
ADL User Guide for Open AT® OS
 v6.00

 Revision: 003
 Date: December 2007

©Confidential Page: 1 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

ADL User Guide for Open AT® OS
v6.00

Reference: WM_DEV_OAT_UGD_060

Revision: 003

Date: December 17, 2007

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 2 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Document History

Index Date Versions

001 October 3, 2007 Creation

002 November 20, 2007 Update

003 December 17, 2007 Update

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 3 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Copyright

This manual is copyrighted by WAVECOM with all rights reserved. No part of this
manual may be reproduced, modified or disclosed to third parties in any form without
the prior written permission of WAVECOM.

Trademarks

, , ®, “YOU MAKE IT, WE MAKE IT WIRELESS®”,
WAVECOM®, Wireless Microprocessor®, Wireless CPU®, Open AT® and certain other
trademarks and logos appearing on this document, are filed or registered trademarks
of Wavecom S.A. in France and/or in other countries. All other company and/or
product names mentioned may be filed or registered trademarks of their respective
owners.

No Warranty/No Liability

This document is provided “as is”. Wavecom makes no warranties of any kind, either
expressed or implied, including any implied warranties of merchantability, fitness for
a particular purpose, or noninfringement. The recipient of the documentation shall
endorse all risks arising from its use. In no event shall Wavecom be liable for any
incidental, direct, indirect, consequential, or punitive damages arising from the use or
inadequacy of the documentation, even if Wavecom has been advised of the
possibility of such damages and to the extent permitted by law.

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 4 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Overview

This user guide describes the Application Development Layer (ADL). The aim of the
Application Development Layer is to ease the development of Open AT® embedded
application. It applies to revision Open AT® 6.00 and higher (until next version of this
document).

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 5 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Table of Contents

Document History ...2
Copyright ..3
Trademarks ...3
No Warranty/No Liability..3
Overview...4
Table of Contents ..5
List of Figures ...14
1 Introduction ..15
1.1 Important Remarks ..15
1.2 References...15
1.3 Glossary ..15
1.4 Abbreviations ..16
2 Description ...17
2.1 Software Architecture..17
2.2 ADL Limitations...18
2.3 Open AT® Memory Resources..18

2.3.1 RAM Resources ...18
2.3.2 Flash Resources...18

2.4 Defined Compilation Flags ...19
2.5 Inner AT Commands Configuration..19
2.6 Open AT® Specific AT Commands ...20

2.6.1 AT+WDWL Command ...20
2.6.2 AT+WOPEN Command..20

2.7 Notes on Wavecom Firmware..21
2.8 Security ...21

2.8.1 Software Security: Memory Access Protection...21
2.8.2 Hardware Security: Watchdog Protection ..22
2.8.3 Safe Boot Mode ...22

2.9 RTE limitations ..22
2.9.1 Sending large buffers through an ADL API...22
2.9.2 IRQ Services...22

3 API..23
3.1 Application Entry Points Interface..23

3.1.1 Required Header File ..23
3.1.2 The adl_InitTasks_t Structure ...23
3.1.3 Tasks Definition Table..25
3.1.4 Interrupt Handlers Call Stack Sizes Declaration..26

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 6 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.1.5 The adl_InitType_e Type ...27
3.1.6 The adl_InitGetType function..28
3.1.7 Example...28

3.2 Basic Features ...29
3.2.1 Data Types...29
3.2.2 List Management...29
3.2.3 Standard Library ..35
3.2.4 Sound API..38

3.3 AT Commands Service ..46
3.3.1 Required Header File ..46
3.3.2 Unsolicited Responses ...46
3.3.3 Responses ...49
3.3.4 Incoming AT Commands ...51
3.3.5 Outgoing AT Commands ...61

3.4 Timers ...68
3.4.1 Required Header Files ..68
3.4.2 The adl_tmr_t Structure..68
3.4.3 Defines...69
3.4.4 The adl_tmrType_e ...69
3.4.5 The adl_tmrCyclicMode_e...70
3.4.6 The adl_tmr_Handler_t..71
3.4.7 The adl_tmrSubscribe Function..71
3.4.8 The adl_tmrSubscribeExt Function...72
3.4.9 The adl_tmrUnSubscribe Function ...73
3.4.10 Example...75

3.5 Memory Service...76
3.5.1 Required Header File ..76
3.5.2 Data Structures..76
3.5.3 Defines...78
3.5.4 The adl_memGetInfo Function..78
3.5.5 The adl_memGet Function ...79
3.5.6 The adl_memRelease Function ...80
3.5.7 Heap Memory Block Status..80
3.5.8 Example...80

3.6 ADL Registry Service ...81
3.6.1 Required Header File ..81
3.6.2 The adl_regGetWCPUType Function...81
3.6.3 The adl_regGetHWInteger Function..81
3.6.4 The adl_regGetHWData Function ...82
3.6.5 The adl_regGetHWDataChunk Function ...82
3.6.6 Example...83

3.7 Debug Traces ..85
3.7.1 Required Header File ..85
3.7.2 Build Configuration Macros..85
3.7.3 The adl_trcPrint Function ...86
3.7.4 The adl_trcDump Function ...87
3.7.5 Example...89

3.8 Flash ...90
3.8.1 Required Header File ..90

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 7 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.8.2 Flash Objects Management ...90
3.8.3 The adl_flhSubscribe Function ...91
3.8.4 The adl_flhExist Function ...92
3.8.5 The adl_flhErase Function ..92
3.8.6 The adl_flhWrite Function ..93
3.8.7 The adl_flhRead Function ...93
3.8.8 The adl_flhGetFreeMem Function...94
3.8.9 The adl_flhGetIDCount Function...94
3.8.10 The adl_flhGetUsedSize Function ...95

3.9 FCM Service ..96
3.9.1 Required Header File ..97
3.9.2 The adl_fcmIsAvailable Function ..97
3.9.3 The adl_fcmSubscribe Function ...98
3.9.4 The adl_fcmUnsubscribe Function ...101
3.9.5 The adl_fcmReleaseCredits Function ..102
3.9.6 The adl_fcmSwitchV24State Function..102
3.9.7 The adl_fcmSendData Function..103
3.9.8 The adl_fcmSendDataExt Function...104
3.9.9 The adl_fcmGetStatus Function ...106

3.10 GPIO Service..107
3.10.1 Required Header File ..107
3.10.2 GPIO Types..108
3.10.3 The adl_ioGetCapabilitiesList Function ...112
3.10.4 The adl_ioEventSubscribe Function..113
3.10.5 The adl_ioHdlr_f Call-back Type..114
3.10.6 The adl_ioEventUnsubscribe Function..115
3.10.7 The adl_ioSubscribe Function...117
3.10.8 The adl_ioUnsubscribe Function...118
3.10.9 The adl_ioSetDirection Function ...119
3.10.10 The adl_ioRead Function ..119
3.10.11 The adl_ioReadSingle Function...120
3.10.12 The adl_ioWrite Function..121
3.10.13 The adl_ioWriteSingle Function ..121
3.10.14 Example...122

3.11 Bus Service ...125
3.11.1 Required Header File ..125
3.11.2 Capabilities Registry Informations ..125
3.11.3 Common Data Structures and Enumerations ...128
3.11.4 SPI Bus Subscription Data Structures and Enumerations.......................131
3.11.5 I2C Bus Subscription Data Structures and Enumerations.......................136
3.11.6 Parallel Bus Subscription Data Structures and Enumerations.................138
3.11.7 IOCtl Operations Data Structures and Enumerations..............................145
3.11.8 Read/Write Data Structures..151
3.11.9 The adl_busSubscribe Function..151
3.11.10 The adl_busUnsubscribe Function ...152
3.11.11 The adl_busIOCtl Function ...153
3.11.12 The adl_busRead Function ...153
3.11.13 The adl_busReadExt Function ..154
3.11.14 The adl_busWrite Function...155
3.11.15 The adl_busWriteExt Function..156
3.11.16 The adl_busDirectRead Function ..157

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 8 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.17 The adl_busDirectWrite Function ...158
3.11.18 Example...159

3.12 Error Management ..161
3.12.1 Required Header File ..161
3.12.2 Enumerations...162
3.12.3 Error event handler ..163
3.12.4 The adl_errSubscribe Function ...164
3.12.5 The adl_errUnsubscribe Function ...164
3.12.6 The adl_errHalt Function ..164
3.12.7 The adl_errEraseAllBacktraces Function ...165
3.12.8 The adl_errStartBacktraceAnalysis Function...166
3.12.9 The adl_errGetAnalysisState Function ..166
3.12.10 The adl_errRetrieveNextBacktrace Function..166
3.12.11 Example...167

3.13 SIM Service ...169
3.13.1 Required Header File ..169
3.13.2 The adl_simSubscribe Function..169
3.13.3 The adl_simUnsubscribe Function..170
3.13.4 The adl_simGetState Function..171
3.13.5 adl_simEnterPIN Function ..171

3.14 Open SIM Access Service..172
3.14.1 Required Header File ..172
3.14.2 The adl_osaSubscribe Function..172
3.14.3 The adl_osaHandler_f call-back Type ..173
3.14.4 The adl_osaSendResponse Function ..175
3.14.5 The adl_osaUnsubscribe Function..176
3.14.6 Example...177

3.15 SMS Service ..178
3.15.1 Required Header File ..178
3.15.2 The adl_smsSubscribe Function...178
3.15.3 The adl_smsSend Function ..180
3.15.4 The adl_smsUnsubscribe Function...181

3.16 Message Service ...182
3.16.1 Required Header File ..182
3.16.2 The adl_msgIdComparator_e Type..182
3.16.3 The adl_msgFilter_t Structure...183
3.16.4 The adl_msgSubscribe Function...184
3.16.5 The adl_msgHandler_f call-back Type...185
3.16.6 The adl_msgUnsubscribe Function ..185
3.16.7 The adl_msgSend Function ..186
3.16.8 Example...187

3.17 Call Service..188
3.17.1 Required Header File ..188
3.17.2 The adl_callSubscribe Function ..188
3.17.3 The adl_callSetup Function ..191
3.17.4 The adl_callSetupExt Function ...191
3.17.5 The adl_callHangup Function ...192
3.17.6 The adl_callHangupExt Function ..192
3.17.7 The adl_callAnswer Function ...193

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 9 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.17.8 The adl_callAnswerExt Function ..193
3.17.9 The adl_callUnsubscribe Function ..193

3.18 GPRS Service...194
3.18.1 Required Header File ..194
3.18.2 The adl_gprsSubscribe Function ..194
3.18.3 The adl_gprsSetup Function...197
3.18.4 The adl_gprsSetupExt Function..197
3.18.5 The adl_gprsAct Function ..198
3.18.6 The adl_gprsActExt Function..199
3.18.7 The adl_gprsDeact Function...200
3.18.8 The adl_gprsDeactExt Function..200
3.18.9 The adl_gprsGetCidInformations Function..201
3.18.10 The adl_gprsUnsubscribe Function ..202
3.18.11 The adl_gprsIsAnIPAddress Function...202
3.18.12 Example...203

3.19 Semaphore ADL Service ..205
3.19.1 Required Header File ..205
3.19.2 The adl_semGetResourcesCount Function ...205
3.19.3 The adl_semSubscribe Function...205
3.19.4 The adl_semConsume Function ...206
3.19.5 The adl_semConsumeDelay Function...207
3.19.6 The adl_semProduce Function ...207
3.19.7 The adl_semUnsubscribe Function...208
3.19.8 The adl_semIsConsumed Function...208
3.19.9 Example...209

3.20 Application Safe Mode Service ..210
3.20.1 Required Header File ..210
3.20.2 The adl_safeSubscribe Function...210
3.20.3 The adl_safeUnsubscribe Function...212
3.20.4 The adl_safeRunCommand Function ..212

3.21 AT Strings Service ...214
3.21.1 Required Header File ..214
3.21.2 The adl_strID_e Type ..214
3.21.3 The adl_strGetID Function..215
3.21.4 The adl_strGetIDExt Function...215
3.21.5 The adl_strIsTerminalResponse Function ...216
3.21.6 The adl_strGetResponse Function ..216
3.21.7 The adl_strGetResponseExt Function ...217

3.22 Application & Data Storage Service ...218
3.22.1 Required Header File ..218
3.22.2 The adl_adSubscribe Function ...218
3.22.3 The adl_adUnsubscribe Function ...219
3.22.4 The adl_adEventSubscribe Function...220
3.22.5 The adl_adEventHdlr_f Call-back Type ..220
3.22.6 The adl_adEventUnsubscribe Function...222
3.22.7 The adl_adWrite Function ..222
3.22.8 The adl_adInfo Function ...223
3.22.9 The adl_adFinalise Function ...223
3.22.10 The adl_adDelete Function ...224
3.22.11 The adl_adInstall Function..224

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 10 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.22.12 The adl_adRecompact Function..225
3.22.13 The adl_adGetState Function ...226
3.22.14 The adl_adGetCellList Function ..227
3.22.15 The adl_adFormat Function..227
3.22.16 The adl_adFindInit Function ...228
3.22.17 The adl_adFindNext Function...229
3.22.18 Example...229

3.23 AT/FCM IO Ports Service ...231
3.23.1 Required Header File ..231
3.23.2 AT/FCM IO Ports ..231
3.23.3 Ports Test Macros..232
3.23.4 The adl_portSubscribe Function ...233
3.23.5 The adl_portUnsubscribe Function ...234
3.23.6 The adl_portIsAvailable Function..234
3.23.7 The adl_portGetSignalState Function ...235
3.23.8 The adl_portStartSignalPolling Function...236
3.23.9 The adl_portStopSignalPolling Function ...237

3.24 RTC Service ...239
3.24.1 Required Header File ..239
3.24.2 RTC service Types..239
3.24.3 Enumerations...241
3.24.4 The adl_rtcGetSecondFracPartStep Function..242
3.24.5 The adl_rtcGetTime Function..242
3.24.6 The adl_rtcSetTime Function..242
3.24.7 The adl_rtcConvertTime Function...242
3.24.8 The adl_rtcDiffTime Function ...243
3.24.9 Capabilities ..244
3.24.10 Example...244

3.25 IRQ Service..245
3.25.1 Required Header File ..245
3.25.2 The adl_irqID_e Type ..246
3.25.3 The adl_irqNotificationLevel_e Type..247
3.25.4 The adl_irqPriorityLevel_e Type...247
3.25.5 The adl_irqEventData_t Structure ...248
3.25.6 The adl_irqCapabilities_t Structure ...249
3.25.7 The adl_irqConfig_t Structure ...249
3.25.8 The adl_irqOptions_e type ..250
3.25.9 The adl_irqHandler_f Type ..251
3.25.10 The adl_irqSubscribe Function ...252
3.25.11 The adl_irqSubscribeExt Function ..253
3.25.12 The adl_irqUnsubscribe Function ...253
3.25.13 The adl_irqSetConfig function ..254
3.25.14 The adl_irqGetConfig function ..254
3.25.15 The adl_irqGetCapabilities Function ...255
3.25.16 Example...256

3.26 TCU Service...258
3.26.1 Required Header File ..258
3.26.2 Capabilities Registry Informations ..258
3.26.3 Data Structures..259
3.26.4 Enumerators ..263

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 11 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.5 Accurate Timers Service...264
3.26.6 Event Capture Service ..266
3.26.7 Event Detection Service..269
3.26.8 The adl_tcuSubscribe Function ..271
3.26.9 The adl_tcuUnsubscribe Function ..272
3.26.10 The adl_tcuStart Function ..273
3.26.11 The adl_tcuStop Function...273

3.27 Extint ADL Service...274
3.27.1 Required Header File ..275
3.27.2 The adl_extintConfig_t Structure ..275
3.27.3 The adl_extintInfo_t Structure...277
3.27.4 Capabilities ..278
3.27.5 The adl_extintSubscribe Function...278
3.27.6 The adl_extintConfig Function..280
3.27.7 The adl_extintGetConfig Function...280
3.27.8 The adl_extintRead function...281
3.27.9 The adl_extintUnsubscribe Function ..281
3.27.10 Example...282

3.28 Execution Context Service ...284
3.28.1 Required Header File ..285
3.28.2 The adl_ctxID_e Type ...285
3.28.3 The adl_ctxDiagnostic_e Type ..286
3.28.4 The adl_ctxState_e Type...286
3.28.5 The adl_ctxGetID Function ...287
3.28.6 The adl_ctxGetTaskID Function ..288
3.28.7 The adl_ctxGetTasksCount Function ..288
3.28.8 The adl_ctxGetDiagnostic Function ..288
3.28.9 The adl_ctxGetState Function...289
3.28.10 The adl_ctxSuspend Function ..289
3.28.11 The adl_ctxSuspendExt Function ...290
3.28.12 The adl_ctxResume Function ...291
3.28.13 The adl_ctxResumeExt Function ..291
3.28.14 The adl_ctxSleep Function ...292
3.28.15 Example...293

3.29 ADL VariSpeed Service ..294
3.29.1 Required Header File ..294
3.29.2 The adl_vsMode_e Type ...294
3.29.3 The adl_vsSubscribe Function..295
3.29.4 The adl_vsSetClockMode Function...295
3.29.5 The adl_vsUnsubscribe function...296
3.29.6 Example...296

3.30 ADL DAC Service...297
3.30.1 Required Header File ..297
3.30.2 Data Structure ...297
3.30.3 Defines...298
3.30.4 Enumerations...298
3.30.5 The adl_dacSubscribe Function..298
3.30.6 The adl_dacUnsubscribe Function..299
3.30.7 The adl_dacWrite Function...299
3.30.8 The adl_dacAnalogWrite Function..300

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 12 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.30.9 The adl_dacRead Function ...300
3.30.10 The adl_dacAnalogRead Function ..301
3.30.11 Capabilities ..301
3.30.12 Example...302

3.31 ADL ADC Service...304
3.31.1 Required Header File ..304
3.31.2 The adl_adcRead Function ...304
3.31.3 The adl_adcAnalogRead Function ..305
3.31.4 Capabilities ..305
3.31.5 Example...306

3.32 ADL Queue Service..307
3.32.1 Required Header File ..307
3.32.2 The adl_queueOptions_e Type..307
3.32.3 The adl_queueSubscribe Function..308
3.32.4 The adl_queueUnsubscribe Function..308
3.32.5 The adl_ queueIsEmpty Function..309
3.32.6 The adl_ queuePushItem Function ...309
3.32.7 The adl_ queuePopItem Function ...310
3.32.8 Example...311

3.33 ADL Audio Service...312
3.33.1 Required Header File ..312
3.33.2 Data Structures..312
3.33.3 Defines...315
3.33.4 Enumerations...317
3.33.5 Audio events handler ...321
3.33.6 Audio resources control ...322
3.33.7 Play a pre-defined audio format ...323
3.33.8 Audio stream ...336
3.33.9 Stop...342
3.33.10 Set/Get options ..344

3.34 ADL Secure Data Storage Service ..346
3.34.1 Required Header File ..346
3.34.2 Data Structure ...347
3.34.3 Defines...348
3.34.4 The adl_sdsWrite Function...348
3.34.5 The adl_sdsRead Function ...349
3.34.6 The adl_sdsQuery Function..349
3.34.7 The adl_sdsDelete Function..350
3.34.8 The adl_sdsStats Function ...351
3.34.9 The adl_sdsUpdateKeys Function...351
3.34.10 Example...352

3.35 ADL WatchDog Service ...353
3.35.1 Required Header File ..353
3.35.2 The adl_wdPut2Sleep Function..353
3.35.3 The adl_wdAwake Function ...354
3.35.4 Example...354
3.35.5 The adl_wdRearmAppWd Function..355
3.35.6 The adl_wdActiveAppWd Function ..355
3.35.7 The adl_wdDeActiveAppWd Function ..355
3.35.8 Example...356

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 13 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.36 ADL Layer 3 Service...357
3.36.1 Required Header File ..357
3.36.2 The adl_L3InfoChannelList_e ..357
3.36.3 The Layer3 infoEvent Handler ..357
3.36.4 The adl_L3infoSubscribe Function..358
3.36.5 The adl_L3infoUnsubscribe Function..359
3.36.6 Example...359
3.36.7 PLMN SCAN Information Channel Interface ...360

4 Error Codes ...363
4.1 General Error Codes...363
4.2 Specific FCM Service Error Codes ..364
4.3 Specific Flash Service Error Codes ...364
4.4 Specific GPRS Service Error Codes...364
4.5 Specific A&D Storage Service Error Codes...364
5 Resources ...365

ADL User Guide for Open AT® OS v6.00

© Confidential Page: 14 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

List of Figures

Figure 1: General software architecture ..17
Figure 2: Error when trying to send too large a data buffer through an API22
Figure 4: Open AT® RAM Mapping...76
Figure 5: Flow Control Manager Representation...96
Figure 6: Intel Mode Timing - Read Process Example ...143
Figure 7: Intel Mode Timing - Write Process Example...143
Figure 8: Motorola Modes Timing Example ..144
Figure 9: A&D cell content install window..225
Figure 11: ADL External Interruption Service: Example of Interruption with Debounce

Period ...274
Figure 12: ADL External Interruption Service: Example of Interruption with Stretching

Process ...274

Introduction

Important Remarks

© Confidential Page: 15 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

1 Introduction

1.1 Important Remarks

• It is strongly recommended before reading this document, to read the ADL
User Guide Open AT® 6.00 and specifically the Introduction (chapter 1) for
having a better overview of what Open AT® is about.

• The ADL library and the standard embedded Open AT® API layer must not
be used in the same application code. As ADL APIs will encapsulate
commands and trap responses, applications may enter in error modes if
synchronization is no more guaranteed.

1.2 References

[1] AT commands Interface Guide for FW 7.0 (ref WM_DEV_OAT_UGD_059)

[2] Tools Manual for Open AT® IDE 1.04 (ref. WM_DEV_OAT_UGD_045)

1.3 Glossary

Application Mandatory API Mandatory software interfaces to be used by the
Embedded Application.

AT commands Set of standard modem commands.

AT function Software that processes the AT commands and AT
subscriptions.

Embedded API layer Software developed by Wavecom, containing the
Open AT® APIs (Application Mandatory API, AT
Command Embedded API, OS API, Standard API,
FCM API, IO API, and BUS API).

Embedded Application User application sources to be compiled and run on
a Wavecom product.

Embedded OS Software that includes the Embedded Application
and the Wavecom library.

Embedded software User application binary: set of Embedded
Application sources + Wavecom library.

External Application Application external to the Wavecom product that
sends AT commands through the serial link.

IDE Integrated Development Environment

Target Open AT® compatible product supporting an
Embedded Application.

Target Monitoring Tool Set of utilities used to monitor a Wavecom product.

Receive command pre-
parsing

Process for intercepting AT responses.

Introduction

Abbreviations

© Confidential Page: 16 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Send command pre-
parsing

Process for intercepting AT commands.

Standard API Standard set of "C" functions.

Wavecom library Library delivered by Wavecom to interface
Embedded Application sources with Wavecom
Firmware functions.

Wavecom Firmware Set of GSM and open functions supplied to the User.

1.4 Abbreviations

A&D Application & Data

ADL Application Development Layer

API Application Programming Interface

APN Access Point Name

CID Context IDentifier

CPU Central Processing Unit

DAC Digital Analog Converter

EXTINT External Interruption

FCM Flow Control Manager

GPIO General Purpose Input Output

GGSN Gateway GPRS Support Node

GPRS General Packet Radio Service

IP Internet Protocol

IR Infrared

KB Kilobyte

MS Mobile Station

OS Operating System

PDP Packet Data Protocol

PDU Protocol Data Unit

RAM Random-Access Memory

ROM Read-Only Memory

RTK Real-Time Kernel

SDK Software Development Kit

SMA Small Adapter

SMS Short Message Services

Description

Software Architecture

© Confidential Page: 17 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

2 Description

2.1 Software Architecture

The Application Development Layer library provides a high level interface for the Open
AT® software developer. The ADL set of services has to be used to access all the
Wavecom Wireless CPU®s capabilities & interfaces.

The Open AT® environment relies on the following software architecture:

WAVECOM WIRELESS

WAVECOM OS (binary file)

Open AT application (binary file)

ADL API

Application Code

Figure 1: General software architecture

The different software elements on a Wavecom product are described in this section.

The Open AT® application, which includes the following items:

• the application code,

• as an option (according to the application needs), one or several Open AT®
plug-in libraries (such as the IP connectivity library),

• the Wavecom Application Development Layer library, which provides all the
services used by the application,

• the Wavecom Firmware, which manages the Wavecom Wireless CPU®.

Description

ADL Limitations

© Confidential Page: 18 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

2.2 ADL Limitations

• ADL is not designed to run in ATQ1 mode (quiet mode, meaning that there
is no answer to AT commands).

• While an ADL application is running, the ATQ command always replies
+CME ERROR:600 ("Not allowed by embedded application).

• Since ADL uses its own internal process of the +WIND indications, the
current value of the AT+WIND command may not be the same when the
AT+WOPEN command state is 0 or 1.

2.3 Open AT® Memory Resources

The available memory resources for the Open AT® applications are listed below.

Reminder:

• KB stands for Kilobytes

• MB stands for Megabytes

• Mb stands for Megabits

2.3.1 RAM Resources

The maximum RAM size available for Open AT® applications depends on the Wireless
CPU® RAM capabilities, and on the used memory option at project creation time
(please refer to the Open AT® IDE Tools Manual for more information [2]):

Total RAM SizeLink Option 8Mb of Total RAM 16Mb of Total RAM or more

"256KB" link option 256KB 256KB

"1MB+" link option NC* 1MB or more

*"NC" stands for "Not Compatible", i.e. such a linked application will not start if
downloaded on such a Wireless CPU®.

2.3.2 Flash Resources

Total Flash Size ROM(Application
code)

Application & Data
Storage Volume

Flash Objects
Data

32Mb 256-1600KB
(default: 832KB)

0-1344KB
(default: 768KB) 128KB

64Mb or more 256-(1600+X)KB
(default: (832+X)KB)

0-(1344+X)KB
(default: 768KB) 128KB

For all flash sizes greater than 32Mb, all additional space is available for A&D and
Application Code areas. X stands for this additional flash space in KB. X is reckoned
using the following formula:

X = ((S – 32)/8) * 1024

Description

Defined Compilation Flags

© Confidential Page: 19 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Where S is the total Flash size in Mb; E.g. for a 64Mb Flash: X = 4096KB.

The total available flash space for both Open AT® application place and A&D storage
place is 1600+X KB.

The maximum A&D storage place size is 1344+X KB (usable for Firmware upgrade
capability). In this case the Open AT® application maximum size will be 256 KB.

The minimum A&D storage place size is 0 KB (usable for applications with huge hard
coded data).

For more information about the A&D and Application Code areas size configuration,
please refer to the AT+WOPEN command description in the AT Commands Interface
Guide [1].

Caution:

Any A&D size change will lead to this area format process (some seconds on start-
up; all A&D cells data will be erased).

2.4 Defined Compilation Flags

The Open AT® IDE defines some compilation flags, related to the chosen generation
environment. Please refer to the Tools Manual for Open AT® IDE [2] for more
information.

2.5 Inner AT Commands Configuration

The ADL library needs for its internal processes to set-up some AT command
configurations that differ from the default values. The concerned commands are listed
hereafter:

AT Command Fixed value

AT+CMEE 1

AT+WIND All indications (*)

AT+CREG 2

AT+CGREG 2

AT+CRC 1

AT+CGEREP 2

ATV 1

ATQ 0

(*) All +WIND unsolicited indications are always required by the ADL library. The
"+WIND: 3" indication (product reset) will be enabled only if the external application
required it.

The above fixed values are set-up internally by ADL. This means that all related error
codes (for +CMEE) or unsolicited results are always all available to all Open AT® ADL
applications, without requiring them to be sent (using the corresponding
configuration command).

Description

Open AT® Specific AT Commands

© Confidential Page: 20 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Important Caution:

User is strongly advised against modifying the current values of these commands
from any Open AT® application. Wavecom would not guarantee ADL correct
processing if these values are modified by any embedded application.

External applications may modify these AT commands’ parameter values without any
constraints. These commands and related unsolicited results behavior is the same
with our without a running ADL application.

If errors codes or unsolicited results related to these commands are subscribed and
then forwarded by an ADL application to an external one, these results will be
displayed for the external application only if this one has required them using the
corresponding AT commands (same behavior than the Wavecom AT OS without a
running ADL application).

2.6 Open AT® Specific AT Commands

Please refer to the AT Commands Interface Guide (document [1]).

2.6.1 AT+WDWL Command

The AT+WDWL command is usable to download .dwl files trough the serial link,
using the 1K Xmodem protocol.

Dwl files may be Wavecom Firmware updates, Open AT® application binaries, or E2P
configuration files.

By default this command is not pre-parsed (it can not be filtered by the Open AT®
application), except if the Application Safe Mode service is used.

Note:

The AT+WDWL command is described in the document [1].

2.6.2 AT+WOPEN Command

The AT+WOPEN command allows to control Open AT® applications mode &
parameters.

Parameters:

0 Stop the application (the application will be stopped on all product
resets)

1 Start the application (the application will be started on all product
resets)

2 Get the Open AT® libraries versions

3 Erase the objects flash of the Open AT® Embedded Application
(allowed only if the application is stopped)

4 Erase the Open AT® Embedded Application
(allowed only if the application is stopped)

5 Suspend the Open AT® application, until the AT+WOPENRES
command is used, or an hardware interrupt occurs

Description

Notes on Wavecom Firmware

© Confidential Page: 21 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

6 Configures the Application & Data storage place and Open AT®
application place sizes.

7 Requires the current Open AT® application state (e.g. to check if
the application binary has correctly been built or if the application
is running in Target or RTE mode).

8 Configures the Safe Boot mode (refer to §2.8 for more information).

Note:

Refer to the document [1] for more information about this command.

By default this command is not pre-parsed (it can not be filtered by the Open AT®
application), except if the Application Safe Mode service is used.

2.7 Notes on Wavecom Firmware

The Open AT® application runs within several tasks managed by the Wavecom
Firmware: event handlers are almost always called sequentially by ADL in the first
task context, except for the Timers & Messages service (please refer to these services
description for more information). The whole ADL API is reentrant and can be called
from anymore in the application. If the application offers an API which is supposed to
be called from several execution contexts, it is recommended to implement a
reentrancy protection mechanism, using the semaphore service

The Wavecom Firmware and the Open AT® application manage their own RAM area.
Any access from one of these entities to the other’s RAM area is prohibited and
causes an exception.

Global variables, call stack and dynamic memory are all part of the RAM allocated to
the Open AT® application.

2.8 Security

Security mechanisms are implemented in the Wavecom Firmware in order to protect
the Wireless CPU® against software errors. When this occurs, the Wireless CPU®
resets and a function call log (called "back-trace") is stored in the Wireless CPU® non-
volatile memory. After reset, the adl_main function is called with the
ADL_INIT_REBOOT_FROM_EXCEPTION value.

After a reset caused by a software crash, the application is started only 20 seconds
after the start of the Wavecom Firmware. This allows at least 20 seconds delay to re-
download a new application, or to stop the currently running one.

In case of a normal reset, the application restarts immediately.

2.8.1 Software Security: Memory Access Protection

A specific RAM area is allocated to the Open AT® application.

The Open AT® application is seen as a Real-Time task in the Wavecom Firmware, and
each time this task runs, the Wavecom RAM protection is activated.

If the Open AT® application tries to access this RAM, then an exception occurs and
the software resets.

Description

RTE limitations

© Confidential Page: 22 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

In case of illegal RAM access, the stored back-trace will display the "ARM exception 1
xxx" statement, where "xxx" is the address that the application was attempting to
access.

2.8.2 Hardware Security: Watchdog Protection

All software (both Open AT® application & Wavecom Firmware) is protected from
reaching a dead-end lock by 5 seconds external watchdog reset circuit.

If one task uses the CPU for more than the allowed time, the external watchdog
circuit resets the Wireless CPU®.

If a crash due to this watchdog protection is detected, the stored back-trace will
display the "Watchdog Reset" statement.

2.8.3 Safe Boot Mode

A specific Safe Boot mode is available on the Wireless CPU®.

This mode is activated when a key combination (configured through the AT +
WOPEN = 8 command mode) is pressed during Wireless CPU® reset.
It is useful when the embedded application causes an exception soon after the
Wireless CPU® resets, without any possibility for the external application to send any
AT command to disable the Open AT® application.

2.9 RTE limitations

2.9.1 Sending large buffers through an ADL API

Large data buffers (greater than 1600 data bytes) cannot be sent through an ADL API
(Eg. adl_busWrite) in RTE mode. If the application tries to do so, an error message
(see Figure 2) will be displayed, and the RTE application will stop with an error.

Figure 2: Error when trying to send too large a data buffer through an API

2.9.2 IRQ Services

Due to the RTE architecture and to the very low latency & processing times required
in IRQ based applications the IRQ service & all the related services (such as ExtInt
services, etc..) are not available in this mode. The subscription function will always
fail when called in RTE.

API

Application Entry Points Interface

© Confidential Page: 23 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3 API

3.1 Application Entry Points Interface

ADL supplies Application Entry Points Interface to allow applications to define the
generic settings of the application tasks and contexts.

The application will have to define its entry points settings using the adl_InitTasks
table. Each line of this table represents a task, which is characterized by the following
parameters:

• the task entry point, called at the Wireless CPU® boot time, in the priority
order

• the task call stack size

• the task priority level

• the task name

If the application wishes to use the IRQ service, it will also have to define the call
stack sizes for it low level (adl_InitIRQLowLevelStackSize) and high level
(adl_InitIRQHighLevelStackSize) interrupt handlers.

Moreover, some operations related to the initialization are available:

• An Init type check function (adl_InitGetType) to retrieve at any time the
Wireless CPU® initialization type.

3.1.1 Required Header File

Mandatory application API header file is:

adl_AppliInit.h

(This file is already included by adl_global.h)

3.1.2 The adl_InitTasks_t Structure

Open AT® application's tasks declaration structure, used to format the adl_InitTasks
table.

• Code:

typedef struct
{
 void (* EntryPoint)(void);
 u32 StackSize;
 const ascii* Name;

 u8 Priority;
} adl_InitTasks_t;

API

Application Entry Points Interface

© Confidential Page: 24 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description

EntryPoint(void)

Task initialization handler, which aims to be called each time the Wireless
CPU® boots, as soon as the application is started with the AT+WOPEN=1
command.

Note:

A task entry point function is NOT like a standard "C" main function. The
task does not end when returns. An Open AT® application is stopped only if
the AT+WOPEN=0 command is used. Such a call-back function is only the
application entry point, and has to subscribe to some services and events to
go further. In addition the whole software is protected by a watchdog
mechanism, the application shall not use infinite loops and loops having a
too long duration, the Wireless CPU® will reset due to the watchdog
hardware security (please refer to Hardware Security: Watchdog Protection
for more information).

StackSize

Used to provide to the system the required call stack size (in bytes) for the
current task. A call stack is the Open AT® RAM area which contains the
local variables and return addresses for function calls. Call stack sizes are
deduced from the total available RAM size for the Open AT® application.

Note:

In RTE mode, the call stacks are processed by the host’s operating system,
and are not configurable (declared sizes are just removed from the available
RAM space for the heap memory). It also means that stack overflows
cannot be debugged within the RTE mode.

The GCC compiler and GNU Newlib (standard C library) implementation
require more stack size than ARM compilers. If the GCC compiler is used,
the Open AT® application has to be declared with greater stack sizes.

Call stack sizes shall be declared with some extra bytes margin. It is not
recommended to try to reckon exactly the required call stack size of each
task.

If the total call stack sizes (including the tasks ones & the interrupt contexts
ones) is too large, the Firmware will refuse to launch the application, and
the application launch status will be set to 9 (Bad memory configuration)

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for
more information)

Name

Task identification string, used for debug purpose with Traces & Errors
services.

API

Application Entry Points Interface

© Confidential Page: 25 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Priority

Task priority level, relatively to the other tasks declared in the table. The
higher is the number, the higher is the priority level. Priorities values
declared in the table should be from 1 to the tasks count. This priority
determines the order in which the events are notified to the several tasks
when several ones receive information at the same time.

Note:

All the priorities declared in the table have to be different (two tasks can not have the
same priority level).

If there is an error in the priorities declaration, the Firmware will refuse to launch the
application, and the application launch status will be set to 17 (Bad priority value)

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for more
information).

3.1.3 Tasks Definition Table

Mandatory tasks definition table to be provided by the application. For more
information on each task's parameters, please refer to the 3.1.2 adl_InitTasks_t
description. Each line of this table allows to intialize one task. To let the system know
how many tasks are required, all the elements of the last line of this table have to be
set to 0.

Task entry points declared in the table will be called on Wireless CPU® boot, in the
priority order (the highest priority level is called first).

Const adl_InitTasks_t adl_InitTasks[]

Note:

At least one task shall be declared in this table. If no tasks are declared in the table,
the Firmware will refuse to launch the application, and the application launch status
will be set to 16 (No task declared)

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for more
information)

There is maximum limit to the number of tasks which shall be declared in this table
(Please refer to the Resources chapter for more information. If more tasks than the
authorized maximum are declared in the table, the Firmware will refuse to launch the
application, and the application launch status will be set to 5 (Too many tasks)

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for more
information)

The Multitasking feature has to be enabled on the Wireless CPU® plateform if the
application requires more than one task in the table.

If more than one task is declared, and if the feature is not enabled, the Firmware will
refuse to launch the application, and the application launch status will be set to 30
(Multitasking feature not enabled)

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for more
information)

API

Application Entry Points Interface

© Confidential Page: 26 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The Multitasking feature state can be read thanks to the AT+WCFM=5 command
response value: Please refer to the AT Commands Inteface guide [1] for more
information.

Please contact your Wavecom distributor for more information on how to enable this
feature on the Wireless CPU®.

Caution:

Since ADL processing is running in the first application's task context, this one has
always to be declared with the highest priority level, otherwise the Firmware will
refuse to launch the application, and the application launch status will be set to 11
(Application binary init failure).

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for more
information).

3.1.4 Interrupt Handlers Call Stack Sizes Declaration

Interfaces dedicated to the interrupt handlers call stack sizes declaration.

3.1.4.1 Low level interrupt handler call stack size.

Call stack size (in bytes) of the Low level interrupt handler execution context. If the
application wishes to handle interruptions (cf. IRQ service chapter & Execution
context service chapter), it has also to define the required contexts (low level and/or
high level) call stack sizes.

const u32 adl_InitIRQLowLevelStackSize

Note:

This definition is optional if the application does not plan to use the IRQ service.

The Real Time Enhancement feature has to be enabled on the Wireless CPU® if the
application requires this call stack to be greater than zero.

The Real Time Enhancement feature state can be read thanks to the AT+WCFM=5
command response value: Please refer to the AT Commands Interface guide [1] for
more information.

Please contact your Wavecom distributor for more information on how to enable this
feature on the Wireless CPU®.

If this call stack is declared, and if the feature is not enabled on the Wireless CPU®,
the Firmware will refuse to launch the application, and the application launch status
will be set to 19 (Real Time feature not enabled)

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for more
information).

3.1.4.2 High level interrupt handler call stack size

Call stack size (in bytes) of the High level interrupt handler execution context. If the
application whishes to handle interruptions (cf. IRQ service chapter & Execution
context service chapter), it has also to define the required contexts (low level and/or
high level) call stack sizes.

const u32 adl_InitIRQHighLevelStackSize

API

Application Entry Points Interface

© Confidential Page: 27 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Note:

This definition is optional if the application does not plan to use the IRQ service, or
just low level interrupt handlers.

The Real Time Enhancement feature has to be enabled on the Wireless CPU® if the
application requires this call stack to be greater than zero.

The Real Time Enhancement feature state can be read thanks to the AT+WCFM=5
command response value: Please refer to the AT Commands Inteface guide [1] for
more information.

Please contact your Wavecom distributor for more information on how to enable this
feature on the Wireless CPU®.

If this call stack is declared, and if the feature is not enabled on the Wireless CPU®,
the Firmware will refuse to launch the application, and the application launch status
will be set to 19 (Real Time feature not enabled)

(cf. AT+WOPEN=7 description in AT Commands Interface Guide [1] for more
information).

3.1.5 The adl_InitType_e Type

Details of the reason of the Wireless CPU® boot.

• Code

typedef enum
{
 ADL_INIT_POWER_ON,
 ADL_INIT_REBOOT_FROM_EXCEPTION,
 ADL_INIT_DOWNLOAD_SUCCESS,
 ADL_INIT_DOWNLOAD_ERROR,
 ADL_INIT_RTC,
} adl_InitType_e;

• Description

ADL_INIT_POWER_ON: Normal power-on.

ADL_INIT_REBOOT_FROM_EXCEPTION: Reboot after an exception.

ADL_INIT_DOWNLOAD_SUCCESS: Reboot after a successful install process (cf.
adl_adInstall API).

ADL_INIT_DOWNLOAD_ERROR: Reboot after an error in install process (cf.
adl_adInstall API).

ADL_INIT_RTC: Power-on due to an RTC alarm (cf. the
AT+CALA command documentation for more
information).

API

Application Entry Points Interface

© Confidential Page: 28 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.1.6 The adl_InitGetType function

Returns the last Wireless CPU® power-on or reset reason.

• Prototype

adl_InitType_e adl_InitGetType (void)

• Returned values

The Wireless CPU® reset reason. (please refer to 3.1.5 adl_InitType_e
description for more information).

• Example:

This example demonstrates how to use the function adl_InitGetType in a
nominal case.

// Anywhere in the application code, to retrieve init type.
 adl_InitType_e InitType = adl_InitGetType();

3.1.7 Example

The code sample below illustrates a nominal use case of the ADL Application Entry
Points public interface.

// Application tasks declaration table
const adl_InitTasks_t adl_InitTasks [] =
{
 { MyFirstEntryPoint, 1024, "MYTASK1", 3 },
 { MySecondEntryPoint, 1024, "MYTASK2", 2 },
 { MyThirdEntryPoint, 1024, "MYTASK3", 1 },
 { 0, 0, 0, 0 }
};

// Low level handlers execution context call stack size
const u32 adl_InitIRQLowLevelStackSize = 1024;

// High level handlers execution context call stack size
const u32 adl_InitIRQHighLevelStackSize = 1024;

API

Basic Features

© Confidential Page: 29 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.2 Basic Features

3.2.1 Data Types

The available data types are described in the wm_types.h file. They ensure
compatibility with the data types used in the functional prototypes and are used for
both Target and RTE generation.

3.2.2 List Management

3.2.2.1 Type Definition

3.2.2.1.1 The wm_lst_t Type

This type is used to handle a list created by the list API.

 typedef void * wm_lst_t;

3.2.2.1.2 The wm_lstTable_t Structure

This structure is used to define a comparison callback and an Item destruction
callback:

typedef struct
{
 s16 (* CompareItem) (void *, void *);
 void (* FreeItem) (void *);
} wm_lstTable_t;

The CompareItem callback is called every time the list API needs to compare two items.

It returns:

• OK when the two provided elements are considered similar.

• –1 when the first element is considered smaller than the second one.

• 1 when the first element is considered greater than the second one.

If the CompareItem callback is set to NULL, the wm_strcmp function is used by default.

The FreeItem callback is called each time the list API needs to delete an item. It
should then perform its specific processing before releasing the provided pointer.

If the FreeItem callback is set to NULL, the wm_osReleaseMemory function is used by
default.

3.2.2.2 The wm_lstCreate Function

The wm_lstCreate function allows to create a list, using the provided attributes and
callbacks.

• Prototype

wm_lst_t wm_lstCreate (u16 Attr,
 wm_lstTable_t * funcTable);

API

Basic Features

© Confidential Page: 30 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Attr:

List attributes, which can be combined by a logical OR among the following
defined values:

o WM_LIST_NONE: no specific attribute ;

o WM_LIST_SORTED: this list is a sorted one (see section 3.2.2.6
wm_lstAddItem and section 3.2.2.7 wm_lstInsertItem descriptions for
more details);

o WM_LIST_NODUPLICATES: this list does not allow duplicate items (see
section 3.2.2.6 wm_lstAddItem and section 3.2.2.7 wm_lstInsertItem
descriptions for more details).

funcTable:

Pointer on a structure containing the comparison and the item destruction
callbacks.

• Returned values

This function returns a list pointer corresponding to the created list. This
must be used in all further operations on this list.

3.2.2.3 The wm_lstDestroy Function

The wm_lstDestroy function allows to clear and then destroy the provided list.

• Prototype

void wm_lstDestroy (wm_lst_t list);

list:

The list to destroy.

Note:

This function calls the FreeItem callback (if defined) on each item to delete it, before
destroying the list.

3.2.2.4 The wm_lstClear Function

The wm_lstClear function allows to clear all the provided list items, without
destroying the list itself (please refer to section 3.2.2.9 wm_lstDeleteItem function for
notes on item deletion).

• Prototype

void wm_lstClear (wm_lst_t list);

• Parameters

list:

The list to clear.

Note:

This function calls the FreeItem callback (if defined) on each item to delete it.

API

Basic Features

© Confidential Page: 31 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.2.2.5 The wm_lstGetCount Function

The wm_lstGetCount function returns the current item count.

• Prototype

u16 wm_lstGetCount (wm_lst_t list);

• Parameters

list:

The list from which to get the item count.

• Returned values

The number of items of the provided list. The function returns 0 if the list is
empty.

3.2.2.6 The wm_lstAddItem Function

The wm_lstAddItem function allows to add an item to the provided list.

• Prototype

s16 wm_lstAddItem (wm_lst_t list
 void * item);

• Parameters

list:

The list to add an item to.

item:

The item to add to the list.

• Returned values

The position of the added item, or ERROR if an error occurred.

Notes:

• The item pointer should not point on a const or local buffer, as it is released
in any item destruction operation.

• If the list has the WM_LIST_SORTED attribute, the item is inserted in the
appropriate place after calling of the CompareItem callback (if defined).
Otherwise, the item is appended at the end of the list.

• If the list has the WM_LIST_NODUPLICATES, the item is not inserted when
the CompareItem callback (if defined) returns 0 on any previously added item.
In this case, the returned index is the existing item index.

API

Basic Features

© Confidential Page: 32 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.2.2.7 The wm_lstInsertItem Function

The wm_lstInsertItem function allows to insert an item to the provided list at the
given location.

• Prototype

s16 wm_lstInsertItem (wm_lst_t list
 void * item
 u16 index);

• Parameters

list:

The list to add an item to.

 item:

The item to add to the list.

 index:

The location where to add the item.

• Returned values

The position of the added item, or ERROR if an error occured.

Notes:

• The item pointer should not point on a const or local buffer, as it is released
in any item destruction operation.

• This function does not take list attributes into account and always inserts
the provided item in the given index.

3.2.2.8 The wm_lstGetItem Function

The wm_lstGetItem function allows to read an item from the provided list, in the given
index.

• Prototype

void * wm_lstGetItem (wm_lst_t list
 u16 index);

• Parameters

list:

The list from which to get the item.

index:

The location where to get the item.

• Returned values

A pointer on the requested item, or NULL if the index is not valid.

API

Basic Features

© Confidential Page: 33 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.2.2.9 The wm_lstDeleteItem Function

The wm_lstDeleteItem function allows to delete an item of the provided list in the
given indices.

• Prototype

s16 wm_lstDeleteItem (wm_lst_t list
 u16 index);

• Parameters

list:

The list to delete an item from.

index:

The location where to delete the item.

• Returned values

The number of remaining items in the list, or ERROR if an error did occur.

Note:

This function calls the FreeItem callback (if defined) on the requested item to delete it.

The wm_lstFindItem Function

The wm_lstFindItem function allows to find an item in the provided list.

• Prototype

 s16 wm_lstFindItem (wm_lst_t list
 void * item);

• Parameters

list:

The list where to search.

item:

The item to find.

• Returned values

The index of the found item if any, ERROR otherwise.

Note:

This function calls the CompareItem callback (if defined) on each list item, until it
returns 0.

API

Basic Features

© Confidential Page: 34 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.2.2.10 The wm_lstFindAllItem Function

The wm_lstFindAllItem function allows to find all items matching the provided one, in
the given list.

• Prototype

s16 * wm_lstFindAllItem (wm_lst_t list
 void * item);

• Parameters

list:

The list where to search.

item:

The item to find.

• Returned values

A s16 buffer containing the indices of all the items found, and ending with
ERROR.

Important remark: This buffer should be released by the application when
its processing is done.

Notes:

• This function calls the CompareItem callback (if defined) on each list item to
get all those which match the provided item.

• This function should be used only if the list cannot be changed during the
resulting buffer processing. Otherwise the wm_lstFindNextItem should be
used.

3.2.2.11 The wm_lstFindNextItem Function

The wm_lstFindNextItem function allows to find the next item index of the given list,
which corresponds with the provided one.

• Prototype

s16 wm_lstFindNextItem (wm_lst_t list
 void * item);

• Parameters

list:

The list to search in.

item:

The item to find.

• Returned values

The index of the next found item if any, otherwise ERROR.

API

Basic Features

© Confidential Page: 35 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Note:

This function calls the CompareItem callback (if defined) on each list item to get those
which match with the provided item. It should be called until it returns ERROR, in order
to get the index of all items corresponding to the provided one. The difference with
the wm_lstFindAllItem function is that, even if the list is updated between two calls to
wm_lstFindNextItem, the function does not return a previously found item. To restart a
search with the wm_lstFindNextItem, the wm_lstResetItem should be called first.

3.2.2.12 The wm_lstResetItem Function

The wm_lstResetItem function allows to reset all previously found items by the
wm_lstFindNextItem function.

• Prototype

void wm_lstResetItem (wm_lst_t list
 void * item);

• Parameters

list:

The list to search in.

item:

The item to search, in order to reset all previously found items.

Note:

This function calls the CompareItem callback (if defined) on each list item to get those
which match with the provided one.

3.2.3 Standard Library

3.2.3.1 Standard C Function Set

The available standard APIs are defined below:

ascii * wm_strcpy (ascii * dst, ascii * src);
ascii * wm_strncpy (ascii * dst, ascii * src, u32 n);
ascii * wm_strcat (ascii * dst, ascii * src);
ascii * wm_strncat (ascii * dst, ascii * src, u32 n);
u32 wm_strlen (ascii * str);
s32 wm_strcmp (ascii * s1, ascii * s2);
s32 wm_strncmp (ascii * s1, ascii * s2, u32 n);
s32 wm_stricmp (ascii * s1, ascii * s2);
s32 wm_strnicmp (ascii * s1, ascii * s2, u32 n);
ascii * wm_memset (ascii * dst, ascii c, u32 n);
ascii * wm_memcpy (ascii * dst, ascii * src, u32 n);
s32 wm_memcmp (ascii * dst, ascii * src, u32 n);
ascii * wm_itoa (s32 a, ascii * szBuffer);
s32 wm_atoi (ascii * p);
u8 wm_sprintf (ascii * buffer, ascii * fmt, ...);

API

Basic Features

© Confidential Page: 36 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Important remark about GCC compiler:

When using GCC compiler, due to internal standard C library architecture, it
is strongly not recommended to use the "%f" mode in the wm_sprintf
function in order to convert a float variable to a string. This leads to an ARM
exception (product reset).

A way around for this conversion is:

float MyFloat; // float to display

ascii MyString [100]; // destination string

s16 d,f;

d = (s16) MyFloat * 1000; // Decimal precision: 3 digits

f = (MyFLoat * 1000) - d; // Decimal precision: 3 digits

wm_sprintf (MyString, "%d.%03d", (s16)MyFloat, f); // Decimal precision: 3
digits

3.2.3.2 String Processing Function Set

Some string processing functions are also available in this standard API.

Note:

All the following functions result as an ARM exception if a requested ascii *
parameter is NULL.

 ascii wm_isascii (ascii c);

Returns c if it is an ascii character (‘a’/’A’ to ‘z’/’Z’), 0 otherwise.
 ascii wm_isdigit (ascii c);

Returns c if it is a digit character (‘0’ to ‘9’), 0 otherwise.
 ascii wm_ishexa (ascii c);

Returns c if it is a hexadecimal character (‘0’ to ‘9’, ‘a’/’A’ to ‘f’/’F’), 0
otherwise.

 bool wm_isnumstring (ascii * string);

Returns TRUE if string is a numeric one, FALSE otherwise.
 bool wm_ishexastring (ascii * string);

Returns TRUE if string is a hexadecimal one, FALSE otherwise.
 bool wm_isphonestring (ascii * string);

Returns TRUE if string is a valid phone number (national or
international format), FALSE otherwise.

 u32 wm_hexatoi (ascii * src, u16 iLen);

If src is a hexadecimal string, converts it to a returned u32 of the given
length, and 0 otherwise. As an example: wm_hexatoi (“1A”, 2) returns
26, wm_hexatoi (“1A”, 1) returns 1

 u8 * wm_hexatoibuf (u8 * dst, ascii * src);

If src is a hexadecimal string, converts it to an u8 * buffer and returns a
pointer on dst, and NULL otherwise. As an example, wm_hexatoibuf
(dst, “1F06”) returns a 2 bytes buffer: 0x1F and 0x06

API

Basic Features

© Confidential Page: 37 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 ascii * wm_itohexa (ascii * dst, u32 nb, u8 len);

Converts nb to a hexadecimal string of the given length and returns a
pointer on dst. For example, wm_itohexa (dst, 0xD3, 2) returns “D3”,
wm_itohexa (dst, 0xD3, 4) returns “00D3”.

 ascii * wm_ibuftohexa (ascii * dst, u8 * src, u16 len);

Converts the u8 buffer src to a hexadecimal string of the given length
and returns a pointer on dst. Example with the src buffer filled with 3
bytes (0x1A, 0x2B and 0x3C), wm_ibuftohexa (dst, src, 3) returns
“1A2B3C”).

 u16 wm_strSwitch (const ascii * strTest, ...);

This function must be called with a list of strings parameters, ending
with NULL. strTest is compared with each of these strings (on the
length of each string, with no matter of the case), and returns the index
(starting from 1) of the string which matches if any, 0 otherwise.
Example:
wm_strSwitch (“TEST match”, “test”, “no match”, NULL”) returns 1,
wm_strSwitch (“nomatch”, “nomatch a”, “nomatch b”, NULL) returns
0.

 ascii * wm_strRemoveCRLF (ascii * dst, ascii * src, u16 size);

Copy in dst buffer the content of src buffer, removing CR (0x0D) and LF
(0x0A) characters, from the given size, and returns a pointer on dst.

 ascii * wm_strGetParameterString (ascii * dst,
 const ascii * src,
 u16 Position);

If src is a string formatted as an AT response (for example “+RESP:
1,2,3”) or as an AT command (for example “AT+CMD=1,2,3”), the
function copies the parameter at Position offset (starting from 1) if it is
present in the dst buffer, and returns a pointer on dst. It returns NULL
otherwise.
Example:
wm_strGetParameterString (dst, “+WIND: 4”, 1) returns “4”,
wm_strGetParameterString (dst, “+WIND: 5,1”, 2) returns “1”,
wm_strGetParameterString (dst, “AT+CMGL=\”ALL\””, 1) returns
“ALL”.

API

Basic Features

© Confidential Page: 38 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.2.4 Sound API

3.2.4.1 The wm_sndTonePlay Function

This function allows a tone to be played on the current speaker or on the buzzer.
Frequency, gain and duration can be specified.

• Prototype

s32 wm_sndTonePlay (wm_snd_dest_e Destination,
 u16 Frequency,
 u8 Duration,
 u8 Gain);

• Parameters

Destination:

Destination of the requested tone to play: speaker or buzzer.

typedef enum {
 WM_SND_DEST_BUZZER,
 WM_SND_DEST_SPEAKER,
 WM_SND_DEST_GSM /* do not use */
} wm_snd_dest_e;

Frequency:

For speaker: range is 1 Hz to 3999 Hz.

For buzzer: range is 1 Hz to 50000 Hz.

Duration:

This parameter sets tone duration (in unit of 20 ms). Applicable parameter
range: 0-255.

Remark: when <duration> = 0, the duration is set to 70ms +/- 5ms
(according to 3GPP 23.014).

Gain:

This parameter sets the tone gain.

Range of values is from 0 to 15.

<gain> Speaker
(db)

Buzzer (db)

0 0 -0.25

1 -0.5 -0.5

2 -1 -1

3 -1.5 -1.5

4 -2 -2

5 -3 -3

API

Basic Features

© Confidential Page: 39 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

<gain> Speaker
(db)

Buzzer (db)

6 -6 -6

7 -9 -9

8 -12 -12

9 -15 -15

10 -18 -18

11 -24 -24

12 -30 -30

13 -36 -40

14 -42 -infinite

15 -infinite -infinite

• Returned values

OK on success, or negative error value.

• Example:

An example of playing tone:

wm_sndTonePlay (WM_SND_DEST_BUZZER, 1000, 0, 9);

3.2.4.2 The wm_sndTonePlayExt Function

This function allows a dual tone (two frequencies) to be played on the specified
output. Frequencies, gains and duration can be specified.

Note:

Only the speaker output is able to play tones in two frequencies. The second tone
parameters are ignored on the buzzer output.

• Prototype

s32 wm_sndTonePlayExt (wm_snd_dest_e Destination,
 u16 Frequency,
 u16 Frequency2,
 u8 Duration,
 u8 Gain,
 u8 Gain2);

API

Basic Features

© Confidential Page: 40 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Destination:

Destination of the requested tone to play: speaker or buzzer.

typedef enum
{
 WM_SND_DEST_BUZZER,
 WM_SND_DEST_SPEAKER,
 WM_SND_DEST_GSM /* do not use */
} wm_snd_dest_e;

Frequency, Frequency2:

For speaker: range is from 1 Hz to 3999 Hz.

For buzzer: range is from 1 Hz to 50000 Hz.

Please remember that the Frequency2 parameter is only processed on the
speaker output.

Duration:

This parameter sets tone duration (in unit of 20 ms). Applicable parameter
range: 0-255.

Remark: when <duration> = 0, the duration is set to 70ms +/- 5ms
(according to 3GPP 23.014).

Gain, Gain2:

This parameter sets the tones gain. Gain parameter applies to Frequency
value, and Gain2 applies to the Frequency2 one.

Range of values is from 0 to 15.

<gain> Speaker
(db)

Buzzer (db)

0 0 -0.25

1 -0.5 -0.5

2 -1 -1

3 -1.5 -1.5

4 -2 -2

5 -3 -3

6 -6 -6

7 -9 -9

8 -12 -12

9 -15 -15

API

Basic Features

© Confidential Page: 41 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

<gain> Speaker
(db)

Buzzer (db)

10 -18 -18

11 -24 -24

12 -30 -30

13 -36 -40

14 -42 -infinite

15 -infinite -infinite

• Returned values

OK on success, or a negative error value

• Example:

An example of playing tone:

wm_sndTonePlayExt (WM_SND_DEST_SPEAKER, 1000, 2000, 0, 9, 10);

3.2.4.3 The wm_sndToneStop Function

This function stops playing a tone on the current speaker or on the buzzer.

• Prototype

s32 wm_sndToneStop (wm_snd_dest_e Destination);

• Parameters

Destination:

Destination of the current playing tone to stop: speaker or buzzer.

• Returned values

OK on success, or a negative error value.

• Example:

An example of stopping tone:

wm_sndToneStop (WM_SND_DEST_BUZZER);

3.2.4.4 The wm_sndDtmfPlay Function

This function allows a DTMF tone to be played on the current speaker or over the
GSM network (in communication only). DTMF, gain (only for speaker) and duration
can be specified.

Remark: It is not possible to play DTMF on the buzzer.

API

Basic Features

© Confidential Page: 42 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Prototype

s32 wm_sndDtmfPlay (wm_snd_dest_e Destination,
 ascii Dtmf,
 u8 Duration,
 u8 Gain);

• Parameters

Destination:

Destination of the requested DTMF tone to play: speaker or/and over the
GSM network (in communication only).

typedef enum {
 WM_SND_DEST_BUZZER, /* do not use */
 WM_SND_DEST_SPEAKER,
 WM_SND_DEST_GSM
} wm_snd_dest_e;

Dtmf:

Value must be in { ‘0’ - ‘9’, ’*’, ’#’, ’A’, ’B’, ’C’, ’D’ }

Duration:

This parameter sets tone duration (in unit of 20 ms). Applicable parameter
range: 0-255.

Remark: when <duration> = 0, the duration is set to 70ms +/- 5ms
(according to 3GPP 23.014).

Gain:

Only for speaker.

This parameter sets the tone gain.

Range of values is from 0 to 15.

• Returned values

OK on success, or a negative error value

• Example:

An example of playing DTMF:

wm_sndDtmfPlay (WM_SND_DEST_SPEAKER, ‘A’, 100, 9);

3.2.4.5 The wm_sndDtmfStop Function

This function stops playing a dtmf on the current speaker or over the GSM network
(in communication only).

• Prototype

s32 wm_sndDtmfStop (wm_snd_dest_e Destination);

API

Basic Features

© Confidential Page: 43 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Destination:

Destination of the current playing tone to stop, this must be a speaker
(GSM network DTMF cannot be stopped).

• Returned values

OK on success, or a negative error value

• Example:

An example of stopping DTMF:

wm_sndDtmfStop (WM_SND_DEST_SPEAKER);

3.2.4.6 The wm_sndMelodyPlay Function

This function plays a melody. Destination, Melody, Tempo, Cycle and Gain can be
specified.

• Prototype

s32 wm_melody_play (wm_snd_dest_e Destination,
 u16* Melody,
 u16 Tempo,
 u8 Cycle,
 u8 Gain);

• Parameters

Destination:

Destination of the melody to play: speaker or buzzer.

typedef enum {
 WM_SND_DEST_BUZZER,
 WM_SND_DEST_SPEAKER,
 WM_SND_DEST_GSM /* do not use */
} wm_snd_dest_e;

Melody:

Melody to play. A melody is defined by an u16 table, where each element
defines a note event, with duration and sound definition.

// Melody sample

const u16 MyMelody []=
{
 WM_SND_E1 | WM_SND_QUAVER,
 WM_SND_F1 | WM_SND_MBLACK,
 WM_SND_G6S | WM_SND_QUAVER,
};

API

Basic Features

© Confidential Page: 44 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

typedef enum {
 WM_SND_C0 , // C0
 WM_SND_C0S , // C0#
 WM_SND_D0 , // D0
 WM_SND_D0S , // D0#
 WM_SND_E0 , // E0
 WM_SND_F0 , // F0
 WM_SND_F0S , // F0#
 WM_SND_G0 , // G0
 WM_SND_G0S , // G0#
 WM_SND_A0 , // A0
 WM_SND_A0S , // A0#
 WM_SND_B0 , // B0
 WM_SND_C1 , // C1
…
 WM_SND_NO_SOUND=0xFF
} wm_sndNote_e;

#define WM_SND_ROUND 0x1000
#define WM_SND_MWHITEP 0x0C00
#define WM_SND_MWHITE 0x0800
#define WM_SND_MBLACKP 0x0600
#define WM_SND_MBLACK 0x0400
#define WM_SND_QUAVERP 0x0300
#define WM_SND_QUAVER 0x0200
#define WM_SND_MSHORT 0x0100

Tempo:

Tempo to apply (duration a black x 20 ms).

Cycle:

Number of times that the melody should be played (0 = infinite)

Gain:

Volume to apply, range of values is 0 to 15.

• Returned values

OK on success, or a negative error value

• Example:

An example of playing melody:

MelodyPlay (WM_SND_DEST_SPEAKER, MyMelody, 6, 1, 9);

API

Basic Features

© Confidential Page: 45 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.2.4.7 The wm_sndMelodyStop Function

This function stops playing a melody on the current speaker or on the buzzer.

• Prototype

s32 wm_sndMelodyStop (wm_snd_dest_e Destination);

• Parameters

Destination:

Destination of the current playing melody to stop: speaker or buzzer.

• Returned values

OK on success, or a negative error value

• Example:

An example of stopping a melody:

wm_sndMelodyStop (WM_SND_DEST_SPEAKER);

API

AT Commands Service

© Confidential Page: 46 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.3 AT Commands Service

3.3.1 Required Header File

The header file for the functions dealing with AT commands is:

adl_at.h

3.3.2 Unsolicited Responses

An unsolicited response is a string sent by the Wavecom Firmware to applications in
order to provide them unsolicited event information (ie. not in response to an AT
command).

ADL applications may subscribe to an unsolicited response in order to receive the
event in the provided handler.

Once an application has subscribed to an unsolicited response, it will have to
unsubscribe from it to stop the callback function being executed every time the
matching unsolicited response is sent from the Wavecom Firmware.

Multiple subscriptions: Each unsolicited response may be subscribed several times. If
an application subscribes to an unsolicited response with handler 1 and then
subscribes to the same unsolicited response with handler 2, every time the ADL
parser receives this unsolicited response handler 1 and then handler 2 will be
executed.

3.3.2.1 The adl_atUnSoSubscribe Function

This function subscribes to a specific unsolicited response with an associated
callback function: when the required unsolicited response is sent from the Wavecom
Firmware, the callback function will be executed.

• Prototype

s16 adl_atUnSoSubscribe (ascii * UnSostr,
 adl_atUnSoHandler_t UnSohdl)

• Parameters

UnSostr:

The name (as a string) of the unsolicited response we want to subscribe to.
This parameter can also be set as an adl_rspID_e response ID. Please refer
to § 3.21 for more information.

UnSohdl:

A handler to the callback function associated to the unsolicited response.

The callback function is defined as follow:

 typedef bool (* adl_atUnSoHandler_t) (adl_atUnsolicited_t *)

API

AT Commands Service

© Confidential Page: 47 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The argument of the callback function will be a ‘adl_atUnsolicited_t’
structure, holding the unsolicited response we subscribed to.

The ‘adl_atUnsolicited_t’ structure defined as follow (it is declared in the
adl_at.h header file):

typedef struct
{
 adl_strID_e RspID; // Standard response ID
 adl_atPort_e Dest; // Unsolicited response destination port
 u16 StrLength; /* the length of the string (name) of the

 unsolicited response */
 ascii StrData[1]; /* a pointer to the string (name) of the

 unsolicited response */
} adl_atUnsolicited_t;

The RspID field is the parsed standard response ID if the received response
is a standard one. Refer to § 3.21 for more information.

The Dest field is the unsolicited response original destination port. If it is set
to ADL_PORT_NONE, unsolicited response is required to be broadcasted on
all ports.

The return value of the callback function will have to be TRUE if the
unsolicited string is to be sent to the external application (on the port
indicated by the Dest field, if not set to ADL_PORT_NONE, otherwise on all
ports), and FALSE otherwise.

Note:

That in case of several handlers associated to the same unsolicited
response, all of them have to return TRUE for the unsolicited response to be
sent to the external application.

• Returned values

o OK on success

o ERROR if an error occurred.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.3.2.2 The adl_atUnSoUnSubscribe Function

This function unsubscribes from an unsolicited response and its handler.

• Prototype

s16 adl_atUnSoUnSubscribe (ascii * UnSostr,
 adl_atUnSoHandler_t UnSohdl)

API

AT Commands Service

© Confidential Page: 48 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

UnSostr:

The string of the unsolicited response we want to unsubscribe to.

UnSohdl:

The callback function associated to the unsolicited response.

• Returned values

o OK if the unsolicited response was found.

o ERROR otherwise.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context)

• Example

/* callback function */
bool Wind4_Handler(adl_atUnsolicited_t *paras)
{
 /* Unsubscribe to the '+WIND: 4' unsolicited response */
 adl_atUnSoUnSubscribe("+WIND: 4",
 (adl_atUnSoHandler_t)Wind4_Handler);
 adl_atSendResponse(ADL_AT_RSP, "\r\nWe have received a Wind 4\r\n");
 /* We want this response to be sent to the external application,
 * so we return TRUE */
 return TRUE;
}

/*main function */
void adl_main(adl_InitType_e adlInitType)
{
 /* Subscribe to the '+WIND: 4' unsolicited response */
 adl_atUnSoSubscribe("+WIND: 4",
 (adl_atUnSoHandler_t)Wind4_Handler);
}

API

AT Commands Service

© Confidential Page: 49 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.3.3 Responses

3.3.3.1 The adl_atSendResponse function

This function sends the provided text to any external application connected to the
required port, as a response, an unsolicited response or an intermediate response,
according to the requested type.

• Prototype

s32 adl_atSendResponse (u16 Type,
 ascii * String)

• Parameters

Type:

This parameter is composed of the response type, and the destination port
where to send the response. The type & destination combination has to be
done with the following macro:

 ADL_AT_PORT_TYPE (_port, _type)

The _port argument has to be a defined value of the adl_atPort_e type, and
this required port has to be available (cf. the AT/FCM port Service) ; sending
a response on an Open AT® the GSM or GPRS based port will have no
effects).

Note:

With the ADL_AT_UNS type value, if the ADL_AT_PORT_TYPE macro is not used,
the unsolicited response will be broadcasted on all currently opened ports.

If the ADL_AT_PORT_TYPE macro is not used with the ADL_AT_RSP & ADL_AT_INT
types, responses will be by default sent on the UART 1 port. If this port is
not opened, responses will not be displayed.

The _type argument has to be one of the values defined below:

o ADL_AT_RSP:
Terminal response (have to ends an incoming AT command).
A destination port has to be specified.
Sending such a response will flush all previously buffered unsolicited
responses on the required port.

o ADL_AT_INT:
Intermediate response (text to display while an incoming AT command
is running).
A destination port has to be specified.
Sending such a response will just display the required text, without
flushing all previously buffered unsolicited responses on the required
port.

API

AT Commands Service

© Confidential Page: 50 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_AT_UNS:
Unsolicited response (text to be displayed out of a currently running
command process).
For the required port (if any) or for each currently opened port (if the
ADL_AT_PORT_TYPE macro is not used), if an AT command is currently
running (ie. the command was sent by the external application, but this
command answer has not be sent back yet), any unsolicited response
will automatically be buffered, until a terminal response is sent on this
port.

String:

The text to be sent.

Please note that this is exactly the text string to be displayed on the
required port (ie. all carriage return & line feed characters ("\r\n" in C
language) have to be sent by the application itself).

• Returned values

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

o OK if the function is successfully executed.

3.3.3.2 The adl_atSendStdResponse Function

This function sends the provided standard response to the required port, as a
response, an unsolicited response or an intermediate response, according to the
requested type.

• Prototype

s32 adl_atSendStdResponse (u8 Type,
 adl_strID_e RspID)

• Parameters

Type:

Same use as the adl_atSendResponse Type parameter.

RspID:

Standard response ID to be sent (see 3.21 for more information).

• Returned values

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

o OK if the function is successfully executed.

API

AT Commands Service

© Confidential Page: 51 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.3.3.3 The adl_atSendStdResponseExt Function

This function sends the provided standard response with an argument to the required
port, as a response, an unsolicited response or an intermediate response, according
to the requested type.

• Prototype

s32 adl_atSendStdResponseExt (u8 Type,
 adl_strID_e RspID,
 u32 arg)

• Parameters

Type:

Same use as the adl_atSendResponse Type parameter.

RspID:

Standard response ID to be sent (see 3.21for more information).

arg:

Standard response argument. According to response ID, this argument
should be an u32 integer, or an ascii * string.

• Returned values

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

o OK if the function is successfully executed.

3.3.3.4 Additional Macros for Specific Port Access

The above Response sending functions may be also used with the macros below,
which provide the additional Port argument: it should avoid heavy code including
each time the ADL_AT_PORT_TYPE macro call.

#define adl_atSendResponsePort(_t,_p,_r)
adl_atSendResponse(ADL_AT_PORT_TYPE(_p,_t),_r)

#define adl_atSendStdResponsePort(_t,_p,_r)
adl_atSendStdResponse(ADL_AT_PORT_TYPE(_p,_t),_r)

#define adl_atSendStdResponseExtPort(_t,_p,_r,_a)
adl_atSendStdResponseExt(ADL_AT_PORT_TYPE(_p,_t),_r,_a)

3.3.4 Incoming AT Commands

An ADL application may subscribes to an AT command string, in order to receive
events each time an external application sends this AT command on one of the
Wireless CPU®s ports.

Once the application has subscribed to a command, it will have to unsubscribe to
stop the callback function being executed every time this command is sent by an
external application.

Multiple subscriptions: if an application subscribes to a command with a handler and
subscribes then to the same command with another handler, every time this

API

AT Commands Service

© Confidential Page: 52 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

command is sent by the external application both handlers will be successfully
executed (in the subscription order).

Important note about incoming concatenated command:

ADL is able to recognize and process concatenated commands coming from external
applications (Please refer to AT Commands Interface Guide (document [2]) for more
information on concatenated commands syntax).

In this case, this port enters a specific concatenation processing mode, which will
end as soon as the last command replies OK, or if one of the used command replies an
ERROR code. During this specific mode, all other external command requests will be
refused on this port: any external application connected to this port will receive a
"+CME ERROR: 515" code if it tries to send another command. The embedded
application can continue using this port for its specific processes, but it has to be
careful to send one (at least one, and only one) terminal response for each subscribed
command.

If a subscribed command is used in a concatenated command string, the
corresponding handler will be notified as if the command was used alone.

In order to handle properly the concatenation mechanism, each subscribed command
has to finally answer with a single terminal response (ADL_STR_OK, ADL_STR_ERROR or
other ones), otherwise the port will stay in concatenation processing mode, refusing
all internal and external commands on this one.

The defined operations are:

• A adl_atCmdSubscribeExt function to subscribe to a command with
providing a Context.

• A adl_atCmdSubscribe function to subscribe to a command without
providing a Context.

• A adl_atCmdUnSubscribe function to unsubscribe to a command.

3.3.4.1 Required Header File

The required header file is:

adl_CmdHandler.h

API

AT Commands Service

© Confidential Page: 53 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.3.4.2 The adl_atCmdPreParser_t Structure

This structure contains information about AT command.

• Code

typedef struct
{
 u16 Type; // Type
 u8 NbPara; // Number of parameters
 adl_atPort_e Port; // Port
 wm_lst_t ParaList; // List of parameters
 u16 StrLength; // Incoming command length
 u16 NI // Notification Identifier
 void * Contxt // Context
 ascii StrData[1]; // Incoming command address
} adl_atCmdPreParser_t;

• Description

Type

Incoming command type (will be one of the required ones at subscription
time), detected by the ADL pre-processing.

NbPara

Non NULL parameters number (if Type is ADL_CMD_TYPE_PARA), or 0 (with
other type values).

Port:

Port on which the command was sent by the external application.

ParaList:

Only if Type is ADL_CMD_TYPE_PARA. Each parameter may be accessed by the
ADL_GET_PARAM(_p,_i) macro. If a string parameter is provided (eg.
AT+MYCMD="string"), the quotes will be removed from the returned string
(eg. ADL_GET_PARAM(para,0) will return "string" (without quotes) in this case).
If a parameter is not provided (eg. AT+MYCMD), the matching list element
will be set to NULL (eg. ADL_GET_PARAM(para,0) will return NULL in this
case).

StrLength:

Incoming command string buffer length.

NI:

This parameter is to hold the Notification Identifier provided by the
command handler when re sending the command already subscribed to
solve any loop effect.

Contxt:

A context holding information gathered at the time the command is
subscribed (if provided).

API

AT Commands Service

© Confidential Page: 54 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

StrData[1]:

Incoming command string buffer address. If the incoming command from
the external application is containing useless spaces (" ") or semi-colon (";")
characters, those will automatically be removed from the command string
(e.g. if an external application sends "AT+MY CMD;" string, the command
handler will receive "AT+MYCMD").

3.3.4.3 The adl_ atCmdSubscriptionPort_e Type

Basic required subscription port affected.

• Code

typedef enum
{
 ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT,
 ADL_CMD_SUBSCRIPTION_ALL_PORTS
} adl_atCmdSubscriptionPort_e;

• Description

ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT: The subscription is only concerning
command received on the external port.

ADL_CMD_SUBSCRIPTION_ALL_PORTS: The subscription is concerning
command received on all ports.if an
application subscribes to a command
with a handler and subscribes then to
the same command with another
handler, every time this command is
sent by the external application both
handlers will be successively executed
(in the subscription order).

Caution:

In this current release ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT is the only valid
choice

3.3.4.4 ADL_GET_PARAM

Macro to get the requested parameter.

• Code

#define ADL_GET_PARAM (_P_,
 i)((ascii*)wm_lstGetIitem(_P_->ParaList,_i_))

• Parameters

P:

command handler parameter (refer to adl_atCmdPreParser_t structure about
pointer to use).

API

AT Commands Service

© Confidential Page: 55 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

i:

parameter index from 0 to NbPara (refer to adl_atCmdPreParser_t structure
for more information about NbPara).

3.3.4.5 The adl_atCmdHandler_t Command Handler

Such a call-back function has to be supplied to ADL through the adl_atCmdSubscribe
interface in order to process AT command subscribed.

• Prototype

typedef void (*) adl_atCmdHandler_t (adl_atCmdPreParser_t *Params)

• Parameters

Params:

Contains information about AT response (refer to adl_atCmdPreParser_t for
more information).

Note:

The command handler has the responsability to send unsollicited/intermediate
reponses and at least one terminal response.

3.3.4.6 The adl_atCmdSubscribe Function

This function subscribes to a specific command with an associated callback function,
so that next time the required command is sent exclusively by an external application,
the callback function will be executed.

• Prototype

s16 adl_atCmdSubscribe (ascii * Cmdstr,
 adl_atCmdHandler_t Cmdhdl,
 u16 Cmdopt)

• Parameters

Cmdstr:

The string (name) of the command we want to subscribe to. Since this
service only handles AT commands, this string has to begin by the "AT"
characters.

Cmdhdl:

The handler of the callback function associated to the command. (Refer to
adl_atCmdHandler_t for more information about callback function).

API

AT Commands Service

© Confidential Page: 56 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Cmdopt:

This flag combines with a bitwise ‘OR’ (‘|’ in C language) the following
information:

Command type Value Meaning

ADL_CMD_TYPE_PARA 0x0100 'AT+cmd=x, y'is allowed. The execution
of the callback function also depends
on whether the number of argument is
valid or not. Information about number
of arguments is combined with a
bitwise 'OR' : ADL_CMD_TYPE_PARA | 0xXY
, where X which defines maximum
argument number for incoming
command and Y which defines
minimum argument number for
incoming command..

ADL_CMD_TYPE_TEST 0x0200 ‘AT+cmd=?’ is allowed.

ADL_CMD_TYPE_READ 0x0400 ‘AT+cmd?’ is allowed.

ADL_CMD_TYPE_ACT 0x0800 ‘AT+cmd’ is allowed.

ADL_CMD_TYPE_ROOT 0x1000 All commands starting with the
subscribed string are allowed but
without the ending character ";" which
is parsed for concatenated commands
mode. The handler will only receive the
whole AT string (no parameters
detection). For example, if the "at-"
string is subscribed, all "at-cmd1", "at-
cmd2", etc. strings will be received by
the handler, however the only string
"at-" is not received.

ADL_CMD_TYPE_ROOT_EXT 0x2000 All commands starting with the
subscribed string are allowed even
with the ending character ";" this means
that such a command will not be
usable in a concatenated AT
commands string. The handler will only
receive the whole AT string (no
parameters detection). For example, if
the "at-" string is subscribed, all "at-
cmd1", "at-cmd2", etc. strings will be
received by the handler, however the
only string "at-" is not received.
Note: in this current release
ADL_CMD_TYPE_ROOT_EXT is behaving like
ADL_CMD_TYPE_ROOT

Note:

If ADL_CMD_TYPE_ROOT_EXT is associated with others it has priority and therefore the
command cannot be recognized as a concatenated one.

API

AT Commands Service

© Confidential Page: 57 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

In this current release ADL_CMD_TYPE_ROOT_EXT behaving like ADL_CMD_TYPE_ROOT.

• Returned values

o OK on success.

o ERROR if an error occurred.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.3.4.7 The adl_atCmdSubscribeExt Function

This function subscribes to a specific command with an associated callback function,
so that next time the required command is sent by an external application or on all
ports (depending on the Cmdport parameter), the callback function will be executed.

• Prototype

s16 adl_atCmdSubscribeExt (ascii * Cmdstr,
 adl_atCmdHandler_t Cmdhdl,
 u16 Cmdopt,
 void * Contxt,
 adl_atCmdSubscriptionPort_e Cmdport)

• Parameters

Cmdstr:

The string (name) of the command we want to subscribe to. Since this
service only handles AT commands, this string has to begin by the "AT"
characters.

Cmdhdl:

The handler of the callback function associated to the command. (Refer to
adl_atCmdHandler_t for more information about callback function).

Cmdopt:

This flag combines with a bitwise ‘OR’ (‘|’ in C language) the following
information:

Command type Value Meaning

ADL_CMD_TYPE_PARA 0x0100 'AT+cmd=x, y'is allowed. The execution
of the callback function also depends
on whether the number of argument is
valid or not. Information about number
of arguments is combined with a
bitwise 'OR' : ADL_CMD_TYPE_PARA |
0xXY , where X which defines
maximum argument number for
incoming command and Y which
defines minimum argument number for
incoming command..

ADL_CMD_TYPE_TEST 0x0200 ‘AT+cmd=?’ is allowed.

ADL_CMD_TYPE_READ 0x0400 ‘AT+cmd?’ is allowed.

API

AT Commands Service

© Confidential Page: 58 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Command type Value Meaning

ADL_CMD_TYPE_ACT 0x0800 ‘AT+cmd’ is allowed.

ADL_CMD_TYPE_ROOT 0x1000 All commands starting with the
subscribed string are allowed but
without the ending character ";" which
is parsed for concatenated commands
mode. The handler will only receive the
whole AT string (no parameters
detection). For example, if the "at-"
string is subscribed, all "at-cmd1", "at-
cmd2", etc. strings will be received by
the handler, however the only string
"at-" is not received.

ADL_CMD_TYPE_ROOT_EXT 0x2000 All commands starting with the
subscribed string are allowed even
with the ending character ";" this means
that such a command will not be
usable in a concatenated AT
commands string. The handler will only
receive the whole AT string (no
parameters detection). For example, if
the "at-" string is subscribed, all "at-
cmd1", "at-cmd2", etc. strings will be
received by the handler, however the
only string "at-" is not received.
Note: In this current release
ADL_CMD_TYPE_ROOT_EXT is behaving like
ADL_CMD_TYPE_ROOT

Note:

If ADL_CMD_TYPE_ROOT_EXT is associated with others it has priority and therefore the
command cannot be recognized as a concatenated one.

Caution:

In this current release ADL_CMD_TYPE_ROOT_EXT is behaving like ADL_CMD_TYPE_ROOT

Contxt:

Context made to hold information gathered at the time the command is
subscribed.

Cmdport:

Port on which the command is subscribed (type of to
adl_atCmdSubscriptionPort_e).

 ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT
 ADL_CMD_SUBSCRIPTION_ALL_PORTS

API

AT Commands Service

© Confidential Page: 59 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Note:

In this current release ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT is the only
valid choice

• Returned values

o OK on success.

o ERROR if an error occurred.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.3.4.8 The adl_atCmdUnSubscribe Function

This function unsubscribes from a command and its handler.

• Prototype

s16 adl_atCmdUnSubscribe (ascii * Cmdstr,
 adl_atCmdHandler_t Cmdhdl)

• Parameters

Cmdstr:

The string (name) of the command we want to unsubscribe from.

Cmdhdl:

The handler of the callback function associated to the command.

• Returned values

o OK on success,

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

o ERROR otherwise.

3.3.4.9 The adl_atCmdSetQuietMode Function

This function allows to set Quiet mode. In this mode, terminal responses are not
send. This function has the same behaviour as ATQ command behaviour.

• Prototype

void adl_atCmdSetQuietMode (bool IsQuiet)

• Parameters

IsQuiet:

Quiet mode setting:

o TRUE: Quiet mode is activated

o FALSE: Quiet mode is deactivated. Default value.

3.3.4.10 Example

This example demonstrates how to use the AT Command
Subscription/Unsubscriptions service in a nominal case (error cases not handled) with
a Wireless CPU®.

API

AT Commands Service

© Confidential Page: 60 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Complete examples using the AT Command service are also available on the SDK.

// ati callback function
 void ATI_Handler(adl_atCmdPreParser_t *paras)
 {
 // we send a terminal response
 adl_atSendStdResponsePort(ADL_AT_RSP, paras->Port, ADL_STR_OK);
 }

 // function 2
 void function2(adl_InitType_e adlInitType)
 {
 // We unsubscribe the command ;
 adl_atCmdUnSubscribe("ati",
 (adl_atCmdHandler_t)ATI_Handler);
 }

 // function 1
 void function1(adl_InitType_e adlInitType)
 {
 // Subscribe to the 'ati’ command.
 adl_atCmdSubscribe("ati",
 (adl_atCmdHandler_t)ATI_Handler,
 ADL_CMD_TYPE_ACT);
 }

API

AT Commands Service

© Confidential Page: 61 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.3.5 Outgoing AT Commands

The following functions allow to send a command on the required port and allows the
subscription to several responses and intermediate responses with one associated
callback function, so that when any of the responses or intermediate responses we
subscribe to will be received by the ADL parser, the callback function will be
executed.

The defined operations are:

• adl_atCmdCreate function to send a command on the required port and allow
the subscription to several responses and intermediate responses with one
associated callback function, so that when any of the responses or
intermediate responses we subscribe to will be received by the ADL parser,
the callback function will be executed.

• adl_atCmdSend same function as adl_atCmdCreate without the rspflag
argument and instead sending the command to the Open AT internal port.

• adl_atCmdSendExt same function as adl_atCmdCreate() allowing the usage of
the Notification Identifier (see Note 3 below).

• adl_atCmdSendText function to allow to provide a running "Text Mode"
command on a specific port (e.g. "AT+CMGW") with the required text. This
function has to be used as soon as the prompt response ("> ") comes in the
response handler provided on adl_atCmdCreate/adl_atCmdSend/
adl_atCmdSendExt function call.

Note:

In this current release the notification identifier (NI) is not used.

3.3.5.1 Required Header File

The header file is:

adl_CmdStackHandler.h

3.3.5.2 The adl_atResponse_t Structure

This structure contains information about AT command.

• code

typedef struct
{
 adl_strID_e RspID; // RspID
 adl_atPort_e Dest; // Dest
 u16 StrLength; // Response length
 void * Contxt; // Context
 bool IsTerminal; // Terminal response flag
 u8 Pad [3]; // Reserved for future use
 ascii StrData[1]; // Response address
} adl_atResponse_t;

API

AT Commands Service

© Confidential Page: 62 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description

RspID:

Detected standard response ID if the received response is a standard one.

Dest:

Port on which the command has been executed; it is also the destination
port where the response will be forwarded if the handler returns TRUE.

StrLength:

Response string buffer length.

Contxt:

A context holding information gathered at the time the command is sent (if
provided).

IsTerminal:

A boolean flag indicating if the received response is the terminal one (TRUE)
or an intermediate one (FALSE).

StrData[1]:

Response string buffer address.

3.3.5.3 The adl_atRspHandler_t

Such a call-back function has to be supplied to ADL through the adl_atCmdCreate/
adl_atCmdSend/adl_atCmdSendExt interface in order to process AT response subscribed.

• Prototype

typedef bool(*) adl_atRspHandler_t (adl_atResponse_t *Params)

• Parameters

Params:

Contains information about AT response (refer to adl_atResponse_t for more
information).

• Returned value

The return value of the callback function has to be TRUE if the response
string has to be sent to the provided port, FALSE otherwise.

3.3.5.4 The adl_atCmdCreate Function

Add command to the required port command stack, in order to be executed as soon
as this port is ready.

• Prototype

s8 adl_atCmdCreate (ascii * atstr,
 u16 rspflag,
 adl_atRspHandler_t rsphdl,
 …)

API

AT Commands Service

© Confidential Page: 63 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

atstr:

The string (name) of the command we want to send. Since this service only
handles AT commands, this string has to begin by the "AT" characters.

rspflag:

This parameter is composed of the unsubscribed responses destination
flag, and the port where to send the command. The flag & destination
combination has to be done with the following macro:

 ADL_AT_PORT_TYPE (_port, _flag)

o The _port argument has to be a defined value of the adl_atPort_e type,
and this required port has to be available (cf. the AT/FCM port Service).
If this port is not available, or if it is a GSM or GPRS based one, the
command will not be executed.

o The _flag argument has to be one of the values defined below:

 If set to TRUE: the responses and intermediate responses of the
sent command that are not subscribed (ie. not listed in the
adl_atCmdCreate function arguments) will be sent on the required
port.

 If set to FALSE they will not be sent to the external application.

o If the ADL_AT_PORT_TYPE macro is not used, by default the command will
be sent to the Open AT® virtual port (see next paragraph for more
information about AT commands ports).

rsphdl:

The response handler of the callback function associated to the command.

…:

A list of strings of the response to subscribed to. This list has to be
terminated by NULL.

• Returned values

o OK on success

o ERROR if an error occurred

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler

Note:

Arguments rsphdl and the list of subscribed responses can be set to NULL to only
send the command.

API

AT Commands Service

© Confidential Page: 64 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.3.5.5 The adl_atCmdSend Function

Add command to the required port command stack, in order to be executed as soon
as this port is ready.

• Prototype

s8 adl_atCmdSend (ascii * atstr,
 adl_atRspHandler_t rsphdl,
 …)

• Parameters

atstr:

The string (name) of the command we want to send. Since this service only
handles AT commands, this string has to begin by the "AT" characters.

rsphdl:

The response handler of the callback function associated to the command.

…:

A list of strings of the response to subscribed to. This list has to be
terminated by NULL.

• Returned values

o OK on success

o ERROR if an error occurred

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler

Note:

Arguments rsphdl and the list of subscribed responses can be set to NULL to only
send the command

3.3.5.6 The adl_atCmdSendExt Function

This function sends AT command with 2 added arguments compared to
adl_atCmdCreate / adl_atCmdSend : a NI (Notification Identifier) and a Context.

Add command to the required port command stack, in order to be executed as soon
as this port is ready.

• Prototype

s8 adl_atCmdSendExt (ascii * atstr,
 adl_atPort_e port,

 u16 NI,
 ascii * Contxt,
 adl_atRspHandler_t rsphdl,

 …)

API

AT Commands Service

© Confidential Page: 65 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

atstr:

The string (name) of the command we want to send. Since this service only
handles AT commands, this string has to begin by the "AT" characters.

port:

The required port on which the command will be executed.

NI:

This parameter is to hold the Notification Identifier provided by the
command handler when re sending the command already subscribed to
solve any loop effect.

Note:

In this current release the notification identifier (NI) is not used.

Contxt:

Context made to hold information gathered at the time the command was
sent.

rsphdl:

The response handler of the callback function associated to the command.

…:

A list of strings of the response to subscribed to. This list has to be
terminated by NULL.

• Returned values

o OK on success

o ERROR if an error occurred

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler

Note:

Arguments rsphdl and the list of subscribed responses can be set to NULL to only
send the command.

3.3.5.7 The adl_atCmdSendText Function

Sends text for a running text command.

• Prototype

s8 adl_atCmdSendText (adl_port_e Port,
 ascii * Text)

• Parameters

Port:

Port on which is currently running the "Text Mode" command, waiting for
some text input.

API

AT Commands Service

© Confidential Page: 66 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Text:

Text to be provided to the running "Text Mode" command on the required
port. If the text does not end with a ‘Ctrl-Z’ character (0x1A code), the
function will add it automatically.

• Returned values

o OK on success

o ERROR if an error occurred

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level Interrupt handler.

• Example

This example demonstrates how to use the AT Command Sending service in a
nominal case (error cases not handled) with a Wireless CPU®.

Complete examples using the AT Command service are also available on the SDK.

• Example 1

// ati responses callback function
 s16 ATI_Response_Handler(adl_atResponse_t *paras)
 {
 TRACE((1, "Reponse handled"));
 TRACE((1, paras->StrData));
 return FALSE;
 }

 // function 1
 void function1(adl_InitType_e adlInitType)
 {
 // We send ati and subscribe to its responses
 adl_atCmdSend("ati",
 (adl_atRspHandler_t)ATI_Response_Handler,
 "*",
 NULL);
 }

API

AT Commands Service

© Confidential Page: 67 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Example 2

// at+mycmd responses callback function 2
 s16 AT_MYCMD_Response_Handler_2(adl_atResponse_t *paras)
 {
 // we send a terminal response
 adl_atSendStdResponsePort(ADL_AT_RPS, paras-> Port, ADL_STR_OK);
 return FALSE;
 }

 // at+mycmd callback function 1
 void AT_MYCMD_Handler_l(adl_atCmdPrepaerser_t *paras)
 {
 // we send a terminal response
 adl_atSendStdResponsePort(ADL_AT_RSP, paras->Port, ADL_STR_OK);

 }
// at+mycmd callback function 2
void AT_MYCMD_Handler_2(adl_atCmdPreParser_t *paras)
}
 // Only spying we resend the command
 adl_atCmdSendExt(paras->StrData,
 paras->Port,
 0,
 NULL,
 (adl_atRspHandler_t)AT_MYCMD_Response_Handler_2
 “*”,
 NULL);
}

// function 1
void function1(adl_InitType_e adl InitType)
{
 // Subscribe to the ‘at+mycmd’ command.
 adl_atCmdSubscribe (“attmycmd”,
 (adl_atCmdHandler_t)AT_MYCMD_Handler_1
 ADL_CMD_TYPE_ACT);
 // Subscribe to the ‘at+mycmd’ command again
 adl_atCmdSubscribe (“at+mycmd”,
 (adl_atCmdHandler_t)AT_MYCMD_Handler_2,
 ADL_CMD_TYPE_ACT
 }

API

Timers

© Confidential Page: 68 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.4 Timers

ADL supplies Timers Service interface to allow application tasks to require and handle
timer related events.

The defined operations are:

• subscription functions (adl_tmrSubscribe & adl_tmrSubscribeExt) usable to
require a timer event for the current task

• A handler call-back type (adl_tmrHandler_t) usable to receive timer related
events

• An unsubscription function (adl_tmrUnSubscribe) usable to stop a currently
running timer.

3.4.1 Required Header Files

The header file for the functions dealing with timers is:

adl_TimerHandler.h

3.4.2 The adl_tmr_t Structure

This structure is used to store timers related parameters. adl_tmrSubscribe and
adl_tmrSubscribeExt return a pointer on this structure, which will be usable later to
unsubscribe from the timer through adl_tmrUnSubscribe.

• Code:

typedef struct
{
 u8 TimerId;
 adl_tmrCyclicMode_e bCyclic;
 adl_tmrType_e TimerType;
 u32 TimerValue;
 adl_tmrHandler_t TimerHandler;
} adl_tmr_t;

• Description

TimerId

0 based internal timer identifier. This identifier will be provided to
adl_tmrHandler_t handler on each call.

bCyclic

Remembers the associated timer cyclic mode.

TimerType

Remembers the programmed timer granularity.

TimerValue

Remembers the programmed timer duration.

API

Timers

© Confidential Page: 69 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

TimerHandler

Remembers the timer handler address, provided at subscription time.

3.4.3 Defines

3.4.3.1 ADL_TMR_MS_TO_TICK

Several conversion from timing unit to ticks.

• Code

#define ADL_TMR_MS_TO_TICK(MsT) ((u32)(((MsT)*7)+64)>>7)

• Description

ADL_TMR_MS_TO_TICK(MsT): Timer conversion from milliseconds to
ticks

3.4.3.2 ADL_TMR_100MS_TO_TICK

Several conversion from timing unit to ticks.

• Code

#define ADL_TMR_100MS_TO_TICK(MsT) ((u32)(((MsT)*693L)+64)>>7)

• Description

ADL_TMR_100MS_TO_TICK(MsT): From 100 milliseconds to ticks

3.4.3.3 ADL_TMR_S_TO_TICK

Several conversion from timing unit to ticks.

• Code

#define ADL_TMR_S_TO_TICK(SecT) ((u32)(((SecT)*6934L)+64)>>7)

• Description

ADL_TMR_S_TO_TICK(SecT): From seconds to ticks

3.4.3.4 ADL_TMR_MN_TO_TICK

Several conversion from timing unit to ticks.

• Code

#define ADL_TMR_MN_TO_TICK(MnT) ((u32)(((MnT)*416034L)+64)>>7)

• Description

ADL_TMR_MN_TO_TICK(MnT): From minutes to ticks

3.4.4 The adl_tmrType_e

Allows to define the granularity (time unit) for the adl_tmrSubscribe,
adl_tmrSubscribeExt & adl_tmrUnSubscribe functions.

API

Timers

© Confidential Page: 70 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Code

typedef enum
{
 ADL_TMR_TYPE_100MS,
 ADL_TMR_TYPE_TICK,
 ADL_TMR_TYPE_LAST
} adl_audiotmrType_e;

• Description

ADL_TMR_TYPE_100MS: 100ms granularity timer.

ADL_TMR_TYPE_TICK: 18.5ms ticks granularity timer.

ADL_TMR_TYPE_LAST: Reserved for internal use.

3.4.5 The adl_tmrCyclicMode_e

Allows to define the required cyclic option at timer subscription time.

Note:

When using the ADL_TMR_CYCLIC_OPT_ON_EXPIRATION option, there is no minimum time
guaranteed between two timer events, since if the application is preempted for some
time, timer events will continue to be generated even if the application is not notified.

This is not the case with the ADL_TMR_CYCLIC_OPT_ON_RECEIVE option: since the timer is
re-programmed only when the application is notified, the duration between two
events is guaranteed to be at least equal to the timer period.

• Code

typedef enum
{
 ADL_TMR_CYCLIC_OPT_NONE,
 ADL_TMR_CYCLIC_OPT_ON_EXPIRATION,
 ADL_TMR_CYCLIC_OPT_ON_RECEIVE,
 ADL_TMR_CYCLIC_OPT_LAST
} adl_tmrCyclicMode_e;

• Description

ADL_TMR_CYCLIC_OPT_NONE: One shot timer: the timer will be automatically
be unsubscribed as soon as the event is
notified to the application.

ADL_TMR_CYCLIC_OPT_ON_EXPIRATION: Cyclic timer, which will be re-programmed on
expiration, just before the event is sent to the
application.

ADL_TMR_CYCLIC_OPT_ON_RECEIVE: Cyclic timer, which will be re-programmed on
event reception, just before notifying the
application's handler.

ADL_TMR_CYCLIC_OPT_LAST: Reserved for internal use.

API

Timers

© Confidential Page: 71 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.4.6 The adl_tmr_Handler_t

Call-back function, provided in an adl_tmrSubscribe or adl_tmrSubscribeExt call, and
notified each time the related timer occurs.

• Prototype:

typedef void(*) adl_tmr_Handler_t (u8 ID,
 void * Context);

• Parameters

ID

Timer internal identifier (readable from the adl_tmr_t pointer returned at
subscription time).

Context

Pointer on the application context provided to adl_tmrSubscribeExt function.
Will be set to NULL is the timer was programmed with adl_tmrSubscribe
function.

Note:

Such a call-back function will always be called in the task context where the timer
was programmed with adl_tmrSubscribe or adl_tmrSubscribeExt.

Timer events should be delayed if the applicative task is pre-empted due to higher
priority (applicative or firmware) tasks processing.

3.4.7 The adl_tmrSubscribe Function

This function starts a timer with an associated callback function. The callback
function will be executed as soon as the timer expires, in the task context where the
adl_tmrSubscribe function was called.

• Prototype

adl_tmr_t *adl_tmrSubscribe(bool bCyclic,
 u32 TimerValue,
 adl_tmrType_e TimerType,
 adl_tmrHandler_t Timerhdl)

• Parameters

bCyclic:

This boolean flag indicates whether the timer is cyclic (TRUE) or not
(FALSE). A cyclic timer is automatically restarted before calling the
application event handler.

TimerValue:

The number of periods after which the timer expires (depends on
TimerType parameter required time unit).

TimerType:

Unit of the TimerValue parameter (uses the adl_tmrType_e type).

API

Timers

© Confidential Page: 72 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Timerhdl:

The callback function associated to the timer (using the adl_tmrHandler_t
type).

• Returned values

o A positive timer handle (an adl_tmr_t pointer) on success, usable to
unsubscribe later from the timer service; a NULL or negative value (the
timer is not started)

o NULL If TimerValue is 0, or if there is no more timer ressource for the
current task. A task can use up to 32 timers at the same time.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low or
high level interrupt handler (the function is forbidden in this context).

Note:

Since the Wireless CPU® time granularity is 18.5 ms, the 100 ms steps are emulated,
reaching a value as close as possible to the requested one modulo 18.5. E.g., if a 20 *
100ms timer is required, the real time value will be 1998 ms (108 * 18.5ms).

The maximal value of "TimerValue" parameter is 0x5E9000 when "ADL_TMR_TYPE_100MS"
timer is subscribed.

3.4.8 The adl_tmrSubscribeExt Function

This function starts a timer with an associated callback function. The callback
function will be executed as soon as the timer expires, in the task context where the
adl_tmrSubscribe function was called.

• Prototype

adl_tmr_t *adl_tmrSubscribeExt (adl_tmrCyclicMode_e CyclicOpt,
 u32 TimerValue,
 adl_tmrType_e TimerType,
 adl_tmrHandler_t Timerhdl,

 void * Context);

• Parameters

CyclicOpt:

This option flag allows to set the required cyclic mode of the timer, using
the adl_tmrCyclicMode_e type.

TimerValue:

The number of periods after which the timer expires (depends on
TimerType parameter required time unit).

TimerType:

Unit of the TimerValue parameter (uses the adl_tmrType_e type).

Timerhdl:

The callback function associated to the timer (using the adl_tmrHandler_t
type).

API

Timers

© Confidential Page: 73 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 Context:

Pointer on an application defined context, which will be provided to the
handler when the timer event will occur. This parameter should be set to
NULL if not used.

• Returned values

o A positive timer handle (an adl_tmr_t pointer) on success, usable to
unsubscribe later from the timer service; on error, a NULL or negative
value (the timer is not started).

o NULL If TimerValue is 0 or too big, or if there is no more timer resource
for the current task. A task can use up to 32 timers at the same time.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low or
high level interrupt handler (the function is forbidden in this context).

Note:

Since the Wireless CPU® time granularity is 18.5 ms, the 100 ms steps are emulated,
reaching a value as close as possible to the requested one modulo 18.5. E.g., if a 20 *
100ms timer is required, the real time value will be 1998 ms (108 * 18.5ms).

3.4.9 The adl_tmrUnSubscribe Function

This function stops the timer and unsubscribes to it and his handler. The call to this
function is only meaningful to a cyclic timer or a timer that has not expired yet.

• Prototype

s32 adl_tmrUnSubscribe(adl_tmr_t* t,
 adl_tmrHandler_t Timerhdl,
 adl_tmrType_e TimerType)

• Parameters

t:

Timer handle to be unsubscribed, previously returned by adl_tmrSubscribe
or adl_tmrSubscribeExt.

Timerhdl:

The callback function associated to the timer. This parameter is only used to
verify the coherence of t parameter. It has to be the timer handler used in
the subscription procedure.

For example:

 PhoneTaskTimerPtr = adl_tmrSubscribe (TRUE, 10, OneSecond,
 ADL_TMR_TYPE_100MS, PhoneTaskTimer);
 // Later
 adl_tmrUnSubscribe (PhoneTaskTimerPtr, PhoneTaskTimer,
 ADL_TMR_TYPE_100MS) ;

API

Timers

© Confidential Page: 74 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

TimerType:

Time unit of the returned value, using the adl_tmrType_e enumeration.

• Returned values

o On success, a positive value indicating the remaining time of the timer
before it expires (time unit depends on the TimerType parameter value);
On failure, a negative error value: ADL_RET_ERR_BAD_HDL if the provided
timer handle is unknown

o ADL_RET_ERR_BAD_STATE if the timer has already expired.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low or
high level interrupt handler (the function is forbidden in this context).

Note:

When the ADL_RET_ERR_BAD_STATE error code is returned, the timer is correctly
unsubscribed. This error code occurs when the function is called after the timer has
elapsed at hardware level, but before the timer handler is notified.

Once a "one shot" (non cyclic) timer has expired and the handler is called, there is no
need to unsubscribe from the Timer service: such a timer is automatically
unsubscribed once elapsed.

API

Timers

© Confidential Page: 75 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.4.10 Example

The code sample below illustrates a nominal use case of the ADL Timers Service
public interface (error cases are not handled).

adl_tmr_t *tt, *tt2;
u16 timeout_period = 5; // in 100 ms steps;

void Timer_Handler(u8 Id, void * Context)
{
 // We do not unsubscribe to the timer because it has ‘naturally’ expired
 adl_atSendResponse(ADL_AT_RSP, "\r\Timer timed out\r\n");
}

void Timer_Handler2(u8 Id, void * Context)
{
 // Unsubscribe from the timer resource
 adl_tmrUnSubscribe (tt2, Timer_Handler2);
}

// main function
void adl_main (adl_InitType_e adlInitType)
{
 // We set up a one-shot timer
 tt = adl_tmrSubscribe (FALSE,
 timeout_period,
 ADL_TMR_TYPE_100MS,
 Timer_Handler);

 // We set up a cyclic timer
 tt2 = adl_tmrSubscribeExt (ADL_TMR_CYCLIC_OPT_NONE,
 timeout_period,
 ADL_TMR_TYPE_100MS,
 Timer_Handler2,
 NULL);
}

API

Memory Service

© Confidential Page: 76 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.5 Memory Service

The ADL Memory Service allows the applications to handle dynamic memory buffers,
and get information about the platform's RAM mapping.

The defined operations are:

• get & release functions adl_memGet & adl_memRelease usable to manage
dynamic memory buffers

• An information function adl_memGetInfo usable to retrieve information about
the platform's RAM mapping

3.5.1 Required Header File

The header file for the memory functions is:

adl_memory.h

3.5.2 Data Structures

3.5.2.1 The adl_memInfo_t Structure

This structure contains several fields containing information about the platform's
RAM mapping.

Note:

The RAM dedicated to the Open AT® application is divided in three areas (Call stack,
Heap memory & Global variables). The adl_memGetInfo function returns these area
current sizes.

Figure 3: Open AT® RAM Mapping

API

Memory Service

© Confidential Page: 77 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Code

typedef structure
{
 u32 TotalSize
 u32 StackSize
 u32 HeapSize
 u32 GlobalSize
} adl_memInfo_t

• Description

TotalSize

Total RAM size for the Open AT® application (in bytes). Please refer to the
2.3 Memory Resources chapter for more information.

StackSize

Open AT® application call stacks area size (in bytes). This size is defined by
the Open AT® application in the adl_InitTasks task table, and thanks to the
adl_InitIRQLowLevelStackSize and adl_InitIRQHighLevelStackSize
constants. (Please refer to the 3 Mandatory API chapter for more
information.

Note:

This field is set to 0 under Remote Task Environment

HeapSize

Open AT® application total heap memory area size (in bytes). This size is the
difference between the total Open AT® memory size and the Global & Stack
areas sizes.

Note:

This field is set to 0 under Remote Task Environment

GlobalSize

Open AT® application global variables area size (in bytes). This size is
defined at the binary link step; it includes the ADL library, plug-in libraries (if
any) and Open AT® application global variables.

Note:

This field is set to 0 under Remote Task Environment

API

Memory Service

© Confidential Page: 78 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.5.3 Defines

3.5.3.1 The adl_memRelease

This macro releases the allocated memory buffer designed by the supplied pointer.

• Parameters

p

A pointer on the allocated memory buffer

• Returned values

o TRUE If the memory was correctly released. In this case, the provided
pointer is set to NULL.

Note:

If the memory release fails, one of the following exceptions is generated
(these exception cannot be filtered by the Error service, and systematically
lead to a reset of the Wireless CPU®).

• Exceptions

o RTK exception 155

The supplied address is out of the heap memory address range

o RTK exception 161 or 166

The supplied buffer header or footer data is corrupted: a write overflow
has occurred on this block

o RTK exception 159 or 172

The heap memory release process has failed due to a global memory
corruption in the heap area.

3.5.4 The adl_memGetInfo Function

This function returns information about the Open AT® RAM areas sizes.

• Prototype

s32 adl_memGetInfo (adl_memInfo_t * Info);

• Parameters

Info:

Please refer to the 3.5.2.1 adl_memInfo_t structure.

o TotalSize

Total RAM size for the Open AT® application (in bytes).
Please refer to the 2.3 Memory Resources chapter for more information.

o StackSize

Open AT® application call stack area size (in bytes).
This size is defined by the Open AT® application through the
wm_apmCustomStackSize constant (Please refer to the 3 Mandatory API
chapter for more information).

API

Memory Service

© Confidential Page: 79 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Note:

This field is set to 0 under Remote Task Environment.

o HeapSize

Open AT® application total heap memory area size (in bytes).
This size is the difference between the total Open AT® memory size and
the Global & Stack areas sizes.

Note:

This field is set to 0 under Remote Task Environment.

o GlobalSize

Open AT® application global variables area size (in bytes).
This size is defined at the binary link step; it includes the ADL library,
plug-in libraries (if any) and Open AT® application global variables.

Note:

This field is set to 0 under Remote Task Environment.

• Reminder:

The Open AT® RAM is divided in three areas (Call stack, Heap memory &
Global variables). This function returns the area sizes. Please refer to the
Figure 3 Open AT® on RAM Mapping.

• Returned values

o OK on success; the Info parameter is updated in the Open AT® RAM
information.

o ADL_RET_ERR_PARAM on parameter error

3.5.5 The adl_memGet Function

This function allocates the memory for the requested size into the client application
RAM memory.

• Prototype

void * adl_memGet (u32 size);

• Parameters

size:

The memory buffer requested size (in bytes).

• Returned values

o A pointer to the allocated memory buffer on success.

• Exceptions

o ADL_ERR_MEM_GET If the memory allocation fails, this function will lead to
a ADL_ERR_MEM_GET error, which can be handled by the Error Service. If
this error is filtered and refused by the error handler, the function will
return NULL. Please refer to the paragraph 3.12 on Error service for
more information.

API

Memory Service

© Confidential Page: 80 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o RTK exception 166
A buffer header or footer data is corrupted: a write overflow has
occurred on this block.

Note:

Memory allocation may also fail due to an unrecoverable corrupted memory
state; one of the following exceptions is then generated (these exceptions
cannot be filtered by the Error service, and systematically lead to a reset of
the Wireless CPU®).

3.5.6 The adl_memRelease Function

Internal memory release function, which should not be called directly. The
adl_memRelease macro has to be used in order to release memory buffer.

• Prototype

bool adl_memRelease (void ** ptr);

• Parameters

ptr:

A pointer on the allocated memory buffer.

• Returned values

 Please refer to the 3.5.3.1 adl_memRelease macro definition.

3.5.7 Heap Memory Block Status

A list of the currently reserved heap memory blocks can be displayed at any time
using the Target Monitoring Tool "Get RTK Status" command. Please refer to the Tools
Manual (document [2]) for more information.

3.5.8 Example

This example demonstrates how to use the Memory service in a nominal case (error
cases are not handled).

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 adl_memInfo_t MemInfo;
 u8 * MyByteBuffer

 // Gets Open AT® RAM information
 adl_memGetInfo (&MemInfo);

 // Allocates a 10 bytes memory buffer
 MyByteBuffer = (u8 *) adl_memGet (10);

 // Releases the previously allocated memory buffer
 adl_memRelease (MyByteBuffer);
}

API

ADL Registry Service

© Confidential Page: 81 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.6 ADL Registry Service

The ADL Registry Service allows to give to Open AT® applications an access to the
platform registry, used to store generic information about the software & hardware
capabilities or configuration.

The defined operations are:

• An adl_regGetWCPUType function to retrieve information from the registry
about current Wireless CPU® identifier

• An adl_regGetHWInteger function to retrieve integer value of a registry entry

• An adl_regGetHWData function to retrieve the data value of a registry entry

• An adl_regGetHWDataChunk function to retrieve the data value of a registry
entry

3.6.1 Required Header File

The header file is:

 adl_reg.h

3.6.2 The adl_regGetWCPUType Function

This function allows the application to retrieve the current Wireless CPU® identifier

• Prototype

s32 adl_regGetWCPUType (ascii * CPUType);

• Parameters

CPUType:

String buffer where the Wireless CPU® type identifier has to be copied.

Can be set to NULL in order just to retrieve the required string buffer size.

• Returned values

Positive number of copied characters to the supplied string buffer (including
terminal 0).

3.6.3 The adl_regGetHWInteger Function

This function allows the application to retrieve the integer value of a registry entry.

• Prototype

s32 adl_regGetHWInteger (ascii * Label,
 s32 * Value);

• Parameters

Label

Label of the entry in the registry.

API

ADL Registry Service

© Confidential Page: 82 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Value

Integer buffer where the value of the registry label has to be copied.

• Returned values

o A OK on success.

o A negative error value otherwise:
 ADL_RET_UNKNOWN_HDL if the registry Label is not found.

 ADL_RET_BAD_HDL if the registry type required is not good.

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

3.6.4 The adl_regGetHWData Function

This function allows the application to retrieve the data value of a registry entry.

• Prototype

s32 adl_regGetHWData (ascii * Label,
 void * Data);

• Parameters

Label

Label of the entry in the registry.

Data

Data buffer where the information of the registry label has to be copied,

This is an optional parameter and must be set to 0 if not used.

• Returned values

o The size of the Data information on success.

o A negative error value otherwise:
 ADL_RET_UNKNOWN_HDL if the registry Label is not found.

 ADL_RET_BAD_HDL if the registry type required is not good.

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

3.6.5 The adl_regGetHWDataChunk Function

This function allows the application to retrieve the data value of a registry entry.

• Prototype

s32 adl_regGetHWDataChunk (ascii * Label,
 void * Data
 u32 BeginOffset,
 u32 ByteCount);

API

ADL Registry Service

© Confidential Page: 83 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Label

Label of the entry in the registry.

Data

Data buffer where the information of the registry label has to be copied.

This is an optional parameter and must be set to 0 if not used.

BeginOffset

Offset within the data value, this is an optional parameter must be set to 0
if not used

ByteCount

Number of bytes to get, this is an optional parameter must be set to 0 if not
used

• Returned values

o The size of the Data information on success.

o A negative error value otherwise:
 ADL_RET_UNKNOWN_HDL if the registry Label is not found.

 ADL_RET_BAD_HDL if the registry type required is not good.

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

3.6.6 Example

// Retrieve Wireless CPU® identifier
 void * function_1()
 {
 // Retrieve required size for Wireless CPU® identifier
 u32 NameSize = adl_regGetWCPUType (NULL);

 // Allows enough memory
 ascii * Name = adl_memGet (NameSize);

 // Retrieve Wireless CPU® type
 adl_regGetWCPUType (Name);

 // Check current Wireless CPU® type
 if (!wm_strcmp (Name, "WMP100"))
 {
 // WMP100 Wireless CPU®
 }
 else if (!wm_strcmp (Name, "Q2686"))
 {
 // Q2686 Wireless CPU®
 }
 else if (!wm_strcmp (Name, "Q2687"))
 {
 // Q2687 Wireless CPU®
 }

API

ADL Registry Service

© Confidential Page: 84 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 }

 // Retrieve hardware integer information
 void * function_2()
 {
 u32 Hardware_info;

 // Retrieve the integer information
 adl_regGetHWInteger ("Hardware_info_label", &Hardware_info);
 ...
 }

 // Retrieve hardware data information
 void * function_3()
 {
 // Retrieve required size for hardware data information
 u32 Hardware_info_size = adl_regGetHWData ("Hardware_info_label",
 NULL);

 // Allows enough memory
 adl_HardwareInfoExample_t * Hardware_info_data = adl_memGet
 (Hardware_info_size);

 // Retrieve the adl_HardwareInfoExample_t information
 adl_regGetHWData ("Hardware_info_label", Hardware_info_data);
 ...
 }

 // Retrieve hardware data information
 void * function_4()
 {
 // Allows enough memory for a part of hardware data information
 ascii * Hardware_info_data_chunk = adl_memGet (10);

 // Retrieve the adl_HardwareInfoExample_t information
 adl_regGetHWDataChunk ("Hardware_info_label",
 Hardware_info_data_chunk , 5 , 10);
 ...
 }

API

Debug Traces

© Confidential Page: 85 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.7 Debug Traces

This service allows to display debug trace strings on the Target Monitoring Tool. The
different ways to embed these trace strings in an Open AT® application depends on
the selected configuration in the used Open AT® IDE (see below).

For more information about the Target Monitoring Tool, the configurations and the
Integrated Development Environment, please refer to the Tools Manual (document
[2]).

The defined operations are:

• Trace function & macros (adl_trcPrint, TRACE & FULL_TRACE) to print the
required trace string

• Dump function & macros (adl_trcDump, DUMP & FULL_DUMP) to dump the
required buffer content

3.7.1 Required Header File

The header file for the flash functions is:

adl_traces.h

3.7.2 Build Configuration Macros

According to the chosen build configuration in the IDE, following macros will be
defined or not, allowing the user to embed none, part or the entire debug traces
information in its final application.

3.7.2.1 Debug Configuration

When the Debug configuration is selected in the IDE, the __DEBUG_APP__ compilation
flag is defined, and also the TRACE & DUMP macros.

Traces & dumps declared with these macros will be embedded at compilation time.

In this Debug configuration, the FULL_TRACE and FULL_DUMP macros are ignored (even if
these are used in the application source code, they will neither be compiled nor
displayed on Target Monitoring Tool at runtime).

3.7.2.2 Full Debug Configuration

When the Full Debug configuration is selected in the IDE, both the __DEBUG_APP__
and __DEBUG_FULL__ compilation flags are defined, and also the TRACE, FULL_TRACE,
DUMP & FULL_DUMP macros.

Traces & dumps declared with these macros will be embedded at compilation time.

3.7.2.3 Release Configuration

When the Release configuration is selected in the IDE, neither the __DEBUG_APP__ nor
__DEBUG_FULL__ compilation flags are defined

API

Debug Traces

© Confidential Page: 86 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The TRACE, FULL_TRACE, DUMP and FULL_DUMP macros are ignored (even if these ones
are used in the application source code, they will neither be compiled, nor displayed
on Target Monitoring Tool at runtime).

3.7.2.4 Defines

3.7.2.4.1 TRACE

This macro is a shortcut to the adl_trcPrint function. Traces declared with this
macro are only embedded in the application if it is compiled with in the Debug or Full
Debug configuration, but not in the Release configuration.

#define TRACE (_X_)

3.7.2.4.2 DUMP

This macro is a shortcut to the adl_trcDump function. Dumps declared with this macro
are only embedded in the application if it is compiled with in the Debug or Full Debug
configuration, but not in the Release configuration.

#define DUMP (_lvl_,
 P,
 L)

3.7.2.4.3 FULL TRACE

This macro is a shortcut to the adl_trcPrint function. Traces declared with this macro
are only embedded in the application if it is compiled with in Full Debug
configuration, but not in the Debug or Release configuration.

#define FULL_TRACE (_X_)

3.7.2.4.4 FULL DUMP:

This macro is a shortcut to the adl_trcDump function. Dumps declared with this macro
are only embedded in the application if it is compiled with in Full Debug
configuration, but not in the Debug or Release configuration.

#define FULL_DUMP (_lvl_,
 P,
 L)

3.7.3 The adl_trcPrint Function

This function displays the required debug trace on the provided trace level. The trace
will be displayed in the Target Monitoring Tool, according to the current context:

• for tasks: on the trace element name defined in the tasks declaration table
(cf. Application Initialization service)

• for Low Level Interrupt handlers: on the "LLH" trace element

• for High Level Interrupt handlers: on the "HLH" trace element

In addition to the trace information, a Wireless CPU® local timestamp is also displayed
in the tool.

Example1:

 u8 I = 123;

API

Debug Traces

© Confidential Page: 87 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 TRACE ((1, "Value of I: %d", I));

At runtime, this will display the following string on the CUS4 level 1 on the
Target Monitoring Tool:

 Value of I: 123

• Prototype

s8 adl_trcPrint (u8 Level,
 const ascii* strFormat,
 ...);

• Parameters

Level:

Trace level on which the information has to be sent. Valid range is 1 - 32.

strFormat:

String to be displayed, using a standard C "sprintf" format.

…:

Additional arguments to be dynamically inserted in the provided constant
string.

Note:

• Direct use of the adl_trcPrint function is not recommended. The TRACE &
FULL_TRACE macros should be used instead, to take benefit of the build
configurations features.

• '%s' character, normally used to insert strings, is not supported by the trace
function.

• The trace display should be limited to 255 bytes. If the trace string is longer,
it will be truncated.

3.7.4 The adl_trcDump Function

This function dumps the required buffer content on the provided trace level. The
dump will be displayed in the Target Monitoring Tool, according to the current
context:

• for tasks: on the trace element name defined in the tasks declaration table
(cf. Application Initialization service)

• for Low Level Interrupt handlers: on the "LLH" trace element

• for High Level Interrupt handlers: on the "HLH" trace element

In addition to the trace information, a Wireless CPU® local timestamp is also displayed
in the tool.

Since a display line maximum length is 255 bytes, if the display length is greater than
80 (each byte is displayed on 3 ascii characters), the dump will be segmented on
several lines. Each 80 bytes truncated line will end with the "..." characters sequence.

API

Debug Traces

© Confidential Page: 88 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Example 1

 u8 * Buffer = "\x0\x1\x2\x3\x4\x5\x6\x7\x8\x9";
 DUMP (1, Buffer, 10);

At runtime, this will display the following string on the level 1 in the Target
Monitoring Tool:

 00 01 02 03 04 05 06 07 08 09

Example 2

 u8 Buffer [200], i;
 for (i = 0 ; i < 200 ; i++) Buffer [i] = i;
 DUMP (1, Buffer, 200);

At runtime, this will display the following three lines on the level 1 in the
Target Monitoring Tool:

 00 01 02 03 04 05 06 07 08 09 0A [bytes from 0B to 4D] 4E 4F...
 50 51 52 53 54 55 56 57 58 59 5A [bytes from 5B to 9D] 9E 9F...
 A0 A1 A2 A3 A4 A5 A6 A7 [bytes from A8 to C4] C5 C6 C7

• Prototype

void adl_trcDump (u8 Level,
 u8 * DumpBuffer,
 u16 DumpLength);

• Parameters

Level:

Trace level on which the information has to be sent. Valid range is 1 - 32.

DumpBuffer:

Buffer address to be dumped.

DumpLength:

Number of bytes to be displayed at required address.

Note:

Direct use of the adl_trcDump function is not recommended. The DUMP & FULL_DUMP
macros should be used instead, to take benefit of the build configurations features.

API

Debug Traces

© Confidential Page: 89 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.7.5 Example

The code sample below illustrates a nominal use case of the ADL Debug Traces
service public interface (error cases are not handled).

u8 MyInt = 12;
ascii * MyString = "hello";

// Print a debug trace for current context on level 1
TRACE ((1, "My Sample Trace: %d", MyInt));

// Dump a buffer content for current context on level 2
DUMP (2, MyString, strlen (MyString));

API

Flash

© Confidential Page: 90 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.8 Flash

3.8.1 Required Header File

The header file for the flash functions is:

adl_flash.h

3.8.2 Flash Objects Management

An ADL application may subscribe to a set of objects identified by an handle, used by
all ADL flash functions.

This handle is chosen and given by the application at subscription time.

To access to a particular object, the application gives the handle and the ID of the
object to access.

At first subscription, the Handle and the associated set of IDs are saved in flash. The
number of flash object IDs associated to a given handle may be only changed after
have erased the flash objects (with the AT+WOPEN=3 command).

For a particular handle, the flash objects ID take any value, from 0 to the ID range
upper limit provided on subscription.

Important note:

Due to the internal storage implementation, only up to 2000 object identifiers can
exist at the same time.

3.8.2.1 Flash objects write/erase inner process overview

Written flash objects are queued in the flash object storage place. Each time the
adl_flhWrite function is called, the process below is done:

• If the object already exists, it is now considered as "erased" (ie.
"adl_flhWrite(X);" <=> "adl_flhDelete(X); adl_flhWrite(X);")

• The flash object driver checks if there is enough place the store the new
object. If not, a Garbage Collector process is done (see below).

• The new object is created.

About the erase process, each time the adl_flhDelete (or adl_flhWrite) function is
called on a ID, this object is from this time "considered as erased", even if it is not
physicaly erased (an inner "erase flag" is set on this object).

Objects are physically erased only when the Garbage Collector process is done, when
an adl_flhWrite function call needs a size bigger than the available place in the flash
objects storage place. The Garbage Collector process erases the flash objects storage
place, and re-write only the objects which have not their "erase flag" set.

Please note that the flash memory physical limitation is the erasure cycle number,
which is granted to be at least 100.000 times.

API

Flash

© Confidential Page: 91 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Caution:

The Garbage Collector process is a time consuming operation. Performing numerous
flash write operations in the same event handler increases the probability of Garbage
Collector occurence, and should lead to a watchdog reset of the Wireless CPU®. It is
not recommended to perform too many flash write operations in the same event
handler. If numerous operations are required, it is advised to regularly "give back the
hand" to the Firmware (by introducing timers) in the write loop, in order to avoid the
Watchdog reset to occur.

3.8.2.2 Flash Objects in Remote Task Environment

When an application is running in Remote Task Environment, the flash object storage
place is emulated on the PC side: objects are read/written from/to files on the PC hard
disk, and not from/to the Wireless CPU®s flash memory. The two storage places
(Wireless CPU® and PC one) may be synchronized using the RTE Monitor interface (cf.
the Tools Manual [2] for more information).

3.8.3 The adl_flhSubscribe Function

This function subscribes to a set of objects identified by the given Handle.

• Prototype

s8 adl_flhSubscribe (ascii* Handle, u16 NbObjectsRes)

• Parameters

Handle:

The Handle of the set of objects to subscribe to.

NbObjectRes :

The number of objects related to the given handle. It means that the IDs
available for this handle are in the range [0 , (NbObjectRes – 1)].

• Returned values

o OK on success (first allocation for this handle)

o ADL_RET_ERR_PARAM on parameter error,

o ADL_RET_ERR_ALREADY_SUBSCRIBED if space is already created for this
handle,

o ADL_FLH_RET_ERR_NO_ENOUGH_IDS if there are no more enough object IDs
to allocate the handle.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

Note:

Only one subscription is necessary. It is not necessary to subscribe to the same
handle at each application start.

It is not possible to unsubscribe from an handle. To release the handle and the
associated objects, the user must do an AT+WOPEN=3 to erase the flash objects of
the Open AT® Embedded Application.

API

Flash

© Confidential Page: 92 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.8.4 The adl_flhExist Function

This function checks if a flash object exists from the given Handle at the given ID in
the flash memory allocated to the ADL developer.

• Prototype

s32 adl_flhExist (ascii* Handle, u16 ID)

• Parameters

Handle:

The Handle of the subscribe set of objects.

ID:

The ID of the flash object to investigate (in the range allocated to the
provided Handle).

• Returned values

o the requested Flash object length on success
o 0K if the object does not exist.

o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.8.5 The adl_flhErase Function

This function erases the flash object from the given Handle at the given ID.

• Prototype

s8 adl_flhErase (ascii* Handle, u16 ID)

• Parameters

Handle:

The Handle of the subscribed set of objects.

ID:

The ID of the flash object to be erased.

Important note:

If ID is set to ADL_FLH_ALL_IDS, all flash objects related to the provided
handle will be erased.

• Returned values

o OK on success

o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

o ADL_FLH_RET_ERR_OBJ_NOT_EXIST if the object does not exist

o ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_DELETE error
event will then be generated)

API

Flash

© Confidential Page: 93 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.8.6 The adl_flhWrite Function

This function writes the flash object from the given Handle at the given ID, for the
length provided with the buffer provided. A single flash object can use up to 30
Kbytes of memory.

• Prototype

s8 adl_flhWrite (ascii* Handle, u16 ID, u16 Len, u8 *WriteData)

• Parameters

Handle:

The Handle of the subscribed set of objects.

ID:

The ID of the flash object to write.

Len:

The length of the flash object to write.

WriteData:

The provided string to write in the flash object.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM if one at least of the parameters has a bad value.

o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

o ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_WRITE error
event will then occur).

o ADL_FLH_RET_ERR_MEM_FULL if flash memory is full.

o ADL_FLH_RET_ERR_NO_ENOUGH_IDS if the object can not be created due to
the global ID number limitation.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.8.7 The adl_flhRead Function

This function reads the flash object from the given Handle at the given ID, for the
length provided and stores it in a buffer.

• Prototype

s8 adl_flhRead (ascii* Handle, u16 ID, u16 Len, u8 *ReadData)

API

Flash

© Confidential Page: 94 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Handle:

The Handle of the subscribed set of objects

ID:

The ID of the flash object to read.

Len:

The length of the flash object to read.

ReadData:

The string allocated to store the read flash object.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM if one at least of the parameters has a bad value.

o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

o ADL_FLH_RET_ERR_OBJ_NOT_EXIST if the object does not exist.

o ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_READ error
event will then occur).

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.8.8 The adl_flhGetFreeMem Function

This function gets the current remaining flash memory size.

• Prototype

u32 adl_flhGetFreeMem (void)

• Returned values

o Current free flash memory size in bytes.

3.8.9 The adl_flhGetIDCount Function

This function returns the ID count for the provided handle, or the total remaining ID
count.

• Prototype

s32 adl_flhGetIDCount (ascii* Handle)

• Parameters

Handle:

The Handle of the subscribed set of objects. If set to NULL, the total
remaining ID count will be returned.

API

Flash

© Confidential Page: 95 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o On success:

 ID count allocated on the provided handle if any;

 the total remaining ID count if the handle is set to NULL

o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.8.10 The adl_flhGetUsedSize Function

This function returns the used size by the provided ID range from the provided
handle. The handle should also be set to NULL to get the whole used size.

• Prototype

s32 adl_flhGetUsedSize (ascii* Handle,
 u16 StartID,
 u16 EndID)

• Parameters

Handle:

The Handle of the subscribed set of objects. If set to NULL, the whole flash
memory used size will be returned.

StartID:

First ID of the range from which to get the used size ; has to be lower than
EndID.

EndID:

Last ID of the range from which to get the used size; has to be greater than
StartID. To get the used size by all an handle IDs, the
[0 , ADL_FLH_ALL_IDS] range may be used

• Returned values

o Used size on success: from the provided Handle if any, otherwise the
whole flash memory used size

o ADL_RET_ERR_PARAM on parameter error

o ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

o ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

FCM Service

© Confidential Page: 96 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.9 FCM Service

ADL provides a FCM (Flow Control Manager) service to handle all FCM events, and to
access to the data ports provided on the product.

An ADL application may subscribe to a specific flow (UART 1, UART 2 or USB
physical/virtual ports, GSM CSD call data port, GPRS session data port or Bluetooth
virtual data ports) to exchange data on it.

Figure 4: Flow Control Manager Representation

Embedded Application

Wireless CPU®

GSM CSD
call

V24
Serial Link

1

AT

AT
commands

GPRS
session

TCP/IP Stack

Uart 1 & 2,
physical &
logical ports

Bluetooth
virtual ports

… …

…

2

…

ADL AT
commands
services

API

FCM Service

© Confidential Page: 97 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

By default (ie. without any Open AT® application, or if the application does not use
the FCM service), all the Wireless CPU®s ports are processed by the Wavecom
Firmware. The default behaviors are:

• When a GSM CSD call is set up, the GSM CSD data port is directly
connected to the UART port where the ATD command was sent ;

• When a GPRS session is set up, the GPRS data port is directly connected to
the UART port where the ATD or AT+CGDATA command was sent ;

• When a Bluetooth peripheral is detected & connected through an SPP based
profile, a local data bridge may be set up between a Bluetooth virtual data
port and the required UART port, using the AT+WLDB command.

Once subscribed by an Open AT® application with the FCM service, a port is no more
available to be used with the AT commands by an external application. The available
ports are the ones listed in the ADL AT/FCM Ports service:

• ADL_PORT_UART_X / ADL_PORT_UART_X_VIRTUAL_BASE identifiers may be
used to access to the Wireless CPU®s physicals UARTS, or logical 27.010
protocol ports ;

• ADL_PORT_GSM_BASE identifier may be used to access to a remote modem
(connected through a GSM CSD call) data flow ;

• ADL_PORT_GPRS_BASE identifier may be used to exchange IP packets with
the operator network and the Internet ;

• ADL_PORT_BLUETOOTH_VIRTUAL_BASE may be used to access to a
connected Bluetooth device data stream with the Serial Port Profile (SPP).

The "1" switchs on the figure above means that UART based ports may be used with
AT commands or FCM services as well. These switches are processed by the
adl_fcmSwitchV24State function.

The "2" switch on the figure above means that either the GSM CSD port or the GPRS
port may be subscribed at one time, but not both together.

Important note:

GPRS provides only packet mode transmission. This means that the embedded
application can only send/receive IP packets to/from the GPRS flow.

3.9.1 Required Header File

The header file for the FCM functions is:

adl_fcm.h

3.9.2 The adl_fcmIsAvailable Function

This function allows to check if the required port is available and ready to handle the
FCM service.

• Prototype

bool adl_fcmIsAvailable (adl_fcmFlow_e Flow);

API

FCM Service

© Confidential Page: 98 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Flow:

Port from which to require the state.

• Returned values

o TRUE if the port is ready to handle the FCM service

o FALSE if it is not ready

Notes:

All ports should be available for the FCM service, except:

o The Open AT® virtual one, which is only usable for AT commands,

o The Bluetooth virtual ones with enabled profiles other than the SPP
one,

o If the port is already used to handle a feature required by an external
application through the AT commands (+WLDB command, or a
CSD/GPRS data session is already running)

3.9.3 The adl_fcmSubscribe Function

This function subscribes to the FCM service, opening the requested port and setting
the control and data handlers. The subscription will be effective only when the
control event handler has received the ADL_FCM_EVENT_FLOW_OPENNED event.

Each port may be subscribed only one time.

Additional subscriptions may be done, using the ADL_FCM_FLOW_SLAVE flag (see below).
Slave subscribed handles will be able to send & receive data on/from the flow, but
will know some limitations:

• For serial-line flows (UART physical & logical based ports), only the main
handle will be able to switch the Serial Link state between AT & Data mode;

• If the main handle unsubscribe from the flow, all slave handles will also be
unsubscribed.

Important note:

For serial-link related flows (UART physical & logical based ports), the corresponding
port has to be opened first with the AT+WMFM command (for physical ports), or
with the 27.010 protocol driver on the external application side (for logical ports),
otherwise the subscription will fail. See AT Commands Interface guide (document [1])
for more information.

By default, only the UART1 physical port is opened.

A specific port state may be known using the ADL AT/FCM port service.

• Prototype

s8 adl_fcmSubscribe (adl_fcmFlow_e Flow,
 adl_fcmCtrlHdlr_f CtrlHandler,
 adl_fcmDataHdlr_f DataHandler);

API

FCM Service

© Confidential Page: 99 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Flow:

The allowed values are the available ports of the adl_port_e type. Only ports
with the FCM capability may be used with this service (ie. all ports except
the ADL_PORT_OPEN_AT_VIRTUAL_BASE and not SPP
ADL_PORT_BLUETOOTH_VIRTUAL_BASE based ones).

Please note that the adl_fcmFlow_e type is the same than the adl_port_e
one, except the fact that is may handle some additional FCM specific flags
(see below). Previous versions FCM flows identifiers have been kept for
ascendant compatibility. However, these constants should be considered as
deprecated, and the adl_port_e type members should now be used instead.

 #define ADL_FCM_FLOW_V24_UART1 ADL_PORT_UART1
 #define ADL_FCM_FLOW_V24_UART2 ADL_PORT_UART2
 #define ADL_FCM_FLOW_V24_USB ADL_PORT_USB
 #define ADL_FCM_FLOW_GSM_DATA ADL_PORT_GSM_BASE
 #define ADL_FCM_FLOW_GPRS ADL_PORT_GPRS_BASE

To perform a slave subscription (see above), a bit-wise or has to be done
with the flow ID and the ADL_FCM_FLOW_SLAVE flag ; for example:

 adl_fcmSubscribe (ADL_PORT_UART1 | ADL_FCM_FLOW_SLAVE,
 MyCtrlHandler, MyDataHandler);

CtrlHandler:

FCM control events handler, using the following type:

 typedef bool (* adl_fcmCtrlHdlr_f) (adl_fcmEvent_e event);

The FCM control events are defined below (All handlers related to the
concerned flow (master and slaves) will be notified together with these
events):

o ADL_FCM_EVENT_FLOW_OPENNED (related to adl_fcmSubscribe),

o ADL_FCM_EVENT_FLOW_CLOSED (related to adl_fcmUnsubscribe),

o ADL_FCM_EVENT_V24_DATA_MODE (related to adl_fcmSwitchV24State),

o ADL_FCM_EVENT_V24_DATA_MODE_EXT (see note below),

o ADL_FCM_EVENT_V24_AT_MODE (related to adl_fcmSwitchV24State),

o ADL_FCM_EVENT_V24_AT_MODE_EXT (see note below),

o ADL_FCM_EVENT_RESUME (related to adl_fcmSendData and
adl_fcmSendDataExt),

o ADL_FCM_EVENT_MEM_RELEASE (related to adl_fcmSendData and
adl_fcmSendDataExt) ,

This handler return value is not relevant, except for
ADL_FCM_EVENT_V24_AT_MODE_EXT.

API

FCM Service

© Confidential Page: 100 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

DataHandler:

FCM data events handler, using the following type:

 typedef bool (* adl_fcmDataHdlr_f) (u16 DataLen, u8 * Data);

This handler receives data blocks from the associated flow.

Once the data block is processed, the handler must return TRUE to release
the credit, or FALSE if the credit must not be released. In this case, all
credits will be released next time the handler will return TRUE.

On all flows, all data handlers (master and slaves) subscribed are notified
with a data event, and the credit will be released only if all handlers return
TRUE: each handler should return TRUE as default value.

If a credit is not released on the data block reception, it will be released the
next time the data handler will return TRUE. The adl_fcmReleaseCredits
should also be used to release credits outside of the data handler.

Maximum size of each data packets to be received by the data handlers
depends on the flow type:

o On serial link flows (UART physical & logical based ports) : 120 bytes ;

o On GSM CSD data port : 270 bytes ;

o On GPRS port : 1500 bytes ;

o On Bluetooth virtual ports : 120 bytes.

If data size to be received by the Open AT® application exceeds this
maximum packet size, data will be segmented by the Flow Control
Manager, which will call several times the Data Handlers with the
segmented packets.

Please note that on GPRS flow, whole IP packets will always be received by
the Open AT® application.

• Returned values

o A positive or null handle on success (which will have to be used in all
further FCM operations). The Control handler will also receive a
ADL_FCM_EVENT_FLOW_OPENNED event when flow is ready to process,

o ADL_RET_ERR_PARAM if one parameter has an incorrect value,

o ADL_RET_ERR_ALREADY_SUBSCRIBED if the flow is already subscribed in
master mode,

o ADL_RET_ERR_NOT_SUBSCRIBED if a slave subscription is made when
master flow is not subscribed,

o ADL_FCM_RET_ERROR_GSM_GPRS_ALREADY_OPENNED if a GSM or GPRS
subscription is made when the other one is already subscribed.

o ADL_RET_ERR_BAD_STATE if the required port is not available.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

FCM Service

© Confidential Page: 101 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Notes:

• When « 7 bits » mode is enabled on a v24 serial link, in data mode, payload
data is located on the 7 least significant bits (LSB) of every byte.

• When a serial link is in data mode, if the external application sends the
sequence "1s delay ; +++ ; 1s delay", this serial link is switched to AT mode,
and corresponding handler is notified by the ADL_FCM_EVENT_V24_AT_MODE_EXT
event. Then the behavior depends on the returned value.

If it is TRUE, all this flow remaining handlers are also notified with this
event. The main handle can not be un-subscribed in this state.

If it is FALSE, this flow remaining handlers are not notified with this event,
and this serial link is switched back immediately to data mode.

In the first case, after the ADL_FCM_EVENT_V24_AT_MODE_EXT event, the main
handle subscriber should switch the serial link to data mode with the
adl_fcmSwitchV24State API, or wait for the ADL_FCM_EVENT_V24_DATA_MODE_EXT
event. This one will come when the external application sends the "ATO"
command: the serial link is switched to data mode, and then all V24 clients
are notified.

• When a GSM data call is released from the remote part, the GSM flow will
automatically be unsubscribed (the ADL_FCM_EVENT_FLOW_CLOSED event
will be received by all the flow subscribers).

• When a GPRS session is released, or when a GSM data call is released from
the Wireless CPU® side (with the adl_callHangUp function), the
corresponding GSM or GPRS flow have to be unsubscribed. These flows
will have to be subscribed again before starting up a new GSM data call, or
a new GPRS session.

• For serial link flows, the serial line parameters (speed, character framing,
etc...) must not be modified while the flow is in data state. In order to
change these parameters' value, the concerned flow has firstly to be
switched back in AT mode with the adl_fcmSwitchV24State API. Once the
parameters changed, the flow may be switched again to data mode, using
the same API.

3.9.4 The adl_fcmUnsubscribe Function

This function unsubscribes from a previously subscribed FCM service, closing the
previously opened flows. The unsubscription will be effective only when the control
event handler has received the ADL_FCM_EVENT_FLOW_CLOSED event.

If slave handles were subscribed, as soon as the master one unsubscribes from the
flow, all the slave one will also be unsubscribed.

• Prototype

s8 adl_fcmUnsubscribe (u8 Handle);

API

FCM Service

© Confidential Page: 102 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_FLOW_CLOSED event when flow is ready to process

o ADL_RET_ERR_UNKNOWN_HDL if the handle is incorrect,

o ADL_RET_ERR_NOT_SUBSCRIBED if the flow is already unsubscribed,

o ADL_RET_ERR_BAD_STATE if the serial link is not in AT mode.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.9.5 The adl_fcmReleaseCredits Function

This function releases some credits for requested flow handle.

The slave subscribers should not use this API.

• Prototype

s8 adl_fcmReleaseCredits (u8 Handle,
 u8 NbCredits);

• Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

NbCredits:

Number of credits to release for this flow. If this number is greater than the
number of previously received data blocks, all credits are released. If an
application wants to release all received credits at any time, it should call
the adl_fcmReleaseCredits API with NbCredits parameter set to 0xFF.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

o ADL_RET_ERR_BAD_HDL if the handle is a slave one.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.9.6 The adl_fcmSwitchV24State Function

This function switches a serial link state to AT mode or to Data mode. The operation
will be effective only when the control event handler has received an
ADL_FCM_EVENT_V24_XXX_MODE event. Only the main handle subscriber can use this API.

API

FCM Service

© Confidential Page: 103 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Prototype

s8 adl_fcmSwitchV24State (u8 Handle,
 u8 V24State);

• Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

V24State:

Serial link state to switch to. Allowed values are defined below:

ADL_FCM_V24_STATE_AT,

ADL_FCM_V24_STATE_DATA.

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_V24_XXX_MODE event when the serial link state has
changed

o ADL_RET_ERR_PARAM if one parameter has an incorrect value

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown

o ADL_RET_ERR_BAD_HDL if the handle is not the main flow one

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.9.7 The adl_fcmSendData Function

This function sends a data block on the requested flow.

• Prototype

s8 adl_fcmSendData (u8 Handle,
 u8 * Data,
 u16 DataLen);

• Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

Data:

Data block buffer to write.

DataLen:

Data block buffer size.

Maximum data packet size depends on the subscribed flow:

o On serial link based flows: 2000 bytes ;

o On GSM data flow: no limitation (memory allocation size) ;

o On GPRS flow: 1500 bytes ;

o On Bluetooth virtual ports: 2000 bytes.

API

FCM Service

© Confidential Page: 104 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_MEM_RELEASE event when the data block memory buffer
will be released ;

o ADL_FCM_RET_OK_WAIT_RESUME on success, but the last credit was used.
The Control handler will also receive a ADL_FCM_EVENT_MEM_RELEASE event
when the data block memory buffer will be released ;

o ADL_RET_ERR_PARAM is a parameter has an incorrect value,

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

o ADL_RET_ERR_BAD_STATE if the flow is not ready to send data,

o ADL_FCM_RET_ERR_WAIT_RESUME if the flow has no more credit to use.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

o On ADL_FCM_RET_XXX_WAIT_RESUME returned value, the subscriber has to
wait for a ADL_FCM_EVENT_RESUME event on Control Handler to continue
sending data.

3.9.8 The adl_fcmSendDataExt Function

This function sends a data block on the requested flow. This API do not perform any
processing on provided data block, which is sent directly on the flow.

• Prototype

s8 adl_fcmSendDataExt (u8 Handle,
 adl_fcmDataBlock_t * DataBlock);

• Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

DataBlock:

Data block buffer to write, using the following type:

typedef struct
{
 u16 Reserved1[4];
 u32 Reserved3;
 u16 DataLength; /* Data length */
 u16 Reserved2[5];
 u8 Data[1]; /* Data to send */
} adl_fcmDataBlock_t;

API

FCM Service

© Confidential Page: 105 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The block must be dynamically allocated and filled by the application, before
sending it to the function. The allocation size has to be
sizeof (adl_fcmDataBlock_t) + DataLength, where DataLength is the
value to be set in the DataLength field of the structure.

Maximum data packet size depends on the subscribed flow :

o On serial link based flows : 2000 bytes ;

o On GSM data flow : no limitation (memory allocation size) ;

o On GPRS flow : 1500 bytes ;

o On Bluetooth virtual ports : 2000 bytes.

• Returned values

o OK on success. The Control handler will also receive a
ADL_FCM_EVENT_MEM_RELEASE event when the data block memory buffer
will be released,

o ADL_FCM_RET_OK_WAIT_RESUME on success, but the last credit was used.
The Control handler will also receive a ADL_FCM_EVENT_MEM_RELEASE event
when the data block memory buffer will be released ;

o ADL_RET_ERR_PARAM is a parameter has an incorrect value,

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

o ADL_RET_ERR_BAD_STATE if the flow is not ready to send data,

o ADL_FCM_RET_ERR_WAIT_RESUME if the flow has no more credit to use.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

o On ADL_FCM_RET_XXX_WAIT_RESUME returned value, the subscriber has to
wait for an ADL_FCM_EVENT_RESUME event on Control Handler to continue
sending data.

Important Remark:

The Data block will be released by the adl_fcmSendDataExt API on OK and
ADL_FCM_RET_OK_WAIT_RESUME return values (the memory buffer will be
effectively released once the ADL_FCM_EVENT_MEM_RELEASE event will be
received in the Control Handler). The application has to use only dynamic
allocated buffers (with adl_memGet function).

API

FCM Service

© Confidential Page: 106 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.9.9 The adl_fcmGetStatus Function

This function gets the buffer status for requested flow handle, in the requested way.

• Prototype

s8 adl_fcmGetStatus (u8 Handle,
 adl_fcmWay_e Way);

• Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

Way:

As flows have two ways (from Embedded application, and to Embedded
application), this parameter specifies the direction (or way) from which the
buffer status is requested. The possible values are:

typedef enum {
 ADL_FCM_WAY_FROM_EMBEDDED,
 ADL_FCM_WAY_TO_EMBEDDED
} adl_fcmWay_e;

• Returned values

o ADL_FCM_RET_BUFFER_EMPTY if the requested flow and way buffer is
empty,

o ADL_FCM_RET_BUFFER_NOT_EMPTY if the requested flow and way buffer is
not empty ; the Flow Control Manager is still processing data on this
flow,

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

o ADL_RET_ERR_PARAM if the way parameter value in out of range.

API

GPIO Service

© Confidential Page: 107 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10 GPIO Service

ADL provides a GPIO service to handle GPIO operations.

The defined operations are:

• A adl_ioGetCapabilitiesList function to retrieve a list of GPIO capablities
informations.

• A adl_ioSubscribe function to set the reserved GPIO parameters

• A adl_ioUnsubscribe function to un-subscribes from a previously allocated
GPIO handle

• A adl_ioEventSubscribe function to provide ADL with a call-back for GPIO
related events

• A adl_ioEventUnsubscribe function to unsubscribe from the GPIO events
notification

• A adl_ioSetDirection function to allow the direction of one or more
previously allocated GPIO to be modified

• A adl_ioRead function to allow several GPIOs to be read from a previously
allocated handle

• A adl_ioReadSingle function to allow one GPIO to be read from a previously
allocated handle

• A adl_ioWrite function to write on several GPIOs from a previously allocated
handle

• A adl_ioWriteSingle function to allow one GPIO to be written from a
previously allocated handle

3.10.1 Required Header File

The header file for the GPIO functions is:

adl_gpio.h

API

GPIO Service

© Confidential Page: 108 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10.2 GPIO Types

3.10.2.1 The adl_ioCap_t structure

This structure gives information about io capabilities.

typedef struct
{
 u32 NbGpio; // The number of GPIO managed by ADL.
 u32 NbGpo; // The number of GPO managed by ADL.
 u32 NbGpi; // The number of GPI managed by ADL.
} adl_ioCap_t;

3.10.2.2 The adl_ioDefs_t type

This type defines the GPIO label.

This is a bit field:

• b0-b15 are use to identify the io

o see adl_ioLabel_e type, section 3.10.2.4

• b16-b31 usage depends of the command

o see adl_ioLevel_e type, section 83.10.2.4

o see adl_ioDir_e type, section 3.10.2.5

o see adl_ioStatus_e type, section 3.10.2.9

o see adl_ioCap_e type, section 3.10.2.7

o see adl_ioError_e type, section 3.10.2.6

3.10.2.3 The adl_ioLabel_e type

This type lists the label field definition (b0-b15 of adl_ioDefs_t). Each IO is identified
by a number and a type. Please see also adl_ioDefs_t (section 3.10.2.1) for the other
fields.

• Code

type def enum
{
 ADL_IO_NUM_MSK = (0xFFF),
 ADL_IO_TYPE_POS = 12,
 ADL_IO_TYPE_MSK = (3UL<<ADL_IO_TYPE_POS),
 ADL_IO_GPI = (1UL<<ADL_IO_TYPE_POS),
 ADL_IO_GPO = (2UL<<ADL_IO_TYPE_POS),
 ADL_IO_GPIO = (3UL<<ADL_IO_TYPE_POS),
 _IO_LABEL_MSK = ADL_IO_NUM_MSK | ADL_IO_TYPE_MSK
} adl_ioLabel_e

API

GPIO Service

© Confidential Page: 109 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description

ADL_IO_NUM_MSK Number field (b0-b11; 0->4095)

ADL_IO_TYPE_MSK Type field (b12-b13):

ADL_IO_GPI - To identify a GPI

ADL_IO_GPO - To identify a GPO

ADL_IO_GPIO - To identify a GPIO (GPO + GPI)

ADL_IO_LABEL_MSK Mask including ADL_IO_NUM_MSK and ADL_IO_TYPE_MSK

Note:

b14-b15 are reserved.

3.10.2.4 The adl_ioLevel_e type

This type lists the level field definition (b16 of adl_ioDefs_t). Please see also
adl_ioDefs_t (section 3.10.2.1) for the other fields.

• Code

type def enum
{
 ADL_IO_LEV_POS = 16,
 ADL_IO_LEV_MSK = (1UL<<ADL_IO_LEV_POS),
 ADL_IO_LEV_HIGH = (1UL<<ADL_IO_LEV_POS),
 ADL_IO_LEV_LOW = (0UL<<ADL_IO_LEV_POS)
} adl_ioLabel_e

• Description

ADL_IO_LEV_MSK Level field: the Level of GPIO

ADL_IO_LEV_HIGH - High Level

ADL_IO_LEV_LOW - Low Level

3.10.2.5 The adl_ioDir_e type

This type lists the direction field definition (b17-b18 of adl_ioDefs_t). Please see also
adl_ioDefs_t (section 3.10.2.1) for the other fields.

• Code

type def enum
{
 ADL_IO_DIR_POS = 17,
 ADL_IO_DIR_MSK = (3UL<<ADL_IO_DIR_POS),
 ADL_IO_DIR_OUT = (0UL<<ADL_IO_DIR_POS),
 ADL_IO_DIR_IN = (1UL<<ADL_IO_DIR_POS),
 ADL_IO_DIR_TRI = (2UL<<ADL_IO_DIR_POS)
} adl_ioDir_e type

API

GPIO Service

© Confidential Page: 110 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description

ADL_IO_DIR_MSK - Dir field: The direction of GPIO

ADL_IO_DIR_OUT - Set as Output

ADL_IO_DIR_IN - Set as Input

ADL_IO_DIR_TRI - Set as a Tristate

3.10.2.6 The adl_ioError_e type

This type lists the error field definition (b28-b31 of adl_ioDefs_t). Please see also
adl_ioDefs_t (section 3.10.2.1) for the other fields.

• Code

type def enum
{
 ADL_IO_ERR_POS = 28,
 ADL_IO_ERR_MSK = (7UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR = (0UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_UNKWN = (1UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_USED = (2UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_BADDIR = (3UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_NIH = (4UL<<ADL_IO_ERR_POS),
 ADL_IO_GERR_POS = 31,
 ADL_IO_GERR_MSK = (1UL<<ADL_IO_GERR_POS),
 ADL_IO_GNOERR = (0UL<<ADL_IO_GERR_POS),
 ADL_IO_GERR = (1UL<<ADL_IO_GERR_POS)
 } ioError_e type

• Description

ADL_IO_ERR_MSK Error cause (b28-b30):

ADL_IO_ERR - Unidentified error

ADL_IO_ERR_UNKWN - Unknown GPIO

ADL_IO_ERR_USED - Already used

ADL_IO_ERR_BADDIR - Bad direction

ADL_IO_ERR_NIH - GPIO is not in the handle

ADL_IO_GERR_MSK General error field (b31):

ADL_IO_GNOERR - No Error (b28-30 are unsignificant)

ADL_IO_GERR - Error during the treatment (see b28-b30 for
 the cause)

API

GPIO Service

© Confidential Page: 111 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10.2.7 The adl_ioCap_e type

This type lists the capabilities field definition (b21-b22 of adl_ioDefs_t). It is only an
output. Please see also adl_ioDefs_t (section 3.10.2.1) for the other fields.

• Code

type def enum
{
 ADL_IO_CAP_POS = 21,
 ADL_IO_CAP_MSK = (3UL<<ADL_IO_CAP_POS),
 ADL_IO_CAP_OR = (1UL<<ADL_IO_CAP_POS),
 ADL_IO_CAP_IW = (2UL<<ADL_IO_CAP_POS)
 } adl_ioCap_e type

• Description

ADL_IO_CAP_MSK Capabilities field: Specials capabilities

ADL_IO_CAP_OR - Output is readable

ADL_IO_CAP_IW - Input is writable

3.10.2.8 The adl_ioStatus_e type

This type lists the status field definition (b19-b20 of adl_ioDefs_t). it is only an
output. Please see also adl_ioDefs_t (section 3.10.2.1) for the other fields.

• Code

type def enum
{
 ADL_IO_STATUS_POS = 19,
 ADL_IO_STATUS_MSK = (3UL<<ADL_IO_STATUS_POS),
 ADL_IO_STATUS_USED = (1UL<<ADL_IO_STATUS_POS),
 ADL_IO_STATUS_FREE = (0UL<<ADL_IO_STATUS_POS)
} adl_ ioStatus_e type

• Description

ADL_IO_STATUS_MSK Status field: to get the status of the fields

ADL_IO_STATUS_USED - The IO is used by task

ADL_IO_STATUS_FREE - The IO is available

API

GPIO Service

© Confidential Page: 112 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10.2.9 The adl_ioEvent_e type

This type describes the GPIOs events received.

• Code

type def enum
{
 ADL_IO_EVENT_INPUT_CHANGED = 2
} adl_ ioEvent_e type

• Description

ADL_IO_EVENT_INPUT_CHANGED One or several of the subscribed inputs
have changed. This event will be
received only if a polling process is
required at GPIO subscription time.

3.10.3 The adl_ioGetCapabilitiesList Function

This function returns the Wireless CPU® GPIO capabilities list. For each hardware
available GPIO, the Wireless CPU® shall add an item in the GPIO capabilities list. A
GPIO is hardware available when it is not used by any feature.

Caution:

The returned GpioTab array must be released by the customer application when the
information is not useful any more.

• Prototype

s32 adl_ioGetCapabilitiesList (u32 * GpioNb,
 adl_ioDefs_t ** GpioTab,
 adl_ioCap_t * GpioTypeNb);

• Parameters

GpioNb:

Number of GPIO treated, it is the size of GpioTab array.

GpioTab:

Returns a pointer to a list containing GPIO capablities informations (using
adl_ioDefs_t ** type).

Outputs available for each array element:

o the GPIO label (see adl_ioLabel_e section 3.10.2.3).

o the GPIO direction (see adl_ioDir_e section 3.10.2.5).

o the GPIO capabilities (see adl_ioCap_e section 3.10.2.1).

o the GPIO status (see adl_ioStatus_e section 3.10.2.9)

GpioTypeNb:

Returned the number of each GPIO, GPO and GPI. GpioTypeNb is an
optional parameter, not used if set to NULL.

API

GPIO Service

© Confidential Page: 113 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success.

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

3.10.4 The adl_ioEventSubscribe Function

This function allows the Open AT® application to provide ADL with a call-back for
GPIO related events.

• Prototype

s32 adl_ioEventSubscribe (adl_ioHdlr_f GpioEventHandler);

• Parameters

GpioEventHandler:

Application provided event call-back function. Please refer to next chapter
for event descriptions.

• Returned values

o A positive or null value on success:

 GPIO event handle, to be used on further GPIO API functions calls;

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_NO_MORE_HANDLES if the GPIO event service has been
subscribed to more than 128 timers.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level Interrupt
handler.

Note:

In order to set-up an automatic GPIO polling process, the adl_ioEventSubscribe
function has to be called before the adl_ioSubscribe.

API

GPIO Service

© Confidential Page: 114 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10.5 The adl_ioHdlr_f Call-back Type

Such a call-back function has to be provided to ADL through the
adl_ioEventSubscribe interface, in order to receive GPIO related events.

• Prototype

typedef void (*adl_ioHdlr_f) (s32 GpioHandle,
 adl_ioEvent_e Event,
 u32 Size,
 void * Param);

• Parameters

GpioHandle:

Read GPIO handle for the ADL_IO_EVENT_INPUT_CHANGED event.

Event:

Event is the received identifier; other parameters use depends on the event
type.

Size:

Number of items (read inputs or updated features) in the Param table.

Param:

Read value tables (using adl_ioDefs_t * type) for the
ADL_IO_EVENT_INPUT_CHANGED event.

Outputs available for each array element:

o the GPIO label (see adl_ioLabel_e 3.10.2.3).

o the GPIO level (see adl_ioLevel_e 3.10.2.4).

o the GPIO error information (see adl_ioError_e 3.10.2.6).

API

GPIO Service

© Confidential Page: 115 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10.6 The adl_ioEventUnsubscribe Function

This function allows the Open AT® application to unsubscribe from the GPIO events
notification.

• Prototype

s32 adl_ioEventUnsubscribe (s32 GpioEventHandle);

• Parameters

GpioEventHandle:

Handle previously returned by the adl_ioEventSubscribe function.

• Returned values

o A OK on success

o A negative error value otherwise:
 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

 ADL_RET_ERR_NOT_SUBSCRIBED if no GPIO event handler has been
subscribed,

 ADL_RET_ERR_BAD_STATE if a polling process is currently running
with this event handle.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

API

GPIO Service

© Confidential Page: 116 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Example:

void my_ioGetCapabilitiesList ()
 {
 u32 My_Loop;
 ascii * My_Message = adl_memGet (100);
 u32 My_GpioNb;
 adl_ioDefs_t * My_GpioTab = NULL;
 adl_ioCap_t GpioTypeNb;

 adl_ioGetCapabilitiesList (&My_GpioNb , &My_GpioTab ,
 &GpioTypeNb);

 wm_sprintf (My_Message , "\r\nRessources : %d GPIO, %d GPI and
 %d GPO \r\n" , GpioTypeNb.NbGpio , GpioTypeNb.NbGpi ,
 GpioTypeNb.NbGpo);
 adl_atSendResponse (ADL_AT_UNS, My_Message);

 adl_atSendResponse (ADL_AT_UNS, "\r\nList of GPIO :\r\n");

 for (My_Loop = 0 ; My_Loop < My_GpioNb ; My_Loop++)
 {
 switch (My_GpioTab [My_Loop] & ADL_IO_TYPE_MSK)
 {
 case ADL_IO_GPI :
 wm_sprintf (My_Message, "GPI %d \r\n",
 (My_GpioTab [My_Loop] & ADL_IO_NUM_MSK));
 break;
 case ADL_IO_GPIO :
 wm_sprintf (My_Message, "GPIO %d \r\n",
 (My_GpioTab [My_Loop] & ADL_IO_NUM_MSK));
 break;
 case ADL_IO_GPO :
 wm_sprintf (My_Message, "GPO %d \r\n",
 (My_GpioTab [My_Loop] & ADL_IO_NUM_MSK));
 break;
 }
 adl_atSendResponse (ADL_AT_UNS, My_Message);

 ... // customer treatment

 }

 adl_memRelease (My_Message);

 // My_GpioTab must be released by the customer application
 adl_memRelease (My_GpioTab);
 }

API

GPIO Service

© Confidential Page: 117 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10.7 The adl_ioSubscribe Function

This function subscribes to some GPIOs. For subscribed inputs, a polling system can
be configured in order to notify a previously subscribed GPIO event handler with an
ADL_IO_EVENT_INPUT_CHANGED event.

• Prototype

s32 adl_ioSubscribe (u32 GpioNb,
 adl_ioDefs_t* GpioConfig,

 u8 PollingTimerType,
 u32 PollingTime,
 s32 GpioEventHandle);

• Parameters

GpioNb:

Size of the GpioConfig array.

GpioConfig:

GPIO subscription configuration array, which contains GpioNb elements. For
each element, the adl_ioDefs_t structure members have to be configured.

o Inputs to set for each array element:

 the label of the GPIO to subscribe (see adl_ioLabel_e section
3.10.2.3).

 the GPIO direction (see adl_ioDir_e section 3.10.2.5).

 the GPIO level, only if the GPIO is an output (see adl_ioLevel_e
section 3.10.2.4.

o Outputs available for each array element:

 the GPIO error information (see adl_ioError_e section 3.10.2.6).

PollingTimerType:

Type of the polling timer (if required); defined values are:

ADL_TMR_TYPE_100MS 100 ms granularity timer

ADL_TMR_TYPE_TICK 18.5 ms tick granularity timer

PollingTime:

If some GPIO are allocated as inputs, this parameter represents the time
interval between two GPIO polling operations (unit is dependent on the
PollingTimerType value).

Please note that each required polling process uses one of the available ADL
timers (Reminder: up to 32 timers can be simultaneously subscribed).

If no polling is requested, this parameter has to be 0.

API

GPIO Service

© Confidential Page: 118 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

GpioEventHandle:

GPIO event handle (previously returned by adl_ioEventSubscribe function).
Associated event handler will receive an ADL_IO_EVENT_INPUT_CHANGED event
each time one of the subscribed inputs state has changed.

If no polling is requested, this parameter is ignored.

• Returned values

o A positive or null value on success:

 GPIO handle to be used on further GPIO API functions calls;

o A negative error value otherwise (No GPIO is reserved):
 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_DONE refers to the field 3.10.2.6 adl_ioError_e for
more information.

 ADL_RET_ERR_NO_MORE_TIMERS if there is no timer available to start
the polling process required by application,

 ADL_RET_ERR_NO_MORE_HANDLES if no more GPIO handles are
available.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level Interrupt handler (the function is forbidden in this context).

3.10.8 The adl_ioUnsubscribe Function

This function un-subscribes from a previously allocated GPIO handle.

• Prototype

s32 adl_ioUnsubscribe (s32 GpioHandle);

• Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

• Returned values

o A OK on success.

o A negative error value otherwise:

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level Interrupt handler (the function is forbidden in this context).

API

GPIO Service

© Confidential Page: 119 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.10.9 The adl_ioSetDirection Function

This function allows the direction of one or more previously allocated GPIO to be
modified.

• Prototype

s32 adl_ioSetDirection (s32 GpioHandle,
 u32 GpioNb,
 adl_ioDefs_t* GpioDir);

• Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

GpioNb:

Size of the GpioDir array.

GpioDir:

GPIO direction configuration structure array (using the adl_ioDefs_t * type).

o Inputs to set for each array element:
 the label of the GPIO to modify (see adl_ioLabel_e section

3.10.2.3).

 the new GPIO direction (see adl_ioDir_e section 3.10.2.5).

o Outputs available for each array element:
 the GPIO error information (see adl_ioError_e section 3.10.2.6)

• Returned values

o OK on success.

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_DONE refers to the field 3.10.2.6 adl_ioError_e for
more information for each GPIO. If the error information is
ADL_IO_GNOERR, the process has been completed with success for
this GPIO.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level Interrupt handler (the function is forbidden in this context).

3.10.10 The adl_ioRead Function

This function allows several GPIOs to be read from a previously allocated handle.

• Prototype

s32 adl_ioRead (s32 GpioHandle,
 u32 GpioNb,

 adl_ioDefs_t * GpioRead);

API

GPIO Service

© Confidential Page: 120 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

GpioNb:

Size of the GpioRead array.

GpioRead:

GPIO read structure array (using the adl_ioDefs_t * type).

o Inputs to set for each array element:
 the label of the GPIO to read (see adl_ioLabel_e section 3.10.2.3).

o Outputs available for each array element:
 the GPIO level value (see adl_ioLevel_e section 3.10.2.4).

 the GPIO error information (see adl_ioError_e section 3.10.2.6)

• Returned values

o OK on success (read values are updated in the GpioArray parameter).

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_DONE refers to the field 3.10.2.6 adl_ioError_e for
more information. If the error information is ADL_IO_GNOERR, the
process has been completed with success for this GPIO.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

3.10.11 The adl_ioReadSingle Function

This function allows one GPIO to be read from a previously allocated handle.

• Prototype

s32 adl_ioReadSingle (s32 GpioHandle,
 adl_ioDefs_t Gpio);

• Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

Gpio:

Identifier of the GPIO (see adl_ioLabel_e).

• Returned values

o GPIO read value on success (1 for a high level or 0 for a low level),

o A negative error value otherwise

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

API

GPIO Service

© Confidential Page: 121 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 ADL_RET_ERR_BAD_STATE if one of the required GPIO was not
subscribed as an input.

3.10.12 The adl_ioWrite Function

This function writes on several GPIOs from a previously allocated handle.

• Prototype

s32 adl_ioWrite (s32 GpioHandle,
 u32 GpioNb,
 adl_ioDefs_t * GpioWrite);

• Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

GpioNb:

Size of the GpioWrite array.

GpioWrite:

GPIO write structure array (using the adl_ioDefs_t * type).

o Inputs to set for each array element:
 the label of the GPIO to write (see adl_ioLabel_e section

3.10.2.3).

 the new GPIO level (see adl_ioLevel_e section 3.10.2.4).

o Outputs available for each array element:
 the GPIO error information (see adl_ioError_e section 3.10.2.6).

• Returned values

o OK on success.

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_DONE refers to the field 3.10.2.6 adl_ioError_e for
more information. If the error information is ADL_IO_GNOERR, the
process has been completed with success for this GPIO.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_BAD_STATE if one of the required GPIOs was not
subscribed as an output.

3.10.13 The adl_ioWriteSingle Function

This function allows one GPIO to be written from a previously allocated handle.

• Prototype

s32 adl_ioWriteSingle (s32 GpioHandle,
 adl_ioDefs_t Gpio,
 bool State);

http://80.70.40.55/ged/gedysdoc.nsf/vUNID/DAA7B6CE9064F409C12572B2003526C4/$FILE/mk:@MSITStore:C:/Documents and Settings/K S KUMAR/Desktop/Wavecom files/OS 6.65-5feb07/input/37517_adl_gpio_public_IFS.chm::/group__adl__gpio__public__IFS__Definitions.html#gac2d6b8bfe4dc1959efdb9cf8273aa80

API

GPIO Service

© Confidential Page: 122 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

Gpio:

Identifier of the GPIO (see adl_ioLabel_e).

State:

Value to be set on the output:

o TRUE for a high level.

o FALSE for a low level.
• Returned values

o OK on success.

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_BAD_STATE if one of the required GPIO was not
subscribed as an input.

3.10.14 Example

This example demonstrates how to use the GPIO service in a nominal case (error
cases not handled) on the Wireless CPU®.

Complete examples using the GPIO service are also available on the SDK (generic
Telemetry sample, generic Drivers library sample).

API

GPIO Service

© Confidential Page: 123 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

// Global variables & constants

// Subscription data
#define GPIO_COUNT1 2
#define GPIO_COUNT2 1

const u32 My_Gpio_Label1 [GPIO_COUNT1] = { 1 , 2 }
const u32 My_Gpio_Label2 [GPIO_COUNT2] = { 3 }

const adl_ioDefs_t MyGpioConfig1 [GPIO_COUNT1] =
{ { ADL_IO_GPIO | My_Gpio_Label1 [0] | ADL_IO_DIR_OUT | ADL_IO_LEV_LOW },
 { ADL_IO_GPIO | My_Gpio_Label1 [1] | ADL_IO_DIR_IN } };
 const adl_ioDefs_t MyGpioConfig2 [GPIO_COUNT2] =
{ { ADL_IO_GPIO | My_Gpio_Label2 [0] | ADL_IO_DIR_IN } };

// Gpio Event Handle
s32 MyGpioEventHandle;

// Gpio Handles
s32 MyGpioHandle1, MyGpioHandle2;

// GPIO event handler
void MyGpioEventHandler (s32 GpioHandle, adl_ioEvent_e Event, u32 Size,
void * Param)

{

 // Check event
 switch (Event)
 {
 case ADL_IO_EVENT_INPUT_CHANGED :
 {
 u32 My_Loop;
 // The subscribed input has changed
 for (My_Loop = 0 ; My_Loop < Size ; My_Loop++)
 {
 if ((ADL_IO_TYPE_MSK & Param[My_Loop])
 && ADL_IO_GPO)
 {
 TRACE ((1, "GPO %d new value: %d",
 (Param[My_Loop]) & ADL_IO_NUM_MSK ,
 (Param[My_Loop]) & ADL_IO_LEV_MSK) &&
 ADL_IO_LEV_HIGH));

API

GPIO Service

© Confidential Page: 124 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 }
 else
 {
 TRACE ((1, "GPIO %d new value: %d",
 (Param[My_Loop]) & ADL_IO_NUM_MSK ,
 (Param[My_Loop]) & ADL_IO_LEV_MSK) &&
 ADL_IO_LEV_HIGH));
 }
 }
 }
 break;
 }
 }

 ...
// Somewhere in the application code, used as an event handler
 void MyFunction (void)
 {
 // Local variables
 s32 ReadValue;

 // Subscribe to the GPIO event service
 MyGpioEventHandle = adl_ioEventSubscribe (MyGpioEventHandler);

 // Subscribe to the GPIO service (One handle without polling,
 // one with a 100ms polling process)
 MyGpioHandle1 = adl_ioSubscribe (GPIO_COUNT1, MyGpioConfig1, 0, 0,
0);
 MyGpioHandle2 = adl_ioSubscribe (GPIO_COUNT2, MyGpioConfig2,
 ADL_TMR_TYPE_100MS, 1, MyGpioEventHandle);

 // Set output
 adl_ioWriteSingle (MyGpioHandle1, ADL_IO_GPIO | My_Gpio_Label1
 [0] , TRUE);

 // Read inputs
 ReadValue = adl_ioReadSingle (MyGpioHandle1, ADL_IO_GPIO |
 My_Gpio_Label1 [1]);
 ReadValue = adl_ioReadSingle (MyGpioHandle2, ADL_IO_GPIO |
 My_Gpio_Label2 [0]);

 // Unsubscribe from the GPIO services
 adl_ioUnsubscribe (MyGpioHandle1);
 adl_ioUnsubscribe (MyGpioHandle2);

 // Unsubscribe from the GPIO event service
 adl_ioEventUnsubscribe (MyGpioEventHandle);
 }

API

Bus Service

© Confidential Page: 125 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11 Bus Service

The ADL supplies interface to handle bus operations.

The defined operations are:

• adl_busSubscribe to open a bus

• adl_busUnsubscribe to close a bus

• adl_busIOCtl to modify the behavior of the bus

• adl_busRead & adl_busReadExt to read on the a SPI or I2C bus

• adl_busWrite & adl_busWriteExt to write on the a SPI or I2C bus

• adl_busDirectWrite & adl_busDirectRead to write on the Parallel bus

3.11.1 Required Header File

The header file for the bus functions is:

adl_bus.h

3.11.2 Capabilities Registry Informations

3.11.2.1 The adl_busSpiCommonCap_e Type

SPI block common capabilities.

• Code:

typedef enum
{
 ADL_BUS_SPI_COMMON_CAP_MASTER = (1<<0),
 ADL_BUS_SPI_COMMON_CAP_SLAVE = (1<<1),
 ADL_BUS_SPI_COMMON_CAP_2W = (1<<2),
 ADL_BUS_SPI_COMMON_CAP_3W = (1<<3),
 ADL_BUS_SPI_COMMON_PADDING = 0x7fffffff
} adl_busSpiCommonCap_e;

• Description:

ADL_BUS_SPI_COMMON_CAP_MASTER The block can be used in master mode.

ADL_BUS_SPI_COMMON_CAP_SLAVE The block can be used in slave mode.
 Reserved for future use.

ADL_BUS_SPI_COMMON_CAP_2W The block can be configured to use 2
wires (DAT and CLK).

ADL_BUS_SPI_COMMON_CAP_3W The block can be configured to use 3
wires (MISO, MOSI and CLK).

API

Bus Service

© Confidential Page: 126 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.2.2 The adl_busSpiCap_e Type

SPI block capabilities in Master or Slave mode.

• Code:

typedef enum
{
 ADL_BUS_SPI_CAP_BUSY = (1<<0),
 ADL_BUS_SPI_CAP_LOAD = (1<<1),
 ADL_BUS_SPI_CAP_CS_NONE = (1<<2),
 ADL_BUS_SPI_CAP_CS_GPIO = (1<<3),
 ADL_BUS_SPI_CAP_CS_HARD = (1<<4),
 ADL_BUS_SPI_CAP_MSB = (1<<5),
 ADL_BUS_SPI_CAP_LSB = (1<<6),
 ADL_BUS_SPI_CAP_MICROWIRE = (1<<7),
 ADL_BUS_SPI_CAP_MASK = (1<<8),
 ADL_BUS_SPI_CAP_SHIFT = (1<<9),
 ADL_BUS_SPI_CAP_PADDING = 0x7fffffff
} adl_busSpiCap_e;

• Description:

ADL_BUS_SPI_CAP_BUSY The block can use a BUSY signal.

ADL_BUS_SPI_CAP_LOAD The block can use a LOAD signal.

ADL_BUS_SPI_CAP_CS_NONE The block can work without Chip Select.

ADL_BUS_SPI_CAP_CS_GPIO The block can work with a GPIO as Chip
 Select.

ADL_BUS_SPI_CAP_CS_HARD The block can work with a dedicated
 hardware pin as Chip Select.

ADL_BUS_SPI_CAP_MSB The block can send data MSB first.

ADL_BUS_SPI_CAP_LSB The block can send data LSB first.

ADL_BUS_SPI_CAP_MICROWIRE The block can be used in Microwire mode.

ADL_BUS_SPI_CAP_MASK The block has a mask possibility.

ADL_BUS_SPI_CAP_SHIFT The block has a shift possibility.

API

Bus Service

© Confidential Page: 127 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.2.3 The adl_busI2CCap_e Type

I2C block capabilities.

• Code:

typedef enum
{
 ADL_BUS_I2C_CAP_ADDR_10_BITS = (1<<0),
 ADL_BUS_I2C_CAP_MASTER = (1<<1),
 ADL_BUS_I2C_CAP_SLAVE = (1<<2),
 ADL_BUS_I2C_CAP_CLK_FAST = (1<<3),
 ADL_BUS_I2C_CAP_CLK_HIGH = (1<<4),
 ADL_BUS_I2C_CAP_ADD_SIZE_8 = (1<<5),
 ADL_BUS_I2C_CAP_ADD_SIZE_16 = (1<<6),
 ADL_BUS_I2C_CAP_ADD_SIZE_24 = (1<<7),
 ADL_BUS_I2C_CAP_ADD_SIZE_32 = (1<<8),
 ADL_BUS_I2C_CAP_PADDING = 0x7fffffff
} adl_busI2CCap_e;

• Description:

ADL_BUS_I2C_CAP_ADDR_10_BITS The block can use 10 bits addressing
mode.

ADL_BUS_I2C_CAP_MASTER The block can be used in master mode.

ADL_BUS_I2C_CAP_SLAVE The block can be used in slave mode.

 Reserved for future use.

ADL_BUS_I2C_CAP_CLK_FAST The block can use Fast clock (400

 kbits/s).
ADL_BUS_I2C_CAP_CLK_HIGH The block can use High Speed clock (3.4

 Mbits/s).
ADL_BUS_I2C_CAP_ADD_SIZE_8 The address size can be 8 bits (see

 ADL_BUS_CMD_SET_ADD_SIZEe IOCtl
 command).

ADL_BUS_I2C_CAP_ADD_SIZE_16 The address size can be 16 bits (see
 ADL_BUS_CMD_SET_ADD_SIZE IOCtl
 command).

ADL_BUS_I2C_CAP_ADD_SIZE_24 The address size can be 24 bits (see
 ADL_BUS_CMD_SET_ADD_SIZE IOCtl
 command).

 ADL_BUS_I2C_CAP_ADD_SIZE_32 The address size can be 32 bits
 (see ADL_BUS_CMD_SET_ADD_SIZE IOCtl
 command).

API

Bus Service

© Confidential Page: 128 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.3 Common Data Structures and Enumerations

ADL provides capabilities information about the BUS service, thanks to the registry
service.

The following entries are defined in the registry:

Registry entry Type Description

i2c_NbBlocks3 INTEGER
The number of i2c blocks managed by the
Wireless CPU®

i2c_xx_Cap INTEGER

The capabilities of the block, defined as a
combination of the adl_busI2CCap_e type
values.

i2c_xx_MaxLength
Unsigned
INTEGER4

The maximum amount of items that can be
passed in a I2C read/write operation

spi_NbBlocks3 INTEGER
The number of spi blocks managed by the
Wireless CPU®

spi_xx_Common INTEGER

The generic capabilities of the block, defined
as a combination of the
adl_busSpiCommonCap_e type values.

spi_xx_ClockDivStep INTEGER

The number of steps of the clock divider
(see 3.11.2
adl_busSPISettings_t::Clk_Speed field
description)

spi_xx_MaxLength INTEGER
The maximum amount of items that can be
passed in a SPI read/write operation

spi_xx_DataSizes2 INTEGER
Available data sizes for
ADL_BUS_CMD_SET_DATA_SIZE IOCtl command

spi_xx_Master_OpcodeSizes2
Unsigned
INTEGER4

Available Opcode sizes for
ADL_BUS_CMD_SET_OP_SIZE IOCtl command

spi_xx_Master_AddressSizes2
Unsigned
INTEGER4

Available Address sizes for
ADL_BUS_CMD_SET_ADD_SIZE IOCtl command

spi_xx_Master_Cap INTEGER

The capabilities of the block in Master
mode, defined as a combination of the
adl_busSpiCap_e type

spi_xx_Master_MaxFreqClock INTEGER

The maximum frequency (in kHz) of the
clock in Master mode (see 3.11.2
adl_busSPISettings_t::Clk_Speed field
description).

Para_NbBlocks3 INTEGER
The number of parallel bus blocks managed
by the Wireless CPU®

Para_NbCS INTEGER
The number of chip select available to the
customer

API

Bus Service

© Confidential Page: 129 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Registry entry Type Description

Para_CS INTEGER

The list of currently accessible chip select *
This is a bitfield, each bit represents a CS
available. e.g. : Para_CS = 5, the Parallel bus
1 has 2 CS available : CS0 (b0) and CS2 (b2)

Para_xx_Addr INTEGER Current address of the Chip select XX

Para_xx_Freq INTEGER Current frequency of the Chip select XX

Note:

1. For the registry entry the xx part has to be replaced by the number of the
instance.
Example: if you want the capabilities of the I2C1 block the registry entry to use
will be i2c_01_Cap. Example: if you want the common capabilities of the SPI2
block the registry entry to use will be spi_02_Common.

2. Sizes are coded in a bit field, where size n is available when the n-1 bit is set.
Example: 0x80008003 means sizes 32 bits, 16 bits, 2 bits and 1 bit are available.

3. A SPI/I2C/Parallel bus block will be identified with a number from 1 to
spi_NbBlocks or i2c_NbBlocks or Parallel_NbBlocks.

4. Entries using the Unsigned INTEGER type have to be casted to an u32 value
after being retrieved from adl_regGetHWInteger function.

3.11.3.1 The _adl_busSettings_u Type

Generic bus settings union.

• Code

typedef struct
 {
 adl_busSPISettings_t SPI;
 adl_busI2Settings_t I2C;
 }adl_busSettings_u;

• Description

SPI

SPI member, previously handle SPI related settings.

I2C

I2C member, previously to handle 12C related settings.

API

Bus Service

© Confidential Page: 130 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.3.2 The adl_busID_e Type

This type allows to identify the bus types supported by the service.

• Code:

typedef enum
{
 ADL_BUS_ID_SPI, //SPI Bus
 ADL_BUS_ID_I2C, //I2C Bus
 ADL_BUS_ID_PARALLEL, //Parallel Bus
ADL_BUS_ID_LAST, //Reserved for internal use
} adl_busID_e;

3.11.3.3 The adl_busType_e Type

Former enumeration used to identify BUS types.

• Code:

typedef enum
{
 ADL_BUS_SPI1,
 ADL_BUS_SPI2,
 ADL_BUS_I2C,
 ADL_BUS_PARALLEL,
} adl_busType_e;

• Description:

ADL_BUS_SPI1 This constant was previously used to access
the Wireless CPU® SPI1 bus.

ADL_BUS_SPI2 This constant was previously used to access
the Wireless CPU® SPI2 bus

ADL_BUS_I2C This constant was previously used to access
the Wireless CPU® I2C bus

ADL_BUS_PARALLEL This constant was previously used to access
the Wireless CPU® Parallel bus

API

Bus Service

© Confidential Page: 131 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.4 SPI Bus Subscription Data Structures and Enumerations

3.11.4.1 The adl_busSPISettings_t Type

SPI bus settings.

• Code:

typedef struct
{
 u32 Clk_Speed;
 u32 Clk_Mode;
 u32 ChipSelect;
 u32 ChipSelectPolarity;
 u32 LsbFirst;
 adl_ioDefs_t GpioChipSelect;
 u32 LoadSignal;
 u32 DataLinesConf;
 u32 MasterMode;
 u32 BusySignal;
} adl_busSPISettings_t;

• Description:

Clk_Speed

The Clk_Speed parameter allows to modify SPI bus clock speed.

Allowed values are in the [1 - N] range, where N is the spi_xx_ClockDivStep
capability.

The SPI clock speed (in kHz) is defined using the formula below:

MaxFrequency / ClkSpeed

Where MaxFrequency is the Wireless CPU® maximum frequency for the
current SPI block (spi_xx_Master_MaxFreqClock capability).

Example: if Clk_Speed is set to 1, and Max_Frequency is 13000 kHz, the SPI
bus clock speed is set to 13000 kHz.

Clk_Mode

This parameter is the SPI clock mode (see 3.11.4.1 adl_busSPI_Clk_Mode_e).

ChipSelect

This parameter sets the pin used to handle the Chip Select signal (see
3.11.4.3 adl_busSPI_ChipSelect_e).

ChipSelectPolarity

This parameter sets the polarity of the Chip Select signal (see 3.11.4.4
adl_busSPI_ChipSelectPolarity_e).

API

Bus Service

© Confidential Page: 132 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

LsbFirst

This parameter defines the priority for data transmission through the SPI
bus, LSB or MSB first. This applies only to data. The Opcode and Address
fields sent are always sent with MSB first (see 3.11.4.5
adl_busSPI_LSBfirst_e).

GpioChipSelect

This parameter defines the GPIO Chip Select. This parameter is used only if
the ChipSelect parameter is set to the ADL_BUS_SPI_ADDR_CS_GPIO value.

LoadSignal

This parameter defines the LOAD signal behavior (see 3.11.4.7
adl_busSPI_Load_e).

DataLinesConf

This parameter defines if the SPI bus uses one single pin to handle both
input and output data signals, or two pins to handle them separately (see
3.11.4.8 adl_busSPI_DataLinesConf_e).

MasterMode

This parameter is the SPI master or slave running mode (see 3.11.4.9
adl_busSPI_MS_Mode_e).

BusySignal

This parameter defines the LOAD signal behavior (see 3.11.4.10
adl_busSPI_Busy_e).

3.11.4.2 The adl_busSPI_Clk_Mode_e Type

SPI bus Clock Modes. See also 3.11.2 adl_busSPISettings_t for more information.

• Code:

typedef enum
{
 ADL_BUS_SPI_CLK_MODE_0,
 ADL_BUS_SPI_CLK_MODE_1,
 ADL_BUS_SPI_CLK_MODE_2,
 ADL_BUS_SPI_CLK_MODE_3,
 ADL_BUS_SPI_CLK_MODE_MICROWIRE,
} adl_busSPI_Clk_Mode_e;

• Description:

ADL_BUS_SPI_CLK_MODE_0 Mode 0: rest state 0, data valid on rising edge.

ADL_BUS_SPI_CLK_MODE_1 Mode 1: rest state 0, data valid on falling edge.

ADL_BUS_SPI_CLK_MODE_2 Mode 2: rest state 1, data valid on rising edge.

ADL_BUS_SPI_CLK_MODE_3 Mode 3: rest state 1, data valid on falling edge

ADL_BUS_SPI_CLK_MODE_MICROWIRE Microwire mode. See also
ADL_BUS_SPI_CAP_MICROWIRE Capability.

API

Bus Service

© Confidential Page: 133 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.4.3 The adl_busSPI_ChipSelect_e Type

SPI bus Chip Select. See also 3.11.2 adl_busSPISettings_t for more information.

• Code:

typedef enum
{
 ADL_BUS_SPI_ADDR_CS_GPIO,
 ADL_BUS_SPI_ADDR_CS_HARD,
 ADL_BUS_SPI_ADDR_CS_NONE,
 } adl_busSPI_ChipSelect_e;

• Description:

ADL_BUS_SPI_ADDR_CS_GPIO Use a GPIO as Chip Select signal (the
GpioChipSelect parameter has to be used).

ADL_BUS_SPI_ADDR_CS_HARD Use the reserved hardware chip select pin for
the required bus.

ADL_BUS_SPI_ADDR_CS_NONE The Chip Select signal is not handled by the
ADL bus service. The application should
allocate a GPIO to handle itself the Chip Select
signal.

3.11.4.4 The adl_busSPI_ChipSelectPolarity_e Type

SPI bus Chip Select Polarity. See also 3.11.2 adl_busSPISettings_t for more
information.

• Code:

typedef enum
{
 ADL_BUS_SPI_CS_POL_LOW,
 ADL_BUS_SPI_CS_POL_HIGH,
 } adl_busSPI_ChipSelectPolarity_e;

• Description:

ADL_BUS_SPI_CS_POL_LOW Chip Select signal is active in Low state.

ADL_BUS_SPI_CS_POL_HIGH Chip select signal is active in High state.

3.11.4.5 The adl_busSPI_LSBfirst_e Type

SPI bus MSB/LSB First. See also 3.11.2 adl_busSPISettings_t for more information.

• Code:

typedef enum
{
 ADL_BUS_SPI_MSB_FIRST,
 ADL_BUS_SPI_LSB_FIRST
 } adl_busSPI_LSBfirst_e;

API

Bus Service

© Confidential Page: 134 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description:

ADL_BUS_SPI_MSB_FIRST Data buffer is sent with MSB first.

ADL_BUS_SPI_LSB_FIRST Data buffer is sent with LSB first.

3.11.4.6 The adl_busSPI_WriteHandling_e Type

SPI bus Write Handling.

Kept for ascendant compatibility. The 3.11.4.7 adl_busSPI_Load_e type shall be used
instead.

• Code:

typedef enum
{
 ADL_BUS_SPI_FRAME_HANDLING,
 ADL_BUS_SPI_WORD_HANDLING
 } adl_busSPI_WriteHandling_e;

• Description:

ADL_BUS_SPI_FRAME_HANDLING LOAD signal is enabled at the beginning of the
read/write process, and is disabled at the end
of this process.

ADL_BUS_SPI_WORD_HANDLING LOAD signal state changes on each written or
read word.

3.11.4.7 The adl_busSPI_Load_e Type

SPI bus LOAD signal configuration. See also 3.11.2 adl_busSPISettings_t &
ADL_BUS_SPI_CAP_LOAD for more information.

• Code:

typedef enum
{
 ADL_BUS_SPI_LOAD_UNUSED,
 ADL_BUS_SPI_LOAD_USED
 } adl_busSPI_Load_e;

• Description:

ADL_BUS_SPI_LOAD_UNUSED The LOAD signal is not used.

ADL_BUS_SPI_LOAD_USED The LOAD signal is used (LOAD signal state
changes on each written or read word; word
size is defined thanks to
ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.
Please refer to the PTS document for more
information about the LOAD signal).

API

Bus Service

© Confidential Page: 135 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.4.8 The adl_busSPI_DataLinesConf_e Type

SPI bus Data Lines configuration. See also 3.11.2 adl_busSPISettings_t,
ADL_BUS_SPI_COMMON_CAP_2W & ADL_BUS_SPI_COMMON_CAP_3W capabilities for more
information.

• Code:

typedef enum
{
 ADL_BUS_SPI_DATA_BIDIR,
 ADL_BUS_SPI_DATA_UNDIR
 } adl_busSPI_DataLinesConf_e;

• Description:

ADL_BUS_SPI_DATA_BIDIR 2 wires mode (DAT and CLK), one bi-
directional pin is used to handle both input &
output data signals.

ADL_BUS_SPI_DATA_UNDIR 3 wires mode (MISO, MOSI and CLK), two pins
are used to handle separately input & output
data signals.

3.11.4.9 The adl_busSPI_MS_Mode_e Type

Master/Slave bus mode configuration. See also 3.11.2 adl_busSPISettings_t,
ADL_BUS_SPI_COMMAN_CAP_MASTER & ADL_BUS_SPI_COMMAN_CAP_SLAVE capabilities for more
information.

• Code:

typedef enum
{
 ADL_BUS_SPI_MASTER_MODE,
 ADL_BUS_SPI_SLAVE_MODE
 } adl_busSPI_MS_Mode_e;

• Description:

ADL_BUS_SPI_MASTER_MODE The SPI bus is running in master mode (default
value when adl_busSubscribe function is
used).

ADL_BUS_SPI_SLAVE_MODE The SPI bus is running in slave mode.

 Reserved for future use.

3.11.4.10 The adl_busSPI_Busy_e Type

SPI bus BUSY signal configuration. See also 3.11.2 adl_busSPISettings_t &
ADL_BUS_SPI_CAP_BUSY capability for more information.

API

Bus Service

© Confidential Page: 136 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Code:

typedef enum
{
 ADL_BUS_SPI_BUSY_UNUSED,
 ADL_BUS_SPI_BUSY_USED
 } adl_busSPI_Busy_e;

• Description:

ADL_BUS_SPI_BUSY_UNUSED The BUSY signal is not used (default value
when adl_busSubscribe function is used).

ADL_BUS_SPI_BUSY_USED The BUSY signal is used

3.11.5 I2C Bus Subscription Data Structures and Enumerations

3.11.5.1 The adl_busI2CSettings_t Type

This structure defines the I2C bus settings for subscription.

Note:

Please refer to the Product Technical Specification for more information.

• Code:

typedef struct
{
 u32 ChipAddress;
 u32 Clk_Speed;
 u32 AddrLength;
 u32 MasterMode;
} adl_busI2CSettings_t;

• Description:

ChipAddress

This parameter sets the remote chip N bit address on the I2C bus.

Only b1 to bN bits are used (b0 bit and the most significant bytes are
ignored).

N Value depends on the Wireless CPU® capabilities, and on the
adl_busI2CSettings_t::AddrLength field configuration.

Example:

If the remote chip address is set to A0, the ChipAddress parameter has to
be set to the 0xA0 value.

API

Bus Service

© Confidential Page: 137 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Clk_Speed

This parameter sets the required I2C bus speed (see 3.11.5.1
adl_busI2C_Clk_Speed_e).

AddrLength

This parameter sets the remote chip address length configuration (see
3.11.5.3 adl_busI2C_AddrLength_e).

MasterMode

This parameter is the I2C master or slave running mode (see 3.11.5.4
adl_busI2C_MS_Mode_e).

3.11.5.2 The adl_busI2C_Clk_Speed_e Type

I2C bus Clock Speed. See also 3.11.7.3 adl_busI2CSettings_t,
ADL_BUS_I2C_CAP_CLK_FAST & ADL_BUS_I2C_CAP_CLK_HIGH capabilities for more
information.

• Code:

typedef enum
{
 ADL_BUS_I2C_CLK_STD
 ADL_BUS_I2C_CLK_FAST
 ADL_BUS_I2C_CLK_HIGH
 } adl_busI2C_Clk_Speed_e;

• Description:

ADL_BUS_I2C_CLK_STD Standard I2C bus speed (100 kbits/s).

ADL_BUS_I2C_CLK_FAST Fast I2C bus speed (400 kbits/s).

ADL_BUS_I2C_CLK_HIGH High I2C bus speed (3.4 Mbits/s).

3.11.5.3 The adl_busI2C_AddrLength_e Type

I2C bus chip address length. See also 3.11.7.3 adl_busI2CSettings_t &
ADL_BUS_I2C_CAP_ADDR_10BITS capability for more information.

• Code:

typedef enum
{
 ADL_BUS_I2C_ADDR_7_BITS
 ADL_BUS_I2C_ADDR_10_BITS
 } adl_busI2C_AddrLength_e;

• Description:

ADL_BUS_I2C_ADDR_7_BITS Chip address is 7 bits long (default value if
adl_busSubscribe function is used).

ADL_BUS_I2C_ADDR_10_BITS Chip address is 10 bits long.

API

Bus Service

© Confidential Page: 138 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.5.4 The adl_busI2C_MS_Mode_e Type

Master/Slave bus mode configuration. See also 3.11.7.3 adl_busI2CSettings_t &
ADL_BUS_I2C_CAP_MASTER capability for more information.

• Code:

typedef enum
{
 ADL_BUS_I2C_MASTER_MODE,
 ADL_BUS_I2C_SLAVE_MODE
 } adl_busI2C_MS_Mode_e;

• Description:

ADL_BUS_I2C_MASTER_MODE The I2C bus is running in master mode (default
value when adl_busSubscribe function is used).

ADL_BUS_I2C_SLAVE_MODE The I2C bus is running in slave mode.
 Reserved for future use.

3.11.6 Parallel Bus Subscription Data Structures and Enumerations

3.11.6.1 The adl_busParallelCs_t Type

This type defines the Parallel bus Chip Select.

Please refer to the Product Technical Specification for more information.

• Code:

typedef struct
{
 u8 Type; //Chip select type
 u8 Id; //Chip select identifier
 u8 Pad[2]; //Needed to be compliant with GCC alignment
} adl_busParallelCs_t;

• Description:

Type

This parameter defines the Chip Select signal type.

The only available value is ADL_BUS_PARA_CS_TYPE_CS. All other values
are reserved for future use (see adl_busParallel_CS_Type_e).

Id

This parameter defines the Chip Select identifier used.

API

Bus Service

© Confidential Page: 139 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.6.2 The adl_busParallelPageCfg_t Type

Configuration parameters for the page mode.

During page modes access, other asynchronous mode read timings still apply. This
structure hosts additional page-specific parameters.

• Code:

typedef struct
{
 u8 PageSize; //Page size
 u8 PageAccessCycles; //Between address change and valid
 data output
} adl_busParallelPageCfg_t;

3.11.6.3 The adl_busParallelSettings_t Type

Parallel bus settings.

• Code

typedef struct
{
 u8 Width;
 u8 Mode;
 u8 pad [2];
 adl_busParallelTimingsCfg_t ReadCfg;
 adl_busParallelTimingsCfg_t WriteCfg;
 adl_busParallelCs_t Cs;
 adl_busParallelPageCfg_t PageCfg;
 adl_busParallelSynchronousCfg_t SynchronousCfg;
 u32 AddressPin;
} adl_busSPISettings_t;

• Description:

Width

This parameter defines the read/write process data buffer items bit size,
using the adl_busParallelSize_e type.

Mode

This parameter defines the required parallel bus standard mode to be used,
using the adl_busParallel_Bus_Mode_e type.

ReadCfg

Define the timing configuration for each read and write process, using the
adl_busParallelTimingCfg_t type.

API

Bus Service

© Confidential Page: 140 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

WriteCfg

Define the timing configuration for each read and write process, using the
adl_busParallelTimingCfg_t type.

Cs

Configuration parameters for the page mode.

During page modes access, other asynchronous mode read timings still
apply. This structure hosts additional page-specific parameters.

PageCfg

Configuration parameters for the page mode.

During page modes access, other asynchronous mode read timings still
apply. This structure hosts additional page-specific parameters.

SynchronousCfg

Configuration of the synchronous mode.

This structure hosts the parameters used to configure the synchronous
mode accesses.

AddressPin

Select the pin used for the parallel bus.
This is a bitfield, each bit represents a pin of the parrallel bus.
e.g.: 0x03, two address pin are used (A0 and A1).

3.11.6.4 The adl_busParallelSynchronousCfg_t Type

Configuration parameters for the page mode.

This structure hosts the parameters used to configure the synchronous mode
accesses.

• Code:

typedef struct
{
 u8 BurstSize; //Size of Burst size
 u8 ClockDivisor; //Main Memory clock divider
 s32 UseWaitEnable:1; //WS generation using WAIT#
 s32 WaitActiveDuringWS:1; //WAIT# during or 1-cycle before

 WS
 s32 Reserved:30; //unused

} adl_busParallelSynchronousCfg_t;

API

Bus Service

© Confidential Page: 141 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.6.5 The adl_busParallelTimingCfg_t Type

Parallel bus Timing structure.

This type defines the Parallel bus timings.

Note:

The parameters configuration defines the parallel bus timing, in cycles number
(please refer to the Product Technical Specification for more information), according to
the bus mode required at subscription time (see adl_busParallel_Bus_Mode_e).

Example: In 26 MHz cycles number, one cycle duration is 1/26 MHz = ~38.5 ns

• Code

typedef struct
{
 u8 AccessTime;
 u8 SetupTime;
 u8 HoldTime;
 u8 TurnaroundTime;
 u8 OptoOpTurnaroundTime;
 u8 pad[3]; // Internal use only
} adl_busParallelTimingCfg_t;

• Description:

AccessTime

Access Time (see adl_busParallel_Bus_Mode_e and the Product Technical
Specification).

SetupTime

Setup Time (see adl_busParallel_Bus_Mode_e and the Product Technical
Specification).

HoldTime

Hold Time (see adl_busParallel_Bus_Mode_e and the Product Technical
Specification).

TurnaroundTime

Turnaround Time (see adl_busParallel_Bus_Mode_e and the Product
Technical Specification).

OptoOpTurnaroundTime

Read-to-read/write-to-write turnaround Time.

(see adl_busParallel_Bus_Mode_e and the Product Technical Specification)

API

Bus Service

© Confidential Page: 142 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.6.6 The adl_busParallelSize_e Type

Bus access width.

Multiplexed modes spare pins by multiplexing data and addresses on the same pins.
All the access widths and access modes are not available, valid combinations depend
on the platform.

• Code

typedef enum
{
ADL_BUS_PARALLEL_WIDTH_INVALID, // reserved
ADL_BUS_PARALLEL_WIDTH_8_BITS, // 8-bit device
ADL_BUS_PARALLEL_WIDTH_16_BITS, // 16-bit device
ADL_BUS_PARALLEL_WIDTH_32_BITS, // 32-bit device
ADL_BUS_PARALLEL_WIDTH_16_BITS_MULTIPLEXED, // 16-bit multiplexed

device
ADL_BUS_PARALLEL_WIDTH_32_BITS_MULTIPLEXED //32-bit multiplexed

device
} adl_busParallelSize_e;

3.11.6.7 The adl_busParallel_Bus_Mode_e Type

Types of access.

Intel 8080 compatible and Motorola 6800 compatible asynchronous accesses modes
can be configured:

• Intel mode uses an output enable or read enable signal and a write enable
signal. In this read process example, Setup & Hold times are set to 1, and
Access & Turnaround times are set to 3.

API

Bus Service

© Confidential Page: 143 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Figure 5: Intel Mode Timing - Read Process Example

Figure 6: Intel Mode Timing - Write Process Example

• Motorola mode uses a read not write signal and an enable signal. The
polarity of the enable signal can be configured:

o E is active at high level with mode Motorola 0 (LOW)

o E is active at low level with mode Motorola 1 (HIGH)

The following timing behavior applies when the
ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_LOW (E signal low
polarity) or ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_HIGH (E signal
high polarity) modes are required at subscription time. In the example given,
the Access, Setup & Hold times are set to 1, and the Turnaround time is set
to 2.

API

Bus Service

© Confidential Page: 144 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Figure 7: Motorola Modes Timing Example

• Code

enum
{
ADL_BUS_PARALLEL_MODE_INVALID, // reserved
ADL_BUS_PARALLEL_MODE_ASYNC_INTEL, // Intel 8080 compatible
ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_LOW, // Motorola 6800

compatible, with E signal
low polarity

ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_HIGH, // Motorola 6800
compatible, with E signal
high polarity

ADL_BUS_PARALLEL_MODE_ASYNC_PAGE, // Page mode
ADL_BUS_PARALLEL_MODE_SYNC_READ_ASYNC_WRITE, // Synchronous only in

reads
ADL_BUS_PARALLEL_MODE_SYNC_READ_WRITE // Full synchronous mode
} adl_busParallel_Bus_Mode_e

3.11.6.8 The adl_busParallel_CS_Type_e Type

Parallel bus chip select type.

See also: adl_busParallelCs_t (section 3.11.6.1) for more informations.

• Code

enum
{
ADL_BUS_PARA_CS_TYPE_CS, // Chip select type
} adl_busParallel_CS_Type_e

API

Bus Service

© Confidential Page: 145 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Decription

The Type parameter defines the Chip Select signal type. The only available value is
ADL_BUS_PARA_CS_TYPE_CS. All other values are reserved for future use.

3.11.7 IOCtl Operations Data Structures and Enumerations

3.11.7.1 The adl_busAsyncoInfo_t Type

This structure lists the information returned when an asynchronous read/write
operation end event occurs.

• Code:

typedef struct
{
 s32 Result;
} adl_busAsyncoInfo_t;

• Description:

Result

Asynchronous read/write operation result code. See also adl_busWrite &
adl_busRead functions return values description for more information.

3.11.7.2 The adl_busEvt_t Type

This structure allows to define the interrupt handlers which will be notified when the
end of an asynchronous read/write operation event occurs.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - are
notified with the following parameters:

• the Source parameter will be set to ADL_IRQ_ID_SPI_EOT (for SPI bus
operation) or ADL_IRQ_ID_I2C_EOT (for I2C bus operation).

• the adl_irqEventData_t::SourceData field of the Data parameter should be
casted to the adl_busAsyncInfo_t * type, usable to retrieve information
about the current interrupt event (if the ADL_IRQ_OPTION_AUTO_READ option
has been required)

• the adl_irqEventData_t::Instance field of the Data parameter will have to be
considered as an u32 value, usable to identify which block has raised the
current interrupt event (i.e. the BlockId provided at subscription time in
adl_busSubscribe function).

• the adl_irqEventData_t::Context field of the Data parameter will be the
application context, provided when the adl_busReadExt or adl_busWriteExt
function was called. (It will be set to NULL if adl_busRead or adl_busWrite
function was used)

API

Bus Service

© Confidential Page: 146 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Code:

typedef struct
{
 s32 LowLevelIrqHandle;
 s32 HighLevelIrqHandle;
} adl_busEvt_t;

• Description:

LowLevelIrqHandle

Low level interrupt handler, previously returned by the adl_irqSubscribe
function.

This parameter is optional if the HighLevelIrqHandle parameter is supplied.

HighLevelIrqHandle

High level interrupt handler, previously returned by the adl_irqSubscribe
function.
This parameter is optional if the LowLevelIrqHandle parameter is supplied.

3.11.7.3 The adl_busSpiMaskShift_t Type

The parameter type for the ADL_BUS_CMD_SET_SPI_MASK_AND_SHIFT and
ADL_BUS_CMD_GET_SPI_MASK_AND_SHIFT IoCtl commands.

• Code:

typedef struct
{
 u32 w_Mask;
 u32 w_Value;
 adl_busMaskSPI_e Option;
 u8 Pad [3];
} adl_busSpiMaskShift_t;

• Description:

w_Mask

Each bit to "1" will stay unchanged and each bit to "0" will be replaced by
the w_Value ones.

w_Value

The value to set in the masked bits.

Option

Enabled/disabled Mask and Shift modes.

Pad

Internal use only.

API

Bus Service

© Confidential Page: 147 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.7.4 The adl_busMaskSPI_e Type

Definition of the parameters to enable/disable Mask and Shift modes.

• Code:

typedef enum
{
 ADL_BUS_SPI_MASK_ENA = (1L<<0),
 ADL_BUS_SPI_SHIFT_ENA = (1L<<1),
 } adl_busMaskSPI_e;

• Description:

ADL_BUS_SPI_MASK_ENA Mask mode is enabled.

ADL_BUS_SPI_SHIFT_ENA Shift mode is enabled.

3.11.7.5 The adl_busIoCtlCmd_e Type

Definition of the commands for adl_busIOCtl function.

• Code:

typedef enum
{
 ADL_BUS_CMD_SET_DATA_SIZE
 ADL_BUS_CMD_GET_DATA_SIZE
 ADL_BUS_CMD_SET_ADD_SIZE
 ADL_BUS_CMD_GET_ADD_SIZE
 ADL_BUS_CMD_SET_OP_SIZE
 ADL_BUS_CMD_GET_OP_SIZE
 ADL_BUS_CMD_LOCK
 ADL_BUS_CMD_UNLOCK
 ADL_BUS_CMD_GET_LAST_ASYNC_RESULT
 ADL_BUS_CMD_SET_ASYNC_MODE
 ADL_BUS_CMD_GET_ASYNC_MODE
 ADL_BUS_CMD_SET_SPI_MASK_AND_SHIFT
 ADL_BUS_CMD_GET_SPI_MASK_AND_SHIFT
 ADL_BUS_CMD_SET_PARALLEL_CFG
 ADL_BUS_CMD_GET_PARALLEL_CFG
 ADL_BUS_CMD_PARA_GET_ADDRESS
 ADL_BUS_CMD_PARA_GET_MAX_SETTINGS
 ADL_BUS_CMD_PARA_GET_MIN_SETTINGS
 ADL_BUS_CMD_PADDING = 0x7fffffff
} adl_busIoCtlCmd_e;

API

Bus Service

© Confidential Page: 148 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description:

ADL_BUS_CMD_SET_DATA_SIZE Set the size in bits of one data element.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32 value.

See also spi_xx_DataSizes Capability for the available values, default value is 8.

Note: Available for the SPI Bus only.
ADL_BUS_CMD_GET_DATA_SIZE Get the size in bits of one data element.

Parameters: The Param of adl_busIoCtl
is defined as a pointer to an u32 value.
Note: Available for the SPI Bus only.

ADL_BUS_CMD_SET_ADD_SIZE Set the size in bits of the address.
Parameters: The Param of adl_busIoCtl
is defined as a pointer to an u32 value.

See also spi_xx_MasterAddressSizes and
adl_busI2CCap_e capabilities for the
available values, default value is zero
(address is not used).

ADL_BUS_CMD_GET_ADD_SIZE Set the size in bits of the address.
Parameters: The Param of adl_busIoCtl
is defined as a pointer to an u32 value.

Note: Available for the SPI and I2C Bus
only.

ADL_BUS_CMD_SET_OP_SIZE Set the size in bits of the Opcode.
Parameters: The Param of adl_busIoCtl
is defined as a pointer to an u32 value.

Note: Available for the SPI Bus only.
ADL_BUS_CMD_GET_OP_SIZE Get the size in bits of the Opcode.

Parameters: The Param of adl_busIoCtl
is defined as a pointer to an u32 value.
Note: Available for the SPI Bus only.

ADL_BUS_CMD_CLOCK Lock a bus to avoid concurrent access
and to allow access to the bus in
interrupt context.
After this call, the block is locked and
only the handle which has locked it can
use this block.
Parameters:The Param of adl_busIoCtl is
not relevant and can be set to NULL.
Note: Available for the SPI and I2C Bus
only.

 Trying to lock a second time a given
block with the same handle will lead to
an ADL_RET_ERR_BAD_HDL error.

 Trying to lock a bus which is already
locked by another handle will lead the
current task context to be suspended,

API

Bus Service

© Confidential Page: 149 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

until the block is unlocked, thanks to the
ADL_BUS_CMD_UNLOCK command

Warning: This command is available
only in asynchronous mode.

ADL_BUS_CMD_UNLOCK Unlock a bus previously locked by
ADL_BUS_CMD_LOCK command.
Parameters: The Param of adl_busIoCtl
is not relevant and can be set to NULL.
Note: Available for the SPI and I2C Bus
only.
If a task context was suspended due to
a ADL_BUS_CMD_LOCK command on this
block, it will be resumed as soon as the
block is unlocked.

ADL_BUS_CMD_GET_LAST_ASYNC_RESULT Get the last asynchronous read/write
operation of return value.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an
adl_busAsyncInfo_t structure.
Note: Available for the SPI and I2C Bus
only.

ADL_BUS_CMD_SET_ASYNC_MODE Configure the
Synchronous/asynchronous mode
settings
Parameters: The Param of adl_busIOCtl is
defined as pointer on adl_busEvt_t.
When this parameter is set to a value
different of NULL, adl_busWrite and
adl_busRead behaviour become
asynchronous.
When it is set to NULL, read/write
operations are synchronous (default
value).

Note: Available for the SPI and I2C Bus
only

ADL_BUS_CMD_GET_ASYNC_MODE Get the current value of the
synchronous/asynchronous mode
settings.
Parameters: The Param of adl_busIOCtl
is defined as a pointer on adl_busEvt_t.

 If the current mode is synchronous, all
 elements of Param\ are NULL. Available
 for the SPI and I2C Bus only.

ADL_BUS_CMD_SET_SPI_MASK_AND_SHIFT Enable/disable and set the parameters
for the mask and shift modes.
Parameters: The Param of adl_busIOCtl
is defined as a pointer on
adl_busSpiMaskShift_t.

API

Bus Service

© Confidential Page: 150 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Note: Available for the SPI Bus only.
Warning: Reserved for future use

ADL_BUS_CMD_GET_SPI_MASK_AND_SHIFT Get the status and the parameters for
the mask and shift modes.
Parameters:The Param of adl_busIOCtl is
defined as a pointer on
adl_busSpiMaskShift_t.
Note: Available for the SPI Bus only.
Warning: Reserved for future use.

ADL_BUS_CMD_SET_PARALLEL_CFG Set the Parallel configuration for one
subscribed bus.
Parameters: The Param of adl_busIoCtl
is defined as a pointer on
adl_busParallelSettings_t.
Note: Available for the Parallel Bus only.

ADL_BUS_CMD_GET_PARALLEL_CFG Get the Parallel configuration for one
subscribed bus.
Parameters: The Param of adl_busIoCtl
is defined as a pointer on
adl_busParallelSettings_t.
Note: Available for the Parallel Bus only.

ADL_BUS_CMD_PARA_GET_ADDRESS Gets Parallel bus base where the chip
select can be addressed for one
subscribed bus.
Parameters: The Param of adl_busIoCtl
is defined as a pointer to an u32.
Note: Available for the Parallel Bus only.

ADL_BUS_CMD_PARA_GET_MAX_SETTINGS Gets Parallel bus maximum values.
Parameters: The Param of adl_busIoCtl
is defined as a pointer on
adl_busParallelSettings_t. Only the
Width, the Mode, the ReadCfg, the
WriteCfg and the SynchronousCfg
informations are availables
Note: Available for the Parallel Bus only.

ADL_BUS_CMD_PARA_GET_MIN_SETTINGS Gets Parallel bus minimum values.
Parameters: The Param of adl_busIoCtl
is defined as a pointer on
adl_busParallelSettings_t. Only the
Width, the Mode, the ReadCfg, the
WriteCfg and the SynchronousCfg
informations are availables
Note: Available for the Parallel Bus only.

API

Bus Service

© Confidential Page: 151 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.8 Read/Write Data Structures

3.11.8.1 The adl_busAccess_t Type

This structure sets the bus access configuration parameters, to be used on a
standard read or write process request (for SPI or I2C bus only).

• Code:

typedef struct
{
 u32 Address;
 u32 Opcode;
} adl_busAccess_t;

• Description

Address

The Address parameter allows up to 32 bits to be sent on the bus, before
starting the read or write process. The number of bits to send is set by the
ADL_BUS_CMD_SET_ADD_SIZE command. If less than 32 bits are required to be
sent; only the most significant bits are sent on the bus.

Opcode

The Opcode parameter allows up to 32 bits to be sent on the bus, before
starting the read or write process. The number of bits to send is set by the
ADL_BUS_CMD_SET_OP_SIZE command. If less than 32 bits are required to be
sent, only the most significant bits are sent on the bus.
Usable only for SPI bus (ignored for I2C bus).

Example: In order to send the "BBB" word on the bus prior to a read or write
process, the Opcode parameter has to be set to the 0xBBB00000 value, and
the OpcodeLength parameter has to be set to 12.

3.11.9 The adl_busSubscribe Function

This function subscribes to a specific bus, in order to write and read values to/from a
remote chip.

• Prototype

s32 adl_busSubscribe (adl_busID_e BusId,
 u32 BlockId,

 void * BusParam);

• Parameters

BusId:

Type of the bus to subscribe to, using the adl_busID_e type values.

BlockId:

ID of the block to use (in the range 1-N, where N is specific to each bus type
& Wireless CPU® platform; cf. the i2c_NbBlocks & spi_NbBlocks &
Para_NbBlocks Capabilities).

API

Bus Service

© Confidential Page: 152 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

BusParam:

Subscribed bus configuration parameters, using specifics parameters of the
bus (considered as an adl_busSPISettings_t *, an adl_busI2CSettings_t *
or an adl_busParallelSettings_t * pointer).

• Returned values

o Handle: A positive or null value on success:

 BUS handle, to be used in further BUS API functions calls;

o A negative error value:
 ADL_RET_ERR_PARAM if a parameter has an incorrect value

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the required bus is already
subscribed with the provided configuration

 ADL_RET_ERR_BAD_HDL if a GPIO required by the provided bus
configuration is currently subscribed by an Open AT® application.

 ADL_RET_ERR_NOT_SUPPORTED if the required bus type is not
supported by the Wireless CPU® on which the application is
running.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

Notes:

A bus is available only if the GPIO multiplexed with the corresponding feature is not
yet subscribed by an Open AT® application.

Once the bus is subscribed, the multiplexed GPIO with the required configuration are
not available for subscription by the Open AT® application, or through the standard
AT commands.

3.11.10 The adl_busUnsubscribe Function

This function unsubscribes from a previously subscribed.

• Prototype

s32 adl_busUnsubscribe (s32 Handle);

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

• Returned values

o OK on success.

o A negative error value otherwise.
 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

API

Bus Service

© Confidential Page: 153 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.11 The adl_busIOCtl Function

This function permits to modify the configuration and the behavior of a subscribed
bus.

• Prototype

s32 adl_busIOCtl (u32 Handle,
 adl_busIoCtlCmd_e Cmd,

 void * Param);

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

Cmd:

Command to be executed. (see 3.11.7.5 adl_busIoCtlcmd_e for more
information).

Param:

Parameter associated to the command. (see 3.11.7.5 adl_busIoCtlcmd_e for
more information).

• Returned values

o OK on success

o A negative error value:
 ADL_RET_ERR_PARAM if a parameter has an incorrect value

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_DONE if an error occurs during the operation.

 ADL_RET_ERR_BAD_HDL if the required command is not usable for the
current handle.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level Interrupt handler (the function is forbidden in this context).

3.11.12 The adl_busRead Function

This function reads data from a previously subscribed bus SPI or I2C type.

Note:

By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

• Prototype

s32 adl_busRead (s32 Handle,
 adl_busAccess_t * pAccessMode,
 u32 Length,
 void * pDataToRead);

API

Bus Service

© Confidential Page: 154 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure.

Length:

Number of items to read from the bus.

pDataToRead:

Buffer where to copy the read items.

• Returned values

o OK on success if the operation is pending (asynchronous mode).

o A negative error value otherwise:
 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler in synchronous mode (the function is
forbidden in this context).

Note:

Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

In asynchronous mode, the end of the read operation will be notified to the
application through an interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE
IOCtl command for more information.

3.11.13 The adl_busReadExt Function

This function reads data from a previously subscribed bus SPI or I2C type.

Note:

By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

• Prototype

s32 adl_busRead (s32 Handle,
 adl_busAccess_t * pAccessMode,
 u32 Length,
 void * pDataToRead

 void * context);

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

API

Bus Service

© Confidential Page: 155 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure.

Length:

Number of items to read from the bus.

pDataToRead:

Buffer where to copy the read items.

context:

Pointer on an application context, which will be provided back to the
application when the asynchronous read operation end event will occur.

• Returned values

o OK on success

o A negative error value otherwise:
 Error If a error during the operation

occurs.ADL_RET_ERR_UNKNOWN_HDL if the provided handle is
unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler in synchronous mode (the function is
forbidden in this context).

Note:

Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

In asynchronous mode, the end of the read operation will be notified to the
application through an interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE
IOCtl command for more information.

3.11.14 The adl_busWrite Function

This function writes on a previously subscribed SPI or I2C bus type.

Note:

By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

• Prototype

s32 adl_busWrite (s32 Handle,
 adl_busAccess_t* pAccessMode,
 u32 Lenght,
 void * pDataToWrite);

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

API

Bus Service

© Confidential Page: 156 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure;

Length:

Number of items to write on the bus.

pDataToWrite:

Data buffer to write on the bus.

• Returned values

o OK on success if the operation is pending (asynchronous mode).

o A negative error value otherwise.
 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler in synchronous mode (the function is
forbidden in this context).

Note:

Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

In asynchronous mode, the end of the write operation will be notified to the
application through an interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE
IOCtl command for more information.

3.11.15 The adl_busWriteExt Function

This function writes on a previously subscribed SPI or I2C bus type.

Note:

By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

• Prototype

s32 adl_busWrite (s32 Handle,
 adl_busAccess_t* pAccessMode,
 u32 Length,
 void * pDataToWrite

 void * context);

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure;

Length:

Number of items to write on the bus.

API

Bus Service

© Confidential Page: 157 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

pDataToWrite:

Data buffer to write on the bus.

context:

Pointer on an application context, which will be provided back to the
application when the asynchronous read operation end event will occur.

• Returned values

o OK on success

o A negative error value otherwise.
 Error If a error during the operation

occurs,ADL_RET_ERR_UNKNOWN_HDL if the provided handle is
unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler in synchronous mode (the function is
forbidden in this context).

Note:

Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

In asynchronous mode, the end of the write operation will be notified to the
application through an interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE
IOCtl command for more information.

3.11.16 The adl_busDirectRead Function

This function reads data about previously subscribed Parallel bus type.
This function is not usable with the SPI or I2C bus.

• Prototype

s32 adl_busDirectRead (s32 Handle,
 u32 ChipAddress,
 u32 DataLen,
 void * Data);

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

ChipAddress:

Chip address configuration. This address has to be a combination of the
desired address bits to set. Available address bits are returned in a mask at
subscription time.

DataLen:

Number of items to read from the bus.

API

Bus Service

© Confidential Page: 158 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Data:

Buffer into which the read items are copied, items bit size (8 or 16 bits) is
defined at subscription time in the configuration structure (see
adl_busParallelSettings_t).

• Returned values

o OK on success

o A negative error value otherwise.
 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value.

3.11.17 The adl_busDirectWrite Function

This function writes data on a previously subscribed Parallel bus type. This function
is not usable with the SPI or I2C bus.

• Prototype

s32 adl_busDirectWrite (s32 Handle,
 u32 ChipAddress,
 u32 Length,
 void * pDataToWrite);

• Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

ChipAddress:

Chip address configuration. This address has to be a combination of the
desired address bits to set. Available address bits are returned in a mask at
subscription time.

Length:

Number of items to write on the bus.

pDataToWrite:

Data buffer to write on the bus, item bit size (8 or 16 bits) is defined at
subscription time in the configuration structure (see
adl_busParallelSettings_t).

• Returned values

o OK on success

o A negative error value otherwise.
 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value.

API

Bus Service

© Confidential Page: 159 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.11.18 Example

This example simply demonstrates how to use the BUS service in a nominal case
(error cases are not handled) with a Wireless CPU®.

Complete examples of BUS service used are also available on the SDK.

// Global variables & constants

// SPI Subscription data
const adl_busSPISettings_t MySPIConfig =
{
 1, // No divider, use full clock speed
 ADL_BUS_SPI_CLK_MODE_0, // Mode 0 clock
 ADL_BUS_SPI_ADDR_CS_GPIO, // Use a GPIO to handle the Chip Select
 signal
 ADL_BUS_SPI_CS_POL_LOW, // Chip Select active in low state
 ADL_BUS_SPI_MSB_FIRST, // Data are sent MSB first
 ADL_IO_GPIO | 31, // Use GPIO 31 to handle the Chip Select
 signal
 ADL_BUS_SPI_LOAD_UNUSED, // LOAD signal not used
 ADL_BUS_SPI_DATA_BIDIR, // 2 Wires configuration
 ADL_BUS_SPI_MASTER_MODE, // Master mode
 ADL_BUS_SPI_BUSY_UNUSED // BUSY signal not used
};

// I2C Subscription data
const adl_busI2CSettings_t MyI2CConfig =
{
 0x20, // Chip address is 0x20
 ADL_BUS_I2C_CLK_STD // Chip uses the I2C standard clock speed
 ADL_BUS_I2C_ADDR_7_BITS, // 7 bits address length
 ADL_BUS_I2C_MASTER_MODE // Master mode
};

// Write/Read buffer sizes
#define WRITE_SIZE 5
#define READ_SIZE 3

// Access configuration structure
adl_busAccess_t AccessConfig =
{
 0, 0 // No Opcode, No Address
};

API

Bus Service

© Confidential Page: 160 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

// BUS Handles
s32 MySPIHandle, MyI2Chandle;

// Data buffers
u8 WriteBuffer [WRITE_SIZE], ReadBuffer [READ_SIZE];

...

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 s32 ReadValue;
 u32 AddSize=0;

 // Subscribe to the SPI1 BUS
 MySPIHandle = adl_busSubscribe (ADL_BUS_ID_SPI, 1, &MySPIConfig);

 // Subscribe to the I2C BUS
 MyI2CHandle = adl_busSubscribe (ADL_BUS_ID_I2C, 1, &MyI2CConfig);

 // Configure the Address length to 0 (rewrite the default value)
 adl_busIOCtl (MySPIHandle, ADL_BUS_CMD_SET_ADD_SIZE, &AddSize);
 adl_busIOCtl (MyI2CHandle, ADL_BUS_CMD_SET_ADD_SIZE, &AddSize);

 // Write 5 bytes set to '0' on the SPI & I2C bus
 wm_memset (WriteBuffer, WRITE_SIZE, 0);
 adl_busWrite (MySPIHandle, &AccessConfig, WRITE_SIZE, WriteBuffer);
 adl_busWrite (MyI2CHandle, &AccessConfig, WRITE_SIZE, WriteBuffer);

 // Read 3 bytes from the SPI & I2C bus
 adl_busRead (MySPIHandle, &AccessConfig, READ_SIZE, ReadBuffer);
 adl_busRead (MyI2CHandle, &AccessConfig, READ_SIZE, ReadBuffer);

 // Unsubscribe from subscribed BUS
 adl_busUnsubscribe (MySPIHandle);
 adl_busUnsubscribe (MyI2CHandle);
}

API

Error Management

© Confidential Page: 161 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.12 Error Management

ADL supplies Error service interface to allow the application to cause & intercept fatal
errors, and also to retrieve stored back-trace logs. For the ADL standard error codes,
please refer to section 0 Error Codes.

The defined operations are:

• A subscription function (adl_errSubscribe) to register an error event handler

• An unsubscription function (adl_errUnsubscribe) to cancel this event
handler registration

• An error handler callback (adl_errHdlr_f) to be notified each time a fatal
error occurs

• An error request function (adl_errHalt) to cause a fatal error

• A cleaning function (adl_errEraseAllBacktraces) to clean the back-traces
storage area

• An analysis status function (adl_errGetAnalysisState) to retrieve the current
back-trace analysis status

• An analysis start function (adl_errStartBacktraceAnalysis) to start the back-
trace analysis

• A retrieve function (adl_errRetrieveNextBacktrace) to retrieve the next back-
trace buffer for the current analysis.

3.12.1 Required Header File

The header file for the error functions is:

adl_error.h

API

Error Management

© Confidential Page: 162 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.12.2 Enumerations

3.12.2.1 The adl_ errInternalID_e Type

This type lists the error identifiers which should be generated by ADL.

• Code

typedef enum
{
 ADL_ERR_LEVEL_MEM = 0x0010,
 ADL_ERR_MEM_GET = ADL_ERR_LEVEL_MEM,
 ADL_ERR_MEM_RELEASE,
 ADL_ERR_LEVEL_FLH = 0x0020,
 ADL_ERR_FLH_READ = ADL_ERR_LEVEL_FLH,
 ADL_ERR_FLH_DELETE,
 ADL_ERR_LEVEL_APP = 0x0100
} adl_audioResources_e;

• Description

ADL_ERR_LEVEL_MEM: Base level for generated ADL memory errors.

ADL_ERR_MEM_GET: The platform runs out of dynamic memory.

ADL_ERR_MEM_RELEASE: Internal error on dynamic memory release operation.

Note:

Internal usage only. An application has no way to
produce such an error.

ADL_ERR_LEVEL_FLH: Base level for generated ADL flash errors.

ADL_ERR_FLH_READ: Internal error on flash object read operation.

Note:

 Internal usage only. An application has no way to
produce such an error

ADL_ERR_FLH_DELETE: Internal error on flash object deletes operation.

Note:

 Internal usage only. An application has no way to
produce such an error

ADL_ERR_LEVEL_APP: Base level for application generated errors.

API

Error Management

© Confidential Page: 163 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.12.2.2 The adl_errAnalysisState_e Type

This type is used to enumerate the possible states of the backtraces analysis.

• Code

typedef enum
{
 ADL_ERR_ANALYSIS_STATE_IDLE // No running analysis
 ADL_ERR_ANALYSIS_STATE_RUNNING // A backtrace analysis is
 running
} adl_errAnalysisState_e;

3.12.3 Error event handler

Such a call-back is called each time a fatal error is caused by the application or by
ADL.

Errors which should be generated by ADL are described in the adl_errInternalID_e
type.

An error is described by an identifier and a string (associated text), that are sent as
parameters to the adl_errHalt function.

If the error is processed and filtered the handler should return FALSE. The return
value TRUE will cause the Wireless CPU® to execute a fatal error reset with a
backtrace. A backtrace is composed of the provided message, and a call stack dump
taken at the function call time. It is readable by the Target Monitoring Tool (Please
refer to the Tools Manual [2] for more information).

• Prototype

typedef bool(*) adl_errHdlr_f(u16 ErrorID, ascii *ErrorString)

• Parameters

ErrorID

Error identifier, defined by the application or by ADL

ErrorString

Error string, defined by the application or by ADL

• Returned values

o TRUE If the handler decides to let the Wireless CPU® reset

o FALSE If the handler refuses to let the Wireless CPU® reset

Note

An error event handler is called in the same execution context than the code which
has caused the error.

If the error handler returns FALSE, the back-trace log is not registered in the Wireless
CPU® non-volatile memory.

API

Error Management

© Confidential Page: 164 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.12.4 The adl_errSubscribe Function

This function subscribes to error service and gives an error handler: this allows the
application to handle errors generated by ADL or by the adl_errHalt function. Errors
generated by the Open AT® Firmware can not be handled by such an error handler.

• Prototype

s8 adl_errSubscribe (adl_errHdlr_f ErrorHandler);

• Parameters

ErrorHandler:

Error Handler, Error event handler, defined using the adl_errHdlr_f type

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if the parameter has an incorrect value

o ADL_RET_ERR_ALREADY_SUBSCRIBED if the service is already subscribed

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.12.5 The adl_errUnsubscribe Function

This function unsubscribes from error service. Errors generated by ADL or by the
adl_errHalt function will no more are handled by the error handler.

• Prototype

s8 adl_errUnsubscribe (adl_errHdlr_f ErrorHandler);

• Parameters

ErrorHandler:

Error event handler, defined using the adl_errHdlr_f type, and previously
provided to adl_errSubscribe function.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if the parameter has an incorrect value

o ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown

o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.12.6 The adl_errHalt Function

This function causes an error, defined by its ID and string. If an error handler is
defined (using adl_errHdlr_f type), it will be called, otherwise a Wireless CPU® reset
will occur.

API

Error Management

© Confidential Page: 165 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

When the Wireless CPU® resets (if there is no handler, or if this one returns TRUE), a
back-trace log is registered in a non-volatile memory area, and also sent to the Target
Monitoring Tool (if this one is running).

Such a back-trace log contains:

• the call stack dump when the error occurs

• the provided error identifier & string

• the context name which has caused the error, following the same behaviour
than a trace display operation (please refer to the Debug Traces service for
more information).

• Prototype

void adl_errHalt (u16 ErrorID
 const ascii * ErrorStr);

• Parameters

ErrorID:

Error ID Error identifier. Shall be at least equal to ADL_ERR_LEVEL_APP (lower
values are reserved for ADL internal error events)

ErrorStr:

Error string to be provided to the error handler, and to be stored in the
resulting backtrace if a fatal error is required.

Note:

Please note that only the string address is stored in the backtrace, so this parameter
has not to be a pointer on a RAM buffer, but a constant string pointer. Moreover, the
string will only be correctly displayed if the current application is still present in the
Wireless CPU®s flash memory. If the application is erased or modified, the string will
not be correctly displayed when retrieving the backtraces.

Error identifiers below ADL_ERR_LEVEL_APP are for internal purpose so the application
should only use an identifier above ADL_ERR_LEVEL_APP

When the Wireless CPU® reset is due to a fatal error, the init type parameter will be
set to the ADL_INIT_REBOOT_FROM_EXCEPTION value (Please refer to the Tasks
Initialization Service for more information).

3.12.7 The adl_errEraseAllBacktraces Function

Backtraces (caused by the adl_errHalt function, ADL or the Firmware) are stored in
the Wireless CPU® non-volatile memory. A limited number of backtraces may be
stored in memory (depending on each backtrace size, and other internal parameters
stored in the same storage place). The adl_errEraseAllBacktraces function allows to
free and re-initialize this storage place.

• Prototype

s32 adl_errEraseAllBacktraces (void);

API

Error Management

© Confidential Page: 166 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success.ADL_RET_ERR_SERVICE_LOCKED if the function was called
from a low level Interrupt handler (the function is forbidden in this
context).

3.12.8 The adl_errStartBacktraceAnalysis Function

In order to retrieve backtraces from the product memory, a backtrace analysis process
has to be started with the adl_errStartBacktraceAnalysis function.

• Prototype

s8 adl_errStartBacktraceAnalysis (void);

• Returned values

o Handle A positive or null handle on success. This handle has to be
used in the next adl_errRetrieveNextBacktrace function call. It will be
valid until this function returns a ADL_RET_ERR_DONE code.

o ADL_RET_ERR_ALREADY_SUBSCRIBED if a backtrace analysis is already
running.

o ERROR if an unexpected internal error occurred.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

Note:

Only one analysis may be running at a time. The adl_errStartBacktraceAnalysis
function will return the ADL_RET_ERR_ALREADY_SUBSCRIBED error code if it is called while
an analysis is currently running.

3.12.9 The adl_errGetAnalysisState Function

This function may be used in order to know the current backtrace analysis process
state.

• Prototype

adl_errAnalysisState_e adl_errGetAnalysisState (void);

• Returned values

The current analysis state, using the adl_errAnalysisState_e type.

3.12.10 The adl_errRetrieveNextBacktrace Function

This function allows the application to retrieve the next backtrace buffer stored in the
Wireless CPU® memory. The backtrace analysis has to be started first with the
adl_errStartBacktraceAnalysis function.

• Prototype

s32 adl_errRetrieveNextBacktrace (u8 Handle
 u8 * BacktraceBuffer
 u16 Size);

API

Error Management

© Confidential Page: 167 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Handle:

Backtrace analysis handle, returned by the adl_errStartBacktraceAnalysis
function.

BacktraceBuffer:

Buffer in which the next retrieved backtrace will be copied. This parameter
may be set to NULL in order to know the next backtrace buffer required size.

Size:

Backtrace buffer size. If this size is not large enough, the ADL_RET_ERR_PARAM
error code will be returned.

• Returned values

o OK if the next stored backtrace was successfully copied in the
BacktraceBuffer parameter.

o Size: the required size for next backtrace buffer if the BacktraceBuffer
parameter is set to NULL.

o ADL_RET_ERR_PARAM if the provided Size parameter is not large enough.

o ADL_RET_ERR_NOT_SUBSCRIBED if the adl_errStartBacktraceAnalysis
function was not called before.

o ADL_RET_ERR_UNKNOWN_HDL if the provided Handle parameter is invalid.

o ADL_RET_ERR_DONE if the last backtrace buffer has already been retrieved.
The Handle parameter will now be unsubscribed and not usable any
more with the adl_errRetrieveNextBacktrace function. A new analysis
has to be started with the adl_errStartBacktraceAnalysis function.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

Note:

Once retrieved, the backtrace buffers may be stored (separately or concatenated), in
order to be sent (using the application’s protocol/bearer choice) to a remote server or
PC. Once retrieved as one or several files on a PC, this (these) one(s) may be read
using the Target Monitoring Tool and the Serial Link Manager in order to decode the
backtrace buffer(s). Please refer to the Tools Manual (document [2]) in order to know
how to process these files.

If adl_errRetrieveNextBacktrace is used you have to retrieve all next backtraces.
Otherwise it is impossible to retrieve the first backtraces. There is no way to cancel a
backtrace analysis; an analysis has always to be completed until all the backtraces
are retrieved.

3.12.11 Example

The code sample below illustrates a nominal use case of the ADL Error service public
interface (error cases are not handled).

API

Error Management

© Confidential Page: 168 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

// Error Event handler
bool MyErrorHandler (u16 ErrorID, ascii * ErrorStr)
{
 // Nothing to do but accept the reset
 return TRUE;
}

// Error string
const ascii * MyErrorString = "Application Generated Error";

// Error launch function
void MyFunction1 (void)
{
 // Subscribe to error service
 adl_errSubscribe (MyErrorHandler);

 // Cause an error
 adl_errHalt (ADL_ERR_LEVEL_APP + 1, MyErrorString);
}

// Error service unsubscription function
void MyFunction2 (void)
{
 // Unsubscribe from error service
 adl_errUnsubscribe (MyErrorHandler);
}

// Backtraces analysis event handler
u8 * MyAnalysisFunction (void)
{
 // Start analysis
 s8 AnalysisHandle = adl_errStartBacktraceAnalysis();

 // Get state
 adl_errAnalysisState_e State = adl_errGetAnalysisState();

 // Retrieve next backtrace size
 u8 * Buffer = NULL;
 u32 Size = adl_errRetrieveNextBacktrace (AnalysisHandle, Buffer, 0);

 // Retrieve next backtrace buffer
 Buffer = adl_memGet (Size);
 adl_errRetrieveNextBacktrace (AnalysisHandle, Buffer, Size);

 // Erase all backtraces
 adl_errEraseAllBacktraces();

 // Return backtrace buffer
 return Buffer;
}

API

SIM Service

© Confidential Page: 169 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.13 SIM Service

ADL provides this service to handle SIM and PIN code related events.

3.13.1 Required Header File

The header file for the SIM related functions is:

adl_sim.h

3.13.2 The adl_simSubscribe Function

This function subscribes to the SIM service, in order to receive SIM and PIN code
related events. This will allow to enter PIN code (if provided) if necessary.

• Prototype

s32 adl_simSubscribe (adl_simHdlr_f SimHandler,
 ascii * PinCode);

• Parameters

SimHandler:

SIM handler defined using the following type:

 typedef void (* adl_simHdlr_f) (u8 Event);

The events received by this handler are defined below.

Normal events:
 ADL_SIM_EVENT_PIN_OK

if PIN code is all right

 ADL_SIM_EVENT_REMOVED
if SIM card is removed

 ADL_SIM_EVENT_INSERTED
if SIM card is inserted

 ADL_SIM_EVENT_FULL_INIT
when initialization is done

Error events:
 ADL_SIM_EVENT_PIN_ERROR

if given PIN code is wrong

 ADL_SIM_EVENT_PIN_NO_ATTEMPT
if there is only one attempt left to entered the right PIN
code

 ADL_SIM_EVENT_PIN_WAIT
if the argument PinCode is set to NULL

On the last three events, the service is waiting for the
external application to enter the PIN code.

API

SIM Service

© Confidential Page: 170 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Please note that the deprecated ADL_SIM_EVENT_ERROR event has
been removed since the ADL version 3. This code was mentioned
in version 2 documentation, but was never generated by the SIM
service.

PinCode:

It is a string containing the PIN code text to enter. If it is set to NULL or if
the provided code is incorrect, the PIN code will have to be entered by the
external application.

This argument is used only the first time the service is subscribed. It is
ignored on all further subscriptions.

• Returned value

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

o ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already subscribed
with the same handler.

o ADL_RET_ERR_PARAM if the function was called with a null handler.

o OK if the function is successfully executed.

3.13.3 The adl_simUnsubscribe Function

This function unsubscribes from SIM service. The provided handler will not receive
SIM events any more.

• Prototype

s32 adl_simUnsubscribe (adl_simHdlr_f Handler)

• Parameters

Handler:

Handler used with adl_SimSubscribe function.

• Returned value

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

o OK if the function is successfully executed.

API

SIM Service

© Confidential Page: 171 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.13.4 The adl_simGetState Function

This function gets the current SIM service state.

• Prototype

void adl_simState_e adl_simGetState (void);

• Returned values

The returned value is the SIM service state, based on following type:

typedef enum
{
 ADL_SIM_STATE_INIT, // Service init state (PIN state not known yet)
 ADL_SIM_STATE_REMOVED, // SIM removed
 ADL_SIM_STATE_INSERTED, // SIM inserted (PIN state not known yet)
 ADL_SIM_STATE_FULL_INIT, // SIM Full Init done
 ADL_SIM_STATE_PIN_ERROR, // SIM error state
 ADL_SIM_STATE_PIN_OK, // PIN code OK, waiting for full init
 ADL_SIM_STATE_PIN_WAIT, // SIM inserted, PIN code not entered yet
 /* Always last State */
 ADL_SIM_STATE_LAST
} adl_simState_e;

3.13.5 adl_simEnterPIN Function

The adl_simEnterPIN interface enables the user to enter a new Pin Code.

• Prototype

s32 adl_simEnterPIN (ascii * PinCode);

• Parameters

ascii * PinCode

 a string holding the new Pin Code

• Returned values

o 0 if the new Pin Code has been correctly processed

o ADL_RET_ERR_PARAM if the Pin Code is not informed

o ADL_RET_ERR_BAD_STATE if the SIM is not waiting for any Pin Code to be
entered

Notes:

The Pin Code value is not definitively saved by the ADL SIM service and it is lost after
each reset.

The ADL SIM service doesn’t try to used the Pin Code provided if there is only one
attempt left to entered the right PIN code.

API

Open SIM Access Service

© Confidential Page: 172 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.14 Open SIM Access Service

The ADL Open SIM Access (OSA) service allows the application to handle APDU
requests & responses with an external SIM card, connected through one of the
Wireless CPU® interfaces (UART, SPI, I2C).

Note:

The Open SIM Access feature has to be enabled on the Wireless CPU® in order to
make this service available.

The Open SIM Access feature state can be read thanks to the AT+WCFM=5
command response value: this feature state is represented by the bit 5 (00000020 in
hexadecimal format).

Please contact your Wavecom distributor for more information on how to enable this
feature on the Wireless CPU®.

3.14.1 Required Header File

The header file for the OSA service definitions is:

adl_osa.h

3.14.2 The adl_osaSubscribe Function

This function allows the application to supply an OSA service handler, which will
then be notified on each OSA event reception.

Moreover, by calling this function, the application requests the Wavecom firmware to
close the local SIM connection, and to post SIM requests to the application from now.

• Prototype

s32 adl_osaSubscribe (adl_osaHandler_f OsaHandler);

• Parameters

OsaHandler:

OSA service handler supplied by the application.

Please refer to adl_osaHandler_f type definition for more information (see
paragraph 3.14.3).

• Returned values

o A positive or null value on success:

OSA service handle, to be used in further OSA service function calls. A
confirmation event will then be received in the service handler:

 ADL_OSA_EVENT_INIT_SUCCESS if the local SIM connection was
closed successfully,

 ADL_OSA_EVENT_INIT_FAILURE if a Bluetooth SAP connection is
running.

o A negative error value otherwise:

 ADL_RET_ERR_PARAM on a supplied parameter error,

API

Open SIM Access Service

© Confidential Page: 173 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 ADL_RET_ERR_NOT_SUPPORTED if the Open SIM access feature is not
enabled on the Wireless CPU®

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already
subscribed (the OSA service can only be subscribed one time).

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level Interrupt handler (the function is forbidden in this context).

3.14.3 The adl_osaHandler_f call-back Type

Such a call-back function has to be supplied to ADL on the OSA service subscription.
It will be notified by the service on each OSA event.

• Prototype

typedef void (* adl_osaHandler_f) (adl_osaEvent_e Event,
 adl_osaEventParam_u * Param);

• Parameters

Event:

OSA service event identifier, using one of the following defined values.

Event Type Use

ADL_OSA_EVENT_INIT_SUCCESS The OSA service has been successfully
subscribed:
The local SIM card has been shut down,
and,
From now on, all SIM requests will be
posted to on the application through the
OSA service.

ADL_OSA_EVENT_INIT_FAILURE The OSA service subscription has failed:
The Wireless CPU® is already connected
to a remote SIM through the Bluetooth
SAP profile (the SAP connection has to be
closed prior to subscribing to the OSA
service).

ADL_OSA_EVENT_ATR_REQUEST The application is notified with this event
after the ADL_OSA_EVENT_INIT_SUCCESS
one:
The Wavecom firmware is required for the
Answer To Reset data.
The application has to reset the remote
SIM card, and to get the ATR data in
order to post it back to the Wavecom
firmware through the
adl_osaSendResponse function.

API

Open SIM Access Service

© Confidential Page: 174 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Event Type Use

ADL_OSA_EVENT_APDU_REQUEST This event is received by the application
each time the Wavecom firmware has to
send an APDU request to the SIM card.
This request (notified to the application
through the Length & Data parameters)
has to be forwarded to the remote SIM by
the application, and has to read the
associated response in order to post it
back to the Wavecom firmware through
the adl_osaSendResponse function.

ADL_OSA_EVENT_SIM_ERROR This event is notified to the application:
If an error was notified to the Wavecom
firmware in a SIM response (posted
through the adl_osaSendResponse
function), or,
If the internal response time-out has
elapsed (a request event was sent to the
application, but no response was posted
back to the Wavecom firmware).
When this event is received, the OSA
service is automatically un-subscribed
and the Wavecom firmware resumes the
local SIM connection.

ADL_OSA_EVENT_CLOSED The application will receive this event
after un-subscribing from the OSA
service. The Wavecom firmware has
resumed the local SIM connection.

Param

Event parameters, using the following type:

typedef union
{

 adl_osaStatus_e ErrorEvent;
 struct {
 {
 u16 Length;
 u8 * Data;
 } RequestEvent;

} adl_osaEventParam_u;

API

Open SIM Access Service

© Confidential Page: 175 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

This union is used depending on the event type.

Event Type Event Parameter

ADL_OSA_EVENT_INIT_SUCCESS Set to NULL

ADL_OSA_EVENT_INIT_FAILURE Set to NULL

ADL_OSA_EVENT_ATR_REQUEST Set to NULL

ADL_OSA_EVENT_APDU_REQUEST RequestEvent structure set:

Length:
APDU request buffer length

Data:
APDU request data buffer address

ADL_OSA_EVENT_SIM_ERROR ErrorEvent value set, according to the
status previously sent back through the
adl_osaSendResponse function, or set by
the firmware on unsolicited errors.

Please refer to the adl_osaSendResponse
function description for more information.

ADL_OSA_EVENT_CLOSED Set to NULL

3.14.4 The adl_osaSendResponse Function

This function allows the application to post back ATR or APDU responses to the
Wavecom firmware, after receiving an ADL_OSA_EVENT_ATR_REQUEST or
ADL_OSA_EVENT_APDU_REQUEST event.

• Prototype

s32 adl_osaSendResponse (s32 OsaHandle,
 adl_osaStatus_e Status,
 u16 Length,
 u8 * Data);

• Parameters

OsaHandle:

OSA service handle, previously returned by the adl_osaSubscribe function.

Status

Status to be supplied to the firmware, in response to an ATR or APDU
request, using the following defined values.

API

Open SIM Access Service

© Confidential Page: 176 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Event Type Use

ADL_OSA_STATUS_OK Response data buffer has been
received from the SIM card.

ADL_OSA_STATUS_CARD_NOT_ACCESSIBLE SIM card does not seem to be
accessible (no response from the
card).

ADL_OSA_STATUS_CARD_REMOVED The SIM card has been removed.

ADL_OSA_STATUS_CARD_UNKNOWN_ERROR Generic code for all other error
cases.

Length:

ATR or APDU request response buffer length, in bytes.

Note:

Should be set to 0 if the SIM card status is not OK.

Data:

ATR or APDU request response buffer address. This buffer content will be
copied and sent by ADL to the Wavecom firmware.

Note:

Should be set to 0 if the SIM card status is not OK.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM on a supplied parameter error.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied OSA handle is unknown.

o ADL_RET_ERR_BAD_STATE if the OSA service is not waiting for an APDU or
ATR request response.

3.14.5 The adl_osaUnsubscribe Function

This function un-subscribes from the OSA service: the local SIM connection is
resumed by the Wavecom Firmware, and the application supplied handler is not any
longer notified of OSA events.

• Prototype

s32 adl_osaUnsubscribe (s32 OsaHandle);

• Parameters

OsaHandle:

OSA service handle, previously returned by the adl_osaSubscribe function.

• Returned values

o OK on success.

An ADL_OSA_EVENT_CLOSED confirmation event will then be received in the
service handler.

API

Open SIM Access Service

© Confidential Page: 177 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_RET_ERR_UNKNOWN_HDL if the supplied OSA handle is unknown.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

o ADL_RET_ERR_NOT_SUBSCRIBED The OSA service is not subscribed, so it is
not possible to unsubscribe it.

o ADL_RET_ERR_BAD_STATE Firmware is waiting for an ATR or APDU
request from the simcard, and unsubscription is forbidden until the
simcard's request is granted.

3.14.6 Example

This example simply demonstrates how to use the OSA service in a nominal case
(error cases are not handled).

// Global variables

// OSA service handle
s32 OsaHandle;

// SIM request response data buffer length & address
u16 SimRspLen;
u8 * SimRspData;

 // OSA service handler
void MyOsaHandler (adl_osaEvent_e Event, adl_osaEventParam_u * Param)
{
 // Switch on the event type
 switch (Event)
 {
 case ADL_OSA_EVENT_ATR_REQUEST :
 case ADL_OSA_EVENT_APDU_REQUEST :
 // Reset the SIM card or transmit request
 // Get the related response data buffer
 // To be copied to SimRspLen & SimRspData global variables
 // Post back the response to the Wavecom firmware
 adl_osaSendResponse (OsaHandle,ADL_OSA_STATUS_OK,
 SimRspLen, SimRspData);
 break;
 }
}
// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribes to the OSA service
 OsaHandle = adl_osaSubscribe (MyOsaHandler);
}
void MyFunction2 (void)
{
 // Un-subscribes from the OSA service
 adl_osaUnsubscribe (OsaHandle);
}

API

SMS Service

© Confidential Page: 178 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.15 SMS Service

ADL provides this service to handle SMS events, and to send SMSs to the network.

3.15.1 Required Header File

The header file for the SMS related functions is:

adl_sms.h

3.15.2 The adl_smsSubscribe Function

This function subscribes to the SMS service in order to receive SMSs from the
network.

• Prototype

s8 adl_smsSubscribe (adl_smsHdlr_f SmsHandler,
 adl_smsCtrlHdlr_f SmsCtrlHandler,
 u8 Mode);

• Parameters

SmsHandler:

SMS handler defined using the following type:

 typedef bool (* adl_smsHdlr_f) (ascii * SmsTel,
 ascii * SmsTimeLength,
 ascii * SmsText);

This handler is called each time an SMS is received from the network.

SmsTel contains the originating telephone number of the SMS (in text
mode), or NULL (in PDU mode).

SmsTimeLength contains the SMS time stamp (in text mode), or the PDU
length (in PDU mode).

SmsText contains the SMS text (in text mode), or the SMS PDU (in PDU
mode).

This handler returns TRUE if the SMS must be forwarded to the external
application (it is then stored in SIM memory, and the external application is
then notified by a "+CMTI" unsolicited indication).

It returns FALSE if the SMS should not be forwarded.

If the SMS service is subscribed several times, a received SMS will be
forwarded to the external application only if each of the handlers return
TRUE.

Note:

Whatever is the handler's returned value, the incoming message has been internally
processed by ADL; if it is read later via the +CMGR or +CMGL command, its status
will be 'REC READ', instead of 'REC UNREAD'.

API

SMS Service

© Confidential Page: 179 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

SmsCtrlHandler:

SMS event handler, defined using the following type:

 typedef void (* adl_smsCtrlHdlr_f) (u8 Event,
 u16 Nb);

This handler is notified by following events during a n sending process.

ADL_SMS_EVENT_SENDING_OK

the SMS was sent successfully, Nb parameter value is not relevant.
ADL_SMS_EVENT_SENDING_ERROR

An error occurred during SMS sending, Nb parameter contains the
error number, according to "+CMS ERROR" value (cf. AT Commands
Interface Guide).

ADL_SMS_EVENT_SENDING_MR

the SMS was sent successfully, Nb parameter contains the sent
Message Reference value. A ADL_SMS_EVENT_SENDING_OK event
will be received by the control handler.

Mode:

Mode used to receive SMSs:

ADL_SMS_MODE_PDU

SmsHandler will be called in PDU mode on each SMS reception.
ADL_SMS_MODE_TEXT

SmsHandler will be called in Text mode on each SMS reception.

• Returned values

o On success, this function returns a positive or null handle, requested
for further SMS sending operations.

o ADL_RET_ERR_PARAM if a parameter has a wrong value.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

SMS Service

© Confidential Page: 180 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.15.3 The adl_smsSend Function

This function sends an SMS to the network.

• Prototype

s8 adl_smsSend (u8 Handle,
 ascii * SmsTel,
 ascii * SmsText,
 u8 Mode);

• Parameters

Handle:

Handle returned by adl_smsSubscribe function.

SmsTel:

Telephone number where to send the SMS (in text mode), or NULL (in PDU
mode).

SmsText:

SMS text (in text mode), or SMS PDU (in PDU mode).

Mode:

Mode used to send SMSs:

ADL_SMS_MODE_PDU

to send a SMS in PDU mode.
ADL_SMS_MODE_TEXT

to send a SMS in Text mode.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if a parameter has an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if the product is not ready to send an SMS
(initialization not yet performed, or sending an SMS already in
progress)

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

SMS Service

© Confidential Page: 181 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.15.4 The adl_smsUnsubscribe Function

This function unsubscribes from the SMS service. The associated handler with
provided handle will no longer receive SMS events.

• Prototype

s8 adl_smsUnsubscribe (u8 Handle)

• Parameters

Handle:

Handle returned by adl_smsSubscribe function.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown.

o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

o ADL_RET_ERR_BAD_STATE if the service is processing an SMS

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

Message Service

© Confidential Page: 182 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.16 Message Service

ADL provides this service to allow applications to post and handle messages.
Messages are used to exchange data between the different application components
(application task, Interrupt handler…).

The defined operations are:

• subscription & unsubscription functions (adl_msgSubscribe &
adl_msgUnsubscribe) usable to manage message reception filters.

• reception callbacks (adl_msgHandler_f) usable to receive incoming
messages.

• A sending function (adl_msgSend) usable to send messages to an application
task.

3.16.1 Required Header File

The header file for message-related functions is:

adl_msg.h

3.16.2 The adl_msgIdComparator_e Type

Enumeration of comparison operators, usable to define a message filter through the
adl_msgFilter_t structure..

typedef enum
{
 ADL_MSG_ID_COMP_EQUAL,
 ADL_MSG_ID_COMP_DIFFERENT,
 ADL_MSG_ID_COMP_GREATER,
 ADL_MSG_ID_COMP_GREATER_OR_EQUAL,
 ADL_MSG_ID_COMP_LOWER,
 ADL_MSG_ID_COMP_LOWER_OR_EQUAL,
 ADL_MSG_ID_COMP_LAST, //Reserved for internal use
} adl_msgIdComparator_e;

The meaning of each comparison operator is defined below:

Comparison Operator Description

ADL_MSG_ID_COMP_EQUAL The two identifiers are equal.

ADL_ MSG_ID_COMP_DIFFERENT The two identifiers are different.

ADL_ MSG_ID_COMP_GREATER The received message identifier
is greater than the subscribed
message identifier.

ADL_ MSG_ID_COMP_GREATER_OR_EQUAL The received message identifier
is greater or equal to the
subscribed message identifier.

API

Message Service

© Confidential Page: 183 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Comparison Operator Description

ADL_ MSG_ID_COMP_LOWER The received message identifier
is lower than the subscribed
message identifier.

ADL_ MSG_ID_COMP_LOWER_OR_EQUAL The received message identifier
is lower or equal to the
subscribed message identifier.

3.16.3 The adl_msgFilter_t Structure

This structure allows the application to define a message filter at service subscription
time.

typedef struct
{
 u32 MsgIdentifierMask;
 u32 MsgIdentifierValue;
 adl__msgIdComparator_e Comparator;
 adl__ctxID_e Source;
} adl_msgFilter_t;

3.16.3.1 Structure Fields

The structure fields are defined below:

o MsgIdentifierMask:
Bit mask to be applied to the incoming message identifier at reception
time. Only the bits set to 1 in this mask will be compared for the
service handlers notification. If the mask is set to 0, the identifier
comparison will always match.
MsgIdentifierValue:
Message identifier value to be compared with the received message
identifier. Only the bits filtered by the MsgIdentifierMask mask are
significant.

o Comparator:
Operator to be used for incoming message identifier comparison, using
the adl_msgIdComparator_e type. Please refer to the type description for
more information (see § 3.16.2).

o Source:
Required incoming message source context: the handler will be notified
with messages received from this context. The ADL_CTX_ALL constant
should be used if the application wishes to receive all messages,
whatever the source context.

API

Message Service

© Confidential Page: 184 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.16.3.2 Filter Examples

o With the following filter parameters:
MsgIdentifierMask = 0x0000F000
MsgIdentifierValue = 0x00003000
Comparator = ADL_MSG_ID_COMP_EQUAL
Source = ADL_CTX_ALL
the comparison will match if the message identifier fourth quartet is
strictly equal to 3, whatever the other bit values, and whatever the
source context.

o With the following filter parameters:
MsgIdentifierMask = 0
MsgIdentifierValue = 0
Comparator = ADL_MSG_ID_COMP_EQUAL
Source = ADL_CTX_ALL
the comparison will always match, whatever the message identifier &
the source context values

o With the following filter parameters:
MsgIdentifierMask = 0xFFFF0000
MsgIdentifierValue = 0x00010000
Comparator = ADL_MSG_ID_COMP_GREATER_OR_EQUAL
Source = ADL_CTX_HIGH_LEVEL_IRQ_HANDLER
the comparison will match if the message identifier two most
significant bytes are greater or equal to 1, and if the message was
posted from high level Interrupt handler.

3.16.4 The adl_msgSubscribe Function

This function allows the application to receive incoming user-defined messages, sent
from any application components (the application task itself or Interrupt handlers).

• Prototype

s32 adl_msgSubscribe (adl_mgsFilter_t_ * Filter,
 adl_msgHandler_f msgHandler);

• Parameters

Filter:

Identifier and source context conditions to check each message reception in
order to notify the message handler. Please refer to the adl_msgFilter_t
structure description for more information.

MsgHandler:

Application defined message handler, which will be notified each time a
received message matches the filter conditions. Please refer to
adl_msgHandler_f call-back type definition for more information.

• Returned values

o A positive or null value on success:

API

Message Service

© Confidential Page: 185 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 Message service handle, to be used in further Message service
functions calls.

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if a parameter has an incorrect value.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level Interrupt handler (the function is forbidden in this context).

Note:

Messages filters definition is specific to each task: the filter will apply only to
incoming messages for the current task context. The associated call-back will be
called in this task context when the filter conditions are fulfilled.

3.16.5 The adl_msgHandler_f call-back Type

Such a call-back function has to be supplied to ADL through the adl_msgSubscribe
interface in order to receive incoming messages. Messages will be received through
this handler each time the supplied filter conditions are fulfilled.

• Prototype

typedef void (*adl_msgHandler_f) (u32 MsgIdentifier,
 adl_ctxID_e Source,
 u32 Length,
 void * Data);

• Parameters

MsgIdentifier:

Incoming message identifier.

Source:

Source context identifier from which the message was sent.

Length:

Message body length, in bytes. This length should be 0 if the message does
not include a body.

Data:

Message body buffer address. This address should be NULL if the message
does not include a body.

Note:

A message handler callback will be called by ADL in the execution context where it
has been subscribed.

3.16.6 The adl_msgUnsubscribe Function

This function un-subscribes from a previously subscribed message filter. Associated
message handler will no longer receive the filtered messages.

• Prototype

S32 adl_msgUnsubscribe (s32 MsgHandle);

API

Message Service

© Confidential Page: 186 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

MsgHandle:

Handle previously returned by the adl_msgSubscribe function.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.16.7 The adl_msgSend Function

This function allows the application to send a message at any time to any running
task.

• Prototype

s32 adl_msgSend (adl_ctxID_e DestinationTask,
 u32 MessageIdentifier,
 u32 Length,
 void * Data);

• Parameters

DestinationTask:

Destination task to which the message is to be posted, using the
adl_ctxID_e type. Only tasks identifiers are valid (it is not possible to post
messages to interrupt handler contexts).

MessageIdentifier:

The application defined message identifier. Message reception filters will be
applied to this identifier before notifying the concerned message handlers.

Length:

Message body length, if any. Should be set to 0 if the message does not
include a body.

Data:

Message body buffer address, if any. Should be set to 0 if the message
does not include a body. This buffer data content will be copied into the
message.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if a parameter has an incorrect value.

Note:

When a message is posted, the source context identifier is automatically set
accordingly to the current context:

• If the message is sent from the application task, the source context identifier
is set to ADL_CTX_OAT_TASK.

API

Message Service

© Confidential Page: 187 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• If the message is sent from a low level Interrupt handler, the source context
identifier is set to ADL_CTX_LOW_LEVEL_IRQ_HANDLER.

• If the message is sent from a high level Interrupt handler, the source context
identifier is set to ADL_CTX_HIGH_LEVEL_IRQ_HANDLER.

3.16.8 Example

The code sample below illustrates a nominal use case of the ADL Messages Service
public interface (error cases are not handled).

// Global variables & constants

// Message filter definition
const adl_msgFilter_t MyFilter =
{
 0xFFFF0000, // Compare only the 2 MSB
 0x00010000, // Compare with 1
 ADL_MSG_ID_COMP_GREATER_OR_EQUAL, // Msg ID has to be >= 1
 0 // Application task 0 incoming msg
 only
};

// Message service handle
s32 MyMsgHandle;

// Incoming message handler
void MyMsgHandler (u32 MsgIdentifier, adl_ctxID_e Source, u32 Length, void
* Data)
{
 // Message processing
}

// Somewhere in the application code
void MyFunction (void)
{
 // Subscribe to the message service
 MyMsgHandle = adl_msgSubscribe (&MyFilter, MyMsgHandler);

 // Send an empty message to task 0
 adl_msgSend (0, 0x00010055, 0, NULL);

 // Unsubscribe from the message service
 adl_msgUnsubscribe (MyMsgHandle);
}

API

Call Service

© Confidential Page: 188 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.17 Call Service

ADL provides this service to handle call related events, and to setup calls.

3.17.1 Required Header File

The header file for the call related functions is:

adl_call.h

3.17.2 The adl_callSubscribe Function

This function subscribes to the call service in order to receive call related events.

• Prototype

s8 adl_callSubscribe (adl_callHdlr_f CallHandler);

• Parameters

CallHandler:

Call handler defined using the following type:

 typedef s8 (* adl_callHdlr_f) (u16 Event,
 u32 Call_ID);

The pair events / call Id received by this handler are defined below; each
event is received according to an "event type", which can be:

o MO (Mobile Originated call related event)

o MT (Mobile Terminated call related event)

o CMD (Incoming AT command related event)

Event / Call ID Description Type

ADL_CALL_EVENT_RING_VOICE / 0 if voice phone call MT

ADL_CALL_EVENT_RING_DATA / 0 if data phone call MT

ADL_CALL_EVENT_NEW_ID / X if wind: 5,X MO
MT1

ADL_CALL_EVENT_RELEASE_ID / X if wind: 6,X ; on data call release,
X is a logical OR between the Call
ID and the
ADL_CALL_DATA_FLAG constant

MO
MT

ADL_CALL_EVENT_ALERTING / 0 if wind: 2 MO

1 In case of Call Waiting only; please refer to the AT Commands Interface Guide [1] for more
information.

API

Call Service

© Confidential Page: 189 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Event / Call ID Description Type

ADL_CALL_EVENT_NO_CARRIER / 0 phone call failure, ‘NO CARRIER’ MO
MT

ADL_CALL_EVENT_NO_ANSWER / 0 phone call failure, no answer MO

ADL_CALL_EVENT_BUSY / 0 phone call failure, busy MO

ADL_CALL_EVENT_SETUP_OK / Speed OK response after a call setup
performed by the adl_callSetup
function; in data call setup case,
the connection <Speed> (in
bits/second) is also provided.

MO

ADL_CALL_EVENT_ANSWER_OK / Speed OK response after an
ADL_CALL_NO_FORWARD_ATA request
from a call handler ; in data call
answer case, the connection
<Speed> (in bps) is also provided

MT

ADL_CALL_EVENT_CIEV / Speed OK response after a performed call
setup; in data call setup case, the
connection <Speed> (in bps) is
also provided

ADL_CALL_EVENT_HANGUP_OK / Data OK response after a
ADL_CALL_NO_FORWARD_ATH request,
or a call hangup performed by the
adl_callHangup function ; on data
call release, Data is the
ADL_CALL_DATA_FLAG constant (0 on
voice call release)

MO
MT

ADL_CALL_EVENT_SETUP_OK_FROM_EXT / Speed OK response after an ‘ATD’
command from the external
application; in data call setup
case, the connection <Speed> (in
bits/second) is also provided.

MO

ADL_CALL_EVENT_ANSWER_OK_FROM_EXT / Speed OK response after an ‘ata’
command from the external
application ; in data call answer
case, the connection <Speed> (in
bps) is also provided

MT

ADL_CALL_EVENT_HANGUP_OK_FROM_EXT / Data OK response after an ‘ATH’
command from the external
application ; on data call release,
Data is the ADL_CALL_DATA_FLAG
constant (0 on voice call release)

MO
MT

ADL_CALL_EVENT_AUDIO_OPENNED / 0 if +WIND: 9 MO
MT

API

Call Service

© Confidential Page: 190 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Event / Call ID Description Type

ADL_CALL_EVENT_ANSWER_OK_AUTO / Speed OK response after an auto-answer
to an incoming call (ATS0
command was set to a non-zero
value) ; in data call answer case,
the connection <Speed> (in bps)
is also provided

MT

ADL_CALL_EVENT_RING_GPRS / 0 if GPRS phone call MT

ADL_CALL_EVENT_SETUP_FROM_EXT / Mode if the external application has
used the 'ATD' command to setup
a call. Mode value depends on call
type (Voice: 0, GSM Data:
ADL_CALL_DATA_FLAG, GPRS session
activation: binary OR between
ADL_CALL_GPRS_FLAG constant and
the activated CID). According to
the notified handlers return
values, the call setup may be
launched or not: if at least one
handler returns the
ADL_CALL_NO_FORWARD code (or
higher), the command will reply
"+CME ERROR: 600" to the
external application; otherwise (if
all handlers return
ADL_CALL_FORWARD) the call setup
is launched.

CMD

ADL_CALL_EVENT_SETUP_ERROR_NO_SIM / 0 A call setup (from embedded or
external application) has failed (no
SIM card inserted)

MO

ADL_CALL_EVENT_SETUP_ERROR_PIN_NOT_READY
/ 0

A call setup (from embedded or
external application) has failed
(the PIN code is not entered)

MO

ADL_CALL_EVENT_SETUP_ERROR / Error A call setup (from embedded or
external application) has failed
(the <Error> field is the returned
+CME ERROR value ; cf. AT
Commands interface guide for
more information)

MO

API

Call Service

© Confidential Page: 191 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The events returned by this handler are defined below:

Event Description

ADL_CALL_FORWARD the call event shall be sent to the external
application
On unsolicited events, these ones will be
forwarded to all opened ports.
On responses events, these ones will be
forwarded only on the port on which the
request was executed.

ADL_CALL_NO_FORWARD the call event shall not be sent to the external
application

ADL_CALL_NO_FORWARD_ATH the call event shall not be sent to the external
application and the application shall terminate
the call by sending an ‘ATH’ command.

ADL_CALL_NO_FORWARD_ATA the call event shall not be sent to the external
application and the application shall answer
the call by sending an ‘ATA’ command.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM on parameter error

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.17.3 The adl_callSetup Function

This function just runs the adl_callSetupExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_callSetupExt description for more
information). Please note that events generated by the adl_callSetup will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.17.4 The adl_callSetupExt Function

This function sets up a call to a specified phone number.

• Prototype

s8 adl_callSetupExt (ascii * PhoneNb,
 u8 Mode,
 adl_port_e Port);

• Parameters

PhoneNb:

Phone number to use to set up the call.

API

Call Service

© Confidential Page: 192 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Mode:

Mode used to set up the call:

ADL_CALL_MODE_VOICE,
ADL_CALL_MODE_DATA

Port:

Port on which to run the call setup command. When setup return events
will be received in the Call event handler, if the application requires ADL to
forward these events, they will be forwarded to this Port parameter value.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM on parameter error (bad value, or unavailable port)

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.17.5 The adl_callHangup Function

This function just runs the adl_callHangupExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_callHangupExt description for more
information). Please note that events generated by the adl_callHangup will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.17.6 The adl_callHangupExt Function

This function hangs up the phone call.

• Prototype

s8 adl_callHangupExt (adl_port_e Port);

• Parameters

Port:

Port on which to run the call hang-up command. When hang-up return
events will be received in the Call event handler, if the application requires
ADL to forward these events, they will be forwarded to this Port parameter
value.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM on parameter error (unavailable port)

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

Call Service

© Confidential Page: 193 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.17.7 The adl_callAnswer Function

This function just runs the adl_callAnswerExt one on the
ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf. adl_callAnswerExt description for more
information). Please note that events generated by the adl_callAnswer will not be able
to be forwarded to any external port, since the setup command was running on the
Open AT® port.

3.17.8 The adl_callAnswerExt Function

This function allows the application to answer a phone call out of the call events
handler.

• Prototype

s8 adl_callAnswerExt (adl_port_e Port);

• Parameters

Port:

Port on which to run the call hang-up command. When hang-up return
events will be received in the Call event handler, if the application requires
ADL to forward these events, they will be forwarded to this Port parameter
value.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM on parameter error (unavailable port)

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.17.9 The adl_callUnsubscribe Function

This function unsubscribes from the Call service. The provided handler will not
receive Call events any more.

• Prototype

s8 adl_callUnsubscribe (adl_callHdlr_f Handler);

• Parameters

Handler:

Handler used with adl_callSubscribe function.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM on parameter error

o ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown

o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

GPRS Service

© Confidential Page: 194 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.18 GPRS Service

ADL provides this service to handle GPRS related events and to setup, activate and
deactivate PDP contexts.

3.18.1 Required Header File

The header file for the GPRS related functions is:

adl_gprs.h

3.18.2 The adl_gprsSubscribe Function

This function subscribes to the GPRS service in order to receive GPRS related events.

• Prototype

s8 adl_gprsSubscribe (adl_gprsHdlr_f GprsHandler);

• Parameters

GprsHandler:

GPRS handler defined using the following type:

typedef s8 (*adl_gprsHdlr_f)(u16 Event, u8 Cid);

The pairs events/Cid received by this handler are defined below:

Event / Call ID Description

ADL_GPRS_EVENT_RING_GPRS If incoming PDP context activation is
requested by the network

ADL_GPRS_EVENT_NW_CONTEXT_DEACT / X If the network has forced the
deactivation of the Cid X

ADL_GPRS_EVENT_ME_CONTEXT_DEACT / X If the ME has forced the deactivation of
the Cid X

ADL_GPRS_EVENT_NW_DETACH If the network has forced the
detachment of the ME

ADL_GPRS_EVENT_ME_DETACH If the ME has forced a network
detachment or lost the network

ADL_GPRS_EVENT_NW_CLASS_B If the network has forced the ME on
class B

ADL_GPRS_EVENT_NW_CLASS_CG If the network has forced the ME on
class CG

ADL_GPRS_EVENT_NW_CLASS_CC If the network has forced the ME on
class CC

ADL_GPRS_EVENT_ME_CLASS_B If the ME has changed to class B

ADL_GPRS_EVENT_ME_CLASS_CG If the ME has changed to class CG

ADL_GPRS_EVENT_ME_CLASS_CC If the ME has changed to class CC

API

GPRS Service

© Confidential Page: 195 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Event / Call ID Description

ADL_GPRS_EVENT_NO_CARRIER If the activation of the external
application with ‘ATD*99’ (PPP dialing)
did hang up.

ADL_GPRS_EVENT_DEACTIVATE_OK / X If the deactivation requested with
adl_gprsDeact function was successful
on the Cid X

ADL_GPRS_EVENT_DEACTIVATE_OK_FROM_EXT / X If the deactivation requested by the
external application was successful on
the Cid X

ADL_GPRS_EVENT_ANSWER_OK If the acceptance of the incoming PDP
activation with adl_gprsAct was
successful

ADL_GPRS_EVENT_ANSWER_OK_FROM_EXT If the acceptance of the incoming PDP
activation by the external application
was successful

ADL_GPRS_EVENT_ACTIVATE_OK / X If the activation requested with
adl_gprsAct on the Cid X was
successful

ADL_GPRS_EVENT_GPRS_DIAL_OK_FROM_EXT / X If the activation requested by the
external application with ‘ATD*99’
(PPP dialing) was successful on the Cid
X

ADL_GPRS_EVENT_ACTIVATE_OK_FROM_EXT / X If the activation requested by the
external application on the Cid X was
successful

ADL_GPRS_EVENT_HANGUP_OK_FROM_EXT If the rejection of the incoming PDP
activation by the external application
was successful

ADL_GPRS_EVENT_DEACTIVATE_KO / X If the deactivation requested with
adl_gprsDeact on the Cid X failed

ADL_GPRS_EVENT_DEACTIVATE_KO_FROM_EXT / X If the deactivation requested by the
external application on the Cid X failed

ADL_GPRS_EVENT_ACTIVATE_KO_FROM_EXT / X If the activation requested by the
external application on the Cid X failed

ADL_GPRS_EVENT_ACTIVATE_KO / X If the activation requested with
adl_gprsAct on the Cid X failed

ADL_GPRS_EVENT_ANSWER_OK_AUTO If the incoming PDP context activation
was automatically accepted by the ME

ADL_GPRS_EVENT_SETUP_OK / X If the set up of the Cid X with
adl_gprsSetup was successful

ADL_GPRS_EVENT_SETUP_KO / X If the set up of the Cid X with
adl_gprsSetup failed

API

GPRS Service

© Confidential Page: 196 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Event / Call ID Description

ADL_GPRS_EVENT_ME_ATTACH If the ME has forced a network
attachment

ADL_GPRS_EVENT_ME_UNREG If the ME is not registered

ADL_GPRS_EVENT_ME_UNREG_SEARCHING If the ME is not registered but is
searching a new operator for
registration.

Note:

If Cid X is not defined, the value ADL_CID_NOT_EXIST will be used as X.

The possible returned values for this handler are defined below:

Event Description

ADL_GPRS_FORWARD the event shall be sent to the external
application.
On unsolicited events, these one be forwarded
to all opened ports.
On responses events, these one be forwarded
only on the port on which the request was
executed.

ADL_GPRS_NO_FORWARD the event is not sent to the external application

ADL_GPRS_NO_FORWARD_ATH the event is not sent to the external application
and the application will terminate the incoming
activation request by sending an ‘ATH’
command.

ADL_GPRS_NO_FORWARD_ATA the event is not sent to the external application
and the application will accept the incoming
activation request by sending an ‘ATA’
command.

• Returned values for adl_gprsSubscribe

This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM In case of parameter error

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
Interrupt handler (the function is forbidden in
this context).

API

GPRS Service

© Confidential Page: 197 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.18.3 The adl_gprsSetup Function

This function runs the adl_gprsSetupExt on the ADL_PORT_OPEN_AT_VIRTUAL_BASE
port (cf. adl_gprsSetupExt description for more information). Please note that events
generated by the adl_gprsSetup will not be able to be forwarded to any external port,
since the setup command runs on the Open AT® port.

3.18.4 The adl_gprsSetupExt Function

This function sets up a PDP context identified by its CID with some specific
parameters.

• Prototype

s8 adl_gprsSetupExt (u8 Cid,
 adl_gprsSetupParams_t Params,
 adl_port_e Port);

• Parameters

Cid:

The Cid of the PDP context to setup (integer value between 1 and 4).

Params:

The parameters to set up are contained in the following type:

typedef struct
{
 ascii* APN;
 ascii* Login;
 ascii* Password;
 ascii* FixedIP;
 bool HeaderCompression;
 bool DataCompression;
}adl_gprsSetupParams_t;

o APN:
Address of the Provider GPRS Gateway (GGSN)
maximum 100 bytes string

o Login:
GPRS account login
maximum 50 bytes string

o Password:
GPRS account password
maximum 50 bytes string

API

GPRS Service

© Confidential Page: 198 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o FixedIP:
Optional fixed IP address of the MS (used only if not set to NULL)
maximum 15 bytes string

o HeaderCompression:
PDP header compression option (enabled if set to TRUE)

o DataCompression:
PDP data compression option (enabled if set to TRUE)

Port:

Port on which to run the PDP context setup command. Setup return events
are received in the GPRS event handler. If the application requires ADL to
forward these events, they will be forwarded to this Port parameter value.

• Returned values

This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameter error: bad Cid value or unavailable
port

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the "+WIND:4"
indication has not occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already
activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the
product

ADL_RET_ERR_BAD_STATE The service is still processing another GPRS
API ; application should wait for the
corresponding event (indication of end of
processing) in the GPRS handler before calling
this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
Interrupt handler (the function is forbidden in
this context).

3.18.5 The adl_gprsAct Function

This function just runs the adl_gprsActExt one on the ADL_PORT_OPEN_AT_VIRTUAL_BASE
port (cf. adl_gprsActExt description for more information). Please note that events
generated by the adl_gprsAct will not be able to be forwarded to any external port,
since the setup command was running on the Open AT® port.

API

GPRS Service

© Confidential Page: 199 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.18.6 The adl_gprsActExt Function

This function activates a specific PDP context identified by its Cid.

• Prototype

s8 adl_gprsActExt (u8 Cid,
 adl_port_e Port);

• Parameters

Cid:

The Cid of the PDP context to activate (integer value between 1 and 4).

Port:

Port on which to run the PDP context activation command. Activation
return events are received in the GPRS event handler.If the application
requires ADL to forward these events, they will be forwarded to this Port
parameter value.

• Returned values

This function returns OK on success, or a negative error value.

Possible error values are:

Error Value Description

ADL_RET_ERR_PARAM parameters error: bad Cid value or unavailable
port

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the "+WIND:4"
indication has not occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already
activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the
product

ADL_RET_ERR_BAD_STATE The service is still processing another GPRS
API ; application should wait for the
corresponding event (indication of end of
processing) in the GPRS handler before calling
this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
Interrupt handler (the function is forbidden in
this context).

Important Note:

This function must be called before opening the GPRS FCM Flows.

API

GPRS Service

© Confidential Page: 200 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.18.7 The adl_gprsDeact Function

This function runs the adl_gprsDeactExt on the ADL_PORT_OPEN_AT_VIRTUAL_BASE port
(cf. adl_gprsDeactExt description for more information). Please note that events
generated by the adl_gprsDeact will not be able to be forwarded to any external port,
since the setup command runs on the Open AT® port.

3.18.8 The adl_gprsDeactExt Function

This function deactivates a specific PDP context identified by its Cid.

• Prototype

s8 adl_gprsDeactExt (u8 Cid
 adl_port_e Port);

• Parameters

Cid:

The Cid of the PDP context to deactivate (integer value between 1 and 4).

Port:

Port on which to run the PDP context deactivation command. Deactivation
return events are received in the GPRS event handler.If the application
requires ADL to forward these events, they will be forwarded to this Port
parameter value.

• Returned values

This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameters error: bad Cid value or unavailable
port

ADL_RET_ERR_PIN_KO if the PIN is not entered, or if the "+WIND:4"
indication has not occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already
activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the
product

ADL_RET_ERR_BAD_STATE the service is still processing another GPRS API
; application should wait for the corresponding
event (indication of end of processing) in the
GPRS handler before calling this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
Interrupt handler (the function is forbidden in
this context).

API

GPRS Service

© Confidential Page: 201 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Important note:

If the GPRS flow is running, please do wait for the
ADL_FCM_EVENT_FLOW_CLOSED event before calling the adl_gprsDeact function,
in order to prevent Wireless CPU® lock.

3.18.9 The adl_gprsGetCidInformations Function

This function gets information about a specific activated PDP context identified by its
Cid.

• Prototype

s8 adl_gprsGetCidInformations (u8 Cid,
 adl_gprsInfosCid_t * Infos);

• Parameters

Cid:

The Cid of the PDP context (integer value between 1 and 4).

Infos:

Information of the activated PDP context is contained in the following type:

typedef struct
{
 u32 LocalIP; // Local IP address of the MS
 u32 DNS1; // First DNS IP address
 u32 DNS2; // Second DNS IP address
 u32 Gateway; // Gateway IP address
}adl_gprsInfosCid_t;

This parameter fields will be set only if the GPRS session is activated;
otherwise, they all will be set to 0.

• Returned values

This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameters error: bad Cid value

ADL_RET_ERR_PIN_KO if the PIN is not entered, or if the "+WIND:4"
indication has not occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already
activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the
product

ADL_RET_ERR_BAD_STATE the service is still processing another GPRS API ;
application should wait for the corresponding
event (indication of end of processing) in the
GPRS handler before calling this function

API

GPRS Service

© Confidential Page: 202 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.18.10 The adl_gprsUnsubscribe Function

This function unsubscribes from the GPRS service. The provided handler will not
receive any more GPRS events.

• Prototype

s8 adl_gprsUnsubscribe (adl_gprsHdlr_f Handler);

• Parameters

Handler:

Handler used with adl_gprsSubscribe function.

• Returned values

This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameter error

ADL_RET_ERR_UNKNOWN_HDL the provided handler is unknown

ADL_RET_ERR_NOT_SUBSCRIBED the service is not subscribed

ADL_RET_ERR_BAD_STATE the service is still processing another GPRS API
; application should wait for the corresponding
event (indication of end of processing) in the
GPRS handler before calling this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
Interrupt handler (the function is forbidden in
this context).

3.18.11 The adl_gprsIsAnIPAddress Function

This function checks if the provided string is a valid IP address. Valid IP address
strings arebased on the "a.b.c.d" format, where a, b, c & d are integer values between
0 and 255.

• Prototype

bool adl_gprsIsAnIPAddress (ascii * AddressStr);

• Parameters

AddressStr:

IP address string to check.

• Returned values

o TRUE if the provided string is a valid IP address one, and FALSE
otherwise.

o NULL & empty string ("") are not considered as a valid IP address.

API

GPRS Service

© Confidential Page: 203 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.18.12 Example

This example just demonstrates how to use the GPRS service in a nominal case (error
cases are not handled).

Complete examples using the GPRS service are also available on the SDK (Ping_GPRS
sample).

// Global variables
adl_gprsSetupParams_t MyGprsSetup;
adl_gprsInfosCid_t InfosCid;

// GPRS event handler
s8 MyGprsEventHandler (u16 Event, u8 CID)
{
 // Trace event
 TRACE ((1, "Received GPRS event %d/%d", Event, CID));

 // Switch on event
 switch (Event)
 {
 case ADL_GPRS_EVENT_SETUP_OK :
 TRACE ((1, "PDP Ctxt Cid %d Setup OK", CID));
 // Activate the session
 adl_gprsAct (1);
 break;

 case ADL_GPRS_EVENT_ACTIVATE_OK :
 TRACE ((1, "PDP Ctxt %d Activation OK", CID));
 // Get context information
 adl_gprsGetCidInformations (1, &InfosCid);
 // De-activate the session
 adl_gprsDeAct (1);
 }
 break;

 case ADL_GPRS_EVENT_DEACTIVATE_OK :
 TRACE ((1, " PDP Ctxt %d De-activation OK", CID));
 // Un-subscribe from GPRS event handler
 adl_gprsUnsubscribe (MyGprsEventHandler);
 break;
 }

 // Forward event
 return ADL_GPRS_FORWARD;
}

API

GPRS Service

© Confidential Page: 204 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Fill Setup structure
 MyGprsSetup.APN = "myapn";
 MyGprsSetup.Login = "login";
 MyGprsSetup.Password = "password";
 MyGprsSetup.FixedIP = NULL;
 MyGprsSetup.HeaderCompression = FALSE;
 MyGprsSetup.DataCompression = FALSE;

 // Subscribe to GPRS event handler
 adl_gprsSubscribe (MyGprsEventHandler);

 // Set up the GPRS context
 adl_gprsSetup (1, MyGprsSetup);
}

API

Semaphore ADL Service

© Confidential Page: 205 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.19 Semaphore ADL Service

The ADL Semaphore service allows the application to handle the semaphore
resources supplied by the Open AT® OS.

Semaphores are used to synchronize processes between the application task and
high level Interrupt handlers.

Note:

Semaphores cannot be used in a low level Interrupt handler context.

The defined operations are:

• A subscription function adl_semSubscribe to get a semaphore resource
control

• An unsubscription function adl_semUnsubscribe to release a semaphore
resource

• Consumption functions adl_semConsume and adl_semConsumeDelay to
consume a semaphore counter

• A produce function adl_semProduce to produce a semaphore counter

• A test function adl_semIsConsumed to check a semaphore current state

• A capabilities function adl_semGetResourcesCount to retrieve the currently
free semaphore resources count

3.19.1 Required Header File

The header file for the Semaphore service definitions is:

adl_ sem.h

3.19.2 The adl_semGetResourcesCount Function

This function retrieves the count of currently free semaphore resources for the
application usage.

• Prototype

u32 adl_semGetResourcesCount (void);

• Returned values

o Free semaphore resources count.

3.19.3 The adl_semSubscribe Function

This function allows the application to reserve and initialize a semaphore resource.

• Prototype

s32 adl_semSubscribe (u16 SemCounter);

API

Semaphore ADL Service

© Confidential Page: 206 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

SemCounter:

Semaphore inner counter initialization value (reflects the number of times
the semaphore can be consumed before the calling task must be
suspended).

• Returned values

o Handle A positive semaphore service handle on success:

 Semaphore service handle, to be used in further service function
calls.

o A negative error value otherwise:
 ADL_RET_ERR_NO_MORE_SEMAPHORES when there are no more free

semaphore resources.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level Interrupt handler (the function is forbidden in this context).

3.19.4 The adl_semConsume Function

This function allows the application to reduce the required semaphore counter by
one.
If this counter value falls under zero, the calling execution context is suspended until
the semaphore is produced from another context.

• Prototype

s32 adl_semConsume (s32 SemHandle);

• Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe
function.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

• Exceptions

The following exception must be generated on this function call

o 205 If the semaphore has been consumed too many times. A
semaphore can be consumed a number of times equal to its initial
value + 256.

API

Semaphore ADL Service

© Confidential Page: 207 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.19.5 The adl_semConsumeDelay Function

This function allows the application to reduce the required semaphore counter by
one.

If this counter value falls under zero, the calling execution context is suspended until
the semaphore is produced from another context.
Moreover, if the semaphore is not produced during the supplied time-out duration,
the calling context is automatically resumed.

• Prototype

s32 adl_semConsumeDelay (s32 SemHandle,
 u32 TimeOut);

• Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe
function.

Timeout:

Time to wait before resuming context when the semaphore is not produced
(must not be 0). Time measured is in 18.5 ms ticks.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown.

o ADL_RET_ERR_PARAM when a supplied parameter value is wrong.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

• Exceptions

The following exception must be generated on this function call.

o 206 if the semaphore has been consumed too many times.

A semaphore can be consumed a number of times equal to its initial
value + 256.

3.19.6 The adl_semProduce Function

This function allows the application to increase the required semaphore counter by
one.
If this counter value gets above zero, the execution contexts that were suspended
due to using this semaphore are resumed.

• Prototype

s32 adl_semProduce (s32 SemHandle);

API

Semaphore ADL Service

© Confidential Page: 208 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe
function.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

• Exceptions

The following exception must be generated on this function call.

o 133 if the semaphore has been produced too many times.

A semaphore can be produced until its inner counter reaches its initial
value.

3.19.7 The adl_semUnsubscribe Function

This function allows the application to unsubscribe from the Semaphore service, in
order to release the previously reserved resource.
A semaphore can be unsubscribed only if its inner counter value is the initial one (the
semaphore has been produced as many times as it has been consumed).

• Prototype

s32 adl_semUnsubscribe (s32 SemHandle);

• Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe
function.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown

o ADL_RET_ERR_BAD_STATE when the semaphore inner counter value is
different from the initial value.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.19.8 The adl_semIsConsumed Function

This function allows the application to check if a semaphore is currently consumed
(the internal counter value is lower than the initial value) or not (the counter value is
the initial one).

• Prototype

s32 adl_semIsConsumed (s32 SemHandle);

API

Semaphore ADL Service

© Confidential Page: 209 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe
function.

• Returned values

o TRUE if the semaphore resource is consumed.

o FALSE If the semaphore resource is not consumed.
o ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown.

3.19.9 Example

This example shows how to use the Semaphore service in a nominal case (error
cases are not handled).

// Global variable: Semaphore service handle
s32 MySemHandle;

// Somewhere in the application code, used as high level interrupt handler
void MyHighLevelHandler (void)
{
 // Produces the semaphore, to resume the application task context
 adl_semProduce (MySemHandle);
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribes to the semaphore service
 MySemHandle = adl_semSubscribe (0);

 // Consumes the semaphore, with a 37 ms time-out delay
 adl_semConsumeDelay (MySemHandle, 2);

 // Consumes the semaphore: has to be produced from another context
 adl_semConsume (MySemHandle);

void MyFunction2 (void)
{
 // Un-subscribes from the semaphore service
 adl_semUnsubscribe (MySemHandle);
}

API

Application Safe Mode Service

© Confidential Page: 210 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.20 Application Safe Mode Service

By default, the +WOPEN and +WDWL commands cannot be filtered by any
embedded application. This service allows one application to get these commands
events, in order to prevent any external application stop or erase the current
embedded one.

3.20.1 Required Header File

The header file for the Application safe mode service is:

adl_safe.h

3.20.2 The adl_safeSubscribe Function

This function subscribes to the Application safe mode service in order to receive
+WOPEN and +WDWL commands events.

• Prototype

s8 adl_safeSubscribe (u16 WDWLopt,
 u16 WOPENopt,
 adl_safeHdlr_f SafeHandler);

• Parameters

WDWLopt:

Additionnal options for +WDWL command subscription. This command is
at least subscribed in ACTION and READ mode. Please see 3.3.4.6
adl_atCmdSubscribe API for more details about these options.

WOPENopt:

Additionnal options for +WOPEN command subscription. This command is
at least subscribed in READ, TEST and PARAM mode, with minimum of
one mandatory parameter. Please see 3.3.4.6 adl_atCmdSubscribe API for
more details about these options.

SafeHandler:

Application safe mode handler defined using the following type:

 typedef bool (*adl_safeHdlr_f) (adl_safeCmdType_e CmdType,
 adl_atCmdPreParser_t * paras);

API

Application Safe Mode Service

© Confidential Page: 211 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The CmdType events received by this handler are defined below:

typedef enum
{
 ADL_SAFE_CMD_WDWL, // AT+WDWL command
 ADL_SAFE_CMD_WDWL_READ, // AT+WDWL? command
 ADL_SAFE_CMD_WDWL_OTHER, // WDWL other syntax
 ADL_SAFE_CMD_WOPEN_STOP, // AT+WOPEN=0 command
 ADL_SAFE_CMD_WOPEN_START, // AT+WOPEN=1 command
 ADL_SAFE_CMD_WOPEN_GET_VERSION, // AT+WOPEN=2 command
 ADL_SAFE_CMD_WOPEN_ERASE_OBJ, // AT+WOPEN=3 command
 ADL_SAFE_CMD_WOPEN_ERASE_APP, // AT+WOPEN=4 command
 ADL_SAFE_CMD_WOPEN_SUSPEND_APP, // AT+WOPEN=5 command
 ADL_SAFE_CMD_WOPEN_AD_GET_SIZE, // AT+WOPEN=6 command
 ADL_SAFE_CMD_WOPEN_AD_SET_SIZE, // AT+WOPEN=6,<size> command
 ADL_SAFE_CMD_WOPEN_READ, // AT+WOPEN? command
 ADL_SAFE_CMD_WOPEN_TEST, // AT+WOPEN=? command
 ADL_SAFE_CMD_WOPEN_OTHER // WOPEN other syntax
} adl_safeCmdType_e;

The paras received structure contains the same parameters as the
commands used for adl_atCmdSubscribe API.

If the Handler returns FALSE, the command will not be forwarded to the
Wavecom Firmware.

If the Handler returns TRUE, the command will be processed by the
Wavecom Firmware, which will send responses to the external application.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if the parameters have an incorrect value

o ADL_RET_ERR_ALREADY_SUBSCRIBED if the service is already subscribed

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

API

Application Safe Mode Service

© Confidential Page: 212 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.20.3 The adl_safeUnsubscribe Function

This function unsubscribes from Application safe mode service. The +WDWL and
+WOPEN commands are not filtered anymore and are processed by the Wavecom
Firmware.

• Prototype

s8 adl_safeUnsubscribe (adl_safeHdlr_f Handler);

• Parameters

Handler:

Handler used with adl_safeSubscribe function.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if the parameter has an incorrect value

o ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown

o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
Interrupt handler (the function is forbidden in this context).

3.20.4 The adl_safeRunCommand Function

This function allows +WDWL or +WOPEN command with any standard syntax.

• Prototype

s8 adl_safeRunCommand (adl_safeCmdType_e CmdType,
 adl_atRspHandler_t RspHandler);

• Parameters

CmdType:

Command type to run; please refer to adl_safeSubscribe description.
ADL_SAFE_CMD_WDWL_OTHER and ADL_SAFE_CMD_WOPEN_OTHER values are not
allowed.

The ADL_SAFE_CMD_WOPEN_SUSPEND_APP may be used to suspend the Open AT®
application task. The execution may be resumed using the AT+WOPENRES
command, or by sending a signal on the hardware Interrupt product pin
(The INTERRUPT feature has to be enabled on the product: please refer to
the AT+WFM command). Open AT® application running in Remote Task
Environment cannot be suspended (the function has no effect). Please note
that the current Open AT® application process is suspended immediately on
the adl_safeRunCommand process; if there is any code after this function call,
it will be executed only when the process is resumed.

API

Application Safe Mode Service

© Confidential Page: 213 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

RspHandler:

Response handler to get command results. All responses are subscribed
and the command is executed on the Open AT® virtual port. Instead of
providing a response handler, a port identifier may be specified (using
adl_port_e type): the command will be executed on this port, and the
resulting responses sent back on this port.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if the parameter has an incorrect value

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

API

AT Strings Service

© Confidential Page: 214 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.21 AT Strings Service

This service provides APIs to process AT standard response strings.

3.21.1 Required Header File

The header file for the AT strings service is:

adl_str.h

3.21.2 The adl_strID_e Type

All predefined AT strings for this service are defined in the following type:

typedef enum
{
 ADL_STR_NO_STRING, // Unknown string
 ADL_STR_OK, // "OK"
 ADL_STR_BUSY, // "BUSY"
 ADL_STR_NO_ANSWER, // "NO ANSWER"
 ADL_STR_NO_CARRIER, // "NO CARRIER"
 ADL_STR_CONNECT, // "CONNECT"
 ADL_STR_ERROR, // "ERROR"
 ADL_STR_CME_ERROR, // "+CME ERROR:"
 ADL_STR_CMS_ERROR, // "+CMS ERROR:"
 ADL_STR_CPIN, // "+CPIN:"
 ADL_STR_LAST_TERMINAL, // Terminal resp. are
 before this line
 ADL_STR_RING = ADL_STR_LAST_TERMINAL, // "RING"
 ADL_STR_WIND, // "+WIND:"
 ADL_STR_CRING, // "+CRING:"
 ADL_STR_CPINC, // "+CPINC:"
 ADL_STR_WSTR, // "+WSTR:"
 ADL_STR_CMEE, // "+CMEE:"
 ADL_STR_CREG, // "+CREG:"
 ADL_STR_CGREG, // "+CGREG:"
 ADL_STR_CRC, // "+CRC:"
 ADL_STR_CGEREP, // "+CGEREP:"
 ADL_STR_LAST // Last string ID
} adl_strID_e;

API

AT Strings Service

© Confidential Page: 215 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.21.3 The adl_strGetID Function

This function returns the ID of the provided response string.

• Prototype

adl_strID_e adl_strGetID (ascii * rsp);

• Parameters

rsp:

String to parse to get the ID.

• Returned values

o ADL_STR_NO_STRING if the string is unknown.

o Id of the string otherwise.

3.21.4 The adl_strGetIDExt Function

This function returns the ID of the provided response string, with an optional
argument and its type.

• Prototype

adl_strID_e adl_strGetIDExt (ascii * rsp
 void * arg
 u8 * argtype);

• Parameters

rsp:

String to parse to get the ID.

arg:

Parsed first argument; not used if set to NULL.

argtype:

Type of the parsed argument:

if argtype is ADL_STR_ARG_TYPE_ASCII, arg is an ascii * string ;

if argtype is ADL_STR_ARG_TYPE_U32, arg is an u32 * integer.

• Returned values

o ADL_STR_NO_STRING if the string is unknown.

o Id of the string otherwise.

API

AT Strings Service

© Confidential Page: 216 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.21.5 The adl_strIsTerminalResponse Function

This function checks whether the provided response ID is a terminal one. A terminal
response is the last response that a response handler will receive from a command.

• Prototype

bool adl_strIsTerminalResponse (adl_strID_e RspID);

• Parameters

RspID:

Response ID to check.

• Returned values

o TRUE if the provided response ID is a terminal one.

o FALSE otherwise.

3.21.6 The adl_strGetResponse Function

This function provides the standard response string from its ID.

• Prototype

ascii * adl_strGetResponse (adl_strID_e RspID);

• Parameters

RspID:

Response ID from which to get the string.

• Returned values

o Standard response string on success ;
o NULL if the ID does not exist.

Important caution:

The returned pointer memory is allocated by this function, but its ownership is
transferred to the embedded application. This means that the embedded application
will have to release the returned pointer.

API

AT Strings Service

© Confidential Page: 217 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.21.7 The adl_strGetResponseExt Function

This function provides a standard response string from its ID, with the provided
argument.

• Prototype

ascii * adl_strGetResponseExt (adl_strID_e RspID,
 u32 arg);

• Parameters

RspID:

Response ID from which to get the string.

arg:

Response argument to copy in the response string. Depending on the
response ID, this argument should be an u32 integer value, or an ascii *
string.

• Returned values

o Standard response string on success ;
o NULL if the ID does not exist.

Important caution:

The returned pointer memory is allocated by this function, but its ownership is
transferred to the embedded application. This means that the embedded application
will have to release the returned pointer.

API

Application & Data Storage Service

© Confidential Page: 218 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.22 Application & Data Storage Service

This service provides APIs to use the Application & Data storage volume. This volume
may be used to store data, or ".dwl" files (Wavecom Firmware updates, new Open
AT® applications or E2P configuration files) in order to be installed later on the
product.

The default storage size is 768 Kbytes. It may be configured with the AT+WOPEN
command (Please refer to the AT commands interface guide (document [1]) for more
information).

This storage size has to be set to the maximum (about 1.2 Mbytes) in order to have
enough place to store a Wavecom Firmware update.

Caution:

Any A&D size change will lead to an area format process (some additional seconds
on start-up, all A&D cells data will be erased).

Legal mention:

The Download Over The Air feature enables the Wavecom Firmware to be remotely
updated.

The downloading and OS updating processes have to be activated and managed by
an appropriate Open AT® based application to be developed by the customer. The
security of the whole process (request for update, authentication, encryption, etc) has
to be managed by the customer under his own responsibility. Wavecom shall not be
liable for any issue related to any use by customer of the Download Over The Air
feature.

Wavecom AGREES AND THE CUSTOMER ACKNOWLEDGES THAT THE SDK Open
AT® IS PROVIDED "AS IS" BY Wavecom WITHOUT ANY WARRANTY OR GUARANTEE
OF ANY KIND.

3.22.1 Required Header File

The header file for the Application & Data storage service is:

adl_ad.h

3.22.2 The adl_adSubscribe Function

This function subscribes to the required A&D space cell identifier.

• Prototype

s32 adl_adSubscribe (u32 CellID
 u32 Size);

API

Application & Data Storage Service

© Confidential Page: 219 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

CellID:

A&D space cell identifier to subscribe to. This cell may already exist or not.
If the cell does not exist, the given size is allocated.

Size:

New cell size in bytes (this parameter is ignored if the cell already exists). It
may be set to ADL_AD_SIZE_UNDEF for a variable size. In this case, new cells
subscription will fail until the undefined size cell is finalised.

Total used size in flash will be the data size + header size. Header size is
variable (with an average value of 16 bytes).

When subscribing, the size is rounded up to the next multiple of 4.

• Returned values

o A positive or null value on success:

 The A&D cell handle on success, to be used on further A&D API
functions calls,

o A negative error value:
 ADL_RET_ERR_ALREADY_SUBSCRIBED if the cell is already subscribed;

 ADL_AD_RET_ERR_OVERFLOW if there is not enough allocated space,

 ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available
on the product,

 ADL_RET_ERR_PARAM if the CellId parameter is 0xFFFFFFFF (this
value should not be used as an A&D Cell ID),

 ADL_RET_ERR_BAD_STATE (when subscribing an undefined size cell) if
another undefined size cell is already subscribed and not finalized.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

3.22.3 The adl_adUnsubscribe Function

This function unsubscribes from the given A&D cell handle.

• Prototype

s32 adl_adUnsubscribe (s32 CellHandle);

• Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

• Returned values

o OK on success,

o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

API

Application & Data Storage Service

© Confidential Page: 220 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.22.4 The adl_adEventSubscribe Function

This function allows the application to provide ADL with an event handler to be
notified with A&D service related events.

• Prototype

s32 adl_adEventSubscribe (adl_adEventHdlr_f Handler);

• Parameters

Handler:

Call-back function provided by the application. Please refer to next chapter
for more information.

• Returned values

o A positive or null value on success:

 A&D event handle, to be used in further A&D API functions calls,

o A negative error value:
 ADL_RET_ERR_PARAM if the Handler parameter is invalid,

 ADL_RET_ERR_NO_MORE_HANDLES if the A&D event service has been
subscribed more than 128 times.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

Note:

In order to format or re-compact the A&D storage volume, the adl_adEventSubscribe
function has to be called before the adl_adFormat or the adl_adRecompact functions.

3.22.5 The adl_adEventHdlr_f Call-back Type

This call-back function has to be provided to ADL through the adl_adEventSubscribe
interface, in order to receive A&D related events.

• Prototype

typedef void (*adl_adEventHdlr_f) (adl_adEvent_e Event,
 u32 Progress);

API

Application & Data Storage Service

© Confidential Page: 221 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Event:

Event is the received event identifier. The events (defined in the
adl_adEvent_e type) are described in the table below.

Event Meaning

ADL_AD_EVENT_FORMAT_INIT The adl_adFormat function has
been called by an application (a
format process has just been
required).

ADL_AD_EVENT_FORMAT_PROGRESS The format process is on going.
Several "progress" events should be
received until the process is
completed.

ADL_AD_EVENT_FORMAT_DONE The format process is over. The
A&D storage area is now usable
again. All cells have been erased,
and the whole storage place is
available.

ADL_AD_EVENT_RECOMPACT_INIT The adl_adRecompact function has
been called by an application (a re-
compaction process has been
required).

ADL_AD_EVENT_RECOMPACT_PROGRESS The re-compaction process is on
going. Several "progress" events
should be received until the process
is completed.

ADL_AD_EVENT_RECOMPACT_DONE The re-compaction process is over:
the A&D storage area is now usable
again. The space previously used
by deleted cells is now free.

ADL_AD_EVENT_INSTALL The adl_adInstall function has
been called by an application (an
install process has just been
required and the Wireless CPU® is
going to reset).

Progress:

On ADL_AD_EVENT_FORMAT_PROGRESS & ADL_AD_EVENT_RECOMPACT_PROGRESS
events reception, this parameter is the process progress ratio (considered as
a percentage).

On ADL_AD_EVENT_FORMAT_DONE & ADL_AD_EVENT_RECOMPACT_DONE events
reception, this parameter is set to 100%.

Otherwise, this parameter is set to 0.

API

Application & Data Storage Service

© Confidential Page: 222 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.22.6 The adl_adEventUnsubscribe Function

This function allows the Open AT® application to unsubscribe from the A&D events
notification.

• Prototype

s32 adl_adEventUnsubscribe (s32 EventHandle);

• Parameters

EventHandle:

Handle previously returned by the adl_adEventSubscribe function.

• Returned values

o OK on success,

o ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

o ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been
subscribed,

o ADL_RET_ERR_BAD_STATE if a format or re-compaction process is currently
running with this event handle.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.22.7 The adl_adWrite Function

This function writes data at the end of the given A&D cell.

• Prototype

s32 adl_adWrite (s32 CellHandle
 u32 Size
 void * Data);

• Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Size:

Data buffer size in bytes.

Data:

Data buffer.

• Returned values

o OK on success ;

o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed ;

o ADL_RET_ERR_PARAM on parameter error ;

o ADL_RET_ERR_BAD_STATE if the cell is finalized ;

o ADL_AD_RET_ERR_OVERFLOW if the write operation exceeds the cell size.

API

Application & Data Storage Service

© Confidential Page: 223 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.22.8 The adl_adInfo Function

This function provides information on the requested A&D cell.

• Prototype

s32 adl_adInfo (s32 CellHandle
 adl_adInfo_t * Info);

• Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Info:

Information structure on requested cell, based on following type:

typedef struct
{
 u32 identifier; // identifier
 u32 size; // entry size
 void *data; // pointer to stored data
 u32 remaining; // remaining writable space unless finalized
 bool finalised; // TRUE if entry is finalized
}adl_adInfo_t;

• Returned values

o OK on success,

o ADL_RET_ERR_PARAM on parameter error,

o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed,

o ADL_RET_ERR_BAD_STATE if the required cell is a not finalized or an
undefined size.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.22.9 The adl_adFinalise Function

This function set the provided A&D cell in read-only (finalized) mode. The cell content
can not be modified.

• Prototype

s32 adl_adFinalise (s32 CellHandle);

• Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

API

Application & Data Storage Service

© Confidential Page: 224 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success,

o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed,

o ADL_RET_ERR_BAD_STATE if the cell was already finalized.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.22.10 The adl_adDelete Function

This function deletes the provided A&D cell. The used space and the ID will be
available on next re-compaction process.

• Prototype

s32 adl_adDelete (s32 CellHandle);

• Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

• Returned values

o OK on success,

o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

Note:

Calling adl_adDelete will unsubscribe the allocated handle.

3.22.11 The adl_adInstall Function

This function installs the content of the requested cell, if it is a .DWL file. This file
should be an Open AT® application, an EEPROM configuration file, an XModem
downloader binary file, or a Wavecom Firmware binary file.

Caution:

This API resets the Wireless CPU® on success.

• Prototype

s32 adl_adInstall (s32 CellHandle);

• Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

• Returned values

o Wireless CPU® resets on success. The parameter of the adl_main
function is then set to ADL_INIT_DOWNLOAD_SUCCESS, or
ADL_INIT_DOWNLOAD_ERROR, according to the .DWL file update success or

API

Application & Data Storage Service

© Confidential Page: 225 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

not.
Before the Wireless CPU® reset, all subscribed event handlers (if any)
will receive the ADL_AD_EVENT_INSTALL event, in order to let them
perform last operations.

o ADL_RET_ERR_BAD_STATE if the cell is not finalized,

o ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

Note for RTE:

In RTE mode, calling this API will cause a message box display, prompting the user
for installing the desired A&D cell content or not (see Figure 8: A&D cell content
install window).

Yes No

Figure 8: A&D cell content install window

If the user selects "No", the API will fail and return the ADL_AD_RET_ERROR code.
If the user selects "Yes", the cell content is installed, the Wireless CPU® resets, and the
RTE mode is automatically closed.

3.22.12 The adl_adRecompact Function

This function starts the re-compaction process, which will release the deleted cell
spaces and IDs.

Caution:

If some A&D cells are deleted, and the recompaction process is not performed
regularly, the deleted cell space will not be freed.

• Prototype

s32 adl_adRecompact (s32 EventHandle);

• Parameters

EventHandle:

Event handle previously returned by the adl_adEventSubscribe function. The
associated handler will receive the re-compaction process events sequence.

• Returned values

o OK on success. Event handlers will receive the following event
sequence:

API

Application & Data Storage Service

© Confidential Page: 226 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 ADL_AD_EVENT_RECOMPACT_INIT just after the process is launched,

 ADL_AD_EVENT_RECOMPACT_PROGRESS several times, indicating the
process progression,

 ADL_AD_EVENT_RECOMPACT_DONE when the process is completed.

o ADL_RET_ERR_BAD_STATE if a re-compaction or format process is currently
running,

o ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

o ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been
subscribed,

o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the
product.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.22.13 The adl_adGetState Function

This function provides an information structure on the current A&D volume state.

• Prototype

s32 adl_adGetState (adl_adState_t * State);

• Parameters

State:

A&D volume information structure, based on the following type:

typedef struct
{
 u32 freemem; // Space free memory size
 u32 deletedmem; // Deleted memory size
 u32 totalmem; // Total memory
 u16 numobjects; // Number of allocated objects
 u16 numdeleted; // Number of deleted objects
 u8 pad; // not used
} adl_adState_t;

• Returned values

o OK on success,

o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the
product

o ADL_AD_RET_ERR_NEED_RECOMPACT if a power down or a reset occurred
when a re-compaction process was running. The application has to
launch the adl_adRecompact function before using any other A&D
service function.

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

API

Application & Data Storage Service

© Confidential Page: 227 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.22.14 The adl_adGetCellList Function

This function provides the list of the current allocated cells.

• Prototype

s32 adl_adGetCellList (wm_lst_t * CellList);

• Parameters

CellList:

Return allocated cell list. The list elements are the cell identifiers and are
based on u32 type.

The list is ordered by cell id values, from the lowest to the highest.

Caution:

The list memory is allocated by the adl_adGetCellList function and has to be released
with the wm_lstDestroy function by the application.

• Returned values

o OK on success ;

o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the
product ;

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

Note:

o The number of elements in the returned list are limited by
ADL_AD_MAX_CELL_RETRIEVE;

o If the number of cell IDs to get is superior to ADL_AD_MAX_CELL_RETRIEVE,
use adl_adFindInit and adl_adFindNext functions.

3.22.15 The adl_adFormat Function

This function re-initializes the A&D storage volume. It is only allowed if there is
currently no subscribed cells, or if there are no currently running re-compaction or
format process.

Important caution:

All the A&D storage cells will be erased by this operation. The A&D storage format
process can take several seconds.

• Prototype

s32 adl_adFormat (s32 EventHandle);

• Parameters

EventHandle:

Event handle previously returned by the adl_adEventSubscribe function. The
associated handler will receive the format process events sequence

API

Application & Data Storage Service

© Confidential Page: 228 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success. Event handlers will receive the following event
sequence:

 ADL_AD_EVENT_FORMAT_INIT just after the process is launched,

 ADL_AD_EVENT_FORMAT_PROGRESS several times, indicating the
process progression,

 ADL_AD_EVENT_FORMAT_DONE once the process is done,

o ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

o ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been
subscribed,

o ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the
product,

o ADL_RET_ERR_BAD_STATE if there is at least one currently subscribed cell,
or if a re-compaction or format process is already running.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.22.16 The adl_adFindInit Function

This function initializes a cell search between the two provided cell identifiers.

• Prototype

s32 adl_adFindInit (u32 MinCellId,
 u32 MaxCellId,
 adl_adBrowse_t* BrowseInfo);

• Parameters

MinCellId:

Minimum cell value for wanted cell identifiers.

MaxCellId:

Maximum cell value for wanted cell identifiers.

BrowseInfo:

Returned browse information, to be used with the adl_adFindNext function.
Based on the following type:

typedef struct
{
 u32 hidden[4]; // Memory space necessary for cell information
}adl_adBrowse_t;

• Returned values

o OK on success.

o ADL_AD_RET_ERR_NOT_AVAILABLE if A&D space is not available

o ADL_RET_ERR_PARAM on parameter error.

API

Application & Data Storage Service

© Confidential Page: 229 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.22.17 The adl_adFindNext Function

This function performs a cell ID search on the browse informations provided by the
adl_adFindInit function.

• Prototype

s32 adl_adFindNext (adl_adBrowse_t* BrowseInfo,
 u32* CellId);

• Parameters

BrowseInfo:

Browse informations, returned by the adl_adFindInit function.

CellId:

Next found Cell ID.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM on parameter error.

o ADL_AD_RET_REACHED_END no more elements to enumerate.

3.22.18 Example

This example demonstrates how to use the A&D service in a nominal case (error
cases not handled).

Complete examples using the A&D service are also available on the SDK (DTL
Application_Download sample, generic Download library sample).

// Global variables & constants

// Cell & event handles
s32 MyADCellHandle;
s32 MyADEventHandle;

// Info & state structure
adl_adInfo_t Info;
adl_adState_t State;

// A&D event handler
void MyADEventHandler (adl_adEvent_e Event, u32 Progress)
{
 // Check event
 switch (Event)
 {
 case ADL_AD_EVENT_RECOMPACT_DONE :
 case ADL_AD_EVENT_FORMAT_DONE :
 // The process is over
 TRACE ((1, "Format/Recompact process over…"));
 break;
 }
}

API

Application & Data Storage Service

© Confidential Page: 230 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

...

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 u8 DataBuffer [10];

 // Get state
 adl_adGetState (&State);

 // Subscribe to the A&D event service
 MyADEventHandle = adl_adEventSubscribe (MyADEventHandler);

 // Subscribe to an A&D cell
 MyADCellHandle = adl_adSubscribe (0x00000000, 20);

 // Write data buffer
 wm_memset (DataBuffer, 0, 10);
 adl_adWrite (MyADCellHandle, 10, DataBuffer);

 // Get info
 adl_adInfo (MyADCellHandle, &Info);

 // Install the cell (will fail, not finalized)
 adl_adInstall (MyADCellHandle);

 // Finalize the cell
 adl_adFinalise (MyADCellHandle);

 // Delete the cell
 adl_adDelete (MyADCellHandle);

 // Launch the re-compaction process
 adl_adRecompact (MyADEventHandle);

 // Launch the format process
 // (will fail, re-compaction process is running)
 adl_adFormat (MyADEventHandle);

 // Unsubscribe from the A&D event service
 // (will fail, re-compaction process is running)
 adl_adEventUnsubscribe (MyADEventHandler);
}

API

AT/FCM IO Ports Service

© Confidential Page: 231 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.23 AT/FCM IO Ports Service

ADL applications may use this service to be informed about the product AT/FCM IO
ports states.

3.23.1 Required Header File

The header file for the AT/FCM IO Ports service is:

adl_port.h

3.23.2 AT/FCM IO Ports

AT Commands and FCM services can be used to send and receive AT Commands or
data blocks, to or from one of the product ports. These ports are linked either to
product physical serial ports (as UART1 / UART2 / USB ports), or virtual ports (as
Open AT® virtual AT port, GSM CSD call data port, GPRS session data port or
Bluetooth virtual ports).

AT/FCM IO Ports are identified by the type below:

typedef enum
{
 ADL_PORT_NONE,
 ADL_PORT_UART1,
 ADL_PORT_UART2,
 ADL_PORT_USB,

 ADL_PORT_UART1_VIRTUAL_BASE = 0x10,
 ADL_PORT_UART2_VIRTUAL_BASE = 0x20,
 ADL_PORT_USB_VIRTUAL_BASE = 0x30,
 ADL_PORT_BLUETOOTH_VIRTUAL_BASE = 0x40,
 ADL_PORT_GSM_BASE = 0x50,
 ADL_PORT_GPRS_BASE = 0x60,
 ADL_PORT_OPEN_AT_VIRTUAL_BASE = 0x80
} adl_port_e;

The available ports are described hereafter:

o ADL_PORT_NONE
Not usable

o ADL_PORT_UART1
Product physical UART 1
Please refer to the AT+WMFM command documentation to know how
to open/close this product port.

API

AT/FCM IO Ports Service

© Confidential Page: 232 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_PORT_UART2
Product physical UART 2
Please refer to the AT+WMFM command documentation to know how
to open/close this product port.

o ADL_PORT_USB
Product physical USB port (reserved for future products)

o ADL_PORT_UART1_VIRTUAL_BASE
Base ID for 27.010 protocol logical channels on UART 1
Please refer to AT+CMUX command & 27.010 protocol documentation
to know how to open/close such a logical channel.

o ADL_PORT_UART2_VIRTUAL _BASE
Base ID for 27.010 protocol logical channels on UART 2
Please refer to AT+CMUX command & 27.010 protocol documentation
to know how to open/close such a logical channel.

o ADL_PORT_USB_VIRTUAL _BASE
Base ID for 27.010 protocol logical channels on USB link (reserved for
future products)

o ADL_PORT_BLUETOOTH_VIRTUAL _BASE
Base ID for connected Bluetooth peripheral virtual port.
ONLY USABLE WITH THE FCM SERVICE
Please refer to the Bluetooth AT commands documentation to know
how to connect, and how to open/close such a virtual port.

o ADL_PORT_GSM_BASE
Virtual Port ID for GSM CSD data call flow
ONLY USABLE WITH THE FCM SERVICE
Please note that this port will be considered as always available (no
OPEN/CLOSE events for this port ; adl_portIsAvailable function will
always return TRUE)

o ADL_PORT_GPRS_BASE
Virtual Port ID for GPRS data session flow
ONLY USABLE WITH THE FCM SERVICE
Please note that this port will be considered as always available (no
OPEN/CLOSE events for this port ; adl_portIsAvailable function will
always return TRUE) if the GPRS feature is supported on the current
product.

o ADL_PORT_OPEN_AT_VIRTUAL_BASE
Base ID for AT commands contexts dedicated to Open AT® applications
ONLY USABLE WITH THE AT COMMANDS SERVICE
This port is always available, and is opened immediately at the
product’s start-up. This is the default port where are executed the AT
commands sent by the AT Command service.

3.23.3 Ports Test Macros

Some ports & events test macros are provided. These macros are defined hereafter.

o ADL_PORT_IS_A_SIGNAL_CHANGE_EVENT(_e)
Returns TRUE if the event "_e" is a signal change one, FALSE otherwise.

o ADL_PORT_GET_PHYSICAL_BASE(_port)
Extracts the physical port identifier part of the provided "_port".

API

AT/FCM IO Ports Service

© Confidential Page: 233 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

E.g. if used on a 27.010 virtual port identifier based on the UART 2, this
macro will return ADL_PORT_UART2.

o ADL_PORT_IS_A_PHYSICAL_PORT(_port)
Returns TRUE if the provided "_port" is a physical output based one
(E.g. UART1, UART2 or 27.010 logical ports), FALSE otherwise.

o ADL_PORT_IS_A_PHYSICAL_OR_BT_PORT(_port)
Returns TRUE is the provided "_port" is a physical output or a bluetooth
based one, FALSE otherwise.

o ADL_PORT_IS_AN_FCM_PORT(_port)
Returns TRUE if the provided "_port" is able to handle the FCM service
(i.e. all ports except the Open AT® virtual base ones), FALSE otherwise.

o ADL_PORT_IS_AN_AT_PORT(_port)
Returns TRUE if the provided "_port" is able to handle AT commands
services (i.e. all ports except the GSM & GPRS virtual base ones),
FALSE otherwise.

3.23.4 The adl_portSubscribe Function

This function subscribes to the AT/FCM IO Ports service in order to receive specific
ports related events.

• Prototype

s8 adl_portSubscribe (adl_portHdlr_f PortHandler);

• Parameters

PortHandler:

Port related events handler defined using the following type:

typedef void (*adl_portHdlr_f) (adl_portEvent_e Event,
 adl_port_e Port,
 u8 State);

The events received by this handler are defined below:

o ADL_PORT_EVENT_OPENED

Informs the ADL application that the specified Port is now opened.
According to its type, it may now be used with either AT
Commands service or FCM service.

o ADL_PORT_EVENT_CLOSED

Informs the ADL application that the specified Port is now closed. It
is not usable anymore with neither AT Commands service nor FCM
service.

o ADL_PORT_EVENT_DSR_STATE_CHANGE

Informs the ADL application that the specified Port DSR signal state
has changed to the new State value (0/1). This event will be
received by all subscribers which have started a polling process on
the specified Port DSR signal with the adl_portStartSignalPolling
function.

API

AT/FCM IO Ports Service

© Confidential Page: 234 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_PORT_EVENT_CTS_STATE_CHANGE

Informs the ADL application that the specified Port CTS signal state
has changed to the new State value (0/1). This event will be
received by all subscribers which have started a polling process on
the specified Port CTS signal with the adl_portStartSignalPolling
function.
The handler Port parameter uses the adl_port_e type described
above.
The handler State parameter is set only for the
ADL_PORT_EVENT_XXX_STATE_CHANGE events.

• Returned values

o A positive or null handle on success ;
o ADL_RET_ERR_PARAM on parameter error,

o ADL_RET_ERR_NO_MORE_HANDLES if there is no more free handles (the
service is able to process up 127 subscriptions).

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.23.5 The adl_portUnsubscribe Function

This function unsubscribes from the AT/FCM IO Ports service. The related handler will
not receive ports related events any more. If a signal polling process was started only
for this handle, it will be automaticaly stopped.

• Prototype

s8 adl_portUnsubscribe (u8 Handle);

• Parameters

Handle:

Handle previously returned by the adl_portSubscribe function.

• Returned values

o OK on success ;

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown ;

o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.23.6 The adl_portIsAvailable Function

This function checks if the required port is currently opened or not.

• Prototype

bool adl_portIsAvailable (adl_port_e Port);

API

AT/FCM IO Ports Service

© Confidential Page: 235 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Port:

Port from which to require the current state.

• Returned values

o TRUE if the port is currently opened ;

o FALSE if the port is closed, or if it does not exists.

Notes
o The function will always return TRUE on the ADL_PORT_GSM_BASE port ;

o The function will always return TRUE on the ADL_PORT_GPRS_BASE port if
the GPRS feature is enabled (always FALSE otherwise).

3.23.7 The adl_portGetSignalState Function

This function returns the required port signal state.

• Prototype

s8 adl_portGetSignalState (adl_port_e Port,
 adl_portSignal_e Signal);

• Parameters

Port:

Port from which to require the current signal state. Only physical output
related ports (UARTX & USB ones, used as physical ports, or with the
27.010 protocol) may be used with this function.

Signal:

Signal from which to query the current state, based on the following type:

typedef enum
{
 ADL_PORT_SIGNAL_CTS,
 ADL_PORT_SIGNAL_DSR,
 ADL_PORT_SIGNAL_LAST
} adl_portSignal_e;

Signals are detailed below:

o ADL_PORT_SIGNAL_CTS

Required port CTS input signal: physical pin in case of a physical
port (UARTX), emulated logical signal in case of a 27.010 logical
port.

o ADL_PORT_SIGNAL_DSR

Required port DSR input signal: physical pin in case of a physical
port (UARTX), emulated logical signal in case of a 27.010 logical
port.

API

AT/FCM IO Ports Service

© Confidential Page: 236 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o The signal state (0/1) on success ;
o ADL_RET_ERR_PARAM on parameter error;

o ADL_RET_ERR_BAD_STATE if the required port is not opened.

3.23.8 The adl_portStartSignalPolling Function

This function starts a polling process on a required port signal for the provided
subscribed handle.

Only one polling process can run at a time. A polling process is defined on one port,
for one or several of this port’s signals.

It means that this function may be called several times on the same port in order to
monitor several signals; the polling time interval is set up by the first function call
(polling tme parameters are ignored or further calls). If the function is called several
times on the same port & signal, additional calls will be ignored.

Once a polling process is started on a port’s signal, this one is monitored: each time
this signal state changes, a ADL_PORT_EVENT_XXX_STATE_CHANGE event is sent to all the
handlers which have required a polling process on it.

Whatever is the number of requested signals and subscribers to this port polling
process, a single cyclic timer will be internally used for this one.

• Prototype

s8 adl_portStartSignalPolling (u8 Handle,
 adl_port_e Port,
 adl_portSignal_e Signal,
 u8 PollingTimerType,
 u32 PollingTimerValue);

• Parameters

Handle:

Handle previously returned by the adl_portSubscribe function.

Port:

Port on which to run the polling process. Only physical output related ports
(UARTX & USB ones, used as physical ports, or with the 27.010 protocol)
may be used with this function.

Signal:

Signal to monitor while the polling process. See the adl_portGetSignalState
function for information about the available signals.

API

AT/FCM IO Ports Service

© Confidential Page: 237 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

PollingTimerType:

PollingTimerValue parameter value’s unit. The allowed values are defined
below:

Timer type Timer unit

ADL_TMR_TYPE_100MS PollingTimerValue is in 100 ms steps

ADL_TMR_TYPE_TICK PollingTimerValue is in 18.5 ms tick
steps

This parameter is ignored on additional function calls on the same port.

PollingTimerValue:

Polling time interval (uses the PollingTimerType parameter’s value unit).

This parameter is ignored on additional function calls on the same port.

• Returned values

o OK on success ;

o ADL_RET_ERR_PARAM on parameter error ;

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown ;

o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed ;

o ADL_RET_ERR_BAD_STATE if the required port is not opened ;

o ADL_RET_ERR_ALREADY_SUBSCRIBED if a polling process is already running
on another port.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.23.9 The adl_portStopSignalPolling Function

This function stops a running polling process on a required port signal for the
provided subscribed handle.

The associated handler will not receive the ADL_PORT_EVENT_XXX_STATE_CHANGE events
related to this signal port anymore.

The internal polling process cyclic timer will be stopped as soon as the last subscriber
to the current running polling process has call this function.

• Prototype

s8 adl_portStopSignalPolling (u8 Handle,
 adl_port_e Port,
 adl_portSignal_e Signal);

• Parameters

Handle:

Handle previously returned by the adl_portSubscribe function.

Port:

Port on which the polling process to stop is running.

API

AT/FCM IO Ports Service

© Confidential Page: 238 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Signal:

Signal on which the polling process to stop is running.

• Returned values

o OK on success ;

o ADL_RET_ERR_PARAM on parameter error ;

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown ;

o ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed ;

o ADL_RET_ERR_BAD_STATE if the required port is not opened ;

o ADL_RET_ERR_BAD_HDL if there is no running polling process for this
Handle / Port / Signal combination.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

API

RTC Service

© Confidential Page: 239 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.24 RTC Service

ADL provides a RTC service to access to the Wireless CPU®s inner RTC, and to
process time related data.

The defined operations are:

• A adl_rtcGetTime

• A adl_rtcSetTime

• A adl_rtcConvertTime

• A adl_rtcDiffTime

3.24.1 Required Header File

The header file for the RTC functions is:

adl_rtc.h

3.24.2 RTC service Types

3.24.2.1 The adl_rtcTime_t Structure

Holds a RTC time:

typedef struct
{
 u32 Pad0 // Not used
 u32 Pad1 // Not used
 u16 Year; // Year (Four digits)
 u8 Month; // Month (1-12)
 u8 Day; // Day of the Month (1-31)
 u8 WeekDay; // Day of the Week (1-7)
 u8 Hour; // Hour (0-23)
 u8 Minute; // Minute (0-59)
 u8 Second; // Second (0-59)
 u32 SecondFracPart; // Second fractional part
 u32 Pad2; // Not used
} adl_rtcTime_t;

Second fractional part (0-MAX) The MAX value is available from the registry field
rtc_PreScalerMaxValue. See panel "Capabilities registry informations".

API

RTC Service

© Confidential Page: 240 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.24.2.2 The adl_rtcTimeStamp_t Structure

Used to perform arithmetic operations on time data:

typedef struct
{
 u32 TimeStamp; // Seconds elapsed since 1st January 1970
 u32 SecondFracPart; // Second fractional part
} adl_rtcTimeStamp_t;

Second fractional part (0-MAX) The MAX value is available from the registry field
rtc_PreScalerMaxValue. See panel "Capabilities registry informations".

3.24.2.3 Constants

RTC service constants are defined below:

Constant Value Use

ADL_RTC_DAY_SECONDS 24 * ADL_RTC_HOUR_SECONDS Seconds count in a day

ADL_RTC_HOUR_SECONDS 60 * ADL_RTC_MINUTE_SECONDS Seconds count in an hour

ADL_RTC_MINUTE_SECONDS 60 Seconds count in a minute

ADL_RTC_MS_US 1000 μseconds count in a
millisecond

API

RTC Service

© Confidential Page: 241 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.24.2.4 Macros

RTC service macros are defined below:

Macro Parameter Use

ADL_RTC_SECOND_FRACPART_STEP adl_rtcGetSecondFracPartStep
structure

Second fractional
part step value (in
μs) extraction macro

ADL_RTC_GET_TIMESTAMP_DAYS(_t)
(_t.TimeStamp /
ADL_RTC_DAY_SECONDS)
structure

Days number
extraction macro.

ADL_RTC_GET_TIMESTAMP_HOURS(_t)

((_t.TimeStamp %
ADL_RTC_DAY_SECONDS) /
ADL_RTC_HOUR_SECONDS)
structure

Hours number
extraction macro

ADL_RTC_GET_TIMESTAMP_MINUTES(_t)

((_t.TimeStamp %
ADL_RTC_HOUR_SECONDS) /
ADL_RTC_MINUTE_SECONDS)
structure

Minutes number
extraction macro

ADL_RTC_GET_TIMESTAMP_SECONDS(_t)
(_t.TimeStamp %
ADL_RTC_MINUTE_SECONDS)
structure

Seconds number
extraction macro

ADL_RTC_GET_TIMESTAMP_MS(_t)

(((u32)(_t.SecondFracPart *
ADL_RTC_SECOND_FRACPAR
T_STEP)) / ADL_RTC_MS_US)
structure

Milliseconds
number extraction
macro.

ADL_RTC_GET_TIMESTAMP_US(_t)

(((u32)(_t.SecondFracPart *
ADL_RTC_SECOND_FRACPAR
T_STEP)) % ADL_RTC_MS_US
) structure

μseconds number
extraction macro

3.24.3 Enumerations

3.24.3.1 The adl_rtcConvert_e Type

This structure contains the available conversion modes.

• Code

typedef enum
{
 ADL_RTC_CONVERT_TO_TIMESTAMP,
 ADL_RTC_CONVERT_FROM_TIMESTAMP
} adl_rtcConvert_e;

• Description

ADL_RTC_CONVERT_TO_TIMESTAMP: Conversion mode to TimeStamp.

ADL_RTC_CONVERT_FROM_TIMESTAMP: Conversion mode from TimeStamp.

API

RTC Service

© Confidential Page: 242 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.24.4 The adl_rtcGetSecondFracPartStep Function

This function retrieves the second fractional part step (in μs), reading the
rtc_PreScalerMaxValue register field.

• Prototype

float adl_rtcGetSecondFracPartStep (void);

• Returned values

o The second fractional part step of the Wireless CPU®, in μs.

3.24.5 The adl_rtcGetTime Function

This function retrieves the current RTC time into an adl_rtcTime_t structure.

• Prototype

s32 adl_rtcGetTime (adl_rtcTime_t * TimeStructure);

• Parameters

TimeStructure:

RTC structure where to copy current time.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM on parameter error.

3.24.6 The adl_rtcSetTime Function

This function sets a RTC time from a adl_rtcTime_t structure.

• Prototype

s32 adl_rtcSetTime (adl_rtcTime_t * TimeStructure);

• Parameters

TimeStructure:

RTC structure where to get current time.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM on parameter error.

Note:

1: the input parameter cannot be a constant since it is modified by the API

2: when setting the RTC time SecondFracPart and WeekDay field are ignored.

3.24.7 The adl_rtcConvertTime Function

This function is able to convert RTC time structure to timestamp structure, and
timestamp structure to RTC time structure thanks to a third agument precising the
way of conversion.

API

RTC Service

© Confidential Page: 243 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Prototype

s32 adl_rtcConvertTime (adl_rtcTime_t* TimeStructure,
 adl_rtcTimeStamp_t* TimeStamp,
 adl_rtcConvert_e Conversion);

• Parameters

TimeStructure:

RTC structure where to get/set current time

TimeStamp:

Timestamp structure where to get/set current time

Conversion:

Conversion way:

o ADL_RTC_CONVERT_TO_TIMESTAMP

o ADL_RTC_CONVERT_FROM_TIMESTAMP

• Returned values

o OK on success,

o ERROR if conversion failed (internal error),

o ADL_RET_ERR_PARAM on parameter error.

3.24.8 The adl_rtcDiffTime Function

This function reckons the difference between two timestamps.

• Prototype

s32 adl_rtcDiffTime (adl_rtcTimeStamp_t * TimeStamp1,
 adl_rtcTimeStamp_t * TimeStamp2,
 adl_rtcTimeStamp_t * Result);

• Parameters

TimeStamp1:

First timestamp to compare

TimeStamp2:

Second timestamp to compare

Result:

Reckoned time difference

• Returned values

o 1 if TimeStamp1 is greater than TimeStamp2,

o -1 if TimeStamp2 is greater than TimeStamp1,

o 0 if the provided TimeStamps are the same,
o ADL_RET_ERR_PARAM on parameter error.

API

RTC Service

© Confidential Page: 244 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.24.9 Capabilities

ADL provides informations to get the RTC Second Frac Part capabilities.

The following entry is defined in the registry:

Registry entry Type Description

rtc_PreScalerMaxValue INTEGER
0: No second fractional part
xxx: Second fractional part
resolution

3.24.10 Example

This example demonstrates how to use the RTC service in a nominal case (error
cases are not handled) with a Wireless CPU®.

Complete examples using the RTC service are also available on the SDK (generic
Download library sample).

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 adl_rtcTime_t Time1, Time2;
 adl_rtcTimeStamp_t Stamp1, Stamp2, DiffStamp;
 s32 Way;

 // Get time
 adl_rtcGetTime (&Time1);
 adl_rtcGetTime (&Time2);

 // Convert to time stamps
 adl_rtcConvertTime (&Time1, &Stamp1, ADL_RTC_CONVERT_TO_TIMESTAMP);
 adl_rtcConvertTime (&Time2, &Stamp2, ADL_RTC_CONVERT_TO_TIMESTAMP);

 // Reckon time difference
 Way = adl_rtcDiffTime (&Stamp1, &Stamp2, &DiffStamp);

 //Convert the time difference from time stamps
 adl_rtcConvertTime (&Diff, &DiffStamp, ADL_RTC_CONVERT_FROM_TIMESTAMP);

 //Set back the initial time
 adl_rtcSetTime (&Time1);
}

API

IRQ Service

© Confidential Page: 245 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25 IRQ Service

The ADL IRQ service allows interrupt handlers to be defined.

These handlers are usable with other services (External Interrupt Pins, Audio) to
monitor specific interrupt sources.

Interrupt handlers are running in specific execution contexts of the application. Please
refer to the Execution Contexts Service for more information (§ 3.27).

The defined operations are:

• Subscription functions adl_irqSubscribe & adl_irqSubscribeExt to define
interrupt handlers

• Configuration functions adl_irqSetConfig & adl_irqGetConfig to handle
interrupt handlers configuration

• An Unsubscription function adl_irqUnsubscribe to remove an IRQ handler
definition

• A Get Capabilities function adl_irqGetCapabilities to retrieve the IRQ
service capabilities

Note:

The Real Time Enhancement feature has to be enabled on the Wireless CPU® in order
to make this service available.

The Real Time Enhancement feature state can be read thanks to the AT+WCFM=5
command response value: this feature state is represented by the bit 4 (00000010 in
hexadecimal format)

Please contact your Wavecom distributor for more information on how to enable this
feature on the Wireless CPU®.

3.25.1 Required Header File

The header file for the IRQ functions is:

adl_irq.h

API

IRQ Service

© Confidential Page: 246 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25.2 The adl_irqID_e Type

This type defines the interrupt sources that the service is able to monitor.

typedef enum
{
 ADL_IRQ_ID_AUDIO_RX_LISTEN,
 ADL_IRQ_ID_AUDIO_TX_LISTEN,
 ADL_IRQ_ID_AUDIO_RX_PLAY,
 ADL_IRQ_ID_AUDIO_TX_PLAY,
 ADL_IRQ_ID_EXTINT,
 ADL_IRQ_ID_TIMER,
 ADL_IRQ_ID_EVENT_CAPTURE
 ADL_IRQ_ID_EVENT_DETECTION
 ADL_IRQ_ID_SPI_EOT,
 ADL_IRQ_ID_I2C_EOT,
 ADL_IRQ_ID_LAST // Reserved for internal use
} adl_irqID_e;

The ADL_IRQ_ID_AUDIO_RX_LISTEN constant identifies RX path interrupt sources raised
by the Audio Stream Listen service. Please refer to the Audio Service for more
information.

The ADL_IRQ_ID_AUDIO_TX_LISTEN constant identifies TX path interrupt sources raised
by the Audio Stream Listen service. Please refer to the Audio Service for more
information.

The ADL_IRQ_ID_AUDIO_RX_PLAY constant identifies RX path interrupt sources raised by
the Audio Stream Play service. Please refer to the Audio Service for more information.

The ADL_IRQ_ID_AUDIO_TX_PLAY constant identifies TX path interrupt sources raised by
the Audio Stream Play. Please refer to the Audio Service for more information.

The ADL_IRQ_ID_EXTINT constant identifies interrupt sources raised by the External
Interrupt Pin source. For more information, please refer to the ExtInt service (see
section 3.27.)

The ADL_IRQ_ID_TIMER constant identifies interrupt sources raised by the Timer
Interrupts source. For more information, please refer to the TCU service (see section
3.26).

The ADL_IRQ_ID_EVENT_CAPTURE constant identifies capture interrupt sources raised by
the Timer Interrupts source. For more information, please refer to the TCU service
(see section 3.26).

The ADL_IRQ_ID_EVENT_DETECTION constant identifies detection interrupt sources raised
by the Timer Interrupt source. For more information, please refer to the TCU service
(see section 3.26).

The ADL_IRQ_ID_SPI_EOT constant identifies SPI bus asynchronous end of transmission
event. Please refer to the BUS service (see section 3.11) for more information.

The ADL_IRQ_ID_I2C_EOT constant identifies I2C bus asynchronous end of transmission
event. Please refer to the BUS service (see section 3.11) for more information.

API

IRQ Service

© Confidential Page: 247 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25.3 The adl_irqNotificationLevel_e Type

This type defines the notification level of a given interrupt handler.

For more information on specific high and low level handlers behavior, please refer to
the Execution Context Service description (§ 3.28).

typedef enum
{
 ADL_IRQ_NOTIFY_LOW_LEVEL,
 ADL_IRQ_NOTIFY_HIGH_LEVEL,
 ADL_IRQ_NOTIFY_LAST // Reserved for internal use
} adl_irqNotificationLevel_e;

The ADL_IRQ_NOTIFY_LOW_LEVEL constant allows low level interrupt handlers to be
defined.

The ADL_IRQ_NOTIFY_HIGH_LEVEL constant allows high level interrupt handlers to be
defined.

3.25.4 The adl_irqPriorityLevel_e Type

This type defines the priority level of a given interrupt handler.

The lowest priority level is always 0.

The highest priority level shall be retrieved thanks to the adl_irqGetCapabilities
function.

Please refer to each interrupt related service for more information about the available
priority levels.

The priority level of a handler allows the notification order to be set in case of event
conflict:

• A N priority level handler cannot be interrupted by other handlers with the
same N priority level, or with a lower N - X priority level.

• A N priority level handler can be interrupted by any other handlers with an
higher N + X priority level.

Note:

Priority levels settings are significant only for low level interrupt handlers. There is no
way to define priority levels for high level interrupt handlers.

Priority levels settings are only efficient with external interrupt service, allowing to
configure the several external interrupt pins priority. Other interrupt source services
priorities are not configurable, and always have the values listed in the table below.
Trying to modify the priority of such services will have no effect.

API

IRQ Service

© Confidential Page: 248 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Service Events Priority value

Audio Service

ADL_IRQ_ID_AUDIO_RX_LISTEN
ADL_IRQ_ID_AUDIO_TX_LISTEN
ADL_IRQ_ID_AUDIO_RX_PLAY
ADL_IRQ_ID_AUDIO_TX_PLAY

Max

BUS & TCU Services

ADL_IRQ_ID_SPI_EOT
ADL_IRQ_ID_I2C_EOT
ADL_IRQ_ID_TIMER
ADL_IRQ_ID_EVENT_CAPTURE
ADL_IRQ_ID_EVENT_DETECTION

0

MAX value represents the maximum priority value.

3.25.5 The adl_irqEventData_t Structure

This structure supplies interrupt handlers with data related to the interrupt source.

typedef struct
{
 union
 {
 void * LowLevelOuput;
 void * HighLevelInput;
 } UserData;
 void * SourceData;
 u32 Instance
 void * Context
} adl_irqEventData_t;

3.25.5.1 The UserData Field

This field allows the application to exchange data between low level and high level
interrupt handlers.

3.25.5.2 The Source Data Field

This field provides to handlers an interrupt source specific data. Please refer to each
interrupt source related service for more information about this field data structure.

When the interrupt occurs, the source related information structure is automatically
provided by the service to the low level interrupt handler, whatever if the
ADL_IRQ_OPTION_AUTO_READ option is enabled or not.
In an high level interrupt handler, this field will be set only if the
ADL_IRQ_OPTION_AUTO_READ option is enabled.

3.25.5.3 The Instance Field

Instance identifier of the interrupt event which has just occurred. Please refer to each
interrupt source related service for more information on the instance number use.

API

IRQ Service

© Confidential Page: 249 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25.5.4 The Context Field

Application context, given back by ADL on event occurrence. This context was
provided by the application to the interrupt source related service, when using the
operation which enables the interrupt event occurrences.
If the interrupt source related service does not offer a way to define an application
context, this member will be set to NULL.
Please refer to each interrupt source related service for more information on the
instance number use.

3.25.6 The adl_irqCapabilities_t Structure

This structure allows the application to retrieve information about the IRQ service
capabilities.

typedef struct
{
 u8 PriorityLevelsCount,
 u8 Pad [3] // Reserved for internal use
 u8 InstancesCount [ADL_IRQ_ID_LAST]
} adl_irqCapabilities_t;

3.25.6.1 The PriorityLevelsCount Field

This field provides the priority levels count, usable to set an adl_irqPriorityLevel_e
type value (see section 3.25.4)

Such a value shall use a range from 0 to PriorityLevelsCount–1.

3.25.6.2 The InstancesCount Field

This field provides the instances count, for each interrupt source identifier. Please
refer to each interrupt source related service for more information. If an instance
count value is set to 0, the corresponding interrupt related event is not supported on
the current platform.

3.25.7 The adl_irqConfig_t Structure

This structure allows the application to configure interrupt handlers behaviour.

typedef struct
{
 adl_irqPriorityLevel_e PriorityLevel,
 bool Enable,
 u8 Pad[2] // Reserved for future use
 adl_irqOptions_e Options
} adl_irqConfig_t;

API

IRQ Service

© Confidential Page: 250 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25.7.1 The PriorityLevel Field

This field defines the interrupt handler priority level. Please refer to the
adl_irqPriorityLevel_e type definition for more information (see § 3.25.4).

Note:

If different services are plugged on an interrupt handler, the priority value will be
applied to all services, if possible. If the priority value is not applicable for a given
service, it will be ignored.

3.25.7.2 The Enable Field

This field defines if the interrupt handler is enabled or not.
If set to TRUE, the interrupt handler is enabled and any interrupt event on which is
plugged this handler will call the related function.
If set to FALSE, the interrupt handler is disabled: all interrupt events on which are
plugged this handler are masked, and will be delayed until the handler is enabled
again.

Note:

This is the default behaviour. If specified in the related service, the event shall be just
delayed until the handler is enabled again.

3.25.7.3 The Options Field

This field defines the interrupt handler notification options. A bitwise OR combination
of the option constants has to be used. Please refer to the 3.25.8 adl_irqOptions_e
type definition for more information.

3.25.8 The adl_irqOptions_e type

These options have to be used with a bit-wise OR in order to specify the interrupt
handler behaviour.

typedef enum
{

ADL_IRQ_OPTION_AUTO_READ =1UL,
ADL_IRQ_OPTION_PRE_ACKNOWLEDGEMENT =0UL,
ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT =0UL

} adl_ adl_irqOptions_e;

ADL_IRQ_OPTION_AUTO_READ: Automatic interrupt source information read.

When the interrupt occurs, the source related information structure is automatically
read by the service, and supplied to the low level interrupt handler.
When used with a high level interrupt handler, this option allows the application to
get the source related information structure read at interrupt time.

Note:

This option has no effect with a low level interrupt handler
(adl_irqEventData_t::SourceData field will always be provided by the related interrupt
service in this case).

API

IRQ Service

© Confidential Page: 251 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

ADL_IRQ_OPTION_PRE_ACKNOWLEDGEMENT: Interrupt source pre-
acknowledgement.

ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT: Interrupt source post-
acknowledgement.

3.25.9 The adl_irqHandler_f Type

This type has to be used by the application in order to provide ADL with an interrupt
hander.

• Prototype

typedef bool (*)adl_irqHandler_f (adl_irqID_e Source,
 adl_irqNotificationLevel_e
 NotificationLevel,
 adl_irqEventData_t * Data);

• Parameter

Source:

Interrupt source identifier.

Please refer to adl_irqID_e type definition for more information. (see §
3.25.2).

NotificationLevel:

Interrupt handler current notification level.

Please refer to adl_irqNotifyLevel_e type definition for more information
(see § 3.25.3).

Data:

Interrupt handler input/output data field.

Please refer to adl_irqEventData_e type definition for more information. (see
§ 3.25.5).

• Returned values

o Not relevant for high level interrupt handlers.

o For low level interrupt handlers

 TRUE: requires ADL to call the subscribed high level handler for
this interrupt source.

 FALSE: requires ADL not to call any high level handler for this
interrupt source.

Note:

For low level interrupt handlers, 1 ms can be considered as a maximum
latency time before being notified with the interrupt source event.

API

IRQ Service

© Confidential Page: 252 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25.10 The adl_irqSubscribe Function

This function allows the application to supply an interrupt handler, to be used later in
Interrupt source related service subscription.

• Prototype

s32 adl_irqSubscribe (adl_irqHandler_f IrqHandler,
 adl_irqNotificationLevel_e NotificationLevel,
 adl_irqPriorityLevel_e PriorityLevel,
 adl_irqOptions_e Options);

• Parameter

IrqHandler:

Interrupt handler supplied by the application.

NotificationLevel:

Interrupt handler notification level; allows the supplied handler to be
identified as a low level or a high level one.

PriorityLevel:

Interrupt handler priority level; Please refer to adl_irqPriorityLevel_e type
definition for more information (see § 3.25.4).

Options:

Interrupt handler notification options.

A bitwise OR combination of the options constant has to be used. Please
refer to the adl_irqOptions_e type definition for more information (see
section 3.25.8).

• Returned values

o Handle: A positive or null IRQ service handle on success, to be used in
further IRQ & interrupt source services function calls.

o ADL_RET_ERR_PARAM on a supplied parameter error.

o ADL_RET_ERR_NOT_SUBSCRIBED if a low or high level handler subscription
is required while the associated context call stack size was not
supplied by the application (please refer to the Mandatory Service
description (§ 3.1)).

o ADL_RET_ERR_BAD_STATE if the function is called in RTE mode.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

Note:

o The IRQ service will always return an error code in RTE mode (the
service is not supported in this mode). .Use of the IRQ service should be
flagged in order to make an application working correctly in RTE.

o This function is a shortcut to the adl_irqSubscribeExt one. Provided
PriorityLevel and Options parameters values will be used to fill the
configuration structure. The adl_irqConfig_t::Enable field will be set to
TRUE by default.

API

IRQ Service

© Confidential Page: 253 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25.11 The adl_irqSubscribeExt Function

This function allows the application to supply an interrupt handler, to be used later in
Interrupt source related service subscription.

• Prototype

s32 adl_irqSubscribeExt (adl_irqHandler_f IrqHandler,
 adl_irqNotificationLevel_e NotificationLevel,

 adl_irqConfig_t* Config);

• Parameter

IrqHandler:

Interrupt handler supplied by the application.

Please refer to adl_irqHandler_f type definition for more information (see §
3.25.9).

NotificationLevel:

Interrupt handler notification level; allows the supplied handler to be
identified as a low level or a high level one.

Please refer to adl_irqNotifyLevel_e type definition for more information
(see § 3.25.3).

Config:

Interrupt handler configuration. Please refer to the 3.25.7 adl_irqConfig_t
structure definition for more information.

• Returned values

o Handle: A positive or null IRQ service handle on success, to be used in
further IRQ & interrupt source services function calls.

o ADL_RET_ERR_PARAM on a supplied parameter error.

o ADL_RET_ERR_NOT_SUBSCRIBED if a low or high level handler subscription
is required while the associated context call stack size was not
supplied by the application (please refer to the Mandatory Service
description (§ 3.1)).

o ADL_RET_ERR_BAD_STATE if the function is called in RTE mode.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

Note:

The IRQ service will always return an error code in RTE mode (the service is
not supported in this mode). Use of the IRQ service should be flagged in
order to make an application working correctly in RTE.

3.25.12 The adl_irqUnsubscribe Function

This function allows the application to unsubscribe from the interrupt service. The
associated handler will no longer be notified of interrupt events.

• Prototype

s32 adl_irqUnsubscribe (s32 IrqHandle);

API

IRQ Service

© Confidential Page: 254 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameter

IrqHandle:

Interrupt service handle, previously returned by the adl_irqSubscribe
function.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

o ADL_RET_ERR_BAD_STATE if the supplied handle is still used by an
interrupt source service.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.25.13 The adl_irqSetConfig function

This function allows the application to update an interrupt handler's configuration.

• Prototype

s32 adl_irqSetConfig (s32 IrqHandle,
 adl_irqConfig_t * Config)

• Parameter

IrqHandle:

IRQ service handle, previously returned by the adl_irqSubscribe function.

Config:

Interrupt handler configuration structure. Please refer to the
adl_irqConfig_t structure definition for more information (see section
3.25.7).

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

o ADL_RET_ERR_PARAM on a supplied parameter error.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.25.14 The adl_irqGetConfig function

This function allows the application to retrieve an interrupt handler's configuration.

• Prototype

s32 adl_irqGetConfig (s32 IrqHandle,
 adl_irqConfig_t * Config)

API

IRQ Service

© Confidential Page: 255 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameter

IrqHandle:

IRQ service handle, previously returned by the adl_irqSubscribe function.

Config:

Interrupt handler configuration structure. Please refer to the
adl_irqConfig_t structure definition for more information (see section
3.25.7).

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

o ADL_RET_ERR_PARAM on a supplied parameter error.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.25.15 The adl_irqGetCapabilities Function

This function allows the application to retrieve information about the IRQ service
capabilities on the current platform.

• Prototype

s32 adl_irqGetCapabilities (adl_irqCapabilities_t * Capabilities)

• Parameter

Capabilities

IRQ service capabilities information structure. Please refer to the
adl_irqCapabilities_t structure definition for more information (see section
3.25.6).

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM on parameter error.

API

IRQ Service

© Confidential Page: 256 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.25.16 Example

The code sample below illustrates a nominal use case of the ADL IRQ Service public
interface (error cases are not handled).

// Global variable: IRQ service handle
 s32 MyIRQHandle;

 // Interrupt handler
 bool MyIRQHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
 NotificationLevel, adl_irqEventData_t * Data)
 {
 // Interrupt process...
 // Notify the High Level handler, if any
 return TRUE;
 }

 // Somewhere in the application code, used as event handler
 void MyFunction1 (void)
 {
 // Local variables
 adl_irqCapabilities_t Caps;
 adl_irqConfig_t Config;

 // Get capabilities
 adl_irqGetCapabilities (&Caps);

 // Set configuration
 Config.PriorityLevel = Caps.PriorityLevelsCount - 1; // Highest
priority
 Config.Enable = TRUE; // Interrupt handler enabled
 Config.Options = ADL_IRQ_OPTION_AUTO_READ; // Auto-read
option set

 // Subscribe to the IRQ service
 MyIRQHandle = adl_irqSubscribeExt (MyIRQHandler,
 ADL_IRQ_NOTIFY_LOW_LEVEL, &Config);

 // TODO: Interrupt source service subscription
 ...

 // Mask the interrupt
 adl_irqGetConfig (MyIRQHandle, &Config);
 Config.Enable = FALSE;
 adl_irqSetConfig (MyIRQHandle, &Config);

 ...

API

IRQ Service

© Confidential Page: 257 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 // Unmask the interrupt
 adl_irqGetConfig (MyIRQHandle, &Config);
 Config.Enable = TRUE;
 adl_irqSetConfig (MyIRQHandle, &Config);

 ...

 // TODO: Interrupt source service un-subscription
 ...

 // Un-subscribe from the IRQ service
 adl_irqUnsubscribe (MyIRQHandle);
 }

API

TCU Service

© Confidential Page: 258 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26 TCU Service

ADL supplies Timer & Capture Unit Service interface to handle operations related to
the Wireless CPU® hardware timers & capture units.

 The defined operations are:

• A subscription function (adl_tcuSubscribe) to subscribe to the TCU service

• An unsubscription function (adl_tcuUnsubscribe) to unsubscribe from the
TCU service

• Start & Stop functions (adl_tcuStart & adl_tcuStop) to control the TCU
service event generation

3.26.1 Required Header File

The header file for the TCU function is:

adl_tcu.h

3.26.2 Capabilities Registry Informations

ADL provides capabilities information about the TCU service, thanks to the registry
service.

The following entries have been defined in the registry:

Registry entry Type Description

tcu_TmrSrvAvailable INTEGER Availability of the Accurate Timer service
(boolean value)

tcu_CaptSrvAvailable INTEGER Availability of the Event Capture service (boolean
value)

tcu_DetectSrvAvailable INTEGER Availability of the Event Detection service
(boolean value)

tcu_EvPinsNb INTEGER Number of pins usable to monitor events with
the Capture & Detection services

tcu_TimersNb INTEGER
Maximum number of Accurate Timer service
instances which can be running at the same
time

tcu_TimerBoundaries DATA

Minimum & maximum duration values which
can be used for the Accurate Timer service,
using the adl_tcuTimerBoundaries_t structure
format.

API

TCU Service

© Confidential Page: 259 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Registry entry Type Description

tcu_EvDetectUnit INTEGER

Time unit used (following adl_tcuTimerUnit_e
type) in the event detection service:

• for inactivity period settings
(_adl_tcuEventDetectionSettings_t::Dur
ation)

• for last stable state duration
information
(_adl_tcuEventDetectionInfo_t::LastStat
eDuration)

tcu_EvCaptUnit INTEGER

Time unit used (following adl_tcuTimerUnit_e
type) in the event capture service, for capture
duration setting
(_adl_tcuEventCaptureSettings_t::Duration)

3.26.3 Data Structures

3.26.3.1 The adl_tcuEventCaptureSettings_t Structure

TCU configuration structure, when the ADL_TCU_EVENT_CAPTURE service is used.

typedef struct
{
 u16 CapturePinID

adl_tcuEventType_e EventType
u32 Duration
u32* EventCounter

} adl_tcuEventCaptureSettings_t;

• Fields

CapturePinID:

Identifier of the pin on which the service has to monitor events.Please refer
to the PTS for more information. The allowed values range is from 0 to the
value returned by the tcu_EvPinsNb capability - 1.

EventType:

Event capture type, using one of the adl_tcuEventType_e type values.

Duration:

Duration of the capture period (in the unit provided by the tcu_EvCaptUnit
capability). This duration is used only if the
adl_tcuEventCaptureSettings_t::EventCounter address is set to NULL,
otherwise it will be ignored. When the parameter is used, the related IRQ
service handlers are called on each duration expiration, indicating to the
application how many events have occurred since the previous handler call.

API

TCU Service

© Confidential Page: 260 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Note: When the Event Capture is configured with a period duration greater
than 0, an Accurate Timer resource is internally used to handle the service.

EventCounter:

Address of a 32 bits variable provided by the application, where the events
counter value has to be stored. If this address is provided, no interrupt
events will be generated, but the event counter value will be incremented
each time a new event is detected. Please note that in this case, none of
IRQ service handles provided to the adl_tcuSubscribe function will be used
(parameters values will be ignored). If this address is set to NULL, the service
will regularly generate events, on the time base defined by the
adl_tcuEventCaptureSettings_t::Duration parameter.

Note: The provided variable address has to be accessible from the Firmware
until the service is unsubscribed. This means that the variable has to be
either a global/static one, or an allocated heap buffer.

If provided, the event counter content is only incremented, but never reset
by the TCU service. The application has to reset it by itself when it is
necessary.

3.26.3.2 The adl_tcuEventDetectionInfo_t Structure

This structure contains the information provided to event handlers when
ADL_IRQ_ID_EVENT_DETECTION events are generated, following a ADL_TCU_EVENT_CAPTURE
service subscription.

typedef struct
{
 u32 LastStateDuration

adl_tcuEventType_e EventType
} adl_tcuEventDetectionInfo_t;

• Fields

LastStateDuration:

Duration (in the unit provided by the tcu_EvDetectUnit capability) of the last
stable state of the monitored signal, before the handler notification occured.

EventType:

Type of the event which has caused the notification. If the value is positive
or null, it represents the detected event type, using the adl_tcuEventType_e
enumeration type. If the value is ADL_TCU_EVENT_TYPE_NONE, it means that no
event has been detected since the last handler notification when the
timeout programed thanks to the
adl_tcuEventDetectionSettings_t::Duration parameter has elapsed.

API

TCU Service

© Confidential Page: 261 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.3.3 The adl_tcuEventDetectionSettings_t Structure

TCU configuration structure, when the ADL_TCU_EVENT_DETECTION service is used.

typedef struct
{
 u16 DetectionPinID

adl_tcuEventType_e EventType
u32 Duration

} adl_tcuEventDetectionSettings_t;

• Fields

DetectionPinID

Identifier of the pin on which the service has to monitor events. Please refer
to the Product Technical Specification for more information. The allowed
values range is from 0 to the value returned by the tcu_EvPinsNb capability -
1.

EventType

Event detection type, using one of the adl_tcuEventType_e type values.

Duration

Optional inactivity detection period duration, used to cause an handler
notification if no event occurred for a given time slot. If this value is set to 0,
the inactivity detection will be disabled. If this value is greater than 0, it is
the inactivity detection period duration (in the unit provided by the
tcu_EvDetectUnit capability): if no event has occurred since the last
notification (or since the adl_tcuStart function call) when the duration
expires, the associated handlers will be called to warn the application about
this inactivity.

Note: When the Event Detection is configured with an inactivity period
duration greater than 0, an Accurate Timer resource is internally used to
handle the service.

3.26.3.4 The adl_tcuTimerBoundaries_t Structure

This structure is usable to retrieve the TCU capabilities about the Accurate Timer
service duration boundaries.

typedef struct
{
 adl_tcuTimerDuration_t MinDuration

adl_tcuTimerDuration_t MaxDuration
} adl_tcuEventDetectionInfo_t;

• Fields

MinDuration

Minimum timer duration, using the adl_tcuTimerDuration_t structure.

API

TCU Service

© Confidential Page: 262 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

MaxDuration

Maximum timer duration, using the adl_tcuTimerDuration_t structure.

3.26.3.5 The adl_tcuTimerDuration_t Structure

Configuration structure usable to represent a timer duration.

typedef struct
{
 u32 DurationValue

adl_tcuTimerUnit_e DurationUnit
} adl_tcuTimerDuration_t;

• Fields

DurationValue

Timer duration value, in the unit set by the
_adl_tcuTimerDuration_t::DurationUnit field.

DurationUnit

Timer duration unit, using one of the adl_tcuTimerUnit_e type values.

3.26.3.6 The adl_tcuTimerSettings_t Structure

TCU configuration structure, when the ADL_TCU_ACCURATE_TIMER service is used.

typedef struct
{
 adl_tcuTimerDuration_t Duration

u32 Periodic
} adl_tcuTimerSettings_t;

• Fields

Duration

Timer duration, using the adl_tcuTimerDuration_t configuration structure.

Periodic

Boolean periodic timer configuration:

if set to TRUE, the timer is reloaded after each event occurrence.

Otherwise, the timer is stopped after the first event occurrence.

API

TCU Service

© Confidential Page: 263 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.4 Enumerators

3.26.4.1 The adl_tcuService_e Type

This enumeration lists the available TCU services types.

• code

enum
{ ADL_TCU_ACCURATE_TIMER,
 ADL_TCU_EVENT_CAPTURE,
 ADL_TCU_EVENT_DETECTION
 } adl_tcuService_e;

• description

ADL_TCU_ACCURATE_TIMER

Accurate timer service

Allows the application to subscribe to the accurate timer service.

Please refer to the Accurate Timers service configuration for more
information.

ADL_TCU_EVENT_CAPTURE

Event capture service.

Allows the application to subscribe to the event capture service.

Please refer to the Event Capture service configuration for more information

ADL_TCU_EVENT_DETECTION

Event detection service.

Allows the application to subscribe to the event detection service.

Please refer to the Event Detection service configuration for more
information.

3.26.4.2 The adl_tcuEventType_e Type

This enumeration lists the available event types usable for the capture & detection
services.

• code

enum
{ ADL_TCU_EVENT_TYPE_NONE = (s16)0xFFFF, // No event detected
 ADL_TCU_EVENT_TYPE_RISING_EDGE = 0, // Capture or detect

rising edge events only
 ADL_TCU_EVENT_TYPE_FALLING_EDGE, // Capture or detect

falling edge events only
 ADL_TCU_EVENT_TYPE_BOTH_EDGE // Capture or detect

 events on both edges
} adl_tcuEventType_e;

API

TCU Service

© Confidential Page: 264 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Note:

ADL_TCU_EVENT_TYPE_NONE is only used for event detection information, as a
_adl_tcuEventDetectionInfo_t::EventType parameter value.

3.26.5 Accurate Timers Service

This service is usable to generate (periodically or not) accurate timer events,
configured thanks to the adl_tcuTimerSettings_t structure (such a structure has to
provided to the adl_tcuSubscribe function).

Output parameter of the adl_tcuStop function is used as an adl_tcuTimerDuration_t
pointer to return the remaining time until the timer expiration when the stop
operation has been performed.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - and
provided at subscription time will be notified with the following parameters,
according to the service configuration, and as soon as the adl_tcuStart function is
called:

• the Source parameter will be set to ADL_IRQ_ID_TIMER

• the adl_irqEventData_t::SourceData field of the Data parameter will be set
to NULL.

• the adl_irqEventData_t::Instance field of the Data parameter will be set to
0.

• the adl_irqEventData_t::Context field of the Data parameter will be set to
the application context, provided at subscription time.

3.26.5.1 The adl_tcuTimerUnit_e Type

This enumeration lists the available duration units for the timer service.

typedef enum
{
 ADL_TCU_TIMER_UNIT_US = 1,
 ADL_TCU_TIMER_UNIT_MS = 1000,
 ADL_TCU_TIMER_UNIT_S = 100000,
 ADL_TCU_TIMER_UNIT_ALIGN = 0x7FFFFFFF
} adl_tcuTimerUnit_e;

• Description

ADL_TCU_TIMER_UNIT_US: Timer duration is in microseconds.

ADL_TCU_TIMER_UNIT_MS: Timer duration is in milliseconds.

ADL_TCU_TIMER_UNIT_S: Timer duration is in seconds.

ADL_TCU_TIMER_UNIT_ALIGN Reserved for internal use.

API

TCU Service

© Confidential Page: 265 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.5.2 Example

The code sample below illustrates a nominal use case of the ADL Timer & Capture
Unit Service, in ADL_TCU_ACCURATE_TIMER mode.

// Global variables

// TCU service handle
s32 TCUHandle;

// IRQ service handle
s32 IrqHandle;

// TCU Accurate timer configuration: periodic 5ms timer
adl_tcuTimerSettings_t Config = { { 5, ADL_TCU_TIMER_UNIT_MS }, TRUE };

// TCU interrupt handler
bool MyTCUHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
NotificationLevel, adl_irqEventData_t * Data);
{
 // Check for Timer event
 if (Source == ADL_IRQ_ID_TIMER)
 {
 // Trace event
 TRACE ((1, "Timer event"));
 }
 return TRUE;
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyTCUHandler, ADL_IRQ_NOTIFY_LOW_LEVEL,
0, 0);

 // Subscribes to the TCU service, in Accurate Timer mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_ACCURATE_TIMER, IrqHandle, 0,
&Config, NULL);

 // Starts event generation
 adl_tcuStart (TCUHandle);
}
void MyFunction2 (void)
{
 // Stops event generation, and gets remaining time
 u32 RemainingTimer
 adl_tcuStop (TCUHandle, &RemainingTimer);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

API

TCU Service

© Confidential Page: 266 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.6 Event Capture Service

This service is usable to count events on a given Wireless CPU® pin, and is configured
thanks to the adl_tcuEventCaptureSettings_t structure (such a structure has to
provided to the adl_tcuSubscribe function).

Output parameter of the adl_tcuStop function is not used for this service, and shall be
set to NULL.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - and
provided at subscription time will be notified with the following parameters,
according to the service configuration, and as soon as the adl_tcuStart function is
called:

• the Source parameter will be set to ADL_IRQ_ID_EVENT_CAPTURE

• the adl_irqEventData_t::SourceData field of the Data parameter will have to
be casted as an u32 value, indicating the number of events which have
occured since the last event handler call.
The notification period is configured by the
adl_tcuEventCaptureSettings_t::Duration parameter.

• the adl_irqEventData_t::Instance field of the Data parameter will be set to
the monitored pin identifier, required at subscription time in the
adl_tcuEventCaptureSettings_t::CapturePinID.

• the adl_irqEventData_t::Context field of the Data parameter will be set to
the application context, provided at subscription time.

API

TCU Service

© Confidential Page: 267 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.6.1 Example (without handler notification)

The code sample below illustrates a nominal use case of the ADL Timer & Capture
Unit Service, in ADL_TCU_EVENT_CAPTURE mode, without handler notification.

// Global variables

// TCU service handle
s32 TCUHandle;

// Event counter to be provided to the API
u32 MyEventCounter;

// TCU Event capture configuration: on pin 0, count falling edges, with a
provided event counter
adl_tcuEventCaptureSettings_t Config = { 0, ADL_TCU_EVENT_TYPE_FALLING_EDGE,
0, &MyEventCounter };

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{

 // Subscribes to the TCU service, in Event Capture mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_EVENT_CAPTURE, 0, 0, &Config,
NULL);

 // Reset counter to 0, and starts event generation
 MyEventCounter = 0;
 adl_tcuStart (TCUHandle);
}

void MyFunction2 (void)
{
 // Periodically monitor the events counter, whenever in the
application's life
 TRACE ((1, "Current events count: %d", MyEventCounter));
}

void MyFunction3 (void)
{
 // Stops event generation
 adl_tcuStop (TCUHandle, NULL);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

API

TCU Service

© Confidential Page: 268 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.6.2 Example (with handler notification)

The code sample below illustrates a nominal use case of the ADL Timer & Capture
Unit Service, in ADL_TCU_EVENT_CAPTURE mode, with handler notification.

// Global variables

// TCU service handle
s32 TCUHandle;

// IRQ service handle
s32 IrqHandle;

// TCU Event capture configuration: on pin 0, counts rising edge events, and
notify the handler every second
adl_tcuEventCaptureSettings_t Config = { 0, ADL_TCU_EVENT_TYPE_RISING_EDGE,
8, NULL };

// TCU interrupt handler
bool MyTCUHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
NotificationLevel, adl_irqEventData_t * Data);
{
 // Check for Event Capture
 if (Source == ADL_IRQ_ID_EVENT_CAPTURE)
 {
 // Check for pin identifier
 if (Data->Instance == 0)
 {
 // Get Source Data
 u32 SourceData = (u32) Data->SourceData;

 // Trace event count
 TRACE ((1, "%d events capture since last notification",
SourceData));
 }
 }

 return TRUE;
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{

 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyTCUHandler, ADL_IRQ_NOTIFY_LOW_LEVEL,
0, ADL_IRQ_OPTION_AUTO_READ);

 // Subscribes to the TCU service, in Event Capture mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_EVENT_CAPTURE, IrqHandle, 0,
&Config, NULL);

 // Starts event generation
 adl_tcuStart (TCUHandle);

API

TCU Service

© Confidential Page: 269 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

}

void MyFunction2 (void)
{
 // Stops event generation
 adl_tcuStop (TCUHandle, NULL);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

3.26.7 Event Detection Service

This service is usable to detect events on a given Wireless CPU® pin, and is
configured thanks to the adl_tcuEventDetectionSettings_t structure (such a structure
has to provided to the adl_tcuSubscribe function.

Output parameter of the adl_tcuStop function is not used for this service, and shall be
set to NULL.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - and
provided at subscription time will be notified with the following parameters,
according to the service configuration, and as soon as the adl_tcuStart function is
called.

• the Source parameter will be set to ADL_IRQ_ID_EVENT_DETECTION

• the adl_irqEventData_t::SourceData field of the Data parameter will have to
be casted as a pointer on an adl_tcuEventDetectionInfo_t structure.

• the adl_irqEventData_t::Instance field of the Data parameter will be set to
the monitored pin identifier, required at subscription time in the
adl_tcuEventDetectionSettings_t::DetectionPinID.

• the adl_irqEventData_t::Context field of the Data parameter will be set to
the application context, provided at subscription time.

3.26.7.1 Example

The code sample below illustrates a nominal use case of the ADL Timer & Capture
Unit Service, in ADL_TCU_EVENT_DETECTION mode.

API

TCU Service

© Confidential Page: 270 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

// Global variables

// TCU service handle
s32 TCUHandle;

// IRQ service handle
s32 IrqHandle;

// TCU Event detection configuration: on pin 0, detects rising edge events,
and set a 200 ms timeout
adl_tcuEventDetectionSettings_t Config = { 0,
ADL_TCU_EVENT_TYPE_RISING_EDGE, 200 };

// TCU interrupt handler
bool MyTCUHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
NotificationLevel, adl_irqEventData_t * Data);
{
 // Check for Event Detection
 if (Source == ADL_IRQ_ID_EVENT_DETECTION)
 {
 // Check for pin identifier
 if (Data->Instance == 0)
 {
 // Get Source Data
 adl_tcuEventDetectionInfo_t * SourceData =
 (adl_tcuEventDetectionInfo_t *) Data->SourceData;

 // Check for true or inactivity event
 if (SourceData->EventType < 0)
 {
 // Trace inactivity
 TRACE ((1, "Event detection timeout"));
 }
 else
 {
 // Trace event detection
 TRACE ((1, "%d event detected; last state duration: %d ms",
 SourceData->EventType, SourceData->LastStateDuration));
 }
 }
 }

 return TRUE;
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{

 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyTCUHandler, ADL_IRQ_NOTIFY_LOW_LEVEL,
 0, ADL_IRQ_OPTION_AUTO_READ);

API

TCU Service

© Confidential Page: 271 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 // Subscribes to the TCU service, in Event Detection mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_EVENT_DETECTION, IrqHandle, 0,
 &Config, NULL);

 // Starts event generation
 adl_tcuStart (TCUHandle);
}

void MyFunction2 (void)
{
 // Stops event generation
 adl_tcuStop (TCUHandle, NULL);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

3.26.8 The adl_tcuSubscribe Function

This function allows the application to subscribe to the TCU service.

• Prototype

s32 adl_tcuSubscribe (adl_tcuService_e SrvID,
 s32 LowLevelIrqHandle,
 s32 HighLevelIrqHandle,
 void * Settings,

 void * Context);

• Parameters

SrvID:

Service type to be subscribed, using the adl_tcuService_e type.

LowLevelIrqHandle:

Low level interrupt handler identifier, previously returned by the
adl_irqSubscribe function. This parameter is optional if the
HighLevelIrqHandle parameter is supplied..

HighLevelIrqHandle:

High level interrupt handler identifier, previously returned by the
adl_irqSubscribe function. This parameter is optional if the
LowLevelIrqHandle parameter is supplied..

Settings:

TCU service configuration, to be defined according to the SrvID parameter
value (Please refer to adl_tcuService_e type for more information).

Context:

Pointer on an application context, which will be provided back to the
application when the related TCU events will occur.

API

TCU Service

© Confidential Page: 272 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o Handle: A positive TCU service handle on success, to be used in further
TCU service function calls.

o ADL_RET_ERR_PARAM on a supplied parameter error.

o ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already subscribed
for this configuration.

o ADL_RET_ERR_BAD_HDL if one or both supplied interrupt handler identifiers
are invalid.

o ADL_RET_ERR_BAD_STATE If the function was called in RTE mode (The TCU
service is not available in RTE mode).

o ADL_RET_ERR_NOT_SUPPORTED If the required service is not supported on
the current plateform.

o ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
interrupt handler (the function is forbidden in this context.

Note:

In some configuration cases, both LowLevelIrqHandle & HighLevelIrqHandle
parameters are optional. Please refer to adl_tcuEventCaptureSettings_t::EventCounter
description for more information.

Whatever is the configuration, events are generated only after a call to the
adl_tcuStart function.

3.26.9 The adl_tcuUnsubscribe Function

This function allows the application to unsubscribe from the TCU service.

• Prototype

s32 adl_tcuUnsubscribe (s32 Handle);

• Parameters

Handle:

TCU service handle, previously returned by the adl_tcuSubscribe function.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied TCU handle is unknown.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

Note:

If the service was started thanks to the adl_tcuStart function, an unsubscription
operation will implicitely stop it, without having to call the adl_tcuStop function.

API

TCU Service

© Confidential Page: 273 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.26.10 The adl_tcuStart Function

This function allows the application to start the TCU service event generation. Once
started, the related interrupt events are generated, according to the service
configuration.
Please refer to the adl_tcuService_e type for more information.

• Prototype

s32 adl_tcuStart (s32 Handle);

• Parameters

Handle:

TCU service handle, previously returned by the adl_tcuSubscribe function.

• Returned values

o OK on success.

o ADL_RET__ERR_UNKNOWN_HDL if the supplied TCU handle is unknown.

Note:

If the service was already started, using this function will start it again by
reprograming the events generation.

3.26.11 The adl_tcuStop Function

This function allows the application to stop the TCU service event generation. Once
stopped, the related interrupt events not are generated anymore.
The function has no effect and returns OK if the service is already stopped.

• Prototype

s32 adl_tcuStop (s32 Handle
 void* OutParam);

• Parameters

Handle:

TCU service handle, previously returned by the adl_tcuSubscribe function.

OutParam:

Output parameter of the stop operation, depending on the service type.
Please refer to adl_tcuService_e type for more information on this
parameter usage.

Whatever is this parameter usage, it is optional and should be set to NULL.

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HDL if the supplied TCU handle is unknown.

API

Extint ADL Service

© Confidential Page: 274 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.27 Extint ADL Service

The ADL External Interruption (ExtInt) service allows the application to handle
Wireless CPU® External Interruption pin configuration & interruptions.

External interruption pins are multiplexed with the Wireless CPU® GPIO, please refer
to the Wireless CPU® Product Technical Specification for more information.

The global External Interruption pin operation is described below:

• The interruption is generated either on:

o the falling or the rising edge of the input signal, or both.

o the low or high level of the input signal.

• The input signal is filtered by one of the following processes:

o Bypass (no filter)

o Debounce (a stable state is required for a configurable duration before
generating the interruption) e.g. EXTINT is the input signal, extint_ch is
the generated interruption. When the debounce period equals 4, the
Wireless CPU® waits for a stable signal during 4 cycles before generating
the interruption.

Figure 9: ADL External Interruption Service: Example of Interruption with Debounce Period

o Stretching (the signal is stretched in order to detect even small glitches
in the signal)

Figure 10: ADL External Interruption Service: Example of Interruption with Stretching Process

e.g. EXTINT is the input signal, extint_ch is the generated interruption. With
the stretching process, the generated interruptions are stretched in time, in
order not to miss any pulses on the input signal.

• Interruption generated because an External Interruption pin is always pre-
acknowledged, whatever is the subscribed option in the IRQ service.

The ADL supplies interface to handle External Interruptions.

API

Extint ADL Service

© Confidential Page: 275 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The defined operations are:

• A adl_extintSubscribe function to subscribe to the External Interruption
service.

• A adl_extintConfig function to modify an external interruption pin
configuration.

• A adl_extintGetConfig function to get an external interruption pin
configuration.

• A adl_extintRead function to retrieve the external interruption pin input
status.

• A adl_extintUnsubscribe function to unsubscribe from the External
Interruption service.

3.27.1 Required Header File

The header file for the ExtInt service definitions is:

adl_extint.h

3.27.2 The adl_extintConfig_t Structure

This structure allows the application to configure external interruption pin behavior.
Using adl_extintGetCapabilities to know the available external interruption settings
of the Wireless CPU®.

typedef struct
{
 adl_extintSensitivity_e Sensitivity;
 adl_extintFilter_e Filter;
 u8 FilterDuration;
 u8 Pad; // Internal use only
 void * Context
} adl_extintConfig_t;

API

Extint ADL Service

© Confidential Page: 276 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Fields

Sensitivity:

Interruption generation sensitivity, using the following type:

typedef enum
{
ADL_EXTINT_SENSITIVITY_RISING EDGE, // Rising edge (edge

 sensitivity) interruption
 ADL_EXTINT_SENSITIVITY_FALLING_EDGE, // Falling edge (edge

 sensitivity) interruption
 ADL_EXTINT_SENSITIVITY_BOTH_EDGE, // Rising & Falling edges (edge

sensitivity)interruption.
ADL_EXTINT_FILTER_STRETCHING_MOD
E cannot be used with this
mode.

ADL_EXTINT_SENSITIVITY_LOW LEVEL // Low level (level sensitivity)
interruption. No Filter can be
used with this mode,
adl_extintConfig_t::Filter value
must be equal to
ADL_EXTINT_FILTER_BYPASS_MODE

ADL_EXTINT_SENSITIVITY_HIGH LEVEL // High level(level sensitivity)
interruption. No Filter can be
used with this mode,
adl_extintConfig_t::Filter value
must be equal to
ADL_EXTINT_FILTER_BYPASS_MODE

 ADL_EXTINT_SENSITIVITY_LAST // Internal use only
} adl_extintSensitivity_e;

Filter:

Filter process applied to the input signal:

typedef enum
{
ADL_EXTINT_FILTER_BYPASS_MODE, // No filter. It is the bypass

mode
ADL_EXTINT_FILTER_DEBOUNCE_MODE, // Debounce filter.

adl_extintConfig_t::
FilterDuration value must be
equal to zero.

ADL_EXTINT_FILTER_STRETCHING_MODE, // Stretching filter.
adl_extintConfig_t::
FilterDuration value must be
equal to zero.

 ADL_EXTINT_FILTER_LAST // Internal use only
} adl_extintFilter_e;

API

Extint ADL Service

© Confidential Page: 277 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

FilterDuration:

Time (in number of steps) during which the signal must be stable before
generating the interruption. Refers to the function
adl_extintGetCapabilities, to know the values allowed range.

This parameter is used only with the following filter:

o ADL_EXTINT_FILTER_DEBOUNCE_MODE.

Context:

Application context pointer, which will be given back to the application
when an interruption event occurs.

3.27.3 The adl_extintInfo_t Structure

This structure allows the application to get the external interrupt pin input status at
any time. When an interrupt handler is plugged on the ExtInt service, the SourceData
field in the adl_irqEventData_t input parameter of this handler must be cast to
* adl_extintInfo_t type in order to handle the information correctly.

typedef struct
{
 u8 PinState;
} adl_extintInfo_t;

• Fields

PinState:

External Interruption Pin input status. Current state (0/1) of the input signal
plugged on the external interruption pin.

API

Extint ADL Service

© Confidential Page: 278 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.27.4 Capabilities

ADL provides informations to get EXTINT capabilities.

The following entries have been defined in the registry:

Registry entry Type Description

extint_NbExternalInterrupt INTEGER Number of external interrupt pins

extint_RisingEdgeSensitivity INTEGER Rising edge sensitivity supported

extint_FallingEdgeSensitivity INTEGER Falling edge sensitivity supported

extint_BothEdgeSensitivity INTEGER Both edge detector supported

extint_LowLevelSensitivity INTEGER Low level sensitivity supported

extint_HighLevelSensitivity INTEGER High level sensitivity supported

extint_BypassMode INTEGER Bypass mode supported

extint_StretchingMode INTEGER Stretching mode supported

extint_DebounceMode INTEGER Debounce mode supported

extint_MaxDebounceDuration INTEGER Debounce max duration in ms

extint_DebounceNbStep INTEGER Number of step for debounce
duration

extint_NbPriority INTEGER

Available priority levels for the
EXTINT service (to be used as a
adl_irqPriorityLevel_e value in
the IRQ service)

3.27.5 The adl_extintSubscribe Function

This function allows the application to subscribe to the ExtInt service. Each External
Interruption pin can only be subscribed one time. Once subscribed, the pin is no more
configurable through the AT commands interface (with AT+WIPC or AT+WFM
commands).

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - are
notified with the following parameters:

• the Source parameter will be set to ADL_IRQ_ID_EXTINT

• the adl_irqEventData_t::SourceData field of the Data parameter has to be
casted to an adl_extintInfo_t * type, usable to retrieve information about
the current external interrupt pin state.

• the adl_irqEventData_t::Instance field of the Data parameter will have to be
considered as an adl_extintDefsID_t value, usable to identify which block
has raised the current interrupt event.

• the adl_irqEventData_t::Context field of the Data parameter will be set to
the application context, provided at subscription time.

API

Extint ADL Service

© Confidential Page: 279 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Prototype

s32 adl_extintSubscribe (adl_extintID_t ExtIntID
 s32 LowLevelIrqHandle
 s32 HighLevelIrqHandle
 adl_extintConfig_t * Settings);

• Parameters

ExtIntID:

External interruption pin identifier to be subscribed. (see adl_extintID_e).

LowLevelIrqHandle:

Low level interrupt handler identifier, previously returned by the
adl_irqSubscribe function.

This parameter is optional if the HighLevelIrqHandle parameter is supplied.

HighLevelIrqHandle:

High level interrupt handler identifier, previously returned by the
adl_irqSubscribe function.

This parameter is optional if the LowLevelIrqHandle parameter is supplied.

Settings:

External interruption pin configuration, (see section 3.27.2.
adl_extintConfig_t structure)

• Returned values

o A positive or null value on success:
 ExtInt service handle, to be used in further ExtInt service function

calls.

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value

 ADL_RET_ERR_NOT_SUPPORTED if one parameter refers to a mode or a
configuration not supported by the Wireless CPU®

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already
subscribed for this external interruption pin (the External
Interruption Service can only be subscribed one time for each pin).

 ADL_RET_ERR_BAD_HDL if one or both supplied interrupt handler
identifiers are invalid.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

Note:

When interrupt event generated by the EXTINT service are masked (thanks to
adl_irqConfig_t::Enable field configuration of the IRQ service), events are just
delayed until the related handler is enabled again.

API

Extint ADL Service

© Confidential Page: 280 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.27.6 The adl_extintConfig Function

This function allows the application to modify an external interruption pin
configuration.

• Prototype

s32 adl_extintConfig (s32 ExtIntHandle,
 adl_extintConfig_t * Settings);

• Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the
adl_extintSubscribe function.

Settings:

External interruption pin configuration, (see section 3.27.2.
adl_extintConfig_t structure).

• Returned values

o A OK on success.

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_NOT_SUPPORTED if one parameter refers to a mode or a
configuration not supported by the Wireless CPU®

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interrupt handle
is unknown.

3.27.7 The adl_extintGetConfig Function

This function allows the application to get an external interruption pin configuration.

• Prototype

s32 adl_extintGetConfig (s32 ExtIntHandle,
 adl_extintConfig_t * Settings);

• Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the
adl_extintSubscribe function.

Settings:

External interruption pin configuration, (see section 3.27.2.
adl_extintConfig_t structure).

• Returned values

o A OK on success.

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value

API

Extint ADL Service

© Confidential Page: 281 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interrupt handle
is unknown

3.27.8 The adl_extintRead function

This function allows the application to retrieve the external interruption pin input
status.

• Prototype

s32 adl_extintRead (s32 ExtIntHandle,
 adl_extintInfo_t * Info);

• Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the
adl_extintSubscribe function.

Info:

External interruption pin information structure
(see section 3.27.3 adl_extintInfo_t type).

• Returned values

o A OK on success.

o A negative error value otherwise:
 ADL_RET_ERR_PARAM on a supplied parameter error.

 ADL_RET_ERR_UNKNOWN_HDL if the supplied ExtInt handle is unknown.

3.27.9 The adl_extintUnsubscribe Function

This function allows the application to unsubscribe from the ExtInt service.
Associated interrupt handlers are unplugged from the External Interruption source.
Pin configuration control is resumed by the AT+WIPC command.

• Prototype

s32 adl_extintUnsubscribe (s32 ExtIntHandle);

• Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the
adl_extintSubscribe function.

• Returned values

o A OK on success.

o A negative error value otherwise:
 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

API

Extint ADL Service

© Confidential Page: 282 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.27.10 Example

This example demonstrates how to use the External Interruption service in a nominal
case (error cases are not handled).

Complete example using the External Interruption service are also available on the
SDK (generic Signal Replica sample).

// Global variables

 // use the PIN0 for the Ext Int
 #define EXTINT_PIN0 0

 // ExtInt service handle
 s32 ExtIntHandle;

 // IRQ service handle
 s32 IrqHandle;

 // ExtInt configuration: both edge detection without filter
 adl_extintConfig_t extintConfig =
 { ADL_EXTINT_SENSITIVITY_BOTH_EDGE , ADL_EXTINT_FILTER_BYPASS_MODE ,
 0,0, NULL };

 // ExtInt interrupt handler
 bool MyExtIntHandler (adl_irqID_e Source, adl_irqNotifyLevel_e
 NotificationLevel,
 adl_irqEventData_t * Data)
 {
 // Read the input status
 adl_extintInfo_t Status, * AutoReadStatus;
 adl_extintRead (ExtIntHandle, &Status);

 // Input status can also be obtained from the auto read option.
 AutoReadStatus = (adl_extintInfo_t *) Data->SourceData;

 return TRUE;
 }

 // Somewhere in the application code, used as event handlers
 void MyFunction1 (void)
 {
 adl_extintCapabilities_t My_ExtInt_Capa;

 adl_extintGetCapabilities (&My_ExtInt_Capa);

 // Test if the Wireless CPU® have Ext Int pin
 if (My_ExtInt_Capa.NbExternalInterrupt >= 1)
 {
 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyExtIntHandler, ADL IRQ
 NOTIFY_LOW_LEVEL, ADL_IRQ_PRIORITY_HIGH_LEVEL,
 ADL_IRQ_OPTION_AUTO_READ);

API

Extint ADL Service

© Confidential Page: 283 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 // Configures comparator channel
 ExtIntHandle = adl_extintSubscribe (EXTINT_PIN0 , IrqHandle, 0,
&extintConfig);
 }
 }
 void MyFunction2 (void)
 {
 // Un-subscribes from the ExtInt service
 adl_extintUnsubscribe (ExtIntHandle);
 }

API

Execution Context Service

© Confidential Page: 284 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.28 Execution Context Service

ADL supplies the Execution Context Service interface to handle operations related to
the several execution contexts available for an Open AT® application.
The application runs under several execution contexts, according to the monitored
event (ADL service event, or interrupt event).

The execution contexts are:

• The application task context;

This is the main application context, initialized on the task entry point
functions, and scheduled each time a message is received; each message is
then converted to an ADL service event, according to its content. This
context has a global low priority and should be interrupted by the other
ones.

• The high level interrupt handler context;

This is also a task context, but with a higher priority that the main
application task. High level interrupt handlers run in this context.

This context has a global middle priority: when an interrupt raises an event
monitored by a high level handler, this context will be immediately
activated, even if the application task was running; however, this context
could be interrupted by low level interrupt handlers.

• The low level interrupt handler context;

This is a context designed to be activated as soon as possible on an
interrupt event.

This context has a global high priority: when an interrupt raises an event
monitored by a low level handler, this context will be immediately activated,
even if a task (whatever it is: application task, high level handler or a
WAVECOM Firmware task) was running.

On the other hand, the execution time spent in this context has to be as
short as possible; moreover, some service calls are forbidden while this
context is running.

As the application code should run in different contexts at the same time, the user
should protect his critical functions against re-entrancy. Critical code sections should
be protected through a semaphore mechanism (cf. Semaphores service), and/or by
temporary disabling interrupts (cf. IRQ service). The ADL services are all re-entrant.

Data can be exchanged between contexts through a message system (cf. Messages
service). However, the RAM area is global and accessible from all contexts.

API

Execution Context Service

© Confidential Page: 285 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The defined operations of the Execution Context service are:

• Current context identification functions (adl_ctxGetID & adl_ctxGetTaskID)
to retrieve the current context identifiers.

• A Tasks count function (adl_ctxGetTasksCount) to retrieve the current tasks
count in the runing application.

• A Diagnostic function (adl_ctxGetDiagnostic) to retrieve information about
the current contexts configuration.

• A State function (adl_ctxGetState) to retrieve the required execution
context's current state.

• Suspend functions (adl_ctxSuspend & adl_ctxSuspendExt) to suspend at any
time a running application task.

• Resume functions (adl_ctxResume & adl_ctxResumeExt) to resume at any
time a suspended application task.

• A Sleep function (adl_ctxSleep) to put the current context to sleep for a
required duration.

3.28.1 Required Header File

The header file for the Execution Context function is:

adl_ctx.h

3.28.2 The adl_ctxID_e Type

This type defines the execution context identifiers. Low or High level interrupt
handlers, and Wavecom Firmware tasks are identified by specific contants.
Application tasks are identified by values between 0 and the adl_ctxGetTasksCount
function return.

typedef enum
{
 ADL_CTX_LOW_LEVEL_IRQ_HANDLER = 0xFD, //Low level interrupt handler

context
 ADL_CTX_HIGH_LEVEL_IRQ_HANDLER = 0xFE, // High level interrupt

handler context
 ADL_CTX_ALL = 0xFF, // Reserved for internal use
 ADL_CTX_WAVECOM = 0xFF, // Wavecom Firmware tasks

context
} adl_ctxID_e;

API

Execution Context Service

© Confidential Page: 286 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.28.3 The adl_ctxDiagnostic_e Type

This type defines the available diagnostics, to be retrieved by the
adl_ctxGetDiagnostic function.

typedef enum
{
 ADL_CTX_DIAG_NO_IRQ_PROCESSING = 0x01,
 ADL_CTX_DIAG_BAD_IRQ_PARAM = 0x02,
 ADL_CTX_DIAG_NO_HIGH_LEVEL_IRQ_HANDLER = 0x04,
} adl_ctxDiagnostic_e;

• Description

ADL_CTX_DIAG_NO_IRQ_PROCESSING: The Open AT IRQ processing
 mechanism has not been started
 (interrupt handlers stack sizes
 have not been supplied).

ADL_CTX_DIAG_BAD_IRQ_PARAM: Reserved for future use.

ADL_CTX_DIAG_NO_HIGH_LEVEL_IRQ_HANDLER: High level interrupt handlers are
 not supported (high level handler
 stack size is not supplied).

3.28.4 The adl_ctxState_e Type

This type defines the various states for a given execution context, to be retrieved by
the adl_ctxGetState function.

typedef enum
{
 ADL_CTX_STATE_ACTIVE
 ADL_CTX_STATE_WAIT_EVENT
 ADL_CTX_STATE_WAIT_SEMAPHORE
 ADL_CTX_STATE_WAIT_INNER_EVENT
 ADL_CTX_STATE_SLEEPING
 ADL_CTX_STATE_READY
 ADL_CTX_STATE_PREEMPTED
 ADL_CTX_STATE_SUSPENDED
} adl_ctxState_e;

• Description

ADL_CTX_STATE_ACTIVE: The context is currently active (the
current code is executed in this context).

ADL_CTX_STATE_WAIT_EVENT: The context is currently waiting for
events (there are currently no events to
process).

ADL_CTX_STATE_WAIT_SEMAPHORE: The context is currently waiting for a
semaphore to be produced. The code
execution is currently frozen on a

API

Execution Context Service

© Confidential Page: 287 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

semaphore consumption function. This
can be either an applicative semaphore,
or an internal one, consumed within an
ADL function call.

ADL_CTX_STATE_WAIT_INNER_EVENT: The context is currently waiting for an
internal event. The code execution is
currently frozen, waiting for an internal
event within an ADL function call.

ADL_CTX_STATE_SLEEPING: The context is currently sleeping, after a
call to adl_ctxSleep function.

ADL_CTX_STATE_READY: The context has events to process, but
is not currently processing them yet,
since an higher priority context is
processing events.

ADL_CTX_STATE_PREEMPTED: The context has been pre-empted while
it was processing events. It will resume
its processing as soon as the higher
priority context which is currently
running will have terminated his own
processing.

ADL_CTX_STATE_SUSPENDED: The task context is currently suspended,
thanks to a call to the adl_ctxSuspend
function.

3.28.5 The adl_ctxGetID Function

This function allows the application to retrieve the current execution context
identifier.

• Prototype

adl_ctxID_e adl_ctxGetID (void);

• Returned values

o Current application's execution context identifier. Please refer to 3.28.2
adl_ctxID_e for more information.

o ID An application task's zero-based index if the function is called from
an ADL service event handler.

o ADL_CTX_LOW_LEVEL_IRQ_HANDLER if the function is called from a low level
interrupt handler.

o ADL_CTX_HIGH_LEVEL_IRQ_HANDLER if the function is called from a high
level interrupt handler.

API

Execution Context Service

© Confidential Page: 288 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.28.6 The adl_ctxGetTaskID Function

This function allows the application to retrieve the current running task identifier:

• In Open AT® task or high level interrupt handler contexts, this function will
behave like the adl_ctxGetID function.

• In a low level handler execution context, the retrieved identifier will be the
active task identifier when the interrupt signal is raised.

• Prototype

adl_ctxID_e adl_ctxGetTaskID (void);

• Returned values

o Current task’s execution context identifier. Please refer to 3.28.2
adl_ctxID_e for more information.

o ID An application task's zero-based index if the function is called from
an ADL service event handler.

o ADL_CTX_HIGH_LEVEL_IRQ_HANDLER if the function is called from a high
level interrupt handler.

o Interrupted TaskID If called from a low level interrupt handler, the
returned value depends on the interrupted task:

 An application task's zero-based index, if an Open AT® application
task was running.

 ADL_CTX_WAVECOM if a Wavecom Firmware task was running.

 ADL_CTX_HIGH_LEVEL_IRQ_HANDLER if a high level interrupt handler
was running.

3.28.7 The adl_ctxGetTasksCount Function

This function allows the application to retrieve the current application's tasks count.

• Prototype

u8 adl_ctxGetTasksCount (void);

• Returned value

o Current application’s tasks count.

3.28.8 The adl_ctxGetDiagnostic Function

This function allows the application to retrieve information about the current
application’s execution contexts.

• Prototype

u32 adl_ctxGetDiagnostic (void);

• Returned value

o Bitwise OR combination of the diagnostics listed in the
adl_ctxDiagnostic_e type.

API

Execution Context Service

© Confidential Page: 289 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.28.9 The adl_ctxGetState Function

This function allows the application to retrieve the current state of the required
execution context.

• Prototype

s32 adl_ctxGetState (adl_ctxID_e Context);

• Parameters

Context:

Execution context from which the current state has to be queried.

• Returned values

o On success, returns the (positive or null) current execution context
state, using the adl_ctxState_e type.

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_BAD_HDL If the low level interrupt handler execution context
state is required.

Note:

It is not possible to query the current state of the contexts below
(ADL_RET_ERR_BAD_HDL error will be returned):

o the low level interrupt handler execution context (in any case)

o the high level interrupt handler execution context, if the related
adl_InitIRQHighLevelStackSize call stack has not be declared in the
application.

3.28.10 The adl_ctxSuspend Function

This function allows the application to suspend an application task process. This
process can be resumed later thanks to the adl_ctxResume function, which should be
called from interrupt handlers or from any other application task.

• Prototype

s32 adl_ctxSuspend (adl_ctxID_e Task);

• Parameters

Task:

Task identifier to be suspended.

Valid values are in the 0 - adl_ctxGetTasksCount range.

• Returned values

o OK on success:

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_BAD_STATE if the required task is already suspended.

API

Execution Context Service

© Confidential Page: 290 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Notes:

o If the function was called in the application task context, it will not
return but just suspend the task.
The OK value will be returned when the task process is resumed.

o While a task is suspended, received events are queued until the
process is resumed. If too many events occur, the application mailbox
would be overloaded, and this would lead the Wireless CPU® to reset
(an application task should not be suspended for a long time, if it is
assumed to continue to receive messages).

3.28.11 The adl_ctxSuspendExt Function

This function allows the application to suspend several application tasks processes.
Theses process can be resumed later thanks to the adl_ctxResume or adl_ctxResumeExt
functions, which should be called from interrupt handlers or from any other
application task.

• Prototype

s32 adl_ctxSuspendExt (u32 TasksCount,
 adl_ctxID_e* TasksIDArray);

• Parameters

TasksCount:

Size of the TasksIDArray array parameter (number of tasks to be
suspended).

TasksIDArray:

Array containing the identifiers of the tasks to be suspended. Valid values
are in the 0 - adl_ctxGetTasksCount range.

• Returned values

o OK on success:

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_BAD_STATE if the required task is already suspended (no
task will be suspended).

Notes:

o If the function was called in the application task context, it will not
return but just suspend the task.
The OK value will be returned when the task process is resumed.

o While a task is suspended, received events are queued until the
process is resumed. If too many events occur, the application mailbox
would be overloaded, and this would lead the Wireless CPU® to reset
(an application task should not be suspended for a long time, if it is
assumed to continue to receive messages).

API

Execution Context Service

© Confidential Page: 291 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.28.12 The adl_ctxResume Function

This function allows the application to resume the Open AT® task process, previously
suspended with to the adl_ctxSuspend function.

• Prototype

s32 adl_ctxResume (adl_ctxID_e Task);

• Parameters

Task:

Task identifier to be suspended.

Valid values are in the 0 - adl_ctxGetTasksCount range.

• Returned values

o OK on success:

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_BAD_STATE If the required task is not currently suspended.

Notes:

The required task is resumed as soon as the function is called.

If the resumed task has a lower priority level than the current one, it will be scheduled
as soon as the current task process will be over.

If the resumed task has a higher priority level than the current one, it will be
scheduled as soon as the function is called.

3.28.13 The adl_ctxResumeExt Function

This function allows the application to resume several Open AT® tasks processes,
previously suspended with to the adl_ctxSuspend or adl_ctxSuspendExt functions.

• Prototype

s32 adl_ctxResumeExt (u32 TasksCount,
 adl_ctxID_e* TasksIDArray);

• Parameters

TasksCount:

Size of the TasksIDArray array parameter (number of tasks to be
suspended).

TasksIDArray:

Array containing the identifiers of the tasks to be suspended. Valid values
are in the 0 - adl_ctxGetTasksCount range.

• Returned values

o OK on success:

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_BAD_STATE If the required task is not currently suspended
(no task will be resumed).

API

Execution Context Service

© Confidential Page: 292 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Notes:

The required task is resumed as soon as the function is called.

If the resumed task has a lower priority level than the current one, it will be scheduled
as soon as the current task process will be over.

If some resumed task have an higher priority level than the current one, it will be
scheduled as soon as the function is called.

3.28.14 The adl_ctxSleep Function

This function allows the application to put the current execution context to sleep for
the required duration. This context processing is frozen during this time, allowing
other contexts to continue their processing. When the sleep duration expires, the
context is resumed and continues its processing.

• Prototype

s32 adl_ctxSleep (u32 Duration);

• Parameters

Duration:

Required sleep duration, in ticks number (18.5 ms granularity).

• Returned values

o OK on success (when the function returns, the sleep duration has
already elapsed).

o ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
interrupt handler (the function is forbidden in this context).

API

Execution Context Service

© Confidential Page: 293 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.28.15 Example

The code sample below illustrates a nominal use case of the ADL Execution Context
Service public interface (error cases are not handled).

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Get the execution context state
 u32 Diagnose = adl_ctxGetDiagnostic();

 // Get the application tasks count
 u8 TasksCount = adl_ctxGetTasksCount();

 // Get the execution context
 adl_ctxID_e CurCtx = adl_ctxGetID();

 // Check for low level handler context
 if (CurCtx == ADL_CTX_LOW_LEVEL_IRQ_HANDLER)
 {

 // Get the interrupted context
 adl_ctxID_e InterruptedCtx = adl_ctxGetTaskID();
 }
 else
 {
 // Get the current task state
 adl_ctxState_e State = adl_ctxGetState (CurCtx);
 }
}

// Somewhere in the application code, used within an high level interrupt
handler
void MyIRQFunction (void)
{
 // Suspend the first application task
 adl_ctxSuspend (0);

 // Resume the first application task
 adl_ctxResume (0);

 // Put to sleep for some time...
 adl_ctxSleep (10);
}

API

ADL VariSpeed Service

© Confidential Page: 294 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.29 ADL VariSpeed Service

The ADL VariSpeed service allows the Wireless CPU® clock frequency to be controlled,
in order to temporarily increase application performance.

Note:

• The Real Time Enhancement feature must be enabled on the Wireless CPU®
in order to make this service available.

• The Real Time Enhancement feature state can be read thanks to the
AT+WCFM=5 command response value:
This feature state is represented by the bit 4 (00000010 in hexadecimal
format).

• Please contact your Wavecom distributor for more information on how to
enable this feature on the Wireless CPU®.

3.29.1 Required Header File

The header file for the VariSpeed service is:

adl_vs.h

3.29.2 The adl_vsMode_e Type

This type defines the available CPU modes for the VariSpeed Service.

typedef enum
{
 ADL_VS_MODE_STANDARD,
 ADL_VS_MODE_BOOST,
 ADL_VS_MODE_LAST // Reserved for internal use
} adl_vsMode_e;

The ADL_VS_MODE_STANDARD constant identifies the standard CPU clock mode (default
CPU mode on startup).

The ADL_VS_MODE_BOOST constant can be used by the application to make the Wireless
CPU® enter a specific boost mode, where the CPU clock frequency is set to its
maximum value.

Caution:

In boost mode, the Wireless CPU® power consumption increases significantly.
For more information, refer to the Wireless CPU® Power Consumption Mode
documentation.

API

ADL VariSpeed Service

© Confidential Page: 295 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

The CPU clock frequencies of the available modes are listed below:

Modes CPU Clock Frequency

..._STANDARD 26 MHz

..._BOOST 104 MHz"

3.29.3 The adl_vsSubscribe Function

This function allows the application to get control over the VariSpeed service. The
VariSpeed service can only be subscribed one time.

• Prototype

s32 adl_vsSubscribe (void);

• Parameters

None

• Returned values

o A positive or null value on success:

 VariSpeed service handle, to be used in further service function
calls.

o A negative error value otherwise:

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the service has already been
subscribed.

 ADL_RET_ERR_NOT_SUPPORTED if the Real Time enhancement feature
is not enabled on the Wireless CPU®.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler (the function is forbidden in this context).

3.29.4 The adl_vsSetClockMode Function

This function allows the application to modify the speed of the CPU clock.

• Prototype

s32 adl_vsSetClockMode (s32 VsHandle,
 adl_vsMode_e ClockMode);

• Parameters

VsHandle:

VariSpeed service handle, previously returned by the adl_vsSubscribe
function.

ClockMode:

Required clock mode. Refer to adl_vsMode_e type definition for more
information (see § 3.29.2).

API

ADL VariSpeed Service

© Confidential Page: 296 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success

o ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

o ADL_RET_ERR_PARAM if the supplied clock mode value is wrong.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.29.5 The adl_vsUnsubscribe function

This function allows the application to unsubscribe from the VariSpeed service
control. The CPU mode is reset to the standard speed.

• Prototype

s32 adl_vsUnsubscribe (s32 VsHandle);

• Parameters

VsHandle:

VariSpeed service handle, previously returned by the adl_vsSubscribe
function.

• Returned values

o OK on success

o ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

o ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.29.6 Example

This example demonstrates how to use the VariSpeed service in a nominal case (error
cases are not handled).

// Global variable: VariSpeed service handle
s32 MyVariSpeedHandle;

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribe to the VariSpeed service
 MyVariSpeedHandle = adl_vsSubscribe();

 // Enter the boost mode
 adl_vsSetClockMode (MyVariSpeedHandle, ADL_VS_MODE_BOOST);
}
void MyFunction2 (void)
{
 // Un-subscribe from the VariSpeed service
 adl_vsUnsubscribe (MyVariSpeedHandle);
}

API

ADL DAC Service

© Confidential Page: 297 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.30 ADL DAC Service

The Digital Analog Converter service offers to the customer entities the ability to
convert a digital value code of a certain resolution into an analog signal level voltage.

The defined operations are:

• A function adl_dacSubscribe to set the reserved DAC parameters.

• A function adl_dacUnsubscribe to un-subscribes from a previously allocated
DAC handle.

• A function adl_dacWrite to allow a DACs to be write from a previously
allocated handle.

• A function adl_dacAnalogWrite to allow a DAC to be write from a previously
allocated handle.

• A function adl_dacRead to allow a DAC to be read from a previously
allocated handle.

• A function adl_dacAnalogRead to allow a DAC to be read from a previously
allocated handle.

3.30.1 Required Header File

The header file for the functions dealing with the DAC interface is:

adl_dac.h

3.30.2 Data Structure

3.30.2.1 The adl_dacParam_t Structure

DAC channel initialization parameters.

• Code

typedef struct
{
u32 InitialValue
}adl_dacparam_t

• Description

InitialValue

Raw value to set in the register of the DAC.

API

ADL DAC Service

© Confidential Page: 298 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.30.3 Defines

3.30.3.1 ADL_DAC_CHANNEL_1

Former constant used to identify the first DAC channel.

#define ADL_DAC_CHANNEL_1 0

3.30.4 Enumerations

3.30.4.1 The adl_dacType_e

Definition of DAC type.

• Code

typedef enum
{
ADL_DAC_TYPE_GEN_PURPOSE // General Purpose DAC
} adl_dacType_e

3.30.5 The adl_dacSubscribe Function

This function subscribes to a DAC channel.

• Prototype

s32 adl_dacSubscribe (u32 Channel,
 adl_dacParam_t * DacConfig);

• Parameters

Channel:

DAC channel identifier.

DacConfig

DAC subscription configuration (using adl_dacParam_t).

• Returned values

o A positive or null value on success:

 DAC handle to be used on further DAC API functions calls.

o A negative error value otherwise (No DAC is reserved):
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the required channel has
already been subscribed.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler.

 ADL_RET_ERR_NOT_SUPPORTED if the current Wireless CPU® does not
support the DAC service.

API

ADL DAC Service

© Confidential Page: 299 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.30.6 The adl_dacUnsubscribe Function

This function un-subscribes from a previously allocated DAC handle.

• Prototype

s32 adl_dacUnsubscribe (s32 DacHandle);

• Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler.

3.30.7 The adl_dacWrite Function

This function writes the digital value on DACs previously allocated.

• Prototype

s32 adl_dacWrite (s32 DacHandle,
 u32 DacWrite);

• Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacWrite

New DAC settings to set.

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler and the DAC used cannot be called under
interrupt context.

API

ADL DAC Service

© Confidential Page: 300 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.30.8 The adl_dacAnalogWrite Function

This function writes a analog value in mV on a DAC previously allocated.

• Prototype

s32 adl_dacAnalogWrite (s32 DacHandle,
 s32 DacWritemV);

• Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacWritemV

New DAC settings to set (in mV).

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler and the DAC used cannot be called under
interrupt context.

3.30.9 The adl_dacRead Function

This function reads the last written value on a DAC.

• Prototype

s32 adl_dacRead (s32 DacHandle,
 u32* DacRead);

• Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacRead

DAC digital value.

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

API

ADL DAC Service

© Confidential Page: 301 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.30.10 The adl_dacAnalogRead Function

This function reads the last written value on a DAC.

• Prototype

s32 adl_dacAnalogRead (s32 DacHandle,
 s32* DacReadmV);

• Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacReadmV

DAC analog value in mV.

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

3.30.11 Capabilities

ADL provides informations to get DAC capabilities.

The following entries have been defined in the registry:

Registry entry Type Description

dac_NbBlocks INTEGER The number of DAC blocks
available

dac_xx_DigitInitValue INTEGER

Digital value at DAC resource
allocation.
dac_xx_DigitInitValue is set at -1 if
the default value is unknown.

dac_xx_MaxRefVoltage INTEGER
Reference voltage of the DAC
output when the maximal digital
value is set.

dac_xx_MinRefVoltage INTEGER
Reference voltage of the DAC
output when the minimal digital
value is set.

dac_xx_Resolution INTEGER DAC resolution in steps.

dac_xx_DacType INTEGER
DAC type, see 3.30.4.1
adl_dacType_e.

dac_xx_InterruptContextUsed INTEGER
This value is set to 1 if DAC write
operations can be called under
interrupt context

API

ADL DAC Service

© Confidential Page: 302 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Notes:

• For the registry entry the xx part must be replaced by the number of the
instance.
Example: if you want the Resolution capabilities of the DAC02 block, the
registry entry to use will be dac_02_Resolution.

• DACs will be identified with a number as 0, 1, 2, dac_NbBlocks-1.

• For each block, the settling time capabilities are defined in the PTS.

3.30.12 Example

The sample DAC illustrates a nominal use case of the ADL DAC Service public
interface.

// Global variable
 s32 MyDACHandle;
 u32 MyDACID = 1;

 …

 // Somewhere in the application code, used as an event handler
 void MyFunction (void)
 {
 // Initialization structure
 adl_dacParam_t InitStruct = { 0 };

 // Subscribe to the DAC service
 MyDACHandle = adl_dacSubscribe (MyDACID , &InitStruct);

 // Write a value on the DAC block
 adl_dacWrite (MyDACHandle, 80);

 ...

 // Write another value on the DAC block
 adl_dacWrite (MyDACHandle, 190);

 ...

 // Write a analog value on the DAC block (1500 mV)
 adl_dacAnalogWrite (MyDACHandle, 1500);

 ...

 {
 s32 AnalogValue;
 // Read the last analog value write on the DAC block
 adl_dacAnalogRead (MyDACHandle , &AnalogValue);

 ...
 }

API

ADL DAC Service

© Confidential Page: 303 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 ...

 {
 u32 Value;
 // Read the last register value write on the DAC block
 adl_dacRead (MyDACHandle , &Value);

 ...
 }

 // Unsubscribe from the DAC service
 adl_dacUnsubscribe (MyDACHandle);
 }

API

ADL ADC Service

© Confidential Page: 304 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.31 ADL ADC Service

The goal of the ADC service is to offer all the interfaces to handle application using
ADC for voltage level measurement such as temperature and battery level monitoring
purposes. The ADC interface provides also a way to get analog value from various
sources. The ADC is a circuit section that converts low frequency analog signals, like
battery voltage or temperature, to digital value.

The defined operations are:

• A function adl_adcRead to read a ADC register value.

• A function adl_adcAnalogRead to read a ADC analog value in mV.

3.31.1 Required Header File

The header file for the functions dealing with the ADC interface is:

adl_adc.h

3.31.2 The adl_adcRead Function

 This function allows ADCs to be read. For this operation, it is not necessary to
subscribe to ADC previously.

• Prototype

s32 adl_adcRead (u32 ChannelID,
 u32* AdcRawValue);

• Parameters

ChannelID:

Channel ID of the ADC to read.

AdcRawValue

The value of the ADC register.

• Returned values

o A OK on success (read values are updated in the AdcRawValue parameter)

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler and the ADC used cannot be called under
interrupt context.

API

ADL ADC Service

© Confidential Page: 305 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.31.3 The adl_adcAnalogRead Function

 This function allows ADCs to be read. For this operation, it is not necessary to
subscribe to ADC previously.

• Prototype

s32 adl_adcAnalogRead (u32 ChannelID,
 s32* AdcValuemV);

• Parameters

ChannelID:

Channel ID of the ADC to read.

AdcValuemV

The value corresponding to the register Value of the ADC voltage in mV.

• Returned values

o A OK on success (read values are updated in the AdcValuemV parameter)

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low
level interrupt handler and the ADC used can not be called under
interrupt context.

3.31.4 Capabilities

ADL provides informations to get ADC capabilities.

The following entries have been defined in the registry:

Registry entry Type Description

adc_NbBlocks INTEGER
The number of ADC blocks
available

adc_xx_ResolutionsBits INTEGER
To get on how many bits, is coded
the result.

adc_xx_ MaxInputRange INTEGER
The minimum input voltage in mV
supported by each ADC.

adc_xx_ MinInputRange INTEGER
The maximum input voltage in mV
supported by each ADC.

adc_xx_InterruptContextUsed INTEGER

This value is set to 1, if ADC read
functions can be called under
interrupt context

API

ADL ADC Service

© Confidential Page: 306 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

Notes:

• For the registry entry the xx part must be replaced by the number of the
instance.
Example: if you want the Resolution Bits capabilities of the ADC02 block the
registry entry to use will be adc_02_ResolutionBits.

• ADCs will be identified with a number as 0, 1, 2, adc_NbBlocks-1.

• For each block, the sampling time capability is defined in the PTS.

3.31.5 Example

The code sample below illustrates a nominal use case of the ADL ADC Service public
interface (error cases are not handled).

// ADC read functions

 // Read ADC Raw Value
 u32 My_adcReadRawValue (u32 My_adcID)
 {
 // Variable to store ADC voltage information
 u32 My_adcValue;

 // Read the ADC
 adl_adcRead (My_adcID , &My_adcValue);

 return (My_adcValue);
 }

 // Read ADC value in mV
 u32 My_adcReadValue (u32 My_adcID)
 {
 // Variable to store ADC voltage information
 s32 My_adcValue_mV;

 // Read the ADC
 adl_adcAnalogRead (My_adcID , &My_adcValue_mV);

 return (My_adcValue_mV);
 }

API

ADL Queue Service

© Confidential Page: 307 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.32 ADL Queue Service

ADL supplies this interface to provide to applications thread-safe queue service
facilities, usable from any execution context.

The defined operations are:

• A subscription function adl_queueSubscribe to create a queue resource.

• An unsubscription function adl_queueUnsubscribe to delete a queue
resource.

• A state query function adl_queueIsEmpty to check if it remains items in the
queue.

• item handling functions adl_queuePushItem & adl_queuePopItem to queue
and de-queue items.

3.32.1 Required Header File

The header file for the functions dealing with the Queue interface is:

adl_queue.h

3.32.2 The adl_queueOptions_e Type

This type allows to define the behaviour of a queue resource.

typedef enum
{
 ADL_QUEUE_OPT_FIFO,
 ADL_QUEUE_OPT_LIFO,
 ADL_QUEUE_OPT_LAST //Reserved for internal use
} adl_queueOptions_e;

• Description

ADL_QUEUE_OPT_FIFO: First In, First Out: the first pushed item
will be retrieved first.

ADL_QUEUE_OPT_LIFO: Last In, First Out: the last pushed item
will be retrieved first.

API

ADL Queue Service

© Confidential Page: 308 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.32.3 The adl_queueSubscribe Function

 This function allows the application to create a thread-safe queue resource. The
obtained handle is then usable with the other service operations.

• Prototype

s32 adl_queueSubscribe (adl_queueOptions_e Option);

• Parameter

Option

Allows to configure the behaviour of the queue resource, using one of the
adl_queueOptions_e type values.

• Returned values

o Handle A positive queue service handle on success.

o ADL_RET_ERR_PARAM on parameter error.

o ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
interrupt handler (the function is forbidden in this context).

3.32.4 The adl_queueUnsubscribe Function

 This function allows the application to release a previously subscribed queue
resource, if this one is empty.

• Prototype

s32 adl_queueUnsubscribe (s32 Handle);

• Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe
function.

• Returned values

o OK on success

o ADL_RET_ERR_BAD_STATE If the provided queue resource is not empty; it
shall be firstly emptied thanks to the adl_queuePopItem function.

o ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level
interrupt handler (the function is forbidden in this context).

API

ADL Queue Service

© Confidential Page: 309 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.32.5 The adl_ queueIsEmpty Function

 This function informs the application, if items remain in the provided queue.

• Prototype

s32 adl_queueIsEmpty (s32 Handle);

• Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe
function.

• Returned values

o FALSE If it remains at least one item in the queue

o TRUE If the queue is empty.

o ADL_RET_ERR_UNKNOWN_HANDLE If the provided handle is invalid.

3.32.6 The adl_ queuePushItem Function

 This function allows the application to add an item at the end of the provided queue
resource.

• Prototype

s32 adl_queuePushItem (s32 Handle,
 void* Item);

• Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe
function.

Item

Pointer on the application item; this parameter cannot be NULL

• Returned values

o OK on success.

o ADL_RET_ERR_UNKNOWN_HANDLE If the provided handle is invalid.

o ADL_RET_ERR_PARAM on parameter error (Bad item pointer).

• Exceptions

o 144: Raised if too many items are pushed in the queue.

Note:

This function is thread-safe, and shall be called from any execution context.

This means that operations on queue items are performed under a critical
section, in which the current context cannot be pre-empted by any other
context.

API

ADL Queue Service

© Confidential Page: 310 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.32.7 The adl_ queuePopItem Function

This function allows the application to retrieve an item from the provided queue
resource, according to the defined behaviour at subscription time (cf.
adl_queueSubscribe function):

• If the queue option is ADL_QUEUE_OPT_FIFO, the first pushed item is retrieved
by the function

• If the queue option is ADL_QUEUE_OPT_LIFO, the last pushed item is retrieved
by the function.

• Prototype

void* adl_queuePopItem (s32 Handle);

• Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe
function.

• Returned values

o Item on success, a pointer on the de-queued item.

o NULL If the provided handle is unknown, or if the related queue is
empty.

Note:

This function is thread-safe, and shall be called from any execution context.

This means that operations on queue items are performed under a critical
section, in which the current context cannot be pre-empted by any other
context.

API

ADL Queue Service

© Confidential Page: 311 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.32.8 Example

The code sample below illustrates a nominal use case of the ADL ADC Service public
interface (error cases are not handled).

// Event handler, somewhere in the application
void MyFunction (void)
{
 // Queue handle
 s32 MyHandle;

 // Queue state
 s32 State;

 // Item definitions
 u32 MyItem1, MyItem2, *GotItem1, *GotItem2;

 // Create a FIFO queue resource
 MyHandle = adl_queueSubscribe(ADL_QUEUE_OPT_FIFO);

 // Check the queue state (shall be empty)
 State = adl_queueIsEmpty (MyHandle);

 // Push items
 adl_queuePushItem (MyHandle, &MyItem1);
 adl_queuePushItem (MyHandle, &MyItem2);

 // Check the queue state (shall not be empty)
 State = adl_queueIsEmpty (MyHandle);

 // Pop items (retrieved in FIFO order)
 GotItem1 = adl_queuePopItem (MyHandle);
 GotItem2 = adl_queuePopItem (MyHandle);

 // Check the queue state (shall be empty)
 State = adl_queueIsEmpty (MyHandle);

 // Delete the queue resource
 adl_queueUnsubscribe (MyHandle);
}

API

ADL Audio Service

© Confidential Page: 312 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33 ADL Audio Service

The ADL Audio Service allows to handle audio resources, and play or listen supported
audio formats on these resources (single/dual tones, DTMF tones, melodies, PCM
audio streams, decoded DTMF streams).

The defined operations are:

• An adl_audioSubscribe function to subscribe to an audio resource.

• An adl_audioUnsubscribe function to unsubscribe from an audio resource.

• An adl_audioTonePlay function to play a single/dual tone.

• An adl_audioDTMFPlay function to play a DTMF tone.

• An adl_audioMelodyPlay function to play a melody.

• An adl_audioTonePlayExt function to play a single/dual tone (extension).

• An adl_audioDTMFPlayExt function to play a DTMF tone (extension).

• An adl_audioMelodyPlayExt function to play a melody (extension).

• An adl_audioStreamPlay function to play an audio stream.

• An adl_audioStreamListen function to listen to an audio stream.

• An adl_audioStop function to stop playing or listening.

• An adl_audioSetOption function to set audio options.

• An adl_audioGetOption function to get audio options

3.33.1 Required Header File

The header file for the functions dealing with the Audio service interface is:

adl_audio.h

3.33.2 Data Structures

3.33.2.1 The adl_audioDecodedDtmf_u Union

This union defines different types of buffers which are used according to the
decoding mode (Raw mode enable or disable) when listening to an audio DTMF
stream.
(refer to 3.33.4.5 ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about
Raw mode).

API

ADL Audio Service

© Confidential Page: 313 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Code

typedef union
{
 ascii DecodedDTMFChars
 [ADL_AUDIO_MAX_DTMF_PER_FRAME]
 adl_audioPostProcessedDecoder_t PostProcessedDTMF
} adl_audioDecodedDtmf_u;

• Description

DecodedDTMFChars:

This field contains decoded DTMF in Raw mode.

PostProcessedDTMF:

This field contains informations about decoded DTMF and decoding post-
process. (Refer to adl_audioPostProcessedDecoder_t for more information).

3.33.2.2 The adl_audioPostProcessedDecoder_t Structure

This structure allows the application to handle post-processed DTMF datas when
listening to an audio DTMF stream with Raw mode deactivated.
(Refer to 3.33.4.5 ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about
Raw mode).

• Code

typedef struct
{
 u32 Metrics;
 u32 Duration;
 ascii DecodedDTMF
} adl_audioPostProcessedDecoder_t;

• Description

Metrics:

Processing metrics, contains informations about DTMF decoding process.
Reserved for Future Use.

Duration:

DTMF duration, contains post-processed DTMF duration, in ms

DecodedDTMF:

PostProcessed DTMF buffer contains decoded DTMF.

API

ADL Audio Service

© Confidential Page: 314 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.2.3 The adl_audioStream_t Structure

This structure allows the application to handle data buffer according to the audio
format when an audio stream interrupt occurs during a playing (adl_audioStreamPlay)
or a listening to (adl_audioStreamListen) an audio stream.

• Code

typedef struct
{
 adl_audioFormats_e audioFormat
 adl_audioStreamDataBuffer_u * DataBuffer
 bool * BufferReady
 bool * BufferEmpty
} adl_audiostream_t;

• Description

audioFormat:

Stream audio format (refer to adl_audioFormats_e for more information)

DataBuffer:

Audio data exchange buffer:

 This field stores audio sample during an audio PCM stream
listening or decoded DTMF during an audio DTMF stream
listening.

 It contains audio sample to play during an audio PCM stream
playing. (Refer to 3.33.2.4 adl_audioStreamDataBuffer_u structure
for more information).

BufferReady:

When an audio stream is played, each time an interrupt occurs this flag has
to set to TRUE when data buffer is filled. If this flag is not set to TRUE, an
‘empty’ frame composed of 0x0 will be sent and set the BufferEmpty flag to
TRUE. Once the sample is played, BufferReady is set to FALSE by the
firmware. This pointer is initialized only when an audio stream is played.
Currently, it is used only for PCM stream playing.

BufferEmpty:

When an audio stream is played, this flag is set to TRUE when empty data
buffer is played (for example, when an interrupt is missing). This flag is
used only for information and it has to be set to FALSE by application. This
pointer is initialized only when an audio stream is played. Currently, it is
used only for PCM stream playing.

API

ADL Audio Service

© Confidential Page: 315 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.2.4 The adl_audioStreamDataBuffer_u Union

This union defines different types of buffers, which are used according to the audio
format when an audio stream interrupt occurs.

• Code

typedef union
{
 u8 PCMData [1]
 adl_audioDecodedDtmf_u DTMFData
} adl_audiostreamDataBuffer_u;

• Description

PCMData [1]:

PCM stream data buffer.

This buffer is used when playing or listening to an audio PCM stream.

DTMFData:

DTMF stream data buffer.

This buffer stores decoded DTMF when listening to an audio DTMF stream
according to the decoding mode which is used. Please refer to 3.33.2.1
adl_audioDecodedDtmf_u for more information about DTMF buffer structure
and 3.33.4.5 ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information
about decoding modes.

3.33.3 Defines

3.33.3.1 ADL_ AUDIO_MAX_DTMF_PER_FRAME

This constant defines maximal number of received DTMFs each time interrupt
handlers are called when a listening to a DTFM stream in Raw mode (Refer to
3.33.4.5 ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about Raw
mode).

• Code:

#define ADL_AUDIO_MAX_DTMF_PER_FRAME 2

3.33.3.2 ADL_ AUDIO_NOTE_DEF

This macro is used to define the note value to play according to the note definition,
the scale and the note duration.

To play a melody, each note defines in the melody buffer has to be defined with this
macro (see 3.33.7.3 adl_audioMelodyPlay function).

API

ADL Audio Service

© Confidential Page: 316 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Code:

#define ADL_AUDIO_NOTE_DEF (ID,
 Scale,
 Duration)(((ID)+(Scale*12))<<8)+(Duration));

• Parameters

ID :

This parameter corresponds to the note identification. Please refer to the
code below for the Group Notes identification for melody.

 #define ADL_AUDIO_C 0x01 //C
 #define ADL_AUDIO_CS 0x02 //C #
 #define ADL_AUDIO_D 0x03 //D
 #define ADL_AUDIO_DS 0x04 //D #
 #define ADL_AUDIO_E 0x05 //E
 #define ADL_AUDIO_F 0x06 //F
 #define ADL_AUDIO_FS 0x07 //F #
 #define ADL_AUDIO_G 0x08 //G
 #define ADL_AUDIO_GS 0x09 //G #
 #define ADL_AUDIO_A 0x0A //A
 #define ADL_AUDIO_AS 0x0B //A #
 define ADL_AUDIO_B 0x0C //B
 #define DL_AUDIO_NO_SOUND 0xFF //No sound

Scale:

This parameter defines the note scale (0 - 7).

Duration:

This parameter defines the note duration. Please refer to the Group Notes
Durations code below to see the set of note durations which are available.

 #define ADL_AUDIO_WHOLE_NOTE 0x10 //Whole note
 #define ADL_AUDIO_HALF 0x08 //Half note
 #define ADL_AUDIO_QUARTER 0x04 //Quarter note
 #define ADL_AUDIO_HEIGHT 0x02 //Height note
 #define ADL_AUDIO_SIXTEENTH 0x01 //Sixteenth note
 #define ADL_AUDIO_DOTTED_HALF 0x0C //Dotted half note
 #define ADL_AUDIO_DOTTED_QUARTER 0x06 //Dotted quarter
 #define ADL_AUDIO_DOTTED_HEIGHT 0x03 //Dotted height

API

ADL Audio Service

© Confidential Page: 317 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.4 Enumerations

3.33.4.1 The adl_ audioResources_e Type

This type lists the available audio resources of the Wireless CPU®, including the local
ones (plugged to the Wireless CPU® itself) and the ones related to any running voice
call. These resources are usable either to play a pre-defined/stream audio format
(output resources), or to listen to an incoming audio stream (input resources).

• Code

typedef enum
{
 ADL_AUDIO_SPEAKER,
 ADL_AUDIO_BUZZER,
 ADL_AUDIO_MICROPHONE,
 ADL_AUDIO_VOICE_CALL_RX,
 ADL_AUDIO_VOICE_CALL_TX
} adl_audioResources_e;

• Description

ADL_AUDIO_SPEAKER: Current speaker (output resource; please refer to the
AT Command interface guide for more information on
how to select the current speaker).

ADL_AUDIO_BUZZER: Buzzer (output resource, just usable to play single
frequency tones & melodies).

ADL_AUDIO_MICROPHONE: Current microphone (input resource; please refer to
the AT Command interface guide for more information
on how to select the current microphone).

ADL_AUDIO_VOICE_CALL_RX: Running voice call incoming channel (input resource,
available when a voice call is running to listen to
audio streams).

ADL_AUDIO_VOICE_CALL_TX: Running voice call outgoing channel (output resource,
available when a voice call is running to play audio
streams).

3.33.4.2 The adl_audioResourceOption_e Type

This type defines the audio resource subscription options.

• Code

typedef enum
{
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION = 0x00,
 ADL_AUDIO_RESOURCE_OPTION_ALLOW_PREEMPTION = 0x01
} adl_audioResourceOption_e;

API

ADL Audio Service

© Confidential Page: 318 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description

ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION:

Never allows prioritary uses of the resource (the resource subscriber owns
the resource until unsubscription time).

ADL_AUDIO_RESOURCE_OPTION_ALLOW_PREEMPTION:

Allows prioritary uses of the resource (such as incoming voice call melody,
outgoing voice call tone play, SIM Toolkit application tone play).

3.33.4.3 The adl_audioFormats_e Type

This type defines the audio stream formats for audio stream playing/listening
processes.

• Code

typedef enum
{
 ADL_AUDIO_DTMF //Decoded DTMF sequence
 ADL_AUDIO_PCM_MONO_8K_16B
} adl_audioFormats_e;

ADL_AUDIO_PCM_MONO_8K_16B:

PCM mono 16 bits / 8 KHz Audio sample.

3.33.4.4 The adl_audioEvents_e Type

Set of events that will be notified by ADL to audio event handlers.

• Code

typedef enum
{
 ADL_AUDIO_EVENT_NORMAL_STOP,
 ADL_AUDIO_EVENT_RESOURCE_RELEASED
} adl_audioEvents_e;

• Description

ADL_AUDIO_EVENT_NORMAL_STOP:

A pre-defined audio format play has ended (please refer to 3.33.7.3
adl_audioDTMFPlay, adl_audioTonePlay or adl_audioMelodyPlay for more
information). This event is not sent on a request to stop from application.

ADL_AUDIO_EVENT_RESOURCE_RELEASED:

Resource has been automatically unsubscribed due to a prioritary use by
the Wireless CPU® (please refer to the
ADL_AUDIO_RESOURCE_OPTION_ALLOW_PREEMPTION option and
adl_audioSubscribe for more information).

API

ADL Audio Service

© Confidential Page: 319 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.4.5 The adl_audioOptionTypes_e Type

This type includes a set of options readable and writable through the
adl_audioSetOption and adl_audioGetOption functions. These options allow to
configure the Wireless CPU® audio service behaviour, and to get this audio service
capabilities and parameters ranges.

For each option, the value type is specified, and a specific keyword indicates the
option access:

• R: the option is only readable.

• RW: the option is both readable & writable.

Note:

For more information about indicative values which should be returned when reading
options for MIN/MAX values, please refer to the Audio Commands chapter of the AT
Commands Interface Guide

• Code

typedef enum
{
 ADL_AUDIO_DTMF_DETECT_BLANK_DURATION,
 ADL_AUDIO_MAX_FREQUENCY,
 ADL_AUDIO_MIN_FREQUENCY,
 ADL_AUDIO_MAX_GAIN,
 ADL_AUDIO_MIN_GAIN,
 ADL_AUDIO_MAX_DURATION,
 ADL_AUDIO_MIN_DURATION,
 ADL_AUDIO_MAX_NOTE_VALUE,
 ADL_AUDIO_MIN_NOTE_VALUE,
 ADL_AUDIO_DTMF_STREAM_BUFFER_SIZE,
 ADL_AUDIO_DTMF_PROCESSED_STREAM_BUFFER_SIZE,
 ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE
} adl_audioOptionTypes_e;

API

ADL Audio Service

© Confidential Page: 320 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description

ADL_AUDIO_DTMF_DETECT_BLANK_DURATION

RW: DTMF decoding option (u16); it allows to define the blank duration
(ms) in order to detect the end of a DTMF. This value will act on the
Wireless CPU® behaviour to return information about DTMF when listening
to a DTMF audio stream. The value has to be a 10-ms multiple.
If a NULL value is specified, DTMF decoder will be in Raw mode (default),
Raw datas coming from DTMF decoder are sent every 20 ms via interrupt
handlers. This mode implies to implement an algorithm in order to detect
the good DTMF. (Refer to 3.33.2.2 adl_audioDecodedDtmf_u for more
information about buffer type used).
Otherwise the Raw mode is disabled. The value specifies the blank duration
which notifies the end of DTMF. Each time a DTMF is detected, interrupt
handlers are called. Please refer to adl_audioPostProcessedDecoder_t
structure for more information about datas stored.

ADL_AUDIO_MAX_FREQUENCY

R: allows to get the maximum frequency allowed to be played on the
required output resource (please refer to adl_audioResourceOption_e for
more information, section 3.33.4.2). The returned frequency value is defined
in Hz (u16).

ADL_AUDIO_MIN_FREQUENCY

R: allows to get the minimum frequency allowed to be played on the
required output resource (please refer to adl_audioResourceOption_e for
more information, section 3.33.4.2). The returned frequency value is defined
in Hz (u16).

ADL_AUDIO_MAX_GAIN

R: supplies the maximum gain which can be set to play a pre-defined audio
format (please refer to adl_audioDTMFPlayExt, adl_audioTonePlayExt or
adl_audioMelodyPlayExt for more information, section 3.33.7.3). The
returned gain value is defined in 1/100 of dB (s16).

ADL_AUDIO_MIN_GAIN

R: supplies the minimum gain which can be set to play a pre-defined audio
format (please refer to adl_audioDTMFPlayExt, adl_audioTonePlayExt or
adl_audioMelodyPlayExt for more information, section 3.33.7.3). The
returned gain value is defined in 1/100 of dB (s16).

ADL_AUDIO_MAX_DURATION

R: supplies the maximum duration which can be set to play a DTMF tone or
a single/dual tone (please refer to adl_audioDTMFPlay or adl_audioTonePlay
for more information, section 3.33.7.3). The returned duration value is
defined in ms (u32).

API

ADL Audio Service

© Confidential Page: 321 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

ADL_AUDIO_MIN_DURATION

R: supplies the minimum duration which can be set to play a DTMF tone or
a single/dual tone (please refer to adl_audioDTMFPlay or adl_audioTonePlay
for more information, section 3.33.7.3). The returned duration value is
defined in ms (u32).

ADL_AUDIO_MAX_NOTE_VALUE

R: supplies the maximum duration for a note (tempo) which can be set to
play play a melody (please refer to adl_audioMelodyPlay for more
information, section 3.33.7.3). This value is the maximal value which can
be defined with ADL_AUDIO_NOTE_DEF macro (u32).

ADL_AUDIO_MIN_NOTE_VALUE

R: supplies the minimum duration for a note (tempo) which can be set to
play play a melody (please refer to adl_audioMelodyPlay for more
information, section 3.33.7.3). This value is the minimal value which can be
defined with ADL_AUDIO_NOTE_DEF macro (u32).

ADL_AUDIO_DTMF_RAW_STREAM_BUFFER_SIZE

R: allows to get the buffer type to allocate for listening to a DTMF stream in
Raw mode or playing a DTMF stream, defined in number of bytes (u8).

ADL_AUDIO_DTMF_PROCESSED_STREAM_BUFFER_SIZE

R: allows to get the buffer type to allocate for listening to a DTMF stream in
Pre-processed mode, defined in number of bytes (u8).

ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE

R: allows the user to get the buffer type to allocated for playing or listening
to on a PCM 8KHz 16 bits Mono stream, defined in number of bytes (u8).

3.33.5 Audio events handler

This call-back function has to be supplied to ADL through the adl_audioSubscribe
interface in order to receive audio resource related events

• prototype

typedef void(*) adl_audioEventHandler_f(s32 audioHandle,
 adl_audioEvents_e Event);

• parameters

audioHandle

This is the handle of the audio resource which is associated to the event
(refer to adl_audioSubscribe for more information about the audio resource
handle, section 3.33.6.1).

Event

This is the received event identifier (refer to adl_audioEvents_e for more
information about the different events, section 3.33.4.4).

API

ADL Audio Service

© Confidential Page: 322 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.6 Audio resources control

3.33.6.1 The adl_audioSubscribe Function

This function allows to subscribe to the one of the available resources and specify its
behaviour when another client attempts to subscribe it.
A call-back function is associated for audio resources related events, the
adl_audioPostProcessedDecoder_t Type.

• Prototype

s32 adl_audioSubscribe (adl_audioResources_e audioResource,
 adl_audioEventHandler_f audioEventHandler,
 adl_audioResourceOption_e Options);

• Parameters

audioResource

Requested audio resource.

audioEventHandler
Application provided audio event call-back function (refer to
adl_audioEventHandler_f for more information.

Options
Option about the audio resource behaviour (refer to 3.33.4.2
adl_audioResourceOption_e for more information).

• Returned values

o Positive or NULL if allocation succeeds, to be used on further audio API
functions calls.

o ADL_RET_ERR_PARAM if the parameter has an incorrect value.

o ADL_RET_ERR_ALREADY_SUBSCRIBED if the resource is already subscribed.

o ADL_RET_ERR_NOT_SUPPORTED if the resource is not supported.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note:

ERROR values are defined in adl_error.h.

3.33.6.2 The adl_audioUnsubscribe Function

This function allows to unsubscribe to one of the resources which have been
previously subscribed.

A resource cannot be unsubscribed if it is running, process on this resource has to be
previously stopped (refer to adl_audioStop for more information, section 3.33.9.1).

• Prototype

s32 adl_audioUnsubscribe (s32 audioHandle);

API

ADL Audio Service

© Confidential Page: 323 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameter

audioHandle

Handle of the audio resource which has to be unsubscribed.
• Returned values

o OK on success

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_NOT_SUBSCRIBED if no audio resource has been subscribed.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.33.7 Play a pre-defined audio format

These functions allow to play a melody, a tone or a DTMF on the available audio
outputs.

The following diagram illustrates a typical use of the ADL Audio Service interface to
play a predefined audio format.

API

ADL Audio Service

© Confidential Page: 324 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

API

ADL Audio Service

© Confidential Page: 325 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.7.1 The adl_audioTonePlay Function

This function plays a single or dual tone on current speaker and only a single tone on
buzzer.
Only the speaker output is able to play tones in two frequencies. The second tone
parameters are ignored on buzzer output.
The specified output stops to play at the end of tone duration or on an application
request (refer to adl_audioStop for more information section 3.33.9.1).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to
AT commands Interface User Guide [1] for more information.

• Prototype

s32 adl_audioTonePlay (s32 audioHandle,
 u16 Frequency1,
 s8 Gain1,
 u16 Frequency2,
 s8 Gain2,
 u32 Duration);

• Parameters

audioHandle

Handle of the audio resource which will play tone (current speaker or
buzzer).

Frequency1
Frequency for the 1st tone (Hz).

Gain1
This parameter sets the tone gain which will be applied to the 1st
frequency value (dB).

Frequency2
Frequency for the 2nd tone (Hz), only processed on current speaker.
Frequency2 has to set to 0 to play a single tone on current speaker.

Gain2

This parameter sets the tone gain which will be applied to the 2nd
frequency value (dB).

Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms
multiple.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing on the required audio resource.

API

ADL Audio Service

© Confidential Page: 326 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for tone
playing.

o ADL_RET_ERR_NOT_SUPPORTED_ if the audio resource is not available for
tone playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note:

An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a tone is
stopped automatically at the end of the duration time.

• Example

// audio resource handle
 s32 handle;

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {
 switch (Event)
 {
 case ADL_AUDIO_EVENT_NORMAL_STOP :
 TRACE ((1, " Audio handle %d : stop ", audioHandle));

 // unsubscribe to the speaker
 Ret = adl_audioUnsubscribe (handle);
 break;

 case ADL_AUDIO_EVENT_RESOURCE_RELEASED :
 // ...
 break;

 default : break;
 }
 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandle,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a single tone
 Ret = adl_audioTonePlay(handle, 300, -10, 0, 0, 50);
 }

API

ADL Audio Service

© Confidential Page: 327 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.7.2 The adl_audioDTMFPlay Function

This function allows a DTMF tone to be played on the current speaker or on voice call
TX (in communication only).

It is not possible to play DTMF on the buzzer.
The specified output stops to play at the end of tone duration or on an application
request (refer to adl_audioStop for more information, section 3.33.9.1).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to
AT Commands Interface User Guide [1] for more information.

• Prototype

s32 adl_audioDTMFPlay (s32 audioHandle,
 ascii DTMF,
 s8 Gain,
 u32 Duration);

• Parameters

audioHandle
Handle of the audio resource which will play DTMF tone (current speaker or
voice call TX).

DTMF
DTMF to play (0-9,A-D,*,#).

Gain
This parameter sets the tone gain (dB), and is only for the speaker.

Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms
multiple.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing on the required audio resource.

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for DTMF
playing.

o ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for
DTMF playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Notes:
o An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource

when a DTMF is stopped automatically at the end of the duration time.

o A DTMF can not be stopped on client request when DTMF is played on
voice call TX.

API

ADL Audio Service

© Confidential Page: 328 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Example

// audio resource handle
s32 handle;

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {

 switch (Event)
 {
 case ADL_AUDIO_EVENT_NORMAL_STOP :
 TRACE ((1, " Audio handle %d : stop ", audioHandle));

 // unsubscribe to the current speaker
 Ret = adl_audioUnsubscribe (handle);
 break;

 case ADL_AUDIO_EVENT_RESOURCE_RELEASED :
 // ...
 break;

 default : break;
 }
 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandler,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a DTMF tone
 Ret = adl_audioDTMFPlay(handle, 'A', -10, 10);
 }

API

ADL Audio Service

© Confidential Page: 329 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.7.3 The adl_audioMelodyPlay Function

This function allows to play a defined melody on current speaker or buzzer.
The specified output stops the playing process on an application request (refer to
adl_audioStop for more information, section 3.33.9.1) or when the melody has been
played the same number of time than that is specified in CycleNumber.
Use adl_audioGetOption function to obtain the parameters range. Please also refer to
AT Commands Interface User Guide [1] for more information.

• Prototype

s32 adl_audioMelodyPlay (s32 audioHandle,
 u16 * MelodySeq,
 u8 Tempo,
 u8 CycleNumber,
 s8 Gain);

• Parameters

audioHandle
Handle of the audio resource which will play Melody (current speaker or
buzzer).

MelodySeq
Melody to play. A melody is defined by an u16 table , where each element
defines a note event, duration and sound definition.
The melody sequence has to finish by a NULL value.
(refer to 3.33.3.2 ADL_AUDIO_NOTE_DEF for more information)

Tempo

Tempo is defined in bpm (1 beat = 1 quarter note).
CycleNumber

Number of times the melody should be played.
If not specified, the cycle number is infinite, Melody should be stopped by
client.

Gain

This parameter sets melody gain (dB).

API

ADL Audio Service

© Confidential Page: 330 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success
o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing on the required audio resource.

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for melody
playing.

o ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for
melody playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note:

An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when
a Melody is stopped automatically at the end of the cycle number.

API

ADL Audio Service

© Confidential Page: 331 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Example

// audio resource handle
 s32 handle;

// Melody buffer
u16*MyMelody={ADL_AUDIO_NOTE_DEF(ADL_AUDIO_A,3,ADL_AUDIO_DOTTED_QUARTER),
 ADL_AUDIO_NOTE_DEF(ADL_AUDIO_CS,5,ADL_AUDIO_DOTTED_HALF),
 ADL_AUDIO_NOTE_DEF(ADL_AUDIO_E,1,ADL_AUDIO_WHOLE_NOTE),
 ... ,
 ADL_AUDIO_NOTE_DEF(ADL_AUDIO_AS,3,ADL_AUDIO_HEIGHTH),
 0 };

// audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {
 s32 Ret;

 switch (Event)
 {
 case ADL_AUDIO_EVENT_NORMAL_STOP :
 TRACE ((1, " Audio handle %d : stop ", audioHandle));

 // unsubscribe to the buzzer
 Ret = adl_audioUnsubscribe (handle);

 break;

 case ADL_AUDIO_EVENT_RESOURCE_RELEASED :
 // ...
 break;

 default : break;
 }
 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_BUZZER, MyAudioEventHandler ,
ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a Melody
 Ret = adl_audioMelodyPlay(handle, MyMelody, 10, 2, -10);
 }

API

ADL Audio Service

© Confidential Page: 332 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.7.4 The adl_audioTonePlayExt Function

This function plays a single or dual tone on current speaker and only a single tone on
buzzer.
Only the speaker output is able to play tones in two frequencies. The second tone
parameters are ignored on buzzer output.
The specified output stops to play at the end of tone duration or on an application
request (refer to adl_audioStop for more information section 3.33.9.1).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to
AT commands Interface User Guide [1] for more information.

• Prototype

s32 adl_audioTonePlayExt(s32 audioHandle,
 u16 Frequency1,
 s16 Gain1,
 u16 Frequency2,
 s16 Gain2,
 u32 Duration);

• Parameters

audioHandle

Handle of the audio resource which will play tone (current speaker or
buzzer).

Frequency1
Frequency for the 1st tone (Hz).

Gain1
This parameter sets the tone gain which will be applied to the 1st
frequency value (unit: 1/100 of dB).

Frequency2
Frequency for the 2nd tone (Hz), only processed on current speaker.
Frequency2 has to set to 0 to play a single tone on current speaker.

Gain2

This parameter sets the tone gain which will be applied to the 2nd
frequency value (unit : 1/100 of dB).

Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms
multiple.

• Returned values

o OK on success.

o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing on the required audio resource.

API

ADL Audio Service

© Confidential Page: 333 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for tone
playing.

o ADL_RET_ERR_NOT_SUPPORTED_ if the audio resource is not available for
tone playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note:

An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a tone is
stopped automatically at the end of the duration time.

3.33.7.5 The adl_audioDTMFPlayExt Function

This function allows a DTMF tone to be played on the current speaker or on voice call
TX (in communication only).

It is not possible to play DTMF on the buzzer.

The specified output stops to play at the end of tone duration or on an application
request (refer to adl_audioStop for more information, section 3.33.9.1).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to
AT Commands Interface User Guide [1] for more information.

• Prototype

s32 adl_audioDTMFPlayExt(s32 audioHandle,
 ascii DTMF,
 s16 Gain,
 u32 Duration);

• Parameters

audioHandle
Handle of the audio resource which will play DTMF tone (current speaker or
voice call TX).

DTMF
DTMF to play (0-9,A-D,*,#).

Gain
This parameter sets the tone gain (unit: 1/100 of dB), and is only for the
speaker.

Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms
multiple.

• Returned values

o OK on success

o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing on the required audio resource.

API

ADL Audio Service

© Confidential Page: 334 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for DTMF
playing.

o ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for
DTMF playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Notes:
o An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource

when a DTMF is stopped automatically at the end of the duration time.

o A DTMF cannot be stopped on client request when DTMF is played on
voice call TX.

3.33.7.6 The adl_audioMelodyPlayExt Function

This function allows to play a defined melody on current speaker or buzzer.

The specified output stops the playing process on an application request (refer to
adl_audioStop for more information, section 3.33.9.1) or when the melody has been
played the same number of time than that is specified in CycleNumber.

Use adl_audioGetOption function to obtain the parameters range. Please also refer to
AT Commands Interface User Guide [1] for more information.

• Prototype

s32 adl_audioMelodyPlayExt (s32 audioHandle,
 u16 * MelodySeq,
 u8 Tempo,
 u8 CycleNumber,
 s16 Gain);

• Parameters

audioHandle
Handle of the audio resource which will play Melody (current speaker or
buzzer).

MelodySeq
Melody to play. A melody is defined by an u16 table , where each element
defines a note event, duration and sound definition.
The melody sequence has to finish by a NULL value.
(refer to 3.33.3.2 ADL_AUDIO_NOTE_DEF for more information)

Tempo

Tempo is defined in bpm (1 beat = 1 quarter note).
CycleNumber

Number of times the melody should be played.
If not specified, the cycle number is infinite; Melody should be stopped by
client.

Gain

This parameter sets melody gain (unit: 1/100 of dB).

API

ADL Audio Service

© Confidential Page: 335 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Returned values

o OK on success
o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing on the required audio resource.

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for melody
playing.

o ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for
melody playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note:
o An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource

when a Melody is stopped automatically at the end of the cycle
number.

API

ADL Audio Service

© Confidential Page: 336 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.8 Audio stream

These functions allows to play or listen an audio stream.

API

ADL Audio Service

© Confidential Page: 337 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.8.1 The adl_audioStreamPlay Function

This function allows to play an audio sample stream on the current speaker or on
voice call TX.

Playing an audio sample stream implies that low level interrupt and/or high level
interrupt have been previously subscribed

(Refer to 3.25.10 adl_irqSubscribe in ADL user guide for more information).

Moreover, memory space has to be allocated for the audio stream buffer before
playing starts and it has to be released after playing stops.

Only audio PCM sample can be played.

Use adl_audioGetOption function to obtain the parameters range. (also refer to AT
Commands User Guide [1] for more information).

(Refer to adl_audioStreamDataBuffer_u::PCMData to get information about the data
buffer format).

• Prototype

s32 adl_audioStreamPlay (s32 audioHandle,
 adl_audioFormats_e audioFormat,
 s32 LowLevelIRQHandle,
 s32 HighLevelIRQHandle,
 void * buffer);

• Parameters

audioHandle
Handle of the audio resource which will play audio stream (current speaker
or voice call TX).

audioFormat
Stream audio format. Only ADL_AUDIO_PCM_MONO_8K_16B format is available to
be played (Refer to adl_audioFormats_e for more information, section
3.33.4.3).

LowLevelIRQHandle
Low level IRQ handle previously returned by IRQ subscription (please refer
to adl_irqSubscribe, section 3.25.10, for more information).

HighLevelIRQHandle
High level IRQ handle previously returned by IRQ subscription (please refer
to adl_irqSubscribe, section 3.25.10, for more information).

buffer
contains sample to play.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM if parameters have an incorrect value.

API

ADL Audio Service

© Confidential Page: 338 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-
defined signal is playing on the required audio resource.

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for audio
stream playing or if interrupt handler identifiers are invalid.

o ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for
audio stream playing.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Notes:

o To work properly, LowLevelIRQHandle is mandatory. The low level
interrupt has to be previously subscribed with
ADL_IRQ_OPTION_AUTO_READ option.

o The HighLevelIRQHandle is optional.

o Each time an audio sample is required, an interrupt handler will be
notified to send the data. The interrupt identifier will be set to
ADL_IRQ_ID_AUDIO_RX_PLAY or ADL_IRQ_ID_AUDIO_TX_PLAY, according to
the resource used to start the stream play.

o Some audio filters will be deactivated for audio sample playing (refer to
"audio command" chapter in the AT command Interface Guide [1] for
more information).

o For audio interrupt subscription ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT
option is not available.

• Example

 // audio resource handle
 s32 handle;

 // audio stream buffer
 void * StreamBuffer;

 // PCM samples
 u16 PCM_Samples[160] = { ... , ... , ... , ... , ... , ... , 0 }; //
 size of PCM sample = 320 bytes

 // PCM samples index
 u8 indexPCM = 0;

 // Low level interrupt handler
 bool MyLowLevelIRQHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
 Notification Level, adl_irqEventData_t * Data)
 {
 // copy PCM sample to play
 wm_strcpy(StreamBuffer, PCM_Samples);
 // Set BufferReady flag to TRUE
 *((adl_audioStream_t *)Data->SourceData)->BufferReady = TRUE;

 //...

 return FALSE;
 }

API

ADL Audio Service

© Confidential Page: 339 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {

 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;
 s32 BufferSize;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandler ,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Memory allocation
 Ret = adl_audioGetOption (handle,
 ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE, &BufferSize)
 StreamBuffer = adl_memGet(BufferSize); // release memory after
 audio stream playing

 // Play an audio PCM stream
 Ret = adl_audioStreamPlay(handle, ADL_AUDIO_PCM_MONO_8K_16B
 MyLowLevelIRQHandler, 0, StreamBuffer);
 }

3.33.8.2 The adl_audioStreamListen Function

This function allows listening to a DTMF tone or an audio sample from microphone or
voice call RX.

Listening to an audio sample stream implies that low level interrupt and/or high level
interrupt have been previously subscribed (refer to adl_irqSubscribe for more
information, section 3.25.10).

Moreover, memory space has to be allocated for the audio stream buffer before
listening starts and it has to be released after listening stops. Use adl_audioGetOption
function to obtain the parameters range. Please also refer to AT Command Interface
Guide for more information. According to audio format stream and DTMF decoding
mode (for listening to an audio DTMF stream), buffer has a different format:

• for listening to an audio sample, _adl_audioStreamDataBuffer_u::PCMData
format is used.

• for listening to a DTMF stream, in Raw mode (refer to
ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about Raw
mode, section 3.33.4.5), _adl_audioDecodedDtmf_u::DecodedDTMFChars format
is used.

API

ADL Audio Service

© Confidential Page: 340 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• for listening to a DTMF stream, in no Raw mode (refer to 3.33.4.5
ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about no Raw
mode), adl_audioPostProcessedDecoder_t structure is used.

• Prototype

s32 adl_audioStreamListen (s32 audioHandle,
 adl_audioFormats_e audioFormat,
 s32 LowLevelIRQHandle,
 s32 HighLevelIRQHandle,
 void * buffer);

• Parameters

audioHandle
Handle of the audio resource from which to listen the audio stream
(microphone or voice call RX).

audioFormat
Stream audio format (refer to adl_audioFormats_e for more information,
section 3.33.4.3).

LowLevelIRQHandle
Low level IRQ handle previously returned by IRQ subscription (please refer
to adl_irqSubscribe, section 3.25.10, for more information).

HighLevelIRQHandle
High level IRQ handle previously returned by IRQ subscription (please refer
to adl_irqSubscribe, section 3.25.10, for more information).

buffer
contains received decoded DTMF or audio samples.

• Returned values

o OK on success
o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio signal is
playing on the required audio resource.

o ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for audio
stream listening or if interrupt handler identifiers are invalid.

o ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for
audio stream listening.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Notes:

o The LowLevelIRQHandle is optional if the HighLevelIRQHandle is supplied.
o The HighLevelIRQHandle is optional if the LowLevelIRQHandle is supplied.

o Each time an audio sample or DTMF sequence is detected, an interrupt
handler will be notified to require the data. The interrupt identifier will

API

ADL Audio Service

© Confidential Page: 341 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

be set to ADL_IRQ_ID_AUDIO_RX_LISTEN or ADL_IRQ_ID_AUDIO_TX_LISTEN,
according to the resource used to start the stream listen.

o All audio filters will be deactivated for DTMF listening and only some
audio filters for audio sample listening (refer to "audio command"
chapter in the AT command Interface Guide [1] for more information).

o For audio interrupt subscription, ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT
option is not available.

• Example

// audio resource handle
 s32 handle;

 // audio stream buffer
 void * StreamBuffer;

 // Low level interrupt handler
 bool MyLowLevelIRQHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
 Notification Level, adl_irqEventData_t * Data)
 {
 TRACE ((1, "DTMF received : %c, %c ", StreamBuffer[0],
StreamBuffer[1]));

 return FALSE;
 }

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {

 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;;
 s32 BufferSize

 // Subscribe to the current microphone
 handle = adl_audioSubscribe (ADL_AUDIO_MICROPHONE,
 MyAudioEventHandler , ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Memory allocation
 Ret = adl_audioGetOption (handle, ADL_AUDIO_PCM_8K_MONO_BUFFER_SIZE,
&BufferSize)
 StreamBuffer = adl_memGet(BufferSize); // release memory after audio
 stream listening

 // Listen to audio DTMF stream
 Ret = adl_audioStreamListen(handle, ADL_AUDIO_DTMF
 MyLowLevelIRQHandler, 0, StreamBuffer);
 }

API

ADL Audio Service

© Confidential Page: 342 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.9 Stop

3.33.9.1 The adl_audioStop Function

This function allows to:
• stop playing a tone on the current speaker or on the buzzer,

• stop playing a DTMF on the current speaker or on the voice call TX,

• stop playing a melody on the current speaker or on the buzzer,

• stop playing an audio PCM stream on the current speaker or on the voice
call TX,

• stop listening to an audio DTMF stream from current microphone or voice
call RX,

• stop listening to an audio sample stream from current microphone or voice
call RX.

ADL_AUDIO_EVENT_NORMAL_STOP event will not be sent to application.

• Prototype

s32 adl_audioStop (s32 audioHandle);

• Parameters

audioHandle
Handle of the audio resource which has to stop its process.

• Returned values

o OK on success.
o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

o ADL_RET_ERR_BAD_STATE if no audio process is running on the required
audio resource.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

API

ADL Audio Service

© Confidential Page: 343 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Example

// audio resource handle
 s32 handle;

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandler ,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a single tone
 Ret = adl_audioTonePlay(handle, 300, -10, 0, 0, 50);

 // Stop playing the single tone
 Ret = adl_audioStop(handle);

 // unsubscribe to the current speaker
 Ret = adl_audioUnsubscribe (handle);

 }

API

ADL Audio Service

© Confidential Page: 344 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.10 Set/Get options

3.33.10.1 The adl_audioSetOption Function

This function allows to set an audio option according to audio resource and option
type specified. Several option types are only readable, so this function cannot be used
with them (refer to 3.33.4.5 adl_audioOptionTypes_e for more information).

• Prototype

s32 adl_audioSetOption (s32 audioHandle,
 adl_audioOptionTypes_e audioOption,
 s32 value);

• Parameters

audioHandle
Handle of the audio resource.

audioOption
This parameter defines audio option to set (refer to 3.33.4.5
adl_audioOptionTypes_e for more information).

value

Defines setting value for option.
• Returned values

o OK on success
o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

API

ADL Audio Service

© Confidential Page: 345 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.33.10.2 The adl_audioGetOption Function

This functions allows to get information about audio service according to audio
resource and option type specified.

• Prototype

s32 adl_audioGetOption (s32 audioHandle,
 adl_audioOptionTypes_e audioOption,
 s32 * value);

• Parameters

audioHandle

Handle of the audio resource.
audioOption

audio option which wishes to get information (refer to 3.33.4.5
adl_audioOptionTypes_e for more information).

value

option value according to audio option which has been set.
• Returned values

o value option value according to audio option which has been set.
o ADL_RET_ERR_PARAM if parameters have an incorrect value.

o ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

API

ADL Secure Data Storage Service

© Confidential Page: 346 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.34 ADL Secure Data Storage Service

The ADL supplies Secure Data Storage Service interface to

• read/write/query data stored in ciphered format in non volatile memory,

• update cryptographic keys in order to block replay/re-download attacks.

The defined operations are:

• An adl_sdsWrite function to write secured data.

• An adl_sdsRead function to read secured data.

• An adl_sdsQuery function to require size of one of secured entries.

• An adl_sdsDelete function to delete one of secured entries.

• An adl_sdsStats function to get statistics about secured data storage.

• An adl_sdsUpdateKeys function to update the cryptographic keys.

Note:

These functions are available only if:

• they are used with a compatible platform.

• the Secured Data Storage feature is properly activated on the production
line

• the objects are not erased, otherwise Wireless CPU® has to be returned in
production line

Otherwise, every function cited above will return the error code
ADL_RET_ERR_NOT_SUPPORTED.

3.34.1 Required Header File

The header file for the functions dealing with the ADL Secure Data Storage Service
public interface is:

adl_sds.h

API

ADL Secure Data Storage Service

© Confidential Page: 347 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.34.2 Data Structure

3.34.2.1 The adl_sdsStats_t Structure

Data storage statistics contains information about secured data storage. It has to be
used with adl_sdsStats API. .

• Code

typedef struct
{
 u32 FreeSpace
 u32 TotalSpace
 u16 EntryCount
 u16 MaxEntry
 u32 MaxEntrySize
}adl_sdsStats_t;

• Description

FreeSpace

Available space for secured entries.

Caution: This figure does not depend only on written data but depends on
the state of the underlying storage media too. It might increase or decrease
as data entries sharing the same space as ciphered entries are created or
deleted.

TotalSpace

Total space allocated for ciphered entries. This figure is a quota, and must
be treated as such. Because ciphered entries share storage media with
other information, this quota might be unaccessible if, for example, the
underlying storage medium is near its full capacity.

EntryCount

Total number of secured entries.

MaxEntry

Maximal number of secured entry.

Note: The max number of secured entries depends on the underlying
storage service. There might be less available entries if this storage service
is near its maximum capacity.

MaxEntrySize

Maximal size of one secured entry. It's defined in number of bytes.

API

ADL Secure Data Storage Service

© Confidential Page: 348 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.34.3 Defines

3.34.3.1 ADL_SDS_RET_ERR_ENTRY_NOT_EXIST

Entry does not exist.

#define ADL_SDS_RET_ERR_ENTRY_NOT_EXIST ADL_RET_ERR_SPECIFIC_BASE

3.34.3.2 ADL_SDS_RET_ERR_MEM_FULL

Not enough space memory to write secured data.

#define ADL_SDS_RET_ERR_MEM_FULL ADL_RET_ERR_SPECIFIC_BASE - 1

3.34.4 The adl_sdsWrite Function

This function allows to store data in a secured entry, data are ciphered. This function
creates a new entry or updates an existing one.

• Prototype

s32 adl_sdsWrite (u32 ID,
 u32 Length,

 void * Source);

• Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by
adl_sdsStats). Refer to adl_sdsStats_t to get more information about
MaxEntry.

Length

Size of the data to write in the entry. Use adl_sdsStats to get the maximum
size for one secured entry (refer to MaxEntrySize in adl_sdsStats_t to get
more information).

Source

Pointer to the source buffer. It contains data to write.

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_SDS_RET_ERR_MEM_FULL no enough memory is available for
writing.

 ADL_RET_ERR_NOT_SUPPORTED writing operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt
handler.

API

ADL Secure Data Storage Service

© Confidential Page: 349 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.34.5 The adl_sdsRead Function

This function allows to retrieve data from a secured entry. Data which has been
previously written with adl_sdsWrite API.

• Prototype

s32 adl_sdsRead (u32 ID,
 u32 Offset,

 u32 Length,
 void * Destination);

• Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by
adl_sdsStats). Refer to adl_sdsStats_t to get more information about
MaxEntry.

Offset

Offset in the secured entry, defined in number of bytes. It allows to retrieve
a part of the entry. It is an offset in relation to the first byte of the entry.

Length

Size of data to read in the secured entry. Use adl_sdsQuery API to get the
maximal length for the required entry.

Destination

Pointer to the destination buffer. It contains data to retrieve.

• Returned values

o OK on success

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_SDS_RET_ERR_ENTRY_NOT_EXIST if entry ID does not exist.

 ADL_RET_ERR_NOT_SUPPORTED reading operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt
handler.

3.34.6 The adl_sdsQuery Function

This function allows to check if a secured entry exists and gets its size.

• Prototype

s32 adl_sdsQuery (u32 ID,
 u32* Length);

API

ADL Secure Data Storage Service

© Confidential Page: 350 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by
adl_sdsStats). Refer to adl_sdsStats_t to get more information about
MaxEntry.

Length

Output pointer for the entry size. It can be set to NULL.

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_SDS_RET_ERR_ENTRY_NOT_EXIST if entry ID does not exist.

 ADL_RET_ERR_NOT_SUPPORTED operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt
handler.

3.34.7 The adl_sdsDelete Function

This function allows to delete one of existing entries.

• Prototype

s32 adl_sdsDelete (u32 ID);

• Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by
adl_sdsStats). Refer to adl_sdsStats_t to get more information about
MaxEntry.

• Returned values

o OK on success

o A negative error value otherwise:
 ADL_RET_ERR_PARAM if parameters have an incorrect value or

secured entry doesn't exist.

 ADL_SDS_RET_ERR_ENTRY_NOT_EXIST if entry ID does not exist.

 ADL_RET_ERR_NOT_SUPPORTED deletion operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt
handler.

API

ADL Secure Data Storage Service

© Confidential Page: 351 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.34.8 The adl_sdsStats Function

This function allows to retrieve information about secured data storage as free
memory space or total memory space.

• Prototype

s32 adl_sdsStats (adl_sdsStats* Stats);

• Parameters

Stats:

Pointer on statistical information of secured data storage. (refer to
adl_sdsStats_t to have more information about statistics).

• Returned values

o OK on success

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_RET_ERR_NOT_SUPPORTED operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt
handler.

3.34.9 The adl_sdsUpdateKeys Function

This function allows to re-generate the internal cryptographic keys. This function has
to be used to defeat possible replay or re-download attacks.
Once the keys are re-generated, all the stored data remain available and still readable
by application, but the processor will not be able to re-use a previous image of the
non-volatile memory with old cryptographic keys.

• Prototype

s32 adl_sdsUpdateKeys (void);

Note:

This function is synchronous and its exectution time is independent of the number of
entries.

Warning:

This must be used with caution because of the limited life expectancy of the non-
volatile memory implied in this process. For example, a WMP100 processor can, at
most, withstand 2x10^6 key changes: changing them every second would therefore
wear out the processor after 1.5 year.

• Returned values

o OK on success

o A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_RET_ERR_NOT_SUPPORTED updating operation is not available.

 ADL_RET_ERR_FATAL EEPROM cannot be written.

API

ADL Secure Data Storage Service

© Confidential Page: 352 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt
handler.

3.34.10 Example

The code sample below illustrates a nominal use case of the ADL Secure Data
Storage Service public interface (error cases are not handled).

// ...
 // decrement counter
 u32 n=10;
 u32 size;
 u32 offset=0;
 adl_sdsWrite(COUNTER_ID, offset, sizeof(u32), &n);
 adl_sdsQuery(COUNTER_ID, &size);
 adl_sdsRead(COUNTER_ID, offset, size, &n);
 n--;
 adl_sdsWrite(COUNTER_ID, size, &n);

 // ensure that from now on, any previously
 // stored memory image becomes incompatible
 // with this processor
 adl_sdsUpdateKeys();
 // ...

 adl_sdsRead(COUNTER_ID, offset, sizeof(u32), &n);
 // delete entry
 adl_sdsDelete(COUNTER_ID);

API

ADL WatchDog Service

© Confidential Page: 353 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.35 ADL WatchDog Service

ADL provides a watchdog service to access to the Wireless CPU®s WatchDog.

Note: the timing unit is a tick which corresponds to 18.5 ms.

• Hardware watchdog put to sleep

Because an application may launch heavy treatments that can take more than the
hardware watchdog duration (one minute for example) and because the watchdog
cannot be stopped once it had been started, system provides a way to deactivate the
hardware watchdog from the application point of view for a given time. In fact,
during this time, system rearms by itself the hardware watchdog application in a high
priority task because the IDLE task cannot take the focus while the application
treatments are not finished.

The defined operations are:

o A adl_wdPut2Sleep

o A adl_wdAwake

• Application watchdog Management

Application watchdog can be activated with a given duration. Once the application
watchdog is activated, the application binary has to rearm regularly the application
watchdog to indicate that it is still alive. Else, a back trace is generated and a reset
occurs. Application watchdog can be deactivated or reactivated with a new duration.

The defined operations are:

o A adl_wdRearmAppWd

o A adl_wdActiveAppWd

o A adl_wdDeActiveAppWd

3.35.1 Required Header File

The header file for the functions dealing with the ADL WatchDog Service public
interface is:

adl_wd.h

3.35.2 The adl_wdPut2Sleep Function

This function enables to launch an automatic hardware watchdog relaunch for a
given duration. Thanks to this function, during the watchdog sleep duration,
application treatments can take more than hardware watchdog duration even if IDLE
task cannot have the CPU focus for more than hardware watchdog duration. Once
the sleep duration expired, the IDLE task must receive back the CPU focus in less than
the hardware watchdog duration, else a watchdog reset occurs.

Note:

This must be called just before an heavy treatment to avoid watchdog reset. The
argument has to be strictly positive.

API

ADL WatchDog Service

© Confidential Page: 354 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Prototype

u32 adl_wdPut2Sleep (u32 i_u32_SleepDuration);

• Parameters

i_u32_SleepDuration:

Watchdog sleep duration in number of ticks (timer macro
ADL_TMR_S_TO_TICK(SecT) - can be used for duration conversion).

• Returned values

o OK or ADL_RET_ERR_PARAM if wrong argument.

3.35.3 The adl_wdAwake Function

The adl_wdAwake function enables to cancel watchdog inactivation.

Note:

This should be called just after an heavy treatment if watchdog had been inactivated
to force the restore of default behavior. If not called, default behavior will be restored
automatically at the expiration of watchdog sleep duration.

• Prototype

u32 adl_wdAwake (void);

• Returned values

Remaining time before automatic watchdog reactivation in number of ticks.

3.35.4 Example

Here is an example of how to use the watchdog API access functions.

void CallMyHeavyTreatpments(void)
 {
 // To store remaining time before the end of watchdog inactivation
 u32 i_u32_ReaminingTime;

 // Watchdog inactivation for 30 seconds
 adl_wdPut2Sleep(ADL_TMR_S_TO_TICK(30));

 // Launch heavy treatment
 MyHeavyTreatemnt();

 // Watchdog reactivation
 i_u32_ReaminingTime = adl_wdAwake();

 printf("Watchdog is to be awaken in %d number of ticks",
 i_u32_ReaminingTime);
 }

API

ADL WatchDog Service

© Confidential Page: 355 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.35.5 The adl_wdRearmAppWd Function

Enable to rearm the application watchdog with the stored watchdog duration.

Note:

Application can use a cyclic timer to regularly rearm the application watchdog.

OK is returned and nothing happens if adl_wdActiveAppWd has not been called before.

• Prototype

s32 adl_wdRearmAppWd (void);

• Returned values

OK or ADL_RET_ERR_NOT_SUPPORTED if watchdog service not supported.

3.35.6 The adl_wdActiveAppWd Function

Once started application watchdog must be rearmed regularly (no matter how) to
indicate that it is still alive. If the watchdog timer expired, the hardware watchdog
will not be rearmed anymore and the Wireless CPU®s will reset.

• Prototype

s32 adl_wdActiveAppWd (u32 i_u32_Duration);

Note:

Argument has to be strictly positive.

• Parameters

i_u32_Duration:

Software application watchdog duration in number of ticks (timer macro
ADL_TMR_S_TO_TICK(SecT) - can be used for duration conversion).

• Returned values

OK or ADL_RET_ERR_NOT_SUPPORTED if watchdog service not supported.

3.35.7 The adl_wdDeActiveAppWd Function

The adl_wdDeActiveAppWd function enables to stop watchdog.

Note:

OK is returned and nothing happens if adl_wdActiveAppWd has not been called before.

• Prototype

s32 adl_wdDeActiveAppWd (void);

• Returned values

OK or ADL_RET_ERR_NOT_SUPPORTED if watchdog service not supported.

API

ADL WatchDog Service

© Confidential Page: 356 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.35.8 Example

Here is an example of how to use the application watchdog API access functions.

 void CallMyHeavyAppliTreatpments(void)
 {
 adl_tmr_t *tt;

 // Lets activate the application watchdog for 30 seconds
 adl_wdActiveAppWd(ADL_TMR_S_TO_TICK(30));

 // Lets suscribe to a 25 sec timer
 tt = (adl_tmr_t *)adl_tmrSubscribe (TRUE,
 25,
 ADL_TMR_TYPE_100MS,
 (adl_tmrHandler_t)Timer_Handler);

 // Launch heavy appli treatment
 MyHeavyAppliTreatemnt();
 }

 void Timer_Handler(u8 Id)
 {
 if ((process has not ended)
 {
 if (there is some activities)
 {
 // Rearm the application watchdog for another go
 adl_wdRearmAppWd();
 }
 else
 {
 // the process has not ended and there is no activities ->
 application watchdog reset
 }
 }
 else // process has ended
 {
 // the process has ended we can now deactivate the application
 watchdog
 adl_wdDeActiveAppWd();
 }
 }

API

ADL Layer 3 Service

© Confidential Page: 357 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.36 ADL Layer 3 Service

The ADL supplies Layer3 Service interface allows to get information about Layer 3 as
PLMN scan information.

The defined operations are:

• A adl_L3infoSubscribe function to subscribe to the L3 information service

• A adl_L3infoUnsubscribe function to unsubscribe to the L3 information
service.

3.36.1 Required Header File

The header file for the functions dealing with the ADL Layer 3 Service public interface
is:

adl.L3info.h

3.36.2 The adl_L3InfoChannelList_e

List of information channel which are available.

• Code

typedef enum
{
 adl_L3infoChannelList_e ADL_L3INFO_SCAN
}adl_L3infoChannelList_e;

• Description

ADL_L3INFO_SCAN

This channel allows to retrieve information about PLMN Scan:

o power min, max, average

o cell synchronization refer to [2] file to have more details about
information structure which are returned by Scan channel

3.36.3 The Layer3 infoEvent Handler

Such a call-back function has to be supplied to ADL through the adl_L3infoSubscribe
interface in order to receive L3 information according to channels and related events.

• Prototype

typedef void(*)adl_L3infoEventHandler_f(u32 Time,
 adl_L3infoChannelList_e ChannelId,
 u32 EventId,
 u32 Length,

 void * Info);

API

ADL Layer 3 Service

© Confidential Page: 358 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Parameters

Time

Reserved for Future Use.

ChannelId

Channel identity which provides information. (refer to
adl_L3infoChannelList_e for more information).

EventId

Event identity. refer to [2] for more information about possible event.

Length

Length of "Info" content.

Info

Information content according to ChannelID and EventID. Refer to [2] for
more information about the type of "Info".

3.36.4 The adl_L3infoSubscribe Function

This function allows to subscribe to one of the available information channel of the
Layer 3.

A call-back function is associated for Layer 3 events. It allows to retrieve information
relative to the channel requested.

• Prototype

s32 adl_L3infoSubscribe (adl_L3infoChannelList_e ChannelId,
 adl_L3infoEventHandler_f L3infoHandler);

• Parameters

ChannelId

Information channel requested.(refer to adl_L3infoChannelList_e for more
information).

L3infoHandler

Application provides Layer 3 event call-back function (refer to
adl_L3infoEventHandler_f for more information).

• Returned values

o Positive or NULL if allocation succeed, returns handle which has to be
used on further L3 info API functions calls

o ADL_RET_ERR_PARAM if parameter has an incorrect value.

o ADL_RET_ERR_ALREADY_SUBSCRIBED if the channel information is already
subscribed.

o ADL_RET_ERR_NOT_SUPPORTED If the Raw Spectrum Information feature is
not enabled on the Wireless CPU®.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

API

ADL Layer 3 Service

© Confidential Page: 359 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.36.5 The adl_L3infoUnsubscribe Function

This function allows to unsubscribe to the specific channel L3 information flow which
has been subscribed previously with adl_L3infoSubscribe function.

• Prototype

s32 adl_L3infoUnsubscribe (u32 Handle);

• Parameters

Handle

handle previously returned by adl_L3infoSubscribe function.

• Returned values

o OK on success

o ADL_RET_ERR_UNKNOWN_HANDLE if the provided handle is unknown.

o ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.36.6 Example

These function allows to subscribe or unsubscribe to one of information channel
available from Layer 3.

// Channel info handle
 s32 handle;

 // info channel event call-back function
 void MyChannelEventHandler(u32 Time, adl_L3infoChannelList_e ChannelId,
 u32 EventId, u32 Length, void * Info)
 {

 switch (EventId)
 {
 ...
 }

 adl_L3infoUnsubscribe(handle);

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {

 // Subscribe to PLMN Scan channel information
 handle = adl_L3infoSubscribe (ADL_L3INFO_SCAN,
 MyChannelEventHandler);

 }

API

ADL Layer 3 Service

© Confidential Page: 360 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.36.7 PLMN SCAN Information Channel Interface

This page describes events and associated data structure to provide information
about PLMN SCAN procedure.

The PLMN Scan procedure is composed by the following steps :

• At first a power measurement on each supported frequency is done.

• Then if sufficent power (> noise power level(~ -105dBm)) is detected on
one or more cells, cell synchronisation attempt is performed on these cells.

The PLMN scan procedure can be initiated by the Wireless CPU® itself, for initial
PLMN selection or automatic PLMN reselection purposes, or can be initiated by user
with AT+COPS command for instance.

3.36.7.1 Measurements Information [WM_L3_INFO_SCAN_PWR event]

The Measurement information are reported each time a power measurement is
required on all frequencies.

The corresponding reported data are statistics on the low band, the high band and
the low+high band.

The total number of cells with a power level greater than the noise power level is also
reported.

3.36.7.2 Cell Synchronisation Information
[WM_L3_INFO_SCAN_SYNC_CELL event]

The Cell Sychronisation information are reported when a cell synchronisation attempt
was done during the PLMN Scan procedure and

• if the Wireless CPU® is not camped on a cell (the number of synchro failure
is updated)

• if the Wireless CPU® has just camped on a cell (CellCamped flag set): no
other WM_L3_INFO_SCAN_SYNC_CELL event is reported after.

3.36.7.3 The wm_l3info_Scan_PowerInfo_t Structure

Power Measurement Information structure.

• Code

typedef struct
{
 wm_I3info_Scan_PowerStat_t Total,
 wm_I3info_Scan_PowerStat_t LowBand,
 wm_I3info_Scan_PowerStat_t HighBand,
 u16 NumberOfCellAboveNoise,
 bool CellCamped
}wm_I3info_Scan_PowerInfo_t;

API

ADL Layer 3 Service

© Confidential Page: 361 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

• Description

Total

Power Measurement statistics for all bands.

LowBand

Power Measurement statistics for the low band (GSM/850).

HighBand

Power Measurement statistics for the high band (DCS/PCS).

NumberOfCellAboveNoise

Number of cells with a power level greater than the noise's one.

CellCamped

TRUE if Wireless CPU® is camped on a cell, else FALSE.

3.36.7.4 The wm_l3info_Scan_PowerStat_t Structure

Power Measurement structure.

• Code

typedef struct
{
 u32 NbFreq
 u8 Min
 u8 Max
 u8 Mean
 u32 Variance
}wm_I3info_Scan_PowerStat_t;

• Description

NbFreq

Number of frequencies.

Min

Minimal power level detected.

Max

Maximal power level detected.

Mean

Mean power level.

Variance

Variance.

API

ADL Layer 3 Service

© Confidential Page: 362 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

3.36.7.5 The wm_l3info_Scan_SynchroCellInfo_t Structure

Cell Synchronization Information structure.

This information is reported each time a cell synchronisation is unsucessfull and no
cell has been already synchronised, or when a first cell is synchronized.

• Code

typedef struct
{
 u16 NbCellTriedInLowBand,
 u16 NbCellTriedInHighBand,
 bool CellCamped
}wm_I3info_Scan_SynchroCellInfo_t;

• Description

NbCellTriedInLowBand

Number of tried cell in low band since the start of the scan.

NbCellTriedInHighBand

Number of tried cell in high band since the start of the scan.

CellCamped

TRUE if Wireless CPU® is camped on a cell, else FALSE.

Error Codes

General Error Codes

© Confidential Page: 363 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

4 Error Codes

4.1 General Error Codes

Error Code Error Value Description

OK 0 No error response

ERROR -1 general error code

ADL_RET_ERR_PARAM -2 parameter error

ADL_RET_ERR_UNKNOWN_HDL -3 unknown handler / handle error

ADL_RET_ERR_ALREADY_SUBSCRIBED -4 service already subscribed

ADL_RET_ERR_NOT_SUBSCRIBED -5 service not subscribed

ADL_RET_ERR_FATAL -6 fatal error

ADL_RET_ERR_BAD_HDL -7 Bad handle

ADL_RET_ERR_BAD_STATE -8 Bad state

ADL_RET_ERR_PIN_KO -9 Bad PIN state

ADL_RET_ERR_NO_MORE_HANDLES -10 The service subscription
maximum capacity is reached

ADL_RET_ERR_DONE -11 The required iterative process is
now terminated

ADL_RET_ERR_OVERFLOW -12 The required operation has
exceeded the function
capabilities

ADL_RET_ERR_NOT_SUPPORTED -13 An option, required by the
function, is not enabled on the
Wireless CPU®, the function is
not supported in this
configuration

ADL_RET_ERR_NO_MORE_TIMERS -14 The function requires a timer
subscription, but no more timers
are available

ADL_RET_ERR_NO_MORE_SEMAPHORES -15 The function requires a
semaphore allocation, but there
are no more free resource

ADL_RET_ERR_SERVICE_LOCKED -16 If the function was called from a
low lewel interruption handler
(the function is forbidden in this
case)

ADL_RET_ERR_SPECIFIC_BASE -20 Beginning of specific errors
range

Error Codes

Specific FCM Service Error Codes

© Confidential Page: 364 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

4.2 Specific FCM Service Error Codes

Error code Error value

ADL_FCM_RET_ERROR_GSM_GPRS_ALREADY_OPENNED ADL_RET_ERR_SPECIFIC_BASE

ADL_FCM_RET_ERR_WAIT_RESUME ADL_RET_ERR_SPECIFIC_BASE-1

ADL_FCM_RET_OK_WAIT_RESUME OK+1

ADL_FCM_RET_BUFFER_EMPTY OK+2

ADL_FCM_RET_BUFFER_NOT_EMPTY OK+3

4.3 Specific Flash Service Error Codes

Error Code Error Value

ADL_FLH_RET_ERR_OBJ_NOT_EXIST ADL_RET_ERR_SPECIFIC_BASE

ADL_FLH_RET_ERR_MEM_FULL ADL_RET_ERR_SPECIFIC_BASE-1

ADL_FLH_RET_ERR_NO_ENOUGH_IDS ADL_RET_ERR_SPECIFIC_BASE-2

ADL_FLH_RET_ERR_ID_OUT_OF_RANGE ADL_RET_ERR_SPECIFIC_BASE-3

4.4 Specific GPRS Service Error Codes

Error Code Error Value

ADL_GPRS_CID_NOT_DEFINED -3

ADL_NO_GPRS_SERVICE -4

ADL_CID_NOT_EXIST 5

4.5 Specific A&D Storage Service Error Codes

Error Code Error Value

ADL_AD_RET_ERR_NOT_AVAILABLE ADL_RET_ERR_SPECIFIC_BASE

ADL_AD_RET_ERR_OVERFLOW ADL_RET_ERR_SPECIFIC_BASE - 1

ADL_AD_RET_ERROR ADL_RET_ERR_SPECIFIC_BASE - 2

ADL_AD_RET_ERR_NEED_RECOMPACT ADL_RET_ERR_SPECIFIC_BASE - 3

Resources

© Confidential Page: 365 / 365

This document is the sole and exclusive property of Wavecom. Not to be distributed or divulged without
prior written agreement.

WM_DEV_OAT_UGD_060 - 003 December 17, 2007

5 Resources

Here are listed the available resources of the Open AT® OS.

Resource name Value

Maximum tasks count 30

Maximum running timers count per task 32

Semaphore resources 7

WAVECOM S.A. - 3 esplanade du Foncet - 92442 Issy-les-Moulineaux Cedex - France - Tel: +33(0)1 46 29 08 00 - Fax: +33(0)1 46 29 08 08
Wavecom, Inc. - 4810 Eastgate Mall - Second Floor - San Diego, CA 92121 - USA - Tel: +1 858 362 0101 - Fax: +1 858 558 5485
WAVECOM Asia Pacific Ltd. - Unit 201-207, 2nd Floor, Bio-Informatics Centre – No.2 Science Park West Avenue - Hong Kong Science Park, Shatin

- New Territories, Hong Kong

	ADL User Guide for Open AT® OS v6.00
	Document History
	Copyright
	Trademarks
	No Warranty/No Liability
	Overview
	Table of Contents
	 List of Figures
	Introduction
	Important Remarks
	References
	Glossary
	Abbreviations

	Description
	Software Architecture
	ADL Limitations
	Open AT® Memory Resources
	Defined Compilation Flags
	Inner AT Commands Configuration
	Open AT® Specific AT Commands
	Notes on Wavecom Firmware
	Security
	RTE limitations

	API
	Application Entry Points Interface
	Basic Features
	AT Commands Service
	Timers
	Memory Service
	ADL Registry Service
	Debug Traces
	Flash
	FCM Service
	GPIO Service
	Bus Service
	Error Management
	SIM Service
	Open SIM Access Service
	SMS Service
	Message Service
	Call Service
	GPRS Service
	Semaphore ADL Service
	Application Safe Mode Service
	AT Strings Service
	Application & Data Storage Service
	AT/FCM IO Ports Service
	RTC Service
	IRQ Service
	TCU Service
	Extint ADL Service
	Execution Context Service
	ADL VariSpeed Service
	ADL DAC Service
	ADL ADC Service
	ADL Queue Service
	ADL Audio Service
	ADL Secure Data Storage Service
	ADL WatchDog Service
	ADL Layer 3 Service

	Error Codes
	General Error Codes
	Specific FCM Service Error Codes
	Specific Flash Service Error Codes
	Specific GPRS Service Error Codes
	Specific A&D Storage Service Error Codes

	Resources

