

Di e nve Intto

DEDESSIGNIGN
PPAATTTERNTERNSS

A Few Words on Copyright

Hi! My name is Alexander Shvets. I’m
the author of the book Dive Into
Design Patterns and the online course
Dive Into Refactoring.

This book is for your personal use only.
Please don’t share it with any third
parties except your family members. If you’d like to share the
book with a friend or colleague, buy and send them a
new copy.

All profit from the sale of my books and courses is spent on
the development of Refactoring.Guru. Each copy sold helps
the project immensely and brings the moment of a new book
release a little bit closer.

 Alexander Shvets, Refactoring.Guru, 2019
 support@refactoring.guru

 Illustrations: Dmitry Zhart

Editing: Andrew Wetmore, Rhyan Solomon

I dedicate this book to my wife, Maria. If it
hadn’t been for her, I’d probably have finished

the book some 30 years later.

Table of Contents
Table of Contents ... 4

How to Read This Book .. 6

INTRODUCTION TO OOP ... 7

Basics of OOP ... 8

Pillars of OOP ...13

Relations Between Objects..20

INTRODUCTION TO DESIGN PATTERNS ...23

What’s a Design Pattern? ..24

Why Should I Learn Patterns?...28

SOFTWARE DESIGN PRINCIPLES ...29

Features of Good Design ..30

Design Principles...34

§ Encapsulate What Varies ...35

§ Program to an Interface, not an Implementation.39

§ Favor Composition Over Inheritance44

SOLID Principles .. 48

§ Single Responsibility Principle....................................49

§ Open/Closed Principle..51

§ Liskov Substitution Principle54

§ Interface Segregation Principle...................................61

§ Dependency Inversion Principle64

4 Table of Contents

CATALOG OF DESIGN PATTERNS .. 68

Creational Design Patterns...69

§ Factory Method...71

§ Abstract Factory..87

§ Builder... 103

§ Prototype.. 122

§ Singleton.. 136

Structural Design Patterns.. 146

§ Adapter ... 149

§ Bridge .. 162

§ Composite .. 177

§ Decorator.. 191

§ Facade... 209

§ Flyweight ... 219

§ Proxy .. 233

Behavioral Design Patterns ... 246

§ Chain of Responsibility ... 250

§ Command ... 268

§ Iterator .. 289

§ Mediator ... 304

§ Memento .. 320

§ Observer ... 336

§ State... 352

§ Strategy .. 368

§ Template Method .. 381

§ Visitor .. 393

Conclusion .. 409

5 Table of Contents

How to Read This Book

This book contains the descriptions of 22 classic design pat-
terns formulated by the “Gang of Four” (or simply GoF) in 1994.

Each chapter explores a particular pattern. Therefore, you can
read from cover to cover or by picking the patterns you’re inter-
ested in.

Many patterns are related, so you can easily jump from topic
to topic using numerous anchors. The end of each chapter has
a list of links between the current pattern and others. If you
see the name of a pattern that you haven’t seen yet, just keep
reading—this item will appear in one of the next chapters.

Design patterns are universal. Therefore, all code samples in
this book are written in pseudocode that doesn’t constrain the
material to a particular programming language.

Prior to studying patterns, you can refresh your memory by
going over the key terms of object-oriented programming.
That chapter also explains the basics of UML diagrams, which
is useful because the book has tons of them. Of course, if you
already know all of that, you can proceed to learning patterns
right away.

6 How to read this book

INTRODUCTION
TO OOP

Basics of OOP
Object-oriented programming is a paradigm based on the con-
cept of wrapping pieces of data, and behavior related to that
data, into special bundles called objects, which are construct-
ed from a set of “blueprints”, defined by a programmer, called
classes.

Objects, classes

Do you like cats? I hope you do because I’ll try to explain the
OOP concepts using various cat examples.

This is a UML class diagram. You’ll see a lot of such diagrams in the book.

8 Introduction to OOP / Basics of OOP

Say you have a cat named Oscar. Oscar is an object, an instance
of the Cat class. Every cat has a lot of standard attributes:
name, sex, age, weight, color, favorite food, etc. These are the
class’s fields.

All cats also behave similarly: they breathe, eat, run, sleep and
meow. These are the class’s methods. Collectively, fields and
methods can be referenced as the members of their class.

Data stored inside the object’s fields is often referenced
as state, and all the object’s methods define its behavior.

Objects are instances of classes.

9 Introduction to OOP / Basics of OOP

Luna, your friend’s cat, is also an instance of the Cat class.
It has the same set of attributes as Oscar. The difference is in
values of these attributes: her sex is female, she has a differ-
ent color, and weighs less.

So a class is like a blueprint that defines the structure for
objects, which are concrete instances of that class.

Class hierarchies

Everything fine and dandy when we talk about one class. Nat-
urally, a real program contains more than a single class. Some
of these classes might be organized into class hierarchies. Let’s
find out what that means.

Say your neighbor has a dog called Fido. It turns out, dogs
and cats have a lot in common: name, sex, age, and color are
attributes of both dogs and cats. Dogs can breathe, sleep and
run the same way cats do. So it seems that we can define the
base Animal class that would list the common attributes and
behaviors.

A parent class, like the one we’ve just defined, is called a
superclass. Its children are subclasses. Subclasses inherit state
and behavior from their parent, defining only attributes or
behaviors that differ. Thus, the Cat class would have the
meow method, and the Dog class the bark method.

10 Introduction to OOP / Basics of OOP

UML diagram of a class hierarchy. All classes in this diagram are part of
the Animal class hierarchy.

Assuming that we have a related business requirement, we can
go even further and extract a more general class for all liv-
ing Organisms which will become a superclass for Animals

and Plants . Such a pyramid of classes is a hierarchy. In such
a hierarchy, the Cat class inherits everything from both the
Animal and Organism classes.

11 Introduction to OOP / Basics of OOP

Classes in a UML diagram can be simplified if it’s more important to show
their relations than their contents.

Subclasses can override the behavior of methods that they
inherit from parent classes. A subclass can either complete-
ly replace the default behavior or just enhance it with some
extra stuff.

12 Introduction to OOP / Basics of OOP

Pillars of OOP
Object-oriented programming is based on four pillars, con-
cepts that differentiate it from other programming paradigms.

Abstraction

Most of the time when you’re creating a program with OOP,
you shape objects of the program based on real-world objects.
However, objects of the program don’t represent the origi-
nals with 100% accuracy (and it’s rarely required that they do).
Instead, your objects only model attributes and behaviors of
real objects in a specific context, ignoring the rest.

For example, an Airplane class could probably exist in both
a flight simulator and a flight booking application. But in the
former case, it would hold details related to the actual flight,
whereas in the latter class you would care only about the seat
map and which seats are available.

13 Introduction to OOP / Pillars of OOP

Different models of the same real-world object.

Abstraction is a model of a real-world object or phenomenon,
limited to a specific context, which represents all details rele-
vant to this context with high accuracy and omits all the rest.

Encapsulation

To start a car engine, you only need to turn a key or press a
button. You don’t need to connect wires under the hood, rotate
the crankshaft and cylinders, and initiate the power cycle of
the engine. These details are hidden under the hood of the
car. You have only a simple interface: a start switch, a steering
wheel and some pedals. This illustrates how each object has
an interface—a public part of an object, open to interactions
with other objects.

14 Introduction to OOP / Pillars of OOP

that any object passed to an airport object, whether it’s an
Airplane , a Helicopter or a freaking DomesticatedGryphon

would be able to arrive or depart from this type of airport.

UML diagram of several classes implementing an interface.

You could change the implementation of the fly method in
these classes in any way you want. As long as the signature
of the method remains the same as declared in the interface,
all instances of the Airport class can work with your flying
objects just fine.

16 Introduction to OOP / Pillars of OOP

Inheritance

Inheritance is the ability to build new classes on top of exist-
ing ones. The main benefit of inheritance is code reuse. If you
want to create a class that’s slightly different from an existing
one, there’s no need to duplicate code. Instead, you extend the
existing class and put the extra functionality into a resulting
subclass, which inherits fields and methods of the superclass.

The consequence of using inheritance is that subclasses have
the same interface as their parent class. You can’t hide a
method in a subclass if it was declared in the superclass. You
must also implement all abstract methods, even if they don’t
make sense for your subclass.

UML diagram of extending a single class versus implementing multiple
interfaces at the same time.

In most programming languages a subclass can extend only
one superclass. On the other hand, any class can implement
several interfaces at the same time. But, as I mentioned before,

17 Introduction to OOP / Pillars of OOP

if a superclass implements an interface, all of its subclasses
must also implement it.

Polymorphism

Let’s look at some animal examples. Most Animals can make
sounds. We can anticipate that all subclasses will need to over-
ride the base makeSound method so each subclass can emit
the correct sound; therefore we can declare it abstract right
away. This lets us omit any default implementation of the
method in the superclass, but force all subclasses to come up
with their own.

Imagine that we’ve put several cats and dogs into a large bag.
Then, with closed eyes, we take the animals one-by-one out of

18 Introduction to OOP / Pillars of OOP

the bag. After taking an animal from the bag, we don’t know
for sure what it is. However, if we cuddle it hard enough, the
animal will emit a specific sound of joy, depending on its con-
crete class.

The program doesn’t know the concrete type of the object con-
tained inside the a variable; but, thanks to the special mech-
anism called polymorphism, the program can trace down the
subclass of the object whose method is being executed and
run the appropriate behavior.

Polymorphism is the ability of a program to detect the real class
of an object and call its implementation even when its real
type is unknown in the current context.

You can also think of polymorphism as the ability of an object
to “pretend” to be something else, usually a class it extends or
an interface it implements. In our example, the dogs and cats
in the bag were pretending to be generic animals.

bag = [new Cat(), new Dog()];1

2

foreach (Animal a : bag)3

a.makeSound()4

5

// Meow!6

// Woof!7

19 Introduction to OOP / Pillars of OOP

Relations Between Objects
In addition to inheritance and implementation that we’ve
already seen, there are other types of relations between
objects that we haven’t talked about yet.

UML Association. Professor communicates with students.

Association is a type of relationship in which one object uses or
interacts with another. In UML diagrams the association rela-
tionship is shown by a simple arrow drawn from an object and
pointing to the object it uses. By the way, having a bi-direc-
tional association is a completely normal thing. In this case,
the arrow has a point at each end.

In general, you use an association to represent something like
a field in a class. The link is always there, in that you can
always ask an order for its customer. It need not actually be a
field, if you are modeling from a more interface perspective, it
can just indicate the presence of a method that will return the
order’s customer.

20 Introduction to OOP / Relations Between Objects

UML Dependency. Professor depends on salary.

Dependency is a weaker variant of association that usually
implies that there’s no permanent link between objects.
Dependency typically (but not always) implies that an object
accepts another object as a method parameter, instantiates, or
uses another object. Here’s how you can spot a dependency
between classes: a dependency exists between two classes if
changes to the definition of one class result in modifications
in another class.

UML Composition. University consists of departments.

Composition is a “whole-part” relationship between two
objects, one of which is composed of one or more instances of
the other. The distinction between this relation and others is
that the component can only exist as a part of the container.
In UML the composition relationship is shown by a line with
a filled diamond at the container end and an arrow at the end
pointing toward the component.

21 Introduction to OOP / Relations Between Objects

While we talk about relations between objects, keep in
mind that UML represents relations between classes. It
means that a university object might consist of multiple
departments even though you see just one “block” for
each entity in the diagram. UML notation can represent
quantities on both sides of relationships, but it’s okay to
omit them if the quantities are clear from the context.

UML Aggregation. Department contains professors.

Aggregation is a less strict variant of composition, where one
object merely contains a reference to another. The contain-
er doesn’t control the life cycle of the component. The com-
ponent can exist without the container and can be linked to
several containers at the same time. In UML the aggregation
relationship is drawn the same as for composition, but with an
empty diamond at the arrow’s base.

22 Introduction to OOP / Relations Between Objects

INTRODUCTION
TO PATTERNS

What’s a Design Pattern?
Design patterns are typical solutions to commonly occurring
problems in software design. They are like pre-made blue-
prints that you can customize to solve a recurring design prob-
lem in your code.

You can’t just find a pattern and copy it into your program,
the way you can with off-the-shelf functions or libraries. The
pattern is not a specific piece of code, but a general concept
for solving a particular problem. You can follow the pattern
details and implement a solution that suits the realities of your
own program.

Patterns are often confused with algorithms, because both
concepts describe typical solutions to some known problems.
While an algorithm always defines a clear set of actions that
can achieve some goal, a pattern is a more high-level descrip-
tion of a solution. The code of the same pattern applied to two
different programs may be different.

An analogy to an algorithm is a cooking recipe: both have clear
steps to achieve a goal. On the other hand, a pattern is more
like a blueprint: you can see what the result and its features
are, but the exact order of implementation is up to you.

24 Introduction to Design Patterns / What’s a Design Pattern?

What does the pattern consist of?

Most patterns are described very formally so people can repro-
duce them in many contexts. Here are the sections that are
usually present in a pattern description:

• Intent of the pattern briefly describes both the problem and
the solution.

• Motivation further explains the problem and the solution the
pattern makes possible.

• Structure of classes shows each part of the pattern and how
they are related.

• Code example in one of the popular programming languages
makes it easier to grasp the idea behind the pattern.

Some pattern catalogs list other useful details, such as applic-
ability of the pattern, implementation steps and relations with
other patterns.

Classification of patterns

Design patterns differ by their complexity, level of detail and
scale of applicability to the entire system being designed. I like
the analogy to road construction: you can make an intersec-
tion safer by either installing some traffic lights or building an
entire multi-level interchange with underground passages for
pedestrians.





25 Introduction to Design Patterns / What’s a Design Pattern?

The most basic and low-level patterns are often called idioms.
They usually apply only to a single programming language.

The most universal and high-level patterns are architectural
patterns. Developers can implement these patterns in virtual-
ly any language. Unlike other patterns, they can be used to
design the architecture of an entire application.

In addition, all patterns can be categorized by their intent, or
purpose. This book covers three main groups of patterns:

• Creational patterns provide object creation mechanisms that
increase flexibility and reuse of existing code.

• Structural patterns explain how to assemble objects and class-
es into larger structures, while keeping the structures flexible
and efficient.

• Behavioral patterns take care of effective communication and
the assignment of responsibilities between objects.

Who invented patterns?

That’s a good, but not a very accurate, question. Design pat-
terns aren’t obscure, sophisticated concepts—quite the oppo-
site. Patterns are typical solutions to common problems in
object-oriented design. When a solution gets repeated over
and over in various projects, someone eventually puts a name



26 Introduction to Design Patterns / What’s a Design Pattern?

to it and describes the solution in detail. That’s basically how
a pattern gets discovered.

The concept of patterns was first described by Christopher
Alexander in A Pattern Language: Towns, Buildings, Construc-
tion1. The book describes a “language” for designing the urban
environment. The units of this language are patterns. They
may describe how high windows should be, how many levels
a building should have, how large green areas in a neighbor-
hood are supposed to be, and so on.

The idea was picked up by four authors: Erich Gamma, John
Vlissides, Ralph Johnson, and Richard Helm. In 1995, they pub-
lished Design Patterns: Elements of Reusable Object-Oriented
Software 2, in which they applied the concept of design pat-
terns to programming. The book featured 23 patterns solving
various problems of object-oriented design and became a best-
seller very quickly. Due to its lengthy name, people started to
call it “the book by the gang of four” which was soon short-
ened to simply “the GOF book”.

Since then, dozens of other object-oriented patterns have been
discovered. The “pattern approach” became very popular in
other programming fields, so lots of other patterns now exist
outside of object-oriented design as well.

1. A Pattern Language: Towns, Buildings, Construction:
https://refactoring.guru/pattern-language-book

2. Design Patterns: Elements of Reusable Object-Oriented Software:
https://refactoring.guru/gof-book

27 Introduction to Design Patterns / What’s a Design Pattern?

Why Should I Learn Patterns?
The truth is that you might manage to work as a programmer
for many years without knowing about a single pattern. A lot
of people do just that. Even in that case, though, you might be
implementing some patterns without even knowing it. So why
would you spend time learning them?

• Design patterns are a toolkit of tried and tested solutions
to common problems in software design. Even if you never
encounter these problems, knowing patterns is still useful
because it teaches you how to solve all sorts of problems using
principles of object-oriented design.

• Design patterns define a common language that you and your
teammates can use to communicate more efficiently. You can
say, “Oh, just use a Singleton for that,” and everyone will
understand the idea behind your suggestion. No need to
explain what a singleton is if you know the pattern and
its name.

28 Introduction to Design Patterns / Why Should I Learn Patterns?

SOFTWARE DESIGN
PRINCIPLES

Features of Good Design
Before we proceed to the actual patterns, let’s discuss the
process of designing software architecture: things to aim for
and things you’d better avoid.

Code reuse

Cost and time are two of the most valuable metrics when
developing any software product. Less time in development
means entering the market earlier than competitors. Lower
development costs mean more money is left for marketing and
a broader reach to potential customers.

Code reuse is one of the most common ways to reduce devel-
opment costs. The intent is pretty obvious: instead of develop-
ing something over and over from scratch, why don’t we reuse
existing code in new projects?

The idea looks great on paper, but it turns out that making
existing code work in a new context usually takes extra effort.
Tight coupling between components, dependencies on con-
crete classes instead of interfaces, hardcoded operations—all
of this reduces flexibility of the code and makes it harder to
reuse it.

Using design patterns is one way to increase flexibility of soft-
ware components and make them easier to reuse. However,



30 Features of Good Design

Extensibility

Change is the only constant thing in a programmer’s life.

• You released a video game for Windows, but now people ask
for a macOS version.

• You created a GUI framework with square buttons, but several
months later round buttons become a trend.

• You designed a brilliant e-commerce website architecture, but
just a month later customers ask for a feature that would let
them accept phone orders.

Each software developer has dozens of similar stories. There
are several reasons why this happens.

There also is a middle level. This is where I see patterns.

Design patterns are both smaller and more abstract than

frameworks. They’re really a description about how a couple of

classes can relate to and interact with each other. The level of

reuse increases when you move from classes to patterns and

finally frameworks.

What is nice about this middle layer is that patterns offer

reuse in a way that is less risky than frameworks. Building a

framework is high-risk and a significant investment. Patterns

let you reuse design ideas and concepts independently of con-

crete code. „


32 Features of Good Design / Extensibility

First, we understand the problem better once we start to solve
it. Often by the time you finish the first version of an app,
you’re ready to rewrite it from scratch because now you under-
stand many aspects of the problem much better. You have also
grown professionally, and your own code now looks like crap.

Something beyond your control has changed. This is why so
many dev teams pivot from their original ideas into something
new. Everyone who relied on Flash in an online application
has been reworking or migrating their code as browser after
browser drops support for Flash.

The third reason is that the goalposts move. Your client was
delighted with the current version of the application, but now
sees eleven “little” changes he’d like so it can do other things
he never mentioned in the original planning sessions. These
aren’t frivolous changes: your excellent first version has shown
him that even more is possible.

There’s a bright side: if someone asks you to change
something in your app, that means someone still cares
about it.

That’s why all seasoned developers try to provide for possible
future changes when designing an application’s architecture.

33 Features of Good Design / Extensibility

Design Principles
What is good software design? How would you measure it?
What practices would you need to follow to achieve it? How
can you make your architecture flexible, stable and easy to
understand?

These are the great questions; but, unfortunately, the answers
are different depending on the type of application you’re build-
ing. Nevertheless, there are several universal principles of soft-
ware design that might help you answer these questions for
your own project. Most of the design patterns listed in this
book are based on these principles.

34 Design Principles

Encapsulate What Varies

Identify the aspects of your application that vary and
separate them from what stays the same.

The main goal of this principle is to minimize the effect caused
by changes.

Imagine that your program is a ship, and changes are hideous
mines that linger under water. Struck by the mine, the
ship sinks.

Knowing this, you can divide the ship’s hull into independent
compartments that can be safely sealed to limit damage to a
single compartment. Now, if the ship hits a mine, the ship as a
whole remains afloat.

In the same way, you can isolate the parts of the program that
vary in independent modules, protecting the rest of the code
from adverse effects. As a result, you spend less time getting
the program back into working shape, implementing and test-
ing the changes. The less time you spend making changes, the
more time you have for implementing features.

35 Design Principles / Encapsulate What Varies

Encapsulation on a method level

Say you’re making an e-commerce website. Somewhere in your
code, there’s a getOrderTotal method that calculates a grand
total for the order, including taxes.

We can anticipate that tax-related code might need to change
in the future. The tax rate depends on the country, state or
even city where the customer resides, and the actual formu-
la may change over time due to new laws or regulations. As a
result, you’ll need to change the getOrderTotal method quite
often. But even the method’s name suggests that it doesn’t
care about how the tax is calculated.

BEFORE: tax calculation code is mixed with the rest of the method’s code.

You can extract the tax calculation logic into a separate
method, hiding it from the original method.

method getOrderTotal(order) is1

total = 02

foreach item in order.lineItems3

total += item.price * item.quantity4

5

if (order.country == "US")6

total += total * 0.07 // US sales tax7

else if (order.country == "EU"):8

total += total * 0.20 // European VAT9

10

return total11

36 Design Principles / Encapsulate What Varies

AFTER: you can get the tax rate by calling a designated method.

Tax-related changes become isolated inside a single method.
Moreover, if the tax calculation logic becomes too complicat-
ed, it’s now easier to move it to a separate class.

Encapsulation on a class level

Over time you might add more and more responsibilities to a
method which used to do a simple thing. These added behav-
iors often come with their own helper fields and methods that
eventually blur the primary responsibility of the containing
class. Extracting everything to a new class might make things
much more clear and simple.

method getOrderTotal(order) is1

total = 02

foreach item in order.lineItems3

total += item.price * item.quantity4

5

total += total * getTaxRate(order.country)6

7

return total8

9

method getTaxRate(country) is10

if (country == "US")11

return 0.07 // US sales tax12

else if (country == "EU")13

return 0.20 // European VAT14

else15

return 016

37 Design Principles / Encapsulate What Varies

BEFORE: calculating tax in Order class.

Objects of the Order class delegate all tax-related work to a
special object that does just that.

AFTER: tax calculation is hidden from the order class.

38 Design Principles / Encapsulate What Varies

Program to an Interface, not an
Implementation

Program to an interface, not an implementation. Depend
on abstractions, not on concrete classes.

You can tell that the design is flexible enough if you can easily
extend it without breaking any existing code. Let’s make sure
that this statement is correct by looking at another cat exam-
ple. A Cat that can eat any food is more flexible than one
that can eat just sausages. You can still feed the first cat with
sausages because they are a subset of “any food”; however, you
can extend that cat’s menu with any other food.

When you want to make two classes collaborate, you can start
by making one of them dependent on the other. Hell, I often
start by doing that myself. However, there’s another, more flex-
ible way to set up collaboration between objects:

1. Determine what exactly one object needs from the other:
which methods does it execute?

2. Describe these methods in a new interface or abstract class.

3. Make the class that is a dependency implement this interface.

4. Now make the second class dependent on this interface rather
than on the concrete class. You still can make it work with

39 Design Principles / Program to an Interface, not an Implementation

objects of the original class, but the connection is now much
more flexible.

Before and after extracting the interface. The code on the right is more
flexible than the code on the left, but it’s also more complicated.

After making this change, you won’t probably feel any immedi-
ate benefit. On the contrary, the code has become more com-
plicated than it was before. However, if you feel that this might
be a good extension point for some extra functionality, or that
some other people who use your code might want to extend it
here, then go for it.

40 Design Principles / Program to an Interface, not an Implementation

Example

Let’s look at another example which illustrates that working
with objects through interfaces might be more beneficial than
depending on their concrete classes. Imagine that you’re creat-
ing a software development company simulator. You have dif-
ferent classes that represent various employee types.

BEFORE: all classes are tightly coupled.

In the beginning, the Company class is tightly coupled to con-
crete classes of employees. However, despite the difference in
their implementations, we can generalize various work-related

41 Design Principles / Program to an Interface, not an Implementation

methods and then extract a common interface for all employ-
ee classes.

After doing that, we can apply polymorphism inside the
Company class, treating various employee objects via the
Employee interface.

BETTER: polymorphism helped us simplify the code, but the rest of the
Company class still depends on the concrete employee classes.

The Company class remains coupled to the employee classes.
This is bad because if we introduce new types of companies
that work with other types of employees, we’ll need to over-
ride most of the Company class instead of reusing that code.

To solve this problem, we could declare the method for get-
ting employees as abstract. Each concrete company will imple-

42 Design Principles / Program to an Interface, not an Implementation

ment this method differently, creating only those employees
that it needs.

AFTER: the primary method of the Company class is independent from
concrete employee classes. Employee objects are created in concrete

company subclasses.

After this change, the Company class has become independent
from various employee classes. Now you can extend this class
and introduce new types of companies and employees while
still reusing a portion of the base company class. Extending
the base company class doesn’t break any existing code that
already relies on it.

By the way, you’ve just seen applying a design pattern in
action! That was an example of the Factory Method pattern.
Don’t worry: we’ll discuss it later in detail.

43 Design Principles / Program to an Interface, not an Implementation

Favor Composition Over
Inheritance
Inheritance is probably the most obvious and easy way of
reusing code between classes. You have two classes with the
same code. Create a common base class for these two and
move the similar code into it. Piece of cake!

Unfortunately, inheritance comes with caveats that often
become apparent only after your program already has tons of
classes and changing anything is pretty hard. Here’s a list of
those problems.

• A subclass can’t reduce the interface of the superclass. You
have to implement all abstract methods of the parent class
even if you won’t be using them.

• When overriding methods you need to make sure that the
new behavior is compatible with the base one. It’s important
because objects of the subclass may be passed to any code
that expects objects of the superclass and you don’t want that
code to break.

• Inheritance breaks encapsulation of the superclass because
the internal details of the parent class become available to the
subclass. There might be an opposite situation where a pro-
grammer makes a superclass aware of some details of sub-
classes for the sake of making further extension easier.

44 Design Principles / Favor Composition Over Inheritance

• Subclasses are tightly coupled to superclasses. Any change in
a superclass may break the functionality of subclasses.

• Trying to reuse code through inheritance can lead to creat-
ing parallel inheritance hierarchies. Inheritance usually takes
place in a single dimension. But whenever there are two or
more dimensions, you have to create lots of class combina-
tions, bloating the class hierarchy to a ridiculous size.

There’s an alternative to inheritance called composition.
Whereas inheritance represents the “is a” relationship between
classes (a car is a transport), composition represents the “has
a” relationship (a car has an engine).

I should mention that this principle also applies to aggrega-
tion—a more relaxed variant of composition where one object
may have a reference to the other one but doesn’t manage its
lifecycle. Here’s an example: a car has a driver, but he or she
may use another car or just walk without the car.

Example

Imagine that you need to create a catalog app for a car manu-
facturer. The company makes both cars and trucks; they can be
either electric or gas; all models have either manual controls
or an autopilot.

45 Design Principles / Favor Composition Over Inheritance

INHERITANCE: extending a class in several dimensions (cargo type ×
engine type × navigation type) may lead to a combinatorial explosion

of subclasses.

As you see, each additional parameter results in multiply-
ing the number of subclasses. There’s a lot of duplicate code
between subclasses because a subclass can’t extend two class-
es at the same time.

You can solve this problem with composition. Instead of car
objects implementing a behavior on their own, they can dele-
gate it to other objects.

The added benefit is that you can replace a behavior at run-
time. For instance, you can replace an engine object linked to a
car object just by assigning a different engine object to the car.

46 Design Principles / Favor Composition Over Inheritance

COMPOSITION: different “dimensions” of functionality extracted to their
own class hierarchies.

This structure of classes resembles the Strategy pattern, which
we’ll go over later in this book.

47 Design Principles / Favor Composition Over Inheritance

SOLID Principles
Now that you know the basic design principles, let’s take a
look at five that are commonly known as the SOLID princi-
ples. Robert Martin introduced them in the book Agile Software
Development, Principles, Patterns, and Practices1.

SOLID is a mnemonic for five design principles intended to
make software designs more understandable, flexible and
maintainable.

As with everything in life, using these principles mindlessly
can cause more harm than good. The cost of applying these
principles into a program’s architecture might be making it
more complicated than it should be. I doubt that there’s a suc-
cessful software product in which all of these principles are
applied at the same time. Striving for these principles is good,
but always try to be pragmatic and don’t take everything writ-
ten here as dogma.

1. Agile Software Development, Principles, Patterns, and Practices:
https://refactoring.guru/principles-book

48 SOLID Principles

S ingle Responsibility Principle

A class should have just one reason to change.

Try to make every class responsible for a single part of the
functionality provided by the software, and make that respon-
sibility entirely encapsulated by (you can also say hidden with-
in) the class.

The main goal of this principle is reducing complexity. You
don’t need to invent a sophisticated design for a program that
only has about 200 lines of code. Make a dozen methods pret-
ty, and you’ll be fine.

The real problems emerge when your program constantly
grows and changes. At some point classes become so big that
you can no longer remember their details. Code navigation
slows down to a crawl, and you have to scan through whole
classes or even an entire program to find specific things. The
number of entities in program overflows your brain stack, and
you feel that you’re losing control over the code.

There’s more: if a class does too many things, you have to
change it every time one of these things changes. While doing
that, you’re risking breaking other parts of the class which you
didn’t even intend to change.

49 SOLID Principles / Single Responsibility Principle

If you feel that it’s becoming hard to focus on specific aspects
of the program one at a time, remember the single responsibil-
ity principle and check whether it’s time to divide some classes
into parts.

Example

The Employee class has several reasons to change. The first
reason might be related to the main job of the class: managing
employee data. However, there’s another reason: the format of
the timesheet report may change over time, requiring you to
change the code within the class.

BEFORE: the class contains several different behaviors.

Solve the problem by moving the behavior related to printing
timesheet reports into a separate class. This change lets you
move other report-related stuff to the new class.

AFTER: the extra behavior is in its own class.

50 SOLID Principles / Single Responsibility Principle

O pen/Closed Principle

Classes should be open for extension but closed for
modification.

The main idea of this principle is to keep existing code from
breaking when you implement new features.

A class is open if you can extend it, produce a subclass and
do whatever you want with it—add new methods or fields,
override base behavior, etc. Some programming languages let
you restrict further extension of a class with special keywords,
such as final . After this, the class is no longer open. At the
same time, the class is closed (you can also say complete) if it’s
100% ready to be used by other classes—its interface is clearly
defined and won’t be changed in the future.

When I first learned about this principle, I was confused
because the words open & closed sound mutually exclusive.
But in terms of this principle, a class can be both open (for
extension) and closed (for modification) at the same time.

If a class is already developed, tested, reviewed, and includ-
ed in some framework or otherwise used in an app, trying to
mess with its code is risky. Instead of changing the code of the
class directly, you can create a subclass and override parts of

51 SOLID Principles / Open/Closed Principle

the original class that you want to behave differently. You’ll
achieve your goal but also won’t break any existing clients of
the original class.

This principle isn’t meant to be applied for all changes to a
class. If you know that there’s a bug in the class, just go on and
fix it; don’t create a subclass for it. A child class shouldn’t be
responsible for the parent’s issues.

Example

You have an e-commerce application with an Order class that
calculates shipping costs and all shipping methods are hard-
coded inside the class. If you need to add a new shipping
method, you have to change the code of the Order class and
risk breaking it.

BEFORE: you have to change the Order class whenever you add a new
shipping method to the app.

52 SOLID Principles / Open/Closed Principle

You can solve the problem by applying the Strategy pattern. Start

by extracting shipping methods into separate classes with a com-

mon interface.

AFTER: adding a new shipping method doesn’t require changing
existing classes.

Now when you need to implement a new shipping method, you

can derive a new class from the Shipping interface without

touching any of the Order class’ code. The client code of the

Order class will link orders with a shipping object of the new

class whenever the user selects this shipping methods in the UI.

As a bonus, this solution let you move the delivery time calcula-

tion to more relevant classes, according to the single responsibility

principle.

53 SOLID Principles / Open/Closed Principle

L iskov Substitution Principle1

When extending a class, remember that you should be
able to pass objects of the subclass in place of objects of
the parent class without breaking the client code.

This means that the subclass should remain compatible with
the behavior of the superclass. When overriding a method,
extend the base behavior rather than replacing it with some-
thing else entirely.

The substitution principle is a set of checks that help pre-
dict whether a subclass remains compatible with the code that
was able to work with objects of the superclass. This concept
is critical when developing libraries and frameworks because
your classes are going to be used by other people whose code
you can’t directly access and change.

Unlike other design principles which are wide open for inter-
pretation, the substitution principle has a set of formal
requirements for subclasses, and specifically for their methods.
Let’s go over this checklist in detail.

1. This principle is named by Barbara Liskov, who defined it in 1987 in her
work Data abstraction and hierarchy: https://refactoring.guru/liskov/dah

54 SOLID Principles / Liskov Substitution Principle

• Parameter types in a method of a subclass should match or be
more abstract than parameter types in the method of the super-
class. Sounds confusing? Let’s have an example.

◦ Say there’s a class with a method that’s supposed to feed
cats: feed(Cat c) . Client code always passes cat objects
into this method.

◦ Good: Say you created a subclass that overrode the method
so that it can feed any animal (a superclass of cats):
feed(Animal c) . Now if you pass an object of this subclass

instead of an object of the superclass to the client code,
everything would still work fine. The method can feed all
animals, so it can still feed any cat passed by the client.

◦ Bad: You created another subclass and restricted the feed-
ing method to only accept Bengal cats (a subclass of cats):
feed(BengalCat c) . What will happen to the client code if

you link it with an object like this instead of with the origi-
nal class? Since the method can only feed a specific breed of
cats, it won’t serve generic cats passed by the client, break-
ing all related functionality.

• The return type in a method of a subclass should match or be
a subtype of the return type in the method of the superclass.
As you can see, requirements for a return type are inverse to
requirements for parameter types.

55 SOLID Principles / Liskov Substitution Principle

◦ Say you have a class with a method buyCat(): Cat . The
client code expects to receive any cat as a result of execut-
ing this method.

◦ Good: A subclass overrides the method as follows:
buyCat(): BengalCat . The client gets a Bengal cat, which

is still a cat, so everything is okay.

◦ Bad: A subclass overrides the method as follows:
buyCat(): Animal . Now the client code breaks since it

receives an unknown generic animal (an alligator? a bear?)
that doesn’t fit a structure designed for a cat.

Another anti-example comes from the world of programming
languages with dynamic typing: the base method returns a
string, but the overridden method returns a number.

• A method in a subclass shouldn’t throw types of exceptions
which the base method isn’t expected to throw. In other words,
types of exceptions should match or be subtypes of the ones
that the base method is already able to throw. This rule comes
from the fact that try-catch blocks in the client code target
specific types of exceptions which the base method is likely to
throw. Therefore, an unexpected exception might slip through
the defensive lines of the client code and crash the entire
application.

56 SOLID Principles / Liskov Substitution Principle

In most modern programming languages, especially sta-
tically typed ones (Java, C#, and others), these rules are
built into the language. You won’t be able to compile a
program that violates these rules.

• A subclass shouldn’t strengthen pre-conditions. For example,
the base method has a parameter with type int . If a sub-
class overrides this method and requires that the value of an
argument passed to the method should be positive (by throw-
ing an exception if the value is negative), this strengthens the
pre-conditions. The client code, which used to work fine when
passing negative numbers into the method, now breaks if it
starts working with an object of this subclass.

• A subclass shouldn’t weaken post-conditions. Say you have a
class with a method that works with a database. A method of
the class is supposed to always close all opened database con-
nections upon returning a value.

You created a subclass and changed it so that database con-
nections remain open so you can reuse them. But the client
might not know anything about your intentions. Because it
expects the methods to close all the connections, it may sim-
ply terminate the program right after calling the method, pol-
luting a system with ghost database connections.

• Invariants of a superclass must be preserved. This is probably
the least formal rule of all. Invariants are conditions in which

57 SOLID Principles / Liskov Substitution Principle

an object makes sense. For example, invariants of a cat are
having four legs, a tail, ability to meow, etc. The confusing part
about invariants is that while they can be defined explicitly
in the form of interface contracts or a set of assertions within
methods, they could also be implied by certain unit tests and
expectations of the client code.

The rule on invariants is the easiest to violate because you
might misunderstand or not realize all of the invariants of
a complex class. Therefore, the safest way to extend a class
is to introduce new fields and methods, and not mess with
any existing members of the superclass. Of course, that’s not
always doable in real life.

• A subclass shouldn’t change values of private fields of the
superclass. What? How’s that even possible? It turns out some
programming languages let you access private members of
a class via reflection mechanisms. Other languages (Python,
JavaScript) don’t have any protection for the private members
at all.

Example

Let’s look at an example of a hierarchy of document classes
that violates the substitution principle.

58 SOLID Principles / Liskov Substitution Principle

BEFORE: saving doesn’t make sense in a read-only document, so the
subclass tries to solve it by resetting the base behavior in the

overridden method.

The save method in the ReadOnlyDocuments subclass throws
an exception if someone tries to call it. The base method
doesn’t have this restriction. This means that the client code
will break if we don’t check the document type before sav-
ing it.

The resulting code also violates the open/closed principle,
since the client code becomes dependent on concrete class-
es of documents. If you introduce a new document subclass,
you’ll need to change the client code to support it.

59 SOLID Principles / Liskov Substitution Principle

AFTER: the problem is solved after making the read-only document class
the base class of the hierarchy.

You can solve the problem by redesigning the class hierar-
chy: a subclass should extend the behavior of a superclass,
therefore the read-only document becomes the base class of
the hierarchy. The writable document is now a subclass which
extends the base class and adds the saving behavior.

60 SOLID Principles / Liskov Substitution Principle

I nterface Segregation Principle

Clients shouldn’t be forced to depend on methods they
do not use.

Try to make your interfaces narrow enough that client classes
don’t have to implement behaviors they don’t need.

According to the interface segregation principle, you should
break down “fat” interfaces into more granular and specific
ones. Clients should implement only those methods that they
really need. Otherwise, a change to a “fat” interface would
break even clients that don’t use the changed methods.

Class inheritance lets a class have just one superclass, but it
doesn’t limit the number of interfaces that the class can imple-
ment at the same time. Hence, there’s no need to cram tons
of unrelated methods to a single interface. Break it down into
several more refined interfaces—you can implement them all
in a single class if needed. However, some classes may be fine
with implementing just one of them.

Example

Imagine that you created a library that makes it easy to inte-
grate apps with various cloud computing providers. While in

61 SOLID Principles / Interface Segregation Principle

the initial version it only supported Amazon Cloud, it covered
the full set of cloud services and features.

At the time you assumed that all cloud providers have the
same broad spectrum of features as Amazon. But when it
came to implementing support for another provider, it turned
out that most of the interfaces of the library are too wide.
Some methods describe features that other cloud providers
just don’t have.

BEFORE: not all clients can satisfy the requirements of the
bloated interface.

While you can still implement these methods and put some
stubs there, it wouldn’t be a pretty solution. The better

62 SOLID Principles / Interface Segregation Principle

approach is to break down the interface into parts. Classes
that are able to implement the original interface can now just
implement several refined interfaces. Other classes can imple-
ment only those interfaces which have methods that make
sense for them.

AFTER: one bloated interface is broken down into a set of more
granular interfaces.

As with the other principles, you can go too far with this one.
Don’t further divide an interface which is already quite spe-
cific. Remember that the more interfaces you create, the more
complex your code becomes. Keep the balance.

63 SOLID Principles / Interface Segregation Principle

D ependency Inversion Principle

High-level classes shouldn’t depend on low-level class-
es. Both should depend on abstractions. Abstractions
shouldn’t depend on details. Details should depend on
abstractions.

Usually when designing software, you can make a distinction
between two levels of classes.

• Low-level classes implement basic operations such as working
with a disk, transferring data over a network, connecting to a
database, etc.

• High-level classes contain complex business logic that directs
low-level classes to do something.

Sometimes people design low-level classes first and only then
start working on high-level ones. This is very common when
you start developing a prototype on a new system, and you’re
not even sure what’s possible at the higher level because
low-level stuff isn’t yet implemented or clear. With such an
approach business logic classes tend to become dependent on
primitive low-level classes.

The dependency inversion principle suggests changing the
direction of this dependency.

64 SOLID Principles / Dependency Inversion Principle

1. For starters, you need to describe interfaces for low-level oper-
ations that high-level classes rely on, preferably in business
terms. For instance, business logic should call a method
openReport(file) rather than a series of methods
openFile(x) , readBytes(n) , closeFile(x) . These interfaces

count as high-level ones.

2. Now you can make high-level classes dependent on those
interfaces, instead of on concrete low-level classes. This
dependency will be much softer than the original one.

3. Once low-level classes implement these interfaces, they
become dependent on the business logic level, reversing the
direction of the original dependency.

The dependency inversion principle often goes along with the
open/closed principle: you can extend low-level classes to use
with different business logic classes without breaking existing
classes.

Example

In this example, the high-level budget reporting class uses a
low-level database class for reading and persisting its data.
This means that any change in the low-level class, such as
when a new version of the database server gets released, may
affect the high-level class, which isn’t supposed to care about
the data storage details.

65 SOLID Principles / Dependency Inversion Principle

BEFORE: a high-level class depends on a low-level class.

You can fix this problem by creating a high-level interface
that describes read/write operations and making the report-
ing class use that interface instead of the low-level class.
Then you can change or extend the original low-level class to
implement the new read/write interface declared by the busi-
ness logic.

AFTER: low-level classes depend on a high-level abstraction.

66 SOLID Principles / Dependency Inversion Principle

As a result, the direction of the original dependency has been
inverted: low-level classes are now dependent on high-level
abstractions.

67 SOLID Principles / Dependency Inversion Principle

CATALOG OF
DESIGN PATTERNS

FACTORY METHOD
Also known as: Virtual Constructor

Factory Method is a creational design pattern that provides
an interface for creating objects in a superclass, but allows

subclasses to alter the type of objects that will be created.

71 Creational Design Patterns / Factory Method

Problem

Imagine that you’re creating a logistics management appli-
cation. The first version of your app can only handle trans-
portation by trucks, so the bulk of your code lives inside the
Truck class.

After a while, your app becomes pretty popular. Each day you
receive dozens of requests from sea transportation companies
to incorporate sea logistics into the app.

Adding a new class to the program isn’t that simple if the rest of the code
is already coupled to existing classes.

Great news, right? But how about the code? At present, most of
your code is coupled to the Truck class. Adding Ships into
the app would require making changes to the entire codebase.
Moreover, if later you decide to add another type of transporta-
tion to the app, you will probably need to make all of these
changes again.



72 Creational Design Patterns / Factory Method

As a result, you will end up with pretty nasty code, riddled with
conditionals that switch the app’s behavior depending on the
class of transportation objects.

Solution

The Factory Method pattern suggests that you replace direct
object construction calls (using the new operator) with calls
to a special factory method. Don’t worry: the objects are still
created via the new operator, but it’s being called from within
the factory method. Objects returned by a factory method are
often referred to as “products.”

Subclasses can alter the class of objects being returned by the
factory method.

At first glance, this change may look pointless: we just moved
the constructor call from one part of the program to anoth-
er. However, consider this: now you can override the factory
method in a subclass and change the class of products being
created by the method.



73 Creational Design Patterns / Factory Method

There’s a slight limitation though: subclasses may return dif-
ferent types of products only if these products have a common
base class or interface. Also, the factory method in the base
class should have its return type declared as this interface.

All products must follow the same interface.

For example, both Truck and Ship classes should imple-
ment the Transport interface, which declares a method
called deliver . Each class implements this method different-
ly: trucks deliver cargo by land, ships deliver cargo by sea.
The factory method in the RoadLogistics class returns truck
objects, whereas the factory method in the SeaLogistics

class returns ships.

The code that uses the factory method (often called the client
code) doesn’t see a difference between the actual products
returned by various subclasses. The client treats all the prod-
ucts as abstract Transport .

74 Creational Design Patterns / Factory Method

As long as all product classes implement a common interface, you can pass
their objects to the client code without breaking it.

The client knows that all transport objects are supposed to
have the deliver method, but exactly how it works isn’t
important to the client.

Structure

75 Creational Design Patterns / Factory Method

1. The Product declares the interface, which is common to all
objects that can be produced by the creator and its subclasses.

2. Concrete Products are different implementations of the prod-
uct interface.

3. The Creator class declares the factory method that returns
new product objects. It’s important that the return type of this
method matches the product interface.

You can declare the factory method as abstract to force all sub-
classes to implement their own versions of the method. As an
alternative, the base factory method can return some default
product type.

Note, despite its name, product creation is not the primary
responsibility of the creator. Usually, the creator class already
has some core business logic related to products. The factory
method helps to decouple this logic from the concrete prod-
uct classes. Here is an analogy: a large software development
company can have a training department for programmers.
However, the primary function of the company as a whole is
still writing code, not producing programmers.

4. Concrete Creators override the base factory method so it
returns a different type of product.

76 Creational Design Patterns / Factory Method

Note that the factory method doesn’t have to create new
instances all the time. It can also return existing objects from
a cache, an object pool, or another source.

Pseudocode

This example illustrates how the Factory Method can be used
for creating cross-platform UI elements without coupling the
client code to concrete UI classes.

The base dialog class uses different UI elements to render its
window. Under various operating systems, these elements may
look a little bit different, but they should still behave consis-
tently. A button in Windows is still a button in Linux.

The cross-platform dialog example.



77 Creational Design Patterns / Factory Method

When the factory method comes into play, you don’t need to
rewrite the logic of the dialog for each operating system. If
we declare a factory method that produces buttons inside the
base dialog class, we can later create a dialog subclass that
returns Windows-styled buttons from the factory method. The
subclass then inherits most of the dialog’s code from the base
class, but, thanks to the factory method, can render Windows-
looking buttons on the screen.

For this pattern to work, the base dialog class must work with
abstract buttons: a base class or an interface that all concrete
buttons follow. This way the dialog’s code remains functional,
whichever type of buttons it works with.

Of course, you can apply this approach to other UI elements as
well. However, with each new factory method you add to the
dialog, you get closer to the Abstract Factory pattern. Fear not,
we’ll talk about this pattern later.

// The creator class declares the factory method that must1

// return an object of a product class. The creator's subclasses2

// usually provide the implementation of this method.3

class Dialog is4

// The creator may also provide some default implementation5

// of the factory method.6

abstract method createButton()7

8

// Note that, despite its name, the creator's primary9

// responsibility isn't creating products. It usually10

78 Creational Design Patterns / Factory Method

// contains some core business logic that relies on product11

// objects returned by the factory method. Subclasses can12

// indirectly change that business logic by overriding the13

// factory method and returning a different type of product14

// from it.15

method render() is16

// Call the factory method to create a product object.17

Button okButton = createButton()18

// Now use the product.19

okButton.onClick(closeDialog)20

okButton.render()21

22

23

// Concrete creators override the factory method to change the24

// resulting product's type.25

class WindowsDialog extends Dialog is26

method createButton() is27

return new WindowsButton()28

29

class WebDialog extends Dialog is30

method createButton() is31

return new HTMLButton()32

33

34

// The product interface declares the operations that all35

// concrete products must implement.36

interface Button is37

method render()38

method onClick(f)39

40

// Concrete products provide various implementations of the41

// product interface.42

79 Creational Design Patterns / Factory Method

class WindowsButton implements Button is43

method render(a, b) is44

// Render a button in Windows style.45

method onClick(f) is46

// Bind a native OS click event.47

48

class HTMLButton implements Button is49

method render(a, b) is50

// Return an HTML representation of a button.51

method onClick(f) is52

// Bind a web browser click event.53

54

55

class Application is56

field dialog: Dialog57

58

// The application picks a creator's type depending on the59

// current configuration or environment settings.60

method initialize() is61

config = readApplicationConfigFile()62

63

if (config.OS == "Windows") then64

dialog = new WindowsDialog()65

else if (config.OS == "Web") then66

dialog = new WebDialog()67

else68

throw new Exception("Error! Unknown operating system.")69

70

// The client code works with an instance of a concrete71

// creator, albeit through its base interface. As long as72

// the client keeps working with the creator via the base73

// interface, you can pass it any creator's subclass.74

80 Creational Design Patterns / Factory Method

Applicability

Use the Factory Method when you don’t know beforehand the
exact types and dependencies of the objects your code should
work with.

The Factory Method separates product construction code from
the code that actually uses the product. Therefore it’s easier to
extend the product construction code independently from the
rest of the code.

For example, to add a new product type to the app, you’ll only
need to create a new creator subclass and override the factory
method in it.

Use the Factory Method when you want to provide users of
your library or framework with a way to extend its internal
components.

Inheritance is probably the easiest way to extend the default
behavior of a library or framework. But how would the frame-
work recognize that your subclass should be used instead of a
standard component?

method main() is75

this.initialize()76

dialog.render()77











81 Creational Design Patterns / Factory Method

The solution is to reduce the code that constructs components
across the framework into a single factory method and let any-
one override this method in addition to extending the compo-
nent itself.

Let’s see how that would work. Imagine that you write an
app using an open source UI framework. Your app should
have round buttons, but the framework only provides square
ones. You extend the standard Button class with a glorious
RoundButton subclass. But now you need to tell the main
UIFramework class to use the new button subclass instead of

a default one.

To achieve this, you create a subclass UIWithRoundButtons

from a base framework class and override its createButton

method. While this method returns Button objects in the base
class, you make your subclass return RoundButton objects.
Now use the UIWithRoundButtons class instead of
UIFramework . And that’s about it!

Use the Factory Method when you want to save system
resources by reusing existing objects instead of rebuilding
them each time.

You often experience this need when dealing with large,
resource-intensive objects such as database connections, file
systems, and network resources.





82 Creational Design Patterns / Factory Method

Let’s think about what has to be done to reuse an existing
object:

1. First, you need to create some storage to keep track of all of
the created objects.

2. When someone requests an object, the program should look
for a free object inside that pool.

3. … and then return it to the client code.

4. If there are no free objects, the program should create a new
one (and add it to the pool).

That’s a lot of code! And it must all be put into a single place
so that you don’t pollute the program with duplicate code.

Probably the most obvious and convenient place where this
code could be placed is the constructor of the class whose
objects we’re trying to reuse. However, a constructor must
always return new objects by definition. It can’t return existing
instances.

Therefore, you need to have a regular method capable of
creating new objects as well as reusing existing ones. That
sounds very much like a factory method.

How to Implement

1. Make all products follow the same interface. This interface
should declare methods that make sense in every product.



83 Creational Design Patterns / Factory Method

2. Add an empty factory method inside the creator class. The
return type of the method should match the common product
interface.

3. In the creator’s code find all references to product constructors.
One by one, replace them with calls to the factory method,
while extracting the product creation code into the factory
method.

You might need to add a temporary parameter to the factory
method to control the type of returned product.

At this point, the code of the factory method may look pret-
ty ugly. It may have a large switch operator that picks which
product class to instantiate. But don’t worry, we’ll fix it soon
enough.

4. Now, create a set of creator subclasses for each type of prod-
uct listed in the factory method. Override the factory method
in the subclasses and extract the appropriate bits of construc-
tion code from the base method.

5. If there are too many product types and it doesn’t make sense
to create subclasses for all of them, you can reuse the control
parameter from the base class in subclasses.

For instance, imagine that you have the following hierarchy
of classes: the base Mail class with a couple of subclasses:
AirMail and GroundMail ; the Transport classes are Plane ,

84 Creational Design Patterns / Factory Method

Truck and Train . While the AirMail class only uses Plane

objects, GroundMail may work with both Truck and Train

objects. You can create a new subclass (say TrainMail) to
handle both cases, but there’s another option. The client code
can pass an argument to the factory method of the
GroundMail class to control which product it wants to receive.

6. If, after all of the extractions, the base factory method has
become empty, you can make it abstract. If there’s something
left, you can make it a default behavior of the method.

Pros and Cons

You avoid tight coupling between the creator and the concrete
products.

Single Responsibility Principle. You can move the product cre-
ation code into one place in the program, making the code eas-
ier to support.

Open/Closed Principle. You can introduce new types of products
into the program without breaking existing client code.

The code may become more complicated since you need to
introduce a lot of new subclasses to implement the pattern.
The best case scenario is when you’re introducing the pattern
into an existing hierarchy of creator classes.











85 Creational Design Patterns / Factory Method

Relations with Other Patterns

• Many designs start by using Factory Method (less complicat-
ed and more customizable via subclasses) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, but more
complicated).

• Abstract Factory classes are often based on a set of Facto-
ry Methods, but you can also use Prototype to compose the
methods on these classes.

• You can use Factory Method along with Iterator to let collec-
tion subclasses return different types of iterators that are com-
patible with the collections.

• Prototype isn’t based on inheritance, so it doesn’t have its
drawbacks. On the other hand, Prototype requires a complicat-
ed initialization of the cloned object. Factory Method is based
on inheritance but doesn’t require an initialization step.

• Factory Method is a specialization of Template Method. At the
same time, a Factory Method may serve as a step in a large Tem-
plate Method.



86 Creational Design Patterns / Factory Method

ABSTRACT FACTORY
Abstract Factory is a creational design pattern that lets you
produce families of related objects without specifying their

concrete classes.

87 Creational Design Patterns / Abstract Factory

Problem

Imagine that you’re creating a furniture shop simulator. Your
code consists of classes that represent:

1. A family of related products, say: Chair + Sofa +
CoffeeTable .

2. Several variants of this family. For example, products Chair +
Sofa + CoffeeTable are available in these variants: Modern ,
Victorian , ArtDeco .

Product families and their variants.



88 Creational Design Patterns / Abstract Factory

You need a way to create individual furniture objects so that
they match other objects of the same family. Customers get
quite mad when they receive non-matching furniture.

A Modern-style sofa doesn’t match Victorian-style chairs.

Also, you don’t want to change existing code when adding new
products or families of products to the program. Furniture ven-
dors update their catalogs very often, and you wouldn’t want
to change the core code each time it happens.

Solution

The first thing the Abstract Factory pattern suggests is to
explicitly declare interfaces for each distinct product of the
product family (e.g., chair, sofa or coffee table). Then you
can make all variants of products follow those interfaces. For
example, all chair variants can implement the Chair inter-
face; all coffee table variants can implement the CoffeeTable

interface, and so on.



89 Creational Design Patterns / Abstract Factory

All variants of the same object must be moved to a single class hierarchy.

The next move is to declare the Abstract Factory—an interface
with a list of creation methods for all products that are part
of the product family (for example, createChair , createSofa

and createCoffeeTable). These methods must return abstract
product types represented by the interfaces we extracted pre-
viously: Chair , Sofa , CoffeeTable and so on.

Now, how about the product variants? For each variant of a
product family, we create a separate factory class based on
the AbstractFactory interface. A factory is a class that returns
products of a particular kind. For example, the ModernFactory

can only create ModernChair , ModernSofa and
ModernCoffeeTable objects.

90 Creational Design Patterns / Abstract Factory

Each concrete factory corresponds to a specific product variant.

The client code has to work with both factories and products
via their respective abstract interfaces. This lets you change
the type of a factory that you pass to the client code, as well
as the product variant that the client code receives, without
breaking the actual client code.

The client shouldn’t care about the concrete class of the factory it
works with.

91 Creational Design Patterns / Abstract Factory

Say the client wants a factory to produce a chair. The client doesn’t
have to be aware of the factory’s class, nor does it matter what kind
of chair it gets. Whether it’s a Modern model or a Victorian-style
chair, the client must treat all chairs in the same manner, using
the abstract Chair interface. With this approach, the only thing
that the client knows about the chair is that it implements the

sitOn method in some way. Also, whichever variant of the chair
is returned, it’ll always match the type of sofa or coffee table pro-
duced by the same factory object.

One more thing left to clarify: if the client is only exposed to the
abstract interfaces, what creates the actual factory objects? Usual-
ly, the application creates a concrete factory object at the initial-
ization stage. Just before that, the app must select the factory type
depending on the configuration or the environment settings.

Structure

92 Creational Design Patterns / Abstract Factory

1. Abstract Products declare interfaces for a set of distinct but
related products which make up a product family.

2. Concrete Products are various implementations of abstract
products, grouped by variants. Each abstract product (chair/
sofa) must be implemented in all given variants (Victorian/
Modern).

3. The Abstract Factory interface declares a set of methods for
creating each of the abstract products.

4. Concrete Factories implement creation methods of the
abstract factory. Each concrete factory corresponds to a specif-
ic variant of products and creates only those product variants.

5. Although concrete factories instantiate concrete products, sig-
natures of their creation methods must return corresponding
abstract products. This way the client code that uses a facto-
ry doesn’t get coupled to the specific variant of the product
it gets from a factory. The Client can work with any concrete
factory/product variant, as long as it communicates with their
objects via abstract interfaces.

Pseudocode

This example illustrates how the Abstract Factory pattern can
be used for creating cross-platform UI elements without cou-
pling the client code to concrete UI classes, while keeping all
created elements consistent with a selected operating system.



93 Creational Design Patterns / Abstract Factory

The cross-platform UI classes example.

The same UI elements in a cross-platform application are
expected to behave similarly, but look a little bit different
under different operating systems. Moreover, it’s your job to
make sure that the UI elements match the style of the current
operating system. You wouldn’t want your program to render
macOS controls when it’s executed in Windows.

The Abstract Factory interface declares a set of creation meth-
ods that the client code can use to produce different types of
UI elements. Concrete factories correspond to specific operat-
ing systems and create the UI elements that match that partic-
ular OS.

It works like this: when an application launches, it checks the
type of the current operating system. The app uses this infor-

94 Creational Design Patterns / Abstract Factory

mation to create a factory object from a class that matches the
operating system. The rest of the code uses this factory to cre-
ate UI elements. This prevents the wrong elements from being
created.

With this approach, the client code doesn’t depend on con-
crete classes of factories and UI elements as long as it works
with these objects via their abstract interfaces. This also lets
the client code support other factories or UI elements that you
might add in the future.

As a result, you don’t need to modify the client code each time
you add a new variation of UI elements to your app. You just
have to create a new factory class that produces these ele-
ments and slightly modify the app’s initialization code so it
selects that class when appropriate.

95 Creational Design Patterns / Abstract Factory

// The abstract factory interface declares a set of methods that1

// return different abstract products. These products are called2

// a family and are related by a high-level theme or concept.3

// Products of one family are usually able to collaborate among4

// themselves. A family of products may have several variants,5

// but the products of one variant are incompatible with the6

// products of another variant.7

interface GUIFactory is8

method createButton():Button9

method createCheckbox():Checkbox10

11

12

// Concrete factories produce a family of products that belong13

// to a single variant. The factory guarantees that the14

// resulting products are compatible. Signatures of the concrete15

// factory's methods return an abstract product, while inside16

// the method a concrete product is instantiated.17

class WinFactory implements GUIFactory is18

method createButton():Button is19

return new WinButton()20

method createCheckbox():Checkbox is21

return new WinCheckbox()22

23

// Each concrete factory has a corresponding product variant.24

class MacFactory implements GUIFactory is25

method createButton():Button is26

return new MacButton()27

method createCheckbox():Checkbox is28

return new MacCheckbox()29

30

31

32

96 Creational Design Patterns / Abstract Factory

// Each distinct product of a product family should have a base33

// interface. All variants of the product must implement this34

// interface.35

interface Button is36

method paint()37

38

// Concrete products are created by corresponding concrete39

// factories.40

class WinButton implements Button is41

method paint() is42

// Render a button in Windows style.43

44

class MacButton implements Button is45

method paint() is46

// Render a button in macOS style.47

48

// Here's the base interface of another product. All products49

// can interact with each other, but proper interaction is50

// possible only between products of the same concrete variant.51

interface Checkbox is52

method paint()53

54

class WinCheckbox implements Checkbox is55

method paint() is56

// Render a checkbox in Windows style.57

58

class MacCheckbox implements Checkbox is59

method paint() is60

// Render a checkbox in macOS style.61

62

63

64

97 Creational Design Patterns / Abstract Factory

// The client code works with factories and products only65

// through abstract types: GUIFactory, Button and Checkbox. This66

// lets you pass any factory or product subclass to the client67

// code without breaking it.68

class Application is69

private field button: Button70

constructor Application(factory: GUIFactory) is71

this.factory = factory72

method createUI() is73

this.button = factory.createButton()74

method paint() is75

button.paint()76

77

78

// The application picks the factory type depending on the79

// current configuration or environment settings and creates it80

// at runtime (usually at the initialization stage).81

class ApplicationConfigurator is82

method main() is83

config = readApplicationConfigFile()84

85

if (config.OS == "Windows") then86

factory = new WinFactory()87

else if (config.OS == "Mac") then88

factory = new MacFactory()89

else90

throw new Exception("Error! Unknown operating system.")91

92

Application app = new Application(factory)93

98 Creational Design Patterns / Abstract Factory

Applicability

Use the Abstract Factory when your code needs to work with
various families of related products, but you don’t want it to
depend on the concrete classes of those products—they might
be unknown beforehand or you simply want to allow for future
extensibility.

The Abstract Factory provides you with an interface for cre-
ating objects from each class of the product family. As long
as your code creates objects via this interface, you don’t have
to worry about creating the wrong variant of a product which
doesn’t match the products already created by your app.

• Consider implementing the Abstract Factory when you have
a class with a set of Factory Methods that blur its primary
responsibility.

• In a well-designed program each class is responsible only for
one thing. When a class deals with multiple product types,
it may be worth extracting its factory methods into a stand-
alone factory class or a full-blown Abstract Factory implemen-
tation.

How to Implement

1. Map out a matrix of distinct product types versus variants of
these products.









99 Creational Design Patterns / Abstract Factory

2. Declare abstract product interfaces for all product types. Then
make all concrete product classes implement these interfaces.

3. Declare the abstract factory interface with a set of creation
methods for all abstract products.

4. Implement a set of concrete factory classes, one for each prod-
uct variant.

5. Create factory initialization code somewhere in the app. It
should instantiate one of the concrete factory classes, depend-
ing on the application configuration or the current environ-
ment. Pass this factory object to all classes that construct
products.

6. Scan through the code and find all direct calls to product con-
structors. Replace them with calls to the appropriate creation
method on the factory object.

Pros and Cons

You can be sure that the products you’re getting from a factory
are compatible with each other.

You avoid tight coupling between concrete products and
client code.

Single Responsibility Principle. You can extract the product cre-
ation code into one place, making the code easier to support.









100 Creational Design Patterns / Abstract Factory

Open/Closed Principle. You can introduce new variants of prod-
ucts without breaking existing client code.

The code may become more complicated than it should be,
since a lot of new interfaces and classes are introduced along
with the pattern.

Relations with Other Patterns

• Many designs start by using Factory Method (less complicat-
ed and more customizable via subclasses) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, but more
complicated).

• Builder focuses on constructing complex objects step by step.
Abstract Factory specializes in creating families of related
objects. Abstract Factory returns the product immediately,
whereas Builder lets you run some additional construction
steps before fetching the product.

• Abstract Factory classes are often based on a set of Facto-
ry Methods, but you can also use Prototype to compose the
methods on these classes.

• Abstract Factory can serve as an alternative to Facade when
you only want to hide the way the subsystem objects are cre-
ated from the client code.







101 Creational Design Patterns / Abstract Factory

• You can use Abstract Factory along with Bridge. This pairing
is useful when some abstractions defined by Bridge can only
work with specific implementations. In this case, Abstract Fac-
tory can encapsulate these relations and hide the complexity
from the client code.

• Abstract Factories, Builders and Prototypes can all be imple-
mented as Singletons.

102 Creational Design Patterns / Abstract Factory

BUILDER
Builder is a creational design pattern that lets you construct
complex objects step by step. The pattern allows you to
produce different types and representations of an object using

the same construction code.

103 Creational Design Patterns / Builder

Problem

Imagine a complex object that requires laborious, step-by-step
initialization of many fields and nested objects. Such initial-
ization code is usually buried inside a monstrous constructor
with lots of parameters. Or even worse: scattered all over the
client code.

You might make the program too complex by creating a subclass for every
possible configuration of an object.

For example, let’s think about how to create a House object.
To build a simple house, you need to construct four walls and a
floor, install a door, fit a pair of windows, and build a roof. But
what if you want a bigger, brighter house, with a backyard and
other goodies (like a heating system, plumbing, and electrical
wiring)?



104 Creational Design Patterns / Builder

The simplest solution is to extend the base House class and
create a set of subclasses to cover all combinations of the
parameters. But eventually you’ll end up with a considerable
number of subclasses. Any new parameter, such as the porch
style, will require growing this hierarchy even more.

There’s another approach that doesn’t involve breeding sub-
classes. You can create a giant constructor right in the base
House class with all possible parameters that control the

house object. While this approach indeed eliminates the need
for subclasses, it creates another problem.

The constructor with lots of parameters has its downside: not all the
parameters are needed at all times.

In most cases most of the parameters will be unused, making
the constructor calls pretty ugly. For instance, only a fraction
of houses have swimming pools, so the parameters related to
swimming pools will be useless nine times out of ten.

105 Creational Design Patterns / Builder

Solution

The Builder pattern suggests that you extract the object con-
struction code out of its own class and move it to separate
objects called builders.

The Builder pattern lets you construct complex objects step by step. The
Builder doesn’t allow other objects to access the product while it’s

being built.

The pattern organizes object construction into a set of steps
(buildWalls , buildDoor , etc.). To create an object, you exe-
cute a series of these steps on a builder object. The important
part is that you don’t need to call all of the steps. You can call
only those steps that are necessary for producing a particular
configuration of an object.



106 Creational Design Patterns / Builder

Some of the construction steps might require different imple-
mentation when you need to build various representations of
the product. For example, walls of a cabin may be built of
wood, but the castle walls must be built with stone.

In this case, you can create several different builder classes
that implement the same set of building steps, but in a differ-
ent manner. Then you can use these builders in the construc-
tion process (i.e., an ordered set of calls to the building steps)
to produce different kinds of objects.

Different builders execute the same task in various ways.

For example, imagine a builder that builds everything from
wood and glass, a second one that builds everything with
stone and iron and a third one that uses gold and diamonds. By
calling the same set of steps, you get a regular house from the
first builder, a small castle from the second and a palace from
the third. However, this would only work if the client code that

107 Creational Design Patterns / Builder

calls the building steps is able to interact with builders using
a common interface.

Director

You can go further and extract a series of calls to the builder
steps you use to construct a product into a separate class
called director. The director class defines the order in which
to execute the building steps, while the builder provides the
implementation for those steps.

The director knows which building steps to execute to get a
working product.

Having a director class in your program isn’t strictly neces-
sary. You can always call the building steps in a specific order
directly from the client code. However, the director class might
be a good place to put various construction routines so you can
reuse them across your program.

108 Creational Design Patterns / Builder

In addition, the director class completely hides the details
of product construction from the client code. The client only
needs to associate a builder with a director, launch the con-
struction with the director, and get the result from the builder.

Structure

109 Creational Design Patterns / Builder

1. The Builder interface declares product construction steps that
are common to all types of builders.

2. Concrete Builders provide different implementations of the
construction steps. Concrete builders may produce products
that don’t follow the common interface.

3. Products are resulting objects. Products constructed by differ-
ent builders don’t have to belong to the same class hierarchy
or interface.

4. The Director class defines the order in which to call construc-
tion steps, so you can create and reuse specific configurations
of products.

5. The Client must associate one of the builder objects with
the director. Usually, it’s done just once, via parameters of
the director’s constructor. Then the director uses that builder
object for all further construction. However, there’s an alterna-
tive approach for when the client passes the builder object to
the production method of the director. In this case, you can use
a different builder each time you produce something with the
director.

Pseudocode

This example of the Builder pattern illustrates how you can
reuse the same object construction code when building differ-



110 Creational Design Patterns / Builder

ent types of products, such as cars, and create the correspond-
ing manuals for them.

The example of step-by-step construction of cars and the user guides that
fit those car models.

A car is a complex object that can be constructed in a hundred
different ways. Instead of bloating the Car class with a huge

111 Creational Design Patterns / Builder

constructor, we extracted the car assembly code into a sepa-
rate car builder class. This class has a set of methods for con-
figuring various parts of a car.

If the client code needs to assemble a special, fine-tuned
model of a car, it can work with the builder directly. On the
other hand, the client can delegate the assembly to the direc-
tor class, which knows how to use a builder to construct sever-
al of the most popular models of cars.

You might be shocked, but every car needs a manual (seri-
ously, who reads them?). The manual describes every feature
of the car, so the details in the manuals vary across the dif-
ferent models. That’s why it makes sense to reuse an exist-
ing construction process for both real cars and their respective
manuals. Of course, building a manual isn’t the same as build-
ing a car, and that’s why we must provide another builder
class that specializes in composing manuals. This class imple-
ments the same building methods as its car-building sibling,
but instead of crafting car parts, it describes them. By passing
these builders to the same director object, we can construct
either a car or a manual.

The final part is fetching the resulting object. A metal car and a
paper manual, although related, are still very different things.
We can’t place a method for fetching results in the direc-
tor without coupling the director to concrete product class-
es. Hence, we obtain the result of the construction from the
builder which performed the job.

112 Creational Design Patterns / Builder

// Using the Builder pattern makes sense only when your products1

// are quite complex and require extensive configuration. The2

// following two products are related, although they don't have3

// a common interface.4

class Car is5

// A car can have a GPS, trip computer and some number of6

// seats. Different models of cars (sports car, SUV,7

// cabriolet) might have different features installed or8

// enabled.9

10

class Manual is11

// Each car should have a user manual that corresponds to12

// the car's configuration and describes all its features.13

14

15

// The builder interface specifies methods for creating the16

// different parts of the product objects.17

interface Builder is18

method reset()19

method setSeats(...)20

method setEngine(...)21

method setTripComputer(...)22

method setGPS(...)23

24

// The concrete builder classes follow the builder interface and25

// provide specific implementations of the building steps. Your26

// program may have several variations of builders, each27

// implemented differently.28

class CarBuilder implements Builder is29

private field car:Car30

31

32

113 Creational Design Patterns / Builder

// A fresh builder instance should contain a blank product33

// object which it uses in further assembly.34

constructor CarBuilder() is35

this.reset()36

37

// The reset method clears the object being built.38

method reset() is39

this.car = new Car()40

41

// All production steps work with the same product instance.42

method setSeats(...) is43

// Set the number of seats in the car.44

45

method setEngine(...) is46

// Install a given engine.47

48

method setTripComputer(...) is49

// Install a trip computer.50

51

method setGPS(...) is52

// Install a global positioning system.53

54

// Concrete builders are supposed to provide their own55

// methods for retrieving results. That's because various56

// types of builders may create entirely different products57

// that don't all follow the same interface. Therefore such58

// methods can't be declared in the builder interface (at59

// least not in a statically-typed programming language).60

//61

// Usually, after returning the end result to the client, a62

// builder instance is expected to be ready to start63

// producing another product. That's why it's a usual64

114 Creational Design Patterns / Builder

// practice to call the reset method at the end of the65

// `getProduct` method body. However, this behavior isn't66

// mandatory, and you can make your builder wait for an67

// explicit reset call from the client code before disposing68

// of the previous result.69

method getProduct():Car is70

product = this.car71

this.reset()72

return product73

74

// Unlike other creational patterns, builder lets you construct75

// unrelated products that don't follow a common interface.76

class CarManualBuilder implements Builder is77

private field manual:Manual78

79

constructor CarManualBuilder() is80

this.reset()81

82

method reset() is83

this.manual = new Manual()84

85

method setSeats(...) is86

// Document car seat features.87

88

method setEngine(...) is89

// Add engine instructions.90

91

method setTripComputer(...) is92

// Add trip computer instructions.93

94

method setGPS(...) is95

// Add GPS instructions.96

115 Creational Design Patterns / Builder

method getProduct():Manual is97

// Return the manual and reset the builder.98

99

100

// The director is only responsible for executing the building101

// steps in a particular sequence. It's helpful when producing102

// products according to a specific order or configuration.103

// Strictly speaking, the director class is optional, since the104

// client can control builders directly.105

class Director is106

private field builder:Builder107

108

// The director works with any builder instance that the109

// client code passes to it. This way, the client code may110

// alter the final type of the newly assembled product.111

method setBuilder(builder:Builder)112

this.builder = builder113

114

// The director can construct several product variations115

// using the same building steps.116

method constructSportsCar(builder: Builder) is117

builder.reset()118

builder.setSeats(2)119

builder.setEngine(new SportEngine())120

builder.setTripComputer(true)121

builder.setGPS(true)122

123

method constructSUV(builder: Builder) is124

// ...125

126

127

128

116 Creational Design Patterns / Builder

Applicability

Use the Builder pattern to get rid of a “telescopic constructor”.

Say you have a constructor with ten optional parameters. Call-
ing such a beast is very inconvenient; therefore, you over-
load the constructor and create several shorter versions with
fewer parameters. These constructors still refer to the main
one, passing some default values into any omitted parameters.

// The client code creates a builder object, passes it to the129

// director and then initiates the construction process. The end130

// result is retrieved from the builder object.131

class Application is132

133

method makeCar() is134

director = new Director()135

136

CarBuilder builder = new CarBuilder()137

director.constructSportsCar(builder)138

Car car = builder.getProduct()139

140

CarManualBuilder builder = new CarManualBuilder()141

director.constructSportsCar(builder)142

143

// The final product is often retrieved from a builder144

// object since the director isn't aware of and not145

// dependent on concrete builders and products.146

Manual manual = builder.getProduct()147







117 Creational Design Patterns / Builder

Creating such a monster is only possible in languages that support
method overloading, such as C# or Java.

The Builder pattern lets you build objects step by step, using
only those steps that you really need. After implementing the
pattern, you don’t have to cram dozens of parameters into your
constructors anymore.

Use the Builder pattern when you want your code to be able to
create different representations of some product (for example,
stone and wooden houses).

The Builder pattern can be applied when construction of vari-
ous representations of the product involves similar steps that
differ only in the details.

The base builder interface defines all possible construction
steps, and concrete builders implement these steps to con-
struct particular representations of the product. Meanwhile,
the director class guides the order of construction.

Use the Builder to construct Composite trees or other complex
objects.

class Pizza {1

Pizza(int size) { ... }2

Pizza(int size, boolean cheese) { ... }3

Pizza(int size, boolean cheese, boolean pepperoni) { ... }4

// ...5







118 Creational Design Patterns / Builder

The Builder pattern lets you construct products step-by-step.
You could defer execution of some steps without breaking the
final product. You can even call steps recursively, which comes
in handy when you need to build an object tree.

A builder doesn’t expose the unfinished product while running
construction steps. This prevents the client code from fetching
an incomplete result.

How to Implement

1. Make sure that you can clearly define the common construc-
tion steps for building all available product representations.
Otherwise, you won’t be able to proceed with implementing
the pattern.

2. Declare these steps in the base builder interface.

3. Create a concrete builder class for each of the product repre-
sentations and implement their construction steps.

Don’t forget about implementing a method for fetching the
result of the construction. The reason why this method can’t
be declared inside the builder interface is that various builders
may construct products that don’t have a common interface.
Therefore, you don’t know what would be the return type for
such a method. However, if you’re dealing with products from
a single hierarchy, the fetching method can be safely added to
the base interface.





119 Creational Design Patterns / Builder

4. Think about creating a director class. It may encapsulate vari-
ous ways to construct a product using the same builder object.

5. The client code creates both the builder and the director
objects. Before construction starts, the client must pass a
builder object to the director. Usually, the client does this only
once, via parameters of the director’s constructor. The director
uses the builder object in all further construction. There’s an
alternative approach, where the builder is passed directly to
the construction method of the director.

6. The construction result can be obtained directly from the
director only if all products follow the same interface. Other-
wise, the client should fetch the result from the builder.

Pros and Cons

You can construct objects step-by-step, defer construction
steps or run steps recursively.

You can reuse the same construction code when building vari-
ous representations of products.

Single Responsibility Principle. You can isolate complex con-
struction code from the business logic of the product.

The overall complexity of the code increases since the pattern
requires creating multiple new classes.











120 Creational Design Patterns / Builder

Relations with Other Patterns

• Many designs start by using Factory Method (less complicat-
ed and more customizable via subclasses) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, but more
complicated).

• Builder focuses on constructing complex objects step by step.
Abstract Factory specializes in creating families of related
objects. Abstract Factory returns the product immediately,
whereas Builder lets you run some additional construction
steps before fetching the product.

• You can use Builder when creating complex Composite trees
because you can program its construction steps to work
recursively.

• You can combine Builder with Bridge: the director class plays
the role of the abstraction, while different builders act as
implementations.

• Abstract Factories, Builders and Prototypes can all be imple-
mented as Singletons.



121 Creational Design Patterns / Builder

PROTOTYPE
Also known as: Clone

Prototype is a creational design pattern that lets you copy
existing objects without making your code dependent on

their classes.

122 Creational Design Patterns / Prototype

Problem

Say you have an object, and you want to create an exact copy
of it. How would you do it? First, you have to create a new
object of the same class. Then you have to go through all the
fields of the original object and copy their values over to the
new object.

Nice! But there’s a catch. Not all objects can be copied that way
because some of the object’s fields may be private and not vis-
ible from outside of the object itself.

Copying an object “from the outside” isn’t always possible.

There’s one more problem with the direct approach. Since you
have to know the object’s class to create a duplicate, your code
becomes dependent on that class. If the extra dependency
doesn’t scare you, there’s another catch. Sometimes you only
know the interface that the object follows, but not its concrete



123 Creational Design Patterns / Prototype

class, when, for example, a parameter in a method accepts any
objects that follow some interface.

Solution

The Prototype pattern delegates the cloning process to the
actual objects that are being cloned. The pattern declares a
common interface for all objects that support cloning. This
interface lets you clone an object without coupling your code
to the class of that object. Usually, such an interface contains
just a single clone method.

The implementation of the clone method is very similar in
all classes. The method creates an object of the current class
and carries over all of the field values of the old object into the
new one. You can even copy private fields because most pro-
gramming languages let objects access private fields of other
objects that belong to the same class.

Pre-built prototypes can be an alternative to subclassing.



124 Creational Design Patterns / Prototype

An object that supports cloning is called a prototype. When
your objects have dozens of fields and hundreds of possible
configurations, cloning them might serve as an alternative to
subclassing.

Here’s how it works: you create a set of objects, configured in
various ways. When you need an object like the one you’ve
configured, you just clone a prototype instead of constructing
a new object from scratch.

Real-World Analogy

In real life, prototypes are used for performing various tests
before starting mass production of a product. However, in this
case, prototypes don’t participate in any actual production,
playing a passive role instead.

The division of a cell.



125 Creational Design Patterns / Prototype

Since industrial prototypes don’t really copy themselves, a
much closer analogy to the pattern is the process of mitotic
cell division (biology, remember?). After mitotic division, a pair
of identical cells is formed. The original cell acts as a proto-
type and takes an active role in creating the copy.

Structure

Basic implementation

1. The Prototype interface declares the cloning methods. In most
cases, it’s a single clone method.



126 Creational Design Patterns / Prototype

2. The Concrete Prototype class implements the cloning method.
In addition to copying the original object’s data to the clone,
this method may also handle some edge cases of the cloning
process related to cloning linked objects, untangling recursive
dependencies, etc.

3. The Client can produce a copy of any object that follows the
prototype interface.

Prototype registry implementation

127 Creational Design Patterns / Prototype

1. The Prototype Registry provides an easy way to access fre-
quently-used prototypes. It stores a set of pre-built objects
that are ready to be copied. The simplest prototype registry
is a name → prototype hash map. However, if you need better
search criteria than a simple name, you can build a much more
robust version of the registry.

Pseudocode

In this example, the Prototype pattern lets you produce exact
copies of geometric objects, without coupling the code to their
classes.

Cloning a set of objects that belong to a class hierarchy.

All shape classes follow the same interface, which provides
a cloning method. A subclass may call the parent’s cloning



128 Creational Design Patterns / Prototype

method before copying its own field values to the resulting
object.

// Base prototype.1

abstract class Shape is2

field X: int3

field Y: int4

field color: string5

6

// A regular constructor.7

constructor Shape() is8

// ...9

10

// The prototype constructor. A fresh object is initialized11

// with values from the existing object.12

constructor Shape(source: Shape) is13

this()14

this.X = source.X15

this.Y = source.Y16

this.color = source.color17

18

// The clone operation returns one of the Shape subclasses.19

abstract method clone():Shape20

21

22

// Concrete prototype. The cloning method creates a new object23

// and passes it to the constructor. Until the constructor is24

// finished, it has a reference to a fresh clone. Therefore,25

// nobody has access to a partly-built clone. This keeps the26

// cloning result consistent.27

class Rectangle extends Shape is28

129 Creational Design Patterns / Prototype

field width: int29

field height: int30

31

constructor Rectangle(source: Rectangle) is32

// A parent constructor call is needed to copy private33

// fields defined in the parent class.34

super(source)35

this.width = source.width36

this.height = source.height37

38

method clone():Shape is39

return new Rectangle(this)40

41

42

class Circle extends Shape is43

field radius: int44

45

constructor Circle(source: Circle) is46

super(source)47

this.radius = source.radius48

49

method clone():Shape is50

return new Circle(this)51

52

53

// Somewhere in the client code.54

class Application is55

field shapes: array of Shape56

57

constructor Application() is58

Circle circle = new Circle()59

circle.X = 1060

130 Creational Design Patterns / Prototype

circle.Y = 1061

circle.radius = 2062

shapes.add(circle)63

64

Circle anotherCircle = circle.clone()65

shapes.add(anotherCircle)66

// The `anotherCircle` variable contains an exact copy67

// of the `circle` object.68

69

Rectangle rectangle = new Rectangle()70

rectangle.width = 1071

rectangle.height = 2072

shapes.add(rectangle)73

74

method businessLogic() is75

// Prototype rocks because it lets you produce a copy of76

// an object without knowing anything about its type.77

Array shapesCopy = new Array of Shapes.78

79

// For instance, we don't know the exact elements in the80

// shapes array. All we know is that they are all81

// shapes. But thanks to polymorphism, when we call the82

// `clone` method on a shape the program checks its real83

// class and runs the appropriate clone method defined84

// in that class. That's why we get proper clones85

// instead of a set of simple Shape objects.86

foreach (s in shapes) do87

shapesCopy.add(s.clone())88

89

// The `shapesCopy` array contains exact copies of the90

// `shape` array's children.91

131 Creational Design Patterns / Prototype

Applicability

Use the Prototype pattern when your code shouldn’t depend
on the concrete classes of objects that you need to copy.

This happens a lot when your code works with objects passed
to you from 3rd-party code via some interface. The concrete
classes of these objects are unknown, and you couldn’t depend
on them even if you wanted to.

The Prototype pattern provides the client code with a gener-
al interface for working with all objects that support cloning.
This interface makes the client code independent from the
concrete classes of objects that it clones.

Use the pattern when you want to reduce the number of sub-
classes that only differ in the way they initialize their respec-
tive objects. Somebody could have created these subclasses to
be able to create objects with a specific configuration.

The Prototype pattern lets you use a set of pre-built objects,
configured in various ways, as prototypes.

Instead of instantiating a subclass that matches some configu-
ration, the client can simply look for an appropriate prototype
and clone it.











132 Creational Design Patterns / Prototype

How to Implement

1. Create the prototype interface and declare the clone method
in it. Or just add the method to all classes of an existing class
hierarchy, if you have one.

2. A prototype class must define the alternative constructor that
accepts an object of that class as an argument. The constructor
must copy the values of all fields defined in the class from the
passed object into the newly created instance. If you’re chang-
ing a subclass, you must call the parent constructor to let the
superclass handle the cloning of its private fields.

If your programming language doesn’t support method over-
loading, you may define a special method for copying the
object data. The constructor is a more convenient place to do
this because it delivers the resulting object right after you call
the new operator.

3. The cloning method usually consists of just one line: running
a new operator with the prototypical version of the construc-
tor. Note, that every class must explicitly override the cloning
method and use its own class name along with the new oper-
ator. Otherwise, the cloning method may produce an object of
a parent class.

4. Optionally, create a centralized prototype registry to store a
catalog of frequently used prototypes.



133 Creational Design Patterns / Prototype

You can implement the registry as a new factory class or put
it in the base prototype class with a static method for fetch-
ing the prototype. This method should search for a prototype
based on search criteria that the client code passes to the
method. The criteria might either be a simple string tag or a
complex set of search parameters. After the appropriate proto-
type is found, the registry should clone it and return the copy
to the client.

Finally, replace the direct calls to the subclasses’ constructors
with calls to the factory method of the prototype registry.

Pros and Cons

You can clone objects without coupling to their concrete
classes.

You can get rid of repeated initialization code in favor of
cloning pre-built prototypes.

You can produce complex objects more conveniently.

You get an alternative to inheritance when dealing with con-
figuration presets for complex objects.

Cloning complex objects that have circular references might
be very tricky.













134 Creational Design Patterns / Prototype

Relations with Other Patterns

• Many designs start by using Factory Method (less complicat-
ed and more customizable via subclasses) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, but more
complicated).

• Abstract Factory classes are often based on a set of Facto-
ry Methods, but you can also use Prototype to compose the
methods on these classes.

• Prototype can help when you need to save copies of Com-
mands into history.

• Designs that make heavy use of Composite and Decorator can
often benefit from using Prototype. Applying the pattern lets
you clone complex structures instead of re-constructing them
from scratch.

• Prototype isn’t based on inheritance, so it doesn’t have its
drawbacks. On the other hand, Prototype requires a complicat-
ed initialization of the cloned object. Factory Method is based
on inheritance but doesn’t require an initialization step.

• Sometimes Prototype can be a simpler alternative to Memen-
to. This works if the object, the state of which you want to
store in the history, is fairly straightforward and doesn’t have
links to external resources, or the links are easy to re-establish.

• Abstract Factories, Builders and Prototypes can all be imple-
mented as Singletons.



135 Creational Design Patterns / Prototype

SINGLETON
Singleton is a creational design pattern that lets you ensure
that a class has only one instance, while providing a global

access point to this instance.

136 Creational Design Patterns / Singleton

Problem

The Singleton pattern solves two problems at the same time,
violating the Single Responsibility Principle:

1. Ensure that a class has just a single instance. Why would any-
one want to control how many instances a class has? The most
common reason for this is to control access to some shared
resource—for example, a database or a file.

Here’s how it works: imagine that you created an object, but
after a while decided to create a new one. Instead of receiving
a fresh object, you’ll get the one you already created.

Note that this behavior is impossible to implement with a reg-
ular constructor since a constructor call must always return a
new object by design.

Clients may not even realize that they’re working with the same object all
the time.



137 Creational Design Patterns / Singleton

2. Provide a global access point to that instance. Remember those
global variables that you (all right, me) used to store some
essential objects? While they’re very handy, they’re also very
unsafe since any code can potentially overwrite the contents
of those variables and crash the app.

Just like a global variable, the Singleton pattern lets you access
some object from anywhere in the program. However, it also
protects that instance from being overwritten by other code.

There’s another side to this problem: you don’t want the code
that solves problem #1 to be scattered all over your program.
It’s much better to have it within one class, especially if the
rest of your code already depends on it.

Nowadays, the Singleton pattern has become so popular that
people may call something a singleton even if it solves just one
of the listed problems.

Solution

All implementations of the Singleton have these two steps in
common:

• Make the default constructor private, to prevent other objects
from using the new operator with the Singleton class.

• Create a static creation method that acts as a constructor.
Under the hood, this method calls the private constructor to



138 Creational Design Patterns / Singleton

create an object and saves it in a static field. All following calls
to this method return the cached object.

If your code has access to the Singleton class, then it’s able to
call the Singleton’s static method. So whenever that method is
called, the same object is always returned.

Real-World Analogy

The government is an excellent example of the Singleton pat-
tern. A country can have only one official government. Regard-
less of the personal identities of the individuals who form
governments, the title, “The Government of X”, is a global point
of access that identifies the group of people in charge.

Structure





139 Creational Design Patterns / Singleton

1. The Singleton class declares the static method getInstance

that returns the same instance of its own class.

The Singleton’s constructor should be hidden from the client
code. Calling the getInstance method should be the only way
of getting the Singleton object.

Pseudocode

In this example, the database connection class acts as a Sin-
gleton.

This class doesn’t have a public constructor, so the only way to
get its object is to call the getInstance method. This method
caches the first created object and returns it in all subse-
quent calls.

// The Database class defines the `getInstance` method that lets1

// clients access the same instance of a database connection2

// throughout the program.3

class Database is4

// The field for storing the singleton instance should be5

// declared static.6

private static field instance: Database7

8

// The singleton's constructor should always be private to9

// prevent direct construction calls with the `new`10

// operator.11

private constructor Database() is12



140 Creational Design Patterns / Singleton

// Some initialization code, such as the actual13

// connection to a database server.14

// ...15

16

// The static method that controls access to the singleton17

// instance.18

public static method getInstance() is19

if (this.instance == null) then20

acquireThreadLock() and then21

// Ensure that the instance hasn't yet been22

// initialized by another thread while this one23

// has been waiting for the lock's release.24

if (this.instance == null) then25

this.instance = new Database()26

return this.instance27

28

// Finally, any singleton should define some business logic29

// which can be executed on its instance.30

public method query(sql) is31

// For instance, all database queries of an app go32

// through this method. Therefore, you can place33

// throttling or caching logic here.34

// ...35

36

class Application is37

method main() is38

Database foo = Database.getInstance()39

foo.query("SELECT ...")40

// ...41

Database bar = Database.getInstance()42

bar.query("SELECT ...")43

// The variable `bar` will contain the same object as44

141 Creational Design Patterns / Singleton

Applicability

Use the Singleton pattern when a class in your program should
have just a single instance available to all clients; for exam-
ple, a single database object shared by different parts of the
program.

The Singleton pattern disables all other means of creating
objects of a class except for the special creation method. This
method either creates a new object or returns an existing one
if it has already been created.

Use the Singleton pattern when you need stricter control over
global variables.

Unlike global variables, the Singleton pattern guarantees that
there’s just one instance of a class. Nothing, except for the Sin-
gleton class itself, can replace the cached instance.

Note that you can always adjust this limitation and allow cre-
ating any number of Singleton instances. The only piece of
code that needs changing is the body of the getInstance()

method.

// the variable `foo`.45











142 Creational Design Patterns / Singleton

How to Implement

1. Add a private static field to the class for storing the singleton
instance.

2. Declare a public static creation method for getting the single-
ton instance.

3. Implement “lazy initialization” inside the static method. It
should create a new object on its first call and put it into the
static field. The method should always return that instance on
all subsequent calls.

4. Make the constructor of the class private. The static method of
the class will still be able to call the constructor, but not the
other objects.

5. Go over the client code and replace all direct calls to the sin-
gleton’s constructor with calls to its static creation method.

Pros and Cons

You can be sure that a class has only a single instance.

You gain a global access point to that instance.

The singleton object is initialized only when it’s requested for
the first time.

Violates the Single Responsibility Principle. The pattern solves
two problems at the time.













143 Creational Design Patterns / Singleton

The Singleton pattern can mask bad design, for instance, when
the components of the program know too much about
each other.

The pattern requires special treatment in a multithreaded
environment so that multiple threads won’t create a singleton
object several times.

It may be difficult to unit test the client code of the Single-
ton because many test frameworks rely on inheritance when
producing mock objects. Since the constructor of the single-
ton class is private and overriding static methods is impossible
in most languages, you will need to think of a creative way to
mock the singleton. Or just don’t write the tests. Or don’t use
the Singleton pattern.

Relations with Other Patterns

• A Facade class can often be transformed into a Singleton since
a single facade object is sufficient in most cases.

• Flyweight would resemble Singleton if you somehow man-
aged to reduce all shared states of the objects to just one
flyweight object. But there are two fundamental differences
between these patterns:

1. There should be only one Singleton instance, whereas a
Flyweight class can have multiple instances with different
intrinsic states.









144 Creational Design Patterns / Singleton

2. The Singleton object can be mutable. Flyweight objects are
immutable.

• Abstract Factories, Builders and Prototypes can all be imple-
mented as Singletons.

145 Creational Design Patterns / Singleton

ADAPTER
Also known as: Wrapper

Adapter is a structural design pattern that allows objects with
incompatible interfaces to collaborate.

149 Structural Design Patterns / Adapter

Problem

Imagine that you’re creating a stock market monitoring app.
The app downloads the stock data from multiple sources in
XML format and then displays nice-looking charts and dia-
grams for the user.

At some point, you decide to improve the app by integrating a
smart 3rd-party analytics library. But there’s a catch: the ana-
lytics library only works with data in JSON format.

You can’t use the analytics library “as is” because it expects the data in a
format that’s incompatible with your app.

You could change the library to work with XML. However, this
might break some existing code that relies on the library. And
worse, you might not have access to the library’s source code
in the first place, making this approach impossible.



150 Structural Design Patterns / Adapter

Solution

You can create an adapter. This is a special object that converts
the interface of one object so that another object can under-
stand it.

An adapter wraps one of the objects to hide the complexi-
ty of conversion happening behind the scenes. The wrapped
object isn’t even aware of the adapter. For example, you can
wrap an object that operates in meters and kilometers with an
adapter that converts all of the data to imperial units such as
feet and miles.

Adapters can not only convert data into various formats but
can also help objects with different interfaces collaborate.
Here’s how it works:

1. The adapter gets an interface, compatible with one of the
existing objects.

2. Using this interface, the existing object can safely call the
adapter’s methods.

3. Upon receiving a call, the adapter passes the request to the
second object, but in a format and order that the second object
expects.

Sometimes it’s even possible to create a two-way adapter that
can convert the calls in both directions.



151 Structural Design Patterns / Adapter

Let’s get back to our stock market app. To solve the dilemma
of incompatible formats, you can create XML-to-JSON adapters
for every class of the analytics library that your code works
with directly. Then you adjust your code to communicate with
the library only via these adapters. When an adapter receives a
call, it translates the incoming XML data into a JSON structure
and passes the call to the appropriate methods of a wrapped
analytics object.

Real-World Analogy

When you travel from the US to Europe for the first time, you
may get a surprise when trying to charge your laptop. The
power plug and sockets standards are different in different
countries.



152 Structural Design Patterns / Adapter

A suitcase before and after a trip abroad.

That’s why your US plug won’t fit a German socket. The prob-
lem can be solved by using a power plug adapter that has the
American-style socket and the European-style plug.

Structure

Object adapter

This implementation uses the composition principle: the
adapter implements the interface of one object and wraps the
other one. It can be implemented in all popular programming
languages.



153 Structural Design Patterns / Adapter

1. The Client is a class that contains the existing business logic
of the program.

2. The Client Interface describes a protocol that other classes
must follow to be able to collaborate with the client code.

3. The Service is some useful class (usually 3rd-party or legacy).
The client can’t use this class directly because it has an incom-
patible interface.

4. The Adapter is a class that’s able to work with both the client
and the service: it implements the client interface, while wrap-
ping the service object. The adapter receives calls from the
client via the adapter interface and translates them into calls
to the wrapped service object in a format it can understand.

5. The client code doesn’t get coupled to the concrete adapter
class as long as it works with the adapter via the client inter-

154 Structural Design Patterns / Adapter

face. Thanks to this, you can introduce new types of adapters
into the program without breaking the existing client code.
This can be useful when the interface of the service class gets
changed or replaced: you can just create a new adapter class
without changing the client code.

Class adapter

This implementation uses inheritance: the adapter inherits
interfaces from both objects at the same time. Note that this
approach can only be implemented in programming languages
that support multiple inheritance, such as C++.

1. The Class Adapter doesn’t need to wrap any objects because
it inherits behaviors from both the client and the service.
The adaptation happens within the overridden methods. The
resulting adapter can be used in place of an existing
client class.

155 Structural Design Patterns / Adapter

Pseudocode

This example of the Adapter pattern is based on the classic
conflict between square pegs and round holes.

Adapting square pegs to round holes.

The Adapter pretends to be a round peg, with a radius equal
to a half of the square’s diameter (in other words, the radius of
the smallest circle that can accommodate the square peg).

// Say you have two classes with compatible interfaces:1

// RoundHole and RoundPeg.2

class RoundHole is3

constructor RoundHole(radius) { ... }4

5

method getRadius() is6

// Return the radius of the hole.7



156 Structural Design Patterns / Adapter

8

method fits(peg: RoundPeg) is9

return this.getRadius() >= peg.radius()10

11

class RoundPeg is12

constructor RoundPeg(radius) { ... }13

14

method getRadius() is15

// Return the radius of the peg.16

17

18

// But there's an incompatible class: SquarePeg.19

class SquarePeg is20

constructor SquarePeg(width) { ... }21

22

method getWidth() is23

// Return the square peg width.24

25

26

// An adapter class lets you fit square pegs into round holes.27

// It extends the RoundPeg class to let the adapter objects act28

// as round pegs.29

class SquarePegAdapter extends RoundPeg is30

// In reality, the adapter contains an instance of the31

// SquarePeg class.32

private field peg: SquarePeg33

34

constructor SquarePegAdapter(peg: SquarePeg) is35

this.peg = peg36

37

method getRadius() is38

// The adapter pretends that it's a round peg with a39

157 Structural Design Patterns / Adapter

Applicability

Use the Adapter class when you want to use some existing
class, but its interface isn’t compatible with the rest of
your code.

The Adapter pattern lets you create a middle-layer class that
serves as a translator between your code and a legacy class, a
3rd-party class or any other class with a weird interface.

// radius that could fit the square peg that the adapter40

// actually wraps.41

return peg.getWidth() * Math.sqrt(2) / 242

43

44

// Somewhere in client code.45

hole = new RoundHole(5)46

rpeg = new RoundPeg(5)47

hole.fits(rpeg) // true48

49

small_sqpeg = new SquarePeg(5)50

large_sqpeg = new SquarePeg(10)51

hole.fits(small_sqpeg) // this won't compile (incompatible types)52

53

small_sqpeg_adapter = new SquarePegAdapter(small_sqpeg)54

large_sqpeg_adapter = new SquarePegAdapter(large_sqpeg)55

hole.fits(small_sqpeg_adapter) // true56

hole.fits(large_sqpeg_adapter) // false57







158 Structural Design Patterns / Adapter

Use the pattern when you want to reuse several existing sub-
classes that lack some common functionality that can’t be
added to the superclass.

You could extend each subclass and put the missing function-
ality into new child classes. However, you’ll need to duplicate
the code across all of these new classes, which smells really
bad.

The much more elegant solution would be to put the miss-
ing functionality into an adapter class. Then you would wrap
objects with missing features inside the adapter, gaining need-
ed features dynamically. For this to work, the target classes
must have a common interface, and the adapter’s field should
follow that interface. This approach looks very similar to the
Decorator pattern.

How to Implement

1. Make sure that you have at least two classes with incompati-
ble interfaces:

◦ A useful service class, which you can’t change (often 3rd-
party, legacy or with lots of existing dependencies).

◦ One or several client classes that would benefit from using
the service class.

2. Declare the client interface and describe how clients commu-
nicate with the service.







159 Structural Design Patterns / Adapter

3. Create the adapter class and make it follow the client inter-
face. Leave all the methods empty for now.

4. Add a field to the adapter class to store a reference to the ser-
vice object. The common practice is to initialize this field via
the constructor, but sometimes it’s more convenient to pass it
to the adapter when calling its methods.

5. One by one, implement all methods of the client interface in
the adapter class. The adapter should delegate most of the
real work to the service object, handling only the interface or
data format conversion.

6. Clients should use the adapter via the client interface. This will
let you change or extend the adapters without affecting the
client code.

Pros and Cons

Single Responsibility Principle. You can separate the interface or
data conversion code from the primary business logic of the
program.

Open/Closed Principle. You can introduce new types of adapters
into the program without breaking the existing client code,
as long as they work with the adapters through the client
interface.

The overall complexity of the code increases because you need
to introduce a set of new interfaces and classes. Sometimes it’s









160 Structural Design Patterns / Adapter

simpler just to change the service class so that it matches the
rest of your code.

Relations with Other Patterns

• Bridge is usually designed up-front, letting you develop parts
of an application independently of each other. On the other
hand, Adapter is commonly used with an existing app to make
some otherwise-incompatible classes work together nicely.

• Adapter changes the interface of an existing object, while Dec-
orator enhances an object without changing its interface. In
addition, Decorator supports recursive composition, which isn’t
possible when you use Adapter.

• Adapter provides a different interface to the wrapped object,
Proxy provides it with the same interface, and Decorator pro-
vides it with an enhanced interface.

• Facade defines a new interface for existing objects, whereas
Adapter tries to make the existing interface usable. Adapter
usually wraps just one object, while Facade works with an
entire subsystem of objects.

• Bridge, State, Strategy (and to some degree Adapter) have very
similar structures. Indeed, all of these patterns are based on
composition, which is delegating work to other objects. How-
ever, they all solve different problems. A pattern isn’t just a
recipe for structuring your code in a specific way. It can also
communicate to other developers the problem the pattern
solves.



161 Structural Design Patterns / Adapter

BRIDGE
Bridge is a structural design pattern that lets you split a large
class or a set of closely related classes into two separate
hierarchies—abstraction and implementation—which can be

developed independently of each other.

162 Structural Design Patterns / Bridge

Problem

Abstraction? Implementation? Sound scary? Stay calm and let’s
consider a simple example.

Say you have a geometric Shape class with a pair of subclass-
es: Circle and Square . You want to extend this class hierar-
chy to incorporate colors, so you plan to create Red and Blue

shape subclasses. However, since you already have two sub-
classes, you’ll need to create four class combinations such as
BlueCircle and RedSquare .

Number of class combinations grows in geometric progression.

Adding new shape types and colors to the hierarchy will grow
it exponentially. For example, to add a triangle shape you’d



163 Structural Design Patterns / Bridge

need to introduce two subclasses, one for each color. And after
that, adding a new color would require creating three sub-
classes, one for each shape type. The further we go, the worse
it becomes.

Solution

This problem occurs because we’re trying to extend the shape
classes in two independent dimensions: by form and by color.
That’s a very common issue with class inheritance.

The Bridge pattern attempts to solve this problem by switch-
ing from inheritance to composition. What this means is that
you extract one of the dimensions into a separate class hierar-
chy, so that the original classes will reference an object of the
new hierarchy, instead of having all of its state and behaviors
within one class.

You can prevent the explosion of a class hierarchy by transforming it into
several related hierarchies.



164 Structural Design Patterns / Bridge

Following this approach, we can extract the color-related code
into its own class with two subclasses: Red and Blue . The
Shape class then gets a reference field pointing to one of the

color objects. Now the shape can delegate any color-related
work to the linked color object. That reference will act as a
bridge between the Shape and Color classes. From now on,
adding new colors won’t require changing the shape hierarchy,
and vice versa.

Abstraction and Implementation

The GoF book1 introduces the terms Abstraction and Implemen-
tation as part of the Bridge definition. In my opinion, the terms
sound too academic and make the pattern seem more compli-
cated than it really is. Having read the simple example with
shapes and colors, let’s decipher the meaning behind the GoF
book’s scary words.

Abstraction (also called interface) is a high-level control layer
for some entity. This layer isn’t supposed to do any real work
on its own. It should delegate the work to the implementation
layer (also called platform).

Note that we’re not talking about interfaces or abstract class-
es from your programming language. These aren’t the same
things.

1. “Gang of Four” is a nickname given to the four authors of the original
book about design patterns: Design Patterns: Elements of Reusable Object-
Oriented Software https://refactoring.guru/gof-book.

165 Structural Design Patterns / Bridge

When talking about real applications, the abstraction can be
represented by a graphical user interface (GUI), and the imple-
mentation could be the underlying operating system code
(API) which the GUI layer calls in response to user interactions.

Generally speaking, you can extend such an app in two inde-
pendent directions:

• Have several different GUIs (for instance, tailored for regular
customers or admins).

• Support several different APIs (for example, to be able to
launch the app under Windows, Linux, and MacOS).

In a worst-case scenario, this app might look like a giant
spaghetti bowl, where hundreds of conditionals connect differ-
ent types of GUI with various APIs all over the code.

Making even a simple change to a monolithic codebase is pretty hard
because you must understand the entire thing very well. Making changes

to smaller, well-defined modules is much easier.

166 Structural Design Patterns / Bridge

You can bring order to this chaos by extracting the code relat-
ed to specific interface-platform combinations into separate
classes. However, soon you’ll discover that there are lots of
these classes. The class hierarchy will grow exponentially
because adding a new GUI or supporting a different API would
require creating more and more classes.

Let’s try to solve this issue with the Bridge pattern. It suggests
that we divide the classes into two hierarchies:

• Abstraction: the GUI layer of the app.

• Implementation: the operating systems’ APIs.

One of the ways to structure a cross-platform application.

The abstraction object controls the appearance of the app, del-
egating the actual work to the linked implementation object.
Different implementations are interchangeable as long as they

167 Structural Design Patterns / Bridge

follow a common interface, enabling the same GUI to work
under Windows and Linux.

As a result, you can change the GUI classes without touching
the API-related classes. Moreover, adding support for anoth-
er operating system only requires creating a subclass in the
implementation hierarchy.

Structure

1. The Abstraction provides high-level control logic. It relies on
the implementation object to do the actual low-level work.

2. The Implementation declares the interface that’s common for
all concrete implementations. An abstraction can only com-



168 Structural Design Patterns / Bridge

municate with an implementation object via methods that are
declared here.

The abstraction may list the same methods as the imple-
mentation, but usually the abstraction declares some complex
behaviors that rely on a wide variety of primitive operations
declared by the implementation.

3. Concrete Implementations contain platform-specific code.

4. Refined Abstractions provide variants of control logic. Like
their parent, they work with different implementations via the
general implementation interface.

5. Usually, the Client is only interested in working with the
abstraction. However, it’s the client’s job to link the abstraction
object with one of the implementation objects.

Pseudocode

This example illustrates how the Bridge pattern can help
divide the monolithic code of an app that manages devices and
their remote controls. The Device classes act as the imple-
mentation, whereas the Remote s act as the abstraction.

The base remote control class declares a reference field that
links it with a device object. All remotes work with the devices
via the general device interface, which lets the same remote
support multiple device types.



169 Structural Design Patterns / Bridge

The original class hierarchy is divided into two parts: devices and
remote controls.

You can develop the remote control classes independently
from the device classes. All that’s needed is to create a new
remote subclass. For example, a basic remote control might
only have two buttons, but you could extend it with additional
features, such as an extra battery or a touchscreen.

The client code links the desired type of remote control with a
specific device object via the remote’s constructor.

170 Structural Design Patterns / Bridge

// The "abstraction" defines the interface for the "control"1

// part of the two class hierarchies. It maintains a reference2

// to an object of the "implementation" hierarchy and delegates3

// all of the real work to this object.4

class RemoteControl is5

protected field device: Device6

constructor RemoteControl(device: Device) is7

this.device = device8

method togglePower() is9

if (device.isEnabled()) then10

device.disable()11

else12

device.enable()13

method volumeDown() is14

device.setVolume(device.getVolume() - 10)15

method volumeUp() is16

device.setVolume(device.getVolume() + 10)17

method channelDown() is18

device.setChannel(device.getChannel() - 1)19

method channelUp() is20

device.setChannel(device.getChannel() + 1)21

22

23

// You can extend classes from the abstraction hierarchy24

// independently from device classes.25

class AdvancedRemoteControl extends RemoteControl is26

method mute() is27

device.setVolume(0)28

29

30

// The "implementation" interface declares methods common to all31

// concrete implementation classes. It doesn't have to match the32

171 Structural Design Patterns / Bridge

// abstraction's interface. In fact, the two interfaces can be33

// entirely different. Typically the implementation interface34

// provides only primitive operations, while the abstraction35

// defines higher-level operations based on those primitives.36

interface Device is37

method isEnabled()38

method enable()39

method disable()40

method getVolume()41

method setVolume(percent)42

method getChannel()43

method setChannel(channel)44

45

46

// All devices follow the same interface.47

class Tv implements Device is48

// ...49

50

class Radio implements Device is51

// ...52

53

54

// Somewhere in client code.55

tv = new Tv()56

remote = new RemoteControl(tv)57

remote.togglePower()58

59

radio = new Radio()60

remote = new AdvancedRemoteControl(radio)61

172 Structural Design Patterns / Bridge

Applicability

Use the Bridge pattern when you want to divide and organize
a monolithic class that has several variants of some function-
ality (for example, if the class can work with various database
servers).

The bigger a class becomes, the harder it is to figure out how it
works, and the longer it takes to make a change. The changes
made to one of the variations of functionality may require
making changes across the whole class, which often results in
making errors or not addressing some critical side effects.

The Bridge pattern lets you split the monolithic class into sev-
eral class hierarchies. After this, you can change the classes in
each hierarchy independently of the classes in the others. This
approach simplifies code maintenance and minimizes the risk
of breaking existing code.

Use the pattern when you need to extend a class in several
orthogonal (independent) dimensions.

The Bridge suggests that you extract a separate class hierar-
chy for each of the dimensions. The original class delegates
the related work to the objects belonging to those hierarchies
instead of doing everything on its own.

Use the Bridge if you need to be able to switch implementa-
tions at runtime.













173 Structural Design Patterns / Bridge

Although it’s optional, the Bridge pattern lets you replace the
implementation object inside the abstraction. It’s as easy as
assigning a new value to a field.

By the way, this last item is the main reason why so many peo-
ple confuse the Bridge with the Strategy pattern. Remember that
a pattern is more than just a certain way to structure your classes.
It may also communicate intent and a problem being addressed.

How to Implement

1. Identify the orthogonal dimensions in your classes. These
independent concepts could be: abstraction/platform, domain/
infrastructure, front-end/back-end, or interface/implementa-
tion.

2. See what operations the client needs and define them in the
base abstraction class.

3. Determine the operations available on all platforms. Declare
the ones that the abstraction needs in the general implemen-
tation interface.

4. For all platforms in your domain create concrete implementa-
tion classes, but make sure they all follow the implementation
interface.

5. Inside the abstraction class, add a reference field for the
implementation type. The abstraction delegates most of the





174 Structural Design Patterns / Bridge

work to the implementation object that’s referenced in
that field.

6. If you have several variants of high-level logic, create refined
abstractions for each variant by extending the base abstrac-
tion class.

7. The client code should pass an implementation object to the
abstraction’s constructor to associate one with the other. After
that, the client can forget about the implementation and work
only with the abstraction object.

Pros and Cons

You can create platform-independent classes and apps.

The client code works with high-level abstractions. It isn’t
exposed to the platform details.

Open/Closed Principle. You can introduce new abstractions and
implementations independently from each other.

Single Responsibility Principle. You can focus on high-level logic
in the abstraction and on platform details in the implementa-
tion.

You might make the code more complicated by applying the
pattern to a highly cohesive class.













175 Structural Design Patterns / Bridge

Relations with Other Patterns

• Bridge is usually designed up-front, letting you develop parts
of an application independently of each other. On the other
hand, Adapter is commonly used with an existing app to make
some otherwise-incompatible classes work together nicely.

• Bridge, State, Strategy (and to some degree Adapter) have very
similar structures. Indeed, all of these patterns are based on
composition, which is delegating work to other objects. How-
ever, they all solve different problems. A pattern isn’t just a
recipe for structuring your code in a specific way. It can also
communicate to other developers the problem the pattern
solves.

• You can use Abstract Factory along with Bridge. This pairing
is useful when some abstractions defined by Bridge can only
work with specific implementations. In this case, Abstract Fac-
tory can encapsulate these relations and hide the complexity
from the client code.

• You can combine Builder with Bridge: the director class plays
the role of the abstraction, while different builders act as
implementations.



176 Structural Design Patterns / Bridge

COMPOSITE
Also known as: Object Tree

Composite is a structural design pattern that lets you compose
objects into tree structures and then work with these

structures as if they were individual objects.

177 Structural Design Patterns / Composite

Problem

Using the Composite pattern makes sense only when the core
model of your app can be represented as a tree.

For example, imagine that you have two types of objects:
Products and Boxes . A Box can contain several Products

as well as a number of smaller Boxes . These little Boxes can
also hold some Products or even smaller Boxes , and so on.

An order might comprise various products, packaged in boxes, which are
packaged in bigger boxes and so on. The whole structure looks like an

upside down tree.



178 Structural Design Patterns / Composite

Say you decide to create an ordering system that uses these
classes. Orders could contain simple products without any
wrapping, as well as boxes stuffed with products...and other
boxes. How would you determine the total price of such an
order?

You could try the direct approach: unwrap all the boxes, go
over all the products and then calculate the total. That would
be doable in the real world; but in a program, it’s not as simple
as running a loop. You have to know the classes of Products

and Boxes you’re going through, the nesting level of the
boxes and other nasty details beforehand. All of this makes the
direct approach either too awkward or even impossible.

Solution

The Composite pattern suggests that you work with Products

and Boxes through a common interface which declares a
method for calculating the total price.

How would this method work? For a product, it’d simply return
the product’s price. For a box, it’d go over each item the box
contains, ask its price and then return a total for this box. If
one of these items were a smaller box, that box would also
start going over its contents and so on, until the prices of all
inner components were calculated. A box could even add some
extra cost to the final price, such as packaging cost.



179 Structural Design Patterns / Composite

The Composite pattern lets you run a behavior recursively over all
components of an object tree.

The greatest benefit of this approach is that you don’t need to
care about the concrete classes of objects that compose the
tree. You don’t need to know whether an object is a simple
product or a sophisticated box. You can treat them all the same
via the common interface. When you call a method, the objects
themselves pass the request down the tree.

Real-World Analogy

An example of a military structure.



180 Structural Design Patterns / Composite

Armies of most countries are structured as hierarchies. An
army consists of several divisions; a division is a set of
brigades, and a brigade consists of platoons, which can be bro-
ken down into squads. Finally, a squad is a small group of
real soldiers. Orders are given at the top of the hierarchy and
passed down onto each level until every soldier knows what
needs to be done.

Structure

181 Structural Design Patterns / Composite

1. The Component interface describes operations that are com-
mon to both simple and complex elements of the tree.

2. The Leaf is a basic element of a tree that doesn’t have sub-ele-
ments.

Usually, leaf components end up doing most of the real work,
since they don’t have anyone to delegate the work to.

3. The Container (aka composite) is an element that has sub-ele-
ments: leaves or other containers. A container doesn’t know
the concrete classes of its children. It works with all sub-ele-
ments only via the component interface.

Upon receiving a request, a container delegates the work to its
sub-elements, processes intermediate results and then returns
the final result to the client.

4. The Client works with all elements through the component
interface. As a result, the client can work in the same way with
both simple or complex elements of the tree.

Pseudocode

In this example, the Composite pattern lets you implement
stacking of geometric shapes in a graphical editor.



182 Structural Design Patterns / Composite

The geometric shapes editor example.

The CompoundGraphic class is a container that can comprise
any number of sub-shapes, including other compound shapes.
A compound shape has the same methods as a simple shape.
However, instead of doing something on its own, a compound
shape passes the request recursively to all its children and
“sums up” the result.

The client code works with all shapes through the single inter-
face common to all shape classes. Thus, the client doesn’t

183 Structural Design Patterns / Composite

know whether it’s working with a simple shape or a com-
pound one. The client can work with very complex object
structures without being coupled to concrete classes that form
that structure.

// The component interface declares common operations for both1

// simple and complex objects of a composition.2

interface Graphic is3

method move(x, y)4

method draw()5

6

// The leaf class represents end objects of a composition. A7

// leaf object can't have any sub-objects. Usually, it's leaf8

// objects that do the actual work, while composite objects only9

// delegate to their sub-components.10

class Dot implements Graphic is11

field x, y12

13

constructor Dot(x, y) { ... }14

15

method move(x, y) is16

this.x += x, this.y += y17

18

method draw() is19

// Draw a dot at X and Y.20

21

// All component classes can extend other components.22

class Circle extends Dot is23

field radius24

25

26

184 Structural Design Patterns / Composite

constructor Circle(x, y, radius) { ... }27

28

method draw() is29

// Draw a circle at X and Y with radius R.30

31

// The composite class represents complex components that may32

// have children. Composite objects usually delegate the actual33

// work to their children and then "sum up" the result.34

class CompoundGraphic implements Graphic is35

field children: array of Graphic36

37

// A composite object can add or remove other components38

// (both simple or complex) to or from its child list.39

method add(child: Graphic) is40

// Add a child to the array of children.41

42

method remove(child: Graphic) is43

// Remove a child from the array of children.44

45

method move(x, y) is46

foreach (child in children) do47

child.move(x, y)48

49

// A composite executes its primary logic in a particular50

// way. It traverses recursively through all its children,51

// collecting and summing up their results. Since the52

// composite's children pass these calls to their own53

// children and so forth, the whole object tree is traversed54

// as a result.55

method draw() is56

// 1. For each child component:57

// - Draw the component.58

185 Structural Design Patterns / Composite

Applicability

Use the Composite pattern when you have to implement a
tree-like object structure.

// - Update the bounding rectangle.59

// 2. Draw a dashed rectangle using the bounding60

// coordinates.61

62

63

// The client code works with all the components via their base64

// interface. This way the client code can support simple leaf65

// components as well as complex composites.66

class ImageEditor is67

method load() is68

all = new CompoundGraphic()69

all.add(new Dot(1, 2))70

all.add(new Circle(5, 3, 10))71

// ...72

73

// Combine selected components into one complex composite74

// component.75

method groupSelected(components: array of Graphic) is76

group = new CompoundGraphic()77

group.add(components)78

all.remove(components)79

all.add(group)80

// All components will be drawn.81

all.draw()82





186 Structural Design Patterns / Composite

The Composite pattern provides you with two basic element
types that share a common interface: simple leaves and com-
plex containers. A container can be composed of both leaves
and other containers. This lets you construct a nested recursive
object structure that resembles a tree.

Use the pattern when you want the client code to treat both
simple and complex elements uniformly.

All elements defined by the Composite pattern share a com-
mon interface. Using this interface, the client doesn’t have to
worry about the concrete class of the objects it works with.

How to Implement

1. Make sure that the core model of your app can be represent-
ed as a tree structure. Try to break it down into simple ele-
ments and containers. Remember that containers must be able
to contain both simple elements and other containers.

2. Declare the component interface with a list of methods that
make sense for both simple and complex components.

3. Create a leaf class to represent simple elements. A program
may have multiple different leaf classes.

4. Create a container class to represent complex elements. In
this class, provide an array field for storing references to sub-
elements. The array must be able to store both leaves and









187 Structural Design Patterns / Composite

containers, so make sure it’s declared with the component
interface type.

While implementing the methods of the component interface,
remember that a container is supposed to be delegating most
of the work to sub-elements.

5. Finally, define the methods for adding and removal of child
elements in the container.

Keep in mind that these operations can be declared in the
component interface. This would violate the Interface Segrega-
tion Principle because the methods will be empty in the leaf
class. However, the client will be able to treat all the elements
equally, even when composing the tree.

Pros and Cons

You can work with complex tree structures more conveniently:
use polymorphism and recursion to your advantage.

Open/Closed Principle. You can introduce new element types
into the app without breaking the existing code, which now
works with the object tree.

It might be difficult to provide a common interface for class-
es whose functionality differs too much. In certain scenarios,
you’d need to overgeneralize the component interface, making
it harder to comprehend.









188 Structural Design Patterns / Composite

Relations with Other Patterns

• You can use Builder when creating complex Composite trees
because you can program its construction steps to work
recursively.

• Chain of Responsibility is often used in conjunction with Com-
posite. In this case, when a leaf component gets a request, it
may pass it through the chain of all of the parent components
down to the root of the object tree.

• You can use Iterators to traverse Composite trees.

• You can use Visitor to execute an operation over an entire
Composite tree.

• You can implement shared leaf nodes of the Composite tree as
Flyweights to save some RAM.

• Composite and Decorator have similar structure diagrams
since both rely on recursive composition to organize an open-
ended number of objects.

A Decorator is like a Composite but only has one child com-
ponent. There’s another significant difference: Decorator adds
additional responsibilities to the wrapped object, while Com-
posite just “sums up” its children’s results.



189 Structural Design Patterns / Composite

However, the patterns can also cooperate: you can use Decora-
tor to extend the behavior of a specific object in the Compos-
ite tree.

• Designs that make heavy use of Composite and Decorator can
often benefit from using Prototype. Applying the pattern lets
you clone complex structures instead of re-constructing them
from scratch.

190 Structural Design Patterns / Composite

DECORATOR
Also known as: Wrapper

Decorator is a structural design pattern that lets you attach
new behaviors to objects by placing these objects inside

special wrapper objects that contain the behaviors.

191 Structural Design Patterns / Decorator

Problem

Imagine that you’re working on a notification library which lets
other programs notify their users about important events.

The initial version of the library was based on the Notifier

class that had only a few fields, a constructor and a single
send method. The method could accept a message argument

from a client and send the message to a list of emails that
were passed to the notificator via its constructor. A third-party
app which acted as a client was supposed to create and con-
figure the notificator object once, and then use it each time
something important happened.

A program could use the notifier class to send notifications about
important events to a predefined set of emails.

At some point, you realize that users of the library expect
more than just email notifications. Many of them would like to
receive an SMS about critical issues. Others would like to be
notified on Facebook and, of course, the corporate users would
love to get Slack notifications.



192 Structural Design Patterns / Decorator

Each notification type is implemented as a notifier’s subclass.

How hard can that be? You extended the Notifier class and
put the additional notification methods into new subclasses.
Now the client was supposed to instantiate the desired notifi-
cation class and use it for all further notifications.

But then someone reasonably asked you, “Why can’t you use
several notification types at once? If your house is on fire,
you’d probably want to be informed through every channel.”

Combinatorial explosion of subclasses.

193 Structural Design Patterns / Decorator

You tried to address that problem by creating special subclass-
es which combined several notification methods within one
class. However, it quickly became apparent that this approach
would bloat the code immensely, not only the library code but
the client code as well.

You have to find some other way to structure notifications
classes so that their number won’t accidentally break some
Guinness record.

Solution

Extending a class is the first thing that comes to mind when
you need to alter an object’s behavior. However, inheritance
has several serious caveats that you need to be aware of.

• Inheritance is static. You can’t alter the behavior of an existing
object at runtime. You can only replace the whole object with
another one that’s created from a different subclass.

• Subclasses can have just one parent class. In most languages,
inheritance doesn’t let a class inherit behaviors of multiple
classes at the same time.

One of the ways to overcome these caveats is by using Compo-
sition instead of Inheritance. With composition one object has a
reference to another and delegates it some work, whereas with
inheritance, the object itself is able to do that work, inheriting
the behavior from its superclass.



194 Structural Design Patterns / Decorator

With composition, you can easily substitute the linked “helper”
object with another, changing the behavior of the container
at runtime. An object can use the behavior of various classes,
having references to multiple objects and delegating them all
kinds of work.

Composition is the key principle behind many design patterns,
including the Decorator. On that note, let’s return to the pat-
tern discussion.

Inheritance vs. Composition

Wrapper is the alternative nickname for the Decorator pattern
that clearly expresses the main idea of the pattern. A “wrap-
per” is an object that can be linked with some “target” object.
The wrapper contains the same set of methods as the target
and delegates to it all requests it receives. However, the wrap-
per may alter the result by doing something either before or
after it passes the request to the target.

When does a simple wrapper become the real decorator? As I
mentioned, the wrapper implements the same interface as the
wrapped object. That’s why from the client’s perspective these
objects are identical. Make the wrapper’s reference field accept

195 Structural Design Patterns / Decorator

any object that follows that interface. This will let you cover
an object in multiple wrappers, adding the combined behavior
of all the wrappers to it.

Various notification methods become decorators.

In our notifications example, let’s leave the simple email noti-
fication behavior inside the base Notifier class, but turn all
other notification methods into decorators. The client code
would need to wrap a basic notifier object into a set of decora-
tors that match the client’s preferences. The resulting objects
will be structured as a stack.

The last decorator in the stack would be the object that the
client actually works with. Since all decorators implement the
same interface as the base notifier, the rest of the client code

196 Structural Design Patterns / Decorator

won’t care whether it works with the “pure” notificator object
or the decorated one.

Apps might configure complex stacks of notification decorators.

We could apply the same approach to other behaviors such
as formatting messages or composing the recipient list. The
client can decorate the object with any custom decorators, as
long as they follow the same interface as the others.

Real-World Analogy

You get a combined effect from wearing multiple pieces of clothing.



197 Structural Design Patterns / Decorator

Wearing clothes is an example of using decorators. When
you’re cold, you wrap yourself in a sweater. If you’re still cold
with a sweater, you can wear a jacket on top. If it’s raining, you
can put on a raincoat. All of these garments “extend” your basic
behavior but aren’t part of you, and you can easily take off any
piece of clothing whenever you don’t need it.

Structure

1. The Component declares the common interface for both wrap-
pers and wrapped objects.



198 Structural Design Patterns / Decorator

2. Concrete Component is a class of objects being wrapped. It
defines the basic behavior, which can be altered by decorators.

3. The Base Decorator class has a field for referencing a wrapped
object. The field’s type should be declared as the component
interface so it can contain both concrete components and dec-
orators. The base decorator delegates all operations to the
wrapped object.

4. Concrete Decorators define extra behaviors that can be added
to components dynamically. Concrete decorators override
methods of the base decorator and execute their behavior
either before or after calling the parent method.

5. The Client can wrap components in multiple layers of deco-
rators, as long as it works with all objects via the component
interface.

Pseudocode

In this example, the Decorator pattern lets you compress and
encrypt sensitive data independently from the code that actu-
ally uses this data.



199 Structural Design Patterns / Decorator

The encryption and compression decorators example.

The application wraps the data source object with a pair of
decorators. Both wrappers change the way the data is written
to and read from the disk:

• Just before the data is written to disk, the decorators encrypt
and compress it. The original class writes the encrypted and
protected data to the file without knowing about the change.

200 Structural Design Patterns / Decorator

• Right after the data is read from disk, it goes through the same
decorators, which decompress and decode it.

The decorators and the data source class implement the same
interface, which makes them all interchangeable in the
client code.

// The component interface defines operations that can be1

// altered by decorators.2

interface DataSource is3

method writeData(data)4

method readData():data5

6

// Concrete components provide default implementations for the7

// operations. There might be several variations of these8

// classes in a program.9

class FileDataSource implements DataSource is10

constructor FileDataSource(filename) { ... }11

12

method writeData(data) is13

// Write data to file.14

15

method readData():data is16

// Read data from file.17

18

// The base decorator class follows the same interface as the19

// other components. The primary purpose of this class is to20

// define the wrapping interface for all concrete decorators.21

// The default implementation of the wrapping code might include22

// a field for storing a wrapped component and the means to23

// initialize it.24

201 Structural Design Patterns / Decorator

class DataSourceDecorator implements DataSource is25

protected field wrappee: DataSource26

27

constructor DataSourceDecorator(source: DataSource) is28

wrappee = source29

30

// The base decorator simply delegates all work to the31

// wrapped component. Extra behaviors can be added in32

// concrete decorators.33

method writeData(data) is34

wrappee.writeData(data)35

36

// Concrete decorators may call the parent implementation of37

// the operation instead of calling the wrapped object38

// directly. This approach simplifies extension of decorator39

// classes.40

method readData():data is41

return wrappee.readData()42

43

// Concrete decorators must call methods on the wrapped object,44

// but may add something of their own to the result. Decorators45

// can execute the added behavior either before or after the46

// call to a wrapped object.47

class EncryptionDecorator extends DataSourceDecorator is48

method writeData(data) is49

// 1. Encrypt passed data.50

// 2. Pass encrypted data to the wrappee's writeData51

// method.52

method readData():data is53

// 1. Get data from the wrappee's readData method.54

// 2. Try to decrypt it if it's encrypted.55

// 3. Return the result.56

202 Structural Design Patterns / Decorator

// You can wrap objects in several layers of decorators.57

class CompressionDecorator extends DataSourceDecorator is58

method writeData(data) is59

// 1. Compress passed data.60

// 2. Pass compressed data to the wrappee's writeData61

// method.62

63

method readData():data is64

// 1. Get data from the wrappee's readData method.65

// 2. Try to decompress it if it's compressed.66

// 3. Return the result.67

68

69

// Option 1. A simple example of a decorator assembly.70

class Application is71

method dumbUsageExample() is72

source = new FileDataSource("somefile.dat")73

source.writeData(salaryRecords)74

// The target file has been written with plain data.75

76

source = new CompressionDecorator(source)77

source.writeData(salaryRecords)78

// The target file has been written with compressed79

// data.80

81

source = new EncryptionDecorator(source)82

// The source variable now contains this:83

// Encryption > Compression > FileDataSource84

source.writeData(salaryRecords)85

// The file has been written with compressed and86

// encrypted data.87

88

203 Structural Design Patterns / Decorator

// Option 2. Client code that uses an external data source.89

// SalaryManager objects neither know nor care about data90

// storage specifics. They work with a pre-configured data91

// source received from the app configurator.92

class SalaryManager is93

field source: DataSource94

95

constructor SalaryManager(source: DataSource) { ... }96

97

method load() is98

return source.readData()99

100

method save() is101

source.writeData(salaryRecords)102

// ...Other useful methods...103

104

105

// The app can assemble different stacks of decorators at106

// runtime, depending on the configuration or environment.107

class ApplicationConfigurator is108

method configurationExample() is109

source = new FileDataSource("salary.dat")110

if (enabledEncryption)111

source = new EncryptionDecorator(source)112

if (enabledCompression)113

source = new CompressionDecorator(source)114

115

logger = new SalaryManager(source)116

salary = logger.load()117

// ...118

204 Structural Design Patterns / Decorator

Applicability

Use the Decorator pattern when you need to be able to assign
extra behaviors to objects at runtime without breaking the
code that uses these objects.

The Decorator lets you structure your business logic into lay-
ers, create a decorator for each layer and compose objects with
various combinations of this logic at runtime. The client code
can treat all these objects in the same way, since they all fol-
low a common interface.

Use the pattern when it’s awkward or not possible to extend an
object’s behavior using inheritance.

Many programming languages have the final keyword that
can be used to prevent further extension of a class. For a final
class, the only way to reuse the existing behavior would be
to wrap the class with your own wrapper, using the Decorator
pattern.

How to Implement

1. Make sure your business domain can be represented as a pri-
mary component with multiple optional layers over it.

2. Figure out what methods are common to both the primary
component and the optional layers. Create a component inter-
face and declare those methods there.













205 Structural Design Patterns / Decorator

3. Create a concrete component class and define the base behav-
ior in it.

4. Create a base decorator class. It should have a field for storing
a reference to a wrapped object. The field should be declared
with the component interface type to allow linking to concrete
components as well as decorators. The base decorator must
delegate all work to the wrapped object.

5. Make sure all classes implement the component interface.

6. Create concrete decorators by extending them from the base
decorator. A concrete decorator must execute its behavior
before or after the call to the parent method (which always
delegates to the wrapped object).

7. The client code must be responsible for creating decorators
and composing them in the way the client needs.

Pros and Cons

You can extend an object’s behavior without making a new
subclass.

You can add or remove responsibilities from an object at
runtime.

You can combine several behaviors by wrapping an object into
multiple decorators.









206 Structural Design Patterns / Decorator

Single Responsibility Principle. You can divide a monolithic class
that implements many possible variants of behavior into sev-
eral smaller classes.

It’s hard to remove a specific wrapper from the wrappers stack.

It’s hard to implement a decorator in such a way that its behav-
ior doesn’t depend on the order in the decorators stack.

The initial configuration code of layers might look pretty ugly.

Relations with Other Patterns

• Adapter changes the interface of an existing object, while Dec-
orator enhances an object without changing its interface. In
addition, Decorator supports recursive composition, which isn’t
possible when you use Adapter.

• Adapter provides a different interface to the wrapped object,
Proxy provides it with the same interface, and Decorator pro-
vides it with an enhanced interface.

• Chain of Responsibility and Decorator have very similar class
structures. Both patterns rely on recursive composition to pass
the execution through a series of objects. However, there are
several crucial differences.

The CoR handlers can execute arbitrary operations indepen-
dently of each other. They can also stop passing the request
further at any point. On the other hand, various Decorators can
extend the object’s behavior while keeping it consistent with











207 Structural Design Patterns / Decorator

the base interface. In addition, decorators aren’t allowed to
break the flow of the request.

• Composite and Decorator have similar structure diagrams
since both rely on recursive composition to organize an open-
ended number of objects.

A Decorator is like a Composite but only has one child com-
ponent. There’s another significant difference: Decorator adds
additional responsibilities to the wrapped object, while Com-
posite just “sums up” its children’s results.

However, the patterns can also cooperate: you can use Decora-
tor to extend the behavior of a specific object in the Compos-
ite tree.

• Designs that make heavy use of Composite and Decorator can
often benefit from using Prototype. Applying the pattern lets
you clone complex structures instead of re-constructing them
from scratch.

• Decorator lets you change the skin of an object, while Strategy
lets you change the guts.

• Decorator and Proxy have similar structures, but very different
intents. Both patterns are built on the composition principle,
where one object is supposed to delegate some of the work to
another. The difference is that a Proxy usually manages the life
cycle of its service object on its own, whereas the composition
of Decorators is always controlled by the client.

208 Structural Design Patterns / Decorator

FACADE
Facade is a structural design pattern that provides a simplified
interface to a library, a framework, or any other complex set of

classes.

209 Structural Design Patterns / Facade

Problem

Imagine that you must make your code work with a broad set
of objects that belong to a sophisticated library or framework.
Ordinarily, you’d need to initialize all of those objects, keep
track of dependencies, execute methods in the correct order,
and so on.

As a result, the business logic of your classes would become
tightly coupled to the implementation details of 3rd-party
classes, making it hard to comprehend and maintain.

Solution

A facade is a class that provides a simple interface to a com-
plex subsystem which contains lots of moving parts. A facade
might provide limited functionality in comparison to working
with the subsystem directly. However, it includes only those
features that clients really care about.

Having a facade is handy when you need to integrate your
app with a sophisticated library that has dozens of features,
but you just need a tiny bit of its functionality. For instance,
an app that uploads short funny videos with cats to social
media could potentially use a professional video conversion
library. However, all that it really needs is a class with the sin-
gle method encode(filename, format) . After creating such a
class and connecting it with the video conversion library, you’ll
have your first facade.





210 Structural Design Patterns / Facade

Real-World Analogy

Placing orders by phone.

When you call a shop to place a phone order, an operator
is your facade to all services and departments of the shop.
The operator provides you with a simple voice interface to
the ordering system, payment gateways, and various delivery
services.

Structure





211 Structural Design Patterns / Facade

1. The Facade provides convenient access to a particular part
of the subsystem’s functionality. It knows where to direct the
client’s request and how to operate all the moving parts.

2. An Additional Facade class can be created to prevent polluting
a single facade with unrelated features that might make it yet
another complex structure. Additional facades can be used by
both clients and other facades.

3. The Complex Subsystem consists of dozens of various objects.
To make them all do something meaningful, you have to dive
deep into the subsystem’s implementation details, such as ini-
tializing objects in the correct order and supplying them with
data in the proper format.

Subsystem classes aren’t aware of the facade’s existence. They
operate within the system and work with each other directly.

4. The Client uses the facade instead of calling the subsystem
objects directly.

Pseudocode

In this example, the Facade pattern simplifies interaction with
a complex video conversion framework.



212 Structural Design Patterns / Facade

An example of isolating multiple dependencies within a single
facade class.

Instead of making your code work with dozens of the frame-
work classes directly, you create a facade class which encapsu-
lates that functionality and hides it from the rest of the code.
This structure also helps you to minimize the effort of upgrad-
ing to future versions of the framework or replacing it with
another one. The only thing you’d need to change in your app
would be the implementation of the facade’s methods.

// These are some of the classes of a complex 3rd-party video1

// conversion framework. We don't control that code, therefore2

// can't simplify it.3

4

class VideoFile5

// ...6

213 Structural Design Patterns / Facade

class OggCompressionCodec7

// ...8

9

class MPEG4CompressionCodec10

// ...11

12

class CodecFactory13

// ...14

15

class BitrateReader16

// ...17

18

class AudioMixer19

// ...20

21

22

// We create a facade class to hide the framework's complexity23

// behind a simple interface. It's a trade-off between24

// functionality and simplicity.25

class VideoConverter is26

method convert(filename, format):File is27

file = new VideoFile(filename)28

sourceCodec = new CodecFactory.extract(file)29

if (format == "mp4")30

destinationCodec = new MPEG4CompressionCodec()31

else32

destinationCodec = new OggCompressionCodec()33

buffer = BitrateReader.read(filename, sourceCodec)34

result = BitrateReader.convert(buffer, destinationCodec)35

result = (new AudioMixer()).fix(result)36

return new File(result)37

38

214 Structural Design Patterns / Facade

Applicability

Use the Facade pattern when you need to have a limited but
straightforward interface to a complex subsystem.

Often, subsystems get more complex over time. Even apply-
ing design patterns typically leads to creating more classes.
A subsystem may become more flexible and easier to reuse
in various contexts, but the amount of configuration and boil-
erplate code it demands from a client grows ever larger. The
Facade attempts to fix this problem by providing a shortcut to
the most-used features of the subsystem which fit most client
requirements.

Use the Facade when you want to structure a subsystem into
layers.

Create facades to define entry points to each level of a subsys-
tem. You can reduce coupling between multiple subsystems by
requiring them to communicate only through facades.

// Application classes don't depend on a billion classes39

// provided by the complex framework. Also, if you decide to40

// switch frameworks, you only need to rewrite the facade class.41

class Application is42

method main() is43

convertor = new VideoConverter()44

mp4 = convertor.convert("youtubevideo.ogg", "mp4")45

mp4.save()46











215 Structural Design Patterns / Facade

For example, let’s return to our video conversion framework. It
can be broken down into two layers: video- and audio-relat-
ed. For each layer, you can create a facade and then make
the classes of each layer communicate with each another via
those facades. This approach looks very similar to the Media-
tor pattern.

How to Implement

1. Check whether it’s possible to provide a simpler interface than
what an existing subsystem already provides. You’re on the
right track if this interface makes the client code independent
from many of the subsystem’s classes.

2. Declare and implement this interface in a new facade class.
The facade should redirect the calls from the client code to
appropriate objects of the subsystem. The facade should be
responsible for initializing the subsystem and managing its
further life cycle unless the client code already does this.

3. To get the full benefit from the pattern, make all the client
code communicate with the subsystem only via the facade.
Now the client code is protected from any changes in the sub-
system code. For example, when a subsystem gets upgraded
to a new version, you will only need to modify the code in the
facade.

4. If the facade becomes too big, consider extracting part of its
behavior to a new, refined facade class.



216 Structural Design Patterns / Facade

Pros and Cons

You can isolate your code from the complexity of a subsystem.

A facade can become a god object coupled to all classes of
an app.

Relations with Other Patterns

• Facade defines a new interface for existing objects, whereas
Adapter tries to make the existing interface usable. Adapter
usually wraps just one object, while Facade works with an
entire subsystem of objects.

• Abstract Factory can serve as an alternative to Facade when
you only want to hide the way the subsystem objects are cre-
ated from the client code.

• Flyweight shows how to make lots of little objects, whereas
Facade shows how to make a single object that represents an
entire subsystem.

• Facade and Mediator have similar jobs: they try to organize
collaboration between lots of tightly coupled classes.

◦ Facade defines a simplified interface to a subsystem of
objects, but it doesn’t introduce any new functionality. The
subsystem itself is unaware of the facade. Objects within
the subsystem can communicate directly.









217 Structural Design Patterns / Facade

◦ Mediator centralizes communication between components
of the system. The components only know about the medi-
ator object and don’t communicate directly.

• A Facade class can often be transformed into a Singleton since
a single facade object is sufficient in most cases.

• Facade is similar to Proxy in that both buffer a complex entity
and initialize it on its own. Unlike Facade, Proxy has the same
interface as its service object, which makes them interchange-
able.

218 Structural Design Patterns / Facade

FLYWEIGHT
Also known as: Cache

Flyweight is a structural design pattern that lets you fit more
objects into the available amount of RAM by sharing common
parts of state between multiple objects instead of keeping all

of the data in each object.

219 Structural Design Patterns / Flyweight

Problem

To have some fun after long working hours, you decided to cre-
ate a simple video game: players would be moving around a
map and shooting each other. You chose to implement a real-
istic particle system and make it a distinctive feature of the
game. Vast quantities of bullets, missiles, and shrapnel from
explosions should fly all over the map and deliver a thrilling
experience to the player.

Upon its completion, you pushed the last commit, built the
game and sent it to your friend for a test drive. Although the
game was running flawlessly on your machine, your friend
wasn’t able to play for long. On his computer, the game kept
crashing after a few minutes of gameplay.

After spending several hours digging through debug logs, you
discovered that the game crashed because of an insufficient
amount of RAM. It turned out that your friend’s rig was much
less powerful than your own computer, and that’s why the
problem emerged so quickly on his machine.



220 Structural Design Patterns / Flyweight

The actual problem was related to your particle system. Each
particle, such as a bullet, a missile or a piece of shrapnel was
represented by a separate object containing plenty of data. At
some point, when the carnage on a player’s screen reached its
climax, newly created particles no longer fit into the remain-
ing RAM, so the program crashed.

Solution

On closer inspection of the Particle class, you may notice
that the color and sprite fields consume a lot more memory
than other fields. What’s worse is that these two fields store
almost identical data across all particles. For example, all bul-
lets have the same color and sprite.

Other parts of a particle’s state, such as coordinates, move-
ment vector and speed, are unique to each particle. After all,
the values of these fields change over time. This data repre-
sents the always changing context in which the particle exists,
while the color and sprite remain constant for each particle.



221 Structural Design Patterns / Flyweight

This constant data of an object is usually called the intrinsic
state. It lives within the object; other objects can only read it,
not change it. The rest of the object’s state, often altered “from
the outside” by other objects, is called the extrinsic state.

The Flyweight pattern suggests that you stop storing the
extrinsic state inside the object. Instead, you should pass this
state to specific methods which rely on it. Only the intrinsic
state stays within the object, letting you reuse it in different
contexts.

222 Structural Design Patterns / Flyweight

As a result, you’d need fewer of these objects since they only
differ in the intrinsic state, which has much fewer variations
than the extrinsic.

Let’s return to our game. Assuming that we had extracted
the extrinsic state from our particle class, only three different
objects would suffice to represent all particles in the game: a
bullet, a missile, and a piece of shrapnel. As you’ve probably
guessed by now, an object that only stores the intrinsic state is
called a flyweight.

Extrinsic state storage

Where does the extrinsic state move to? Some class should
still store it, right? In most cases, it gets moved to the con-
tainer object, which aggregates objects before we apply the
pattern.

In our case, that’s the main Game object that stores all parti-
cles in the particles field. To move the extrinsic state into
this class, you need to create several array fields for storing
coordinates, vectors, and speed of each individual particle. But
that’s not all. You need another array for storing references to a
specific flyweight that represents a particle. These arrays must
be in sync so that you can access all data of a particle using
the same index.

223 Structural Design Patterns / Flyweight

A more elegant solution is to create a separate context class
that would store the extrinsic state along with reference to
the flyweight object. This approach would require having just
a single array in the container class.

Wait a second! Won’t we need to have as many of these con-
textual objects as we had at the very beginning? Technical-
ly, yes. But the thing is, these objects are much smaller than
before. The most memory-consuming fields have been moved
to just a few flyweight objects. Now, a thousand small contex-
tual objects can reuse a single heavy flyweight object instead
of storing a thousand copies of its data.

Flyweight and immutability

Since the same flyweight object can be used in different con-
texts, you have to make sure that its state can’t be modified.
A flyweight should initialize its state just once, via constructor

224 Structural Design Patterns / Flyweight

parameters. It shouldn’t expose any setters or public fields to
other objects.

Flyweight factory

For more convenient access to various flyweights, you can create a

factory method that manages a pool of existing flyweight objects.

The method accepts the intrinsic state of the desired flyweight

from a client, looks for an existing flyweight object matching this

state, and returns it if it was found. If not, it creates a new fly-

weight and adds it to the pool.

There are several options where this method could be placed.

The most obvious place is a flyweight container. Alternatively, you

could create a new factory class. Or you could make the factory

method static and put it inside an actual flyweight class.

Structure

225 Structural Design Patterns / Flyweight

1. The Flyweight pattern is merely an optimization. Before apply-
ing it, make sure your program does have the RAM consump-
tion problem related to having a massive number of similar
objects in memory at the same time. Make sure that this prob-
lem can’t be solved in any other meaningful way.

2. The Flyweight class contains the portion of the original
object’s state that can be shared between multiple objects. The
same flyweight object can be used in many different contexts.
The state stored inside a flyweight is called “intrinsic.” The
state passed to the flyweight’s methods is called “extrinsic.”

3. The Context class contains the extrinsic state, unique across
all original objects. When a context is paired with one of the
flyweight objects, it represents the full state of the original
object.

4. Usually, the behavior of the original object remains in the fly-
weight class. In this case, whoever calls a flyweight’s method
must also pass appropriate bits of the extrinsic state into the
method’s parameters. On the other hand, the behavior can be
moved to the context class, which would use the linked fly-
weight merely as a data object.

5. The Client calculates or stores the extrinsic state of flyweights.
From the client’s perspective, a flyweight is a template object
which can be configured at runtime by passing some contextu-
al data into parameters of its methods.

226 Structural Design Patterns / Flyweight

6. The Flyweight Factory manages a pool of existing flyweights.
With the factory, clients don’t create flyweights directly.
Instead, they call the factory, passing it bits of the intrinsic
state of the desired flyweight. The factory looks over previ-
ously created flyweights and either returns an existing one
that matches search criteria or creates a new one if nothing
is found.

Pseudocode

In this example, the Flyweight pattern helps to reduce memo-
ry usage when rendering millions of tree objects on a canvas.

The pattern extracts the repeating intrinsic state from a main
Tree class and moves it into the flyweight class TreeType .



227 Structural Design Patterns / Flyweight

Now instead of storing the same data in multiple objects, it’s
kept in just a few flyweight objects and linked to appropriate
Tree objects which act as contexts. The client code creates

new tree objects using the flyweight factory, which encap-
sulates the complexity of searching for the right object and
reusing it if needed.

// The flyweight class contains a portion of the state of a1

// tree. These fields store values that are unique for each2

// particular tree. For instance, you won't find here the tree3

// coordinates. But the texture and colors shared between many4

// trees are here. Since this data is usually BIG, you'd waste a5

// lot of memory by keeping it in each tree object. Instead, we6

// can extract texture, color and other repeating data into a7

// separate object which lots of individual tree objects can8

// reference.9

class TreeType is10

field name11

field color12

field texture13

constructor TreeType(name, color, texture) { ... }14

method draw(canvas, x, y) is15

// 1. Create a bitmap of a given type, color & texture.16

// 2. Draw the bitmap on the canvas at X and Y coords.17

18

// Flyweight factory decides whether to re-use existing19

// flyweight or to create a new object.20

class TreeFactory is21

static field treeTypes: collection of tree types22

static method getTreeType(name, color, texture) is23

type = treeTypes.find(name, color, texture)24

228 Structural Design Patterns / Flyweight

if (type == null)25

type = new TreeType(name, color, texture)26

treeTypes.add(type)27

return type28

29

// The contextual object contains the extrinsic part of the tree30

// state. An application can create billions of these since they31

// are pretty small: just two integer coordinates and one32

// reference field.33

class Tree is34

field x,y35

field type: TreeType36

constructor Tree(x, y, type) { ... }37

method draw(canvas) is38

type.draw(canvas, this.x, this.y)39

40

// The Tree and the Forest classes are the flyweight's clients.41

// You can merge them if you don't plan to develop the Tree42

// class any further.43

class Forest is44

field trees: collection of Trees45

46

method plantTree(x, y, name, color, texture) is47

type = TreeFactory.getTreeType(name, color, texture)48

tree = new Tree(x, y, type)49

trees.add(tree)50

51

method draw(canvas) is52

foreach (tree in trees) do53

tree.draw(canvas)54

229 Structural Design Patterns / Flyweight

Applicability

Use the Flyweight pattern only when your program must sup-
port a huge number of objects which barely fit into avail-
able RAM.

The benefit of applying the pattern depends heavily on how
and where it’s used. It’s most useful when:

• an application needs to spawn a huge number of similar
objects

• this drains all available RAM on a target device

• the objects contain duplicate states which can be extracted
and shared between multiple objects

How to Implement

1. Divide fields of a class that will become a flyweight into
two parts:

◦ the intrinsic state: the fields that contain unchanging data
duplicated across many objects

◦ the extrinsic state: the fields that contain contextual data
unique to each object

2. Leave the fields that represent the intrinsic state in the class,
but make sure they’re immutable. They should take their initial
values only inside the constructor.









230 Structural Design Patterns / Flyweight

3. Go over methods that use fields of the extrinsic state. For each
field used in the method, introduce a new parameter and use
it instead of the field.

4. Optionally, create a factory class to manage the pool of fly-
weights. It should check for an existing flyweight before cre-
ating a new one. Once the factory is in place, clients must
only request flyweights through it. They should describe the
desired flyweight by passing its intrinsic state to the factory.

5. The client must store or calculate values of the extrinsic state
(context) to be able to call methods of flyweight objects. For
the sake of convenience, the extrinsic state along with the
flyweight-referencing field may be moved to a separate con-
text class.

Pros and Cons

You can save lots of RAM, assuming your program has tons of
similar objects.

You might be trading RAM over CPU cycles when some of the
context data needs to be recalculated each time somebody
calls a flyweight method.

The code becomes much more complicated. New team mem-
bers will always be wondering why the state of an entity was
separated in such a way.









231 Structural Design Patterns / Flyweight

Relations with Other Patterns

• You can implement shared leaf nodes of the Composite tree as
Flyweights to save some RAM.

• Flyweight shows how to make lots of little objects, whereas
Facade shows how to make a single object that represents an
entire subsystem.

• Flyweight would resemble Singleton if you somehow man-
aged to reduce all shared states of the objects to just one
flyweight object. But there are two fundamental differences
between these patterns:

1. There should be only one Singleton instance, whereas a
Flyweight class can have multiple instances with different
intrinsic states.

2. The Singleton object can be mutable. Flyweight objects are
immutable.



232 Structural Design Patterns / Flyweight

PROXY
Proxy is a structural design pattern that lets you provide a
substitute or placeholder for another object. A proxy controls
access to the original object, allowing you to perform
something either before or after the request gets through to

the original object.

233 Structural Design Patterns / Proxy

Problem

Why would you want to control access to an object? Here is
an example: you have a massive object that consumes a vast
amount of system resources. You need it from time to time, but
not always.

Database queries can be really slow.

You could implement lazy initialization: create this object only
when it’s actually needed. All of the object’s clients would
need to execute some deferred initialization code. Unfortu-
nately, this would probably cause a lot of code duplication.

In an ideal world, we’d want to put this code directly into our
object’s class, but that isn’t always possible. For instance, the
class may be part of a closed 3rd-party library.

Solution

The Proxy pattern suggests that you create a new proxy class
with the same interface as an original service object. Then you
update your app so that it passes the proxy object to all of the





234 Structural Design Patterns / Proxy

original object’s clients. Upon receiving a request from a client,
the proxy creates a real service object and delegates all the
work to it.

The proxy disguises itself as a database object. It can handle lazy
initialization and result caching without the client or the real database

object even knowing.

But what’s the benefit? If you need to execute something
either before or after the primary logic of the class, the proxy
lets you do this without changing that class. Since the proxy
implements the same interface as the original class, it can be
passed to any client that expects a real service object.

Real-World Analogy

Credit cards can be used for payments just the same as cash.



235 Structural Design Patterns / Proxy

A credit card is a proxy for a bank account, which is a proxy for
a bundle of cash. Both implement the same interface: they can
be used for making a payment. A consumer feels great because
there’s no need to carry loads of cash around. A shop owner
is also happy since the income from a transaction gets added
electronically to the shop’s bank account without the risk of
losing the deposit or getting robbed on the way to the bank.

Structure

1. The Service Interface declares the interface of the Service. The
proxy must follow this interface to be able to disguise itself as
a service object.

2. The Service is a class that provides some useful business logic.



236 Structural Design Patterns / Proxy

3. The Proxy class has a reference field that points to a service
object. After the proxy finishes its processing (e.g., lazy ini-
tialization, logging, access control, caching, etc.), it passes the
request to the service object. Usually, proxies manage the full
lifecycle of their service objects.

4. The Client should work with both services and proxies via the
same interface. This way you can pass a proxy into any code
that expects a service object.

Pseudocode

This example illustrates how the Proxy pattern can help to
introduce lazy initialization and caching to a 3rd-party
YouTube integration library.

Caching results of a service with a proxy.



237 Structural Design Patterns / Proxy

The library provides us with the video downloading class.
However, it’s very inefficient. If the client application requests
the same video multiple times, the library just downloads it
over and over, instead of caching and reusing the first down-
loaded file.

The proxy class implements the same interface as the original
downloader and delegates it all the work. However, it keeps
track of the downloaded files and returns the cached result
when the app requests the same video multiple times.

// The interface of a remote service.1

interface ThirdPartyYoutubeLib is2

method listVideos()3

method getVideoInfo(id)4

method downloadVideo(id)5

6

// The concrete implementation of a service connector. Methods7

// of this class can request information from YouTube. The speed8

// of the request depends on a user's internet connection as9

// well as YouTube's. The application will slow down if a lot of10

// requests are fired at the same time, even if they all request11

// the same information.12

class ThirdPartyYoutubeClass implements ThirdPartyYoutubeLib is13

method listVideos() is14

// Send an API request to YouTube.15

16

method getVideoInfo(id) is17

// Get metadata about some video.18

19

238 Structural Design Patterns / Proxy

method downloadVideo(id) is20

// Download a video file from YouTube.21

22

// To save some bandwidth, we can cache request results and keep23

// them for some time. But it may be impossible to put such code24

// directly into the service class. For example, it could have25

// been provided as part of a third party library and/or defined26

// as `final`. That's why we put the caching code into a new27

// proxy class which implements the same interface as the28

// service class. It delegates to the service object only when29

// the real requests have to be sent.30

class CachedYoutubeClass implements ThirdPartyYouTubeLib is31

private field service: ThirdPartyYouTubeClass32

private field listCache, videoCache33

field needReset34

35

constructor CachedYoutubeClass(service: ThirdPartyYouTubeLib) is36

this.service = service37

38

method listVideos() is39

if (listCache == null || needReset)40

listCache = service.listVideos()41

return listCache42

43

method getVideoInfo(id) is44

if (videoCache == null || needReset)45

videoCache = service.getVideoInfo(id)46

return videoCache47

48

method downloadVideo(id) is49

if (!downloadExists(id) || needReset)50

service.downloadVideo(id)51

239 Structural Design Patterns / Proxy

// The GUI class, which used to work directly with a service52

// object, stays unchanged as long as it works with the service53

// object through an interface. We can safely pass a proxy54

// object instead of a real service object since they both55

// implement the same interface.56

class YoutubeManager is57

protected field service: ThirdPartyYouTubeLib58

59

constructor YoutubeManager(service: ThirdPartyYouTubeLib) is60

this.service = service61

62

method renderVideoPage(id) is63

info = service.getVideoInfo(id)64

// Render the video page.65

66

method renderListPanel() is67

list = service.listVideos()68

// Render the list of video thumbnails.69

70

method reactOnUserInput() is71

renderVideoPage()72

renderListPanel()73

74

// The application can configure proxies on the fly.75

class Application is76

method init() is77

aYouTubeService = new ThirdPartyYouTubeClass()78

aYouTubeProxy = new CachedYouTubeClass(aYouTubeService)79

manager = new YouTubeManager(aYouTubeProxy)80

manager.reactOnUserInput()81

240 Structural Design Patterns / Proxy

Applicability

There are dozens of ways to utilize the Proxy pattern. Let’s go
over the most popular uses.

Lazy initialization (virtual proxy). This is when you have a
heavyweight service object that wastes system resources by
being always up, even though you only need it from time
to time.

Instead of creating the object when the app launches, you
can delay the object’s initialization to a time when it’s really
needed.

Access control (protection proxy). This is when you want only
specific clients to be able to use the service object; for
instance, when your objects are crucial parts of an operating
system and clients are various launched applications (includ-
ing malicious ones).

The proxy can pass the request to the service object only if the
client’s credentials match some criteria.

Local execution of a remote service (remote proxy). This is
when the service object is located on a remote server.

In this case, the proxy passes the client request over the net-
work, handling all of the nasty details of working with the
network.









241 Structural Design Patterns / Proxy

Logging requests (logging proxy). This is when you want to
keep a history of requests to the service object.

The proxy can log each request before passing it to the service.

Caching request results (caching proxy). This is when you need
to cache results of client requests and manage the life cycle of
this cache, especially if results are quite large.

The proxy can implement caching for recurring requests that
always yield the same results. The proxy may use the parame-
ters of requests as the cache keys.

Smart reference. This is when you need to be able to dismiss a
heavyweight object once there are no clients that use it.

The proxy can keep track of clients that obtained a reference
to the service object or its results. From time to time, the proxy
may go over the clients and check whether they are still active.
If the client list gets empty, the proxy might dismiss the ser-
vice object and free the underlying system resources.

The proxy can also track whether the client had modified the
service object. Then the unchanged objects may be reused by
other clients.







242 Structural Design Patterns / Proxy

How to Implement

1. If there’s no pre-existing service interface, create one to make
proxy and service objects interchangeable. Extracting the
interface from the service class isn’t always possible, because
you’d need to change all of the service’s clients to use that
interface. Plan B is to make the proxy a subclass of the service
class, and this way it’ll inherit the interface of the service.

2. Create the proxy class. It should have a field for storing a ref-
erence to the service. Usually, proxies create and manage the
whole life cycle of their servers. In rare occasions, a service is
passed to the proxy via a constructor by the client.

3. Implement the proxy methods according to their purposes. In
most cases, after doing some work, the proxy should delegate
the work to the service object.

4. Consider introducing a creation method that decides whether
the client gets a proxy or a real service. This can be a sim-
ple static method in the proxy class or a full-blown factory
method.

5. Consider implementing lazy initialization for the service
object.



243 Structural Design Patterns / Proxy

Pros and Cons

You can control the service object without clients knowing
about it.

You can manage the lifecycle of the service object when clients
don’t care about it.

The proxy works even if the service object isn’t ready or is not
available.

Open/Closed Principle. You can introduce new proxies without
changing the service or clients.

The code may become more complicated since you need to
introduce a lot of new classes.

The response from the service might get delayed.

Relations with Other Patterns

• Adapter provides a different interface to the wrapped object,
Proxy provides it with the same interface, and Decorator pro-
vides it with an enhanced interface.

• Facade is similar to Proxy in that both buffer a complex entity
and initialize it on its own. Unlike Facade, Proxy has the same
interface as its service object, which makes them interchange-
able.

• Decorator and Proxy have similar structures, but very different
intents. Both patterns are built on the composition principle,

















244 Structural Design Patterns / Proxy

where one object is supposed to delegate some of the work to
another. The difference is that a Proxy usually manages the life
cycle of its service object on its own, whereas the composition
of Decorators is always controlled by the client.

245 Structural Design Patterns / Proxy

CHAIN OF
RESPONSIBILITY

Also known as: CoR, Chain of Command

Chain of Responsibility is a behavioral design pattern that lets
you pass requests along a chain of handlers. Upon receiving a
request, each handler decides either to process the request or

to pass it to the next handler in the chain.

250 Behavioral Design Patterns / Chain of Responsibility

Problem

Imagine that you’re working on an online ordering system. You
want to restrict access to the system so only authenticated
users can create orders. Also, users who have administrative
permissions must have full access to all orders.

After a bit of planning, you realized that these checks must
be performed sequentially. The application can attempt to
authenticate a user to the system whenever it receives a
request that contains the user’s credentials. However, if those
credentials aren’t correct and authentication fails, there’s no
reason to proceed with any other checks.

The request must pass a series of checks before the ordering system itself
can handle it.

During the next few months, you implemented several more of
those sequential checks.



251 Behavioral Design Patterns / Chain of Responsibility

• One of your colleagues suggested that it’s unsafe to pass raw
data straight to the ordering system. So you added an extra
validation step to sanitize the data in a request.

• Later, somebody noticed that the system is vulnerable to brute
force password cracking. To negate this, you promptly added
a check that filters repeated failed requests coming from the
same IP address.

• Someone else suggested that you could speed up the system
by returning cached results on repeated requests containing
the same data. Hence, you added another check which lets the
request pass through to the system only if there’s no suitable
cached response.

The bigger the code grew, the messier it became.

252 Behavioral Design Patterns / Chain of Responsibility

The code of the checks, which had already looked like a mess,
became more and more bloated as you added each new fea-
ture. Changing one check sometimes affected the others.
Worst of all, when you tried to reuse the checks to protect
other components of the system, you had to duplicate some of
the code since those components required some of the checks,
but not all of them.

The system became very hard to comprehend and expensive
to maintain. You struggled with the code for a while, until one
day you decided to refactor the whole thing.

Solution

Like many other behavioral design patterns, the Chain of
Responsibility relies on transforming particular behaviors into
stand-alone objects called handlers. In our case, each check
should be extracted to its own class with a single method that
performs the check. The request, along with its data, is passed
to this method as an argument.

The pattern suggests that you link these handlers into a chain.
Each linked handler has a field for storing a reference to the
next handler in the chain. In addition to processing a request,
handlers pass the request further along the chain. The request
travels along the chain until all handlers have had a chance to
process it.



253 Behavioral Design Patterns / Chain of Responsibility

Here’s the best part: a handler can decide not to pass the
request further down the chain and effectively stop any further
processing.

In our example with ordering systems, a handler performs
the processing and then decides whether to pass the request
further down the chain. Assuming the request contains the
right data, all the handlers can execute their primary behavior,
whether it’s authentication checks or caching.

Handlers are lined up one by one, forming a chain.

However, there’s a slightly different approach (and it’s a bit
more canonical) in which, upon receiving a request, a han-
dler decides whether it can process it. If it can, it doesn’t pass
the request any further. So it’s either only one handler that
processes the request or none at all. This approach is very
common when dealing with events in stacks of elements with-
in a graphical user interface.

For instance, when a user clicks a button, the event propagates
through the chain of GUI elements that starts with the button,
goes along its containers (like forms or panels), and ends up
with the main application window. The event is processed by
the first element in the chain that’s capable of handling it. This

254 Behavioral Design Patterns / Chain of Responsibility

example is also noteworthy because it shows that a chain can
always be extracted from an object tree.

A chain can be formed from a branch of an object tree.

It’s crucial that all handler classes implement the same inter-
face. Each concrete handler should only care about the fol-
lowing one having the execute method. This way you can
compose chains at runtime, using various handlers without
coupling your code to their concrete classes.

Real-World Analogy

You’ve just bought and installed a new piece of hardware on
your computer. Since you’re a geek, the computer has sever-
al operating systems installed. You try to boot all of them to
see whether the hardware is supported. Windows detects and
enables the hardware automatically. However, your beloved
Linux refuses to work with the new hardware. With a small



255 Behavioral Design Patterns / Chain of Responsibility

flicker of hope, you decide to call the tech-support phone num-
ber written on the box.

The first thing you hear is the robotic voice of the autorespon-
der. It suggests nine popular solutions to various problems,
none of which are relevant to your case. After a while, the
robot connects you to a live operator.

A call to tech support can go through multiple operators.

Alas, the operator isn’t able to suggest anything specific either.
He keeps quoting lengthy excerpts from the manual, refus-
ing to listen to your comments. After hearing the phrase “have
you tried turning the computer off and on again?” for the 10th
time, you demand to be connected to a proper engineer.

Eventually, the operator passes your call to one of the engi-
neers, who had probably longed for a live human chat for
hours as he sat in his lonely server room in the dark basement
of some office building. The engineer tells you where to down-

256 Behavioral Design Patterns / Chain of Responsibility

load proper drivers for your new hardware and how to install
them on Linux. Finally, the solution! You end the call, bursting
with joy.

Structure

1. The Handler declares the interface, common for all concrete
handlers. It usually contains just a single method for handling
requests, but sometimes it may also have another method for
setting the next handler on the chain.



257 Behavioral Design Patterns / Chain of Responsibility

2. The Base Handler is an optional class where you can put the
boilerplate code that’s common to all handler classes.

Usually, this class defines a field for storing a reference to the
next handler. The clients can build a chain by passing a han-
dler to the constructor or setter of the previous handler. The
class may also implement the default handling behavior: it
can pass execution to the next handler after checking for its
existence.

3. Concrete Handlers contain the actual code for processing
requests. Upon receiving a request, each handler must decide
whether to process it and, additionally, whether to pass it
along the chain.

Handlers are usually self-contained and immutable, accepting
all necessary data just once via the constructor.

4. The Client may compose chains just once or compose them
dynamically, depending on the application’s logic. Note that
a request can be sent to any handler in the chain—it doesn’t
have to be the first one.

Pseudocode

In this example, the Chain of Responsibility pattern is respon-
sible for displaying contextual help information for active GUI
elements.



258 Behavioral Design Patterns / Chain of Responsibility

The GUI classes are built with the Composite pattern. Each element is
linked to its container element. At any point, you can build a chain of
elements that starts with the element itself and goes through all of its

container elements.

The application’s GUI is usually structured as an object tree.
For example, the Dialog class, which renders the main win-
dow of the app, would be the root of the object tree. The
dialog contains Panels , which might contain other panels or
simple low-level elements like Buttons and TextFields .

A simple component can show brief contextual tooltips, as
long as the component has some help text assigned. But more

259 Behavioral Design Patterns / Chain of Responsibility

complex components define their own way of showing con-
textual help, such as showing an excerpt from the manual or
opening a page in a browser.

That’s how a help request traverses GUI objects.

When a user points the mouse cursor at an element and press-
es the F1 key, the application detects the component under
the pointer and sends it a help request. The request bubbles
up through all the element’s containers until it reaches the
element that’s capable of displaying the help information.

260 Behavioral Design Patterns / Chain of Responsibility

// The handler interface declares a method for building a chain1

// of handlers. It also declares a method for executing a2

// request.3

interface ComponentWithContextualHelp is4

method showHelp()5

6

7

// The base class for simple components.8

abstract class Component implements ComponentWithContextualHelp is9

field tooltipText: string10

11

// The component's container acts as the next link in the12

// chain of handlers.13

protected field container: Container14

15

// The component shows a tooltip if there's help text16

// assigned to it. Otherwise it forwards the call to the17

// container, if it exists.18

method showHelp() is19

if (tooltipText != null)20

// Show tooltip.21

else22

container.showHelp()23

24

25

// Containers can contain both simple components and other26

// containers as children. The chain relationships are27

// established here. The class inherits showHelp behavior from28

// its parent.29

abstract class Container extends Component is30

protected field children: array of Component31

32

261 Behavioral Design Patterns / Chain of Responsibility

method add(child) is33

children.add(child)34

child.container = this35

36

37

// Primitive components may be fine with default help38

// implementation...39

class Button extends Component is40

// ...41

42

// But complex components may override the default43

// implementation. If the help text can't be provided in a new44

// way, the component can always call the base implementation45

// (see Component class).46

class Panel extends Container is47

field modalHelpText: string48

49

method showHelp() is50

if (modalHelpText != null)51

// Show a modal window with the help text.52

else53

super.showHelp()54

55

// ...same as above...56

class Dialog extends Container is57

field wikiPageURL: string58

59

method showHelp() is60

if (wikiPageURL != null)61

// Open the wiki help page.62

else63

super.showHelp()64

262 Behavioral Design Patterns / Chain of Responsibility

Applicability

Use the Chain of Responsibility pattern when your program
is expected to process different kinds of requests in various
ways, but the exact types of requests and their sequences are
unknown beforehand.

The pattern lets you link several handlers into one chain and,
upon receiving a request, “ask” each handler whether it can

// Client code.65

class Application is66

// Every application configures the chain differently.67

method createUI() is68

dialog = new Dialog("Budget Reports")69

dialog.wikiPageURL = "http://..."70

panel = new Panel(0, 0, 400, 800)71

panel.modalHelpText = "This panel does..."72

ok = new Button(250, 760, 50, 20, "OK")73

ok.tooltipText = "This is an OK button that..."74

cancel = new Button(320, 760, 50, 20, "Cancel")75

// ...76

panel.add(ok)77

panel.add(cancel)78

dialog.add(panel)79

80

// Imagine what happens here.81

method onF1KeyPress() is82

component = this.getComponentAtMouseCoords()83

component.showHelp()84







263 Behavioral Design Patterns / Chain of Responsibility

process it. This way all handlers get a chance to process the
request.

Use the pattern when it’s essential to execute several handlers
in a particular order.

Since you can link the handlers in the chain in any order, all
requests will get through the chain exactly as you planned.

Use the CoR pattern when the set of handlers and their order
are supposed to change at runtime.

If you provide setters for a reference field inside the handler
classes, you’ll be able to insert, remove or reorder handlers
dynamically.

How to Implement

1. Declare the handler interface and describe the signature of a
method for handling requests.

Decide how the client will pass the request data into the
method. The most flexible way is to convert the request into
an object and pass it to the handling method as an argument.

2. To eliminate duplicate boilerplate code in concrete handlers,
it might be worth creating an abstract base handler class,
derived from the handler interface.











264 Behavioral Design Patterns / Chain of Responsibility

This class should have a field for storing a reference to the
next handler in the chain. Consider making the class
immutable. However, if you plan to modify chains at runtime,
you need to define a setter for altering the value of the refer-
ence field.

You can also implement the convenient default behavior for
the handling method, which is to forward the request to the
next object unless there’s none left. Concrete handlers will be
able to use this behavior by calling the parent method.

3. One by one create concrete handler subclasses and implement
their handling methods. Each handler should make two deci-
sions when receiving a request:

◦ Whether it’ll process the request.

◦ Whether it’ll pass the request along the chain.

4. The client may either assemble chains on its own or receive
pre-built chains from other objects. In the latter case, you must
implement some factory classes to build chains according to
the configuration or environment settings.

5. The client may trigger any handler in the chain, not just the
first one. The request will be passed along the chain until
some handler refuses to pass it further or until it reaches the
end of the chain.

265 Behavioral Design Patterns / Chain of Responsibility

6. Due to the dynamic nature of the chain, the client should be
ready to handle the following scenarios:

◦ The chain may consist of a single link.

◦ Some requests may not reach the end of the chain.

◦ Others may reach the end of the chain unhandled.

Pros and Cons

You can control the order of request handling.

Single Responsibility Principle. You can decouple classes that
invoke operations from classes that perform operations.

Open/Closed Principle. You can introduce new handlers into the
app without breaking the existing client code.

Some requests may end up unhandled.

Relations with Other Patterns

• Chain of Responsibility, Command, Mediator and Observer
address various ways of connecting senders and receivers of
requests:

◦ Chain of Responsibility passes a request sequentially along a
dynamic chain of potential receivers until one of them han-
dles it.

◦ Command establishes unidirectional connections between
senders and receivers.













266 Behavioral Design Patterns / Chain of Responsibility

◦ Mediator eliminates direct connections between senders
and receivers, forcing them to communicate indirectly via a
mediator object.

◦ Observer lets receivers dynamically subscribe to and unsub-
scribe from receiving requests.

• Chain of Responsibility is often used in conjunction with Com-
posite. In this case, when a leaf component gets a request, it
may pass it through the chain of all of the parent components
down to the root of the object tree.

• Handlers in Chain of Responsibility can be implemented as
Commands. In this case, you can execute a lot of different
operations over the same context object, represented by a
request.

However, there’s another approach, where the request itself
is a Command object. In this case, you can execute the same
operation in a series of different contexts linked into a chain.

• Chain of Responsibility and Decorator have very similar class
structures. Both patterns rely on recursive composition to pass
the execution through a series of objects. However, there are
several crucial differences.

The CoR handlers can execute arbitrary operations indepen-
dently of each other. They can also stop passing the request
further at any point. On the other hand, various Decorators can
extend the object’s behavior while keeping it consistent with
the base interface. In addition, decorators aren’t allowed to
break the flow of the request.

267 Behavioral Design Patterns / Chain of Responsibility

COMMAND
Also known as: Action, Transaction

Command is a behavioral design pattern that turns a request
into a stand-alone object that contains all information about
the request. This transformation lets you parameterize
methods with different requests, delay or queue a request’s

execution, and support undoable operations.

268 Behavioral Design Patterns / Command

Problem

Imagine that you’re working on a new text-editor app. Your
current task is to create a toolbar with a bunch of buttons
for various operations of the editor. You created a very neat
Button class that can be used for buttons on the toolbar, as

well as for generic buttons in various dialogs.

All buttons of the app are derived from the same class.

While all of these buttons look similar, they’re all supposed to
do different things. Where would you put the code for the var-
ious click handlers of these buttons? The simplest solution is
to create tons of subclasses for each place where the button
is used. These subclasses would contain the code that would
have to be executed on a button click.



269 Behavioral Design Patterns / Command

Lots of button subclasses. What can go wrong?

Before long, you realize that this approach is deeply flawed.
First, you have an enormous number of subclasses, and that
would be okay if you weren’t risking breaking the code in these
subclasses each time you modify the base Button class. Put
simply, your GUI code has become awkwardly dependent on
the volatile code of the business logic.

Several classes implement the same functionality.

And here’s the ugliest part. Some operations, such as copying/
pasting text, would need to be invoked from multiple places.
For example, a user could click a small “Copy” button on the
toolbar, or copy something via the context menu, or just hit
Ctrl+C on the keyboard.

270 Behavioral Design Patterns / Command

Initially, when our app only had the toolbar, it was okay to
place the implementation of various operations into the but-
ton subclasses. In other words, having the code for copying
text inside the CopyButton subclass was fine. But then, when
you implement context menus, shortcuts, and other stuff, you
have to either duplicate the operation’s code in many classes
or make menus dependent on buttons, which is an even worse
option.

Solution

Good software design is often based on the principle of sep-
aration of concerns, which usually results in breaking an app
into layers. The most common example: a layer for the graphi-
cal user interface and another layer for the business logic. The
GUI layer is responsible for rendering a beautiful picture on
the screen, capturing any input and showing results of what
the user and the app are doing. However, when it comes to
doing something important, like calculating the trajectory of
the moon or composing an annual report, the GUI layer dele-
gates the work to the underlying layer of business logic.

In the code it might look like this: a GUI object calls a method
of a business logic object, passing it some arguments. This
process is usually described as one object sending another a
request.



271 Behavioral Design Patterns / Command

The GUI objects may access the business logic objects directly.

The Command pattern suggests that GUI objects shouldn’t
send these requests directly. Instead, you should extract all of
the request details, such as the object being called, the name
of the method and the list of arguments into a separate com-
mand class with a single method that triggers this request.

Command objects serve as links between various GUI and busi-
ness logic objects. From now on, the GUI object doesn’t need
to know what business logic object will receive the request
and how it’ll be processed. The GUI object just triggers the
command, which handles all the details.

Accessing the business logic layer via a command.

272 Behavioral Design Patterns / Command

The next step is to make your commands implement the same
interface. Usually it has just a single execution method that
takes no parameters. This interface lets you use various com-
mands with the same request sender, without coupling it to
concrete classes of commands. As a bonus, now you can switch
command objects linked to the sender, effectively changing
the sender’s behavior at runtime.

You might have noticed one missing piece of the puzzle, which
is the request parameters. A GUI object might have supplied
the business-layer object with some parameters. Since the
command execution method doesn’t have any parameters,
how would we pass the request details to the receiver? It turns
out the command should be either pre-configured with this
data, or capable of getting it on its own.

The GUI objects delegate the work to commands.

273 Behavioral Design Patterns / Command

Let’s get back to our text editor. After we apply the Command
pattern, we no longer need all those button subclasses to
implement various click behaviors. It’s enough to put a single
field into the base Button class that stores a reference to a
command object and make the button execute that command
on a click.

You’ll implement a bunch of command classes for every possi-
ble operation and link them with particular buttons, depend-
ing on the buttons’ intended behavior.

Other GUI elements, such as menus, shortcuts or entire
dialogs, can be implemented in the same way. They’ll be linked
to a command which gets executed when a user interacts with
the GUI element. As you’ve probably guessed by now, the ele-
ments related to the same operations will be linked to the
same commands, preventing any code duplication.

As a result, commands become a convenient middle layer that
reduces coupling between the GUI and business logic layers.
And that’s only a fraction of the benefits that the Command
pattern can offer!

274 Behavioral Design Patterns / Command

Real-World Analogy

Making an order in a restaurant.

After a long walk through the city, you get to a nice restaurant
and sit at the table by the window. A friendly waiter approach-
es you and quickly takes your order, writing it down on a piece
of paper. The waiter goes to the kitchen and sticks the order
on the wall. After a while, the order gets to the chef, who reads
it and cooks the meal accordingly. The cook places the meal
on a tray along with the order. The waiter discovers the tray,
checks the order to make sure everything is as you wanted it,
and brings everything to your table.

The paper order serves as a command. It remains in a queue
until the chef is ready to serve it. The order contains all the rel-
evant information required to cook the meal. It allows the chef
to start cooking right away instead of running around clarify-
ing the order details from you directly.



275 Behavioral Design Patterns / Command

Structure

1. The Sender class (aka invoker) is responsible for initiating
requests. This class must have a field for storing a reference to
a command object. The sender triggers that command instead
of sending the request directly to the receiver. Note that the
sender isn’t responsible for creating the command object. Usu-
ally, it gets a pre-created command from the client via the
constructor.

2. The Command interface usually declares just a single method
for executing the command.

3. Concrete Commands implement various kinds of requests. A
concrete command isn’t supposed to perform the work on its
own, but rather to pass the call to one of the business logic



276 Behavioral Design Patterns / Command

objects. However, for the sake of simplifying the code, these
classes can be merged.

Parameters required to execute a method on a receiving object
can be declared as fields in the concrete command. You can
make command objects immutable by only allowing the ini-
tialization of these fields via the constructor.

4. The Receiver class contains some business logic. Almost any
object may act as a receiver. Most commands only handle the
details of how a request is passed to the receiver, while the
receiver itself does the actual work.

5. The Client creates and configures concrete command objects.
The client must pass all of the request parameters, including
a receiver instance, into the command’s constructor. After that,
the resulting command may be associated with one or multi-
ple senders.

Pseudocode

In this example, the Command pattern helps to track the his-
tory of executed operations and makes it possible to revert an
operation if needed.



277 Behavioral Design Patterns / Command

Undoable operations in a text editor.

Commands which result in changing the state of the editor
(e.g., cutting and pasting) make a backup copy of the editor’s
state before executing an operation associated with the com-
mand. After a command is executed, it’s placed into the com-
mand history (a stack of command objects) along with the
backup copy of the editor’s state at that point. Later, if the user
needs to revert an operation, the app can take the most recent
command from the history, read the associated backup of the
editor’s state, and restore it.

278 Behavioral Design Patterns / Command

The client code (GUI elements, command history, etc.) isn’t
coupled to concrete command classes because it works with
commands via the command interface. This approach lets you
introduce new commands into the app without breaking any
existing code.

// The base command class defines the common interface for all1

// concrete commands.2

abstract class Command is3

protected field app: Application4

protected field editor: Editor5

protected field backup: text6

7

constructor Command(app: Application, editor: Editor) is8

this.app = app9

this.editor = editor10

11

// Make a backup of the editor's state.12

method saveBackup() is13

backup = editor.text14

15

// Restore the editor's state.16

method undo() is17

editor.text = backup18

19

// The execution method is declared abstract to force all20

// concrete commands to provide their own implementations.21

// The method must return true or false depending on whether22

// the command changes the editor's state.23

abstract method execute()24

25

279 Behavioral Design Patterns / Command

// The concrete commands go here.26

class CopyCommand extends Command is27

// The copy command isn't saved to the history since it28

// doesn't change the editor's state.29

method execute() is30

app.clipboard = editor.getSelection()31

return false32

33

class CutCommand extends Command is34

// The cut command does change the editor's state, therefore35

// it must be saved to the history. And it'll be saved as36

// long as the method returns true.37

method execute() is38

saveBackup()39

app.clipboard = editor.getSelection()40

editor.deleteSelection()41

return true42

43

class PasteCommand extends Command is44

method execute() is45

saveBackup()46

editor.replaceSelection(app.clipboard)47

return true48

49

// The undo operation is also a command.50

class UndoCommand extends Command is51

method execute() is52

app.undo()53

return false54

55

56

// The global command history is just a stack.57

280 Behavioral Design Patterns / Command

class CommandHistory is58

private field history: array of Command59

60

// Last in...61

method push(c: Command) is62

// Push the command to the end of the history array.63

64

// ...first out65

method pop():Command is66

// Get the most recent command from the history.67

68

69

// The editor class has actual text editing operations. It plays70

// the role of a receiver: all commands end up delegating71

// execution to the editor's methods.72

class Editor is73

field text: string74

75

method getSelection() is76

// Return selected text.77

78

method deleteSelection() is79

// Delete selected text.80

81

method replaceSelection(text) is82

// Insert the clipboard's contents at the current83

// position.84

85

86

// The application class sets up object relations. It acts as a87

// sender: when something needs to be done, it creates a command88

// object and executes it.89

281 Behavioral Design Patterns / Command

class Application is90

field clipboard: string91

field editors: array of Editors92

field activeEditor: Editor93

field history: CommandHistory94

95

// The code which assigns commands to UI objects may look96

// like this.97

method createUI() is98

// ...99

copy = function() { executeCommand(100

new CopyCommand(this, activeEditor)) }101

copyButton.setCommand(copy)102

shortcuts.onKeyPress("Ctrl+C", copy)103

104

cut = function() { executeCommand(105

new CutCommand(this, activeEditor)) }106

cutButton.setCommand(cut)107

shortcuts.onKeyPress("Ctrl+X", cut)108

109

paste = function() { executeCommand(110

new PasteCommand(this, activeEditor)) }111

pasteButton.setCommand(paste)112

shortcuts.onKeyPress("Ctrl+V", paste)113

114

undo = function() { executeCommand(115

new UndoCommand(this, activeEditor)) }116

undoButton.setCommand(undo)117

shortcuts.onKeyPress("Ctrl+Z", undo)118

119

// Execute a command and check whether it has to be added to120

// the history.121

282 Behavioral Design Patterns / Command

Applicability

Use the Command pattern when you want to parametrize
objects with operations.

The Command pattern can turn a specific method call into a
stand-alone object. This change opens up a lot of interest-
ing uses: you can pass commands as method arguments, store
them inside other objects, switch linked commands at run-
time, etc.

Here’s an example: you’re developing a GUI component such as
a context menu, and you want your users to be able to con-
figure menu items that trigger operations when an end user
clicks an item.

method executeCommand(command) is122

if (command.execute)123

history.push(command)124

125

// Take the most recent command from the history and run its126

// undo method. Note that we don't know the class of that127

// command. But we don't have to, since the command knows128

// how to undo its own action.129

method undo() is130

command = history.pop()131

if (command != null)132

command.undo()133







283 Behavioral Design Patterns / Command

Use the Command pattern when you want to queue operations,
schedule their execution, or execute them remotely.

As with any other object, a command can be serialized, which
means converting it to a string that can be easily written to a
file or a database. Later, the string can be restored as the ini-
tial command object. Thus, you can delay and schedule com-
mand execution. But there’s even more! In the same way, you
can queue, log or send commands over the network.

Use the Command pattern when you want to implement
reversible operations.

Although there are many ways to implement undo/redo, the
Command pattern is perhaps the most popular of all.

To be able to revert operations, you need to implement the his-
tory of performed operations. The command history is a stack
that contains all executed command objects along with relat-
ed backups of the application’s state.

This method has two drawbacks. First, it isn’t that easy to save
an application’s state because some of it can be private. This
problem can be mitigated with the Memento pattern.

Second, the state backups may consume quite a lot of RAM.
Therefore, sometimes you can resort to an alternative imple-
mentation: instead of restoring the past state, the command
performs the inverse operation. The reverse operation also









284 Behavioral Design Patterns / Command

has a price: it may turn out to be hard or even impossible to
implement.

How to Implement

1. Declare the command interface with a single execution
method.

2. Start extracting requests into concrete command classes that
implement the command interface. Each class must have a set
of fields for storing the request arguments along with a ref-
erence to the actual receiver object. All these values must be
initialized via the command’s constructor.

3. Identify classes that will act as senders. Add the fields for stor-
ing commands into these classes. Senders should communi-
cate with their commands only via the command interface.
Senders usually don’t create command objects on their own,
but rather get them from the client code.

4. Change the senders so they execute the command instead of
sending a request to the receiver directly.

5. The client should initialize objects in the following order:

◦ Create receivers.

◦ Create commands, and associate them with receivers if
needed.



285 Behavioral Design Patterns / Command

◦ Create senders, and associate them with specific commands.

Pros and Cons

Single Responsibility Principle. You can decouple classes that
invoke operations from classes that perform these operations.

Open/Closed Principle. You can introduce new commands into
the app without breaking existing client code.

You can implement undo/redo.

You can implement deferred execution of operations.

You can assemble a set of simple commands into a com-
plex one.

The code may become more complicated since you’re introduc-
ing a whole new layer between senders and receivers.

Relations with Other Patterns

• Chain of Responsibility, Command, Mediator and Observer
address various ways of connecting senders and receivers of
requests:

◦ Chain of Responsibility passes a request sequentially along a
dynamic chain of potential receivers until one of them han-
dles it.

◦ Command establishes unidirectional connections between
senders and receivers.

















286 Behavioral Design Patterns / Command

◦ Mediator eliminates direct connections between senders
and receivers, forcing them to communicate indirectly via a
mediator object.

◦ Observer lets receivers dynamically subscribe to and unsub-
scribe from receiving requests.

• Handlers in Chain of Responsibility can be implemented as
Commands. In this case, you can execute a lot of different
operations over the same context object, represented by a
request.

However, there’s another approach, where the request itself
is a Command object. In this case, you can execute the same
operation in a series of different contexts linked into a chain.

• You can use Command and Memento together when imple-
menting “undo”. In this case, commands are responsible for
performing various operations over a target object, while
mementos save the state of that object just before a command
gets executed.

• Command and Strategy may look similar because you can use
both to parameterize an object with some action. However,
they have very different intents.

◦ You can use Command to convert any operation into an
object. The operation’s parameters become fields of that
object. The conversion lets you defer execution of the oper-

287 Behavioral Design Patterns / Command

ation, queue it, store the history of commands, send com-
mands to remote services, etc.

◦ On the other hand, Strategy usually describes different ways
of doing the same thing, letting you swap these algorithms
within a single context class.

• Prototype can help when you need to save copies of Com-
mands into history.

• You can treat Visitor as a powerful version of the Command
pattern. Its objects can execute operations over various objects
of different classes.

288 Behavioral Design Patterns / Command

ITERATOR
Iterator is a behavioral design pattern that lets you traverse
elements of a collection without exposing its underlying

representation (list, stack, tree, etc.).

289 Behavioral Design Patterns / Iterator

Problem

Collections are one of the most used data types in program-
ming. Nonetheless, a collection is just a container for a group
of objects.

Various types of collections.

Most collections store their elements in simple lists. Howev-
er, some of them are based on stacks, trees, graphs and other
complex data structures.

But no matter how a collection is structured, it must provide
some way of accessing its elements so that other code can use
these elements. There should be a way to go through each ele-
ment of the collection without accessing the same elements
over and over.

This may sound like an easy job if you have a collection based
on a list. You just loop over all of the elements. But how do you
sequentially traverse elements of a complex data structure,
such as a tree? For example, one day you might be just fine
with depth-first traversal of a tree. Yet the next day you might
require breadth-first traversal. And the next week, you might
need something else, like random access to the tree elements.



290 Behavioral Design Patterns / Iterator

The same collection can be traversed in several different ways.

Adding more and more traversal algorithms to the collection
gradually blurs its primary responsibility, which is efficient
data storage. Additionally, some algorithms might be tailored
for a specific application, so including them into a generic col-
lection class would be weird.

On the other hand, the client code that’s supposed to work
with various collections may not even care how they store
their elements. However, since collections all provide differ-
ent ways of accessing their elements, you have no option other
than to couple your code to the specific collection classes.

Solution

The main idea of the Iterator pattern is to extract the traversal
behavior of a collection into a separate object called an itera-
tor.

In addition to implementing the algorithm itself, an iterator
object encapsulates all of the traversal details, such as the
current position and how many elements are left till the end.



291 Behavioral Design Patterns / Iterator

Because of this, several iterators can go through the same col-
lection at the same time, independently of each other.

Iterators implement various traversal algorithms. Several iterator objects
can traverse the same collection at the same time.

Usually, iterators provide one primary method for fetching
elements of the collection. The client can keep running this
method until it doesn’t return anything, which means that the
iterator has traversed all of the elements.

292 Behavioral Design Patterns / Iterator

All iterators must implement the same interface. This makes
the client code compatible with any collection type or any tra-
versal algorithm as long as there’s a proper iterator. If you need
a special way to traverse a collection, you just create a new
iterator class, without having to change the collection or the
client.

Real-World Analogy

Various ways to walk around Rome.

You plan to visit Rome for a few days and visit all of its main
sights and attractions. But once there, you could waste a lot of
time walking in circles, unable to find even the Colosseum.

On the other hand, you could buy a virtual guide app for your
smartphone and use it for navigation. It’s smart and inexpen-
sive, and you could be staying at some interesting places for as
long as you want. Another alternative is that you could spend
some of the trip’s budget and hire a local guide who knows the
city like the back of his hand. The guide would be able to tailor



293 Behavioral Design Patterns / Iterator

the tour to your likings, show you every attraction and tell a
lot of exciting stories. That’ll be even more fun; but, alas, more
expensive, too.

All of these options—the random directions born in your head,
the smartphone navigator or the human guide—act as itera-
tors over the vast collection of sights and attractions located
in Rome.

Structure

1. The Iterator interface declares the operations required for tra-
versing a collection: fetching the next element, retrieving the
current position, restarting iteration, etc.



294 Behavioral Design Patterns / Iterator

2. Concrete Iterators implement specific algorithms for travers-
ing a collection. The iterator object should track the traversal
progress on its own. This allows several iterators to traverse
the same collection independently of each other.

3. The Collection interface declares one or multiple methods for
getting iterators compatible with the collection. Note that the
return type of the methods must be declared as the iterator
interface so that the concrete collections can return various
kinds of iterators.

4. Concrete Collections return new instances of a particular con-
crete iterator class each time the client requests one. You
might be wondering, where’s the rest of the collection’s code?
Don’t worry, it should be in the same class. It’s just that these
details aren’t crucial to the actual pattern, so we’re omit-
ting them.

5. The Client works with both collections and iterators via their
interfaces. This way the client isn’t coupled to concrete class-
es, allowing you to use various collections and iterators with
the same client code.

Typically, clients don’t create iterators on their own, but
instead get them from collections. Yet, in certain cases, the
client can create one directly; for example, when the client
defines its own special iterator.

295 Behavioral Design Patterns / Iterator

Pseudocode

In this example, the Iterator pattern is used to walk through a
special kind of collection which encapsulates access to Face-
book’s social graph. The collection provides several iterators
that can traverse profiles in various ways.

Example of iterating over social profiles.

The ‘friends’ iterator can be used to go over the friends of a
given profile. The ‘colleague’ iterator does the same, except it



296 Behavioral Design Patterns / Iterator

omits friends who don’t work at the same company as a target
person. Both iterators implement a common interface which
allows clients to fetch profiles without diving into implemen-
tation details such as authentication and sending REST
requests.

The client code isn’t coupled to concrete classes because it
works with collections and iterators only through interfaces.
If you decide to connect your app to a new social network,
you simply need to provide new collection and iterator classes
without changing the existing code.

// The collection interface must declare a factory method for1

// producing iterators. You can declare several methods if there2

// are different kinds of iteration available in your program.3

interface SocialNetwork is4

method createFriendsIterator(profileId):ProfileIterator5

method createCoworkersIterator(profileId):ProfileIterator6

7

// Each concrete collection is coupled to a set of concrete8

// iterator classes it returns. But the client isn't, since the9

// signature of these methods returns iterator interfaces.10

class Facebook implements SocialNetwork is11

// ... The bulk of the collection's code should go here ...12

13

// Iterator creation code.14

method createFriendsIterator(profileId) is15

return new FacebookIterator(this, profileId, "friends")16

method createCoworkersIterator(profileId) is17

return new FacebookIterator(this, profileId, "coworkers")18

297 Behavioral Design Patterns / Iterator

// The common interface for all iterators.19

interface ProfileIterator is20

method getNext():Profile21

method hasMore():bool22

23

24

// The concrete iterator class.25

class FacebookIterator implements ProfileIterator is26

// The iterator needs a reference to the collection that it27

// traverses.28

private field facebook: Facebook29

private field profileId, type: string30

31

// An iterator object traverses the collection independently32

// from other iterators. Therefore it has to store the33

// iteration state.34

private field currentPosition35

private field cache: array of Profile36

37

constructor FacebookIterator(facebook, profileId, type) is38

this.facebook = facebook39

this.profileId = profileId40

this.type = type41

42

private method lazyInit() is43

if (cache == null)44

cache = facebook.socialGraphRequest(profileId, type)45

46

// Each concrete iterator class has its own implementation47

// of the common iterator interface.48

method getNext() is49

if (hasMore())50

298 Behavioral Design Patterns / Iterator

currentPosition++51

return cache[currentPosition]52

53

method hasMore() is54

lazyInit()55

return cache.length < currentPosition56

57

58

// Here is another useful trick: you can pass an iterator to a59

// client class instead of giving it access to a whole60

// collection. This way, you don't expose the collection to the61

// client.62

//63

// And there's another benefit: you can change the way the64

// client works with the collection at runtime by passing it a65

// different iterator. This is possible because the client code66

// isn't coupled to concrete iterator classes.67

class SocialSpammer is68

method send(iterator: ProfileIterator, message: string) is69

while (iterator.hasNext())70

profile = iterator.getNext()71

System.sendEmail(profile.getEmail(), message)72

73

// The application class configures collections and iterators74

// and then passes them to the client code.75

class Application is76

field network: SocialNetwork77

field spammer: SocialSpammer78

79

method config() is80

if working with Facebook81

this.network = new Facebook()82

299 Behavioral Design Patterns / Iterator

Applicability

Use the Iterator pattern when your collection has a complex
data structure under the hood, but you want to hide its com-
plexity from clients (either for convenience or security
reasons).

The iterator encapsulates the details of working with a com-
plex data structure, providing the client with several sim-
ple methods of accessing the collection elements. While this
approach is very convenient for the client, it also protects
the collection from careless or malicious actions which the
client would be able to perform if working with the collection
directly.

Use the pattern to reduce duplication of the traversal code
across your app.

if working with LinkedIn83

this.network = new LinkedIn()84

this.spammer = new SocialSpammer()85

86

method sendSpamToFriends(profile) is87

iterator = network.createFriendsIterator(profile.getId())88

spammer.send(iterator, "Very important message")89

90

method sendSpamToCoworkers(profile) is91

iterator = network.createCoworkersIterator(profile.getId())92

spammer.send(iterator, "Very important message")93









300 Behavioral Design Patterns / Iterator

The code of non-trivial iteration algorithms tends to be very
bulky. When placed within the business logic of an app, it may
blur the responsibility of the original code and make it less
maintainable. Moving the traversal code to designated itera-
tors can help you make the code of the application more lean
and clean.

Use the Iterator when you want your code to be able to tra-
verse different data structures or when types of these struc-
tures are unknown beforehand.

The pattern provides a couple of generic interfaces for both
collections and iterators. Given that your code now uses these
interfaces, it’ll still work if you pass it various kinds of collec-
tions and iterators that implement these interfaces.

How to Implement

1. Declare the iterator interface. At the very least, it must have a
method for fetching the next element from a collection. But for
the sake of convenience you can add a couple of other meth-
ods, such as fetching the previous element, tracking the cur-
rent position, and checking the end of the iteration.

2. Declare the collection interface and describe a method for
fetching iterators. The return type should be equal to that of
the iterator interface. You may declare similar methods if you
plan to have several distinct groups of iterators.









301 Behavioral Design Patterns / Iterator

3. Implement concrete iterator classes for the collections that
you want to be traversable with iterators. An iterator object
must be linked with a single collection instance. Usually, this
link is established via the iterator’s constructor.

4. Implement the collection interface in your collection classes.
The main idea is to provide the client with a shortcut for creat-
ing iterators, tailored for a particular collection class. The col-
lection object must pass itself to the iterator’s constructor to
establish a link between them.

5. Go over the client code to replace all of the collection traversal
code with the use of iterators. The client fetches a new iter-
ator object each time it needs to iterate over the collection
elements.

Pros and Cons

Single Responsibility Principle. You can clean up the client code
and the collections by extracting bulky traversal algorithms
into separate classes.

Open/Closed Principle. You can implement new types of col-
lections and iterators and pass them to existing code without
breaking anything.

You can iterate over the same collection in parallel because
each iterator object contains its own iteration state.

For the same reason, you can delay an iteration and continue
it when needed.











302 Behavioral Design Patterns / Iterator

Applying the pattern can be an overkill if your app only works
with simple collections.

Using an iterator may be less efficient than going through ele-
ments of some specialized collections directly.

Relations with Other Patterns

• You can use Iterators to traverse Composite trees.

• You can use Factory Method along with Iterator to let collec-
tion subclasses return different types of iterators that are com-
patible with the collections.

• You can use Memento along with Iterator to capture the cur-
rent iteration state and roll it back if necessary.

• You can use Visitor along with Iterator to traverse a complex
data structure and execute some operation over its elements,
even if they all have different classes.







303 Behavioral Design Patterns / Iterator

MEDIATOR
Also known as: Intermediary, Controller

Mediator is a behavioral design pattern that lets you reduce
chaotic dependencies between objects. The pattern restricts
direct communications between the objects and forces them to

collaborate only via a mediator object.

304 Behavioral Design Patterns / Mediator

Problem

Say you have a dialog for creating and editing customer pro-
files. It consists of various form controls such as text fields,
checkboxes, buttons, etc.

Relations between elements of the user interface can become chaotic as
the application evolves.

Some of the form elements may interact with others. For
instance, selecting the “I have a dog” checkbox may reveal a
hidden text field for entering the dog’s name. Another exam-
ple is the submit button that has to validate values of all fields
before saving the data.

Elements can have lots of relations with other elements. Hence, changes to
some elements may affect the others.



305 Behavioral Design Patterns / Mediator

By having this logic implemented directly inside the code of
the form elements you make these elements’ classes much
harder to reuse in other forms of the app. For example, you
won’t be able to use that checkbox class inside another form,
because it’s coupled to the dog’s text field. You can use either
all the classes involved in rendering the profile form, or none
at all.

Solution

The Mediator pattern suggests that you should cease all direct
communication between the components which you want to
make independent of each other. Instead, these components
must collaborate indirectly, by calling a special mediator
object that redirects the calls to appropriate components. As a
result, the components depend only on a single mediator class
instead of being coupled to dozens of their colleagues.

UI elements should communicate indirectly, via the mediator object.



306 Behavioral Design Patterns / Mediator

In our example with the profile editing form, the dialog class
itself may act as the mediator. Most likely, the dialog class is
already aware of all of its sub-elements, so you won’t even
need to introduce new dependencies into this class.

The most significant change happens to the actual form ele-
ments. Let’s consider the submit button. Previously, each time
a user clicked the button, it had to validate the values of
all individual form elements. Now its single job is to noti-
fy the dialog about the click. Upon receiving this notification,
the dialog itself performs the validations or passes the task
to the individual elements. Thus, instead of being tied to a
dozen form elements, the button is only dependent on the dia-
log class.

You can go further and make the dependency even looser by
extracting the common interface for all types of dialogs. The
interface would declare the notification method which all form
elements can use to notify the dialog about events happen-
ing to those elements. Thus, our submit button should now be
able to work with any dialog that implements that interface.

This way, the Mediator pattern lets you encapsulate a complex
web of relations between various objects inside a single medi-
ator object. The fewer dependencies a class has, the easier it
becomes to modify, extend or reuse that class.

307 Behavioral Design Patterns / Mediator

Real-World Analogy

Aircraft pilots don’t talk to each other directly when deciding who gets to
land their plane next. All communication goes through the control tower.

Pilots of aircraft that approach or depart the airport control
area don’t communicate directly with each other. Instead, they
speak to an air traffic controller, who sits in a tall tower some-
where near the airstrip. Without the air traffic controller, pilots
would need to be aware of every plane in the vicinity of
the airport, discussing landing priorities with a committee of
dozens of other pilots. That would probably skyrocket the air-
plane crash statistics.

The tower doesn’t need to control the whole flight. It exists
only to enforce constraints in the terminal area because the
number of involved actors there might be overwhelming to
a pilot.



308 Behavioral Design Patterns / Mediator

Structure

1. Components are various classes that contain some business
logic. Each component has a reference to a mediator, declared
with the type of the mediator interface. The component isn’t
aware of the actual class of the mediator, so you can reuse
the component in other programs by linking it to a different
mediator.

2. The Mediator interface declares methods of communication
with components, which usually include just a single notifica-
tion method. Components may pass any context as arguments
of this method, including their own objects, but only in such



309 Behavioral Design Patterns / Mediator

a way that no coupling occurs between a receiving component
and the sender’s class.

3. Concrete Mediators encapsulate relations between various
components. Concrete mediators often keep references to all
components they manage and sometimes even manage their
lifecycle.

4. Components must not be aware of other components. If some-
thing important happens within or to a component, it must
only notify the mediator. When the mediator receives the noti-
fication, it can easily identify the sender, which might be just
enough to decide what component should be triggered in
return.

From a component’s perspective, it all looks like a total black
box. The sender doesn’t know who’ll end up handling its
request, and the receiver doesn’t know who sent the request in
the first place.

Pseudocode

In this example, the Mediator pattern helps you eliminate
mutual dependencies between various UI classes: buttons,
checkboxes and text labels.

An element, triggered by a user, doesn’t communicate with
other elements directly, even if it looks like it’s supposed to.
Instead, the element only needs to let its mediator know about



310 Behavioral Design Patterns / Mediator

the event, passing any contextual info along with that
notification.

Structure of the UI dialog classes.

In this example, the whole authentication dialog acts as the
mediator. It knows how concrete elements are supposed to
collaborate and facilitates their indirect communication. Upon
receiving a notification about an event, the dialog decides
what element should address the event and redirects the call
accordingly.

311 Behavioral Design Patterns / Mediator

// The mediator interface declares a method used by components1

// to notify the mediator about various events. The mediator may2

// react to these events and pass the execution to other3

// components.4

interface Mediator is5

method notify(sender: Component, event: string)6

7

8

// The concrete mediator class. The intertwined web of9

// connections between individual components has been untangled10

// and moved into the mediator.11

class AuthenticationDialog implements Mediator is12

private field title: string13

private field loginOrRegisterChkBx: Checkbox14

private field loginUsername, loginPassword: Textbox15

private field registrationUsername, registrationPassword16

private field registrationEmail: Textbox17

private field okBtn, cancelBtn: Button18

19

constructor AuthenticationDialog() is20

// Create all component objects and pass the current21

// mediator into their constructors to establish links.22

23

// When something happens with a component, it notifies the24

// mediator. Upon receiving a notification, the mediator may25

// do something on its own or pass the request to another26

// component.27

method notify(sender, event) is28

if (sender == loginOrRegisterChkBx and event == "check")29

if (loginOrRegisterChkBx.checked)30

title = "Log in"31

// 1. Show login form components.32

312 Behavioral Design Patterns / Mediator

// 2. Hide registration form components.33

else34

title = "Register"35

// 1. Show registration form components.36

// 2. Hide login form components37

38

if (sender == okBtn && event == "click")39

if (loginOrRegister.checked)40

// Try to find a user using login credentials.41

if (!found)42

// Show an error message above the login43

// field.44

else45

// 1. Create a user account using data from the46

// registration fields.47

// 2. Log that user in.48

// ...49

50

51

// Components communicate with a mediator using the mediator52

// interface. Thanks to that, you can use the same components in53

// other contexts by linking them with different mediator54

// objects.55

class Component is56

field dialog: Mediator57

58

constructor Component(dialog) is59

this.dialog = dialog60

61

method click() is62

dialog.notify(this, "click")63

64

313 Behavioral Design Patterns / Mediator

Applicability

Use the Mediator pattern when it’s hard to change some of the
classes because they are tightly coupled to a bunch of other
classes.

The pattern lets you extract all the relationships between
classes into a separate class, isolating any changes to a specif-
ic component from the rest of the components.

Use the pattern when you can’t reuse a component in a differ-
ent program because it’s too dependent on other components.

method keypress() is65

dialog.notify(this, "keypress")66

67

// Concrete components don't talk to each other. They have only68

// one communication channel, which is sending notifications to69

// the mediator.70

class Button extends Component is71

// ...72

73

class Textbox extends Component is74

// ...75

76

class Checkbox extends Component is77

method check() is78

dialog.notify(this, "check")79

// ...80









314 Behavioral Design Patterns / Mediator

After you apply the Mediator, individual components become
unaware of the other components. They could still commu-
nicate with each other, albeit indirectly, through a mediator
object. To reuse a component in a different app, you need to
provide it with a new mediator class.

Use the Mediator when you find yourself creating tons of com-
ponent subclasses just to reuse some basic behavior in various
contexts.

Since all relations between components are contained within
the mediator, it’s easy to define entirely new ways for these
components to collaborate by introducing new mediator class-
es, without having to change the components themselves.

How to Implement

1. Identify a group of tightly coupled classes which would benefit
from being more independent (e.g., for easier maintenance or
simpler reuse of these classes).

2. Declare the mediator interface and describe the desired com-
munication protocol between mediators and various compo-
nents. In most cases, a single method for receiving
notifications from components is sufficient.

This interface is crucial when you want to reuse component
classes in different contexts. As long as the component works









315 Behavioral Design Patterns / Mediator

with its mediator via the generic interface, you can link the
component with a different implementation of the mediator.

3. Implement the concrete mediator class. This class would bene-
fit from storing references to all of the components it manages.

4. You can go even further and make the mediator responsible for
the creation and destruction of component objects. After this,
the mediator may resemble a factory or a facade.

5. Components should store a reference to the mediator object.
The connection is usually established in the component’s con-
structor, where a mediator object is passed as an argument.

6. Change the components’ code so that they call the mediator’s
notification method instead of methods on other components.
Extract the code that involves calling other components into
the mediator class. Execute this code whenever the mediator
receives notifications from that component.

Pros and Cons

Single Responsibility Principle. You can extract the communica-
tions between various components into a single place, making
it easier to comprehend and maintain.

Open/Closed Principle. You can introduce new mediators with-
out having to change the actual components.

You can reduce coupling between various components of a
program.









316 Behavioral Design Patterns / Mediator

You can reuse individual components more easily.

Over time a mediator can evolve into a God Object.

Relations with Other Patterns

• Chain of Responsibility, Command, Mediator and Observer
address various ways of connecting senders and receivers of
requests:

◦ Chain of Responsibility passes a request sequentially along a
dynamic chain of potential receivers until one of them han-
dles it.

◦ Command establishes unidirectional connections between
senders and receivers.

◦ Mediator eliminates direct connections between senders
and receivers, forcing them to communicate indirectly via a
mediator object.

◦ Observer lets receivers dynamically subscribe to and unsub-
scribe from receiving requests.

• Facade and Mediator have similar jobs: they try to organize
collaboration between lots of tightly coupled classes.

◦ Facade defines a simplified interface to a subsystem of
objects, but it doesn’t introduce any new functionality. The
subsystem itself is unaware of the facade. Objects within
the subsystem can communicate directly.







317 Behavioral Design Patterns / Mediator

◦ Mediator centralizes communication between components
of the system. The components only know about the medi-
ator object and don’t communicate directly.

• The difference between Mediator and Observer is often elu-
sive. In most cases, you can implement either of these pat-
terns; but sometimes you can apply both simultaneously. Let’s
see how we can do that.

The primary goal of Mediator is to eliminate mutual dependen-
cies among a set of system components. Instead, these com-
ponents become dependent on a single mediator object. The
goal of Observer is to establish dynamic one-way connections
between objects, where some objects act as subordinates of
others.

There’s a popular implementation of the Mediator pattern that
relies on Observer. The mediator object plays the role of pub-
lisher, and the components act as subscribers which subscribe
to and unsubscribe from the mediator’s events. When Mediator
is implemented this way, it may look very similar to Observer.

When you’re confused, remember that you can implement the
Mediator pattern in other ways. For example, you can perma-
nently link all the components to the same mediator object.
This implementation won’t resemble Observer but will still be
an instance of the Mediator pattern.

318 Behavioral Design Patterns / Mediator

Now imagine a program where all components have become
publishers, allowing dynamic connections between each other.
There won’t be a centralized mediator object, only a distrib-
uted set of observers.

319 Behavioral Design Patterns / Mediator

MEMENTO
Also known as: Snapshot

Memento is a behavioral design pattern that lets you save and
restore the previous state of an object without revealing the

details of its implementation.

320 Behavioral Design Patterns / Memento

Problem

Imagine that you’re creating a text editor app. In addition to
simple text editing, your editor can format text, insert inline
images, etc.

At some point, you decided to let users undo any operations
carried out on the text. This feature has become so com-
mon over the years that nowadays people expect every app to
have it. For the implementation, you chose to take the direct
approach. Before performing any operation, the app records
the state of all objects and saves it in some storage. Later,
when a user decides to revert an action, the app fetches the
latest snapshot from the history and uses it to restore the state
of all objects.

Before executing an operation, the app saves a snapshot of the objects’
state, which can later be used to restore objects to their previous state.

Let’s think about those state snapshots. How exactly would
you produce one? You’d probably need to go over all the fields
in an object and copy their values into storage. However, this



321 Behavioral Design Patterns / Memento

would only work if the object had quite relaxed access restric-
tions to its contents. Unfortunately, most real objects won’t let
others peek inside them that easily, hiding all significant data
in private fields.

Ignore that problem for now and let’s assume that our objects
behave like hippies: preferring open relations and keeping
their state public. While this approach would solve the imme-
diate problem and let you produce snapshots of objects’ states
at will, it still has some serious issues. In the future, you might
decide to refactor some of the editor classes, or add or remove
some of the fields. Sounds easy, but this would also require
chaining the classes responsible for copying the state of the
affected objects.

How to make a copy of the object’s private state?

But there’s more. Let’s consider the actual “snapshots” of the
editor’s state. What data does it contain? At a bare minimum, it
must contain the actual text, cursor coordinates, current scroll

322 Behavioral Design Patterns / Memento

position, etc. To make a snapshot, you’d need to collect these
values and put them into some kind of container.

Most likely, you’re going to store lots of these container objects
inside some list that would represent the history. Therefore
the containers would probably end up being objects of one
class. The class would have almost no methods, but lots of
fields that mirror the editor’s state. To allow other objects to
write and read data to and from a snapshot, you’d probably
need to make its fields public. That would expose all the edi-
tor’s states, private or not. Other classes would become depen-
dent on every little change to the snapshot class, which would
otherwise happen within private fields and methods without
affecting outer classes.

It looks like we’ve reached a dead end: you either expose all
internal details of classes, making them too fragile, or restrict
access to their state, making it impossible to produce snap-
shots. Is there any other way to implement the "undo"?

Solution

All problems that we’ve just experienced are caused by broken
encapsulation. Some objects try to do more than they are sup-
posed to. To collect the data required to perform some action,
they invade the private space of other objects instead of let-
ting these objects perform the actual action.



323 Behavioral Design Patterns / Memento

The Memento pattern delegates creating the state snapshots
to the actual owner of that state, the originator object. Hence,
instead of other objects trying to copy the editor’s state from
the “outside,” the editor class itself can make the snapshot
since it has full access to its own state.

The pattern suggests storing the copy of the object’s state in
a special object called memento. The contents of the memen-
to aren’t accessible to any other object except the one that
produced it. Other objects must communicate with memen-
tos using a limited interface which may allow fetching the
snapshot’s metadata (creation time, the name of the performed
operation, etc.), but not the original object’s state contained in
the snapshot.

The originator has full access to the memento, whereas the caretaker can
only access the metadata.

324 Behavioral Design Patterns / Memento

Such a restrictive policy lets you store mementos inside other
objects, usually called caretakers. Since the caretaker works
with the memento only via the limited interface, it’s not able to
tamper with the state stored inside the memento. At the same
time, the originator has access to all fields inside the memen-
to, allowing it to restore its previous state at will.

In our text editor example, we can create a separate history
class to act as the caretaker. A stack of mementos stored inside
the caretaker will grow each time the editor is about to exe-
cute an operation. You could even render this stack within the
app’s UI, displaying the history of previously performed opera-
tions to a user.

When a user triggers the undo, the history grabs the most
recent memento from the stack and passes it back to the edi-
tor, requesting a roll-back. Since the editor has full access to
the memento, it changes its own state with the values taken
from the memento.

325 Behavioral Design Patterns / Memento

Structure

Implementation based on nested classes

The classic implementation of the pattern relies on support for
nested classes, available in many popular programming lan-
guages (such as C++, C#, and Java).

1. The Originator class can produce snapshots of its own state, as
well as restore its state from snapshots when needed.

2. The Memento is a value object that acts as a snapshot of the
originator’s state. It’s a common practice to make the memento
immutable and pass it the data only once, via the constructor.

3. The Caretaker knows not only “when” and “why” to capture the
originator’s state, but also when the state should be restored.



326 Behavioral Design Patterns / Memento

A caretaker can keep track of the originator’s history by storing
a stack of mementos. When the originator has to travel back in
history, the caretaker fetches the topmost memento from the
stack and passes it to the originator’s restoration method.

4. In this implementation, the memento class is nested inside the
originator. This lets the originator access the fields and meth-
ods of the memento, even though they’re declared private. On
the other hand, the caretaker has very limited access to the
memento’s fields and methods, which lets it store mementos
in a stack but not tamper with their state.

Implementation based on an intermediate interface

There’s an alternative implementation, suitable for program-
ming languages that don’t support nested classes (yeah, PHP,
I’m talking about you).

327 Behavioral Design Patterns / Memento

1. In the absence of nested classes, you can restrict access to
the memento’s fields by establishing a convention that care-
takers can work with a memento only through an explicit-
ly declared intermediary interface, which would only declare
methods related to the memento’s metadata.

2. On the other hand, originators can work with a memento
object directly, accessing fields and methods declared in the
memento class. The downside of this approach is that you
need to declare all members of the memento public.

Implementation with even stricter encapsulation

There’s another implementation which is useful when you
don’t want to leave even the slightest chance of other classes
accessing the state of the originator through the memento.

328 Behavioral Design Patterns / Memento

1. This implementation allows having multiple types of origina-
tors and mementos. Each originator works with a correspond-
ing memento class. Neither originators nor mementos expose
their state to anyone.

2. Caretakers are now explicitly restricted from changing the
state stored in mementos. Moreover, the caretaker class
becomes independent from the originator because the restora-
tion method is now defined in the memento class.

3. Each memento becomes linked to the originator that produced
it. The originator passes itself to the memento’s constructor,
along with the values of its state. Thanks to the close relation-
ship between these classes, a memento can restore the state
of its originator, given that the latter has defined the appropri-
ate setters.

Pseudocode

In this example uses the Memento pattern alongside the Com-
mand pattern for storing snapshots of the complex text editor’s
state and restoring an earlier state from these snapshots when
needed.

Saving snapshots of the text editor’s state.



329 Behavioral Design Patterns / Memento

The command objects act as caretakers. They fetch the editor’s
memento before executing operations related to commands.
When a user attempts to undo the most recent command, the
editor can use the memento stored in that command to revert
itself to the previous state.

The memento class doesn’t declare any public fields, getters or
setters. Therefore no object can alter its contents. Mementos
are linked to the editor object that created them. This lets a
memento restore the linked editor’s state by passing the data
via setters on the editor object. Since mementos are linked to
specific editor objects, you can make your app support several
independent editor windows with a centralized undo stack.

// The originator holds some important data that may change over1

// time. It also defines a method for saving its state inside a2

// memento and another method for restoring the state from it.3

class Editor is4

private field text, curX, curY, selectionWidth5

6

method setText(text) is7

this.text = text8

9

method setCursor(x, y) is10

this.curX = curX11

this.curY = curY12

13

method setSelectionWidth(width) is14

this.selectionWidth = width15

16

330 Behavioral Design Patterns / Memento

// Saves the current state inside a memento.17

method createSnapshot():Snapshot is18

// Memento is an immutable object; that's why the19

// originator passes its state to the memento's20

// constructor parameters.21

return new Snapshot(this, text, curX, curY, selectionWidth)22

23

// The memento class stores the past state of the editor.24

class Snapshot is25

private field editor: Editor26

private field text, curX, curY, selectionWidth27

28

constructor Snapshot(editor, text, curX, curY, selectionWidth) is29

this.editor = editor30

this.text = text31

this.curX = curX32

this.curY = curY33

this.selectionWidth = selectionWidth34

35

// At some point, a previous state of the editor can be36

// restored using a memento object.37

method restore() is38

editor.setText(text)39

editor.setCursor(curX, curY)40

editor.setSelectionWidth(selectionWidth)41

42

// A command object can act as a caretaker. In that case, the43

// command gets a memento just before it changes the44

// originator's state. When undo is requested, it restores the45

// originator's state from a memento.46

class Command is47

private field backup: Snapshot48

331 Behavioral Design Patterns / Memento

Applicability

Use the Memento pattern when you want to produce snap-
shots of the object’s state to be able to restore a previous state
of the object.

The Memento pattern lets you make full copies of an object’s
state, including private fields, and store them separately from
the object. While most people remember this pattern thanks
to the “undo” use case, it’s also indispensable when dealing
with transactions (i.e., if you need to roll back an operation
on error).

Use the pattern when direct access to the object’s fields/get-
ters/setters violates its encapsulation.

The Memento makes the object itself responsible for creating
a snapshot of its state. No other object can read the snapshot,
making the original object’s state data safe and secure.

method makeBackup() is49

backup = editor.createSnapshot()50

51

method undo() is52

if (backup != null)53

backup.restore()54

// ...55











332 Behavioral Design Patterns / Memento

How to Implement

1. Determine what class will play the role of the originator. It’s
important to know whether the program uses one central
object of this type or multiple smaller ones.

2. Create the memento class. One by one, declare a set of fields
that mirror the fields declared inside the originator class.

3. Make the memento class immutable. A memento should
accept the data just once, via the constructor. The class should
have no setters.

4. If your programming language supports nested classes, nest
the memento inside the originator. If not, extract a blank inter-
face from the memento class and make all other objects use
it to refer to the memento. You may add some metadata oper-
ations to the interface, but nothing that exposes the origina-
tor’s state.

5. Add a method for producing mementos to the originator class.
The originator should pass its state to the memento via one or
multiple arguments of the memento’s constructor.

The return type of the method should be of the interface you
extracted in the previous step (assuming that you extracted
it at all). Under the hood, the memento-producing method
should work directly with the memento class.



333 Behavioral Design Patterns / Memento

6. Add a method for restoring the originator’s state to its class.
It should accept a memento object as an argument. If you
extracted an interface in the previous step, make it the type of
the parameter. In this case, you need to typecast the incom-
ing object to the mediator class, since the originator needs full
access to that object.

7. The caretaker, whether it represents a command object, a his-
tory, or something entirely different, should know when to
request new mementos from the originator, how to store them
and when to restore the originator with a particular memento.

8. The link between caretakers and originators may be moved
into the memento class. In this case, each memento must be
connected to the originator that had created it. The restoration
method would also move to the memento class. However, this
would all make sense only if the memento class is nested into
originator or the originator class provides sufficient setters for
overriding its state.

Pros and Cons

You can produce snapshots of the object’s state without violat-
ing its encapsulation.

You can simplify the originator’s code by letting the caretaker
maintain the history of the originator’s state.

The app might consume lots of RAM if clients create memen-
tos too often.









334 Behavioral Design Patterns / Memento

Caretakers should track the originator’s lifecycle to be able to
destroy obsolete mementos.

Most dynamic programming languages, such as PHP, Python
and JavaScript, can’t guarantee that the state within the
memento stays untouched.

Relations with Other Patterns

• You can use Command and Memento together when imple-
menting “undo”. In this case, commands are responsible for
performing various operations over a target object, while
mementos save the state of that object just before a command
gets executed.

• You can use Memento along with Iterator to capture the cur-
rent iteration state and roll it back if necessary.

• Sometimes Prototype can be a simpler alternative to Memen-
to. This works if the object, the state of which you want to
store in the history, is fairly straightforward and doesn’t have
links to external resources, or the links are easy to re-establish.







335 Behavioral Design Patterns / Memento

OBSERVER
Also known as: Event-Subscriber, Listener

Observer is a behavioral design pattern that lets you define a
subscription mechanism to notify multiple objects about any

events that happen to the object they’re observing.

336 Behavioral Design Patterns / Observer

Problem

Imagine that you have two types of objects: a Customer and
a Store . The customer is very interested in a particular brand
of product (say, it’s a new model of the iPhone) which should
become available in the store very soon.

The customer could visit the store every day and check prod-
uct availability. But while the product is still en route, most of
these trips would be pointless.

Visiting the store vs. sending spam

On the other hand, the store could send tons of emails (which
might be considered spam) to all customers each time a new
product becomes available. This would save some customers
from endless trips to the store. At the same time, it’d upset
other customers who aren’t interested in new products.



337 Behavioral Design Patterns / Observer

It looks like we’ve got a conflict. Either the customer wastes
time checking product availability or the store wastes
resources notifying the wrong customers.

Solution

The object that has some interesting state is often called sub-
ject, but since it’s also going to notify other objects about the
changes to its state, we’ll call it publisher. All other objects that
want to track changes to the publisher’s state are called sub-
scribers.

The Observer pattern suggests that you add a subscription
mechanism to the publisher class so individual objects can
subscribe to or unsubscribe from a stream of events coming
from that publisher. Fear not! Everything isn’t as complicated
as it sounds. In reality, this mechanism consists of 1) an array
field for storing a list of references to subscriber objects and 2)
several public methods which allow adding subscribers to and
removing them from that list.

A subscription mechanism lets individual objects subscribe to
event notifications.



338 Behavioral Design Patterns / Observer

Now, whenever an important event happens to the publisher,
it goes over its subscribers and calls the specific notification
method on their objects.

Real apps might have dozens of different subscriber classes
that are interested in tracking events of the same publisher
class. You wouldn’t want to couple the publisher to all of those
classes. Besides, you might not even know about some of them
beforehand if your publisher class is supposed to be used by
other people.

That’s why it’s crucial that all subscribers implement the same
interface and that the publisher communicates with them only
via that interface. This interface should declare the notification
method along with a set of parameters that the publisher can
use to pass some contextual data along with the notification.

Publisher notifies subscribers by calling the specific notification method on
their objects.

339 Behavioral Design Patterns / Observer

If your app has several different types of publishers and you
want to make your subscribers compatible with all of them,
you can go even further and make all publishers follow the
same interface. This interface would only need to describe
a few subscription methods. The interface would allow sub-
scribers to observe publishers’ states without coupling to their
concrete classes.

Real-World Analogy

If you subscribe to a newspaper or magazine, you no longer
need to go to the store to check if the next issue is available.
Instead, the publisher sends new issues directly to your mail-
box right after publication or even in advance.

Magazine and newspaper subscriptions.

The publisher maintains a list of subscribers and knows which
magazines they’re interested in. Subscribers can leave the list



340 Behavioral Design Patterns / Observer

at any time when they wish to stop the publisher sending new
magazine issues to them.

Structure

1. The Publisher issues events of interest to other objects. These
events occur when the publisher changes its state or executes
some behaviors. Publishers contain a subscription infrastruc-
ture that lets new subscribers join and current subscribers
leave the list.

2. When a new event happens, the publisher goes over the sub-
scription list and calls the notification method declared in the
subscriber interface on each subscriber object.

3. The Subscriber interface declares the notification interface.
In most cases, it consists of a single update method. The
method may have several parameters that let the publisher
pass some event details along with the update.



341 Behavioral Design Patterns / Observer

4. Concrete Subscribers perform some actions in response to
notifications issued by the publisher. All of these classes must
implement the same interface so the publisher isn’t coupled to
concrete classes.

5. Usually, subscribers need some contextual information to han-
dle the update correctly. For this reason, publishers often pass
some context data as arguments of the notification method.
The publisher can pass itself as an argument, letting sub-
scriber fetch any required data directly.

6. The Client creates publisher and subscriber objects separately
and then registers subscribers for publisher updates.

Pseudocode

In this example, the Observer pattern lets the text editor
object notify other service objects about changes in its state.



342 Behavioral Design Patterns / Observer

Notifying objects about events that happen to other objects.

The list of subscribers is compiled dynamically: objects can
start or stop listening to notifications at runtime, depending
on the desired behavior of your app.

In this implementation, the editor class doesn’t maintain the
subscription list by itself. It delegates this job to the special
helper object devoted to just that. You could upgrade that
object to serve as a centralized event dispatcher, letting any
object act as a publisher.

343 Behavioral Design Patterns / Observer

Adding new subscribers to the program doesn’t require
changes to existing publisher classes, as long as they work
with all subscribers through the same interface.

// The base publisher class includes subscription management1

// code and notification methods.2

class EventManager is3

private field listeners: hash map of event types and listeners4

5

method subscribe(eventType, listener) is6

listeners.add(eventType, listener)7

8

method unsubscribe(eventType, listener) is9

listeners.remove(eventType, listener)10

11

method notify(eventType, data) is12

foreach (listener in listeners.of(eventType)) do13

listener.update(data)14

15

// The concrete publisher contains real business logic that's16

// interesting for some subscribers. We could derive this class17

// from the base publisher, but that isn't always possible in18

// real life because the concrete publisher might already be a19

// subclass. In this case, you can patch the subscription logic20

// in with composition, as we did here.21

class Editor is22

private field events: EventManager23

private field file: File24

25

constructor Editor() is26

events = new EventManager()27

344 Behavioral Design Patterns / Observer

// Methods of business logic can notify subscribers about28

// changes.29

method openFile(path) is30

this.file = new File(path)31

events.notify("open", file.name)32

33

method saveFile() is34

file.write()35

events.notify("save", file.name)36

37

// ...38

39

40

// Here's the subscriber interface. If your programming language41

// supports functional types, you can replace the whole42

// subscriber hierarchy with a set of functions.43

interface EventListener is44

method update(filename)45

46

// Concrete subscribers react to updates issued by the publisher47

// they are attached to.48

class LoggingListener implements EventListener is49

private field log: File50

private field message51

52

constructor LoggingListener(log_filename, message) is53

this.log = new File(log_filename)54

this.message = message55

56

method update(filename) is57

log.write(replace('%s',filename,message))58

59

345 Behavioral Design Patterns / Observer

class EmailAlertsListener implements EventListener is60

private field email: string61

62

constructor EmailAlertsListener(email, message) is63

this.email = email64

this.message = message65

66

method update(filename) is67

system.email(email, replace('%s',filename,message))68

69

70

// An application can configure publishers and subscribers at71

// runtime.72

class Application is73

method config() is74

editor = new TextEditor()75

76

logger = new LoggingListener(77

"/path/to/log.txt",78

"Someone has opened the file: %s");79

editor.events.subscribe("open", logger)80

81

emailAlerts = new EmailAlertsListener(82

"admin@example.com",83

"Someone has changed the file: %s")84

editor.events.subscribe("save", emailAlerts)85

346 Behavioral Design Patterns / Observer

Applicability

Use the Observer pattern when changes to the state of one
object may require changing other objects, and the actual set
of objects is unknown beforehand or changes dynamically.

You can often experience this problem when working with
classes of the graphical user interface. For example, you creat-
ed custom button classes, and you want to let the clients hook
some custom code to your buttons so that it fires whenever a
user presses a button.

The Observer pattern lets any object that implements the sub-
scriber interface subscribe for event notifications in publisher
objects. You can add the subscription mechanism to your but-
tons, letting the clients hook up their custom code via custom
subscriber classes.

Use the pattern when some objects in your app must observe
others, but only for a limited time or in specific cases.

The subscription list is dynamic, so subscribers can join or
leave the list whenever they need to.

How to Implement

1. Look over your business logic and try to break it down into two
parts: the core functionality, independent from other code, will













347 Behavioral Design Patterns / Observer

act as the publisher; the rest will turn into a set of subscriber
classes.

2. Declare the subscriber interface. At a bare minimum, it should
declare a single update method.

3. Declare the publisher interface and describe a pair of methods
for adding a subscriber object to and removing it from the list.
Remember that publishers must work with subscribers only via
the subscriber interface.

4. Decide where to put the actual subscription list and the imple-
mentation of subscription methods. Usually, this code looks
the same for all types of publishers, so the obvious place to
put it is in an abstract class derived directly from the publisher
interface. Concrete publishers extend that class, inheriting the
subscription behavior.

However, if you’re applying the pattern to an existing class
hierarchy, consider an approach based on composition: put the
subscription logic into a separate object, and make all real
publishers use it.

5. Create concrete publisher classes. Each time something impor-
tant happens inside a publisher, it must notify all its
subscribers.

6. Implement the update notification methods in concrete sub-
scriber classes. Most subscribers would need some context

348 Behavioral Design Patterns / Observer

data about the event. It can be passed as an argument of the
notification method.

But there’s another option. Upon receiving a notification, the
subscriber can fetch any data directly from the notification. In
this case, the publisher must pass itself via the update method.
The less flexible option is to link a publisher to the subscriber
permanently via the constructor.

7. The client must create all necessary subscribers and register
them with proper publishers.

Pros and Cons

Open/Closed Principle. You can introduce new subscriber class-
es without having to change the publisher’s code (and vice
versa if there’s a publisher interface).

You can establish relations between objects at runtime.

Subscribers are notified in random order.

Relations with Other Patterns

• Chain of Responsibility, Command, Mediator and Observer
address various ways of connecting senders and receivers of
requests:











349 Behavioral Design Patterns / Observer

◦ Chain of Responsibility passes a request sequentially along a
dynamic chain of potential receivers until one of them han-
dles it.

◦ Command establishes unidirectional connections between
senders and receivers.

◦ Mediator eliminates direct connections between senders
and receivers, forcing them to communicate indirectly via a
mediator object.

◦ Observer lets receivers dynamically subscribe to and unsub-
scribe from receiving requests.

• The difference between Mediator and Observer is often elu-
sive. In most cases, you can implement either of these pat-
terns; but sometimes you can apply both simultaneously. Let’s
see how we can do that.

The primary goal of Mediator is to eliminate mutual dependen-
cies among a set of system components. Instead, these com-
ponents become dependent on a single mediator object. The
goal of Observer is to establish dynamic one-way connections
between objects, where some objects act as subordinates of
others.

There’s a popular implementation of the Mediator pattern that
relies on Observer. The mediator object plays the role of pub-
lisher, and the components act as subscribers which subscribe
to and unsubscribe from the mediator’s events. When Mediator
is implemented this way, it may look very similar to Observer.

350 Behavioral Design Patterns / Observer

When you’re confused, remember that you can implement the
Mediator pattern in other ways. For example, you can perma-
nently link all the components to the same mediator object.
This implementation won’t resemble Observer but will still be
an instance of the Mediator pattern.

Now imagine a program where all components have become
publishers, allowing dynamic connections between each other.
There won’t be a centralized mediator object, only a distrib-
uted set of observers.

351 Behavioral Design Patterns / Observer

STATE
State is a behavioral design pattern that lets an object alter its
behavior when its internal state changes. It appears as if the

object changed its class.

352 Behavioral Design Patterns / State

Problem

The State pattern is closely related to the concept of a Finite-
State Machine.

Finite-State Machine.

The main idea is that, at any given moment, there’s a finite
number of states which a program can be in. Within any unique
state, the program behaves differently, and the program can
be switched from one state to another instantaneously. How-
ever, depending on a current state, the program may or may
not switch to certain other states. These switching rules, called
transitions, are also finite and predetermined.

You can also apply this approach to objects. Imagine that we
have a Document class. A document can be in one of three
states: Draft , Moderation and Published . The publish

method of the document works a little bit differently in
each state:



353 Behavioral Design Patterns / State

• In Draft , it moves the document to moderation.

• In Moderation , it makes the document public, but only if the
current user is an administrator.

• In Published , it doesn’t do anything at all.

Possible states and transitions of a document object.

State machines are usually implemented with lots of condi-
tional operators (if or switch) that select the appropriate
behavior depending on the current state of the object. Usually,
this “state” is just a set of values of the object’s fields. Even if
you’ve never heard about finite-state machines before, you’ve
probably implemented a state at least once. Does the follow-
ing code structure ring a bell?

354 Behavioral Design Patterns / State

The biggest weakness of a state machine based on condition-
als reveals itself once we start adding more and more states
and state-dependent behaviors to the Document class. Most
methods will contain monstrous conditionals that pick the
proper behavior of a method according to the current state.
Code like this is very difficult to maintain because any change
to the transition logic may require changing state conditionals
in every method.

The problem tends to get bigger as a project evolves. It’s quite
difficult to predict all possible states and transitions at the
design stage. Hence, a lean state machine built with a limited
set of conditionals can grow into a bloated mess over time.

class Document is1

field state: string2

// ...3

method publish() is4

switch (state)5

"draft":6

state = "moderation"7

break8

"moderation":9

if (currentUser.role == 'admin')10

state = "published"11

break12

"published":13

// Do nothing.14

break15

// ...16

355 Behavioral Design Patterns / State

Solution

The State pattern suggests that you create new classes for
all possible states of an object and extract all state-specific
behaviors into these classes.

Instead of implementing all behaviors on its own, the origi-
nal object, called context, stores a reference to one of the state
objects that represents its current state, and delegates all the
state-related work to that object.

Document delegates the work to a state object.

To transition the context into another state, replace the active
state object with another object that represents that new state.
This is possible only if all state classes follow the same inter-



356 Behavioral Design Patterns / State

face and the context itself works with these objects through
that interface.

This structure may look similar to the Strategy pattern, but
there’s one key difference. In the State pattern, the particular
states may be aware of each other and initiate transitions from
one state to another, whereas strategies almost never know
about each other.

Real-World Analogy

The buttons and switches in your smartphone behave differ-
ently depending on the current state of the device:

• When the phone is unlocked, pressing buttons leads to execut-
ing various functions.

• When the phone is locked, pressing any button leads to the
unlock screen.

• When the phone’s charge is low, pressing any button shows the
charging screen.



357 Behavioral Design Patterns / State

Structure

1. Context stores a reference to one of the concrete state objects
and delegates to it all state-specific work. The context commu-
nicates with the state object via the state interface. The con-
text exposes a setter for passing it a new state object.

2. The State interface declares the state-specific methods. These
methods should make sense for all concrete states because
you don’t want some of your states to have useless methods
that will never be called.

3. Concrete States provide their own implementations for the
state-specific methods. To avoid duplication of similar code



358 Behavioral Design Patterns / State

across multiple states, you may provide intermediate abstract
classes that encapsulate some common behavior.

State objects may store a backreference to the context object.
Through this reference, the state can fetch any required info
from the context object, as well as initiate state transitions.

4. Both context and concrete states can set the next state of the
context and perform the actual state transition by replacing
the state object linked to the context.

Pseudocode

In this example, the State pattern lets the same controls of
the media player behave differently, depending on the current
playback state.

Example of changing object behavior with state objects.



359 Behavioral Design Patterns / State

The main object of the player is always linked to a state object
that performs most of the work for the player. Some actions
replace the current state object of the player with another,
which changes the way the player reacts to user interactions.

// The AudioPlayer class acts as a context. It also maintains a1

// reference to an instance of one of the state classes that2

// represents the current state of the audio player.3

class AudioPlayer is4

field state: State5

field UI, volume, playlist, currentSong6

7

constructor AudioPlayer() is8

this.state = new ReadyState(this)9

10

// Context delegates handling user input to a state11

// object. Naturally, the outcome depends on what state12

// is currently active, since each state can handle the13

// input differently.14

UI = new UserInterface()15

UI.lockButton.onClick(this.clickLock)16

UI.playButton.onClick(this.clickPlay)17

UI.nextButton.onClick(this.clickNext)18

UI.prevButton.onClick(this.clickPrevious)19

20

// Other objects must be able to switch the audio player's21

// active state.22

method changeState(state: State) is23

this.state = state24

25

26

360 Behavioral Design Patterns / State

// UI methods delegate execution to the active state.27

method clickLock() is28

state.clickLock()29

method clickPlay() is30

state.clickPlay()31

method clickNext() is32

state.clickNext()33

method clickPrevious() is34

state.clickPrevious()35

36

// A state may call some service methods on the context.37

method startPlayback() is38

// ...39

method stopPlayback() is40

// ...41

method nextSong() is42

// ...43

method previousSong() is44

// ...45

method fastForward(time) is46

// ...47

method rewind(time) is48

// ...49

50

51

// The base state class declares methods that all concrete52

// states should implement and also provides a backreference to53

// the context object associated with the state. States can use54

// the backreference to transition the context to another state.55

abstract class State is56

protected field player: AudioPlayer57

58

361 Behavioral Design Patterns / State

// Context passes itself through the state constructor. This59

// may help a state fetch some useful context data if it's60

// needed.61

constructor State(player) is62

this.player = player63

64

abstract method clickLock()65

abstract method clickPlay()66

abstract method clickNext()67

abstract method clickPrevious()68

69

70

// Concrete states implement various behaviors associated with a71

// state of the context.72

class LockedState extends State is73

74

// When you unlock a locked player, it may assume one of two75

// states.76

method clickLock() is77

if (player.playing)78

player.changeState(new PlayingState(player))79

else80

player.changeState(new ReadyState(player))81

82

method clickPlay() is83

// Locked, so do nothing.84

85

method clickNext() is86

// Locked, so do nothing.87

88

method clickPrevious() is89

// Locked, so do nothing.90

362 Behavioral Design Patterns / State

// They can also trigger state transitions in the context.91

class ReadyState extends State is92

method clickLock() is93

player.changeState(new LockedState(player))94

95

method clickPlay() is96

player.startPlayback()97

player.changeState(new PlayingState(player))98

99

method clickNext() is100

player.nextSong()101

102

method clickPrevious() is103

player.previousSong()104

105

106

class PlayingState extends State is107

method clickLock() is108

player.changeState(new LockedState(player))109

110

method clickPlay() is111

player.stopPlayback()112

player.changeState(new ReadyState(player))113

114

method clickNext() is115

if (event.doubleclick)116

player.nextSong()117

else118

player.fastForward(5)119

120

method clickPrevious() is121

if (event.doubleclick)122

363 Behavioral Design Patterns / State

Applicability

Use the State pattern when you have an object that behaves
differently depending on its current state, the number of states
is enormous, and the state-specific code changes frequently.

The pattern suggests that you extract all state-specific code
into a set of distinct classes. As a result, you can add new
states or change existing ones independently of each other,
reducing the maintenance cost.

Use the pattern when you have a class polluted with massive
conditionals that alter how the class behaves according to the
current values of the class’s fields.

The State pattern lets you extract branches of these condition-
als into methods of corresponding state classes. While doing
so, you can also clean temporary fields and helper methods
involved in state-specific code out of your main class.

Use State when you have a lot of duplicate code across similar
states and transitions of a condition-based state machine.

player.previous()123

else124

player.rewind(5)125













364 Behavioral Design Patterns / State

The State pattern lets you compose hierarchies of state class-
es and reduce duplication by extracting common code into
abstract base classes.

How to Implement

1. Decide what class will act as the context. It could be an exist-
ing class which already has the state-dependent code; or a
new class, if the state-specific code is distributed across multi-
ple classes.

2. Declare the state interface. Although it may mirror all the
methods declared in the context, aim only for those that may
contain state-specific behavior.

3. For every actual state, create a class that derives from the state
interface. Then go over the methods of the context and extract
all code related to that state into your newly created class.

While moving the code to the state class, you might discover
that it depends on private members of the context. There are
several workarounds:

◦ Make these fields or methods public.

◦ Turn the behavior you’re extracting into a public method in
the context and call it from the state class. This way is ugly
but quick, and you can always fix it later.





365 Behavioral Design Patterns / State

◦ Nest the state classes into the context class, but only if your
programming language supports nesting classes.

4. In the context class, add a reference field of the state inter-
face type and a public setter that allows overriding the value
of that field.

5. Go over the method of the context again and replace empty
state conditionals with calls to corresponding methods of the
state object.

6. To switch the state of the context, create an instance of one
of the state classes and pass it to the context. You can do this
within the context itself, or in various states, or in the client.
Wherever this is done, the class becomes dependent on the
concrete state class that it instantiates.

Pros and Cons

Single Responsibility Principle. Organize the code related to par-
ticular states into separate classes.

Open/Closed Principle. Introduce new states without changing
existing state classes or the context.

Simplify the code of the context by eliminating bulky state
machine conditionals.

Applying the pattern can be overkill if a state machine has only
a few states or rarely changes.











366 Behavioral Design Patterns / State

Relations with Other Patterns

• Bridge, State, Strategy (and to some degree Adapter) have very
similar structures. Indeed, all of these patterns are based on
composition, which is delegating work to other objects. How-
ever, they all solve different problems. A pattern isn’t just a
recipe for structuring your code in a specific way. It can also
communicate to other developers the problem the pattern
solves.

• State can be considered as an extension of Strategy. Both pat-
terns are based on composition: they change the behavior of
the context by delegating some work to helper objects. Strate-
gy makes these objects completely independent and unaware
of each other. However, State doesn’t restrict dependencies
between concrete states, letting them alter the state of the
context at will.



367 Behavioral Design Patterns / State

STRATEGY
Strategy is a behavioral design pattern that lets you define a
family of algorithms, put each of them into a separate class,

and make their objects interchangeable.

368 Behavioral Design Patterns / Strategy

Problem

One day you decided to create a navigation app for casual
travelers. The app was centered around a beautiful map which
helped users quickly orient themselves in any city.

One of the most requested features for the app was automatic
route planning. A user should be able to enter an address and
see the fastest route to that destination displayed on the map.

The first version of the app could only build the routes over
roads. People who traveled by car were bursting with joy. But
apparently, not everybody likes to drive on their vacation. So
with the next update, you added an option to build walking
routes. Right after that, you added another option to let peo-
ple use public transport in their routes.

However, that was only the beginning. Later you planned to
add route building for cyclists. And even later, another option
for building routes through all of a city’s tourist attractions.

The code of the navigator became bloated.



369 Behavioral Design Patterns / Strategy

While from a business perspective the app was a success, the
technical part caused you many headaches. Each time you
added a new routing algorithm, the main class of the naviga-
tor doubled in size. At some point, the beast became too hard
to maintain.

Any change to one of the algorithms, whether it was a sim-
ple bug fix or a slight adjustment of the street score, affected
the whole class, increasing the chance of creating an error in
already-working code.

In addition, teamwork became inefficient. Your teammates,
who had been hired right after the successful release, com-
plain that they spend too much time resolving merge con-
flicts. Implementing a new feature requires you to change the
same huge class, conflicting with the code produced by other
people.

Solution

The Strategy pattern suggests that you take a class that does
something specific in a lot of different ways and extract all of
these algorithms into separate classes called strategies.

The original class, called context, must have a field for stor-
ing a reference to one of the strategies. The context delegates
the work to a linked strategy object instead of executing it on
its own.



370 Behavioral Design Patterns / Strategy

The context isn’t responsible for selecting an appropriate algo-
rithm for the job. Instead, the client passes the desired strategy
to the context. In fact, the context doesn’t know much about
strategies. It works with all strategies through the same gener-
ic interface, which only exposes a single method for triggering
the algorithm encapsulated within the selected strategy.

This way the context becomes independent of concrete strate-
gies, so you can add new algorithms or modify existing ones
without changing the code of the context or other strategies.

Route planning strategies.

In our navigation app, each routing algorithm can be extract-
ed to its own class with a single buildRoute method. The
method accepts an origin and destination and returns a collec-
tion of the route’s checkpoints.

Even though given the same arguments, each routing class
might build a different route, the main navigator class doesn’t

371 Behavioral Design Patterns / Strategy

really care which algorithm is selected since its primary job
is to render a set of checkpoints on the map. The class has a
method for switching the active routing strategy, so its clients,
such as the buttons in the user interface, can replace the cur-
rently selected routing behavior with another one.

Real-World Analogy

Various strategies for getting to the airport.

Imagine that you have to get to the airport. You can catch
a bus, order a cab, or get on your bicycle. These are your
transportation strategies. You can pick one of the strategies
depending on factors such as budget or time constraints.



372 Behavioral Design Patterns / Strategy

Structure

1. The Context maintains a reference to one of the concrete
strategies and communicates with this object only via the
strategy interface.

2. The Strategy interface is common to all concrete strategies. It
declares a method the context uses to execute a strategy.

3. Concrete Strategies implement different variations of an algo-
rithm the context uses.



373 Behavioral Design Patterns / Strategy

4. The context calls the execution method on the linked strate-
gy object each time it needs to run the algorithm. The context
doesn’t know what type of strategy it works with or how the
algorithm is executed.

5. The Client creates a specific strategy object and passes it to
the context. The context exposes a setter which lets clients
replace the strategy associated with the context at runtime.

Pseudocode

In this example, the context uses multiple strategies to exe-
cute various arithmetic operations.

// The strategy interface declares operations common to all1

// supported versions of some algorithm. The context uses this2

// interface to call the algorithm defined by the concrete3

// strategies.4

interface Strategy is5

method execute(a, b)6

7

// Concrete strategies implement the algorithm while following8

// the base strategy interface. The interface makes them9

// interchangeable in the context.10

class ConcreteStrategyAdd implements Strategy is11

method execute(a, b) is12

return a + b13

14

class ConcreteStrategySubtract implements Strategy is15

method execute(a, b) is16



374 Behavioral Design Patterns / Strategy

return a - b17

18

class ConcreteStrategyMultiply implements Strategy is19

method execute(a, b) is20

return a * b21

22

// The context defines the interface of interest to clients.23

class Context is24

// The context maintains a reference to one of the strategy25

// objects. The context doesn't know the concrete class of a26

// strategy. It should work with all strategies via the27

// strategy interface.28

private strategy: Strategy29

30

// Usually the context accepts a strategy through the31

// constructor, and also provides a setter so that the32

// strategy can be switched at runtime.33

method setStrategy(Strategy strategy) is34

this.strategy = strategy35

36

// The context delegates some work to the strategy object37

// instead of implementing multiple versions of the38

// algorithm on its own.39

method executeStrategy(int a, int b) is40

return strategy.execute(a, b)41

42

43

// The client code picks a concrete strategy and passes it to44

// the context. The client should be aware of the differences45

// between strategies in order to make the right choice.46

class ExampleApplication is47

method main() is48

375 Behavioral Design Patterns / Strategy

Applicability

Use the Strategy pattern when you want to use different vari-
ants of an algorithm within an object and be able to switch
from one algorithm to another during runtime.

The Strategy pattern lets you indirectly alter the object’s
behavior at runtime by associating it with different sub-objects
which can perform specific sub-tasks in different ways.

Create context object.49

50

Read first number.51

Read last number.52

Read the desired action from user input.53

54

if (action == addition) then55

context.setStrategy(new ConcreteStrategyAdd())56

57

if (action == subtraction) then58

context.setStrategy(new ConcreteStrategySubtract())59

60

if (action == multiplication) then61

context.setStrategy(new ConcreteStrategyMultiply())62

63

result = context.executeStrategy(First number, Second number)64

65

Print result.66







376 Behavioral Design Patterns / Strategy

Use the Strategy when you have a lot of similar classes that
only differ in the way they execute some behavior.

The Strategy pattern lets you extract the varying behavior into
a separate class hierarchy and combine the original classes
into one, thereby reducing duplicate code.

Use the pattern to isolate the business logic of a class from
the implementation details of algorithms that may not be as
important in the context of that logic.

The Strategy pattern lets you isolate the code, internal data,
and dependencies of various algorithms from the rest of the
code. Various clients get a simple interface to execute the
algorithms and switch them at runtime.

Use the pattern when your class has a massive conditional
operator that switches between different variants of the same
algorithm.

The Strategy pattern lets you do away with such a conditional
by extracting all algorithms into separate classes, all of which
implement the same interface. The original object delegates
execution to one of these objects, instead of implementing all
variants of the algorithm.













377 Behavioral Design Patterns / Strategy

How to Implement

1. In the context class, identify an algorithm that’s prone to fre-
quent changes. It may also be a massive conditional that
selects and executes a variant of the same algorithm at
runtime.

2. Declare the strategy interface common to all variants of the
algorithm.

3. One by one, extract all algorithms into their own classes. They
should all implement the strategy interface.

4. In the context class, add a field for storing a reference to a
strategy object. Provide a setter for replacing values of that
field. The context should work with the strategy object only
via the strategy interface. The context may define an interface
which lets the strategy access its data.

5. Clients of the context must associate it with a suitable strate-
gy that matches the way they expect the context to perform its
primary job.

Pros and Cons

You can swap algorithms used inside an object at runtime.

You can isolate the implementation details of an algorithm
from the code that uses it.

You can replace inheritance with composition.











378 Behavioral Design Patterns / Strategy

Open/Closed Principle. You can introduce new strategies with-
out having to change the context.

If you only have a couple of algorithms and they rarely change,
there’s no real reason to overcomplicate the program with new
classes and interfaces that come along with the pattern.

Clients must be aware of the differences between strategies to
be able to select a proper one.

A lot of modern programming languages have functional type
support that lets you implement different versions of an algo-
rithm inside a set of anonymous functions. Then you could
use these functions exactly as you’d have used the strategy
objects, but without bloating your code with extra classes and
interfaces.

Relations with Other Patterns

• Bridge, State, Strategy (and to some degree Adapter) have very
similar structures. Indeed, all of these patterns are based on
composition, which is delegating work to other objects. How-
ever, they all solve different problems. A pattern isn’t just a
recipe for structuring your code in a specific way. It can also
communicate to other developers the problem the pattern
solves.

• Command and Strategy may look similar because you can use
both to parameterize an object with some action. However,
they have very different intents.











379 Behavioral Design Patterns / Strategy

◦ You can use Command to convert any operation into an
object. The operation’s parameters become fields of that
object. The conversion lets you defer execution of the oper-
ation, queue it, store the history of commands, send com-
mands to remote services, etc.

◦ On the other hand, Strategy usually describes different ways
of doing the same thing, letting you swap these algorithms
within a single context class.

• Decorator lets you change the skin of an object, while Strategy
lets you change the guts.

• Template Method is based on inheritance: it lets you alter parts
of an algorithm by extending those parts in subclasses. Strate-
gy is based on composition: you can alter parts of the object’s
behavior by supplying it with different strategies that corre-
spond to that behavior. Template Method works at the class
level, so it’s static. Strategy works on the object level, letting
you switch behaviors at runtime.

• State can be considered as an extension of Strategy. Both pat-
terns are based on composition: they change the behavior of
the context by delegating some work to helper objects. Strate-
gy makes these objects completely independent and unaware
of each other. However, State doesn’t restrict dependencies
between concrete states, letting them alter the state of the
context at will.

380 Behavioral Design Patterns / Strategy

TEMPLATE METHOD
Template Method is a behavioral design pattern that defines
the skeleton of an algorithm in the superclass but lets
subclasses override specific steps of the algorithm without

changing its structure.

381 Behavioral Design Patterns / Template Method

Problem

Imagine that you’re creating a data mining application that
analyzes corporate documents. Users feed the app documents
in various formats (PDF, DOC, CSV), and it tries to extract
meaningful data from these docs in a uniform format.

The first version of the app could work only with DOC files. In
the following version, it was able to support CSV files. A month
later, you “taught” it to extract data from PDF files.

Data mining classes contained a lot of duplicate code.

At some point, you noticed that all three classes have a lot of
similar code. While the code for dealing with various data for-
mats was entirely different in all classes, the code for data pro-



382 Behavioral Design Patterns / Template Method

cessing and analysis is almost identical. Wouldn’t it be great to
get rid of the code duplication, leaving the algorithm structure
intact?

There was another problem related to client code that used
these classes. It had lots of conditionals that picked a prop-
er course of action depending on the class of the processing
object. If all three processing classes had a common interface
or a base class, you’d be able to eliminate the conditionals in
client code and use polymorphism when calling methods on a
processing object.

Solution

The Template Method pattern suggests that you break down
an algorithm into a series of steps, turn these steps into meth-
ods, and put a series of calls to these methods inside a sin-
gle “template method.” The steps may either be abstract , or
have some default implementation. To use the algorithm, the
client is supposed to provide its own subclass, implement all
abstract steps, and override some of the optional ones if need-
ed (but not the template method itself).

Let’s see how this will play out in our data mining app. We can
create a base class for all three parsing algorithms. This class
defines a template method consisting of a series of calls to var-
ious document-processing steps.



383 Behavioral Design Patterns / Template Method

At first, we can declare all steps abstract , forcing the sub-
classes to provide their own implementations for these meth-
ods. In our case, subclasses already have all necessary
implementations, so the only thing we might need to do is
adjust signatures of the methods to match the methods of the
superclass.

Template method breaks the algorithm into steps, allowing subclasses to
override these steps but not the actual method.

Now, let’s see what we can do to get rid of the duplicate code.
It looks like the code for opening/closing files and extracting/
parsing data is different for various data formats, so there’s
no point in touching those methods. However, implementation
of other steps, such as analyzing the raw data and composing
reports, is very similar, so it can be pulled up into the base
class, where subclasses can share that code.

384 Behavioral Design Patterns / Template Method

As you can see, we’ve got two types of steps:

• abstract steps must be implemented by every subclass

• optional steps already have some default implementation, but
still can be overridden if needed

There’s another type of step, called hooks. A hook is an option-
al step with an empty body. A template method would work
even if a hook isn’t overridden. Usually, hooks are placed
before and after crucial steps of algorithms, providing sub-
classes with additional extension points for an algorithm.

Real-World Analogy

A typical architectural plan can be slightly altered to better fit the
client’s needs.

The template method approach can be used in mass hous-
ing construction. The architectural plan for building a standard



385 Behavioral Design Patterns / Template Method

house may contain several extension points that would let a
potential owner adjust some details of the resulting house.

Each building step, such as laying the foundation, framing,
building walls, installing plumbing and wiring for water and
electricity, etc., can be slightly changed to make the resulting
house a little bit different from others.

Structure

1. The Abstract Class declares methods that act as steps of an
algorithm, as well as the actual template method which calls
these methods in a specific order. The steps may either be
declared abstract or have some default implementation.



386 Behavioral Design Patterns / Template Method

2. Concrete Classes can override all of the steps, but not the tem-
plate method itself.

Pseudocode

In this example, the Template Method pattern provides a
“skeleton” for various branches of artificial intelligence in a
simple strategy video game.

AI classes of a simple video game.

All races in the game have almost the same types of units and
buildings. Therefore you can reuse the same AI structure for
various races, while being able to override some of the details.
With this approach, you can override the orcs’ AI to make it
more aggressive, make humans more defense-oriented, and



387 Behavioral Design Patterns / Template Method

make monsters unable to build anything. Adding a new race to
the game would require creating a new AI subclass and over-
riding the default methods declared in the base AI class.

// The abstract class defines a template method that contains a1

// skeleton of some algorithm composed of calls, usually to2

// abstract primitive operations. Concrete subclasses implement3

// these operations, but leave the template method itself4

// intact.5

class GameAI is6

// The template method defines the skeleton of an algorithm.7

method turn() is8

collectResources()9

buildStructures()10

buildUnits()11

attack()12

13

// Some of the steps may be implemented right in a base14

// class.15

method collectResources() is16

foreach (s in this.builtStructures) do17

s.collect()18

19

// And some of them may be defined as abstract.20

abstract method buildStructures()21

abstract method buildUnits()22

23

// A class can have several template methods.24

method attack() is25

enemy = closestEnemy()26

if (enemy == null)27

388 Behavioral Design Patterns / Template Method

sendScouts(map.center)28

else29

sendWarriors(enemy.position)30

31

abstract method sendScouts(position)32

abstract method sendWarriors(position)33

34

// Concrete classes have to implement all abstract operations of35

// the base class but they must not override the template method36

// itself.37

class OrcsAI extends GameAI is38

method buildStructures() is39

if (there are some resources) then40

// Build farms, then barracks, then stronghold.41

42

method buildUnits() is43

if (there are plenty of resources) then44

if (there are no scouts)45

// Build peon, add it to scouts group.46

else47

// Build grunt, add it to warriors group.48

49

// ...50

51

method sendScouts(position) is52

if (scouts.length > 0) then53

// Send scouts to position.54

55

method sendWarriors(position) is56

if (warriors.length > 5) then57

// Send warriors to position.58

59

389 Behavioral Design Patterns / Template Method

Applicability

Use the Template Method pattern when you want to let clients
extend only particular steps of an algorithm, but not the whole
algorithm or its structure.

The Template Method lets you turn a monolithic algorithm
into a series of individual steps which can be easily extended
by subclasses while keeping intact the structure defined in a
superclass.

Use the pattern when you have several classes that contain
almost identical algorithms with some minor differences. As a
result, you might need to modify both classes when the algo-
rithm changes.

// Subclasses can also override some operations with a default60

// implementation.61

class MonstersAI extends GameAI is62

method collectResources() is63

// Monsters don't collect resources.64

65

method buildStructures() is66

// Monsters don't build structures.67

68

method buildUnits() is69

// Monsters don't build units.70









390 Behavioral Design Patterns / Template Method

When you turn such an algorithm into a template method, you
can also pull up the steps with similar implementations into
a superclass, eliminating code duplication. Code that varies
between subclasses can remain in subclasses.

How to Implement

1. Analyze the target algorithm to see whether you can break it
into steps. Consider which steps are common to all subclasses
and which ones will always be unique.

2. Create the abstract base class and declare the template
method and a set of abstract methods representing the algo-
rithm’s steps. Outline the algorithm’s structure in the template
method by executing corresponding steps. Consider making
the template method final to prevent subclasses from over-
riding it.

3. It’s okay if all the steps end up being abstract. However, some
steps might benefit from having a default implementation.
Subclasses don’t have to implement those methods.

4. Think of adding hooks between the crucial steps of the
algorithm.

5. For each variation of the algorithm, create a new concrete sub-
class. It must implement all of the abstract steps, but may also
override some of the optional ones.





391 Behavioral Design Patterns / Template Method

Pros and Cons

You can let clients override only certain parts of a large algo-
rithm, making them less affected by changes that happen to
other parts of the algorithm.

You can pull the duplicate code into a superclass.

Some clients may be limited by the provided skeleton of an
algorithm.

You might violate the Liskov Substitution Principle by suppress-
ing a default step implementation via a subclass.

Template methods tend to be harder to maintain the more
steps they have.

Relations with Other Patterns

• Factory Method is a specialization of Template Method. At the
same time, a Factory Method may serve as a step in a large Tem-
plate Method.

• Template Method is based on inheritance: it lets you alter parts
of an algorithm by extending those parts in subclasses. Strate-
gy is based on composition: you can alter parts of the object’s
behavior by supplying it with different strategies that corre-
spond to that behavior. Template Method works at the class
level, so it’s static. Strategy works on the object level, letting
you switch behaviors at runtime.















392 Behavioral Design Patterns / Template Method

VISITOR
Visitor is a behavioral design pattern that lets you separate

algorithms from the objects on which they operate.

393 Behavioral Design Patterns / Visitor

Problem

Imagine that your team develops an app which works with
geographic information structured as one colossal graph. Each
node of the graph may represent a complex entity such as a
city, but also more granular things like industries, sightseeing
areas, etc. The nodes are connected with others if there’s a
road between the real objects that they represent. Under the
hood, each node type is represented by its own class, while
each specific node is an object.

Exporting the graph into XML.

At some point, you got a task to implement exporting the
graph into XML format. At first, the job seemed pretty straight-
forward. You planned to add an export method to each node
class and then leverage recursion to go over each node of the
graph, executing the export method. The solution was sim-
ple and elegant: thanks to polymorphism, you weren’t coupling
the code which called the export method to concrete classes
of nodes.



394 Behavioral Design Patterns / Visitor

Unfortunately, the system architect refused to allow you to
alter existing node classes. He said that the code was already
in production and he didn’t want to risk breaking it because of
a potential bug in your changes.

The XML export method had to be added into all node classes, which bore
the risk of breaking the whole application if any bugs slipped through

along with the change.

Besides, he questioned whether it makes sense to have the
XML export code within the node classes. The primary job
of these classes was to work with geodata. The XML export
behavior would look alien there.

There was another reason for the refusal. It was highly like-
ly that after this feature was implemented, someone from the
marketing department would ask you to provide the ability to
export into a different format, or request some other weird
stuff. This would force you to change those precious and frag-
ile classes again.

395 Behavioral Design Patterns / Visitor

Solution

The Visitor pattern suggests that you place the new behavior
into a separate class called visitor, instead of trying to inte-
grate it into existing classes. The original object that had to
perform the behavior is now passed to one of the visitor’s
methods as an argument, providing the method access to all
necessary data contained within the object.

Now, what if that behavior can be executed over objects of dif-
ferent classes? For example, in our case with XML export, the
actual implementation will probably be a little bit different
across various node classes. Thus, the visitor class may define
not one, but a set of methods, each of which could take argu-
ments of different types, like this:

But how exactly would we call these methods, especially when
dealing with the whole graph? These methods have different
signatures, so we can’t use polymorphism. To pick a proper vis-
itor method that’s able to process a given object, we’d need to
check its class. Doesn’t this sound like a nightmare?

class ExportVisitor implements Visitor is1

method doForCity(City c) { ... }2

method doForIndustry(Industry f) { ... }3

method doForSightSeeing(SightSeeing ss) { ... }4

// ...5



396 Behavioral Design Patterns / Visitor

You might ask, why don’t we use method overloading? That’s
when you give all methods the same name, even if they sup-
port different sets of parameters. Unfortunately, even assum-
ing that our programming language supports it at all (as Java
and C# do), it won’t help us. Since the exact class of a node
object is unknown in advance, the overloading mechanism
won’t be able to determine the correct method to execute.
It’ll default to the method that takes an object of the base
Node class.

However, the Visitor pattern addresses this problem. It uses a
technique called Double Dispatch, which helps to execute the
proper method on an object without cumbersome condition-
als. Instead of letting the client select a proper version of the
method to call, how about we delegate this choice to objects
we’re passing to the visitor as an argument?

Since the objects know their own classes, they’ll be able to
pick a proper method on the visitor less awkwardly. They
“accept” a visitor and tell it what visiting method should be
executed.

foreach (Node node in graph)1

if (node instanceof City)2

exportVisitor.doForCity((City) node)3

if (node instanceof Industry)4

exportVisitor.doForIndustry((Industry) node)5

// ...6

}7

397 Behavioral Design Patterns / Visitor

I confess. We had to change the node classes after all. But at
least the change is trivial and it lets us add further behaviors
without altering the code once again.

Now, if we extract a common interface for all visitors, all exist-
ing nodes can work with any visitor you introduce into the
app. If you find yourself introducing a new behavior related to
nodes, all you have to do is implement a new visitor class.

// Client code1

foreach (Node node in graph)2

node.accept(exportVisitor)3

4

// City5

class City is6

method accept(Visitor v) is7

v.doForCity(this)8

// ...9

10

// Industry11

class Industry is12

method accept(Visitor v) is13

v.doForIndustry(this)14

// ...15

398 Behavioral Design Patterns / Visitor

Real-World Analogy

A good insurance agent is always ready to offer different policies to
various types of organizations.

Imagine a seasoned insurance agent who’s eager to get new
customers. He can visit every building in a neighborhood, try-
ing to sell insurance to everyone he meets. Depending on the
type of organization that occupies the building, he can offer
specialized insurance policies:

• If it’s a residential building, he sells medical insurance.

• If it’s a bank, he sells theft insurance.

• If it’s a coffee shop, he sells fire and flood insurance.



399 Behavioral Design Patterns / Visitor

Structure

1. The Visitor interface declares a set of visiting methods that can
take concrete elements of an object structure as arguments.
These methods may have the same names if the program is
written in a language that supports overloading, but the type
of their parameters must be different.



400 Behavioral Design Patterns / Visitor

2. Each Concrete Visitor implements several versions of the same
behaviors, tailored for different concrete element classes.

3. The Element interface declares a method for “accepting” vis-
itors. This method should have one parameter declared with
the type of the visitor interface.

4. Each Concrete Element must implement the acceptance
method. The purpose of this method is to redirect the call
to the proper visitor’s method corresponding to the current
element class. Be aware that even if a base element class
implements this method, all subclasses must still override this
method in their own classes and call the appropriate method
on the visitor object.

5. The Client usually represents a collection or some other com-
plex object (for example, a Composite tree). Usually, clients
aren’t aware of all the concrete element classes because they
work with objects from that collection via some abstract
interface.

Pseudocode

In this example, the Visitor pattern adds XML export support
to the class hierarchy of geometric shapes.



401 Behavioral Design Patterns / Visitor

Exporting various types of objects into XML format via a visitor object.

// The element interface declares an `accept` method that1

// takes the base visitor interface as an argument.2

interface Shape is3

method move(x, y)4

method draw()5

method accept(v: Visitor)6

7

// Each concrete element class must implement the `accept`8

// method in such a way that it calls the visitor's method that9

// corresponds to the element's class.10

class Dot extends Shape is11

// ...12

402 Behavioral Design Patterns / Visitor

// Note that we're calling `visitDot`, which matches the13

// current class name. This way we let the visitor know the14

// class of the element it works with.15

method accept(v: Visitor) is16

v.visitDot(this)17

18

class Circle extends Dot is19

// ...20

method accept(v: Visitor) is21

v.visitCircle(this)22

23

class Rectangle extends Shape is24

// ...25

method accept(v: Visitor) is26

v.visitRectangle(this)27

28

class CompoundShape implements Shape is29

// ...30

method accept(v: Visitor) is31

v.visitCompoundShape(this)32

33

34

// The Visitor interface declares a set of visiting methods that35

// correspond to element classes. The signature of a visiting36

// method lets the visitor identify the exact class of the37

// element that it's dealing with.38

interface Visitor is39

method visitDot(d: Dot)40

method visitCircle(c: Circle)41

method visitRectangle(r: Rectangle)42

method visitCompoundShape(cs: CompoundShape)43

44

403 Behavioral Design Patterns / Visitor

// Concrete visitors implement several versions of the same45

// algorithm, which can work with all concrete element46

// classes.47

//48

// You can experience the biggest benefit of the Visitor pattern49

// when using it with a complex object structure such as a50

// Composite tree. In this case, it might be helpful to store51

// some intermediate state of the algorithm while executing the52

// visitor's methods over various objects of the structure.53

class XMLExportVisitor is54

method visitDot(d: Dot) is55

// Export the dot's ID and center coordinates.56

57

method visitCircle(c: Circle) is58

// Export the circle's ID, center coordinates and59

// radius.60

61

method visitRectangle(r: Rectangle) is62

// Export the rectangle's ID, left-top coordinates,63

// width and height.64

65

method visitCompoundShape(cs: CompoundShape) is66

// Export the shape's ID as well as the list of its67

// children's IDs.68

69

70

// The client code can run visitor operations over any set of71

// elements without figuring out their concrete classes. The72

// accept operation directs a call to the appropriate operation73

// in the visitor object.74

class Application is75

field allShapes: array of Shapes76

404 Behavioral Design Patterns / Visitor

If you wonder why we need the accept method in this exam-
ple, my article Visitor and Double Dispatch addresses this
question in detail.

Applicability

Use the Visitor when you need to perform an operation on
all elements of a complex object structure (for example, an
object tree).

The Visitor pattern lets you execute an operation over a set of
objects with different classes by having a visitor object imple-
ment several variants of the same operation, which correspond
to all target classes.

Use the Visitor to clean up the business logic of auxiliary
behaviors.

The pattern lets you make the primary classes of your app
more focused on their main jobs by extracting all other behav-
iors into a set of visitor classes.

method export() is77

exportVisitor = new XMLExportVisitor()78

79

foreach (shape in allShapes) do80

shape.accept(exportVisitor)81











405 Behavioral Design Patterns / Visitor

Use the pattern when a behavior makes sense only in some
classes of a class hierarchy, but not in others.

You can extract this behavior into a separate visitor class and
implement only those visiting methods that accept objects of
relevant classes, leaving the rest empty.

How to Implement

1. Declare the visitor interface with a set of “visiting” meth-
ods, one per each concrete element class that exists in the
program.

2. Declare the element interface. If you’re working with an exist-
ing element class hierarchy, add the abstract “acceptance”
method to the base class of the hierarchy. This method should
accept a visitor object as an argument.

3. Implement the acceptance methods in all concrete element
classes. These methods must simply redirect the call to a visit-
ing method on the incoming visitor object which matches the
class of the current element.

4. The element classes should only work with visitors via the vis-
itor interface. Visitors, however, must be aware of all concrete
element classes, referenced as parameter types of the visiting
methods.







406 Behavioral Design Patterns / Visitor

5. For each behavior that can’t be implemented inside the ele-
ment hierarchy, create a new concrete visitor class and imple-
ment all of the visiting methods.

You might encounter a situation where the visitor will need
access to some private members of the element class. In this
case, you can either make these fields or methods public, vio-
lating the element’s encapsulation, or nest the visitor class in
the element class. The latter is only possible if you’re lucky
to work with a programming language that supports nested
classes.

6. The client must create visitor objects and pass them into ele-
ments via “acceptance” methods.

Pros and Cons

Open/Closed Principle. You can introduce a new behavior that
can work with objects of different classes without changing
these classes.

Single Responsibility Principle. You can move multiple versions
of the same behavior into the same class.

A visitor object can accumulate some useful information while
working with various objects. This might be handy when you
want to traverse some complex object structure, such as an
object tree, and apply the visitor to each object of this
structure.









407 Behavioral Design Patterns / Visitor

You need to update all visitors each time a class gets added to
or removed from the element hierarchy.

Visitors might lack the necessary access to the private fields
and methods of the elements that they’re supposed to
work with.

Relations with Other Patterns

• You can treat Visitor as a powerful version of the Command
pattern. Its objects can execute operations over various objects
of different classes.

• You can use Visitor to execute an operation over an entire
Composite tree.

• You can use Visitor along with Iterator to traverse a complex
data structure and execute some operation over its elements,
even if they all have different classes.







408 Behavioral Design Patterns / Visitor

Conclusion
Congrats! You have reached the end of the book!

However, there are many other patterns in the world. I hope
that the book will become your starting point for learning pat-
terns and developing superhero program design abilities.

Here are a couple of ideas that will help you decide what to
do next.

•  Don’t forget that you also have access to an archive of
downloadable code samples in different programming
languages.

•  Read Joshua Kerievsky’s “Refactoring To Patterns”.

•  Know nothing about refactoring? I have a course for you.

•  Print out these patterns cheat sheets and put them some-
where where you’ll be able to see them all the time.

•  Leave feedback on this book. I’ll be very excited to learn
your opinion, even a highly critical one 

	A Few Words on Copyright
	Table of Contents
	How to Read This Book
	INTRODUCTION TO OOP
	Basics of OOP
	Objects, classes
	Class hierarchies

	Pillars of OOP
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	Relations Between Objects

	INTRODUCTION TO PATTERNS
	What’s a Design Pattern?
	Why Should I Learn Patterns?

	SOFTWARE DESIGN PRINCIPLES
	Features of Good Design
	Design Principles
	Encapsulate What Varies
	Program to an Interface, not an Implementation
	Favor Composition Over Inheritance
	SOLID Principles
	Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	CATALOG OF DESIGN PATTERNS
	Creational Design Patterns
	FACTORY METHOD
	ABSTRACT FACTORY
	BUILDER
	PROTOTYPE
	SINGLETON

	Structural Design Patterns
	ADAPTER
	BRIDGE
	COMPOSITE
	DECORATOR
	FACADE
	FLYWEIGHT
	PROXY

	Behavioral Design Patterns
	CHAIN OF RESPONSIBILITY
	COMMAND
	ITERATOR
	MEDIATOR
	MEMENTO
	OBSERVER
	STATE
	STRATEGY
	TEMPLATE METHOD
	VISITOR

	Conclusion

