

Product Description

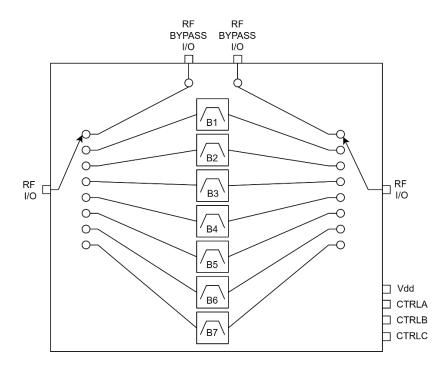
ATEK950P6 is a sub-octave switchable filter bank covering 485 - 7700 MHz frequency band. Filterbank consists of an SP8T switch followed by 7 fixed frequency band pass filters which are followed by another SP8T switch. 8th arms of each SP8T switch are used to send the input/output signals to 2 pins. This allows users to bypass the filterbank off-chip. Alternatively, additional off-chip filter or filterbanks can be implemented by using the bypass feature.

RF Input and Outputs are internally matched to 50 ohms for ease of use.

Filterbank provides 43 dBm IIP3 which allows users to realize high dynamic range wideband receiver frontends. Sub-octave filterbank architecture improves overall system IIP2.

Filterbank is housed in 6x6 mm low-cost surface mount package.

Evaluation Board, custom package and module options are available upon request.

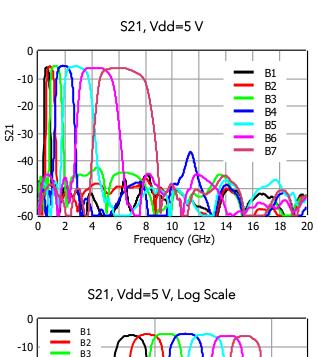

Product Features

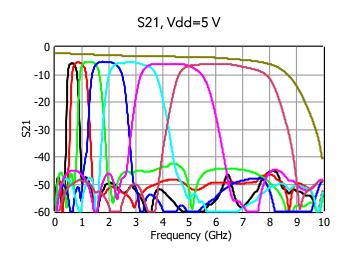
- Frequency Range: 485 7700 MHz
- 7 Switchable Band Pass Filters
- IIP3: 43 dBm
- Single Supply: 3.3 V to 5 V

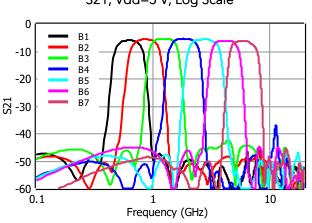
Applications

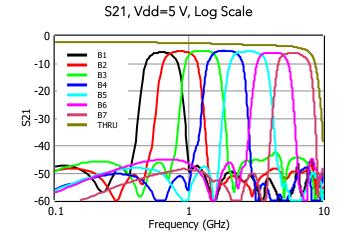
- Test Equipment
- Electronic Warfare
- Wideband Receivers
- Spectrum Analysis
- SDR

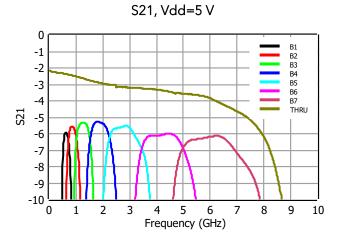
Functional Block Diagram

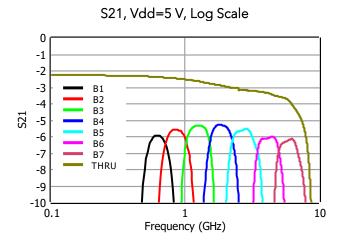

Electrical Specifications

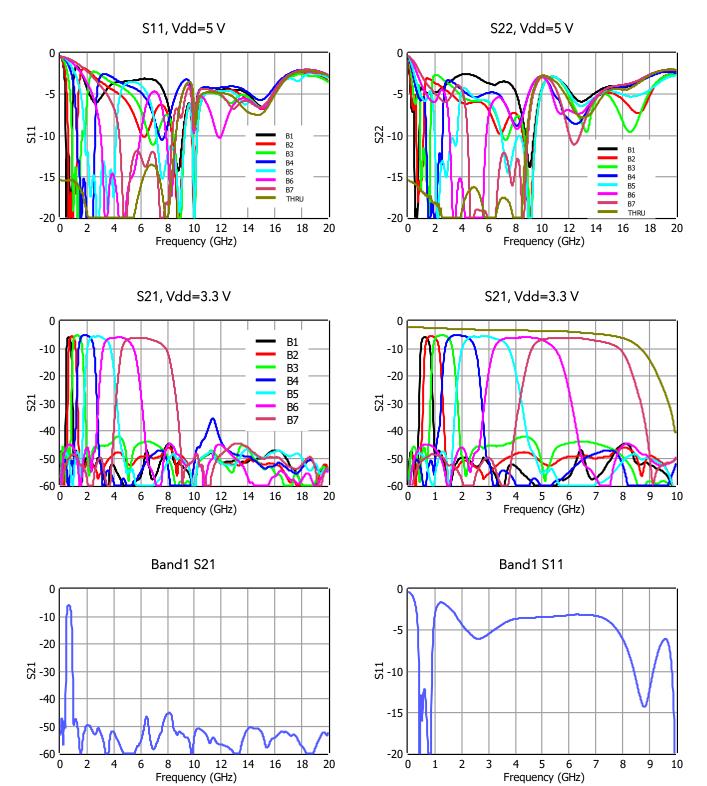

Test conditions unless otherwise noted: $V_{dd} = +5 V$, T = 25 C.

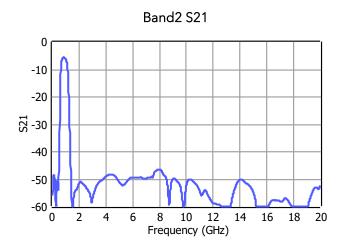

Parameter	Min	Тур	Max	Units	
Frequency Range	2		7700	MHz	
3dB Bandwidth	Band 1		485 - 810		MHz
(High Pass 3dB cutoff - Low Pass 3dB cutoff)	Band 2		660 - 1125		
	Band 3		960 - 1610		
	Band 4		1420 - 2435		
	Band 5		2070 - 3685		
	Band 6		3245 - 5395		
	Band 7		4660 - 7730		
	External Bypass		2-8000		
Insertion Loss	Filter Paths		6		dB
	External Bypass Path		3		
Input IP3		43		dBm	
Switching Speed		150		nS	
Logic Level	Low	-0.1		0.5	V
	High	2		5	
DC Supply Voltage		3.2	5	5.5	V
DC Supply Current		15		mA	
Operating Temperature	-40		85	°C	

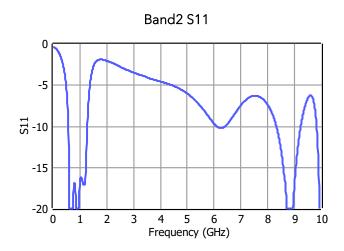

2 of 12

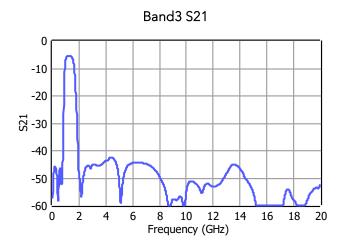


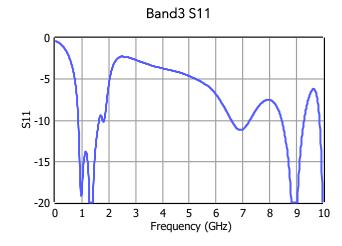


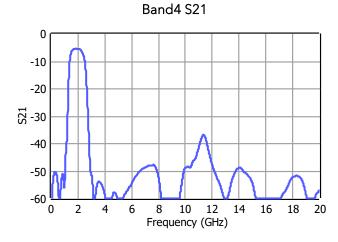


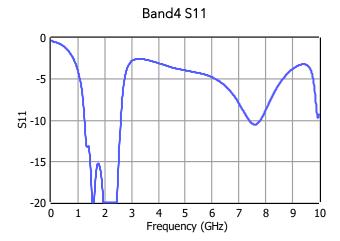


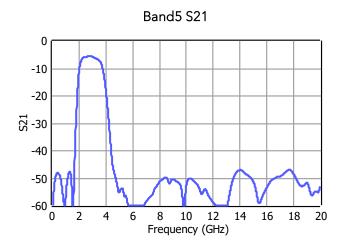


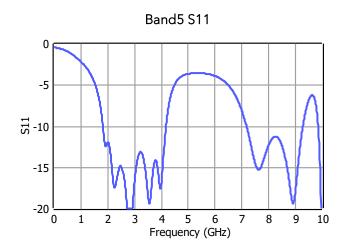


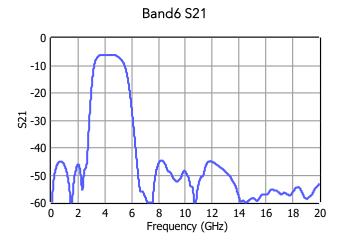


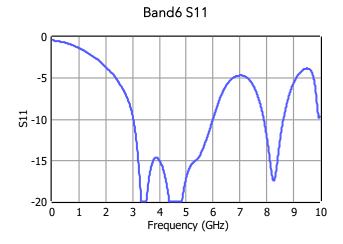


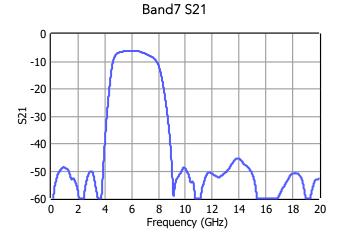


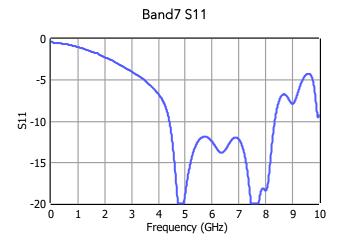


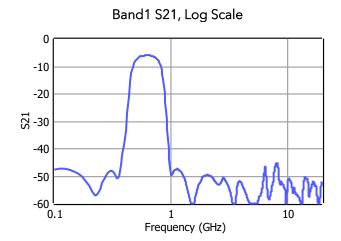


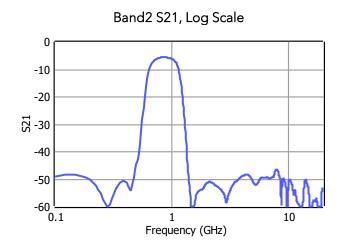


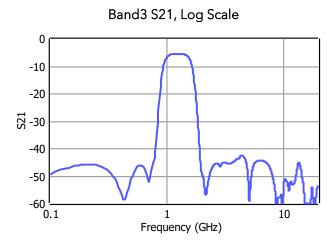


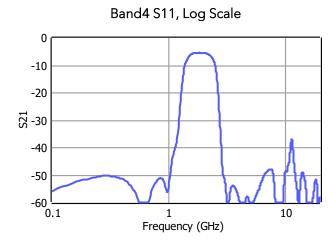


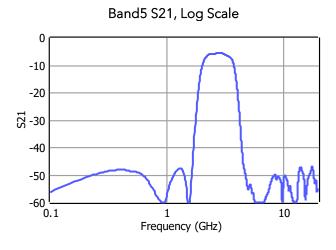


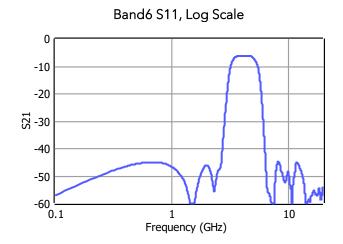


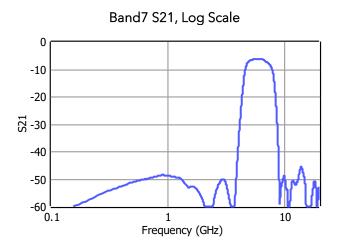


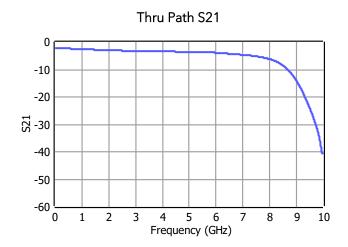


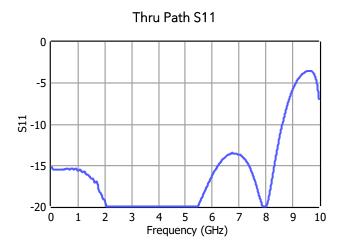


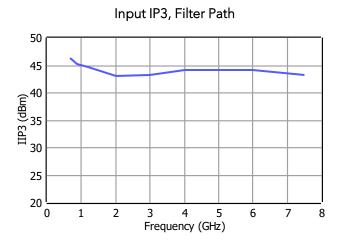


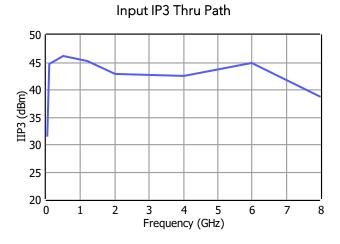


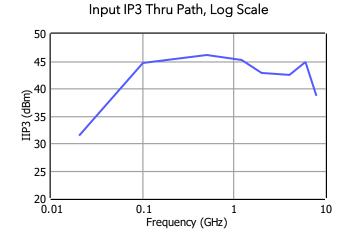


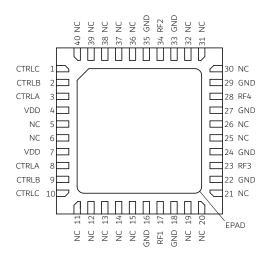








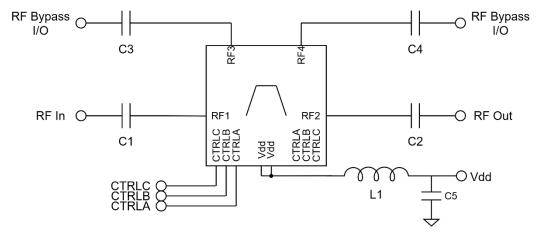




Pin Description

Pin Number	Pin Name	Description
17	RF1	RF pin. Can be used as input or output. DC coupled; external DC block capacitors are required.
34	RF2	RF pin. Can be used as input or output. DC coupled; external DC block capacitors are required.
23	RF3	RF pin. Can be used as input or output. DC coupled; external DC block capacitors are required. If unused should be left open
28	RF4	RF pin. Can be used as input or output. DC coupled; external DC block capacitors are required.
1, 10	CTRLC	Control C input. Two CTRLC pins are shorted internally. Using one of them is sufficient for controlling filter state.
2, 9	CTRLB	Control B input. Two CTRLB pins are shorted internally. Using one of them is sufficient for controlling filter state.
3, 8	CTRLA	Control A input. Two CTRLA pins are shorted internally. Using one of them is sufficient for controlling filter state.
4, 7	VDD	Supply input.
5, 6, 11-15, 19-21, 25, 26, 30-32, 36- 40		These pins are not internally connected. Can be grounded on the PCB.
16, 18, 22, 24, 27, 29, 33, 35, 41,	GND	Ground.
41	EPAD	Exposed Pad on the bottom of the package should be connected to ground with multiple number of vias to reduce the inductance to the GND.

9 of 12


Control Interface

CTRLA	CTRLB	CTRLC	Filter Bank State
LOW	LOW	LOW	Band1
LOW	HIGH	HIGH	Band2
LOW	LOW	HIGH	Band3
HIGH	LOW	HIGH	Band4
LOW	HIGH	LOW	Band5
HIGH	HIGH	LOW	Band6
HIGH	LOW	LOW	Band7
HIGH	HIGH	HIGH	External Bypass State

Applications Information

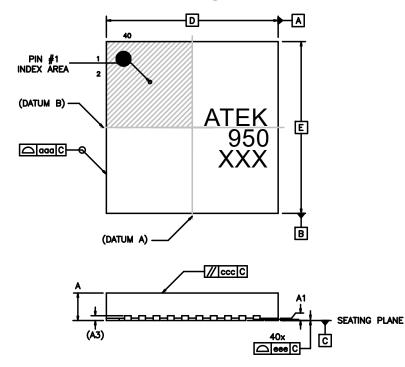
Signal entering from RF1 pins goes into 8 selectable paths. 7 of these paths are fixed frequency band pass filters and the 8th path is routed to RF3 pin. Symmetrical architecture lies in between RF2 and RF4 pins. Thus, RF3 and RF4 pins can be used to add an off chip thru path on the PCB. This will allow user to add bypass feature to the filterbank. Alternatively, an 8th filter can be connected in between RF3 and RF4 pins. Similarly, RF3 and RF4 pins can be used to connect an alternative filterbank. This allows user to create filterbank configurations with higher filter count in a modular architecture.

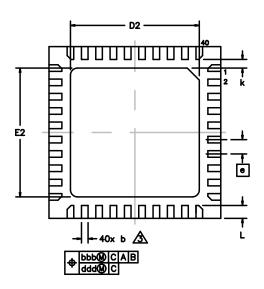
Typical application schematic to operate the filterbank is given below.

C1, C2, C3 and C4 are DC block capacitors. It is recommended to use wideband low loss DC block capacitors to achieve the best performance. Using low profile capacitors is also possible, which will result in additional loss. If RF3 and RF4 pins are not used, then using C3 and C4 is not required.

L1 and C5 are used to filter out the ripples and unwanted signal coming from the Vdd supply and providing an RF isolation between filterbank and Vdd supply to avoid RF signals leaking into Vdd. Using capacitors in parallel to C5 and choosing a wideband RF choke for L1 will improve better isolation performance. Similarly, using RC filtering on CTRL lines can improve performance. If these topics are of no concern, then filterbank can be operated without L1 and C5. Filterbank can be supplied in alternative packages and custom housings.

All measurement results presented on this document are taken with a set-up, where RF1 is an input and RF2 is an output.




Absolute Maximum Ratings

Parameter	Value/Range
Supply Voltage (Vdd)	TBD
VCTRL (CTRLA, CTRLB, CTRLC)	TBD
Supply Current Idd	TBD
Control Current (CTRLA, CTRLB, CTRLC	TBD
Storage Temperature	−55 to +125°C

Operation of this device outside the parameter ranges given above may cause damage. These parameters should not be applied simultaneously.

Mechanical and Marking Information

1)	OTES: ALL DIMENS DIMENSIONI DIMENSION	NG AND TO B APPLIES	DLERANCING TO METAL	PER ASME	Y14.5-2009 INAL AND IS
A	DIMENSION MEASURED	BETWEEN	0.15 AND	LIZED TERM 0.30 MM FR	inal and is Om terminal

SYMBOL	MIN	MAX	SYMBOL	MIN	MAX
A, V	0.80	1.00	E2	4.40	4.60
A, W	0.70	0.80	e	0.50 BSC	
A, L	1.40	1.70	k	0.20	•
A1	0.00	0.05	L	0.40	0.50
A3	0.20 REF		aaa	0.10	
b	0.18	0.30	blob	0.3	10
D	6.00 BSC		ccc	0.10	
D2	4.40	4.60	ddd	0.05	
Ε	6.00	BSC	eee	0.0	08

Handling Precautions

Contact Information

For the latest specifications, additional product information, support, and sales.

Web: <u>www.atekmidas.com</u> Tel: +90-212-483-71-67

Email: support@atekmidas.com

Notice

This document and its contents are property of ATEK MIDAS. ATEK MIDAS has the right to change the document at any time without notice. ATEK MIDAS distributes this document as a service to its customers. ATEK MIDAS supports its customers to help them create market leader products. Customer is responsible from choosing the product and the configuration the product. This document is provided `as is` and does not provide any warranty.

Customer is responsible for the usage of this document, the information provided in the document and the usage of products. ATEK MIDAS shall have no responsibility from the customer products, customer applications and doings of customers.

12 of 12