability. If one service is compromised,

every service that has the same password is as well. On this account offering a secure place

to store such data is a crucial component of an operation system for mobile devices, like

Android [1]. To allow a more comfortable access for users many services provide mobile

applications (apps). The credentials of these services need to be stored somewhere on the

device, so the user does not need to enter them every time an application is used.

To avoid undesirable manipulation of data, a service which manages them must im-

plement the following mechanisms: authentication and authorisation of users as well as
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verification of data. First, the user authenticates himself against a service with a secret

password only these two participants know. Second, after a user has been successfully au-

thenticated, he must be authorised to access these data as well. Different users can store

different data using the same service, and these data must not be changed by a user who

is not authorised to change them. The last part is the verification of data, for both writing

new and reading already stored data. The user must be sure the service did not change the

data and the service must be sure the data were not corrupted while writing them into the

file system.

There are different approaches available to manage user credentials. We will introduce

these approaches with respect to advantages and disadvantages. After working out the goals

based on this analysis two research questions will be addressed in this thesis.

One approach to store the login credentials is a central Android app. These apps can be

downloaded from Google Play Store and permit an easy way of installation. The preparation

problem of such an application are the different layers and frameworks that will be needed.

The lowermost layer is the kernel, on top of it the Dalvik Virtual Machine (VM) [2] or since

Android version 5.0 the Android Runtime (ART) [3] and the framework stack including

different libraries. If there is a security bug in one of those layers, every layer above is

considered as compromised as well, without having an attack vector on their own, because

every layer implements the Application Programming Interface (API) of its beneath layer.

Another issue is the design of such an application that is by definition both a server and a

client program what makes the source code less maintainable and therefore potentially less

secure since both functionalities must be implemented. In general, larger source code is less

maintainable than less source code as it is more complex. As this is a reduced perception,

it will be discussed later in this chapter.

An alternative to a mobile application is the provision of a native Android service. Such

a service runs as a system service of the operating system itself and uses only a minimum

of layers to do its work. Therefore a security breach is less probable as less layers means

less source code that contains issues. Additionally, there is a better separation between the

server and the client what makes both more maintainable and therefore potentially more

secure than the app approach. If a system service is used, the access to other parts of the

operating system, like the file system, can be used in order to check whether the necessary

files have the right permissions or not. In addition, there is more control about the service’s

design, which can increase the security of the service significantly. Google provides the

Native Development Kit (NDK) [4] that allows the implementation of applications without

using the third-party Dalvik process virtual machine or the ART runtime environment.
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Since Android 4.0 the native keystore service [4] is available to every Android application

through a public API, which allows certificates to be stored. Before that, only internal

applications, like Wireless Fidelity (Wi-Fi), Virtual Private Network (VPN), or Bluetooth,

were able to access this service to store their data. Third-party applications could only

use the Java API [4] for encryption and decryption, and SharedPreferences [4] to store

data. One crucial problem was the handling of the encryption keys, because they had to

be stored inside the application, which can be decompiled. Decompilation is the process of

transforming compiled machine or object code back into human readable source code. A

Java compiler creates byte code that runs on the Java Virtual Machine (JVM) instead of

creating machine code as done by C or C++. Such byte code is easier to decompile, as

it has no huge abstraction from the original source code as the machine code has. Since

the keystore service is public, it is possible to store login credentials more safely, without

making the developer coming up with an own solution or using a third-party application.

This approach is more vulnerable due to many different layers because native services use

only a minimum of additional layers.

After analysing the Android keystore service [3] it was determined that it can be im-

proved concerning different properties, for example the used hashing mechanism to make

sure nothing is compromised while storing the data, the storage of user names and pass-

words, and the general design. Furthermore, an evaluation of Android’s internal security

techniques will be provided to show how attacks against the implementation can be rec-

ognized or avoided. Functions that have already been implemented, like the Advanced

Encryption Standard (AES) algorithm [5], or the usage of the user’s passphrase to encrypt

the data will be assumed. The hashing algorithm to detect manipulations is still Message-

Digest Algorithm 5 (MD5), which is no longer state-of-the-art [6]. We will see later in this

thesis how this was corrected.

Storing login credentials in a secure way is also interesting for server or desktop applica-

tions, since they are stored mostly in plain text in configuration files. Therefore, one design

goal is to provide a generic implementation of the Android keystore that can be ported

to other operating system reliably. In order to create a portable version of the keystore,

the already implemented security approaches must be evaluated. In general, there are two

different ways of designing a secure application: use security mechanisms provided by the

operating system itself or implement the application in a robust and secure way by default.

In this thesis the problems of Android’s current keystore implementation are discussed

and solutions demonstrated. The resulting design of the portable version can also be used as

a reference implementation for other operating systems, such as the BSD and GNU/Linux
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distributions because the indicated use cases are not limited to mobile operating systems.

Furthermore, this thesis should be a help for further development in this area, through the

experiences and awareness gained during this work.

The term “security” in this context does not only mean finding and fixing exploits,

which would compromise the system otherwise. It includes the implementation of APIs

the Android operating system provides as well, e.g. to create a service or to encrypt or

hash values. Such APIs can increase the security of a service significantly. The source

code structure and the used compiler flags also belong to this term. Using a standard

coding style and compiler flags that support the developer to avoid adding typical issues to

the code increases security and maintainability. Maintainable source code helps developers

finding bugs or substantial problems what makes the code more secure in turn. For this

reason, the implementation introduced in this work has a security-minded focus, instead of

a performance-minded one.

The same applies to the term “portability”. It does not just mean porting a program

from one platform to another by removing all warnings and errors. Rather, it means using

the platform APIs the program will be ported to as well. For instance, if the second platform

avoids C functions that are error-prone, such functions can be changed to use equivalent

fail-safe functions and committed to the original project, which increases the security of the

entire project and ports to other platforms again.

The approaches discussed above lead to the following two research questions: Can the

Android keystore service be improved in regard to security and portability? and Is it possible

to create a portable one-to-one version based on the native Android keystore service or are

source code adaptations needed?

We start with a background chapter that conveys the basics needed to understand the

further topics. The next chapter describes the result of analysing the current implemen-

tation of the Android keystore service and points out advantages and disadvantages of

individual parts, as the design and the implementation. The results from this chapter will

be used in the implementation chapter, which explains the new design concerning security

and portability. It describes the ported version as well, in order to show that porting works

as expected. The last chapter includes an evaluation of both new implementations. This

chapter includes the way to port the new implementation to other platforms and which

parts are needed in favour. The evaluation chapter shows how the new implementations

are used and how regression tests were implemented. The conclusion chapter finalizes this

thesis and gives a short overview of the work that was done and how further development

for both implementations might look like.
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To explain the different steps of analysing the original implementation and carve out

the design for the new one, source code will be extracted and described. The entire project

with its associated repository is part of the attached CD. The repository contains three

different folders: keystore, keystore-engine, and softkeymaster. The work introduced in

this thesis is focused on the keystore directory that contains the server as well as the

client implementation. The keystore-engine directory contains source code that provides

functions to handle different cryptosystems and the softkeymaster directory implements

the communication with an optional crypto hardware module. The source codes located in

these two directories are not part of this thesis and does not affect it.
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Background

This section conveys background information that is inevitable to understand this work. We

will have a look at the Android system architecture, manual memory management as well

as encryption and hashing algorithms. Section 2.1 explains the Android software stack, how

its different layers are related to each other, and where the new conceptional design that

will be introduced in this thesis takes place. Section 2.2 explains some memory problems

according to source code that is written in the C programming language, as the original

Android keystore service implementation is written in C/C++. Since C++ is a superset

of C these issues occur in this language as well. In Section 2.3 there is an overview of

different encryption algorithms. At last, Section 2.4 describes the basics of hashing, which

hashing algorithms could be appropriate, their advantages and disadvantages, and how the

passphrase can be handled in a secure way.

2.1 Android System Architecture

The Android system architecture is organized in a structure called stack. The stack contains

different layers and each layer implements the API of its underlying layer. The lowermost

is the connection to the hardware and is called the kernel. Such a structure makes it easy

to add additional components into different layers without changing the entire architecture.

The architecture is shown in Figure 2.1.

The lowermost layer contains all drivers and mechanisms that are necessary to com-

municate with the hardware or allocate resources from it. The layer above contains the

libraries and as part of it the Android Runtime. Instead, the Dalvik Virtual Machine was

used until Android 5.0. Later it has been replaced by ART. The library layer is divided

into different layers, which contain different functionality, e.g. libc, SQLite or SSL.
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Source: Android Developer [4]

Figure 2.1: Android system architecture

This layer shows another important part how Android apps can be developed, the An-

droid Runtime. Apps using ART are the most recommended way to develop software, which

can be downloaded from the Google Play Store. On the other hand it is possible to pro-

gram apps directly in C/C++ without using ART, called native code. These applications

are used for game engines or software that needs deep access to the file system or other

operating system related resources that are not accessible using ART. It is supposed to be

used in cases where performance is more important than usability. It is possible to connect

this native code with Java code, called Java Native Interface (JNI) [7]. JNI allows splitting

an application into two parts; the logic is more performance-related and the Graphical User

Interface (GUI) to show the content. The performance part will be loaded from dynamic

shared libraries into a Java-based application. Such libraries are not executable itself, but
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contain pre-compiled code that can either be linked at load time or at run time. The ap-

plication framework is located on top of this layer, where different parts, which contain

functionality as the activity manager or the notification centre are located. The application

layer is the topmost one where every implemented Android application is arranged that

implements a GUI by using the Java programming language.

The approach introduced in this thesis is located between libraries layer and the applica-

tions framework, in contrast to the central app approach mentioned in Chapter 1 that uses

the application layer. Obviously, the first approach needs less layers than the second one.

This does not make the first approach more secure or better by definition, but there are less

problematic sources that must to be considered, like different APIs to achieve functionality,

and this is very important for the security of the service. Less API calls imply less code,

and less code implies less errors. Besides, all you need is a secure place to store the data

to avoid access for unauthorized persons. Therefore, there is no need for a GUI if there is

a well-documented API, which contains function calls in order to store such data. Another

benefit is the separation of functionality between the server and the client.

An Android application has the ability to contain a client of the form of a GUI and a

server if it listens to intents [4]. Intents are a way to let different apps communicate with

each other by sending or receiving data using a messaging object called intent. They are

part of the Android application framework, but do not open a new network, or Unix socket,

or do some interprocess communication, as in the traditional client-server model. Those

intents are called by activities. An activity is an application component that provides a

screen, to interact with the user, such as dialling a phone number or sending an email.

The activities A and B in Figure 2.2 are not necessarily individual Android apps. If such

activities are two different apps the transmitted data could be a phone number that was sent

to Android’s phone app by tapping on a number sent by mail. For this purpose, the phone

app listens to predefined intents. If both activities belong to the same app, intents can

be implemented to call different activities depending on the content that should be shown.

For instance, when data were received from a server over a network and such data contain

contact information, a different activity is used to show such information rather than the

activity to show an email. Both content is shown by tapping on the “show” button, but this

button calls the different activities by calling the dedicated intent with its corresponding

data.
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Source: Android Developer [4]

Figure 2.2: Android intents

The intent follows three different steps to send data from a sender to a receiver:

1. The sender creates an intent with all data the receiver needs, such as the receiver

itself and additional data that should be processed.

2. The intent is sent from the receiver to the Android System.

3. The intent is sent from the Android System to the receiver.

It is possible to have multiple apps that listen on one intent. One example is sending an

email. If there are multiple email apps installed on the Android system and the user wants

to send an email by tapping on it, all email apps will be shown in a list so that the user

can choose one.

If the chosen software design allows a division of client and server, both parts can be

implemented independently - Android applications combine both parts in one single app.

This approach accomplishes more maintainable source code to make it easier to find errors,

since there is less code in both implementations. Of course, there is an additional part that

must be taken care of in the underlying new design, which is the way the information is

sent from the client to the server and will be sent back after processing. However, there is

a communication overhead because two processes are needed rather than a single one. As

already mentioned this can be achieved by using sockets or inter-process communication.

In a single process the information will be transferred by calling the functions that provide

the functionality.
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While the Android system architecture defines APIs for inter-process communication

and makes sure that each part in between works as expected, the operating system itself

provides further features to secure processes on a lower level. Such features are mostly

implemented by the kernel and include the user management, for instance. The follow-

ing section will describe GNU/Linux’s Security-Enhanced Linux (SELinux) extension that

extends the normal user management.

2.1.1 Security-Enhanced Linux

The classic access model on GNU/Linux- and BSD-based operating systems is Discretionary

Access Control (DAC)[8]. The key concept of this model is that the owner of a file or a

directory, in this case known as object, has full control of it. He can grant or revoke rights

to himself, and to the associated group as well as to others. The rights are quite simple,

there are only the rights to read, write, and execute. However, this model has weaknesses

regarding a security related matter. If the user grants rights to someone else accidentally,

there is no mechanism whether it is permissible or not. It is up to the user to take care of

his files and directories and to grant rights only to those who require them. If he grants too

many rights, such files can get compromised very easily.

SELinux [9] adds an additional layer next to the DAC layer that provides Mandatory

Access Control (MAC) - selinux(8). MAC refers to a type of access control which defines

the ability of a subject to access an object with some sort of operations. In the case of

an operating system a subject is usually a process or a thread and objects are constructs

such as files or directories. SELinux was originally developed by the United States Na-

tional Security Agency (NSA), which is an intelligence organization responsible for global

monitoring, collection, and processing of information. It is part of the GNU/Linux kernel

and implements access control security and mandatory access control using the Flux Ad-

vanced Security Kernel (FLASK) concept [10]. This concept provides flexible support for

security policies by adding an additional security level to the extended attributes of each

object. In this case the essential part of file systems is to define regular attributes for files

and directories (objects) that store user permissions or modification times. Such attributes

are essential for the object management. Furthermore, the file system provides a feature

named extended attributes to store meta data, which are not interpreted by the file system

itself, for an object. Such attributes contain the author’s name, the encoding of the file, or

checksums.

In the case of SELinux such meta data are security labels, stored for every object. Every

process (subject) gets such a label as well. Now SELinux decides by the means of a prede-
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fined policy which subject has access to which object. Every GNU/Linux distribution that

enables SELinux by default, provides such a policy that contains general rules determining

which process has access to which subjects. These distributions are mostly based on Red

Hat Enterprise Linux (RHEL) [11] or sponsored by Red Hat, Inc. R© itself. Red Hat, Inc. R©

is a well-known GNU/Linux distributor for enterprise companies. System users can change

such policies to grant or revoke rights to implement a more restrictive or non-restrictive

model. For example, there is no need for a web server to access files located under the

/tmp file system. If files are needed temporarily, like the cache for a website, the web server

stores them in its own directory. So there is no policy for this scenario. Everything that is

not explicitly allowed is forbidden. SELinux is separated into four different access control

mechanisms that will be described below.

• Type-Enforcement (TE)

TE defines a domain for every subject and a type for every object. Each type ends

with _t, and there is no difference between the domain and type interpretation. For

the web server example it means that the process has the domain httpd_t and the file

located under /tmp has the type tmp_t.

• Role-based Access Control (RBAC)

This implementation defines a role for every user. For each role, rights to files can be

granted or revoked. By using RBAC the powerful root user can be limited to only

those programs that are needed for administration. All roles end with _r.

• Multi-Level Security (MLS)

The last implementation defines different security levels and is used in security related

environments, like the military, or secret services. Each object gets a secrecy level, like

strictly confidential, confidential or others. Subjects get clearance for these security

levels, so they are able to access objects associated with them. A typical example of

this mechanism is the Bell–LaPadula model [12]. This model defines an access control

by providing three security properties.

– Simple Security Property

Known as no read-up, which means a subject at a given security level cannot

read an object at a higher security level.

– ?-Property (read "star"-property)

Known as no write-down, which means a subject at a given security level cannot

write an object at a lower security level.
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– Discretionary Security Property

Defines an access matrix to specify the discretionary access control.

• Multi Category System (MCS)

MCS uses the same code as the MLS policy and defines different categories where

processes can be assigned to. Such a process must have a set of categories that is a

subset of the categories a file is assigned to.

In order to handle these different implemented mechanisms and to store the necessary

security context for each object and subject, SELinux uses the following format for TE and

RBAC: user:role:type:level. For MLS/MCS a different format is used, which contains more

information: user:role:type:level:sensitivity:category.

• User

The “SELinux User” component can have multiple roles. Through these roles multiple

types can be reached, as types are grouped in roles. There are three standard users

available; user_u is the default user for a logged in system user, system_u is the

default user for processes that start up during boot time, and root is the root system

user. By convention users always end with _u.

• Role

Roles are used to group security types (SELinux Type), e.g. which role can execute

which types. The role of a file is always object_r and is just a place holder. For a

process there are rules like system_r or sysadm_r. Policies can be specified to grant

a role access to a set of types. By convention roles end with _r.

• Type

The SELinux types will be added to files in order to say which role or user has access

to which type. By convention types end with _t.

• Level

This component is for the MLS / MCS access control and is divided into sensitivity

and category levels. The sensitivity is the hierarchical part of MLS and contains

data classification, like public, internal, confidential, and regulatory by default. The

category part is for labelling resources, for example, by departments or projects. The

purpose of categories is to achieve better control of security levels. Through the level

field, access can be granted to specific categories at a dedicated sensitivity level. This

prevents other categories from getting access to this specific file. For instance, if only
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two departments should have access to confidential files, such files are associated to

these departments.

2.1.2 Capabilities

The traditional GNU/Linux process model is divided into two categories of processes: priv-

ileged processes, where the effective user id is 0 (root), and unprivileged processes, where

the effective user id is not 0. Each process is associated with the user who starts the process.

Privileged processes bypass all permission checks of the kernel while unprivileged ones are

subject to full permission checking based on the effective user id, effective group id, and

supplementary group list (credentials). The user id is abbreviated as UID and the group

id as GID. This model serves well if an unprivileged user starts a process because of its

limited user rights. However, if the root user starts a process, this process has the right to

read and write the entire file system and can execute any other program.

The capabilities first appeared in GNU/Linux version 2.2 and divide the privileged

user into different units - capabilities(7). The list of capabilities implemented by the

kernel allows more control of a process, as capabilities are a per-thread attribute. This

list is implemented as a kernel module and can be enabled or disabled via the CON-

FIG_SECURITY_CAPABILITIES configuration option. Each thread has three different

capability sets, which can be set using the capset(2) function call. There are capabilities for

various areas available, like using the chroot(2) (CAP_SYS_CHROOT ) or the setuid(2)

(CAP_SETUID) function call, which changes the root directory or the user id of a process.

• Permitted

“This is a limiting superset for the effective capabilities that the thread may

assume. It is also a limiting superset for the capabilities that may be added

to the inheritable set by a thread that does not have the CAP_SETPCAP

capability in its effective set.” capabilities(7)

• Inheritable

“This is a set of capabilities preserved across an execve(2). It provides a

mechanism for a process to assign capabilities to the permitted set of the

new program during an execve(2).” capabilities(7)

• Effective

“This is the set of capabilities used by the kernel to perform permission

checks for the thread.” capabilities(7)
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Since kernel 2.6.24 a new capability set for executing files was implemented. Such

capabilities are stored in the extended file attributes - already mentioned in Section 2.1.1.

These capabilities are set using the setcap(8) command.

• Permitted (formerly known as forced)

“These capabilities are automatically permitted to the thread, regardless of

the thread’s inheritable capabilities.” capabilities(7)

• Inheritable (formerly known as allowed)

“This set is ANDed with the thread’s inheritable set to determine which

inheritable capabilities are enabled in the permitted set of the thread after

the execve(2).” capabilities(7)

• Effective

“This is not a set, but rather just a single bit. If this bit is set, then during an

execve(2) all of the new permitted capabilities for the thread are also raised

in the effective set. If this bit is not set, then after an execve(2), none of

the new permitted capabilities is in the new effective set.” capabilities(7)

It is not that easy to say, which approach is the better one; SELinux or capabilities.

While SELinux is based on a policy, which is very powerful and allows great flexibility,

the possible capabilities are limited and must be implemented into the process. So the

developer decides which capabilities the process needs and which not. Whether SELinux

or capabilities are used depends on the level of security that should be achieved. Besides,

both are kernel modules, if they are not part of the kernel that is currently installed, they

are useless.

While SELinux extends the GNU/Linux user management, each application that runs

on a system can contain bugs that lead to different kinds of errors. A common program-

ming language for user space services and commands is C. Because of its manual memory

management and low-level design the developer has to take care if applications are written

in this language. Some of the typical issues in C will be described in the next section.

2.2 Memory Vulnerabilities

The C programming language is widespread in native commands and services. For this

reason typical problems will be introduced and solutions given in this section. Such problems
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are buffer overflows and dead store elimination, which are both common security problems

in C.

Because of its low-level memory access, operations, such as allocating and using memory,

must be used carefully. Each buffer must be checked according to its bounds in order to

avoid memory corruption and there is no automatic garbage collection that de-allocates the

memory or cleans it after using. Cleaning memory and wiping its content as soon as it is no

longer required is very important if code deals with cryptographic values. This makes sure

that content, like e.g. keys or passphrases, is no longer accessible to any other program. If

new memory is allocated for a program, the content the memory contained before allocating

is still available. This section describes how to deal with those problems.

2.2.1 Buffer Overflow Protection

A buffer overflow is a very common problem that makes code vulnerable to many kinds of

attacks. It allows the manipulation of code that is executed and possibly its entire behaviour

as well. A normal program, like ls(1) that just lists files in a directory, can be manipulated

to delete such files instead if such an overflow exists and the user cannot avoid it. Basically,

a buffer overflow is the effect that more data will be written or read than originally expected.

The code that will be written into a buffer to let it overflow can replace other code that is

used by the tool itself, or another one. If more data will be read as expected, these data

can contain sensitive information, like user names or passphrases, which can be an attack

vector. This section describes the different kinds of buffer overflows, how they work, and

how memory can be protected from such an attack.

Stack Overflow

A stack overflow is an overflow in the memory stack of a function and often manipulates

its return address in order to obtain higher privileges (privilege escalation) [13] or execute

code controlled by a hacker. The return address contains the address the program jumps

to after it is finished. By changing this address into any other address arbitrary code can

be executed.

Figure 2.3 shows a typical memory stack layout. On top of the stack are the local

variables followed by the buffers the function uses, the function parameters, the saved

frame pointer, and the return address. Because of the way the memory access inside a stack

is laid out, it is vulnerable to buffer overflows. A buffer of 32 bytes in size allocated on the

stack of a function is save to access, as long as one of the 32 bytes are used.

33



CHAPTER 2. BACKGROUND

local variables

buffer variables
function parameter

saved frame pointer

return address

memory access stack growth

Figure 2.3: Stack layout

However, if the function tries to write the 33rd, byte the next address will be used, but

this address already contains the function parameters, so they will be overridden. There is

no mechanism that makes sure that the index of a buffer points to an element inside the

buffer. It is up to the programmer to access the buffer properly. This can go on until the

return address is overridden or even further.

One way to protect the stack from overflowing are stack canaries. A canary is a special

value located on the stack right after the allocated buffers, as shown in Figure 2.4. Such a

technique is provided by stack protectors like ProPolice.

global variables

local variables

buffer variables
canary value

function parameter

saved frame pointer

return address

memory access stack growth

Figure 2.4: Stack layout with canary

The canary value, which is a random natural number, needs to be compared right before

the function terminates. The comparable value can be a global variable that is stored above
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the buffer, so an overflow cannot destroy it. If the canary value above the allocated buffers

is not the same as the original one, there is a stack overflow. Such a check is going to be

added by the compiler itself since not every function needs this technique. If the functions

contain no buffer, there is no need for a canary. The gcc(1) compiler provides a stack

protection that uses this technique, which is added by the -fstack-protector flag.

Another technique to avoid changing the return address is to use a copy of it. The return

address will be copied into a global variable, like the canary value. Before a program jumps

back using the return address, it will be checked against the copy whether this address is

still the same or not [14].

Heap Overflow

A heap overflow is a buffer overflow caused on the heap of a program. As the stack overflow,

this kind of hack can be used to execute arbitrary code. If a buffer is allocated using the

malloc(3) function and should be 32 bytes in large, the byte at index position 32 (in C all

buffers starts at index position zero) is written into the address that comes right after the

buffer. If this address is executable, arbitrary code can be executed or the data stored after

the buffer can be read in order to disclose information. Since the heap manages dynamic

data possibly allocated by a program at runtime, it is not possible to add an overflow

detection as the stack protector offers. If the size of the allocated memory is user defined,

the buffer could be of any size with the result that a canary value cannot be added. The

size of the stack is calculated at compile time, so the canary can be added by the compiler

to detect stack overflows. To cumber or potentially prevent heap overflows, the technique

to manage memory on the heap was changed in modern operating systems.

There are two common techniques implemented to reach a better heap overflow protec-

tion: The first technique is the separation of data and code to prevent payload execution by

using the NX-bit. This bit stands for No-eXecute and is used to segregate areas of memory

that store either processor instructions (code) or data. If an operating system supports

such bit, areas of memory containing data can be marked as non-executable. The processor

will refuse the execution of those areas in this case, so arbitrary code is not executable.

OpenBSD implements a security feature named Write XOR Execute (W^X) that is based

on the NX-bit. W^X makes a process’ memory page either writeable or executable, but

not both simultaneously unless the application requests it [15]. Android has non-executable

pages by default using ARM’s eXecute Never feature since Android version 2.3 [3].

The second technique to cumber heap overflows is Address Space Layout Randomization

(ASLR) [16]. It randomizes the address space positions of both the stack memory and the
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heap memory, which prevents an attacker from jumping to a particular exploited function

in memory. If the position of such a function is not known, an attacker is not able to

execute it by jumping to its location. Both methods do not really prevent heap overflows,

but limit the impact (NX-bit) and cumber the jump to exploitable functions in memory

(ASLR). Modern operating systems combine both methods in favour of a better overflow

protection, but they are focused to prevent arbitrary code execution. It is still possible to

read and write more data than expected. Hence, boundary checks of memory is still the

best way to avoid heap overflows.

Even though heap overflow attacks are known for a long time, they still exist in modern

software. Since the memory is allocated on the heap manually by a programmer, an overflow

may occur quite easily. A well-known attack caused by a buffer overflow is the heartbleed

bug [17], where the client can prevail the server sending back more data as originally re-

quested. It is possible with this attack to steal private keys, user names and passwords from

the server. This issue was solved soon after the bug has been released. Both overflow tech-

niques reveal how important it is to make sure the buffer limit never exceeds, especially if

secret data are stored. Missing checks of boundaries can cause a very huge security breach.

2.2.2 Dead Store Elimination

As already mentioned, safe clearing of buffers that contain keys or passphrases is very

important in order to avoid attacks on them. The most common way is to use thememset(3)

library function. This function is part of the standard C library and fills all addresses of

a given buffer with a defined value. After this function has been finished, all previously

stored values are overridden. The program given in Listing 2.1 shows how this function can

be used.

char buf [ 3 2 ] ;

int i ;

for ( i = 0 ; i < s izeof ( buf ) ; i++)

buf [ i ] = i ;

memset ( buf , 0 , s izeof ( buf ) ) ;

Listing 2.1: Dead store elimination example

The 32 byte large buffer buf is filled with the value of the index variable i. After the loop

has been finished, the entire buffer is zeroed by using memset(3). This makes it impossible
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to see the buffer contained all values from 0 to 31 since all values are now zero. This way

passphrases and keys can be safely deleted from memory as well.

The optimizations executed by the compiler are a problem using this technique. The

native code of the Android operating system is compiled using the gcc(1) compiler. It

provides a lot of optimizations for performance, like removing unused code and for safety,

as checking for uninitialised variables. However, optimizing the performance can cause a

problem as shown in the following examples.

Listing 2.2 shows the resulting object code of Listing 2.1 created by the objdump(1)

tool, and compiled without any optimizations. As can be seen, the memset(3) function call

makes sure the buffer is cleaned.

4e : e8 00 00 00 00 c a l l q 53 <main+0x53>

4 f : R_X86_64_PLT32 memset+0 x f f f f f f f f f f f f f f f c

53 : b8 00 00 00 00 mov $0x0 ,%eax

58 : 48 8b 55 f8 mov 0 x f f f f f f f f f f f f f f f 8 (%rbp ) ,%rdx

Listing 2.2: Dead store elimination without optimizations

Listing 2.3 shows the object code of the same example code, but with the compiler flag

-O3 of gcc(1). This flag extensively optimizes for performance, and removes the memset(3)

call, since the compiler realizes that the buffer is no longer needed after the loop. That

makes this call useless from the compiler’s point of view. It does not know that this is for

safety reasons and there is no way to tell. This optimization is called Dead Store Elimination

(DEC) and can cause a security breach for source code that uses cryptography, as passwords

or cryptographic keys will not be deleted after they are no longer needed.

20 : 75 f3 jne 15 <main+0x15>

22 : 30 c0 xor %al ,% a l

24 : 48 c7 04 24 00 00 00 movq $0x0 ,(% rsp )

2b : 00

2c : 48 c7 44 24 08 00 00 movq $0x0 , 0 x8(%rsp )

33 : 00 00

35 : 48 8b 54 24 28 mov 0x28(%rsp ) ,%rdx

3a : 48 33 15 00 00 00 00 xor 0(% r i p ) ,%rdx # 41 <main+0x41>

Listing 2.3: Dead store elimination with optimizations

Until now there is no way to tell the gcc(1) compiler to avoid optimizing for security

reasons, like removing memset(3), besides by using less performance-oriented flags. So there

is a trade off between compiling performance-oriented or secure source code. If cryptography
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is involved, it is better to use less flags that optimize for performance.

2.3 Encryption

This section explains different encryption algorithm approaches, for which purpose they are

used for and which mode of operation should be used to avoid security breaches. The general

goal of encryption is to send data from Alice to Bob without allowing Eve to understand or

to manipulate them. If the data are read by Eve, she does not have the ability to understand

their content. Only Bob can decrypt the data sent by Alice. Furthermore, Bob needs to be

sure that it was really Alice who sent the data and not Eve.

There are two different kinds of encryption algorithms: symmetric and asymmetric.

Symmetric algorithms use the same key for both encryption and decryption. In contrast,

asymmetric encryption algorithms use two different keys, known as public and private key.

Both kinds of algorithms are described in the next two paragraphs.

2.3.1 Symmetric-Key Algorithm

A symmetric key is used to encrypt and decrypt data by using the same key. A typical

method is to associate the plain text with the key by using the bitwise exclusive disjunction

(⊕) operation in order to obtain the cipher text. For decryption, the cipher text is ⊕
associated with the key to get the plain text back. The encryption and decryption are very

fast, but all participants need to have the same key. So it has to be distributed in a secure

way to not get compromised.

A well-known symmetric-key algorithm is the Advanced Encryption Standard (AES)

[18], introduced by the the United States National Institute of Standards and Technology

(NIST) in 2001 as a specification for the encryption of electronic data. The underlying

algorithm is the Rijndael algorithm, named after its developers Joan Daemen and Vincent

Rijmen. This algorithm uses keys of 128, 192 , and 256 bit size and is available on most

modern operating systems, either by an internal implementation, such as being part of the

kernel, or by the public OpenSSL library [19]. Until today the AES algorithm in association

with the aforementioned key sizes is considered as secure, as there are no attack vectors

available that threaten the practical security of AES.

A larger key size only increases the effort for brute-force attacks. Therefore, it is only

theoretically more secure as a smaller bit key size. A 128 bit key size takes 2128 ≈ 3.402×1038

steps while a 256 bit key size takes 2256 ≈ 1.157× 1077 steps to find the corresponding key.
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The best known attack that has practical impact reduces the steps for 128 bit down to

2126.1, for 192 bit down to 2189.7, and for 256 bit down to 2254.4 [20]. These values are the

“complexity of operations” needed for an attack against the algorithm. We assume we have

a machine that tries 1018, keys per second, then it would take that machine ≈ 2.8912×1012

years to find one 128 bit AES key:

2126.1 keys

1018 keys
second

≈ 9.1176× 1019 seconds = 2.8912× 1012 years

Figure 2.5: Time to brute-force 128 bit AES key

Other symmetric-key algorithms are Serpent [21] and Blowfish [22]. The Serpent algo-

rithm was a candidate for AES as well, but it is not as fast as Rijndael in both hardware

and software. Blowfish is an algorithm designed by Bruce Schneier, but before the AES

challenge came into existence. On mobile platforms the perfomance of such algorithms is

important. As Blowfish and Serpent are both slower than AES, but more secure (Serpent)

it again is a trade-off between performance and security to decide which one will be used.

2.3.2 Asymmetric-Key Algorithm

In contrary to symmetric-key algorithms an asymmetric-key algorithm consists two different

keys, the private and the public key. A private key is always associated to a public key. The

private key always stays private and is needed to decrypt the received data. The public key

is for everyone and can be used to encrypt the data before sending them. By employing

such an algorithm, it is not possible to use the keys for both encryption and decryption of

the same data as long as the algorithm is seen as secure.

RSA supports the signing of data in addition to the encryption of data. Bob signs data

by encrypting them using his private key. As the public key is public to the world, every

user can decrypt the data using this key, but can be sure only Bob signed it. However,

Alice encrypts data by using Bob’s public key as only the associated private key, which Bob

only knows, can decrypt them. In conclusion, encrypting data with a private key results in

signing them while encrypting data with a public key results in encrypting them. In both

cases only the associated key is able to decrypt the data.

A famous example is the Rivest-Shamir-Adleman cryptosystem (RSA) algorithm named

after its creators (Rivest, Shamir and Adleman) [23]. Due to the fact that RSA’s security

relies on the complexity of the factoring problem, it uses large keys, such as 1024 bit or even

larger. To be adequately secure, RSA depends on two large prime numbers. For a 1024 bit

key the numbers have 309 decimals (1024log(2) = 308.245) and for 2048 bit 617 decimals
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(2048log(2) = 616.509). However, a size of 1024 bit is not considered as secure any more.

Today sizes of 4096 bit, which have at least 1234 (4096log(2) = 1233.018) decimals, or more

are recommended. Although such algorithms are not as fast as symmetric-key algorithms,

they are often used for signing data or exchanging a symmetric key, since everything that is

encrypted with the public key can only be decrypted with the private key. Encrypted data

with the private key can be decrypted with the public key and one can be sure that only

the owner of the private key can have encrypted it as long as the private key stays private.

The ElGamal [24] and Rabin [25] cryptosystems are further known asymmetric cryp-

tosystems. However, both algorithms could never establish what makes RSA the de facto

cryptosystem of asymmetric-key algorithms.

2.3.3 Mode of Operation

The mode of operation of block-oriented cipher algorithms describes the technique how

individual blocks are encrypted. Cipher algorithms, such as AES, encrypt and decrypt

the content based on a fixed block size that is defined by the algorithm. AES has a fixed

block size of 128 Bit. Block cipher algorithms can be used in two different main modes of

operation [26].

Electronic Codebook

The Electronic Codebook (ECB) mode encrypts and decrypts every block with the key

individually. The same plain text block creates the same cipher text block. Since every

plain text block results in the same cipher block, the pattern of the plain text remains,

e.g. every plain text A results in a cipher text 42. This is a disadvantage as the plain text

structure is visible in the cipher text.

∀i ∈ N+ : Ci = EK(Pi)

∀i ∈ N+ : Pi = DK(Ci)

Figure 2.6: Electronic Codebook mode

The ECB mode encrypts the plain text block at index i (Pi) by using the encryption

key EK which results in the cipher block at index i (Ci). For decryption, each cipher block

Ci will be decrypted with the decryption key DK which produces the plain text block Pi.

The key for encryption and decryption is the same. In ECB mode the same plain text block

always results in the same cipher block. For this reason the plain text pattern still remains.
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Cipher Block Chaining

A better approach to avoid these plain text patterns is the Cipher Block Chaining (CBC).

This mode encrypts the first plain text block with the chosen key and a random initialization

vector. For the second block the initialization vector is the cipher text of the previous block.

This destroys the plain text pattern and identical blocks produce different cipher blocks,

due to different initialization vectors are used.

∀i ∈ N+ : Ci = EK(Pi ⊕ Ci−1)

∀i ∈ N+ : Pi = DK(Ci)⊕ Ci−1

Figure 2.7: Cipher Block Chaining mode

The first plain text block has no previous cipher text block and this is where the random

initialization vector comes in. For decryption, the cipher text block Ci will be decrypted

by using the decryption key DK , and associated with the previous cipher block Ci−1 using

the ⊕ operation. This gives the plain text block Pi. Each plain text block Pi is associated

with the previous cipher text block Ci−1 using the ⊕ operation, encrypted with the key

EK . This results in the plain text block Pi. Only if the same initialization vector is used,

encryption and decryption will succeed. Therefore, the CBC mode requires the storage of

this vector for the first block. If this is a random value, which is recommended, it cannot

be calculated.

2.4 Hashing

Hashing is the possibility to map data of dynamic length to a value of fixed length. The

context of this thesis only considers cryptographic hash functions. Such functions are one-

way functions, which are easy to compute in one direction, but very hard to compute in the

opposite direction. A hash value for a given value can be computed very fast, but it is not

easy to compute a value back from a given hash value. Such functions can be applied to

check for data corruption, since no two messages can produce the same hash value. If only

one character of the message changes, the resulting hash value is completely different. It is

very important to ensure that previously stored data are equivalent to those read later.

An important property that is applied to the design of hash algorithms is collision

resistance. Collision resistance reveals that it is difficult to find two messages (m1 and m2)

that lead to the same hash value: hash(m1) = hash(m2). If such two messages can be

studiously computed, a collision is found and the hash algorithm is considered as insecure.
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2.4.1 Secure Hash Algorithm

The Secure Hash Algorithm (SHA) [8, 27] defines a family of cryptographic hash functions

that are often used in security related projects. It is divided into three categories.

• SHA-1

Defines a fixed hash size of 160 Bit, but is not considered as secure any more [28]. It

was first published in 1995 and was designed by the U.S. NSA.

• SHA-2

Defines a fixed hash size of 224, 256, 384, and 512 bit. This algorithm is state-of-the-

art and is considered as secure today. It was first published in 2001 and was designed

by the U.S. NSA.

• SHA-3

Defines the same hash sizes as SHA-2, but uses a different algorithm. This algorithm

was designed by Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche,

but lacks implementations since it is not widely-spread.

Among these algorithms there are others available, such as Whirlpool [29] or RACE

Integrity Primitives Evaluation Message Digest (RIPEMD) [30]. Whirlpool only supports

a hash value length of 512 bit, while RIPEMD supports a length of 128, 160, 256, and 512

bit. The 160 bit version is the most common one, as the 256 and 512 bit version only reduce

the number of hash value collisions, but do not guarantee a higher security level. The 128

bit version has a questionable security level and was replaced by the 160 bit one.

To decide which hash algorithm is the best, in terms of its security, is not that easy. It

depends on the technique of creating the final hash and how many researchers have analysed

the algorithm in order to find attack vectors. A hash value of 512 bit does not necessarily

guarantee a higher security level than a 160 bit value does.

As already mentioned in Chapter 1, passwords should never be stored in plain text, but

encrypted or hashed. The next section describes how passwords should be hashed and what

one should pay attention to.

2.4.2 Passphrase

A passphrase or password is applied for authentication. Thereby the passphrase is only

known by the user as his private secret, not even the service he wants to authenticate

against must know this secret. The problem is: How to store this passphrase? Plain text

in a database or a file system is not a good idea. If someone has access to this storage, the
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passphrase is no longer a secret. However, a better approach is to hash it using cryptographic

hash functions, like SHA. These hashes are vulnerable against pre-computed rainbow tables

[31], where lots of common passphrase hashes will be compared with pre-computed ones.

If someone has access to the hashes, it only slows the comparison of hashes down a bit, if

the passphrase is weak and not “salted”. A strong password contains at least twelve signs of

upper- and lowercase letters, numbers and special characters. A “salted” password means

a random value is attached to the password before hashing it. This increases the security

level because, for example, the password Test1234 (which is weak) results in two different

hash values. As the random value is different on every system the rainbow table attack

becomes less important.

A much better approach is to use a salted passphrase. This means the hash was com-

puted from the users passphrase and a random salt that only the service knows. If the hash

is stolen, it is not easy to use pre-computed hashes, since the salt is not the same for all

password hashes. The Keyed-Hash Message Authentication Code (HMAC) [32] is a popular

method to gain such hashes.

HMACk(M) = H((K ⊕ opad)||H((K ⊕ ipad)||M))

opad = 0x5C...0x5c︸ ︷︷ ︸
B−times

ipad = 0x36...0x36︸ ︷︷ ︸
B−times

Figure 2.8: Keyed-Hash Message Authentication Code

The final value will be computed from the hash function H, a secret key K and the

message M. The constants opad and ipad are pre-defined in the related RFC 2104 [33],

where B is the block size of the hash function. H is supposed to be a cryptographic hash

function, the RFC standard still uses MD5, but it is no longer state of the art these days,

SHA will often be used in the implementations instead. The key will be computed as

follows: is the key smaller than the block size of the hash algorithm, additional zeros will

be appended. If the key is larger than the block size, K will be replaced by H(K).

2.5 Signature

Encrypting data to prevent others from manipulating it, in association with hashing al-

gorithms to find data corruption are both useful resources if the data remain on a local

system. As tools or users manage such data, these mechanisms of manipulation prevention

are sufficient and the originator is known as long as the system is not compromised. If such
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data, however, is sent over a network or shared using USB sticks or CDs, the originator is

unknown. At least from the cryptographic point, as the file owner is not necessarily the

same as the original owner or a different file system is used which does not support such file

owner ids. Cryptographic signatures can be used to prevent this problem, as they ensure

the sender authentication and the integrity of data. A valid signature gives the recipient a

reason to believe that the data were not manipulated on its way and it was the sender who

created the message.

See the following explanation of known cryptographic signature algorithms:

• DSA

The Digital Signature Algorithm (DSA) is a signature algorithm proposed by the

American National Institute of Standards and Technology (NIST) and developed by

the NSA in 1991[34]. It is based on the discrete logarithm problem and is a variant

of the ElGamal Signature Scheme.

• ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of DSA

based on elliptic curve cryptography [35]. The benefit of this algorithm is the smaller

key size compared to DSA, due to the used elliptic curves. While DSA needs a key size

of 1024 bit, 163 bit are sufficient for ECDSA. However, both share the same security

level [36] what makes elliptic curve cryptography interesting for hardware with limited

resources, like memory or CPU usage.

• Ed25519

Ed25519 is a specific implementation of Edwards-curve Digital Signature Algorithm

(EdDSA) [37]. Its design uses the Twisted Edwards curve which is an elliptic curve.

This signature algorithm is designed to be fast and uses small signatures (64 byte)

and small public keys (32 byte).
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Analysis of the Android keystore

service

This chapter contains the results based on the source code analysis of the original Android

keystore service. The main part is to analyse the source code with regard to security

and portability. This also includes how the entire design was implemented and if it is

possible to adapt it or parts of it to other platforms. The communication between the server

and multiple clients is an essential part of this service and it is investigated whether the

implementation is adequate to the design Android recommends for such implementations.

As already mentioned in Chapter 2, C allows the insecure usage of library functions very

easily. It will be evaluated how such functions can be turned into more secure ones if

available. The way how key-value pairs are stored and how the service keeps track of them,

e.g. by checking file permissions on every file read, is part of this part as well. Logging is

a crucial part of services as the user can see if there is something wrong or not. Analysing

the logging mechanism and used API finalizes the source code analysis. Particular, this is

important for portability.

Another part is the analysis of a common coding style to help developers fixing bugs

or developing new features. The appropriation of compiler flags can help avoid such errors,

but they are introduced after analysing the source code to avoid the located errors in the

future as far as possible.

In summary, this chapter describes the conceptual and implemented design of the An-

droid keystore service, a security evaluation of the used C functions, the implemented

SELinux policies, and how the service interacts with the Java-based API as well as with

the command line interface client utility written in C++. Furthermore, the encryption and

hashing algorithms will be evaluated regarding their security and the way they achieve it.
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After each analysis, the advantages and disadvantages will be explained, in order to extract

the reasons for the new design. Those reasons will be summarised at the end of this chapter

to give a short overview of the new design.

3.1 Design

Figure 3.1 shows the design of Android’s keystore implementation. The design itself is quite

simple. There are different users on the left-hand side, who want to store their passphrases

or certificates using the keystore service. Such users are system users who call either the

command line client or Java/C++ based APIs see Section 3.2 for more details.

user 0

user n

Keystore Service

Keymaster

Hardware

keystore user_0:

.masterkey

key 1

...

key n

keystore user_n:

.masterkey

key 1

...

key n

Figure 3.1: Android keystore service design

The original Android keystore service implementation stores the data in a subdirectory

of emph/data/misc, which is the default directory. In this directory there are subdirectories,

which contain the data of different users. The subdirectory user_0 is the default for data

managed by the system itself, such as VPN or Wi-Fi certificates. Each subdirectory contains

the master key file and each stored key-value pair, which, in turn, contains the key of the

value that is stored. The format of such files is <userid>_<key>. The master key is a

random 16 byte number encrypted with a key based on the smart phone owner’s password.

The keymaster provides an implementation to access a hardware module and stores the

generated keys. Each key operation, like generating, signing or importing existing keys,

will be executed by this implementation and delegates the operations to the crypto-enabled
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hardware module [38]. In this thesis this implementation will not be touched, as only a few

Android devices have such a hardware module. The main focus is to analyse the keystore

service implementation concerning security and portability.

3.1.1 The Android RPC subsystem

The Android keystore service implements the Inter-Process Communication (IPC) subsys-

tem of Android as its underlying design for client communication. This is the preferred way

to implemented native services on Android. The RPC subsystem submits the implementa-

tion of services based on Inter-Process Communication (IPC). RPC defines a technique to

call functions in other address spaces. For instance, a function is called on the client-side,

but will be executed on the server side. The programmer does not need to know which

underlying communication protocols, like TCP or UDP, are triggered. This makes both

client and server side development easier as only the functions the services offer and the

client calls must be implemented. The RPC framework itself takes care of how the data

will be sent and received. Figure 3.2 shows how IPC with RPC calls interact in Android.

ServiceManager ServiceProvider ServiceUser

BinderDriver

API functions

addService multiple

user space

kernel space

Figure 3.2: The Android RPC subsystem

The underlying implementation in Android to use RPC is the Binder framework. This

framework is an Android-specific implementation to provide a interprocess-communication

mechanism [39]. It was originally developed under the name OpenBinder by Be Inc. R©

and later by Palm Inc. R© It extends the GNU/Linux IPC framework and allows processes

to define interfaces, which are able to be called by other processes. The Android Binder

implementation is a customized version of OpenBinder, which is not under development

any more.

47



CHAPTER 3. ANALYSIS OF THE ANDROID KEYSTORE SERVICE

As seen in Figure 3.2 the ServiceProvider, which is the service implementation itself, im-

plements the Binder interface and adds itself to the ServiceManager by calling its addService

method. This method is offered by the ServiceManager and allows adding Binder objects

to the system RPC service. It is possible to handle different clients by one singular service

- ServiceUser. The ServiceUser asks the ServiceManager for the Binder object by telling

it the unique name. In the case of this keystore service it is android.security.keystore. This

name is set by the ServiceProvider and allows the ServiceManager to find it. All methods

are implemented through the Binder interface can be called using this Binder object.

This approach is very powerful as it allows programming different services without con-

cerning about IP-addresses, port numbers, or the underlying protocol. All the service needs

is to implement the Binder interface and add itself to the ServiceManager under a unique

name. Clients that want to communicate with this service just ask the ServiceManager for

the service by telling it the unique name and start to communicate. Which classes need

to be implemented on the server as well as on the client-side will be explained in the next

section.

3.1.2 Architecture of the Android keystore service

This section describes the architecture of the Android keystore service and shows the differ-

ent relationships between each individual class of the Android keystore service implementa-

tion. Since Android’s IPC subsystem is used, there are additional classes needed to inherit

from. As Figure 3.3 shows, the main service class is KeystoreProxy. This class inherits

from BnKeystoreService and IBinder::DeathRecipient. The BnKeystoreService implements

the IKeystoreService which again implements the IInterface for its part. The client is rep-

resented by the BpKeystoreService class. For the entire service other classes are needed,

such as Blob, Entropy, UserState, and KeyStore. A more detailed view about provided class

attributes and methods can be found in Appendix G.

Figure 3.3 shows how all classes are related to each other. The central server component

is the KeyStoreProxy class in association with the KeyStore class (one-to-one association).

The KeyStoreProxy implements all necessary interfaces needed to create an Android RPC-

based server implementation, while the KeyStore class manages the different user states.

Each user who uses the keystore service has its one user state. Therefore the KeyStore

class contains an array of such objects to manage every user individually (one-to-many

association). The Entropy object in this class is delivered to Blob objects and UserState

objects used in the KeyStore class internally, in order to create random values (one-to-one

association).
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BnInterface<IKeystoreService> IInterfaceBnKeystoreService

KeyStoreProxy IBinder::DeathRecipient

BpKeystoreService BpInterface<IKeystoreService>

KeystoreArg RefBaseBlob
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Figure 3.3: Android keystore service class diagram

The central client component is the BpKeyStoreService class. This class inherits the

Android RPC client interface what implements the IKeyStoreService interface again. As

the client calls the server methods, this interface needs to be implemented on both sides.

The classes Blob and KeystoreArg represents data objects that are used in different

classes. Therefore, they have no dedicated association between other classes.

The purpose of all classes and interfaces as well as their advantages and disadvantages

will be explained in the next sections.

IInterface

This interface is the base interface of every class that needs to communicate using the

Android Binder RPC framework, which is part of the Android native framework. This

framework includes classes and interfaces to write native (C++-based) applications which

communicate with Java-based Android applications. The interface only provides a method

named asBinder() that retrieves the Binder object associated with this interface.
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IKeystoreService

The IKeystoreService is the defining interface between server and client. It covers all meth-

ods the client can call to communicate with the server. It also defines an enumeration

which contains one singular enumerator that represents one transaction call for every call

defined in this interface. A transaction consists of an unique identifier (code) to identify

the transaction, which was received, the objects that contain the client’s request and the

server’s reply (data and reply), and optional data (flags) as can be seen in Listing 3.1. The

Parcel type is a container for data that are sent or received by a service, which implements

Android’s Binder -Interface [4]. The optional flags are used for normal or one-way RPC

and are not considered further in this context [4]. By sending the transaction call and the

associated data the server knows which internal call must be used. See Figure G.1 and

Figure G.2 in Appendix G for enumerations and methods defined by this interface.

There is dedicated macro defined by the IPC binder interface which is called with the

name of the keystore interface name: DECLARE_META_INTERFACE(KeystoreService).

This macro adds additional methods and a descriptor to the current interface description,

which are called by the internal Android interface implementation in order to access it.

BnInterface<IKeystoreService>

The BnInterface is part of Android’s framework as well and is used to implement the native

end of an interface - in this case IKeystoreService. It contains one pre-defined method called

onTransact that needs to be implemented as this method is called by the Android binder

to send the received data to the desired service implementation. See the next section for a

more detailed overview of the actual implementation of this method.

BnKeystoreService

As already mentioned, the important method that needs to be implemented is the onTrans-

act() method. This method will be called as soon as the server receives a request from the

client in order to process it. Listing 3.1 shows a part of implementing a service call named

test. This call returns the current state for the user who sends this request. Those states

are explained in the successive UserState class implementation.

As Listing 3.1 shows there is a case for every possible transaction which handles it. The

onTransact method provides the call number (code), the data the client transmitted (data),

a way to send the reply back after processing the request (reply), and optional data, e.g. to

determine if the blob that should be read is encrypted (flags) or not.
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status_t BnKeystoreService : : onTransact (

uint32_t code , const Parce l& data , Parce l ∗ rep ly , uint32_t f l a g s )

{

switch ( code ) {

case TEST: {

CHECK_INTERFACE( IKeystoreServ i ce , data , r ep ly ) ;

int32_t r e t = t e s t ( ) ;

rep ly−>writeNoException ( ) ;

rep ly−>wr i t e In t32 ( r e t ) ;

return NO_ERROR;

} break ;

Listing 3.1: BnKeystoreService: onTransaction method implementation

The macro CHECK_INTERFACE adds an if -statement which checks whether the

transmitted data belong to the interface or not. If not, the PERMISSION_DENIED flag

will be returned to signal that the service is not responsible. If a new transaction call is

added, only a new case must be added to deal with the data and calls the requested service

call. This technique makes it very easy to add new calls or remove existing ones.

IBinder::DeathReceipient

This interface defines a callback function named binderDied. It notifies the process hosting

the binder if an object implementing of the IBinder interface has gone away. This callback

function can be used to close files or sockets before the hosting process will be shut down.

UserState

Every user has different states, which he resides in. These states are managed and stored by

the UserState class. This class creates the master key and the key to encrypt and decrypt

it, based on the user’s password and stores the master key internally as well as encrypted

in the file system for every individual user that has the permission to create a master key -

see Section 3.3.3 and Section 3.5.1 for further explanations. It also reads and writes these

keys and changes them if necessary. After the password has been entered and the resulting

master key has been generated by using the password command it is possible to access data

without entering the password again, until the keystore service is restarted as it is stored

internally. This is not a attack vector as system services, like VPN and Wi-Fi, have their

own login data to the service as we see later in this chapter. However, it needs be changed

for the portable version as the use case of services and their corresponding clients on non-
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mobile platforms is different. This will be discussed later in Section 4.4. An overview about

all supported client commands can be found in Appendix B.

Every user is in one of the following states, none of these states will be stored perma-

nently as they only exist while the service is running.

• STATE_NO_ERROR

This is the default case, stating, that there are no errors and the user can add or

manipulate every stored data.

• STATE_LOCKED

If the state is locked, the master key cannot be changed. It is only possible to read

but not to manipulate it. This lock can occur explicitly by calling the lock method

or it will be locked automatically if a master key files was already generated.

• STATE_UNINITIALIZED

This state indicates that there is no master key stored. If the user is in this state the

master key file can be created. This state is set either by calling the reset method or

by initializing the user state without storing a master key file previously.

KeyStore

The KeyStore class wraps the UserState class and provides additional methods, e.g. creating

the file format for data that should be stored. For consistency reasons, the method identifiers

provided by the IKeystoreService are the same as for this class. This simplifies, which

method needs to be called in the server implementation. It stores vectors of UserState and

grant_t objects to know each user’s state and which user has access to which file. This class

is the essential part of the entire implementation that reads, writes and updates existing

Blob class objects while the KeystoreProxy just communicates with the client.

The grant_t type, as shown in Listing 3.2, contains a file with its associated user id.

Thus, the server is able to find out whether a requested user id is allowed to access this file

or not. This is necessary since users can grant file access to other users to share the same

credentials.

typedef struct {

uint32_t uid ;

const uint8_t∗ f i l ename ;

} grant_t ;

Listing 3.2: grant_t type
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KeystoreProxy

The KeystoreProxy class is the server-side implementation that wraps the KeyStore class.

Even though the suffix Proxy suggests a client-side implementation, this class is the con-

nection between Android’s IPC framework and the actual keystore service implementation.

Since it inherits the BnKeystoreService class, it implements all methods provided by the

IKeystoreService in order to accept the calls from client implementations.

keyStore . i n i t i a l i z e ( ) ;

android : : sp<android : : IServiceManager> sm = android : : de fau l tServ iceManager

( ) ;

android : : sp<android : : KeyStoreProxy> proxy = new android : : KeyStoreProxy(&

keyStore ) ;

android : : status_t r e t = sm−>addServ ice ( android : : S t r ing16 ( " android .

s e c u r i t y . keys to r e " ) , proxy ) ;

Listing 3.3: Register keystore proxy

Listing 3.3 shows that a KeystoreProxy object is added by using the key identifier an-

droid.security.keystore to the default service manager. The key is used for client implemen-

tations to access the BpKeystoreService object, which is explained later, for communication

as Listing 3.5 shows. Before the proxy is added, the constructor is called and adds the

address of the previously initialized keystore object.

BpInterface<IKeystoreInterface>

While the BnInterface defines the server-side, the BpInterface defines the client-side. In

order to communicate with the server, the client needs to implement the same basic interface

- IKeystoreInterface. The client will send the data using the object returned by the already

implemented remote() method which returns an IBinder object - the server.

BpKeystoreService

The BpKeystoreService class implements the client-side implementation for the Android

keystore server. Each method called from the client creates a Parcel object that contains

the data. As already mentioned, this object is processed by the onTransact method.

Listing 3.4 shows the communication between the server and the client regarding the

test API call. First of all, two Parcel objects are created, the one that is sent to the server

(data) the one that contains its reply (reply).
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v i r t u a l int32_t t e s t ( )

{

Parce l data , r ep ly ;

data . wr i t e In te r faceToken ( IKeys to r eSe rv i c e : : g e t I n t e r f a c eDe s c r i p t o r ( ) ) ;

status_t s t a tu s = remote ( )−>transac t ( BnKeystoreService : : TEST, data , &

rep ly ) ;

i f ( s t a tu s != NO_ERROR) {

ALOGD(" t e s t ( ) ␣ could ␣not␣ contact ␣ remote : ␣%d\n" , s t a tu s ) ;

return −1;

}

int32_t e r r = rep ly . readExceptionCode ( ) ;

int32_t r e t = rep ly . readInt32 ( ) ;

i f ( e r r < 0) {

ALOGD(" t e s t ( ) ␣ caught␣ except ion ␣%d\n" , e r r ) ;

return −1;

}

return r e t ;

}

Listing 3.4: BpKeystoreService: test method implementation in keystore service

The only information the server needs in this case is the interface token. The data

object will be sent afterwards by using the transact method that will call the onTrans-

act method on the server-side internally. After evaluating the response code, the entire

reply will be evaluated according to the expected values as well. In order to implement a

typecast from a Binder object back to an interface used in the client, the macro IMPLE-

MENT_META_INTERFACE(KeystoreService, "android.security.keystore") is called after

the BpKeystoreService is defined. This macro allocates a BpKeystoreService object, which

is returned by the default service manager called from the client.

sp<IServiceManager> sm = defau l tServ iceManager ( ) ;

sp<IBinder> binder = sm−>ge tS e rv i c e ( St r ing16 ( " android . s e c u r i t y . keys to r e " )

) ;

sp<IKeystoreServ i ce> s e r v i c e = in t e r f a c e_cas t<IKeystoreServ i ce >(binder ) ;

Listing 3.5: Accessing BpKeystoreService from the keystore client

Listing 3.5 shows how a client obtains access to the keystore implementation using the

android.security.keystore key. The added generic client Binder object is returned by the

default service manager and typcasted into an IKeystoreService object afterwards, to call

the desired functions.
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To communicate with an Android RPC server (BnInterface), a client, e.g. a CLI tool,

uses the client implementation (BpInterface) returned by the default service manager to

call the desired methods.

RefBase

This class is supposed to implement smart pointers. This kind of pointers are abstract

data types that simulate a pointer while providing additional features, such as automatic

memory management or bounds checking. They keep track of memory they point to and

reduce bugs caused by misuse of pointers while retaining efficiency. The concept of smart

pointers originates in the C++ language [40].

KeystoreArg

The KeystoreArg class is used for generating new DSA and RSA keys. The keystore imple-

mentation offers the ability not just to store data, but to generate new keys as well. For the

DSA key generation a vector of this class contains the parameter for the generator and the

prime numbers p and q. For the RSA key generation this class stores the public exponent.

Blob

The Blob class covers the data stored in the file system. It provides methods to set different

values, such as the version number or the type, and to write and read data. The methods

for writing and reading contain the encryption, decryption and hashing part as well. For a

more detailed overview of how these parts are implemented and how the structure is used

to store the resulting data, see Section 3.5 and Section 3.6. The class Blob just manipulates

a private attribute of the struct blob type described in Listing 3.6. This structure represents

the internal composition for storing all data and will be written directly into the file system.

This is possible due to the fixed size all variables and buffers of the structure have. If they

were dynamic, the size of all buffers would have to be stored additionally. Therefore there

is no need for an exchange format, like JSON or XML.

As can be seen in Listing 3.6, the structure has an additional attribute called packed.

This attribute is a gcc(1) extension that tells it to leave out all padding between members.

It makes sense to use this attribute if the structure has to match hardware. However, this

attribute causes the compiler to create different code on different architectures. For instance,

on the sparc64 and ia64 architecture the generated code of a structure that just contains

an int variable is approximately 6 times more than on the x86 or x86_64 architecture [41].
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struct __attribute__ ( ( packed ) ) blob {

uint8_t ve r s i on ;

uint8_t type ;

uint8_t f l a g s ;

uint8_t i n f o ;

uint8_t vec to r [AES_BLOCK_SIZE ] ;

uint8_t encrypted [ 0 ] ; // Marks o f f s e t to encrypted data .

uint8_t d i g e s t [MD5_DIGEST_LENGTH] ;

uint8_t d i g e s t ed [ 0 ] ; // Marks o f f s e t to d i g e s t e d data .

int32_t length ; // in network by t e order when encrypted

uint8_t value [VALUE_SIZE + AES_BLOCK_SIZE ] ;

} ;

Listing 3.6: Original blob structure

Since there was a change in the way encryption and decryption was handled in the

first versions of the Android keystore service, the current version needs to be stored for

compatibility reasons. In the current version it is possible to decide whether a blob should be

encrypted before storing or not in order to let apps use the keystore more productively and to

delegate the encryption part down to the hardware encryption module, if the device supports

it [42] - the master key will always be encrypted. That is what the flags attribute is for.

It contains the KEYSTORE_FLAG_NONE or the KEYSTORE_FLAG_ENCRYPTED

value to identify the situation. The type attribute will be used to store additional meta data

for the blob, e.g. whether it is the master key file (TYPE_MASTER_KEY ) or contains

a key-value pair (TYPE_KEY_PAIR). It is possible to store an optional description, such

as the salt if the blob is encrypted. It will be stored after the secret in plain text. The

description length is stored in the info attribute. As already mentioned above, the attributes

needed for encryption and hashing are explained in Section 3.5 and Section 3.6.

The described attributes and their functions can be simplified in the new version of

the Android keystore service. For instance, the choice of whether to encrypt a blob or

not and how does not need to be stored in an extra attribute. If the device supports a

hardware crypto module, the key master implementation will recognize it and as the stored

data will not leave the device, there is no situation like encrypting the data using crypto

module support and decrypt it on another device that does not support such module. The

version flag is only for compatibility reasons to mark the version of the Android keystore the

encryption of data is done by such modules. If no crypto module is available the encryption

of data is done by the service itself. It is redundant to store this functionality explicitly.

At some point a new software version is used widely, so the compatibility checks make the
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source code more complicated as they are no longer necessary and should be removed. As

the version analysed in this master thesis is a complete fork, the point to remove such version

flag for compatibility reasons has arrived. If a design decision was made that requires such

a flag, it should not stay forever. If the new version is used by a sufficient number of users,

such logic should be removed as its purpose is satisfied and the code is more complicated

than needed.

Entropy

The Entropy class wraps the open(2) system call that calls the /dev/urandom device to

generate random numbers of a given length. This device does not block if a pre-defined

entropy level falls below. Hence, it is theoretically possible that pseudo random numbers are

too weak and can be pre-calculated by an attacker if there is not enough entropy available to

create strong pseudo random number. The /dev/random device blocks in this case and waits

until enough entropy is available. This is clearly a consideration between performance and

security. For performance reasons non-blocking function calls are better, but for security

reasons it is better to generate a random number that is strong enough. A better approach

generating random numbers are OpenBSD’s arc4random(3) library functions, as they always

return a random number and do not block. This, however, is only available on the 64Bit

architecture [4]. Furthermore, it is questionable if there is a C++ class needed to wrap just

a single C function call.

3.2 Application Programming Interface

This section explains the API provided by Android keystore service to communicate with

Java- and C++-based applications and client implementations that already exist.

3.2.1 Java

The Java-based API is the mostly used one. It allows communication between an Android

applications with the keystore to store certificates or passphrases. This implementation

calls methods implemented by the IKeystoreService interface to offer all abilities the service

has to Android applications [43]. There are further Java classes which use the keystore

service for communication, such as KeyChain [44] or KeyStore [45].
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3.2.2 C++

All API calls are defined in the IKeystoreInterface interface description already explained

in Section 3.1.2. Hence, the client implementation with its supported functions will be

described in this section.

This C++ client is implemented by the command line interface utility, named key-

store_cli. It provides a keyword for every supported call, such as get to show a previously

stored key or password to set the initial master password. Each keyword needs a pool of

additional arguments like the value a key was stored in order to show it for the get keyword.

If the keyword was used with a wrong number of arguments information how to correctly

use this keyword is shown. The $ signs means that the command will be executed by

terminal emulation.

• $ keystore_cli get foo

This command searches for a file that contains the key foo associated with the user’s

id and writes the found value to stdout, otherwise an error will be written to stderr

that explains why the value could not be found.

• $ keystore_cli password 53c237_9455w02d

This command instructs the server to create a new random master password encrypted

with the password given as the 3rd parameter (53c237_9455w02d). On success the

return value will be written to stdout. On failure the return value will be written to

stderr.

Unfortunately, the client implementation does not implement all keywords that were

supposed to be implemented. For example, it is not possible to insert a new key-value pair

using the command line utility, since the implementation is marked as TODO. This explains

that this command is not used for production, but for testing the service in order to see

how it works. For a smart phone implementation design, this approach is comprehensible,

as a smart phone is not designed to make use of terminal utilities. However, for a portable

version the client should be revised, since it is not known on which other platforms this tool

will run and the porting to these platforms should be as easy as possible. Furthermore, the

API provides a large set of calls clients can execute. Beside calls to add, show or delete

data there are calls to generate/import public-private keys or grant/ungrant user access

to key-value pairs of other users as well. It is not quite clear why such calls need to be

implemented, as there is technically no reason for such a service to generate public-private

keys or to make a difference between import and insert data. It is possible to add keys
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and values as key-value pairs, so why is there a dedicated function call to import data?

Granting user access to key-value pairs to other users is always a subject for debate. If a

password is shared between multiple services and one of them gets hacked, all others must

be seen as compromised, too. For usability reasons, it is easier to remember one password

instead of multiple. This is clearly a trade-off between security and usability and will be

discussed further in Chapter 4.

3.3 Implementation

This section describes how the keystore service was implemented, which APIs are used,

whether there is a consistent coding style, which compiler flags are used, and how possible

integer overflows are treated. As already mentioned the manual memory management is

a part that needs great attention, in order to avoid memory leaks or causes for program

crashes. Another part is the missing overflow check in functions, provided by the standard

C library (libc). This library contains different functions for memory allocation, string

manipulation, or converting character values to numbers. The problem is that such functions

do not always make sure that there is no overflow of integer values.

3.3.1 Coding Style

Choosing a consistent coding style is very important in software development, in particular

for teams. It defines how and for what purpose macros are implemented, how the variables,

objects and class names are denoted, and where the different types of brackets are set. Such

a coding style makes the navigation through source code easier and helps the developer to

find specific features. There is no standard coding style for C/C++ programs. While the

OpenBSD project uses the kernel normal form (style(9)), the GNU/Linux project prefers

another one described in the Documentation/CodingStyle kernels directory.

After analysing the Android source code it looks as it is no consistent coding style at

all. The command line interface client keyastore_cli.cpp shows a heavy usage of macros to

handle single calls, but the server implementation does not. Such macros are preprocessor

statements of gcc(1) that will be substituted at compile time. This complicates reading

source code and prevents static analysers from finding bugs as well. Implementing the

entire functionality using macros brings no benefit but speed. In an environment as the

keystore, security should be in focus.

Splitting different classes or functionality into different files is less a question of coding

style, but a question of clarity. There are three different files that contain the entire keystore
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implementation. The IKeyStoreService.cpp file contains the KeystoreArg and BpKeystore-

Service class as well as the BnKeystoreService::onTranasact method implementation. The

keystore.cpp implements the Entropy, Blob, UserState, KeyStore, and KeyStoreProxy classes

as well as the structures blob and grant_t and the main function, which starts the service

- see Section 3.3.6 for further explanations. This design gives more information to the

compiler so that a better performance optimization can be obtained. However, it does not

increase the clarity of code. If different classes are in the same file, the compiler can see

how many of these methods are called. For example, if one method is never called, it can

be optimized away. If these classes are in different files, different assemble units exist and

the compiler cannot see which function is called in an external file, as it compiles every file

individually. Each assemble unit will be linked together to a single binary by a linker. As

already mentioned performance optimization is not as important for this kind of software

as the security part is and this part starts with a clear source code layout.

3.3.2 Library Functions

This section introduces some library functions that were misused in the original keystore

implementation. It explains the usage of these functions, why the usage was wrong, and

how these functions can be used in a more secure way. The misuse of functions for hashing

and encryption is analysed in Section 3.5 and Section 3.6.

malloc(3) function

The malloc(3) function allocates memory on the heap and returns the start address of it. If

no memory can be allocated, the NULL pointer will be returned. This makes it necessary

to always verify the return value of this function against NULL. Without such a condition

check, the program can cause a crash, since there is no memory that can be accessed to

store values. Listing 3.9 shows a missing return value check of malloc(3) that can lead to a

program crash.

int l en = 32 ;

char ∗buf = NULL;

char va l [ ] = "He l lo ␣World" ;

(void )memcpy( buf , val , l en ) ; /∗ Segmentation f a u l t ∗/

Listing 3.7: memcpy(3) function call
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Listing 3.7 shows what happens if the buffer, which holds the memory the value is

copied into, is NULL. memcpy(3) copies len bytes of the val buffer into the buf buffer.

More specifically, it starts reading len bytes from the address pointed by val and writes

into the addresses started by the address buf points to. If the destination buffer contains

no address, e.g. NULL, the source data cannot be copied as there is a valid address needed

to start from. Since memcpy(3) is not able to handle buffers that hold no memory, a

Segmentation fault will occur and the program crashes.

int l en = 32 ;

char ∗buf = NULL;

char va l [ ] = "He l lo ␣World" ;

i f ( ( buf = mal loc ( l en ) ) == NULL)

return −1;

(void )memcpy( buf , val , l en ) ;

f r e e ( buf ) ;

Listing 3.8: malloc(3) function call

If memory was previously allocated in a secure way, the data will be copied successfully

without any problems as Listing 3.8 shows.

∗ item = ( uint8_t ∗) mal loc ( keyBlob . getLength ( ) ) ;

memcpy(∗ item , keyBlob . getValue ( ) , keyBlob . getLength ( ) ) ;

∗ itemLength = keyBlob . getLength ( ) ;

Listing 3.9: malloc(3) function call in keystore service

The code in Listing 3.9 was found in the original implementation of Android’s keystore

service. It copies the value of keyBlob.getValue() into the memory referred by the *item

heap object, using the standard library function memcpy(3). There is no guarantee whether

the *item object has allocated memory or not what can lead to an error as Listing 3.7 shows.

The examples explained above show how important it is to make sure that if memory is

copied, there must be the memory large enough to store it. It is very careless to assume

that there is always memory available if needed.

It should be mentioned that return values do not always have to be considered. In some

cases return values could be neglected. If one buffer will be copied into another, as shown in

Listing 3.8, and the second buffer is always large enough to store such data, the return value
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does not have to be checked. The check of return values often leads to an error handling,

either by printing the error and continue the program or by exit it. If there is a return value

that indicates success or failure after calling a function, but neither the program nor the

user can do anything against a failure and the program should not quit at this point such

a check is unnecessary. In this case the (void) typecast is used to indicate such a scenario.

This typecast indicates there is no return value check needed by turning the original one into

void - this means there is no return value. printf(3), for example, prints content according

to the given format on stdout and returns the number of characters without the trailing

binary zero. The return value -1 indicates a failure whether an output or encoding error

occurs. Such an error should be checked before printing it and if it fails, a static text to

indicate the error should be printed instead. malloc(3) on the other hand returns NULL

if there is no memory available to allocate. In this case the program should quit with an

understandable error message, as it would run into an error as soon as the expected memory

is not accessible.

atoi(3) function

The atoi(3) function converts an ASCII string value to an integer value. This standard

library function conforms to ANSI C89. In the client program of the service it converts

the given user id which is a string value, as it is given to the program as a command line

parameter. Since this value is controlled by the user, one always should make sure that this

value is evaluated to a value the program expects. If the user enters a letter rather than a

number, the program must recognize this case.

p r i n t f ( "%i \n" , a t o i ( "42" ) ) ; /∗ −> 42 ∗/
p r i n t f ( "%i \n" , a t o i ( " t e s t " ) ) ; /∗ −> 0 ∗/
p r i n t f ( "%i \n" , a t o i ( " 432421521451" ) ) ; /∗ −> −1370175445 x86_64 ∗/
p r i n t f ( "%i \n" , a t o i ( " 432421521451" ) ) ; /∗ −> 2147483647 armv7l ∗/

Listing 3.10: atoi(3) function call

Listing 3.10 shows how different values will be converted by atoi(3). If the value is a

valid integer value, the conversion returns the correct value. If the given string cannot be

converted, 0 is returned. However, the string "0" is a number and will be converted to the

integer value 0. In this case, it is not determinable whether the conversation was correct or

not. The last two calls show an integer overflow on an x86_64 and on an armv7l processor

and both return values are completely different. It cannot be decided whether the returned

value is the correct one - a number was entered - or not, at least for portable versions of
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software implementing this function call.

Unfortunately, these verifications are not used in the original implementation of the

keystore command line client (keystore_cli.cpp), as Listing 3.11 and Listing 3.12 show.

i f ( argc > 3) { \

uid = a to i ( argv [ 3 ] ) ; \

f p r i n t f ( s tde r r , "Running␣ as ␣uid ␣%d\n" , uid ) ; \

} \

Listing 3.11: atoi(3) function call no. 1

In this case it is assumed that the third parameter given to the client command line

program can be converted without any problems. Since this value is set by the user, it must

be verified that this value is an expected one.

i f ( strcmp ( argv [ 1 ] , "saw" ) == 0) {

return saw ( s e rv i c e , argc < 3 ? Str ing16 ( "" ) : St r ing16 ( argv [ 2 ] ) ,

argc < 4 ? −1 : a t o i ( argv [ 3 ] ) ) ;

}

Listing 3.12: atoi(3) function call no. 2

The same problem can be found in the statement shown in Listing 3.12. The fourth

value will be converted without any further checks hoping the value is correct. This is not a

security vulnerability, as it does not open a way to exploit neither the client nor the server.

Even if the return value of atoi(3) is 0, which is the root user id, this user is not allowed to

add or manipulate data, since the SELinux implementation prohibits it - see Section 3.3.3.

It can certainly lead to a side effect, as the value entered by the user is not checked at the

point where it is supposed to be - before committing the data to the service. Instead, such

data will be checked by the service itself. Checking user-entered parameters before calling a

service’s API an error message can be printed to inform the user that his input is not valid.

The service does not have the link between the original input and the processed value. For

this reason, user input should always be validated as soon as possible to avoid further side

effects and adding unnecessary source code to the service implementation.

A way to solve this problem is to use the strtol(3) function, which is part of the standard

C library as well. This function requires additional parameters that allow verifying whether

the conversion was correct or not. Listing 3.13 illustrates how this function must be used

to avoid the problems of atoi(3).
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l v a l = s t r t o l ( s t r , &ep , 10) ;

i f ( s t r [ 0 ] == ’ \0 ’ | | ∗ep != ’ \0 ’ ) {

errno = EINVAL;

return −1;

}

i f ( ( er rno == ERANGE && ( l v a l == LONG_MAX | | l v a l == LONG_MIN) ) | |

( l v a l > INT_MAX | | l v a l < INT_MIN) ) {

errno = ERANGE;

return −1;

}

Listing 3.13: strtol(3) function call

The strtol(3) function requires three arguments: the first one is the string that should

be converted, the second one is the end pointer, where the first address of the first invalid

character will be stored, and the last one is the base. As we need the decimal system,

this number is 10. If the string contains characters that are not numbers, ep contains

such characters. If there are no digits in this string, strtol(3) stores the original string in

ep. In addition, if the given string is empty, nothing can be converted. If the string was

converted to a number correctly, the possible return values and limits must be checked.

If strtol(3) discovers an overflow, LONG_MAX is returned and LONG_MIN in the case

of an underflow. As this function can be used as a replacement for atoi(3), which returns

an integer value, the return value needs to be in the interval between INT_MIN and

INT_MAX additionally.

p r i n t f ( "%i \n" , convert_str ing_to_int ( "42" ) ) ; /∗ −> 42 ∗/
p r i n t f ( "%i \n" , convert_str ing_to_int ( " t e s t " ) ) ; /∗ −> −1 ∗/
p r i n t f ( "%i \n" , convert_str ing_to_int ( "432421521451" ) ) ; /∗ −> −1 x86_64 ∗/
p r i n t f ( "%i \n" , convert_str ing_to_int ( "432421521451" ) ) ; /∗ −> −1 armv7l ∗/

Listing 3.14: Convert string to int safely

Listing 3.14 describes how the function introduced in Listing 3.13 is used to convert a

string to an integer correctly. The last two calls show that this version is much better for a

portable version as they return the same value by the time an overflow occur. If user input

needs to be transformed, the errno variable needs to be checked as well to make sure the

original value was not -1.
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3.3.3 SELinux

Android’s keystore implementation uses some custom SELinux policies to restrict different

users to different access levels. As Listing 3.15 shows, each provided keystore API call, as

already described in Section 3.2, has its corresponding permission. This allows the limitation

of every user to a specific set of calls. C’s bitwise left shift operator <<makes a combination

of such permissions possible, so that a user can have the right to read data (P_GET ) and

verify them (P_VERIFY ) afterwards, but is not allowed to add or manipulate them.

typedef enum {

P_TEST = 1 << 0 ,

P_GET = 1 << 1 ,

P_INSERT = 1 << 2 ,

P_DELETE = 1 << 3 ,

P_EXIST = 1 << 4 ,

P_SAW = 1 << 5 ,

P_RESET = 1 << 6 ,

P_PASSWORD = 1 << 7 ,

P_LOCK = 1 << 8 ,

P_UNLOCK = 1 << 9 ,

P_ZERO = 1 << 10 ,

P_SIGN = 1 << 11 ,

P_VERIFY = 1 << 12 ,

P_GRANT = 1 << 13 ,

P_DUPLICATE = 1 << 14 ,

P_CLEAR_UID = 1 << 15 ,

P_RESET_UID = 1 << 16 ,

P_SYNC_UID = 1 << 17 ,

P_PASSWORD_UID = 1 << 18 ,

} perm_t ;

Listing 3.15: SELinux permissions

Only a few system users are allowed to interact with the keystore service. Those users

are system (AID_SYSTEM), vpn (AID_VPN), wifi (AID_WIFI), and root (AID_ROOT)

as shown in Listing 3.16. The system user is the most powerful one since he is able to use

every API call. The vpn and wifi user is allowed to call the get, sign, and verify call

only. The root user has the lowest security level and can only call the get API call. Every

other system user has the default permissions (DEFAULT_PERMS ). For instance, if a new

WLAN certificate is installed, the system user is used by the Java-based APIs as he is

the only one of the above users who can install new key-value pairs. If the certificate has
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successfully been installed, the wifi, vpn, or root user can be used to read this certificate

for further processing. Other users than these three are not allowed to access data stored

by the system user. According to the SELinux permissions this user is the only one who

can change the password for the master key. If a new key-value pair is created by a mobile

application, the user id of this application is part of the key as described in Section 3.1, but

all users share the same master key. Depending on the user id the service allows access or

not.

stat ic struct user_perm {

uid_t uid ;

perm_t perms ;

} user_perms [ ] = {

{AID_SYSTEM, s ta t i c_cas t<perm_t>(( uint32_t ) (~0) ) } ,

{AID_VPN, s ta t i c_cas t<perm_t>(P_GET | P_SIGN | P_VERIFY) } ,

{AID_WIFI, s ta t i c_cas t<perm_t>(P_GET | P_SIGN | P_VERIFY) } ,

{AID_ROOT, s ta t i c_cas t<perm_t>(P_GET) } ,

} ;

stat ic const perm_t DEFAULT_PERMS = stat i c_cas t<perm_t>(P_TEST | P_GET |

P_INSERT | P_DELETE | P_EXIST | P_SAW | P_SIGN

| P_VERIFY) ;

Listing 3.16: SELinux users

As Listing 3.16 shows, the root user has only less API access. This is a little bit

unusual because on an ordinary GNU/Linux or BSD operating system this user has full

administrative access. However, the API is called from many different places, as the Java

API for Android applications or the command line interface. If root were the only user

having full access to it, every call would be called with root rights, which violates the least

privilege principle. In this case it is reasonable to give different rights to different users,

in order to limit the security issues on the system. Besides, most of the service access is

done by the Java-based API, and only a few users use the CLI utility. Those who have root

access on their devices can use the system user by calling the su(1) command. For this

reason, restricting the root user to read stored data only, but not to manipulate them, is a

reasonable way on a mobile operating system. However, for a portable version the situation

is different. If there is no SELinux installed on the specific system, the permissions shown

in Listing 3.16 are useless since there is nothing to execute them. So for a portable version

this has to be considered and whether this approach is really helpful or not to increase

security. System users on other GNU/Linux or BSD systems have already access to the
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root user, but use their own unprivileged user instead.

The permissions are checked in every API method implemented by the KeyStoreProxy

class. To check these rules, the C function has_permission has been implemented as seen

in Listing 3.17. This function makes sure that the given user id has the permission to access

a process.

for ( s i ze_t i = 0 ; i < s izeof ( user_perms ) / s izeof ( user_perms [ 0 ] ) ; i++) {

struct user_perm user = user_perms [ i ] ;

i f ( user . uid == uid ) {

return ( user . perms & perm) &&

keystore_se l inux_check_access ( uid , perm , sp id ) ;

}

}

return (DEFAULT_PERMS & perm) &&

keystore_se l inux_check_access ( uid , perm , sp id ) ;

Listing 3.17: has_permission function

As Listing 3.17 shows, the function iterates over all user_perms structures and checks if

the current user id is the given one. If this is true, it will be checked that the current user has

the permission to access this particular process. If this is false and the requested permission

is part of the default permissions (DEFAULT_PERMS ), it will be checked whether the

user id has permission to access the service or not by the keystore_selinux_check_access

function. This wraps the selinux_check_access(3) function provided by the selinux(8)

framework in order to check whether the program user is allowed to execute the call or not.

3.3.4 Compiler Flags

Compiler flags can support developers in avoiding typical errors in the source code by warn-

ing about them or add additional source code to the program before compiling, e.g. warn

about uninitialized variables or to enable the stack protector as described in Section 2.2.1.

That is why they should always be set to reach a higher security level and to avoid fur-

ther issues such flags can discover. Some of the compiler flags set in the original keystore

implementation are introduced below.

As already mentioned in Chapter 2 the gcc(1) compiler provides different compiler flags

for different purposes, like security checks or performance optimization. Since this appli-

cation is critical to security, the performance-oriented options should be either omitted or

if they are really necessary they should be used with great care. The compiler’s documen-
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tation provides a complete list of all available compiler flags [46]. The following flags are

applied to Android’s keystore service.

• -Wall

Enables different warnings only set by one flag. It allows one to perform different

checks without setting each flag individually. Some of these flags are: Wunused-

function to find functions that are never called in the program or -Wunused-value to

find assignments to variables that will never be read.

• -Wextra

As the -Wall flags, it turns on different warning flags by just setting this single flag.

Some of these flags are: -Wuninitialized to avoid accessing data of uninitialized vari-

ables or -Wsign-compare to recognize compare operations between signed and un-

signed values. Some of these flags are equal to those set by -Wall, like -Wuninitialized,

but this does not interfere the compiler.

• -Werror

Turns every warning into an error. If this flag is not set, the compiler will continue

compiling, but prints the warning. If this flag is set, the compiler will stop compiling

as soon as an error occurs and append the specifier for the warning according to the

following example: -Werror=unused-value. This specifier prints all unused variables

found in the source code.

The applied compiler flags can increase the security and maintainability of the appli-

cation. First of all, they avoid common programming issues, like uninitialized or unused

variables and comparisons between signed and unsigned values. However, these flags only

take care of the C code. Since the code was written in C++ mixed with C, dedicated flags

for C++, such as -Wdelete-incomplete to prevent deleting a pointer of an incomplete type or

-Wuseless-cast to find type casts to its own type, cannot be used. To gain more secure and

maintainable code, the code needs to be split into different files that contain either C++

or C code. For these files additional flags should be added, as some flags can only handle

code written in C++ or C, but not both. Further compiler flags, like -Wstack-protector to

activate the stack protector and avoid stack overflows should be set to increase the already

achieved level of security.

3.3.5 Logging

Logging is a crucial part of any server or client implementation, as it shows the user why

something fails and what can be done against it, such as entering a password if it is required.
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The typical case to write a log is to write the information to standard error (stderr). This

file descriptor is typically used to print errors or diagnostics on the text terminal. If the

current application runs in the foreground, such as the ls(1) or rm(1), this is a reasonable

way to print any warnings or errors to the user. If the current application runs in the

background, like a server implementation, the case is different. Since the server runs in the

background, there is no dedicated stderr the information can be written to. Furthermore,

what happens to information that is written far before the administrator logs into the server

to check what the service is currently doing?

For this case, each system typically provides a logging service, such as syslogd(8). This

service offers an API, so other services can give any kind of information to this service which

writes it into a file for further investigations. These files are normally located under /var/log

and contain information produced by any service running on the system. The information

is usually stored into a file called daemon or if the system runs a mail server in a file named

maillog. The service that communicates with the system’s syslogd(8) implementation can

decide for itself which file should be used to store its content. Different files to store logs

without using the system’s logging daemon can be configured in most applications as well.

Every information that has been written contains a priority. This priority indicates the

importance of such information as defined in RFC5424 [47]. Usually, there are three kinds

of priorities:

• info / verbose

This priority indicates that the information just notices what the server has done

at this particular moment. It can be used to show that a new client establishes a

connection to the server, for example.

• warning

This priority means a warning has occurred. For example, the connected client uses

an unsafe hashing algorithm to hash its password in order to log in.

• error

This priority is supposed to show that the server runs into an error. For example,

when the client was using an incorrectly formatted email address to log in and the

server does not know how to treat such an address.

There is often a fourth priority called debug, which is used to print debug information

to stderr. To use this priority the server often runs in the foreground to allow the developer

an easier way to fix problems located somewhere in the software. If the server runs in
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the background again, all debug output is disabled, so filling the log file with unnecessary

information is avoided.

On Android there is a mechanism similar to syslogd(8) named logcat [48]. This tool

collects and views the system debug output of any service that uses Android logging API.

This API provides macros to write log messages that have already described priorities. Such

macros are available after including the header file cutils/log.h. The macros defined by the

cutils/log.h are described in the following enumeration.

• ALOGV

Writes verbose information to the Android logging system.

• ALOGD

Writes debug information to the Android logging system.

• ALOGW

Writes warnings to the Android logging system.

• ALOGE

Writes errors to the Android logging system.

There is, however, another method available for writing logs by calling the dedicated

C function __android_log_print. This function can be included by the android/log.h

header file and allows a more flexible usage for writing logs. Each information can be

set individually what allows a greater flexibility of creating log messages. The following

enumerations describes the function parameters.

• prio

This parameter contains the used priority already described above. By convention

such priorities have the following format: ANDROID_LOG_<priority>, like AN-

DROID_LOG_DEBUG or ANDROID_LOG_INFO.

• tag

This parameter identifies the process that wrote that log message. The tag allows

listing all log messages of a single process and ignoring all log messages written by

other processes.

• fmt

The last parameter is a formatted string. This string allows logging process ids or

content of variables if an error occurred internally.
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It is also possible to print the tag using these macros by defining the preprocessor

variable LOG_TAG, using the preprocessor statement #define. This variable must be

redefined using the #undef statement to change it. For the developer it is more complex

to find out where the LOG_TAG needs to be redefined as different files will be included at

different places and each file can contain such definitions.

The macros above wrap C functions that allow the communication with the internal

logging service. For portability reasons this can be improved, as these macros have to be

redefined if other logging services are used. A better way to log information is to implement

a local logging API used by the entire keystore service. This API wraps the logging API

provided by the current operating system system, in this case it is the __android_log_print

function. The source code itself needs to be changed just at this single part and not in every

file that calls the macros. Besides, using C functions for logging makes the code both more

maintainable and portable as macros that contain more functionality are often more complex

to write.

3.3.6 Folder structure

In this section we will explain the folder structure with its implemented classes and func-

tions. The classes themselves have already been described in Section 3.1. This should only

be an overview of how the service was structured and were different logic can be found.

|−− Android .mk

|−− IKeys to r eSe rv i c e . cpp

|−− d e f a u l t s . h

|−− i n c lude

| ‘−− keys to r e

| |−− IKeys to r eSe rv i c e . h

| |−− keys to re . h

| ‘−− keystore_get . h

|−− keyb lob_ut i l s . cpp

|−− keys to r e . cpp

|−− key s t o r e_c l i . cpp

|−− keystore_get . cpp

‘−− t e s t−keys to r e

Listing 3.18: Structure original implementation

As can be seen in Listing 3.18 the service is separated into different C++ files (.cpp)

with their corresponding header files (.h). There is also a Makefile (Android.mk) that

contains data like compiler flags, names for the resulting program and files needed for the
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compilation process of each one. The test-keystore file contains statements to test the

keystore implementation using the command-line interface (CLI) client. It calls keystore

API functions in various order to make sure nothing is broken, while developing. The files

that implement the Android keystore service are explained in the following listing.

• IKeystoreService

Contains implementations for the classes BpKeystoreService and KeystoreArg as well

as the BnKeystoreService::onTransact-method implementation. All implementations

were added to the Android namespace.

• defaults

Contains constant declarations for the size of different keys, such as DSA or AES.

• keyblob_utils

Contains functions to migrate a key from the software keymaster implementation to

a hardware keymaster implementation. That implementation will be ignored in this

master thesis, as hardware keymaster modules are not very common.

• keystore

Contains implementations to initialize the keymaster device, the SELinux-permission

checks, as well as the classes Entropy, Blob - with its corresponding structure struct

blob -, UserState, KeyStore, KeyStoreProxy and the main-function that starts the

entire service. This file contains the largest part of the service’s implementation.

There are different kinds of helper functions, such as writeFully, to write content into

a file at once and its corresponding function readFully to read file content at once.

• keystore_cli

Contains the command line interface client that implements the provided client side

API calls using C-preprocessor macros.

• keystore_get

Implements a function which wraps the get API call, to retrieve a value for a previously

stored key. It is unclear why this file exists in the source tree, as its header file will

never be included or used in any way in the application.

3.4 Init subsystem

The Android init subsystem is responsible for starting all system services, like keystore or

network daemons, and parses a file named init.rc. This file contains statements written
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in the Android Init Language configuration language [49] to export global variables, cre-

ate symbolic links, adds content to files or creates new users for system daemons. These

statements are grouped into five different categories:

• Commands

Are predefined statements to create different things, like symbolic links (symlink) or

to start a service (start). There are commands to mount devices into the file system

(mount) or to write content into a file (write) as well.

• Actions

Are named sequences of commands. Each action has a trigger it is listening on. If

such a trigger is called, all action commands will be called.

• Services

Are programs which will be launched by the init system and restarted if the program

exits (optionally).

• Options

Are modifiers for services. These modifiers avoid the start of services at start time

(disabled) or change the user name for a particular service (user).

• Imports

Allows the import of other .rc files that contain different statements. There is a

general .rc file named init.rc that contains statements to start services or create users

on all Android devices. There are device-dependent files as well, using the format:

init.<machine_name>.rc. This file contains statements only called for a particular

device.

The entry for the keystore service changes the user and group name and sets the default

directory all data will be stored in. Furthermore, it creates a socket located under /dev/-

socket/keystore to establish a communication with the launched process - as can be seen in

Listing 3.19. The file permission for this socket is 666.

s e r v i c e keys to r e / system/bin / keys to r e /data/misc/ keys to r e

user keys to re

group keys to r e

socke t keys to r e stream 666

Listing 3.19: Keystore init.rc entry

73



CHAPTER 3. ANALYSIS OF THE ANDROID KEYSTORE SERVICE

The above init.rc entry shows that the service runs an unprivileged user named keystore.

This prevents the system from getting compromised entirely, as an exploit only runs with

the program’s user rights if there is no privilege escalation. This means an invader is able

to obtain privileged (root) rights by exploiting an unprivileged process.

3.5 Implemented hashing algorithm

An essential part of reading and writing data by a keystore service is to prevent corruption

of content. The service must notify the user if the originally written value is not the same

as the expected one. Content corruption can have many reasons, e.g. an error in the file

system’s implementation or the device’s hard drive. Those errors must be recognized so

that the user can decide what next step he wants to execute.

One way to recognize data corruption is to store another copy of it and compare the

different values, while reading them. However, this leads to store data twice, which is not

necessary. A far better way is to create a cryptographic hash of the content and store it

instead. The benefit of this mechanism is that different content leads to different hash

values and the hash values are all of a fixed size, which minimises the data that have to be

stored. The original Android keystore service uses the Message-Digest Algorithm 5 (MD5)

for hashing the data. This algorithm was invented by Ronald Rivest in 1992 [50] and creates

a 128 bit hash value from a random message. However, the first collision has already been

found in 1996 by Hans Dobbertin [51]. Although this attack did not threaten practical

implementations, Hans Dobbertin recommended that MD5 should no longer be used in the

future. MD5 was broken at least since 2004 [52]. The implementation of Android’s keystore

service started in 2012 [53], so it is unclear why they use MD5, knowing it was broken

long ago. There are better hash algorithms available to ensure collision resistance, like

SHA2. One could argue that the hashing value was only supposed to warn against content

corruption by the file system or the hard drive itself. Then it would not need to be that

cryptographically secure. However, since MD5 is no longer collision resistant, a change of

the content could create the same hash, which breaks the idea of hashing content.

In Listing 3.22, the original struct blob implementation for hashing is shown. The

important parts are the digest and digested buffer. The digested buffer just contains the

start address of data that need to be hashed. In this case the hash contains the length of

the value and the value itself. The resulting hash will be stored in the digest buffer.
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uint8_t vec to r [AES_BLOCK_SIZE ] ;

uint8_t encrypted [ 0 ] ; // Marks o f f s e t to encrypted data .

uint8_t d i g e s t [MD5_DIGEST_LENGTH] ;

uint8_t d i g e s t ed [ 0 ] ; // Marks o f f s e t to d i g e s t e d data .

int32_t length ; // in network by t e order when encrypted

uint8_t value [VALUE_SIZE + AES_BLOCK_SIZE ] ;

Listing 3.20: Original blob hashing and encryption structure

Listing 3.20 shows how the hash is created. A look at the used md5(3) API shows

what is necessary to create a hash from random data - see Listing 3.21. The first param-

eter is the buffer’s start address that contains data a hash should be computed for. The

second parameter describes how many bytes of the first parameter should be used. The

last one contains the final hash, therefore this parameter must have space for 16 bytes

(MD5_DIGEST_LENGTH) of output. The return value is a pointer to the final hash

value.

unsigned char ∗MD5( const unsigned char ∗d , unsigned long n , unsigned char ∗md

) ;

Listing 3.21: md5(3) API

As already mentioned, the digested buffer contains the start address of the input buffer

and the digest buffer the final output. What still needs to be computed is how many data

are hashed. At least the plain text value, e.g. the password, must be hashed and in this case

there is space for the value type needed as well, as seen in Listing 3.22. Since encrypting

the value after hashing and there is no dedicated buffer for that, the padding for AES needs

to be taken care of. For this reason the length will be divided by AES_BLOCK_SIZE

constant, which produces an integer value in this case (integer division), and multiplies it

with AES_BLOCK_SIZE afterwards to get a multiple of this constant. As a buffer in

C starts at index 0, the last index is the length of that buffer minus one: dataLength +

AES_BLOCK_SIZE - 1.

Figure 3.4 shows the different states that are executed until the final hash is generated.

The dots represent bytes that are not printable and the 0 represents the binary zero value.

The value buffer contains the data that need to be hashed, in this case the plain text value

itself. The buffer is 16 bytes in size since this is the length of the random data (the value).

The hash buffer represents the buffer part that is used for hashing. That buffer is still the

same buffer, but manipulated by pointer arithmetic shown in Listing 3.22.
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s i ze_t dataLength = mBlob . l ength + s izeof (mBlob . l ength ) ;

s i ze_t digestedLength = ( ( dataLength + AES_BLOCK_SIZE − 1) / AES_BLOCK_SIZE ∗
AES_BLOCK_SIZE) ;

MD5(mBlob . d iges ted , digestedLength , mBlob . d i g e s t ) ;

Listing 3.22: Original blob hashing implementation

This buffer has the size of the computed digestedLength. As one can see, there are binary

zeros at the start and the end. It is not that clear, why the value was moved like this and

does not start at the beginning of the buffer. As every string in C ends with a binary zero,

this format is a little confusing. Library functions, like printf(3), only print the string until

this sign occurs. If it is the first value, an iteration over the entire array is needed to show

its content. The last buffer is the final hash stored in the struct blob’s digest buffer, which

is MD5_DIGEST_LENGTH (16 bytes) in size.

value buffer:

. . F . b b T . . . . . C . . u

hash buffer (digestedLength):

. 0 0 0 . . F . b b T . . . . .

C . . u 0 0 0 0 0 0 0 0 0 0 0 0

mBlob.digested :

. . . . s = u u . ’ h . G . . .

Figure 3.4: MD5 value hashing

Listing 3.23 shows how the search for corruptions is implemented. The hash will be

computed using the part of the encrypted data that represents the original value and will

be compared by the memcmp(3) standard library function. If both hashes are the same,

there is no corruption.

The used md5(3) API will be changed to a hashing algorithm that is state-of-the-art,

as already mentioned. For the new implementation the SHA512 hashing algorithm will be

implemented. It creates a 512 bit hash value and there are no attack vectors known today.

The other critical part that is revealed here, is the missing return value check.
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digestedLength = encryptedLength − MD5_DIGEST_LENGTH;

uint8_t computedDigest [MD5_DIGEST_LENGTH] ;

MD5(mBlob . d iges ted , digestedLength , computedDigest ) ;

i f (memcmp(mBlob . d ige s t , computedDigest , MD5_DIGEST_LENGTH) != 0) {

return VALUE_CORRUPTED;

}

Listing 3.23: Original blob compare hash implementation

If the hash fails to be created correctly, there is no notification to the user. It is always

assumed the hash will be created correctly and no error will happen. If there is no such

verification, the user always assumes the hash has been computed correctly even if it was not.

This should be changed as well in order to notify the user if something unexpected happens.

As the above source code examples indicate, there is a lot of pointer arithmetic disposed to

move the data to the appropriate locations in the value buffer. For security reasons, this

should be avoided as far as possible because it can cause very easily memory corruption,

therefore, a programmer must be very careful using this technique. Furthermore, it makes

the code less maintainable as well. For an outsider it is not easy to understand what the

code’s actions are and this complicates the error diagnostics process. This part can also be

simplified to increase the software’s capability of portability and quality in general. The

last part that needs to be considered is the general format of plain text that needs to be

encrypted. Is it really necessary to encrypt the hash of the value? If an attacker can get

access to the hash and manipulate it, the encrypted value must be changed, too. However,

this can only be done if the decryption password is known, which depends on the user’s

password. One could argue that the hash belongs to the data and the encryption of both

encapsulates data that belong together, but it does not increase the security.

3.5.1 Master key generation

As already introduced in Section 3.1, all key-value pairs are encrypted with a 16 byte ran-

dom master key. The advantage of a key instead of a password is the resistance against

automated brute-force attacks as a key is mostly larger and more accidental than a no-

ticeable password. To protect the master key, the original Android implementation uses

the PKCS5_PBKDF2_HMAC(3) [54] OpenSSL library function to create a key based on

the user’s password as seen in Listing 3.24. With this key the master key is encrypted to

prevent unauthorized access.
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PKCS5_PBKDF2_HMAC_SHA1( r e in t e rp r e t_cas t <const char∗>(pw. s t r i n g ( ) ) , pw

. l ength ( ) , s a l t , s a l t S i z e , 8192 , keySize , key ) ;

Listing 3.24: Master key generation

Listing 3.24 creates a key based on the user’s password (pw) combined with a salt value

(salt) that is attached to the password inside the PKCS5_PBKDF2_HMAC(3) function.

The salt value is a random 16 byte value that is generated every time a new master key

is created. The iteration count is 8192. This count makes the derivation of keys slower

the higher it is. This cumbers brute-force search attacks to find the key automated. The

attacker has to use the same iteration count to start his attack. The man page recommends

a value higher than 1000. The result is the derived key, which is stored in the key buffer.

The salt is stored at the end of the value buffer, which the blob structure contains, as

can be seen in Listing 3.25. The salt is represented by the info pointer and its length by

the infoLength value.

mBlob . i n f o = infoLength ;

memcpy(mBlob . va lue + valueLength , in fo , in foLength ) ;

Listing 3.25: Storage of the master key salt

Storing the salt value is necessary to generate the same key derived from the user’s

password to decrypt the master key. If a key-value pair will be encrypted or decrypted,

the key is derived from the user’s password with the associated salt and the master key is

decrypted with that particular key. After the master key has been decrypted successfully, all

key-value pairs can be encrypted and decrypted. To avoid many master key decryptions, it

is stored inside the UserState class after successful decryption as explained in Section 3.1.2.

This is a recommended way to derive keys from passwords as discussed in Section 2.4.2.

Unfortunately, there are no other key derivation functions available that can be used on

Android as well as on other operating systems, like bcrypt(3) [55] or scrypt [56], as they

are not implemented in OpenSSL. bcrypt(3) is based on the blowfish symmetric encryption

algorithm, while scrypt is based on SHA256. Both algorithms are designed to increase

the costs (CPU usage, memory) per key derivation, more than PBKDF2 does. Indeed,

the iterator count can be increased, but PBKDF2 has little memory and CPU usage what

makes brute-force attacks using ASICs or GPUs relativly cheap. ASICs (application-specific

integrated circuit) are designed for a particular use, e.g. scanning for special hash values.

GPUs are designed for rapidly manipulating computer graphics and image processing. Such
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circuits perform a dedicated task faster than a normal CPU does. For this reason, they can

be used to implement attack vectors against encryption or hashing algorithms, which are

to slow on normal CPUs.

3.6 Implemented encryption algorithm

Ensuring that no unauthorized user has access to stored passwords is a crucial part of a

keystore implementation. There are different areas of protection for such data. The first

one is to make sure that no other user but the keystore user has access. For this reason, all

blobs are stored under this user id in a folder that only this user can access. The second one

is that the keystore must guarantee that only the authorized user has access to them. As

described in Section 3.1, the user id is part of the file name. This allows the user to verify the

given user id against the stored one to permit access or not. The third one is the protection

against the super user root and bugs in other software components of an operating system.

As the super user can access every file in a file system, he can manipulate such files as well.

Another problem are bugs which lead to privilege escalation, like executing code with super

user rights, even if the software itself does not have such privileges. To avoid such attacks

against manipulation by unauthorized users is encryption one solution. If a file is encrypted

and the super user has access to it, he can still manipulate the file, but without the right

password the data cannot be manipulated without recognizing it. The decryption will fail

in this case, so the authorized user can be informed that there is something wrong with this

file.

The keystore implementation of Android uses the AES symmetric encryption algorithm

- see Section 2.3 for further explanations. The key size is set to the smallest possible

value of 128 bits (MASTER_KEY_SIZE_BITS ) by calling the AES_set_encrypt_key

and AES_set_decrypt_key pre-defined OpenSSL library macros. These macros set the

AES key for both encryption and decryption operation for a given key, which is the derived

key based on the user’s password in this case. The resulting key (aes_key) is used for both

operations instead.

uint8_t vec to r [AES_BLOCK_SIZE ] ;

memcpy( vector , mBlob . vector , AES_BLOCK_SIZE) ;

AES_cbc_encrypt (mBlob . encrypted , mBlob . encrypted , encryptedLength

, aes_key , vector , AES_ENCRYPT) ;

Listing 3.26: Original blob encryption implementation
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Listing 3.26 shows how the encryption of a value is implemented. The initialization

vector must be the same for encryption and decryption. Otherwise both operations are

not inverse to each other. For this reason, it cannot be part of the encrypted value itself.

The pre-defined OpenSSL library macro AES_cbc_encrypt expects an input buffer as the

first parameter and a buffer the output is stored to as the second one. In this case both

are the same, so after successful encryption, there is no way to access the plain text value.

The length that should be encrypted is the length of the value as well as the length of

the hash value since it is part of the encrypted value: encryptedLength = digestedLength +

MD5_DIGEST_LENGTH. This does not affect the calculation of the AES_BLOCK_SIZE

multiple as described in Section 3.5 since the MD5_DIGEST_LENGTH is 128 bit, too.

The start address for the encryption is marked as mBlob.encrypted as seen in Listing 3.20.

The last parameter is the mode that indicates whether this macro is used for encryption or

decryption. In this case it is AES_ENCRYPT.

AES_cbc_encrypt (mBlob . encrypted , mBlob . encrypted , encryptedLength

, aes_key , mBlob . vector , AES_DECRYPT) ;

Listing 3.27: Original blob decryption implementation

Listing 3.27 explains how decryption is implemented. The input and output buffer are

still the same and the previously stored initialization vector is used. The length of the

value that needs to be decrypted is encryptedLength and will be calculated by removing

the part of struct blob that is not involved in this process from the entire file length. The

last parameter is AES_DECRYPT that shows the input value is now the encrypted one.

After encryption, the length of the hash value (MD5_DIGEST_LENGTH ) is subtracted

from the length of the encrypted value, which results in the length of the original data

(digestedLength).

Figure 3.5 shows what the buffer looks like before and after encryption. The first part is

the MD5 hash value while the second part is the value itself - see Section 2.4. The structure

of the plain text buffer reveals that the hash value is not followed by the data directly. This

is how the encryption length is computed and that pointer arithmetic is used.

The AES encryption algorithm with a key size of 128 bit is still state-of-art, but it should

be increased up to 256 bit. In a context of encryption, the stored data must be secured as

far as possible because it is unknown what kinds of attack vectors come into existence in

the next years. A 256 bit key size has a larger search space for keys than 128 bit. There is

also a psychological aspect of changing the key size up to 256 bit. 256 bit is a higher value

than 128 bit and, therefore, it suggests a higher security level.
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plain text buffer:

. . . . s = u u . ’ h . G . . .

. 0 0 0 . . . F . b b T . . . .

C . . u 0 0 0 0 0 0 0 0 0 0 0 0

encrypted text buffer:

. . . 2 . . . . . . . . C N . h

x J . . 4 : f . . ’ . . . . 5 k

U b w . . 2 . . . . . 4 v N l .

Figure 3.5: Original plain text encryption

Even if there is no technical decision to change that value, it will obtain a greater

acceptance of users as they think it is more secure. This will increase the acceptance of the

keystore service in general.

Furthermore, the macro for encryption and decryption should be changed. As AES is a

symmetric encryption algorithm, there is no need to set a key for both operations because

the key is the same. The OpenSSL library provides an API called evp_encryptinit(3), which

defines dedicated functions for setting the key, encrypting and decrypting the value, and

saving the resulting value into the given buffer. Since these functionalities are separated, it

is possible to inform the user at each point of processing if something goes wrong. In the

original Android keystore service implementation neither the service nor the user will be

informed if the encryption, decryption, or hashing of data fails.

3.7 Result

The result of analysing the Android keystore service arrives at the conclusion that the ser-

vices implementation will be used for further development, instead of starting from scratch.

The design splits different parts into different classes and uses the Android RPC service

for communication. This makes further maintenance and source code reading easier, which

avoids new errors and helps finding old ones. Each class wraps its own logic and is called

by provided methods from other classes. However, different classes are stored in a single

file and there are functions written in C inside the C++ files, which causes some problems

for the compiler and the associated flags. For this reason, it is better to separate C code

from C++ code and to split different classes into different files. This increases code qual-
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ity even further. For some classes, such as the Entropy class, it is not necessary to wrap

its functionality into a C++ class, since there is no interaction between the implemented

methods that justifies the encapsulation of attributes.

Performing a static analysis using Clang’s scan-build(1) tool, which is part of the LLVM

compiler infrastructure [57], results in the Figure 3.6. This tool is used for statically

analysing C/C++ source code with respect to different kinds of errors, such as unini-

tialized variables or values that are set, but never read. There were two different kinds of

errors found by scan-build(1): “unknown type name” and “expected unqualified-id”. While

“unknown type name” indicates a missing explicit include of a header file that defines the

type name, “expected unqualified-id” often indicates a syntax error. In this case it is a

subsequent fault as the correct header files are not explictly included, which defines the

type name.

Adding additional gcc(1) compiler flags: -Wshadow, -Wmissing-declarations and -Wold-

style-cast to analyse the source code of the original implementation results into Figure 3.7.

-Wshadow means one variable hides another according to its visibility area. E.g. a function

parameter has the same name as a local variable. The local variable hides the one given

as parameter, so it is no longer accessible. -Wmissing-declarations means a global function

is defined without a previous declaration. -Wold-style-cast means a C style type cast is

used instead of a C++ one. In C++ different types of type casts are defined to gain better

control about the resulting value - see Section 4.2.1 for further explanations. An aggregation

of both logs can be found in Appendix A.

error count

unknown type name 24

expected unqualified-id 3

Figure 3.6: scan-build(1) errors

gcc(1) flag count

-Wshadow 12

-Wmissing-declarations 3

-Wold-style-cast 42

Figure 3.7: gcc(1) flag errors

Even if the issues in the above figures will not necessarily lead to exploitable code, it is

bad coding style. Such a coding style can confuse the developer and decrease maintainability.

If a compiler flag warns about an issue, it is always good to try to fix it, as such warnings

have their warrant. If they cannot be fixed for some reason, make sure that they will not

lead to an error.

For encryption and hashing of data, the services use an AES key length of 128 bit and

the MD5 algorithm that is not considered as secure, especially in such a sensitive context.

The OpenSSL library provides better hashing algorithms and greater key length to mitigate
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these problems. The different return values that indicate success or failure of a function

must be checked as well to inform the user if an error occurs.

Issues found while analysing the source code are solved in both versions, which are

discussed in the following chapter: the new Android implementation and the portable one as

far as possible. For instance, an issue located in the client-server communication cannot be

solved in the portable version as there is no IBinder interface available. This communication

has to be re-implemented completely. The main goal is to use most of the source code from

the new Android implementation in the portable version. Only parts that cannot be shared

between these two applications should be re-implemented. Apart from this is the API

defined by the IKeystoreService, described in Section 3.1, providing a huge set of calls that

may be necessary on Android devices, but not necessarily on other platforms. It has to be

evaluated whether the set of API calls can be decreased and for which implementation.

A general problem in server development are the necessary user rights and the amount

of functionality that leads to larger code size as normal utilities do. A great amount of

functionality uses more code, which might lead to more errors. To compensate for this, a

technique called privilege separation [13] will be implemented for this service. This technique

splits the software into smaller pieces, which communicate with each other. If and how this

can be implemented in both versions will be explained in the following chapter.
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Chapter 4

Implementation of the new keystore

service

This chapter documents the new implementation of the Android keystore service, based on

the results identified in Chapter 3 as well as the portable version based on it. The first part

in this chapter discusses a new service based on the results found during the analyses of the

source code of the original Android keystore service. This includes the usage of a modern

hash algorithm instead of MD5 and a well-documented API for encryption and decryption

that allows more control about the single steps of encryption and decryption. Function

calls like malloc(3) and atoi(3) calls are improved with respect to security or turned into

more secure functions. Another important part in this area is the introduction of a common

coding style and a more efficient usage of C and C++ source code. This includes adding

additional compiler flags to support developers as well. All function calls marked as TODO

in the CLI client are implemented to provide a fully functional client for testing the new

implementation.

The second part contains the introduction of a portable version, which has been intro-

duced in Chapter 1. All parts of the new Android keystore implementation that are portable

will be shared with this version. First, this is done to avoid writing the same code twice

and second, errors occurring in one version can be fixed easily in the other. Those parts

that cannot be shared between both versions will be reimplemented to provide equal func-

tionality, except for those functions that were identified as unnecessary - see Section 3.2 for

more information. The design is based on privilege separation [13] to mitigate the possible

attack vectors by splitting one process into several, dropping their privileges and locking

those child processes down into different directories. As the portable version is based on

the OpenBSD operating system, it will be described how libraries, only available on this
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platform, can be used on other platforms as well, like GNU/Linux or other BSD deriva-

tives. OpenBSD has a tradition in porting software to other platforms, such as OpenSSH or

OpenSMTPD. Thus, the portable version can profit by perceptions already made in these

projects.

In summary, this chapter is split into two parts: the introduction of the new Android

keystore version and a portable version based on it. All differences to the original imple-

mentation will be explained and why they were chosen. Furthermore, it considers what

has need to be taken care of if a portable version of an application that is limited to one

singular operating system came into existence. At the end of this chapter there is a result

section that gives an overview of the new and portable implementation and how they fit to

the results of Chapter 3.

4.1 Design

As already mentioned in Section 3.7, the internal design only can be changed to avoid

breaks of external clients that have already been implemented. This means that the API

required for communication between server and client remains untouched. The SELinux

implementation of roles is still the same since this is a common security feature on Android

and is always enabled. For this reason, the new design will not break already implemented

security features, but only extend them if necessary. For the portable version the situation

is different, but this will be explained in Section 4.4.

4.2 Implementation

The new implementation of Android’s keystore service is based on the results gained while

analysing the original source code. For this reason, we only consider the parts that have

been changed to the original implementation as all other parts are explicitly described in

Chapter 3, such as the master key derivation, the Binder interface implementation of the

keystore service, or the internal master key management by the UserState class.

The first part was changing the hash algorithm from MD5 to SHA512, as well as using

well-documented APIs offered through the OpenSSL library. Those are low-level APIs

(EVP_* ) which allow better control of each step, from initialisation to finalisation. Such

calls as well as the way they are implemented is explained in Section 4.3. To implement

a more intuitive hashing and encryption functionality the blob structure was changed as

shown in Listing 4.1.
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uint8_t s a l t [ SALT_SIZE ] ;

uint8_t vec to r [AES_BLOCK_SIZE ] ;

uint8_t hash [SHA512_DIGEST_LENGTH] ;

uint32_t length ; /∗ l en a f t e r encryp t ion in network by t e order ∗/
uint8_t encrypted [VALUE_SIZE + AES_BLOCK_SIZE ] ;

uint8_t value [VALUE_SIZE ] ;

Listing 4.1: New blob structure

Listing 4.1 shows how the new blob structure was implemented. The main difference to

the original, which is described in Section 3.1.2, is that the buffer for the encryption text

(encrypted), the plain text (value), and the salt are separated to avoid the pointer arith-

metic, which is described in Section 3.5. After encrypting the plain text buffer successfully,

it will be deleted by the memcpy(3) function. This avoids further leaking of such data. On

the one hand, more space is needed in memory to hold the data, but on the other hand,

the functionality to encrypt and decrypt a plain text value is more intuitive and easier to

understand which increases the code quality.

The second part was splitting C source code from C++ source code, to obtain better

compiler flag managing by introducing a universal coding style. An overview about the

added compiler flags is described in Section 4.2.1. Furthermore, a generic logging API that

wraps the Android-specific logging API functions was implemented - as shown in Listing 4.2.

This is also part of the splitting process as Android-specific macros are not automatically

portable to other operating systems. The underlying logging API was already introduced

in Section 3.3.5.

void l og_in fo ( const char ∗msg , . . . ) ;

void log_debug ( const char ∗msg , . . . ) ;

void log_warn ( const char ∗msg , . . . ) ;

void log_err ( const char ∗msg , . . . ) ;

Listing 4.2: New logging API

The new logging API are supposed to be used inside the entire application to create

different kinds of priority messages. For portability reasons such calls can still be used, the

only change is made inside such calls, which is far more maintainable than changing all calls

producing logs.

At last, a function to keep track of file permissions was added. This check will be

executed at every read and write access of a file and recognizes if those permissions are too

powerful. Only the keystore service user should be able to write or read files that contain
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either the master key or key-value pairs. If such permissions were manipulated in a way

the group the keystore user belongs to or all other users are able to access them, either by

accident or by an attacker, such files must be seen as compromised. Listing 4.3 shows how

this check was implemented.

i f ( f s t a t ( fd , &s t ) < 0)

return SYSTEM_ERROR;

i f ( ( s t . st_uid == getu id ( ) ) && ( s t . st_mode & 077) != 0) {

log_err ( " unprotected ␣ f i l e : ␣%s " , f i l ename ) ;

log_err ( " permis s ion ␣0%3.3o␣ f o r ␣%s␣ so ␣ too ␣open" , ( u_int ) s t . st_mode & 0777 ,

f i l ename ) ;

return SYSTEM_ERROR;

}

Listing 4.3: File permission check

To check the Unix file permissions the fstat(2) system call is used, as it fills information,

such as the user id and the inode protection mode, into the given struct stat structure. After

calling fstat(2) this structure is used to retrieve the file owner’s user id st_uid as well as

the file’s inode protection mode st_mode. If the file owner is the current process (keystore

service), but the file permissions are too powerful - in this case it means both the group and

other have the read-write-execute (RWX) mask -, the file could possibly be compromised

or allows others to read them. Checking file permissions to make sure only the user has full

access to the file, the inode protection mode will be combined by the bitwise AND operator

(&) with the value 077. The leading 0 indicates that it is an octal numeral. If a file needs

to be protected against being accessed by the user’s group as well others and had a file

permission mode of 640, the result would be: 0640 & 077 = 040, while a permission mode

of 600 leads to: 0600 & 077 = 0. The value 0777 leads to the same value which the first

operand has: 0640 & 0777 = 0640.

4.2.1 Compiler Flags

As already mentioned in Section 3.3.4, additional compiler features to gain more security

and maintainability with respect to the source code can be added by compiler flags. A full

list of all compiler flags used for the Android version can be found under Appendix D.

The main difference to the previous version are the separated flags for C and C++ files.

As the entire program was split into different files, the compiler flags had to be separated in

order to get optimal support form the gcc(1) compiler. These separation can be achieved by
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using the LOCAL_CFLAGS variable for C code and the LOCAL_CPPFLAGS variable

for C++ code located in the given Makefile. This section only describes a subset of all

added flags for both languages.

• -fstack-protector

This option enables the stack protector already explained in Section 2.2. The addi-

tional source code that will be added to the program by this flag forces the program

to terminate and print an error to stderr. This error contains the stack trace of the

program to help the developer to fix the bug.

• -Wreturn-type

This option checks if there is a return value specified for a C function, but the code

inside the function does not call the return statement with an object or variable of

this type. This will make sure that whenever a return value is expected according

to its definition the function will return such type. The only exception is the main

function and - according to the man page - functions defined in the system headers.

• -Wshadow

This option warns if a local variable shadows another local variable, parameter or

global variable. Shadowing means it has the same name as the variable or object it

shadows.

• -Wuninitialized

This option warns if a variable or object is read, but has not been written before.

In C all variables are uninitialized except if they are static. Not initializing these

variables can lead to a security breach or program crash, as they contain the same

data previously written into this memory area. This often causes indeterministic

behaviour of the program.

• -Wold-style-cast (C++ only)

This option warns if there is an old-style cast to a non-void type. C++ defines

new-style casts that are less vulnerable to unintended effects. Such casts include

dynamic_cast, static_cast, reinterpret_cast, and const_cast.

– static_cast

This option performs a safe and relatively portable cast of one type to another.

This cast option is often used to explicitly document a cast, the compiler would

perform automatically, e.g. bool to int. While this shows the programmer’s
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intention, a static cast is necessary to convert a void pointer into a different

type. This cast makes an implicit cast explicit, which supports the developer

while reading the source code.

– dynamic_cast

This option uses runtime information to perform a conversion, in contrast to

a static cast. This operator is used to perform a downcast, e.g. cast a base

class pointer into a derived class pointer. This can be dangerous if a variable is

accessed that is not part of the base class.

– reinterpret_cast

Such a cast should be used with great care as it converts data into stream bytes

and a byte array must always be large enough to store the data, like converting

an address of an int value into an unsigned char pointer. It is often used in low-

level applications. It reminds the reader that an unsafe conversion takes place

and that the programmer is responsible for the result.

– const_cast

This option adds or removes the const and volatile qualifications. This avoids

calling a non-const function on a const object. If the design requires such a

declaration, this cast operator is used to remove the objects’s const qualifier to

call its method.

• -Wreorder (C++ only)

This option warns if the order of the given class attribute initializers does not match

the order in which they must be executed. If a class defines two attributes named i

and j, but the class attribute initializer specified by the constructor initializes j first

and i afterwards, this warning will be triggered.

• -Woverloaded-virtual (C++ only)

This option warns if a method declaration hides a virtual function of its base class.

E.g. the base class contains a method declaration for void f() and the derived class

contains a method named void f(int). The first method is hidden by the second one,

so calling the first one will lead to a compile failure.

All warnings are turned into errors using the -Werror flag, as the compile process stops

at the point a warning occurs. This makes sure that no warning is overlooked and could

lead to a failure at runtime.
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4.2.2 Folder structure

The folder structure displayed in Listing 4.4 represents the new Android keystore service

implementable. Compared to the original one described in Section 3.3.6 all classes were

split into different files and source code written in C was separated from that written in

C++. Furthermore, if no object orientation was needed, it was removed and rewritten in

C as in blob.c, entropy.c, log.c and permission.c.

|−− Android .mk

|−− IKeys to r eSe rv i c e . cpp

|−− blob . c

|−− entropy . c

|−− i n c lude

| ‘−− keys to r e

| |−− IKeys to r eSe rv i c e . h

| |−− blob . h

| |−− d e f i n e s . h

| |−− entropy . h

| |−− keyb lob_ut i l s . h

| |−− keys to re . h

| |−− keystore_get . h

| |−− keystoreproxy . h

| |−− l og . h

| |−− permis s ion . h

| ‘−− u s e r s t a t e . h

|−− keyb lob_ut i l s . cpp

|−− keys to r e . cpp

|−− key s t o r e_c l i . cpp

|−− keystore_get . cpp

|−− keystored . cpp

|−− keystoreproxy . cpp

|−− l og . c

|−− permis s ion . c

|−− t e s t−keys to r e

‘−− u s e r s t a t e . cpp

Listing 4.4: Folder structure of new Android implementation

The file name mirrors the class names that have already been described in Section 3.1.

Therefore, in this section only the additional file names will be explained regarding its

content:
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• blob

Contains the rewritten structure for storing data as well as its functions in C. Most

of the code was reused, since the C++-methods were changed into C-functions and

all C++ type casts had to be removed.

• entropy

Contains a C-function to retrieve the entropy by using the /dev/urandom device. As

there is no need for object orientation here, it was removed. Furthermore, the device

is closed after receiving the random values instead of closing it in the destructor

as implemented before. This prevents the device from being opened as long as the

Entropy object exists, which can avoid a regular close if the application crashes during

this time.

• log

Contains the new logging API that wraps the operating system specific ones. These

files (.c and .h) were completely reimplemented.

• permission

Contains all functions necessary to perform SELinux-permission checks. As in the blob

file, all old casts had to be removed as well as C++ objects, like String8. Such objects

were changed to const char -pointers. The strings are already internally represented

as const char pointers.

4.2.3 Application Programming Interface

The Application Programming Interface (API) remains unchanged for two reasons. First,

the Android application stack already implemented it and this stack had to be changed as

well if some functions the keystore interface offers were deleted. However, this is not part

of this thesis. Furthermore, Android applications that have already implemented the API

would be constrained in their execution. Second, the command-line-interface client does

still support all calls the keystore service API offers. This increases maintenance and allows

better testing by the developer, as he does not need to implement an Android application

that calls every Android API that uses the keystore implementation.

4.3 Security

In this section, we will introduce the hashing and crypto APIs for the new design as already

mentioned in Section 3.7. It shows how they were implemented and which different steps
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should be considered. Furthermore, the subsections describe the benefits regarding security

and maintainability of these APIs to give a short overview of how they work and why they

should be used.

4.3.1 Hashing

As already mentioned in Section 3.5, the MD5 hashing algorithm cannot be considered

secure any more. The first part regarding the new implementation is to use a state-of-the-

art algorithm, so an adequate level of security is gained, for the hashing of data. In the

second part the implemented API will be changed in order to be more maintainable and to

allow more control about the different steps of hashing. This new API is EVP_DigestInit(3)

and is part of the OpenSSL library. These functions are more generic and allow the change

of hashing algorithms in an easy way without changing the entire function. Since there is no

dedicated function to create an SHA hash as there is for MD5, the usage of a new algorithm

will cause a change of the entire function call. This can be avoided by using more generic

functions as explained in the following sections.

EVP_DigestInit_ex(3) function call

This call initializes the hash context regarding the chosen hash algorithm. In this case,

SHA with a 512 bit hash value will be used. The last parameter of this function is the

ENGINE that allows the usage of another implementation of the chosen hash algorithm.

The default value for this case is NULL, as can be seen in Listing 4.5. Before the context can

be initialized, there is a context needed. The EVP_MD_CTX_create(3) API call provides

this functionality.

ctx = EVP_MD_CTX_create( ) ;

i f ( ! EVP_DigestInit_ex ( ctx , EVP_sha512 ( ) , NULL) ) {

log_err ( "EVP_DigestInit_ex␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.5: EVP_DigestInit_ex(3) function call

EVP_DigestUpdate(3) function call

The EVP_DigestUpdate(3) function stores the computed hash value in the given context.

In this case the hash value of the encrypted value is computed to make sure the encrypted

value was not changed during storage.

92



CHAPTER 4. IMPLEMENTATION OF THE NEW KEYSTORE SERVICE

i f ( ! EVP_DigestUpdate ( ctx , blb−>encrypted , s izeof ( blb−>encrypted ) ) ) {

log_err ( "EVP_DigestUpdate␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.6: EVP_DigestUpdate(3) function call

EVP_DigestFinal_ex(3) function call

The EVP_DigestFinal_ex(3) function finalizes the hashing process and it writes the hash

value into the given hash value. The len value contains the length of the given buffer. As

this function is generic with respect to different hash algorithms, it is not certain each buffer

has the same size.

i f ( ! EVP_DigestFinal_ex ( ctx , blb−>hash , &len ) ) {

log_err ( "EVP_DigestFinal_ex␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.7: EVP_DigestFinal_ex(3) function call

EVP_MD_CTX_destroy(3) function call

The last function that needs to be called is the EVP_MD_CTX_destroy(3). This function

cleans up the context and frees memory that was allocated internally. It is very important

not to forget this function. Otherwise a memory leak occurs.

EVP_MD_CTX_destroy( ctx ) ;

Listing 4.8: EVP_MD_CTX_destroy(3) function call

The implementation of this API reveals that it is quite generic and hash algorithms can

be changed easily. This increases the maintenance of the source code for further develop-

ment.

4.3.2 Encryption

This chapter introduces the encryption API implemented in the new version of Android’s

keystore service and explains reasons why it is a better approach to use it. Each used

call will be described according to its parameters and return values in order to provide
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additional information to the user why both encryption or decryption failed. For example,

decryption fails if a wrong password is used or if the initialisation vector is not the same

than for encryption. In fact, the initialisation vector is stored in the file system, but it can

still be corrupted because of file system or hard drive errors. As the original encryption

algorithm is AES, the new design of the Android keystore uses the same algorithm as well.

This algorithm is state-of-the-art today and there is no reason to change it.

EVP_EncryptInit_ex(3)

This function call is used to initialize all necessary data involved in encrypting a buffer.

Such data are the cipher context, the type, the encryption engine, if necessary, and the key

with its initialization vector. The cipher context stores all information needed to encrypt

or decrypt a buffer, such as the key and the chosen encryption algorithm. The encryption

engine is optional, as it allows the usage of alternative implementations of the specified

algorithm. As Listing 4.9 shows the new encryption algorithm is still AES, but with a

key size of 256 bit. This key size is the largest being supported for AES and guarantees a

maximum of security at the encryption level. The EVP_CIPHER_CTX_init(3) function

that is part of the OpenSSL library as well, must be called additionally to initialize the

cipher context without any arguments.

EVP_CIPHER_CTX_init(&ctx ) ;

i f ( ! EVP_EncryptInit_ex(&ctx , EVP_aes_256_cbc ( ) , NULL, key , blb−>vecto r ) ) {

log_err ( "EVP_EncryptInit_ex␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.9: EVP_EncryptInit_ex(3) function call

EVP_EncryptUpdate(3)

The EVP_EncryptUpdate(3) functions writes the cipher text according to the chosen en-

cryption algorithm and plain text into the buffer named as encrypted, as Listing 4.10 shows.

This buffer has to be of the same size as the value buffer is combined with the size of 128

bits defined by the AES_BLOCK_SIZE constant in order to have a buffer large enough to

store each encrypted block.
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i f ( ! EVP_EncryptUpdate(&ctx , blb−>encrypted , &len , blb−>value , s izeof ( blb−>
value ) ) ) {

log_err ( "EVP_EncryptUpdate␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.10: EVP_EncryptUpdate(3) function call

EVP_EncryptFinal_ex(3)

Padding is enabled by default and this is done by the last step. It encrypts the final data,

that is any data remain in the partial block, as can be seen in Listing 4.11. For this case

the PKCS padding is used. The sum of the len and the tmplen value results in the length

of data that were encrypted. This value must be remembered as it is necessary to decrypt

the value correctly.

i f ( ! EVP_EncryptFinal_ex(&ctx , blb−>encrypted + len , &tmplen ) ) {

log_err ( "EVP_EncryptFinal_ex␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.11: EVP_EncryptFinal_ex(3) function call

EVP_CIPHER_CTX_cleanup(3)

The final part after encrypting a buffer is to clean up all information needed for encryption

and free all internal allocated buffers. That is what the EVP_CIPHER_CTX_cleanup(3)

function does, as can be seen in Listing 4.12. It is important to call this function in order

to avoid memory leaks.

EVP_CIPHER_CTX_cleanup(&ctx ) ;

Listing 4.12: EVP_Cipher_CTX_cleanup(3) function call

EVP_DecryptInit_ex(3)

The decryption works the same way as the encryption as it is the inverse operation. The

OpenSSL library provides functions for this purpose as well. First, the cipher context has

to be initialized. There is no dedicated function to initialize the context itself for encryption
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and decryption. That is why the EVP_CIPHER_CTX_init(3) must be called for both, as

Listing 4.13 shows. Only the function to initialize the cipher context with the encryption

algorithm, the key, and the initialisation vector is different from the one used for encryption.

EVP_CIPHER_CTX_init(&ctx ) ;

i f ( ! EVP_DecryptInit_ex(&ctx , EVP_aes_256_cbc ( ) , NULL, key , blb−>vecto r ) ) {

log_err ( "EVP_DecryptInit_ex␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.13: EVP_DecryptInit_ex(3) function call

EVP_DecryptUpdate(3)

As described in Section 4.3.2, the update-function encrypts plain text into the cipher text.

By inverting this process the EVP_DecryptUpdate(3) function decrypts the cipher text and

stores the resulting plain text into the value buffer, as can be seen in Listing 4.14.

i f ( ! EVP_DecryptUpdate(&ctx , buf , &len , blb−>encrypted , blb−>length ) ) {

log_err ( "EVP_DecryptUpdate␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.14: EVP_DecryptUpdate(3) function call

EVP_DecryptFinal_ex(3)

This function decrypts the padding previously encrypted, as can be seen in Section 4.3.2.

The sum of the len and tmplen values is the length of plain text data.

i f ( ! EVP_DecryptFinal_ex(&ctx , buf + len , &tmplen ) ) {

log_err ( "EVP_DecryptFinal_ex␣ f a i l e d " ) ;

goto f a i l ;

}

Listing 4.15: EVP_DecryptFinal_ex(3) function call

The final step is to call the EVP_CIPHER_CTX_cleanup(3) as already introduced in

Section 4.3.2 to make sure every allocated memory will be freed. These functions submit a

better source code structure than the original encryption implementation as their purpose
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is more obvious because of their names. The purpose of a function should always be clear

by its name and not by its given parameters. This simplifies the source code and increases

its quality significantly.

The benefit of implementing these functions instead of using the AES_cbc_encrypt API

introduced in Section 3.6 is that in each step the return value can be checked to provide

more detailed information to the user. Furthermore, only one key is needed and there is no

need to call additional functions to set an encryption as well as a decryption key. This can

be confusing, as AES uses the same key for both operations, but these functions suggest

that two different keys are needed. There is a flag needed to tell the function if the data

are supposed to be encrypted or decrypted as well. Due to the fact that all functions

for encryption starts with the prefix EVP_Encrypt and all functions for decryption starts

with the prefix EVP_Decrypt, each function’s purpose is obvious. There is no dedicated

parameter (flag) needed to change the behaviour of a function as in the original keystore

encryption implementation.

The last important point are the man pages available for all EVP_* library functions.

These man pages help the developer to use such functions, which avoids the occurrence of

errors since they explain the function’s behaviour as well as the expected return values.

Specifically, in an environment as the keystore service, the safe storage of user credentials

is a crucial component.

4.4 Portability

This section describes the new design and its corresponding implementation for the portable

version of the Android keystore service. It will explain why the design is slightly different

in some cases and which parts remain the same for both implementations. Furthermore, it

will give an overview of how services can be developed in general to gain more robustness

against external attacks and how OpenBSD-only functions can still be used even in portable

versions of the software. Some of these functions behave in a more secure way and increase

the security of system significantly.

Figure 4.1 illustrates the design of the portable version. The entire service was split

into two single processes Blob and Service. The Blob service manages the read and write

of data and the Service process communicates with clients. It sends the data of the clients

to the Blob process which reports back whether this was successful or not. It also requests

the already stored data from the Blob process to send it back to the requested client.
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Keystore Service

Blob Service

Figure 4.1: Portable keystore service design

This is the principal part of privilege separation, splitting one single process into multiple

where each process is responsible for a certain task. The challenge is to find out what the

certain tasks are and how many processes are needed to encapsulate them. Separating a

single process into too many processes makes the code that handles the communication

more complex. However, separating it into too less processes can be a security issue. A

good trade-off is to look at the functionality and choose the number of processes after that.

The keystore implementation talks to different clients by using a defined API, manages

different user states and stores data into the file system. The different states depend on the

master key file and are returned to the client. As this functionality is located in the middle

of the client communication and storage of data, but is more related to the communication

side, the new design splits the single process into the two already described above.

How the process separation was implemented, which library calls are necessary, and

which aspects need to be considered if such a design was chosen will be explained in the

following section.

4.4.1 Design

The new design implements the already introduced privilege separation technique and reuses

the storage capability of the original implementation. Furthermore, the internal behaviour

was simplified to decrease the lines of source code, which reduces the potential number of

errors. The new design includes a client API for communication with the service that is

able to interact with other programming languages, such as Python or Lua. This makes the

design more powerful since it can be used with many different applications.

Figure 4.2 shows the new design as well as how the communication between the server

and the client was implemented.
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/var/ksd /var/run/ksd.sock ks

unprivileged process privileged process client

Figure 4.2: Design of the portable version

The entire implementation is split into a server named keystore daemon (ksd) and a

client named keystore client (ks). As the daemon uses privilege separation, it is split into

two processes internally. The following enumeration explains the three different parts, what

purpose they have and why they are necessary:

• Privileged process

This process is the main part of the entire service and forwards the requests sent

by the client to the unprivileged process as well as its responses back to the client.

Basically, this process is just an intermediate between the client and the unprivileged

process at runtime. To communicate with the client, a local Unix TCP socket is used,

located under /var/run/ksd.sock. At start time, this process forks itself and the child

becomes the unprivileged process. The man page can be found under ksd(8).

• Unprivileged process

This process is isolated under /var/ksd. So it is not possible to access files or directories

located above this directory. It runs under a non-root user called _ksd as well. The

underscore as prefix to the user name is a convention to separate normal users from

more privileged users used by system daemons or commands. This user has to be

added to the system before using the keystore daemon.

• Client

The client implements the API provided by the server and is called ks. It reads

the command line parameters necessary for each server call, sends these data and

processes the received data in return. The utility is CLI-oriented as this avoids the

dependency to a GUI. The man page can be found under ks(1).

4.4.2 Privilege Separation

Privilege separation is a technique to limit the possible security breaches of services and

utilities. It splits one parent process into multiple child processes, runs every child process

under an unprivileged user and locks this child process to a dedicated directory. These

child processes cannot leave their dedicated directory and can only communicate with other

processes using messages instead of function calls.
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Imagine there is a mail server installed on a system. This mail server has different tasks,

like reading its own configuration and the user database, and writing log files and emails.

If these tasks are done by one single process, it needs to run under a user that has the

privileges to perform all these tasks. Furthermore, it must navigate through the entire file

system, as the user database is located under /etc/passwd and the log files under /var/log

on a GNU/Linux or BSD system. This makes the single service extremely powerful what

is not necessary. A more security-related approach is to split a single process into multiple,

lock each down into its dedicated directory and change the user to an unprivileged one.

Now, the processes only execute a subtask and do not need a powerful user id which makes

them more manageable and secure.

This approach needs another kind of communication between the parent process and its

children and even between the children among themselves. For this reason, an additional

implementation is needed to manage such communication. Sockets will be used in this case

as they implement an easy way of communication between individual processes. If there is

one single process and each subtask is implemented in a different file, only their provided

APIs must be called to communicate between them. As privilege separation consists of

multiple isolated processes the communication cannot be implemented by calling APIs built

up of C functions. This fact makes such an implementation a bit more complex, but has

a high advantage on the security level as a security breach in one process cannot influence

others.

It should be mentioned that separation of processes is not always necessary. If the

program does not need to access the file system or network sockets, there is no benefit in

splitting a process into multiple children. For instance, a calculator that supports the first

rules of arithmetic and just prints the result to stdout does not need to be separated, as

there are no dedicated subtasks.

The following sections describe what calls are necessary to implement a privilege sepa-

rated process.

Splitting Process

To split a single process into a parent and a child process, the fork(2) function call is used.

After calling this function it returns the new child process id to the parent and 0 to the

child process. These return values make it possible to run different code on both the parent

and the child side in order to start the main loop or open files.
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switch ( ( c h i l d = fo rk ( ) ) ) {

case −1:

/∗ error hand l ing ∗/
case 0 :

/∗ c h i l d ∗/
default :

/∗ parent ∗/
}

Listing 4.16: fork(2) function call

Listing 4.16 shows a fork(2) function call. The different case labels allow the handling

of each individual process including the error. After the switch-section, the code for both

processes is the same. For this reason the statements executed by the parent process, after

the default-label, often just return the child process id to store it for further communication.

Changing the root directory

The chroot(2) function call changes the root directory. The default root directory is / for

all processes. If this directory is changed, e.g. to /var/log, it is not possible for the process

to navigate to a higher directory, e.g. /var, as it is locked down to the new root directory.

i f ( chroot ( "/var / log " ) == −1) {

/∗ error hand l ing ∗/
}

i f ( chd i r ( "/" ) == −1) {

/∗ error hand l ing ∗/
}

Listing 4.17: Changing the root directory

As Listing 4.17 illustrates, the process has a new root directory called /var/log. This

function returns 0 on success and -1 on failure. After the process has been locked down into

the new root directory, the chdir(2) function is called as described in Listing 4.17. This

function sets the current directory of a process, in this case the new root directory. On

success it returns 0 and -1 on failure.

Dropping privileges

After a new root directory has been chosen, it is necessary to drop the privileges from the

root user down to an unprivileged user. It is not possible to do this first, as the chroot(2)
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call needs such privileges. If anyone could call this function, it would be possible to break

out of the chroot environment. For this reason, we always change the root directory before

dropping privileges.

i f ( (pw = getpwnam(UNPRIV_USER) ) == NULL) {

/∗ error hand l ing ∗/
}

i f ( s e tg roups (1 , &pw−>pw_gid ) | |

s e t r e s g i d (pw−>pw_gid , pw−>pw_gid , pw−>pw_gid ) | |

s e t r e s u i d (pw−>pw_uid , pw−>pw_uid , pw−>pw_uid) ) {

/∗ error hand l ing ∗/
}

Listing 4.18: Dropping privileges

Listing 4.18 shows how privileges can be dropped by using an unprivileged user. The

getpwnam function call returns a pointer of the struct passwd type which contains all in-

formation stored in the password database files - passwd(5). If the pointer is NULL, the

given user was not added previously. setgroups(2) sets the group access list (supplementary

group) of the current process to the new group id. Each user on GNU/Linux or BSD sys-

tems is at least a member of one group named primary group. It is also possible to add a

user to other groups named supplementary group. This call resets all supplementary group

ids to the primary group id. The setresgid(2) call sets the real, effective and saved group

ids of the current process and setresuid(2) does the same but, for the user ids. In both

cases it is the unprivileged user that owns this process now. Typically, all three groups and

user ids (real, effective, and saved) are the same. Those ids will be used in different cases,

such as file creation, doing some unprivileged work as a privileged user, or affecting sending

signals to processes. However, they are more often used in commands, such as su(1), or

environments that will both not affect the keystore implementation.

After these calls have been finished, the current process drops its privileges from the

root user and runs under the unprivileged UNPRIV_USER user.

Changing the child process name

If a child is created, it inherits the name of its parent as well. This can be complicated

when one tries to find out the client’s purpose according to the name. If both processes

have the same name, e.g. keystore, which one is the service for client communication and

which one takes care of storing data? For this reason, it is necessary to change the child’s

name to show its purpose. This can either be done by using the prctl(2) library function
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since GNU/Linux 2.6.9 or by using OpenBSDs setproctitle(3) as seen in Listing 4.19. While

setproctitle(3) always succeeds prctl(2) returns a 0 on success and -1 on failure.

/∗ GNU/Linux s ince 2 . 6 . 9 ∗/
i f ( p r c t l (PR_SET_NAME, " [ keys to r e ] ␣ s t o rage " ) == −1) {

/∗ error hand l ing ∗/
}

/∗ OpenBSD ∗/
s e t p r o c t i t l e ( " [ keys to r e ] ␣ s t o rage " ) ;

Listing 4.19: Changing the process name

As OpenBSD has a tradition in developing services and utilities that use privilege sep-

aration, it provides all necessary functions, even for portable versions. The mail server

contains a directory named openbsd-compat that contains functions only implemented in

OpenBSD. This makes it possible to use the same code on different platforms, but only

include additional header files. Unfortunately, this only works if the underlying functions

or process structures support it. On the Android platform the process name cannot be

changed by setproctitle(3) as its way of splitting a name is not supported.

Communication between parent and child

The communication between the parent and its child or children is very important, as

there is no possibility to transform data from one process to another by calling functions.

Communication between multiple processes can be established in many ways.

The easiest way is to use files and a defined format for communication. The data will

be converted into this format, e.g. CSV, XML, or JSON, before writing it and will be

read and converted back by another process. This method has a few advantages, one being

that additional exchange formats must be supported by each process and the data must be

converted into the format and back for further processing. A better approach is to use native

data structures offered by the programming language, like structs. APIs to transmit these

data are the send(2) and recv(2) system call. These APIs provide functions for sending and

receiving data and are part of the systems socket library.

Listing 4.20 shows how the functions to communicate with processes are used. The first

parameter is the file descriptor - fd. Each process has its own descriptor it listens on for

incoming data. The msg structure as defined in recv(2) holds the data for sending and

receiving. It contains an array of data with its length. The data can be of any type from

numbers or strings to structs.
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i f ( sendmsg ( fd , &msg , f l a g s ) == −1) {

/∗ error hand l ing ∗/
}

i f ( recvmsg ( fd , &msg , f l a g s ) == −1) {

/∗ error hand l ing ∗/
}

Listing 4.20: send(2) and recv(2) function calls

The receiver just needs to know how many data are sent in order to allocate enough

memory. The man pages describe possible flags as well, e.g. in order to avoid blocking while

communicating.

The creation and managing of file descriptors for such a communication is a bit com-

plicated. This must be done before fork(2) is executed, as later the child is forked from

the parent and it is not possible to link them together again. The last parameter sp is an

array of two integer values that contains the descriptors for sending and receiving - as can

be seen in Listing 4.21. These descriptors represent the start and the end of a single pipe.

i f ( s o ck e tpa i r (AF_UNIX, SOCK_STREAM, PF_UNSPEC, sp ) == −1) {

/∗ error hand l ing ∗/
}

Listing 4.21: socketpair(2) function call

Listing 4.16 shows how the parent and child parts are split and can be managed indi-

vidually. After fork(2) has been called, both processes have the same descriptors. Since

the processes communicate using a pipe, only two ends of the pipe must remain. For this

reason, the redundant descriptors must be closed in each process. The child closes the

descriptor located at index 0 using the close(2) function and the parent the one at index

1. After calling this function only the single ends of the pipe remain.

4.4.3 Implementation

This section describes the portable version of Android’s keystore at the implementation

level. This includes both the way the client communicates with the server as well as the

internal server communication and the differences to the original implementation and why

these changes have been made. As C++ is only used to communicate with the Android

Binder -Interface, all files containing C++ were removed and rewritten in C as discussed in

the following sections. This includes even service related classes, such as KeystoreProxy and
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KeyStore. The UserState-class was also removed entirely as it only stores the master key as

well as different states of each user for a better key management. However, this approach

complicates the service implementation and was changed into an implementation that reads

the master key on every request the client sends to the server. The UserState stores the

master key internally to allow the user accessing data without entering a password. The

problem with it is that it does not prevent unauthorized users from reading values of keys,

for example. If two different users have access to the Android system user system, key-value

pairs leak from on user to another. This was changed by storing data per user who can login

into the system as we can assume that the user protects his login data against unauthorized

users.

In conclusion, the entire portable version is written in the C programming language.

This avoids issues with different kinds of compiler flags as well and keeps the source code

more uniform as there is no mixture of functionality between C and C++.

The following sections describe the client-server communication, the used signal handler

to stop the server reasonably, and the main differences between the Android and the portable

version of the keystore service.

Communication between processes

As already mentioned, the client communicates with the server using a local Unix TCP

socket. For such a communication the send(2) and recv(2) system calls were used as these

calls need a connected state. The TCP protocol establishes such a connection. These

functions need a socket descriptor to send the data to or receive them from, the data itself,

the length of such data and additional flags if needed as Listing 4.22 shows.

i f ( send ( fd , req , s izeof (∗ req ) , MSG_NOSIGNAL) < 0) {

f p r i n t f ( s tde r r , " could ␣not␣ send␣data" ) ;

goto c l o s e ;

}

i f ( recv ( fd , res , s izeof (∗ r e s ) , 0) < 0) {

f p r i n t f ( s tde r r , " could ␣not␣ r e c e i v e ␣data" ) ;

goto c l o s e ;

}

Listing 4.22: send(2) and recv(2) function calls

The data that encapsulate those for both sending and for receiving are two structures:

ks_req (req) and ks_res (res). The first structure represents the client request and contains

the user id the client runs under, the master password and the key-value pair if needed.
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The second one represents the request and contains the error value, so the client can handle

the response accordingly and the value stored previously if requested. The fd value is the

socket a connection was made to. Both structures as well as the used enumeration to

indicate the type of request or response (init, insert etc.) can be found under Appendix F.

The flag MSG_NOSIGNAL that is added to send(2) avoids sending the SIGPIPE signal.

The sending of such a signal requires a signal handler to handle it. Instead, the return value

is used to indicate an error. The recv(2) function call requires no extra flag.

For internal communication between the father and the child process, the already in-

troduced socketpair system call is used. This means that there is no connected state and

different calls are needed. Such calls are sendmsg(2) and recvmsg(2), as can be seen in

Listing 4.23 and Listing 4.24. These calls require a special structure named msghdr for

communication that is part of the systems socket library, too. This structure contains the

data that are sent or received.

i f ( sendmsg ( fd , &msg , 0) == −1) {

log_err ( "sendmsg␣ f a i l e d : ␣%s " , s t r e r r o r ( errno ) ) ;

return −1;

}

Listing 4.23: sendmsg(2) function call

Listing 4.23 shows how the sendmsg(2) call is used. The first argument represents the

file descriptor the msg will be sent to or received from and the last argument contains

additional flags that are not needed in this case.

i f ( recvmsg ( fd , &msg , 0) == −1 ) {

log_err ( " recvmsg␣ f a i l e d : ␣%s " , s t r e r r o r ( errno ) ) ;

return −1;

}

Listing 4.24: recvmsg(2) function call

Similar to Listing 4.23, Listing 4.24 shows how a msg sent to a file descriptor will be

received. There are no additional flags needed as well.

Signal handler

Daemons in C must implement a signal handler, which is called if one of the signals the

daemon is listening for is received. A signal handler can be registered using the signal(3)
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library function as shown in Listing 4.25. Without registering such signals, allocated re-

sources like file descriptors or opened sockets could not be closed, as the program would

terminate instantly. Another reason why signal handlers are important is that each parent

should take care of its children. If the parent terminates, each child should terminate as

well. A child process that has no parent process any more is called orphan and should be

avoided. It is bad style as such processes need to be terminated manually afterwards and

could block resources necessary for the next daemon start.

s i g n a l (SIGTERM, parent_sig_handler ) ;

s i g n a l (SIGINT , parent_sig_handler ) ;

s i g n a l (SIGCHLD, parent_sig_handler ) ;

Listing 4.25: signal(3) function call

The first argument is the signal that needs to be caught and the second one is the

function that is called as soon as the signal was received. The signals used in the above

signal handler calls will be described in the following enumeration to explain why they are

necessary.

• SIGTERM

This signal will be sent to a process to request its termination. Catching this signal

allows the process to release allocated resources or terminate its children.

• SIGINT

This signal will be sent to the process by using the Ctrl-C shortcut. The purpose of

this signal is similar to SIGTERM.

• SIGCHLD

This signal will be sent to the process to notify it that one of its children was termi-

nated. This signal is important for privilege separation, as the children are a significant

part of the entire service, and it fails if one child is not available.

Compiler flags

OpenBSD provides templates for compiling and linking C files to a single program. For

userland tools the template is called bsd.prog.mk and has to be included at the end of the

Makefile - .include <bsd.prog.mk. This includes some default flags, such as 02 for optimiza-

tion or pipe to use pipes rather than temporary files for communication between the different

stages of the compilation process. Some additional flags are used, like -Wuninitialized or
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-Wshadow, which are already explained in Section 4.2.1. The Makefiles for both the client

and the server implementation are located in Appendix E.

Folder structure

Listing 4.26 shows the different folders with their contained files created by tree(1). The

server (ksd) and client (ks) only have separated files to build each program (Makefile). All

files needed by both programs are in the same directory on top.

|−− LICENSE

|−− Makef i l e

|−− README.md

|−− blob . c

|−− blob . h

|−− d e f i n e s . h

|−− entropy . c

|−− entropy . h

|−− ks

| ‘−− Makef i l e

|−− ks . 1

|−− ks . c

|−− ksd

| ‘−− Makef i l e

|−− ksd−api . c

|−− ksd−api . h

|−− ksd . 8

|−− ksd . c

|−− ksd . h

|−− l og . c

|−− l og . h

|−− msg . c

|−− msg . h

|−− proc . c

|−− proc . h

|−− socke t . c

‘−− socke t . h

Listing 4.26: Structure of the portable version

There is a file containing the ISC license and a short description (README.md) about

the project as well, which will not further be discussed. The following listing will give an

overview of all significantly changed files or created to port the original Android keystore
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service to OpenBSD.

• blob

For privilege separation new functions were added to fork the child process and manage

the requests as well as send the responses back to the client. The child will be locked

down to the /var/ksd directory and drop its privileges after forking.

• entropy

Wraps the OpenBSD extension arc4random(3) instead of using /dev/urandom. This

function will always return a random number and there are still portable versions in

OpenSSH and OpenSMTPD.

• ks.1

Contains the man page for the client. 1 means General Commands, which this com-

mand is.

• ks

Contains the client and implements all calls necessary for communicating with the

server. Those commands will be explained in a subsequent section.

• ksd-api

Contains the API implemented by clients. Such functions are named after the call

they encapsulate: api_reset to reset the keystore or api_insert to insert a new key-

value pair. Each function needs a callback function implemented in the client, which

will be called after sending data and receiving data from the server. Functions to send

and receive will be called internally to avoid problems in client implementations.

• ksd.8

Contains the man page for the server. 8 means System Manager’s Manual, which this

server is.

• ksd

Contains the server implementation. The already introduced signal handler will be

registered as well as forking the client process and starting the main loop to receive

client requests.

• msg

Contains the implementation for internal communication between parent and child

process.
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• proc

Contains functions to change the name of processes.

• socket

Implements the client-server communication by creating a Unix socket located under

/var/run/ksd.sock to receive client requests and send responses back.

Differences to the new Android keystore service implementation

The API offered by the server was simplified and focused on calls covering the necessary

use cases. Each call is secured by a passphrase request called in the API to avoid client

implementations without such a request. All supported flags are listed in Appendix C. The

following enumeration explains the calls implemented by the command-line-interface client

of the portable version.

• add (A)

This call adds a new key-value pair for a given key.

• delete (D)

This call deletes a key-value pair for a given key. This is the inverse function to add.

• get (G)

This call requests the stored value for a given key.

• init (I)

This call initializes the keystore of the user who calls the client (ks(1)) with the entered

master password. The master password must be entered twice for confirmation.

• reset (R)

This call deletes the entire keystore of the user who calls the client (ks(1)). This is

the inverse function to init.

Using these calls every additional key or keystore manipulation operation can be imple-

mented. The update of an existing value only comprises the calling of the already imple-

mented delete and add operations. Changing the master password just needs to remember

all stored key-value pairs, reset the keystore and initialize it again before adding back all

remembered key-value pairs. As the client uses the command line interface, a shell script

can implement such functionality by combining the base operations. There is no need for

a dedicated update or change master password operation. For the same reason, calls to

110



CHAPTER 4. IMPLEMENTATION OF THE NEW KEYSTORE SERVICE

generate keys for encryption or signing, such as RSA or DSA, are not supported. There are

commands already available, like ssh-keygen(1) or openssl(1) to create SSH keys or certifi-

cates for web servers. Hence, there is no need to implement such functionality again. On

Android the situation is different as APIs already implement the keystore service and rely

on it. Besides, on a mobile operating system CLI commands are not often used, so adding

key generation to the service directly is reasonable in this case.

There is another difference regarding the length of data that can be stored. While the

Android implementation is able to store 32KB, the portable version can only store 2KB.

This has two reasons. The first reason is the avoidance of storing certificates and private

keys and the focus on storing user names and passwords. Why is that so?

The first reason is that handling such data differs between desktop or server operating

systems and mobile operating systems. If we have a look at OpenSSH, which is a widely

used implementation the of Secure Shell (SSH) protocol, all used certificates and private

keys will be protected by the implementation itself. If the private key has too powerful rights

or does not belong to the user it used to be, this implementation will stop establishing a

connection to the server and print a message to stderr. The only user who is able to see the

private key is the owner as well as the root user. If one of these users is compromised, the

system needs to be reinstalled or better changed entirely. The keystore does not protect the

user’s credentials in that case, therefore, the attacker could install a key logger that sends

him all of the user’s keyboard input. It would indeed protect such data if the computer was

stolen or confiscated by the authority and the file system was not encrypted. However, this

should always be the case.

The second reason is how those functions for sending and receiving messages work

internally. Each socket has a maximum of bytes for sending and receiving. On OpenBSD 5.8

its 4KB, but can be changed by using the setsockopt(2) system call with the SO_SNDBUF

flag, for the sending buffer, and the SO_RCVBUF flag, for the receiving buffer. Moreover,

those functions block while calling them. Here, there are two problems to deal with. The

first is the size limit. This could, of course be increased up to 32KB, but what if a private

key or certificate is more than 32KB in size? In this case it would be better to avoid a

static buffer and use a dynamic buffer instead to be more flexible. A socket handling of

dynamic data, however, cannot be changed by setsockopt(2), as such values should always

be static to avoid errors - e.g. negative numbers or numbers too big to set, to implement

the storage of data that have dynamic size. The calls for transmitting such data must be

non-blocking. This can be achieved by setting additional flags to the system calls itself, such

as MSG_DONTWAIT and implement the poll(2) system call to monitor the file descriptor
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to be notified whether there is data to read or write. As this master thesis is only a proof-

of-concept to check whether it is possible to make an Android native service or parts of

it portable, this feature is not implemented and will be discussed later in the future work

section.

4.5 Result

This chapter contains the discussion of the new implementation of Android’s keystore service

as well as the portable version. The result of this implementation will be summarized in

this section.

The Android version is implemented based on the results of analysing the original source

code as already described in Chapter 3. The source code was split into different files to

separate the logic written in C from that written in C++. This allows better handling

of compiler flags and supports avoiding source code issues, such as bugs and coding style

problems. Furthermore, the logging mechanism was encapsulated to provide a generic API

that wraps the provided syslog API. The generic API is used for the entire application, so

a portable version just needs to change the wrapped calls and there is no change of logging

calls inside the application necessary. Library calls, such as malloc(3) or atoi(3), check the

return value to make sure that the call was successful or was changed into a function that

prevents integer overflows. At last, the implemented hash function (MD5) was changed to

SHA512, which is state-of-the-art, as there is no vulnerability known in practice. The API

for encryption (AES) was simplified to use one that is described in a man page and gives

an overview of its behaviour as well as the expected return values. The hash algorithm

uses this API as well as OpenSSL implements generic functions for encryption and hash

algorithms. Chapter 1 describes the consideration to additionally sign the data.

Let us have a short look at what signing of data will ensure. Data should be signed to

make sure the receiver knows the data were sent by the original sender and not manipulated

by someone else instead. In case of the keystore service the sender is the file system and the

receiver the service itself. The files, however, are written into a directory only accessible to

the keystore user, except root. As this user is the most powerful system user (administrator),

it is not reasonable to make a service “root-save”. The user expects that root has access to

every tool or file. First, it will confuse the user and second, it is more important to avoid

unprivileged system users to get access to those files, as most system services use these. This

increases the potential to compromise them as well as their corresponding unprivileged user.

The Android version protects the manipulation of data by root by using the keystore_cli(1)
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command through SELinux policies, but it is always possible to manipulate data by using

the normal userland tool-chain, like rm(1). So there is no one else that can change the

data. This makes the signing of data useless, except that they will be sent over an insecure

medium, like the Internet or a memory card, which is not the case.

As already described in Chapter 3, the internal design as well as the provided client

API remain the same to be backward compatible with existing implementations. This

allows changing of the original implementation to the new one without any problems. Only

previously stored data should be added again as this part has changed entirely.

The portable version implements privilege separation that locks the unprivileged process

down into a dedicated directory to prevent exploits from compromising the entire system.

The way the data will be stored remains the same as in the Android version. Only the

communication between internal processes and clients was reimplemented. Furthermore,

the count of functions the client is able to call was reduced to basic functionality, to keep

the system as small as possible. Additional functionality can be implemented by other

clients or by combining existing ones using Shell scripts. At last, the size of data that

can be stored was changed to 2 KByte instead of 32 KByte because the large value only

makes sense if certificates or keys will be stored, but services like OpenSSH do already care

about such data. Consequently, the use case is slightly different regarding mobile operating

systems compared to desktop or server operating systems.
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Evaluation

This chapter contains the evaluation of the work introduced and implemented during this

thesis. It will discuss the advantages and disadvantages of both the new Android keystore

service and its portable implementation. Furthermore, it describes how both implemen-

tations can be used and how the Android version interacts with applications, which have

already implemented its API. Implemented regression tests are also presented, which cover

different cases to make sure that the service as well as the client work as expected. Finally,

the results of both evaluations are summarized to show what they reveal and what both

implementations can achieve.

5.1 Android

As already described, the provided API calls to communicate with the CLI client as well as

the Java API compared to the original implementation remain the same for compatibility

reasons. In this section the new version of Android’s keystore service will be evaluated

regarding its ability to write and read data using the CLI client, as seen in Listing 5.1. This

evaluation does not show all calls the client is able to carry out, as they work analogously

to the rest. It is only meant to demonstrate that the new implementation of Android’s

keystore service does what it is supposed to do.

As Listing 5.1 shows, the client executes a subset of the implemented keystore API calls

with their needed parameters. This subset was chosen to show the main functionality of

the service. The reset call resets the entire user keystore, while password creates a new

master passphrase if none exists. The insert call inserts a new key-value pair into the user’s

keystore and get prints the value previously stored for a given key. This command does not

need a password, as the master key is stored for every user in the service internally.
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$ stop keys to r e && s t a r t keys to re # r e s t a r t k e y s t o r e s e r v i c e

$ key s t o r e_c l i r e s e t

No e r r o r

$ key s t o r e_c l i password foo

No e r r o r

$ key s t o r e_c l i i n s e r t key value

No e r r o r

$ key s t o r e_c l i get key

value$

Listing 5.1: Evaluation of the new Android version

Once the service has been restarted, the master key must be reloaded. The password

command will deal with it, as it creates a new master key if none has been created before

and reloads it if it already exists. All implemented calls can be found in Appendix B.

Due to the fact that terminal applications on Android are not used as often as on server

or desktop operating systems, additional output will be displayed directly - No error. A

common behaviour style for command-line tools on BSD or GNU/Linux is the following:

they only print an error, but if everything went successful nothing is printed, for instance,

the rm(1) command. If a file or directory could not be deleted, an error is printed. There

is no reason to print a text that says “file or directory deleted successfully”, as the user

assumes the command will run successfully with the chosen parameters anyway. This helps

other programs cascaded by operators, such as the pipe (|), which uses the output (stdout)

of one program as input (stdin) of the next program. If the password call was successful,

inserting a new key-value pair can be started. To show whether a program runs successfully

or not, only a return value is needed to reveal its state.

As already explained, only the internal functionality was changed to be more secure and

maintainable. This includes the source code as well as the data that will be stored. The

defined API was not changed in order to avoid issues with implementations that already

use the service, such as different Java classes delivered with the Android software stack.

5.1.1 Testing

This section describes the test-keystore script that implements statements to test the An-

droid keystore service using the Android debugger bridge (adb(1)) command and is based

on the original test script, but simplified. The adb(1) command allows communication

between the Android device and the system it is connected to, e.g. to execute commands

on the device itself. The output generated on the device is displayed on the system. This
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script compares two different files: test-keystore.baseline and test-keystore.log, as Listing 5.2

shows. The -> sign shows the test that was executed. The Shell control operator && (dou-

ble ampersand) will be interpreted as logical AND. When this operator is used, the second

command will only be executed if the first one succeeds - returns 0. PASSED is displayed

only if all tests were successful, otherwise FAILED will be displayed and the diff(1) com-

mand shows which output was printed instead of the expected one.

$ . / test−keys to r e

START

−> r e s e t keys to r e and r e i n i t as system user

−> root does not have permis s ion to run test
−> test add , get and d e l e t e key−value pa i r

−> lock the s t o r e as system

comparing . / test−keys to re . b a s e l i n e and . / test−keys to re . l og

PASSED

Listing 5.2: Regression tests new Android version

As can be seen in the above output, four different cases are tested. These cases are

described by comments following after the -> sign. The reason why not every call will be

tested is that the main focus re-implementing this service was the internal design and the

storage logic, which is covered by the provided tests. Of course, these regression tests can

be improved, but this is future work. The test-keystore.baseline file contains the expected

output set by the test-script and the test-keystore.log contains the output produced by the

adb(1) command that calls the keystore_cli command. For comparison the diff(1) command

is used to show the differences between two files. If both files share the same output, the

keystore_cli command works as expected.

5.2 Portable version

In this section the portable version will be evaluated regarding its usage and possibilities

to implement further client software.

As already mentioned in Chapter 4, this version only implements a basic feature set that

allows it to be combined to a more complex feature, such as updating an already added

key-value pair or updating the master password. To achieve this, a combination of different

return values is needed for Shell scripts to decide whether this call was successful or not.

In general, the 0 value means success and a value != 0 means failure. The Shell control

operator ; (Semicolon) executes all commands separated by this sign - no matter what

116



CHAPTER 5. EVALUATION

the return value of the former command was. Clients written in other languages, such as

Python1 or Lua2, can be implemented as well, using the provided API. They have libraries

to call native C functions and process the result in the concrete programming language.

However, this will not be discussed in this thesis.

Listing 5.3 shows how the keystore server can be started and how the client interacts

with its API to call the appropriate functions. The & (single ampersand) is a control

operator that runs the given command in the background and the # (hashtag) initiates a

comment.

$ sudo / usr / local / sb in /ksd & # s t a r t s e r v e r

$ ps −aux | grep ksd # show ksd r e l a t e d proceses

root 21628 . . . 0 : 0 0 . 0 3 ksd : [ p r iv ] ( ksd )

_ksd 3044 . . . 0 : 0 0 . 0 0 ksd : blob ( ksd )

$ ks −R # re s e t a k ey s t o r e

passphrase :

$ ks −I # i n i t a k ey s t o r e

passphrase :

conf i rm passphrase :

$ ks −A −k key −v value # add new key−va lue pa i r

passphrase :

$ ks −G −k key # ge t va lue o f key

passphrase :

va lue$

$ ks −D −k key # de l e t e key−va lue pa i r o f key

passphrase :

Listing 5.3: Evaluation of the portable version

As can be seen in the above listing the client needs a minimum of arguments to call

each API function. The call for a passphrase is added into every call instead of adding the

passphrase as an additional argument that can be seen by an attacker. It will never be

shown and can be piped in or written to stdin by redirecting stdout of another program,

either by using the pipe (|) or the stream redirection symbol >.

Since this version is portable to other BSD or GNU/Linux operating systems, SELinux

was removed as it is not portable to other operating systems than GNU/Linux. Further-

more, it is not enabled by default on all GNU/Linux systems. On the one hand, this could

cause attack vectors as every user is able to use the client completely, so bugs will cause
1https://docs.python.org/3/c-api/
2http://www.lua.org/pil/24.html
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greater damage on the system. On the other hand, additional source code is not needed to

check if GNU/Linux is either implemented or supported.

OpenBSD does support a system call named pledge(2) and appeared in OpenBSD 5.8.

It specifies a group of system call categories, such as malloc to allow calling the malloc(3)

family of functions or rw to call most types of I/O operations. If a system call is called

that is not part of the specified categories, the kernel will not call it and the program

terminates. As pledge(2) forces an application into a restricted-service operating mode it is

always possible to decrease the permissions, but not to increase them.

Features implemented by a kernel that are used in applications are always difficult to

port if different operating systems should be supported. While compiling the application, a

verification whether a feature is implemented and enabled or not has to be executed, to mask

or unmask the logic that calls this feature. This can be implemented by C’s pre-processor

directive #define to make sure a desired feature is implemented. As not all BSD versions

support selinux(8) or pledge(2), such information can be given to the pre-processor in order

to mask the source code responsible for calling it. However, this makes the code more

complicated. In general, the program should not just rely on kernel security features. Design

techniques, like privilege separation, should be considered as they significantly increase the

security of a program and library functions should always be checked for expected return

values. Such security features should only be used in addition, as the program itself has to

be programmed in a way that tries to avoid attacks against it.

5.2.1 Testing

This section describes the regression tests implemented for the portable version of Android’s

keystore service. Those tests call every command implemented by ks(1) and will write the

output to stdout, as seen in Listing 5.4.

$ r e g r e s s /ks . sh

could not connect to s e r v e r

ks : unknown e r r o r occured

$ r e g r e s s /ks . sh

te s t1234$

Listing 5.4: Regression tests portable version

All tests are executed by calling the script regress/ks.sh. The first example in the above

listing shows that the keystore service (ksd(8)) must be started in order to execute all
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regression tests. The second call reveals what output the script produces to demonstrate

all tests ran successfully. The only output is the chosen value test1234 printed by ks -G -k

<key>. The entire test script is part of the portable-keystore repository that contains the

portable version of the new Android keystore service implementation.

It is not necessary to provide any further information. If an error occurs during the

execution of ks(1), it will be written to stderr, as implemented by the program itself. Even

in an automated testing environment this produces enough output to help finding errors.

The return value of the script will be 0 if everything runs successfully or 1 if something

goes wrong, since those are the values returned by the ks(1) program. The system that calls

the script must only automatically check its return value and whether it is 1 and send a

notification to the developer afterwards. Furthermore, implementing tests this way makes

it easy to reproduce them for a more detailed error diagnosis. The developers can call the

tests themselves and do not depend on a complex test setting.

5.3 Result

This chapter shows how the new Android keystore implementation as well as the portable

version are tested. The regression tests are based on Shell-scripts as shown in Section 5.1

and Section 5.2. These tests can easily be extended in order to include additional test

scenarios in the future since only the basic functionality (init, reset, add, get, delete) has

been covered by now. The tests show that both implementations perform their tasks and

work as expected. Furthermore, they confirm that no bugs regarding the basic functionality

of both services and clients were introduced while implementing the new design. As the

tests, which are based on the client, show that the communication between server and client

works, there are no additional tests needed in this area, e.g. a test if the server process

has been started successfully before executing further tests. If the services do not start the

clients will terminate with an error.

There is one area in this context, test cases based on the client do not cover the func-

tionality adequately and this is the encrypted storage of data. If there is an error in this

case, the client could still show previously stored data as it cannot validate whether the

data is stored encrypted or not. In this particular part the regression test must look into

the file system to verify that an encrypted file was added with the specified parameters, like

the user id and password, but this is future work.

In conclusion, the implementations introduced in this thesis are a solid basis for further

development of both keystore services.
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Conclusion and Future Work

This chapter summarizes the thesis and gives an overview of the work that was done and

what the benefits according to the original Android keystore service implementation are.

Furthermore, there is an outlook about further development of both versions, which contains

ideas and improvements not touched during this work.

6.1 Conclusion

This master thesis analyses the Android keystore service with regard to security and porta-

bility and offers an approach to increase both, according to the first research question: Can

the Android keystore service be improved in regard to security and portability? To address

the portability aspect, a portable version for OpenBSD was implemented based on the

new Android implementation introduced in this work, which is the result of analysing the

original one.

With respect to security, the first goal was to analyse the used encryption and hash

algorithms according to their state-of-the-art approach. This includes the analyses of the

authentication, authorization, and verification mechanisms of data in the original imple-

mentation as well. If highly sensitive data, such as passwords, have to be stored, it must

be guaranteed that no trespasser has access to them. Data corruption is another important

part in this area, as the user needs to be informed if the data he received from the service

were not the same as those he stored originally. Both areas, the secure storage of data

and the recognition of data corruption, are crucial parts of this service. As the user trusts

the application to manage the data fairly, but if the service does not, it cannot be trusted

any more, what makes it useless. For this reason the already implemented hashing and

encryption algorithms were evaluated with respect to being state-of-the-art today.
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Unfortunately, the hash algorithm implemented in the original keystore version is MD5,

which is considered as compromised for over a decade, but is still in use. The problem

with MD5 is that it is no longer collision resistant, which downgrades the recognition of

manipulations. For this reason, MD5 was replaced by the SHA512 algorithm in the new

implementation. This algorithm is more secure as there are no attack vectors known that

lead to a collision attack. The encryption algorithm is still AES as it is state-of-the-art

today, only its key size was changed from 128 bit up to 256 bit, as it is the highest possible

value and increases the security significantly. A larger encryption key increases the security

level as it increases the number of possible keys - see Section 3.6 for further explanations.

Furthermore, the AES algorithm is fast regarding encryption and decryption and this is

important on mobile platforms that are limited with respect to memory and CPU usage.

The second goal was to analyse the source code as well as the entire design of the

original keystore. This includes the implementation of Android-specific APIs for services,

the usage of APIs provided by C/C++ libraries, like the standard C library or OpenSSL,

and the usage of gcc(1)’s compiler flags. Android provides an API for implementing services

and their corresponding clients named the Binder interface, which is based on RPC. This

interface defines C++ interfaces that need to be implemented for both the server and the

client to establish a RPC-based communication between both sides. The original keystore

implementation implements such interfaces, so there was no further source code change at

this point as this is the recommended way to implement services.

The original implementation used an undocumented macro named AES_cbc_encrypt,

for both encryption and decryption. This was changed to the EVP_* functions provided by

the OpenSSL library. Such functions give more control of each single step while encrypting

plain text or decrypting cipher text. Their behaviour, such as return values or global error

values that will be set is a failure occurs, are described in man pages, which supports

the development significantly. The same API was implemented for hashing as it behaves

the same way. Furthermore, the insecure function call atoi(3) was changed to strtol(3),

as atoi(3) does not take care of integer overflows and has a different behaviour regarding

return values on several platforms. For a portable version, this had to be unified as the

different behaviour could lead to additional errors, which are necessary to avoid.

As the gcc(1) compiler supports different flags to support the developer avoiding pro-

gramming errors, it was evaluated which additional flags can be used to achieve more robust

source code. The original implementation is written in C/C++ and the logic of both lan-

guages was mixed together into single files what decreases the maintainability. Such logic

was separated for two different reasons. First, for maintainability reasons, as C with its
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procedural paradigm is not suitable with C++, which is an object-oriented one. Second,

to obtain more support by the compiler flags gcc(1) offers since they can work better if

different flags will be used per language and not per file. Some flags are C- or C++-only

and cannot be used for a heterogeneous file.

With respect to portability, the first goal was to evaluate, which parts of the new

keystore service are possible to port to another platform and which are not. Porting the

entire service is too difficult as Android-specific libraries as the Binder interface or selinux(8)

policies need to be ported as well. In the first step, the service was analysed to find out,

which parts are considered for a portable version. In the second step, these parts needed

a further investigation related to their implemented APIs, e.g. the logging API. Logging is

essential for services as it reveals problems and issues to the user. The entire services used

the Android-specific logging API which had to be unified by providing a generic logging

interface that wraps the platform specific one. New implemented APIs as described above

were selected to the effect that they are available on other platforms. At last, only the

source code that contains the functionality for key-value pair storing was ported as the rest

was too Android- or GNU/Linux-specific, such as selinux(8). The approach introduced in

this thesis is the providing of a portable version of the new Android keystore service that

is as platform-independent as possible.

Due to the fact that the Binder interface could not be ported, the service calls for client

communication had to be implemented again and were simplified at once in the portable

version, as some calls are redundant. The new Android version does not change such calls

as it would provoke a break with APIs and applications already implementing and using

this service. Such simplification was possible since neither an application nor a library relies

on the portable version as it is an implementation from scratch. To document the server

as well as the client of the portable version, man pages were written: ksd(8) (server) and

ks(1) (client). For instance, these man pages document the server’s API calls implemented

by the client for communication.

The client was implemented by using the server’s client API located under ksd-api.h.

This API defines all functions to communicate with the server and as it was written in C,

it is possible to connect it with other programming languages that support an interface for

calling C functions. Thus, the service can be used in other projects by just implementing

its API and the entire service does not need be changed.

As already mentioned the portable version is based on OpenBSD and shows what needs

to be considered while porting an Android application to other platforms in general. The

second research question was: Is it possible to create a portable one-to-one version based
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on the native Android keystore service or are source code adaptations needed? As the

functionality that contains the key-value pair storage is the only part that can be ported,

the rest had to be implemented again. The main difference between these two versions is

the privilege separation implemented in the portable version. This technique decreases the

potential of compromising an entire system, as each process is locked down to a directory

below the root directory by using the chroot(2) library function and runs under its own

unprivileged user id. This means it is not possible for a process to get access to files or

directories above the root directory set for the process. If the process gets compromised,

it is only possible to read or write files the process has access to and which are below the

chrooted directory. Files, such as /etc/passwd, are protected from getting compromised.

That makes many exploits less probable. Unfortunately, this technique cannot be adapted

to Android as the underlying init system configuration of the keystore service as well as the

Binder interface do not support it.

In summary, this thesis has investigated the original Android keystore service imple-

mentation, discussed it and offer an approach that is more secure and more portable as the

original one. Even if there are parts of the service that cannot be ported to other platforms,

the essential part was and resulted successfully into a portable version. Such a version can

be the origin for ports to other BSD derivatives or GNU/Linux distributions. Furthermore,

this thesis reveals what must be considered if an Android application should be ported to

one of these platforms so that other developers can profit from the knowledge obtained in

this work.

6.2 Future Work

This section gives an overview of the further development for both keystore versions, based

on the development described in Chapter 4.

The advantages of the new Android implementation can be easily integrated into the

original implementation as it does not change its behaviour or introduces additional func-

tionality. Whether these changes will be integrated some day depend on the original projects

developers and can not be decided at that time. However, all changes are available by a

public source code repository1, which supports the integration and further development.

The portable version can be secured by implementing multiple children for a better split

of each task. The parent process still runs with root privileges and does only have to start

and stop all of its children. Based on this, there is at least one child needed to communicate

1https://github.com/alokat/platform_system_security
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with each client application and chrooted down into /var/run. Another child can be used

to store all master keys independently from all key-value pairs. One child manages the key-

value pairs of all users and a second one - chrooted in another directory - manages all master

keys. If someone breaks into the process, managing all key-value pairs it is not possible to

access the master keys. Furthermore, support for different encryption algorithms, such as

Blowfish or Twofish [58], can be implemented to let the user choose between multiple ones

and not rely on a single one.

As the portable version of the Android keystore implementation is based on OpenBSD,

it is not usable on other platforms automatically, such as GNU/Linux distributions or

other BSD derivatives like FreeBSD, NetBSD, or DragonflyBSD since it uses OpenBSD-only

library functions in some cases. For such a version, projects like OpenSSH or OpenSMTPD

can be considered because they have portable versions already. Making an application as

portable as possible creates more complex source code as there are many operating system

dependent cases to look at. The portable version of Android’s keystore service discussed

in this thesis follows the OpenBSD approach: creating two versions of a software, one for

the actual operating system and one portable version that includes the operating system

dependent functions. This keeps both versions as small as possible since the portable version

just includes the operating system dependent functions, but the actual application source

code does not need to be changed. The portable implementation is available by a public

repository2 as well, which facilitates the further development.

Even if there are regression tests already implemented for both versions, further testing

is needed to make sure no sensitive information leak to unauthorized persons and that the

implementations are as robust as possible. The same applies to the clients as their usage is

very important for the acceptance of the entire projects.

2https://github.com/alokat/keystore-portable
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Appendix A

Static analysing logs

$ c lang++ −analyze keyb lob_ut i l s . cpp

c lang : warning : argument unused during compi la t ion : ’−analyze ’

keyb lob_ut i l s . cpp : 3 9 : 1 4 : e r r o r : unknown type name ’ uint8_t ’

s t a t i c const uint8_t SOFT_KEY_MAGIC[ ] = { ’P’ , ’K’ , ’#’ , ’8 ’ } ;

^

clang : warning : t r e a t i n g ’ c−header ’ input as ’ c++−header ’ when in C++ mode ,

t h i s behavior i s deprecated

c lang : warning : argument unused during compi la t ion : ’−analyze ’

keys to r e . h : 5 9 : 1 : e r r o r : unknown type name ’ s ize_t ’

s i ze_t get_softkey_header_size ( ) ;

^

$ c lang++ −analyze methods . h

c lang : warning : t r e a t i n g ’ c−header ’ input as ’ c++−header ’ when in C++ mode ,

t h i s behavior i s deprecated

c lang : warning : argument unused during compi la t ion : ’−analyze ’

methods . h : 3 3 : 2 1 : e r r o r : unknown type name ’DSA’

void operator ( ) (DSA∗ p) const {

^

methods . h : 5 1 : 1 8 : e r r o r : expected unqua l i f i ed−id

typede f UniquePtr<RSA, s t r u c t RSA_Delete> Unique_RSA ;

^

Listing A.1: clang(1) output
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system/ s e c u r i t y / keys to r e / keyb lob_ut i l s . cpp : In function ’ uint8_t∗
add_softkey_header ( uint8_t ∗ , s i z e_t ) ’ :

system/ s e c u r i t y / keys to r e / keyb lob_ut i l s . cpp : 4 5 : 1 0 : e r r o r : no prev ious

d e c l a r a t i on for ’ uint8_t∗ add_softkey_header ( uint8_t ∗ , s i z e_t ) ’ [−Werror=

miss ing−d e c l a r a t i o n s ]

uint8_t∗ add_softkey_header ( uint8_t∗ key_blob , s i ze_t key_blob_length ) {

^

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : In con s t ruc to r ’ android : :

KeystoreArg : : KeystoreArg ( const void ∗ , s i z e_t ) ’ :

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : 3 2 : 5 4 : e r r o r : d e c l a r a t i on o f ’

data ’ shadows a member o f ’ th i s ’ [−Werror=shadow ]

KeystoreArg : : KeystoreArg ( const void ∗ data , s i ze_t l en )

^

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : 8 7 : 3 6 : e r r o r : use o f old−s t y l e

ca s t [−Werror=old−s t y l e−ca s t ]

s i z e_t ulen = ( s i ze_t ) l en ;

^

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : 8 9 : 4 3 : e r r o r : use o f old−s t y l e

ca s t [−Werror=old−s t y l e−ca s t ]

∗ item = ( uint8_t ∗) mal loc ( ulen ) ;

^

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : In member function ’ v i r t u a l

int32_t android : : BpKeystoreService : : password ( const android : : S t r ing16&) ’ :

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : 2 1 5 : 5 : e r r o r : d e c l a r a t i on o f ’

password ’ shadows a member o f ’ th i s ’ [−Werror=shadow ]

{

^

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : 6 4 8 : 6 4 : e r r o r : shadowed

de c l a r a t i on i s here [−Werror=shadow ]

uint32_t code , const Parce l& data , Parce l ∗ rep ly , uint32_t f l a g s )

^

system/ s e c u r i t y / keys to r e / IKeys to r eSe rv i c e . cpp : 7 6 9 : 2 1 : e r r o r : d e c l a r a t i on o f ’

int32_t f l a g s ’ shadows a parameter [−Werror=shadow ]

int32_t f l a g s = data . readInt32 ( ) ;

^

Listing A.2: Keystore compiler flags output
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Appendix B

keystore_cli(1) usage

$ key s t o r e_c l i

no ac t i on given

usage : k ey s t o r e_c l i test
key s t o r e_c l i get <key>

key s to r e_c l i get_pubkey <key>

key s to r e_c l i i n s e r t <key> <value>

key s to r e_c l i de l <key> [ uid ]

k ey s t o r e_c l i del_pubkey <key> [ uid ]

k ey s t o r e_c l i e x i s t <key> [ uid ]

k ey s t o r e_c l i saw <key> [ uid ]

k ey s t o r e_c l i r e s e t

k ey s t o r e_c l i password <value>

key s to r e_c l i l o ck

key s t o r e_c l i unlock <key>

key s to r e_c l i ze ro

Listing B.1: keystore_cli(1) usage
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Appendix C

ks(1) usage

usage : ks −A −k key −v value

ks −D −k key

ks −G −k key

ks −I

ks −R

Listing C.1: ks(1) usage
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Appendix D

Android keystore compiler flags

LOCAL_CFLAGS := −f s tack−pro t e c t o r

LOCAL_CFLAGS += −Wall

LOCAL_CFLAGS += −Wcast−qual

LOCAL_CFLAGS += −Wchar−s ub s c r i p t s

LOCAL_CFLAGS += −Wcomment

LOCAL_CFLAGS += −Werror

LOCAL_CFLAGS += −Wextra

LOCAL_CFLAGS += −Wformat

LOCAL_CFLAGS += −Wformat−s e c u r i t y

LOCAL_CFLAGS += −Wmissing−d e c l a r a t i o n s

LOCAL_CFLAGS += −Wparentheses

LOCAL_CFLAGS += −Wreturn−type
LOCAL_CFLAGS += −Wshadow

LOCAL_CFLAGS += −Wsign−compare

LOCAL_CFLAGS += −Wstrict−a l i a s i n g

LOCAL_CFLAGS += −Wswitch

LOCAL_CFLAGS += −Wtrigraphs

LOCAL_CFLAGS += −Wunin i t i a l i z ed

LOCAL_CFLAGS += −Wunused

LOCAL_CFLAGS += −Wno−unused−parameter

LOCAL_CPPFLAGS := −Wctor−dtor−pr ivacy

LOCAL_CPPFLAGS += −Wnon−v i r tua l−dtor

LOCAL_CPPFLAGS += −Wreorder

LOCAL_CPPFLAGS += −Wold−s t y l e−ca s t

LOCAL_CPPFLAGS += −Woverloaded−v i r t u a l

LOCAL_CPPFLAGS += −Wsign−promo

Listing D.1: Android keystore compiler flags
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Appendix E

Portable keystore compiler flags

.PATH: $ { .CURDIR} / . .

PROG= ksd

SRCS= socket . c proc . c blob . c msg . c entropy . c l og . c ksd . c

MAN= ksd . 8

BINDIR= /usr / local / sb in

LDADD= −l c r yp to

CFLAGS+= −Wall −Wstrict−prototypes −Wmissing−prototypes

CFLAGS+= −Wmissing−d e c l a r a t i o n s

CFLAGS+= −Wshadow −Wpointer−a r i t h −Wcast−qual

CFLAGS+= −Wsign−compare

. i n c lude <bsd . prog .mk>

Listing E.1: Portable keystore server makefile
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.PATH: $ { .CURDIR} / . .

PROG= ks

SRCS= ksd−api . c ks . c

MAN= ks . 1

BINDIR= /usr / local /bin

CFLAGS+= −Wall −Wstrict−prototypes −Wmissing−prototypes

CFLAGS+= −Wmissing−d e c l a r a t i o n s

CFLAGS+= −Wshadow −Wpointer−a r i t h −Wcast−qual

CFLAGS+= −Wsign−compare

. i n c lude <bsd . prog .mk>

Listing E.2: Portable keystore client makefile
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Appendix F

Structures for sending and receiving

enum req_type {

NONE,

RESET,

INIT ,

INSERT,

DELETE,

GET

} ;

enum res_type {

NO_ERROR,

NO_MASTER_KEY,

NO_KEY,

KEYSTORE_ALREADY_RESETED,

KEYSTORE_ALREADY_EXISTS,

MASTER_KEY_ALREADY_EXISTS,

KEY_ALREADY_ADDED,

VALUE_CORRUPT,

WRONG_PASSWORD,

SYSTEM_ERROR

} ;

struct ks_msg {

char passwd [PASSWORD_MAX] ;

char key [KEY_MAX] ;

char value [VALUE_MAX] ;

} ;

struct ks_res {

enum res_type r e s ;
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struct ks_msg msg ;

} ;

struct ks_req {

int req ;

uid_t uid ;

struct ks_msg msg ;

} ; label

Listing F.1: Structures and enumerations for sending and receiving
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Appendix G

Class diagram

<<enumeration>>

Transactions

TEST
GET
INSERT
DEL
EXIST
SAW
RESET
PASSWORD
LOCK
UNLOCK
ZERO
GENERATE
IMPORT
SIGN
VERIFY
GET_PUBKEY
DEL_KEY
GRANT
UNGRANT
GETMTIME
DUPLICATE
IS_HARDWARE_BACKED
CLEAR_UID
RESET_UID
SYNC_UID
PASSWORD_UID

Figure G.1: Keystore transactions
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Figure G.3: Class keystore
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Figure G.4: Classes blob and entropy
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Figure G.5: Class userstate
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