

WM_DEV_OAT_UGD_080
014

February 16, 2011

User Guide

ADL User Guide for Open AT®
OS 6.35

WWW.INFOPULSAS.LT / info@infopulsas.lt

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 2

ADL User Guide for Open AT® OS 6.35

Important Notice
Due to the nature of wireless communications, transmission and reception of data can never be
guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant
delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used
in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used
in situations where failure to transmit or receive data could result in damage of any kind to the user or
any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless
accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or
received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or
receive such data.

Safety and Hazards
Do not operate the Sierra Wireless modem in areas where blasting is in progress, where explosive
atmospheres may be present, near medical equipment, near life support equipment, or any
equipment which may be susceptible to any form of radio interference. In such areas, the Sierra
Wireless modem MUST BE POWERED OFF. The Sierra Wireless modem can transmit signals that
could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether
the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem MUST BE POWERED
OFF. When operating, the Sierra Wireless modem can transmit signals that could interfere with
various onboard systems.

Note: Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is
open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of
a vehicle. Doing so will detract from the driver or operator’s control and operation of that vehicle. In
some states and provinces, operating such communications devices while in control of a vehicle is an
offence.

Limitations of Liability
This manual is provided “as is”. Sierra Wireless makes no warranties of any kind, either expressed or
implied, including any implied warranties of merchantability, fitness for a particular purpose, or
noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a
commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES
SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL,
GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING,
BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR
REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS
PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY
THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability
arising under or in connection with the Sierra Wireless product, regardless of the number of events,
occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the
Sierra Wireless product.

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 3

ADL User Guide for Open AT® OS 6.35

Patents
This product may contain technology developed by or for Sierra Wireless Inc.

This product includes technology licensed from QUALCOMM® 3G.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents
licensed from InterDigital Group.

Copyright
© 2011 Sierra Wireless. All rights reserved.

Trademarks
AirCard® and Watcher® are registered trademarks of Sierra Wireless. Sierra Wireless™, AirPrime™,
AirLink™, AirVantage™ and the Sierra Wireless logo are trademarks of Sierra Wireless.

, , ®, inSIM®, “YOU MAKE IT, WE MAKE IT WIRELESS®”,
WAVECOM®, WISMO®, Wireless Microprocessor®, Wireless CPU®, Open AT® are filed or registered
trademarks of Sierra Wireless S.A. in France and/or in other countries.

Windows®
 and Windows Vista®

 are registered trademarks of Microsoft Corporation.

Macintosh and Mac OS are registered trademarks of Apple Inc., registered in the U.S. and other
countries.

QUALCOMM®
 is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of the respective owners.

Contact Information
Phone: 1-604-232-1488

Hours: 8:00 AM to 5:00 PM Pacific Time Sales Desk:

E-mail: sales@sierrawireless.com

Post:

Sierra Wireless
13811 Wireless Way
Richmond, BC
Canada V6V 3A4

Fax: 1-604-231-1109

Web: www.sierrawireless.com

Consult our website for up-to-date product descriptions, documentation, application notes, firmware
upgrades, troubleshooting tips, and press releases: www.sierrawireless.com

mailto:sales@sierrawireless.com
http://www.sierrawireless.com/
http://www.sierrawireless.com/

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 4

ADL User Guide for Open AT® OS 6.35

Document History
Index Date Versions

001 June 19, 2008 Creation for Open AT® OS v6.10

002 August 20, 2008 Updates for Open AT® OS v6.10

003 September 16, 2008 Updates for Open AT® OS v6.10

004 October 14, 2008 Creation for Open AT® OS v6.11

005 November 26, 2008 Creation for Open AT® OS v6.20

006 December 5, 2008 Updates for Open AT® OS v6.20

007 February 26, 2009 Updates for Open AT® OS v6.21

009 April 24, 2009 Updates for Open AT® OS v6.30

010 July 10, 2009 Updates for Open AT® OS v6.31

011 September 30, 2009 Updates for Open AT® OS v6.31

012 June 15, 2010 Updates for Open AT® OS 6.32 .

013 July 15, 2011 Updates for Open AT® OS 6.33

014 February 16, 2011 Updates for Open AT® OS 6.35

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 5

Overview
This user guide describes the Application Development Layer (ADL). The aim of the Application
Development Layer is to ease the development of Open AT® embedded application. It applies to
revision Open AT® 6.35 and higher (until next version of this document).

Note: Though all features are documented in this manual, new features may still be in beta stage at
publication and therefore may not yet be validated. Please refer to the Customer Release Note for
complete and detailed information regarding beta and validated features at time of release.

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 6

Contents
OVERVIEW..5

CONTENTS ...6

LIST OF FIGURES...21

1. INTRODUCTION ..22
1.1. Important Remark..22
1.2. References ..22
1.3. Glossary ..22
1.4. Abbreviations...23

2. DESCRIPTION ...24
2.1. Software Architecture ..24
2.2. ADL Limitations ...25

2.2.1. AT+WIND command state ...25
2.2.2. Multitasking limitations ...25

2.3. Open AT® Memory Resources ..25
2.3.1. RAM Resources ...25
2.3.2. Flash Resources ..26

2.4. Defined Compilation Flags ..26
2.5. Inner AT Commands Configuration...26
2.6. Open AT® Specific AT Commands..27

2.6.1. AT+WDWL Command..27
2.6.2. AT+WOPEN Command ...27

2.7. Notes on Sierra Wireless Firmware ..28
2.8. RTE limitations ..28

2.8.1. Sending large buffers through an ADL API..28
2.8.2. Services Limitations ...29

2.9. Recovery Mechanism..29

3. API..30
3.1. Application Entry Points Interface ...30

3.1.1. Required Header File ...30
3.1.2. Tasks Declaration ..30

3.1.2.1. Task Definition Table ..30
3.1.2.2. The adl_InitTasks_t Structure...31
3.1.2.3. [Deprecated] Single task initialization ...32

3.1.3. Interrupt Handlers Call Stack Sizes Declaration..32
3.1.3.1. Low level interrupt handler call stack size...32
3.1.3.2. High level interrupt handler call stack size..33

3.1.4. Initialization information..33
3.1.4.1. The adl_InitType_e Type ..33
3.1.4.2. The adl_InitGetType function..34

3.1.5. Miscellaneous name and version related information..34
3.1.5.1. Application name ..34

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 7

ADL User Guide for Open AT® OS 6.35

3.1.5.2. Company name ..34
3.1.5.3. Application version ...34
3.1.5.4. Example..35

3.1.6. Stack Sizes Macro ...35
3.1.6.1. The ADL_DECLARE_CALL_STACK..35
3.1.6.2. The ADL_DECLARE_LOWIRQ_STACK ..35
3.1.6.3. The ADL_DECLARE_HIGHIRQ_STACK ...36

3.1.7. Interrupt priorities change ..36
3.1.7.1. Detailed description ..36
3.1.7.2. Example..36
3.1.7.3. The adl_InitInterrupts_t Structure ...37
3.1.7.4. Type Definition : The adl_InitInterrupts_t Type ...37
3.1.7.5. The adl_InterruptCategoryId_e Type..38
3.1.7.6. The adl_InterruptId_e Type ..38
3.1.7.7. The adl_InterrupPriority_e Type ...39
3.1.7.8. Variable : Firmware interrupt priority change requested by the application40

3.1.8. Example ...40
3.2. Basic Features...41

3.2.1. Data Types...41
3.2.2. List Management..41

3.2.2.1. Type Definition..41
3.2.2.1.1. The wm_lst_t Type ..41
3.2.2.1.2. The wm_lstTable_t Structure ..41

3.2.2.2. The wm_lstCreate Function..41
3.2.2.3. The wm_lstDestroy Function ..42
3.2.2.4. The wm_lstClear Function ..42
3.2.2.5. The wm_lstGetCount Function ...42
3.2.2.6. The wm_lstAddItem Function ...43
3.2.2.7. The wm_lstInsertItem Function...43
3.2.2.8. The wm_lstGetItem Function..44
3.2.2.9. The wm_lstDeleteItem Function ...44
3.2.2.10. The wm_lstFindItem Function...44
3.2.2.11. The wm_lstFindAllItem Function...45
3.2.2.12. The wm_lstFindNextItem Function ...45
3.2.2.13. The wm_lstResetItem Function ..46

3.2.3. Standard Library...46
3.2.3.1. Standard C Function Set ..46
3.2.3.2. String Processing Function Set ..47

3.3. AT Commands Service ...49
3.3.1. Required Header File ...49
3.3.2. Unsolicited Responses...49

3.3.2.1. The adl_atUnSoSubscribe Function ...49
3.3.2.2. The adl_atUnSoUnSubscribe Function...50

3.3.3. Responses ...51
3.3.3.1. Required Header File..52
3.3.3.2. The adl_atSendResponse function...52
3.3.3.3. The adl_atSendResponseSpe Function ...52
3.3.3.4. The adl_atSendStdResponse Function ..53
3.3.3.5. The adl_atSendStdResponseSpe Function..53
3.3.3.6. The adl_atSendStdResponseExt Function ...54
3.3.3.7. The adl_atSendStdResponseExtSpe Function...54
3.3.3.8. The adl_atSendStdResponseExtStr Function ..55
3.3.3.9. The adl_atSendUnsoResponse Function ...55
3.3.3.10. Additional Macros for Specific Port Access ..56

3.3.4. Incoming AT Commands..58
3.3.4.1. Required Header File..58
3.3.4.2. The adl_atCmdPreParser_t Structure...59
3.3.4.3. The adl_ atCmdSubscriptionPort_e Type ...60
3.3.4.4. ADL_GET_PARAM...60
3.3.4.5. The adl_atCmdHandler_t Command Handler...60

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 8

ADL User Guide for Open AT® OS 6.35

3.3.4.6. The adl_atCmdSubscribe Function ..61
3.3.4.7. The adl_atCmdSubscribeExt Function ...62
3.3.4.8. The adl_atCmdUnSubscribe Function ..63
3.3.4.9. The adl_atCmdSetQuietMode Function..64
3.3.4.10. Example..64

3.3.5. Outgoing AT Commands..65
3.3.5.1. Required Header File..65
3.3.5.2. The adl_atResponse_t Structure ..66
3.3.5.3. The adl_atRspHandler_t...66
3.3.5.4. The ADL_NI_LAUNCH ...67
3.3.5.5. The adl_atCmdCreate Function..67
3.3.5.6. The adl_atCmdSend Function ..68
3.3.5.7. The adl_atCmdSendExt Function...69
3.3.5.8. The adl_atCmdSendText Function Error! Bookmark not defined.
3.3.5.9. Examples..70

3.4. Timers..73
3.4.1. Required Header Files ...73
3.4.2. The adl_tmr_t Structure ...73
3.4.3. Defines ...74

3.4.3.1. ADL_TMR_100MS_MAX_VALUE ..74
3.4.3.2. ADL_TMR_MS_TO_TICK ..74
3.4.3.3. ADL_TMR_100MS_TO_TICK ..74
3.4.3.4. ADL_TMR_S_TO_TICK ...74
3.4.3.5. ADL_TMR_MN_TO_TICK ..74

3.4.4. The adl_tmrType_e ..75
3.4.5. The adl_tmrCyclicMode_e ...75
3.4.6. The adl_tmrHandler_t ..76
3.4.7. The adl_tmrSubscribe Function ...76
3.4.8. The adl_tmrSubscribeExt Function..77
3.4.9. The adl_tmrUnSubscribe Function ..78
3.4.10. Example ...80

3.5. Memory Service...81
3.5.1. Required Header File ...81
3.5.2. Data Structures ..81

3.5.2.1. The adl_memInfo_t Structure ...81
3.5.3. Defines ...82

3.5.3.1. The adl_memRelease...82
3.5.3.2. The ADL_MEM_UNINIT ...83

3.5.4. The adl_memGetInfo Function...83
3.5.5. The adl_memGet Function...84
3.5.6. The adl_memRelease Function ...85
3.5.7. Heap Memory Block Status..85
3.5.8. Example ...85

3.6. ADL Registry Service ..86
3.6.1. Required Header File ...86
3.6.2. The adl_regGetWCPUTypeExt Function ...86
3.6.3. The adl_regGetHWInteger Function ..86
3.6.4. The adl_regGetHWData Function..87
3.6.5. The adl_regGetHWDataChunk Function ...87
3.6.6. Example ...88

3.7. Debug Traces..90
3.7.1. Required Header File ...90
3.7.2. Build Configuration Macros ..90

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 9

ADL User Guide for Open AT® OS 6.35

3.7.2.1. Debug Configuration...90
3.7.2.2. Full Debug Configuration ..90
3.7.2.3. Release Configuration ..91
3.7.2.4. Defines ...91

3.7.2.4.1. TRACE ..91
3.7.2.4.2. DUMP..91
3.7.2.4.3. FULL TRACE ..91
3.7.2.4.4. FULL DUMP: ...91

3.7.3. The adl_trcPrint Function ...91
3.7.4. The adl_trcDump Function...92
3.7.5. Example ...93

3.8. Flash..94
3.8.1. Required Header File ...94
3.8.2. Flash Objects Management ...94

3.8.2.1. Flash objects write/erase inner process overview ..94
3.8.2.2. Flash Objects in Remote Task Environment...95

3.8.3. The adl_flhSubscribe Function...95
3.8.4. The adl_flhExist Function...95
3.8.5. The adl_flhErase Function ...96
3.8.6. The adl_flhWrite Function ..96
3.8.7. The adl_flhRead Function..97
3.8.8. The adl_flhGetFreeMem Function ...98
3.8.9. The adl_flhGetIDCount Function ...98
3.8.10. The adl_flhGetUsedSize Function ...99

3.9. FCM Service..100
3.9.1. Required Header File ...101
3.9.2. The adl_fcmIsAvailable Function ...101
3.9.3. The adl_fcmSubscribe Function ..101
3.9.4. The adl_fcmUnsubscribe Function ..104
3.9.5. The adl_fcmReleaseCredits Function..105
3.9.6. The adl_fcmSwitchV24State Function ...105
3.9.7. The adl_fcmSendData Function ..106
3.9.8. The adl_fcmSendDataExt Function ...107
3.9.9. The adl_fcmGetStatus Function ..108

3.10. GPIO Service...109
3.10.1. Required Header File ...109
3.10.2. GPIO Types..110

3.10.2.1. The adl_ioCap_t structure ..110
3.10.2.2. The adl_ioDefs_t type...110
3.10.2.3. The adl_ioLabel_e type ..110
3.10.2.4. The adl_ioLevel_e type...111
3.10.2.5. The adl_ioDir_e type...111
3.10.2.6. The adl_ioError_e type ...112
3.10.2.7. The adl_ioCap_e type...114
3.10.2.8. The adl_ioStatus_e type ...114
3.10.2.9. The adl_ioEvent_e type ..114

3.10.3. The adl_ioGetCapabilitiesList Function ...115
3.10.4. The adl_ioEventSubscribe Function ..115
3.10.5. The adl_ioHdlr_f Call-back Type..116
3.10.6. The adl_ioEventUnsubscribe Function ..117

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 10

ADL User Guide for Open AT® OS 6.35

3.10.7. The adl_ioSubscribe Function..119
3.10.8. The adl_ioUnsubscribe Function ...120
3.10.9. The adl_ioSetDirection Function..120
3.10.10. The adl_ioRead Function ...121
3.10.11. The adl_ioReadSingle Function ...122
3.10.12. The adl_ioWrite Function..122
3.10.13. The adl_ioWriteSingle Function..123
3.10.14. Example..123

3.11. Bus Service ...126
3.11.1. Required Header File ...126
3.11.2. Capabilities Registry Informations ...126

3.11.2.1. The adl_busSpiCommonCap_e Type...126
3.11.2.2. The adl_busSpiCap_e Type ...127
3.11.2.3. The adl_busI2CCap_e Type...127

3.11.3. Common Data Structures and Enumerations ..128
3.11.3.1. The adl_busSettings_u Type ..129
3.11.3.2. The adl_busID_e Type ...130
3.11.3.3. The adl_busType_e Type ...130

3.11.4. SPI Bus Subscription Data Structures and Enumerations.....................................131
3.11.4.1. The adl_busSPISettings_t Type ...131
3.11.4.2. The adl_busSPI_Clk_Mode_e Type ...132
3.11.4.3. The adl_busSPI_ChipSelect_e Type..133
3.11.4.4. The adl_busSPI_ChipSelectPolarity_e Type ..133
3.11.4.5. The adl_busSPI_LSBfirst_e Type...133
3.11.4.6. The adl_busSPI_WriteHandling_e Type...134
3.11.4.7. The adl_busSPI_Load_e Type ...134
3.11.4.8. The adl_busSPI_DataLinesConf_e Type..135
3.11.4.9. The adl_busSPI_MS_Mode_e Type...135
3.11.4.10. The adl_busSPI_Busy_e Type ...135

3.11.5. I2C Bus Subscription Data Structures and Enumerations136
3.11.5.1. The adl_busI2CSettings_t Type ...136
3.11.5.2. The adl_busI2C_Clk_Speed_e Type..137
3.11.5.3. The adl_busI2C_AddrLength_e Type...137
3.11.5.4. The adl_busI2C_MS_Mode_e Type ...137

3.11.6. Parallel Bus Subscription Data Structures and Enumerations...............................138
3.11.6.1. The adl_busParallelCs_t Type..138
3.11.6.2. The adl_busParallelPageCfg_t Type ..138
3.11.6.3. The adl_busParallelSettings_t Type ...139
3.11.6.4. The adl_busParallelSynchronousCfg_t Type..140
3.11.6.5. The adl_busParallelTimingCfg_t Type..140
3.11.6.6. The adl_busParallelSize_e Type ..141
3.11.6.7. The adl_busParallel_Bus_Mode_e Type ..141
3.11.6.8. The adl_busParallel_CS_Type_e Type ..143

3.11.7. IOCtl Operations Data Structures and Enumerations..143
3.11.7.1. The adl_busAsyncInfo_t Type ...143
3.11.7.2. The adl_busEvt_t Type...144
3.11.7.3. The adl_busSpiMaskShift_t Type ...144
3.11.7.4. The adl_busMaskSPI_e Type...145
3.11.7.5. The adl_busIoCtlCmd_e Type ..145

3.11.8. Read/Write Data Structures ...149
3.11.8.1. The adl_busAccess_t Type ..149

3.11.9. The adl_busSubscribe Function ..149
3.11.10. The adl_busUnsubscribe Function ...150
3.11.11. The adl_busIOCtl Function...151
3.11.12. The adl_busRead Function ..151
3.11.13. The adl_busReadExt Function ...152
3.11.14. The adl_busWrite Function...153

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 11

ADL User Guide for Open AT® OS 6.35

3.11.15. The adl_busWriteExt Function ...154
3.11.16. The adl_busDirectRead Function ...155
3.11.17. The adl_busDirectWrite Function ...156
3.11.18. Example..156

3.12. Error Management ..158
3.12.1. Required Header File ...158
3.12.2. Enumerations ...158

3.12.2.1. The adl_ errInternalID_e Type..158
3.12.2.2. The adl_errAnalysisState_e Type...159

3.12.3. Error event handler ..159
3.12.4. The adl_errSubscribe Function..160
3.12.5. The adl_errUnsubscribe Function..160
3.12.6. The adl_errHalt Function..161
3.12.7. The adl_errEraseAllBacktraces Function...161
3.12.8. The adl_errStartBacktraceAnalysis Function...162
3.12.9. The adl_errGetAnalysisState Function ..162
3.12.10. The adl_errRetrieveNextBacktrace Function ...162
3.12.11. Example..163

3.13. SIM Service ...165
3.13.1. Required Header File ...165
3.13.2. The adl_simSubscribe Function...165
3.13.3. The adl_simUnsubscribe Function...166
3.13.4. The adl_simGetState Function...167
3.13.5. The adl_simEnterPIN Function ..167
3.13.6. The adl_simEnterPUK Function...167
3.13.7. The adl_simRemAttempt Function...168

3.14. Open SIM Access Service...169
3.14.1. Required Header File ...169
3.14.2. The adl_osaVoltage_e type ...169
3.14.3. The adl_osaATRparam_t Structure ...169
3.14.4. The adl_osaSubscribe Function ..170
3.14.5. The adl_osaSubscribeExt Function ...170
3.14.6. The adl_osaHandler_f call-back Type ...171
3.14.7. The adl_osaSendResponse Function..173
3.14.8. The adl_osaUnsubscribe Function ..174
3.14.9. Example ...175

3.15. SMS Service..176
3.15.1. Required Header File ...176
3.15.2. The adl_smsSubscribe Function..176
3.15.3. The adl_smsSubscribeExt Function ..177
3.15.4. The adl_smsSend Function ...179
3.15.5. The adl_smsUnsubscribe Function..180

3.16. Message Service...181
3.16.1. Required Header File ...181
3.16.2. The adl_msgIdComparator_e Type ...181
3.16.3. The adl_msgFilter_t Structure..182
3.16.4. The adl_msgSubscribe Function ...183

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 12

ADL User Guide for Open AT® OS 6.35

3.16.5. The adl_msgHandler_f call-back Type ..183
3.16.6. The adl_msgUnsubscribe Function ...184
3.16.7. The adl_msgSend Function ...184
3.16.8. Example ...185

3.17. Call Service ...186
3.17.1. Required Header File ...186
3.17.2. The adl_callSubscribe Function...186
3.17.3. The adl_callSetup Function..188
3.17.4. The adl_callSetupExt Function ..189
3.17.5. The adl_callHangup Function ..189
3.17.6. The adl_callHangupExt Function ...189
3.17.7. The adl_callAnswer Function...190
3.17.8. The adl_callAnswerExt Function..190
3.17.9. The adl_callUnsubscribe Function...190

3.18. GPRS Service ...191
3.18.1. Required Header File ...191
3.18.2. The adl_gprsSubscribe Function ...191
3.18.3. The adl_gprsSetup Function..193
3.18.4. The adl_gprsSetupExt Function...193
3.18.5. The adl_gprsAct Function ..194
3.18.6. The adl_gprsActExt Function...195
3.18.7. The adl_gprsDeact Function..195
3.18.8. The adl_gprsDeactExt Function...195
3.18.9. The adl_gprsGetCidInformations Function ..196
3.18.10. The adl_gprsUnsubscribe Function..197
3.18.11. The adl_gprsIsAnIPAddress Function..197
3.18.12. Example..198

3.19. Semaphore ADL Service...200
3.19.1. Required Header File ...200
3.19.2. The adl_semGetResourcesCount Function...200
3.19.3. The adl_semSubscribe Function ...200
3.19.4. The adl_semConsume Function ..201
3.19.5. The adl_semConsumeDelay Function...201
3.19.6. The adl_semProduce Function ..202
3.19.7. The adl_semUnsubscribe Function ...202
3.19.8. The adl_semIsConsumed Function ...203
3.19.9. Example ...204

3.20. Application Safe Mode Service ...205
3.20.1. Required Header File ...205
3.20.2. The adl_safeSubscribe Function ...205
3.20.3. The adl_safeUnsubscribe Function ...206
3.20.4. The adl_safeRunCommand Function ..207

3.21. AT Strings Service...208
3.21.1. Required Header File ...208
3.21.2. The adl_strID_e Type...208
3.21.3. The adl_strGetID Function ...209
3.21.4. The adl_strGetIDExt Function..209

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 13

ADL User Guide for Open AT® OS 6.35

3.21.5. The adl_strIsTerminalResponse Function ...209
3.21.6. The adl_strGetResponse Function ..210
3.21.7. The adl_strGetResponseExt Function ...210

3.22. Application & Data Storage Service ..211
3.22.1. Required Header File ...211
3.22.2. The adl_adSubscribe Function ..212
3.22.3. The adl_adUnsubscribe Function ..212
3.22.4. The adl_adEventSubscribe Function ...213
3.22.5. The adl_adEventHdlr_f Call-back Type ...213
3.22.6. The adl_adEventUnsubscribe Function ...214
3.22.7. The adl_adWrite Function ..214
3.22.8. The adl_adInfo Function ..215
3.22.9. The adl_adFinalise Function..216
3.22.10. The adl_adDelete Function ..216
3.22.11. The adl_adInstall Function ...217
3.22.12. The adl_adRecompact Function...217
3.22.13. The adl_adGetState Function...218
3.22.14. The adl_adGetCellList Function ...219
3.22.15. The adl_adFormat Function ...219
3.22.16. The adl_adFindInit Function ...220
3.22.17. The adl_adFindNext Function ..220
3.22.18. The adl_adGetInstallResult Function ...221
3.22.19. The adl_factoryReadCell Function ...221

3.23. AT/FCM IO Ports Service..222
3.23.1. Required Header File ...222
3.23.2. AT/FCM IO Ports..222
3.23.3. Ports Test Macros ..223
3.23.4. The adl_portSubscribe Function ..224
3.23.5. The adl_portUnsubscribe Function ..225
3.23.6. The adl_portIsAvailable Function...225
3.23.7. The adl_portGetSignalState Function..226
3.23.8. The adl_portStartSignalPolling Function..226
3.23.9. The adl_portStopSignalPolling Function..228

3.24. RTC Service ..229
3.24.1. Required Header File ...229
3.24.2. RTC service Types...229

3.24.2.1. The adl_rtcTime_t Structure ...229
3.24.2.2. The adl_rtcTimeStamp_t Structure...230
3.24.2.3. Constants ...230
3.24.2.4. Macros..230

3.24.3. Enumerations ...231
3.24.3.1. The adl_rtcConvert_e Type ..231

3.24.4. The adl_rtcGetSecondFracPartStep Function...231
3.24.5. The adl_rtcGetTime Function...232
3.24.6. The adl_rtcSetTime Function...232
3.24.7. The adl_rtcConvertTime Function..232
3.24.8. The adl_rtcDiffTime Function...233
3.24.9. Capabilities...233
3.24.10. Example..234

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 14

ADL User Guide for Open AT® OS 6.35

3.25. IRQ Service ...235
3.25.1. Required Header File ...235
3.25.2. The adl_irqID_e Type...235
3.25.3. The adl_irqNotificationLevel_e Type..236
3.25.4. The adl_irqPriorityLevel_e Type ..236
3.25.5. The adl_irqEventData_t Structure..237

3.25.5.1. The UserData Field...237
3.25.5.2. The Source Data Field..237
3.25.5.3. The Instance Field ..238
3.25.5.4. The Context Field ...238

3.25.6. The adl_irqCapabilities_t Structure..238
3.25.6.1. The PriorityLevelsCount Field...238
3.25.6.2. The InstancesCount Field...238

3.25.7. The adl_irqConfig_t Structure ..238
3.25.7.1. The PriorityLevel Field ..239
3.25.7.2. The Enable Field ..239
3.25.7.3. The Options Field ...239

3.25.8. The adl_irqOptions_e type ...239
3.25.9. The adl_irqHandler_f Type...239
3.25.10. The adl_irqSubscribe Function...240
3.25.11. The adl_irqSubscribeExt Function..241
3.25.12. The adl_irqUnsubscribe Function...242
3.25.13. The adl_irqSetConfig function ..242
3.25.14. The adl_irqGetConfig function..243
3.25.15. The adl_irqGetCapabilities Function ..243
3.25.16. Example..244

3.26. TCU Service ..245
3.26.1. Required Header File ...245
3.26.2. Capabilities Registry Informations ...245
3.26.3. Data Structures ..246

3.26.3.1. The adl_tcuEventCaptureSettings_t Structure..246
3.26.3.2. The adl_tcuEventDetectionInfo_t Structure ..247
3.26.3.3. The adl_tcuEventDetectionSettings_t Structure ...247
3.26.3.4. The adl_tcuTimerBoundaries_t Structure ...248
3.26.3.5. The adl_tcuTimerDuration_t Structure..248
3.26.3.6. The adl_tcuTimerSettings_t Structure ..249

3.26.4. Enumerators...249
3.26.4.1. The adl_tcuService_e Type ..249
3.26.4.2. The adl_tcuEventType_e Type...250

3.26.5. Accurate Timers Service ..250
3.26.5.1. Example..251

3.26.6. Event Capture Service ...252
3.26.6.1. Example (without handler notification) ..253
3.26.6.2. Example (with handler notification) ...254

3.26.7. Event Detection Service...255
3.26.7.1. Example..255

3.26.8. The adl_tcuSubscribe Function..256
3.26.9. The adl_tcuUnsubscribe Function ...257
3.26.10. The adl_tcuStart Function ..258
3.26.11. The adl_tcuStop Function...258

3.27. Extint ADL Service ..259
3.27.1. Required Header File ...260
3.27.2. The adl_extintID_e ...260

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 15

ADL User Guide for Open AT® OS 6.35

3.27.3. The adl_extintConfig_t Structure ...260
3.27.4. The adl_extintExtConfig_e...262
3.27.5. The adl_extintInfo_t Structure..262
3.27.6. Capabilities...263

3.27.6.1. The adl_extintCapabilities_t type..263
3.27.6.2. The adl_extintGetCapabilities Function ..264

3.27.7. The adl_extintSubscribe Function..265
3.27.8. The adl_extintConfig Function ...267
3.27.9. The adl_extintGetConfig Function ...267
3.27.10. The adl_extintSetConfigExt Function ...268
3.27.11. The adl_extintGetConfigExt Function...268
3.27.12. The adl_extintRead function...269
3.27.13. The adl_extintUnsubscribe Function ..269
3.27.14. The adl_extintSetFIQStatus function..269
3.27.15. The adl_extintGetFIQStatus function ...270
3.27.16. Example..270

3.28. Execution Context Service ..272
3.28.1. Required Header File ...273
3.28.2. The adl_ctxID_e Type ..273
3.28.3. The adl_ctxDiagnostic_e Type...273
3.28.4. The adl_ctxState_e Type ...274
3.28.5. The adl_ctxGetID Function ..275
3.28.6. The adl_ctxGetTaskID Function...275
3.28.7. The adl_ctxGetTasksCount Function...275
3.28.8. The adl_ctxGetDiagnostic Function ...276
3.28.9. The adl_ctxGetState Function..276
3.28.10. The adl_ctxSuspend Function ..276
3.28.11. The adl_ctxSuspendExt Function...277
3.28.12. The adl_ctxResume Function...278
3.28.13. The adl_ctxResumeExt Function..278
3.28.14. The adl_ctxSleep Function ...279
3.28.15. Example..280

3.29. ADL VariSpeed Service...281
3.29.1. Required Header File ...281
3.29.2. The adl_vsMode_e Type..281
3.29.3. The adl_vsSubscribe Function...282
3.29.4. The adl_vsSetClockMode Function ...282
3.29.5. The adl_vsUnsubscribe function..283
3.29.6. Example ...283

3.30. ADL DAC Service..284
3.30.1. Required Header File ...284
3.30.2. Data Structure ..284

3.30.2.1. The adl_dacParam_t Structure...284
3.30.3. Defines ...285

3.30.3.1. ADL_DAC_CHANNEL_1 ..285
3.30.4. Enumerations ...285

3.30.4.1. The adl_dacType_e..285
3.30.5. The adl_dacSubscribe Function ..285
3.30.6. The adl_dacUnsubscribe Function ..286

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 16

ADL User Guide for Open AT® OS 6.35

3.30.7. The adl_dacWrite Function ..286
3.30.8. The adl_dacAnalogWrite Function...286
3.30.9. The adl_dacRead Function ..287
3.30.10. The adl_dacAnalogRead Function ...287
3.30.11. Capabilities ...288
3.30.12. Example..289

3.31. ADL ADC Service..290
3.31.1. Required Header File ...290
3.31.2. The adl_adcRead Function ..290
3.31.3. The adl_adcAnalogRead Function...290
3.31.4. Capabilities...291
3.31.5. Example ...292

3.32. ADL Queue Service...293
3.32.1. Required Header File ...293
3.32.2. The adl_queueOptions_e Type..293
3.32.3. The adl_queueSubscribe Function ..293
3.32.4. The adl_queueUnsubscribe Function ..294
3.32.5. The adl_ queueIsEmpty Function ..294
3.32.6. The adl_ queuePushItem Function ..294
3.32.7. The adl_ queuePopItem Function..295
3.32.8. Example ...296

3.33. ADL Audio Service ..297
3.33.1. Required Header File ...297
3.33.2. Data Structures ..297

3.33.2.1. The adl_audioDecodedDtmf_u Union...297
3.33.2.2. The adl_audioPostProcessedDecoder_t Structure...298
3.33.2.3. The adl_audioStream_t Structure...298
3.33.2.4. The adl_audioStreamDataBuffer_u Union ..299

3.33.3. Defines ...300
3.33.3.1. ADL_ AUDIO_MAX_DTMF_PER_FRAME...300
3.33.3.2. ADL_AUDIO_NOTE_DEF ..300

3.33.4. Enumerations ...301
3.33.4.1. The adl_ audioResources_e Type..301
3.33.4.2. The adl_audioResourceOption_e Type ..302
3.33.4.3. The adl_audioFormats_e Type...302
3.33.4.4. The adl_audioInstance_e Type ..303
3.33.4.5. The adl_audioAmrCodecRate_e Type..303
3.33.4.6. The adl_audioEvents_e Type ...305
3.33.4.7. The adl_audioOptionTypes_e Type..305

3.33.5. Audio events handler ...308
3.33.6. Audio resources control ...308

3.33.6.1. The adl_audioSubscribe Function ..308
3.33.6.2. The adl_audioUnsubscribe Function ..309

3.33.7. Play a pre-defined audio format...309
3.33.7.1. The adl_audioTonePlay Function ...311
3.33.7.2. The adl_audioDTMFPlay Function ...313
3.33.7.3. The adl_audioMelodyPlay Function..315
3.33.7.4. The adl_audioTonePlayExt Function..317
3.33.7.5. The adl_audioDTMFPlayExt Function ..318
3.33.7.6. The adl_audioMelodyPlayExt Function...318

3.33.8. Audio stream ..320
3.33.8.1. The adl_audioStreamPlay Function..321
3.33.8.2. The adl_audioStreamListen Function ...325

3.33.9. Stop ..329

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 17

ADL User Guide for Open AT® OS 6.35

3.33.9.1. The adl_audioStop Function...329
3.33.10. Set/Get options ...330

3.33.10.1. The adl_audioSetOption Function ..330
3.33.10.2. The adl_audioGetOption Function..331

3.34. ADL Secure Data Storage Service..332
3.34.1. Required Header File ...332
3.34.2. Data Structure ..333

3.34.2.1. The adl_sdsStats_t Structure ...333
3.34.3. Defines ...334

3.34.3.1. ADL_SDS_RET_ERR_ENTRY_NOT_EXIST...334
3.34.3.2. ADL_SDS_RET_ERR_MEM_FULL ...334

3.34.4. The adl_sdsWrite Function ..334
3.34.5. The adl_sdsRead Function ..335
3.34.6. The adl_sdsQuery Function...335
3.34.7. The adl_sdsDelete Function ..336
3.34.8. The adl_sdsStats Function...336
3.34.9. The adl_sdsUpdateKeys Function ...337
3.34.10. Example..337

3.35. ADL WatchDog Service...338
3.35.1. Required Header File ...338
3.35.2. The adl_wdPut2Sleep Function ...338
3.35.3. The adl_wdAwake Function...339
3.35.4. Example ...339
3.35.5. The adl_wdRearmAppWd Function ...339
3.35.6. The adl_wdActiveAppWd Function ..340
3.35.7. The adl_wdDeActiveAppWd Function ...340
3.35.8. Example ...341

3.36. ADL Layer 3 Service ...342
3.36.1. Required Header File ...342
3.36.2. The adl_L3infoChannelList_e ..342
3.36.3. The Layer3 infoEvent Handler ...343
3.36.4. The adl_L3infoSubscribe Function ..343
3.36.5. The adl_L3infoUnsubscribe Function ..344
3.36.6. Example ...344
3.36.7. Channel Identity List...344

3.36.7.1. The l3info_ChannelList_t ..345
3.36.8. Cell Information Channel Interface ..345

3.36.8.1. Cell Information [WM_L3_INFO_SYNC_CELL_INFO event]..................................345
3.36.8.2. WM_Cx_NOT_AVAILABLE ..345
3.36.8.3. WM_BSIC_NOT_AVAILABLE ..345
3.36.8.4. WM_L3_INFO_SYNC_CELL_INFO ...345

3.36.9. PLMN SCAN Information Channel Interface..345
3.36.9.1. Measurements Information [WM_L3_INFO_SCAN_PWR event]346
3.36.9.2. Cell Synchronisation Information [WM_L3_INFO_SCAN_SYNC_CELL event].......346
3.36.9.3. Cell Information [WM_L3_INFO_CELL_INFO event] ...346
3.36.9.4. Scan end Information [WM_L3_INFO_SCAN_END event].......................................346

3.36.10. PLMN SCAN Information Channel : Event List ..346
3.36.10.1. WM_L3_INFO_SCAN_PWR ..346
3.36.10.2. WM_L3_INFO_SCAN_SYNC_CELL..346
3.36.10.3. WM_L3_INFO_SCAN_END ...347
3.36.10.4. WM_L3_INFO_CELL_INFO ...347

3.36.11. Radio Spectrum Monitoring (RSM) Channel Interface ...347
3.36.11.1. Cell Information [WM_L3_INFO_CELL_INFO event] ...347

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 18

ADL User Guide for Open AT® OS 6.35

3.36.11.2. WM_L3_INFO_RSM_EVT..347
3.36.11.3. WM_L3_INFO_RSM_EVT event ..347

3.36.12. Layer 3 Information Status ...347
3.36.12.1. L3INFO_ERR_CHANNEL_UNKNOWN..348
3.36.12.2. L3INFO_ERR_CHANNEL_ALREADY_OPENED...348
3.36.12.3. L3INFO_ERR_CHANNEL_ALREADY_CLOSED ...348
3.36.12.4. L3INFO_ERR_INVALID_HANDLE ...348
3.36.12.5. L3INFO_OK..348

3.36.13. Function interface for information provider...348
3.36.13.1. The l3info_trace Function ...348
3.36.13.2. The l3info_IsChannelActivated Function ..349

3.36.14. User Interface ...349
3.36.14.1. The l3info_infoSubscribe Function ...349
3.36.14.2. The l3info_infoUnSubscribe Function...350
3.36.14.3. The _pl3infoCallBackProto Function...350

3.36.15. Layer 3 Information Interface Specification Data Structures................................351
3.36.15.1. The wm_l3info_Cell_SyncCellInfo_t Structure..351
3.36.15.2. The wm_l3info_Cell_SyncCellParamater_t Structure...351
3.36.15.3. The wm_l3info_RSM_freq_t Structure..352
3.36.15.4. The wm_l3info_RSM_t Structure..353
3.36.15.5. The wm_l3info_Scan_PowerInfo_t Structure..354
3.36.15.6. The wm_l3info_Scan_PowerStat_t Structure ...354
3.36.15.7. The wm_l3info_Scan_SynchroCellInfo_t Structure ..355
3.36.15.8. The wm_l3info_Scan_End_t structure ..355
3.36.15.9. The wm_l3info_CellInfo_t structure ..356

3.37. ADL Event Service ..357
3.37.1. Required Header File ...358
3.37.2. Defines ...358

3.37.2.1. The ADL_EVENT_NO_TIMEOUT ..358
3.37.3. Enumerations ...359

3.37.3.1. The adl_eventWaitMode_e...359
3.37.4. The adl_eventCreate Function...359
3.37.5. The adl_eventWait Function ..359
3.37.6. The adl_eventClear Function...361
3.37.7. The adl_eventSet Function ..361
3.37.8. Example ...362

3.38. ADL AirPrime Management Services..363
3.38.1. Required Header File ...363
3.38.2. Data Structure for Monitoring Process...363

3.38.2.1. The adl_idsMonitorCfg_t Structure ...363
3.38.2.2. The adl_idsMonitorDataType_e Type...364
3.38.2.3. The adl_idsMonitorFlagReset_e Type..365
3.38.2.4. The adl_idsMonitorTrig_e Type ..365

3.38.3. Data structure for Provisioning Process...366
3.38.3.1. The adl_idsProvCfg_t Structure..366
3.38.3.2. The adl_idsProvCallBackRead ...366
3.38.3.3. The adl_idsProvCallBackWrite ...367
3.38.3.4. The adl_idsProvCallBackGetLength...368

3.38.4. AirPrime Management Services Monitoring API Access Functions368
3.38.4.1. The adl_idsMonitorSubscribe Function...368
3.38.4.2. The adl_idsMonitorUnsubscribe Function...369
3.38.4.3. The adl_idsMonitorTrace Function ...369
3.38.4.4. The adl_idsMonitorDeleteUnused Function..370

3.38.5. AirPrime Management Services Provisioning API Access Functions....................370
3.38.5.1. The adl_idsProvSubscribe Function ...370
3.38.5.2. The adl_idsProvUnsubscribe Function ...371

3.38.6. Example ...371
3.39. ADL Open Device Service...374

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 19

ADL User Guide for Open AT® OS 6.35

3.39.1. Required Header File ...375
3.39.2. The adl_odOpen_f function..376
3.39.3. The adl_odOpen function...376
3.39.4. Example ...377
3.39.5. The adl_odRegister function ..377
3.39.6. The adl_odUnregister function...378
3.39.7. Example ...379

3.40. ADL OS Clock Interface Specification...381
3.40.1. Required Header File ...381
3.40.2. The adl_osclkGetTime Function ..381

4. DEVICE SERVICES ...382
4.1. Open UART Interface..382

4.1.1. Required Header File ...382
4.1.2. Data Structures ..383

4.1.2.1. The sUartSettings_t structure ...383
4.1.2.2. The sUartCap_t structure ...385
4.1.2.3. The sUartLc_t structure ..387
4.1.2.4. The sUartEvent_t structure...389
4.1.2.5. The sUartFlowCtrl_t structure...391
4.1.2.6. The sUartSsIoc_t structure ...392
4.1.2.7. The sUartFd_t structure..393
4.1.2.8. The sUartCbOssc_t structure ...394

4.1.3. Enumerators...394
4.1.3.1. The eUartEvId_t type..394
4.1.3.2. The eUartRate_t type ...395
4.1.3.3. The eUartIoCmd_t type ..396
4.1.3.4. The eUartFl_t type..397
4.1.3.5. The eUartSs_t type...398
4.1.3.6. The eUartErr_t type ..399

4.1.4. Operations..399
4.1.4.1. The open function...400

4.1.4.1.1. Example: How to open the UART2 (57600,N81) ..401
4.1.4.2. The read request ..401

4.1.4.2.1. Example: how to select asynchronous/synchronous read operation................402
4.1.4.3. The write request ..403
4.1.4.4. The io_control request ..404

4.1.4.4.1. The IOC_UART_EH IO command ..405
4.1.4.4.2. The IOC_UART_CAP IO command..406
4.1.4.4.3. The IOC_UART_LC IO command...406
4.1.4.4.4. The IOC_UART_SS IO command ..407
4.1.4.4.5. The IOC_UART_FL IO command ...407
4.1.4.4.6. The IOC_UART_FC IO command ..408
4.1.4.4.7. The IOC_UART_FC IO command ..408

4.1.4.5. The Close request ..409
4.1.4.6. The On TX Complete notification handler...409
4.1.4.7. The On TX Empty notification handler ..410
4.1.4.8. The On Rx Complete notification handler ...410
4.1.4.9. The On Rx Data Available notification handler ...411
4.1.4.10. The On Signal State Change notification handler...412
4.1.4.11. The On Error notification handler..413

4.2. Open USB Interface ..414

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 20

ADL User Guide for Open AT® OS 6.35

4.2.1. Required Header File ...414
4.2.2. Data Structures ..415

4.2.2.1. The sOpUsbSettings_t Structure ..415
4.2.2.2. The sOpUsbCapabilities_t Structure ..417
4.2.2.3. The sOpUsbDevInfo_t Structure...417
4.2.2.4. The sOpUsbEvent_t Structure..418
4.2.2.5. The sOpUsbConfInfo_t Structure ...420
4.2.2.6. The sOpUsbItfInfo_t Structure ..421
4.2.2.7. The sOpUsbEpInfo_t Structure...423
4.2.2.8. The sOpUsbIaInfo_t Structure ..425
4.2.2.9. The sOpUsbIocInterrupt_t Structure...425
4.2.2.10. The sOpUsbIocFlush_t Structure ...426
4.2.2.11. The sOpUsbObjectId_t Structure..426
4.2.2.12. The sOpUsbTransAttr_t Structure ..427
4.2.2.13. The sOpUsbOnStatus_t Structure ..428
4.2.2.14. The sOpUsbOnComplete_t Structure...429
4.2.2.15. The uOpUsbOnRequest_t Union..430

4.2.3. Enumerators...431
4.2.3.1. The eOpUsbIoCmd_t type ..431
4.2.3.2. The E_ALREADY_BOUND_t constant ...432

4.2.4. Operations..432
4.2.4.1. The open Function..433
4.2.4.2. The read Request...434
4.2.4.3. The write Request ..435
4.2.4.4. The io_control Request...435

4.2.4.4.1. The IOC_OUSB_EH IO Command ...436
4.2.4.4.2. The IOC_OUSB_CAP IO Command ..437
4.2.4.4.3. The IOC_OUSB_FLUSH IO Command ..437
4.2.4.4.4. The IOC_OUSB_INT IO Command ..438
4.2.4.4.5. The IOC_OUSB_OBJECT_ID IO Command ..438

4.2.4.5. The close Request..439
4.2.4.6. The ON COMPLETE Notification Handler ..439
4.2.4.7. The ON REQUEST Notification Handler...440
4.2.4.8. The ON STATUS Notification Handler..441

5. ERROR CODES ...442
5.1. General Error Codes ...442
5.2. Specific FCM Service Error Codes..442
5.3. Specific Flash Service Error Codes...443
5.4. Specific GPRS Service Error Codes ...443
5.5. Specific A&D Storage Service Error Codes ..443

6. RESOURCES ...444

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 21

List of Figures
Figure 1. General software architecture ...24
Figure 2. Error when trying to send too large a data buffer through an API...................................28
Figure 3. Open AT® RAM Mapping...81
Figure 4. Flow Control Manager Representation ...100
Figure 5. Intel Mode Timing - Read Process Example...141
Figure 6. Intel Mode Timing - Write Process Example ...142
Figure 7. Motorola Modes Timing Example..142
Figure 8. A&D cell content install window...217
Figure 9. ADL External Interrupt service: Example of Interruption with Debounce Period259
Figure 10. ADL External Interrupt service: Example of Interruption with Stretching Process259

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 22

1. Introduction

1.1. Important Remark
The ADL library and the standard embedded Open AT® API layer must not be used in the same
application code. As ADL APIs will encapsulate commands and trap responses, applications may
enter in error modes if synchronization is no more guaranteed.

1.2. References
1. AT Commands Interface Guide for FW 7.45 (Ref. WM_DEV_OAT_UGD_079)

2. Developer Studio (http://www.sierrawireless.com/developer_studio) online help

1.3. Glossary

Term Definition

Application Mandatory API Mandatory software interfaces to be used by the Embedded Application.

AT commands Set of standard modem commands.

AT function Software that processes the AT commands and AT subscriptions.

Embedded API layer
Software developed by Sierra Wireless, containing the Open AT® APIs
(Application Mandatory API, AT Command Embedded API, OS API,
Standard API, FCM API, IO API, and BUS API).

Embedded Application User application sources to be compiled and run on a Sierra Wireless
product.

Embedded OS Software that includes the Embedded Application and the Sierra Wireless
library.

Embedded software User application binary: set of Embedded Application sources + Sierra
Wireless library.

External Application Application external to the Sierra Wireless product that sends AT
commands through the serial link.

Developer Studio Integrated development environment for developing embedded cellular
Mobile to Mobile (M2M) applications

Target Open AT® compatible product supporting an Embedded Application.

Receive command pre-parsing Process for intercepting AT responses.

Send command pre-parsing Process for intercepting AT commands.

Standard API Standard set of "C" functions.

Sierra Wireless library Library delivered by Sierra Wireless to interface Embedded Application
sources with Sierra Wireless Firmware functions.

Sierra Wireless Firmware Set of GSM and open functions supplied to the User.

http://www.sierrawireless.com/productsandservices/AirPrime/Sierra_Wireless_Software_Suite/Developer_Studio.aspx

Introduction

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 23

ADL User Guide for Open AT® OS 6.35

1.4. Abbreviations
A&D Application & Data
ADL Application Development Layer
AMS AirPrime Management Services
API Application Programming Interface
APN Access Point Name
CID Context IDentifier
CLSP Core Layer Service Provider
CPU Central Processing Unit
DAC Digital Analog Converter
EXTINT External Interruption
FCM Flow Control Manager
GPIO General Purpose Input Output
GGSN Gateway GPRS Support Node
GPRS General Packet Radio Service
IP Internet Protocol
IR Infrared
KB Kilobyte
MCC Mobile Country Code
MNC Mobile Network Codes
MS Mobile Station
OS Operating System
PDP Packet Data Protocol
PDU Protocol Data Unit
PLMN Public Land Mobile Network
RAM Random-Access Memory
ROM Read-Only Memory
RTK Real-Time Kernel
RSSI Received Signal Strength Indication
SDK Software Development Kit
SMA Small Adapter
SMS Short Message Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 24

2. Description

2.1. Software Architecture
The Application Development Layer library provides a high level interface for the Open AT® software
developer. The ADL set of services has to be used to access all the Sierra Wireless embedded
module's capabilities & interfaces.

The Open AT® environment relies on the following software architecture:

SIERRA WIRELESS EMBEDDED MODULE

SIERRA WIRELESS OS (binary file)

Open AT® application (binary file)

ADL API

Application Code

Figure 1. General software architecture

The different software elements on a Sierra Wireless product are described in this section.

The Open AT® application, which includes the following items:

• the application code,

• as an option (according to the application needs), one or several Plug-In libraries (such as the
IP connectivity library),

• the Sierra Wireless Application Development Layer library, which provides all the services
used by the application,

• the Sierra Wireless Firmware, which manages the Sierra Wireless embedded module.

Description

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 25

ADL User Guide for Open AT® OS 6.35

2.2. ADL Limitations

2.2.1. AT+WIND command state
ADL is internally using +WIND indications in order to be kept informed of events raised by the
embedded module. It has its own +WIND configuration, and this introduces the following behaviour
when the application is started/stopped with the AT+WOPEN=0/1 command:

• The AT+WIND configuration is stored in two different places in AT+WOPEN=0 or
AT+WOPEN=1 modes; consequently the enabled +WIND indications are not the same in
these two modes.

• Moreover, when switching from AT+WOPEN=1 back to AT+WOPEN=0, all the +WIND
indications will be enabled (whatever was the AT+WIND? configuration before switching to
AT+WOPEN=1 mode).

2.2.2. Multitasking limitations
When an application declares several tasks, events which come following to a service subscription or
in response to a service function will always notify the associated handlers in the first (more prioritary)
task context (except for Timers and Messages services).

Examples:

• Even if the adl_atCmdSend function is called by the application in the task 2 context, the
provided response handler will be called by ADL in the task 0 context.

• Even if the adl_smsSubscribe function is called by the application is the task 1 context,
incoming SMS events will be notified by ADL in the task 0 context.

• But event handlers provided to Timers & Messages services will always be notified in the task
contexts where the subscription functions were called.

2.3. Open AT® Memory Resources
The available memory resources for the Open AT® applications are listed below.

Reminder:

• KB stands for Kilobytes

• MB stands for Megabytes

• Mb stands for Megabits

2.3.1. RAM Resources
The maximum RAM size available for Open AT® applications depends on the embedded module RAM
capabilities, and on the used memory option at project creation time (please refer to Developer Studio
online help for more information):

Total RAM SizeLink Option 8Mb of Total RAM 16Mb of Total RAM or more

"256KB" link option 256KB 256KB

"1MB+" link option NC* 1MB or more

Description

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 26

ADL User Guide for Open AT® OS 6.35

*"NC" stands for "Not Compatible", i.e. such a linked application will not start if downloaded on such a
embedded module.

The available RAM for an Open AT application is always 1MB less than the actual value of the actual
RAM and hence the same is displayed as 1 MB less when adl_memGETinfo() API is used.

For example, if the customer has a total of 2 Mb of RAM, then the RAM available for his Open AT(R)
application is 1 Mb, and this value will be displayed with adl_memGETinfo() API.

2.3.2. Flash Resources

Total Flash Size ROM(Application code) Application & Data
Storage Volume Flash Objects Data

32Mb 256-1600KB
(default: 832KB)

0-1344KB
(default: 768KB) 128KB

64Mb or more 256-(1600+X)KB
(default: (832+X)KB)

0-(1344+X)KB
(default: 768KB) 384KB

For all flash sizes greater than 32Mb, all additional space is available for A&D and Application Code
areas. X stands for this additional flash space in KB. X is reckoned using the following formula:

X = ((S – 32)/8) * 1024

Where S is the total Flash size in Mb; E.g. for a 64Mb Flash: X = 4096KB.

The total available flash space for both Open AT® application place and A&D storage place is 1600+X
KB.

The maximum A&D storage place size is 1344+X KB (usable for Firmware upgrade capability). In this
case the Open AT® application maximum size will be 256 KB.

The minimum A&D storage place size is 0 KB (usable for applications with huge hard coded data).

For more information about the A&D and Application Code areas size configuration, please refer to
the AT+WOPEN command description in the AT Commands Interface Guide.

For both 32Mb and 64Mb flash types, the maximum FLASH object size that can be set with DWLWin
is 1728KB.

Caution: Any A&D size change will lead to this area format process (some seconds on start-up; all A&D cells
data will be erased).

2.4. Defined Compilation Flags
Developer Studio defines some compilation flags, related to the chosen generation environment.
Please refer to Developer Studio online help for more information.

2.5. Inner AT Commands Configuration
The ADL library needs for its internal processes to set-up some AT command configurations that
differ from the default values. The concerned commands are listed hereafter:

AT Command Fixed value

AT+CMEE 1

AT+WIND All indications (*)

Description

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 27

ADL User Guide for Open AT® OS 6.35

AT Command Fixed value

AT+CREG 2

AT+CGREG 2

AT+CRC 1

AT+CGEREP 2

ATV 1

ATQ 0

(*) All +WIND unsolicited indications are always required by the ADL library. The "+WIND: 3"
indication (product reset) will be enabled only if the external application required it.

The above fixed values are set-up internally by ADL. This means that all related error codes (for
+CMEE) or unsolicited results are always all available to all Open AT® ADL applications, without
requiring them to be sent (using the corresponding configuration command).

Caution: User is strongly advised against modifying the current values of these commands from any Open AT®
application. Sierra Wireless would not guarantee ADL correct processing if these values are modified
by any embedded application

External applications may modify these AT commands parameter values without any constraints.
These commands and related unsolicited results behavior are the same with our without a running
ADL application.

If errors codes or unsolicited results related to these commands are subscribed and then forwarded
by an ADL application to an external one, these results will be displayed for the external application
only if this one has required them using the corresponding AT commands (same behavior than the
Sierra Wireless AT OS without a running ADL application).

2.6. Open AT® Specific AT Commands
Please refer to the AT Commands Interface Guide.

2.6.1. AT+WDWL Command
The AT+WDWL command is usable to download .dwl files trough the serial link, using the 1K
Xmodem protocol.

Dwl files may be Sierra Wireless Firmware updates, Open AT® application binaries, or E2P
configuration files.

By default this command is not pre-parsed (it can not be filtered by the Open AT® application), except
if the Application Safe Mode service is used.

Note: The AT+WDWL command is described in the document AT Commands Interface Guide.

2.6.2. AT+WOPEN Command
The AT+WOPEN command allows to control Open AT® applications mode & parameters.

Parameters:

0 Stop the application (the application will be stopped on all product resets)
1 Start the application (the application will be started on all product resets)
2 Get the Open AT® libraries versions

Description

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 28

ADL User Guide for Open AT® OS 6.35

3 Erase the objects flash of the Open AT® Embedded Application
(allowed only if the application is stopped)

4 Erase the Open AT® Embedded Application
(allowed only if the application is stopped)

5 Suspend the Open AT® application, until the AT+WOPENRES command is used, or
an hardware interrupt occurs

6 Configures the Application & Data storage place and Open AT® application place
sizes.

7 Requires the current Open AT® application state (e.g. to check if the application
binary has correctly been built or if the application is running in Target or RTE
mode).

8 Configures the Safe Boot mode.

Note: Refer to the document AT Commands Interface Guide for more information about this command.

Note: By default this command is not pre-parsed (it can not be filtered by the Open AT® application), except
if the Application Safe Mode service is used.

2.7. Notes on Sierra Wireless Firmware
The Open AT® application runs within several tasks managed by the Sierra Wireless Firmware: event
handlers are almost always called sequentially by ADL in the first task context, except for the Timers
& Messages service (please refer to these services description for more information). The whole ADL
API is reentrant and can be called from anymore in the application. If the application offers an API
which is supposed to be called from several execution contexts, it is recommended to implement a
reentrancy protection mechanism, using the semaphore service

The Sierra Wireless Firmware and the Open AT® application manage their own RAM area. Any
access from one of these entities to the other’s RAM area is prohibited and causes an exception.

Global variables, call stack and dynamic memory are all part of the RAM allocated to the Open AT®
application.

2.8. RTE limitations

2.8.1. Sending large buffers through an ADL API
Large data buffers (greater than 1600 data bytes) cannot be sent through an ADL API (Eg.
adl_busWrite) in RTE mode. If the application tries to do so, an error message (see Figure 2) will be
displayed, and the RTE application will stop with an error.

Figure 2. Error when trying to send too large a data buffer through an API

Description

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 29

ADL User Guide for Open AT® OS 6.35

2.8.2. Services Limitations
Due to the RTE architecture and to the very low latency & processing times required in IRQ based
applications, the IRQ service & all the related services (such as ExtInt services, etc..) are not
available in this mode. Moreover, the OpenDevice and the Event services are not available in this
mode. The subscription function will always fail when called in RTE.

2.9. Recovery Mechanism
This mechanism has been introduced in the Sierra Wireless firmware with the IDS service. It allows to
avoid infinite and uncontrolled reset loop in the firmware. A reset loop can occur when:

• a new unstable Sierra Wireless firmware is downloaded;

• a new unstable application is downloaded;

• the new application downloaded is not compatible with the Sierra Wireless firmware.

When a reset loop is detected by the Sierra Wireless firmware, a recovery mechanism is launched
with the following 3 steps:

• Firstly, it tries to go back to the old firmware or application;

• If the first step does not work, it stops the Open AT® application (if started);

• Lastly, it starts the Xmodem downloader in interactive mode in order to download a new
firmware.

When a reset loop occurs, Open AT® application is stopped after 8 resets.

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 30

3. API

3.1. Application Entry Points Interface
ADL supplies Application Entry Points Interface to allow applications to define the generic settings of
the application tasks and contexts.

The application will have to define its entry points settings using the adl_InitTasks table. Each line
of this table represents a task, which is characterized by the following parameters:

• the task entry point, called at the embedded module boot time, in the priority order

• the task call stack size

• the task priority level

• the task name

If the application wishes to use the IRQ service, it will also have to define the call stack sizes for its
low level (adl_InitIRQLowLevelStackSize) and high level (adl_InitIRQHighLevelStackSize)
interrupt handlers.

Moreover, some operations related to the initialization are available:

• An Init type check function (adl_InitGetType) to retrieve at any time the embedded module
initialization type.

3.1.1. Required Header File
Mandatory application API header file is:

adl_AppliInit.h

(This file is already included by adl_global.h)

3.1.2. Tasks Declaration

3.1.2.1. Task Definition Table

Mandatory tasks definition table to be provided by the application. For more information on each
task's parameters, please refer to the adl_InitTasks_t description. Each line of this table allows to
intialize one task. To let the system know how many tasks are required, all the elements of the last
line of this table have to be set to 0.

Task entry points declared in the table will be called on embedded module boot, in the priority order
(the highest priority level is called first).

Const adl_InitTasks_t adl_InitTasks[]

Note: At least one task shall be declared in this table. If no tasks are declared in the table, the Firmware will
refuse to launch the application, and the application launch status will be set to 16 (No task declared)
Please refer to AT+WOPEN=7 description in AT Commands Interface Guide for more information.

Note: There is maximum limit to the number of tasks which shall be declared in this table (Please refer to
the Resources chapter for more information). If more tasks than the authorized maximum are
declared in the table, the Firmware will refuse to launch the application, and the application launch
status will be set to 5 (Too many tasks)
Please refer to AT+WOPEN=7 description in AT Commands Interface Guide for more information.

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 31

ADL User Guide for Open AT® OS 6.35

Warning: Since ADL processing is running in the first application's task context, this one has always to be
declared with the highest priority level, otherwise the Firmware will refuse to launch the
application, and the application launch status will be set to 11 (Application binary init failure).
Please refer to AT+WOPEN=7 description in AT Commands Interface Guide for more
information.

3.1.2.2. The adl_InitTasks_t Structure

Open AT® application's tasks declaration structure, used to format the adl_InitTasks table.

Code:
typedef struct
{
 void (* EntryPoint)(void);
 u32 StackSize;
 const ascii* Name;

 u8 Priority;
} adl_InitTasks_t;

Description

EntryPoint(void)

Task initialization handler, which aims to be called each time the Embedded module boots,
as soon as the application is started with the AT+WOPEN=1 command.

Notes

Note: A task entry point function is NOT like a standard "C" main function. The task does not end when
returns. An Open AT® application is stopped only if the AT+WOPEN=0 command is used. Such a call-
back function is only the application entry point, and has to subscribe to some services and events to
go further. In addition the whole software is protected by a watchdog mechanism, the application shall
not use infinite loops and loops having a too long duration, the embedded module will reset due to the
watchdog hardware security (please refer to Hardware Security: Watchdog Protection for more
information).

StackSize

Used to provide to the system the required call stack size (in bytes) for the current task. A
call stack is the Open AT® RAM area which contains the local variables and return
addresses for function calls. Call stack sizes are deduced from the total available RAM size
for the Open AT® application.

Note: In RTE mode, the call stacks are processed by the host’s operating system, and are not configurable
(declared sizes are just removed from the available RAM space for the heap memory). It also means
that stack overflows cannot be debugged within the RTE mode.
The GCC compiler and GNU Newlib (standard C library) implementation require more stack size than
ARM compilers. If the GCC compiler is used, the Open AT® application has to be declared with
greater stack sizes.
Call stack sizes shall be declared with some extra bytes margin. It is not recommended to try to
reckon exactly the required call stack size of each task.
If the total call stack sizes (including the tasks ones & the interrupt contexts ones) is too large, the
Firmware will refuse to launch the application, and the application launch status will be set to 9 (Bad
memory configuration).
Please refer to AT+WOPEN=7 description in AT Commands Interface Guide for more information.

Note: Stack memory is limited to 64 kBytes and if allocated above 64 kBytes correct behavior is not
guaranteed.

Name

Task identification string, used for debug purpose with Traces & Errors services.

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 32

ADL User Guide for Open AT® OS 6.35

Priority

Task priority level, relatively to the other tasks declared in the table. The higher is the
number, the higher is the priority level. Priorities values declared in the table should be from
1 to the tasks count. This priority determines the order in which the events are notified to the
several tasks when several ones receive information at the same time.

Note: All the priorities declared in the table have to be different (two tasks can not have the same priority
level).
If there is an error in the priorities declaration, the Firmware will refuse to launch the application, and
the application launch status will be set to 17 (Bad priority value)
Please refer to AT+WOPEN=7 description in AT Commands Interface Guide for more information.

3.1.2.3. [Deprecated] Single task initialization

For ascendant compatibility purpose, the former way of declaring the application entry point is still
supported.

As soon as the tasks initialisation table is *NOT* provided, ADL looks for a single entry point function:

void adl_main (adl_InitType_e init)
{
 // TODO: add your init code here
}

and for a constant defining the application's call stack size, in bytes:

const u16 wm_apmCustomStackSize = 3*1024;

Note: Note: as soon as the tasks initialization table is provided, any adl_main function will be ignored.

3.1.3. Interrupt Handlers Call Stack Sizes Declaration
Interfaces dedicated to the interrupt handlers call stack sizes declaration.

3.1.3.1. Low level interrupt handler call stack size.

Call stack size (in bytes) of the Low level interrupt handler execution context. If the application wishes
to handle interruptions (cf. IRQ_Service chapter & Execution Context Service chapter), it has also to
define the required contexts (low level and/or high level) call stack sizes.

const u32 adl_InitIRQLowLevelStackSize

Note: This definition is optional if the application does not plan to use the IRQ service.
The Real Time Enhancement feature has to be enabled on the embedded module if the application
requires this call stack to be greater than zero.
The Real Time Enhancement feature state can be read thanks to the AT+WCFM=5 command
response value: Please refer to the AT Commands Interface Guide for more information.

Note: Please contact your Sierra Wireless distributor for more information on how to enable this feature on
the embedded module.

Note: If this call stack is declared, and if the feature is not enabled on the embedded module, the Firmware
will refuse to launch the application, and the application launch status will be set to 19 (Real Time
feature not enabled)
Please refer to. AT+WOPEN=7 description in AT Commands Interface Guide for more information.

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 33

ADL User Guide for Open AT® OS 6.35

3.1.3.2. High level interrupt handler call stack size

Call stack size (in bytes) of the High level interrupt handler execution context. If the application
whishes to handle interruptions (cf. IRQ_Service chapter & Execution Context Service chapter), it
has also to define the required contexts (low level and/or high level) call stack sizes.

const u32 adl_InitIRQHighLevelStackSize

Note: This definition is optional if the application does not plan to use the IRQ service, or just low level
interrupt handlers.
The Real Time Enhancement feature has to be enabled on the embedded module if the application
requires this call stack to be greater than zero.
The Real Time Enhancement feature state can be read thanks to the AT+WCFM=5 command
response value: Please refer to the AT Commands Inteface guide 1 for more information.

Note: Please contact your Sierra Wireless distributor for more information on how to enable this feature on
the embedded module.

Note: If this call stack is declared, and if the feature is not enabled on the embedded module, the Firmware
will refuse to launch the application, and the application launch status will be set to 19 (Real Time
feature not enabled). Please refer to. AT+WOPEN=7 description in AT Commands Interface Guide
for more information.

3.1.4. Initialization information

3.1.4.1. The adl_InitType_e Type

Details of the reason of the embedded module boot.

Code
typedef enum
{
 ADL_INIT_POWER_ON,
 ADL_INIT_REBOOT_FROM_EXCEPTION,
 ADL_INIT_DOWNLOAD_SUCCESS,
 ADL_INIT_DOWNLOAD_ERROR,
 ADL_INIT_RTC,
} adl_InitType_e;

Description

ADL_INIT_POWER_ON: Normal power-on.

ADL_INIT_REBOOT_FROM_EXCEPTION: Reboot after an exception.

ADL_INIT_DOWNLOAD_SUCCESS: Reboot after a successful install process (cf.
adl_adInstall API).

ADL_INIT_DOWNLOAD_ERROR: Reboot after an error in install process (cf.
adl_adInstall API).

ADL_INIT_RTC: Power-on due to an RTC alarm (cf. the AT+CALA
command documentation for more information).

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 34

ADL User Guide for Open AT® OS 6.35

3.1.4.2. The adl_InitGetType function

Returns the last embedded module power-on or reset reason.

Prototype
adl_InitType_e adl_InitGetType (void)

Returned value
• The embedded module reset reason. (Please refer to adl_InitType_e description for more

information).

Example:

This example demonstrates how to use the function adl_InitGetType in a nominal case.

// Anywhere in the application code, to retrieve init type.
 adl_InitType_e InitType = adl_InitGetType();

3.1.5. Miscellaneous name and version related
information

The constants defined below allows the application to define some information readable by the Sierra
Wireless Firmware. These constants definitions are optional, and automatically considered as empty
strings if not provided by the application.

3.1.5.1. Application name

This constant string should be defined by the application in order to provide a name readable by the
Sierra Wireless Firmware.

const ascii adl_InitApplicationName[]

3.1.5.2. Company name

This constant string should be defined by the application, in order to provide a company name
readable by the Sierra Wireless Firmware.

const ascii adl_InitCompanyName[]

3.1.5.3. Application version

This constant string should be defined by the application in order to provide a version readable by the
Sierra Wireless Firmware.

const ascii adl_InitApplicationVersion[]

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 35

ADL User Guide for Open AT® OS 6.35

3.1.5.4. Example
// Application name definition
const ascii adl_InitApplicationName[] = "My Application";

// Company name definition
const ascii adl_InitCompanyName[] = "My Company";

// Application version definition
const ascii adl_InitApplicationVersion[] = "v1.0.0";

3.1.6. Stack Sizes Macro
The constants defined below allows the application to define the stack sizes.

3.1.6.1. The ADL_DECLARE_CALL_STACK

Application stack size Macro.

Code
#define ADL_DECLARE_CALL_STACK (X) const u16 wm_apmCustomStackSize = X

Description

 ADL_DECLARE_CALL_STACK:

This macro declares the right wm_apmCustomStackSize value according to the compilers.

The GCC compiler and GNU Newlib (standard C library) implementation require more stack
size than ARM compilers.

If the GCC compiler is used, the allocation has to be declared with greater stack sizes (the X
parameter is then multiplied by 3).

3.1.6.2. The ADL_DECLARE_LOWIRQ_STACK

Low level interrupt handler call stack size Macro.

Code
#define ADL_DECLARE_LOWIRQ_STACK(X) const u32 adl_InitIRQLowLevelStackSize = X

Description

 ADL_DECLARE_LOWIRQ_STACK:

This macro declares the right adl_InitIRQLowLevelStackSize value according to the
compilers.

The GCC compiler and GNU Newlib (standard C library) implementation require more stack
size than ARM compilers.

If the GCC compiler is used, the allocation has to be declared with greater stack sizes (the X
parameter is then multiplied by 3).

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 36

ADL User Guide for Open AT® OS 6.35

3.1.6.3. The ADL_DECLARE_HIGHIRQ_STACK

High level interrupt handler call stack size Macro.

Code
#define ADL_DECLARE_HIGHIRQ_STACK(X)constu32 adl_InitIRQHighLevelStackSize = X

Description

 ADL_DECLARE_HIGHIRQ_STACK:

This macro declares the right adl_InitIRQHighLevelStackSize value according to the
compilers.

The GCC compiler and GNU Newlib (standard C library) implementation require more stack
size than ARM compilers.

If the GCC compiler is used, the allocation has to be declared with greater stack sizes (the X
parameter is then multiplied by 3).

3.1.7. Interrupt priorities change

3.1.7.1. Detailed description

The constants defined below allows the application to change some interrupt priorities in the
Firmware. This possibility is optional, and automatically considered as the default priority if not
provided by the application. The default priorities for the Firmware interrupts are:

• Priority 0 (highest priority): UART1

• Priority 1: FINT1

• Priority 2: FINT0

• Priority 3: PIO

• Priority 4: EXTINT1

• Priority 5: EXTINT2

• Priority 6 (lowest priority): EXTINT3, RTC (Real Time Clock), USB Fiq, USB irq, KBS
(Keyboard), SCTU1, SCTU2, UART2, SPI1, SPI2, SPI3, I2C, DMAU, USIM

Warning: Changing the interrupt priority is at the whole customer responsibility. The Firmware was tested
and validated only in the default configuration.

3.1.7.2. Example
// Change UART 2 interrupt priority
const adl_InitInterrupts_t adl_InitApplicationInterruptPrio[] =
{
 { ADL_IRQ_TYPE_UART, ADL_IRQ_INSTANCE_2, ADL_IRQ_PRIORITY_0 },
 { ADL_IRQ_TYPE_MAX, ADL_IRQ_INSTANCE_MAX, ADL_IRQ_PRIORITY_MAX } // This
line should always be the last line of this table
};

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 37

ADL User Guide for Open AT® OS 6.35

Notes

When an interrupt table is present in the Open AT application, a trace is displayed under TMT at
device start up. For the above example, the following traces are displayed:

Trace 1 *************** WARNING ***************
Trace 1 Interruption priority change: UART2 current priority 0, default
priority 6
Trace 1 ************* WARNING END **************

If an interrupt is defined several time in this table, only the last priority change will be taken into
account.

When an interrupt table is present in the Open AT application and when an error is present in this
table, the Open AT application is not started (the AT+WOPEN=7 returns +WOPEN: 7,21 response)
and a trace is displayed under TMT at device start up.

Trace 1 *************** WARNING ***************
Trace 1 Interrupt priority table is not correct
Trace 1 ************* WARNING END **************

3.1.7.3. The adl_InitInterrupts_t Structure

Firmware interrupts priorities declaration structure, used to format the adl_InitApplicationInterruptPrio
table.

Code:
typedef struct
{
 u16 InterruptType;
 u8 InterruptInstance;
 u8 InterruptPriority;
} adl_InitInterrupts_t;

Description

InterruptType

Interrupt Type on which the priority has to be changed by the application.

Note: If the interrupt is not supported by the platform, the Firmware will refuse to change the Firmware
interrupt priorities, and the application launch status will be set to 21. (cf. AT+WOPEN=7 description in
AT Commands Interface Guide for more information)

InterruptInstance

Interrupt instance on which the priority has to be changed by the application.

InterruptPriority

Priority of the interrupt.

Define the priority required by the application for the corresponding interrupt.

3.1.7.4. Type Definition : The adl_InitInterrupts_t Type

Firmware interrupts priorities declaration structure, used to format the adl_InitApplicationInterruptPrio
table.

 typedef struct _adl_InitInterrupts_t adl_InitInterrupts_t;

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 38

ADL User Guide for Open AT® OS 6.35

3.1.7.5. The adl_InterruptCategoryId_e Type

Details on the Embedded module boot reason.

Code
typedef enum
{
 ADL_IRQ_TYPE_FINT,
 ADL_IRQ_TYPE_UART,
 ADL_IRQ_TYPE_USB,
 ADL_IRQ_TYPE_EXTINT,
 ADL_IRQ_TYPE_RTC,
 ADL_IRQ_TYPE_KBD,
 ADL_IRQ_TYPE_TIMER,
 ADL_IRQ_TYPE_SPI,
 ADL_IRQ_TYPE_I2C,
 ADL_IRQ_TYPE_DMAU,
 ADL_IRQ_TYPE_USIM,
 ADL_IRQ_TYPE_LAST,
 ADL_IRQ_TYPE_MAX = 0xFF
} adl_InterruptCategoryId_e;

Description

ADL_IRQ_TYPE_FINT: Mask for FINT.

ADL_IRQ_TYPE_UART: Mask for UART.

ADL_IRQ_TYPE_USB: Mask for USB.

ADL_IRQ_TYPE_EXTINT: Mask for External Interrupt.

ADL_IRQ_TYPE_RTC: Mask for RTC.

ADL_IRQ_TYPE_KBD: Mask for Keyboard.

ADL_IRQ_TYPE_TIMER: Mask for Timer.

ADL_IRQ_TYPE_SPI: Mask for SPI.

ADL_IRQ_TYPE_I2C: Mask for I2C.

ADL_IRQ_TYPE_DMAU: Mask for DMA.

ADL_IRQ_TYPE_USIM: Mask for SIM.

ADL_IRQ_TYPE_LAST: Non significant value (should not be used).

ADL_IRQ_TYPE_MAX: Non significant value (should not be used).

3.1.7.6. The adl_InterruptId_e Type

Details the instances for the Firmware interrupts. See PTS of the platform for more details. Examples:
FINT has 2 instances, UART has 2 instances, RTC has 1 instance Possibilities for WMP100:

• FINT: ADL_IRQ_INSTANCE_1 for FINT0, ADL_IRQ_INSTANCE_2 for FINT1

• UART: ADL_IRQ_INSTANCE_1 for UART1, ADL_IRQ_INSTANCE_2 for UART2

• USB: ADL_IRQ_INSTANCE_1 for USB FIQ, ADL_IRQ_INSTANCE_2 for USB IRQ

• EXTINT: ADL_IRQ_INSTANCE_1 for EXTINT1, ADL_IRQ_INSTANCE_2 for EXTINT2,
ADL_IRQ_INSTANCE_3 for EXTINT3

• RTC: ADL_IRQ_INSTANCE_1

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 39

ADL User Guide for Open AT® OS 6.35

• KEYBOARD: ADL_IRQ_INSTANCE_1

• Timer: ADL_IRQ_INSTANCE_1 for Hardware Timer 1, ADL_IRQ_INSTANCE_2 for
Hardware Timer 2

• SPI: ADL_IRQ_INSTANCE_1 for SPI1, ADL_IRQ_INSTANCE_2 for SPI2,
ADL_IRQ_INSTANCE_3 for SPI3

• I2C: ADL_IRQ_INSTANCE_1

• DMA: ADL_IRQ_INSTANCE_1

• SIM: ADL_IRQ_INSTANCE_1

Code
typedef enum
{
 ADL_IRQ_INSTANCE_1 = 1,
 ADL_IRQ_INSTANCE_2,
 ADL_IRQ_INSTANCE_3,
 ADL_IRQ_INSTANCE_LAST,
 ADL_IRQ_INSTANCE_MAX = 0xFF
} adl_InterruptId_e;

Description

ADL_IRQ_INSTANCE_1: Instance 1 of the mask.

ADL_IRQ_INSTANCE_2: Instance 2 of the mask

ADL_IRQ_INSTANCE_3: Instance 3 of the mask

ADL_IRQ_INSTANCE_LAST: Non significant value (should not be used)

ADL_IRQ_INSTANCE_MAX: Non significant value (should not be used).

3.1.7.7. The adl_InterrupPriority_e Type

Details the priority for the Firmware interrupts.

Code
typedef enum
{
 ADL_IRQ_PRIORITY_0,
 ADL_IRQ_PRIORITY_1,
 ADL_IRQ_PRIORITY_2,
 ADL_IRQ_PRIORITY_3,
 ADL_IRQ_PRIORITY_4,
 ADL_IRQ_PRIORITY_5,
 ADL_IRQ_PRIORITY_6,
 ADL_IRQ_PRIORITY_LAST,
 ADL_IRQ_PRIORITY_MAX = 0xFF
} adl_InterrupPriority_e;

API
Application Entry Points Interface

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 40

ADL User Guide for Open AT® OS 6.35

Description

ADL_IRQ_PRIORITY_0: Priority 0: highest priority.

ADL_IRQ_PRIORITY_1: Priority 1.

ADL_IRQ_PRIORITY_2: Priority 2.

ADL_IRQ_PRIORITY_3: Priority 3.

ADL_IRQ_PRIORITY_4: Priority 4.

ADL_IRQ_PRIORITY_5: Priority 5.

ADL_IRQ_PRIORITY_6: Priority 6.

ADL_IRQ_PRIORITY_LAST: Non significant value (should not be used).

ADL_IRQ_PRIORITY_MAX: Non significant value (should not be used).

3.1.7.8. Variable : Firmware interrupt priority change requested
by the application

This table allows an application to change the priority of the Firmware interrupts.

const adl_InitInterrupts_t adl_InitApplicationInterruptPrio[]

3.1.8. Example
The code sample below illustrates a nominal use case of the ADL Application Entry Points public
interface.

// Application tasks declaration table
const adl_InitTasks_t adl_InitTasks [] =
{
 { MyFirstEntryPoint, 1024, "MYTASK1", 3 },
 { MySecondEntryPoint, 1024, "MYTASK2", 2 },
 { MyThirdEntryPoint, 1024, "MYTASK3", 1 },
 { 0, 0, 0, 0 }
};

// Low level handlers execution context call stack size
const u32 adl_InitIRQLowLevelStackSize = 1024;

// High level handlers execution context call stack size
const u32 adl_InitIRQHighLevelStackSize = 1024;

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 41

ADL User Guide for Open AT® OS 6.35

3.2. Basic Features

3.2.1. Data Types
The available data types are described in the wm_types.h file. They ensure compatibility with the data
types used in the functional prototypes and are used for both Target and RTE generation.

3.2.2. List Management

3.2.2.1. Type Definition

3.2.2.1.1. The wm_lst_t Type

This type is used to handle a list created by the list API.

 typedef void * wm_lst_t;

3.2.2.1.2. The wm_lstTable_t Structure

This structure is used to define a comparison callback and an Item destruction callback:

typedef struct
{
 s16 (* CompareItem) (void *, void *);
 void (* FreeItem) (void *);
} wm_lstTable_t;

The CompareItem callback is called every time the list API needs to compare two items.

It returns:

• OK when the two provided elements are considered similar.

• –1 when the first element is considered smaller than the second one.

• 1 when the first element is considered greater than the second one.

If the CompareItem callback is set to NULL, the wm_strcmp function is used by default.

The FreeItem callback is called each time the list API needs to delete an item. It should then perform
its specific processing before releasing the provided pointer.

If the FreeItem callback is set to NULL, the wm_osReleaseMemory function is used by default.

3.2.2.2. The wm_lstCreate Function

The wm_lstCreate function allows to create a list, using the provided attributes and callbacks.

Prototype
wm_lst_t wm_lstCreate (u16 Attr,

 wm_lstTable_t * funcTable);

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 42

ADL User Guide for Open AT® OS 6.35

Parameters

Attr:

List attributes, which can be combined by a logical OR among the following defined values:

 WM_LIST_NONE: no specific attribute ;

 WM_LIST_SORTED: this list is a sorted one (see the wm_lstAddItem section and
wm_lstinsertitem section descriptions for more details);

 WM_LIST_NODUPLICATES: this list does not allow duplicate items (see the wm_lstAddItem
section and wm_lstinsertitem section descriptions for more details).

funcTable:

Pointer on a structure containing the comparison and the item destruction callbacks.

Returned values
• This function returns a list pointer corresponding to the created list. This must be used in all

further operations on this list.

3.2.2.3. The wm_lstDestroy Function

The wm_lstDestroy function allows to clear and then destroy the provided list.

Prototype
void wm_lstDestroy (wm_lst_t list);

Parameters

list:

The list to destroy.

Note: This function calls the FreeItem callback (if defined) on each item to delete it, before destroying the
list:

3.2.2.4. The wm_lstClear Function

The wm_lstClear function allows to clear all the provided list items, without destroying the list itself
(please refer to wm_lstdeleteitem function for notes on item deletion).

Prototype
void wm_lstClear (wm_lst_t list);

Parameters

list:

The list to clear.

Note: This function calls the FreeItem callback (if defined) on each item to delete it.

3.2.2.5. The wm_lstGetCount Function

The wm_lstGetCount function returns the current item count.

Prototype
u16 wm_lstGetCount (wm_lst_t list);

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 43

ADL User Guide for Open AT® OS 6.35

Parameters

list:

The list from which to get the item count.

Returned values
• The number of items of the provided list. The function returns 0 if the list is empty.

3.2.2.6. The wm_lstAddItem Function

The wm_lstAddItem function allows to add an item to the provided list.

Prototype
s16 wm_lstAddItem (wm_lst_t list,

 void * item);

Parameters

list:

The list to add an item to.

item:

The item to add to the list.

Returned values
• The position of the added item, or ERROR if an error occurred.

Note: The item pointer should not point on a const or local buffer, as it is released in any item destruction
operation.

Note: If the list has the WM_LIST_SORTED attribute, the item is inserted in the appropriate place after
calling of the CompareItem callback (if defined). Otherwise, the item is appended at the end of the
list.

Note: If the list has the WM_LIST_NODUPLICATES, the item is not inserted when the CompareItem
callback (if defined) returns 0 on any previously added item. In this case, the returned index is the
existing item index.

3.2.2.7. The wm_lstInsertItem Function

The wm_lstInsertItem function allows to insert an item to the provided list at the given location.

Prototype
s16 wm_lstInsertItem (wm_lst_t list,

 void * item,
 u16 index);

Parameters

list:

The list to add an item to.

 item:

The item to add to the list.

 index:

The location where to add the item.

Returned values
• The position of the added item, or ERROR if an error occured.

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 44

ADL User Guide for Open AT® OS 6.35

Note: The item pointer should not point on a const or local buffer, as it is released in any item destruction
operation.

Note: This function does not take list attributes into account and always inserts the provided item in the
given index.

3.2.2.8. The wm_lstGetItem Function

The wm_lstGetItem function allows to read an item from the provided list, in the given index.

Prototype
void * wm_lstGetItem (wm_lst_t list,

 u16 index);

Parameters

list:

The list from which to get the item.

index:

The location where to get the item.

Returned values
• A pointer on the requested item, or NULL if the index is not valid.

3.2.2.9. The wm_lstDeleteItem Function

The wm_lstDeleteItem function allows to delete an item of the provided list in the given indices.

Prototype
s16 wm_lstDeleteItem (wm_lst_t list,

 u16 index);

Parameters

list:

The list to delete an item from.

index:

The location where to delete the item.

Returned values
• The number of remaining items in the list, or ERROR if an error did occur.

Note: This function calls the FreeItem callback (if defined) on the requested item to delete it.

3.2.2.10. The wm_lstFindItem Function

The wm_lstFindItem function allows to find an item in the provided list.

Prototype
 s16 wm_lstFindItem (wm_lst_t list,

 void * item);

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 45

ADL User Guide for Open AT® OS 6.35

Parameters

list:

The list where to search.

item:

The item to find.

Returned values
• The index of the found item if any, ERROR otherwise.

Note: This function calls the CompareItem callback (if defined) on each list item, until it returns 0.

3.2.2.11. The wm_lstFindAllItem Function

The wm_lstFindAllItem function allows to find all items matching the provided one, in the given list.

Prototype
s16 * wm_lstFindAllItem (wm_lst_t list,

 void * item);

Parameters

list:

The list where to search.

item:

The item to find.

Returned values
• A s16 buffer containing the indices of all the items found, and ending with ERROR.

Note: This buffer should be released by the application when its processing is done.

Note: This function calls the CompareItem callback (if defined) on each list item to get all those which
match the provided item

This function should be used only if the list cannot be changed during the resulting buffer processing.
Otherwise the wm_lstFindNextItem should be used.

3.2.2.12. The wm_lstFindNextItem Function

The wm_lstFindNextItem function allows to find the next item index of the given list, which
corresponds with the provided one.

Prototype
s16 wm_lstFindNextItem (wm_lst_t list,

 void * item);

Parameters

list:

The list to search in.

item:

The item to find.

Returned values
• The index of the next found item if any, otherwise ERROR.

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 46

ADL User Guide for Open AT® OS 6.35

Note: This function calls the CompareItem callback (if defined) on each list item to get those which match
with the provided item. It should be called until it returns ERROR, in order to get the index of all items
corresponding to the provided one. The difference with the wm_lstFindAllItem function is that,
even if the list is updated between two calls to wm_lstFindNextItem, the function does not return a
previously found item. To restart a search with the wm_lstFindNextItem, the wm_lstResetItem
should be called first.

3.2.2.13. The wm_lstResetItem Function

The wm_lstResetItem function allows to reset all previously found items by the wm_lstFindNextItem
function.

Prototype
void wm_lstResetItem (wm_lst_t list,

 void * item);

Parameters

list:

The list to search in.

item:

The item to search, in order to reset all previously found items.

Note: This function calls the CompareItem callback (if defined) on each list item to get those which match
with the provided one.

3.2.3. Standard Library

3.2.3.1. Standard C Function Set

The available standard APIs are defined below:

ascii * wm_strcpy (ascii * dst, ascii * src);

ascii * wm_strncpy (ascii * dst, ascii * src, u32 n);

ascii * wm_strcat (ascii * dst, ascii * src);

ascii * wm_strncat (ascii * dst, ascii * src, u32 n);

u32 wm_strlen (ascii * str);

s32 wm_strcmp (ascii * s1, ascii * s2);

s32 wm_strncmp (ascii * s1, ascii * s2, u32 n);

s32 wm_stricmp (ascii * s1, ascii * s2);

s32 wm_strnicmp (ascii * s1, ascii * s2, u32 n);

ascii * wm_memset (ascii * dst, ascii c, u32 n);

ascii * wm_memcpy (ascii * dst, ascii * src, u32 n);

s32 wm_memcmp (ascii * dst, ascii * src, u32 n);

ascii * wm_itoa (s32 a, ascii * szBuffer);

s32 wm_atoi (ascii * p);

u8 wm_sprintf (ascii * buffer, ascii * fmt, ...);

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 47

ADL User Guide for Open AT® OS 6.35

Important remark about GCC compiler:

When using GCC compiler, due to internal standard C library architecture, it is strongly not
recommended to use the "%f" mode in the wm_sprintf function in order to convert a float variable to a
string. This leads to an ARM exception (product reset).

A way around for this conversion is:

 float MyFloat; // float to display

 ascii MyString [100]; // destination string

 s16 d,f;

 d = (s16) MyFloat * 1000; // Decimal precision: 3 digits

 f = (MyFLoat * 1000) - d; // Decimal precision: 3 digits

 wm_sprintf (MyString, "%d.%03d", (s16)MyFloat, f);
 // Decimal precision: 3 digits

3.2.3.2. String Processing Function Set

Some string processing functions are also available in this standard API.

All the following functions leads to an ARM exception if a requested ascii * parameter is NULL.

 ascii wm_isascii (ascii c);

Returns c if it is an ascii character (‘a’/’A’ to ‘z’/’Z’), 0 otherwise.

 ascii wm_isdigit (ascii c);

Returns c if it is a digit character (‘0’ to ‘9’), 0 otherwise.

 ascii wm_ishexa (ascii c);

Returns c if it is a hexadecimal character (‘0’ to ‘9’, ‘a’/’A’ to ‘f’/’F’), 0 otherwise.

 bool wm_isnumstring (ascii * string);

Returns TRUE if string is a numeric one, FALSE otherwise.

 bool wm_ishexastring (ascii * string);

Returns TRUE if string is a hexadecimal one, FALSE otherwise.

 bool wm_isphonestring (ascii * string);

Returns TRUE if string is a valid phone number (national or international format),
FALSE otherwise.

 u32 wm_hexatoi (ascii * src, u16 iLen);

If src is a hexadecimal string, converts it to a returned u32 of the given length, and
0 otherwise. As an example: wm_hexatoi ("1A", 2) returns 26, wm_hexatoi ("1A", 1)
returns 1

 u8 * wm_hexatoibuf (u8 * dst, ascii * src);

If src is a hexadecimal string, converts it to an u8 * buffer and returns a pointer on
dst, and NULL otherwise. As an example, wm_hexatoibuf (dst, "1F06") returns a 2
bytes buffer: 0x1F and 0x06

 ascii* wm_itohexa (ascii * dst, u32 nb, u8 len);

Converts nb to a hexadecimal string of the given length and returns a pointer on
dst. For example, wm_itohexa (dst, 0xD3, 2) returns "D3", wm_itohexa (dst, 0xD3,
4) returns "00D3".

API
Basic Features

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 48

ADL User Guide for Open AT® OS 6.35

 ascii* wm_ibuftohexa (ascii * dst, u8 * src, u16 len);

Converts the u8 buffer src to a hexadecimal string of the given length and returns a
pointer on dst. Example with the src buffer filled with 3 bytes (0x1A, 0x2B and
0x3C), wm_ibuftohexa (dst, src, 3) returns "1A2B3C").

 u16 wm_strSwitch (const ascii * strTest, ...);

This function must be called with a list of strings parameters, ending with NULL.
strTest is compared with each of these strings (on the length of each string, with no
matter of the case), and returns the index (starting from 1) of the string which
matches if any, 0 otherwise.

Example:

wm_strSwitch ("TEST match", "test", "no match", NULL") returns 1, wm_strSwitch
("nomatch", "nomatch a", "nomatch b", NULL) returns 0.

 ascii * wm_strRemoveCRLF (ascii * dst, ascii * src, u16 size);

Copy in dst buffer the content of src buffer, removing CR (0x0D) and LF (0x0A)
characters, from the given size, and returns a pointer on dst.

 ascii * wm_strGetParameterString (ascii * dst,
 const ascii * src,
 u16 Position);

If src is a string formatted as an AT response (for example "+RESP:P1,P2,P3") or
as an AT command (for example "AT+CMD=P1,P2,P3"), the function copies the
parameter at Position offset (starting from 1) if it is present in the src buffer, and
returns a pointer on dst. It returns NULL otherwise.

Note: The response RESP: P1,,P3 is considered to contain three parameters:

 * Parameter number 1 is present, and has the value "P1";

 * Parameter number 2 is present, and has a null value;

 * Parameter number 3 is present, and has the value "P3";

 * Parameters numbered 4 & above are not present.

Example:

wm_strGetParameterString (dst, "+WIND: 4", 1) returns "4",

wm_strGetParameterString (dst, "+WIND: 5,1", 2) returns "1",

 wm_strGetParameterString (dst, "AT+CMGL=\"ALL\"", 1) returns "ALL".

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 49

ADL User Guide for Open AT® OS 6.35

3.3. AT Commands Service

3.3.1. Required Header File
The header file for the functions dealing with AT commands is:

adl_at.h

3.3.2. Unsolicited Responses
An unsolicited response is a string sent by the Sierra Wireless Firmware to applications in order to
provide them unsolicited event information (ie. not in response to an AT command).

ADL applications may subscribe to an unsolicited response in order to receive the event in the
provided handler.

Once an application has subscribed to an unsolicited response, it will have to unsubscribe from it to
stop the callback function being executed every time the matching unsolicited response is sent from
the Sierra Wireless Firmware.

Multiple subscriptions: Each unsolicited response may be subscribed several times. If an application
subscribes to an unsolicited response with handler 1 and then subscribes to the same unsolicited
response with handler 2, every time the ADL parser receives this unsolicited response handler 1 and
then handler 2 will be executed.

3.3.2.1. The adl_atUnSoSubscribe Function

This function subscribes to a specific unsolicited response with an associated callback function: when
the required unsolicited response is sent from the Sierra Wireless Firmware, the callback function will
be executed.

Prototype
s16 adl_atUnSoSubscribe (ascii * UnSostr,

 adl_atUnSoHandler_t UnSohdl);

Parameters

UnSostr:

The name (as a string) of the unsolicited response we want to subscribe to. This parameter
can also be set as an adl_rspID_e response ID.

UnSohdl:

A handler to the callback function associated to the unsolicited response.

The callback function is defined as follow:

 typedef bool (* adl_atUnSoHandler_t) (adl_atUnsolicited_t *)

The argument of the callback function will be a 'adl_atUnsolicited_t' structure, holding
the unsolicited response we subscribed to.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 50

ADL User Guide for Open AT® OS 6.35

The 'adl_atUnsolicited_t' structure defined as follow (it is declared in the adl_at.h header
file):

typedef struct
{
 adl_strID_e RspID; // Standard response ID
 adl_port_e Dest; // Unsolicited response destination port
 u16 StrLength; /* the length of the string (name) of the

 unsolicited response */
 bool RiPulse; // Indicate if RI signal must be pulsed
 u8 Pad[3]; // not used

 ascii StrData[1]; /* a pointer to the string (name) of the
 unsolicited response */

} adl_atUnsolicited_t;

The RspID field is the parsed standard response ID if the received response is a standard
one.

The Dest field is the unsolicited response original destination port. If it is set to
ADL_PORT_NONE, unsolicited response is required to be broadcasted on all ports.

The return value of the callback function will have to be TRUE if the unsolicited string is to be
sent to the external application (on the port indicated by the Dest field, if not set to
ADL_PORT_NONE, otherwise on all ports), and FALSE otherwise.

The RiPulse field indicates if RI signal will be pulsed or not. The RI signal is pulsed if this
field is set to TRUE. If it is set to TRUE, application can set to FALSE to not pulse the RI
signal. If it is set to FALSE, modification of this field by application has no impact, RI signal
will not be pulsed. Refer to "+WRIM" AT command in the "AT command interface guide" to
get more information about RI signal.

Note: That in case of several handlers associated to the same unsolicited response, all of them have to
return TRUE for the unsolicited response to be sent to the external application.
In case of several handlers associated to the same unsolicited response, by default if RiPulse is set to
TRUE, if at least one handler set RiPulse to FALSE, RI signal is not pulsed.
If the unsolicited string is not sent to the external application then RI signal is not pulsed even if
"RiPulse" flag is set to TRUE.

Returned values
• OK on success

• ERROR if an error occurred.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interruption handler
(the function is forbidden in this context).

3.3.2.2. The adl_atUnSoUnSubscribe Function

This function unsubscribes from an unsolicited response and its handler.

Prototype
s16 adl_atUnSoUnSubscribe (ascii * UnSostr,
 adl_atUnSoHandler_t UnSohdl);

Parameters

UnSostr:

The string of the unsolicited response we want to unsubscribe to.

UnSohdl:

The callback function associated to the unsolicited response.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 51

ADL User Guide for Open AT® OS 6.35

Returned values
• OK if the unsolicited response was found.

• ERROR otherwise.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context)

Note: The RI pulse generation behaviour depends on "+WRIM" AT command parameter: RI pulse duration
depends on pulse_width parameter of "+WRIM" AT command.

Example
/* callback function */
bool Wind4_Handler(adl_atUnsolicited_t *paras)
{
 /* Unsubscribe to the '+WIND: 4' unsolicited response */
 adl_atUnSoUnSubscribe("+WIND: 4",
 (adl_atUnSoHandler_t)Wind4_Handler);
 adl_atSendResponse(ADL_AT_RSP, "\r\nWe have received a Wind 4\r\n");
 /* We want this response to be sent to the external application,
 * so we return TRUE */
 return TRUE;
}

/*main function */
void adl_main(adl_InitType_e adlInitType)
{
 /* Subscribe to the '+WIND: 4' unsolicited response */
 adl_atUnSoSubscribe("+WIND: 4",
 (adl_atUnSoHandler_t)Wind4_Handler);
}

3.3.3. Responses
ADL AT responses sending.

The defined operations are:

• adl_atSendResponse sending of the text provided as a response with the type provided to
the port provided

• adl_atSendResponseSpe with the NI provided the command associated is found if it had
subscribed to the response provided the response handler is called else the response is sent
to the port provided

• adl_atSendStdResponse sending of the standard response provided as a response with
the type provided to the port provided

• adl_atSendStdResponseSpe with the NI provided the command associated is found if it
had subscribed to the standard response provided the response handler is called else the
standard response is sent to the port provided

• adl_atSendStdResponseExt sending of standard response with an argument provided as
a response with the type provided to the port provided

• adl_atSendStdResponseExtSpe with the NI provided the command associated is found if
it had subscribed to the standard response with an argument provided the response handler
is called else the standard response with an argument is sent to the port provided

• adl_atSendStdResponseExtStr sending of standard response with a string argument
provided as a response with the type provided to the port provided

• adl_atSendUnsoResponse sending of an unsolicited response with a string argument
provided as a reponse with the port provided and RI flag provided

Note: adl_atSendResponseSpe, adl_atSendStdResponseSpe, adl_atSendStdResponseExtSpe
are to be used with adl_atCmdSendExt function.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 52

ADL User Guide for Open AT® OS 6.35

Note: adl_atCmdSendExt stacks command when call in a command handler to resend the command
whereas adl_atSendResponseSpe, adl_atSendStdResponseSpe,
adl_atSendStdResponseExtSpe unstacks the command and call the appropriate response
handler (if any).

3.3.3.1. Required Header File

The header file for the functions dealing with ADL AT Response Sending Service public interface is:

adl_RspHandler.h

3.3.3.2. The adl_atSendResponse function

This function sends the provided text to any external application connected to the required port, as a
response, an unsolicited response or an intermediate response, according to the requested type.

Prototype
s32 adl_atSendResponse (u16 Type,
 ascii * Text);

Parameters

Type:

This parameter is composed of the response type, and the destination port where to send
the response. The type and destination combination has to be done with the following macro:

 ADL_AT_PORT_TYPE (_port, _type)

Text:

The string of the response.

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.3. The adl_atSendResponseSpe Function

This function sends the provided text as a response, an unsolicited response or an intermediate
response, according to the requested type. With the NI provided, the associated command is found. If
the command had subscribed to this reponse, then the response handler is called. Otherwise, the
response is sent to the port provided.

Prototype
s32 adl_atSendResponseSpe (u16 Type,
 ascii* Text,
 u16 NI);

Parameters

Type:

This parameter is composed of the response type, and the destination port where to send
the response. The type and destination combination has to be done with the following macro:
 ADL_AT_PORT_TYPE (_port, _type).

Text:

The string of the response.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 53

ADL User Guide for Open AT® OS 6.35

NI:

Notification Identifier to find the associate command.

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.4. The adl_atSendStdResponse Function

This function sends the provided standard response to the required port, as a response, an
unsolicited response or an intermediate response, according to the requested type.

Prototype
s32 adl_atSendStdResponse (u8 Type,
 adl_strID_e RspID);

Parameters

Type:

This parameter is composed of the response type, and the destination port where to send
the response. The type & destination combination has to be done with the following macro:
ADL_AT_PORT_TYPE (_port, _type).

RspID:

The ID of the response.

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.5. The adl_atSendStdResponseSpe Function

This function sends the provided standard response as a response, an unsolicited response or an
intermediate response, according to the requested type. With the NI provided, the associated
command is found. If the command had subscribed to this standard response, then the response
handler is called. Otherwise, the standard response is sent to the port provided.

Prototype
s32 adl_atSendStdResponseSpe (u16 Type,
 adl_strID_e RspID,
 u16 NI);

Parameters

Type:

This parameter is composed of the response type, and the destination port where to send
the response. The type & destination combination has to be done with the following macro:
 ADL_AT_PORT_TYPE (_port, _type).

RspID:

The ID of the response.

NI:

Notification Identifier to find the associate command.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 54

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.6. The adl_atSendStdResponseExt Function

This function sends the provided standard response with an argument to the required port, as a
response, an unsolicited response or an intermediate response, according to the requested type.

Prototype
s32 adl_atSendStdResponseExt (u16 Type,
 adl_strID_e RspID,
 u32 arg);

Parameters

Type:

This parameter is composed of the response type, and the destination port where to send
the response. The type and destination combination has to be done with the following macro:
 ADL_AT_PORT_TYPE (_port, _type).

RspID:

The ID of the response.

arg:

Standard response argument (being a u32).

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.7. The adl_atSendStdResponseExtSpe Function

This function sends the provided standard response with an argument as a response, an unsolicited
response or an intermediate response, according to the requested type. With the NI provided, the
associated command is found. If the command had subscribed to this standard response with an
argument, then the response handler is called. Otherwise, the standard response with an argument is
sent to the port provided.

Prototype
s32 adl_atSendStdResponseExtSpe (u16 Type,
 adl_strID_e RspID,
 u32 arg,
 u16 NI);

Parameters

Type:

This parameter is composed of the response type, and the destination port where to send
the response. The type and destination combination has to be done with the following macro:
ADL_AT_PORT_TYPE (_port, _type).

RspID:

The ID of the response.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 55

ADL User Guide for Open AT® OS 6.35

arg:

Standard response argument (being a u32).

NI:

Notification Identifier to find the associate command.

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.8. The adl_atSendStdResponseExtStr Function

This function sends the provided standard response with an argument to the required port, as a
response, an unsolicited response or an intermediate response, according to the requested type.

Prototype
s32 adl_atSendStdResponseExtStr (u8 Type,
 adl_strID_e RspID,
 ascii* arg);

Parameters

Type:

This parameter is composed of the response type, and the destination port where to send
the response. The type and destination combination has to be done with the following macro:
ADL_AT_PORT_TYPE (_port, _type).

RspID:

The ID of the response

arg:

Standard response argument (being a string).

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.9. The adl_atSendUnsoResponse Function

This function sends the text provided to the required port as an unsolicited response with the RIpulse
flag to allows to generate a RI pulse. Refer to "+WRIM" AT command in the "AT command interface
guide" to get more information about RI signal.

Prototype
s32 adl_atSendUnsoResponse (adl_port_e Port,
 ascii* Text,
 bool RIpulse);

Parameters

Port:

The destination port where to send the response.

Text:

The text to be sent.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 56

ADL User Guide for Open AT® OS 6.35

Please note that this is exactly the text string to be displayed on the required port (i.e. all
carriage return and line feed characters ("\r\n" in C language) have to be sent by the
application itself).

RIpulse:

RI pulse flag, if TRUE, RI signal is pulsed.

Note: The RI pulse generation behaviour depends on "+WRIM" AT command parameter:
- if mode parameter of "+WRIM" AT command is set to 0, RI signal cannot be pulsed by
adl_atSendUnsoResponse.
- RI pulse duration depends on pulse_width parameter of "+WRIM" AT command.

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler

3.3.3.10. Additional Macros for Specific Port Access

The above Response sending functions may be also used with the macros below, which provide the
additional Port argument: it should avoid heavy code including each time the ADL_AT_PORT_TYPE
macro call.

#define ADL_AT_RSP 0X01
#define ADL_AT_UNS 0X02
#define ADL_AT_INT 0X04
#define ADL_AT_PORT_TYPE(_port_, _type_)(u16) (_port_ << 8 | _type_)
#define adl_atSendResponsePort(_t,_p,_r)

adl_atSendResponse(ADL_AT_PORT_TYPE(_p,_t),_r)
#define adl_atSendStdResponsePort(_t,_p,_r)

adl_atSendStdResponse(ADL_AT_PORT_TYPE(_p,_t),_r)
#define adl_atSendStdResponseExtPort(_t,_p,_r,_a)

adl_atSendStdResponseExt(ADL_AT_PORT_TYPE(_p,_t),_r,_a)

Description

ADL_AT_RSP: The text/ID associated to this type will be sent as a
standard or terminal response (have to ends an
incoming AT command). A destination port has to be
specified. Sending such a response will flush all
previously buffered unsolicited responses on the
required port.

ADL_AT_UNS: The text/ID associated to this type will be sent as an
unsollicited response (text to be displayed out of a
currently running command process). For the
required port (if any) or for each currently opened
port (if the ADL_AT_PORT_TYPE macro is not used),
if an AT command is currently running (i.e. the
command was sent by the external application, but
this command answer has not be sent back yet), any
unsolicited response will automatically be buffered,
until a terminal response is sent on this port.

ADL_AT_INT: The text/ID associated to this type will be sent as an
intermediate response (text to display while an
incoming AT command is running). A destination port
has to be specified. Sending such a response will
just display the required text, without flushing all
previously buffered unsolicited responses on the
required port.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 57

ADL User Guide for Open AT® OS 6.35

ADL_AT_PORT_TYPE: The _port argument has to be a defined value of the
adl_port_e type, and this required port has to be
available (cf. the AT/FCM port Service) ; sending a
response on an Open AT® the GSM or GPRS based
port will have no effects).

Note: With the ADL_AT_UNS type value, if the
ADL_AT_PORT_TYPE macro is not used, the
unsolicited response will be broadcasted on all
opened ports.

Note: If the ADL_AT_PORT_TYPE macro is not used with the
ADL_AT_RSP & ADL_AT_INT types, responses
will be by default sent on the UART 3.31 port. If
this port is not opened, responses will not be
displayed.

adl_atSendResponsePort: Additional Port parameter definition for response
sending function adl_atSendResponse.

adl_atSendStdResponsePort: Additional Port parameter definition for response
sending function adl_atSendStdResponse.

adl_atSendStdResponseExtPort: Additional Port parameter definition for response
sending function adl_atSendStdResponseExt.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 58

ADL User Guide for Open AT® OS 6.35

3.3.4. Incoming AT Commands
An ADL application may subscribe to an AT command string, in order to receive events each time
either an external application sends this AT command on one of the embedded module's ports or this
AT command is sent with adl_atCmdSendExt API (and an appropriate NI parameter). Once the
application has subscribed to a command, it will have to unsubscribe to stop the callback function
being executed every time this command is sent either by an external application or with
adl_atCmdSendExt API.

Multiple subscriptions: An application subscribes to a command with a handler (handler1) and
subscribes then to the same command with another handler (handler2). Every time this command is
sent either by the external application or with adl_atCmdSendExt API the last subscribed handler
(handler2) will be called. Handler1 will only be called if handler2 resends the subscribed command
with adl_atCmdSendExt API and the provided NI.

Important note about incoming concatenated command:

ADL is able to recognize and process concatenated commands coming from external applications
(Please refer to AT Commands Interface Guide for more information on concatenated commands
syntax).

In this case, this port enters a specific concatenation processing mode, which will end as soon as the
last command replies OK, or if one of the used command replies an ERROR code. During this specific
mode, all other external command requests will be refused on this port: any external application
connected to this port will receive a "+CME ERROR: 515" code if it tries to send another command.
The embedded application can continue using this port for its specific processes, but it has to be
careful to send one (at least one, and only one) terminal response for each subscribed command.

If a subscribed command is used in a concatenated command string, the corresponding handler will
be notified as if the command was used alone.

In order to handle properly the concatenation mechanism, each subscribed command has to finally
answer with a single terminal response (ADL_STR_OK, ADL_STR_ERROR or other ones), otherwise
the port will stay in concatenation processing mode, refusing all internal and external commands on
this one.

The defined operations are:

• A adl_atCmdSubscribeExt function to subscribe to a command with providing a Context.

• A adl_atCmdSubscribe function to subscribe to a command without providing a Context.

• A adl_atCmdUnSubscribe function to unsubscribe to a command.

3.3.4.1. Required Header File

The required header file is:

adl_CmdHandler.h

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 59

ADL User Guide for Open AT® OS 6.35

3.3.4.2. The adl_atCmdPreParser_t Structure

This structure contains information about AT command.

Code
typedef struct
{
 u16 Type; // Type
 u8 NbPara; // Number of parameters
 adl_port_e Port; // Port
 wm_lst_t ParaList; // List of parameters
 u16 StrLength; // Incoming command length

 u16 NI; // Notification Identifier

 void * Contxt; // Context
 ascii StrData[1]; // Incoming command address

} adl_atCmdPreParser_t;

Description

Type

Incoming command type (will be one of the required ones at subscription time), detected by
the ADL pre-processing.

NbPara

Non NULL parameters number (if Type is ADL_CMD_TYPE_PARA), or 0 (with other type
values).

Port:

Port on which the command was sent by the external application.

ParaList:

Only if Type is ADL_CMD_TYPE_PARA. Each parameter may be accessed by the
ADL_GET_PARAM(_p,_i) macro. If a string parameter is provided (e.g.
AT+MYCMD="string"), the quotes will be removed from the returned string (eg.
ADL_GET_PARAM(para,0) will return "string" (without quotes) in this case). If a
parameter is not provided (e.g. AT+MYCMD), the matching list element will be set to
NULL (e.g. ADL_GET_PARAM(para,0) will return NULL in this case).

StrLength:

Incoming command string buffer length.

NI:

This parameter is to hold the Notification Identifier provided by the command handler.

Contxt:

A context holding information gathered at the time the command is subscribed (if provided).

StrData[1]:

Incoming command string buffer address. If the incoming command from the external
application is containing useless spaces (" ") or semi-colon (";") characters, those will
automatically be removed from the command string (e.g. if an external application sends
"AT+MY CMD;" string, the command handler will receive "AT+MYCMD").

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 60

ADL User Guide for Open AT® OS 6.35

3.3.4.3. The adl_ atCmdSubscriptionPort_e Type

Basic required subscription port affected.

Code
typedef enum
{
 ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT,
 ADL_CMD_SUBSCRIPTION_ALL_PORTS
} adl_atCmdSubscriptionPort_e;

Description

ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT: The subscription is only concerning
command received on the external
port.

ADL_CMD_SUBSCRIPTION_ALL_PORTS: The subscription is concerning
command received on all ports.

Note: In this current release ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT is the only valid choice.

3.3.4.4. ADL_GET_PARAM

Macro to get the requested parameter.

Code
#define ADL_GET_PARAM (_P_,
 i)((ascii*)wm_lstGetIitem(_P_->ParaList,_i_))

Parameters

P:

command handler parameter (refer to adl_atCmdPreParser_t structure about pointer to use
).

i:

parameter index from 0 to NbPara (refer to adl_atCmdPreParser_t structure for more
information about NbPara).

3.3.4.5. The adl_atCmdHandler_t Command Handler

Such a call-back function has to be supplied to ADL through the adl_atCmdSubscribe interface in
order to process AT command subscribed.

Prototype
typedef void (*) adl_atCmdHandler_t (adl_atCmdPreParser_t *Params)

Parameters

Params:

Contains information about AT response (refer to adl_atCmdPreParser_t for more
information).

Note: The command handler has the responsability to send unsollicited/intermediate reponses and at least
one terminal response.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 61

ADL User Guide for Open AT® OS 6.35

3.3.4.6. The adl_atCmdSubscribe Function

This function subscribes to a specific command with an associated callback function, so that next time
the required command is sent exclusively by an external application, the callback function will be
executed.

Prototype
s16 adl_atCmdSubscribe (ascii * Cmdstr,
 adl_atCmdHandler_t Cmdhdl,
 u16 Cmdopt);

Parameters

Cmdstr:

The string (name) of the command we want to subscribe to. Since this service only handles
AT commands, this string has to begin by the "AT" characters.

Cmdhdl:

The handler of the callback function associated to the command. (Refer to
adl_atCmdHandler_t for more information about callback function).

Cmdopt:

This flag combines with a bitwise ‘OR’ (‘|’ in C language) the following information:

Command type Value Meaning

ADL_CMD_TYPE_PARA 0x0100

'AT+cmd=x, y' is allowed. The execution of the callback
function also depends on whether the number of
argument is valid or not. Information about number of
arguments is combined with a bitwise 'OR' :
ADL_CMD_TYPE_PARA | 0xXY , where X which
defines maximum argument number for incoming
command and Y which defines minimum argument
number for incoming command.

ADL_CMD_TYPE_TEST 0x0200 ‘AT+cmd=?’ is allowed.

ADL_CMD_TYPE_READ 0x0400 ‘AT+cmd?’ is allowed.

ADL_CMD_TYPE_ACT 0x0800 ‘AT+cmd’ is allowed.

ADL_CMD_TYPE_ROOT 0x1000

All commands starting with the subscribed string are
allowed but without the ending character ";" which is
parsed for concatenated commands mode. The
handler will only receive the whole AT string (no
parameters detection). For example, if the "at-" string is
subscribed, all "at-cmd1", "at-cmd2", etc. strings will be
received by the handler, however the only string "at-" is
not received.

ADL_CMD_TYPE_ROOT_EXT 0x2000

All commands starting with the subscribed string are
allowed even with the ending character ";" this means
that such a command will not be usable in a
concatenated AT commands string. The handler will
only receive the whole AT string (no parameters
detection). For example, if the "at-" string is
subscribed, all "at-cmd1", "at-cmd2", etc. strings will be
received by the handler, however the only string "at-" is
not received.
Note: In this current release
ADL_CMD_TYPE_ROOT_EXT is behaving like
ADL_CMD_TYPE_ROOT

Note: If ADL_CMD_TYPE_ROOT_EXT is associated with others it has priority and therefore the command
cannot be recognized as a concatenated one.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 62

ADL User Guide for Open AT® OS 6.35

Note: In this current release ADL_CMD_TYPE_ROOT_EXT is behaving like ADL_CMD_TYPE_ROOT.

Returned values
• OK on success.

• ERROR if an error occurred.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.3.4.7. The adl_atCmdSubscribeExt Function

This function subscribes to a specific command with an associated callback function, so that next time
the required command is sent by an external application or on all ports (depending on the Cmdport
parameter), the callback function will be executed.

Prototype
s16 adl_atCmdSubscribeExt (ascii * Cmdstr,
 adl_atCmdHandler_t Cmdhdl,
 u16 Cmdopt,
 void * Contxt,
 adl_atCmdSubscriptionPort_e Cmdport);

Parameters

Cmdstr:

The string (name) of the command we want to subscribe to. Since this service only handles
AT commands, this string has to begin by the "AT" characters.

Cmdhdl:

The handler of the callback function associated to the command. (Refer to
adl_atCmdHandler_t for more information about callback function).

Cmdopt:

This flag combines with a bitwise ‘OR’ (‘|’ in C language) the following information:

Command type Value Meaning

ADL_CMD_TYPE_PARA 0x0100

'AT+cmd=x, y' is allowed. The execution of the callback
function also depends on whether the number of
argument is valid or not. Information about number of
arguments is combined with a bitwise 'OR' :
ADL_CMD_TYPE_PARA | 0xXY , where X which
defines maximum argument number for incoming
command and Y which defines minimum argument
number for incoming command.

ADL_CMD_TYPE_TEST 0x0200 ‘AT+cmd=?’ is allowed.

ADL_CMD_TYPE_READ 0x0400 ‘AT+cmd?’ is allowed.

ADL_CMD_TYPE_ACT 0x0800 ‘AT+cmd’ is allowed.

ADL_CMD_TYPE_ROOT 0x1000

All commands starting with the subscribed string are
allowed but without the ending character ";" which is
parsed for concatenated commands mode. The
handler will only receive the whole AT string (no
parameters detection). For example, if the "at-" string is
subscribed, all "at-cmd1", "at-cmd2", etc. strings will be
received by the handler, however the only string "at-" is
not received.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 63

ADL User Guide for Open AT® OS 6.35

Command type Value Meaning

ADL_CMD_TYPE_ROOT_EXT 0x2000

All commands starting with the subscribed string are
allowed even with the ending character ";" this means
that such a command will not be usable in a
concatenated AT commands string. The handler will
only receive the whole AT string (no parameters
detection). For example, if the "at-" string is
subscribed, all "at-cmd1", "at-cmd2", etc. strings will be
received by the handler, however the only string "at-" is
not received.
Note: In this current release
ADL_CMD_TYPE_ROOT_EXT is behaving like
ADL_CMD_TYPE_ROOT

Note: If ADL_CMD_TYPE_ROOT_EXT is associated with others it has priority and therefore the command
cannot be recognized as a concatenated one.

In this current release ADL_CMD_TYPE_ROOT_EXT is behaving like ADL_CMD_TYPE_ROOT

Contxt:

Context made to hold information gathered at the time the command is subscribed.

Cmdport:

Port on which the command is subscribed (type of to adl_atCmdSubscriptionPort_e).

 ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT
 ADL_CMD_SUBSCRIPTION_ALL_PORTS

Note: In this current release ADL_CMD_SUBSCRIPTION_ONLY_EXTERNAL_PORT is the only valid choice

Returned values
• OK on success.

• ERROR if an error occurred.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler.

3.3.4.8. The adl_atCmdUnSubscribe Function

This function unsubscribes from a command and its handler.

Prototype
s16 adl_atCmdUnSubscribe (ascii * Cmdstr,

 adl_atCmdHandler_t Cmdhdl);

Parameters

Cmdstr:

The string (name) of the command we want to unsubscribe from.

Cmdhdl:

The handler of the callback function associated to the command.

Returned values
• OK on success,

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler.

• ERROR otherwise.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 64

ADL User Guide for Open AT® OS 6.35

3.3.4.9. The adl_atCmdSetQuietMode Function

This function allows to set Quiet mode. In this mode, terminal responses are not send. This function
has the same behaviour as ATQ command behaviour.

Prototype
void adl_atCmdSetQuietMode (bool IsQuiet)

Parameters

IsQuiet:

Quiet mode setting:

 TRUE: Quiet mode is activated

 FALSE: Quiet mode is deactivated. Default value.

3.3.4.10. Example

This example demonstrates how to use the AT Command Subscription/Unsubscriptions service in a
nominal case (error cases not handled) with a embedded module.

Complete examples using the AT Command service are also available on the SDK.

// ati callback function
 void ATI_Handler(adl_atCmdPreParser_t *paras)
 {
 // we send a terminal response
 adl_atSendStdResponsePort(ADL_AT_RSP, paras->Port, ADL_STR_OK);
 }

 // function 2
 void function2(adl_InitType_e adlInitType)
 {
 // We unsubscribe the command ;
 adl_atCmdUnSubscribe("ati",
 (adl_atCmdHandler_t)ATI_Handler);
 }

 // function 1
 void function1(adl_InitType_e adlInitType)
 {
 // Subscribe to the 'ati’ command.
 adl_atCmdSubscribe("ati",
 (adl_atCmdHandler_t)ATI_Handler,
 ADL_CMD_TYPE_ACT);
 }

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 65

ADL User Guide for Open AT® OS 6.35

3.3.5. Outgoing AT Commands
The following functions allow to send a command on the required port and allows the subscription to
several responses and intermediate responses with one associated callback function, so that when
any of the responses or intermediate responses we subscribe to will be received by the ADL parser,
the callback function will be executed.

The defined operations are:

• adl_atCmdCreate function to send a command on the required port and allow the
subscription to several responses and intermediate responses with one associated callback
function, so that when any of the responses or intermediate responses we subscribe to will be
received by the ADL parser, the callback function will be executed.

• adl_atCmdSend same function as adl_atCmdCreate without the rspflag argument and
instead sending the command to the Open AT® internal port.

• adl_atCmdSendExt same function as adl_atCmdCreate without the rspflag argument and
instead the port argument plus a Notification Identifier and a Context.

• adl_atCmdSendText function to allow to provide a running "Text Mode" command on a
specific port (e.g. "AT+CMGW") with the required text. This function has to be used as soon
as the prompt response ("> ") comes in the response handler provided on
adl_atCmdCreate/adl_atCmdSend/ adl_atCmdSendExt function call.

Note: Now adl_atCmdSendExt (with a NI parameter different from 0) finds out if the command has been
subscribed. If the command has been subscribed the handler is called otherwise the command is
executed (as it is when called with adl_atCmdSend or adl_atCmdCreate). If the command has
multiple subscription the last handler subscribed is called. In order for any other handler to be called
the last handler has to resend the command with adl_atCmdSendExt API and the NI parameter
provided so that the penultimate handler will be called and so on.

Note: For any multiply subscribed command sent by an external application on one of the embedded
module's ports all handlers were called at the same time. Now there is a change of behaviour where
only the last subscribed handler is called (by resending the command using adl_atCmdSendExt API
and the provided NI the penultimate handler is called and so on ...).

Note: If any Inner AT Command (as decribed in section Inner AT Commands Configuration of ADL UGD)
is subscribed its handler has to resend the command with adl_atCmdSendExt API and the NI
parameter provided so that ADL internal handler is called. Otherwise as explained in section Inner AT
Commands Configuration of ADL UGD it may affect ADL correct behaviour.

Note: If a command is only subscribed once. Sending this command will call the handler. If the handler
resends the command with adl_atCmdSendExt API and the NI parameter provided the command
will be sent for execution. Likewise if a command is multiply subscribed. Sending this command with
adl_atCmdSendExt API and the NI parameter provided will call the last handler if at some point
(after re-sending the command with adl_atCmdSendExt API and the NI parameter provided) the
first handler is called re-sending the command with adl_atCmdSendExt API and the NI parameter
provided will send the command for execution.

Note: If the required port is not opened, the functions return an error(ADL_RET_ERR_PARAM). In the USB
case, the cable must be plugged and the enumeration with the host has to succeed before proceeding
to one of these operations.

3.3.5.1. Required Header File

The header file is:

adl_CmdStackHandler.h

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 66

ADL User Guide for Open AT® OS 6.35

3.3.5.2. The adl_atResponse_t Structure

This structure contains information about AT command response.

code
typedef struct
{
 adl_strID_e RspID; // RspID
 adl_port_e Dest; // Dest
 u16 StrLength; // Response length

 void * Contxt; // Context
 bool IsTerminal; // Terminal response flag
 u8 NI; // Notification Identifier
 u8 Type; // Type of the response
 u8 Pad [1]; // Reserved for future use
 ascii StrData[1]; // Response address

} adl_atResponse_t;

Description

RspID:

Detected standard response ID if the received response is a standard one.

Dest:

Port on which the command has been executed; it is also the destination port where the
response will be forwarded if the handler returns TRUE.

StrLength:

Response string buffer length.

Contxt:

A context holding information gathered at the time the command is sent (if provided).

IsTerminal:

A boolean flag indicating if the received response is the terminal one (TRUE) or an
intermediate one (FALSE).

NI:

This parameter is to hold the Notification Identifier provided by the command initiating the
response.

Type:

Type of the response.

StrData[1]:

Response string buffer address.

3.3.5.3. The adl_atRspHandler_t

Such a call-back function has to be supplied to ADL through the adl_atCmdCreate/
adl_atCmdSend/adl_atCmdSendExt interface in order to process AT response subscribed.

Prototype
typedef bool(*) adl_atRspHandler_t (adl_atResponse_t *Params)

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 67

ADL User Guide for Open AT® OS 6.35

Parameters

Params:

Contains information about AT response (refer to adl_atResponse_t for more information).

Returned value

The return value of the callback function has to be TRUE if the response string has to be
sent to the provided port, FALSE otherwise.

3.3.5.4. The ADL_NI_LAUNCH

ADL_NI_LAUNCH to enable searching handler process.

Code
#define ADL_NI_LAUNCH 0xFE

Description

 ADL_NI_LAUNCH:

To enable searching handler process.

If ADL_NI_LAUNCH is provided in API, adl_atCmdSendExt searching handler process will
be launched: If the command is subscribed, the handler will be called. Otherwise, the
command will be executed.

3.3.5.5. The adl_atCmdCreate Function

Add command to the required port command stack, in order to be executed as soon as this port is
ready.

Prototype
s8 adl_atCmdCreate (ascii * atstr,

 u16 rspflag,
 adl_atRspHandler_t rsphdl,
 …);

Parameters

atstr:

The string (name) of the command we want to send. Since this service only handles AT
commands, this string has to begin by the "AT" characters.

rspflag:

This parameter is composed of the unsubscribed responses destination flag, and the port
where to send the command. The flag and destination combination has to be done with the
following macro:

 ADL_AT_PORT_TYPE (_port, _flag)

• The _port argument has to be a defined value of the adl_port_e type, and this required port
has to be available (cf. the AT/FCM port Service). If this port is not available, or if it is a GSM
or GPRS based one, the command will not be executed.

• The _flag argument has to be one of the values defined below:

 If set to TRUE: the responses and intermediate responses of the sent command that are
not subscribed (ie. not listed in the adl_atCmdCreate function arguments) will be sent
on the required port.

 If set to FALSE they will not be sent to the external application.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 68

ADL User Guide for Open AT® OS 6.35

• If the ADL_AT_PORT_TYPE macro is not used, by default the command will be sent to the
Open AT® virtual port (see next paragraph for more information about AT commands ports).

rsphdl:

The response handler of the callback function associated to the command.

…:

A list of strings of the response to subscribed to. This list has to be terminated by NULL.

Returned values
• OK on success

• ADL_RET_ERR_PARAM if an error occurred

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler

• ADL_RET_ERR_UNKNOWN_HDL when the _port argument correspond to a port which is closed.

Note: Arguments rsphdl and the list of subscribed responses can be set to NULL to only send the
command.

Note: If the _port parameter is set to ADL_PORT_NONE the command will be sent on
ADL_PORT_OPEN_AT_VIRTUAL_BASE port.

Note: ATQ commands should not be used with adl_atCmdCreate / adl_atCmdSend /
adl_atCmdSendExt API but instead adl_atCmdSetQuietMode API is to be used.

3.3.5.6. The adl_atCmdSend Function

Add command to the internal default port command stack, in order to be executed as soon as this port
is ready.

Prototype
s8 adl_atCmdSend (ascii * atstr,

 adl_atRspHandler_t rsphdl,
 …);

Parameters

atstr:

The string (name) of the command we want to send. Since this service only handles AT
commands, this string has to begin by the "AT" characters.

rsphdl:

The response handler of the callback function associated to the command.

…:

A list of strings of the response to subscribed to. This list has to be terminated by NULL.

Returned values
• OK on success

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler

• ADL_RET_ERR_PARAM if an error occurred

Note: Arguments rsphdl and the list of subscribed responses can be set to NULL to only send the
command.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 69

ADL User Guide for Open AT® OS 6.35

3.3.5.7. The adl_atCmdSendExt Function

This function sends AT command with 2 added arguments compared to adl_atCmdCreate /
adl_atCmdSend: a NI (Notification Identifier) and a Context.

Add command to the required port command stack, in order to be executed as soon as this port is
ready.

Prototype
s8 adl_atCmdSendExt (ascii * atstr,

 adl_port_e port,
 u16 NI,
 void * Contxt,
 adl_atRspHandler_t rsphdl,

 …);

Parameters

atstr:

The string (name) of the command we want to send. Since this service only handles AT
commands, this string has to begin by the "AT" characters.

port:

The required port on which the command will be executed.

NI:

This parameter is to hold the Notification Identifier. The NI parameter can have the following
values:

• 0 (default value): the command is directly sent for execution (as when using
adl_atCmdCreate or adl_atCmdSend)

• ADL_NI_LAUNCH: the searching handler process is launched:

 If the command is subscribed the handler will be called

 Else the command will be executed

• any para->NI provided by the handler (if called inside a handler)

Contxt:

Context made to hold information gathered at the time the command was sent.

rsphdl:

The response handler of the callback function associated to the command (see Note below).

…:

A list of strings of the response to subscribed to. This list has to be terminated by NULL (see
Note below).

Returned values
• OK on success

• ADL_RET_ERR_PARAM if an error occurred

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler

Note: Arguments rsphdl and the list of subscribed responses can be set to NULL to only send the
command.

Note: The command AT+CPIN=<pin_code> is automatically subscribed by the Open AT OS. So if the user
wants to send the command AT+CPIN=<pin_code> through the OPEN AT application, API
adl_atCmdSendExt() with a NI parameter needs to be used . This way the ADL internal handler would
be called and the correct SIM state would be maintained by the Open AT OS.

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 70

ADL User Guide for Open AT® OS 6.35

3.3.5.8. The adl_atCmdSendText Function

Sends text for a running text command.

Prototype
s8 adl_atCmdSendText (adl_port_e Port,
 ascii * Text);

Parameters

Port:

Port on which is running the "Text Mode" command, waiting for some text input.

Text:

Text to be provided to the running "Text Mode" command on the required port. If the text
does not end with a ‘Ctrl-Z’ character (0x1A code), the function will add it automatically.

Returned values
• OK on success

• ADL_RET_ERR_PARAM if an error occurred

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level Interruption handler.

3.3.5.9. Examples

This example demonstrates how to use the AT Command Sending service in a nominal case (error
cases not handled) with a embedded module.

Complete examples using the AT Command service are also available on the SDK.

Example 1
// ati responses callback function
 s16 ATI_Response_Handler(adl_atResponse_t *paras)
 {
 TRACE((1, "Reponse handled"));
 TRACE((1, paras->StrData));
 return FALSE;
 }

 // function 1
 void function1(adl_InitType_e adlInitType)
 {
 // We send ati and subscribe to its responses
 adl_atCmdSend("ati",
 (adl_atRspHandler_t)ATI_Response_Handler,
 "*",
 NULL);
 }

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 71

ADL User Guide for Open AT® OS 6.35

Example 2
// at+bbb responses handler function
 bool B_RspHandler (adl_atResponse_t * paras)
 {
 TRACE ((1, "In B_RspHandler - printing out response"));
 // the return value is TRUE to print out responses
 return TRUE;
 }
 // at+aaa command handler function
 void A_CmdHandler(adl_atCmdPreParser_t * paras)
 {
 TRACE ((1, "In A_CmdHandler - sending AT+BBB cmd"));
 // sending at+bbb command with adl_atCmdSendExt and provided NI
 // at+bbb is subscribed so command handler B_CmdHandler is to be
 called
 adl_atCmdSendExt("at+bbb", paras->Port, paras->NI, NULL,
 B_RspHandler, "*", NULL);
 }

 // ati responses handler function
 bool C_RspHandler (adl_atResponse_t * paras)
 {
 TRACE ((1, "In C_RspHandler - transferring response"));
 // ati responses are handled and transfered to the previous
 responses handler subscribes with the same NI
 adl_atSendResponseSpe (ADL_AT_PORT_TYPE (paras->Dest, paras->Type),
 paras->StrData, paras->NI);
 return FALSE;
 }
 // at+bbb command handler function
 void B_CmdHandler(adl_atCmdPreParser_t * paras)
 {
 TRACE ((1, "In B_CmdHandler - sending ATI cmd"));
 // sending ati command with adl_atCmdSendExt and provided NI
 // ati is not subscribed hence the AT command is sent for execution
 adl_atCmdSendExt("ati", TRUE, paras->NI, NULL, C_RspHandler, "*",
 NULL);
 }

 void adl_main (adl_InitType_e InitType)
 {
 TRACE ((1, "Embedded Application : Main"));

 // at+aaa is subscribed with A_CmdHandler command handler
 adl_atCmdSubscribe("AT+AAA",A_CmdHandler,ADL_CMD_TYPE_ACT);
 // at+bbb is subscribed with B_CmdHandler command handler
 adl_atCmdSubscribe("AT+BBB",B_CmdHandler,ADL_CMD_TYPE_ACT);
 }

API
AT Commands Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 72

ADL User Guide for Open AT® OS 6.35

Example 3
// ati responses handler function
 bool ATI_RspHandler2 (adl_atResponse_t * paras)
 {
 TRACE ((1, "In ATI_RspHandler2 - printing out response"));
 // ati responses are handled
 // the return value is TRUE to print out responses
 return TRUE;
 }
 // ati command handler function
 void ATI_CmdHandler1(adl_atCmdPreParser_t * paras)
 {
 TRACE ((1, "In ATI_CmdHandler1 - re-sending AT cmd"));
 // This handler is the last subscribed so the first called
 // sending ati command with adl_atCmdSendExt() and provided NI
 // ati is again subscribed so next command handler ATI_CmdHandler2()
 is to be called
 adl_atCmdSendExt(paras->StrData, paras->Port, paras->NI, NULL,
 ATI_RspHandler2, "*", NULL);
 }
 // ati responses handler function
 bool ATI_RspHandler3 (adl_atResponse_t * paras)
 {
 TRACE ((1, "In ATI_RspHandler3 - transferring response"));
 // ati responses are handled and transfered to the previous
 responses handler subscribes with the same NI
 adl_atSendResponseSpe (ADL_AT_PORT_TYPE (paras->Dest, paras->Type),
 paras->StrData, paras->NI);
 return FALSE;
 }
 // ati command handler function
 void ATI_CmdHandler2(adl_atCmdPreParser_t * paras)
 {
 TRACE ((1, "In ATI_CmdHandler2 - sending AT cmd for execution (no
 more handlers)"));
 // sending ati command with adl_atCmdSendExt() and provided NI
 // ati is not subscribed anymore (both subscribed handler have been
 called) hence the AT command is sent for execution
 adl_atCmdSendExt(paras->StrData, paras->Port, paras->NI, NULL,
 ATI_RspHandler3, "*", NULL);
 }

 void adl_main (adl_InitType_e InitType)
 {
 TRACE ((1, "Embedded Application : Main"));

 // ati is subscribed twice
 // - first with ATI_CmdHandler2 command handler
 // - then with ATI_CmdHandler1 command handler
 adl_atCmdSubscribe("ati",ATI_CmdHandler2,ADL_CMD_TYPE_ACT);
 adl_atCmdSubscribe("ati",ATI_CmdHandler1,ADL_CMD_TYPE_ACT);
 }

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 73

ADL User Guide for Open AT® OS 6.35

3.4. Timers
ADL supplies Timers Service interface to allow application tasks to require and handle timer related
events.

The defined operations are:

• subscription functions (adl_tmrSubscribe & adl_tmrSubscribeExt) usable to require a
timer event for the current task

• A handler call-back type (adl_tmrHandler_t) usable to receive timer related events

• An unsubscription function (adl_tmrUnSubscribe) usable to stop a currently running timer.

3.4.1. Required Header Files
The header file for the functions dealing with timers is:

adl_TimerHandler.h

3.4.2. The adl_tmr_t Structure
This structure is used to store timers related parameters. adl_tmrSubscribe and
adl_tmrSubscribeExt return a pointer on this structure, which will be usable later to unsubscribe
from the timer through adl_tmrUnSubscribe.

Code:
typedef struct
{
 u8 TimerId;
 adl_tmrCyclicMode_e bCyclic;
 adl_tmrType_e TimerType;
 u32 TimerValue;
 adl_tmrHandler_t TimerHandler;
} adl_tmr_t;

Description

TimerId

0 based internal timer identifier. This identifier will be provided to adl_tmrHandler_t
handler on each call.

bCyclic

Remembers the associated timer cyclic mode.

TimerType

Remembers the programmed timer granularity.

TimerValue

Remembers the programmed timer duration.

TimerHandler

Remembers the timer handler address, provided at subscription time.

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 74

ADL User Guide for Open AT® OS 6.35

3.4.3. Defines

3.4.3.1. ADL_TMR_100MS_MAX_VALUE

ADL_TMR_100MS_MAX_VALUE defines the maximal value that can be set for a timer with a granularity
of 100 ms. Refer to the TimerValue parameter in adl_tmrSubscribe function and
adl_tmrSubscribeExt function. The maximal period of the timer is about 7 days.

Code
#define ADL_TMR_100MS_MAX_VALUE 0x5E9000

Description
ADL_TMR_100MS_MAX_VALUE : Max value for 100ms-timer

3.4.3.2. ADL_TMR_MS_TO_TICK

Several conversion from timing unit to ticks.

Code
#define ADL_TMR_MS_TO_TICK(MsT) ((u32)(((MsT)*7)+64)>>7)

Description
ADL_TMR_MS_TO_TICK(MsT): Timer conversion from milliseconds to ticks

3.4.3.3. ADL_TMR_100MS_TO_TICK

Several conversion from timing unit to ticks.

Code
#define ADL_TMR_100MS_TO_TICK(MsT) ((u32)(((MsT)*693L)+64)>>7)

Description
ADL_TMR_100MS_TO_TICK(MsT): From 100 milliseconds to ticks

3.4.3.4. ADL_TMR_S_TO_TICK

Several conversion from timing unit to ticks.

Code
#define ADL_TMR_S_TO_TICK(SecT) ((u32)(((SecT)*6934L)+64)>>7)

Description
ADL_TMR_S_TO_TICK(SecT): From seconds to ticks

3.4.3.5. ADL_TMR_MN_TO_TICK

Several conversion from timing unit to ticks.

Code
#define ADL_TMR_MN_TO_TICK(MnT) ((u32)(((MnT)*416034L)+64)>>7)

Description
ADL_TMR_MN_TO_TICK(MnT): From minutes to ticks

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 75

ADL User Guide for Open AT® OS 6.35

3.4.4. The adl_tmrType_e
Allows to define the granularity (time unit) for the adl_tmrSubscribe, adl_tmrSubscribeExt &
adl_tmrUnSubscribe functions.

Code
typedef enum
{
 ADL_TMR_TYPE_100MS,
 ADL_TMR_TYPE_TICK,
 ADL_TMR_TYPE_LAST
} adl_tmrType_e;

Description

ADL_TMR_TYPE_100MS: 100ms granularity timer.

ADL_TMR_TYPE_TICK: 18.5ms ticks granularity timer.

ADL_TMR_TYPE_LAST: Reserved for internal use.

3.4.5. The adl_tmrCyclicMode_e
Allows to define the required cyclic option at timer subscription time.

Note: When using the ADL_TMR_CYCLIC_OPT_ON_EXPIRATION option, there is no minimum time
guaranteed between two timer events, since if the application is preempted for some time, timer
events will continue to be generated even if the application is not notified.

Note: This is not the case with the ADL_TMR_CYCLIC_OPT_ON_RECEIVE option: since the timer is re-
programmed only when the application is notified, the duration between two events is guaranteed to
be at least equal to the timer period.

Code
typedef enum
{
 ADL_TMR_CYCLIC_OPT_NONE,
 ADL_TMR_CYCLIC_OPT_ON_EXPIRATION,
 ADL_TMR_CYCLIC_OPT_ON_RECEIVE,
 ADL_TMR_CYCLIC_OPT_LAST
} adl_tmrCyclicMode_e;

Description

ADL_TMR_CYCLIC_OPT_NONE: One shot timer: the timer will be automatically be
unsubscribed as soon as the event is notified to the
application.

ADL_TMR_CYCLIC_OPT_ON_EXPIRATION: Cyclic timer, which will be re-programmed on
expiration, just before the event is sent to the
application.

ADL_TMR_CYCLIC_OPT_ON_RECEIVE: Cyclic timer, which will be re-programmed on event
reception, just before notifying the application's
handler.

ADL_TMR_CYCLIC_OPT_LAST: Reserved for internal use.

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 76

ADL User Guide for Open AT® OS 6.35

3.4.6. The adl_tmrHandler_t
Call-back function, provided in an adl_tmrSubscribe or adl_tmrSubscribeExt call, and notified
each time the related timer occurs.

Prototype:
typedef void(*) adl_tmrHandler_t (u8 ID,
 void * Context);

Parameters

ID

Timer internal identifier (readable from the adl_tmr_t pointer returned at subscription time).

Context

Pointer on the application context provided to adl_tmrSubscribeExt function. Will be set to
NULL is the timer was programmed with adl_tmrSubscribe function.

Note: Such a call-back function will always be called in the task context where the timer was programmed
with adl_tmrSubscribe or adl_tmrSubscribeExt.

Note: Timer events should be delayed if the applicative task is pre-empted due to higher priority (applicative
or firmware) tasks processing.

3.4.7. The adl_tmrSubscribe Function
This function starts a timer with an associated callback function. The callback function will be
executed as soon as the timer expires, in the task context where the adl_tmrSubscribe function was
called.

Prototype
adl_tmr_t *adl_tmrSubscribe(bool bCyclic,

 u32 TimerValue,
 adl_tmrType_e TimerType,
 adl_tmrHandler_t Timerhdl);

Parameters

bCyclic:

This boolean flag indicates whether the timer is cyclic (TRUE) or not (FALSE). A cyclic timer
is automatically restarted before calling the application event handler.

TimerValue:

The number of periods after which the timer expires (depends on TimerType parameter
required time unit).

If an ADL_TMR_TYPE_100MS timer is subscribed, the maximal value of this parameter is
ADL_TMR_100MS_MAX_VALUE.

TimerType:

Unit of the TimerValue parameter (uses the adl_tmrType_e type).

Timerhdl:

The callback function associated to the timer (using the adl_tmrHandler_t type).

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 77

ADL User Guide for Open AT® OS 6.35

Returned values
• A positive timer handle (an adl_tmr_t pointer) on success, usable to unsubscribe later from

the timer service; a NULL or negative value (the timer is not started).

• On failure, a negative error value:

• NULL If TimerValue is 0 or too big, or if there is no additional timer resource available.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low or high level interrupt
handler (the function is forbidden in this context).

Note: Since the embedded module time granularity is 18.5 ms, the 100 ms steps are emulated, reaching a
value as close as possible to the requested one modulo 18.5. E.g., if a 20 * 100ms timer is required,
the real time value will be 1998 ms (108 * 18.5ms).

Note: The maximal value of "TimerValue" parameter is 0x5E9000 when "ADL_TMR_TYPE_100MS" timer is
subscribed.

Note: Timers started with this function are not strict. Please refer to adl_tmrSubscribeExt for more
information about strict timers.

Note: A task can use up to 32 timers at the same time and all tasks can use about 40 timers at the same
time. If no additional timer is available, returned value will be NULL.

Note: The embedded module time granularity is approximately 18.5 ms. The exact value is equal to the
duration of 4 GSM frames, which is 24/1300s (18.461 ms).

Note: Any application that uses the Timer service in a periodic mode, should consider this exact tick
duration. For example, if it calls adl_tmrSubscribe(Ext) with TimerType=ADL_TMR_TYPE_TICK
and TimerValue=1, the elapsed time after 389190 timer expirations will be 7185s, which is 15s lower
than the expected one (7200s).

3.4.8. The adl_tmrSubscribeExt Function
This function starts a timer with an associated callback function. The callback function will be
executed as soon as the timer expires, in the task context where the adl_tmrSubscribe function was
called.

Prototype
adl_tmr_t *adl_tmrSubscribeExt (adl_tmrCyclicMode_e CyclicOpt,

 u32 TimerValue,
 adl_tmrType_e TimerType,
 adl_tmrHandler_t Timerhdl,

 void * Context,
 bool Strict);

Parameters

CyclicOpt:

This option flag allows to set the required cyclic mode of the timer, using the
adl_tmrCyclicMode_e type.

TimerValue:

The number of periods after which the timer expires (depends on TimerType parameter
required time unit).

If an ADL_TMR_TYPE_100MS timer is subscribed, the maximal value of this parameter is
ADL_TMR_100MS_MAX_VALUE.

TimerType:

Unit of the TimerValue parameter (uses the adl_tmrType_e type).

Timerhdl:

The callback function associated to the timer (using the adl_tmrHandler_t type).

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 78

ADL User Guide for Open AT® OS 6.35

Context:

Pointer on an application defined context, which will be provided to the handler when the
timer event will occur. This parameter should be set to NULL if not used.

Strict:

Boolean flag, allowing to start a strict timer.

If set to FALSE, like adl_tmrSubscribe, the timer occurence will not lead the embedded
module to wake up from SLEEP mode with GSM stack in idle. This means that the timer
occurence will be delayed to the next embedded module regular wake up.

If set to TRUE, the timer is strict, and will awake the embedded module from the SLEEP
mode with GSM stack in idle when it occurs.

Please note that out of the SLEEP mode with GSM stack in idle, this parameter is ignored.

Returned values
• A positive timer handle (an adl_tmr_t pointer) on success, usable to unsubscribe later from

the timer service; on error, a NULL or negative value (the timer is not started).

• NULL If TimerValue is 0 or too big, or if there is no additional timer resource available.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low or high level interrupt
handler (the function is forbidden in this context).

Note: Since the embedded module time granularity is 18.5 ms, the 100 ms steps are emulated, reaching a
value as close as possible to the requested one modulo 18.5. E.g., if a 20 * 100ms timer is required,
the real time value will be 1998 ms (108 * 18.5ms).

Note: The maximal value of "TimerValue" parameter is 0x5E9000 when "ADL_TMR_TYPE_100MS" timer is
subscribed.

Note: A task can use up to 32 timers at the same time and all tasks can use about 40 timers at the same
time. If no additional timer is available, returned value will be NULL.

Note: The embedded module time granularity is approximately 18.5 ms. The exact value is equal to the
duration of 4 GSM frames, which is 24/1300s (18.461 ms).

Note: Any application that uses the Timer service in a periodic mode, should consider this exact tick
duration. For example, if it calls adl_tmrSubscribe(Ext) with TimerType=ADL_TMR_TYPE_TICK
and TimerValue=1, the elapsed time after 389190 timer expirations will be 7185s, which is 15s lower
than the expected one (7200s).

3.4.9. The adl_tmrUnSubscribe Function
This function stops the timer and unsubscribes to it and his handler. The call to this function is only
meaningful to a cyclic timer or a timer that has not expired yet.

Prototype
s32 adl_tmrUnSubscribe(adl_tmr_t* t,

 adl_tmrHandler_t Timerhdl,
 adl_tmrType_e TimerType);

Parameters

t:

Timer handle to be unsubscribed, previously returned by adl_tmrSubscribe or
adl_tmrSubscribeExt.

Timerhdl:

The callback function associated to the timer. This parameter is only used to verify the
coherence of t parameter. It has to be the timer handler used in the subscription procedure.

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 79

ADL User Guide for Open AT® OS 6.35

For example:

 PhoneTaskTimerPtr = adl_tmrSubscribe (TRUE, 10, OneSecond,
 ADL_TMR_TYPE_100MS, PhoneTaskTimer);

 // Later
 adl_tmrUnSubscribe (PhoneTaskTimerPtr, PhoneTaskTimer,
 ADL_TMR_TYPE_100MS) ;

TimerType:

Time unit of the returned value, using the adl_tmrType_e enumeration.

Returned values
• On success, a positive value indicating the remaining time of the timer before it expires (time

unit depends on the TimerType parameter value);

 On failure, a negative error value:

• ADL_RET_ERR_BAD_HDL if the provided timer handle is unknown

• ADL_RET_ERR_BAD_STATE if the timer has already expired.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low or high level interrupt
handler (the function is forbidden in this context).

Note: When the ADL_RET_ERR_BAD_STATE error code is returned, the timer is correctly unsubscribed.
This error code occurs when the function is called after the timer has elapsed at hardware level, but
before the timer handler is notified.

Note: Once a "one shot" (non cyclic) timer has expired and the handler is called, there is no need to
unsubscribe from the Timer service: such a timer is automatically unsubscribed once elapsed.

API
Timers

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 80

ADL User Guide for Open AT® OS 6.35

3.4.10. Example
The code sample below illustrates a nominal use case of the ADL Timers Service public interface
(error cases are not handled).

adl_tmr_t *tt, *tt2;
u16 timeout_period = 5; // in 100 ms steps;

void Timer_Handler(u8 Id, void * Context)
{
 // We do not unsubscribe to the timer because it has ‘naturally’ expired
 adl_atSendResponse(ADL_AT_RSP, "\r\Timer timed out\r\n");
}

void Timer_Handler2(u8 Id, void * Context)
{
 // Unsubscribe from the timer resource
 adl_tmrUnSubscribe (tt2, Timer_Handler2);
}

// main function
void adl_main (adl_InitType_e adlInitType)
{
 // We set up a one-shot timer
 tt = adl_tmrSubscribe (FALSE,
 timeout_period,
 ADL_TMR_TYPE_100MS,
 Timer_Handler);

 // We set up a cyclic timer
 tt2 = adl_tmrSubscribeExt (ADL_TMR_CYCLIC_OPT_ON_RECEIVE,
 timeout_period,
 ADL_TMR_TYPE_100MS,
 Timer_Handler2,
 NULL,
 FALSE);
}

API
Memory Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 81

ADL User Guide for Open AT® OS 6.35

3.5. Memory Service
The ADL Memory Service allows the applications to handle dynamic memory buffers, and get
information about the platform's RAM mapping.

The defined operations are:

• get & release functions adl_memGet & adl_memRelease usable to manage dynamic memory
buffers

• An information function adl_memGetInfo usable to retrieve information about the platform's
RAM mapping

3.5.1. Required Header File
The header file for the memory functions is:

adl_memory.h

3.5.2. Data Structures

3.5.2.1. The adl_memInfo_t Structure

This structure contains several fields containing information about the platform's RAM mapping.

Note: The RAM dedicated to the Open AT® application is divided in three areas (Call stack, Heap memory &
Global variables). The adl_memGetInfo function returns these area current sizes.

Figure 3. Open AT® RAM Mapping

API
Memory Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 82

ADL User Guide for Open AT® OS 6.35

Code
typedef structure
{
 u32 TotalSize,
 u32 StackSize,
 u32 HeapSize,
 u32 GlobalSize
} adl_memInfo_t

Description

TotalSize

Total RAM size for the Open AT® application (in bytes). Please refer to the Memory
Resources chapter for more information.

StackSize

Open AT® application call stacks area size (in bytes). This size is defined by the Open AT®
application in the adl_InitTasks task table, and thanks to the
adl_InitIRQLowLevelStackSize and adl_InitIRQHighLevelStackSize constants.
(Please refer to the Mandatory API chapter for more information.

Note: This field is set to 0 under Remote Task Environment

HeapSize

Open AT® application total heap memory area size (in bytes). This size is the difference
between the total Open AT® memory size and the Global & Stack areas sizes.

Note: This field is set to 0 under Remote Task Environment

GlobalSize

Open AT® application global variables area size (in bytes). This size is defined at the binary
link step; it includes the ADL library, plug-in libraries (if any) and Open AT® application global
variables.

Note: This field is set to 0 under Remote Task Environment.

3.5.3. Defines

3.5.3.1. The adl_memRelease

This macro releases the allocated memory buffer designed by the supplied pointer.

Parameters

p

A pointer on the allocated memory buffer

Returned values
• TRUE If the memory was correctly released. In this case, the provided pointer is set to NULL.

Note: If the memory release fails, one of the following exceptions is generated (these exception cannot be
filtered by the Error service, and systematically lead to a reset of the embedded module).

API
Memory Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 83

ADL User Guide for Open AT® OS 6.35

Exceptions
• RTK exception 155

The supplied address is out of the heap memory address range

• RTK exception 161 or 166

The supplied buffer header or footer data is corrupted: a write overflow has
occurred on this block

• RTK exception 159 or 172

The heap memory release process has failed due to a global memory corruption in
the heap area.

3.5.3.2. The ADL_MEM_UNINIT

This macro is used to define a global variable in the uninitialized part of RAM. This part is not cleared
after a hard or soft reset, only when power supply is OFF. So when an application restarts, global
variable defined with this macro keep the last saved value before the last reset.

Code
#define ADL_MEM_UNINIT (_X) _X __attribute__((section("UNINIT")));

Parameters

_X

This parameters corresponds to global variable to define. The type and the name of the
variable have to be defined. Refer to Example below to get more information

Note: Rules on the syntax:
- at the end of variable declaration,
- there is no semi-colonglobal variable cannot be initialized with a value when it is declared

Warning: It is not functional in RTE mode; the global variable will be intialized to 0 at starting.

Example
// Global variable definition
 ADL_MEM_UNINIT(u32 MyGlobal)

 void adl_main (adl_InitType_e InitType)
 {
 ...
 MyGlobal = 500;
 ...
 }

3.5.4. The adl_memGetInfo Function
This function returns information about the Open AT® RAM areas sizes.

Prototype
s32 adl_memGetInfo (adl_memInfo_t * Info);

Parameters

Info:

Please refer to the 3.5.2.1 adl_memInfo_t structure.

API
Memory Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 84

ADL User Guide for Open AT® OS 6.35

• TotalSize

Total RAM size for the Open AT® application (in bytes).
Please refer to the Memory Resources chapter for more information.

• StackSize

Open AT® application call stack area size (in bytes).
This size is defined by the Open AT® application through the
wm_apmCustomStackSize constant (Please refer to the Mandatory API chapter
for more information).

Note: This field is set to 0 under Remote Task Environment.

• HeapSize

Open AT® application total heap memory area size (in bytes).
This size is the difference between the total Open AT® memory size and the Global
& Stack areas sizes.

Note: This field is set to 0 under Remote Task Environment.

• GlobalSize

Open AT® application global variables area size (in bytes).
This size is defined at the binary link step; it includes the ADL library, plug-in
libraries (if any) and Open AT® application global variables.

Note: This field is set to 0 under Remote Task Environment.

Reminder:

The Open AT® RAM is divided in three areas (Call stack, Heap memory & Global variables).
This function returns the area sizes. Please refer to the Figure 3.

Returned values
• OK on success; the Info parameter is updated in the Open AT® RAM information.

• ADL_RET_ERR_PARAM on parameter error

3.5.5. The adl_memGet Function
This function allocates the memory for the requested size into the client application RAM memory.

Prototype
void * adl_memGet (u32 size);

Parameters

size:

The memory buffer requested size (in bytes).

Returned values
• A pointer to the allocated memory buffer on success.

Exceptions
• ADL_ERR_MEM_GET If the memory allocation fails, this function will lead to a ADL_ERR_MEM_GET

error, which can be handled by the Error Service. If this error is filtered and refused by the
error handler, the function will return NULL. Please refer to the section Error Management for
more information.

• RTK exception 166

 A buffer header or footer data is corrupted: a write overflow has occurred on this block.

API
Memory Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 85

ADL User Guide for Open AT® OS 6.35

Note: Memory allocation may also fail due to an unrecoverable corrupted memory state; one of the following
exceptions is then generated (these exceptions cannot be filtered by the Error service, and
systematically lead to a reset of the embedded module).

3.5.6. The adl_memRelease Function
Internal memory release function, which should not be called directly. The adl_memRelease macro
has to be used in order to release memory buffer.

Prototype
bool adl_memRelease (void ** ptr);

Parameters

ptr:

A pointer on the allocated memory buffer.

Returned values
• Please refer to the section adl_memRelease macro definition.

3.5.7. Heap Memory Block Status
A list of the currently reserved heap memory blocks can be displayed at any time using the Developer
Studio Heap Status view. Please refer to Developer Studio online help 2 for more information.

3.5.8. Example
This example demonstrates how to use the Memory service in a nominal case (error cases are not
handled).

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 adl_memInfo_t MemInfo;
 u8 * MyByteBuffer;

 // Gets Open AT® RAM information
 adl_memGetInfo (&MemInfo);

 // Allocates a 10 bytes memory buffer
 MyByteBuffer = (u8 *) adl_memGet (10);

 // Releases the previously allocated memory buffer
 adl_memRelease (MyByteBuffer);
}

API
ADL Registry Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 86

ADL User Guide for Open AT® OS 6.35

3.6. ADL Registry Service
The ADL Registry Service allows to give to Open AT® applications an access to the platform registry,
used to store generic information about the software & hardware capabilities or configuration.

The defined operations are:

• An adl_regGetWCPUType function to retrieve information from the registry about current
embedded module identifier (deprecated function)

• An adl_regGetWCPUTypeExt function to retrieve from the registry the current embedded
module identifier.

• An adl_regGetHWInteger function to retrieve integer value of a registry entry

• An adl_regGetHWData function to retrieve the data value of a registry entry

• An adl_regGetHWDataChunk function to retrieve the data value of a registry entry

3.6.1. Required Header File
The header file is:

 adl_reg.h

3.6.2. The adl_regGetWCPUTypeExt Function
This function allows the application to retrieve the current embedded module identifier

Prototype
s32 adl_regGetWCPUTypeExt (ascii * CPUType);

Parameters

CPUType:

String buffer where the embedded module type identifier has to be copied.

Can be set to NULL in order just to retrieve the required string buffer size.

Returned values
• Positive number of copied characters to the supplied string buffer (including terminal 0).

3.6.3. The adl_regGetHWInteger Function
This function allows the application to retrieve the integer value of a registry entry.

Prototype
s32 adl_regGetHWInteger (ascii * Label,
 s32 * Value);

Parameters

Label

Label of the entry in the registry.

API
ADL Registry Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 87

ADL User Guide for Open AT® OS 6.35

Value

Integer buffer where the value of the registry label has to be copied.

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_UNKNOWN_HDL if the registry Label is not found.

 ADL_RET_BAD_HDL if the registry type required is not good.

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

3.6.4. The adl_regGetHWData Function
This function allows the application to retrieve the data value of a registry entry.

Prototype
s32 adl_regGetHWData (ascii * Label,
 void * Data);

Parameters

Label

Label of the entry in the registry.

Data

Data buffer where the information of the registry label has to be copied,

This is an optional parameter and must be set to 0 if not used.

Returned values
• The size of the Data information on success.

• A negative error value otherwise:

 ADL_RET_UNKNOWN_HDL if the registry Label is not found.

 ADL_RET_BAD_HDL if the registry type required is not good.

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

3.6.5. The adl_regGetHWDataChunk Function
This function allows the application to retrieve the data value of a registry entry.

Prototype
s32 adl_regGetHWDataChunk (ascii * Label,
 void * Data,
 u32 BeginOffset,
 u32 ByteCount);

Parameters

Label

Label of the entry in the registry.

API
ADL Registry Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 88

ADL User Guide for Open AT® OS 6.35

Data

Data buffer where the information of the registry label has to be copied.

This is an optional parameter and must be set to 0 if not used.

BeginOffset

Offset within the data value, this is an optional parameter must be set to 0 if not used

ByteCount

Number of bytes to get, this is an optional parameter must be set to 0 if not used. if it set to
0, all data from offset to the end of entry are copied.

Returned values
• The size of the Data information on success.

• A negative error value otherwise:

 ADL_RET_UNKNOWN_HDL if the registry Label is not found.

 ADL_RET_BAD_HDL if the registry type required is not good.

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

Note: If BeginOffset and/or ByteCount is not 0 and Data is 0 the size of the Data information returned will
not take into account the BeginOffset and/or ByteCount parameter.

3.6.6. Example
// Retrieve embedded module identifier
 void * function_1()
 {
 // Retrieve required size for embedded module identifier
 u32 NameSize = adl_regGetWCPUType (NULL);

 // Allows enough memory
 ascii * Name = adl_memGet (NameSize);

 // Retrieve embedded module type
 adl_regGetWCPUType (Name);

 // Check current embedded module type
 if (!wm_strcmp (Name, "WMP100"))
 {
 // WMP100 embedded module
 }
 else if (!wm_strcmp (Name, "Q2686"))
 {
 // Q2686 embedded module
 }
 else if (!wm_strcmp (Name, "Q2687"))
 {
 // Q2687 embedded module
 }
 }

 // Retrieve hardware integer information
 void * function_2()
 {
 u32 Hardware_info;

 // Retrieve the integer information
 adl_regGetHWInteger ("Hardware_info_label", &Hardware_info);
 ...
 }

API
ADL Registry Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 89

ADL User Guide for Open AT® OS 6.35

 // Retrieve hardware data information
 void * function_3()
 {
 // Retrieve required size for hardware data information
 u32 Hardware_info_size = adl_regGetHWData ("Hardware_info_label",
 NULL);

 // Allows enough memory
 adl_HardwareInfoExample_t * Hardware_info_data = adl_memGet
 (Hardware_info_size);

 // Retrieve the adl_HardwareInfoExample_t information
 adl_regGetHWData ("Hardware_info_label", Hardware_info_data);
 ...
 }

 // Retrieve hardware data information
 void * function_4()
 {
 // Allows enough memory for a part of hardware data information
 ascii * Hardware_info_data_chunk = adl_memGet (10);

 // Retrieve the adl_HardwareInfoExample_t information
 adl_regGetHWDataChunk ("Hardware_info_label",
 Hardware_info_data_chunk , 5 , 10);
 ...
 }

API
Debug Traces

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 90

ADL User Guide for Open AT® OS 6.35

3.7. Debug Traces
This service allows to display debug trace strings on Developer Studio. The different ways to embed
these trace strings in an Open AT® application depends on the selected configuration in the used
Developer Studio (see below).

For more information on the configurations of Developer Studio, please refer to Developer Studio
online help 2.

The defined operations are:

• Trace function & macros (adl_trcPrint, TRACE & FULL_TRACE) to print the required trace
string

• Dump function & macros (adl_trcDump, DUMP & FULL_DUMP) to dump the required buffer
content

3.7.1. Required Header File
The header file for the flash functions is:

adl_traces.h

3.7.2. Build Configuration Macros
According to the chosen build configuration in Developer Studio, following macros will be defined or
not, allowing the user to embed none, part or the entire debug traces information in its final
application.

3.7.2.1. Debug Configuration

When the Debug configuration is selected in Developer Studio, the __DEBUG_APP__ compilation
flag is defined, and also the TRACE & DUMP macros.

Traces & dumps declared with these macros will be embedded at compilation time.

In this Debug configuration, the FULL_TRACE and FULL_DUMP macros are ignored (even if these are
used in the application source code, they will neither be compiled nor displayed on Developer Studio
at runtime).

3.7.2.2. Full Debug Configuration

When the Full Debug configuration is selected in Developer Studio, both the __DEBUG_APP__ and
__DEBUG_FULL__ compilation flags are defined, and also the TRACE, FULL_TRACE, DUMP &
FULL_DUMP macros.

Traces & dumps declared with these macros will be embedded at compilation time.

API
Debug Traces

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 91

ADL User Guide for Open AT® OS 6.35

3.7.2.3. Release Configuration

When the Release configuration is selected in Developer Studio, neither the __DEBUG_APP__ nor
__DEBUG_FULL__ compilation flags are defined.

The TRACE, FULL_TRACE, DUMP and FULL_DUMP macros are ignored (even if these ones are
used in the application source code, they will neither be compiled, nor displayed on Developer Studio
at runtime).

3.7.2.4. Defines

3.7.2.4.1. TRACE

This macro is a shortcut to the adl_trcPrint function. Traces declared with this macro are only
embedded in the application if it is compiled with in the Debug or Full Debug configuration, but not in
the Release configuration.

#define TRACE (_X_)

3.7.2.4.2. DUMP

This macro is a shortcut to the adl_trcDump function. Dumps declared with this macro are only
embedded in the application if it is compiled with in the Debug or Full Debug configuration, but not in
the Release configuration.

#define DUMP (_lvl_,
 P,
 L)

3.7.2.4.3. FULL TRACE

This macro is a shortcut to the adl_trcPrint function. Traces declared with this macro are only
embedded in the application if it is compiled with in Full Debug configuration, but not in the Debug or
Release configuration.

#define FULL_TRACE (_X_)

3.7.2.4.4. FULL DUMP:

This macro is a shortcut to the adl_trcDump function. Dumps declared with this macro are only
embedded in the application if it is compiled with in Full Debug configuration, but not in the Debug or
Release configuration.

#define FULL_DUMP (_lvl_,
 P,
 L)

3.7.3. The adl_trcPrint Function
This function displays the required debug trace on the provided trace level. The trace will be displayed
in Developer Studio, according to the current context:

• for tasks: on the trace element name defined in the tasks declaration table (cf. Application
Initialization service)

API
Debug Traces

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 92

ADL User Guide for Open AT® OS 6.35

• for Low Level Interrupt handlers: on the "LLH" trace element

• for High Level Interrupt handlers: on the "HLH" trace element

In addition to the trace information, a embedded module local timestamp is also displayed in the tool.

Example1:

 u8 I = 123;
 TRACE ((1, "Value of I: %d", I));

At runtime, this will display the following string on the CUS4 level 1 on Developer Studio:

 Value of I: 123

Prototype
s8 adl_trcPrint (u8 Level,
 const ascii* strFormat,
 …);

Parameters

Level:

Trace level on which the information has to be sent. Valid range is 1 - 32.

strFormat:

String to be displayed, using a standard C "sprintf" format.

…:

Additional arguments to be dynamically inserted in the provided constant string.

Note: Direct use of the adl_trcPrint function is not recommended. The TRACE & FULL_TRACE macros
should be used instead, to take benefit of the build configurations features.

Note: '%s' character, normally used to insert strings, is not supported by the trace function.

Note: The trace display should be limited to 255 bytes. If the trace string is longer, it will be truncated.

Note: ADL trace function only supports up to 6 parameters; additional parameters are ignored.

3.7.4. The adl_trcDump Function
This function dumps the required buffer content on the provided trace level. The dump will be
displayed in Developer Studio, according to the current context:

• for tasks: on the trace element name defined in the tasks declaration table (cf. Application
Initialization service)

• for Low Level Interrupt handlers: on the "LLH" trace element

• for High Level Interrupt handlers: on the "HLH" trace element

In addition to the trace information, a embedded module local timestamp is also displayed in the tool.

Since a display line maximum length is 255 bytes, if the display length is greater than 80 (each byte is
displayed on 3 ascii characters), the dump will be segmented on several lines. Each 80 bytes
truncated line will end with the "..." characters sequence.

Example 1

 u8 * Buffer = "\x0\x1\x2\x3\x4\x5\x6\x7\x8\x9";
 DUMP (1, Buffer, 10);

At runtime, this will display the following string on the level 1 in Developer Studio:

 00 01 02 03 04 05 06 07 08 09

API
Debug Traces

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 93

ADL User Guide for Open AT® OS 6.35

Example 2

 u8 Buffer [200], i;
 for (i = 0 ; i < 200 ; i++) Buffer [i] = i;
 DUMP (1, Buffer, 200);

At runtime, this will display the following three lines on the level 1 in Developer Studio:

 00 01 02 03 04 05 06 07 08 09 0A [bytes from 0B to 4D] 4E 4F...
 50 51 52 53 54 55 56 57 58 59 5A [bytes from 5B to 9D] 9E 9F...
 A0 A1 A2 A3 A4 A5 A6 A7 [bytes from A8 to C4] C5 C6 C7

Prototype
void adl_trcDump (u8 Level,
 u8 * DumpBuffer,
 u16 DumpLength);

Parameters

Level:

Trace level on which the information has to be sent. Valid range is 1 - 32.

DumpBuffer:

Buffer address to be dumped.

DumpLength:

Number of bytes to be displayed at required address.

Note: Direct use of the adl_trcDump function is not recommended. The DUMP & FULL_DUMP macros
should be used instead, to take benefit of the build configurations features.

3.7.5. Example
The code sample below illustrates a nominal use case of the ADL Debug Traces service public
interface (error cases are not handled).

u8 MyInt = 12;
ascii * MyString = "hello";

// Print a debug trace for current context on level 1
TRACE ((1, "My Sample Trace: %d", MyInt));

// Dump a buffer content for current context on level 2
DUMP (2, MyString, strlen (MyString));

API
Flash

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 94

ADL User Guide for Open AT® OS 6.35

3.8. Flash

3.8.1. Required Header File
The header file for the flash functions is:

adl_flash.h

3.8.2. Flash Objects Management
An ADL application may subscribe to a set of objects identified by an handle, used by all ADL flash
functions.

This handle is chosen and given by the application at subscription time.

To access to a particular object, the application gives the handle and the ID of the object to access.

At first subscription, the Handle and the associated set of IDs are saved in flash. The number of flash
object IDs associated to a given handle may be only changed after have erased the flash objects
(with the AT+WOPEN=3 command).

For a particular handle, the flash objects ID take any value, from 0 to the ID range upper limit provided
on subscription.

Note: The default number of ID’s is 2560 for 32Mb flash and 5120 for 64Mb flash.

Note: The maximum number of flash objects that can exist at any given time is 7936. Using WPK along with
DWLWIN, the user can change the default value in the range 2560 to 7936.

3.8.2.1. Flash objects write/erase inner process overview

Written flash objects are queued in the flash object storage place. Each time the adl_flhWrite
function is called, the process below is done:

• If the object already exists, it is now considered as "erased" (ie. "adl_flhWrite(X);" <=>
"adl_flhDelete(X); adl_flhWrite(X);")

• The flash object driver checks if there is enough place the store the new object. If not, a
Garbage Collector process is done (see below).

• The new object is created.

About the erase process, each time the adl_flhDelete (or adl_flhWrite) function is called on a ID,
this object is from this time "considered as erased", even if it is not physicaly erased (an inner "erase
flag" is set on this object).

Objects are physically erased only when the Garbage Collector process is done, when an
adl_flhWrite function call needs a size bigger than the available place in the flash objects storage
place. The Garbage Collector process erases the flash objects storage place, and re-write only the
objects which have not their "erase flag" set.

Please note that the flash memory physical limitation is the erasure cycle number, which is granted to
be at least 100.000 times.

Caution: The Garbage Collector process is a time consuming operation. Performing numerous flash write
operations in the same event handler increases the probability of Garbage Collector occurence, and
should lead to a watchdog reset of the embedded module. It is not recommended to perform too many
flash write operations in the same event handler. If numerous operations are required, it is advised to
regularly "give back the hand" to the Firmware (by introducing timers) in the write loop, in order to
avoid the Watchdog reset to occur.

API
Flash

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 95

ADL User Guide for Open AT® OS 6.35

3.8.2.2. Flash Objects in Remote Task Environment

When an application is running in Remote Task Environment, the flash object storage place is
emulated on the PC side: objects are read/written from/to files on the PC hard disk, and not from/to
the embedded module's flash memory. The two storage places (embedded module and PC one) may
be synchronized using the RTE Monitor interface (cf. Developer Studio
(http://www.sierrawireless.com/developer_studio) online help for more information).

3.8.3. The adl_flhSubscribe Function
This function subscribes to a set of objects identified by the given Handle.

Prototype
s8 adl_flhSubscribe (ascii* Handle,
 u16 NbObjectsRes);

Parameters

Handle:

The Handle of the set of objects to subscribe to.

NbObjectRes :

The number of objects related to the given handle. It means that the IDs available for this
handle are in the range [0 , (NbObjectRes – 1)].

Returned values
• OK on success (first allocation for this handle)

• ADL_RET_ERR_PARAM on parameter error,

• ADL_RET_ERR_ALREADY_SUBSCRIBED if space is already created for this handle,

• ADL_FLH_RET_ERR_NO_ENOUGH_IDS if there are no more enough object IDs to allocate the
handle.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

Note: Only one subscription is necessary. It is not necessary to subscribe to the same handle at each
application start.

Note: It is not possible to unsubscribe from an handle. To release the handle and the associated objects,
the user must do an AT+WOPEN=3 to erase the flash objects of the Open AT® Embedded
Application.

3.8.4. The adl_flhExist Function
This function checks if a flash object exists from the given Handle at the given ID in the flash memory
allocated to the ADL developer.

Prototype
s32 adl_flhExist (ascii* Handle,
 u16 ID);

http://www.sierrawireless.com/productsandservices/AirPrime/Sierra_Wireless_Software_Suite/Developer_Studio.aspx

API
Flash

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 96

ADL User Guide for Open AT® OS 6.35

Parameters

Handle:

The Handle of the subscribe set of objects.

ID:

The ID of the flash object to investigate (in the range allocated to the provided Handle).

Returned values
• the requested Flash object length on success

• 0K if the object does not exist.

• ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

• ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.8.5. The adl_flhErase Function
This function erases the flash object from the given Handle at the given ID.

Prototype
s8 adl_flhErase (ascii* Handle,
 u16 ID);

Parameters

Handle:

The Handle of the subscribed set of objects.

ID:

The ID of the flash object to be erased.

Caution: If ID is set to ADL_FLH_ALL_IDS, all flash objects related to the provided handle will be erased.

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

• ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

• ADL_FLH_RET_ERR_OBJ_NOT_EXIST if the object does not exist

• ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_DELETE error event will then be
generated)

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.8.6. The adl_flhWrite Function
This function writes the flash object from the given Handle at the given ID, for the length provided with
the buffer provided. A single flash object can use up to 30 Kbytes of memory.

Prototype
s8 adl_flhWrite (ascii* Handle,
 u16 ID,
 u16 Len,
 u8 *WriteData);

API
Flash

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 97

ADL User Guide for Open AT® OS 6.35

Parameters

Handle:

The Handle of the subscribed set of objects.

ID:

The ID of the flash object to write.

Len:

The length of the flash object to write.

WriteData:

The provided buffer to write in the flash object.

Returned values
• OK on success

• ADL_RET_ERR_PARAM if one at least of the parameters has a bad value.

• ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

• ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

• ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_WRITE error event will then
occur).

• ADL_FLH_RET_ERR_MEM_FULL if flash memory is full.

• ADL_FLH_RET_ERR_NO_ENOUGH_IDS if the object can not be created due to the global ID
number limitation.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.8.7. The adl_flhRead Function
This function reads the flash object from the given Handle at the given ID, for the length provided and
stores it in a buffer.

Prototype
s8 adl_flhRead (ascii* Handle,
 u16 ID,
 u16 Len,
 u8 *ReadData);

Parameters

Handle:

The Handle of the subscribed set of objects

ID:

The ID of the flash object to read.

Len:

The length of the flash object to read.

ReadData:

The buffer allocated to store the read flash object.

Returned values
• OK on success

• ADL_RET_ERR_PARAM if one at least of the parameters has a bad value.

• ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

API
Flash

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 98

ADL User Guide for Open AT® OS 6.35

• ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

• ADL_FLH_RET_ERR_OBJ_NOT_EXIST if the object does not exist.

• ADL_RET_ERR_FATAL if a fatal error occurred (ADL_ERR_FLH_READ error event will then
occur).

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.8.8. The adl_flhGetFreeMem Function
This function gets the current remaining flash memory size.

Prototype
u32 adl_flhGetFreeMem (void);

Returned values
• Current free flash memory size in bytes.

3.8.9. The adl_flhGetIDCount Function
This function returns the ID count for the provided handle.

Prototype
s32 adl_flhGetIDCount (ascii* Handle);

Parameters

Handle:

The Handle of the subscribed set of objects. If set to NULL, an error is returned.

Returned values
• On success:

 ID count allocated on the provided handle if any;

 an error is returned if the handle is set to NULL

• ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
Flash

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 99

ADL User Guide for Open AT® OS 6.35

3.8.10. The adl_flhGetUsedSize Function
This function returns the used size by the provided ID range from the provided handle. The handle
should also be set to NULL to get the whole used size.

Prototype
s32 adl_flhGetUsedSize (ascii* Handle,
 u16 StartID,
 u16 EndID);

Parameters

Handle:

The Handle of the subscribed set of objects. If set to NULL, the whole flash memory used
size will be returned.

StartID:

First ID of the range from which to get the used size ; has to be lower than EndID.

EndID:

Last ID of the range from which to get the used size; has to be greater than StartID. To get
the used size by all an handle IDs, the [0 , ADL_FLH_ALL_IDS] range may be used

Returned values
• Used size on success: from the provided Handle if any, otherwise the whole flash memory

used size

• ADL_RET_ERR_PARAM on parameter error

• ADL_RET_ERR_UNKNOWN_HDL if handle is not subscribed

• ADL_FLH_RET_ERR_ID_OUT_OF_RANGE if ID is out of handle range

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 100

ADL User Guide for Open AT® OS 6.35

3.9. FCM Service
ADL provides a FCM (Flow Control Manager) service to handle all FCM events, and to access to the
data ports provided on the product.

An ADL application may subscribe to a specific flow (UART 1, UART 2 or USB physical/virtual ports,
GSM CSD call data port, GPRS session data port or Bluetooth virtual data ports) to exchange data on
it.

Figure 4. Flow Control Manager Representation

By default (ie. without any Open AT® application, or if the application does not use the FCM service),
all the embedded module's ports are processed by the Sierra Wireless Firmware. The default
behaviors are:

• When a GSM CSD call is set up, the GSM CSD data port is directly connected to the UART
port where the ATD command was sent;

• When a GPRS session is set up, the GPRS data port is directly connected to the UART port
where the ATD or AT+CGDATA command was sent;

Embedded Application

Embedded Module

GSM CSD
call

V24
Serial Link

1

AT

AT
commands

GPRS
session

TCP/IP Stack

Uart 1 & 2, physical &
logical ports

Bluetooth
virtual ports

… …

…

2

…

ADL AT
commands
services

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 101

ADL User Guide for Open AT® OS 6.35

Once subscribed by an Open AT® application with the FCM service, a port is no more available to be
used with the AT commands by an external application. The available ports are the ones listed in the
ADL AT/FCM Ports service:

• ADL_PORT_UART_X / ADL_PORT_UART_X_VIRTUAL_BASE identifiers may be used to
access to the embedded module's physicals UARTS, or logical 27.010 protocol ports;

• ADL_PORT_GSM_BASE identifier may be used to access to a remote modem (connected
through a GSM CSD call) data flow;

• ADL_PORT_GPRS_BASE identifier may be used to exchange IP packets with the operator
network and the Internet;

The "1" switch on the figure above means that UART based ports may be used with AT commands or
FCM services as well. These switches are processed by the adl_fcmSwitchV24State function.

The "2" switch on the figure above means that either the GSM CSD port or the GPRS port may be
subscribed at one time, but not both together.

Caution: GPRS provides only packet mode transmission. This means that the embedded application can only
send/receive IP packets to/from the GPRS flow.

3.9.1. Required Header File
The header file for FCM functions is:

adl_fcm.h

3.9.2. The adl_fcmIsAvailable Function
This function allows to check if the required port is available and ready to handle the FCM service.

Prototype
bool adl_fcmIsAvailable (adl_fcmFlow_e Flow);

Parameters

Flow:

Port from which to require the state.

Returned values
• TRUE if the port is ready to handle the FCM service

• FALSE if it is not ready

Note: All ports should be available for the FCM service, except:

Note: The Open AT® virtual one, which can only be used for AT commands,

Note: If the port is already used to handle a feature required by an external application through the AT
commands (a CSD/GPRS data session is already running)

3.9.3. The adl_fcmSubscribe Function
This function subscribes to the FCM service, opening the requested port and setting the control and
data handlers. The subscription will be effective only when the control event handler has received the
ADL_FCM_EVENT_FLOW_OPENED event.

Each port may be subscribed only one time.

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 102

ADL User Guide for Open AT® OS 6.35

Additional subscriptions may be done, using the ADL_FCM_FLOW_SLAVE flag (see below). Slave
subscribed handles will be able to send and receive data on/from the flow, but will know some
limitations:

• For serial-line flows (UART physical and logical based ports), only the main handle will be
able to switch the Serial Link state between AT & Data mode;

• If the main handle unsubscribe from the flow, all slave handles will also be unsubscribed.

Caution: For serial-link related flows (UART physical and logical based ports), the corresponding port has to be
opened first with the AT+WMFM command (for physical ports), or with the 27.010 protocol driver on
the external application side (for logical ports), otherwise the subscription will fail. See AT Commands
Interface Guide for more information.
By default, only the UART1 physical port is opened.
A specific port state may be known using the ADL AT/FCM port service.

Prototype
s8 adl_fcmSubscribe (adl_fcmFlow_e Flow,

 adl_fcmCtrlHdlr_f CtrlHandler,
 adl_fcmDataHdlr_f DataHandler);

Parameters

Flow:

The allowed values are the available ports of the adl_port_e type. Only ports with the
FCM capability may be used with this service (ie. all ports except the
ADL_PORT_OPEN_AT_VIRTUAL_BASE and not SPP
ADL_PORT_BLUETOOTH_VIRTUAL_BASE based ones).

Please note that the adl_fcmFlow_e type is the same than the adl_port_e one, except
the fact that it may handle some additional FCM specific flags (see below). Previous versions
FCM flows identifiers have been kept for ascendant compatibility. However, these constants
should be considered as deprecated, and the adl_port_e type members should now be
used instead.

 #define ADL_FCM_FLOW_V24_UART1 ADL_PORT_UART1
 #define ADL_FCM_FLOW_V24_UART2 ADL_PORT_UART2
 #define ADL_FCM_FLOW_V24_USB ADL_PORT_USB
 #define ADL_FCM_FLOW_GSM_DATA ADL_PORT_GSM_BASE
 #define ADL_FCM_FLOW_GPRS ADL_PORT_GPRS_BASE

To perform a slave subscription (see above), a bit-wise or has to be done with the flow ID
and the ADL_FCM_FLOW_SLAVE flag ; for example:

 adl_fcmSubscribe (ADL_PORT_UART1 | ADL_FCM_FLOW_SLAVE,
 MyCtrlHandler, MyDataHandler);

CtrlHandler:

FCM control events handler, using the following type:

 typedef bool (* adl_fcmCtrlHdlr_f) (adl_fcmEvent_e event);

The FCM control events are defined below (All handlers related to the concerned flow
(master and slaves) will be notified together with these events):

 ADL_FCM_EVENT_FLOW_OPENNED (related to adl_fcmSubscribe),

 ADL_FCM_EVENT_FLOW_CLOSED (related to adl_fcmUnsubscribe),

 ADL_FCM_EVENT_V24_DATA_MODE (related to adl_fcmSwitchV24State),

 ADL_FCM_EVENT_V24_DATA_MODE_EXT (see note below),

 ADL_FCM_EVENT_V24_AT_MODE (related to adl_fcmSwitchV24State),

 ADL_FCM_EVENT_V24_AT_MODE_EXT (see note below),

 ADL_FCM_EVENT_RESUME (related to adl_fcmSendData and adl_fcmSendDataExt),

 ADL_FCM_EVENT_MEM_RELEASE (related to adl_fcmSendData and adl_fcmSendDataExt) ,

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 103

ADL User Guide for Open AT® OS 6.35

This handler return value is not relevant, except for ADL_FCM_EVENT_V24_AT_MODE_EXT.

DataHandler:

FCM data events handler, using the following type:

 typedef bool (* adl_fcmDataHdlr_f) (u16 DataLen, u8 * Data);

This handler receives data blocks from the associated flow.

Once the data block is processed, the handler must return TRUE to release the credit, or
FALSE if the credit must not be released. In this case, all credits will be released next time
the handler will return TRUE.

On all flows, all subscribed data handlers (master and slaves) are notified with a data event,
and the credit will be released only if all handlers return TRUE: each handler should return
TRUE as default value.

If a credit is not released on the data block reception, it will be released next time the data
handler will return TRUE. The adl_fcmReleaseCredits should also be used to release
credits outside the data handler.

Maximum size of each data packets to be received by the data handlers depends on the flow
type:

 On serial link flows (UART physical & logical based ports): 120 bytes;

 On GSM CSD data port: 270 bytes;

 On GPRS port: 1500 bytes;.

If data size to be received by the Open AT® application exceeds this maximum packet size,
data will be segmented by the Flow Control Manager, which will call several times the Data
Handlers with the segmented packets.

Please note that on GPRS flow, whole IP packets will always be received by the Open AT®
application.

Returned values
• A positive or null handle on success (which will have to be used in all further FCM

operations). The Control handler will also receive a ADL_FCM_EVENT_FLOW_OPENNED event
when flow is ready to process,

• ADL_RET_ERR_PARAM if one parameter has an incorrect value,

• ADL_RET_ERR_ALREADY_SUBSCRIBED if the flow is already subscribed in master mode,

• ADL_RET_ERR_NOT_SUBSCRIBED if a slave subscription is made when master flow is not
subscribed,

• ADL_FCM_RET_ERROR_GSM_GPRS_ALREADY_OPENNED if a GSM or GPRS subscription is made
when the other one is already subscribed.

• ADL_RET_ERR_BAD_STATE if the required port is not available.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

Note: When « 7 bits » mode is enabled on a v24 serial link, in data mode, payload data is located on the 7
least significant bits (LSB) of every byte.

Note: When a serial link is in data mode, if the external application sends the sequence "1s delay ; +++ ; 1s
delay", this serial link is switched to AT mode, and corresponding handler is notified by the
ADL_FCM_EVENT_V24_AT_MODE_EXT event. Application can emulate the sequence "1s delay; +++;
1s delay" behaviour with adl_fcmSwitchV24State API and
ADL_FCM_EVENT_V24_STATE_OFFLINE parameter.

Then the behaviour depends on the returned value:

If it is TRUE, all this flow remaining handlers are also notified with this event. The main
handle can not be un-subscribed in this state.

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 104

ADL User Guide for Open AT® OS 6.35

If it is FALSE, this flow remaining handlers are not notified with this event, and this serial link
is switched back immediately to data mode.

In the first case, after the ADL_FCM_EVENT_V24_AT_MODE_EXT event, the main handle
subscriber should switch the serial link to data mode with the adl_fcmSwitchV24State API,
or wait for the ADL_FCM_EVENT_V24_DATA_MODE_EXT event. This one will come when the
external application sends the "ATO" command: the serial link is switched to data mode, and
then all V24 clients are notified.

• When a GSM data call is released from the remote part, the GSM flow will automatically be
unsubscribed (the ADL_FCM_EVENT_FLOW_CLOSED event will be received by all the flow
subscribers).

• When a GPRS session is released, or when a GSM data call is released from the embedded
module side (with the adl_callHangUp function), the corresponding GSM or GPRS flow have
to be unsubscribed. These flows will have to be subscribed again before starting up a new
GSM data call, or a new GPRS session.

• For serial link flows, the serial line parameters (speed, character framing, etc...) must not be
modified while the flow is in data state. In order to change these parameters' value, the
concerned flow has to be first switched back in AT mode with the adl_fcmSwitchV24State
API. Once the parameters changed, the flow may be switched again to data mode, using the
same API.

• To perform a GSM data call, the GSM flow should be open first. Only when the flow opened
event (ADL_FCM_EVENT_FLOW_OPENED) is received, then a data call can be done or
answered.

3.9.4. The adl_fcmUnsubscribe Function
This function unsubscribes from a previously subscribed FCM service, closing the previously opened
flows. The unsubscription will be effective only when the control event handler has received the
ADL_FCM_EVENT_FLOW_CLOSED event.

If slave handles were subscribed, as soon as the master one unsubscribes from the flow, all the slave
one will also be unsubscribed.

Prototype
s8 adl_fcmUnsubscribe (u8 Handle);

Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

Returned values
• OK on success. The Control handler will also receive a ADL_FCM_EVENT_FLOW_CLOSED event

when flow is ready to process

• ADL_RET_ERR_UNKNOWN_HDL if the handle is incorrect,

• ADL_RET_ERR_NOT_SUBSCRIBED if the flow is already unsubscribed,

• ADL_RET_ERR_BAD_STATE if the serial link is not in AT mode.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 105

ADL User Guide for Open AT® OS 6.35

3.9.5. The adl_fcmReleaseCredits Function
This function releases some credits for requested flow handle.

The slave subscribers should not use this API.

Prototype
s8 adl_fcmReleaseCredits (u8 Handle,

 u8 NbCredits);

Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

NbCredits:

Number of credits to release for this flow. If this number is higher than the number of
previously received data blocks, all credits are released. If an application wants to release all
received credits at any time, it should call the adl_fcmReleaseCredits API with NbCredits
parameter set to 0xFF.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

• ADL_RET_ERR_BAD_HDL if the handle is a slave one.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.9.6. The adl_fcmSwitchV24State Function
This function switches a serial link state to AT mode or to Data mode. The operation will be effective
only when the control event handler has received an ADL_FCM_EVENT_V24_XXX_MODE event. Only the
main handle subscriber can use this API.

Prototype
s8 adl_fcmSwitchV24State (u8 Handle,

 u8 V24State);

Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

V24State:

Serial link state to switch to. Allowed values are defined below: ADL_FCM_V24_STATE_AT,
ADL_FCM_V24_STATE_AT, equivalent to "offline" modem state, DCD/DSR off.

 ADL_FCM_V24_STATE_DATA, ADL_FCM_V24_STATE_DATA, equivalent to "online connected"
modem state, DCD/DSR on..

 ADL_FCM_V24_STATE_OFFLINE, equivalent to "offline connected" modem state, DCD on,
DSR off.

Returned values
• OK on success. The Control handler will also receive a ADL_FCM_EVENT_V24_XXX_MODE event

when the serial link state has changed

• ADL_RET_ERR_PARAM if one parameter has an incorrect value

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 106

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_BAD_HDL if the handle is not the main flow one

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.9.7. The adl_fcmSendData Function
This function sends a data block on the requested flow.

Prototype
s8 adl_fcmSendData (u8 Handle,

 u8 * Data,
 u16 DataLen);

Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

Data:

Data block buffer to write.

DataLen:

Data block buffer size.

Maximum data packet size depends on the subscribed flow:

 On serial link based flows: 2000 bytes ;

 On GSM data flow: no limitation (memory allocation size) ;

 On GPRS flow: 1500 bytes ;

Returned values
• OK on success. The Control handler will also receive a ADL_FCM_EVENT_MEM_RELEASE event

when the data block memory buffer will be released ;

• ADL_FCM_RET_OK_WAIT_RESUME on success, but the last credit was used. The Control handler
will also receive a ADL_FCM_EVENT_MEM_RELEASE event when the data block memory buffer
will be released ;

• ADL_RET_ERR_PARAM is a parameter has an incorrect value,

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

• ADL_RET_ERR_BAD_STATE if the flow is not ready to send data,

• ADL_FCM_RET_ERR_WAIT_RESUME if the flow has no more credit to use.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

• On ADL_FCM_RET_XXX_WAIT_RESUME returned value, the subscriber has to wait for a
ADL_FCM_EVENT_RESUME event on Control Handler to continue sending data.

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 107

ADL User Guide for Open AT® OS 6.35

3.9.8. The adl_fcmSendDataExt Function
This function sends a data block on the requested flow. This API do not perform any processing on
provided data block, which is sent directly on the flow.

Prototype
s8 adl_fcmSendDataExt (u8 Handle,

 adl_fcmDataBlock_t * DataBlock);

Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

DataBlock:

Data block buffer to write, using the following type:

typedef struct
{
 u16 Reserved1[4];
 u32 Reserved3;
 u16 DataLength; /* Data length */

 u16 Reserved2[5];
 u8 Data[1]; /* Data to send */
} adl_fcmDataBlock_t;

The block must be dynamically allocated and filled by the application, before sending it to the
function. The allocation size has to be
sizeof (adl_fcmDataBlock_t) + DataLength, where DataLength is the value to
be set in the DataLength field of the structure.

Maximum data packet size depends on the subscribed flow :

 On serial link based flows : 2000 bytes ;

 On GSM data flow : no limitation (memory allocation size) ;

 On GPRS flow : 1500 bytes ;.

Returned values
• OK on success. The Control handler will also receive a ADL_FCM_EVENT_MEM_RELEASE event

when the data block memory buffer will be released,

• ADL_FCM_RET_OK_WAIT_RESUME on success, but the last credit was used. The Control handler
will also receive a ADL_FCM_EVENT_MEM_RELEASE event when the data block memory buffer
will be released ;

• ADL_RET_ERR_PARAM is a parameter has an incorrect value,

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

• ADL_RET_ERR_BAD_STATE if the flow is not ready to send data,

• ADL_FCM_RET_ERR_WAIT_RESUME if the flow has no more credit to use.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

• On ADL_FCM_RET_XXX_WAIT_RESUME returned value, the subscriber has to wait for an
ADL_FCM_EVENT_RESUME event on Control Handler to continue sending data.

API
FCM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 108

ADL User Guide for Open AT® OS 6.35

Important Remark:

The Data block will be released by the adl_fcmSendDataExt API on OK and
ADL_FCM_RET_OK_WAIT_RESUME return values (the memory buffer will be effectively released
once the ADL_FCM_EVENT_MEM_RELEASE event will be received in the Control Handler). The
application has to use only dynamic allocated buffers (with adl_memGet function).

3.9.9. The adl_fcmGetStatus Function
This function gets the buffer status for requested flow handle, in the requested way.

Prototype
s8 adl_fcmGetStatus (u8 Handle,

 adl_fcmWay_e Way);

Parameters

Handle:

Handle returned by the adl_fcmSubscribe function.

Way:

As flows have two ways (from Embedded application, and to Embedded application), this
parameter specifies the direction (or way) from which the buffer status is requested. The
possible values are:

typedef enum
{
 ADL_FCM_WAY_FROM_EMBEDDED,
 ADL_FCM_WAY_TO_EMBEDDED
} adl_fcmWay_e;

Returned values
• ADL_FCM_RET_BUFFER_EMPTY if the requested flow and way buffer is empty,

• ADL_FCM_RET_BUFFER_NOT_EMPTY if the requested flow and way buffer is not empty ; the Flow
Control Manager is still processing data on this flow,

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

• ADL_RET_ERR_PARAM if the way parameter value in out of range.

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 109

ADL User Guide for Open AT® OS 6.35

3.10. GPIO Service
ADL provides a GPIO service to handle GPIO operations.

The defined operations are:

• A adl_ioGetCapabilitiesList function to retrieve a list of GPIO capablities
informations.

• A adl_ioSubscribe function to set the reserved GPIO parameters

• A adl_ioUnsubscribe function to un-subscribes from a previously allocated GPIO handle

• A adl_ioEventSubscribe function to provide ADL with a call-back for GPIO related events

• A adl_ioEventUnsubscribe function to unsubscribe from the GPIO events notification

• A adl_ioSetDirection function to allow the direction of one or more previously allocated
GPIO to be modified

• A adl_ioRead function to allow several GPIOs to be read from a previously allocated handle

• A adl_ioReadSingle function to allow one GPIO to be read from a previously allocated
handle

• A adl_ioWrite function to write on several GPIOs from a previously allocated handle

• A adl_ioWriteSingle function to allow one GPIO to be written from a previously allocated
handle

3.10.1. Required Header File
The header file for the GPIO functions is:

adl_gpio.h

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 110

ADL User Guide for Open AT® OS 6.35

3.10.2. GPIO Types

3.10.2.1. The adl_ioCap_t structure

This structure gives information about io capabilities.

typedef struct
{
 u32 NbGpio; // The number of GPIO managed by ADL.

 u32 NbGpo; // The number of GPO managed by ADL.

 u32 NbGpi; // The number of GPI managed by ADL.

} adl_ioCap_t;

3.10.2.2. The adl_ioDefs_t type

This type defines the GPIO label.

This is a bit field:

• b0-b15 are use to identify the io

 see section adl_ioLabel_etype

• b16-b31 usage depends of the command

 see section adl_ioLevel_etype

 see section adl_ioDir_etype

 see section adl_ioStatus_etype

 see section adl_ioCap_etype

 see section adl_ioError_etype

3.10.2.3. The adl_ioLabel_e type

This type lists the label field definition (b0-b15 of adl_ioDefs_t). Each IO is identified by a number
and a type. Please see also section adl_ioDefs_t for the other fields.

Code
type def enum
{
 ADL_IO_NUM_MSK = (0xFFF),
 ADL_IO_TYPE_POS = 12,
 ADL_IO_TYPE_MSK = (3UL<<ADL_IO_TYPE_POS),
 ADL_IO_GPI = (1UL<<ADL_IO_TYPE_POS),
 ADL_IO_GPO = (2UL<<ADL_IO_TYPE_POS),
 ADL_IO_GPIO = (3UL<<ADL_IO_TYPE_POS),
 _IO_LABEL_MSK = ADL_IO_NUM_MSK | ADL_IO_TYPE_MSK
} adl_ioLabel_e

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 111

ADL User Guide for Open AT® OS 6.35

Description
ADL_IO_NUM_MSK Number field (b0-b11; 0->4095)
ADL_IO_TYPE_MSK Type field (b12-b13):

ADL_IO_GPI - To identify a GPI

ADL_IO_GPO - To identify a GPO

ADL_IO_GPIO - To identify a GPIO (GPO + GPI)

ADL_IO_LABEL_MSK Mask including ADL_IO_NUM_MSK and ADL_IO_TYPE_MSK

Note: b14-b15 are reserved.

Note: This type is only used to identify an IO pin of the embedded module, and not to configure the current
direction. E.g. to identify the GPIO 12 pin of a embedded module, the "ADL_IO_GPIO | 12" statement
shall be used. In order to configure or get the current direction of a given pin, the adl_ioDir_e type
must be used (please refer to adl_ioDir_etype for more information). Please also note that valid
labels are described in the related Embedded module Product Technical Specification, and are also
retrievable from the GPIO service capabilities.

3.10.2.4. The adl_ioLevel_e type

This type lists the level field definition (b16 of adl_ioDefs_t). Please see also adl_ioDefs_t for the
other fields.

Code
type def enum
{
 ADL_IO_LEV_POS = 16,
 ADL_IO_LEV_MSK = (1UL<<ADL_IO_LEV_POS),
 ADL_IO_LEV_HIGH = (1UL<<ADL_IO_LEV_POS),
 ADL_IO_LEV_LOW = (0UL<<ADL_IO_LEV_POS)
} adl_ioLabel_e

Description
ADL_IO_LEV_MSK Level field: the Level of GPIO

ADL_IO_LEV_HIGH - High Level

ADL_IO_LEV_LOW - Low Level

3.10.2.5. The adl_ioDir_e type

This type lists the direction field definition (b17-b18 of adl_ioDefs_t). Please see also adl_ioDefs_t
for the other fields.

Code
type def enum
{
 ADL_IO_DIR_POS = 17,
 ADL_IO_DIR_MSK = (3UL<<ADL_IO_DIR_POS),
 ADL_IO_DIR_OUT = (0UL<<ADL_IO_DIR_POS),
 ADL_IO_DIR_IN = (1UL<<ADL_IO_DIR_POS),
 ADL_IO_DIR_TRI = (2UL<<ADL_IO_DIR_POS)
} adl_ioDir_e type

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 112

ADL User Guide for Open AT® OS 6.35

Description
ADL_IO_DIR_MSK - Dir field: The direction of GPIO

ADL_IO_DIR_OUT - Set as Output

ADL_IO_DIR_IN - Set as Input

ADL_IO_DIR_TRI - Set as a Tristate

Note: This type is only used to identify the current direction of a given pin. Pin labels are identified by the
adl_ioLabel_e type (Please refer to adl_ioLabel_etype for more information).

3.10.2.6. The adl_ioError_e type

This type lists the error field definition (b28-b31 of adl_ioDefs_t). Please see also adl_ioDefs_t for
the other fields.

Code
type def enum
{
 ADL_IO_ERR_POS = 28,
 ADL_IO_ERR_MSK = (7UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR = (0UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_UNKWN = (1UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_USED = (2UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_BADDIR = (3UL<<ADL_IO_ERR_POS),
 ADL_IO_ERR_NIH = (4UL<<ADL_IO_ERR_POS),
 ADL_IO_GERR_POS = 31,
 ADL_IO_GERR_MSK = (1UL<<ADL_IO_GERR_POS),
 ADL_IO_GNOERR = (0UL<<ADL_IO_GERR_POS),
 ADL_IO_GERR = (1UL<<ADL_IO_GERR_POS)
 } ioError_e type

Description
ADL_IO_ERR_MSK Error cause (b28-b30):
ADL_IO_ERR - Unidentified error

ADL_IO_ERR_UNKWN - Unknown GPIO

ADL_IO_ERR_USED - Already used

ADL_IO_ERR_BADDIR - Bad direction

ADL_IO_ERR_NIH - GPIO is not in the handle

ADL_IO_GERR_MSK General error field (b31):
ADL_IO_GNOERR - No Error (b28-30 are unsignificant)

ADL_IO_GERR - Error during the treatment (see b28-b30 for the cause)

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 113

ADL User Guide for Open AT® OS 6.35

Example
#define NUM_GPIO_OUT 2
adl_ioDefs_t Gpio_Out_Config[NUM_GPIO_OUT] = {

 (ADL_IO_GPO | 20 | ADL_IO_DIR_OUT | ADL_IO_LEV_LOW) ,
 (ADL_IO_GPIO | 23 | ADL_IO_DIR_OUT | ADL_IO_LEV_LOW) };

 s32 myGpioOut_Handle;

 void adl_main (adl_InitType_e InitType)
 {
 TRACE ((1, "Embedded Application : Main"));

 //Subscribe to outputs
 myGpioOut_Handle = adl_ioSubscribe(NUM_GPIO_OUT,Gpio_Out_Config,0,0,0);
 TRACE ((1, "handler returns %d", myGpioOut_Handle));

 switch(myGpioOut_Handle)
 {
 case ADL_RET_ERR_PARAM:
 TRACE ((1, "if a parameter has an incorrect value"));
 break;
 case ADL_RET_ERR_DONE:
 TRACE ((1, "refers to the field 3.10.2.6 adl_ioError_e"));
 TRACE ((1,"is there any error %x",Gpio_Out_Config[0] &
ADL_IO_GERR_MSK)); // if the result is 80000000, this means that there is an
error. actually the b31 indicates if b28-b31 are significant or not.

 TRACE ((1," the return value of adl_io_defs_t is %x",
Gpio_Out_Config[0] & ADL_IO_ERR_MSK)); // then to get the error result, use
the mask ADL_IO_ERR_MSK . in Our case, as GPO20 is not recognized, then the
returned error will be 10000000 which corresponds to adl_io_err_unkwm (unkown
GPIO).

 break;
 case ADL_RET_ERR_NO_MORE_TIMERS:
 TRACE ((1, "there is no timer available to start"));
 break;
 case ADL_RET_ERR_NO_MORE_HANDLES:
 TRACE ((1, "no more GPIO handles are available"));
 break;
 case ADL_RET_ERR_SERVICE_LOCKED:
 TRACE ((1, "the function was called from a low level
 Interrupt handler"));
 break;
 }
 TRACE((1,"myGpioOut_Handle = %d",myGpioOut_Handle));
}

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 114

ADL User Guide for Open AT® OS 6.35

3.10.2.7. The adl_ioCap_e type

This type lists the capabilities field definition (b21-b22 of adl_ioDefs_t). It is only an output. Please
see also adl_ioDefs_t for the other fields.

Code
type def enum
{
 ADL_IO_CAP_POS = 21,
 ADL_IO_CAP_MSK = (3UL<<ADL_IO_CAP_POS),
 ADL_IO_CAP_OR = (1UL<<ADL_IO_CAP_POS),
 ADL_IO_CAP_IW = (2UL<<ADL_IO_CAP_POS)
 } adl_ioCap_e type

Description
ADL_IO_CAP_MSK Capabilities field: Specials capabilities
ADL_IO_CAP_OR - Output is readable

ADL_IO_CAP_IW - Input is writable

3.10.2.8. The adl_ioStatus_e type

This type lists the status field definition (b19-b20 of adl_ioDefs_t). it is only an output. Please see
also adl_ioDefs_t for the other fields.

Code
type def enum
{
 ADL_IO_STATUS_POS = 19,
 ADL_IO_STATUS_MSK = (3UL<<ADL_IO_STATUS_POS),
 ADL_IO_STATUS_USED = (1UL<<ADL_IO_STATUS_POS),
 ADL_IO_STATUS_FREE = (0UL<<ADL_IO_STATUS_POS)
} adl_ ioStatus_e type

Description
ADL_IO_STATUS_MSK Status field: to get the status of the fields
ADL_IO_STATUS_USED - The IO is used by task

ADL_IO_STATUS_FREE - The IO is available

3.10.2.9. The adl_ioEvent_e type

This type describes the GPIOs events received.

Code
type def enum
{
 ADL_IO_EVENT_INPUT_CHANGED = 2
} adl_ ioEvent_e type

Description
ADL_IO_EVENT_INPUT_CHANGED One or several of the subscribed inputs have

changed. This event will be received only if a
polling process is required at GPIO
subscription time.

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 115

ADL User Guide for Open AT® OS 6.35

3.10.3. The adl_ioGetCapabilitiesList Function
This function returns the embedded module GPIO capabilities list. For each hardware available GPIO,
the embedded module shall add an item in the GPIO capabilities list. A GPIO is hardware available
when it is not used by any feature.

Caution: The returned GpioTab array must be released by the customer application when the information is not
useful any more.

Prototype
s32 adl_ioGetCapabilitiesList (u32 * GpioNb,
 adl_ioDefs_t ** GpioTab,
 adl_ioCap_t * GpioTypeNb);

Parameters

GpioNb:

Number of GPIO treated, it is the size of GpioTab array.

GpioTab:

Returns a pointer to a list containing GPIO capablities informations (using adl_ioDefs_t
** type).

Outputs available for each array element:

 the GPIO label (see section adl_ioLabel_etype).

 the GPIO direction (see section adl_ioDir_etype).

 the GPIO capabilities (see section adl_ioCap_e type).

 the GPIO status (see section adl_ioStatus_e type).

GpioTypeNb:

Returned the number of each GPIO, GPO and GPI. GpioTypeNb is an optional parameter,
not used if set to NULL.

Returned values
• OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

3.10.4. The adl_ioEventSubscribe Function
This function allows the Open AT® application to provide ADL with a call-back for GPIO related
events.

Prototype
s32 adl_ioEventSubscribe (adl_ioHdlr_f GpioEventHandler);

Parameters

GpioEventHandler:

Application provided event call-back function. Please refer to next chapter for event
descriptions.

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 116

ADL User Guide for Open AT® OS 6.35

Returned values
• A positive or null value on success:

 GPIO event handle, to be used on further GPIO API functions calls;

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_NO_MORE_HANDLES if the GPIO event service has been subscribed to
more than 128 timers.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level Interrupt handler.

Note: In order to set-up an automatic GPIO polling process, the adl_ioEventSubscribe function has to
be called before the adl_ioSubscribe.

3.10.5. The adl_ioHdlr_f Call-back Type
Such a call-back function has to be provided to ADL through the adl_ioEventSubscribe interface,
in order to receive GPIO related events.

Prototype
typedef void (*adl_ioHdlr_f) (s32 GpioHandle,
 adl_ioEvent_e Event,
 u32 Size,
 void * Param);

Parameters

GpioHandle:

Read GPIO handle for the ADL_IO_EVENT_INPUT_CHANGED event.

Event:

Event is the received identifier; other parameters use depends on the event type.

Size:

Number of items (read inputs or updated features) in the Param table.

Param:

Read value tables (using adl_ioDefs_t * type) for the
ADL_IO_EVENT_INPUT_CHANGED event.

Outputs available for each array element:

 the GPIO label (see section adl_ioLabel_etype).

 the GPIO level (see section adl_ioLevel_etype).

 the GPIO error information (see section adl_ioError_etype).

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 117

ADL User Guide for Open AT® OS 6.35

3.10.6. The adl_ioEventUnsubscribe Function
This function allows the Open AT® application to unsubscribe from the GPIO events notification.

Prototype
s32 adl_ioEventUnsubscribe (s32 GpioEventHandle);

Parameters

GpioEventHandle:

Handle previously returned by the adl_ioEventSubscribe function.

Returned values
• A OK on success

• A negative error value otherwise:

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

 ADL_RET_ERR_NOT_SUBSCRIBED if no GPIO event handler has been subscribed,

 ADL_RET_ERR_BAD_STATE if a polling process is currently running with this event
handle.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 118

ADL User Guide for Open AT® OS 6.35

Example:
void my_ioGetCapabilitiesList ()
 {
 u32 My_Loop;
 ascii * My_Message = adl_memGet (100);
 u32 My_GpioNb;
 adl_ioDefs_t * My_GpioTab = NULL;
 adl_ioCap_t GpioTypeNb;

 adl_ioGetCapabilitiesList (&My_GpioNb , &My_GpioTab ,
 &GpioTypeNb);

 wm_sprintf (My_Message , "\r\nRessources : %d GPIO, %d GPI and
 %d GPO \r\n" , GpioTypeNb.NbGpio , GpioTypeNb.NbGpi ,
 GpioTypeNb.NbGpo);
 adl_atSendResponse (ADL_AT_UNS, My_Message);

 adl_atSendResponse (ADL_AT_UNS, "\r\nList of GPIO :\r\n");

 for (My_Loop = 0 ; My_Loop < My_GpioNb ; My_Loop++)
 {
 switch (My_GpioTab [My_Loop] & ADL_IO_TYPE_MSK)
 {
 case ADL_IO_GPI :
 wm_sprintf (My_Message, "GPI %d \r\n",
 (My_GpioTab [My_Loop] & ADL_IO_NUM_MSK));
 break;
 case ADL_IO_GPIO :
 wm_sprintf (My_Message, "GPIO %d \r\n",
 (My_GpioTab [My_Loop] & ADL_IO_NUM_MSK));
 break;
 case ADL_IO_GPO :
 wm_sprintf (My_Message, "GPO %d \r\n",
 (My_GpioTab [My_Loop] & ADL_IO_NUM_MSK));
 break;
 }
 adl_atSendResponse (ADL_AT_UNS, My_Message);

 ... // customer treatment

 }

 adl_memRelease (My_Message);

 // My_GpioTab must be released by the customer application
 adl_memRelease (My_GpioTab);
 }

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 119

ADL User Guide for Open AT® OS 6.35

3.10.7. The adl_ioSubscribe Function
This function subscribes to some GPIOs. For subscribed inputs, a polling system can be configured in
order to notify a previously subscribed GPIO event handler with an
ADL_IO_EVENT_INPUT_CHANGED event.

Prototype
s32 adl_ioSubscribe (u32 GpioNb,
 adl_ioDefs_t* GpioConfig,

 u8 PollingTimerType,
 u32 PollingTime,

 s32 GpioEventHandle);

Parameters

GpioNb:

Size of the GpioConfig array.

GpioConfig:

GPIO subscription configuration array, which contains GpioNb elements. For each element,
the adl_ioDefs_t structure members have to be configured.

• Inputs to set for each array element:

 the label of the GPIO to subscribe (see section adl_ioLabel_etype).
 the GPIO direction (see section adl_ioDir_etype).

 the GPIO level, only if the GPIO is an output (see section adl_ioLevel_etype).

• Outputs available for each array element:

 the GPIO error information (see section adl_ioError_etype).

PollingTimerType:

Type of the polling timer (if required); defined values are:

ADL_TMR_TYPE_100MS 100 ms granularity timer

ADL_TMR_TYPE_TICK 18.5 ms tick granularity timer

PollingTime:

If some GPIO are allocated as inputs, this parameter represents the time interval between
two GPIO polling operations (unit is dependent on the PollingTimerType value).

Please note that each required polling process uses one of the available ADL timers
(Reminder: up to 32 timers can be simultaneously subscribed).

If no polling is requested, this parameter has to be 0.

GpioEventHandle:

GPIO event handle (previously returned by adl_ioEventSubscribe function). Associated
event handler will receive an ADL_IO_EVENT_INPUT_CHANGED event each time one of the
subscribed inputs state has changed.

If no polling is requested, this parameter is ignored.

Returned values
• A positive or null value on success:

 GPIO handle to be used on further GPIO API functions calls;

• A negative error value otherwise (No GPIO is reserved):

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 120

ADL User Guide for Open AT® OS 6.35

 ADL_RET_ERR_DONE refers to the field 3.10.2.6 adl_ioError_e for more information.

 ADL_RET_ERR_NO_MORE_TIMERS if there is no timer available to start the polling
process required by application,

 ADL_RET_ERR_NO_MORE_HANDLES if no more GPIO handles are available.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context).

3.10.8. The adl_ioUnsubscribe Function
This function un-subscribes from a previously allocated GPIO handle.

Prototype
s32 adl_ioUnsubscribe (s32 GpioHandle);

Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context).

3.10.9. The adl_ioSetDirection Function
This function allows the direction of one or more previously allocated GPIO to be modified.

Prototype
s32 adl_ioSetDirection (s32 GpioHandle,

 u32 GpioNb,
 adl_ioDefs_t* GpioDir);

Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

GpioNb:

Size of the GpioDir array.

GpioDir:

GPIO direction configuration structure array (using the adl_ioDefs_t * type).

• Inputs to set for each array element:

 the label of the GPIO to modify (see section adl_ioLabel_etype).

 the new GPIO direction (see section adl_ioDir_etype).

• Outputs available for each array element:

 the GPIO error information (see section adl_ioError_etype)

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 121

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_DONE refers to the field adl_ioError_e for more information for each
GPIO. If the error information is ADL_IO_GNOERR, the process has been completed with
success for this GPIO.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context).

3.10.10. The adl_ioRead Function
This function allows several GPIOs to be read from a previously allocated handle.

Prototype
s32 adl_ioRead (s32 GpioHandle,
 u32 GpioNb,

 adl_ioDefs_t* GpioRead);

Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

GpioNb:

Size of the GpioRead array.

GpioRead:

GPIO read structure array (using the adl_ioDefs_t * type).

• Inputs to set for each array element:

 the label of the GPIO to read (see section adl_ioLabel_etype).

• Outputs available for each array element:

 the GPIO level value (see section adl_ioLevel_etype).

 the GPIO error information (see section adl_ioError_etype)

Returned values
• OK on success (read values are updated in the GpioArray parameter).

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_DONE refers to the field adl_ioError_e for more information. If the error
information is ADL_IO_GNOERR, the process has been completed with success for this
GPIO.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 122

ADL User Guide for Open AT® OS 6.35

3.10.11. The adl_ioReadSingle Function
This function allows one GPIO to be read from a previously allocated handle.

Prototype
s32 adl_ioReadSingle (s32 GpioHandle,

 adl_ioDefs_t* Gpio);

Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

Gpio:

Identifier of the GPIO (see adl_ioLabel_e).

Returned values
• GPIO read value on success (1 for a high level or 0 for a low level),

• A negative error value otherwise

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

 ADL_RET_ERR_BAD_STATE if one of the required GPIO was not subscribed as an input.

3.10.12. The adl_ioWrite Function
This function writes on several GPIOs from a previously allocated handle.

Prototype
s32 adl_ioWrite (s32 GpioHandle,

 u32 GpioNb,
 adl_ioDefs_t* GpioWrite);

Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

GpioNb:

Size of the GpioWrite array.

GpioWrite:

GPIO write structure array (using the adl_ioDefs_t * type).

• Inputs to set for each array element:

 the label of the GPIO to write (see section adl_ioLabel_etype).

 the new GPIO level (see section adl_ioLevel_etype).

• Outputs available for each array element:

 the GPIO error information (see section adl_ioError_etype).

Returned values
• OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_DONE refers to the field adl_ioError_e for more information. If the error
information is ADL_IO_GNOERR, the process has been completed with success for this
GPIO.

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 123

ADL User Guide for Open AT® OS 6.35

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_BAD_STATE if one of the required GPIOs was not subscribed as an
output.

3.10.13. The adl_ioWriteSingle Function
This function allows one GPIO to be written from a previously allocated handle.

Prototype
s32 adl_ioWriteSingle (s32 GpioHandle,

 adl_ioDefs_t* Gpio,
 bool State);

Parameters

GpioHandle:

Handle previously returned by adl_ioSubscribe function.

Gpio:

Identifier of the GPIO (see section adl_ioLabel_etype).

State:

Value to be set on the output:

 TRUE for a high level.

 FALSE for a low level.

Returned values
• OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_BAD_STATE if one of the required GPIO was not subscribed as an input.

3.10.14. Example
This example demonstrates how to use the GPIO service in a nominal case (error cases not handled)
on the embedded module.

Complete examples using the GPIO service are also available on the SDK (generic Telemetry
sample, generic Drivers library sample).

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 124

ADL User Guide for Open AT® OS 6.35

// Global variables & constants

// Subscription data
#define GPIO_COUNT1 2
#define GPIO_COUNT2 1

u32 My_Gpio_Label1 [GPIO_COUNT1] = { 1 , 2 };
u32 My_Gpio_Label2 [GPIO_COUNT2] = { 3 };

adl_ioDefs_t* MyGpioConfig1 [GPIO_COUNT1] =
{
 (ADL_IO_GPIO | 1| ADL_IO_DIR_OUT | ADL_IO_LEV_LOW) ,
 (ADL_IO_GPIO | 2| ADL_IO_DIR_IN)
};
 adl_ioDefs_t* MyGpioConfig2 [GPIO_COUNT2] =
 { ADL_IO_GPIO | 3| ADL_IO_DIR_IN };

// Gpio Event Handle
s32 MyGpioEventHandle;

// Gpio Handles
s32 MyGpioHandle1, MyGpioHandle2;

// GPIO event handler
void MyGpioEventHandler (s32 GpioHandle, adl_ioEvent_e Event, u32 Size, void *
Param)

{

 // Check event
 switch (Event)
 {
 case ADL_IO_EVENT_INPUT_CHANGED :
 {
 u32 My_Loop;
 // The subscribed input has changed
 for (My_Loop = 0 ; My_Loop < Size ; My_Loop++)
 {
 if ((ADL_IO_TYPE_MSK & ((adl_ioDefs_t *)Param)[My_Loop]
)
 && ADL_IO_GPO)
 {
 TRACE ((1, "GPO %d new value: %d",
 (((adl_ioDefs_t *)Param)[My_Loop]) & ADL_IO_NUM_MSK
,
 ((((adl_ioDefs_t *)Param)[My_Loop]) & ADL_IO_LEV_MSK
) &
 ADL_IO_LEV_HIGH));

API
GPIO Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 125

ADL User Guide for Open AT® OS 6.35

 }
 else
 {
 TRACE ((1, "GPIO %d new value: %d",
 (((adl_ioDefs_t *)Param)[My_Loop]) & ADL_IO_NUM_MSK ,
 ((((adl_ioDefs_t *)Param)[My_Loop]) & ADL_IO_LEV_MSK) &
 ADL_IO_LEV_HIGH));
 }
 }
 }
 break;
 }
 }

 ...
// Somewhere in the application code, used as an event handler
 void MyFunction (void)
 {
 // Local variables
 s32 ReadValue;
 adl_ioDefs_t Gpio_to_write1 = ADL_IO_GPIO | My_Gpio_Label1 [0] ;
 adl_ioDefs_t Gpio_to_read1 = ADL_IO_GPIO | My_Gpio_Label1 [1] ;
 adl_ioDefs_t Gpio_to_read2 = ADL_IO_GPIO | My_Gpio_Label2 [0] ;

 // Subscribe to the GPIO event service
 MyGpioEventHandle = adl_ioEventSubscribe (MyGpioEventHandler);

 // Subscribe to the GPIO service (One handle without polling,
 // one with a 100ms polling process)
 MyGpioHandle1 = adl_ioSubscribe (GPIO_COUNT1, MyGpioConfig1, 0, 0, 0
);
 MyGpioHandle2 = adl_ioSubscribe (GPIO_COUNT2, MyGpioConfig2,
 ADL_TMR_TYPE_100MS, 1, MyGpioEventHandle);

 // Set output
 adl_ioWriteSingle (MyGpioHandle1, &Gpio_to_write1 , TRUE);

 // Read inputs
 ReadValue = adl_ioReadSingle (MyGpioHandle1, &Gpio_to_read1);
 ReadValue = adl_ioReadSingle (MyGpioHandle2, &Gpio_to_read2);

 // Unsubscribe from the GPIO services
 adl_ioUnsubscribe (MyGpioHandle1);
 adl_ioUnsubscribe (MyGpioHandle2);

 // Unsubscribe from the GPIO event service
 adl_ioEventUnsubscribe (MyGpioEventHandle);
 }

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 126

ADL User Guide for Open AT® OS 6.35

3.11. Bus Service
The ADL supplies interface to handle bus operations.

The defined operations are:

• adl_busSubscribe to open a bus

• adl_busUnsubscribe to close a bus

• adl_busIOCtl to modify the behavior of the bus

• adl_busRead & adl_busReadExt to read on the a SPI or I2C bus

• adl_busWrite & adl_busWriteExt to write on the a SPI or I2C bus

• adl_busDirectWrite & adl_busDirectRead to write on the Parallel bus

3.11.1. Required Header File
The header file for the bus functions is:

adl_bus.h

3.11.2. Capabilities Registry Informations

3.11.2.1. The adl_busSpiCommonCap_e Type

SPI block common capabilities.

Code:
typedef enum
{
 ADL_BUS_SPI_COMMON_CAP_MASTER = (1<<0),
 ADL_BUS_SPI_COMMON_CAP_SLAVE = (1<<1),
 ADL_BUS_SPI_COMMON_CAP_2W = (1<<2),
 ADL_BUS_SPI_COMMON_CAP_3W = (1<<3),
 ADL_BUS_SPI_COMMON_PADDING = 0x7fffffff
} adl_busSpiCommonCap_e;

Description:
ADL_BUS_SPI_COMMON_CAP_MASTER The block can be used in master mode.

ADL_BUS_SPI_COMMON_CAP_SLAVE The block can be used in slave mode.

 Reserved for future use.

ADL_BUS_SPI_COMMON_CAP_2W The block can be configured to use 2 wires (DAT
and CLK).

ADL_BUS_SPI_COMMON_CAP_3W The block can be configured to use 3 wires (MISO,
MOSI and CLK).

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 127

ADL User Guide for Open AT® OS 6.35

3.11.2.2. The adl_busSpiCap_e Type

SPI block capabilities in Master or Slave mode.

Code:
typedef enum
{
 ADL_BUS_SPI_CAP_BUSY = (1<<0),
 ADL_BUS_SPI_CAP_LOAD = (1<<1),
 ADL_BUS_SPI_CAP_CS_NONE = (1<<2),
 ADL_BUS_SPI_CAP_CS_GPIO = (1<<3),
 ADL_BUS_SPI_CAP_CS_HARD = (1<<4),
 ADL_BUS_SPI_CAP_MSB = (1<<5),
 ADL_BUS_SPI_CAP_LSB = (1<<6),
 ADL_BUS_SPI_CAP_MICROWIRE = (1<<7),
 ADL_BUS_SPI_CAP_MASK = (1<<8),
 ADL_BUS_SPI_CAP_SHIFT = (1<<9),
 ADL_BUS_SPI_CAP_PADDING = 0x7fffffff
} adl_busSpiCap_e;

Description:
ADL_BUS_SPI_CAP_BUSY The block can use a BUSY signal.

ADL_BUS_SPI_CAP_LOAD The block can use a LOAD signal.

ADL_BUS_SPI_CAP_CS_NONE The block can work without Chip Select.

ADL_BUS_SPI_CAP_CS_GPIO The block can work with a GPIO as Chip Select.

ADL_BUS_SPI_CAP_CS_HARD The block can work with a dedicated hardware pin as Chip
 Select.

ADL_BUS_SPI_CAP_MSB The block can send data MSB first.

ADL_BUS_SPI_CAP_LSB The block can send data LSB first.

ADL_BUS_SPI_CAP_MICROWIRE The block can be used in Microwire mode.

ADL_BUS_SPI_CAP_MASK The block has a mask possibility.

ADL_BUS_SPI_CAP_SHIFT The block has a shift possibility.

3.11.2.3. The adl_busI2CCap_e Type

I2C block capabilities.

Code:
typedef enum
{
 ADL_BUS_I2C_CAP_ADDR_10_BITS = (1<<0),
 ADL_BUS_I2C_CAP_MASTER = (1<<1),
 ADL_BUS_I2C_CAP_SLAVE = (1<<2),
 ADL_BUS_I2C_CAP_CLK_FAST = (1<<3),
 ADL_BUS_I2C_CAP_CLK_HIGH = (1<<4),
 ADL_BUS_I2C_CAP_ADD_SIZE_8 = (1<<5),
 ADL_BUS_I2C_CAP_ADD_SIZE_16 = (1<<6),
 ADL_BUS_I2C_CAP_ADD_SIZE_24 = (1<<7),
 ADL_BUS_I2C_CAP_ADD_SIZE_32 = (1<<8),
 ADL_BUS_I2C_CAP_PADDING = 0x7fffffff
} adl_busI2CCap_e;

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 128

ADL User Guide for Open AT® OS 6.35

Description:
ADL_BUS_I2C_CAP_ADDR_10_BITS The block can use 10 bits addressing mode.

Reserved for future use

ADL_BUS_I2C_CAP_MASTER The block can be used in master mode.

ADL_BUS_I2C_CAP_SLAVE The block can be used in slave mode.
.

ADL_BUS_I2C_CAP_CLK_FAST The block can use Fast clock (400 kbits/s).

ADL_BUS_I2C_CAP_CLK_HIGH The block can use High Speed clock (3.4 Mbits/s).

ADL_BUS_I2C_CAP_ADD_SIZE_8 The address size can be 8 bits (see
ADL_BUS_CMD_SET_ADD_SIZEe IOCtl command).

ADL_BUS_I2C_CAP_ADD_SIZE_16 The address size can be 16 bits (see
 ADL_BUS_CMD_SET_ADD_SIZE IOCtl command).

ADL_BUS_I2C_CAP_ADD_SIZE_24 The address size can be 24 bits (see
 ADL_BUS_CMD_SET_ADD_SIZE IOCtl command).

ADL_BUS_I2C_CAP_ADD_SIZE_32 The address size can be 32 bits
 (see ADL_BUS_CMD_SET_ADD_SIZE IOCtl
 command).

3.11.3. Common Data Structures and Enumerations
ADL provides capabilities information about the BUS service, thanks to the registry service.

The following entries are defined in the registry:

Registry entry Type Description

i2c_NbBlocks3 INTEGER The number of i2c blocks managed by the embedded
module

i2c_xx_Cap INTEGER The capabilities of the block, defined as a combination of
the adl_busI2CCap_e type values.

i2c_xx_MaxLength
Unsigned
INTEGER4

The maximum amount of items that can be passed in a
I2C read/write operation

spi_NbBlocks3 INTEGER The number of spi blocks managed by the embedded
module

spi_xx_Common INTEGER
The generic capabilities of the block, defined as a
combination of the adl_busSpiCommonCap_e type
values.

spi_xx_ClockDivStep INTEGER The number of steps of the clock divider (see
adl_busSPISettings_t ::Clk_Speed field description)

spi_xx_MaxLength INTEGER The maximum amount of items that can be passed in a
SPI read/write operation

spi_xx_DataSizes2 INTEGER Available data sizes for
ADL_BUS_CMD_SET_DATA_SIZE IOCtl command

spi_xx_Master_OpcodeSizes2
Unsigned
INTEGER4

Available Opcode sizes for
ADL_BUS_CMD_SET_OP_SIZE IOCtl command

spi_xx_Master_AddressSizes2
Unsigned
INTEGER4

Available Address sizes for
ADL_BUS_CMD_SET_ADD_SIZE IOCtl command

spi_xx_Master_Cap INTEGER The capabilities of the block in Master mode, defined as
a combination of the adl_busSpiCap_e type

spi_xx_Master_MaxFreqClock INTEGER
The maximum frequency (in kHz) of the clock in Master
mode (see adl_busSPISettings_t::Clk_Speed field
description).

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 129

ADL User Guide for Open AT® OS 6.35

Registry entry Type Description

Para_NbBlocks3 INTEGER The number of parallel bus blocks managed by the
embedded module

Para_NbCS INTEGER The number of chip select available to the customer

Para_CS INTEGER

The list of currently accessible chip select * This is a
bitfield, each bit represents a CS available. e.g. :
Para_CS = 5, the Parallel bus 1 has 2 CS available :
CS0 (b0) and CS2 (b2)

Para_xx_Addr INTEGER Current address of the Chip select XX

Para_xx_Freq INTEGER Current frequency of the Chip select XX

Note: 1. For the registry entry the xx part has to be replaced by the number of the instance.
Example: if you want the capabilities of the I2C1 block the registry entry to use will be i2c_01_Cap.
Example: if you want the common capabilities of the SPI2 block the registry entry to use will be
spi_02_Common.

Note: 2. Sizes are coded in a bit field, where size n is available when the n-1 bit is set.
Example: 0x80008003 means sizes 32 bits, 16 bits, 2 bits and 1 bit are available.

Note: 3. A SPI/I2C/Parallel bus block will be identified with a number from 1 to spi_NbBlocks or
i2c_NbBlocks or Parallel_NbBlocks.

Note: 4. Entries using the Unsigned INTEGER type have to be casted to an u32 value after being retrieved
from adl_regGetHWInteger function.

3.11.3.1. The adl_busSettings_u Type

Generic bus settings union.

Code
typedef struct
 {
 adl_busSPISettings_t SPI;
 adl_busI2Settings_t I2C;
 }adl_busSettings_u;

Description

SPI

SPI member, previously handle SPI related settings.

I2C

I2C member, previously to handle 12C related settings.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 130

ADL User Guide for Open AT® OS 6.35

3.11.3.2. The adl_busID_e Type

This type allows to identify the bus types supported by the service.

Code:
typedef enum
{
 ADL_BUS_ID_SPI, //SPI Bus

 ADL_BUS_ID_I2C, //I2C Bus

 ADL_BUS_ID_PARALLEL, //Parallel Bus

 ADL_BUS_ID_LAST, //Reserved for internal use

} adl_busID_e;

3.11.3.3. The adl_busType_e Type

Former enumeration used to identify BUS types.

Code:
typedef enum
{
 ADL_BUS_SPI1,
 ADL_BUS_SPI2,
 ADL_BUS_I2C,
 ADL_BUS_PARALLEL
} adl_busType_e;

Description:
ADL_BUS_SPI1 This constant was previously used to access the

embedded module SPI1 bus.

ADL_BUS_SPI2 This constant was previously used to access the
embedded module SPI2 bus

ADL_BUS_I2C This constant was previously used to access the
embedded module I2C bus

ADL_BUS_PARALLEL This constant was previously used to access the
embedded module Parallel bus

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 131

ADL User Guide for Open AT® OS 6.35

3.11.4. SPI Bus Subscription Data Structures and
Enumerations

3.11.4.1. The adl_busSPISettings_t Type

SPI bus settings.

Code:
typedef struct
{
 u32 Clk_Speed;
 u32 Clk_Mode;
 u32 ChipSelect;
 u32 ChipSelectPolarity;
 u32 LsbFirst;
 adl_ioDefs_t GpioChipSelect;
 u32 LoadSignal;
 u32 DataLinesConf;
 u32 MasterMode;
 u32 BusySignal;
} adl_busSPISettings_t;

Description:

Clk_Speed

The Clk_Speed parameter is a divider that allows to modify SPI bus clock speed.

Valid values are in the [0 – (N-1)] range, where N is the spi_xx_ClockDivStep capability.

The SPI clock speed (in kHz) is defined using the formula below:

MaxFrequency / (1 + ClkSpeed)

Where MaxFrequency is the embedded module maximum frequency for the current SPI
block (spi_xx_Master_MaxFreqClock capability).

Example: if Clk_Speed is set to 0, and Max_Frequency is 13000 kHz, the SPI bus clock
speed is set to 13000 kHz.

Note: The MaxFrequency can be changed by the command AT+WCPS=1,x.

 While subscribing to SPI bus, check the current SPI MaxFrequency to know which Clk_Speed value
 to use by reading the spi_xx_Master_MaxFreqClock capability using adl_regGetHWInteger.

Clk_Mode

This parameter is the SPI clock mode (see adl_busSPI_Clk_Mode_e).

ChipSelect

This parameter sets the pin used to handle the Chip Select signal (see
adl_busSPI_ChipSelect_e).

ChipSelectPolarity

This parameter sets the polarity of the Chip Select signal (see
adl_busSPI_ChipSelectPolarity_e).

LsbFirst

This parameter defines the priority for data transmission through the SPI bus, LSB or MSB
first. This applies only to data. The Opcode and Address fields sent are always sent with
MSB first (see adl_busSPI_LSBfirst_e).

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 132

ADL User Guide for Open AT® OS 6.35

GpioChipSelect

This parameter defines the GPIO Chip Select. This parameter is used only if the ChipSelect
parameter is set to the ADL_BUS_SPI_ADDR_CS_GPIO value.

It sets the GPIO label to use as the chip select signal (see adl_ioDefs_t).

LoadSignal

This parameter defines the LOAD signal behavior (see adl_busSPI_Load_e).

DataLinesConf

This parameter defines if the SPI bus uses one single pin to handle both input and output
data signals, or two pins to handle them separately (see adl_busSPI_DataLinesConf_e).

MasterMode

This parameter is the SPI master or slave running mode (see adl_busSPI_MS_Mode_e).

BusySignal

This parameter defines the LOAD signal behavior (see adl_busSPI_Busy_e).

Note: The BUSY and LOAD signals cannot be used on the WMP100. These signals will be available in a
forthcoming update.

3.11.4.2. The adl_busSPI_Clk_Mode_e Type

SPI bus Clock Modes. See also adl_busSPISettings_t for more information.

Code:
typedef enum
{
 ADL_BUS_SPI_CLK_MODE_0,
 ADL_BUS_SPI_CLK_MODE_1,
 ADL_BUS_SPI_CLK_MODE_2,
 ADL_BUS_SPI_CLK_MODE_3,
 ADL_BUS_SPI_CLK_MODE_MICROWIRE,
} adl_busSPI_Clk_Mode_e;

Description:
ADL_BUS_SPI_CLK_MODE_0 Mode 0: rest state 0, data valid on rising edge.

ADL_BUS_SPI_CLK_MODE_1 Mode 1: rest state 0, data valid on falling edge.

ADL_BUS_SPI_CLK_MODE_2 Mode 2: rest state 1, data valid on falling edge.

ADL_BUS_SPI_CLK_MODE_3 Mode 3: rest state 1, data valid on rising edge

ADL_BUS_SPI_CLK_MODE_MICROWIRE Microwire mode. See also
ADL_BUS_SPI_CAP_MICROWIRE Capability.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 133

ADL User Guide for Open AT® OS 6.35

3.11.4.3. The adl_busSPI_ChipSelect_e Type

SPI bus Chip Select. See also adl_busSPISettings_t for more information.

Code:
typedef enum
{
 ADL_BUS_SPI_ADDR_CS_GPIO,
 ADL_BUS_SPI_ADDR_CS_HARD,
 ADL_BUS_SPI_ADDR_CS_NONE,
 } adl_busSPI_ChipSelect_e;

Description:
ADL_BUS_SPI_ADDR_CS_GPIO Use a GPIO as Chip Select signal (the

GpioChipSelect parameter has to be used).

ADL_BUS_SPI_ADDR_CS_HARD Use the reserved hardware chip select pin for the
required bus.

ADL_BUS_SPI_ADDR_CS_NONE The Chip Select signal is not handled by the ADL
bus service. The application should allocate a GPIO
to handle itself the Chip Select signal.

3.11.4.4. The adl_busSPI_ChipSelectPolarity_e Type

SPI bus Chip Select Polarity. See also adl_busSPISettings_t for more information.

Code:
typedef enum
{
 ADL_BUS_SPI_CS_POL_LOW,
 ADL_BUS_SPI_CS_POL_HIGH,
 } adl_busSPI_ChipSelectPolarity_e;

Description:
ADL_BUS_SPI_CS_POL_LOW Chip Select signal is active in Low state.

ADL_BUS_SPI_CS_POL_HIGH Chip select signal is active in High state.

3.11.4.5. The adl_busSPI_LSBfirst_e Type

SPI bus MSB/LSB First. See also adl_busSPISettings_t for more information.

Code:
typedef enum
{
 ADL_BUS_SPI_MSB_FIRST,
 ADL_BUS_SPI_LSB_FIRST
 } adl_busSPI_LSBfirst_e;

Description:
ADL_BUS_SPI_MSB_FIRST Data buffer is sent with MSB first.

ADL_BUS_SPI_LSB_FIRST Data buffer is sent with LSB first.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 134

ADL User Guide for Open AT® OS 6.35

3.11.4.6. The adl_busSPI_WriteHandling_e Type

SPI bus Write Handling.

Kept for ascendant compatibility. The adl_busSPI_Load_e type shall be used instead.

Code:
typedef enum
{
 ADL_BUS_SPI_FRAME_HANDLING,
 ADL_BUS_SPI_WORD_HANDLING
 } adl_busSPI_WriteHandling_e;

Description:
ADL_BUS_SPI_FRAME_HANDLING LOAD signal is enabled at the beginning of the

read/write process, and is disabled at the end of this
process.

ADL_BUS_SPI_WORD_HANDLING LOAD signal state changes on each written or read
word.

3.11.4.7. The adl_busSPI_Load_e Type

SPI bus LOAD signal configuration. See also adl_busSPISettings_t & ADL_BUS_SPI_CAP_LOAD
for more information.

Code:
typedef enum
{
 ADL_BUS_SPI_LOAD_UNUSED,
 ADL_BUS_SPI_LOAD_USED
 } adl_busSPI_Load_e;

Description:
ADL_BUS_SPI_LOAD_UNUSED The LOAD signal is not used.

ADL_BUS_SPI_LOAD_USED The LOAD signal is used (LOAD signal state
changes on each written or read word; word size is
defined thanks to ADL_BUS_CMD_SET_DATA_SIZE
IOCtl command. Please refer to the Product
Technical Specification document for more
information about the LOAD signal).

Note: The BUSY and LOAD signals cannot be used on the WMP100. These signals will be available in a
forthcoming update.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 135

ADL User Guide for Open AT® OS 6.35

3.11.4.8. The adl_busSPI_DataLinesConf_e Type

SPI bus Data Lines configuration. See also adl_busSPISettings_t,
ADL_BUS_SPI_COMMON_CAP_2W & ADL_BUS_SPI_COMMON_CAP_3W capabilities for more
information.

Code:
typedef enum
{
 ADL_BUS_SPI_DATA_BIDIR,
 ADL_BUS_SPI_DATA_UNIDIR
 } adl_busSPI_DataLinesConf_e;

Description:
ADL_BUS_SPI_DATA_BIDIR 2 wires mode (DAT and CLK), one bi-directional pin

is used to handle both input & output data signals.

ADL_BUS_SPI_DATA_UNIDIR 3 wires mode (MISO, MOSI and CLK), two pins are
used to handle separately input & output data
signals.

3.11.4.9. The adl_busSPI_MS_Mode_e Type

Master/Slave bus mode configuration. See also adl_busSPISettings_t,
ADL_BUS_SPI_COMMON_CAP_MASTER & ADL_BUS_SPI_COMMON_CAP_SLAVE capabilities
for more information.

Code:
typedef enum
{
 ADL_BUS_SPI_MASTER_MODE,
 ADL_BUS_SPI_SLAVE_MODE
 } adl_busSPI_MS_Mode_e;

Description:
ADL_BUS_SPI_MASTER_MODE The SPI bus is running in master mode (default

value when adl_busSubscribe function is used).

ADL_BUS_SPI_SLAVE_MODE The SPI bus is running in slave mode. Reserved for
future use.

3.11.4.10. The adl_busSPI_Busy_e Type

SPI bus BUSY signal configuration. See also adl_busSPISettings_t & ADL_BUS_SPI_CAP_BUSY
capability for more information.

Code:
typedef enum
{
 ADL_BUS_SPI_BUSY_UNUSED,
 ADL_BUS_SPI_BUSY_USED
 } adl_busSPI_Busy_e;

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 136

ADL User Guide for Open AT® OS 6.35

Description:
ADL_BUS_SPI_BUSY_UNUSED The BUSY signal is not used (default value when

adl_busSubscribe function is used).

ADL_BUS_SPI_BUSY_USED The BUSY signal is used

Note: The BUSY and LOAD signals cannot be used on the WMP100. These signals will be available in a
forthcoming update.

3.11.5. I2C Bus Subscription Data Structures and
Enumerations

3.11.5.1. The adl_busI2CSettings_t Type

This structure defines the I2C bus settings for subscription.

Note: Please refer to the Product Technical Specification for more information.

Code:
typedef struct
{

u32 ChipAddress;
 u32 Clk_Speed;
 u32 AddrLength;
 u32 MasterMode;
} adl_busI2CSettings_t;

Description:

ChipAddress

This parameter sets the remote chip N bit address on the I2C bus.

b0 to b6 bits are used.

Example:

If the remote chip address is set to A0, the ChipAddress parameter has to be set to the 0xA0
value.

Clk_Speed

This parameter sets the required I2C bus speed (see adl_busI2C_Clk_Speed_e).

AddrLength

This parameter sets the remote chip address length configuration (see
adl_busI2C_AddrLength_e).

MasterMode

This parameter is the I2C master or slave running mode (see adl_busI2C_MS_Mode_e).

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 137

ADL User Guide for Open AT® OS 6.35

3.11.5.2. The adl_busI2C_Clk_Speed_e Type

I2C bus Clock Speed. See also adl_busI2CSettings_t, ADL_BUS_I2C_CAP_CLK_FAST &
ADL_BUS_I2C_CAP_CLK_HIGH capabilities for more information.

Code:
typedef enum
{
 ADL_BUS_I2C_CLK_STD,
 ADL_BUS_I2C_CLK_FAST,
 ADL_BUS_I2C_CLK_HIGH
 } adl_busI2C_Clk_Speed_e;

Description:
ADL_BUS_I2C_CLK_STD Standard I2C bus speed (100 kbits/s).

ADL_BUS_I2C_CLK_FAST Fast I2C bus speed (400 kbits/s).

ADL_BUS_I2C_CLK_HIGH High I2C bus speed (3.4 Mbits/s).

3.11.5.3. The adl_busI2C_AddrLength_e Type

I2C bus chip address length. See also adl_busI2CSettings_t & ADL_BUS_I2C_CAP_ADDR_10_BITS
capability for more information.

Code:
typedef enum
{
 ADL_BUS_I2C_ADDR_7_BITS,
 ADL_BUS_I2C_ADDR_10_BITS
 } adl_busI2C_AddrLength_e;

Description:
ADL_BUS_I2C_ADDR_7_BITS Chip address is 7 bits long (default value if

adl_busSubscribe function is used).

ADL_BUS_I2C_ADDR_10_BITS Chip address is 10 bits long. .

3.11.5.4. The adl_busI2C_MS_Mode_e Type

Master/Slave bus mode configuration. See also adl_busI2CSettings_t &
ADL_BUS_I2C_CAP_MASTER capability for more information.

Code:
typedef enum
{
 ADL_BUS_I2C_MASTER_MODE,
 ADL_BUS_I2C_SLAVE_MODE
 } adl_busI2C_MS_Mode_e;

Description:
ADL_BUS_I2C_MASTER_MODE The I2C bus is running in master mode (default value

when adl_busSubscribe function is used).

ADL_BUS_I2C_SLAVE_MODE The I2C bus is running in slave mode.
 Reserved for future use.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 138

ADL User Guide for Open AT® OS 6.35

3.11.6. Parallel Bus Subscription Data Structures and
Enumerations

Note: This is only applicable for WMP100. The parallel interface parameters are already automatically set
up on chip select CS0 for Flash and CS1 for Memory and therefore inaccessible to the user. Two chip
selects remain for user usage.

3.11.6.1. The adl_busParallelCs_t Type

This type defines the Parallel bus Chip Select.

Please refer to the Product Technical Specification for more information.

Code:
typedef struct
{
 u8 Type; //Chip select type

 u8 Id; //Chip select identifier

 u8 Pad[2]; //Needed to be compliant with GCC alignment

} adl_busParallelCs_t;

Description:

Type

This parameter defines the Chip Select signal type.

The only available value is ADL_BUS_PARA_CS_TYPE_CS. All other values are reserved
for future use (see adl_busParallel_CS_Type_e).

Id

This parameter defines the Chip Select identifier used.

3.11.6.2. The adl_busParallelPageCfg_t Type

Configuration parameters for the page mode.

During page modes access, other asynchronous mode read timings still apply. This structure hosts
additional page-specific parameters.

Code:
typedef struct
{
 u8 PageSize; //Page size

 u8 PageAccessCycles; //Between address change and valid

 data output
} adl_busParallelPageCfg_t;

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 139

ADL User Guide for Open AT® OS 6.35

3.11.6.3. The adl_busParallelSettings_t Type

Parallel bus settings.

Code
typedef struct
{
 u8 Width;
 u8 Mode;
 u8 pad [2];
 adl_busParallelTimingsCfg_t ReadCfg;
 adl_busParallelTimingsCfg_t WriteCfg;
 adl_busParallelCs_t Cs;
 adl_busParallelPageCfg_t PageCfg;
 adl_busParallelSynchronousCfg_t SynchronousCfg;
 u32 AddressPin;
} adl_busSPISettings_t;

Description:

Width

This parameter defines the read/write process data buffer items bit size, using the
adl_busParallelSize_e type.

Mode

This parameter defines the required parallel bus standard mode to be used, using the
adl_busParallel_Bus_Mode_e type.

ReadCfg

Define the timing configuration for each read and write process, using the
adl_busParallelTimingCfg_t type.

WriteCfg

Define the timing configuration for each read and write process, using the
adl_busParallelTimingCfg_t type.

Cs

Configuration parameters for the page mode.

During page modes access, other asynchronous mode read timings still apply. This structure
hosts additional page-specific parameters.

PageCfg

Configuration parameters for the page mode.

During page modes access, other asynchronous mode read timings still apply. This structure
hosts additional page-specific parameters.

SynchronousCfg

Configuration of the synchronous mode.

This structure hosts the parameters used to configure the synchronous mode accesses.

AddressPin

Select the pin used for the parallel bus.
This is a bitfield, each bit represents a pin of the parrallel bus.
e.g.: 0x03, two address pin are used (A0 and A1).

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 140

ADL User Guide for Open AT® OS 6.35

3.11.6.4. The adl_busParallelSynchronousCfg_t Type

Configuration parameters for the page mode.

This structure hosts the parameters used to configure the synchronous mode accesses.

Code:
typedef struct
{
 u8 BurstSize; //Size of Burst size

 u8 ClockDivisor; //Main Memory clock divider

 s32 UseWaitEnable:1; //WS generation using WAIT#

 s32 WaitActiveDuringWS:1;//WAIT# during or 1-cycle before WS
 s32 Reserved:30; //unused

} adl_busParallelSynchronousCfg_t;

3.11.6.5. The adl_busParallelTimingCfg_t Type

Parallel bus Timing structure.

This type defines the Parallel bus timings.

Note: The parameters configuration defines the parallel bus timing, in cycles number (please refer to the
Product Technical Specification for more information), according to the bus mode required at
subscription time (see adl_busParallel_Bus_Mode_e).
Example: In 26 MHz cycles number, one cycle duration is 1/26 MHz = ~38.5 ns

Note: The Para_xx_Freq value can be changed by the command AT+WCPS=1,x. You must query the
Para_xx_Freq value at Parallel bus subscription to know the timing values to be used.

Code
typedef struct
{
 u8 AccessTime;
 u8 SetupTime;
 u8 HoldTime;
 u8 TurnaroundTime;
 u8 OptoOpTurnaroundTime;
 u8 pad[3]; // Internal use only
} adl_busParallelTimingCfg_t;

Description:

AccessTime

Access Time (see adl_busParallel_Bus_Mode_e and the Product Technical Specification).

SetupTime

Setup Time (see adl_busParallel_Bus_Mode_e and the Product Technical Specification).

HoldTime

Hold Time (see adl_busParallel_Bus_Mode_e and the Product Technical Specification).

TurnaroundTime

Turnaround Time (see adl_busParallel_Bus_Mode_e and the Product Technical
Specification).

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 141

ADL User Guide for Open AT® OS 6.35

OptoOpTurnaroundTime

Read-to-read/write-to-write turnaround Time.

(see adl_busParallel_Bus_Mode_e and the Product Technical Specification)

3.11.6.6. The adl_busParallelSize_e Type

Bus access width.

Multiplexed modes spare pins by multiplexing data and addresses on the same pins. All the access
widths and access modes are not available, valid combinations depend on the platform.

Code
typedef enum
{
 ADL_BUS_PARALLEL_WIDTH_INVALID, // reserved
 ADL_BUS_PARALLEL_WIDTH_8_BITS, // 8-bit device
 ADL_BUS_PARALLEL_WIDTH_16_BITS, // 16-bit device

 ADL_BUS_PARALLEL_WIDTH_32_BITS, // 32-bit device
 ADL_BUS_PARALLEL_WIDTH_16_BITS_MULTIPLEXED, // 16-bit multiplexed

 device
 ADL_BUS_PARALLEL_WIDTH_32_BITS_MULTIPLEXED //32-bit multiplexed

 device
} adl_busParallelSize_e;

3.11.6.7. The adl_busParallel_Bus_Mode_e Type

Types of access.

Intel 8080 compatible and Motorola 6800 compatible asynchronous accesses modes can be
configured:

• Intel mode uses an output enable or read enable signal and a write enable signal. In this read
process example, Setup & Hold times are set to 1, and Access & Turnaround times are set to
3.

Figure 5. Intel Mode Timing - Read Process Example

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 142

ADL User Guide for Open AT® OS 6.35

Figure 6. Intel Mode Timing - Write Process Example

• Motorola mode uses a read not write signal and an enable signal. The polarity of the enable
signal can be configured:

 E is active at high level with mode Motorola 0 (LOW)

 E is active at low level with mode Motorola 1 (HIGH)

The following timing behavior applies when the
ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_LOW (E signal low polarity) or
ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_HIGH (E signal high polarity)
modes are required at subscription time. In the example given, the Access, Setup & Hold
times are set to 1, and the Turnaround time is set to 2.

Figure 7. Motorola Modes Timing Example

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 143

ADL User Guide for Open AT® OS 6.35

Code
enum
{
ADL_BUS_PARALLEL_MODE_INVALID, // reserved
ADL_BUS_PARALLEL_MODE_ASYNC_INTEL, // Intel 8080 compatible
ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_LOW, // Motorola 6800 compatible,

with E signal low polarity
ADL_BUS_PARALLEL_MODE_ASYNC_MOTOROLA_HIGH, // Motorola 6800 compatible,

with E signal high polarity
ADL_BUS_PARALLEL_MODE_ASYNC_PAGE, // Page mode
ADL_BUS_PARALLEL_MODE_SYNC_READ_ASYNC_WRITE, // Synchronous only in reads

ADL_BUS_PARALLEL_MODE_SYNC_READ_WRITE // Full synchronous mode
} adl_busParallel_Bus_Mode_e

3.11.6.8. The adl_busParallel_CS_Type_e Type

Parallel bus chip select type.

See also section adl_busParallelCs_t for more information.

Code
enum
{
 ADL_BUS_PARA_CS_TYPE_CS, // Chip select type
} adl_busParallel_CS_Type_e

Description

The Type parameter defines the Chip Select signal type. The only available value is
ADL_BUS_PARA_CS_TYPE_CS. All other values are reserved for future use.

3.11.7. IOCtl Operations Data Structures and
Enumerations

3.11.7.1. The adl_busAsyncInfo_t Type

This structure lists the information returned when an asynchronous read/write operation end event
occurs.

Code:
typedef struct
{
 s32 Result;
} adl_busAsyncoInfo_t;

Description:

Result

Asynchronous read/write operation result code. See also adl_busWrite & adl_busRead
functions return values description for more information.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 144

ADL User Guide for Open AT® OS 6.35

3.11.7.2. The adl_busEvt_t Type

This structure allows to define the interrupt handlers which will be notified when the end of an
asynchronous read/write operation event occurs.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - are notified with the
following parameters:

• the Source parameter will be set to ADL_IRQ_ID_SPI_EOT (for SPI bus operation) or
ADL_IRQ_ID_I2C_EOT (for I2C bus operation).

• the adl_irqEventData_t::SourceData field of the Data parameter should be casted to the
adl_busAsyncInfo_t * type, usable to retrieve information about the current interrupt event
(if the ADL_IRQ_OPTION_AUTO_READ option has been required)

• the adl_irqEventData_t::Instance field of the Data parameter will have to be considered as
an u32 value, usable to identify which block has raised the current interrupt event (i.e. the
BlockId provided at subscription time in adl_busSubscribe function).

• the adl_irqEventData_t::Context field of the Data parameter will be the application context,
provided when the adl_busReadExt or adl_busWriteExt function was called. (It will be set to
NULL if adl_busRead or adl_busWrite function was used)

Code:
typedef struct
{
 s32 LowLevelIrqHandle;
 s32 HighLevelIrqHandle;
} adl_busEvt_t;

Description:

LowLevelIrqHandle

Low level interrupt handler, previously returned by the adl_irqSubscribe function.

This parameter is optional if the HighLevelIrqHandle parameter is supplied.

HighLevelIrqHandle

High level interrupt handler, previously returned by the adl_irqSubscribe function.
This parameter is optional if the LowLevelIrqHandle parameter is supplied.

3.11.7.3. The adl_busSpiMaskShift_t Type

The parameter type for the ADL_BUS_CMD_SET_SPI_MASK_AND_SHIFT and
ADL_BUS_CMD_GET_SPI_MASK_AND_SHIFT IoCtl commands.

Code:
typedef struct
{
 u32 w_Mask;
 u32 w_Value;
 adl_busMaskSPI_e Option;
 u8 Pad [3];
} adl_busSpiMaskShift_t;

Description:

w_Mask

Each bit to "1" will stay unchanged and each bit to "0" will be replaced by the w_Value ones.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 145

ADL User Guide for Open AT® OS 6.35

w_Value

The value to set in the masked bits.

Option

Enabled/disabled Mask and Shift modes.

Pad

Internal use only.

3.11.7.4. The adl_busMaskSPI_e Type

Definition of the parameters to enable/disable Mask and Shift modes.

Code:
typedef enum
{
 ADL_BUS_SPI_MASK_ENA = (1L<<0),
 ADL_BUS_SPI_SHIFT_ENA = (1L<<1),
 } adl_busMaskSPI_e;

Description:
ADL_BUS_SPI_MASK_ENA Mask mode is enabled.

ADL_BUS_SPI_SHIFT_ENA Shift mode is enabled.

3.11.7.5. The adl_busIoCtlCmd_e Type

Definition of the commands for adl_busIOCtl function.

Code:
typedef enum
{
 ADL_BUS_CMD_SET_DATA_SIZE
 ADL_BUS_CMD_GET_DATA_SIZE
 ADL_BUS_CMD_SET_ADD_SIZE
 ADL_BUS_CMD_GET_ADD_SIZE
 ADL_BUS_CMD_SET_OP_SIZE
 ADL_BUS_CMD_GET_OP_SIZE
 ADL_BUS_CMD_LOCK
 ADL_BUS_CMD_UNLOCK
 ADL_BUS_CMD_GET_LAST_ASYNC_RESULT
 ADL_BUS_CMD_SET_ASYNC_MODE
 ADL_BUS_CMD_GET_ASYNC_MODE
 ADL_BUS_CMD_SET_SPI_MASK_AND_SHIFT
 ADL_BUS_CMD_GET_SPI_MASK_AND_SHIFT
 ADL_BUS_CMD_SET_PARALLEL_CFG
 ADL_BUS_CMD_GET_PARALLEL_CFG
 ADL_BUS_CMD_PARA_GET_ADDRESS
 ADL_BUS_CMD_PARA_GET_MAX_SETTINGS
 ADL_BUS_CMD_PARA_GET_MIN_SETTINGS

 ADL_BUS_CMD_PADDING = 0x7fffffff
} adl_busIoCtlCmd_e;

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 146

ADL User Guide for Open AT® OS 6.35

Description:
ADL_BUS_CMD_SET_DATA_SIZE Set the size in bits of one data element.

Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32 value.

 See also spi_xx_DataSizes Capabilities for
the available values, default value is 8.

Note: Available for the SPI Bus only.

ADL_BUS_CMD_GET_DATA_SIZE Get the size in bits of one data element.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32 value.

Note: Available for the SPI Bus only.

ADL_BUS_CMD_SET_ADD_SIZE Set the size in bits of the address.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32 value.

See also spi_xx_MasterAddressSizes and
adl_busI2CCap_e capabilities for the available
values, default value is zero (address is not
used).

ADL_BUS_CMD_GET_ADD_SIZE Set the size in bits of the address.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32 value.

Note: Available for the SPI and I2C Bus only.

ADL_BUS_CMD_SET_OP_SIZE Set the size in bits of the Opcode.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32 value.

Note: Available for the SPI Bus only.

ADL_BUS_CMD_GET_OP_SIZE Get the size in bits of the Opcode.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32 value.

Note: Available for the SPI Bus only.

ADL_BUS_CMD_LOCK Lock a bus to avoid concurrent access and
to allow access to the bus in interrupt
context.
After this call, the block is locked and only
the handle which has locked it can use this
block.
Parameters:The Param of adl_busIoCtl is not
relevant and can be set to NULL.

Note: Available for the SPI and I2C Bus only.

 Trying to lock a second time a given block
with the same handle will lead to an
ADL_RET_ERR_BAD_HDL error.

 Trying to lock a bus which is already locked
by another handle will lead the current task
context to be suspended, until the block is
unlocked, thanks to the
ADL_BUS_CMD_UNLOCK command.

 Assuming several handles have subscribed
in the same block. If handle1 has locked the
block and handle2 attempts to access the

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 147

ADL User Guide for Open AT® OS 6.35

same block handle1 will be suspended so
that handle2 accesses the block. When
handle2 releases the block handle1 will
resume its operation.

Warning: This command is available only in
asynchronous mode.

ADL_BUS_CMD_UNLOCK Unlock a bus previously locked by
ADL_BUS_CMD_LOCK command.
Parameters: The Param of adl_busIoCtl is not
relevant and can be set to NULL.

Note: Available for the SPI and I2C Bus only.

If a task context was suspended due to a
ADL_BUS_CMD_LOCK command on this
block, it will be resumed as soon as the
block is unlocked.

ADL_BUS_CMD_GET_LAST_ASYNC_RESULT Get the last asynchronous read/write
operation of return value.

Parameters: The Param of adl_busIoCtl is
defined as a pointer to an
adl_busAsyncInfo_t structure.

Note: Available for the SPI and I2C Bus only.

ADL_BUS_CMD_SET_ASYNC_MODE Configure the Synchronous/asynchronous
mode settings
Parameters: The Param of adl_busIOCtl is
defined as pointer on adl_busEvt_t.
When this parameter is set to a value
different of NULL, adl_busWrite and
adl_busRead behaviour become
asynchronous.
When it is set to NULL, read/write operations
are synchronous (default value).

Note: Available for the SPI and I2C Bus only.

ADL_BUS_CMD_GET_ASYNC_MODE Get the current value of the
synchronous/asynchronous mode settings.

Parameters: The Param of adl_busIOCtl is
defined as a pointer on adl_busEvt_t.

If the current mode is synchronous, all
elements of Param\ are NULL. Available for
the SPI and I2C Bus only.

ADL_BUS_CMD_SET_SPI_MASK_AND_SHIFT Enable/disable and set the parameters for
the mask and shift modes.

Parameters: The Param of adl_busIOCtl is
defined as a pointer on adl_busSpiMaskShift_t.

Note: Available for the SPI Bus only.

Warning: Reserved for future use

ADL_BUS_CMD_GET_SPI_MASK_AND_SHIFT Get the status and the parameters for the
mask and shift modes.

Parameters:The Param of adl_busIOCtl is
defined as a pointer on adl_busSpiMaskShift_t.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 148

ADL User Guide for Open AT® OS 6.35

Note: Available for the SPI Bus only.

ADL_BUS_CMD_SET_PARALLEL_CFG Set the Parallel configuration for one
subscribed bus.

Parameters: The Param of adl_busIoCtl is
defined as a pointer on
adl_busParallelSettings_t.

Note: Available for the Parallel Bus only.

Parameter AddressPin and CS.Id are
specific to the subscribed bus, therefore they
cannot be changed. If they are changed, it
will have no effect and no error will be
returned.

ADL_BUS_CMD_GET_PARALLEL_CFG Get the Parallel configuration for one
subscribed bus.

 Parameters: The Param of adl_busIoCtl is
defined as a pointer on
adl_busParallelSettings_t.

Note: Available for the Parallel Bus only.

AddressPin and CS.Id parameters can not be
changed. If changed, values are ignored and
no error is returned.

ADL_BUS_CMD_PARA_GET_ADDRESS Gets Parallel bus base where the chip select
can be addressed for one subscribed bus.
Parameters: The Param of adl_busIoCtl is
defined as a pointer to an u32.

Note: Available for the Parallel Bus only.

ADL_BUS_CMD_PARA_GET_MAX_SETTINGS Provides settings for the maximum IO
performances.
Parameters: The Param of adl_busIoCtl is
defined as a pointer on
adl_busParallelSettings_t. Only the ReadCfg,
the WriteCfg and the SynchronousCfg
informations are available

Note: Available for the Parallel Bus only.

ADL_BUS_CMD_PARA_GET_MIN_SETTINGS Provides settings for the minimum IO
performances
Parameters: The Param of adl_busIoCtl is
defined as a pointer on
adl_busParallelSettings_t. Only the ReadCfg,
the WriteCfg and the SynchronousCfg
informations are available.

Note: Available for the Parallel Bus only.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 149

ADL User Guide for Open AT® OS 6.35

3.11.8. Read/Write Data Structures

3.11.8.1. The adl_busAccess_t Type

This structure sets the bus access configuration parameters, to be used on a standard read or write
process request (for SPI or I2C bus only).

Code:
typedef struct
{
 u32 Address;
 u32 Opcode;
} adl_busAccess_t;

Description

Address

The Address parameter allows up to 32 bits to be sent on the bus, before starting the read
or write process. The number of bits to send is set by the ADL_BUS_CMD_SET_ADD_SIZE
IOCtl command. If less than 32 bits are required to be sent; only the most significant bits are
sent on the bus.

Opcode

The Opcode parameter allows up to 32 bits to be sent on the bus, before starting the read or
write process. The number of bits to send is set by the ADL_BUS_CMD_SET_OP_SIZE
command. If less than 32 bits are required to be sent, only the most significant bits are sent
on the bus.

Usable only for SPI bus (ignored for I2C bus).

Example: In order to send the "BBB" word on the bus prior to a read or write process, the
Opcode parameter has to be set to the 0xBBB00000 value, and the OpcodeLength
parameter has to be set to 12.

3.11.9. The adl_busSubscribe Function
This function subscribes to a specific bus, in order to write and read values to/from a remote chip.

Prototype
s32 adl_busSubscribe (adl_busID_e BusId,

 u32 BlockId,
 void * BusParam);

Parameters

BusId:

Type of the bus to subscribe to, using the adl_busID_e type values.

BlockId:

ID of the block to use (in the range 1-N, where N is specific to each bus type & embedded
module platform; cf. the i2c_NbBlocks & spi_NbBlocks & Para_NbBlocks Capabilities).

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 150

ADL User Guide for Open AT® OS 6.35

BusParam:

Subscribed bus configuration parameters, using specific parameters of the bus (considered
as an adl_busSPISettings_t *, an adl_busI2CSettings_t * or an
adl_busParallelSettings_t * pointer).

Returned values
• Handle: A positive or null value on success:

 BUS handle, to be used in further BUS API functions calls;

• A negative error value:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the bus is already open with this chip select or in
configuration uncompatible with this chip select.

 ADL_RET_ERR_BAD_HDL If a GPIO required by the provided bus configuration is currently
subscribed by an Open AT® application.

 ADL_RET_ERR_NOT_SUPPORTED if the required bus type is not supported by the embedded
module on which the application is running.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

Note: A bus is available only if the GPIO multiplexed with the corresponding feature is not yet subscribed by
an Open AT® application.

Note: Once the bus is subscribed, the multiplexed GPIO with the required configuration are not available for
subscription by the Open AT® application, or through the standard AT commands.

3.11.10. The adl_busUnsubscribe Function
This function unsubscribes from a previously subscribed.

Prototype
s32 adl_busUnsubscribe (s32 Handle);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

Returned values
• OK on success.

• A negative error value otherwise.

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

 ADL_RET_ERR_BAD_STATE either transfer is on-going or the Bus is locked hence cannot be
closed.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

Note: If a bus is locked it can't be closed otherwise error ADL_RET_ERR_BAD_STATE is received. Only
unlocked bus can be closed.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 151

ADL User Guide for Open AT® OS 6.35

3.11.11. The adl_busIOCtl Function
This function permits to modify the configuration and the behavior of a subscribed bus.

Prototype
s32 adl_busIOCtl (u32 Handle,

 adl_busIoCtlCmd_e Cmd,
 void * Param);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

Cmd:

Command to be executed. (see adl_busIoCtlCmd_e for more information).

Param:

Parameter associated to the command. (see adl_busIoCtlCmd_e for more information).

Returned values
• OK on success

• A negative error value:

 ADL_RET_ERR_PARAM if a parameter has an incorrect value

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_DONE if an error occurs during the operation.

 ADL_RET_ERR_BAD_HDL if the required command is not usable for the current handle.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context).

 ADL_RET_ERR_NOT_SUPPORTED If the capabilities inform that no Asynchronous mode
is possible

3.11.12. The adl_busRead Function
This function reads data from a previously subscribed bus SPI or I2C type.

Warning: This function is not protected against reentrancy by consequently several tasks may access to
the same resource. A protection mechanism has to be implemented by application to share a
same resource and avoid two tasks access to the same resource at the same time.

Note: By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

Prototype
s32 adl_busRead (s32 Handle,

 adl_busAccess_t * pAccessMode,
 u32 Length,
 void * pDataToRead);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 152

ADL User Guide for Open AT® OS 6.35

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure.

Length:

Number of items to read from the bus.

pDataToRead:

Buffer where to copy the read items.

Returned values
• OK on success if the operation is pending (asynchronous mode).

• A negative error value otherwise:

 ERROR If a error during the operation occurs

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler in synchronous mode (the function is forbidden in this context).

Note: Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

Note: In asynchronous mode, the end of the read operation will be notified to the application through an
interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE IOCtl command for more
information.

Note: For correct behaviour, any parameter passed to this command has to be global and not local variable.

3.11.13. The adl_busReadExt Function
This function reads data from a previously subscribed bus SPI or I2C type.

Warning: This function is not protected against reentrancy by consequently several tasks may access to
the same resource. A protection mechanism has to be implemented by application to share a
same resource and avoid two tasks access to the same resource at the same time.

Note: By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

Prototype
s32 adl_busReadExt (s32 Handle,

 adl_busAccess_t * pAccessMode,
 u32 Length,
 void * pDataToRead,

 void * context);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure.

Length:

Number of items to read from the bus.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 153

ADL User Guide for Open AT® OS 6.35

pDataToRead:

Buffer where to copy the read items.

context:

Pointer on an application context, which will be provided back to the application when the
asynchronous read operation end event will occur.

Returned values
• OK on success

• A negative error value otherwise:

 Error If a error during the operation occurs.ADL_RET_ERR_UNKNOWN_HDL if the provided
handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler in synchronous mode (the function is forbidden in this context).

Note: Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

Note: In asynchronous mode, the end of the read operation will be notified to the application through an
interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE IOCtl command for more
information.

Note: For correct behaviour, any parameter passed to this command has to be global and not local variable.

3.11.14. The adl_busWrite Function
This function writes on a previously subscribed SPI or I2C bus type.

Warning: This function is not protected against reentrancy by consequently several tasks may access to
the same resource. A protection mechanism has to be implemented by application to share a
same resource and avoid two tasks access to the same resource at the same time.

Note: By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

Prototype
s32 adl_busWrite (s32 Handle,

 adl_busAccess_t* pAccessMode,
 u32 Length,
 void * pDataToWrite);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure;

Length:

Number of items to write on the bus.

pDataToWrite:

Data buffer to write on the bus.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 154

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success if the operation is pending (asynchronous mode).

• A negative error value otherwise.

 ERROR If a error during the operation occurs

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler in synchronous mode (the function is forbidden in this context).

Note: Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

Note: In asynchronous mode, the end of the write operation will be notified to the application through an
interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE IOCtl command for more
information.

Note: pDataToWrite should point to either a global static or dynamic buffer. Stack variables should not be
used to hold data to bus services. If the write is synchronous, the data buffer may be released or
reused after the adl_busWrite API call. For asynchronous access, the application should wait for
the confirmation via the interrupt event before releasing the buffer.

3.11.15. The adl_busWriteExt Function
This function writes on a previously subscribed SPI or I2C bus type.

Warning: This function is not protected against reentrancy by consequently several tasks may access to
the same resource. A protection mechanism has to be implemented by application to share a
same resource and avoid two tasks access to the same resource at the same time.

Note: By default the access is synchronous. This behavior can be changed with the
ADL_BUS_CMD_SET_ASYNC_MODE IOCtl command.

Prototype
s32 adl_busWrite (s32 Handle,

 adl_busAccess_t* pAccessMode,
 u32 Length,
 void * pDataToWrite,

 void * context);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

pAccessMode:

Bus access mode, defined according to the adl_busAccess_t structure;

Length:

Number of items to write on the bus.

pDataToWrite:

Data buffer to write on the bus.

context:

Pointer on an application context, which will be provided back to the application when the
asynchronous read operation end event will occur.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 155

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success

• A negative error value otherwise.

 Error If a error during the operation occurs,ADL_RET_ERR_UNKNOWN_HDL if the provided
handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value,

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler in synchronous mode (the function is forbidden in this context).

Note: Items bit size is defined thanks to the ADL_BUS_CMD_SET_DATA_SIZE IOCtl command.

Note: In asynchronous mode, the end of the write operation will be notified to the application through an
interrupt event. Please refer to ADL_BUS_CMD_SET_DATA_SIZE IOCtl command for more
information.

Note: For correct behaviour, any parameter passed to this command has to be global and not local variable

3.11.16. The adl_busDirectRead Function
This function reads data about previously subscribed Parallel bus type.
This function is not usable with the SPI or I2C bus.

Warning: This function is not protected against reentrancy by consequently several tasks may access to
the same resource. A protection mechanism has to be implemented by application to share a
same resource and avoid two tasks access to the same resource at the same time.

Prototype
s32 adl_busDirectRead (s32 Handle,

 u32 ChipAddress,
 u32 DataLen,
 void * Data);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

ChipAddress:

Chip address configuration. This address has to be a combination of the desired address bits
to set. Available address bits are returned in a mask at subscription time.

DataLen:

Number of items to read from the bus.

Data:

Buffer into which the read items are copied, items bit size (8 or 16 bits) is defined at
subscription time in the configuration structure (see adl_busParallelSettings_t).

Returned values
• OK on success

• A negative error value otherwise.

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value.

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 156

ADL User Guide for Open AT® OS 6.35

3.11.17. The adl_busDirectWrite Function
This function writes data on a previously subscribed Parallel bus type. This function is not usable with
the SPI or I2C bus.

Warning: This function is not protected against reentrancy by consequently several tasks may access to
the same resource. A protection mechanism has to be implemented by application to share a
same resource and avoid two tasks access to the same resource at the same time.

Prototype
s32 adl_busDirectWrite (s32 Handle,

 u32 ChipAddress,
 u32 Length,
 void * pDataToWrite);

Parameters

Handle:

Handle previously returned by the adl_busSubscribe function.

ChipAddress:

Chip address configuration. This address has to be a combination of the desired address bits
to set. Available address bits are returned in a mask at subscription time.

Length:

Number of items to write on the bus.

pDataToWrite:

Data buffer to write on the bus, item bit size (8 or 16 bits) is defined at subscription time in
the configuration structure (see adl_busParallelSettings_t).

Returned values
• OK on success

• A negative error value otherwise.

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown,

 ADL_RET_ERR_PARAM if a parameter has an incorrect value.

3.11.18. Example
This example simply demonstrates how to use the BUS service in a nominal case (error cases are not
handled) with a embedded module.

Complete examples of BUS service used are also available on the SDK.

// Global variables & constants

// SPI Subscription data
const adl_busSPISettings_t MySPIConfig =
{
 1, // No divider, use full clock speed
 ADL_BUS_SPI_CLK_MODE_0, // Mode 0 clock
 ADL_BUS_SPI_ADDR_CS_GPIO, // Use a GPIO to handle the Chip Select
 signal
 ADL_BUS_SPI_CS_POL_LOW, // Chip Select active in low state
 ADL_BUS_SPI_MSB_FIRST, // Data are sent MSB first
 ADL_IO_GPIO | 31, // Use GPIO 31 to handle the Chip Select
 signal
 ADL_BUS_SPI_LOAD_UNUSED, // LOAD signal not used
 ADL_BUS_SPI_DATA_BIDIR, // 2 Wires configuration
 ADL_BUS_SPI_MASTER_MODE, // Master mode

API
Bus Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 157

ADL User Guide for Open AT® OS 6.35

 ADL_BUS_SPI_BUSY_UNUSED // BUSY signal not used
};

// I2C Subscription data
const adl_busI2CSettings_t MyI2CConfig =
{
 0x20, // Chip address is 0x20
 ADL_BUS_I2C_CLK_STD // Chip uses the I2C standard clock speed
 ADL_BUS_I2C_ADDR_7_BITS, // 7 bits address length
 ADL_BUS_I2C_MASTER_MODE // Master mode
};

// Write/Read buffer sizes
#define WRITE_SIZE 5
#define READ_SIZE 3

// Access configuration structure
adl_busAccess_t AccessConfig =
{
 0, 0 // No Opcode, No Address
};

// BUS Handles
s32 MySPIHandle, MyI2Chandle;

// Data buffers
u8 WriteBuffer [WRITE_SIZE], ReadBuffer [READ_SIZE];

...

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 s32 ReadValue;
 u32 AddSize=0;

 // Subscribe to the SPI1 BUS
 MySPIHandle = adl_busSubscribe (ADL_BUS_ID_SPI, 1, &MySPIConfig);

 // Subscribe to the I2C BUS
 MyI2CHandle = adl_busSubscribe (ADL_BUS_ID_I2C, 1, &MyI2CConfig);

 // Configure the Address length to 0 (rewrite the default value)
 adl_busIOCtl (MySPIHandle, ADL_BUS_CMD_SET_ADD_SIZE, &AddSize);
 adl_busIOCtl (MyI2CHandle, ADL_BUS_CMD_SET_ADD_SIZE, &AddSize);

 // Write 5 bytes set to '0' on the SPI & I2C bus
 wm_memset (WriteBuffer, WRITE_SIZE, 0);
 adl_busWrite (MySPIHandle, &AccessConfig, WRITE_SIZE, WriteBuffer);
 adl_busWrite (MyI2CHandle, &AccessConfig, WRITE_SIZE, WriteBuffer);

 // Read 3 bytes from the SPI & I2C bus
 adl_busRead (MySPIHandle, &AccessConfig, READ_SIZE, ReadBuffer);
 adl_busRead (MyI2CHandle, &AccessConfig, READ_SIZE, ReadBuffer);

 // Unsubscribe from subscribed BUS
 adl_busUnsubscribe (MySPIHandle);
 adl_busUnsubscribe (MyI2CHandle);
}

API
Error Management

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 158

ADL User Guide for Open AT® OS 6.35

3.12. Error Management
ADL supplies Error service interface to allow the application to cause & intercept fatal errors, and also
to retrieve stored back-trace logs. For the ADL standard error codes, please refer to section Error
Codes.

The defined operations are:

• A subscription function (adl_errSubscribe) to register an error event handler

• An unsubscription function (adl_errUnsubscribe) to cancel this event handler registration

• An error handler callback (adl_errHdlr_f) to be notified each time a fatal error occurs

• An error request function (adl_errHalt) to cause a fatal error

• A cleaning function (adl_errEraseAllBacktraces) to clean the back-traces storage area

• An analysis status function (adl_errGetAnalysisState) to retrieve the current back-trace
analysis status

• An analysis start function (adl_errStartBacktraceAnalysis) to start the back-trace
analysis

• A retrieve function (adl_errRetrieveNextBacktrace) to retrieve the next back-trace buffer
for the current analysis.

3.12.1. Required Header File
The header file for the error functions is:

adl_error.h

3.12.2. Enumerations

3.12.2.1. The adl_ errInternalID_e Type

This type lists the error identifiers which should be generated by ADL.

Code
typedef enum
{
 ADL_ERR_LEVEL_MEM = 0x0010,
 ADL_ERR_MEM_GET = ADL_ERR_LEVEL_MEM,
 ADL_ERR_MEM_RELEASE,
 ADL_ERR_LEVEL_FLH = 0x0020,
 ADL_ERR_FLH_READ = ADL_ERR_LEVEL_FLH,
 ADL_ERR_FLH_DELETE,
 ADL_ERR_LEVEL_APP = 0x0100
} adl_errInternalID_e;

API
Error Management

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 159

ADL User Guide for Open AT® OS 6.35

Description

ADL_ERR_LEVEL_MEM: Base level for generated ADL memory errors.

ADL_ERR_MEM_GET: The platform runs out of dynamic memory.

ADL_ERR_MEM_RELEASE: Internal error on dynamic memory release operation.

Note: Internal usage only. An application has no way to produce such an error.

ADL_ERR_LEVEL_FLH: Base level for generated ADL flash errors.

ADL_ERR_FLH_READ: Internal error on flash object read operation.

Note: Internal usage only. An application has no way to produce such an error

ADL_ERR_FLH_DELETE: Internal error on flash object deletes operation.

Note: Internal usage only. An application has no way to produce such an error

ADL_ERR_LEVEL_APP: Base level for application generated errors.

3.12.2.2. The adl_errAnalysisState_e Type

This type is used to enumerate the possible states of the backtraces analysis.

Code
typedef enum
{
 ADL_ERR_ANALYSIS_STATE_IDLE // No running analysis
 ADL_ERR_ANALYSIS_STATE_RUNNING // A backtrace analysis is running
} adl_errAnalysisState_e;

3.12.3. Error event handler
Such a call-back is called each time a fatal error is caused by the application or by ADL.

Errors which should be generated by ADL are described in the adl_errInternalID_e type.

An error is described by an identifier and a string (associated text), that are sent as parameters to the
adl_errHalt function.

If the error is processed and filtered the handler should return FALSE. The return value TRUE will
cause the embedded module to execute a fatal error reset with a backtrace. A backtrace is composed
of the provided message, and a call stack dump taken at the function call time. It is readable by the
Developer Studio (Please refer to the Developer Studio online help 2 for more information).

Prototype
typedef bool(*) adl_errHdlr_f(u16 ErrorID,
 ascii *ErrorString);

Parameters

ErrorID

Error identifier, defined by the application or by ADL

ErrorString

Error string, defined by the application or by ADL

Returned values
• TRUE If the handler decides to let the embedded module reset

• FALSE If the handler refuses to let the embedded module reset

API
Error Management

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 160

ADL User Guide for Open AT® OS 6.35

Note: An error event handler is called in the same execution context than the code which has caused the
error.

Note: If the error handler returns FALSE, the back-trace log is not registered in the embedded module non-
volatile memory.

3.12.4. The adl_errSubscribe Function
This function subscribes to error service and gives an error handler: this allows the application to
handle errors generated by ADL or by the adl_errHalt function. Errors generated by the Firmware
can not be handled by such an error handler.

Prototype
s8 adl_errSubscribe (adl_errHdlr_f ErrorHandler);

Parameters

ErrorHandler:

Error Handler, Error event handler, defined using the adl_errHdlr_f type

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if the parameter has an incorrect value

• ADL_RET_ERR_ALREADY_SUBSCRIBED if the service is already subscribed

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.12.5. The adl_errUnsubscribe Function
This function unsubscribes from error service. Errors generated by ADL or by the adl_errHalt
function will no more are handled by the error handler.

Prototype
s8 adl_errUnsubscribe (adl_errHdlr_f ErrorHandler);

Parameters

ErrorHandler:

Error event handler, defined using the adl_errHdlr_f type, and previously provided to
adl_errSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if the parameter has an incorrect value

• ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown

• ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
Error Management

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 161

ADL User Guide for Open AT® OS 6.35

3.12.6. The adl_errHalt Function
This function causes an error, defined by its ID and string. If an error handler is defined (using
adl_errHdlr_f type), it will be called, otherwise a embedded module reset will occur.

When the Embedded module resets (if there is no handler, or if this one returns TRUE), a back-trace
log is registered in a non-volatile memory area, and also sent to Developer Studio (if this one is
running).

Such a back-trace log contains:

• the call stack dump when the error occurs

• the provided error identifier & string

• the context name which has caused the error, following the same behaviour than a trace
display operation (please refer to the Debug Traces service for more information).

Prototype
void adl_errHalt (u16 ErrorID,

 const ascii * ErrorStr);

Parameters

ErrorID:

Error ID Error identifier. Shall be at least equal to ADL_ERR_LEVEL_APP (lower values are
reserved for ADL internal error events)

ErrorStr:

Error string to be provided to the error handler, and to be stored in the resulting backtrace if
a fatal error is required.

Note: Please note that only the string address is stored in the backtrace, so this parameter has not to be a
pointer on a RAM buffer, but a constant string pointer. Moreover, the string will only be correctly
displayed if the current application is still present in the embedded module's flash memory. If the
application is erased or modified, the string will not be correctly displayed when retrieving the
backtraces.

Note: Error identifiers below ADL_ERR_LEVEL_APP are for internal purpose so the application should only
use an identifier above ADL_ERR_LEVEL_APP

Note: When the embedded module reset is due to a fatal error, the init type parameter will be set to the
ADL_INIT_REBOOT_FROM_EXCEPTION value (Please refer to the Tasks Initialization Service for
more information).

3.12.7. The adl_errEraseAllBacktraces Function
Backtraces (caused by the adl_errHalt function, ADL or the Firmware) are stored in the embedded
module non-volatile memory. A limited number of backtraces may be stored in memory (depending on
each backtrace size, and other internal parameters stored in the same storage place). The
adl_errEraseAllBacktraces function allows to free and re-initialize this storage place.

Prototype
s32 adl_errEraseAllBacktraces (void);

Returned values
• OK on success.ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level

Interrupt handler (the function is forbidden in this context).

API
Error Management

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 162

ADL User Guide for Open AT® OS 6.35

3.12.8. The adl_errStartBacktraceAnalysis Function
In order to retrieve backtraces from the product memory, a backtrace analysis process has to be
started with the adl_errStartBacktraceAnalysis function.

Prototype
s8 adl_errStartBacktraceAnalysis (void);

Returned values
• Handle A positive or null handle on success. This handle has to be used in the next

adl_errRetrieveNextBacktrace function call. It will be valid until this function returns a
ADL_RET_ERR_DONE code.

• ADL_RET_ERR_ALREADY_SUBSCRIBED if a backtrace analysis is already running.

• ERROR if an unexpected internal error occurred.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

Note: Only one analysis may be running at a time. The adl_errStartBacktraceAnalysis function will return the
ADL_RET_ERR_ALREADY_SUBSCRIBED error code if it is called while an analysis is currently
running.

3.12.9. The adl_errGetAnalysisState Function
This function may be used in order to know the current backtrace analysis process state.

Prototype
adl_errAnalysisState_e adl_errGetAnalysisState (void);

Returned values
• The current analysis state, using the adl_errAnalysisState_e type.

3.12.10. The adl_errRetrieveNextBacktrace Function
This function allows the application to retrieve the next backtrace buffer stored in the embedded
module memory. The backtrace analysis has to be started first with the
adl_errStartBacktraceAnalysis function.

Prototype
s32 adl_errRetrieveNextBacktrace (u8 Handle,

 u8 * BacktraceBuffer,
 u16 Size);

Parameters

Handle:

Backtrace analysis handle, returned by the adl_errStartBacktraceAnalysis function.

BacktraceBuffer:

Buffer in which the next retrieved backtrace will be copied. This parameter may be set to
NULL in order to know the next backtrace buffer required size.

Size:

Backtrace buffer size. If this size is not large enough, the ADL_RET_ERR_PARAM error code will
be returned.

API
Error Management

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 163

ADL User Guide for Open AT® OS 6.35

Returned values
• OK if the next stored backtrace was successfully copied in the BacktraceBuffer parameter.

• Size: the required size for next backtrace buffer if the BacktraceBuffer parameter is set to
NULL.

• ADL_RET_ERR_PARAM if the provided Size parameter is not large enough.

• ADL_RET_ERR_NOT_SUBSCRIBED if the adl_errStartBacktraceAnalysis function was not called
before.

• ADL_RET_ERR_UNKNOWN_HDL if the provided Handle parameter is invalid.

• ADL_RET_ERR_DONE if the last backtrace buffer has already been retrieved. The Handle
parameter will now be unsubscribed and not usable any more with the
adl_errRetrieveNextBacktrace function. A new analysis has to be started with the
adl_errStartBacktraceAnalysis function.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

Note: Once retrieved, the backtrace buffers may be stored (separately or concatenated), in order to be sent
(using the application’s protocol/bearer choice) to a remote server or PC. Once retrieved as one or
several files on a PC, this (these) one(s) may be read using Developer Studio in order to decode the
backtrace buffer(s). Please refer to Developer Studio online help 2 in order to know how to process
these files.

Note: If adl_errRetrieveNextBacktrace is used you have to retrieve all next backtraces. Otherwise it
is impossible to retrieve the first backtraces. There is no way to cancel a backtrace analysis; an
analysis has always to be completed until all the backtraces are retrieved.

3.12.11. Example
The code sample below illustrates a nominal use case of the ADL Error service public interface (error
cases are not handled).

// Error Event handler
bool MyErrorHandler (u16 ErrorID, ascii * ErrorStr)
{
 // Nothing to do but accept the reset
 return TRUE;
}

// Error string
const ascii * MyErrorString = "Application Generated Error";

// Error launch function
void MyFunction1 (void)
{
 // Subscribe to error service
 adl_errSubscribe (MyErrorHandler);

 // Cause an error
 adl_errHalt (ADL_ERR_LEVEL_APP + 1, MyErrorString);
}

// Error service unsubscription function
void MyFunction2 (void)
{
 // Unsubscribe from error service
 adl_errUnsubscribe (MyErrorHandler);
}

// Backtraces analysis event handler
u8 * MyAnalysisFunction (void)
{
 // Start analysis

API
Error Management

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 164

ADL User Guide for Open AT® OS 6.35

 s8 AnalysisHandle = adl_errStartBacktraceAnalysis();

 // Get state
 adl_errAnalysisState_e State = adl_errGetAnalysisState();

 // Retrieve next backtrace size
 u8 * Buffer = NULL;
 u32 Size = adl_errRetrieveNextBacktrace (AnalysisHandle, Buffer, 0);

 // Retrieve next backtrace buffer
 Buffer = adl_memGet (Size);
 adl_errRetrieveNextBacktrace (AnalysisHandle, Buffer, Size);

 // Erase all backtraces
 adl_errEraseAllBacktraces();

 // Return backtrace buffer
 return Buffer;
}

API
SIM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 165

ADL User Guide for Open AT® OS 6.35

3.13. SIM Service
ADL provides this service to handle SIM and PIN code related events.

3.13.1. Required Header File
The header file for the SIM related functions is:

adl_sim.h

3.13.2. The adl_simSubscribe Function
This function subscribes to the SIM service, in order to receive SIM and PIN code related events. This
will allow to enter PIN code (if provided) if necessary.

Prototype
s32 adl_simSubscribe (adl_simHdlr_f SimHandler,

 ascii * PinCode);

Parameters

SimHandler:

SIM handler defined using the following type:

 typedef void (* adl_simHdlr_f) (u8 Event);

The events received by this handler are defined below.

Normal events:
 ADL_SIM_EVENT_PIN_OK

if PIN code is all right

 ADL_SIM_EVENT_REMOVED

if SIM card is removed

 ADL_SIM_EVENT_INSERTED

if SIM card is inserted

 ADL_SIM_EVENT_FULL_INIT

when initialization is done

Error events:
 ADL_SIM_EVENT_PIN_ERROR

if given PIN code is wrong

 ADL_SIM_EVENT_PIN_WAIT

if the argument PinCode is set to NULL

On the last three events, the service is waiting for
either the external application or the adl_simEnterPIN
API to enter the PIN code.

Please note that the deprecated ADL_SIM_EVENT_ERROR event
has been removed since the ADL version 3. This code was
mentioned in version 2 documentation, but was never
generated by the SIM service.

API
SIM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 166

ADL User Guide for Open AT® OS 6.35

ADL_SIM_EVENT_NET_LOCK

The phone is locked on a network

PinCode:

It is a string containing the PIN code text to enter. If it is set to NULL or if the provided code
is incorrect, the PIN code will have to be entered by either the external application or the
adl_simEnterPIN API.

This argument is used only the first time the service is subscribed. It is ignored on all further
subscriptions.

Returned value
• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler

(the function is forbidden in this context).

• ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already subscribed with the same
handler.

• ADL_RET_ERR_PARAM if the function was called with a null handler.

• OK if the function is successfully executed.

3.13.3. The adl_simUnsubscribe Function
This function unsubscribes from SIM service. The provided handler will not receive SIM events any
more.

Prototype
s32 adl_simUnsubscribe (adl_simHdlr_f Handler);

Parameters

Handler:

Handler used with adl_SimSubscribe function.

Returned value
• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler

(the function is forbidden in this context).

• OK if the function is successfully executed.

API
SIM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 167

ADL User Guide for Open AT® OS 6.35

3.13.4. The adl_simGetState Function
This function gets the current SIM service state.

Prototype
adl_simState_e adl_simGetState (void);

Returned values

The returned value is the SIM service state, based on following type:

typedef enum
{
 ADL_SIM_STATE_INIT, // Service init state (PIN state not known yet)
 ADL_SIM_STATE_REMOVED, // SIM removed

 ADL_SIM_STATE_INSERTED, // SIM inserted (PIN state not known yet)
 ADL_SIM_STATE_FULL_INIT, // SIM Full Init done
 ADL_SIM_STATE_PIN_ERROR, // SIM error state
 ADL_SIM_STATE_PIN_OK, // PIN code OK, waiting for full init
 ADL_SIM_STATE_PIN_WAIT, // SIM inserted, PIN code not entered yet

 /* Always last State */
 ADL_SIM_STATE_NET_LOCK, // The phone is locked on a network
 ADL_SIM_STATE_LAST
} adl_simState_e;

3.13.5. The adl_simEnterPIN Function
The adl_simEnterPIN interface enables the user to enter the Pin Code of the inserted SIM.

Prototype
s32 adl_simEnterPIN (ascii * PinCode);

Parameters

PinCode

 a string holding the Pin Code

Returned values
• 0 if the Pin Code has been correctly processed

• ADL_RET_ERR_PARAM if the Pin Code is not informed

• ADL_RET_ERR_BAD_STATE if the SIM is not waiting for any Pin Code to be entered

Note: The Pin Code value is not definitively saved by the ADL SIM service and it is lost after each reset.

Note: The ADL SIM service doesn’t try to used the Pin Code provided if there is only one attempt left to
entered the right PIN code.

3.13.6. The adl_simEnterPUK Function
This interface enables the user to enter the puk code and a new pin code.

Prototype
s32 adl_simEnterPUK (ascii * PukCode,
 ascii * NewPinCode);

API
SIM Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 168

ADL User Guide for Open AT® OS 6.35

Parameters

PukCode

 a string holding the puk Code

NewPinCode

 a string holding the new pin code

Returned values
• OK ADL try the given PUK code

• ADL_RET_ERR_PARAM if the PukCode or NewPinCode is not informed

• ADL_RET_ERR_BAD_STATE if the SIM is not waiting for PIN or PUK, and nothing entered yet
from ext.

3.13.7. The adl_simRemAttempt Function
This function allows to get the number of remaining attempts on PIN and PUK codes.

Prototype
s32 adl_simRemAttempt (void);

Returned values
• adl_simRem_e structure which holds the PIN and PUK remaining attempts

The description of adl_simRem_e structure is as follows:

typedef struct
{
 s8 PinRemaining; //Contains remaining attempts on PIN before lock PIN
 s8 PukRemaining; //Contains remaining attempts on PUK before lock PUK
} adl_simRem_e;

API
Open SIM Access Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 169

ADL User Guide for Open AT® OS 6.35

3.14. Open SIM Access Service
The ADL Open SIM Access (OSA) service allows the application to handle APDU requests &
responses with an external SIM card, connected through one of the embedded module interfaces
(UART, SPI, I2C).

Note: The Open SIM Access feature has to be enabled on the embedded module in order to make this
service available.

Note: The Open SIM Access feature state can be read thanks to the AT+WCFM=5 command response
value: this feature state is represented by the bit 5 (00000020 in hexadecimal format).

Note: Please contact your Sierra Wireless distributor for more information on how to enable this feature on
the embedded module.

3.14.1. Required Header File
The header file for the OSA service definitions is:

adl_osa.h

3.14.2. The adl_osaVoltage_e type
This voltage for power up the external SIM (in bit-wise).

typedef enum
{

 ADL_OSA_ISO = 0x00,

 ADL_OSA_1V8 = 0x01,

 ADL_OSA_3V = 0x02,

 ADL_OSA_5V = 0x04

} adl_osaVoltage_e;

Description

ADL_OSA_ISO: The card can be activated at a VCC of 3V or 5V.

ADL_OSA_1V8: The card can be activated at a VCC of 1.8V.

ADL_OSA_3V: The card can be activated at a VCC of 3V.

ADL_OSA_5V: The card can be activated at a VCC of 5V.

3.14.3. The adl_osaATRparam_t Structure
This structure allows the application to power up the external SIM by given voltage.

typedef struct
{
 adl_osaVoltage_e voltage
} adl_osaATRparam_t;

API
Open SIM Access Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 170

ADL User Guide for Open AT® OS 6.35

3.14.4. The adl_osaSubscribe Function
This function allows the application to supply an OSA service handler, which will then be notified on
each OSA event reception.

Moreover, by calling this function, the application requests the Sierra Wireless firmware to close the
local SIM connection, and to post SIM requests to the application from now.

Prototype
s32 adl_osaSubscribe (adl_osaHandler_f OsaHandler);

Parameters

OsaHandler:

OSA service handler supplied by the application.

Please refer to adl_osaHandler_f type definition for more information (see paragraph
3.14.6).

Returned values
• A positive or null value on success:

 OSA service handle, to be used in further OSA service function calls. A confirmation
event will then be received in the service handler:

 ADL_OSA_EVENT_INIT_SUCCESS if the local SIM connection was closed successfully,

 ADL_OSA_EVENT_INIT_FAILURE if a Bluetooth SAP connection is running.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM on a supplied parameter error,

 ADL_RET_ERR_NOT_SUPPORTED if the Open SIM access feature is not enabled on the
embedded module

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already subscribed (the OSA
service can only be subscribed one time).

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context).

3.14.5. The adl_osaSubscribeExt Function
This function allows the application to supply an OSA service handler and support voltage, which will
then be notified on each OSA event reception.

Moreover, by calling this function, the application requests the Sierra Wireless firmware to close the
local SIM connection, and to post SIM requests to the application from now.

Prototype
s32 adl_osaSubscribe (adl_osaHandler_f OsaHandler,
 adl_osaVoltage_e SupportVoltage);

Parameters

OsaHandler:

OSA service handler supplied by the application.

Please refer to adl_osaHandler_f type definition for more information.

SupportVoltage:

The voltage supported by SIM card reader. Bitwise OR combination of the voltage listed in
the adl_osaVoltage_e type.

API
Open SIM Access Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 171

ADL User Guide for Open AT® OS 6.35

Returned values
• A positive or null value on success:

 OSA service handle, to be used in further OSA service function calls. A confirmation
event will then be received in the service handler:

 ADL_OSA_EVENT_INIT_SUCCESS if the local SIM connection was closed successfully,

 ADL_OSA_EVENT_INIT_FAILURE if a Bluetooth SAP connection is running.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM on a supplied parameter error or voltage not listed in the
adl_osaVoltage_e type

 ADL_RET_ERR_NOT_SUPPORTED if the Open SIM access feature is not enabled on the
embedded module

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already subscribed (the OSA
service can only be subscribed one time)

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context)

3.14.6. The adl_osaHandler_f call-back Type
Such a call-back function has to be supplied to ADL on the OSA service subscription. It will be notified
by the service on each OSA event.

Prototype
typedef void (* adl_osaHandler_f) (adl_osaEvent_e Event,

 adl_osaEventParam_u * Param);

Parameters

Event:

OSA service event identifier, using one of the following defined values.

Event Type Use

ADL_OSA_EVENT_INIT_SUCCESS

The OSA service has been successfully subscribed:
The local SIM card has been shut down, and,
From now on, all SIM requests will be posted to on the
application through the OSA service.

ADL_OSA_EVENT_INIT_FAILURE

The OSA service subscription has failed:
The embedded module is already connected to a
remote SIM through the Bluetooth SAP profile (the
SAP connection has to be closed prior to subscribing
to the OSA service).

ADL_OSA_EVENT_ATR_REQUEST

The application is notified with this event after the
ADL_OSA_EVENT_INIT_SUCCESS one:
The Sierra Wireless firmware is required for the
Answer To Reset data.
The application has to reset the remote SIM card, and
to get the ATR data in order to post it back to the
Sierra Wireless firmware through the
adl_osaSendResponse function.

API
Open SIM Access Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 172

ADL User Guide for Open AT® OS 6.35

Event Type Use

ADL_OSA_EVENT_APDU_REQUEST

This event is received by the application each time the
Sierra Wireless firmware has to send an APDU
request to the SIM card. This request (notified to the
application through the Length & Data parameters)
has to be forwarded to the remote SIM by the
application, and has to read the associated response
in order to post it back to the Sierra Wireless firmware
through the adl_osaSendResponse function.

ADL_OSA_EVENT_SIM_ERROR

This event is notified to the application:
If an error was notified to the Sierra Wireless firmware
in a SIM response (posted through the
adl_osaSendResponse function), or,
If the internal response time-out has elapsed (a
request event was sent to the application, but no
response was posted back to the Sierra Wireless
firmware).
When this event is received, the OSA service is
automatically un-subscribed and the Sierra Wireless
firmware resumes the local SIM connection.

ADL_OSA_EVENT_CLOSED
The application will receive this event after un-
subscribing from the OSA service. The Sierra Wireless
firmware has resumed the local SIM connection.

ADL_OSA_EVENT_POWER_OFF_REQUEST The application has to power off SIM card when
receiving this event

Param

Event parameters, using the following type:

typedef union
{

 adl_osaStatus_e ErrorEvent;

 struct {

 {

 u16 Length;

 u8 * Data;

 }RequestEvent;

} adl_osaEventParam_u;

This union is used depending on the event type.

Event Type Event Parameter

ADL_OSA_EVENT_INIT_SUCCESS Set to NULL

ADL_OSA_EVENT_INIT_FAILURE Set to NULL

ADL_OSA_EVENT_ATR_REQUEST

RequestEvent structure set:
Length:
Size of (adl_osaATRparam_t)
Data:
adl_osaATRparam_t structure set

ADL_OSA_EVENT_APDU_REQUEST

RequestEvent structure set:
Length:
APDU request buffer length
Data:
APDU request data buffer address

API
Open SIM Access Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 173

ADL User Guide for Open AT® OS 6.35

Event Type Event Parameter

ADL_OSA_EVENT_SIM_ERROR

ErrorEvent value set, according to the status
previously sent back through the
adl_osaSendResponse function, or set by the
firmware on unsolicited errors.

Please refer to the adl_osaSendResponse function
description for more information.

ADL_OSA_EVENT_CLOSED Set to NULL

ADL_OSA_EVENT_POWER_OFF_REQUEST Set to NULL

3.14.7. The adl_osaSendResponse Function
This function allows the application to post back ATR or APDU responses to the Sierra Wireless
firmware, after receiving an ADL_OSA_EVENT_ATR_REQUEST or ADL_OSA_EVENT_APDU_REQUEST event.

Prototype
s32 adl_osaSendResponse (s32 OsaHandle,

 adl_osaStatus_e Status,
 u16 Length,
 u8 * Data);

Parameters

OsaHandle:

OSA service handle, previously returned by the adl_osaSubscribe function.

Status

Status to be supplied to the firmware, in response to an ATR or APDU request, using the
following defined values.

Event Type Use

ADL_OSA_STATUS_OK Response data buffer has been received from
the SIM card.

ADL_OSA_STATUS_CARD_NOT_ACCESSIBLE SIM card does not seem to be accessible (no
response from the card).

ADL_OSA_STATUS_CARD_REMOVED The SIM card has been removed.

ADL_OSA_STATUS_CARD_UNKNOWN_ERROR Generic code for all other error cases.

Length:

ATR or APDU request response buffer length, in bytes.

Note: Should be set to 0 if the SIM card status is not OK.

Data:

ATR or APDU request response buffer address. This buffer content will be copied and sent
by ADL to the Sierra Wireless firmware.

Note: Should be set to 0 if the SIM card status is not OK.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM on a supplied parameter error.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied OSA handle is unknown.

API
Open SIM Access Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 174

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_BAD_STATE if the OSA service is not waiting for an APDU or ATR request
response.

3.14.8. The adl_osaUnsubscribe Function
This function un-subscribes from the OSA service: the local SIM connection is resumed by the Sierra
Wireless Firmware, and the application supplied handler is not any longer notified of OSA events.

Prototype
s32 adl_osaUnsubscribe (s32 OsaHandle);

Parameters

OsaHandle:

OSA service handle, previously returned by the adl_osaSubscribe function.

Returned values
• OK on success.

 An ADL_OSA_EVENT_CLOSED confirmation event will then be received in the service
handler.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied OSA handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

• ADL_RET_ERR_NOT_SUBSCRIBED The OSA service is not subscribed, so it is not possible to
unsubscribe it.

• ADL_RET_ERR_BAD_STATE Firmware is waiting for an ATR or APDU request from the simcard,
and unsubscription is forbidden until the simcard's request is granted.

API
Open SIM Access Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 175

ADL User Guide for Open AT® OS 6.35

3.14.9. Example
This example simply demonstrates how to use the OSA service in a nominal case (error cases are not
handled).

// Global variables

// OSA service handle
s32 OsaHandle;

// SIM request response data buffer length & address
u16 SimRspLen;
u8 * SimRspData;

 // OSA service handler
void MyOsaHandler (adl_osaEvent_e Event, adl_osaEventParam_u * Param)
{
 // Switch on the event type
 switch (Event)
 {
 case ADL_OSA_EVENT_ATR_REQUEST :
 case ADL_OSA_EVENT_APDU_REQUEST :
 // Reset the SIM card or transmit request
 // Get the related response data buffer
 // To be copied to SimRspLen & SimRspData global variables
 // Post back the response to the Sierra Wireless firmware
 adl_osaSendResponse (OsaHandle,ADL_OSA_STATUS_OK, SimRspLen,
SimRspData);
 break;
 }
}
// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribes to the OSA service
 OsaHandle = adl_osaSubscribeExt (MyOsaHandler, ADL_OSA_1V8|ADL_OSA_3V);
}
void MyFunction2 (void)
{
 // Un-subscribes from the OSA service
 adl_osaUnsubscribe (OsaHandle);
}

API
SMS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 176

ADL User Guide for Open AT® OS 6.35

3.15. SMS Service
ADL provides this service to handle SMS events, and to send SMSs to the network.

3.15.1. Required Header File
The header file for the SMS related functions is:

adl_sms.h

3.15.2. The adl_smsSubscribe Function
This function subscribes to the SMS service in order to receive SMSs from the network.

Prototype
s8 adl_smsSubscribe (adl_smsHdlr_f SmsHandler,

 adl_smsCtrlHdlr_f SmsCtrlHandler,
 u8 Mode);

Parameters

SmsHandler:

SMS handler defined using the following type:

 typedef bool (* adl_smsHdlr_f) (ascii * SmsTel,
 ascii * SmsTimeLength,
 ascii * SmsText);

This handler is called each time an SMS is received from the network.

SmsTel contains the originating telephone number of the SMS (in text mode), or NULL (in
PDU mode).

SmsTimeLength contains the SMS time stamp (in text mode), or the PDU length (in PDU
mode).

SmsText contains the SMS text (in text mode), or the SMS PDU (in PDU mode).

This handler returns TRUE if the SMS must be forwarded to the external application (it is
then stored in SIM memory, and the external application is then notified by a "+CMTI"
unsolicited indication).

It returns FALSE if the SMS has not been forwarded (i.e. the +CMTI indication is not
generated and the SMS is not stored in the SIM memory).

If the SMS service is subscribed several times, a received SMS will be forwarded to the
external application only if each of the handlers return TRUE.

Note: Whatever is the handler's returned value, the incoming message has been internally processed by
ADL; if it is read later via the +CMGR or +CMGL command, its status will be 'REC READ', instead of
'REC UNREAD'.

SmsCtrlHandler:

SMS event handler, defined using the following type:

 typedef void (* adl_smsCtrlHdlr_f) (u8 Event,
 u16 Nb);

API
SMS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 177

ADL User Guide for Open AT® OS 6.35

This handler is notified by following events during a n sending process.

ADL_SMS_EVENT_SENDING_OK

the SMS was sent successfully, Nb parameter value is not relevant.
ADL_SMS_EVENT_SENDING_ERROR

An error occurred during SMS sending, Nb parameter contains the error
number, according to "+CMS ERROR" value (cf. AT Commands Interface
Guide).

ADL_SMS_EVENT_SENDING_MR

the SMS was sent successfully, Nb parameter contains the sent Message
Reference value. A ADL_SMS_EVENT_SENDING_OK event will be received
by the control handler.

Mode:

Mode used to receive SMSs:

ADL_SMS_MODE_PDU

SmsHandler will be called in PDU mode on each SMS reception.
ADL_SMS_MODE_TEXT

SmsHandler will be called in Text mode on each SMS reception.

Returned values
• On success, this function returns a positive or null handle, requested for further SMS sending

operations.

• ADL_RET_ERR_PARAM if a parameter has a wrong value.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.15.3. The adl_smsSubscribeExt Function
This function subscribes to the SMS service in order to receive SMSs from the network.

Prototype
s8 adl_smsSubscribeExt (adl_smsHdlrExt_f SmsHandler,

 adl_smsCtrlHdlr_f SmsCtrlHandler,
 u8 Mode);

Parameters

SmsHandler:

SMS handler defined using the following type:

 typedef s32 (* adl_smsHdlrExt_f) (ascii * SmsTel,
 ascii * SmsTimeLength,
 ascii * SmsText);

This handler is called each time an SMS is received from the network.

SmsTel contains the originating telephone number of the SMS (in text mode), or NULL (in
PDU mode).

SmsTimeLength contains the SMS time stamp (in text mode), or the PDU length (in PDU
mode).

SmsText contains the SMS text (in text mode), or the SMS PDU (in PDU mode).

This handler returns ADL_SMS_FORWARD_INDICATION_AND_STORE if the SMS must be
forwarded to the external application (it is then stored in SIM memory, and the external
application is then notified by a "+CMTI" unsolicited indication).

API
SMS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 178

ADL User Guide for Open AT® OS 6.35

It returns ADL_SMS_FILTER_INDICATION_AND_DELETE if the SMS should not be
forwarded. And it returns ADL_SMS_FILTER_INDICATION_AND_STORE if the SMS must be
forwarded to the external application (it is then stored in SIM memory) and the external
application is not notified.

If the SMS service is subscribed several times, a received SMS will be forwarded to the
external application only if each of the handlers returns TRUE.

Note: Whatever is the handler's returned value, the incoming message has been internally processed by
ADL; if it is read later via the +CMGR or +CMGL command, its status will be 'REC READ', instead of
'REC UNREAD'.

SmsCtrlHandler:

SMS event handler, defined using the following type:

 typedef void (* adl_smsCtrlHdlr_f) (u8 Event,
 u16 Nb);

This handler is notified by following events during a n sending process.

ADL_SMS_EVENT_SENDING_OK

the SMS was sent successfully, Nb parameter value is not relevant.
ADL_SMS_EVENT_SENDING_ERROR

An error occurred during SMS sending, Nb parameter contains the error
number, according to "+CMS ERROR" value (cf. AT Commands Interface
Guide).

ADL_SMS_EVENT_SENDING_MR

the SMS was sent successfully, Nb parameter contains the sent Message
Reference value. A ADL_SMS_EVENT_SENDING_OK event will be received
by the control handler.

Mode:

Mode used to receive SMSs:

ADL_SMS_MODE_PDU

SmsHandler will be called in PDU mode on each SMS reception.
ADL_SMS_MODE_TEXT

SmsHandler will be called in Text mode on each SMS reception.

Returned values
• On success, this function returns a positive or null handle, requested for further SMS sending

operations.

• ADL_RET_ERR_PARAM if a parameter has a wrong value.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
SMS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 179

ADL User Guide for Open AT® OS 6.35

3.15.4. The adl_smsSend Function
This function sends an SMS to the network.

Prototype
s8 adl_smsSend (u8 Handle,

 ascii * SmsTel,
 ascii * SmsText,
 u8 Mode);

Parameters

Handle:

Handle returned by adl_smsSubscribe function.

SmsTel:

Telephone number where to send the SMS (in text mode), or NULL (in PDU mode).

SmsText:

SMS text (in text mode), or SMS PDU (in PDU mode).

Mode:

Mode used to send SMSs:

ADL_SMS_MODE_PDU

to send a SMS in PDU mode.
ADL_SMS_MODE_TEXT

to send a SMS in Text mode.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if a parameter has an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if the product is not ready to send an SMS (initialization not yet
performed, or sending an SMS already in progress)

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
SMS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 180

ADL User Guide for Open AT® OS 6.35

3.15.5. The adl_smsUnsubscribe Function
This function unsubscribes from the SMS service. The associated handler with provided handle will
no longer receive SMS events.

Prototype
s8 adl_smsUnsubscribe (u8 Handle);

Parameters

Handle:

Handle returned by adl_smsSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown.

• ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

• ADL_RET_ERR_BAD_STATE if the service is processing an SMS

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
Message Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 181

ADL User Guide for Open AT® OS 6.35

3.16. Message Service
ADL provides this service to allow applications to post and handle messages. Messages are used to
exchange data between the different application components (application task, Interrupt handler…).

The defined operations are:

• subscription & unsubscription functions (adl_msgSubscribe & adl_msgUnsubscribe)
usable to manage message reception filters.

• reception callbacks (adl_msgHandler_f) usable to receive incoming messages.

• A sending function (adl_msgSend) usable to send messages to an application task.

3.16.1. Required Header File
The header file for message-related functions is:

adl_msg.h

3.16.2. The adl_msgIdComparator_e Type
Enumeration of comparison operators, usable to define a message filter through the
adl_msgFilter_t structure..

typedef enum
{
 ADL_MSG_ID_COMP_EQUAL,
 ADL_MSG_ID_COMP_DIFFERENT,
 ADL_MSG_ID_COMP_GREATER,
 ADL_MSG_ID_COMP_GREATER_OR_EQUAL,
 ADL_MSG_ID_COMP_LOWER,
 ADL_MSG_ID_COMP_LOWER_OR_EQUAL,
 ADL_MSG_ID_COMP_LAST, //Reserved for internal use
} adl_msgIdComparator_e;

The meaning of each comparison operator is defined below:

Comparison Operator Description

ADL_MSG_ID_COMP_EQUAL The two identifiers are equal.

ADL_ MSG_ID_COMP_DIFFERENT The two identifiers are different.

ADL_ MSG_ID_COMP_GREATER The received message identifier is greater than
the subscribed message identifier.

ADL_ MSG_ID_COMP_GREATER_OR_EQUAL The received message identifier is greater or
equal to the subscribed message identifier.

ADL_ MSG_ID_COMP_LOWER The received message identifier is lower than
the subscribed message identifier.

ADL_ MSG_ID_COMP_LOWER_OR_EQUAL The received message identifier is lower or
equal to the subscribed message identifier.

API
Message Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 182

ADL User Guide for Open AT® OS 6.35

3.16.3. The adl_msgFilter_t Structure
This structure allows the application to define a message filter at service subscription time.

typedef struct
{
 u32 MsgIdentifierMask;
 u32 MsgIdentifierValue;
 adl_msgIdComparator_e Comparator;
 adl_ctxID_e Source;
} adl_msgFilter_t;

Structure Fields

The structure fields are defined below:

• MsgIdentifierMask:
Bit mask to be applied to the incoming message identifier at reception time. Only the bits set
to 1 in this mask will be compared for the service handlers notification. If the mask is set to 0,
the identifier comparison will always match.

• MsgIdentifierValue:
Message identifier value to be compared with the received message identifier. Only the bits
filtered by the MsgIdentifierMask mask are significant.

• Comparator:
Operator to be used for incoming message identifier comparison, using the
adl_msgIdComparator_e type. Please refer to the type description for more information
(see section adl_msgIdComparator_e).

• Source:
Required incoming message source context: the handler will be notified with messages
received from this context. The ADL_CTX_ALL constant should be used if the application
wishes to receive all messages, whatever the source context.

Filter Examples
• With the following filter parameters:
 MsgIdentifierMask = 0x0000F000
 MsgIdentifierValue = 0x00003000
 Comparator = ADL_MSG_ID_COMP_EQUAL
 Source = ADL_CTX_ALL

 the comparison will match if the message identifier fourth quartet is strictly equal to 3,
 whatever the other bit values, and whatever the source context.

• With the following filter parameters:
 MsgIdentifierMask = 0
 MsgIdentifierValue = 0
 Comparator = ADL_MSG_ID_COMP_EQUAL
 Source = ADL_CTX_ALL

 the comparison will always match, whatever the message identifier & the source context
 values

• With the following filter parameters:
 MsgIdentifierMask = 0xFFFF0000
 MsgIdentifierValue = 0x00010000
 Comparator = ADL_MSG_ID_COMP_GREATER_OR_EQUAL
 Source = ADL_CTX_HIGH_LEVEL_IRQ_HANDLER

API
Message Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 183

ADL User Guide for Open AT® OS 6.35

 the comparison will match if the message identifier two most significant bytes are greater or
 equal to 1, and if the message was posted from high level Interrupt handler.

3.16.4. The adl_msgSubscribe Function
This function allows the application to receive incoming user-defined messages, sent from any
application components (the application task itself or Interrupt handlers).

Prototype
s32 adl_msgSubscribe (adl_mgsFilter_t_ * Filter,

 adl_msgHandler_f msgHandler);

Parameters

Filter:

Identifier and source context conditions to check each message reception in order to notify
the message handler. Please refer to the adl_msgFilter_t structure description for more
information.

MsgHandler:

Application defined message handler, which will be notified each time a received message
matches the filter conditions. Please refer to adl_msgHandler_f call-back type definition
for more information.

Returned values
• A positive or null value on success:

 Message service handle, to be used in further Message service functions calls.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if a parameter has an incorrect value.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context).

Note: Messages filters definition is specific to each task: the filter will apply only to incoming messages for
the current task context. The associated call-back will be called in this task context when the filter
conditions are fulfilled.

3.16.5. The adl_msgHandler_f call-back Type
Such a call-back function has to be supplied to ADL through the adl_msgSubscribe interface in
order to receive incoming messages. Messages will be received through this handler each time the
supplied filter conditions are fulfilled.

Prototype
typedef void(*) adl_msgHandler_f (u32 MsgIdentifier,

 adl_ctxID_e Source,
 u32 Length,
 void * Data);

Parameters

MsgIdentifier:

Incoming message identifier.

Source:

Source context identifier from which the message was sent.

API
Message Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 184

ADL User Guide for Open AT® OS 6.35

Length:

Message body length, in bytes. This length should be 0 if the message does not include a
body.

Data:

Message body buffer address. This address should be NULL if the message does not
include a body.

Note: A message handler callback will be called by ADL in the execution context where it has been
subscribed.

3.16.6. The adl_msgUnsubscribe Function
This function un-subscribes from a previously subscribed message filter. Associated message handler
will no longer receive the filtered messages.

Prototype
S32 adl_msgUnsubscribe (s32 MsgHandle);

Parameters

MsgHandle:

Handle previously returned by the adl_msgSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.16.7. The adl_msgSend Function
This function allows the application to send a message at any time to any running task.

Prototype
s32 adl_msgSend (adl_ctxID_e DestinationTask,

 u32 MessageIdentifier,
 u32 Length,
 void * Data);

Parameters

DestinationTask:

Destination task to which the message is to be posted, using the adl_ctxID_e type. Only
tasks identifiers are valid (it is not possible to post messages to interrupt handler contexts).

MessageIdentifier:

The application defined message identifier. Message reception filters will be applied to this
identifier before notifying the concerned message handlers.

Length:

Message body length, if any. Should be set to 0 if the message does not include a body.

Data:

Message body buffer address, if any. Should be set to 0 if the message does not include a
body. This buffer data content will be copied into the message.

API
Message Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 185

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if a parameter has an incorrect value.

Note: When a message is posted, the source context identifier is automatically set accordingly to the current
context:

Note: If the message is sent from the application task, the source context identifier is set to the sending task
identifier.

Note: If the message is sent from a low level Interrupt handler, the source context identifier is set to
ADL_CTX_LOW_LEVEL_IRQ_HANDLER.

Note: If the message is sent from a high level Interrupt handler, the source context identifier is set to
ADL_CTX_HIGH_LEVEL_IRQ_HANDLER.

Note: If data body is provided for the message, this one will be copied in an allocated heap memory buffer.
This buffer will be automatically released after the message has been notified to all the matching
message reception filters.

Note: Beware for task 0 Message Identifier 0xFFFFFFFF and 0xFFFFFFFE are internally used by ADL.

3.16.8. Example
The code sample below illustrates a nominal use case of the ADL Messages Service public interface
(error cases are not handled).

// Global variables & constants

// Message filter definition
const adl_msgFilter_t MyFilter =
{
 0xFFFF0000, // Compare only the 2 MSB
 0x00010000, // Compare with 1
 ADL_MSG_ID_COMP_GREATER_OR_EQUAL, // Msg ID has to be >= 1
 0 // Application task 0 incoming msg
 only
};

// Message service handle
s32 MyMsgHandle;

// Incoming message handler
void MyMsgHandler (u32 MsgIdentifier, adl_ctxID_e Source, u32 Length, void *
Data)
{
 // Message processing
}

// Somewhere in the application code
void MyFunction (void)
{
 // Subscribe to the message service
 MyMsgHandle = adl_msgSubscribe (&MyFilter, MyMsgHandler);

 // Send an empty message to task 0
 adl_msgSend (0, 0x00010055, 0, NULL);

 // Unsubscribe from the message service
 adl_msgUnsubscribe (MyMsgHandle);
}

API
Call Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 186

ADL User Guide for Open AT® OS 6.35

3.17. Call Service
ADL provides this service to handle call related events, and to setup calls.

3.17.1. Required Header File
The header file for the call related functions is:

adl_call.h

3.17.2. The adl_callSubscribe Function
This function subscribes to the call service in order to receive call related events.

Prototype
s8 adl_callSubscribe (adl_callHdlr_f CallHandler);

Parameters

CallHandler:

Call handler defined using the following type:

 typedef s8 (* adl_callHdlr_f) (u16 Event,
 u32 Call_ID);

The pair events / call Id received by this handler are defined below; each event is received
according to an "event type", which can be:

 MO (Mobile Originated call related event)

 MT (Mobile Terminated call related event)

 CMD (Incoming AT command related event)

Event / Call ID Description Type

ADL_CALL_EVENT_RING_VOICE / 0 if voice phone call MT

ADL_CALL_EVENT_RING_DATA / 0 if data phone call MT

ADL_CALL_EVENT_NEW_ID / X if wind: 5,X
MO
MT1

ADL_CALL_EVENT_RELEASE_ID / X
if wind: 6,X ; on data call release, X is a
logical OR between the Call ID and the
ADL_CALL_DATA_FLAG constant

MO
MT

ADL_CALL_EVENT_ALERTING / 0 if wind: 2 MO

ADL_CALL_EVENT_NO_CARRIER / 0 phone call failure, ‘NO CARRIER’ MO
MT

ADL_CALL_EVENT_NO_ANSWER / 0 phone call failure, no answer MO

ADL_CALL_EVENT_BUSY / 0 phone call failure, busy MO

1 In case of Call Waiting only; please refer to the AT Commands Interface Guide for more information.

API
Call Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 187

ADL User Guide for Open AT® OS 6.35

Event / Call ID Description Type

ADL_CALL_EVENT_SETUP_OK / Speed

OK response after a call setup performed
by the adl_callSetup function; in data
call setup case, the connection <Speed>
(in bits/second) is also provided.

MO

ADL_CALL_EVENT_ANSWER_OK / Speed

OK response after an
ADL_CALL_NO_FORWARD_ATA request
from a call handler ; in data call answer
case, the connection <Speed> (in bps) is
also provided

MT

ADL_CALL_EVENT_CIEV / Speed
OK response after a performed call setup;
in data call setup case, the connection
<Speed> (in bps) is also provided

ADL_CALL_EVENT_HANGUP_OK / Data

OK response after a
ADL_CALL_NO_FORWARD_ATH request, or
a call hangup performed by the
adl_callHangup function ; on data call
release, Data is the
ADL_CALL_DATA_FLAG constant (0 on
voice call release)

MO
MT

ADL_CALL_EVENT_SETUP_OK_FROM_EXT / Speed

OK response after an ‘ATD’ command from
the external application; in data call setup
case, the connection <Speed> (in
bits/second) is also provided.

MO

ADL_CALL_EVENT_ANSWER_OK_FROM_EXT / Speed

OK response after an ‘ata’ command from
the external application ; in data call
answer case, the connection <Speed> (in
bps) is also provided

MT

ADL_CALL_EVENT_HANGUP_OK_FROM_EXT / Data

OK response after an ‘ATH’ command from
the external application ; on data call
release, Data is the
ADL_CALL_DATA_FLAG constant (0 on
voice call release)

MO
MT

ADL_CALL_EVENT_AUDIO_OPENNED / 0 if +WIND: 9 MO
MT

ADL_CALL_EVENT_ANSWER_OK_AUTO / Speed

OK response after an auto-answer to an
incoming call (ATS0 command was set to
a non-zero value) ; in data call answer
case, the connection <Speed> (in bps) is
also provided

MT

ADL_CALL_EVENT_RING_GPRS / 0 if GPRS phone call MT

ADL_CALL_EVENT_SETUP_FROM_EXT / Mode

if the external application has used the
'ATD' command to setup a call. Mode
value depends on call type (Voice: 0, GSM
Data: ADL_CALL_DATA_FLAG, GPRS
session activation: binary OR between
ADL_CALL_GPRS_FLAG constant and the
activated CID). According to the notified
handlers return values, the call setup may
be launched or not: if at least one handler
returns the ADL_CALL_NO_FORWARD code
(or higher), the command will reply "+CME
ERROR: 600" to the external application;
otherwise (if all handlers return
ADL_CALL_FORWARD) the call setup is
launched.

CMD

API
Call Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 188

ADL User Guide for Open AT® OS 6.35

Event / Call ID Description Type

ADL_CALL_EVENT_SETUP_ERROR_NO_SIM / 0
A call setup (from embedded or external
application) has failed (no SIM card
inserted)

MO

ADL_CALL_EVENT_SETUP_ERROR_PIN_NOT_READY
/ 0

A call setup (from embedded or external
application) has failed (the PIN code is not
entered)

MO

ADL_CALL_EVENT_SETUP_ERROR / Error

A call setup (from embedded or external
application) has failed (the <Error> field is
the returned +CME ERROR value ; cf. AT
Commands Interface Guide for more
information)

MO

ADL_CALL_EVENT_DTR_RELEASE / 0 If the call is released by switching DTR
upon ON to OFF

MO
MT

The events returned by this handler are defined below:

Event Description

ADL_CALL_FORWARD

The call event shall be sent to the external application
On unsolicited events, these ones will be forwarded to all
opened ports.
On responses events, these ones will be forwarded only on the
port on which the request was executed.

ADL_CALL_NO_FORWARD the call event shall not be sent to the external application

ADL_CALL_NO_FORWARD_ATH
the call event shall not be sent to the external application and
the application shall terminate the call by sending an ‘ATH’
command.

ADL_CALL_NO_FORWARD_ATA
the call event shall not be sent to the external application and
the application shall answer the call by sending an ‘ATA’
command.

Returned values
• OK on success

• ADL_RET_ERR_PARAM on parameter error

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.17.3. The adl_callSetup Function
This function just runs the adl_callSetupExt one on the ADL_PORT_OPEN_AT_VIRTUAL_BASE port
(cf. adl_callSetupExt description for more information). Please note that events generated by the
adl_callSetup will not be able to be forwarded to any external port, since the setup command was
running on the Open AT® port.

API
Call Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 189

ADL User Guide for Open AT® OS 6.35

3.17.4. The adl_callSetupExt Function
This function sets up a call to a specified phone number.

Prototype
s8 adl_callSetupExt (ascii * PhoneNb,

 u8 Mode,
 adl_port_e Port);

Parameters

PhoneNb:

Phone number to use to set up the call.

Mode:

Mode used to set up the call:

ADL_CALL_MODE_VOICE,
ADL_CALL_MODE_DATA

Port:

Port on which to run the call setup command. When setup return events will be received in
the Call event handler, if the application requires ADL to forward these events, they will be
forwarded to this Port parameter value.

Returned values
• OK on success

• ADL_RET_ERR_PARAM on parameter error (bad value, or unavailable port)

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.17.5. The adl_callHangup Function
This function just runs the adl_callHangupExt one on the ADL_PORT_OPEN_AT_VIRTUAL_BASE port
(cf. adl_callHangupExt description for more information). Please note that events generated by
the adl_callHangup will not be able to be forwarded to any external port, since the setup command
was running on the Open AT® port.

3.17.6. The adl_callHangupExt Function
This function hangs up the phone call.

Prototype
s8 adl_callHangupExt (adl_port_e Port);

Parameters

Port:

Port on which to run the call hang-up command. When hang-up return events will be
received in the Call event handler, if the application requires ADL to forward these events,
they will be forwarded to this Port parameter value.

Returned values
• OK on success

• ADL_RET_ERR_PARAM on parameter error (unavailable port)

API
Call Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 190

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.17.7. The adl_callAnswer Function
This function just runs the adl_callAnswerExt one on the ADL_PORT_OPEN_AT_VIRTUAL_BASE port
(cf. adl_callAnswerExt description for more information). Please note that events generated by
the adl_callAnswer will not be able to be forwarded to any external port, since the setup command
was running on the Open AT® port.

3.17.8. The adl_callAnswerExt Function
This function allows the application to answer a phone call out of the call events handler.

Prototype
s8 adl_callAnswerExt (adl_port_e Port);

Parameters

Port:

Port on which to run the call hang-up command. When hang-up return events will be
received in the Call event handler, if the application requires ADL to forward these events,
they will be forwarded to this Port parameter value.

Returned values
• OK on success

• ADL_RET_ERR_PARAM on parameter error (unavailable port)

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.17.9. The adl_callUnsubscribe Function
This function unsubscribes from the Call service. The provided handler will not receive Call events
any more.

Prototype
s8 adl_callUnsubscribe (adl_callHdlr_f Handler);

Parameters

Handler:

Handler used with adl_callSubscribe function.

Returned values
• OK on success

• ADL_RET_ERR_PARAM on parameter error

• ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown

• ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 191

ADL User Guide for Open AT® OS 6.35

3.18. GPRS Service
ADL provides this service to handle GPRS related events and to setup, activate and deactivate PDP
contexts.

3.18.1. Required Header File
The header file for the GPRS related functions is:

adl_gprs.h

3.18.2. The adl_gprsSubscribe Function
This function subscribes to the GPRS service in order to receive GPRS related events.

Prototype
s8 adl_gprsSubscribe (adl_gprsHdlr_f GprsHandler);

Parameters

GprsHandler:

GPRS handler defined using the following type:

 typedef s8 (*adl_gprsHdlr_f)(u16 Event,

 u8 Cid);

The pairs events/Cid received by this handler are defined below:

Event / Call ID Description

ADL_GPRS_EVENT_RING_GPRS If incoming PDP context activation is requested by
the network

ADL_GPRS_EVENT_NW_CONTEXT_DEACT / X If the network has forced the deactivation of the Cid
X

ADL_GPRS_EVENT_ME_CONTEXT_DEACT / X If the ME has forced the deactivation of the Cid X

ADL_GPRS_EVENT_NW_DETACH If the network has forced the detachment of the ME

ADL_GPRS_EVENT_ME_DETACH If the ME has forced a network detachment or lost
the network

ADL_GPRS_EVENT_NW_CLASS_B If the network has forced the ME on class B

ADL_GPRS_EVENT_NW_CLASS_CG If the network has forced the ME on class CG

ADL_GPRS_EVENT_NW_CLASS_CC If the network has forced the ME on class CC

ADL_GPRS_EVENT_ME_CLASS_B If the ME has changed to class B

ADL_GPRS_EVENT_ME_CLASS_CG If the ME has changed to class CG

ADL_GPRS_EVENT_ME_CLASS_CC If the ME has changed to class CC

ADL_GPRS_EVENT_NO_CARRIER If the activation of the external application with
‘ATD*99’ (PPP dialing) did hang up.

ADL_GPRS_EVENT_DEACTIVATE_OK / X If the deactivation requested with adl_gprsDeact
function was successful on the Cid X

ADL_GPRS_EVENT_DEACTIVATE_OK_FROM_EXT / X If the deactivation requested by the external
application was successful on the Cid X

ADL_GPRS_EVENT_ANSWER_OK If the acceptance of the incoming PDP activation
with adl_gprsAct was successful

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 192

ADL User Guide for Open AT® OS 6.35

Event / Call ID Description

ADL_GPRS_EVENT_ANSWER_OK_FROM_EXT If the acceptance of the incoming PDP activation by
the external application was successful

ADL_GPRS_EVENT_ACTIVATE_OK / X If the activation requested with adl_gprsAct on
the Cid X was successful

ADL_GPRS_EVENT_GPRS_DIAL_OK_FROM_EXT / X
If the activation requested by the external
application with ‘ATD*99’ (PPP dialing) was
successful on the Cid X

ADL_GPRS_EVENT_ACTIVATE_OK_FROM_EXT / X If the activation requested by the external
application on the Cid X was successful

ADL_GPRS_EVENT_HANGUP_OK_FROM_EXT If the rejection of the incoming PDP activation by
the external application was successful

ADL_GPRS_EVENT_DEACTIVATE_KO / X If the deactivation requested with adl_gprsDeact
on the Cid X failed

ADL_GPRS_EVENT_DEACTIVATE_KO_FROM_EXT / X If the deactivation requested by the external
application on the Cid X failed

ADL_GPRS_EVENT_ACTIVATE_KO_FROM_EXT / X If the activation requested by the external
application on the Cid X failed

ADL_GPRS_EVENT_ACTIVATE_KO / X If the activation requested with adl_gprsAct on
the Cid X failed

ADL_GPRS_EVENT_ANSWER_OK_AUTO If the incoming PDP context activation was
automatically accepted by the ME

ADL_GPRS_EVENT_SETUP_OK / X If the set up of the Cid X with adl_gprsSetup
was successful

ADL_GPRS_EVENT_SETUP_KO / X If the set up of the Cid X with adl_gprsSetup
failed

ADL_GPRS_EVENT_ME_ATTACH If the ME has forced a network attachment

ADL_GPRS_EVENT_ME_UNREG If the ME is not registered

ADL_GPRS_EVENT_ME_UNREG_SEARCHING If the ME is not registered but is searching a new
operator for registration.

Note: If Cid X is not defined, the value ADL_CID_NOT_EXIST will be used as X.

The possible returned values for this handler are defined below:

Event Description

ADL_GPRS_FORWARD

the event shall be sent to the external application.
On unsolicited events, these one be forwarded to all opened
ports.
On responses events, these one be forwarded only on the
port on which the request was executed.

ADL_GPRS_NO_FORWARD the event is not sent to the external application

ADL_GPRS_NO_FORWARD_ATH
the event is not sent to the external application and the
application will terminate the incoming activation request by
sending an ‘ATH’ command.

ADL_GPRS_NO_FORWARD_ATA
the event is not sent to the external application and the
application will accept the incoming activation request by
sending an ‘ATA’ command.

Returned values for adl_gprsSubscribe
• This function returns OK on success, or a negative error value.

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 193

ADL User Guide for Open AT® OS 6.35

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM In case of parameter error

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.18.3. The adl_gprsSetup Function
This function runs the adl_gprsSetupExt on the ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf.
adl_gprsSetupExt description for more information). Please note that events generated by the
adl_gprsSetup will not be able to be forwarded to any external port, since the setup command runs
on the Open AT® port.

3.18.4. The adl_gprsSetupExt Function
This function sets up a PDP context identified by its CID with some specific parameters.

Prototype
s8 adl_gprsSetupExt (u8 Cid,

 adl_gprsSetupParams_t Params,
 adl_port_e Port);

Parameters

Cid:

The Cid of the PDP context to setup (integer value between 1 and 4).

Params:

The parameters to set up are contained in the following type:

typedef struct
{
 ascii* APN;
 ascii* Login;
 ascii* Password;
 ascii* FixedIP;
 bool HeaderCompression;
 bool DataCompression;
}adl_gprsSetupParams_t;

 APN:
Address of the Provider GPRS Gateway (GGSN)

 maximum 100 bytes string

 Login:
GPRS account login

 maximum 50 bytes string

 Password:
GPRS account password

 maximum 50 bytes string

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 194

ADL User Guide for Open AT® OS 6.35

 FixedIP:
Optional fixed IP address of the MS (used only if not set to NULL)
maximum 15 bytes string

 HeaderCompression:
PDP header compression option (enabled if set to TRUE)

 DataCompression:
PDP data compression option (enabled if set to TRUE)

Port:

Port on which to run the PDP context setup command. Setup return events are received in
the GPRS event handler. If the application requires ADL to forward these events, they will be
forwarded to this Port parameter value.

Returned values
• This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameter error: bad Cid value or unavailable port

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the "+WIND:4" indication has
not occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the product

ADL_RET_ERR_BAD_STATE
The service is still processing another GPRS API ; application
should wait for the corresponding event (indication of end of
processing) in the GPRS handler before calling this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.18.5. The adl_gprsAct Function
This function just runs the adl_gprsActExt one on the ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf.
adl_gprsActExt description for more information). Please note that events generated by the
adl_gprsAct will not be able to be forwarded to any external port, since the setup command was
running on the Open AT® port.

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 195

ADL User Guide for Open AT® OS 6.35

3.18.6. The adl_gprsActExt Function
This function activates a specific PDP context identified by its Cid.

Prototype
s8 adl_gprsActExt (u8 Cid,

 adl_port_e Port);

Parameters

Cid:

The Cid of the PDP context to activate (integer value between 1 and 4).

Port:

Port on which to run the PDP context activation command. Activation return events are
received in the GPRS event handler.If the application requires ADL to forward these events,
they will be forwarded to this Port parameter value.

Returned values
• This function returns OK on success, or a negative error value.

Possible error values are:

Error Value Description

ADL_RET_ERR_PARAM parameters error: bad Cid value or unavailable port

ADL_RET_ERR_PIN_KO If the PIN is not entered, or if the "+WIND:4" indication has
not occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the product

ADL_RET_ERR_BAD_STATE
The service is still processing another GPRS API ; application
should wait for the corresponding event (indication of end of
processing) in the GPRS handler before calling this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level Interrupt handler
(the function is forbidden in this context).

Caution: This function must be called before opening the GPRS FCM Flows.

3.18.7. The adl_gprsDeact Function
This function runs the adl_gprsDeactExt on the ADL_PORT_OPEN_AT_VIRTUAL_BASE port (cf.
adl_gprsDeactExt description for more information). Please note that events generated by the
adl_gprsDeact will not be able to be forwarded to any external port, since the setup command runs
on the Open AT® port.

3.18.8. The adl_gprsDeactExt Function
This function deactivates a specific PDP context identified by its Cid.

Prototype
s8 adl_gprsDeactExt (u8 Cid

 adl_port_e Port);

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 196

ADL User Guide for Open AT® OS 6.35

Parameters

Cid:

The Cid of the PDP context to deactivate (integer value between 1 and 4).

Port:

Port on which to run the PDP context deactivation command. Deactivation return events are
received in the GPRS event handler.If the application requires ADL to forward these events,
they will be forwarded to this Port parameter value.

Returned values
• This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameters error: bad Cid value or unavailable port

ADL_RET_ERR_PIN_KO if the PIN is not entered, or if the "+WIND:4" indication has not
occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the product

ADL_RET_ERR_BAD_STATE
the service is still processing another GPRS API ; application
should wait for the corresponding event (indication of end of
processing) in the GPRS handler before calling this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level Interrupt handler (the
function is forbidden in this context).

Caution: CIf the GPRS flow is running, please do wait for the ADL_FCM_EVENT_FLOW_CLOSED event before
calling the adl_gprsDeact function, in order to prevent embedded module lock.

3.18.9. The adl_gprsGetCidInformations Function
This function gets information about a specific activated PDP context identified by its Cid.

Prototype
s8 adl_gprsGetCidInformations (u8 Cid,

 adl_gprsInfosCid_t * Infos);

Parameters

Cid:

The Cid of the PDP context (integer value between 1 and 4).

Infos:

Information of the activated PDP context is contained in the following type:

typedef struct
{
 u32 LocalIP; // Local IP address of the MS
 u32 DNS1; // First DNS IP address
 u32 DNS2; // Second DNS IP address

 u32 Gateway; // Gateway IP address

}adl_gprsInfosCid_t;

This parameter fields will be set only if the GPRS session is activated; otherwise, they all will
be set to 0.

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 197

ADL User Guide for Open AT® OS 6.35

Returned values
• This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameters error: bad Cid value

ADL_RET_ERR_PIN_KO if the PIN is not entered, or if the "+WIND:4" indication has not
occurred yet

ADL_GPRS_CID_NOT_DEFINED problem to set up the Cid (the CID is already activated)

ADL_NO_GPRS_SERVICE if the GPRS service is not supported by the product

ADL_RET_ERR_BAD_STATE
the service is still processing another GPRS API ; application
should wait for the corresponding event (indication of end of
processing) in the GPRS handler before calling this function

3.18.10. The adl_gprsUnsubscribe Function
This function unsubscribes from the GPRS service. The provided handler will not receive any more
GPRS events.

Prototype
s8 adl_gprsUnsubscribe (adl_gprsHdlr_f Handler);

Parameters

Handler:

Handler used with adl_gprsSubscribe function.

Returned values
• This function returns OK on success, or a negative error value.

Possible error values are:

Error value Description

ADL_RET_ERR_PARAM parameter error

ADL_RET_ERR_UNKNOWN_HDL the provided handler is unknown

ADL_RET_ERR_NOT_SUBSCRIBED the service is not subscribed

ADL_RET_ERR_BAD_STATE
the service is still processing another GPRS API ; application
should wait for the corresponding event (indication of end of
processing) in the GPRS handler before calling this function

ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.18.11. The adl_gprsIsAnIPAddress Function
This function checks if the provided string is a valid IP address. Valid IP address strings arebased on
the "a.b.c.d" format, where a, b, c & d are integer values between 0 and 255.

Prototype
bool adl_gprsIsAnIPAddress (ascii * AddressStr);

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 198

ADL User Guide for Open AT® OS 6.35

Parameters

AddressStr:

IP address string to check.

Returned values
• TRUE if the provided string is a valid IP address one, and FALSE otherwise.

• NULL & empty string ("") are not considered as a valid IP address.

3.18.12. Example
This example just demonstrates how to use the GPRS service in a nominal case (error cases are not
handled).

Complete examples using the GPRS service are also available on the SDK (Ping_GPRS sample).

// Global variables
adl_gprsSetupParams_t MyGprsSetup;
adl_gprsInfosCid_t InfosCid;

// GPRS event handler
s8 MyGprsEventHandler (u16 Event, u8 CID)
{
 // Trace event
 TRACE ((1, "Received GPRS event %d/%d", Event, CID));

 // Switch on event
 switch (Event)
 {
 case ADL_GPRS_EVENT_SETUP_OK :
 TRACE ((1, "PDP Ctxt Cid %d Setup OK", CID));
 // Activate the session
 adl_gprsAct (1);
 break;

 case ADL_GPRS_EVENT_ACTIVATE_OK :
 TRACE ((1, "PDP Ctxt %d Activation OK", CID));
 // Get context information
 adl_gprsGetCidInformations (1, &InfosCid);
 // De-activate the session
 adl_gprsDeAct (1);
 }
 break;

 case ADL_GPRS_EVENT_DEACTIVATE_OK :
 TRACE ((1, " PDP Ctxt %d De-activation OK", CID));
 // Un-subscribe from GPRS event handler
 adl_gprsUnsubscribe (MyGprsEventHandler);
 break;
 }

 // Forward event
 return ADL_GPRS_FORWARD;
}

API
GPRS Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 199

ADL User Guide for Open AT® OS 6.35

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Fill Setup structure
 MyGprsSetup.APN = "myapn";
 MyGprsSetup.Login = "login";
 MyGprsSetup.Password = "password";
 MyGprsSetup.FixedIP = NULL;
 MyGprsSetup.HeaderCompression = FALSE;
 MyGprsSetup.DataCompression = FALSE;

 // Subscribe to GPRS event handler
 adl_gprsSubscribe (MyGprsEventHandler);

 // Set up the GPRS context
 adl_gprsSetup (1, MyGprsSetup);
}

API
Semaphore ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 200

ADL User Guide for Open AT® OS 6.35

3.19. Semaphore ADL Service
The ADL Semaphore service allows the application to handle the semaphore resources supplied by
the Open AT® OS.

Semaphores are used to synchronize processes between the application task and high level Interrupt
handlers.

Note: Semaphores cannot be used in a low level Interrupt handler context.

The defined operations are:

• A subscription function adl_semSubscribe to get a semaphore resource control

• An unsubscription function adl_semUnsubscribe to release a semaphore resource

• Consumption functions adl_semConsume and adl_semConsumeDelay to consume a
semaphore counter

• A produce function adl_semProduce to produce a semaphore counter

• A test function adl_semIsConsumed to check a semaphore current state

• A capabilities function adl_semGetResourcesCount to retrieve the currently free semaphore
resources count

3.19.1. Required Header File
The header file for the Semaphore service definitions is:

adl_sem.h

3.19.2. The adl_semGetResourcesCount Function
This function retrieves the count of currently free semaphore resources for the application usage.

Prototype
u32 adl_semGetResourcesCount (void);

Returned values
• Free semaphore resources count.

3.19.3. The adl_semSubscribe Function
This function allows the application to reserve and initialize a semaphore resource.

Prototype
s32 adl_semSubscribe (u16 SemCounter);

Parameters

SemCounter:

Semaphore inner counter initialization value (reflects the number of times the semaphore
can be consumed before the calling task must be suspended).

Returned values
• Handle A positive semaphore service handle on success:

 Semaphore service handle, to be used in further service function calls.

API
Semaphore ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 201

ADL User Guide for Open AT® OS 6.35

• A negative error value otherwise:

 ADL_RET_ERR_NO_MORE_SEMAPHORES when there are no more free semaphore resources.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt
handler (the function is forbidden in this context).

3.19.4. The adl_semConsume Function
This function allows the application to reduce the required semaphore counter by one.
If this counter value falls under zero, the calling execution context is suspended until the semaphore
is produced from another context.

Prototype
s32 adl_semConsume (s32 SemHandle);

Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

Exceptions

The following exception must be generated on this function call

 205 If the semaphore has been consumed too many times. A semaphore can be
consumed a number of times equal to its initial value + 256.

3.19.5. The adl_semConsumeDelay Function
This function allows the application to reduce the required semaphore counter by one.

If this counter value falls under zero, the calling execution context is suspended until the semaphore
is produced from another context.
Moreover, if the semaphore is not produced during the supplied time-out duration, the calling context
is automatically resumed.

Prototype
s32 adl_semConsumeDelay (s32 SemHandle,

 u32 TimeOut);

Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe function.

Timeout:

Time to wait before resuming context when the semaphore is not produced (must not be 0).
Time measured is in 18.5 ms ticks.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown.

API
Semaphore ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 202

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_PARAM when a supplied parameter value is wrong.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

• ADL_RET_ERR_BAD_STATE when the semaphore has not been consumed and timeout has
elapsed. Even if the semaphore has not been consumed at timeout, the semaphore counter
has been decreased by one. Therefore, after this code is returned, it is mandatory to call
Adl_SemProduce once to get the semaphore counter to the correct value.

Exceptions

The following exception must be generated on this function call.

 206 if the semaphore has been consumed too many times.

A semaphore can be consumed a number of times equal to its initial value + 256.

3.19.6. The adl_semProduce Function
This function allows the application to increase the required semaphore counter by one.
If this counter value gets above zero, the execution contexts that were suspended due to using this
semaphore are resumed.

Prototype
s32 adl_semProduce (s32 SemHandle);

Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

Exceptions

The following exception must be generated on this function call.

 133 if the semaphore has been produced too many times.

A semaphore can be produced until its inner counter reaches its initial value.

3.19.7. The adl_semUnsubscribe Function
This function allows the application to unsubscribe from the Semaphore service, in order to release
the previously reserved resource.
A semaphore can be unsubscribed only if its inner counter value is the initial one (the semaphore has
been produced as many times as it has been consumed).

Prototype
s32 adl_semUnsubscribe (s32 SemHandle);

Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe function.

API
Semaphore ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 203

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown

• ADL_RET_ERR_BAD_STATE when the semaphore inner counter value is different from the initial
value.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.19.8. The adl_semIsConsumed Function
This function allows the application to check if a semaphore is currently consumed (the internal
counter value is lower than the initial value) or not (the counter value is the initial one).

Prototype
s32 adl_semIsConsumed (s32 SemHandle);

Parameters

SemHandle:

Semaphore service handle, previously returned by the adl_semSubscribe function.

Returned values
• TRUE if the semaphore resource is consumed.

• FALSE If the semaphore resource is not consumed.

• ADL_RET_ERR_UNKNOWN_HDL when the supplied handle is unknown.

API
Semaphore ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 204

ADL User Guide for Open AT® OS 6.35

3.19.9. Example
This example shows how to use the Semaphore service in a nominal case (error cases are not
handled).

// Global variable: Semaphore service handle
s32 MySemHandle;

// Somewhere in the application code, used as high level interrupt handler
void MyHighLevelHandler (void)
{
 // Produces the semaphore, to resume the application task context
 adl_semProduce (MySemHandle);
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribes to the semaphore service
 MySemHandle = adl_semSubscribe (0);

 // Consumes the semaphore, with a 37 ms time-out delay
 adl_semConsumeDelay (MySemHandle, 2);

 // Consumes the semaphore: has to be produced from another context
 adl_semConsume (MySemHandle);

void MyFunction2 (void)
{
 // Un-subscribes from the semaphore service
 adl_semUnsubscribe (MySemHandle);
}

API
Application Safe Mode Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 205

ADL User Guide for Open AT® OS 6.35

3.20. Application Safe Mode Service
By default, the +WOPEN and +WDWL commands cannot be filtered by any embedded application.
This service allows one application to get these commands events, in order to prevent any external
application stop or erase the current embedded one.

3.20.1. Required Header File
The header file for the Application safe mode service is:

adl_safe.h

3.20.2. The adl_safeSubscribe Function
This function subscribes to the Application safe mode service in order to receive +WOPEN and
+WDWL commands events.

Prototype
s8 adl_safeSubscribe (u16 WDWLopt,

 u16 WOPENopt,
 adl_safeHdlr_f SafeHandler);

Parameters

WDWLopt:

Additionnal options for +WDWL command subscription. This command is at least subscribed
in ACTION and READ mode. Please see adl_atCmdSubscribe API for more details about
these options.

WOPENopt:

Additionnal options for +WOPEN command subscription. This command is at least
subscribed in READ, TEST and PARAM mode, with minimum of one mandatory parameter.
Please see adl_atCmdSubscribe API for more details about these options.

SafeHandler:

Application safe mode handler defined using the following type:

 typedef bool (*adl_safeHdlr_f) (adl_safeCmdType_e CmdType,
 adl_atCmdPreParser_t * paras);

API
Application Safe Mode Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 206

ADL User Guide for Open AT® OS 6.35

The CmdType events received by this handler are defined below:

typedef enum
{
 ADL_SAFE_CMD_WDWL, // AT+WDWL command
 ADL_SAFE_CMD_WDWL_READ, // AT+WDWL? command
 ADL_SAFE_CMD_WDWL_OTHER, // WDWL other syntax
 ADL_SAFE_CMD_WOPEN_STOP, // AT+WOPEN=0 command
 ADL_SAFE_CMD_WOPEN_START, // AT+WOPEN=1 command
 ADL_SAFE_CMD_WOPEN_GET_VERSION, // AT+WOPEN=2 command
 ADL_SAFE_CMD_WOPEN_ERASE_OBJ, // AT+WOPEN=3 command
 ADL_SAFE_CMD_WOPEN_ERASE_APP, // AT+WOPEN=4 command
 ADL_SAFE_CMD_WOPEN_SUSPEND_APP, // AT+WOPEN=5 command

 ADL_SAFE_CMD_WOPEN_AD_GET_SIZE, // AT+WOPEN=6 command
 ADL_SAFE_CMD_WOPEN_AD_SET_SIZE, // AT+WOPEN=6,<size> command
 ADL_SAFE_CMD_WOPEN_READ, // AT+WOPEN? command
 ADL_SAFE_CMD_WOPEN_TEST, // AT+WOPEN=? command
 ADL_SAFE_CMD_WOPEN_OTHER // WOPEN other syntax
} adl_safeCmdType_e;

The paras received structure contains the same parameters as the commands used for
adl_atCmdSubscribe API.

If the Handler returns FALSE, the command will not be forwarded to the Sierra Wireless
Firmware.

If the Handler returns TRUE, the command will be processed by the Sierra Wireless
Firmware, which will send responses to the external application.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if the parameters have an incorrect value

• ADL_RET_ERR_ALREADY_SUBSCRIBED if the service is already subscribed

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

3.20.3. The adl_safeUnsubscribe Function
This function unsubscribes from Application safe mode service. The +WDWL and +WOPEN
commands are not filtered anymore and are processed by the Sierra Wireless Firmware.

Prototype
s8 adl_safeUnsubscribe (adl_safeHdlr_f Handler);

Parameters

Handler:

Handler used with adl_safeSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if the parameter has an incorrect value

• ADL_RET_ERR_UNKNOWN_HDL if the provided handler is unknown

• ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level Interrupt handler
(the function is forbidden in this context).

API
Application Safe Mode Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 207

ADL User Guide for Open AT® OS 6.35

3.20.4. The adl_safeRunCommand Function
This function allows +WDWL or +WOPEN command with any standard syntax.

Prototype
s8 adl_safeRunCommand (adl_safeCmdType_e CmdType,

 adl_atRspHandler_t RspHandler);

Parameters

CmdType:

Command type to run; please refer to adl_safeSubscribe description.
ADL_SAFE_CMD_WDWL_OTHER, ADL_SAFE_CMD_WOPEN_OTHER and
ADL_SAFE_CMD_WOPEN_ERASE_OBJ values are not allowed.

The ADL_SAFE_CMD_WOPEN_SUSPEND_APP may be used to suspend the Open AT® application
task. The execution may be resumed using the AT+WOPENRES command, or by sending a
signal on the hardware Interrupt product pin (The INTERRUPT feature has to be enabled on
the product: please refer to the AT+WFM command). Open AT® application running in
Remote Task Environment cannot be suspended (the function has no effect). Please note
that the current Open AT® application process is suspended immediately on the
adl_safeRunCommand process; if there is any code after this function call, it will be executed
only when the process is resumed.

RspHandler:

Response handler to get command results. All responses are subscribed and the command
is executed on the Open AT® virtual port. Instead of providing a response handler, a port
identifier may be specified (using adl_port_e type): the command will be executed on this
port, and the resulting responses sent back on this port.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if the parameter has an incorrect value

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
AT Strings Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 208

ADL User Guide for Open AT® OS 6.35

3.21. AT Strings Service
This service provides APIs to process AT standard response strings.

3.21.1. Required Header File
The header file for the AT strings service is:

adl_str.h

3.21.2. The adl_strID_e Type
All predefined AT strings for this service are defined in the following type:

typedef enum
{
 ADL_STR_NO_STRING, // Unknown string
 ADL_STR_OK, // "OK"
 ADL_STR_BUSY, // "BUSY"
 ADL_STR_NO_ANSWER, // "NO ANSWER"
 ADL_STR_NO_CARRIER, // "NO CARRIER"
 ADL_STR_CONNECT, // "CONNECT"
 ADL_STR_ERROR, // "ERROR"

 ADL_STR_CME_ERROR, // "+CME ERROR:"
 ADL_STR_CMS_ERROR, // "+CMS ERROR:"
 ADL_STR_CPIN, // "+CPIN:"

 ADL_STR_LAST_TERMINAL, // Terminal resp. are before this
 line

 ADL_STR_RING = ADL_STR_LAST_TERMINAL, // "RING"
 ADL_STR_WIND, // "+WIND:"
 ADL_STR_CRING, // "+CRING:"
 ADL_STR_CPINC, // "+CPINC:"
 ADL_STR_WSTR, // "+WSTR:"
 ADL_STR_CMEE, // "+CMEE:"
 ADL_STR_CREG, // "+CREG:"
 ADL_STR_CGREG, // "+CGREG:"
 ADL_STR_CRC, // "+CRC:"
 ADL_STR_CGEREP, // "+CGEREP:"
 ADL_STR_LAST // Last string ID

} adl_strID_e;

API
AT Strings Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 209

ADL User Guide for Open AT® OS 6.35

3.21.3. The adl_strGetID Function
This function returns the ID of the provided response string.

Prototype
adl_strID_e adl_strGetID (ascii * rsp);

Parameters

rsp:

String to parse to get the ID.

Returned values
• ADL_STR_NO_STRING if the string is unknown.

• Id of the string otherwise.

3.21.4. The adl_strGetIDExt Function
This function returns the ID of the provided response string, with an optional argument and its type.

Prototype
adl_strID_e adl_strGetIDExt (ascii * rsp,

 void * arg,
 u8 * argtype);

Parameters

rsp:

String to parse to get the ID.

arg:

Parsed first argument; not used if set to NULL.

argtype:

Type of the parsed argument:

if argtype is ADL_STR_ARG_TYPE_ASCII, arg is an ascii * string ;

if argtype is ADL_STR_ARG_TYPE_U32, arg is an u32 * integer.

Returned values
• ADL_STR_NO_STRING if the string is unknown.

• Id of the string otherwise.

3.21.5. The adl_strIsTerminalResponse Function
This function checks whether the provided response ID is a terminal one. A terminal response is the
last response that a response handler will receive from a command.

Prototype
bool adl_strIsTerminalResponse (adl_strID_e RspID);

API
AT Strings Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 210

ADL User Guide for Open AT® OS 6.35

Parameters

RspID:

Response ID to check.

Returned values
• TRUE if the provided response ID is a terminal one.

• FALSE otherwise.

3.21.6. The adl_strGetResponse Function
This function provides the standard response string from its ID.

Prototype
ascii * adl_strGetResponse (adl_strID_e RspID);

Parameters

RspID:

Response ID from which to get the string.

Returned values
• Standard response string on success ;

• NULL if the ID does not exist.

Caution: The returned pointer memory is allocated by this function, but its ownership is transferred to the
embedded application. This means that the embedded application will have to release the returned
pointer.

3.21.7. The adl_strGetResponseExt Function
This function provides a standard response string from its ID, with the provided argument.

Prototype
ascii * adl_strGetResponseExt (adl_strID_e RspID,

 u32 arg);

Parameters

RspID:

Response ID from which to get the string.

arg:

Response argument to copy in the response string. Depending on the response ID, this
argument should be an u32 integer value, or an ascii * string.

Returned values
• Standard response string on success ;

• NULL if the ID does not exist.

Caution: The returned pointer memory is allocated by this function, but its ownership is transferred to the
embedded application. This means that the embedded application will have to release the returned
pointer.

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 211

ADL User Guide for Open AT® OS 6.35

3.22. Application & Data Storage Service
This service provides APIs to use the Application & Data storage volume. This volume may be used
to store data, or ".dwl" files (Sierra Wireless Firmware updates, new Open AT® applications or E2P
configuration files) in order to be installed later on the product.

The default storage size is 768 Kbytes. It may be configured with the AT+WOPEN command (Please
refer to the AT Commands Interface Guide for more information).

This storage size has to be set to the maximum (about 1.2 Mbytes) in order to have enough place to
store a Sierra Wireless Firmware update.

Caution: Any A&D size change will lead to an area format process (some additional seconds on start-up, all
A&D cells data will be erased).

Legal mention:

The Download Over The Air feature enables the Sierra Wireless Firmware to be remotely
updated.

The downloading and OS updating processes have to be activated and managed by an
appropriate Open AT® based application to be developed by the customer. The security of the
whole process (request for update, authentication, encryption, etc.) has to be managed by the
customer under his own responsibility. Sierra Wireless shall not be liable for any issue related
to any use by customer of the Download Over The Air feature.

Sierra Wireless AGREES AND THE CUSTOMER ACKNOWLEDGES THAT THE SDK Open AT®
IS PROVIDED "AS IS" BY Sierra Wireless WITHOUT ANY WARRANTY OR GUARANTEE OF
ANY KIND.

The defined operations are:

• adl_adSubscribe

• adl_adUnsubscribe

• adl_adWrite

• adl_adInfo

• adl_adGetState

• adl_adFinalise

• adl_adDelete

• adl_adInstall

• adl_adRecompact

• adl_adGetCellList

• adl_adFormat

• adl_adEventSubscribe

• adl_adEventUnsubscribe

• adl_adGetInstallResult

3.22.1. Required Header File
The header file for the Application & Data storage service is:

adl_ad.h

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 212

ADL User Guide for Open AT® OS 6.35

3.22.2. The adl_adSubscribe Function
This function subscribes to the required A&D space cell identifier.

Prototype
s32 adl_adSubscribe (u32 CellID,

 u32 Size);

Parameters

CellID:

A&D space cell identifier to subscribe to. This cell may already exist or not. If the cell does
not exist, the given size is allocated.

Size:

New cell size in bytes (this parameter is ignored if the cell already exists). It may be set to
ADL_AD_SIZE_UNDEF for a variable size. In this case, new cells subscription will fail until the
undefined size cell is finalised.

Total used size in flash will be the data size + header size. Header size is variable (with an
average value of 16 bytes).

When subscribing, the size is rounded up to the next multiple of 4.

Returned values
• A positive or null value on success:

 The A&D cell handle on success, to be used on further A&D API functions calls,

• A negative error value:

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the cell is already subscribed;

 ADL_AD_RET_ERR_OVERFLOW if there is not enough allocated space,

 ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the product,

 ADL_RET_ERR_PARAM if the CellId parameter is 0xFFFFFFFF (this value should not be
used as an A&D Cell ID),

 ADL_RET_ERR_BAD_STATE (when subscribing an undefined size cell) if another undefined
size cell is already subscribed and not finalized.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

3.22.3. The adl_adUnsubscribe Function
This function unsubscribes from the given A&D cell handle.

Prototype
s32 adl_adUnsubscribe (s32 CellHandle);

Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Returned values
• OK on success,

• ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 213

ADL User Guide for Open AT® OS 6.35

3.22.4. The adl_adEventSubscribe Function
This function allows the application to provide ADL with an event handler to be notified with A&D
service related events.

Prototype
s32 adl_adEventSubscribe (adl_adEventHdlr_f Handler);

Parameters

Handler:

Call-back function provided by the application. Please refer to next chapter for more
information.

Returned values
• A positive or null value on success:

 A&D event handle, to be used in further A&D API functions calls,

• A negative error value:

 ADL_RET_ERR_PARAM if the Handler parameter is invalid,

 ADL_RET_ERR_NO_MORE_HANDLES if the A&D event service has been subscribed more
than 128 times.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

Notes

In order to format or re-compact the A&D storage volume, the adl_adEventSubscribe function has
to be called before the adl_adFormat or the adl_adRecompact functions.

3.22.5. The adl_adEventHdlr_f Call-back Type
This call-back function has to be provided to ADL through the adl_adEventSubscribe interface, in
order to receive A&D related events.

Prototype
typedef void (*adl_adEventHdlr_f) (adl_adEvent_e Event,

 u32 Progress);

Parameters

Event:

Event is the received event identifier. The events (defined in the adl_adEvent_e type) are
described in the table below.

Event Meaning

ADL_AD_EVENT_FORMAT_INIT
The adl_adFormat function has been called by
an application (a format process has just been
required).

ADL_AD_EVENT_FORMAT_PROGRESS
The format process is on going. Several
"progress" events should be received until the
process is completed.

ADL_AD_EVENT_FORMAT_DONE
The format process is over. The A&D storage
area is now usable again. All cells have been
erased, and the whole storage place is available.

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 214

ADL User Guide for Open AT® OS 6.35

Event Meaning

ADL_AD_EVENT_RECOMPACT_INIT
The adl_adRecompact function has been called
by an application (a re-compaction process has
been required).

ADL_AD_EVENT_RECOMPACT_PROGRESS
The re-compaction process is on going. Several
"progress" events should be received until the
process is completed.

ADL_AD_EVENT_RECOMPACT_DONE
The re-compaction process is over: the A&D
storage area is now usable again. The space
previously used by deleted cells is now free.

ADL_AD_EVENT_INSTALL

The adl_adInstall function has been called
by an application (an install process has just
been required and the embedded module is
going to reset).

Progress:

On ADL_AD_EVENT_FORMAT_PROGRESS & ADL_AD_EVENT_RECOMPACT_PROGRESS events
reception, this parameter is the process progress ratio (considered as a percentage).

On ADL_AD_EVENT_FORMAT_DONE & ADL_AD_EVENT_RECOMPACT_DONE events reception, this
parameter is set to 100%.

Otherwise, this parameter is set to 0.

3.22.6. The adl_adEventUnsubscribe Function
This function allows the Open AT® application to unsubscribe from the A&D events notification.

Prototype
s32 adl_adEventUnsubscribe (s32 EventHandle);

Parameters

EventHandle:

Handle previously returned by the adl_adEventSubscribe function.

Returned values
• OK on success,

• ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

• ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been subscribed,

• ADL_RET_ERR_BAD_STATE if a format or re-compaction process is running with this event
handle.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.22.7. The adl_adWrite Function
This function writes data at the end of the given A&D cell.

Note: On unsubscribing an AD cell and then re-subscribing the same cell any '0xFF' characters stored in the
cell originally would be reassigned as free space.

Note: If it is required to append data to a cell from which the application was unsubscribed, it is strongly
recommended to recompact the memory as further attempts of appending data will result in an error -
22 (even though the resubscription is successful).

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 215

ADL User Guide for Open AT® OS 6.35

Prototype
s32 adl_adWrite (s32 CellHandle,

 u32 Size,
 void * Data);

Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Size:

Data buffer size in bytes.

Data:

Data buffer.

Returned values
• OK on success ;

• ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed ;

• ADL_RET_ERR_PARAM on parameter error ;

• ADL_RET_ERR_BAD_STATE if the cell is finalized ;

• ADL_AD_RET_ERR_OVERFLOW if the write operation exceeds the cell size.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.22.8. The adl_adInfo Function
This function provides information on the requested A&D cell.

Note: The A&D memory data cannot be read in RTE mode.

Prototype
s32 adl_adInfo (s32 CellHandle

 adl_adInfo_t * Info);

Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Info:

Information structure on requested cell, based on following type:

typedef struct
{
 u32 identifier; // identifier
 u32 size; // entry size
 void *data; // pointer to stored data

 u32 remaining; // remaining writable space unless finalized
 bool finalised; // TRUE if entry is finalized
}adl_adInfo_t;

Returned values
• OK on success,

• ADL_RET_ERR_PARAM on parameter error,

• ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed,

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 216

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_BAD_STATE if the required cell is a not finalized or of an undefined size.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.22.9. The adl_adFinalise Function
This function set the provided A&D cell in read-only (finalized) mode. The cell content cannot be
modified.

Note that it also sets the limits for a cell. For instance, if a cell of undefined size is subscribed, then all
A&D memory space is reserved for this cell.After writing data on this cell, it is important to finalise this
cell, which will then mark the boundaries for the cell, (fix its size) and allow other cell subscriptions (if
there is any cell of undefined size, which is not finalized, then it is not possible to subscribe to another
cell of undefined size).

Prototype
s32 adl_adFinalise (s32 CellHandle);

Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Returned values
• OK on success,

• ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed,

• ADL_RET_ERR_BAD_STATE if the cell was already finalized.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.22.10. The adl_adDelete Function
This function deletes the provided A&D cell. The used space will be available on next re-compaction
process.

Prototype
s32 adl_adDelete (s32 CellHandle);

Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Returned values
• OK on success,

• ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

• ADL_RET_ERR_BAD_STATE if the required cell is a not finalized or an undefined size

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

Note: Calling adl_adDelete will unsubscribe the allocated handle.

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 217

ADL User Guide for Open AT® OS 6.35

3.22.11. The adl_adInstall Function
This function installs the content of the requested cell, if it is a .DWL file. This file should be an Open
AT® application, an EEPROM configuration file, an XModem downloader binary file, or a Sierra
Wireless Firmware binary file.

Caution: This API resets the embedded module on success.

Prototype
s32 adl_adInstall (s32 CellHandle);

Parameters

CellHandle:

A&D cell handle returned by adl_adSubscribe function.

Returned values
• Embedded module resets on success. The parameter of the adl_main function is then set to

ADL_INIT_DOWNLOAD_SUCCESS, or ADL_INIT_DOWNLOAD_ERROR, according to the .DWL file
update success or not.

 Before the embedded module reset, all subscribed event handlers (if any) will receive the
 ADL_AD_EVENT_INSTALL event, in order to let them perform last operations.

• ADL_RET_ERR_BAD_STATE if the cell is not finalized,

• ADL_RET_ERR_UNKNOWN_HDL if the handle was not subscribed.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

Note: In RTE mode, calling this API will cause a message box display, prompting the user for installing the
desired A&D cell content or not (see A&D cell content install window).

Yes No

Figure 8. A&D cell content install window

If the user selects "No", the API will fail and return the ADL_AD_RET_ERROR code.
If the user selects "Yes", the cell content is installed, the embedded module resets, and the RTE
mode is automatically closed.

3.22.12. The adl_adRecompact Function
This function starts the re-compaction process, which will release the deleted cell spaces.

Caution: If some A&D cells are deleted, and the recompaction process is not performed regularly, the deleted
cell space will not be freed.

Prototype
s32 adl_adRecompact (s32 EventHandle);

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 218

ADL User Guide for Open AT® OS 6.35

Parameters

EventHandle:

Event handle previously returned by the adl_adEventSubscribe function. The associated
handler will receive the re-compaction process events sequence.

Returned values
• OK on success. Event handlers will receive the following event sequence:

 ADL_AD_EVENT_RECOMPACT_INIT just after the process is launched,

 ADL_AD_EVENT_RECOMPACT_PROGRESS several times, indicating the process progression,

 ADL_AD_EVENT_RECOMPACT_DONE when the process is completed.

• ADL_RET_ERR_BAD_STATE if a re-compaction or format process is running,

• ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

• ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been subscribed,

• ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the product.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

Note: It is strongly recommended after Recompact process to unsubscribe (and then re-subscribe) any
already subscribed cell.

3.22.13. The adl_adGetState Function
This function provides information structure on the A&D volume state.

Prototype
s32 adl_adGetState (adl_adState_t * State);

Parameters

State:

A&D volume information structure, based on the following type:

typedef struct
{
 u32 freemem; // Free space memory size

 u32 deletedmem; // Deleted memory size

 u32 totalmem; // Total memory
 u16 numobjects; // Number of allocated objects

 u16 numdeleted; // Number of deleted objects
 u8 pad; // Not used

} adl_adState_t;

Returned values
• OK on success,

• ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the product

• ADL_AD_RET_ERR_NEED_RECOMPACT if a power down or a reset occurred when a re-
compaction process was running. The application has to launch the adl_adRecompact
function before using any other A&D service function.

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 219

ADL User Guide for Open AT® OS 6.35

3.22.14. The adl_adGetCellList Function
This function provides the list of the allocated cells.

Prototype
s32 adl_adGetCellList (wm_lst_t * CellList);

Parameters

CellList:

Return allocated cell list. The list elements are the cell identifiers and are based on u32 type.

The list is ordered by cell ID values, from the lowest to the highest.

Caution: The list memory is allocated by the adl_adGetCellList function and has to be released with the
wm_lstDestroy function by the application.

Returned values
• OK on success ;

• ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the product ;

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

Note: The number of elements in the returned list are limited by ADL_AD_MAX_CELL_RETRIEVE;

Note: If the number of cell IDs to get is superior to ADL_AD_MAX_CELL_RETRIEVE, use adl_adFindInit
and adl_adFindNext functions.

3.22.15. The adl_adFormat Function
This function re-initializes the A&D storage volume. It is only allowed if there is no subscribed cells, or
if there are no running re-compaction or format process.

Caution: All the A&D storage cells will be erased by this operation. The A&D storage format process can take
several seconds.

Prototype
s32 adl_adFormat (s32 EventHandle);

Parameters

EventHandle:

Event handle previously returned by the adl_adEventSubscribe function. The associated
handler will receive the format process events sequence

Returned values
• OK on success. Event handlers will receive the following event sequence:

 ADL_AD_EVENT_FORMAT_INIT just after the process is launched,

 ADL_AD_EVENT_FORMAT_PROGRESS several times, indicating the process progression,

 ADL_AD_EVENT_FORMAT_DONE once the process is performed,

• ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown,

• ADL_RET_ERR_NOT_SUBSCRIBED if no A&D event handler has been subscribed,

• ADL_AD_RET_ERR_NOT_AVAILABLE if there is no A&D space available on the product,

• ADL_RET_ERR_BAD_STATE if there is at least one subscribed cell, or if a re-compaction or
format process is running.

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 220

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.22.16. The adl_adFindInit Function
This function initializes a cell search between the two provided cell identifiers.

Prototype
s32 adl_adFindInit (u32 MinCellId,
 u32 MaxCellId,
 adl_adBrowse_t* BrowseInfo);

Parameters

MinCellId:

Minimum cell value for wanted cell identifiers.

MaxCellId:

Maximum cell value for wanted cell identifiers.

BrowseInfo:

Returned browse information, to be used with the adl_adFindNext function. Based on the
following type:

typedef struct
{
 u32 hidden[4]; // Fields of Cell browse info have not to be

 modified by the application
}adl_adBrowse_t;

Returned values
• OK on success.

• ADL_AD_RET_ERR_NOT_AVAILABLE if A&D space is not available

• ADL_RET_ERR_PARAM on parameter error.

3.22.17. The adl_adFindNext Function
This function performs a search on cell ID with the browse information provided by the
adl_adFindInit function.

Prototype
s32 adl_adFindNext (adl_adBrowse_t* BrowseInfo,
 u32* CellId);

Parameters

BrowseInfo:

Browse information.

CellId:

ID of cell found.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM on parameter error.

• ADL_AD_RET_ERR_REACHED_END no more elements to enumerate.

API
Application & Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 221

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler.

3.22.18. The adl_adGetInstallResult Function
The adl_adGetInstallResult interface enables the user to retrieve the result of
adl_adInstall.

Prototype
s32 adl_adGetInstallResult (void);

Returned values
• OK on success

• ADL_AD_RET_ERR_UPDATE_FAILURE if last update failed

• ADL_AD_RET_ERR_RECOVERY_DONE if last update succeeded, but the OS was unstable. The
system had to do a recovery

• ADL_AD_RET_ERR_OAT_DEACTIVATED if the Open AT® application was deactivated at start-up
because of reset loops

3.22.19. The adl_factoryReadCell Function
The adl_factoryReadCell interface enables the user to read cell on the factory volume and get
the size of cell.

Prototype
s32 adl_factoryReadCell (adl_factoryCell_e Cell,
 ascii* data);

Parameters

Cell:

Cell to be read, based on the following information:

typedef enum
{
 ADL_FACTORY_CELL_SERIAL,
 ADL_FACTORY_CELL_TX,
 ADL_FACTORY_CELL_RX,
} adl_factoryCell_e;

data:

String read. This is an optional parameter, it could be set to NULL just to retrieve size of cell.

Returned values
• The size of the Cell on success.

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_BAD_STATE if the factory volume is not accessible

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler.

API
AT/FCM IO Ports Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 222

ADL User Guide for Open AT® OS 6.35

3.23. AT/FCM IO Ports Service
ADL applications may use this service to be informed about the product AT/FCM IO ports states.

3.23.1. Required Header File
The header file for the AT/FCM IO Ports service is:

adl_port.h

3.23.2. AT/FCM IO Ports
AT Commands and FCM services can be used to send and receive AT Commands or data blocks, to
or from one of the product ports. These ports are linked either to product physical serial ports (as
UART1 / UART2 / USB ports), or virtual ports (as Open AT® virtual AT port, GSM CSD call data port,
GPRS session data port or Bluetooth virtual ports).

AT/FCM IO Ports are identified by the type below:

typedef enum
{
 ADL_PORT_NONE,
 ADL_PORT_UART1,
 ADL_PORT_UART2,
 ADL_PORT_USB,
 ADL_PORT_UART1_VIRTUAL_BASE = 0x10,
 ADL_PORT_UART2_VIRTUAL_BASE = 0x20,
 ADL_PORT_USB_VIRTUAL_BASE = 0x30,
 ADL_PORT_BLUETOOTH_VIRTUAL_BASE = 0x40,
 ADL_PORT_GSM_BASE = 0x50,
 ADL_PORT_GPRS_BASE = 0x60,
 ADL_PORT_RDMS_VIRTUAL_BASE = 0x70,
 ADL_PORT_RDMS_SERVER_VIRTUAL_BASE
 ADL_PORT_OPEN_AT_VIRTUAL_BASE = 0x80
} adl_port_e;

The available ports are described hereafter:

• ADL_PORT_NONE
Not usable

• ADL_PORT_UART1
Product physical UART 1

 Please refer to the AT+WMFM command documentation to know how to open/close this
 product port.

• ADL_PORT_UART2
Product physical UART 2

 Please refer to the AT+WMFM command documentation to know how to open/close this
 product port.
• ADL_PORT_USB

Product physical USB port.

• ADL_PORT_UART1_VIRTUAL_BASE
Base ID for 27.010 protocol logical channels on UART 1

API
AT/FCM IO Ports Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 223

ADL User Guide for Open AT® OS 6.35

Please refer to AT+CMUX command & 27.010 protocol documentation to know how to
open/close such a logical channel.

• ADL_PORT_UART2_VIRTUAL_BASE
Base ID for 27.010 protocol logical channels on UART 2
Please refer to AT+CMUX command & 27.010 protocol documentation to know how to
open/close such a logical channel.

• ADL_PORT_USB_VIRTUAL_BASE
Base ID for 27.010 protocol logical channels on USB link (reserved for future products)

• ADL_PORT_BLUETOOTH_VIRTUAL_BASE
Base ID for connected Bluetooth peripheral virtual port.
ONLY USABLE WITH THE FCM SERVICE

 Please refer to the Bluetooth AT commands documentation to know how to connect, and how
 to open/close such a virtual port.

• ADL_PORT_GSM_BASE
Virtual Port ID for GSM CSD data call flow
ONLY USABLE WITH THE FCM SERVICE

 Please note that this port will be considered as always available (no OPEN/CLOSE events for
 this port; adl_portIsAvailable function will always return TRUE)

• ADL_PORT_GPRS_BASE
Virtual Port ID for GPRS data session flow
ONLY USABLE WITH THE FCM SERVICE

 Please note that this port will be considered as always available (no OPEN/CLOSE events for
 this port; adl_portIsAvailable function will always return TRUE) if the GPRS feature is
 supported on the current product.

• ADL_PORT_RDMS_VIRTUAL BASE

 Virtual Port ID for IDS service supporting the flow of internal messages (only internal use)

• ADL_PORT_RDMS_SERVER_VIRTUAL_BASE
Virtual Port ID for IDS service supporting the flow of messages exchanged with the server
(only internal use).

• ADL_PORT_OPEN_AT_VIRTUAL_BASE
Base ID for AT commands contexts dedicated to Open AT® applications
ONLY USABLE WITH THE AT COMMANDS SERVICE
This port is always available, and is opened immediately at the product’s start-up. This is the
default port where are executed the AT commands sent by the AT Command service.

• ADL_PORT_RDMS_VIRTUAL BASE

 Virtual Port ID for IDS service supporting the flow of internal messages (only internal use)

• ADL_PORT_RDMS_SERVER_VIRTUAL_BASE
Virtual Port ID for IDS service supporting the flow of messages exchanged with the server
(only internal use).

3.23.3. Ports Test Macros
Some ports & events test macros are provided. These macros are defined hereafter.

• ADL_PORT_IS_A_SIGNAL_CHANGE_EVENT(_e)
Returns TRUE if the event "_e" is a signal change one, FALSE otherwise.

• ADL_PORT_GET_PHYSICAL_BASE(_port)
Extracts the physical port identifier part of the provided "_port".
E.g. if used on a 27.010 virtual port identifier based on the UART 2, this macro will return
ADL_PORT_UART2.

• ADL_PORT_IS_A_PHYSICAL_PORT(_port)
Returns TRUE if the provided "_port" is a physical output based one (E.g. UART1, UART2 or
27.010 logical ports), FALSE otherwise.

API
AT/FCM IO Ports Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 224

ADL User Guide for Open AT® OS 6.35

• ADL_PORT_IS_A_PHYSICAL_OR_BT_PORT(_port)
Returns TRUE is the provided "_port" is a physical output or a bluetooth based one, FALSE
otherwise.

• ADL_PORT_IS_AN_FCM_PORT(_port)
Returns TRUE if the provided "_port" is able to handle the FCM service (i.e. all ports except
the Open AT® virtual base ones), FALSE otherwise.

• ADL_PORT_IS_AN_AT_PORT(_port)
Returns TRUE if the provided "_port" is able to handle AT commands services (i.e. all ports
except the GSM & GPRS virtual base ones), FALSE otherwise.

3.23.4. The adl_portSubscribe Function
This function subscribes to the AT/FCM IO Ports service in order to receive specific ports related
events.

Prototype
s8 adl_portSubscribe (adl_portHdlr_f PortHandler);

Parameters

PortHandler:

Port related events handler defined using the following type:

typedef void (*adl_portHdlr_f) (adl_portEvent_e Event,
 adl_port_e Port,
 u8 State);

The events are identified by the type below:

typedef enum
{
 ADL_PORT_EVENT_OPENED,
 ADL_PORT_EVENT_CLOSED,
 ADL_PORT_EVENT_RTS_STATE_CHANGE,
 ADL_PORT_EVENT_DTR_STATE_CHANGE
} adl_portEvent_e;

The events are described below:

 ADL_PORT_EVENT_OPENED

Informs the ADL application that the specified Port is now opened. According
to its type, it may now be used with either AT Commands service or FCM
service.

 ADL_PORT_EVENT_CLOSED

Informs the ADL application that the specified Port is now closed. It is not
usable anymore with neither AT Commands service nor FCM service.

 ADL_PORT_EVENT_RTS_STATE_CHANGE

Informs the ADL application that the specified Port RTS signal state has
changed to the new State value (0/1). This event will be received by all
subscribers which have started a polling process on the specified Port RTS
signal with the adl_portStartSignalPolling function.
The handler Port parameter uses the adl_port_e type described above.
The handler State parameter is set only for the
ADL_PORT_EVENT_XXX_STATE_CHANGE events.

API
AT/FCM IO Ports Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 225

ADL User Guide for Open AT® OS 6.35

 ADL_PORT_EVENT_DTR_STATE_CHANGE

Informs the ADL application that the specified Port DTR signal state has
changed to the new State value (0/1). This event will be received by all
subscribers which have started a polling process on the specified Port DTR
signal with the adl_portStartSignalPolling function.

Returned values
• A positive or null handle on success ;

• ADL_RET_ERR_PARAM on parameter error,

• ADL_RET_ERR_NO_MORE_HANDLES if there is no more free handles (the service is able to
process up 127 subscriptions).

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.23.5. The adl_portUnsubscribe Function
This function unsubscribes from the AT/FCM IO Ports service. The related handler will not receive
ports related events any more. If a signal polling process was started only for this handle, it will be
automaticaly stopped.

Prototype
s8 adl_portUnsubscribe (u8 Handle);

Parameters

Handle:

Handle previously returned by the adl_portSubscribe function.

Returned values
• OK on success;

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown ;

• ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.23.6. The adl_portIsAvailable Function
This function checks if the required port is currently opened or not.

Prototype
bool adl_portIsAvailable (adl_port_e Port);

Parameters

Port:

Port from which to require the current state.

Returned values
• TRUE if the port is currently opened;

• FALSE if the port is closed, or if it does not exists.

Note: The function will always return TRUE on the ADL_PORT_GSM_BASE port ;

Note: The function will always return TRUE on the ADL_PORT_GPRS_BASE port if the GPRS feature is
enabled (always FALSE otherwise).

API
AT/FCM IO Ports Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 226

ADL User Guide for Open AT® OS 6.35

3.23.7. The adl_portGetSignalState Function
This function returns the required port signal state.

Prototype
s8 adl_portGetSignalState (adl_port_e Port,

 adl_portSignal_e Signal);

Parameters

Port:

Port from which to require the current signal state. Only physical output related ports
(UARTX & USB ones, used as physical ports, or with the 27.010 protocol) may be used with
this function.

Signal:

Signal from which to query the current state, based on the following type:

typedef enum
{
 ADL_PORT_SIGNAL_RTS,
 ADL_PORT_SIGNAL_DTR,
 ADL_PORT_SIGNAL_LAST
} adl_portSignal_e;

Signals are detailed below:

 ADL_PORT_SIGNAL_RTS

Required port RTS input signal: physical pin in case of a physical port
(UARTX), emulated logical signal in case of a 27.010 logical port.

 ADL_PORT_SIGNAL_DTR

Required port DTR input signal: physical pin in case of a physical port
(UARTX), emulated logical signal in case of a 27.010 logical port.

Returned values
• The signal state (0/1) on success ;

• ADL_RET_ERR_PARAM on parameter error;

• ADL_RET_ERR_BAD_STATE if the required port is not opened.

3.23.8. The adl_portStartSignalPolling Function
This function starts a polling process on a required port signal for the provided subscribed handle.

Only one polling process can run at a time. A polling process is defined on one port, for one or several
of this port’s signals.

It means that this function may be called several times on the same port in order to monitor several
signals; the polling time interval is set up by the first function call (polling tme parameters are ignored
or further calls). If the function is called several times on the same port & signal, additional calls will be
ignored.

Once a polling process is started on a port’s signal, this one is monitored: each time this signal state
changes, a ADL_PORT_EVENT_XXX_STATE_CHANGE event is sent to all the handlers which have
required a polling process on it.

Whatever is the number of requested signals and subscribers to this port polling process, a single
cyclic timer will be internally used for this one.

API
AT/FCM IO Ports Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 227

ADL User Guide for Open AT® OS 6.35

Prototype
s8 adl_portStartSignalPolling (u8 Handle,

 adl_port_e Port,
 adl_portSignal_e Signal,
 u8 PollingTimerType,
 u32 PollingTimerValue);

Parameters

Handle:

Handle previously returned by the adl_portSubscribe function.

Port:

Port on which to run the polling process. Only physical output related ports (UARTX & USB
ones, used as physical ports, or with the 27.010 protocol) may be used with this function.

Signal:

Signal to monitor while the polling process. See the adl_portGetSignalState function for
information about the available signals.

PollingTimerType:

PollingTimerValue parameter value’s unit. The allowed values are defined below:

Timer type Timer unit

ADL_TMR_TYPE_100MS PollingTimerValue is in 100 ms steps

ADL_TMR_TYPE_TICK PollingTimerValue is in 18.5 ms tick steps

This parameter is ignored on additional function calls on the same port.

PollingTimerValue:

Polling time interval (uses the PollingTimerType parameter’s value unit).

This parameter is ignored on additional function calls on the same port.

Returned values
• OK on success;

• ADL_RET_ERR_PARAM on parameter error ;

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown ;

• ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed ;

• ADL_RET_ERR_BAD_STATE if the required port is not opened ;

• ADL_RET_ERR_ALREADY_SUBSCRIBED if a polling process is already running on another port.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
AT/FCM IO Ports Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 228

ADL User Guide for Open AT® OS 6.35

3.23.9. The adl_portStopSignalPolling Function
This function stops a running polling process on a required port signal for the provided subscribed
handle.

The associated handler will not receive the ADL_PORT_EVENT_XXX_STATE_CHANGE events related to
this signal port anymore.

The internal polling process cyclic timer will be stopped as soon as the last subscriber to the current
running polling process has call this function.

Prototype
s8 adl_portStopSignalPolling (u8 Handle,

 adl_port_e Port,
 adl_portSignal_e Signal);

Parameters

Handle:

Handle previously returned by the adl_portSubscribe function.

Port:

Port on which the polling process to stop is running.

Signal:

Signal on which the polling process to stop is running.

Returned values
• OK on success ;

• ADL_RET_ERR_PARAM on parameter error ;

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown ;

• ADL_RET_ERR_NOT_SUBSCRIBED if the service is not subscribed ;

• ADL_RET_ERR_BAD_STATE if the required port is not opened ;

• ADL_RET_ERR_BAD_HDL if there is no running polling process for this Handle / Port / Signal
combination.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
RTC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 229

ADL User Guide for Open AT® OS 6.35

3.24. RTC Service
ADL provides a RTC service to access to the embedded module's inner RTC, and to process time
related data.

The defined operations are:

• A adl_rtcGetTime

• A adl_rtcSetTime

• A adl_rtcConvertTime

• A adl_rtcDiffTime

3.24.1. Required Header File
The header file for the RTC functions is:

adl_rtc.h

3.24.2. RTC service Types

3.24.2.1. The adl_rtcTime_t Structure

Holds a RTC time:

typedef struct
{
 u32 Pad0 // Not used
 u32 Pad1 // Not used
 u16 Year; // Year (Four digits)
 u8 Month; // Month (1-12)

 u8 Day; // Day of the Month (1-31)

 u8 WeekDay; // Day of the Week (1-7)
 u8 Hour; // Hour (0-23)
 u8 Minute; // Minute (0-59)
 u8 Second; // Second (0-59)
 u32 SecondFracPart; // Second fractional part

 u32 Pad2; // Not used
} adl_rtcTime_t;

Second fractional part (0-MAX) The MAX value is available from the registry field
rtc_PreScalerMaxValue. See panel "Capabilities registry informations".

API
RTC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 230

ADL User Guide for Open AT® OS 6.35

3.24.2.2. The adl_rtcTimeStamp_t Structure

Used to perform arithmetic operations on time data:

typedef struct
{
 u32 TimeStamp; // Seconds elapsed since 1st January 1970
 u32 SecondFracPart; // Second fractional part
} adl_rtcTimeStamp_t;

Second fractional part (0-MAX) The MAX value is available from the registry field
rtc_PreScalerMaxValue. See panel "Capabilities registry informations".

3.24.2.3. Constants

RTC service constants are defined below:

Constant Value Use

ADL_RTC_DAY_SECONDS 24 * ADL_RTC_HOUR_SECONDS Seconds count in a day

ADL_RTC_HOUR_SECONDS 60 * ADL_RTC_MINUTE_SECONDS Seconds count in an hour

ADL_RTC_MINUTE_SECONDS 60 Seconds count in a minute

ADL_RTC_MS_US 1000 µseconds count in a millisecond

3.24.2.4. Macros

RTC service macros are defined below:

Macro Parameter Use

ADL_RTC_SECOND_FRACPART_STEP adl_rtcGetSecondFracPartStep structure
Second fractional
part step value (in
µs) extraction macro

ADL_RTC_GET_TIMESTAMP_DAYS(_t) (_t.TimeStamp / ADL_RTC_DAY_SECONDS)
structure

Days number
extraction macro.

ADL_RTC_GET_TIMESTAMP_HOURS(_t)
((_t.TimeStamp %
ADL_RTC_DAY_SECONDS) /
ADL_RTC_HOUR_SECONDS) structure

Hours number
extraction macro

ADL_RTC_GET_TIMESTAMP_MINUTES(_t)
((_t.TimeStamp %
ADL_RTC_HOUR_SECONDS) /
ADL_RTC_MINUTE_SECONDS) structure

Minutes number
extraction macro

ADL_RTC_GET_TIMESTAMP_SECONDS(_t
)

(_t.TimeStamp %
ADL_RTC_MINUTE_SECONDS) structure

Seconds number
extraction macro

ADL_RTC_GET_TIMESTAMP_MS(_t)
(((u32)(_t.SecondFracPart *
ADL_RTC_SECOND_FRACPART_STEP)) /
ADL_RTC_MS_US) structure

Milliseconds number
extraction macro.

API
RTC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 231

ADL User Guide for Open AT® OS 6.35

Macro Parameter Use

ADL_RTC_GET_TIMESTAMP_US(_t)

(((u32)(_t.SecondFracPart *
ADL_RTC_SECOND_FRACPART_STEP)) %
ADL_RTC_MS_US) structure

Note: This macro returns the number of
microseconds within the
millisecond. For example, if the
part of the timestamp is 12345 =
0.3767395 sec, the macro returns
739 or 740.

µseconds number
extraction macro

3.24.3. Enumerations

3.24.3.1. The adl_rtcConvert_e Type

This structure contains the available conversion modes.

Code
typedef enum
{
 ADL_RTC_CONVERT_TO_TIMESTAMP,
 ADL_RTC_CONVERT_FROM_TIMESTAMP
} adl_rtcConvert_e;

Description

ADL_RTC_CONVERT_TO_TIMESTAMP: Conversion mode to TimeStamp.

ADL_RTC_CONVERT_FROM_TIMESTAMP: Conversion mode from TimeStamp.

3.24.4. The adl_rtcGetSecondFracPartStep Function
This function retrieves the second fractional part step (in µs), reading the rtc_PreScalerMaxValue
register field.

Prototype
float adl_rtcGetSecondFracPartStep (void);

Returned values
• The second fractional part step of the embedded module, in µs.

API
RTC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 232

ADL User Guide for Open AT® OS 6.35

3.24.5. The adl_rtcGetTime Function
This function retrieves the current RTC time into an adl_rtcTime_t structure.

Prototype
s32 adl_rtcGetTime (adl_rtcTime_t * TimeStructure);

Parameters

TimeStructure:

RTC structure where to copy current time.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler

3.24.6. The adl_rtcSetTime Function
This function sets a RTC time from a adl_rtcTime_t structure.

Prototype
s32 adl_rtcSetTime (adl_rtcTime_t * TimeStructure);

Parameters

TimeStructure:

RTC structure where to get current time.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler

Note: The input parameter cannot be a constant since it is modified by the API

Note: When setting the RTC time SecondFracPart and WeekDay field are ignored.

3.24.7. The adl_rtcConvertTime Function
This function is able to convert RTC time structure to timestamp structure, and timestamp structure to
RTC time structure thanks to a third agument precising the way of conversion.

Prototype
s32 adl_rtcConvertTime (adl_rtcTime_t* TimeStructure,

 adl_rtcTimeStamp_t* TimeStamp,
 adl_rtcConvert_e Conversion);

Parameters

TimeStructure:

RTC structure where to get/set current time

TimeStamp:

Timestamp structure where to get/set current time

API
RTC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 233

ADL User Guide for Open AT® OS 6.35

Conversion:

Conversion way:

 ADL_RTC_CONVERT_TO_TIMESTAMP

 ADL_RTC_CONVERT_FROM_TIMESTAMP

Returned values
• OK on success,

• ERROR if conversion failed (internal error),

• ADL_RET_ERR_PARAM on parameter error.

3.24.8. The adl_rtcDiffTime Function
This function reckons the difference between two timestamps.

Prototype
s32 adl_rtcDiffTime (adl_rtcTimeStamp_t * TimeStamp1,

 adl_rtcTimeStamp_t * TimeStamp2,
 adl_rtcTimeStamp_t * Result);

Parameters

TimeStamp1:

First timestamp to compare

TimeStamp2:

Second timestamp to compare

Result:

Reckoned time difference

Returned values
• 1 if TimeStamp1 is greater than TimeStamp2,

• -1 if TimeStamp2 is greater than TimeStamp1,

• 0 if the provided TimeStamps are the same,

• ADL_RET_ERR_PARAM on parameter error.

3.24.9. Capabilities
ADL provides informations to get the RTC Second Frac Part capabilities.

The following entry is defined in the registry:

Registry entry Type Description

rtc_PreScalerMaxValue INTEGER 0: No second fractional part
xxx: Second fractional part resolution

API
RTC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 234

ADL User Guide for Open AT® OS 6.35

3.24.10. Example
This example demonstrates how to use the RTC service in a nominal case (error cases are not
handled) with a embedded module.

Complete examples using the RTC service are also available on the SDK (generic Download library
sample).

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Local variables
 adl_rtcTime_t Time1, Time2;
 adl_rtcTimeStamp_t Stamp1, Stamp2, DiffStamp;
 s32 Way;

 // Get time
 adl_rtcGetTime (&Time1);
 adl_rtcGetTime (&Time2);

 // Convert to time stamps
 adl_rtcConvertTime (&Time1, &Stamp1, ADL_RTC_CONVERT_TO_TIMESTAMP);
 adl_rtcConvertTime (&Time2, &Stamp2, ADL_RTC_CONVERT_TO_TIMESTAMP);

 // Reckon time difference
 Way = adl_rtcDiffTime (&Stamp1, &Stamp2, &DiffStamp);

 //Convert the time difference from time stamps
 adl_rtcConvertTime (&Diff, &DiffStamp, ADL_RTC_CONVERT_FROM_TIMESTAMP);

 //Set back the initial time
 adl_rtcSetTime (&Time1);
}

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 235

ADL User Guide for Open AT® OS 6.35

3.25. IRQ Service
The ADL IRQ service allows interrupt handlers to be defined.

These handlers are usable with other services (External Interrupt Pins, Audio) to monitor specific
interrupt sources.

Interrupt handlers are running in specific execution contexts of the application. Please refer to the
Execution Context Service for more information.

The defined operations are:

• Subscription functions adl_irqSubscribe & adl_irqSubscribeExt to define interrupt
handlers

• Configuration functions adl_irqSetConfig & adl_irqGetConfig to handle interrupt
handlers configuration

• An Unsubscription function adl_irqUnsubscribe to remove an IRQ handler definition

• A Get Capabilities function adl_irqGetCapabilities to retrieve the IRQ service
capabilities

Note: The Real Time Enhancement feature has to be enabled on the embedded module in order to make
this service available.

Note: The Real Time Enhancement feature state can be read thanks to the AT+WCFM=5 command
response value: this feature state is represented by the bit 4 (00000010 in hexadecimal format)

Note: Please contact your Sierra Wireless distributor for more information on how to enable this feature on
the embedded module.

3.25.1. Required Header File
The header file for the IRQ functions is:

adl_irq.h

3.25.2. The adl_irqID_e Type
This type defines the interrupt sources that the service is able to monitor.

typedef enum
{
 ADL_IRQ_ID_AUDIO_RX_LISTEN,
 ADL_IRQ_ID_AUDIO_TX_LISTEN,
 ADL_IRQ_ID_AUDIO_RX_PLAY,
 ADL_IRQ_ID_AUDIO_TX_PLAY,
 ADL_IRQ_ID_EXTINT,
 ADL_IRQ_ID_TIMER,
 ADL_IRQ_ID_EVENT_CAPTURE
 ADL_IRQ_ID_EVENT_DETECTION
 ADL_IRQ_ID_SPI_EOT,
 ADL_IRQ_ID_I2C_EOT,
 ADL_IRQ_ID_LAST // Reserved for internal use
} adl_irqID_e;

The ADL_IRQ_ID_AUDIO_RX_LISTEN constant identifies RX path interrupt sources raised by the Audio
Stream Listen service. Please refer to the Audio Service for more information.

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 236

ADL User Guide for Open AT® OS 6.35

The ADL_IRQ_ID_AUDIO_TX_LISTEN constant identifies TX path interrupt sources raised by the Audio
Stream Listen service. Please refer to the Audio Service for more information.

The ADL_IRQ_ID_AUDIO_RX_PLAY constant identifies RX path interrupt sources raised by the Audio
Stream Play service. Please refer to the Audio Service for more information.

The ADL_IRQ_ID_AUDIO_TX_PLAY constant identifies TX path interrupt sources raised by the Audio
Stream Play. Please refer to the Audio Service for more information.

The ADL_IRQ_ID_EXTINT constant identifies interrupt sources raised by the External Interrupt Pin
source. For more information, please refer to the Extint ADL Service.

The ADL_IRQ_ID_TIMER constant identifies interrupt sources raised by the Timer Interrupts source.
For more information, please refer to the TCU Service.

The ADL_IRQ_ID_EVENT_CAPTURE constant identifies capture interrupt sources raised by the Timer
Interrupts source. For more information, please refer to the TCU Service.

The ADL_IRQ_ID_EVENT_DETECTION constant identifies detection interrupt sources raised by the
Timer Interrupt source. For more information, please refer to the TCU Service.

The ADL_IRQ_ID_SPI_EOT constant identifies SPI bus asynchronous end of transmission event.
Please refer to the Bus Service for more information.

The ADL_IRQ_ID_I2C_EOT constant identifies I2C bus asynchronous end of transmission event.
Please refer to the Bus Service for more information.

3.25.3. The adl_irqNotificationLevel_e Type
This type defines the notification level of a given interrupt handler.

For more information on specific high and low level handlers behavior, please refer to the Execution
Context Service description.

typedef enum
{
 ADL_IRQ_NOTIFY_LOW_LEVEL,
 ADL_IRQ_NOTIFY_HIGH_LEVEL,
 ADL_IRQ_NOTIFY_LAST // Reserved for internal use
} adl_irqNotificationLevel_e;

The ADL_IRQ_NOTIFY_LOW_LEVEL constant allows low level interrupt handlers to be defined.

The ADL_IRQ_NOTIFY_HIGH_LEVEL constant allows high level interrupt handlers to be defined.

3.25.4. The adl_irqPriorityLevel_e Type
This type defines the priority level of a given interrupt handler.

The lowest priority level is always 0.

The highest priority level shall be retrieved thanks to the adl_irqGetCapabilities function.

Please refer to each interrupt related service for more information about the available priority levels.

The priority level of a handler allows the notification order to be set in case of event conflict:

• A N priority level handler cannot be interrupted by other handlers with the same N priority
level, or with a lower N - X priority level.

• A N priority level handler can be interrupted by any other handlers with an higher N + X
priority level.

Note: Priority levels settings are significant only for low level interrupt handlers. There is no way to define
priority levels for high level interrupt handlers.

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 237

ADL User Guide for Open AT® OS 6.35

Note: Priority levels settings are only efficient with external interrupt service, allowing to configure the
several external interrupt pins priority. Other interrupt source services priorities are not configurable,
and always have the values listed in the table below.
Trying to modify the priority of such services will have no effect.

Service Events Priority value

Audio Service ADL_IRQ_ID_AUDIO_RX_LISTEN
ADL_IRQ_ID_AUDIO_TX_LISTEN
ADL_IRQ_ID_AUDIO_RX_PLAY
ADL_IRQ_ID_AUDIO_TX_PLAY

Max

BUS & TCU Services ADL_IRQ_ID_SPI_EOT
ADL_IRQ_ID_I2C_EOT
ADL_IRQ_ID_TIMER
ADL_IRQ_ID_EVENT_CAPTURE
ADL_IRQ_ID_EVENT_DETECTION

0

MAX value represents the maximum priority value.

3.25.5. The adl_irqEventData_t Structure
This structure supplies interrupt handlers with data related to the interrupt source.

typedef struct
{
 union
 {
 void * LowLevelOuput;
 void * HighLevelInput;
 } UserData;
 void * SourceData;
 u32 Instance
 void * Context
} adl_irqEventData_t;

3.25.5.1. The UserData Field

This field allows the application to exchange data between low level and high level interrupt handlers.

3.25.5.2. The Source Data Field

This field provides to handlers an interrupt source specific data. Please refer to each interrupt source
related service for more information about this field data structure.

When the interrupt occurs, the source related information structure is automatically provided by the
service to the low level interrupt handler, whatever if the ADL_IRQ_OPTION_AUTO_READ option is
enabled or not.

In an high level interrupt handler, this field will be set only if the ADL_IRQ_OPTION_AUTO_READ
option is enabled.

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 238

ADL User Guide for Open AT® OS 6.35

3.25.5.3. The Instance Field

Instance identifier of the interrupt event which has just occurred. Please refer to each interrupt source
related service for more information on the instance number use.

3.25.5.4. The Context Field

Application context, given back by ADL on event occurrence. This context was provided by the
application to the interrupt source related service, when using the operation which enables the
interrupt event occurrences.
If the interrupt source related service does not offer a way to define an application context, this
member will be set to NULL.
Please refer to each interrupt source related service for more information on the instance number use.

3.25.6. The adl_irqCapabilities_t Structure
This structure allows the application to retrieve information about the IRQ service capabilities.

typedef struct
{
 u8 PriorityLevelsCount,
 u8 Pad [3] // Reserved for internal use
 u8 InstancesCount [ADL_IRQ_ID_LAST]
} adl_irqCapabilities_t;

3.25.6.1. The PriorityLevelsCount Field

This field provides the priority levels count, usable to set an adl_irqPriorityLevel_e type value
(see adl_irqPriorityLevel_e)

Such a value shall use a range from 0 to PriorityLevelsCount–1.

3.25.6.2. The InstancesCount Field

This field provides the instances count, for each interrupt source identifier. Please refer to each
interrupt source related service for more information. If an instance count value is set to 0, the
corresponding interrupt related event is not supported on the current platform.

3.25.7. The adl_irqConfig_t Structure
This structure allows the application to configure interrupt handlers behaviour.

typedef struct
{
 adl_irqPriorityLevel_e PriorityLevel,
 bool Enable,
 u8 Pad[2] // Reserved for future use
 adl_irqOptions_e Options
} adl_irqConfig_t;

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 239

ADL User Guide for Open AT® OS 6.35

3.25.7.1. The PriorityLevel Field

This field defines the interrupt handler priority level. Please refer to the adl_irqPriorityLevel_e type
definition for more information.

Note: If different services are plugged on an interrupt handler, the priority value will be applied to all
services, if possible. If the priority value is not applicable for a given service, it will be ignored.

3.25.7.2. The Enable Field

This field defines if the interrupt handler is enabled or not.
If set to TRUE, the interrupt handler is enabled and any interrupt event on which is plugged this
handler will call the related function.
If set to FALSE, the interrupt handler is disabled: all interrupt events on which are plugged this handler
are masked, and will be delayed until the handler is enabled again.

Note: This is the default behaviour. If specified in the related service, the event shall be just delayed until the
handler is enabled again.

3.25.7.3. The Options Field

This field defines the interrupt handler notification options. A bitwise OR combination of the option
constants has to be used. Please refer to the adl_irqOptions_e type definition for more information.

3.25.8. The adl_irqOptions_e type
These options have to be used with a bit-wise OR in order to specify the interrupt handler behaviour.

typedef enum
{

 ADL_IRQ_OPTION_AUTO_READ =1UL,

 ADL_IRQ_OPTION_PRE_ACKNOWLEDGEMENT =0UL,

 ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT =0UL

} adl_ adl_irqOptions_e;

ADL_IRQ_OPTION_AUTO_READ: Automatic interrupt source information read.

When the interrupt occurs, the source related information structure is automatically read by the
service, and supplied to the low level interrupt handler.
When used with a high level interrupt handler, this option allows the application to get the source
related information structure read at interrupt time.

Note: This option has no effect with a low level interrupt handler (adl_irqEventData_t::SourceData
field will always be provided by the related interrupt service in this case).
ADL_IRQ_OPTION_PRE_ACKNOWLEDGEMENT: Interrupt source pre-acknowledgement.
ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT: Interrupt source post-acknowledgement.

3.25.9. The adl_irqHandler_f Type
This type has to be used by the application in order to provide ADL with an interrupt hander.

Prototype
typedef bool (*)adl_irqHandler_f (adl_irqID_e Source,

 adl_irqNotificationLevel_e NotificationLevel,
 adl_irqEventData_t * Data);

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 240

ADL User Guide for Open AT® OS 6.35

Parameter

Source:

Interrupt source identifier.

Please refer to adl_irqID_e type definition for more information.

NotificationLevel:

Interrupt handler current notification level.

Please refer to adl_irqNotificationLevel_e type definition for more information.

Data:

Interrupt handler input/output data field.

Please refer to adl_irqEventData_t type definition for more information.

Returned values
• Not relevant for high level interrupt handlers.

• For low level interrupt handlers

 TRUE: requires ADL to call the subscribed high level handler for this interrupt source.

 FALSE: requires ADL not to call any high level handler for this interrupt source.

Note: For low level interrupt handlers, 1 ms can be considered as a maximum latency time before being
notified with the interrupt source event.

3.25.10. The adl_irqSubscribe Function
This function allows the application to supply an interruption handler, to be used later in Interruption
source related service subscription.

Prototype
s32 adl_irqSubscribe (adl_irqHandler_f IrqHandler,

 adl_irqNotificationLevel_e NotificationLevel,
 adl_irqPriorityLevel_e PriorityLevel,
 adl_irqOptions_e Options);

Parameter

IrqHandler:

Interrupt handler supplied by the application.

NotificationLevel:

Interrupt handler notification level; allows the supplied handler to be identified as a low level
or a high level one.

PriorityLevel:

Interrupt handler priority level; Please refer to adl_irqPriorityLevel_e type definition for more
information.

Options:

Interrupt handler notification options.

A bitwise OR combination of the options constant has to be used. Please refer to the
adl_irqOptions_e type definition for more information.

Returned values
• Handle: A positive or null IRQ service handle on success, to be used in further IRQ & interrupt

source services function calls.

• ADL_RET_ERR_PARAM on a supplied parameter error.

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 241

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_NOT_SUBSCRIBED if a low or high level handler subscription is required while
the associated context call stack size was not supplied by the application.

Note: When subscribing to a high level handler, both Low Level & High Level Interrupt contexts stack sizes
have to be defined, since ADL internally uses the Low level context to process events.

• ADL_RET_ERR_BAD_STATE if the function is called in RTE mode.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

Note: The IRQ service will always return an error code in RTE mode (the service is not supported in this
mode). .Use of the IRQ service should be flagged in order to make an application working correctly in
RTE.

Note: This function is a shortcut to the adl_irqSubscribeExt one. Provided PriorityLevel and
Options parameters values will be used to fill the configuration structure. The
adl_irqConfig_t::Enable field will be set to TRUE by default.

3.25.11. The adl_irqSubscribeExt Function
This function allows the application to supply an interrupt handler, to be used later in Interrupt source
related service subscription.

Prototype
s32 adl_irqSubscribeExt (adl_irqHandler_f IrqHandler,
 adl_irqNotificationLevel_e NotificationLevel,

 adl_irqConfig_t* Config);

Parameter

IrqHandler:

Interruption handler supplied by the application.

Please refer to adl_irqHandler_f type definition for more information.

NotificationLevel:

Interruption handler notification level; allows the supplied handler to be identified as a low
level or a high level one.

Please refer to adl_irqNotificationLevel_e type definition for more information.

Config:

Interrupt handler configuration. Please refer to the adl_irqConfig_t structure definition for
more information.

Returned values
• Handle: A positive or null IRQ service handle on success, to be used in further IRQ &

interrupt source services function calls.

• ADL_RET_ERR_PARAM on a supplied parameter error.

• ADL_RET_ERR_NOT_SUBSCRIBED if a low or high level handler subscription is required while
the associated context call stack size was not supplied by the application.

Note: When subscribing to a high level handler, both Low Level & High Level Interrupt contexts stack sizes
have to be defined, since ADL internally uses the Low level context to process events.

• ADL_RET_ERR_BAD_STATE if the function is called in RTE mode.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 242

ADL User Guide for Open AT® OS 6.35

Note: The IRQ service will always return an error code in RTE mode (the service is not supported in this
mode). Use of the IRQ service should be flagged in order to make an application working correctly in
RTE.

3.25.12. The adl_irqUnsubscribe Function
This function allows the application to unsubscribe from the interrupt service. The associated handler
will no longer be notified of interrupt events.

Prototype
s32 adl_irqUnsubscribe (s32 IrqHandle);

Parameter

IrqHandle:

Interrupt service handle, previously returned by the adl_irqSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

• ADL_RET_ERR_BAD_STATE if the supplied handle is still used by an interrupt source service.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.25.13. The adl_irqSetConfig function
This function allows the application to update an interrupt handler's configuration.

Prototype
s32 adl_irqSetConfig (s32 IrqHandle,
 adl_irqConfig_t * Config);

Parameter

IrqHandle:

IRQ service handle, previously returned by the adl_irqSubscribe function.

Config:

Interrupt handler configuration structure. Please refer to the adl_irqConfig_t structure
definition for more information.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

• ADL_RET_ERR_PARAM on a supplied parameter error.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 243

ADL User Guide for Open AT® OS 6.35

3.25.14. The adl_irqGetConfig function
This function allows the application to retrieve an interrupt handler's configuration.

Prototype
s32 adl_irqGetConfig (s32 IrqHandle,
 adl_irqConfig_t * Config);

Parameter

IrqHandle:

IRQ service handle, previously returned by the adl_irqSubscribe function.

Config:

Interrupt handler configuration structure. Please refer to the adl_irqConfig_t structure
definition for more information.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

• ADL_RET_ERR_PARAM on a supplied parameter error.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.25.15. The adl_irqGetCapabilities Function
This function allows the application to retrieve information about the IRQ service capabilities on the
current platform.

Prototype
s32 adl_irqGetCapabilities (adl_irqCapabilities_t * Capabilities);

Parameter

Capabilities

IRQ service capabilities information structure. Please refer to the adl_irqCapabilities_t
structure definition for more information.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM on parameter error.

API
IRQ Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 244

ADL User Guide for Open AT® OS 6.35

3.25.16. Example
The code sample below illustrates a nominal use case of the ADL IRQ Service public interface (error
cases are not handled).

// Global variable: IRQ service handle
 s32 MyIRQHandle;

 // Interrupt handler
 bool MyIRQHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
 NotificationLevel, adl_irqEventData_t * Data)
 {
 // Interrupt process...
 // Notify the High Level handler, if any
 return TRUE;
 }

 // Somewhere in the application code, used as event handler
 void MyFunction1 (void)
 {
 // Local variables
 adl_irqCapabilities_t Caps;
 adl_irqConfig_t Config;

 // Get capabilities
 adl_irqGetCapabilities (&Caps);

 // Set configuration
 Config.PriorityLevel = Caps.PriorityLevelsCount - 1; // Highest priority
 Config.Enable = TRUE; // Interrupt handler enabled
 Config.Options = ADL_IRQ_OPTION_AUTO_READ; // Auto-read option
set

 // Subscribe to the IRQ service
 MyIRQHandle = adl_irqSubscribeExt (MyIRQHandler,
 ADL_IRQ_NOTIFY_LOW_LEVEL, &Config);

 // TODO: Interrupt source service subscription
 ...

 // Mask the interrupt
 adl_irqGetConfig (MyIRQHandle, &Config);
 Config.Enable = FALSE;
 adl_irqSetConfig (MyIRQHandle, &Config);

 ...

 // Unmask the interrupt
 adl_irqGetConfig (MyIRQHandle, &Config);
 Config.Enable = TRUE;
 adl_irqSetConfig (MyIRQHandle, &Config);

 ...

 // TODO: Interrupt source service un-subscription
 ...

 // Un-subscribe from the IRQ service
 adl_irqUnsubscribe (MyIRQHandle);
 }

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 245

ADL User Guide for Open AT® OS 6.35

3.26. TCU Service
ADL supplies Timer & Capture Unit Service interface to handle operations related to the embedded
module hardware timers & capture units.

 The defined operations are:

• A subscription function (adl_tcuSubscribe) to subscribe to the TCU service

• An unsubscription function (adl_tcuUnsubscribe) to unsubscribe from the TCU service

• Start & Stop functions (adl_tcuStart & adl_tcuStop) to control the TCU service event
generation

3.26.1. Required Header File
The header file for the TCU function is:

adl_tcu.h

3.26.2. Capabilities Registry Informations
ADL provides capabilities information about the TCU service, thanks to the registry service.

The following entries have been defined in the registry:

Registry entry Type Description

tcu_TmrSrvAvailable INTEGER Availability of the Accurate Timer service (boolean value)

tcu_CaptSrvAvailable INTEGER Availability of the Event Capture service (boolean value)

tcu_DetectSrvAvailable INTEGER Availability of the Event Detection service (boolean value)

tcu_EvPinsNb INTEGER Number of pins usable to monitor events with the Capture &
Detection services

tcu_TimersNb INTEGER Maximum number of Accurate Timer service instances which can
be running at the same time

tcu_TimerBoundaries DATA
Minimum & maximum duration values which can be used for the
Accurate Timer service, using the
adl_tcuTimerBoundaries_t structure format.

tcu_TimerTick DATA Timer resolution used by the Accurate Timer Service, using the
adl_tcuTimerDuration_t structure format.

tcu_EvDetectUnit INTEGER

Time granularity used (in µs steps) in the event detection service:
for inactivity period settings
(_adl_tcuEventDetectionSettings_t::Duration)
for last stable state duration information
(_adl_tcuEventDetectionInfo_t::LastStateDuration)

tcu_EvCaptUnit INTEGER
Time granularity used (in µs steps) in the event capture service,
for capture duration setting
(_adl_tcuEventCaptureSettings_t::Duration)

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 246

ADL User Guide for Open AT® OS 6.35

3.26.3. Data Structures

3.26.3.1. The adl_tcuEventCaptureSettings_t Structure

TCU configuration structure, when the ADL_TCU_EVENT_CAPTURE service is used.

typedef struct
{

u16 CapturePinID,
adl_tcuEventType_e EventType,
u32 Duration,
u32* EventCounter

} adl_tcuEventCaptureSettings_t;

Fields

CapturePinID:

Identifier of the pin on which the service has to monitor events.Please refer to the PTS for
more information. The allowed values range is from 0 to the value returned by the
tcu_EvPinsNb capability - 1.

EventType:

Event capture type, using one of the adl_tcuEventType_e type values.

Duration:

Duration of the capture period (in the unit provided by the tcu_EvCaptUnit capability).
This duration is used only if the adl_tcuEventCaptureSettings_t::EventCounter
address is set to NULL, otherwise it will be ignored. When the parameter is used, the related
IRQ service handlers are called on each duration expiration, indicating to the application how
many events have occurred since the previous handler call.

Note: When the Event Capture is configured with a period duration greater than 0, an Accurate Timer
resource is internally used to handle the service.

See also adl_tcuTimerDuration_t description, for more information about the
boundaries and the time resolution of a Timer resource.

EventCounter:

Address of a 32 bits variable provided by the application, where the events counter value
has to be stored. If this address is provided, no interrupt events will be generated, but the
event counter value will be incremented each time a new event is detected. Please note that
in this case, none of IRQ service handles provided to the adl_tcuSubscribe function will
be used (parameters values will be ignored). If this address is set to NULL, the service will
regularly generate events, on the time base defined by the
adl_tcuEventCaptureSettings_t::Duration parameter.

Note: The provided variable address has to be accessible from the Firmware until the service is
unsubscribed. This means that the variable has to be either a global/static one, or an allocated heap
buffer.

If provided, the event counter content is reset by the TCU service at each TCU service
starting (including restarting) and is incremented while changes occur on the selected
capture pin.

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 247

ADL User Guide for Open AT® OS 6.35

3.26.3.2. The adl_tcuEventDetectionInfo_t Structure

This structure contains the information provided to event handlers when
ADL_IRQ_ID_EVENT_DETECTION events are generated, following a ADL_TCU_EVENT_DETECTION
service subscription.

typedef struct
{
 u32 LastStateDuration,

adl_tcuEventType_e EventType
} adl_tcuEventDetectionInfo_t;

Fields

LastStateDuration:

Duration (in the unit provided by the tcu_EvDetectUnit capability) of the last stable state
of the monitored signal, before the handler notification occured.

EventType:

Type of the event which has caused the notification. If the value is positive or null, it
represents the detected event type, using the adl_tcuEventType_e enumeration type. If
the value is ADL_TCU_EVENT_TYPE_NONE, it means that no event has been detected since
the last handler notification when the timeout programed thanks to the
adl_tcuEventDetectionSettings_t::Duration parameter has elapsed.

3.26.3.3. The adl_tcuEventDetectionSettings_t Structure

TCU configuration structure, when the ADL_TCU_EVENT_DETECTION service is used.

typedef struct
{

u16 DetectionPinID,
adl_tcuEventType_e EventType,
u32 Duration

} adl_tcuEventDetectionSettings_t;

Fields

DetectionPinID

Identifier of the pin on which the service has to monitor events. Please refer to the Product
Technical Specification for more information. The allowed values range is from 0 to the value
returned by the tcu_EvPinsNb capability - 1.

EventType

Event detection type, using one of the adl_tcuEventType_e type values.

Duration

Optional inactivity detection period duration, used to cause an handler notification if no event
occurred for a given time slot. If this value is set to 0, the inactivity detection will be disabled.
If this value is greater than 0, it is the inactivity detection period duration (in the unit provided
by the tcu_EvDetectUnit capability): if no event has occurred since the last notification
(or since the adl_tcuStart function call) when the duration expires, the associated
handlers will be called to warn the application about this inactivity.

Note: When the Event Detection is configured with an inactivity period duration greater than 0, an Accurate
Timer resource is internally used to handle the service.

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 248

ADL User Guide for Open AT® OS 6.35

See also adl_tcuTimerDuration_t description, for more information about the boundaries and
the time resolution of a Timer resource.

3.26.3.4. The adl_tcuTimerBoundaries_t Structure

This structure is usable to retrieve the TCU capabilities about the Accurate Timer service duration
boundaries.

typedef struct
{

adl_tcuTimerDuration_t MinDuration,
adl_tcuTimerDuration_t MaxDuration

} adl_tcuTimerBoundaries_t;

Fields

MinDuration

Minimum timer duration, using the adl_tcuTimerDuration_t structure.

MaxDuration

Maximum timer duration, using the adl_tcuTimerDuration_t structure.

3.26.3.5. The adl_tcuTimerDuration_t Structure

Configuration structure usable to represent a timer duration.

Note: Valid boundaries for a Timer duration should be retrieved from the tcu_TimerBoundaries
capability.

Note: Please note that only the product of the two fields (DurationValue * DurationUnit) is
considered for boundaries checking.

Note: Values of the ADL_TCU_TIMER_UNIT_XXX constants are recommended ones, but any other
combination which fit with the platform capabilities is allowed. E.g. the following configuration (2ms) is
allowed: adl_tcuTimerDuration_t MyDuration = { 1, 2000 };

Note: Please note also that whatever is the configured duration, it will however be rounded down to the
nearest multiple of the tick resolution, retrievable through the tcu_TimerTick capability.

typedef struct
{
 u32 DurationValue,

 u32 DurationUnit
} adl_tcuTimerDuration_t;

Fields

DurationValue

Timer duration value, in the unit set by the _adl_tcuTimerDuration_t::DurationUnit
field.

DurationUnit

Timer duration multiplier, in µs steps. For user convenience, it is advised to use defined
duration unit constants (ADL_TCU_TIMER_UNIT_US, ADL_TCU_TIMER_UNIT_MS or
ADL_TCU_TIMER_UNIT_S).

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 249

ADL User Guide for Open AT® OS 6.35

3.26.3.6. The adl_tcuTimerSettings_t Structure

TCU configuration structure, when the ADL_TCU_ACCURATE_TIMER service is used.

typedef struct
{
 adl_tcuTimerDuration_t Duration,

u32 Periodic
} adl_tcuTimerSettings_t;

Fields

Duration

Timer duration, using the adl_tcuTimerDuration_t configuration structure.

Periodic

Boolean periodic timer configuration:

if set to TRUE, the timer is reloaded after each event occurrence.

Otherwise, the timer is stopped after the first event occurrence.

Note: Beware if the timer is periodic and the Duration parameter is low, the handle will be called at high
frequency. Hence, this handle needs to have little to do, otherwise a reset might occur.

3.26.4. Enumerators

3.26.4.1. The adl_tcuService_e Type

This enumeration lists the available TCU services types.

Code
enum
{
 ADL_TCU_ACCURATE_TIMER,
 ADL_TCU_EVENT_CAPTURE,
 ADL_TCU_EVENT_DETECTION
 } adl_tcuService_e;

Description

ADL_TCU_ACCURATE_TIMER

Accurate timer service

Allows the application to subscribe to the accurate timer service.

Please refer to the Accurate Timers Service configuration for more information.

ADL_TCU_EVENT_CAPTURE

Event capture service.

Allows the application to subscribe to the event capture service.

Please refer to the Event Capture Service configuration for more information

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 250

ADL User Guide for Open AT® OS 6.35

ADL_TCU_EVENT_DETECTION

Event detection service.

Allows the application to subscribe to the event detection service.

Please refer to the Event Detection Service configuration for more information.

3.26.4.2. The adl_tcuEventType_e Type

This enumeration lists the available event types usable for the capture & detection services.

Code
enum
{
 ADL_TCU_EVENT_TYPE_NONE = (s16)0xFFFF,// No event detected

 ADL_TCU_EVENT_TYPE_RISING_EDGE = 0, // Capture or detect
 rising edge events only

 ADL_TCU_EVENT_TYPE_FALLING_EDGE, // Capture or detect
 falling edge events only

 ADL_TCU_EVENT_TYPE_BOTH_EDGE // Capture or detect
 events on both edges

} adl_tcuEventType_e;

Note: ADL_TCU_EVENT_TYPE_NONE is only used for event detection information, as a
_adl_tcuEventDetectionInfo_t::EventType parameter value.

3.26.5. Accurate Timers Service
This service is usable to generate (periodically or not) accurate timer events, configured thanks to the
adl_tcuTimerSettings_t structure (such a structure has to provided to the adl_tcuSubscribe
function).

Output parameter of the adl_tcuStop function is used as an adl_tcuTimerDuration_t pointer
to return the remaining time until the timer expiration when the stop operation has been performed.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - and provided at
subscription time will be notified with the following parameters, according to the service configuration,
and as soon as the adl_tcuStart function is called:

• the Source parameter will be set to ADL_IRQ_ID_TIMER

• the adl_irqEventData_t::SourceData field of the Data parameter will be set to NULL.

• the adl_irqEventData_t::Instance field of the Data parameter will be set to 0.

• the adl_irqEventData_t::Context field of the Data parameter will be set to the
application context, provided at subscription time.

Note: Even though the periodic TCU timer is hardware driven, when selecting a periodic timer, the next
timer start is delayed due to interrupt handler exiting the timer. In order not to stretch a periodic timer
from the time period desired, it is important to spend as little time as possible within the interrupt
handler, because the time spent in the handler will be added to the periodic time of the next timer.

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 251

ADL User Guide for Open AT® OS 6.35

3.26.5.1. Example

The code sample below illustrates a nominal use case of the ADL Timer & Capture Unit Service, in
ADL_TCU_ACCURATE_TIMER mode.

// Global variables

// TCU service handle
s32 TCUHandle;

// IRQ service handle
s32 IrqHandle;

// TCU Accurate timer configuration: periodic 5ms timer
adl_tcuTimerSettings_t Config = { { 5, ADL_TCU_TIMER_UNIT_MS }, TRUE };

// TCU interrupt handler
bool MyTCUHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
NotificationLevel, adl_irqEventData_t * Data);
{
 // Check for Timer event
 if (Source == ADL_IRQ_ID_TIMER)
 {
 // Trace event
 TRACE ((1, "Timer event"));
 }
 return TRUE;
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyTCUHandler, ADL_IRQ_NOTIFY_LOW_LEVEL, 0, 0
);

 // Subscribes to the TCU service, in Accurate Timer mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_ACCURATE_TIMER, IrqHandle, 0,
&Config, NULL);

 // Starts event generation
 adl_tcuStart (TCUHandle);
}
void MyFunction2 (void)
{
 // Stops event generation, and gets remaining time
 adl_tcuTimerDuration_t RemainingTimer ;
 adl_tcuStop (TCUHandle, &RemainingTimer);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 252

ADL User Guide for Open AT® OS 6.35

3.26.6. Event Capture Service
This service is usable to count events on a given embedded module pin, and is configured thanks to
the adl_tcuEventCaptureSettings_t structure (such a structure has to provided to the
adl_tcuSubscribe function).

Output parameter of the adl_tcuStop function is not used for this service, and shall be set to NULL.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - and provided at
subscription time will be notified with the following parameters, according to the service configuration,
and as soon as the adl_tcuStart function is called:

• the Source parameter will be set to ADL_IRQ_ID_EVENT_CAPTURE

• the adl_irqEventData_t::SourceData field of the Data parameter will have to be
casted as an u32 value, indicating the number of events which have occured since the last
event handler call.

 The notification period is configured by the

 adl_tcuEventCaptureSettings_t::Duration parameter.

• the adl_irqEventData_t::Instance field of the Data parameter will be set to the
monitored pin identifier, required at subscription time in the
adl_tcuEventCaptureSettings_t::CapturePinID.

• the adl_irqEventData_t::Context field of the Data parameter will be set to the
application context, provided at subscription time.

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 253

ADL User Guide for Open AT® OS 6.35

3.26.6.1. Example (without handler notification)

The code sample below illustrates a nominal use case of the ADL Timer & Capture Unit Service, in
ADL_TCU_EVENT_CAPTURE mode, without handler notification.

// Global variables

// TCU service handle
s32 TCUHandle;

// Event counter to be provided to the API
u32 MyEventCounter;

// TCU Event capture configuration: on pin 0, count falling edges, with a
provided event counter
adl_tcuEventCaptureSettings_t Config = { 0, ADL_TCU_EVENT_TYPE_FALLING_EDGE, 0,
&MyEventCounter };

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{

 // Subscribes to the TCU service, in Event Capture mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_EVENT_CAPTURE, 0, 0, &Config, NULL
);

 // Reset counter to 0, and starts event generation
 MyEventCounter = 0;
 adl_tcuStart (TCUHandle);
}

void MyFunction2 (void)
{
 // Periodically monitor the events counter, whenever in the application's
life
 TRACE ((1, "Current events count: %d", MyEventCounter));
}

void MyFunction3 (void)
{
 // Stops event generation
 adl_tcuStop (TCUHandle, NULL);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 254

ADL User Guide for Open AT® OS 6.35

3.26.6.2. Example (with handler notification)

The code sample below illustrates a nominal use case of the ADL Timer & Capture Unit Service, in
ADL_TCU_EVENT_CAPTURE mode, with handler notification.

// Global variables

// TCU service handle
s32 TCUHandle;

// IRQ service handle
s32 IrqHandle;

// TCU Event capture configuration: on pin 0, counts rising edge events, and
notify the handler every second
adl_tcuEventCaptureSettings_t Config = { 0, ADL_TCU_EVENT_TYPE_RISING_EDGE, 8,
NULL };

// TCU interrupt handler
bool MyTCUHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
NotificationLevel, adl_irqEventData_t * Data);
{
 // Check for Event Capture
 if (Source == ADL_IRQ_ID_EVENT_CAPTURE)
 {
 // Check for pin identifier
 if (Data->Instance == 0)
 {
 // Get Source Data
 u32 SourceData = (u32) Data->SourceData;

 // Trace event count
 TRACE ((1, "%d events capture since last notification", SourceData
));
 }
 }

 return TRUE;
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{

 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyTCUHandler, ADL_IRQ_NOTIFY_LOW_LEVEL, 0,
ADL_IRQ_OPTION_AUTO_READ);

 // Subscribes to the TCU service, in Event Capture mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_EVENT_CAPTURE, IrqHandle, 0,
&Config, NULL);

 // Starts event generation
 adl_tcuStart (TCUHandle);
}

void MyFunction2 (void)
{
 // Stops event generation
 adl_tcuStop (TCUHandle, NULL);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 255

ADL User Guide for Open AT® OS 6.35

3.26.7. Event Detection Service
This service is usable to detect events on a given embedded module pin, and is configured thanks to
the adl_tcuEventDetectionSettings_t structure (such a structure has to provided to the
adl_tcuSubscribe function.

Output parameter of the adl_tcuStop function is not used for this service, and shall be set to NULL.

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - and provided at
subscription time will be notified with the following parameters, according to the service configuration,
and as soon as the adl_tcuStart function is called.

• the Source parameter will be set to ADL_IRQ_ID_EVENT_DETECTION

• the adl_irqEventData_t::SourceData field of the Data parameter will have to be
casted as a pointer on an adl_tcuEventDetectionInfo_t structure.

• the adl_irqEventData_t::Instance field of the Data parameter will be set to the
monitored pin identifier, required at subscription time in the
adl_tcuEventDetectionSettings_t::DetectionPinID.

• the adl_irqEventData_t::Context field of the Data parameter will be set to the
application context, provided at subscription time.

3.26.7.1. Example

The code sample below illustrates a nominal use case of the ADL Timer & Capture Unit Service, in
ADL_TCU_EVENT_DETECTION mode.

// Global variables

// TCU service handle
s32 TCUHandle;

// IRQ service handle
s32 IrqHandle;

// TCU Event detection configuration: on pin 0, detects rising edge events, and
set a 200 ms timeout
adl_tcuEventDetectionSettings_t Config = { 0, ADL_TCU_EVENT_TYPE_RISING_EDGE,
200 };

// TCU interrupt handler
bool MyTCUHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
NotificationLevel, adl_irqEventData_t * Data);
{
 // Check for Event Detection
 if (Source == ADL_IRQ_ID_EVENT_DETECTION)
 {
 // Check for pin identifier
 if (Data->Instance == 0)
 {
 // Get Source Data
 adl_tcuEventDetectionInfo_t * SourceData =
 (adl_tcuEventDetectionInfo_t *) Data->SourceData;

 // Check for true or inactivity event
 if (SourceData->EventType < 0)
 {
 // Trace inactivity
 TRACE ((1, "Event detection timeout"));
 }

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 256

ADL User Guide for Open AT® OS 6.35

 else
 {
 // Trace event detection
 TRACE ((1, "%d event detected; last state duration: %d ms",
 SourceData->EventType, SourceData->LastStateDuration));
 }
 }
 }

 return TRUE;
}

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{

 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyTCUHandler, ADL_IRQ_NOTIFY_LOW_LEVEL,
 0, ADL_IRQ_OPTION_AUTO_READ);

 // Subscribes to the TCU service, in Event Detection mode
 TCUHandle = adl_tcuSubscribe (ADL_TCU_EVENT_DETECTION, IrqHandle, 0,
 &Config, NULL);

 // Starts event generation
 adl_tcuStart (TCUHandle);
}

void MyFunction2 (void)
{
 // Stops event generation
 adl_tcuStop (TCUHandle, NULL);

 // Un-subscribes from the TCU service
 adl_tcuUnsubscribe (TCUHandle);
}

3.26.8. The adl_tcuSubscribe Function
This function allows the application to subscribe to the TCU service.

Prototype
s32 adl_tcuSubscribe (adl_tcuService_e SrvID,

 s32 LowLevelIrqHandle,
 s32 HighLevelIrqHandle,
 void * Settings,

 void * Context);

Parameters

SrvID:

Service type to be subscribed, using the adl_tcuService_e type.

LowLevelIrqHandle:

Low level interrupt handler identifier, previously returned by the adl_irqSubscribe
function. This parameter is optional if the HighLevelIrqHandle parameter is supplied..

HighLevelIrqHandle:

High level interrupt handler identifier, previously returned by the adl_irqSubscribe
function. This parameter is optional if the LowLevelIrqHandle parameter is supplied..

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 257

ADL User Guide for Open AT® OS 6.35

Settings:

TCU service configuration, to be defined according to the SrvID parameter value (Please
refer to adl_tcuService_e type for more information).

Context:

Pointer on an application context, which will be provided back to the application when the
related TCU events will occur.

Returned values
• Handle: A positive TCU service handle on success, to be used in further TCU service function

calls.

• ADL_RET_ERR_PARAM on a supplied parameter error.

• ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already subscribed for this
configuration. Only for ADL_TCU_EVENT_CAPTURE & ADL_TCU_EVENT_DETECTION service
types.

• ADL_RET_ERR_NO_MORE_HANDLES if there are no more available internal resources for the
required service. Only for ADL_TCU_ACCURATE_TIMER service type; cf. tcu_TimersNb
capability.

• ADL_RET_ERR_BAD_HDL if one or both supplied interrupt handler identifiers are invalid.

• ADL_RET_ERR_BAD_STATE If the function was called in RTE mode (The TCU service is not
available in RTE mode).

• ADL_RET_ERR_NOT_SUPPORTED If the required service is not supported on the current
plateform.

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt handler
(the function is forbidden in this context.

Note: In some configuration cases, both LowLevelIrqHandle & HighLevelIrqHandle parameters are
optional. Please refer to adl_tcuEventCaptureSettings_t ::EventCounter description for more
information.

Note: Whatever is the configuration, events are generated only after a call to the adl_tcuStart function.

3.26.9. The adl_tcuUnsubscribe Function
This function allows the application to unsubscribe from the TCU service.

Prototype
s32 adl_tcuUnsubscribe (s32 Handle);

Parameters

Handle:

TCU service handle, previously returned by the adl_tcuSubscribe function.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied TCU handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

Note: If the service was started thanks to the adl_tcuStart function, an unsubscription operation will
implicitely stop it, without having to call the adl_tcuStop function.

API
TCU Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 258

ADL User Guide for Open AT® OS 6.35

3.26.10. The adl_tcuStart Function
This function allows the application to start the TCU service event generation. Once started, the
related interrupt events are generated, according to the service configuration.
Please refer to the adl_tcuService_e type for more information.

Prototype
s32 adl_tcuStart (s32 Handle);

Parameters

Handle:

TCU service handle, previously returned by the adl_tcuSubscribe function.

Returned values
• OK on success.

• ADL_RET__ERR_UNKNOWN_HDL if the supplied TCU handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt
handler (the function is forbidden in this context).

Note: If the service was already started, using this function will start it again by reprograming the events
generation.

3.26.11. The adl_tcuStop Function
This function allows the application to stop the TCU service event generation. Once stopped, the
related interrupt events not are generated anymore.
The function has no effect and returns OK if the service is already stopped.

Prototype
s32 adl_tcuStop (s32 Handle,
 adl_tcuTimerDuration_t* OutParam);

Parameters

Handle:

TCU service handle, previously returned by the adl_tcuSubscribe function.

OutParam:

Output parameter of the stop operation, depending on the service type. Please refer to
adl_tcuService_e type for more information on this parameter usage.

This parameter should either be set to a adl_tcuTimerDuration_t* type or NULL.

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL if the supplied TCU handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt
handler (the function is forbidden in this context).

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 259

ADL User Guide for Open AT® OS 6.35

3.27. Extint ADL Service
The ADL External Interrupt (ExtInt) service allows the application to handle embedded module
External Interrupt pin configuration & interruptions.

External interrupt pins are multiplexed with the embedded module GPIO, please refer to the
embedded module Product Technical Specification for more information.

The global External Interrupt pin operation is described below:

• The interruption is generated either on:

 the falling or the rising edge of the input signal, or both.

 the low or high level of the input signal (currently not supported).

• The input signal is filtered by one of the following processes:

 Bypass (no filter)

 Debounce (a stable state is required for a configurable duration before generating the
interruption) e.g. EXTINT is the input signal, extint_ch is the generated interruption. When
the debounce period equals 4, the embedded module waits for a stable signal during 4
cycles before generating the interruption.

Figure 9. ADL External Interrupt service: Example of Interruption with Debounce Period

 Stretching (the signal is stretched in order to detect even small glitches in the signal)

Figure 10. ADL External Interrupt service: Example of Interruption with Stretching Process

e.g. EXTINT is the input signal, extint_ch is the generated interruption. With the stretching
process, the generated interruptions are stretched in time, in order not to miss any pulses on
the input signal.

• Interruption generated because an External Interrupt pin is always pre-acknowledged,
whatever is the subscribed option in the IRQ service.

The ADL supplies interface to handle External Interruptions.

The defined operations are:

• A function adl_extintGetCapabilities to retrieve the External Interruption capablities
informations.

• A function adl_extintSubscribe to subscribe to the External Interruption service.

• A function adl_extintConfig to modify an external interruption pin configuration.

• A function adl_extintGetConfig to get an external interruption pin configuration.

• A function adl_extintRead to retrieve the external interruption pin input status.

• A function adl_extintUnsubscribe to unsubscribe from the External Interruption service.

• A function adl_extintSetFIQStatus to set the FIQ status

• A function adl_extintGetFIQStatus to get the FIQ status

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 260

ADL User Guide for Open AT® OS 6.35

3.27.1. Required Header File
The header file for the ExtInt service definitions is:

adl_extint.h

3.27.2. The adl_extintID_e
This type defines the external interruption pin. Using adl_extintGetCapabilities to know the
valid value of adl_extintID_e. Valid values range start from 0 to
adl_extintCapabilities_t::NbExternalInterrupt - 1.

typedef u8 adl_extintID_e;

3.27.3. The adl_extintConfig_t Structure
This structure allows the application to configure external interrupt pin behavior. Using
adl_extintGetCapabilities to know the available external interruption settings of the
embedded module.

typedef struct
{
 adl_extintSensitivity_e Sensitivity;
 adl_extintFilter_e Filter;
 u8 FilterDuration;
 u8 Pad; // Internal use only

 void * Context
} adl_extintConfig_t;

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 261

ADL User Guide for Open AT® OS 6.35

Fields

Sensitivity:

Interruption generation sensitivity, using the following type:

typedef enum
{

 ADL_EXTINT_SENSITIVITY_RISING EDGE, // Rising edge (edge

 sensitivity) interruption
 ADL_EXTINT_SENSITIVITY_FALLING_EDGE, // Falling edge (edge

 sensitivity) interruption
 ADL_EXTINT_SENSITIVITY_BOTH_EDGE, // Rising & Falling edges (edge

 sensitivity)interruption.
 ADL_EXTINT_FILTER_STRETCHING_MODE
 cannot be used with this mode.

 ADL_EXTINT_SENSITIVITY_LOW LEVEL // Low level (level sensitivity)
 interruption (currently not
 supported). No Filter can be used
 with this mode,
 adl_extintConfig_t::Filter value
 must be equal to
 ADL_EXTINT_FILTER_BYPASS_MODE

 ADL_EXTINT_SENSITIVITY_HIGH LEVEL // High level(level sensitivity)
 interruption(currently not
 supported). No Filter can be used
 with this mode,
 adl_extintConfig_t::Filter value
 must be equal to
 ADL_EXTINT_FILTER_BYPASS_MODE

 ADL_EXTINT_SENSITIVITY_LAST // Internal use only
} adl_extintSensitivity_e;

Filter:

Filter process applied to the input signal:

typedef enum
{

 ADL_EXTINT_FILTER_BYPASS_MODE, // No filter. It is the bypass mode

 ADL_EXTINT_FILTER_DEBOUNCE_MODE, // Debounce filter.
 adl_extintConfig_t::
 FilterDuration value must not
 be equal to zero.

 ADL_EXTINT_FILTER_STRETCHING_MODE, // Stretching filter.
 adl_extintConfig_t::
 FilterDuration value must be
 equal to zero.

 ADL_EXTINT_FILTER_LAST // Internal use only
} adl_extintFilter_e;

FilterDuration:

Time (in number of steps) during which the signal must be stable before generating the
interruption. Refers to the function adl_extintGetCapabilities,to know the values
allowed range.

This parameter is used only with the following filter:

 ADL_EXTINT_FILTER_DEBOUNCE_MODE.

Context:

Application context pointer, which will be given back to the application when an interruption
event occurs.

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 262

ADL User Guide for Open AT® OS 6.35

3.27.4. The adl_extintExtConfig_e
This enumerator allows the application to configure some extended configuration for an external
interrupt. This enumerator is used in the adl_extintSetConfigExt and adl_extintGetConfigExt APIs.
These APIs should be used after calling the adl_extintSubscribe, adl_extintConfig APIs (these APIs
do not take into account of the extended configuration):

typedef enum
{

ADL_EXTINT_EXTCONFIG_ONE_SHOT_MODE, // One shot mode: When the One
Shot Mode is enabled, the
External Interrupt will occur
only one time. In order to
reactivate the interrupt, the
application should call under
task (and not in the interrupt
low level handler) the
adl_irqGetConfig API, set the
Enable field to TRUE and call
the adl_irqSetConfig API.

 If this extended configuration
is not set using the
adl_extintSetConfigExt API,
the default value for this
extended configuration is
FALSE.

 To activate this extended
mode, the Value parameter in
the adl_extintSetConfigExt API
should be set to TRUE.

 To deactivate this extended
mode, the Value parameter in
the adl_extintSetConfigExt API
should be set to FALSE.

 ADL_EXTINT_EXTCONFIG_LAST, // Internal use only

 } adl_extintExtConfig_e;

3.27.5. The adl_extintInfo_t Structure
This structure allows the application to get the external interrupt pin input status at any time. When an
interrupt handler is plugged on the ExtInt service, the SourceData field in the adl_irqEventData_t
input parameter of this handler must be cast to * adl_extintInfo_t type in order to handle the
information correctly.

typedef struct
{
 u8 PinState;
} adl_extintInfo_t;

Fields

PinState:

External Interrupt pin input status. Current state (0/1) of the input signal plugged on the
external interrupt pin.

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 263

ADL User Guide for Open AT® OS 6.35

3.27.6. Capabilities
ADL provides informations to get EXTINT capabilities.

The following entries have been defined in the registry:

Registry entry Type Description

extint_NbExternalInterrupt INTEGER Number of external interrupt pins

extint_RisingEdgeSensitivity INTEGER Rising edge sensitivity supported

extint_FallingEdgeSensitivity INTEGER Falling edge sensitivity supported

extint_BothEdgeSensitivity INTEGER Both edge detector supported

extint_LowLevelSensitivity INTEGER Low level sensitivity not supported

extint_HighLevelSensitivity INTEGER High level sensitivity not supported

extint_BypassMode INTEGER Bypass mode supported

extint_StretchingMode INTEGER Stretching mode supported

extint_DebounceMode INTEGER Debounce mode supported

extint_MaxDebounceDuration INTEGER Debounce max duration in ms

extint_DebounceNbStep INTEGER Number of step for debounce duration

extint_NbPriority INTEGER
Available priority levels for the EXTINT service
(to be used as a adl_irqPriorityLevel_e
value in the IRQ service)

3.27.6.1. The adl_extintCapabilities_t type

This structure allows the application to read external interruptioncapabilities.

typedef struct
{
 u8 NbExternalInterrupt;

 bool RisingEdgeSensitivity;

bool FallingEdgeSensitivity;

bool BothEdgeSensitivity;

bool LowLevelSensitivity;

bool HighLevelSensitivity

bool BypassMode

bool StretchingMode

bool DebounceMode

u8 MaxDebounceDuration

u8 DebounceNbStep

u8 PriorityLevelsCount

u8 Pad [3]
} adl_extintCapabilities_t

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 264

ADL User Guide for Open AT® OS 6.35

Fields

NbExternalInterrupt:

Number of external interruption

RisingEdgeSensitivity:

Rising edge sensitivity supported

FallingEdgeSensitivity:

Falling edge sensitivity supported

BothEdgeSensitivity:

Both edge detector supported

LowLevelSensitivity:

Low level sensitivity not supported

HighLevelSensitivity:

High level sensitivity not supported

BypassMode:

Bypass mode supported

StretchingMode:

Stretching mode supported

DebounceMode:

Debounce mode supported

MaxDebounceDuration:

Debounce max duration in ms

DebounceNbStep:

Number of step for debounce duration

PriorityLevelsCount:

Available priority levels for the EXTINT service (to be used as a adl_irqPriorityLevel_e value
in the IRQ service).

Pad [3]:

Internal use

3.27.6.2. The adl_extintGetCapabilities Function

This function returns the embedded module External Interruption capabilities. Capabilities are the
same for all available pins on the embedded module.

Prototype
s32 adl_extintGetCapabilities (adl_extintCapabilities_t *
 PinCapabilities)

Parameters

PinCapabilities

Returned External Interruption capabilities (using adl_extintCapabilities_t).

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 265

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

Example

This example demonstrates how to use the function adl_extintGetCapabilities in a nominal
case (error cases not handled).

Complete examples using the External Interruption service are also available on the SDK (generic
Signal Replica).

void My_extintGetcapabilities ()
 {
 ascii * My_Message = adl_memGet (1000);

 adl_extintCapabilities_t My_WCPU_ExtInt_Capabilities;

 adl_extintGetCapabilities (&My_WCPU_ExtInt_Capabilities);

 wm_sprintf (My_Message,
 "\r\nMy WCPU have %d Ext. Int.\r\n
 supported sensitivity :\r\n
 RisingEdgeSensitivity %d\r\n
 FallingEdgeSensitivity %d\r\n
 BothEdgeSensitivity %d\r\n
 LowLevelSensitivity %d\r\n
 HighLevelSensitivity %d\r\n
 supported filter :\r\n
 Bypass %d\r\n
 Stretching %d\r\n
 Debounce %d\r\n
 filter options :\r\n
 MaxDebounceDuration %d ms in %d steps\r\n",
 My_WCPU_ExtInt_Capabilities.NbExternalInterrupt ,
 My_WCPU_ExtInt_Capabilities.RisingEdgeSensitivity ,
 My_WCPU_ExtInt_Capabilities.FallingEdgeSensitivity ,
 My_WCPU_ExtInt_Capabilities.BothEdgeSensitivity ,
 My_WCPU_ExtInt_Capabilities.LowLevelSensitivity ,
 My_WCPU_ExtInt_Capabilities.HighLevelSensitivity ,
 My_WCPU_ExtInt_Capabilities.BypassMode ,
 My_WCPU_ExtInt_Capabilities.StretchingMode ,
 My_WCPU_ExtInt_Capabilities.DebounceMode ,
 My_WCPU_ExtInt_Capabilities.MaxDebounceDuration ,
 My_WCPU_ExtInt_Capabilities.DebounceNbStep
));
 adl_atSendResponse (ADL_AT_UNS, My_Message);
 adl_memRelease (My_Message);

 }

3.27.7. The adl_extintSubscribe Function
This function allows the application to subscribe to the ExtInt service. Each External Interrupt pin can
only be subscribed one time. Once subscribed, the pin is no more configurable through the AT
commands interface (with AT+WIPC or AT+WFM commands).

Interrupt handlers defined in the IRQ service - using the adl_irqHandler_f type - are notified with
the following parameters:

• the Source parameter will be set to ADL_IRQ_ID_EXTINT

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 266

ADL User Guide for Open AT® OS 6.35

• the adl_irqEventData_t::SourceData field of the Data parameter has to be casted to
an adl_extintInfo_t * type, usable to retrieve information about the current external
interrupt pin state.

• the adl_irqEventData_t::Instance field of the Data parameter will have to be considered
as an adl_extintID_e value, usable to identify which block has raised the current interrupt
event.

• the adl_irqEventData_t::Context field of the Data parameter will be set to the
application context, provided at subscription time.

Prototype
s32 adl_extintSubscribe (adl_extintID_e ExtIntID,

 s32 LowLevelIrqHandle,
 s32 HighLevelIrqHandle,
 adl_extintConfig_t * Settings);

Parameters

ExtIntID:

External interrupt pin identifier to be subscribed. (see section adl_extintID_e).

LowLevelIrqHandle:

Low level interrupt handler identifier, previously returned by the adl_irqSubscribe
function.

This parameter is optional if the HighLevelIrqHandle parameter is supplied.

HighLevelIrqHandle:

High level interrupt handler identifier, previously returned by the adl_irqSubscribe
function.

This parameter is optional if the LowLevelIrqHandle parameter is supplied.

Settings:

External interrupt pin configuration, (see section adl_extintConfig_t structure)

Returned values
• A positive or null value on success:

 ExtInt service handle, to be used in further ExtInt service function calls.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

 ADL_RET_ERR_NOT_SUPPORTED if one parameter refers to a mode or a configuration not
supported by the embedded module

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the service was already subscribed for this
external interrupt pin (the External Interrupt service can only be subscribed one time for
each pin).

 ADL_RET_ERR_BAD_HDL if one or both supplied interrupt handler identifiers are invalid.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

Note: When interrupt event generated by the EXTINT service are masked (thanks to
adl_irqConfig_t::Enable field configuration of the IRQ service), events are just delayed until
the related handler is enabled again.

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 267

ADL User Guide for Open AT® OS 6.35

3.27.8. The adl_extintConfig Function
This function allows the application to modify an external interrupt pin configuration.

Prototype
s32 adl_extintConfig (s32 ExtIntHandle,

 adl_extintConfig_t * Settings);

Parameters

ExtIntHandle:

External Interrupt service handle, previously returned by the adl_extintSubscribe
function.

Settings:

External interrupt pin configuration, (see section adl_extintConfig_t structure).

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_NOT_SUPPORTED if one parameter refers to a mode or a configuration not
supported by the embedded module

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interrupt handle is unknown.

3.27.9. The adl_extintGetConfig Function
This function allows the application to get an external interrupt pin configuration.

Prototype
s32 adl_extintGetConfig (s32 ExtIntHandle,

 adl_extintConfig_t * Settings);

Parameters

ExtIntHandle:

External Interrupt service handle, previously returned by the adl_extintSubscribe
function.

Settings:

External interrupt pin configuration, (see section adl_extintConfig_t structure).

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interrupt handle is unknown

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 268

ADL User Guide for Open AT® OS 6.35

3.27.10. The adl_extintSetConfigExt Function
This function allows the application to set an extended configuration for an external interruption pin.

Prototype
s32 adl_extintSetConfigExt (s32 ExtIntHandle,

 adl_extintExtConfig_e ExtConfig,
 u32 Value);

Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the adl_extintSubscribe function.

ExtConfig:

Extended configuration (see adl_extintExtConfig_e)

Value:

Extended configuration value

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interrupt handle is unknown

 ADL_RET_ERR_NOT_SUPPORTED if the API is not supported by the Sierra Wireless stack

3.27.11. The adl_extintGetConfigExt Function
This function allows the application to get an extended configuration for an external interruption pin.

Prototype
s32 adl_extintGetConfigExt (s32 ExtIntHandle,

 adl_extintExtConfig_e ExtConfig,
 u32* Value);

Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the adl_extintSubscribe function.

ExtConfig:

Extended configuration (see adl_extintExtConfig_e)

Value:

Extended configuration value

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interrupt handle is unknown

 ADL_RET_ERR_NOT_SUPPORTED if the API is not supported by the Sierra Wireless stack

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 269

ADL User Guide for Open AT® OS 6.35

3.27.12. The adl_extintRead function
This function allows the application to retrieve the external interrupt pin input status.

Prototype
s32 adl_extintRead (s32 ExtIntHandle,

 adl_extintInfo_t * Info);

Parameters

ExtIntHandle:

External Interrupt service handle, previously returned by the adl_extintSubscribe
function.

Info:

External interrupt pin information structure (see section adl_extintInfo_t type).

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM on a supplied parameter error.

 ADL_RET_ERR_UNKNOWN_HDL if the supplied ExtInt handle is unknown.

3.27.13. The adl_extintUnsubscribe Function
This function allows the application to unsubscribe from the ExtInt service. Associated interrupt
handlers are unplugged from the External Interruption source. Pin configuration control is resumed by
the AT+WIPC command.

Prototype
s32 adl_extintUnsubscribe (s32 ExtIntHandle);

Parameters

ExtIntHandle:

External Interrupt service handle, previously returned by the adl_extintSubscribe
function.

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

3.27.14. The adl_extintSetFIQStatus function
This function sets the FIQ status. TRUE - Enables / FALSE - Disables the fast mode for the external
interrupt specified by the provided handler.

Prototype
s32 adl_extintSetFIQStatus (s32 ExtIntHandle,

 bool Status);

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 270

ADL User Guide for Open AT® OS 6.35

Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the adl_extintSubscribe
function.

Status:

FIQ Status to be set.

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if the parameter has an incorrect value

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interruption handle is unknown

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the FIQ status is tried to be set on more than
one handle

3.27.15. The adl_extintGetFIQStatus function
This function gets the FIQ status. Check if the fast mode for the external interrupt (specified by the
provided handler) is enabled or not.

Prototype
s32 adl_extintGetFIQStatus (s32 ExtIntHandle,

 bool * Status);

Parameters

ExtIntHandle:

External Interruption service handle, previously returned by the adl_extintSubscribe
function.

Status:

FIQ Status to be retrieved.

Returned values
• A OK on success.

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if the parameter has an incorrect value

 ADL_RET_ERR_UNKNOWN_HDL if the supplied External Interruption handle is unknown

3.27.16. Example
This example demonstrates how to use the External Interruption service in a nominal case (error
cases are not handled).

Complete example using the External Interrupt service are also available on the SDK (generic Signal
Replica sample).

// Global variables

 // use the PIN0 for the Ext Int
 #define EXTINT_PIN0 0

 // ExtInt service handle
 s32 ExtIntHandle;

API
Extint ADL Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 271

ADL User Guide for Open AT® OS 6.35

 // IRQ service handle
 s32 IrqHandle;

 // ExtInt configuration: both edge detection without filter
 adl_extintConfig_t extintConfig =
 { ADL_EXTINT_SENSITIVITY_BOTH_EDGE, ADL_EXTINT_FILTER_BYPASS_MODE, 0, 0,
 NULL };

 // ExtInt interruption handler
 bool MyExtIntHandler (adl_irqID_e Source,
 adl_irqNotificationLevel_e NotificationLevel,
 adl_irqEventData_t * Data)
 {
 // Read the input status
 adl_extintInfo_t Status, * AutoReadStatus;
 adl_extintRead (ExtIntHandle, &Status);

 // Input status can also be obtained from the auto read option.
 AutoReadStatus = (adl_extintInfo_t *) Data->SourceData;

 return TRUE;
 }

 // Somewhere in the application code, used as event handlers
 void MyFunction1 (void)
 {
 adl_extintCapabilities_t My_ExtInt_Capa;

 adl_extintGetCapabilities (&My_ExtInt_Capa);

 // Test if the WCPU have Ext Int pin
 if (My_ExtInt_Capa.NbExternalInterrupt >= 1)
 {
 // Subscribes to the IRQ service
 IrqHandle = adl_irqSubscribe (MyExtIntHandler,
 ADL_IRQ_NOTIFY_LOW_LEVEL, ADL_IRQ_PRIORITY_HIGH_LEVEL,
 ADL_IRQ_OPTION_AUTO_READ);

 // Configures comparator channel
 ExtIntHandle = adl_extintSubscribe (EXTINT_PIN0 , IrqHandle, 0,
 &extintConfig);

 if(ExtIntHandle > 0)
 {
 s32 OneShotMode = 0;
 s32 s32Result = adl_extintGetConfigExt(ExtIntHandle,
 ADL_EXTINT_EXTCONFIG_ONE_SHOT_MODE, &OneShotMode);
 // Set the EXT INT in one shot mode
 if(!OneShotMode)
 {
 OneShotMode = TRUE;
 s32Result = adl_extintSetConfigExt(ExtIntHandle,
 ADL_EXTINT_EXTCONFIG_ONE_SHOT_MODE, OneShotMode);
 }
 }
 }
 }
 void MyFunction2 (void)
 {
 // Un-subscribes from the ExtInt service
 adl_extintUnsubscribe (ExtIntHandle);
 }

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 272

ADL User Guide for Open AT® OS 6.35

3.28. Execution Context Service
ADL supplies the Execution Context Service interface to handle operations related to the several
execution contexts available for an Open AT® application.
The application runs under several execution contexts, according to the monitored event (ADL service
event, or interrupt event).

The execution contexts are:

• The application task context;

This is the main application context, initialized on the task entry point functions, and
scheduled each time a message is received; each message is then converted to an ADL
service event, according to its content. This context has a global low priority and should be
interrupted by the other ones.

• The high level interrupt handler context;

This is also a task context, but with a higher priority that the main application task. High level
interrupt handlers run in this context.

This context has a global middle priority: when an interrupt raises an event monitored by a
high level handler, this context will be immediately activated, even if the application task was
running; however, this context could be interrupted by low level interrupt handlers.

• The low level interrupt handler context;

This is a context designed to be activated as soon as possible on an interrupt event.

This context has a global high priority: when an interrupt raises an event monitored by a low
level handler, this context will be immediately activated, even if a task (whatever it is:
application task, high level handler or a SIERRA WIRELESS Firmware task) was running.

On the other hand, the execution time spent in this context has to be as short as possible;
moreover, some service calls are forbidden while this context is running.

As the application code should run in different contexts at the same time, the user should protect his
critical functions against re-entrancy. Critical code sections should be protected through a semaphore
mechanism (cf. Semaphore ADL Service), and/or by temporary disabling interrupts (cf. IRQ Service).
The ADL services are all re-entrant.

Data can be exchanged between contexts through a message system (cf. Message Service).
However, the RAM area is global and accessible from all contexts.

The defined operations of the Execution Context service are:

• Current context identification functions (adl_ctxGetID & adl_ctxGetTaskID) to retrieve the
current context identifiers.

• A Tasks count function (adl_ctxGetTasksCount) to retrieve the current tasks count in the
runing application.

• A Diagnostic function (adl_ctxGetDiagnostic) to retrieve information about the current
contexts configuration.

• A State function (adl_ctxGetState) to retrieve the required execution context's current state.

• Suspend functions (adl_ctxSuspend & adl_ctxSuspendExt) to suspend at any time a
running application task.

• Resume functions (adl_ctxResume & adl_ctxResumeExt) to resume at any time a
suspended application task.

• A Sleep function (adl_ctxSleep) to put the current context to sleep for a required duration.

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 273

ADL User Guide for Open AT® OS 6.35

3.28.1. Required Header File
The header file for the Execution Context function is:

adl_ctx.h

3.28.2. The adl_ctxID_e Type
This type defines the execution context identifiers. Low or High level interrupt handlers, and Sierra
Wireless Firmware tasks are identified by specific contants. Application tasks are identified by values
between 0 and the adl_ctxGetTasksCount function return.

typedef enum
{

 ADL_CTX_LOW_LEVEL_IRQ_HANDLER = 0xFD, //Low level interrupt handler
 context

 ADL_CTX_HIGH_LEVEL_IRQ_HANDLER = 0xFE, // High level interrupt
handler context

 ADL_CTX_ALL = 0xFF, // Reserved for internal use
 ADL_CTX_WAVECOM = 0xFF, // Sierra Wireless Firmware

 tasks context
} adl_ctxID_e;

3.28.3. The adl_ctxDiagnostic_e Type
This type defines the available diagnostics, to be retrieved by the adl_ctxGetDiagnostic function.

typedef enum
{
 ADL_CTX_DIAG_NO_IRQ_PROCESSING = 0x01,
 ADL_CTX_DIAG_BAD_IRQ_PARAM = 0x02,
 ADL_CTX_DIAG_NO_HIGH_LEVEL_IRQ_HANDLER = 0x04,
} adl_ctxDiagnostic_e;

Description
ADL_CTX_DIAG_NO_IRQ_PROCESSING: The Open AT® IRQ processing

 mechanism has not been started
 (interrupt handlers stack sizes
 have not been supplied).

ADL_CTX_DIAG_BAD_IRQ_PARAM: Reserved for future use.

ADL_CTX_DIAG_NO_HIGH_LEVEL_IRQ_HANDLER: High level interrupt handlers are
 not supported (high level handler
 stack size is not supplied).

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 274

ADL User Guide for Open AT® OS 6.35

3.28.4. The adl_ctxState_e Type
This type defines the various states for a given execution context, to be retrieved by the
adl_ctxGetState function.

typedef enum
{
 ADL_CTX_STATE_ACTIVE
 ADL_CTX_STATE_WAIT_EVENT
 ADL_CTX_STATE_WAIT_SEMAPHORE
 ADL_CTX_STATE_WAIT_INNER_EVENT
 ADL_CTX_STATE_SLEEPING
 ADL_CTX_STATE_READY
 ADL_CTX_STATE_PREEMPTED
 ADL_CTX_STATE_SUSPENDED
} adl_ctxState_e;

Description

ADL_CTX_STATE_ACTIVE: The context is currently active (the current
code is executed in this context).

ADL_CTX_STATE_WAIT_EVENT: The context is currently waiting for events
(there are currently no events to process).

ADL_CTX_STATE_WAIT_SEMAPHORE: The context is currently waiting for a
semaphore to be produced. The code
execution is currently frozen on a
semaphore consumption function. This can
be either an applicative semaphore, or an
internal one, consumed within an ADL
function call.

ADL_CTX_STATE_WAIT_INNER_EVENT: The context is currently waiting for an
internal event. The code execution is
currently frozen, waiting for an internal event
within an ADL function call.

ADL_CTX_STATE_SLEEPING: The context is currently sleeping, after a call
to adl_ctxSleep function.

ADL_CTX_STATE_READY: The context has events to process, but is not
currently processing them yet, since an
higher priority context is processing events.

ADL_CTX_STATE_PREEMPTED: The context has been pre-empted while it
was processing events. It will resume its
processing as soon as the higher priority
context which is currently running will have
terminated his own processing.

ADL_CTX_STATE_SUSPENDED: The task context is currently suspended,
thanks to a call to the adl_ctxSuspend
function.

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 275

ADL User Guide for Open AT® OS 6.35

3.28.5. The adl_ctxGetID Function
This function allows the application to retrieve the current execution context identifier.

Prototype
adl_ctxID_e adl_ctxGetID (void);

Returned values
• Current application's execution context identifier. Please refer to adl_ctxID_e for more

information.

• ID An application task's zero-based index if the function is called from an ADL service event
handler.

• ADL_CTX_LOW_LEVEL_IRQ_HANDLER if the function is called from a low level interrupt handler.

• ADL_CTX_HIGH_LEVEL_IRQ_HANDLER if the function is called from a high level interrupt
handler.

3.28.6. The adl_ctxGetTaskID Function
This function allows the application to retrieve the current running task identifier:

• In Open AT® task or high level interrupt handler contexts, this function will behave like the
adl_ctxGetID function.

• In a low level handler execution context, the retrieved identifier will be the active task identifier
when the interrupt signal is raised.

Prototype
adl_ctxID_e adl_ctxGetTaskID (void);

Returned values
• Current task’s execution context identifier. Please refer to adl_ctxID_e for more information.

• ID An application task's zero-based index if the function is called from an ADL service event
handler.

• ADL_CTX_HIGH_LEVEL_IRQ_HANDLER if the function is called from a high level interrupt
handler.

• Interrupted TaskID If called from a low level interrupt handler, the returned value depends
on the interrupted task:

 An application task's zero-based index, if an Open AT® application task was running.

 ADL_CTX_SIERRAWIRELESS if a Sierra Wireless Firmware task was running.

 ADL_CTX_HIGH_LEVEL_IRQ_HANDLER if a high level interrupt handler was running.

3.28.7. The adl_ctxGetTasksCount Function
This function allows the application to retrieve the current application's tasks count.

Prototype
u8 adl_ctxGetTasksCount (void);

Returned value
• Current application’s tasks count.

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 276

ADL User Guide for Open AT® OS 6.35

3.28.8. The adl_ctxGetDiagnostic Function
This function allows the application to retrieve information about the current application’s execution
contexts.

Prototype
u32 adl_ctxGetDiagnostic (void);

Returned value
• Bitwise OR combination of the diagnostics listed in the adl_ctxDiagnostic_e type.

3.28.9. The adl_ctxGetState Function
This function allows the application to retrieve the current state of the required execution context.

Prototype
s32 adl_ctxGetState (adl_ctxID_e Context);

Parameters

Context:

Execution context from which the current state has to be queried.

Returned values
• On success, returns the (positive or null) current execution context state, using the

adl_ctxState_e type.

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_BAD_HDL If the low level interrupt handler execution context state is required.

Note: It is not possible to query the current state of the contexts below (ADL_RET_ERR_BAD_HDL error will
be returned):

Note: the low level interrupt handler execution context (in any case)

Note: the high level interrupt handler execution context, if the related
adl_InitIRQHighLevelStackSize call stack has not be declared in the application.

3.28.10. The adl_ctxSuspend Function
This function allows the application to suspend an application task process. This process can be
resumed later thanks to the adl_ctxResume function, which should be called from interrupt handlers
or from any other application task.

Prototype
s32 adl_ctxSuspend (adl_ctxID_e Task);

Parameters

Task:

Task identifier to be suspended.

Valid values are in the 0 - adl_ctxGetTasksCount range.

Returned values
• OK on success:

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_BAD_STATE if the required task is already suspended.

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 277

ADL User Guide for Open AT® OS 6.35

Note: If the function was called in the application task context, it will not return but just suspend the task.

Note: The OK value will be returned when the task process is resumed.

Note: While a task is suspended, received events are queued until the process is resumed. If too many
events occur, the application mailbox would be overloaded, and this would lead the embedded
module to reset (an application task should not be suspended for a long time, if it is assumed to
continue to receive messages).

Note: When task 0 is suspended, embedded module will not respond to any AT commands coming from
external ports.

3.28.11. The adl_ctxSuspendExt Function
This function allows the application to suspend several application tasks processes. Theses process
can be resumed later thanks to the adl_ctxResume or adl_ctxResumeExt functions, which
should be called from interrupt handlers or from any other application task.

Prototype
s32 adl_ctxSuspendExt (u32 TasksCount,
 adl_ctxID_e* TasksIDArray);

Parameters

TasksCount:

Size of the TasksIDArray array parameter (number of tasks to be suspended).

TasksIDArray:

Array containing the identifiers of the tasks to be suspended. Valid values are in the 0 -
adl_ctxGetTasksCount range.

Returned values
• OK on success:

• ADL_RET_ERR_PARAM on parameter error (no task will be suspended).

• ADL_RET_ERR_BAD_STATE if the required task is already suspended (no task will be
suspended).

Note: If the function was called in the application task context, it will not return but just suspend the task.

Note: The OK value will be returned when the task process is resumed.

Note: While a task is suspended, received events are queued until the process is resumed. If too many
events occur, the application mailbox would be overloaded, and this would lead the embedded
module to reset (an application task should not be suspended for a long time, if it is assumed to
continue to receive messages).

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 278

ADL User Guide for Open AT® OS 6.35

3.28.12. The adl_ctxResume Function
This function allows the application to resume the Open AT® task process, previously suspended with
to the adl_ctxSuspend function.

Prototype
s32 adl_ctxResume (adl_ctxID_e Task);

Parameters

Task:

Task identifier to be suspended.

Valid values are in the 0 - adl_ctxGetTasksCount range.

Returned values
• OK on success:

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_BAD_STATE If the required task is not currently suspended.

Note: The required task is resumed as soon as the function is called.

Note: If the resumed task has a lower priority level than the current one, it will be scheduled as soon as the
current task process will be over.

Note: If the resumed task has a higher priority level than the current one, it will be scheduled as soon as the
function is called.

3.28.13. The adl_ctxResumeExt Function
This function allows the application to resume several Open AT® tasks processes, previously
suspended with to the adl_ctxSuspend or adl_ctxSuspendExt functions.

Prototype
s32 adl_ctxResumeExt (u32 TasksCount,
 adl_ctxID_e* TasksIDArray);

Parameters

TasksCount:

Size of the TasksIDArray array parameter (number of tasks to be suspended).

TasksIDArray:

Array containing the identifiers of the tasks to be suspended. Valid values are in the 0 -
adl_ctxGetTasksCount range.

Returned values
• OK on success:

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_BAD_STATE If the required task is not currently suspended (no task will be
resumed).

Note: The required task is resumed as soon as the function is called.

Note: If the resumed task has a lower priority level than the current one, it will be scheduled as soon as the
current task process will be over.

Note: If some resumed task have an higher priority level than the current one, it will be scheduled as soon
as the function is called.

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 279

ADL User Guide for Open AT® OS 6.35

3.28.14. The adl_ctxSleep Function
This function allows the application to put the current execution context to sleep for the required
duration. This context processing is frozen during this time, allowing other contexts to continue their
processing. When the sleep duration expires, the context is resumed and continues its processing.

Prototype
s32 adl_ctxSleep (u32 Duration);

Parameters

Duration:

Required sleep duration, in ticks number (18.5 ms granularity).

Returned values
• OK on success (when the function returns, the sleep duration has already elapsed).

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
Execution Context Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 280

ADL User Guide for Open AT® OS 6.35

3.28.15. Example
The code sample below illustrates a nominal use case of the ADL Execution Context Service public
interface (error cases are not handled).

// Somewhere in the application code, used as an event handler
void MyFunction (void)
{
 // Get the execution context state
 u32 Diagnose = adl_ctxGetDiagnostic();

 // Get the application tasks count
 u8 TasksCount = adl_ctxGetTasksCount();

 // Get the execution context
 adl_ctxID_e CurCtx = adl_ctxGetID();

 // Check for low level handler context
 if (CurCtx == ADL_CTX_LOW_LEVEL_IRQ_HANDLER)
 {

 // Get the interrupted context
 adl_ctxID_e InterruptedCtx = adl_ctxGetTaskID();
 }
 else
 {
 // Get the current task state
 adl_ctxState_e State = adl_ctxGetState (CurCtx);
 }
}

// Somewhere in the application code, used within an high level interrupt
handler
void MyIRQFunction (void)
{
 // Suspend the first application task
 adl_ctxSuspend (0);

 // Resume the first application task
 adl_ctxResume (0);

 // Put to sleep for some time...
 adl_ctxSleep (10);
}

API
ADL VariSpeed Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 281

ADL User Guide for Open AT® OS 6.35

3.29. ADL VariSpeed Service
The ADL VariSpeed service allows the embedded module clock frequency to be controlled, in order to
temporarily increase application performance.

Note: The Real Time Enhancement feature must be enabled on the embedded module in order to make this
service available.

Note: The Real Time Enhancement feature state can be read thanks to the
AT+WCFM=5 command response value:
This feature state is represented by the bit 4 (00000010 in hexadecimal format).

Note: Please contact your Sierra Wireless distributor for more information on how to enable this feature on
the embedded module.

3.29.1. Required Header File
The header file for the VariSpeed service is:

adl_vs.h

3.29.2. The adl_vsMode_e Type
This type defines the available CPU modes for the VariSpeed Service.

typedef enum
{
 ADL_VS_MODE_STANDARD,
 ADL_VS_MODE_BOOST,
 ADL_VS_MODE_LAST // Reserved for internal use
} adl_vsMode_e;

The ADL_VS_MODE_STANDARD constant identifies the standard CPU clock mode (default CPU mode on
startup).

The ADL_VS_MODE_BOOST constant can be used by the application to make the embedded module
enter a specific boost mode, where the CPU clock frequency is set to its maximum value.

Caution: In boost mode, the embedded module power consumption increases significantly.
For more information, refer to the Embedded module Power Consumption Mode documentation.

The CPU clock frequencies of the available modes are listed below:

Modes CPU Clock Frequency

..._STANDARD 26 MHz

..._BOOST 104 MHz"

API
ADL VariSpeed Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 282

ADL User Guide for Open AT® OS 6.35

3.29.3. The adl_vsSubscribe Function
This function allows the application to get control over the VariSpeed service. The VariSpeed service
can only be subscribed one time.

Prototype
s32 adl_vsSubscribe (void);

Parameters

None

Returned values
• A positive or null value on success:

 VariSpeed service handle, to be used in further service function calls.

• A negative error value otherwise:

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the service has already been subscribed.

 ADL_RET_ERR_NOT_SUPPORTED if the Real Time enhancement feature is not enabled on
the embedded module.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler (the function is forbidden in this context).

3.29.4. The adl_vsSetClockMode Function
This function allows the application to modify the speed of the CPU clock.

Prototype
s32 adl_vsSetClockMode (s32 VsHandle,

 adl_vsMode_e ClockMode);

Parameters

VsHandle:

VariSpeed service handle, previously returned by the adl_vsSubscribe function.

ClockMode:

Required clock mode. Refer to adl_vsMode_e type definition for more information.

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

• ADL_RET_ERR_PARAM if the supplied clock mode value is wrong.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

API
ADL VariSpeed Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 283

ADL User Guide for Open AT® OS 6.35

3.29.5. The adl_vsUnsubscribe function
This function allows the application to unsubscribe from the VariSpeed service control. The CPU
mode is reset to the standard speed.

Prototype
s32 adl_vsUnsubscribe (s32 VsHandle);

Parameters

VsHandle:

VariSpeed service handle, previously returned by the adl_vsSubscribe function.

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HDL if the supplied handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.29.6. Example
This example demonstrates how to use the VariSpeed service in a nominal case (error cases are not
handled).

// Global variable: VariSpeed service handle
s32 MyVariSpeedHandle;

// Somewhere in the application code, used as event handlers
void MyFunction1 (void)
{
 // Subscribe to the VariSpeed service
 MyVariSpeedHandle = adl_vsSubscribe();

 // Enter the boost mode
 adl_vsSetClockMode (MyVariSpeedHandle, ADL_VS_MODE_BOOST);
}
void MyFunction2 (void)
{
 // Un-subscribe from the VariSpeed service
 adl_vsUnsubscribe (MyVariSpeedHandle);
}

API
ADL DAC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 284

ADL User Guide for Open AT® OS 6.35

3.30. ADL DAC Service
The Digital Analog Converter service offers to the customer entities the ability to convert a digital
value code of a certain resolution into an analog signal level voltage.

The defined operations are:

• A function adl_dacSubscribe to set the reserved DAC parameters.

• A function adl_dacUnsubscribe to un-subscribes from a previously allocated DAC handle.

• A function adl_dacWrite to allow a DACs to be write from a previously allocated handle.

• A function adl_dacAnalogWrite to allow a DAC to be write from a previously allocated
handle.

• A function adl_dacRead to allow a DAC to be read from a previously allocated handle.

• A function adl_dacAnalogRead to allow a DAC to be read from a previously allocated handle.

3.30.1. Required Header File
The header file for the functions dealing with the DAC interface is:

adl_dac.h

3.30.2. Data Structure

3.30.2.1. The adl_dacParam_t Structure

DAC channel initialization parameters.

Code
typedef struct
{
 u32 InitialValue
}adl_dacparam_t

Description

InitialValue

Raw value to set in the register of the DAC.

API
ADL DAC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 285

ADL User Guide for Open AT® OS 6.35

3.30.3. Defines

3.30.3.1. ADL_DAC_CHANNEL_1

Former constant used to identify the first DAC channel.

#define ADL_DAC_CHANNEL_1 0

3.30.4. Enumerations

3.30.4.1. The adl_dacType_e

Definition of DAC type.

Code
typedef enum
{
 ADL_DAC_TYPE_GEN_PURPOSE // General Purpose DAC

} adl_dacType_e

3.30.5. The adl_dacSubscribe Function
This function subscribes to a DAC channel.

Prototype
s32 adl_dacSubscribe (u32 Channel,

 adl_dacParam_t * DacConfig);

Parameters

Channel:

DAC channel identifier.

DacConfig

DAC subscription configuration (using adl_dacParam_t).

Returned values
• A positive or null value on success:

 DAC handle to be used on further DAC API functions calls.

• A negative error value otherwise (No DAC is reserved):

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_ALREADY_SUBSCRIBED if the required channel has already been subscribed.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler.

 ADL_RET_ERR_NOT_SUPPORTED if the current embedded module does not support the DAC
service.

API
ADL DAC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 286

ADL User Guide for Open AT® OS 6.35

3.30.6. The adl_dacUnsubscribe Function
This function un-subscribes from a previously allocated DAC handle.

Prototype
s32 adl_dacUnsubscribe (s32 DacHandle);

Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler.

3.30.7. The adl_dacWrite Function
This function writes the digital value on DACs previously allocated.

Prototype
s32 adl_dacWrite (s32 DacHandle,
 u32 DacWrite);

Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacWrite

New DAC settings to set.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler and the DAC used cannot be called under interrupt context.

3.30.8. The adl_dacAnalogWrite Function
This function writes a analog value in mV on a DAC previously allocated.

Prototype
s32 adl_dacAnalogWrite (s32 DacHandle,
 s32 DacWritemV);

API
ADL DAC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 287

ADL User Guide for Open AT® OS 6.35

Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacWritemV

New DAC settings to set (in mV).

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler and the DAC used cannot be called under interrupt context.

3.30.9. The adl_dacRead Function
This function reads the last written value on a DAC.

Prototype
s32 adl_dacRead (s32 DacHandle,
 u32* DacRead);

Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacRead

DAC digital value.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown

3.30.10. The adl_dacAnalogRead Function
This function reads the last written value on a DAC.

Prototype
s32 adl_dacAnalogRead (s32 DacHandle,
 s32* DacReadmV);

API
ADL DAC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 288

ADL User Guide for Open AT® OS 6.35

Parameters

DacHandle:

Handle previously returned by adl_dacSubscribe function.

DacReadmV

DAC analog value in mV.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_UNKNOWN_HDL if the handle is unknown.

3.30.11. Capabilities
ADL provides informations to get DAC capabilities.

The following entries have been defined in the registry:

Registry entry Type Description

dac_NbBlocks INTEGER The number of DAC blocks available

dac_xx_DigitInitValue INTEGER
Digital value at DAC resource allocation.
dac_xx_DigitInitValue is set at -1 if the default
value is unknown.

dac_xx_MaxRefVoltage INTEGER Reference voltage of the DAC output when the
maximal digital value is set.

dac_xx_MinRefVoltage INTEGER Reference voltage of the DAC output when the
minimal digital value is set.

dac_xx_Resolution INTEGER DAC resolution in steps.

dac_xx_DacType INTEGER DAC type, see section adl_dacType_e.

dac_xx_InterruptContextUsed INTEGER This value is set to 1 if DAC write operations can
be called under interrupt context

Note: For the registry entry the xx part must be replaced by the number of the instance.
Example: if you want the Resolution capabilities of the DAC02 block, the registry entry to use will be
dac_02_Resolution.

Note: DACs will be identified with a number as 0, 1, 2, dac_NbBlocks-1.

Note: For each block, the settling time capabilities are defined in the PTS.

API
ADL DAC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 289

ADL User Guide for Open AT® OS 6.35

3.30.12. Example
The sample DAC illustrates a nominal use case of the ADL DAC Service public interface.

// Global variable
 s32 MyDACHandle;
 u32 MyDACID = 1;

 …

 // Somewhere in the application code, used as an event handler
 void MyFunction (void)
 {
 // Initialization structure
 adl_dacParam_t InitStruct = { 0 };

 // Subscribe to the DAC service
 MyDACHandle = adl_dacSubscribe (MyDACID , &InitStruct);

 // Write a value on the DAC block
 adl_dacWrite (MyDACHandle, 80);

 ...

 // Write another value on the DAC block
 adl_dacWrite (MyDACHandle, 190);

 ...

 // Write a analog value on the DAC block (1500 mV)
 adl_dacAnalogWrite (MyDACHandle, 1500);

 ...

 {
 s32 AnalogValue;
 // Read the last analog value write on the DAC block
 adl_dacAnalogRead (MyDACHandle , &AnalogValue);

 ...
 }

 ...

 {
 u32 Value;
 // Read the last register value write on the DAC block
 adl_dacRead (MyDACHandle , &Value);

 ...
 }

 // Unsubscribe from the DAC service
 adl_dacUnsubscribe (MyDACHandle);
 }

API
ADL ADC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 290

ADL User Guide for Open AT® OS 6.35

3.31. ADL ADC Service
The goal of the ADC service is to offer all the interfaces to handle application using ADC for voltage
level measurement such as temperature and battery level monitoring purposes. The ADC interface
provides also a way to get analog value from various sources. The ADC is a circuit section that
converts low frequency analog signals, like battery voltage or temperature, to digital value.

The defined operations are:

• A function adl_adcRead to read a ADC register value.

• A function adl_adcAnalogRead to read a ADC analog value in mV.

3.31.1. Required Header File
The header file for the functions dealing with the ADC interface is:

adl_adc.h

3.31.2. The adl_adcRead Function
 This function allows ADCs to be read. For this operation, it is not necessary to subscribe to ADC
previously.

Prototype
s32 adl_adcRead (u32 ChannelID,

 u32* AdcRawValue);

Parameters

ChannelID:

Channel ID of the ADC to read.

AdcRawValue

The value of the ADC register.

Returned values
• A OK on success (read values are updated in the AdcRawValue parameter)

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler and the ADC used cannot be called under interrupt context.

3.31.3. The adl_adcAnalogRead Function
 This function allows ADCs to be read. For this operation, it is not necessary to subscribe to ADC
previously.

Prototype
s32 adl_adcAnalogRead (u32 ChannelID,

 s32* AdcValuemV);

API
ADL ADC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 291

ADL User Guide for Open AT® OS 6.35

Parameters

ChannelID:

Channel ID of the ADC to read.

AdcValuemV

The value corresponding to the register Value of the ADC voltage in mV.

Returned values
• A OK on success (read values are updated in the AdcValuemV parameter)

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if one parameter has an incorrect value.

 ADL_RET_ERR_SERVICE_LOCKED if the function was called from a low level interrupt
handler and the ADC used can not be called under interrupt context.

3.31.4. Capabilities
ADL provides informations to get ADC capabilities.

The following entries have been defined in the registry:

Registry entry Type Description

adc_NbBlocks INTEGER The number of ADC blocks available

adc_xx_ResolutionsBits INTEGER To get on how many bits, is coded the result.

adc_xx_ MaxInputRange INTEGER The minimum input voltage in mV supported by
each ADC.

adc_xx_ MinInputRange INTEGER The maximum input voltage in mV supported by
each ADC.

adc_xx_InterruptContextUsed INTEGER This value is set to 1, if ADC read functions can
be called under interrupt context

Note: For the registry entry the xx part must be replaced by the number of the instance.
Example: if you want the Resolution Bits capabilities of the ADC02 block the registry entry to use will
be adc_02_ResolutionBits.

Note: ADCs will be identified with a number as 0, 1, 2, adc_NbBlocks-1.

Note: For each block, the sampling time capability is defined in the PTS.

API
ADL ADC Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 292

ADL User Guide for Open AT® OS 6.35

3.31.5. Example
The code sample below illustrates a nominal use case of the ADL ADC Service public interface (error
cases are not handled).

// ADC read functions

 // Read ADC Raw Value
 u32 My_adcReadRawValue (u32 My_adcID)
 {
 // Variable to store ADC voltage information
 u32 My_adcValue;

 // Read the ADC
 adl_adcRead (My_adcID , &My_adcValue);

 return (My_adcValue);
 }

 // Read ADC value in mV
 u32 My_adcReadValue (u32 My_adcID)
 {
 // Variable to store ADC voltage information
 s32 My_adcValue_mV;

 // Read the ADC
 adl_adcAnalogRead (My_adcID , &My_adcValue_mV);

 return (My_adcValue_mV);
 }

API
ADL Queue Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 293

ADL User Guide for Open AT® OS 6.35

3.32. ADL Queue Service
ADL supplies this interface to provide to applications thread-safe queue service facilities, usable from
any execution context.

The defined operations are:

• A subscription function adl_queueSubscribe to create a queue resource.

• An unsubscription function adl_queueUnsubscribe to delete a queue resource.

• A state query function adl_queueIsEmpty to check if it remains items in the queue.

• item handling functions adl_queuePushItem & adl_queuePopItem to queue and de-queue
items.

3.32.1. Required Header File
The header file for the functions dealing with the Queue interface is:

adl_queue.h

3.32.2. The adl_queueOptions_e Type
This type allows to define the behaviour of a queue resource.

typedef enum
{
 ADL_QUEUE_OPT_FIFO,
 ADL_QUEUE_OPT_LIFO,
 ADL_QUEUE_OPT_LAST //Reserved for internal use

} adl_queueOptions_e;

Description

ADL_QUEUE_OPT_FIFO: First In, First Out: the first pushed item will
be retrieved first.

ADL_QUEUE_OPT_LIFO: Last In, First Out: the last pushed item will
be retrieved first.

3.32.3. The adl_queueSubscribe Function
 This function allows the application to create a thread-safe queue resource. The obtained handle is
then usable with the other service operations.

Prototype
s32 adl_queueSubscribe (adl_queueOptions_e Option);

Parameter

Option

Allows to configure the behaviour of the queue resource, using one of the
adl_queueOptions_e type values.

API
ADL Queue Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 294

ADL User Guide for Open AT® OS 6.35

Returned values
• Handle A positive queue service handle on success.

• ADL_RET_ERR_PARAM on parameter error.

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.32.4. The adl_queueUnsubscribe Function
 This function allows the application to release a previously subscribed queue resource, if this one is
empty.

Prototype
s32 adl_queueUnsubscribe (s32 Handle);

Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe function.

Returned values
• OK on success

• ADL_RET_ERR_BAD_STATE If the provided queue resource is not empty; it shall be firstly
emptied thanks to the adl_queuePopItem function.

• ADL_RET_ERR_UNKNOWN_HDL If the provided handle is invalid

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt handler
(the function is forbidden in this context).

3.32.5. The adl_ queueIsEmpty Function
 This function informs the application, if items remain in the provided queue.

Prototype
s32 adl_queueIsEmpty (s32 Handle);

Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe function.

Returned values
• FALSE If it remains at least one item in the queue

• TRUE If the queue is empty.

• ADL_RET_ERR_UNKNOWN_HDL If the provided handle is invalid.

3.32.6. The adl_ queuePushItem Function
 This function allows the application to add an item at the end of the provided queue resource.

Prototype
s32 adl_queuePushItem (s32 Handle,

 void* Item);

API
ADL Queue Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 295

ADL User Guide for Open AT® OS 6.35

Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe function.

Item

Pointer on the application item; this parameter cannot be NULL

Returned values
• OK on success.

• ADL_RET_ERR_UNKNOWN_HDL If the provided handle is invalid.

• ADL_RET_ERR_PARAM on parameter error (Bad item pointer).

Exceptions
• 144: Raised if too many items are pushed in the queue.

Note: This function is thread-safe, and shall be called from any execution context.
This means that operations on queue items are performed under a critical section, in which the
current context cannot be pre-empted by any other context.

3.32.7. The adl_ queuePopItem Function
This function allows the application to retrieve an item from the provided queue resource, according to
the defined behaviour at subscription time (cf. adl_queueSubscribe function):

• If the queue option is ADL_QUEUE_OPT_FIFO, the first pushed item is retrieved by the
function

• If the queue option is ADL_QUEUE_OPT_LIFO, the last pushed item is retrieved by the
function.

Prototype
void* adl_queuePopItem (s32 Handle);

Parameters

Handle:

A queue service handle, previously returned by the adl_queueSubscribe function.

Returned values
• Item on success, a pointer on the de-queued item.

• NULL If the provided handle is unknown, or if the related queue is empty.

Note: This function is thread-safe, and shall be called from any execution context.

Note: This means that operations on queue items are performed under a critical section, in which the
current context cannot be pre-empted by any other context.

API
ADL Queue Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 296

ADL User Guide for Open AT® OS 6.35

3.32.8. Example
The code sample below illustrates a nominal use case of the ADL Queue service public interface
(error cases are not handled).

// Event handler, somewhere in the application
void MyFunction (void)
{
 // Queue handle
 s32 MyHandle;

 // Queue state
 s32 State;

 // Item definitions
 u32 MyItem1, MyItem2, *GotItem1, *GotItem2;

 // Create a FIFO queue resource
 MyHandle = adl_queueSubscribe(ADL_QUEUE_OPT_FIFO);

 // Check the queue state (shall be empty)
 State = adl_queueIsEmpty (MyHandle);

 // Push items
 adl_queuePushItem (MyHandle, &MyItem1);
 adl_queuePushItem (MyHandle, &MyItem2);

 // Check the queue state (shall not be empty)
 State = adl_queueIsEmpty (MyHandle);

 // Pop items (retrieved in FIFO order)
 GotItem1 = adl_queuePopItem (MyHandle);
 GotItem2 = adl_queuePopItem (MyHandle);

 // Check the queue state (shall be empty)
 State = adl_queueIsEmpty (MyHandle);

 // Delete the queue resource
 adl_queueUnsubscribe (MyHandle);
}

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 297

ADL User Guide for Open AT® OS 6.35

3.33. ADL Audio Service
The ADL Audio Service allows to handle audio resources, and play or listen supported audio formats
on these resources (single/dual tones, DTMF tones, melodies, PCM audio streams, decoded DTMF
streams).

The defined operations are:

• An adl_audioSubscribe function to subscribe to an audio resource.

• An adl_audioUnsubscribe function to unsubscribe from an audio resource.

• An adl_audioTonePlay function to play a single/dual tone.

• An adl_audioDTMFPlay function to play a DTMF tone.

• An adl_audioMelodyPlay function to play a melody.

• An adl_audioTonePlayExt function to play a single/dual tone (extension).

• An adl_audioDTMFPlayExt function to play a DTMF tone (extension).

• An adl_audioMelodyPlayExt function to play a melody (extension).

• An adl_audioStreamPlay function to play an audio stream.

• An adl_audioStreamListen function to listen to an audio stream.

• An adl_audioStop function to stop playing or listening.

• An adl_audioSetOption function to set audio options.

• An adl_audioGetOption function to get audio options

3.33.1. Required Header File
The header file for the functions dealing with the Audio service interface is:

adl_audio.h

3.33.2. Data Structures

3.33.2.1. The adl_audioDecodedDtmf_u Union

This union defines different types of buffers which are used according to the decoding mode (Raw
mode enable or disable) when listening to an audio DTMF stream.
(refer to ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about Raw mode).

Code
typedef union
{
 ascii DecodedDTMFChars
 [ADL_AUDIO_MAX_DTMF_PER_FRAME]
 adl_audioPostProcessedDecoder_t PostProcessedDTMF
} adl_audioDecodedDtmf_u;

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 298

ADL User Guide for Open AT® OS 6.35

Description

DecodedDTMFChars:

This field contains decoded DTMF in Raw mode.

PostProcessedDTMF:

This field contains information about decoded DTMF and decoding post-process. (Refer to
adl_audioPostProcessedDecoder_t for more information).

3.33.2.2. The adl_audioPostProcessedDecoder_t Structure

This structure allows the application to handle post-processed DTMF data when listening to an audio
DTMF stream with Raw mode deactivated.
(Refer to ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about Raw mode).

Code
typedef struct
{
 u32 Metrics;
 u32 Duration;
 ascii DecodedDTMF
} adl_audioPostProcessedDecoder_t;

Description

Metrics:

Processing metrics, contains information about DTMF decoding process. Reserved for
Future Use.

Duration:

DTMF duration, contains post-processed DTMF duration, in ms

DecodedDTMF:

PostProcessed DTMF buffer contains decoded DTMF.

3.33.2.3. The adl_audioStream_t Structure

This structure allows the application to handle data buffer according to the audio format when an
audio stream interrupt occurs during a playing (adl_audioStreamPlay) or a listening to
(adl_audioStreamListen) an audio stream.

Code
typedef struct
{
 adl_audioFormats_e audioFormat;
 adl_audioStreamDataBuffer_u * DataBuffer;
 bool * BufferReady;
 bool * BufferEmpty;
 bool * BufferOverwrite
} adl_audiostream_t;

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 299

ADL User Guide for Open AT® OS 6.35

Description

audioFormat:

Stream audio format (refer to adl_audioFormats_e for more information)

DataBuffer:

Audio data exchange buffer:

 This field stores audio sample during an audio PCM stream listening or decoded DTMF
during an audio DTMF stream listening.

 It contains audio sample to play during an audio PCM stream playing. (Refer to 3.33.2.4
adl_audioStreamDataBuffer_u structure for more information).

BufferReady:

This flag is used for audio stream playing and listening process:

 When an audio stream is played, each time an interruption occurs this flag has to set to
TRUE when data buffer is filled. If this flag is not set to TRUE, an ‘empty’ frame
composed of 0x0 will be sent and set the BufferEmpty flag to TRUE. Once the sample is
played BufferReady is set to FALSE by the firmware.

 When an audio stream is listened, each time an interruption occurs this flag has to be set
to FALSE when data buffer is read. If this flag is not set to FALSE, then firmware will set
BufferOverwrite flag to TRUE. This pointer is initialized only when an audio stream is
played or listened. Currently, it is only used for PCM stream playing and listening.

BufferEmpty:

When an audio stream is played, this flag is set to TRUE when empty data buffer is played
(for example, when an interruption is missing). This flag is used only for information and it
has to be set to FALSE by application. This pointer is initialized only when an audio
stream is played. Currently, it is used only for PCM stream playing.

BufferOverwrite:

When an audio stream is listened, this flag is set to TRUE when the last fame has been
overwritten (for example, when an interruption is missing). This flag is used just for
information, it has to be set to FALSE by application each time it accesses the data buffer.
This pointer is initialized only when an audio stream is listened. Currently, it is only
used for PCM stream listening.

3.33.2.4. The adl_audioStreamDataBuffer_u Union

This union defines different types of buffers, which are used according to the audio format when an
audio stream interruption occurs.

Code
typedef union
{
 u8 PCMData [1];
 u8 AMRData [1];
 adl_audioDecodedDtmf_u DTMFData
} adl_audiostreamDataBuffer_u;

Description

PCMData [1]:

PCM stream data buffer.

This buffer is used when playing or listening to an audio PCM stream.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 300

ADL User Guide for Open AT® OS 6.35

AMRData [1]:

AMR stream data buffer.

This buffer is used when playing to an audio AMR / AMR-WB stream.

DTMFData:

DTMF stream data buffer.

This buffer stores decoded DTMF when listening to an audio DTMF stream according to the
decoding mode which is used. Please refer to 3.33.2.1 adl_audioDecodedDtmf_u for
more information about DTMF buffer structure and
ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about decoding
modes.

3.33.3. Defines

3.33.3.1. ADL_ AUDIO_MAX_DTMF_PER_FRAME

This constant defines maximal number of received DTMFs each time interrupt handlers are called
when a listening to a DTFM stream in Raw mode (Refer to
ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for more information about Raw mode).

Code:
#define ADL_AUDIO_MAX_DTMF_PER_FRAME 2

3.33.3.2. ADL_AUDIO_NOTE_DEF

This macro is used to define the note value to play according to the note definition, the scale and the
note duration.

To play a melody, each note defines in the melody buffer has to be defined with this macro (see
section adl_audioMelodyPlay function).

Code:
#define ADL_AUDIO_NOTE_DEF (ID,
 Scale,
 Duration)(((ID)+(Scale*12))<<8)+(Duration));

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 301

ADL User Guide for Open AT® OS 6.35

Parameters

ID :

This parameter corresponds to the note identification. Please refer to the code below for the
Group Notes identification for melody.

 #define ADL_AUDIO_C 0x01 //C

 #define ADL_AUDIO_CS 0x02 //C #

 #define ADL_AUDIO_D 0x03 //D
 #define ADL_AUDIO_DS 0x04 //D #
 #define ADL_AUDIO_E 0x05 //E

 #define ADL_AUDIO_F 0x06 //F

 #define ADL_AUDIO_FS 0x07 //F #

 #define ADL_AUDIO_G 0x08 //G

 #define ADL_AUDIO_GS 0x09 //G #
 #define ADL_AUDIO_A 0x0A //A

 #define ADL_AUDIO_AS 0x0B //A #
 define ADL_AUDIO_B 0x0C //B

 #define ADL_AUDIO_NO_SOUND 0xFF //No sound

Scale:

This parameter defines the note scale (0 - 7).

Duration:

This parameter defines the note duration. Please refer to the Group Notes Durations code
below to see the set of note durations which are available.

 #define ADL_AUDIO_WHOLE_NOTE 0x10 //Whole note
 #define ADL_AUDIO_HALF 0x08 //Half note
 #define ADL_AUDIO_QUARTER 0x04 //Quarter note
 #define ADL_AUDIO_EIGHTH 0x02 //Eighth note
 #define ADL_AUDIO_SIXTEENTH 0x01 //Sixteenth note
 #define ADL_AUDIO_DOTTED_HALF 0x0C //Dotted half note
 #define ADL_AUDIO_DOTTED_QUARTER 0x06 //Dotted quarter
 #define ADL_AUDIO_DOTTED_EIGHTH 0x03 //Dotted Eighth

3.33.4. Enumerations

3.33.4.1. The adl_ audioResources_e Type

This type lists the available audio resources of the embedded module, including the local ones
(plugged to the embedded module itself) and the ones related to any running voice call. These
resources are usable either to play a pre-defined/stream audio format (output resources), or to listen
to an incoming audio stream (input resources).

Code
typedef enum
{
 ADL_AUDIO_SPEAKER,
 ADL_AUDIO_BUZZER,
 ADL_AUDIO_MICROPHONE,
 ADL_AUDIO_VOICE_CALL_RX,
 ADL_AUDIO_VOICE_CALL_TX
} adl_audioResources_e;

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 302

ADL User Guide for Open AT® OS 6.35

Description

ADL_AUDIO_SPEAKER: Current speaker (output resource; please refer to the AT
Command interface guide for more information on how to
select the current speaker).

ADL_AUDIO_BUZZER: Buzzer (output resource, just usable to play single frequency
tones & melodies).

ADL_AUDIO_MICROPHONE: Current microphone (input resource; please refer to the AT
Command interface guide for more information on how to
select the current microphone).

ADL_AUDIO_VOICE_CALL_RX: Running voice call incoming channel (input resource,
available when a voice call is running to listen to audio
streams).

ADL_AUDIO_VOICE_CALL_TX: Running voice call outgoing channel (output resource,
available when a voice call is running to play audio streams).

3.33.4.2. The adl_audioResourceOption_e Type

This type defines the audio resource subscription options.

Code
typedef enum
{
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION = 0x00,
 ADL_AUDIO_RESOURCE_OPTION_ALLOW_PREEMPTION = 0x01
} adl_audioResourceOption_e;

Description
ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION:

Never allows prioritary uses of the resource (the resource subscriber owns the resource until
unsubscription time).

ADL_AUDIO_RESOURCE_OPTION_ALLOW_PREEMPTION:

Allows prioritary uses of the resource (such as incoming voice call melody, outgoing voice
call tone play, SIM Toolkit application tone play).

3.33.4.3. The adl_audioFormats_e Type

This type defines the audio stream formats for audio stream playing/listening processes.

Code
typedef enum
{
 ADL_AUDIO_DTMF //Decoded DTMF sequence

 ADL_AUDIO_PCM_MONO_8K_16B //PCM mono 16 bits/8 KHz Audio sample

 ADL_AUDIO_PCM_MONO_16K_16B //PCM mono 16 bits/16 KHz Audio sample

 ADL_AUDIO_AMR //AMR/AMR-WB Audio sample
} adl_audioFormats_e;

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 303

ADL User Guide for Open AT® OS 6.35

3.33.4.4. The adl_audioInstance_e Type

Instance set of the audio interrupt event which occurs when audio stream listening or playing is
started. Refer to Instance field in adl_irqEventData_t structure for more information.

Code
typedef enum
{
 ADL_AUDIO_DTMF_INSTANCE,
 ADL_AUDIO_PCM_INSTANCE,
 ADL_AUDIO_AMR_INSTANCE
} adl_audioInstance_e;

Description
ADL_AUDIO_DTMF_INSTANCE:

For DTMF decoding interruption.

ADL_AUDIO_PCM_INSTANCE:

When audio stream recording or playing is started with ADL_AUDIO_PCM_MONO_8K_16B or
ADL_AUDIO_PCM_MONO_16K_16B format.

ADL_AUDIO_AMR_INSTANCE:

When audio stream recording or playing is started with ADL_AUDIO_AMR format

3.33.4.5. The adl_audioAmrCodecRate_e Type

Available speech codec rate for audio ARM / AMR-WB stream playing process.

Code
typedef enum
{
 ADL_AUDIO_AMR_RATE_4_75,
 ADL_AUDIO_AMR_RATE_5_15,
 ADL_AUDIO_AMR_RATE_5_90,
 ADL_AUDIO_AMR_RATE_6_70,
 ADL_AUDIO_AMR_RATE_7_40,
 ADL_AUDIO_AMR_RATE_7_95,
 ADL_AUDIO_AMR_RATE_10_20,
 ADL_AUDIO_AMR_RATE_12_20,
 ADL_AUDIO_AMR_WB_RATE_6_60,
 ADL_AUDIO_AMR_WB_RATE_8_85,
 ADL_AUDIO_AMR_WB_RATE_12_65,
 ADL_AUDIO_AMR_WB_RATE_14_25,
 ADL_AUDIO_AMR_WB_RATE_15_85,
 ADL_AUDIO_AMR_WB_RATE_18_25,
 ADL_AUDIO_AMR_WB_RATE_19_85,
 ADL_AUDIO_AMR_WB_RATE_23_05,
 ADL_AUDIO_AMR_WB_RATE_23_85
} adl_audioAmrCodecRate_e;

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 304

ADL User Guide for Open AT® OS 6.35

Description
ADL_AUDIO_AMR_RATE_4_75:

AMR codec rate 4.75 kb/s.

ADL_AUDIO_AMR_RATE_5_15:

AMR codec rate 5.15 kb/s.

ADL_AUDIO_AMR_RATE_5_90:

AMR codec rate 5.90 kb/s.

ADL_AUDIO_AMR_RATE_6_70:

AMR codec rate 6.70 kb/s.

ADL_AUDIO_AMR_RATE_7_40:

AMR codec rate 7.40 kb/s.

ADL_AUDIO_AMR_RATE_7_95:

AMR codec rate 7.95 kb/s.

ADL_AUDIO_AMR_RATE_10_20:

AMR codec rate 10.20 kb/s.

ADL_AUDIO_AMR_RATE_12_20:

AMR codec rate 12.20 kb/s.

ADL_AUDIO_AMR_WB_RATE_6_60:

AMR-WB codec rate 6.60 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE.

ADL_AUDIO_AMR_WB_RATE_8_85:

AMR-WB codec rate 8.85 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

ADL_AUDIO_AMR_WB_RATE_12_65:

AMR-WB codec rate 12.65 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

ADL_AUDIO_AMR_WB_RATE_14_25:

AMR-WB codec rate 14.25 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

ADL_AUDIO_AMR_WB_RATE_15_85:

AMR-WB codec rate 15.85 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

ADL_AUDIO_AMR_WB_RATE_18_25:

AMR-WB codec rate 18.25 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

ADL_AUDIO_AMR_WB_RATE_19_85:

AMR-WB codec rate 19.85 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

ADL_AUDIO_AMR_WB_RATE_23_05:

AMR-WB codec rate 23.05 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

ADL_AUDIO_AMR_WB_RATE_23_85:

AMR-WB codec rate 23.85 kb/s, refer to ADL_::AUDIO_AMR_WB_AVAILABLE

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 305

ADL User Guide for Open AT® OS 6.35

3.33.4.6. The adl_audioEvents_e Type

Set of events that will be notified by ADL to audio event handlers.

Code
typedef enum
{
 ADL_AUDIO_EVENT_NORMAL_STOP,
 ADL_AUDIO_EVENT_RESOURCE_RELEASED
} adl_audioEvents_e;

Description
ADL_AUDIO_EVENT_NORMAL_STOP:

A pre-defined audio format play has ended (please refer to adl_audioDTMFPlay,
adl_audioTonePlay or adl_audioMelodyPlay for more information). This event is not sent on
a request to stop from application.

ADL_AUDIO_EVENT_RESOURCE_RELEASED:

Resource has been automatically unsubscribed due to a prioritary use by the embedded
module (please refer to the ADL_AUDIO_RESOURCE_OPTION_ALLOW_PREEMPTION
option and adl_audioSubscribe for more information).

3.33.4.7. The adl_audioOptionTypes_e Type

This type includes a set of options readable and writable through the adl_audioSetOption and
adl_audioGetOption functions. These options allow to configure the embedded module audio
service behaviour, and to get this audio service capabilities and parameters ranges.

For each option, the value type is specified, and a specific keyword indicates the option access:

• R: the option is only readable.

• RW: the option is both readable & writable.

Note: For more information about indicative values which should be returned when reading options for
MIN/MAX values, please refer to the Audio Commands chapter of the AT Commands Interface Guide.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 306

ADL User Guide for Open AT® OS 6.35

Code
typedef enum
{
 ADL_AUDIO_DTMF_DETECT_BLANK_DURATION,
 ADL_AUDIO_MAX_FREQUENCY,
 ADL_AUDIO_MIN_FREQUENCY,
 ADL_AUDIO_MAX_GAIN,
 ADL_AUDIO_MIN_GAIN,
 ADL_AUDIO_MAX_DURATION,
 ADL_AUDIO_MIN_DURATION,
 ADL_AUDIO_MAX_NOTE_VALUE,
 ADL_AUDIO_MIN_NOTE_VALUE,
 ADL_AUDIO_DTMF_RAW_STREAM_BUFFER_SIZE,
 ADL_AUDIO_DTMF_PROCESSED_STREAM_BUFFER_SIZE,
 ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE,
 ADL_AUDIO_PCM_16K_16B_MONO_BUFFER_SIZE,
 ADL_AUDIO_AMR_WB_AVAILABLE,
 ADL_AUDIO_AMR_SPEECH_CODEC_RATE,
 ADL_AUDIO_AMR_MIXED_VOICE,
 ADL_AUDIO_AMR_BUFFER_SIZE,
 ADL_AUDIO_RAW_DTMF_SAMPLE_DURATION
} adl_audioOptionTypes_e;

Description
ADL_AUDIO_DTMF_DETECT_BLANK_DURATION

RW: DTMF decoding option (u16); it allows to define the blank duration (ms) in order to
detect the end of a DTMF. This value will act on the embedded module behaviour to return
information about DTMF when listening to a DTMF audio stream. The value must be a
multiple of value returned by ADL_AUDIO_RAW_DTMF_SAMPLE_DURATION option multiplied
by ADL_AUDIO_MAX_DTMF_PER_FRAME.

If a NULL value is specified, DTMF decoder will be in Raw mode (default), Raw data coming
from DTMF decoder are sent via interrupt handlers with a frequency which depends on value
returned by ADL_AUDIO_RAW_DTMF_SAMPLE_DURATION option multiplied by
ADL_AUDIO_MAX_DTMF_PER_FRAME. This mode requires to implement an algorithm to
detect the relevant DTMF. (Refer to adl_audioDecodedDtmf_u ::DecodedDTMFChars for
more information about buffer type used).

Otherwise, the Raw mode is disabled. The value specifies the blank duration which notifies
the end of DTMF. Each time a DTMF is detected, interrupt handlers are called. (Refer to
adl_audioPostProcessedDecoder_t structure for more information about stored data).

ADL_AUDIO_MAX_FREQUENCY

R: allows to get the maximum frequency allowed to be played on the required output
resource (please refer to adl_audioResourceOption_e for more information). The returned
frequency value is defined in Hz (u16).

ADL_AUDIO_MIN_FREQUENCY

R: allows to get the minimum frequency allowed to be played on the required output
resource (please refer to adl_audioResourceOption_e for more information). The returned
frequency value is defined in Hz (u16).

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 307

ADL User Guide for Open AT® OS 6.35

ADL_AUDIO_MAX_GAIN

R: supplies the maximum gain which can be set to play a pre-defined audio format (please
refer to adl_audioDTMFPlayExt, adl_audioTonePlayExt or adl_audioMelodyPlayExt for
more information). The returned gain value is defined in 1/100 of dB (s16). This value can be
retrieved only with ADL_AUDIO_SPEAKER and ADL_AUDIO_BUZZER audio resource handle.
Otherwise, an error will be returned.

ADL_AUDIO_MIN_GAIN

R: supplies the minimum gain which can be set to play a pre-defined audio format (please
refer to adl_audioDTMFPlayExt, adl_audioTonePlayExt or adl_audioMelodyPlayExt for
more information). The returned gain value is defined in 1/100 of dB (s16). This value can be
retrieved only with ADL_AUDIO_SPEAKER and ADL_AUDIO_BUZZER audio resource handle.
Otherwise, an error will be returned.

ADL_AUDIO_MAX_DURATION

R: supplies the maximum duration which can be set to play a DTMF tone or a single/dual
tone (please refer to adl_audioDTMFPlay or adl_audioTonePlay for more information). The
returned duration value is defined in ms (u32). This value can be retrieved only with
ADL_AUDIO_SPEAKER and ADL_AUDIO_BUZZER audio resource handle. Otherwise, an
error will be returned.

ADL_AUDIO_MIN_DURATION

R: supplies the minimum duration which can be set to play a DTMF tone or a single/dual
tone (please refer to adl_audioDTMFPlay or adl_audioTonePlay for more information). The
returned duration value is defined in ms (u32). This value can be retrieved only with
ADL_AUDIO_SPEAKER and ADL_AUDIO_BUZZER audio resource handle. Otherwise, an
error will be returned.

ADL_AUDIO_MAX_NOTE_VALUE

R: supplies the maximum duration for a note (tempo) which can be set to play a melody
(please refer to adl_audioMelodyPlay for more information). This value is the maximal value
which can be defined with ADL_AUDIO_NOTE_DEF macro (u32).

ADL_AUDIO_MIN_NOTE_VALUE

R: supplies the minimum duration for a note (tempo) which can be set to play a melody
(please refer to adl_audioMelodyPlay for more information). This value is the minimal value
which can be defined with ADL_AUDIO_NOTE_DEF macro (u32).

ADL_AUDIO_DTMF_RAW_STREAM_BUFFER_SIZE

R: allows to get the buffer type to allocate for listening to a DTMF stream in Raw mode or
playing a DTMF stream, defined in number of bytes (u8).

ADL_AUDIO_DTMF_PROCESSED_STREAM_BUFFER_SIZE

R: allows to get the buffer type to allocate for listening to a DTMF stream in Pre-processed
mode, defined in number of bytes (u8).

ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE

R: allows to get the buffer type to allocated for playing or listening to on a PCM 8KHz 16 bits
Mono stream, defined in number of bytes (u16).

ADL_AUDIO_PCM_16K_16B_MONO_BUFFER_SIZE

R: allows to get the buffer type to allocated for playing or listening to on a PCM 16KHz 16
bits Mono stream, defined in number of bytes (u16).

ADL_AUDIO_AMR_WB_AVAILABLE

R: allows to know if AMR Wideband codec rates are available. TRUE if they are available,
FALSE otherwhise (bool). Refer to adl_audioAmrCodecRate_e to get available codec rates.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 308

ADL User Guide for Open AT® OS 6.35

ADL_AUDIO_AMR_SPEECH_CODEC_RATE

RW: allows to define which codec rate will be used for AMR stream playing. Refer to
adl_audioAmrCodecRate_e to get available codec rates. By default, Codec rate is
ADL_AUDIO_AMR_RATE_4_75.

ADL_AUDIO_AMR_MIXED_VOICE

RW: allows to define if the AMR sample should be mixed to the voice when an AMR audio
sample is played. This value is set to FALSE to mute vocoder, TRUE otherwise. By default,
option is set to FALSE (bool).

ADL_AUDIO_AMR_BUFFER_SIZE

R: allows to define the buffer type to allocated for playing or listening to on an AMR stream,
defined in number of bytes (u32). By default, option is set to 0.

According to the selected codec rate, the buffer has to be defined with a multiple of one
speech frame size, "0" is not available (refer to adl_audioStreamPlay to get more information
about buffer to allocated.

The option value has to match with size of AMR buffer which has been allocated. Otherwise,
AMR player (/recorder) risks not to work properly.

ADL_AUDIO_RAW_DTMF_SAMPLE_DURATION

R: allows to get the duration of one DTMF sample when DTMF decoding is on Raw mode,
defined in ms (u8). This value depends on the embedded module which is used.

3.33.5. Audio events handler
This call-back function has to be supplied to ADL through the adl_audioSubscribe interface in
order to receive audio resource related events

prototype
typedef void(*) adl_audioEventHandler_f(s32 audioHandle,
 adl_audioEvents_e Event);

parameters

audioHandle

This is the handle of the audio resource which is associated to the event (refer to
adl_audioSubscribe for more information about the audio resource handle).

Event

This is the received event identifier (refer to adl_audioEvents_e for more information about
the different events).

3.33.6. Audio resources control

3.33.6.1. The adl_audioSubscribe Function

This function allows to subscribe to the one of the available resources and specify its behaviour when
another client attempts to subscribe it.
A call-back function is associated for audio resources related events, the
adl_audioPostProcessedDecoder_t Type.

Prototype
s32 adl_audioSubscribe (adl_audioResources_e audioResource,
 adl_audioEventHandler_f audioEventHandler,
 adl_audioResourceOption_e Options);

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 309

ADL User Guide for Open AT® OS 6.35

Parameters

audioResource

Requested audio resource.

audioEventHandler
Application provided audio event call-back function (refer to adl_audioEventHandler_f for
more information.

Options
Option about the audio resource behaviour (refer to adl_audioResourceOption_e for more
information).

Returned values

• Positive or NULL if allocation succeeds, to be used on further audio API functions calls.
• ADL_RET_ERR_PARAM if the parameter has an incorrect value.

• ADL_RET_ERR_ALREADY_SUBSCRIBED if the resource is already subscribed.

• ADL_RET_ERR_NOT_SUPPORTED if the resource is not supported.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: ERROR values are defined in adl_error.h.

3.33.6.2. The adl_audioUnsubscribe Function

This function allows to unsubscribe to one of the resources which have been previously subscribed.

A resource cannot be unsubscribed if it is running, process on this resource has to be previously
stopped (refer to adl_audioStop for more information).
Prototype

s32 adl_audioUnsubscribe (s32 audioHandle);
Parameter

audioHandle

Handle of the audio resource which has to be unsubscribed.
Returned values

• OK on success

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_NOT_SUBSCRIBED if no audio resource has been subscribed.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.33.7. Play a pre-defined audio format
These functions allow to play a melody, a tone or a DTMF on the available audio outputs.

The following diagram illustrates a typical use of the ADL Audio Service interface to play a predefined
audio format.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 310

ADL User Guide for Open AT® OS 6.35

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 311

ADL User Guide for Open AT® OS 6.35

3.33.7.1. The adl_audioTonePlay Function

This function plays a single or dual tone on current speaker and only a single tone on buzzer.
Only the speaker output is able to play tones in two frequencies. The second tone parameters are
ignored on buzzer output.
The specified output stops to play at the end of tone duration or on an application request (refer to
adl_audioStop for more information).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to AT
commands Interface User Guide 1 for more information.

Prototype
s32 adl_audioTonePlay (s32 audioHandle,
 u16 Frequency1,
 s8 Gain1,
 u16 Frequency2,
 s8 Gain2,
 u32 Duration);

Parameters

audioHandle

Handle of the audio resource which will play tone (current speaker or buzzer).
Frequency1
Frequency for the 1st tone (Hz).

Gain1
This parameter sets the tone gain which will be applied to the 1st frequency value (dB).
Frequency2
Frequency for the 2nd tone (Hz), only processed on current speaker.
Frequency2 has to set to 0 to play a single tone on current speaker.
Gain2
This parameter sets the tone gain which will be applied to the 2nd frequency value (dB).
Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms multiple.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing on the required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for tone playing.

• ADL_RET_ERR_NOT_SUPPORTED_ if the audio resource is not available for tone playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a tone is stopped
automatically at the end of the duration time.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 312

ADL User Guide for Open AT® OS 6.35

Example
// audio resource handle
 s32 handle;

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {
 switch (Event)
 {
 case ADL_AUDIO_EVENT_NORMAL_STOP :
 TRACE ((1, " Audio handle %d : stop ", audioHandle));

 // unsubscribe to the speaker
 Ret = adl_audioUnsubscribe (handle);
 break;

 case ADL_AUDIO_EVENT_RESOURCE_RELEASED :
 // ...
 break;

 default : break;
 }
 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandle,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a single tone
 Ret = adl_audioTonePlay(handle, 300, -10, 0, 0, 50);
 }

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 313

ADL User Guide for Open AT® OS 6.35

3.33.7.2. The adl_audioDTMFPlay Function

This function allows a DTMF tone to be played on the current speaker or on voice call TX (in
communication only).

It is not possible to play DTMF on the buzzer.
The specified output stops to play at the end of tone duration or on an application request (refer to
adl_audioStop for more information).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to AT
Commands Interface User Guide 1 for more information.

Prototype
s32 adl_audioDTMFPlay (s32 audioHandle,
 ascii DTMF,
 s8 Gain,
 u32 Duration);

Parameters

audioHandle
Handle of the audio resource which will play DTMF tone (current speaker or voice call TX).
DTMF
DTMF to play (0-9,A-D,*,#).
Gain
This parameter sets the tone gain (dB), and is only for the speaker.
Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms multiple. For voice
call TX, duration is not guaranteed, which depends on operator.

Returned values
• OK on success

• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing on the required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for DTMF playing.

• ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for DTMF playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a DTMF is stopped
automatically at the end of the duration time.

Note: A DTMF cannot be stopped on client request when DTMF is played on voice call TX.

Note: When DTMF is played on voice call TX, no ADL_AUDIO_EVENT_NORMAL_STOP is received in audio
event handler.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 314

ADL User Guide for Open AT® OS 6.35

Example
// audio resource handle
s32 handle;

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {

 switch (Event)
 {
 case ADL_AUDIO_EVENT_NORMAL_STOP :
 TRACE ((1, " Audio handle %d : stop ", audioHandle));

 // unsubscribe to the current speaker
 Ret = adl_audioUnsubscribe (handle);
 break;

 case ADL_AUDIO_EVENT_RESOURCE_RELEASED :
 // ...
 break;

 default : break;
 }
 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandler,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a DTMF tone
 Ret = adl_audioDTMFPlay(handle, 'A', -10, 10);
 }

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 315

ADL User Guide for Open AT® OS 6.35

3.33.7.3. The adl_audioMelodyPlay Function

This function allows to play a defined melody on current speaker or buzzer.
The specified output stops the playing process on an application request (refer to adl_audioStop for
more information) or when the melody has been played the same number of time than that is
specified in CycleNumber.
Use adl_audioGetOption function to obtain the parameters range. Please also refer to AT
Commands Interface User Guide 1 for more information.

Prototype
s32 adl_audioMelodyPlay (s32 audioHandle,
 u16 * MelodySeq,
 u8 Tempo,
 u8 CycleNumber,
 s8 Gain);

Parameters

audioHandle
Handle of the audio resource which will play Melody (current speaker or buzzer).

MelodySeq
Melody to play. A melody is defined by an u16 table , where each element defines a note
event, duration and sound definition.
The melody sequence has to finish by a NULL value.
(refer to ADL_AUDIO_NOTE_DEF for more information)
Tempo
Tempo is defined in bpm (1 beat = 1 quarter note).
CycleNumber
Number of times the melody should be played.
If not specified, the cycle number is infinite, Melody should be stopped by client.
Gain
This parameter sets melody gain (dB).

Returned values

• OK on success
• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing on the required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for melody playing.

• ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for melody playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a Melody is
stopped automatically at the end of the cycle number.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 316

ADL User Guide for Open AT® OS 6.35

Example
// audio resource handle
 s32 handle;

// Melody buffer
u16*MyMelody={ADL_AUDIO_NOTE_DEF(ADL_AUDIO_A,3,ADL_AUDIO_DOTTED_QUARTER),
 ADL_AUDIO_NOTE_DEF(ADL_AUDIO_CS,5,ADL_AUDIO_DOTTED_HALF),
 ADL_AUDIO_NOTE_DEF(ADL_AUDIO_E,1,ADL_AUDIO_WHOLE_NOTE),
 ... ,
 ADL_AUDIO_NOTE_DEF(ADL_AUDIO_AS,3,ADL_AUDIO_EIGHTH),
 0 };

// audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {
 s32 Ret;

 switch (Event)
 {
 case ADL_AUDIO_EVENT_NORMAL_STOP :
 TRACE ((1, " Audio handle %d : stop ", audioHandle));

 // unsubscribe to the buzzer
 Ret = adl_audioUnsubscribe (handle);

 break;

 case ADL_AUDIO_EVENT_RESOURCE_RELEASED :
 // ...
 break;

 default : break;
 }
 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_BUZZER, MyAudioEventHandler ,
ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a Melody
 Ret = adl_audioMelodyPlay(handle, MyMelody, 10, 2, -10);
 }

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 317

ADL User Guide for Open AT® OS 6.35

3.33.7.4. The adl_audioTonePlayExt Function

This function plays a single or dual tone on current speaker and only a single tone on buzzer.
Only the speaker output is able to play tones in two frequencies. The second tone parameters are
ignored on buzzer output.
The specified output stops to play at the end of tone duration or on an application request (refer to
adl_audioStop for more information).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to AT
commands Interface User Guide 1 for more information.

Prototype
s32 adl_audioTonePlayExt(s32 audioHandle,
 u16 Frequency1,
 s16 Gain1,
 u16 Frequency2,
 s16 Gain2,
 u32 Duration);

Parameters

audioHandle

Handle of the audio resource which will play tone (current speaker or buzzer).
Frequency1
Frequency for the 1st tone (Hz).

Gain1
This parameter sets the tone gain which will be applied to the 1st frequency value (unit:
1/100 of dB).
Frequency2
Frequency for the 2nd tone (Hz), only processed on current speaker.
Frequency2 has to set to 0 to play a single tone on current speaker.
Gain2
This parameter sets the tone gain which will be applied to the 2nd frequency value (unit :
1/100 of dB).
Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms multiple.

Returned values
• OK on success.

• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing on the required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for tone playing.

• ADL_RET_ERR_NOT_SUPPORTED_ if the audio resource is not available for tone playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a tone is stopped
automatically at the end of the duration time.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 318

ADL User Guide for Open AT® OS 6.35

3.33.7.5. The adl_audioDTMFPlayExt Function

This function allows a DTMF tone to be played on the current speaker or on voice call TX (in
communication only).

It is not possible to play DTMF on the buzzer.

The specified output stops to play at the end of tone duration or on an application request (refer to
adl_audioStop for more information).
Use adl_audioGetOption function to obtain the parameters range. Please also refer to AT
Commands Interface User Guide 1 for more information.

Prototype
s32 adl_audioDTMFPlayExt(s32 audioHandle,
 ascii DTMF,
 s16 Gain,
 u32 Duration);

Parameters

audioHandle
Handle of the audio resource which will play DTMF tone (current speaker or voice call TX).
DTMF
DTMF to play (0-9,A-D,*,#).
Gain
This parameter sets the tone gain (unit: 1/100 of dB), and is only for the speaker.
Duration
This parameter sets the tone duration (ms). The value has to be a 20-ms multiple. For voice
call TX, duration is not guaranteed, which depends on operator.

Returned values
• OK on success

• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing on the required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for DTMF playing.

• ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for DTMF playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a DTMF is stopped
automatically at the end of the duration time.

Note: A DTMF cannot be stopped on client request when DTMF is played on voice call TX.

Note: When DTMF is played on voice call TX, no ADL_AUDIO_EVENT_NORMAL_STOP is received in audio
event handler.

3.33.7.6. The adl_audioMelodyPlayExt Function

This function allows to play a defined melody on current speaker or buzzer.

The specified output stops the playing process on an application request (refer to adl_audioStop for
more information) or when the melody has been played the same number of time than that is
specified in CycleNumber.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 319

ADL User Guide for Open AT® OS 6.35

Use adl_audioGetOption function to obtain the parameters range. Please also refer to AT
Commands Interface Guide for more information.

Prototype
s32 adl_audioMelodyPlayExt (s32 audioHandle,
 u16 * MelodySeq,
 u8 Tempo,
 u8 CycleNumber,
 s16 Gain);

Parameters

audioHandle
Handle of the audio resource which will play Melody (current speaker or buzzer).

MelodySeq
Melody to play. A melody is defined by an u16 table , where each element defines a note
event, duration and sound definition.
The melody sequence has to finish by a NULL value.
(refer to ADL_AUDIO_NOTE_DEF for more information)
Tempo
Tempo is defined in bpm (1 beat = 1 quarter note).
CycleNumber
Number of times the melody should be played.
If not specified, the cycle number is infinite; Melody should be stopped by client.
Gain
This parameter sets melody gain (unit: 1/100 of dB).

Returned values

• OK on success
• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing on the required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for melody playing.

• ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for melody playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: An event ADL_AUDIO_EVENT_NORMAL_STOP is sent to the owner resource when a Melody is
stopped automatically at the end of the cycle number.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 320

ADL User Guide for Open AT® OS 6.35

3.33.8. Audio stream
These functions allows to play or listen an audio stream.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 321

ADL User Guide for Open AT® OS 6.35

3.33.8.1. The adl_audioStreamPlay Function

This function allows to play an audio sample stream on the current speaker or on voice call TX.

Playing an audio sample stream implies that low level interruption and/or high level interruption have
been previously subscribed

(Refer to adl_irqSubscribe in ADL user guide for more information).

Moreover, memory space has to be allocated for the audio stream buffer before playing starts and it
has to be released after playing stops.

Each time the interruption related to playing process occurs, allocated buffer has to be filled with
audio data to play in IRQ low or high level notification handler. Currently, this functions allows to play
3 audio formats:

• audio signal sampled at 8KHz on16 bits (ADL_AUDIO_PCM_MONO_8K_16B)

• audio signal sampled at 16KHz on 16 bits (ADL_AUDIO_PCM_MONO_16K_16B).Only available
on current speaker

• audio signal compressed by an AMR / AMR-WB codec (ADL_AUDIO_AMR). Refer to
adl_audioAmrCodecRate_e to get more information about available codecs.Playing audio file
compressed by AMR-WB codec is only available on current speaker

Play PCM audio format

Before starting a PCM audio playing process, the application has to set the embedded
module audio configuration according to the sample rate (8KHz or 16KHz) of audio file to be
played. Refer to the AT+SPEAKER command in "AT Commands Interface Guide" to get
more information about audio resource configuration.

According to the audio configuration a different space memory size will be allocated (use
adl_audioGetOption function to get the size):

 refer to ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE for a sample rate at 8KHz

 refer to ADL_AUDIO_PCM_16K_16B_MONO_BUFFER_SIZE for a sample rate at 16KHz

Warning: If allocated buffer size does not match with the sample rate, audio playing process may not work
properly.

Play AMR audio format

This function can play only AMR / AMR-WB audio file stored in RTP format (refer to
RFC4867 to get more information about RTP format for AMR and AMR-WB). Before starting
an AMR audio playing process, the application has to set parameters such as codec rate
(refer to adl_audioAmrCodecRate_e to get available codec rate), buffer size (refer to
ADL_AUDIO_AMR_BUFFER_SIZE to get more information), mixed voice option (refer to
ADL_AUDIO_AMR_MIXED_VOICE to get more information). According to audio
configuration, an audio signal compressed either with AMR codec or with AMR-WB codec
could be played:

 for an audio signal with sample rate at 8 KHZ, an AMR codec has to be used

 for an audio signal with sample rate at 16 KHZ, an AMR-WB codec has to be used. AMR-
WB audio recording is only available on speaker. Refer to the AT+SPEAKER
command in "AT Commands Interface Guide" to get more information about audio
resource configuration. The buffer size, which has to be allocated, depends on the codec
rate selected by the application. For each codec rate, a minimal space memory size has
to be allocated. Buffer size has to be either an audio AMR file size or multiple of one 20-
ms audio AMR speech frame size (this last one depends on codec rate).

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 322

ADL User Guide for Open AT® OS 6.35

Warning: If allocated buffer size does not match with codec rate, quality of played audio signal may be
altered.

 When AMR audio file is played on voice call and high level IRQ notification has been subscribed
 with ADL_IRQ_OPTION_AUTO_READ option (refer to adl_irq.h to get more information about
 this option) and audio buffer is too huge then a network de-registration may occur. In this case,
 ADL_IRQ_OPTION_AUTO_READ option should not be used or audio buffer size should be a
 small AMR speech frame size.

Prototype
s32 adl_audioStreamPlay (s32 audioHandle,
 adl_audioFormats_e audioFormat,
 s32 LowLevelIRQHandle,
 s32 HighLevelIRQHandle,
 void * buffer);

Parameters

audioHandle
Handle of the audio resource which will play audio stream (current speaker or voice call TX).
audioFormat
Stream audio format. Only ADL_AUDIO_DTMF format is not available to be played (Refer to
adl_audioFormats_e for more information).
LowLevelIRQHandle
Low level IRQ handle previously returned by IRQ subscription (please refer to
adl_irqSubscribe for more information).

HighLevelIRQHandle
High level IRQ handle previously returned by IRQ subscription (please refer to
adl_irqSubscribe for more information).
buffer
contains sample to play.

Returned values

• OK on success
• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio pre-defined signal is
playing on the required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for audio stream playing or if
interrupt handler identifiers are invalid.

• ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for audio stream
playing.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: To work properly, LowLevelIRQHandle is mandatory. The low level interrupt has to be previously
subscribed with ADL_IRQ_OPTION_AUTO_READ option.

Note: The HighLevelIRQHandle is optional.

Note: Each time an audio sample is required, an interrupt handler will be notified to send the data. The
interrupt identifier will be set to ADL_IRQ_ID_AUDIO_RX_PLAY or ADL_IRQ_ID_AUDIO_TX_PLAY,
according to the resource used to start the stream play.

Note: in order to work properly, data should be sent in low level interruption handler

Note: Some audio filters will be deactivated for audio sample playing (refer to "audio command" chapter in
the AT command Interface Guide 1 for more information).

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 323

ADL User Guide for Open AT® OS 6.35

Note: For audio interrupt subscription ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT option is not
available.

Note: Before to play an audio file, header of file has to be removed, only data has to be send.

Example
Start PCM audio playing process

// audio resource handle
 s32 handle;

 // audio stream buffer
 void * StreamBuffer;

 // PCM samples
 u16 PCM_Samples[160] = { ... , ... , ... , ... , ... , ... , 0 }; //
size of PCM sample = 320 bytes

 // PCM samples index
 u8 indexPCM = 0;

 // Low level interrupt handler
 bool MyLowLevelIRQHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
 Notification Level, adl_irqEventData_t * Data)
 {
 // copy PCM sample to play
 wm_strcpy(StreamBuffer, PCM_Samples);
 // Set BufferReady flag to TRUE
 *((adl_audioStream_t *)Data->SourceData)->BufferReady = TRUE;

 //...

 return FALSE;
 }

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {

 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;
 s32 BufferSize;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandler ,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Memory allocation
 Ret = adl_audioGetOption (handle,
 ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE, &BufferSize)
 StreamBuffer = adl_memGet(BufferSize); // release memory after
 audio stream playing

 // Play an audio PCM stream
 Ret = adl_audioStreamPlay(handle, ADL_AUDIO_PCM_MONO_8K_16B
 MyLowLevelIRQHandler, 0, StreamBuffer);
 }

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 324

ADL User Guide for Open AT® OS 6.35

Start AMR audio playing process

#define AMR_SIZE = 160

// audio resource handle
 s32 handle;

 // audio stream buffer
 void * StreamBuffer;

 // AMR samples
 u8 AMR_Samples[AMR_SIZE] = { ... , ... , ... , ... , ... , ... , 0 }; //
size of AMR audio sample to play = 160 bytes

 // Low level interruption handler
 bool MyLowLevelIRQHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
 Notification Level, adl_irqEventData_t * Data)
 {
 // copy PCM sample to play
 wm_strcpy(StreamBuffer, AMR_Samples);

 //...

 return FALSE;
 }

 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {

 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;
 s32 BufferSize = AMR_SIZE;
 bool MixedOption = FALSE;
 adl_audioAmrCodecRate_e CodecRate = ADL_AUDIO_AMR_RATE_5_15;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandler ,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Set Mixed voice option
 Ret = adl_audioSetOption (handle, ADL_AUDIO_AMR_MIXED_VOICE,
 &MixedOption);

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 325

ADL User Guide for Open AT® OS 6.35

 // Set Codec Rate
 Ret = adl_audioSetOption (handle, ADL_AUDIO_AMR_CODEC_RATE,
 &CodecRate)

 // Memory allocation
 Ret = adl_audioSetOption (handle, ADL_AUDIO_AMR_BUFFER_SIZE,
 &BufferSize);
 StreamBuffer = adl_memGet(BufferSize); // release memory after
 audio stream playing

 // Play an audio AMR stream
 Ret = adl_audioStreamPlay(handle, ADL_AUDIO_AMR,
 MyLowLevelIRQHandler, 0, StreamBuffer);
 }

3.33.8.2. The adl_audioStreamListen Function

This function allows listening to a DTMF tone or an audio sample from microphone or voice call RX.

Listening to an audio sample stream implies that low level interrupt and/or high level interrupt have
been previously subscribed (refer to adl_irqSubscribe for more information).

Moreover, memory space has to be allocated for the audio stream buffer before listening starts and it
has to be released after listening stops.

Each time the interruption related to playing process occurs, recorded audio data has to be saved in
allocated buffer in IRQ low or high level notification handler. Currently, this functions allows to record
4 audio formats:

• decoded DTMF (ADL_AUDIO_DTMF).

• audio signal sampled at 8KHz on 16 bits (ADL_AUDIO_PCM_MONO_8K_16B).

• audio signal sampled at 16KHz on 16 bits (ADL_AUDIO_PCM_MONO_16K_16B). Only
available on microphone.

• audio signal compressed by an AMR or AMR-WB codec (ADL_AUDIO_AMR). Refer to
adl_audioAmrCodecRate_e to get more information about available codecs.Recording with
AMR-WB codec is only available on microphone.

DTMF decoding
Function allow to listen to a DTMF stream in Raw mode or in Pre-processed mode according
to blank duration set initially. (refer to ADL_AUDIO_DTMF_DETECT_BLANK_DURATION for
more information about Raw mode).

According to the mode of DTMF decoding, a different buffer size has to be allocated:

 for Raw mode , refer to ADL_AUDIO_DTMF_RAW_STREAM_BUFFER_SIZE
 for Pre-processed mode, refer to

ADL_AUDIO_DTMF_PROCESSED_STREAM_BUFFER_SIZE

Record PCM audio format
Before starting a PCM audio recording process, the application has to set embedded module

audio configuration to define recording sample rate. Refer to the AT+SPEAKER command in
"AT Commands Interface Guide" to get more information about audio resource configuration.

According to audio configuration a different space memory size will be allocated (use
adl_audioGetOption function to get the size):

 refer to ADL_AUDIO_PCM_8K_16B_MONO_BUFFER_SIZE for a sample rate at 8KHz
 refer to ADL_AUDIO_PCM_16K_16B_MONO_BUFFER_SIZE for a sample rate at

16KHz

Warning: If allocated buffer size does not match with the sample rate, audio recording process may not
work properly.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 326

ADL User Guide for Open AT® OS 6.35

Record AMR audio format
This function can record audio signal, compress it with AMR or AMR-WB codec and store it in
RTP audio format (refer to RFC4867 to get more information about RTP format for AMR and
AMR-WB). Before starting an AMR or AMR-WB audio recording process, the application has
to set parameters such as codec rate (refer to adl_audioAmrCodecRate_e to get available
codec rate), buffer size (refer to ADL_AUDIO_AMR_BUFFER_SIZE to get more
information), mixed voice option (refer to ADL_AUDIO_AMR_MIXED_VOICE to get more
information about it). According to the audio configuration, an audio signal could be
compressed either with AMR codec or with AMR-WB codec:

 for an audio signal with a sample rate at 8 KHZ, an AMR codec has to be used
 for an audio signal with sample rate at 16 KHZ, an AMR-WB codec has to be used. AMR-

WB audio recording is only available on microphone Refer to the AT+SPEAKER
command in "AT Commands Interface Guide" to get more information about audio
resource configuration. Buffer size, which has to be allocated, depends on the codec
rate selected by application. For each codec rate, a minimal space memory size has to be
allocated. Buffer size has to be either an audio AMR file size or multiple of one 20-ms
audio AMR speech frame size, moreover one octet has to be allocated for frame header
(this last one depends on codec rate).

Warning:

If allocated buffer size does not match with the codec rate, quality of played audio signal may be altered.

When AMR audio file is listened on voice call and high level IRQ notification has been subscribed with
ADL_IRQ_OPTION_AUTO_READ option (refer to adl_irq.h to get more information about this option) and audio
buffer is too huge then a network de-registration may occur. In this case, ADL_IRQ_OPTION_AUTO_READ option
should not be used or audio buffer size should be a small AMR speech frame size.

Prototype
s32 adl_audioStreamListen (s32 audioHandle,
 adl_audioFormats_e audioFormat,
 s32 LowLevelIRQHandle,
 s32 HighLevelIRQHandle,
 void * buffer);

Parameters

audioHandle
Handle of the audio resource from which to listen the audio stream (microphone or voice call
RX).
audioFormat
Stream audio format (refer to adl_audioFormats_e for more information).
LowLevelIRQHandle
Low level IRQ handle previously returned by IRQ subscription (please refer to
adl_irqSubscribe for more information).

HighLevelIRQHandle
High level IRQ handle previously returned by IRQ subscription (please refer to
adl_irqSubscribe for more information).
buffer
contains received decoded DTMF or audio samples.

Returned values

• OK on success
• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 327

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_BAD_STATE if an audio stream is listening or audio signal is playing on the
required audio resource.

• ADL_RET_ERR_BAD_HDL if the audio resource is not allowed for audio stream listening or if
interrupt handler identifiers are invalid.

• ADL_RET_ERR_NOT_SUPPORTED if the audio resource is not available for audio stream
listening.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Note: The LowLevelIRQHandle is optional if the HighLevelIRQHandle is supplied.
Note: The HighLevelIRQHandle is optional if the LowLevelIRQHandle is supplied.

Note: Each time an audio sample or DTMF sequence is detected, an interrupt handler will be notified to
require the data. The interrupt identifier will be set to ADL_IRQ_ID_AUDIO_RX_LISTEN or
ADL_IRQ_ID_AUDIO_TX_LISTEN, according to the resource used to start the stream listen.

Note: All audio filters will be deactivated for DTMF listening and only some audio filters for audio sample
listening (refer to "audio command" chapter in the AT command Interface Guide 1 for more
information).

Note: For audio interrupt subscription, ADL_IRQ_OPTION_POST_ACKNOWLEDGEMENT option is not
available.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 328

ADL User Guide for Open AT® OS 6.35

Example
// audio resource handle
 s32 handle;

 // audio stream buffer
 void * StreamBuffer;

 // Low level interruption handler
 bool MyLowLevelIRQHandler (adl_irqID_e Source, adl_irqNotificationLevel_e
 Notification Level, adl_irqEventData_t * Data)
 {
 TRACE ((1, "DTMF received : %c, %c ", StreamBuffer[0],
 StreamBuffer[1]));

 return FALSE;
 }
 // audio event call-back function
 void MyAudioEventHandler (s32 audioHandle, adl_audioEvents_e Event)
 {

 // ...

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;
 s32 BufferSize;

 // Subscribe to the current microphone
 handle = adl_audioSubscribe (ADL_AUDIO_MICROPHONE,
 MyAudioEventHandler , ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Memory allocation
 Ret = adl_audioGetOption (handle,
 ADL_AUDIO_DTMF_RAW_STREAM_BUFFER_SIZE, &BufferSize)
 StreamBuffer = adl_memGet(BufferSize); // release memory after
 audio stream listening

 // Listen to audio DTMF stream
 Ret = adl_audioStreamListen(handle, ADL_AUDIO_DTMF
 MyLowLevelIRQHandler, 0, StreamBuffer);
 }

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 329

ADL User Guide for Open AT® OS 6.35

3.33.9. Stop

3.33.9.1. The adl_audioStop Function

This function allows to:
• stop playing a tone on the current speaker or on the buzzer,

• stop playing a DTMF on the current speaker or on the voice call TX,

• stop playing a melody on the current speaker or on the buzzer,

• stop playing an audio PCM stream on the current speaker or on the voice call TX,

• stop listening to an audio DTMF stream from current microphone or voice call RX,

• stop listening to an audio sample stream from current microphone or voice call RX.

ADL_AUDIO_EVENT_NORMAL_STOP event will not be sent to application.

Prototype
s32 adl_audioStop (s32 audioHandle);

Parameters

audioHandle
Handle of the audio resource which has to stop its process.

Returned values

• OK on success.
• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_BAD_STATE if no audio process is running on the required audio resource.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

Example
// audio resource handle
 s32 handle;

 void adl_main (adl_InitType_e InitType)
 {
 s32 Ret;

 // Subscribe to the current speaker
 handle = adl_audioSubscribe (ADL_AUDIO_SPEAKER, MyAudioEventHandler ,
 ADL_AUDIO_RESOURCE_OPTION_FORBID_PREEMPTION);

 // Play a single tone
 Ret = adl_audioTonePlay(handle, 300, -10, 0, 0, 50);

 // Stop playing the single tone
 Ret = adl_audioStop(handle);

 // unsubscribe to the current speaker
 Ret = adl_audioUnsubscribe (handle);

 }

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 330

ADL User Guide for Open AT® OS 6.35

3.33.10. Set/Get options

3.33.10.1. The adl_audioSetOption Function

This function allows to set an audio option according to audio resource and option type specified.
Several option types are only readable, so this function cannot be used with them (refer to
adl_audioOptionTypes_e for more information).

Prototype
s32 adl_audioSetOption (s32 audioHandle,
 adl_audioOptionTypes_e audioOption,
 s32 value);

Parameters

audioHandle
Handle of the audio resource.
audioOption
This parameter defines audio option to set (refer to adl_audioOptionTypes_e for more
information).
value
Defines setting value for option.

Returned values

• OK on success
• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_NOT_SUPPORTED if the requested option is associated with a feature not
available on the platform.

API
ADL Audio Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 331

ADL User Guide for Open AT® OS 6.35

3.33.10.2. The adl_audioGetOption Function

This functions allows to get information about audio service according to audio resource and option
type specified.

Prototype
s32 adl_audioGetOption (s32 audioHandle,
 adl_audioOptionTypes_e audioOption,
 s32 * value);

Parameters

audioHandle

Handle of the audio resource.
audioOption
audio option which wishes to get information (refer to adl_audioOptionTypes_e for more
information).

value

option value according to audio option which has been set.
Returned values

• value option value according to audio option which has been set.
• ADL_RET_ERR_PARAM if parameters have an incorrect value.

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_NOT_SUPPORTED if all features associated to the option are not available

API
ADL Secure Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 332

ADL User Guide for Open AT® OS 6.35

3.34. ADL Secure Data Storage Service
The ADL supplies Secure Data Storage Service interface to

• read/write/query data stored in ciphered format in non volatile memory,

• update cryptographic keys in order to block replay/re-download attacks.

The defined operations are:

• An adl_sdsWrite function to write secured data.

• An adl_sdsRead function to read secured data.

• An adl_sdsQuery function to require size of one of secured entries.

• An adl_sdsDelete function to delete one of secured entries.

• An adl_sdsStats function to get statistics about secured data storage.

• An adl_sdsUpdateKeys function to update the cryptographic keys.

Note: These functions are available only if:
- they are used with a compatible platform.
- the Secured Data Storage feature is properly activated on the production line
- the objects are not erased, otherwise embedded module has to be returned in production line
Otherwise, every function cited above will return the error code ADL_RET_ERR_NOT_SUPPORTED.

Note: Secure Data Storage is only available on AirPrime WMP Series modules

3.34.1. Required Header File
The header file for the functions dealing with the ADL Secure Data Storage Service public interface is:

adl_sds.h

API
ADL Secure Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 333

ADL User Guide for Open AT® OS 6.35

3.34.2. Data Structure

3.34.2.1. The adl_sdsStats_t Structure

Data storage statistics contains information about secured data storage. It has to be used with
adl_sdsStats API. .

Code
typedef struct
{
 u32 MaxEntrySize
 u32 FreeSpace
 u32 TotalSpace
 u16 MaxEntry
 u16 EntryCount
}adl_sdsStats_t;

Description

MaxEntrySize

Maximal size of one secured entry. It is defined in number of bytes.

FreeSpace

Available space for secured entries.

Warning: This figure does not depend only on written data but depends on the state of the underlying
storage media too. It might increase or decrease as data entries sharing the same space as
ciphered entries are created or deleted.

TotalSpace

Total space allocated for ciphered entries. This figure is a quota, and must be treated as
such. Because ciphered entries share storage media with other information, this quota might
be unaccessible if, for example, the underlying storage medium is near its full capacity.

MaxEntry

Maximal number of secured entry.

Note: The maximal number of secured entries depends on the underlying storage service. There might be
less available entries if this storage service is near its maximum capacity.

EntryCount

Total number of secured entries.

API
ADL Secure Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 334

ADL User Guide for Open AT® OS 6.35

3.34.3. Defines

3.34.3.1. ADL_SDS_RET_ERR_ENTRY_NOT_EXIST

Entry does not exist.

#define ADL_SDS_RET_ERR_ENTRY_NOT_EXIST ADL_RET_ERR_SPECIFIC_BASE

3.34.3.2. ADL_SDS_RET_ERR_MEM_FULL

Not enough space memory to write secured data.

#define ADL_SDS_RET_ERR_MEM_FULL ADL_RET_ERR_SPECIFIC_BASE - 1

3.34.4. The adl_sdsWrite Function
This function allows to store data in a secured entry, data are ciphered. This function creates a new
entry or updates an existing one.

Prototype
s32 adl_sdsWrite (u32 ID,

 u32 Length,
 void * Source);

Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by adl_sdsStats).
Refer to adl_sdsStats_t to get more information about MaxEntry.

Length

Size of the data to write in the entry. Use adl_sdsStats to get the maximum size for one
secured entry (refer to MaxEntrySize in adl_sdsStats_t to get more information).

Source

Pointer to the source buffer. It contains data to write.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_SDS_RET_ERR_MEM_FULL no enough memory is available for writing.

 ADL_RET_ERR_NOT_SUPPORTED writing operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

API
ADL Secure Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 335

ADL User Guide for Open AT® OS 6.35

3.34.5. The adl_sdsRead Function
This function allows to retrieve data from a secured entry. Data which has been previously written with
adl_sdsWrite API.

Prototype
s32 adl_sdsRead (u32 ID,

 u32 Offset,
 u32 Length,
 void * Destination);

Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by adl_sdsStats).
Refer to adl_sdsStats_t to get more information about MaxEntry.

Offset

Offset in the secured entry, defined in number of bytes. It allows to retrieve a part of the
entry. It is an offset in relation to the first byte of the entry.

Length

Size of data to read in the secured entry. Use adl_sdsQuery API to get the maximal length
for the required entry.

Destination

Pointer to the destination buffer. It contains data to retrieve.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_SDS_RET_ERR_ENTRY_NOT_EXIST if entry ID does not exist.

 ADL_RET_ERR_NOT_SUPPORTED reading operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.34.6. The adl_sdsQuery Function
This function allows to check if a secured entry exists and gets its size.

Prototype
s32 adl_sdsQuery (u32 ID,

 u32* Length);

Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by adl_sdsStats).
Refer to adl_sdsStats_t to get more information about MaxEntry.

Length

Output pointer for the entry size. It can be set to NULL.

API
ADL Secure Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 336

ADL User Guide for Open AT® OS 6.35

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_SDS_RET_ERR_ENTRY_NOT_EXIST if entry ID does not exist.

 ADL_RET_ERR_NOT_SUPPORTED operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.34.7. The adl_sdsDelete Function
This function allows to delete one of existing entries.

Prototype
s32 adl_sdsDelete (u32 ID);

Parameters

ID:

Numeric ID of the entry. The ID range is from 0 to MaxEntry (returned by adl_sdsStats).
Refer to adl_sdsStats_t to get more information about MaxEntry.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value or secured entry does not
exist.

 ADL_SDS_RET_ERR_ENTRY_NOT_EXIST if entry ID does not exist.

 ADL_RET_ERR_NOT_SUPPORTED deletion operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.34.8. The adl_sdsStats Function
This function allows to retrieve information about secured data storage as free memory space or total
memory space.

Prototype
s32 adl_sdsStats (adl_sdsStats_t* Stats);

Parameters

Stats:

Pointer on statistical information of secured data storage. (refer to adl_sdsStats_t to have
more information about statistics).

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_PARAM if parameters have an incorrect value.

 ADL_RET_ERR_NOT_SUPPORTED operation is not available.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

API
ADL Secure Data Storage Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 337

ADL User Guide for Open AT® OS 6.35

3.34.9. The adl_sdsUpdateKeys Function
This function allows to re-generate the internal cryptographic keys. This function has to be used to
defeat possible replay or re-download attacks.
Once the keys are re-generated, all the stored data remain available and still readable by application,
but the processor will not be able to re-use a previous image of the non-volatile memory with old
cryptographic keys.

Prototype
s32 adl_sdsUpdateKeys (void);

Note: This function is synchronous and its exectution time is independent of the number of entries.

Warning: This must be used with caution because of the limited life expectancy of the non-volatile memory
implied in this process. For example, a WMP100 processor can, at most, withstand 2x10^6 key
changes: changing them every second would therefore wear out the processor after 1.5 year.

Returned values
• OK on success

• A negative error value otherwise:

 ADL_RET_ERR_NOT_SUPPORTED updating operation is not available.

 ADL_RET_ERR_FATAL EEPROM cannot be written.

 ADL_RET_ERR_SERVICE_LOCKED if called from a low level interrupt handler.

3.34.10. Example
The code sample below illustrates a nominal use case of the ADL Secure Data Storage Service public
interface (error cases are not handled).

 // ...
 // decrement counter
 u32 n=10;
 u32 size;
 u32 offset=0;
 adl_sdsWrite(COUNTER_ID, offset, sizeof(u32), &n);
 adl_sdsQuery(COUNTER_ID, &size);
 adl_sdsRead(COUNTER_ID, offset, size, &n);
 n--;
 adl_sdsWrite(COUNTER_ID, size, &n);

 // ensure that from now on, any previously
 // stored memory image becomes incompatible
 // with this processor
 adl_sdsUpdateKeys();
 // ...

 adl_sdsRead(COUNTER_ID, offset, sizeof(u32), &n);
 // delete entry
 adl_sdsDelete(COUNTER_ID);

API
ADL WatchDog Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 338

ADL User Guide for Open AT® OS 6.35

3.35. ADL WatchDog Service
ADL provides a watchdog service to access to the embedded module's WatchDog. There are 2
watchdogs: The Firmware watchdog (also called the hardware watchdog) and the Software watchdog
(also called the application watchdog). The software watchdog is unique, meaning that there is only
one and that it may be armed by one task and rearmed by another task. All applications tasks share
one software watchdog. The watchdog duration is absolute and not a function of the application CPU
use. The hardware and software watchdogs are independent. Either may expire first.

Note: The timing unit is a tick which corresponds to 18.5 ms.

- Hardware watchdog put to sleep

Because an application may launch heavy treatments that can take more than the hardware
watchdog duration (one minute for example) and because the watchdog cannot be stopped once it
had been started, system provides a way to deactivate the hardware watchdog from the application
point of view for a given time. In fact, during this time, system rearms by itself the hardware watchdog
application in a high priority task because the IDLE task cannot take the focus while the application
treatments are not finished.

The defined operations are:

• A adl_wdPut2Sleep

• A adl_wdAwake

- Application watchdog Management

Application watchdog can be activated with a given duration. Once the application watchdog is
activated, the application binary has to rearm regularly the application watchdog to indicate that it is
still alive. Else, a back trace is generated and a reset occurs. Application watchdog can be
deactivated or reactivated with a new duration.

The defined operations are:

• A adl_wdRearmAppWd

• A adl_wdActiveAppWd

• A adl_wdDeActiveAppWd

3.35.1. Required Header File
The header file for the functions dealing with the ADL WatchDog Service public interface is:

adl_wd.h

3.35.2. The adl_wdPut2Sleep Function
This function enables to launch an automatic hardware watchdog relaunch for a given duration.
Thanks to this function, during the watchdog sleep duration, application treatments can take more
than hardware watchdog duration even if IDLE task cannot have the CPU focus for more than
hardware watchdog duration. Once the sleep duration expired, the IDLE task must receive back the
CPU focus in less than the hardware watchdog duration, else a watchdog reset occurs.

Note: This must be called just before an heavy treatment to avoid watchdog reset. The argument has to be
strictly positive.

API
ADL WatchDog Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 339

ADL User Guide for Open AT® OS 6.35

Prototype
u32 adl_wdPut2Sleep (u32 i_u32_SleepDuration);

Parameters

i_u32_SleepDuration:

Watchdog sleep duration in number of ticks (timer macro ADL_TMR_S_TO_TICK(SecT) -
can be used for duration conversion).

Returned values
• OK or ADL_RET_ERR_PARAM if wrong argument.

3.35.3. The adl_wdAwake Function
The adl_wdAwake function enables to cancel watchdog inactivation.

Note: This should be called just after an heavy treatment if watchdog had been inactivated to force the
restore of default behavior. If not called, default behavior will be restored automatically at the
expiration of watchdog sleep duration.

Prototype
u32 adl_wdAwake (void);

Returned values
• Remaining time before automatic watchdog reactivation in number of ticks.

3.35.4. Example
Here is an example of how to use the watchdog API access functions.

void CallMyHeavyTreatpments(void)
 {
 // To store remaining time before the end of watchdog inactivation
 u32 i_u32_ReaminingTime;

 // Watchdog inactivation for 30 seconds
 adl_wdPut2Sleep(ADL_TMR_S_TO_TICK(30));

 // Watchdog reactivation
 i_u32_ReaminingTime = adl_wdAwake();

 printf("Watchdog is to be awaken in %d number of ticks",
 i_u32_ReaminingTime);
 }

3.35.5. The adl_wdRearmAppWd Function
Enable to rearm the application watchdog with the stored watchdog duration.

Note: Application can use a cyclic timer to regularly rearm the application watchdog.
OK is returned and nothing happens if adl_wdActiveAppWd has not been called before.

Prototype
s32 adl_wdRearmAppWd (void);

Returned values
• OK or ADL_RET_ERR_NOT_SUPPORTED if the watchdog service is not supported.

API
ADL WatchDog Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 340

ADL User Guide for Open AT® OS 6.35

3.35.6. The adl_wdActiveAppWd Function
Once started, application watchdog must be rearmed regularly (no matter how) to indicate that it is
still alive. If the watchdog timer expired, the hardware watchdog will not be rearmed anymore and the
embedded module's will reset.

Prototype
s32 adl_wdActiveAppWd (u32 i_u32_Duration);

Note: Argument has to be strictly positive.

Parameters

i_u32_Duration:

Software application watchdog duration in number of ticks (timer macro
ADL_TMR_S_TO_TICK(SecT) - can be used for duration conversion).

Returned values
• OK

• ADL_RET_ERR_PARAM on parameter error

• ADL_RET_ERR_NOT_SUPPORTED if the watchdog service is not supported.

3.35.7. The adl_wdDeActiveAppWd Function
The adl_wdDeActiveAppWd function enables to stop watchdog.

Note: OK is returned and nothing happens if adl_wdActiveAppWd has not been called before.

Prototype
s32 adl_wdDeActiveAppWd (void);

Returned values
• OK or ADL_RET_ERR_NOT_SUPPORTED if the watchdog service is not supported.

API
ADL WatchDog Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 341

ADL User Guide for Open AT® OS 6.35

3.35.8. Example
Here is an example of how to use the application watchdog API access functions.

 void CallMyHeavyAppliTreatpments(void)
 {
 adl_tmr_t *tt;

 // Lets activate the application watchdog for 30 seconds
 adl_wdActiveAppWd(ADL_TMR_S_TO_TICK(30));

 // Lets suscribe to a 25 sec timer
 tt = (adl_tmr_t *)adl_tmrSubscribe (TRUE,
 25,
 ADL_TMR_TYPE_100MS,
 (adl_tmrHandler_t)Timer_Handler);

 // Launch heavy appli treatment
 MyHeavyAppliTreatemnt();
 }

 void Timer_Handler(u8 Id, void * Context)
 {
 if ((process has not ended)
 {
 if (there is some activities)
 {
 // Rearm the application watchdog for another go
 adl_wdRearmAppWd();
 }
 else
 {
 // the process has not ended and there is no activities ->
 application watchdog reset
 }
 }
 else // process has ended
 {
 // the process has ended we can now deactivate the application
 watchdog
 adl_wdDeActiveAppWd();
 }
 }

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 342

ADL User Guide for Open AT® OS 6.35

3.36. ADL Layer 3 Service
The ADL supplies Layer3 Service interface allows to get information about Layer 3 as PLMN scan
information.

The defined operations are:

• A adl_L3infoSubscribe function to subscribe to the L3 information service

• A adl_L3infoUnsubscribe function to unsubscribe to the L3 information service.

Note: The L3 layer interface is not available on the AirPrime Q26Extreme module

3.36.1. Required Header File
The header file for the functions dealing with the ADL Layer 3 Service public interface is:

adl_L3info.h

3.36.2. The adl_L3infoChannelList_e
List of available information channel.

Code
typedef enum
{
 ADL_L3INFO_SCAN
 ADL_L3INFO_CELL
 ADL_L3INFO_RSM
}adl_L3infoChannelList_e;

Description

ADL_L3INFO_SCAN

This channel allows to retrieve information about PLMN Scan:

 power min, max, average

 cell synchronization. Refer to Channel Identity for more details on information structure,
which are returned by Scan channel

ADL_L3INFO_CELL

This channel allows to retrieve information about current cell and proximate cells. Refer to
wm_l3info_Cell_SyncCellInfo_t for more details on information structure, which are returned
by CELL channel.

ADL_L3INFO_RSM

This channel allows to retrieve RSM information which is reported once PLMN scan is
finished. Refer to wm_l3info_RSM_freq_t for more details on information structure, which are
returned by RSM channel.

Note: Some L3INFO channels are not defined in adl_L3infoChannelList_e but they are used by the
firmware and Open AT® application cannot access to them. So when application subscribes to a
channel which is not defined in adl_L3infoChannelList_e, then a valid handle (positive or NULL
value) will be returned instead of "ADL_RET_ERR_PARAM" in some cases.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 343

ADL User Guide for Open AT® OS 6.35

3.36.3. The Layer3 infoEvent Handler
Such a call-back function has to be supplied to ADL through the adl_L3infoSubscribe interface in
order to receive L3 information according to channels and related events.

Prototype
typedef void(*)adl_L3infoEventHandler_f(u32 Time,

 adl_L3infoChannelList_e ChannelId,
 u32 EventId,
 u32 Length,

 void * Info);

Parameters

Time

Reserved for Future Use.

ChannelId

Channel identity which provides information. (Refer to adl_L3infoChannelList_e for more
information).

EventId

Event identity according to ChannelId. Refer to l3info_trace for more information about
possible event.

Length

Length of "Info" content.

Info

Information content according to ChannelID and EventID. Refer to l3info_trace for more
information about the type of "Info".

3.36.4. The adl_L3infoSubscribe Function
This function allows to subscribe several times to one of the available information channel of the
Layer 3.

A call-back function is associated for Layer 3 events and to retrieve information relative to the channel
requested.

Prototype
s32 adl_L3infoSubscribe (adl_L3infoChannelList_e ChannelId,

 adl_L3infoEventHandler_f L3infoHandler);

Parameters

ChannelId

Information channel requested. (Refer to adl_L3infoChannelList_e for more information).

L3infoHandler

Application provides Layer 3 event call-back function (Refer to
adl_L3infoEventHandler_f for more information).

Returned values
• Positive or NULL if allocation succeed, returns handle which has to to be used on further L3

info API functions calls

• ADL_RET_ERR_PARAM if parameter has an incorrect value.

• ADL_RET_ERR_NOT_SUPPORTED if the Raw Spectrum Information feature is not enabled on the
embedded module.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 344

ADL User Guide for Open AT® OS 6.35

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler.

3.36.5. The adl_L3infoUnsubscribe Function
This function allows to unsubscribe from the specific channel L3 information flow which has been
subscribed previously with adl_L3infoSubscribe function.

Prototype
s32 adl_L3infoUnsubscribe (u32 Handle);

Parameters

Handle

handle previously returned by adl_L3infoSubscribe function.

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown.

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler.

3.36.6. Example
These function allows to subscribe or unsubscribe to one of information channel available from Layer
3.

// Channel info handle
 s32 handle;

 // info channel event call-back function
 void MyChannelEventHandler(u32 Time, adl_L3infoChannelList_e ChannelId,
 u32 EventId, u32 Length, void * Info)
 {

 switch (EventId)
 {
 ...
 }

 adl_L3infoUnsubscribe(handle);

 return;
 }

 void adl_main (adl_InitType_e InitType)
 {

 // Subscribe to PLMN Scan channel information
 handle = adl_L3infoSubscribe (ADL_L3INFO_SCAN,
 MyChannelEventHandler);

 }

3.36.7. Channel Identity List
Channel Identity list.

Note: Only PLMN Scan and Cell Information Channels are opened in ADL.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 345

ADL User Guide for Open AT® OS 6.35

3.36.7.1. The l3info_ChannelList_t
Code

typedef enum
{
 L3INFO_SCAN //PLMN scan information
 L3INFO_CELL //Cell information
 BATT_CHANNEL //BATT channel information [Internal use]
 SMS_CHANNEL //SMS information [Internal use]
 DATA_INFO_CHANNEL //Data information [Internal use]
 CELL_INFO_CHANNEL //Cell Information channel [Internal use]
 OAT_CHANNEL //OAT Information channel [Internal use]
 L3INFO_NBCHANNEL //Number of channel
 }l3info_ChannelList_t;

3.36.8. Cell Information Channel Interface
This section describes events and associated data structure to provide information about serving cell
and surrounding cells.

3.36.8.1. Cell Information [WM_L3_INFO_SYNC_CELL_INFO
event]

The Synchronized cell nformation is reported every 5 seconds if embedded module is under GSM
coverage.

3.36.8.2. WM_Cx_NOT_AVAILABLE

WM_Cx_NOT_AVAILABLE define.

if not C1, C2, C31 or C32 is not available

#define WM_BSIC_NOT_AVAILABLE 0x40

3.36.8.3. WM_BSIC_NOT_AVAILABLE

if BSIC not available.

#define WM_BSIC_NOT_AVAILABLE 0xFF

3.36.8.4. WM_L3_INFO_SYNC_CELL_INFO

Synchronized Cell Information event identity.

#define WM_L3_INFO_SYNC_CELL_INFO 0

3.36.9. PLMN SCAN Information Channel Interface
This section describes events and associated data structure to provide information about PLMN
SCAN procedure.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 346

ADL User Guide for Open AT® OS 6.35

The PLMN Scan procedure is composed by the following steps :

• At first a power measurement on each supported frequency is performed.

• Then if sufficent power (> noise power level(~ -105dBm)) is detected on one cell or more ,
cell synchronisation attempt is performed on these cells.

The PLMN scan procedure can be initiated by the embedded module, for initial PLMN selection or
automatic PLMN reselection purposes, or can be initiated by the user with AT+COPS command for
instance.

3.36.9.1. Measurements Information [WM_L3_INFO_SCAN_PWR
event]

The Measurement information are reported each time a power measurement is required on all
frequencies.

The corresponding reported data are statistics on the low band, high band and low+high band.

The total number of cells with a power level greater than the noise power level is also reported.

3.36.9.2. Cell Synchronisation Information
[WM_L3_INFO_SCAN_SYNC_CELL event]

The Cell Sychronisation information are reported when a cell synchronisation attempt was executed
during the PLMN Scan procedure and

• if the embedded module is not camped on a cell (the number of synchro failure is updated)

• if the embedded module has just camped on a cell (CellCamped flag set): no other
WM_L3_INFO_SCAN_SYNC_CELL event is reported after.

3.36.9.3. Cell Information [WM_L3_INFO_CELL_INFO event]

The Cell Information are reported each time a cell is synchronized during the scan procedure.

3.36.9.4. Scan end Information [WM_L3_INFO_SCAN_END event]

This event is reported once the scan is finished.

3.36.10. PLMN SCAN Information Channel : Event List

3.36.10.1. WM_L3_INFO_SCAN_PWR

Power level information event identity.

#define WM_L3_INFO_SCAN_PWR 0

3.36.10.2. WM_L3_INFO_SCAN_SYNC_CELL

Cell Synchronisation information event identity.

#define WM_L3_INFO_SCAN_SYNC_CELL 1

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 347

ADL User Guide for Open AT® OS 6.35

3.36.10.3. WM_L3_INFO_SCAN_END

Scan ended.

#define WM_L3_INFO_SCAN_END 2

3.36.10.4. WM_L3_INFO_CELL_INFO

Cell Information event identity.

#define WM_L3_INFO_CELL_INFO 3

3.36.11. Radio Spectrum Monitoring (RSM) Channel
Interface

This section describes events and associated data structure to provide information about Radio
environment.

RSM information is updated and reported at each PLMN scan (initiated by the user using
AT+COPS=? command or initiated by the embedded module itself) .

3.36.11.1. Cell Information [WM_L3_INFO_CELL_INFO event]

The RSM information is reported once the PLMN scan is finished. The RSM information is composed
for each frequency:

• Rxlev (0 to 63)

• Synchronized Status (synchronized, synchronisation failed, synchronisation not tried)

• if Synchronized status is equal to synchronized:

 BSIC

 Location Area Information (MCC / MNC / LAC)

 Cell identity (equal to 0xFFFF if unknown)

3.36.11.2. WM_L3_INFO_RSM_EVT

RSM event identity.

#define WM_L3_INFO_RSM_EVT 0

3.36.11.3. WM_L3_INFO_RSM_EVT event

Maximum number of frequency.

#define L3INFO_MAX_NB_RSM_FREQ 971

3.36.12. Layer 3 Information Status
Status or Error returned by any Layer 3 function.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 348

ADL User Guide for Open AT® OS 6.35

3.36.12.1. L3INFO_ERR_CHANNEL_UNKNOWN

Unknown Channel Identity.

#define L3INFO_ERR_CHANNEL_UNKNOWN ((s32) (-1))

3.36.12.2. L3INFO_ERR_CHANNEL_ALREADY_OPENED

Channel already opened.

#define L3INFO_ERR_CHANNEL_ALREADY_OPENED ((s32) (-2))

3.36.12.3. L3INFO_ERR_CHANNEL_ALREADY_CLOSED

Scan ended.

#define L3INFO_ERR_CHANNEL_ALREADY_CLOSED ((s32) (-3))

3.36.12.4. L3INFO_ERR_INVALID_HANDLE

Invalid Handle.

#define L3INFO_ERR_INVALID_HANDLE ((s32) (-4))

3.36.12.5. L3INFO_OK

Successful operation.

#define L3INFO_OK ((s32) (-0))

3.36.13. Function interface for information provider
This function is used by any Software Element providing information on a defined channel.

3.36.13.1. The l3info_trace Function

l3info_trace : Event trace function.

This function is called each time a event shall be reported whatever the channel state is (open,
closed).

Prototype
void l3info_trace (l3info_ChannelList_t ChannelId,
 u32 EventId,
 u32 Length,
 u8* Ptr);

Parameters

ChannelId

Channel Identity

EventId

Event Identity

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 349

ADL User Guide for Open AT® OS 6.35

Length

Length of the information content

Ptr

Information content

3.36.13.2. The l3info_IsChannelActivated Function

l3info_IsChannelActivated : Channel status.

This function returns the channel state (open, closed).

Prototype
bool l3info_IsChannelActivated (l3info_ChannelList_t ChannelId);

Parameters

ChannelId

Channel Identity

Returns
• TRUE if channel is open, otherwise, FALSE.

3.36.14. User Interface
The User Interface is composed by:

• a subscribe function. At subscription, the user shall provide a callback function

 This callback function will be used each time information has to be reported.

 This callback function shall follow the _pl3infoCallBackProto function prototype described
below.

• an unsubscribe function.

3.36.14.1. The l3info_infoSubscribe Function

l3info_infoSubscribe : Layer 3 information channel subscription function.

Prototype
s32 l3info_infoSubscribe (l3info_ChannelList_t ChannelId,
 _pl3infoCallBackProto* pFunc);

Parameters

ChannelId

Channel Identity

pFunc

Callback function pointer

Return value
• Handle (positive value) or negative value if error

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 350

ADL User Guide for Open AT® OS 6.35

3.36.14.2. The l3info_infoUnSubscribe Function

l3info_infoUnSubscribe : Layer 3 information channel subscription function.

Prototype
s32 l3info_infoUnSubscribe (s32 Handle);

Parameters

Handle

Handle of the channel to close

Return value

• L3INFO_OK if OK or negative value if invalid handle.

3.36.14.3. The _pl3infoCallBackProto Function

CallBack function prototype.

Prototype
void _pl3infoCallBackProto (u32 Time,
 l3info_ChannelList_t ChannelId,
 u8 EventId,
 u32 Length,
 u8 *Ptr);

Parameters

Time

Not used

ChannelId

Channel Identity

EventId

Event Identity

Length

Length of the information content

Ptr

Information content

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 351

ADL User Guide for Open AT® OS 6.35

3.36.15. Layer 3 Information Interface Specification Data
Structures

3.36.15.1. The wm_l3info_Cell_SyncCellInfo_t Structure

Synchronized Cell Information structure.

This information is reported every 5 seconds, or when a first cell is synchronized.

Code
typedef struct
{
 u8 NbSyncCell,
 u8 Pad[3],
 wm_l3info_Cell_SyncCellParameter_t SyncCell[7]
}wm_l3info_Cell_SyncCellInfo_t;

Description

NbSyncCell

Number of synchronized cell.

SyncCell[7]

Synchronized cell information (First serving cell then neighbor cells)

3.36.15.2. The wm_l3info_Cell_SyncCellParamater_t Structure

Synchronized Cell Parameter Information structure.

Code
typedef struct
{
 u16 Arfcn,
 u8 Rssi,
 u8 Lai[5],
 u8 CellId[2],
 u8 Bsic,
 s8 C1,
 s16 C2,
 s16 C31,
 s16 C32,
 bool GprsIndication,
 u8 MsTxPwrMaxCcch
}wm_l3info_Cell_SyncCellParamater_t;

Description

Arfcn

ARFCN

Rssi

RSSI: Range [0 to 63]

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 352

ADL User Guide for Open AT® OS 6.35

Lai[5]

Location area identity: including MCC, MNC and LAC.

--8--7--6--5-|-4--3--2--1
Byte 1 :MCC digit 2 | MCC digit 1

Byte 2 :MNC digit 3 | MCC digit 3

Byte 3 :MNC digit 2 | MNC digit 1

Byte 4 :LAC

Byte 5 :LAC (cont)

CellId[2]

Cell identity

Bsic

Base Station Identity code.

C1

C1 value: cell selection criteria (only available in idle mode - WM_Cx_NOT_AVAILABLE if not
available).

C2

C2 value: GSM cell reselection criteria (only available in idle mode -
WM_Cx_NOT_AVAILABLE if not available).

C31

C31 value: GPRS cell reselection criteria (only available in idle mode -
WM_Cx_NOT_AVAILABLE if not available).

C32

C32 value: GPRS cell reselection criteria (only available in idle mode -
WM_Cx_NOT_AVAILABLE if not available).

GprsIndication

Gprs support indication.

MsTxPwrMaxCcch

Power control level: The maximum TX power level an MS may use when accessing a
Control Channel CCH. (Range: 0 to 31).

3.36.15.3. The wm_l3info_RSM_freq_t Structure

Frequency information structure.

Code
typedef enum
{
 L3INFO_FREQ_NOT_TRIED //No synchronisation performed in this

 frequency
 L3INFO_FREQ_SYNCHRONIZED //GSM cell found on this frequency

 L3INFO_FREQ_NOT_SYNCHRONIZED //No GSM cell found on this frequency
}

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 353

ADL User Guide for Open AT® OS 6.35

Code
typedef struct
{
 u16 Arfcn
 u8 Rxlev
 u8 Bsic
 u8 Lai[4]
 u16 CellIdentity
}wm_l3info_RSM_freq_t;

Description

Arfcn

ARFCN.

Rxlev

Rx Level (0 to 63).

Bsic

Base Station Identity Code.

Lai[4]

Location area identity : including MCC, MNC and LAC.

--8--7--6--5-|-4--3--2--1
Byte 1 :MCC digit 2 | MCC digit 1

Byte 2 :MNC digit 3 | MCC digit 3

Byte 3 :MNC digit 2 | MNC digit 1

Byte 4 :LAC

CellIdentity

Cell Identity.

3.36.15.4. The wm_l3info_RSM_t Structure

RSM information.

Code
typedef struct
{
 u16 NumberOfFrequency
 u16 Pad
 wm_l3info_RSM_freq_t FreqInfo[L3INFO_MAX_NB_RSM_FREQ]
}wm_l3info_RSM_t;

Description

NumberOfFrequency

Number of frequency reported.

FreqInfo[L3INFO_MAX_NB_RSM_FREQ]

RSM table information.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 354

ADL User Guide for Open AT® OS 6.35

3.36.15.5. The wm_l3info_Scan_PowerInfo_t Structure

Power Measurement Information structure.

Code
typedef struct
{
 wm_l3info_Scan_PowerStat_t Total,
 wm_l3info_Scan_PowerStat_t LowBand,
 wm_l3info_Scan_PowerStat_t HighBand,
 u16 NumberOfCellAboveNoise,
 bool CellCamped
}wm_l3info_Scan_PowerInfo_t;

Description

Total

Power Measurement statistics for all bands.

LowBand

Power Measurement statistics for the low band (GSM/850).

HighBand

Power Measurement statistics for the high band (DCS/PCS).

NumberOfCellAboveNoise

Number of cells with a power level greater than the noise's one.

CellCamped

TRUE if embedded module is camped on a cell, else FALSE.

3.36.15.6. The wm_l3info_Scan_PowerStat_t Structure

Power Measurement structure.

Code
typedef struct
{
 u32 NbFreq
 u8 Min
 u8 Max
 u8 Mean
 u32 Variance
}wm_l3info_Scan_PowerStat_t;

Description

NbFreq

Number of frequencies.

Min

Minimal power level detected.

Max

Maximal power level detected.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 355

ADL User Guide for Open AT® OS 6.35

Mean

Mean power level.

Variance

Variance.

3.36.15.7. The wm_l3info_Scan_SynchroCellInfo_t Structure

Cell Synchronization Information structure.

This information is reported each time a cell synchronisation is unsucessful and no cell has been
already synchronised, or when a first cell is synchronised.

Code
typedef struct
{
 u16 NbCellTriedInLowBand,
 u16 NbCellTriedInHighBand,
 bool CellCamped
}wm_l3info_Scan_SynchroCellInfo_t;

Description

NbCellTriedInLowBand

Number of tried cell in low band since the start of the scan.

NbCellTriedInHighBand

Number of tried cell in high band since the start of the scan.

CellCamped

TRUE if embedded module is camped on a cell, else FALSE.

3.36.15.8. The wm_l3info_Scan_End_t structure

End Scan Information structure.

These information is reported at the end of the scan procedure

Code
typedef struct
{
 bool CellCamped
} wm_l3info_Scan_End_t;

Description

CellCamped

TRUE if embedded module is camped on a cell, else FALSE.

API
ADL Layer 3 Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 356

ADL User Guide for Open AT® OS 6.35

3.36.15.9. The wm_l3info_CellInfo_t structure

Cell Information structure.

These information is reported each time a cell is synchronised during a scan.

Code
typedef struct
{
 u16 Arfcn
 u16 CellId
 u8 Rssi
 u8 Lai[3]
} wm_l3info_CellInfo_t;

Description

Arfcn

Cell Frequency (Arfcn)

CellId

Cell Identity

Rssi

RSSI on the corresponding frequency

Lai[3]

Cell PLMN (MCC/MNC coded as in 3GPP 04.18)

API
ADL Event Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 357

ADL User Guide for Open AT® OS 6.35

3.37. ADL Event Service
ADL provides an Event service to access to the embedded module's Event.

Please make a note that the timing unit is a tick which corresponds to 18.5 ms.

Events are communication objects between tasks and interrupt routines (ISRs) or between tasks and
other tasks.

Dynamic Event creation:

• Events are dynamically created, please refer to adl_eventCreate API

• A handle is returned at Event creation to handle it

Wait for an Event:

• A task is allowed to wait for an Event under given conditions, using adl_eventWait API

• If the Event wait condition is already TRUE, the task continues its execution and its context is
ADL_CTX_STATE_WAIT_EVENT

• Else the task status becomes ADL_CTX_STATE_WAIT_INNER_EVENT (wait for Event) and
the task cannot be scheduled when it is in this state

• A task which is waiting for an Event that is set becomes ADL_CTX_STATE_READY and can be
scheduled again

• In fact, several tasks can wait for the same Event. In such case, they will all be in
ADL_CTX_STATE_WAIT_EVENT state

• If more than one task is waiting for an Event and when this Event is set, all the tasks waiting
for that Event can be reactivated (depending on the selected wait mode / see below)

• If several tasks are waiting for an Event that is set, those tasks become
ADL_CTX_STATE_READY and will be scheduled (states become ADL_CTX_STATE_ACTIVE)
according to their priorities

Event Wait condition:

• When a task calls the adl_eventWait API to wait for an Event, it provides a mask to be
compared with the internal Event bit field

• The task stays in the ADL_CTX_STATE_WAIT_INNER_EVENT status, while the wait
condition is not TRUE

• There are 2 waiting modes:

 ADL_EVENT_WAIT_ANY: The wait condition is TRUE if at least one bit of the provided
mask matches with the Event internal bit field

 ADL_EVENT_WAIT_ALL: The wait condition is TRUE if all bits of the provided mask
match with the Event internal bit field

Event set and clear:

• An Event can be set or cleared by a task or an interrupt routine (please refer to adl_eventSet
and adl_eventClear API)

• When an Event is set, tasks that are waiting for this Event can be reactivated
(ADL_CTX_STATE_READY state)

Event internal mask:

• An Event contains an internal bit field which is a private attribute

• Initial value of this internal mask is provided at the creation of the Event

• A task that is waiting for an Event waits, in fact for one or several bits of the internal bit field to
be raised

• It is possible to set or to clear each bit of the internal bit field individually or in group, please
refer to adl_eventSet and adl_eventClear API

API
ADL Event Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 358

ADL User Guide for Open AT® OS 6.35

• adl_eventSet API sets one or several bits and can make ADL_CTX_STATE_READY one or
several tasks that are waiting for this bits to be raised

• adl_eventClear API clears one or several bits

Note about Event versus Semaphore:

• Whereas semaphore production are not allowed before consumption, all API of the Event
service can be used on a given Event, whatever the order is (on condition the Event is firstly
created)

• Hence adl_eventWait / adl_eventSet and adl_eventClear functions can be called in
any order

• If more than one task is waiting for a semaphore and when this semaphore is produced (in a
task context for example), then only the task with higher priority (among all the tasks that are
waiting for the semaphore) becomes ADL_CTX_STATE_READY and can be scheduled

• If more than one task is waiting for an Event and when this Event occurs, then all tasks
waiting for this Event can become ADL_CTX_STATE_READY and can be scheduled.

The defined operations are:

• A adl_eventCreate function

• A adl_eventWait function

• A adl_eventClear function

• A adl_eventSet function

3.37.1. Required Header File
The header file for the functions dealing with the ADL Event Service public interface is:

adl_event.h

3.37.2. Defines

3.37.2.1. The ADL_EVENT_NO_TIMEOUT

No timeout definition

#define ADL_EVENT_NO_TIMEOUT 0xFFFFFFFF

API
ADL Event Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 359

ADL User Guide for Open AT® OS 6.35

3.37.3. Enumerations

3.37.3.1. The adl_eventWaitMode_e

For adl_eventWait API.

Code
typedef enum
{
 ADL_EVENT_WAIT_ANY
 ADL_EVENT_WAIT_ALL
}adl_eventWaitMode_e;

Description

ADL_EVENT_WAIT_ANY

Wait for any Event (ANY).

ADL_EVENT_WAIT_ALL

Wait for all Event (ALL).

3.37.4. The adl_eventCreate Function
Enable to create a new event: Allocate the event and initialize internal mask with initial value.

Prototype
s32 adl_eventCreate (u32 eventFlags);

Parameters

eventFlags

Initial value for event mask.

Returned values
• eventHandle if creation is successful

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt handler
(the function is forbidden in this context).

Note: A reset will be caused for the following exception: Out of memory

3.37.5. The adl_eventWait Function
Enable to wait for all or only some event depending on mode.

Prototype
s32 adl_eventWait (s32 eventHandle,

 u32 inEventFlags,
 u32* outEventFlags,
 adl_eventWaitMode_e eventMode,
 u32 eventTimeOut);

API
ADL Event Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 360

ADL User Guide for Open AT® OS 6.35

Parameters

eventHandle

Event handle (returned by adl_eventCreate).

inEventFlags

Event wait mask.

outEventFlags

Affected with event mask when the task is reactivated (outEventFlags can be NULL. In this
case, current mask is not returned).

eventMode

Selected wait mode (ADL_EVENT_WAIT_ANY or ADL_EVENT_WAIT_ALL).

• If wait mode is ADL_EVENT_WAIT_ANY

 If inEventFlags matches with at least one bit of internal mask then the call of
adl_eventWait function stays activated

 Otherwise, the call of adl_eventWait function is blocking the current task is deactivated
(state is ADL_CTX_STATE_WAIT_INNER_EVENT) until inEventFlags matches with at
least one bit of internal mask

• Else (if wait mode is ADL_EVENT_WAIT_ALL)

 If inEventFlags matches with all bits of internal mask then the call of adl_eventWait
function stays activated

 Otherwise, the call of adl_eventWait function is blocking, the current task is
deactivated (state is ADL_CTX_STATE_WAIT_INNER_EVENT) until inEventFlags
matches with all the bits of internal mask

eventTimeOut

Wait timeout in number tick (18.5 ms)

• If programmed timeout is not ADL_EVENT_NO_TIMEOUT and if the task is waiting for the
event, then a timeout timer is launched.

• If the timer has expired, the task is unblocked and ADL_RET_ERR_DONE code is returned

Returned values
• OK Operation is successful

• ADL_RET_ERR_DONE if the Timer has expired and the task is activated

• ADL_RET_ERR_PARAM If eventMode parameter is neither ADL_EVENT_WAIT_ANY nor
ADL_EVENT_WAIT_ALL or if inEventFlags is set to 0

• ADL_RET_ERR_BAD_STATE If the function was called from Task 0 context

• ADL_RET_ERR_SERVICE_LOCKED If the function was called from a low level interrupt
handler (the function is forbidden in this context).

Note: A reset will be caused for the following exceptions:

 bad Event handle

 bad Event wait mode

API
ADL Event Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 361

ADL User Guide for Open AT® OS 6.35

3.37.6. The adl_eventClear Function
Enable to clear one or several bits in internal event mask.

Prototype
s32 adl_eventClear (s32 eventHandle,

 u32 inEventFlags,
 u32* outEventFlags);

Parameters

eventHandle

Event handle (returned by adl_eventCreate).

inEventFlags

Mask indicates which bit to clear into event internal mask.

outEventFlags

Affected with event mask before the operation; (this parameter can be NULL. In this case
current mask is not returned)

Returned values
• OK on success

• ADL_RET_ERR_PARAM when InEventFlags =0

3.37.7. The adl_eventSet Function
Enable to set one or several bits in internal event mask and to reactivate task waiting for this event.

If event internal mask is modified and if at least one task is waiting for this event then, for each task
waiting for the event, according to the wait mode:

• If wait mode is ADL_EVENT_WAIT_ANY and if wait mask matches with at least one bit of
internal mask, then the task is reactivated.

• Otherwise if wait mode is ADL_EVENT_WAIT_ALL and if wait mask matches with all bits of
internal mask then the task is reactivated.

Prototype
s32 adl_eventSet(s32 eventHandle,

 u32 inEventFlags);

Parameters

eventHandle

Event handle

inEventFlags

Mask indicates which bit to set into event internal mask.

Returned values
• OK on success

• ADL_RET_ERR_PARAM when InEventFlags =0

API
ADL Event Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 362

ADL User Guide for Open AT® OS 6.35

3.37.8. Example
Here is an example of how to use the application Event API access functions.

// Global definitions

 // Event object handler
 static u32 l_u32_MyEvent = NULL;

 // External interrupt handler
 static void MyExternal InterruptHandler(void);

 // My task entry point
 void MyTask(void)
 {
 // External interrupt registration
 // ...

 // Event creation
 l_u32_MyEvent = adl_eventCreate(0);

 // Task infinite loop
 while (1)
 {
 // Wait for bit 0 of my Event to be raised (without timeout)
 adl_eventWait(
 l_u32_MyEvent,
 1,
 NULL,
 ADL_EVENT_WAIT_ANY,
 ADL_EVENT_NO_TIMEOUT);

 // Launch my treatments
 // ...

 // Clear Event
 l_s_ErrorCode = adl_eventClear(
 l_u32_MyEvent,
 1,
 NULL);
 }
 }

 void MyExternal InterruptHandler(void)
 {
 // Signal Event
 l_s_ErrorCode = adl_eventSet(l_u32_MyEvent, 1);

 // Interrupt acknowledgement
 // ...
 }

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 363

ADL User Guide for Open AT® OS 6.35

3.38. ADL AirPrime Management Services
ADL provides a AirPrime Management Services (AMS).

- AirPrime Management Services Monitoring Service:

This service enables the parameters monitoring with AirPrime Management Services.

The defined operations are:

• A adl_idsMonitorSubscribe function

• A adl_idsMonitorUnsubscribe function

• A adl_idsMonitorTrace function

• A adl_idsMonitorDeleteUnused function

- AirPrime Management Services Provisioning Service:

This service enables the provisioning of parameters with AirPrime Management Services.

The defined operations are:

• A adl_idsProvSubscribe function

• A adl_idsProvUnsubscribe function

3.38.1. Required Header File
The header file for the ADL AirPrime Management Services Service public interface function is:

adl_ids.h

3.38.2. Data Structure for Monitoring Process

3.38.2.1. The adl_idsMonitorCfg_t Structure

Structure for New Monitoring Configuration on reception of server message.

Code
typedef struct
{
 bool OnDemand,

 bool Cumul,
 u32 Timing,
 adl_idsMonitorDataType_e DataType,
 void *TriggerValueData,
 u32 TriggerValueLen,
 adl_idsMonitorTrig_e TrigMode,
 s32 TriggerHysteresis,
 adl_idsMonitorFlagReset Reset

} adl_idsMonitorCfg_t;

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 364

ADL User Guide for Open AT® OS 6.35

Description

State:

OnDemand flag: the server can request an alert/report at any time then the device looks for
all monitoring parameters that are marked as being "On Demand" and generates a report
containing all those parameters and sends it back to the server.

Cumul:

Cumulate parameter definition only available if DataType is
ADL_IDS_MONITOR_INTEG_DATA. If set to TRUE when adl_idsMonitorTrace is called
the value given will be added to the previous one when reported to the server.

Timing:

Timer for monitoring: 0 is no timing, otherwise timing in minutes when timer elapsed the
parameter set through the adl_idsMonitorTrace is reported to the server (this is an
internal monitoring process).

DataType:

Paramater Type.

TriggerValueData:

Trigger value only valid when TrigMode is not ADL_IDS_MONITOR_NO_TRIG.

TriggerValueLen:

Trigger length when TrigMode is not ADL_IDS_MONITOR_NO_TRIG.

TrigMode:

Trigger mode only valid when DataType is ADL_IDS_MONITOR_INTEG_DATA.

TriggerHysteresis:

Behaviour depends on TrigMode

Reset:

When should the monitoring parameter value be reset?

3.38.2.2. The adl_idsMonitorDataType_e Type

This enumeration for Monitoring parameter type.

Code
enum
{
 ADL_IDS_MONITOR_INTEG_DATA,
 ADL_IDS_MONITOR_BUFF_DATA
 } adl_idsMonitorDataType_e;

Description

ADL_IDS_MONITOR_INTEG_DATA

Data type is an integer.

ADL_IDS_MONITOR_BUFF_DATA

Data type is buffer.

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 365

ADL User Guide for Open AT® OS 6.35

3.38.2.3. The adl_idsMonitorFlagReset_e Type

This enumeration for Monitoring state.

Code
enum
{
 ADL_IDS_MONITOR_RESET_NOW,
 ADL_IDS_MONITOR_RESET_ON_TRIGGER,
 ADL_IDS_MONITOR_RESET_ON_TIMER,
 ADL_IDS_MONITOR_RESET_ON_DEMAND
 } adl_idsMonitorFlagReset_e;

Description

ADL_IDS_MONITOR_RESET_NOW

Reset monitoring parameter value now (on subscription time).

ADL_IDS_MONITOR_RESET_ON_TRIGGER

Reset monitoring parameter value when Trigger is happening.

ADL_IDS_MONITOR_RESET_ON_TIME

 Reset monitoring parameter value when timer ends.

ADL_IDS_MONITOR_RESET_ON_DEMAND

Reset monitoring parameter value when monitoring starts.

3.38.2.4. The adl_idsMonitorTrig_e Type

This enumeration for Monitoring Trigger mode.

Code
enum
{
 ADL_IDS_MONITOR_NO_TRIGGER,
 ADL_IDS_MONITOR_TRIGGER_UP,
 ADL_IDS_MONITOR_TRIGGER_DOWN,
 ADL_IDS_MONITOR_TRIGGER_BOTH,
 ADL_IDS_MONITOR_TRIGGER_EQUAL,
 ADL_IDS_MONITOR_TRIGGER_NOT_EQUAL,
 ADL_IDS_MONITOR_TRIGGER_DELTA
 } adl_idsMonitorTrig_e;

Description

ADL_IDS_MONITOR_NO_TRIGGER

No Trigger.

ADL_IDS_MONITOR_TRIGGER_UP

Trigger when value is higher than TriggerValueData

ADL_IDS_MONITOR_TRIGGER_DOWN

Trigger when value is lower than TriggerValueData

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 366

ADL User Guide for Open AT® OS 6.35

ADL_IDS_MONITOR_TRIGGER_BOTH

Trigger when the TriggerValueData is reached

ADL_IDS_MONITOR_TRIGGER_EQUAL

Trigger when the value is equal to the TriggerValueData

ADL_IDS_MONITOR_TRIGGER_NOT_EQUAL

Trigger when the value is not equal to the TriggerValueData

ADL_IDS_MONITOR_TRIGGER_DELTA

Trigger when the value is higher than TriggerValueData + Hysteresis or less than
TriggerValue – Hysteresis

3.38.3. Data structure for Provisioning Process

3.38.3.1. The adl_idsProvCfg_t Structure

Structure for provisioning Configuration.

typedef struct
{

 void* Context,
 adl_idsProvCallBackRead idsProvRead,
 adl_idsProvCallBackWrite idsProvWrite,
 adl_idsProvCallBackGetLength idsProvGetLength

} adl_idsProvCfg_t;

Fields

Context:

Buffer to specify a context available during the whole process.

idsProvRead:

Read function pointer.

idsProvWrite:

Write function pointer.

idsProvGetLength:

Get Length function pointer.

3.38.3.2. The adl_idsProvCallBackRead

When the server requests a READ, this function is called to read the parameter associated with the
handle in the provided Buffer with the length returned by adl_idsProvCallBackGetLength
function.

Prototype
typedef s32(*) adl_idsProvCallBackRead (u32 sHandle,
 void *Ctx,
 void *Ptr,
 u32 Len);

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 367

ADL User Guide for Open AT® OS 6.35

Parameters

sHandle

Handle

Ctx

Context that will be given back once the callback is called

Ptr

Buffer read

Len

Buffer Length to be read

Return values
• OK on success

• Error otherwise

3.38.3.3. The adl_idsProvCallBackWrite

When the server requests a WRITE, this function is called to write the provided Buffer with the
provided length in the parameter associated with the handle.

Prototype
typedef s32(*) adl_idsProvCallBackWrite (u32 sHandle,
 void *Ctx,
 void *Ptr,
 u32 Len);

Parameters

sHandle

Handle

Ctx

Context that will be given back once the callback is called

Ptr

Buffer write

Len

Buffer Length to be written

Return values
• OK on success

• Error otherwise

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 368

ADL User Guide for Open AT® OS 6.35

3.38.3.4. The adl_idsProvCallBackGetLength

When the server requests a READ this function is called to get the length of the parameter associated
to the handle to be read to allocate the desired memory.

Prototype
typedef s32(*) adl_idsProvCallBackGetLength (u32 sHandle,
 void *Ctx);

Parameters

sHandle

Handle

Ctx

Context that will be given back once the callback is called

Return values
• Length if positive

• Error otherwise

3.38.4. AirPrime Management Services Monitoring API
Access Functions

3.38.4.1. The adl_idsMonitorSubscribe Function

The aim of this function is to activate Monitoring on given name with associated configuration.

In the provided configuration, the user has to specify a callback function (idsMonitorNewConfig)
to handle any message from the server suggesting to use a new configuration.

Prototype
s32 adl_idsMonitorSubscribe (ascii* Name,

 adl_idsMonitorCfg_t* Config);

Parameters

Name

Parameter Name (up to 50 characters)

Config

Parameter Configuration

Returned values
• Handle If positive value (AirPrime Management Services handle to be used on further

AirPrime Management Services API functions calls)

• ADL_RET_ERR_PARAM If one parameter is NULL

• ADL_RET_ERR_NOT_SUBSCRIBED If AirPrime Management Services service is not started

• ADL_RET_ERR_BAD_STATE If AirPrime Management Services service is busy (a session with
server is already opened and an Open AT® parameter is accessed)

• ADL_RET_ERR_NO_MORE_HANDLES If no more parameters can be monitored

• ADL_RET_ERR_ALREADY_SUBSCRIBED If a parameter with such name is already monitored

• ADL_RET_ERR_NOT_SUPPORTED If the device is not allowing this feature

Note: Up to 50 Open AT® parameters can be monitored at the same time.

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 369

ADL User Guide for Open AT® OS 6.35

3.38.4.2. The adl_idsMonitorUnsubscribe Function

The aim of this function is to remove a parameter under Monitoring by providing its Handle (given at
Activation).

Prototype
s32 adl_idsMonitorUnsubscribe (s32 sHandle);

Parameters

sHandle

Handle associated with the parameter (returned by adl_idsMonitorSubscribe API)

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HANDLE If the handle provided is unknown

• ADL_RET_ERR_NOT_SUBSCRIBED If AirPrime Management Services service has not started

• ADL_RET_ERR_BAD_STATE If AirPrime Management Services service is busy (a session with
server is already open and an Open AT® parameter is accessed)

• ADL_RET_ERR_NOT_SUPPORTED If the device is not allowing this feature

3.38.4.3. The adl_idsMonitorTrace Function

The aim of this function is to Trace a parameter under Monitoring by providing its Handle (given at
Activation) and data with length of updated value.

Prototype
s32 adl_idsMonitorTrace (s32 sHandle,

 void* Data,
 u32 Len);

Parameters

sHandle

Handle associated with the parameter (returned by adl_idsMonitorSubscribe API)

Data

Pointer on Data

Len

Data Length

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HANDLE If the handle provided is unknown

• ADL_RET_ERR_NOT_SUBSCRIBED If AirPrime Management Services service has not started

• ADL_RET_ERR_BAD_STATE If AirPrime Management Services service is busy (a session with
server is already open and an Open AT® parameter is accessed)

• ADL_RET_ERR_NOT_SUPPORTED If the device is not allowing this feature

Note: If when subscribing with adl_idsMonitorSubscribe the cumul parameter was set to TRUE, the
value of the data here traced will be added to the previous one when reported to the server.

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 370

ADL User Guide for Open AT® OS 6.35

3.38.4.4. The adl_idsMonitorDeleteUnused Function

The aim of this function is to delete unused parameter under Monitoring. Unused parameter are the
ones that have been subscribed but are not anymore. Flash object entries containing the
configuration for these parameters have been allocated. So calling this API cleans flash entries of
unused parameters..

Prototype
s32 adl_idsMonitorDeleteUnused (void);

Returned values
• OK on success

• ADL_RET_ERR_NOT_SUBSCRIBED If AirPrime Management Services service is not started

• ADL_RET_ERR_BAD_STATE If AirPrime Management Services service is busy (a session with
server is already opened and an Open AT® parameter is accessed)

• ADL_RET_ERR_NOT_SUPPORTED If the device is not allowing this feature

3.38.5. AirPrime Management Services Provisioning API
Access Functions

3.38.5.1. The adl_idsProvSubscribe Function

The aim of this function is to activate Provisioning on given Name with associated configuration.

In the provided configuration, the user has to specify:

• a callback function (idsProvRead) to handle any READ message coming from the server

• a callback function (idsProvWrite) to handle any WRITE message coming from the server

• a callback function (idsProvGetLength) to get the length of the parameter in case of a
READ message coming from the server

Prototype
s32 adl_idsProvSubscribe (ascii* Name,

 adl_idsProvCfg_t* Config);

Parameters

Name

Parameter Name (up to 50 characters)

Config

Parameter Configuration

Returned values
• Handle If positive value (AirPrime Management Services handle to be used on further

AirPrime Management Services API functions calls)

• ADL_RET_ERR_PARAM If one parameter is NULL

• ADL_RET_ERR_NOT_SUBSCRIBED If AirPrime Management Services service has not started

• ADL_RET_ERR_BAD_STATE If AirPrime Management Services service is busy (a session with
server is already open and an Open AT® parameter is accessed)

• ADL_RET_ERR_NO_MORE_HANDLES If no more parameters can be provided

• ADL_RET_ERR_ALREADY_SUBSCRIBED If a parameter with such name is already provided

• ADL_RET_ERR_NOT_SUPPORTED If the device is not allowing this feature

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 371

ADL User Guide for Open AT® OS 6.35

Note: Up to 50 Open AT® parameters can be provided at the same time.

3.38.5.2. The adl_idsProvUnsubscribe Function

The aim of this function is to remove a parameter for provisioning by providing its Handle (given at
Activation).

Prototype
s32 adl_idsProvUnsubscribe (s32 sHandle);

Parameters

sHandle

Handle associated with the parameter (returned by adl_idsProvSubscribe API)

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HANDLE If the handle is unknown

• ADL_RET_ERR_NOT_SUBSCRIBED If AirPrime Management Services service has not started

• ADL_RET_ERR_BAD_STATE If AirPrime Management Services service is busy (a session with
server is already open and an Open AT® parameter is accessed)

• ADL_RET_ERR_NOT_SUPPORTED If the device is not allowing this feature

3.38.6. Example
This example demonstrates how to use the AirPrime Management Services in a nominal case (error
cases not handled) with a embedded module.

Complete examples using the AT Command service are also available on the SDK.

 s32 MonitorHandle;
 s32 ProvHandle;

 static s32 MonTemp = 5;
 static s32 ProvTemp = 10;
 char Number[32];
 u32 value = 15;

 void TemperatureHasChanged (s32 NewTemperature)
 {
 s32 sRet;

 MonTemp = NewTemperature;

 // The temperature has changed notify the serveur
 adl_idsMonitorTrace(MonitorHandle, &MonTemp, sizeof(MonTemp));

 TRACE ((1, "TemperatureHasChanged : temperature %d",
 MonTemp));
 }

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 372

ADL User Guide for Open AT® OS 6.35

 void InitMonitor()
 {
 adl_idsMonitorCfg_t MyMonitorConfig;

 MyMonitorConfig.OnDemand = FALSE;
 MyMonitorConfig.Cumul = TRUE;
 MyMonitorConfig.Timing = 0;
 MyMonitorConfig.DataType = ADL_IDS_MONITOR_INTEG_DATA;
 MyMonitorConfig.TriggerValueData = (void*)&value;
 MyMonitorConfig.TriggerValueLen = sizeof(value);
 MyMonitorConfig.TrigMode = ADL_IDS_MONITOR_TRIGGER_UP;
 MyMonitorConfig.TriggerHysteresis = 0;
 MyMonitorConfig.Reset = ADL_IDS_MONITOR_RESET_NOW ;

 // now subscribe with the set configuration
 MonitorHandle = adl_idsMonitorSubscribe("Temperature",
 &MyMonitorConfig);

 // get rid of all unused Monitor parameter
 adl_idsMonitorDeleteUnused();

 // Set the parameter value
 sRet = adl_idsMonitorTrace(MonitorHandle, &value,
 sizeof(value));

 TRACE ((1, "InitMonitor : MonitorHandle %d", MonitorHandle));
 }

 s32 MyProvRead (s32 Handle, void *Ctx, void * Ptr, u32 Len)
 {
 TRACE ((1, "MyProvRead is called"));
 // Read temperature from device measuring
 wm_itoa(MonTemp, Number);
 wm_memcpy(Ptr, Number, wm_strlen(Number));
 return OK;
 }

 s32 MyProvWrite (s32 Handle, void *Ctx, void * Ptr, u32 Len)
 {
 TRACE ((1, "MyProvWrite is called"));

 // Write temperature to device controller
 wm_memcpy(Number, Ptr, Len);
 Number[Len] = 0;
 // Write temperature to device controller
 ProvTemp = (s32) wm_atoi(Ptr);
 return OK;

 }

API
ADL AirPrime Management Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 373

ADL User Guide for Open AT® OS 6.35

 s32 MyProvGetLength (void *Ctx)
 {
 TRACE ((1, "MyProvGetLength is called"));
 wm_itoa(MonTemp, Number);
 return wm_strlen(Number);
 }

 void InitProvision()
 {
 adl_idsProvCfg_t MyProvConfig;

 MyProvConfig.Context = 0;
 MyProvConfig.idsProvRead = (adl_idsProvCallBackRead) MyProvRead;
 MyProvConfig.idsProvWrite = (adl_idsProvCallBackWrite)
 MyProvWrite;
 MyProvConfig.idsProvGetLength = (adl_idsProvCallBackGetLength)
 MyProvGetLength;

 // now subscribe with the set configuration
 ProvHandle = adl_idsProvSubscribe("Temperature", &MyProvConfig);

 TRACE ((1, "InitProvision : ProvHandle %d", ProvHandle));
 }

API
ADL Open Device Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 374

ADL User Guide for Open AT® OS 6.35

3.39. ADL Open Device Service
The ADL Open Device service provides a raw access to any device behaving as a serial port. Each
device is defined in a class, refer to eDfClid_t structure in wm_factory.h file to get more information
about the existing classes.

In order to get a raw access to the device, a software block component supplies APIs which allows to
manipulate the device. it is called Service Provide (SP) and APIs of this SP are based on a Generic
Interface. For each existing device class, there is only one generic interface. For example, a SP
which allows to access to an UART, the SP is based on UART generic interface, refer to wm_uart.h
to get more information. These SP could be either existing SP on the Firmware or SP which are
defined by Open AT® application. Each SP supplies the following functions:

• read function: to read data from a device buffer

• write function: to write data to a device buffer

• I/O control function: to set/get device parameters

• close function: to release the device

Services supply by a SP can be accessed either by Firmware or by Open AT® application. In this
case, Firmware and Open AT® application are called Service User (SU). A SU can:

• get information about the existing SPs

• retrieves the SP's interfaces at runtime to access to the raw device configuration (read, write,
I/O control, close functions)

To be accessible, a SP of device has to be previously registred in the Firmware. Then its services can
be accessed by the SU.

API
ADL Open Device Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 375

ADL User Guide for Open AT® OS 6.35

Typical use diagram

The following diagram illustrates a typical mechanism between SU and SP.

The ADL Open Device service allows to:

• register to a new SP defined by Open AT® application

• unregister to the SPs which are defined by an Open AT® application

• get a raw access to a device behaving via SPs defined by Firmware or Open AT® application

Note: The ADL Open Device service is not available in RTE mode.

 The defined operations are:

• An adl_odRegister function to register a new SP

• An adl_odUnregister function to unregister a SP previously registered

• An adl_odOpen function to access to SP of a device

3.39.1. Required Header File
The header file for the ADL Open Device Service public interface function is:

adl_OpenDevice.h

API
ADL Open Device Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 376

ADL User Guide for Open AT® OS 6.35

3.39.2. The adl_odOpen_f function
Such entry point function has to be supplied to ADL through the adl_odRegister interface to
access to a device SP defined by customer application through adl_odOpen function.

This function has to allow to supply to SU the interface of SP (read , write, IO control, close functions).

Refer to "Device registration" part to get an use case example.

Prototype
typedef s32(*) adl_odOpen_f (void *param);

Parameters

param

pointer on parameter structure according to device class which is registered

Returned values
• handle if application has succeeded to open the device

• ERROR Otherwise

3.39.3. The adl_odOpen function
This function allows to access to one of available device. According to the device class id, this
function can:

• initialise and configurate the port

• provide event callbacks to the device

• retrieve functions interface from the device

Prototype
s32 adl_odOpen (eDfClid_t dev_clss_id,
 void* param);

Parameters

dev_clss_id

device class identifier (refer to wm_factory.h to get more information)

param

pointer on device settings

Note: For instance, only UART device can be opened.
To open an UART like device (as detailed in the code sample):

• dev_clss_id has to be DF_UART_CLID

• param has to be a pointer on a sUartSettings_t structure (refer to wm_uart.h). User will
provide the UART Id, UART role and events callbacks if needed. Device will provide back
functions interface as read, write or io_control. Refer to Open UART Interface description for
more information.

Returned values
• Handle Completed operation

• ERROR Failed operation

• ADL_RET_ERR_PARAM no param provided

API
ADL Open Device Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 377

ADL User Guide for Open AT® OS 6.35

3.39.4. Example
The code sample below illustrates a nominal use case of the ADL Open Device Service public
interface.

 //MyFunction allows to open an UART.
 //Opening parameters are based on UART Interface Pattern

 #include "adl_OpenDevice.h"
 #include "wm_uart.h"

 static psGItfCont_t uart_if;
 static u32 uart2_hdl;

 ...

 void MyFunction(void)
 {
 sUartSettings_t settings;
 sUartLc_t line_coding;

 // Set the line coding parameters
 line_coding.valid_fields = UART_LC_ALL;
 line_coding.rate = (eUartRate_t)(UART_RATE_USER_DEF | 57600);
 line_coding.stop = UART_STOP_BIT_1;
 line_coding.data = UART_DATALENGTH_8;
 line_coding.parity = UART_PARITY_NONE;

 // UART2 will be opened in NULL MODEM role / with synchronous read/write
 settings.identity = "UART2";
 settings.role = UART_ROLE_NM;
 settings.capabilities = NULL;
 settings.event_handlers = NULL;
 settings.interface = &uart_if;
 settings.line_coding = &line_coding;

 uart_hdl = adl_odOpen(DF_UART_CLID, &settings);
 if(!uart_hdl)
 {
 // UART2 opening failed...
 return;
 }

 // UART2 successfully opened, write some bytes
 uart_if.write(uart_hdl, "Tx Some bytes", 13);

 }

3.39.5. The adl_odRegister function
This function allows to register a new device which could be used by application or firmware. This
device has to be based on one of available device class (UART, SIM, ...)

Prototype
s32 adl_odRegister (eDfClid_t dev_class,
 ascii* pub_id,
 u32 priv_id,
 adl_odOpen_f OpenDevice);

API
ADL Open Device Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 378

ADL User Guide for Open AT® OS 6.35

Parameters

dev_class

device class identifier (refer to wm_factory.h to get more information)

pub_id

string which defines the public ID of device to be registered

priv_id

private ID, it is linked to the public ID in the device table register

OpenDevice

entry point function to open the registered device

Returned values
• Handle if registration succeeded, to be used with unregistration API

• ERROR if registration failed

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler

3.39.6. The adl_odUnregister function
This function allows to unregister a device which has been previously subscribed with
adl_odRegister API.

Prototype
s32 adl_odUnregister (s32 odHandle);

Parameters

odHandle

Handle of the device which has to be unregistered

Returned values
• OK on success

• ADL_RET_ERR_UNKNOWN_HDL if the provided handle is unknown

• ADL_RET_ERR_SERVICE_LOCKED if called from a low level interruption handler

API
ADL Open Device Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 379

ADL User Guide for Open AT® OS 6.35

3.39.7. Example
The code sample below illustrates a nominal use case of the ADL Open Device Service public
interface

//Register/ unregister a new service provider for UART device

 // Device SP handle
 s32 MySpHandle // UART Service Provider handle

 // Uart interface prototype
 static eChStatus_t MyUartReadFunction(u32 Handle, void* pData, u32 amount);
 static eChStatus_t MyUartWriteFunction(u32 Handle, void* pData, u32 length
);
 static eChStatus_t MyUartIOControlFunction(u32 Handle, u32 Cmd, void* pParam
);
 static eChStatus_t MyUartCloseFunction(u32 Handle);

 // code hereafter is for SP block
 static eChStatus_t MyUartReadFunction(u32 Handle, void* pData, u32 amount)
 {
 ...
 }

 static eChStatus_t MyUartWriteFunction(u32 Handle, void* pData, u32 length)
 {
 ...
 }

 static eChStatus_t MyUartIOControlFunction(u32 Handle, u32 Cmd, void* pParam
)
 {
 ...
 }
 static eChStatus_t MyUartCloseFunction(u32 Handle)
 {
 ...
 }

 static void MyOpenDeviceFunction(psUartSettings_t UartSettings)
 {
 s32 Handle = 0x10;

 if(!UartSettings)
 return 0;
 ...

 // Supply interface
 if(UartSettings->interface)
 {
 // Device interface structure

 static const sGItfCont_t UartItf =
 {
 MyUartReadFunction,
 MyUartWriteFunction,
 MyUartIOControlFunction,
 MyUartCloseFunction,
 };

 *UartSettings->interface = (psGItfCont_t)&UartItf;
 }

 ...

API
ADL Open Device Service

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 380

ADL User Guide for Open AT® OS 6.35

 // return an handle
 return Handle;
 }

 s32 MyRegisterFunction (void)
 {
 s32 sReturn;

 ...

 // Register a new UART device
 MySpHandle = adl_odRegister(DF_UART_CLID, "MY_UART", MyPrivateID,
(adl_odOpen_f)MyOpenDeviceFunction);

 ...
 }

 void MyUnregisterFunction (void)
 {
 s32 sReturn;

 ...

 // Unregister device
 sReturn = adl_odUnregister(MySpHandle);

 ...
 }

API
ADL OS Clock Interface Specification

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 381

ADL User Guide for Open AT® OS 6.35

3.40. ADL OS Clock Interface Specification
ADL provides an API to get the time from the embedded module initialization.

The defined operation is:

• A adl_GetOsClockTime function

3.40.1. Required Header File
The header file for the function dealing with the ADL OS clock is:

adl_osclk.h

3.40.2. The adl_osclkGetTime Function
This function returns the elapsed time from the embedded module initialization. The time granularity is
4,615 ms.

Prototype
s32 adl_osclkGetTime (u64* pTime);

Parameters

pTime

Time (unit : ms)

Returned values
• OK on success

• ADL_RET_ERR_NOT_SUPPORTED if the API is not supported by the Sierra Wireless stack. In this
case, the pTime pointer value is set to 0.

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 382

4. Device Services
The following subsections describe in detail the Device Services available for use.

4.1. Open UART Interface
ADL provides Open UART Interface to give direct access to the embedded module UART Service
Providers. A UART Service Provider should be assigned as a software component managing either a
physical or an emulated UART. Whatever category it belongs to, UART Service Provider is required
to implement the Open UART Interface. As the main consequence UART Service Users do not have
to be concerned with the real UART implementation they will deal with.

By default (i.e. without any Open AT® application, or if the application does not use the Open UART
Interface) all embedded module UART service providers are managed by and are available for the
Sierra Wireless firmware.

A UART service provider handled by the Sierra Wireless firmware is not available for an Open AT®
application.

A UART service provider handled by an Open AT® application is not available for the Sierra Wireless
firmware.

In both previous cases, an attempt to get access to an already used UART service provider returns an
error to the requestor.

4.1.1. Required Header File
The Open UART Interface is defined by the following header file:

wm_uart.h

Note that the wm_uart.h header is self-sufficient (or auto-compilable), which means there is no need
(for the service user) to include any other header files to get access to a UART service provider
(except for the opening stage, where the adl_OpenDevice.h file is required). The way the wm_uart.h
is built is illustrated by the following include figure.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 383

ADL User Guide for Open AT® OS 6.35

4.1.2. Data Structures

4.1.2.1. The sUartSettings_t structure

The UART configuration structure, when the ADL open device service (adl_OpenDevice) function is
used.

typedef struct
{

 // GENERIC Fields, is a sGenSettings_t type (wm_device.h)
 char* identity;
 psUartEvent_t event_handlers;
 ppsGItfCont_t interface;

 // END of the GENERIC fields

 // SPECIFIC IN parameters
 enum eUartRole
 {
 UART_ROLE_NM = 0x10,
 UART_ROLE_DTE = 0x14,
 UART_ROLE_DCE = 0x1B,
 UART_ROLE_CAP = 0xFF,
 UART_ROLE_MAP = 0x70000000L
 } role;
 psUartLc_t line_coding;

 // SPECIFIC output
 psUartCap_t capabilities;
} sUartSettings_t, *psUartSettings_t;

Fields

identity:

This field is mandatory. It allows the service user to choose the UART service provider it
wants to work with. Setting this field to NULL generates an error. Any non NULL value is
considered by the UART service provider as a pointer of a NULL terminated string.
Supported string contents are listed below:

 "UART1": to get access to the embedded module UART1

 "UART2": to get access to the embedded module UART2

 "UART3": to get access to the embedded module USB serial port

Attempting to provide an identity other than those listed above generates an error.

Note: This list is not exhaustive and will be updated when new UART service providers are available.

event_handlers:

This field is optional. It allows the service user to provide its event handlers during the
opening stage. Please note the G_IOC_EVENT_HANDLERS IO control can also be used to
manage the event handler configuration.

Setting this field to NULL means there is no event handling information available for the
UART service provider. Setting this field to a non NULL value is considered by the UART
service provider as a pointer of sUartEvent_t structure.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 384

ADL User Guide for Open AT® OS 6.35

Caution: When this field is not provided then the UART service provider handles read and write operations in a
synchronous (blocking) mode. See also the operation mode clause for further information about the
synchronous and asynchronous operating modes.

See also sUartEvent_t description for further information about event handler configuration
management.

interface:

This field is optional. It allows the service user to dynamically retrieve UART service provider
interface inside a generic interface container.

Setting this field to NULL means the UART service provider shall not provide its interface to
its service user. Any non NULL value is considered by the UART service provider as the
address of a pointer of sGItfCont_t structure.

Caution: Setting this field to NULL is hazardous, and should not be done except when the service user has
already retrieved a UART service provider interface of the same type (e.g. the embedded module
UART1 and UART2 share the same type).

See also sGItfCont_t description for further information about generic interface containers
and interface retrieving at run time.

role:

This field is mandatory. It allows the service user to indicate to the UART service provider
which running mode shall be established. Running modes list is given hereafter:

 UART_ROLE_NM: To handle NULL MODEM connections with a maximum of 4 signals
wired: RX, TX, RTS and CTS. Supported by the embedded module UART1 and UART2.

 UART_ROLE_DTE: To behave as a DTE (set/get DTR; get DSR, RI & DCD). Currently
not supported.

 UART_ROLE_DCE: To behave as a DCE (set/get DSR, RI & DCD; get DTR) by using a
maximum 8 signals: RX, TX, RTS, CTS, DTR, DSR, RI and DCD. Supported by the
embedded module UART1 and UART3.

 UART_ROLE_CAP: deprecated, attempting to use this identifier generates an error.

 Any other value is not supported by the UART service provider and shall generate an
error.

line_codings:

This field is optional. It allows the service user to set the UART speed and the character
format (amount of data bits, amount of stop bits and parity type) configuration.

Setting this field to NULL means the UART service provider shall apply its default
configuration (115200, 8N1). Any non NULL value is considered by the UART service
provider as a pointer of sUartLc_t structure.

See also sUartLc_t description for further information about the line coding setting.

capabilities:

This field is optional. It allows the UART service provider to return its capabilities to the
service user during the opening stage. Please note the generic G_IOC_CAPABILITIES IO
control can also be used to retrieve the capabilities after the opening stage.

Setting this field to NULL means the UART service provider shall not return its capabilities to
the service user. Any non NULL value is considered by the UART service provider as a
pointer of s sUartCap_t structure.

See also sUartCap_t description for further information about the UART capabilities content
and the G_IOC_CAPABILITIES for further information about the capabilities gathering after
the opening stage.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 385

ADL User Guide for Open AT® OS 6.35

4.1.2.2. The sUartCap_t structure

The UART capabilities structure, when the ADL open device service (adl_OpenDevice) function is
used (nested in the sUartSettings_t structure) or when the generic IO control G_IOC_CAPABILITIES
is used.

typedef struct
{
 u32 speed; /* see the eUartRate_t enum */
 enum ioc_cap /* IO command capability */

 {
 IOC_UART_LC_SUP = IOC_LAST_SUP, /* see wm_device.h */

 IOC_UART_SS_SUP = IOC_LAST_SUP << 1,
IOC_UART_FL_SUP = IOC_LAST_SUP << 2,
IOC_UART_FC_SUP = IOC_LAST_SUP << 3,
IOC_UART_TE_SUP = IOC_LAST_SUP << 4,
IOC_UART_SM_SUP = IOC_LAST_SUP << 5,
IOC_UART_ER_SUP = IOC_LAST_SUP << 6,
IOC_UART_TO_SUP = IOC_LAST_SUP << 7,
IOC_UART_FD_SUP = IOC_LAST_SUP << 8,

 } ioc;
 enum stop_cap
 {
 UART_STOP_BIT_1_CAP = 0x01,
 UART_STOP_BIT_2_CAP = 0x02,
 UART_STOP_BIT_1_5_CAP = 0x04
 } stop;
 enum par_cap
 {
 UART_PAR_NONE_CAP = 0x01,
 UART_PAR_EVEN_CAP = 0x02,
 UART_PAR_ODD_CAP = 0x04,
 UART_PAR_SPACE_CAP = 0x08,
 UART_PAR_MARK_CAP = 0x10
 } parity;
 enum data_cap
 {
 UART_DATA_AUTO_CAP = 0x01,
 UART_DATA_5BITS_CAP = 0x02,
 UART_DATA_6BITS_CAP = 0x04,
 UART_DATA_7BITS_CAP = 0x08,
 UART_DATA_8BITS_CAP = 0x10,
 UART_DATA_8BITS_CAP = 0x20,
 } parity;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 386

ADL User Guide for Open AT® OS 6.35

 enum fc_cap /* flow control capability */
 {
 UART_FC_NONE_CAP = 0x01,
 UART_FC_RTS_CTS_CAP = 0x02,
 UART_FC_XONXOFF_CAP = 0x04,
 UART_FC_ALL_CAP = (UART_FC_NONE_CAP |
 UART_FC_RTS_CTS_CAP |
 UART_FC_XONXOFF_CAP)
 } fc;
 u8 fd_cap[6]; /* FIFO depth capability */

 u16 min_dur_tx; /* in tenth of second */
 u16 max_dur_rx; /* in tenth of second */

} sUartCap_t, *psUartCap_t;

Fields

speed:

This field describes the speeds supported by the UART service provider. The field structure
is similar to the eUartStop_t enumerator field structure. A bit set to 1 means the service user
is allowed using the corresponding bit of the eUartRate_t enumerator. A bit set to 0 means
the service user is not allowed using the corresponding bit in the eUartRate_t enumerator.

See also eUartRate_t description for further information about the speed configuration.

ioc:

This field describes the IO commands supported by the UART service provider. Each bits in
the [Bit0...Bit9] range is related to an IO command identity. Bit X set to 1 means UART
service provider implements the related X IO command, bit Y set to 0 means UART service
provider does not implement related Y IO command.

See also eUartIoCmd_t description for further information about the speed configuration.

stop:

This field describes the stop bit configurations supported by the UART service provider. The
field structure is similar to the eUartStop enumerator field structure. A bit set to 1 means the
service user is allowed using the corresponding bit of the eUartStop enumerator. A bit set to
0 means the service user is not allowed using the corresponding bit in the eUartStop
enumerator.

See also eUartStop enumerator description (sUartLc_t structure) for further information
about the stop bits configuration.

parity:

This field describes the parity bit configurations supported by the UART service provider.
The field structure is similar to the eUartParity enumerator field structure. A bit set to 1
means the service user is allowed to use the corresponding bit of the eUartParity
enumerator. A bit set to 0 means the service user is not allowed to use the corresponding bit
in the eUartParity enumerator.

See also eUartParity enumerator (sUartLc_t structure) description for further information
about the stop bits configuration.

data:

This field describes the data bits configurations supported by the UART service provider.
The field structure is similar to the eUartData enumerator field structure. A bit set to 1 means
the service user is allowed to use the corresponding bit of the eUartData enumerator. A bit
set to 0 means the service user is not allowed to use the corresponding bit in the eUartData
enumerator.

See also eUartData enumerator (sUartLc_t structure) description for further information
about the data bits configuration.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 387

ADL User Guide for Open AT® OS 6.35

fc:

This field describes the flow control configurations supported by the UART service provider.
The field structure is similar to the eFcType enumerator field structure. A bit set to 1 means
the service user is allowed to use the corresponding bit of the eFcType enumerator. A bit set
to 0 means the service user is not allowed to use the corresponding bit in the eUartData
enumerator.

See also eFcType enumerator (sUartFlowCtrl_t structure) description for further information
about the flow control configuration.

fd_cap:

This field describes the RX FIFO threshold configurations supported by the UART service
provider. Any non NULL entry in this array can be later on used for the RX FIFO threshold
configuration. In case all entries in the array are set to a NULL value it means the UART
service provider does not support the IOC_UART_FD operation.

See also sUartFd_t structure description for further information about the UART RX FIFO
depth management.

min_dur_tx, max_dur_rx:

Always set to 0 (deprecated).

4.1.2.3. The sUartLc_t structure

The UART Line Coding structure, when the ADL open device service, adl_OpenDevice function, is
used (nested in the sUartSettings_t structure) or when the IOC_UART_LC IO control is used.

typedef struct
{
 eGIocSo_t op; /* generic get/set operation */
 enum eUartLcField
 {/* indicates which following fields are significant */
 UART_LC_RATE = 1,
 UART_LC_STOP = 2,
 UART_LC_PAR = 4,
 UART_LC_DATA = 8,
 UART_LC_ALL = (UART_LC_RATE |UART_LC_STOP
 |UART_LC_PAR | UART_LC_DATA),
 UART_LC_MAP = 0x70000000L
 } valid_fields;
 eUartRate_t rate;
 enum eUartStop
 {
 UART_STOP_BIT_1,
 UART_STOP_BIT_2,
 UART_STOP_BIT_1_5,
 UART_STOP_BIT_LAST,
 UART_STOP_BIT_MAP = 0x7F,
 } stop;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 388

ADL User Guide for Open AT® OS 6.35

 enum eUartParity
 {
 UART_PARITY_NONE,
 UART_PARITY_EVEN,
 UART_PARITY_ODD,
 UART_PARITY_SPACE,
 UART_PARITY_MARK,
 UART_PARITY_LAST,
 UART_PARITY_MAP = 0x7F
 } stop;
 enum eUartData
 {
 UART_ DATALENGTH_AUTOFRAME,
 UART_DATALENGTH_5 = 5,
 UART_DATALENGTH_6,
 UART_DATALENGTH_7,
 UART_DATALENGTH_8,
 UART_DATALENGTH_16 = 16,
 UART_DATALENGTH_LAST,
 UART_DATALENGTH_MAP = 0x7F,
 } data;
} sUartLc_t, *psUartLc_t;

Fields

op:

This field describes the sub operation to be executed either to set a line coding configuration
or to get the current line coding configuration.

See also eGIocSo_t description for further information about the sub-operation selection.

Note: UART service provider shall assume a set operation when this structure is embedded in a
sUartSettings_t one.

valid_fields:

This field describes the validity of the others sUartLc_t’ fields. One bit affects one structure’s
field. Setting a bit to one means the associated field is valid and shall be taken into account
by the UART service provider. Consequently the values are as follows:

 UART_LC_RATE: describes the validity of the rate structure’s field.

 UART_LC_STOP: describes the validity of the stop structure’s field.

 UART_LC_PAR: describes the validity of the parity structure’s field.

 UART_LC DATA: describes the validity of the data structure’s field.

 UART_LC_ALL: OR operation of the 4, previously described bits.

Note: Any combination (up to 16) of those four bits is valid. Setting the four bits to 0 is allowed but shall not
have any impact on the current line coding configuration.

rate:

This field describes the transmission rate to be applied by the UART service provider.

See also eUartRate_t enumerator description for further information about the rate selection.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 389

ADL User Guide for Open AT® OS 6.35

stop:

This field describes the stop bits configuration to be applied by the UART service provider.
According to the UART service provider stop bit capability, the following configuration are
supported:

 UART_STOP_BIT_1: each transmitted byte is tailed by 1 stop bit.
 UART_STOP_BIT_2: each transmitted byte is tailed by 2 stop bits.

 UART_STOP_BIT_1_5: each transmitted byte is tailed by 1.5 stop bits.

Note: Attempting to set a stop bits configuration not indicated by the stop bits capability or not known shall
generate an error.

See also Product Technical Specification for further information about the stop / data bits
supported configuration combinations.

parity:

This field describes the parity bit configuration to be applied by the UART service provider.
According to the UART service provider parity bit capability, the following configuration are
supported:

 UART_PARITY_NONE: transmission without parity bit.
 UART_PARITY_EVEN: transmission with parity bit: even parity.

 UART_PARITY_ODD: transmission with parity bit: odd parity.

 UART_PARITY_SPACE: transmission with parity bit: space parity (idle state
 forced).

 UART_PARITY_MARK: transmission with parity bit: space parity (active state
 forced).

Note: Attempting to set a parity bit configuration not indicated by the parity bit capability or not known shall
generate an error.

data:

This field describes the data bits configuration to be applied by the UART service provider.
According to the UART service provider data bits capability, the following configuration are
supported:

 UART_DATALENGTH_AUTOFRAME: the UART service provider determine by itself
character format: amount of data bits / kind of parity / amount of stop bit(s).

 UART_ DATALENGTH_5: transmission of 5 bits characters.

 UART_ DATALENGTH_6: transmission of 6 bits characters.

 UART_ DATALENGTH_7: transmission of 7 bits characters.

 UART_ DATALENGTH_8: transmission of 8 bits characters.

 UART_ DATALENGTH_16: not supported

Note: Attempting to set a data bits configuration not indicated by the data bits capability or not known shall
generate an error.

See also Product Technical Specification for further information about the stop / data bits
supported configuration combinations (including the supported auto-framing combinationl).

4.1.2.4. The sUartEvent_t structure

The UART events setting structure, when the ADL open device service, adl_OpenDevice function, is
used (nested in the sUartSettings_t structure) or when the generic G_IOC_EVENT_HANDLERS IO
control is used.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 390

ADL User Guide for Open AT® OS 6.35

Code
typedef struct
{
 eGIocSo_t op; /* generic get/set operation */
 void* user_data;
 eUartEvId_t valid_cb;
 sGCbDesc_t cb_list[6];
} sUartEvent_t, *psUartEvent_t;

Fields

op:

This field describes the sub operation to be executed to either set event handlers
configuration or to get the current event handlers configuration.

See also eGIocSo_t description for further information about the sub-operation selection.

Note: UART service provider shall assume a set operation when this structure is embedded in a
sUartSettings_t one.

user_data:

This field allows the service user to provide the UART SP with a "global" value which shall be
given back as first parameter of any valid event handler set in this structure. Valid event
handlers are defined by the valid_cb field and the cb_list field content. Setting all the bits of
this field to 1 means the UART service provider shall not use this field. Any other value shall
be interpreted by the UART service provider as valid.

valid_cb:

This field describes the validity of each entry of the cb_list (see below) field. Bits 0 to 5 are
associated to cb_list[0] … cb_list[5]. Setting a 1 at the bit X position means the cb_list[X]
content is valid for the UART service provider. At the other hand setting a 0 at the bit X
position means the cb_list[X] content shall not taken into account by the UART service
provider.

Note: Setting this field to 0 instructs the UART service provider to uninstall all currently installed event
handlers. In this case application does not have to fill in the cb_list[0...5] field.

See also eUartEvId_t description for further information about UART event handler
identification.

cb_list:

This field allows the service user to provide the UART SP with its event handlers and "local"
optional values UART service provider is required to give as first parameter when calling
event handlers. This field can store the following event handler configuration information:

 cb_list[0]: ON TX COMPLETE.

 cb_list[1]: ON TX EMPTY (UART shift register empty).

 cb_list [2]: ON RX DATA AVAILABLE.

 cb_list [3]: ON SIGNAL STATE CHANGE.

 cb_list [4]: ON ERROR CHANGE.

 cb_list [5]: ON RX COMPLETE.

Important note Service user is not allowed to provide event handlers configuration which
will lead to get, simultaneously, two installed:

 TX event handlers (i.e. ON TX COMPLETE and ON TX EMPTY)

 RX event handlers (i.e. ON RX DATA AVAILABLE and ON RX COMPLETE)

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 391

ADL User Guide for Open AT® OS 6.35

See also sGEvent_t for further information about event handler configuration management.

Note: Uninstalling an event handler is achieved by setting a 1 at the bit X position in the valid_cb field and
simultaneously set the evt_hdl field of the cb_list[X] with a NULL value. More than 1 event handler can
be simultaneously uninstalled.

4.1.2.5. The sUartFlowCtrl_t structure

The UART flow control structure, when the IOC_UART_FC IO command is used.

Code
typedef struct
{
 eGIocSo_t op; /* generic get/set operation */

 enum eFcType
 {
 UART_FC_NONE,
 UART_FC_XON_XOFF,
 UART_FC_RST_CTS,
 UART_FC_XON_XOFF_RTS_CTS
 } type[2]; /* [0] DCEbyDTE and [1] DTEbyDCE */
 u8 xon;
 u8 xoff;
} sUartFlowCtrl_t, *psUartFlowCtrl_t;

Fields

op:

This field describes the sub operation to be executed either to set flow control configuration
or to get the current flow control configuration.

See also eGIocSo_t description for further information about the sub-operation selection.

type:

This field allows the service user to provide the UART SP type of flow control in both
transmission directions. The type[0] entry specifies the DCEbyDTE flow control and the
type[1] entry specifies the DTEbyDCE flow control.

xon:

This field allows the service user to specify the ASCII code of the xon character. Setting this
field to 0 means the UART service provider has to use the default xon character (ASCII
DC1).

xoff:

This field allows the service user to specify the ASCII code of the xoff character. Setting this
field to 0 means the UART service provider has to use the default xoff character (ASCII
DC3).

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 392

ADL User Guide for Open AT® OS 6.35

4.1.2.6. The sUartSsIoc_t structure

The UART signal state structure, when the IOC_UART_SS IO command is used.

Code
typedef struct
{
 eGIocSo_t op; /* generic get/set operation */
 eUartSs_t sig_id;
 eUartSs_t state;
} sUartSsIoc_t, *psUartSsIoc_t;

Fields

op:

This field describes the sub operation to be executed either to signal state configuration or to
get the current signal state configuration.

See also eGIocSo_t description for further information about the sub-operation selection.

sig_id:

Allows the application to specify the identities of the signal to be set or retrieved.

See also eUartSs_t for further information about signal state management.

state:

Allows the application to specify / retrieve the state of the signals identified in the sig_id field.

See also eUartSs_t for further information about signal state management.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 393

ADL User Guide for Open AT® OS 6.35

4.1.2.7. The sUartFd_t structure

The UART FIFO configuration structure, when the IOC_UART_FD IO command is used.

Code
typedef struct
{
 eGIocSo_t op; /* generic get/set operation */
 enum
 {
 UART_FD_DEPTH_0,
 UART_FD_DEPTH_1,
 UART_FD_DEPTH_2,
 UART_FD_DEPTH_3,
 UART_FD_DEPTH_4,
 UART_FD_DEPTH_5
 } rx_size; // only valid in case mode set to UART_FD_BOTH_ON

 enum
 {
 UART_FD_BOTH_OFF,
 UART_FD_TX_ON,
 UART_FD_BOTH_ON,
 UART_FD_MAP = 0x7000
 }mode;
} sUartFd_t, *psUartFd_t;

Fields

op:

This field describes the sub operation to be executed either to signal state configuration or to
get the current signal state configuration.

See also eGIocSo_t description for further information about the sub-operation selection.

rx_size:

Allows the service user to configure, according to its capabilities, the UART service
provider’s reception trigger level.

See also sUartCap_t for further information about the supported reception trigger level.

mode:

Allows the service user to configure, according to its capabilities, the UART service provider’
FIFO. Following possibilities are offered to the service user:

 UART_FD_BOTH_OFF: RX and TX UART FIFO are disabled.

 UART_FD_TX_ON: UART service provider uses its internal transmission FIFO.

 UART_FD_BOTH_ON: UART service provider uses its internals transmission &
reception FIFO.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 394

ADL User Guide for Open AT® OS 6.35

4.1.2.8. The sUartCbOssc_t structure

The UART signal states notification structure, when the On Signal State Changes notification is fired.

Code
typedef struct
{
 eUartSs_t delta;
 eUartSs_t state;
} sUartCbOssc_t, *psUartCbOssc_t;

Fields

delta:

Identifies which signals are concerned by the state change.

A bit set to 1 indicates the corresponding signal state has changed. More than one signal
state change can be encoded (bits "oring").

See also eUartSs_t description for further information about UART signal identification.

state:

Contains the modified signal state. Only signals identified by the delta field are relevant.

A bit set to one indicates the corresponding signal is active.

A bit set to zero indicates the corresponding signal is inactive.

4.1.3. Enumerators

4.1.3.1. The eUartEvId_t type

This enumeration lists the UART event handler identities.

Code
typedef enum
{
 UART_CB_ON_TX_COMPLETE = G_CB_LAST,
 UART_CB_TX_EMPTY = 2,
 UART_CB_ON_RX_DATA_AVAILABLE = 4,
 UART_CB_ON_SIG_STATE_CHANGE = 8,
 UART_CB_ON_ERROR = 16,
 UART_CB_ON_RX_COMPLETE = 32,
 UART_CB_ON_ALL = 63,
 UART_CB_MAP = 0x70000000L
} eUartEvId_t;

Description

UART_CB_ON_TX_COMPLETE

Allows the application to configure (install / uninstall) the ON TX COMPLETE event handler.

UART_CB_ON_TX_EMPTY

Allows the application to configure (install / uninstall) the ON TX EMPTY event handler.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 395

ADL User Guide for Open AT® OS 6.35

UART_CB_ON_RX_DATA_AVAILABLE

Allows the application to configure (install / uninstall) the ON RX DATA AVAILABLE event
handler.

UART_CB_ON_SIG_STATE_CHANGE

Allows the application to configure (install / uninstall) the ON SIG STATE CHANGE event
handler.

UART_CB_ON_ERROR

Allows the application to configure (install / uninstall) the ON ERROR event handler.

UART_CB_ON_RX_COMPLETE

Allows the application to configure (install / uninstall) the ON RX COMPLETE event handler.

Note: Additional value G_CB_ON_NOTHING is implicitly defined as this enumeration is derived from the
eGEvId_t generic one. It allows the application to erase all currently installed event handlers at the
UART service provider side.

4.1.3.2. The eUartRate_t type

This enumeration lists the UART the available transmission speeds.

Code
typedef enum
{
 UART_RATE_UNDEF = 0x00000000,
 UART_RATE_AUTO = 0x00000001,
 UART_RATE_300 = 0x00000002,
 UART_RATE_600 = 0x00000004,
 UART_RATE_1200 = 0x00000008,
 UART_RATE_2400 = 0x00000010,
 UART_RATE_4800 = 0x00000020,
 UART_RATE_9600 = 0x00000040,
 UART_RATE_19200 = 0x00000080,
 UART_RATE_38400 = 0x00000100,
 UART_RATE_57600 = 0x00000200,
 UART_RATE_115200 = 0x00000400,
 UART_RATE_230400 = 0x00000800,
 UART_RATE_460800 = 0x00001000,
 UART_RATE_921600 = 0x00002000,
 UART_RATE_1_84_M = 0x00004000,
 UART_RATE_3_25_M = 0x00008000,
 UART_RATE_USER_DEF = 0x00010000,
 UART_RATE_AB = 0x00020000
} eUartEvId_t;

Description

UART_RATE_UNDEF

Returned by the UART service provider in case the service user previously asked for the
UART_RATE_AUTO and no characters were received preventing the UART service provider
to detect the transmission speed. When application attempts to set this value the UART
service provider shall return an error.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 396

ADL User Guide for Open AT® OS 6.35

UART_RATE_AUTO

Allows the application to configure the UART service provider (according to its capabilities)
to detect the transmission speed on character reception.

UART service provider shall generate an error in case service user attempt to "or" any other
value with this one.

From UART_RATE_300

To UART_RATE_3_25_M

Allows the application to configure the UART service provider (according to its capabilities)
speed from 300 bps to 3,25 Mbps.

UART_RATE_USER_DEF value shall not be "ored" with any value in the range
[UART_RATE_300…UART_RATE_3_M].

UART service provider shall generate an error in case more than one discrete speed is set
by the service user.

UART_RATE_USER_DEF

Allows the application to configure the UART service provider (according to its capabilities)
speed in an open way. This value has just to be "ored" with the actual speed wished by the
service user.

Set, by the UART service provider, and "ored" with the actual transmission speed on service
user interrogations (get operations).

UART_RATE_AB

Returned by the UART service provider, in case the service user previously put the UART
service provider in UART_RATE_AUTO mode and transmission speed was successfully
detected.

UART service provider shall generate an error in case service user attempts to set this value.

4.1.3.3. The eUartIoCmd_t type

This enumeration lists the available IO commands identities for configure, or obtain information from,
the UART service provider. Values of this enumeration have to be used when IO control operation is
invoked.

Code
typedef enum
{
 IOC_UART_EH = G_IOC_EVENT_HANDLERS
 IOC_UART_CAP = G_IOC_CAPABILITIES,
 IOC_UART_LC = G_IOC_LAST,
 IOC_UART_SS,
 IOC_UART_FL,
 IOC_UART_FC,
 IOC_UART_TE,
 IOC_UART_SM,
 IOC_UART_ER,
 IOC_UART_TO,
 IOC_UART_FD
} eUartIoCmd_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 397

ADL User Guide for Open AT® OS 6.35

Description

IOC_UART_EH

Allows the application to set or get the event handling parameters.

See also sUartEvent_t for further information about event handler configuration.

IOC_UART_CAP

Allows application to get the UART service provider capabilities.

See also sUartCap_t for further information about event handler configuration.

IOC_UART_LC

Allows the application to set or get the line coding parameters (speed, data bits amount,
parity type, stop bits amount).

See also sUartLc_t for further information about line coding configuration.

IOC_UART_SS

Allows the application to set or get the UART signal states.

See also sUartSsIoc_t for further information about line coding configuration.

IOC_UART_FC

Allows the application to set or get the flow control parameters.

See also sUartFlowControl_t for further information about line coding configuration.

IOC_UART_TE

DEPRECATED. Attempting to use this value shall generate an error.

IOC_UART_SM

DEPRECATED. Attempting to use this value shall generate an error.

IOC_UART_ER

DEPRECATED. Attempting to use this value shall generate an error.

IOC_UART_TO

DEPRECATED. Attempting to use this value shall generate an error.

IOC_UART_FD

Allows the application to set or get the UART FIFO control parameters.

4.1.3.4. The eUartFl_t type

This enumeration lists the flushing operations implemented by the UART service provider. The
parameter for the IOC_UART_FL IO command.

Code
typedef enum
{
 UART_FLUSH_RX = 1,
 UART_FLUSH_RX,
 UART_FLUSH_ALL
} eUartFl_t;

Description

UART_FLUSH_RX

Allows the application to flush the UART RX FIFO content.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 398

ADL User Guide for Open AT® OS 6.35

UART_FLUSH_RX

Allows the application to flush the UART TX FIFO content.

UART_FLUSH_ALL

Allows the application to flush the UART TX & RX FIFO content.

4.1.3.5. The eUartSs_t type

This enumeration lists the available UART signals identifiers.

Code
typedef enum
{
 UART_SIG_DCD = 0x0001,
 UART_SIG_DSR = 0x0002,
 UART_SIG_DTR = 0x0004,
 UART_SIG_RI = 0x0008,
 UART_SIG_BREAK = 0x0010,
 UART_SIG_RTS = 0x0020,
 UART_SIG_CTS = 0x0040,
 UART_SIG_ALL = 0x007F
} eUartSs_t;

Description

UART_SIG_DCD

Allows the service user to:

Get the DCD state when UART service provider is acting as DTE or DCE.

Set the DCD state when UART service provider is acting as DCE.

Not supported when the UART service provider is acting in NULL

MODEM mode.

UART_SIG_DSR

Allows the service user to:

Get the DSR state when UART service provider is acting as DTE or DCE.

Set the DSR state when UART service provider is acting as DCE.

Not supported when the UART service provider is acting in NULL

MODEM mode.

UART_SIG_DTR

Allows the service user to:

Get the DTR state when UART service provider is acting as DTE or DCE.

Set the DTR state when UART service provider is acting as DTE.

Not supported when the UART service provider is acting in NULL

MODEM mode.

UART_SIG_RI

Allows the service user to:

Get the RI state when UART service provider is acting as DTE or DCE.

Set the RI state when UART service provider is acting as DTE.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 399

ADL User Guide for Open AT® OS 6.35

Not supported when the UART service provider is acting in NULL

MODEM mode.

UART_SIG_BREAK

Allows the service user to set a "break condition" on the TX line. Getting the BREAK signal is
not possible and returns always 0.

UART_SIG_RTS

Allows the service user to set the RTS signal state.

UART_SIG_CTS

Allows the service user to get the CTS signal state.

4.1.3.6. The eUartErr_t type

This enumeration lists the available UART error codes.

Code
typedef enum
{
 UART_OE = 0x02,
 UART_PE = 0x04,
 UART_FE = 0x08,
 UART_BE = 0x10,
 UART_TX_TO = 0x20
} eUartSs_t;

Description

UART_OE

UART overrun error identifier

UART_PE

UART parity error identifier

UART_FE

UART framing error identifier

UART_BE

UART break error identifier.

UART_TX_TO

This error identifier is deprecated and is not any longer managed by the UART service
provider.

4.1.4. Operations
There are two types of operations defined by the Open UART Interface:

• Requests: Allow a service user to directly handle any UART service provider.

• Notifications: Allow a UART service provider to notify event occurrences to service user.

Note: Before requesting, or being notified by, a UART service provider an Open AT® application shall
retrieve a, direct, access (by using the ADL Open Device service) to this UART service provider.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 400

ADL User Guide for Open AT® OS 6.35

5 request functions are offered:

• An open function to:

 Optionally retrieve the UART service provider’s interface (through a generic interface
container) and

 retrieve a unique UART service provider reference (handle) which shall be subsequently
provided as parameter to the rest of the request functions and

 optionally install event handlers to manage the UART service provider notifications and

 optionally set the line coding parameters and

 optionally retrieve the UART service provider’s capabilities.

• A read function to retrieve characters received by the UART service provider.

• A write function to instruct the UART to send characters over the serial line.

• An io_control function to configure, or get information from, the UART service provider.

• A close function to release the UART interface (and the handle previously allocated).

6 notifications are offered to the UART service user to inform it of the occurrence of:

• The completion of the current emission (write completion at the byte level).

• The completion of the current emission (write completion at the bit level).

• The availability of received data (UART service provider uses an internal buffer).

• The changing in the signal states.

• Errors (parity, framing, break detection, overrun).

• The completion of the current reception (reception in zero copy mode)

Note: Calling request functions while application event handlers are running is not supported. Doing such a
call might generate system instabilities.

4.1.4.1. The open function

There is no, at strictly speaking, specific function provided to open (get a direct access to) a UART
service provider. The ADL Open Device service provides a generic function allowing getting, direct,
access to numerous kinds of service providers. Hereafter a description of what is needed to open a
UART service provider.

Prototype
s32 adl_OpenDevice (eDfClid_t dev_clss_id,

 void * param);

Parameters

dev_clss_id:

The device class identifier the service provider to be opened belongs to. To open a UART
service provider application has to use the DF_UART_CLID value.

param:

Service provider configuration, to be defined accordingly to the dev_clss_id parameter in the
UART case address of a sUartSettings_t structure is required.

Returned values
• Handle: A positive UART service provider handle on success, to be used in further Open

UART service function calls.

• 0: UART service provider opening failed.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 401

ADL User Guide for Open AT® OS 6.35

4.1.4.1.1. Example: How to open the UART2 (57600,N81)

#include "adl_OpenDevice.h"
#include "wm_uart.h"

static psGItfCont_t uart_if;
static u32 uart2_hdl;

void adl_main(adl_InitType_e InitType)
{
 sUartSettings_t settings;
 sUartLc_t line_coding;

 // Set the line coding parameters
 line_coding.valid_fields = UART_LC_ALL;
 line_coding.rate = (eUartRate_t)(UART_RATE_USER_DEF | 57600);
 line_coding.stop = UART_STOP_BIT_1;
 line_coding.data = UART_DATALENGTH_8;
 line_coding.parity = UART_PARITY_NONE;

 // UART2 will be opened in NULL MODEM role / with synchronous read/write
 settings.identity = "UART2";
 settings.role = UART_ROLE_NM;
 settings.capabilities = NULL;
 settings.event_handlers = NULL;
 settings.interface = &uart_if;
 settings.line_coding = &line_coding;

 uart_hdl = adl_OpenDevice(DF_UART_CLID, &settings);
 if(!uart_hdl)
 {
 // UART2 opening failed...
 return;
 }

 // UART2 successfully opened, write some bytes
 uart_if.write(uart_hdl, "Tx Some bytes", 13);
 …
}

4.1.4.2. The read request

This function allows the application to read the bytes received by the UART service provider. Before
using this function the application shall open the UART service provider (shall own the UART
interface as well as a valid UART handle).

Two running modes are supported: zero copy (ZC) or non zero copy (NZC) modes. The running mode
selection is achieved by the application when it provides the UART SP with either the On Rx Data
Complete (ZC selected) or the On Rx Data Available (NZC selected) event handlers.

When UART SP is running in (ZC) mode the read function runs in an asynchronous way. Application
provisions a read providing the UART SP with reception buffer address and size information. UART
SP returns an operation pending indication. While an asynchronous read operation is pending
application is allowed to invoke the read function which will have the following effects:

• Current reception buffer address and size information are erased by the UART SP. According
to the new parameters provided the asynchronous read operation is:

 Either cancelled in case reception buffer address and size are set to NULL.

 Or continued in case buffer address and size are set to non NULL values.

UART SP completes the pending read operation by firing the On Rx Data Complete event.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 402

ADL User Guide for Open AT® OS 6.35

When UART SP is running in (NZC) mode the read function runs in a synchronous way. Application
should trigger the read function call after UART SP called its On Rx Data Available event handler.
Application provides UART SP with the reception buffer address and size parameters. These
parameters shall contain non NULL values otherwise the UART SP returns an error. UART SP
returns the amount of data actually stored in the reception buffer. Application should call the read
function while UART SP returns a non NULL amount of copied bytes.

Prototype
eChStatus_t read (u32 Handle,
 void * pData,
 u32 len);

Parameters

Handle:

Handle of the UART service provider previously returned by the adl_OpenDevice function.
Setting this parameter with a value different from the one obtained by the call to the
adl_OpenDevice function generates an error.

pData:

Address where the received data shall be put. NULL value is not supported when UART SP
is running in NZC mode.

len:

Size (in bytes) of the memory area provided to store the received data. NULL value is not
supported when UART SP is running in NZC mode.

Returned values

 Synchronous mode
 Any positive value greater or equal than CH_STATUS_NORMAL and strictly lower than

CH_STATUS_PENDING indicates the amount (including 0) of bytes copied from the
UART service provider to the application reception buffer.

 CH_STATUS_ERROR: either pData or len or both parameters set with NULL values, or
invalid UART service provider handle.

 Asynchronous mode
 CH_STATUS_ERROR: Invalid UART service provider handle.

 CH_STATUS_NORMAL: Asynchronous read cancellation successfully completed.

 CH_STATUS_PENDING: Asynchronous read operation is pending.

 Both modes
 CH_STATUS_ERROR: no reception event handler installed.

4.1.4.2.1. Example: how to select asynchronous/synchronous read
operation

#include "adl_OpenDevice.h"
#include "wm_uart.h"

static psGItfCont_t uart_if;
static u32 uart2_hdl;
static u8 rx_buf[256];

static void on_rxc_handler(u32 user_data, psGData_t evt_par){
 // Code to obtain new Rx buffer and size to be returned to the UART SP
 // Just in case where there is no more available reception buffer
 (u64)evt_par.buf = 0LL;
}

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 403

ADL User Guide for Open AT® OS 6.35

static void on_rxda_handler(u32 user_data, psGData_t evt_par){
 // Code to set an ADL event to unlock an synchronous read
}

void adl_main(adl_InitType_e InitType) {
 sUartEvent_t evt_setting;
 u8* p_rx_buf;
 u32 nb_tb_read;
 u32 nb_read;
 …
 // somewhere in the application
 // refer to Example for the UART2 opening code
 // Here the UART2 has been successfully opened (uart_itf & uart2_hdl valid)

 // select the asynchronous read operation assuming there is no RX event
handler
 // installed
 evt_setting.op = G_IOC_OP_SET;
 evt_setting.valid_cb = UART_CB_ON_RX_COMPLETE;
 evt_setting.user_data = (void*)-1L; // not used
 evt_setting.cb_list[5].evt_hdl = (pGEvtNotif_t)on_rxc_handler;
 evt_setting.cb_list[5].user_data = (void*)-1L; // not used
 if(uart_if.io_control(uart_hdl, IOC_UART_CB, &evt_setting)){
 // an error occurred …
 return;
 }
 if(CH_STATUS_PENDING != uart_if(uart2_hdl, rx_buf, sizeof(rx_buf))){
 // an error occurred …
 }
 …
 // somewhere in the application switch from asynchronous to synchronous read
 p_rx_buf = rx_buf;
 amount_tb_read = sizeof(rx_buf);

 evt_setting.op = G_IOC_OP_SET;
 evt_setting.valid_cb = (eUartEvId_t)(UART_CB_ON_RX_DATA_AVAILABLE |
 UART_CB_ON_RX_DATA_AVAILABLE);
 evt_setting.user_data = (void*)-1L; // not used
 evt_setting.cb_list[5].evt_hdl = NULL;
 evt_setting.cb_list[2].evt_hdl = (pGEvtNotif_t)on_rxda_handler;
 evt_setting.cb_list[2].user_data = (void*)-1L; // not used
 if(uart_if.io_control(uart_hdl, IOC_UART_CB, &evt_setting))
 {
 // an error occurred …
 return;
 }
 // Code to wait an ADL Event set by the On Rx Data Available handler
 …
 while(0 != (nb_read = uart_if.read(uart2_hdl,p_rx_buf, nb_tb_read))){
 nb_tb_read -= nb_read;
 p_rx_buf += nb_read;
 }
}

4.1.4.3. The write request

This function allows the application to instruct the UART service provider to send bytes. Before using
this function the application shall open the UART service provider (owning the UART interface as well
as a valid UART handle).

Two running modes are supported: Asynchronous (A) and synchronous (S) modes. The running
mode selection is achieved by the application when it provides the UART SP with either the On TX
Complete or the On TX Empty event handlers (A). When there is no transmission completion event
handler the write operation is executed in synchronously (S).

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 404

ADL User Guide for Open AT® OS 6.35

When UART SP is running in (S) mode the application is blocked while the byte transmission occurs.

When UART SP is running in (A) mode the application enables a write providing the UART SP with
the transmission buffer address and size parameters. UART SP returns an operation pending
indication. While an asynchronous write operation is pending application is allowed to invoke the write
function with both transmission buffer address and size parameters set with a NULL value. As
consequence the pending write operation is cancelled.

According to the current transmission event handler installed UART SP completes the pending write
operation by firing either the On TX Complete/Empty event.

Prototype
eChStatus_t write (u32 Handle,

 void * pData,
 u32 len);

Parameters

Handle:

Handle of the UART service provider previously returned by the adl_OpenDevice function.
Setting this parameter with a value different from the one obtained by the call to the
adl_OpenDevice function generates an error.

pData:

Address of the data block to be sent. NULL value is not supported when UART SP is running
in (S) mode.

len:

Size (in bytes) of the data block to be sent. NULL value is not supported when UART SP is
running in (S) mode.

Returned values

 Synchronous mode
 CH_STATUS_NORMAL operation successfully completed.

 CH_STATUS_ERROR: either pData or len or both parameters set with NULL values.

 Asynchronous mode
 CH_STATUS_ERROR: Asynchronous write operation is already pending.

 CH_STATUS_NORMAL: Asynchronous write cancellation successfully completed.

 CH_STATUS_PENDING: Asynchronous write operation successfully started.

 Both modes
 CH_STATUS_ERROR: invalid UART service provider handle.

4.1.4.4. The io_control request

This function allows to set configuration, or to get configuration information from the UART service
provider. Before using this function the application shall open the UART service provider (shall own
the UART interface as well as a valid UART handle).

This function is generic and supports several IO commands. To choose among the supported IO
commands the application has to set the Cmd parameter with a supported IO command identifier (see
also eUartIoCmd_t for further information about the supported IO commands).

Prototype
eChStatus_t io_control (u32 Handle,

 u32 Cmd,
 void* pParam);

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 405

ADL User Guide for Open AT® OS 6.35

Parameters

Handle:

Handle of the UART service provider previously returned by the adl_OpenDevice function.
Setting this parameter with a value different from the one obtained by the call to the
adl_OpenDevice function generates an error.

Cmd:

IO command identifier.

See also eUartIocId_t for further information about the supported UART IO commands.

pParam:

IO command parameter. Type of this parameter depends on the Cmd parameter value.
Following sub clauses will detail the actual type to be used.

Returned values
• Depend on the IO command type. Following sub clauses will detail actual return values.

Note: IO Commands support can be obtained during the opening stage or by using the IOC_UART_CAP IO
command (which is mandatorily implemented). Attempting to invoke an unsupported IO command
shall generate an error.

4.1.4.4.1. The IOC_UART_EH IO command

This function allows setting events handling configuration, or to get configuration information about
the events handling configuration currently used by the UART service provider.

Prototype

See also the io_control request for further information about io_control prototype and
parameter description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_UART_EH.

pParam:

Address of a sUartEvent_t structure.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle / unknown operation / pParam

set to NULL / invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 406

ADL User Guide for Open AT® OS 6.35

4.1.4.4.2. The IOC_UART_CAP IO command

This function allows getting the capabilities of the UART service provider.

Prototype

See also the io_control request for further information about io_control prototype and
parameter description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_UART_CAP.

pParam:

Address of a sUartCap_t structure.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle // pParam set to NULL.

• CH_STATUS_NORMAL: command succeeded.

4.1.4.4.3. The IOC_UART_LC IO command

This function allows setting the line coding configuration or getting the current line coding
configuration used by the UART SP.

Prototype

See also the io_control request for further information about io_control prototype and
parameter description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_UART_LC.

pParam:

Address of a sUartLc_t structure.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle / unsupported operation /

pParam set to NULL / invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 407

ADL User Guide for Open AT® OS 6.35

4.1.4.4.4. The IOC_UART_SS IO command

This function allows setting the signal state configuration or getting the current signal state
configuration used by the UART SP.

Prototype

See also the io_control request for further information about io_control prototype and
parameter description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_UART_LC.

pParam:

Address of a sUartSsIoc_t structure.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle / unsupported operation /

pParam set to NULL / invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

4.1.4.4.5. The IOC_UART_FL IO command

This function allows flushing the UART service provider transmission and/or reception FIFO.

Prototype

See also the io_control request for further information about io_control prototype and
parameter description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_UART_FL.

pParam:

Value from the eUartFl_t enumerated.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle / invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 408

ADL User Guide for Open AT® OS 6.35

4.1.4.4.6. The IOC_UART_FC IO command

This function allows setting the flow control configuration or getting the current flow control
configuration used by the UART service provider.

Prototype

See also the io_control request for further information about io_control prototype and
parameter description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_UART_FC.

pParam:

Address of a sUartFlowControl_t structure.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle / unsupported operation /

invalid configuration / pParam set to NULL.

• CH_STATUS_NORMAL: command succeeded.

4.1.4.4.7. The IOC_UART_FC IO command

This function allows setting the FIFO (RX & TX) configuration or getting the current FIFO configuration
used by the UART service provider.

Prototype

See also the io_control request for further information about io_control prototype and
parameter description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_UART_FD.

pParam:

Address of a sUartFd_t structure.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle / unsupported operation /

invalid configuration / pParam set to NULL.

• CH_STATUS_NORMAL: command succeeded.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 409

ADL User Guide for Open AT® OS 6.35

4.1.4.5. The Close request

This function allows the application to stop all pending, read and write operations and to release the
UART SP. Before using this function the application shall open the UART service provider (must own
the UART SP interface as well as a valid UART SP handle).

Prototype
eChStatus_t close (u32 Handle);

Parameters

handle:

Handle of the UART service provider previously returned by the adl_OpenDevice function.
Setting this parameter with a value different from the one obtained by the call to the
adl_OpenDevice function generates an error.

Returned values
• CH_STATUS_ERROR: invalid UART service provider handle.

• CH_STATUS_NORMAL: close operation successfully completed.

4.1.4.6. The On TX Complete notification handler

This notification allows the application to be aware of the completion of the pending asynchronous
write operation. It occurs when the last byte, of the previously submitted data block, is being
transmitted by the UART service provider.

Before being notified the application shall open the UART service provider (must own the UART SP
interface as well as a valid UART SP handle) and configure the UART service provider with its On TX
Complete notification handler.

Prototype
void on_txc (void* user_data,
 psGData_t evt_param);

Parameters

user_data:

Generic 32 bits information the application previously provided during the event handler
configuration. The UART service provider is required to give back this information to the
application on every occurrence of the transmission completion.

evt_param:

Address of a sGData_t structure allowing the application to provide the UART service
provider with address and size parameters of a new data block to be transmitted. In case
application does not have any more data block to be transmitted it shall set the buf and len
fields of the sGData_t structure to a NULL value.

Returned values

Not Applicable.

Note: This handler is called in an interrupt context. The stack size for this context is 1024 bytes, defined in
ADL. Consequently, this handler must not be used to make heavy operations or allocate large space
memory.

Note: Even if it is strongly not recommended to use traces in interrupt handlers, if they are temporarily used
for debug purpose, traces will be emited on the "LLH" flow. Such event handlers are considered as
Low Level Handlers anywhere in the API (adl_ctxGetContextID() returns
ADL_CTX_LOW_LEVEL_IRQ_HANDLER), and all related restrictions apply.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 410

ADL User Guide for Open AT® OS 6.35

4.1.4.7. The On TX Empty notification handler

This notification allows the application to be aware of the completion of the pending asynchronous
write operation. It occurs when the last bit, of the previously submitted data block, is being transmitted
by the UART service provider.

Before being notified the application shall open the UART service provider (must own the UART SP
interface as well as a valid UART SP handle) and configure the UART service provider with its On TX
Empty notification handler.

Prototype
void on_txe (void* user_data,
 psGData_t evt_param);

Parameters

user_data:

Generic 32 bits information the application previously provided during the event handler
configuration. The UART service provider is required to give back this information to the
application on each transmitter empty notification.

evt_param:

Address of a sGData_t structure allowing the application to provide the UART service
provider with address and size parameters of a new data block to be transmitted. In case
application does not have any more data block to be transmitted it shall set the buf and len
fields of the sGData_t structure to a NULL value.

Returned values

Not Applicable.

Note: This handler is called in an interrupt context. The stack size for this context is 1024 bytes, defined in
ADL. Consequently, this handler must not be used to make heavy operations or allocate large space
memory.

Note: Even if it is strongly not recommended to use traces in interrupt handlers, if they are temporarily used
for debug purpose, traces will be emited on the "LLH" flow. Such event handlers are considered as
Low Level Handlers anywhere in the API (adl_ctxGetContextID() returns
ADL_CTX_LOW_LEVEL_IRQ_HANDLER), and all related restrictions apply.

4.1.4.8. The On Rx Complete notification handler

This notification allows the application to be aware of the completion of the pending asynchronous
read operation. It occurs when;

• Either the previously provided Rx buffer is full.

• Or on reception timeout. Which means at least 1 character has been stored in the previously
provided Rx buffer and no activity occurred on the RX line for a time comprises in the range
[3.5 … 4.5] characters time.

Before being notified the application shall open the UART service provider (must own the UART SP
interface as well as a valid UART SP handle) and configure the UART service provider with its On Rx
Complete notification handler.

Prototype
void on_rxc (void* user_data,
 psGData_t evt_param);

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 411

ADL User Guide for Open AT® OS 6.35

Parameters

user_data:

Generic 32 bits information the application previously provided during the event handler
configuration. The UART service provider is required to give back this information to the
application on each receive complete notification.

evt_param:

Address of a sGData_t structure allowing the application to provide the UART service
provider with address and size parameters of a new reception data block. In case application
does not have any more available reception data block it shall set the buf and len fields of
the sGData_t structure with NULL values.

Returned values

Not Applicable.

Note: This handler is called in an interrupt context. The stack size for this context is 1024 bytes, defined in
ADL. Consequently, this handler must not be used to make heavy operations or allocate large space
memory.

Note: Even if it is strongly not recommended to use traces in interrupt handlers, if they are temporarily used
for debug purpose, traces will be emited on the "LLH" flow. Such event handlers are considered as
Low Level Handlers anywhere in the API (adl_ctxGetContextID() returns
ADL_CTX_LOW_LEVEL_IRQ_HANDLER), and all related restrictions apply.

4.1.4.9. The On Rx Data Available notification handler

This notification allows the application to trigger a (NZC) read. It occurs when at least one byte has
been received by the UART service provider. While application has not extracted all the received
bytes (in other words while the synchronous read function does not return 0) this notification will not
be re-generated.

Before being notified the application shall open the UART service provider (must own the UART SP
interface as well as a valid UART SP handle) and configure the UART service provider with its On Rx
Data Available notification handler.

Prototype
void on_rxda (void* user_data,
 psGData_t evt_param);

Parameters

user_data:

Generic 32 bits information the application previously provided during the event handler
configuration. The UART service provider is required to give back this information to the
application on each occurrence of the received data available notification.

evt_param:

This parameter is mandatory but UART service provider does not use it. Application shall
ignore its content.

Returned values

Not Applicable.

Note: This handler is called in an interrupt context. The stack size for this context is 1024 bytes, defined in
ADL. Consequently, this handler must not be used to make heavy operations or allocate large space
memory.

Note: Even if it is strongly not recommended to use traces in interrupt handlers, if they are temporarily used
for debug purpose, traces will be emited on the "LLH" flow. Such event handlers are considered as
Low Level Handlers anywhere in the API (adl_ctxGetContextID() returns
ADL_CTX_LOW_LEVEL_IRQ_HANDLER), and all related restrictions apply.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 412

ADL User Guide for Open AT® OS 6.35

4.1.4.10. The On Signal State Change notification handler

This notification allows the application to be aware of any UART signal state change. It occurs when
at least one input signal state, from the embedded module point of view, is modified.

In DCE mode: the DTR signals state changes are notified.

In DTE mode: the RI, DCD and DSR signals state changes are notified.

In Null Modem, DTE and DCE modes: the CTS and BREAK signals state changes are notified.

Before being notified the application shall open the UART service provider (must own the UART SP
interface as well as a valid UART SP handle) and configure the UART service provider with its On Rx
Data Available notification handler.

Prototype
void on_ssc (void* user_data,
 psUartCbOssc_t evt_param);

Parameters

user_data:

Generic 32 bits information the application previously provided during the event handler
configuration. The UART service provider is required to give back this information to the
application on each occurrence of the received data available notification.

evt_param:

Provide to application the identities and current states of the modified signals.

See also sUartCbOssc_t for further information about signal identities and states.

Returned values

Not Applicable.

Note: This handler is called in an interrupt context. The stack size for this context is 1024 bytes, defined in
ADL. Consequently, this handler must not be used to make heavy operations or allocate large space
memory.

Note: Even if it is strongly not recommended to use traces in interrupt handlers, if they are temporarily used
for debug purpose, traces will be emited on the "LLH" flow. Such event handlers are considered as
Low Level Handlers anywhere in the API (adl_ctxGetContextID() returns
ADL_CTX_LOW_LEVEL_IRQ_HANDLER), and all related restrictions apply.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 413

ADL User Guide for Open AT® OS 6.35

4.1.4.11. The On Error notification handler

This notification allows the application to be informed of UART errors occurrences. It is fired when
errors occur at the UART service provider side..

Before being notified the application shall open the UART service provider (must own the UART SP
interface as well as a valid UART SP handle) and configure the UART service provider with its On Rx
Data Available notification handler.

Prototype
void on_ssc (void* user_data,
 eUartErr_t evt_param);

Parameters

user_data:

Generic 32 bits information the application previously provided during the event handler
configuration. The UART service provider is required to give back this information to the
application on each occurrence of the received data available notification.

evt_param:

Provide to application the error identities.

See also eUartErr_t for further information about error identities.

Returned values

Not Applicable.

Note: This handler is called in an interrupt context. The stack size for this context is 1024 bytes, defined in
ADL. Consequently, this handler must not be used to make heavy operations or allocate large space
memory.

Note: Even if it is strongly not recommended to use traces in interrupt handlers, if they are temporarily used
for debug purpose, traces will be emited on the "LLH" flow. Such event handlers are considered as
Low Level Handlers anywhere in the API (adl_ctxGetContextID() returns
ADL_CTX_LOW_LEVEL_IRQ_HANDLER), and all related restrictions apply.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 414

ADL User Guide for Open AT® OS 6.35

4.2. Open USB Interface
ADL provides Open USB Interface to give access to the module USB Core Layer Service Provider.
The USB Core Layer Service Provider should be understood as the software component handling the
USB Device framework. The USB CL SP acronym will be used in the rest of this chapter.

By default (i.e. without any Open AT® application or in case such an application does not use the
Open USB Interface) the module USB CL SP is managed by the Sierra firmware only.

When an USB CL SP is handled by the Sierra firmware, it is not available for an Open AT®
application.

Similarly, when an USB CL SP is handled by an Open AT® application, it is not available for the Sierra
firmware.

In both the above cases, any attempt to get access to already used USB CL SP will returns with an
error to the requestor.

4.2.1. Required Header File
The Open USB Interface is defined by the following header file wm_usb.h

It should be noticed that the wm_usb.h header is self-sufficient (or auto-compilable), that means there
is no need (for the service user) to include any other header files (except for the opening stage, where
the adl_OpenDevice.h file is required) to get access to the USB CL SP. The way the wm_usb.h
header file is built is illustrated by the following dependency graph.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 415

ADL User Guide for Open AT® OS 6.35

4.2.2. Data Structures

4.2.2.1. The sOpUsbSettings_t Structure

The USB CL SP configuration structure, when the ADL open device service (adl_OpenDevice)
function is used.

typedef struct
{

 // GENERIC Fields, is a sGenSettings_t type (wm_device.h)
 char* identity;
 psObUsbEvent_t event_handlers;
 ppsGItfCont_t interface;

 // END of the GENERIC fields

 // SPECIFIC IN parameters
 u32 ousb_itf_version;

 // To support the enumeration stage
 psOpUsbDevInfo_t p_device_fs;
 psOpUsbDevInfo_t p_device_hs;
 char** ad_if_id_list; // A char* array[] NULL TERMINATED

 // SPECIFIC IN/OUT parameters
 psOpUsbCapabilities_t capabilities;
} sOpUsbSettings_t, *psOpUsbSettings_t;

Fields:

identity:

This field is mandatory present. It allows the service user to choose the USB CL SP it wants
to work with. Setting this field to NULL generates an error. Any non null value is considered
by the USB CL SP as a pointer of a null terminated string. Supported string contents are
listed hereafter:

• "UDEV0": to get access to the module USB 2.0 in Full Speed mode.

Attempting to provide an identity not contained in the previous list generates an error.

Note: This list is not exhaustive and will be updated when new USB CL SP will be available.

event_handlers:

This field is optional. It allows the service user to provide its event handlers during the
opening stage. Please note the IOC_USB_EH IO control cannot be used to later on set the
event handler configuration.

See also sOpUsbEvent_t description for further information about event handler
configuration management.

interface:

This field is optional. It allows the service user to dynamically retrieve the interface of the
USB CL SP inside a generic interface container.

Setting this field to NULL generates an error. Any non NULL value is considered by the USB
CL SP as the address of a pointer of sGItfCont_t structure (see wm_device.h file).

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 416

ADL User Guide for Open AT® OS 6.35

See also sGItfCont_t description for further information about generic interface containers
and interface retrieving at run time.

ousbitf_version:

This field will be mandatory. It allows the service user to use USB CL SP versioned
interfaces. This field is currently not used.

p_device_fs:

This field is optional. It allows the service user to describe its USB function for a Full Speed
(FS) USB device controller. This field shall not be set to NULL expect in the cases listed
hereafter:

• The device controller used is a USB HS one and given the p_device_hs field is set to a
 non NULL value or

• The ad_if_id_list field contains, at least, one USB function/class identifier.

Attempting to set this field to NULL when conditions listed below are not met generates an
error.

Any non null value is considered by the USB CL SP as a pointer of sOpUsbDevInfo_t
structure.

p_device_hs:

This field is optional. It allows the service user to describe its USB function for a High Speed
(HS) USB device controller. This field shall not be set to NULL expect in the cases listed
hereafter:

• The device controller used is a USB FS one and given the p_device_fs field is set to a
 non NULL value or

• The ad_if_id_list field contains, at least, one USB function/class identifier.

Attempting to set this field to NULL when conditions listed below are not met generates an
error.

Any non null value is considered by the USB CL SP as a pointer of sOpUsbDevInfo_t
structure.

Note: Some USB device controllers are capable to work either in Full or High speed mode. In case such a
controller would be used within the Sierra Wireless module both p_device_fs and p_device_fs fields
should be set to a non NULL value. The USB CL SP shall autonomously handle the Device Qualifier
and Other Speed Configuration USB descriptor building, querying and switching processes.

See also sOpUsbDevInfo_t description for further information about the Device Information
setting.

ad_if_id_list:

This field is optional. It allows service user to build an USB composite function by reusing
USB functions/classes already coded and located at the Sierra firmware side. Hereafter the
list of identifiers for such supported functions/classes:

“UFLCDC”: to reuse the existing CDC ACM (serial port) class.

Attempting to provide an identity not contained in the previous list generates an error.

Note: This list is not exhaustive and will be updated when new USB firmware functions/classes will be
available.

capabilities:

This field is optional. It allows the USB CL SP to return its capabilities to the service user
during the opening stage. Please note the IOC_USB_CAP IO control can also be used to
retrieve the capabilities after the opening stage. This field is currently not used.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 417

ADL User Guide for Open AT® OS 6.35

4.2.2.2. The sOpUsbCapabilities_t Structure

The USB SP CL capabilities structure, when the ADL open device service (adl_OpenDevice) function
is used (nested in the sOpUsbSettings_t structure) or when the generic IO control
G_IOC_CAPABILITIES is used.

typedef struct
{
 u32 currently_not_identified;
} sOpUsbIocCapabilities_t, *psOpUsbIocCapabilities_t, sOpUsbCapabilities_t,

*psOpUsbCapabilities_t ;

Fields:

currently_not_identified:

This field is to be defined.

4.2.2.3. The sOpUsbDevInfo_t Structure

The Open USB Device Information set, when the ADL open device service, adl_OpenDevice
function, is used (nested in the sOpUsbSettings_t structure) by the USB CL SP to build the Device
and Device qualifier standard descriptors.

typedef struct
{
 u8 bDeviceClass;
 u8 bDeviceSubClass;
 u8 bDeviceProtocol;
 u8 bNumConfigurations;
 u16 bcdDevice;
 u16 idVendor;
 u16 idProduct;
 enum eDevInfoCust
 {
 CF_NOCUSTOMIZATION = 0x0000,
 CF_BDEVICECLASS = 0x0001,
 CF_BDEVICESUBCLASS = 0x0002,
 CF_BDEVICEPROTOCOL = 0x0004,
 CF_BNUMCONFIGURATIONS = 0x0008, // Not implemented
 CF_IDVENDOR = 0x0010,
 CF_IDPRODUCT = 0x0020,
 CF_BCDDEVICE = 0x0040,
 CF_ACONFIG = 0x0080,
 CF_IMANUFACTURER = 0x0100,
 CF_IPRODUCT = 0x0200,
 CF_ISERIALNUMBER = 0x0400,
 CF_DEVICE_ALL = 0x07FF,
 CF_MAP = 0x7FFF
 } cust_fields;

 psOpUsbConfInfo_t a_config /*[bNumConfigurations]*/;
 ascii* iManufacturer;
 ascii* iProduct;
 ascii* iSerialNumber;
} sOpUsbDevInfo_t, *psOpUsbDevInfo_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 418

ADL User Guide for Open AT® OS 6.35

Fields:

bDeviceClass:

bDeviceSubClass:

bDeviceProtocol:

bNumConfigurations:

bcdDevice:

idVendor:

idProduct;

iManufacturer:

iProduct:

iSerialNumber:

For the meaning of the above fields see the USB specification revision 2.0 – table 9-8. Standard
Device Descriptor.

Note: Any character string is accepted, when sets to NULL or points to an empty string the corresponding
fields in the USB standard Device descriptor are set to 0.

cust_fields:

This field contains the device information set customization descriptor. In case the Service
User just wants to customize the USB Device descriptor of a class implemented at the
firmware side it shall set this field with the needed pre-defined constant to indicate to the
USB Core Layer which fields of the Device information set must be overwritten.

a_config:

This field contains the address of the array of Open USB Configuration Information set.

Note: The size of the configuration array is given by the bNumConfigurations field.

See also sOpUsbConfInfo_t structure for further details about the Open USB Configuration
Information set.

4.2.2.4. The sOpUsbEvent_t Structure

The USB CL SP events setting structure, when the ADL open device service, adl_OpenDevice
function, is used (then nested in the sOpUsbSettings_t structure).

typedef struct
{
 eGIocSo_t op; /* generic get/set operation */
 void* user_data;
 enum
 {
 OUSB_UNINSTALL_ALL = G_CB_ON_NOTHING,
 OUSB_ON_STATUS = G_CB_LAST,
 OUSB_ON_REQUEST = (OUSB_ON_STATUS << 1),
 OUSB_ON_COMPLETE = (OUSB_ON_REQUEST << 1),

 OUSB_INSTALL_ALL = (OUSB_ON_STATUS | OUSB_ON_REQUEST |
 OUSB_ON_COMPLETE),

 USB_ON_MAP = 0x70000000L
 }
 valid_cb;
 sGCbDesc_t cb_list[3];
} sOpUsbIocEventH_t, *psOpUsbIocEventH_t, *psOpUsbEvent_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 419

ADL User Guide for Open AT® OS 6.35

Fields:

op:

This field describes the sub-operation to be executed either set event handlers configuration
or get the current event handlers configuration.

See also eGIocSo_t description for further information about the sub-operation selection.

Note: USB CL SP shall assume a set sub-operation when this structure is embedded in a
sOpUsbSettings_t one. When this structure is used as parameter for the IO control operation
IOC_USB_EH only the get sub-operation is supported.

user_data:

This field allows the service user to provide the USB CL SP with a “global” value (a service
user context address for example) which shall be given back as first parameter of any valid
event handler set in this structure. Valid event handlers are defined by the valid_cb field and
the cb_list field content. Setting all the bits of the user_data field to 1 means the USB CL SP
shall ignore the field content. Any other value, including NULL, shall be interpreted by the
USB CL SP as valid.

valid_cb:

This field describes the validity of each entry of the cb_list (see below) field. Bits 0 to 2 are
associated to cb_list[0] … cb_list[2]. Setting a 1 at the bit X position means the cb_list[X]
content is valid for the USB CL SP. At the other hand setting a 0 at the bit X position means
the cb_list[X] content shall not taken into account by the USB CL SP.

Note: Setting this field to 0 instructs the USB CL SP to uninstall all currently installed event handlers. In
such a case service user is not required to fill in the cb_list[0...2] fields.

cb_list:

This field allows the service user to provide the USB CL SP with its event handlers and
“local” optional values the USB CL SP is required to give as first parameter when calling
event handlers. This field can store the following event handler configuration information:

• cb_list[0]: ON STATUS.

• cb_list[1]: ON REQUEST.

• cb_list [2]: ON COMPLETE.

See also sGEvent_t for further information about event handler configuration management.

Note: The content of the user_data field of each cb_list entry shall not be used by the USB CL SP (as
“global” user_data is required to be used).

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 420

ADL User Guide for Open AT® OS 6.35

4.2.2.5. The sOpUsbConfInfo_t Structure

The Open USB Configuration Information set, when the ADL open device service, adl_OpenDevice
function, is used (nested in the sOpUsbDevInfo_t structure) by the USB CL SP to build the
Configuration and Configuration Other Speed standard descriptors.

typedef struct
{
 ascii* iConfiguration;

 enum ebBmAttributes
 {
 BUS_ONLY_POWERED,
 REMOTE_WAKEUP_DISABLED = BUS_ONLY_POWERED,
 REMOTE_WAKEUP_ALLOWED = 0x20,
 SELF_POWERED = 0x40
 }bmAttributes;

 // Can be set even if SELF_POWERED is select (dual powering scheme
support)

 u8 bMaxPower;
 u8 bNumInterfaces; // May be set to NULL for customization purpose.
 enum eConfInfoCust
 {
 CF_BMATTRIBUTES = 0x01,
 CF_BMAXPOWER = 0x02,
 CF_CONFIGURATION_ALL = 0x03
 } cust_fields;

 // Array of array of psOpUsbItfInfo_t. Array's size is given by the

 // bNumInterfaces field. May be set to NULL for customization

 // purpose.
 pppsOpUsbItfInfo_t aap_itf/*[.bNumInterfaces]*/;
} sOpUsbConfInfo_t, *psOpUsbConfInfo_t;

Fields:

iConfiguration:

Note: Any character string is accepted, when sets to NULL or points to an empty string the corresponding
field in the USB standard Device descriptor is set to 0.

bmAttributes:

Note: The bmAttributes field’s content returned to the USB host during the enumeration stage is the result of
an AND logical operation between the content of the bmAttributes field of the sOpUsbConfInfo_t
structure and the remote wakeup capability of the USB chip of the WCPU® actually used within the
customer’s application.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 421

ADL User Guide for Open AT® OS 6.35

bMaxPower:

bNumInterfaces:

Note: The bNumInterfaces shall be set to 0 when the application is using the Open USB Service for
customizing existing USB function/class’s descriptors (CONFIGURATION and DEVICE) located at the
firmware side. The customization of the INTERFACE descriptor (located at the firmware side) is
currently not supported.

For the meaning of those fields see the USB specification revision 2.0 – table9-10/table9-11.
Standard Configuration Descriptor and Other Speed Configuration Descriptor.

cust_fields:

This field contains the configuration information set customization descriptor. In case the
User just wants to customize the USB Configuration descriptor of a class implemented at the
firmware side it shall set this field with the needed pre-defined constant to indicate to the
USB Core Layer which fields of the configuration information set must be overwritten.

aap_itf:

This field contains the address of the array of array of Open USB Interface Information set.
When the bNumInterfaces field contains 0 the content of the aap_itf is useless for the Open
USB CL

Note the size of this array of Interface Information set arrays is given by the bNumInterfaces
field. Index in the first array’s dimension (aap_itf[first dimension][y]) is used by the USB
CL SP to compute the bInterfaceNumber field of the Standard Interface Descriptor. Index in
the second’s array dimension (aap_itf[x][second dimension]) is used by the USB CL SP to
compute the bAlternateSetting field of the Standard Interface Descriptor. The last entry of the
second dimension shall always be set to NULL to inform the USB CL SP of the amount of
default + alternate interface settings.

See also sOpUsbItfInfo_t structure for further details about the Open USB Configuration
Information set.

4.2.2.6. The sOpUsbItfInfo_t Structure

The Open USB Interface Information set, when the ADL open device service, adl_OpenDevice
function, is used (nested in the sOpUsbConfInfo_t structure) by the USB CL SP to build the Interface
standard descriptor.

typedef struct
{
 psOpUsbIaInfo_t p_interface_association;
 ascii* iInterface;

 u8 bNumEndpoints;
 u8 bInterfaceClass;
 u8 bInterfaceSubClass;
 u8 bInterfaceProtocol;

 u8* p_classinfo;

 ppsOpUsbEpInfo_t ap_ep/*[bNumEndpoints]*/;
} sOpUsbItfInfo_t, *psOpUsbItfInfo_t, **ppsOpUsbItfInfo_t,
 ***pppsOpUsbItfInfo_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 422

ADL User Guide for Open AT® OS 6.35

Fields:

p_interface_association:

For the meaning of this field see the USB specification revision 3.0 – table9-16. Standard
Interface Association Descriptor.

iInterface:

Any character string is accepted, when sets to NULL or points to an empty string the
corresponding field in the USB standard Device descriptor is set to 0

bInterfaceClass:

bInterfaceSubClass:

bInterfaceProtocol:

bNumEndpoints:

iInterface:

For the meaning of those fields see the USB specification revision 2.0 – table9-12. Standard
Device Descriptor

p_classinfo:

Address of an array of bytes. Allows the service user in providing any class specified
information. The field shall be set to NULL in case there is no class specified information.

ap_ep:

Address of an array of sOpUsbEpInfo_t pointers. The field shall be set to NULL in case this
interface uses the control endpoint only.

See also sOpUsbEpInfo_t for further information about endpoint information set.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 423

ADL User Guide for Open AT® OS 6.35

4.2.2.7. The sOpUsbEpInfo_t Structure

The Open USB Endpoint Information set, when the ADL open device service, adl_OpenDevice
function, is used (nested in the sOpUsbItfInfo_t structure) by the USB CL SP to build the Endpoint
standard descriptor.

typedef struct
{
 Enum
 {
 ZLP,
 NO_ZLP
 }zlp_generation;
 enum
 {
 OUT,
 IN
 }bDirection;
 u8 bEndpointId;
 enum
 {
 TT_CTL,
 TT_ISO,
 TT_BULK,
 TT_INT,
 TT_MASK = TT_INT,

 ST_NOSYNC= 0,
 ST_ASYNC = (1 << 2),
 ST_ADAPT = (2 << 2),
 ST_SYNC = (3 << 2),
 ST_MASK = ST_SYNC,

 UT_DATA = 0,
 UT_FEED = (1 << 4),
 UT_IMP_FEED_DATA = (2 << 4),
 UT_RES = (3 << 4),
 UT_MASK = UT_RES
 } bmAttributes;
 u16 wMaxPacketSize;
 u8 bInterval;
 u8* p_classinfo;
} sOpUsbEpInfo_t, *psOpUsbEpInfo_t, **ppsOpUsbEpInfo_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 424

ADL User Guide for Open AT® OS 6.35

Fields:

zlp_generation:

Indicate to the USB CL SP how to act with transfer’s lengths (BULK / INTERRUPT) multiple
of the endpoint’s maximum packet size (only known by the USB CL SP).

bDirection:

The endpoint’s direction: either OUT or IN.

bEndpointId:

The endpoint’s logical identity (not related to the physical identity managed at the USB
device controller level). Valid values are in the [1...15] range.

bmAttributes:

bInterval:

wMaxPacketSize:

For the meaning of those fields see the USB specification revision 2.0 – table9-13. Standard
Interface Descriptor

Note: wMaxPacketSize is used only for isochronous endpoints, for the control, bulk and interrupt endpoints
the USB CL SP determines by itself (thanks to the USB device controller capabilities) the right
values.

p_classinfo:

Address of an array of bytes. Allows the service user in providing any endpoint class
specified information. The field shall be set to NULL in case there is no endpoint class
specified information.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 425

ADL User Guide for Open AT® OS 6.35

4.2.2.8. The sOpUsbIaInfo_t Structure

The Open USB Interface Association information set, when the ADL open device service,
adl_OpenDevice function, is used (nested in the sOpUsbItfInfo_t structure) by the USB CL SP to build
the Endpoint standard descriptor.

typedef struct
{
 u8 bInterfaceCount;
 u8 bFunctionClass;
 u8 bFunctionSubClass;
 u8 bFunctionProtocol;
 ascii* iInterface;
} sOpUsbIaInfo_t, *psOpUsbIaInfo;

Fields:

bInterfaceCount:

bFunctionClass:

bFunctionSubClass:

bFunctionProtocol:

iInterface:

For the meaning of this field see the USB specification revision 3.0 – Table 9-16 Standard
Interface Association Descriptor.

Note: The bFirstIntrefaceCount field specified in the USB specification revision 3.0 –Table 9-16 is
automatically generated by the USB CL SP.

4.2.2.9. The sOpUsbIocInterrupt_t Structure

The USB CL SP events setting structure, when the ADL open device service, io_control function with
the cmd parameter sets to IOC_USB_INT.

typedef struct
{
 eGIocSo_t op; /* generic get/set operation */
 enum
 {
 OUSB_INTR_MASKED,
 OUSB_INTR_DEMASKED,
 OUSB_INTR_MAP = 0x70000000L
 }intr_mask;
} sOpUsbIocInterrupt_t, *psOpUsbIocInterrupt_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 426

ADL User Guide for Open AT® OS 6.35

Fields:

op:

This field describes the sub-operation to be executed either set or get the state of the USB
device controller interrupt mask.

intr_mask:

The supported values for the interrupt mask.

4.2.2.10. The sOpUsbIocFlush_t Structure

The USB CL SP endpoint flushing structure, when the ADL open device service, io_control function
with the cmd parameter sets to IOC_OUSB_FLUSH.

typedef struct
{
 u8 identity;
 u8 direction;
} sOpUsbIocFlush_t, *psOpUsbIocFlush_t;

Fields:

direction:

Direction of the endpoint that must be flushed, valid directions are in the [0:OUT, 1:IN]
range.

identity:

Identity of the endpoint that must be flushed, valid identities are in the [0…15] range.

4.2.2.11. The sOpUsbObjectId_t Structure

The USB Objects Identity structure, when the ADL open device service, io_control function with the
cmd parameter sets to IOC_USB_OBJECT_ID.

typedef struct
{
 enum
 {
 OUSB_INTERFACE_OBJ,
 OUSB_ENDPOINT_OBJ,
 OUSB_LAST_OBJ
 }object_selector;
 union //IN: local object ID (UFL) OUT: actual object ID (UCL)
 {
 u16 itfid;
 u8 epid[2]; //[0] identity [1..15] [1]:direction [IN, OUT]

 } __attribute__((packed,aligned(2))) u;
} sOpUsbObjectId_t, *psOpUsbObjectId_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 427

ADL User Guide for Open AT® OS 6.35

Fields:

object_selector:

Indicate to the USB Core Layer the kind of USB object the actual identity has to be retrieved.
Interface and endpoints are supported.

u:

According to the selected object (interface or endpoint) indicates to the USB Core Layer the
local identity of the object to be processed.

Interface identifier (u.itfid field) shall be in the [0…255] range.

Endpoint identifiers (see comments).

4.2.2.12. The sOpUsbTransAttr_t Structure

The transfer attributes structure, when the read and write operations are invoked by the USB SU.
Instead of providing a void* as second parameter for the read and write operations (see generic read
a write operations prototype in the wm_device.h file) the USB SU is required to use a pointer on this
structure.

typedef struct
{
 u8 identity;
 u8 spare[3];
 void* data;
} sOpUsbTransAttr_t, *psOpUsbTransAttr_t;

Fields:

Identity:

Indicates in the [1...15] range the logical endpoint identity on which the transfer shall occur.

data:

According to the requested operation (read or write) indicates where to put the received data
or to get the data to be transmitted.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 428

ADL User Guide for Open AT® OS 6.35

4.2.2.13. The sOpUsbOnStatus_t Structure

The ON STATUS event parameter structure sets by the USB CL SP when it warms the OnStatus
event.

typedef struct
{
 enum eOpUsbStatus
 {
 OUSB_STATUS_CONFIGURED, // id.config
 OUSB_STATUS_DECONFIGURED, // id.cause
 OUSB_STATUS_ITF_STARTED, // id.itf
 OUSB_STATUS_LAST,
 OUSB_STATUS_MAP = 0x7FFF
 } status;
 union
 {
 u16 config;
 u8 itf[2]; // [0]:bNumInterface,[1]:bAlternateSetting
 enum
 {
 BUS_RESET,
 CABLE_UNPLUGGED,
 CONFIGURATION_CHANGE
 }cause;
 } __attribute__((packed,aligned(2))) id;
} sOpUsbOnStatus_t, *psOpUsbOnStatus_t;

Fields:

status:

This field describes the current status of the USB CL SP. Two levels are defined, one for the
whole device and the other for the interfaces. The device can be in the:

• Configured state: after a Set Configuration with a wValue not set to 0

• De-configured state: after a bus reset, an USB cable unplugging or a bus reset.

When the host issues a Set Interface request the OUSB_STATUS_IT_STARTED event is
warmed by the USB CL SP.

id:

This field contains the configurations and interfaces identity:

• For configurations identity select the id.config field.

• For interfaces identity select the id.itf field, id.itf[0] contains the bNumInterface value and
 id.itf[1] contains the bAlternateSetting value.

This field hosts too the de-configuration’s cause: bus reset, cable unplugged and
configuration change causes are supported.

Caution: It pertains to a Service User having pending read / write operations to properly act on an unexpected
status notification (STATUS_DECONFIGURED / STATUS CONFIGURED / ITF STARTED). Particular
attention should be given to buffer management in case such notifications would occur.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 429

ADL User Guide for Open AT® OS 6.35

4.2.2.14. The sOpUsbOnComplete_t Structure

The ON COMPLETE event parameter structure, sets by the USB CL SP when it warms the
OnComplete event.

typedef struct
{
 u8 identity;
 u8 direction;
 u8 spare[2];
 void* data;
 u32 length;
} sOpUsbComplete_t, *psOpUsbComplete_t;

Fields:

data:

In case of a read completion the address of the next RX buffer, in case of a write completion
the address of the next buffer to be transmitted. USB SU shall set this field to NULL in case
there is no other transfer (read or write) to be done.

length:

USB SP CL shall set this field to indicate to USB SU actual amount of received data. USB
SU shall set this field in the following way:

In case of a read completion the size of the next RX buffer, in case of a write completion the
size of the next buffer to be transmitted. Buffer size is expressed in bytes. In case no other
transfer is required this field shall be set to 0.

identity:

Is the logical endpoint identifier supported values are in the [0...15] range.

direction:

Indicates the completion direction: when set to 0 (OUT direction) RX completion, when set to
1 (IN direction) write completion.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 430

ADL User Guide for Open AT® OS 6.35

4.2.2.15. The uOpUsbOnRequest_t Union

The ON REQUEST event parameter structure sets by the USB CL SP when it warms the OnRequest
event.

typedef union
{
 struct // Set by USB CL
 {
 enum eOpUsbReqType
 {
 RECIPIENT_DEVICE,
 RECIPIENT_INTERFACE,
 RECIPIENT_ENDPOINT,
 RECIPIENT_OTHER,
 RECIPIENT_RESERVED,
 RECIPIENT_MASK = 0x1F,

 TYPE_STANDARD = 0x00,
 TYPE_CLASS = 0x20,
 TYPE_VENDOR = 0x40,
 TYPE_RESERVED = 0x60,
 TYPE_MASK = TYPE_RESERVED,

 DIRECTION_OUT = 0,
 DIRECTION_IN = 0x80,
 DIRECTION_MASK = DIRECTION_IN,
 }bmRequestType;
 u8 bRequest;
 union
 {
 u8 b[2];
 u16 w;
 } __attribute__((packed,aligned(2))) wValue;
 union
 {
 u8 b[2];
 u16 w;
 } __attribute__((packed,aligned(2))) wIndex;
 u16 wLength;
 } setup;
 struct // Set by USB FL
 {
 void* data_stage;
 s16 status; // 0: OK, -1: ERROR (see wm_types.h)
 u16 length;
 }out;
} uOpUsbOnRequest_t, *puOpUsbOnRequest_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 431

ADL User Guide for Open AT® OS 6.35

Fields:

setup (structure):

To forward class, vendor specific and some standard requests to USB SU. Refer to the
clause 9.3 of the USB specification revision 2.0 for further details about this field. This field is
written by the USB CL SP and is read by the USB SU.

out (structure):

To provide information to USB CL SP in order to it to handle data or status stages. This field
is written by the USB SU and is used by the USB CL SP.

out.data_stage: address of the transmission or reception buffer required for the data stage or
a valid (byte for example) address to handle the status stage.

out.status: USB SU is required to set this field to -1 (will generate a stall in the control
endpoint) in case an error occurred, otherwise the USB SU shall set it to 0 (data stage can
occur or status stage ok) or to 1 for delayed IN status stages (IN status stage shall be
triggered later on by the Service User and IN status stage’s completion is automatically
handled by the USB Core Layer)

out.length: actual length for the data stage. It shall be set to 0 for the status stage
management.

Caution: It pertains to a Service User waiting for a pending data stage completion to properly act on an
unexpected request notification (see USB specification for further details).

4.2.3. Enumerators

4.2.3.1. The eOpUsbIoCmd_t type

This enumeration lists the available IO commands identities for configuring, or obtaining information
from, the USB CL SP. Enumeration values are used as second parameter for the io_control
operation.

typedef enum
{
 IOC_OUSB_EH = G_IOC_EVENT_HANDLERS,
 IOC_OUSB_CAP = G_IOC_CAPABILITIES,
 IOC_OUSB_INT,
 IOC_OUSB_FLUSH,
 IOC_OUSB_OBJECT_ID, // Retrieving actual INTERFACE and ENDPOINTS

 // identity (GET_ONLY)
 IOC_OUSB_LAST,
 IOC_OUSB_MAP = 0x70000000L
} eOpUsbIoCmd_t, *peOpUsbIoCmd_t;

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 432

ADL User Guide for Open AT® OS 6.35

Description:

IOC_OUSB_EH

To allow the application to retrieve the event handling configuration used at the USB CL SP
side.

IOC_OUSB_CAP NOT IMPLEMENTED

IOC_OUSB_INT

Allows the application to set and get the state of the device controller interrupt mask.

IOC_OUSB_FLUSH

Allows the application to flush an endpoint.

IOC_OUSB_OBJECT_ID

Allows the application (USB Function Layer) to retrieve the actual INTERFACE &
ENDPOINTS identities (those communicated to the host during the enumeration stage) in
order to build some class requests.

4.2.3.2. The E_ALREADY_BOUND_t constant

This constant is returned by adl_OpenDevice function in case a USB Function Layer (located either at
the ADL or the firmware side) is already bound with the USB Core Layer.

4.2.4. Operations
There are two types of operations defined by the Open USB Interface:

• Requests: Allow the service user to directly handle the USB CL SP.

• Notifications: Allow the USB CL SP to notify event occurrences to service user.

Note: Before requesting, or being notified by, an USB CL SP an Open AT® application shall retrieve a,
direct, access (by using the ADL Open Device service) to this USB CL SP.

5 request functions are offered:

• An open function to:

 Retrieve the USB CL service provider's interface (through a generic interface container)
and

 retrieve a unique USB CL SP reference (handle) which shall be subsequently provided as
parameter to the rest of the request functions and

 install event handlers to manage the USB CL SP notifications and

 Optionally retrieve the USB CL service provider’s capabilities.

• A read function to retrieve data chunk sent by the USB host.

• A write function to instruct the USB CL SP to send data chunk to the USB host.

• An io_control function to configure, or get information from, the USB CL SP.

• A close function to release the USB CL SP interface (and the handle previously allocated).

3 notifications are offered to the USB SU to inform it of the occurrence of:

• The status changes (ON_STATUS) at the device and interface levels.

• The completion of the pending read/write operations (ON_COMPLETE).

• The arrival of a class or vendor specific request (ON_REQUEST).

Warning: Calling request functions (read/write/io_control/close) while application event handlers are
running is not supported. Such call shall not be managed and shall return an error.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 433

ADL User Guide for Open AT® OS 6.35

4.2.4.1. The open Function

There is no, at strictly speaking, specific function provided to open (get a direct access to) the USB
CL SP. The ADL Open Device service provides a generic function allowing getting, direct, access to
numerous kinds of service providers, including the USB CL SP one. Hereafter a description of what is
needed to open USB CL SP.

Prototype
s32 adl_OpenDevice (eDfClid_t dev_clss_id,

 void * param);

Parameters

dev_clss_id:

The device class identifier the service provider to be opened belongs to. To open USB CL
SP the application has to use the DF_USB_CLID value.

param:

Service provider configuration, to be defined accordingly to the dev_clss_id parameter in the
USB CL SP case address of a sOpUsbSettings_t structure is required.

Returned values
• Handle: A positive USB CL SP handle on success, to be used in further Open USB service

function calls.

• Otherwise the USB CL SP opening failed (check your input parameters)

Example: How to open the USB CL SP

#include "adl_OpenDevice.h"
#include "wm_usb.h"

static psGItfCont_t usb_if;
static u32 usb_hdl;

void adl_main(adl_InitType_e InitType)
{
 sOpUsbSettings_t settings;
 static sOpUsbIocInterrupt_t usb_it = { .op = G_IOC_OP_SET, .intr_mask=
OUSB_INTR_MASKED };

 // Set the settings parameters
 settings.identity = "USBDEV0";
 settings.interface = &usb_if;
 // fill-in the rest of the settings fields hereafter
 …

 usb_hdl = adl_OpenDevice(DF_USB_CLID, &settings);
 if(!usb_hdl)
 {
 // USB CL opening failed...
 return;
 }

 // USBDEV0 successfully opened, mask the device controller interrupt
 usb_if.io_control(usb_hdl, IOC_OUSB_INT, (void*)&usb_it);
 …
}

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 434

ADL User Guide for Open AT® OS 6.35

4.2.4.2. The read Request

This function allows the USB SU to read the data received by the USB CL SP. Before using this
function the USB SU shall open the USB CL SP (hat to own the USB CL interface as well as a valid
USB CL handle).

The read function works asynchronously. USB SU when calling the reads functions provides the USB
CL SP with a reception buffer address, the buffer size and logical endpoint in which the read
operation is applying. USB CL SP returns an operation pending indication. While an asynchronous
read operation is pending USB SU is allowed to invoke the read function with both reception buffer
address and size parameters set to a NULL value in order to cancel it. When a read operation is
cancelled by the USB SU the read completion event handler is not called by the USB CL SP.

The read operation completion occurs when USB CL SP invokes the ON COMPLETE event manager.

Prototype
eChStatus_t read (u32 Handle,

 psOpUsbTransAttr_t trsf_attr,
 u32 len);

Parameters

Handle:

Handle of the USB CL previously returned by the adl_OpenDevice function. Setting this
parameter with a value different from the one obtained by the call to the adl_OpenDevice
function generates an error.

trsf_attr structure (by address):

trsf_attr.data This field contains the reception buffer’s address. NULL value is supported only
in case a read operation is pending

trsf_attr.identity the endpoint logical identity on which read operation applies [1...15].

len:

This field contains the size of the reception buffer. NULL value is supported to cancel a
pending read operation.

Returned values
• CH_STATUS_ERROR: Invalid USB CL SP handle or a read operation is already pending.

• CH_STATUS_NORMAL: OK, read cancellation successfully completed.

• CH_STATUS_PENDING: OK, read operation is pending.

Note: USB chip’s interrupts are automatically disabled by the USB Core Layer during this request
processing.

Example: How to launch an asynchronous read operation

#include "adl_OpenDevice.h"
#include "wm_usb.h"

// To be coded

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 435

ADL User Guide for Open AT® OS 6.35

4.2.4.3. The write Request

This function allows the USB SU to send data block to the USB host. Before using this function the
USB SU shall open the USB CL SP (has to own the USB CL SP interface as well as a valid USB CL
SP handle).

The write operation works asynchronously. USB SU when calling the write operation is provisioning
USB SP CL with the transmission buffer address, the buffer size and endpoint logical identifier in
which the transfer applies. USB CL SP returns an operation pending indication. While an
asynchronous write operation is pending USB SU is allowed to invoke the write function with both
transmission buffer address and size parameters set to a NULL value in order to cancel it. When a
pending write operation is cancelled by the USB SU the write completion event handler is not called
by the USB CL SP.

Prototype
eChStatus_t write(u32 Handle,

 psOpUsbTransAttr_t trsf_attr,
 u32 len);

Parameters

Handle:

Handle of the USB CL previously returned by the adl_OpenDevice function. Setting this
parameter with a value different from the one obtained by the call to the adl_OpenDevice
function generates an error.

trsf_attr structure (by address):

trsf_attr.data This field contains the transmission buffer’s address. NULL value is supported
only in case a write operation is pending.

trsf_attr.identity the endpoint logical identity on which write operation applies [1...15].

len:

This field contains the size of the transmission buffer. NULL value is supported to cancel a
pending write operation.

Returned values
• CH_STATUS_ERROR: Invalid USB CL SP handle or a write operation is already pending.

• CH_STATUS_NORMAL: OK, write cancellation successfully completed.

• CH_STATUS_PENDING: OK, write operation is pending.

Note: USB chip’s interrupts are automatically disabled by the USB Core Layer during this request
processing.

4.2.4.4. The io_control Request

This function allows to set or to get configuration information from the SB CL SP. Before using this
function the application shall open the USB CL SP (has to own the USB CL SP interface as well as a
valid USB CL SP handle).

This function is generic and supports several IO commands. To choose among the supported IO
commands the application has to set the Cmd parameter with a supported IO command identifier.

Prototype
eChStatus_t io_control (u32 Handle,

 eOpUsbIoCmd_t Cmd,
 void* pParam);

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 436

ADL User Guide for Open AT® OS 6.35

Parameters

Handle:

Handle of the USB CL previously returned by the adl_OpenDevice function. Setting this
parameter with a value different from the one obtained by the call to the adl_OpenDevice
function generates an error.

Cmd:

Open USB IO command identifier.

See also eOpUsbIoCmd_t for further information about the supported Open USB IO
commands.

pParam:

IO command parameter. Type of this parameter depends on the Cmd parameter value.
Following sub clauses will detail the actual type to be used.

Returned values

Depend on the IO command type, the following sub clauses will detail actual return values.

4.2.4.4.1. The IOC_OUSB_EH IO Command

This function allows getting (read only) the USB CL SP event handling configuration information.

Prototype

See also the io_control request for further information about io_control prototype and parameter
description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_OUSB_EH.

pParam:

Address of a sOpUsbEvent_t structure.

Note: The op field of the sOpUsbEvent_t structure shall be set to G_IOC_GET constant.

Returned values
• CH_STATUS_ERROR: invalid USB CL SP handle / unknown operation / pParam set to NULL /

invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 437

ADL User Guide for Open AT® OS 6.35

4.2.4.4.2. The IOC_OUSB_CAP IO Command

This function allows getting the capabilities of the USB CL SP. [Currently not supported]

Prototype

See also the io_control request for further information about io_control prototype and parameter
description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_OUSB_CAP.

pParam:

Address of a sOpUsbCapabilities_t structure.

Note: The op field of the sOpUsbCapabilities_t structure shall be set to G_IOC_GET constant

Returned values
• CH_STATUS_ERROR: invalid CL SP handle // pParam set to NULL.

• CH_STATUS_NORMAL: command succeeded.

4.2.4.4.3. The IOC_OUSB_FLUSH IO Command

This function allows flushing any endpoints.

Prototype

See also the io_control request for further information about io_control prototype and parameter
description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_OUSB_FLUSH.

pParam:

Address of a sOpUsbIocFlush_t structure.

Returned values
• CH_STATUS_ERROR: invalid USB CL SP handle / pParam set to NULL / invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 438

ADL User Guide for Open AT® OS 6.35

4.2.4.4.4. The IOC_OUSB_INT IO Command

This function allows setting or getting the USB device controller interrupt mask.

Prototype

See also the io_control request for further information about io_control prototype and parameter
description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_OUSB_INT.

pParam:

Address of a sOpUsbIocInterrupt_t structure.

Returned values
• CH_STATUS_ERROR: invalid USB CL SP handle / pParam set to NULL / invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

4.2.4.4.5. The IOC_OUSB_OBJECT_ID IO Command

This function allows a function layer retrieving the actual USB identifier for USB objects such as
Interfaces or Endpoints.

Prototype

See also the io_control request for further information about io_control prototype and parameter
description.

Parameters

Handle:

See also the io_control request for further information about this parameter.

Cmd:

Set to IOC_OUSB_OBJECT_ID.

pParam:

Address of a sOpUsbObjectId_t structure.

Returned values
• CH_STATUS_ERROR: invalid USB CL SP handle / pParam set to NULL / invalid configuration.

• CH_STATUS_NORMAL: command succeeded.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 439

ADL User Guide for Open AT® OS 6.35

4.2.4.5. The close Request

This function allows the USB SU to stop all pending, read and write operations and to release the
USB CL SP. Before using this function the USB SU shall open the USB CL SP (has to own the USB
CL SP interface as well as a valid USB CLSP handle).

Prototype
eChStatus_t close (u32 Handle);

Parameters

Handle:

Handle of the USB CL previously returned by the adl_OpenDevice function. Setting this
parameter with a value different from the one obtained by the call to the adl_OpenDevice
function generates an error.

Returned values
• CH_STATUS_ERROR: invalid USB CL handle.

• CH_STATUS_NORMAL: close operation successfully completed.

4.2.4.6. The ON COMPLETE Notification Handler

This notification allows the application to be aware of the completion of the pending asynchronous
read/write operation (including the control ones).

Before being notified the USB SU shall open the USB CL SP (must own the USB CL SP interface as
well as a valid USB CL SP handle) and configure the USB CL service provider with its on_complete
notification handler.

Prototype
void on_complete (void* user_data,

 psOpUsbOnComplete_t evpar);

Parameters

user_data:

Information the USB SU (a context for example) provided during the event handler
configuration stage. The USB CL SP is required to give back this information to the
application on every occurrence of the ON COMPLETE event.

evpar:

Address of a sOpUsbOnComplete_t structure allowing the USB CL SP to inform the USB SU
on the completion of read or write operations

USB SU to provide additional buffer to be read or written (according to the transfer direction).

Returned values

Not Applicable.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 440

ADL User Guide for Open AT® OS 6.35

4.2.4.7. The ON REQUEST Notification Handler

This notification allows the application to be aware of the arrival of a USB request sent by the USB
host.

Before being notified the USB SU shall open the USB CL SP (must own the USB CL SP interface as
well as a valid USB CL SP handle) and configure the USB CL service provider with its on_request
notification handler.

Prototype
void on_request (void* user_data,

 puOpUsbOnRequest_t evpar);

Parameters

user_data:

Information the USB SU (a context for example) provided during the event handler
configuration stage. The USB CL SP is required to give back this information to the
application on every occurrence of the ON REQUEST event.

evpar:

Address of a uOpUsbRequest_t union allowing the USB CL SP to provide the USB SU with
the USB request issued by the USB host

USB SU to provide USB CL SP with additional information for handling the status or data
stage.

Returned values

Not Applicable.

Device Services

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 441

ADL User Guide for Open AT® OS 6.35

4.2.4.8. The ON STATUS Notification Handler

This notification allows the USB SU to be aware of the device or interface state changes. It occurs
either when the device is configured (on a host Set Configuration request) or the device is de-
configured (on cable unplugging, bus reset or on host Set Configuration (0) request).

Before being notified the USB SU shall open the USB CL SP (must own the USB CL SP interface as
well as a valid USB CL SP handle) and configure the USB CL service provider with its on_status
notification handler.

Prototype
void on_status (void* user_data,

 sOpUsbOnStatus_t evt_param);

Parameters

user_data:

Information the USB SU (a context for example) provided during the event handler
configuration stage. The USB CL SP is required to give back this information to the
application on every occurrence of the ON STATUS event.

evt_param:

sOpUsbOnStatus_t structure allowing USB CL SP to provide the USB SU with the kind of
changes occurring and configuration or interface identities.

Returned values

Not Applicable

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 442

5. Error Codes

5.1. General Error Codes

Error Code Error Value Description

OK 0 No error response

ERROR -1 general error code

ADL_RET_ERR_PARAM -2 parameter error

ADL_RET_ERR_UNKNOWN_HDL -3 unknown handler / handle error

ADL_RET_ERR_ALREADY_SUBSCRIBED -4 service already subscribed

ADL_RET_ERR_NOT_SUBSCRIBED -5 service not subscribed

ADL_RET_ERR_FATAL -6 fatal error

ADL_RET_ERR_BAD_HDL -7 Bad handle

ADL_RET_ERR_BAD_STATE -8 Bad state

ADL_RET_ERR_PIN_KO -9 Bad PIN state

ADL_RET_ERR_NO_MORE_HANDLES -10 The service subscription maximum capacity
is reached

ADL_RET_ERR_DONE -11 The required iterative process is now
terminated

ADL_RET_ERR_OVERFLOW -12 The required operation has exceeded the
function capabilities

ADL_RET_ERR_NOT_SUPPORTED -13
An option, required by the function, is not
enabled on the embedded module, the
function is not supported in this configuration

ADL_RET_ERR_NO_MORE_TIMERS -14 The function requires a timer subscription,
but no more timers are available

ADL_RET_ERR_NO_MORE_SEMAPHORES -15
The function requires a semaphore
allocation, but there are no more free
resource

ADL_RET_ERR_SERVICE_LOCKED -16
If the function was called from a low lewel
interruption handler (the function is forbidden
in this case)

ADL_RET_ERR_SPECIFIC_BASE -20 Beginning of specific errors range

5.2. Specific FCM Service Error Codes

Error code Error value

ADL_FCM_RET_ERROR_GSM_GPRS_ALREADY_OPENNED ADL_RET_ERR_SPECIFIC_BASE

ADL_FCM_RET_ERR_WAIT_RESUME ADL_RET_ERR_SPECIFIC_BASE-1

ADL_FCM_RET_OK_WAIT_RESUME OK+1

ADL_FCM_RET_BUFFER_EMPTY OK+2

ADL_FCM_RET_BUFFER_NOT_EMPTY OK+3

Error Codes

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 443

ADL User Guide for Open AT® OS 6.35

5.3. Specific Flash Service Error Codes

Error Code Error Value

ADL_FLH_RET_ERR_OBJ_NOT_EXIST ADL_RET_ERR_SPECIFIC_BASE

ADL_FLH_RET_ERR_MEM_FULL ADL_RET_ERR_SPECIFIC_BASE-1

ADL_FLH_RET_ERR_NO_ENOUGH_IDS ADL_RET_ERR_SPECIFIC_BASE-2

ADL_FLH_RET_ERR_ID_OUT_OF_RANGE ADL_RET_ERR_SPECIFIC_BASE-3

5.4. Specific GPRS Service Error Codes

Error Code Error Value

ADL_GPRS_CID_NOT_DEFINED -3

ADL_NO_GPRS_SERVICE -4

ADL_CID_NOT_EXIST 5

5.5. Specific A&D Storage Service Error Codes

Error Code Error Value

ADL_AD_RET_ERR_NOT_AVAILABLE ADL_RET_ERR_SPECIFIC_BASE

ADL_AD_RET_ERR_OVERFLOW ADL_RET_ERR_SPECIFIC_BASE - 1

ADL_AD_RET_ERROR ADL_RET_ERR_SPECIFIC_BASE - 2

ADL_AD_RET_ERR_NEED_RECOMPACT ADL_RET_ERR_SPECIFIC_BASE - 3

ADL_AD_RET_ERR_REACHED_END ADL_RET_ERR_SPECIFIC_BASE - 4

ADL_AD_RET_ERR_UPDATE_FAILURE ADL_RET_ERR_SPECIFIC_BASE - 5

ADL_AD_RET_ERR_RECOVERY_DONE ADL_RET_ERR_SPECIFIC_BASE - 6

ADL_AD_RET_ERR_OAT_DEACTIVATED ADL_RET_ERR_SPECIFIC_BASE - 7

ADL_AD_SIZE_UNDEF 0XFFFFFFFF

ADL_AD_MAX_CELL_RETRIEVE 600

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 444

6. Resources
Here are listed the available resources of the Open AT® OS.

Resource name Value

Maximum tasks count 64

Maximum running timers 40

Maximum running timers count per task 32

Semaphore resources 100

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 445

ADL User Guide for Open AT® OS 6.35

Index
_pl3infoCallBackProto, 350

adl_ atCmdSubscriptionPort_e, 60

ADL_ AUDIO_MAX_DTMF_PER_FRAME,
300

adl_ audioResources_e, 301

adl_ errInternalID_e, 158

adl_ queueIsEmpty, 294

adl_ queuePopItem, 295

adl_ queuePushItem, 294

adl_adcAnalogRead, 290

adl_adcRead, 290

adl_adDelete, 216

adl_adEventHdlr_f Call-back, 213

adl_adEventSubscribe, 213

adl_adEventUnsubscribe, 214

adl_adFinalise, 216

adl_adFindInit, 220

adl_adFindNext, 220

adl_adFormat, 219

adl_adGetCellList, 219

adl_adGetInstallResult, 221

adl_adGetState, 218

adl_adInfo, 215

adl_adInstall, 217

adl_adRecompact, 217

adl_adSubscribe, 212

adl_adUnsubscribe, 212

adl_adWrite, 214

adl_atCmdCreate, 67

adl_atCmdHandler_t, 60

adl_atCmdPreParser_t, 59

adl_atCmdSend, 68

adl_atCmdSendExt, 69

adl_atCmdSendText, 70

adl_atCmdSetQuietMode, 64

adl_atCmdSubscribe, 61

adl_atCmdSubscribeExt, 62

adl_atCmdUnSubscribe, 63

adl_atResponse_t, 66, 67

adl_atRspHandler_t, 66

adl_atSendResponse, 52

adl_atSendResponseSpe, 52

adl_atSendStdResponse, 53

adl_atSendStdResponseExt, 54

adl_atSendStdResponseExtSpe, 54

adl_atSendStdResponseExtStr, 55

adl_atSendStdResponseSpe, 53

adl_atSendUnsoResponse, 55

adl_atUnSoSubscribe, 49

adl_atUnSoUnSubscribe, 50

ADL_AUDIO_NOTE_DEF, 300

adl_audioAmrCodecRate_e, 303

adl_audioDecodedDtmf_u, 297

adl_audioDTMFPlay, 313

adl_audioDTMFPlayExt, 318

adl_audioEvents_e, 305

adl_audioFormats_e, 302

adl_audioGetOption, 331

adl_audioInstance_e, 303

adl_audioMelodyPlay, 315

adl_audioMelodyPlayExt, 318

adl_audioOptionTypes_e, 305

adl_audioPostProcessedDecoder_t, 298

adl_audioResourceOption_e, 302

adl_audioSetOption, 330

adl_audioStop, 329

adl_audioStream_t, 298

adl_audioStreamDataBuffer_u, 299

adl_audioStreamListen, 325

adl_audioStreamPlay, 321

adl_audioSubscribe, 308

adl_audioTonePlay, 311

adl_audioTonePlayExt, 317

adl_audioUnsubscribe, 309

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 446

ADL User Guide for Open AT® OS 6.35

adl_busAccess_t, 149

adl_busAsyncoInfo_t, 143

adl_busDirectRead, 155

adl_busDirectWrite, 156

adl_busEvt_t, 144

adl_busI2C_AddrLength_e, 137

adl_busI2C_Clk_Speed_e, 137

adl_busI2C_MS_Mode_e, 137

adl_busI2CCap_e, 127

adl_busI2CSettings_t, 136

adl_busID_e, 130

adl_busIOCtl, 151

adl_busIoCtlCmd_e, 145

adl_busMaskSPI_e, 145

adl_busParallel_Bus_Mode_e, 141

adl_busParallel_CS_Type_e, 143

adl_busParallelCs_t, 138

adl_busParallelPageCfg_t, 138

adl_busParallelSettings_t, 139

adl_busParallelSize_e, 141

adl_busParallelSynchronousCfg_t, 140

adl_busParallelTimingCfg_t, 140

adl_busRead, 151

adl_busReadExt, 152

adl_busSettings_u, 129

adl_busSPI_Busy_e, 135

adl_busSPI_ChipSelect_e, 133

adl_busSPI_ChipSelectPolarity_e, 133

adl_busSPI_Clk_Mode_e, 132

adl_busSPI_DataLinesConf_e, 135

adl_busSPI_Load_e, 134

adl_busSPI_LSBfirst_e, 133

adl_busSPI_MS_Mode_e, 135

adl_busSPI_WriteHandling_e, 134

adl_busSpiCap_e, 127

adl_busSpiCommonCap_e, 126

adl_busSpiMaskShift_t, 144

adl_busSPISettings_t, 131

adl_busSubscribe, 149

adl_busType_e, 130

adl_busUnsubscribe, 150

adl_busWrite, 153

adl_busWriteExt, 154

adl_callAnswer, 190

adl_callAnswerExt, 190

adl_callHangup, 189

adl_callHangupExt, 189

adl_callSetup, 188

adl_callSetupExt, 189

adl_callSubscribe, 186

adl_callUnsubscribe, 190

adl_ctxDiagnostic_e, 273

adl_ctxGetDiagnostic, 276

adl_ctxGetID, 275

adl_ctxGetState, 276

adl_ctxGetTaskID, 275

adl_ctxGetTasksCount, 275

adl_ctxID_e, 273

adl_ctxResume, 278

adl_ctxResumeExt, 278

adl_ctxSleep, 279

adl_ctxState_e, 274

adl_ctxSuspend, 276

adl_ctxSuspendExt, 277

ADL_DAC_CHANNEL_1, 285

adl_dacAnalogRead, 287

adl_dacAnalogWrite, 286

adl_dacParam_t, 284

adl_dacRead, 287

adl_dacSubscribe, 285

adl_dacType_e, 285

adl_dacUnsubscribe, 286

adl_dacWrite, 286

adl_errAnalysisState_e, 159

adl_errEraseAllBacktraces, 161

adl_errGetAnalysisState, 162

adl_errHalt, 161

adl_errRetrieveNextBacktrace, 162

adl_errStartBacktraceAnalysis, 162

adl_errSubscribe, 160

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 447

ADL User Guide for Open AT® OS 6.35

adl_errUnsubscribe, 160

ADL_EVENT_NO_TIMEOUT, 358

adl_eventClear, 361

adl_eventCreate, 359

adl_eventSet, 361

adl_eventWait, 360, 381

adl_eventWaitMode_e, 359

adl_extintCapabilities_t, 263

adl_extintConfig, 267

adl_extintConfig_t, 260

adl_extintExtConfig_e, 262

adl_extintGetCapabilities, 264

adl_extintGetConfig, 267, 268

adl_extintGetFIQStatus, 270

adl_extintID_e, 260

adl_extintInfo_t, 262

adl_extintRead, 269

adl_extintSetFIQStatus, 269

adl_extintSubscribe, 265

adl_extintUnsubscribe, 269

adl_factoryReadCell, 221

adl_fcmGetStatus, 108

adl_fcmIsAvailable, 101

adl_fcmReleaseCredits, 105

adl_fcmSendData, 106

adl_fcmSendDataExt, 107

adl_fcmSubscribe, 101

adl_fcmSwitchV24State, 105

adl_fcmUnsubscribe, 104

adl_flhErase, 96

adl_flhExist, 95

adl_flhGetFreeMem, 98

adl_flhGetIDCount, 98

adl_flhGetUsedSize, 99

adl_flhRead, 97

adl_flhSubscribe, 95

adl_flhWrite, 96

ADL_GET_PARAM, 60

adl_gprsAct, 194

adl_gprsActExt, 195

adl_gprsDeact, 195

adl_gprsDeactExt, 195

adl_gprsGetCidInformations, 196

adl_gprsIsAnIPAddress, 197

adl_gprsSetup, 193

adl_gprsSetupExt, 193

adl_gprsSubscribe, 191

adl_gprsUnsubscribe, 197

adl_idsMonitorCfg_t, 363

adl_idsMonitorDataType_e, 364

adl_idsMonitorDeleteUnused, 370

adl_idsMonitorFlagReset_e, 365

adl_idsMonitorSubscribe, 368

adl_idsMonitorTrace, 369

adl_idsMonitorTrig_e, 365

adl_idsMonitorUnsubscribe, 369

adl_idsProvCallBackGetLength, 368

adl_idsProvCallBackRead, 366

adl_idsProvCallBackWrite, 367

adl_idsProvCfg_t, 366

adl_idsProvSubscribe, 370

adl_idsProvUnsubscribe, 371

adl_InitGetType, 34

adl_InitInterrupts_t, 37

adl_InitTasks_t, 31

adl_InitType_e, 33

adl_InterrupPriority_e, 39

adl_InterruptCategoryId_e, 38

adl_InterruptId_e, 38

adl_ioCap_e, 114

adl_ioCap_t, 110

adl_ioDefs_t, 110

adl_ioDir_e, 111

adl_ioError_e, 112

adl_ioEvent_e, 114

adl_ioEventSubscribe, 115

adl_ioEventUnsubscribe, 117

adl_ioGetCapabilitiesList, 115

adl_ioHdlr_f Call-back, 116

adl_ioLabel_e, 110

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 448

ADL User Guide for Open AT® OS 6.35

adl_ioLevel_e, 111

adl_ioRead, 121

adl_ioReadSingle, 122

adl_ioSetDirection, 120

adl_ioStatus_e, 114

adl_ioSubscribe, 119

adl_ioUnsubscribe, 120

adl_ioWrite, 122

adl_ioWriteSingle, 123

adl_irqCapabilities_t, 238

adl_irqConfig_t, 238

adl_irqEventData_t, 237

adl_irqGetCapabilities, 243

adl_irqGetConfig, 243

adl_irqHandler_f, 239

adl_irqID_e, 235

adl_irqNotificationLevel_e, 236

adl_irqOptions_e, 239

adl_irqPriorityLevel_e, 236

adl_irqSetConfig, 242

adl_irqSubscribe, 240

adl_irqSubscribeExt, 241

adl_irqUnsubscribe, 242

adl_L3infoChannelList_e, 342

adl_L3infoSubscribe, 343

adl_L3infoUnsubscribe, 344

ADL_MEM_UNINIT, 83

adl_memGet, 84

adl_memGetInfo, 83

adl_memInfo_t, 81

adl_memRelease, 82, 85

adl_msgFilter_t, 182

adl_msgHandler_f call-back, 183

adl_msgIdComparator_e, 181

adl_msgSend, 184

adl_msgSubscribe, 183

adl_msgUnsubscribe, 184

ADL_NI_LAUNCH, 35, 36, 67

adl_odOpen, 376

adl_odOpen_f, 376

adl_odRegister, 377

adl_odUnregister, 378

adl_osaATRparam_t, 169

adl_osaHandler_f call-back, 171

adl_osaSendResponse, 173

adl_osaSubscribe, 170

adl_osaSubscribeExt, 170

adl_osaUnsubscribe, 174

adl_osaVoltage_e, 169

adl_portGetSignalState, 226

adl_portIsAvailable, 225

adl_portStartSignalPolling, 226

adl_portStopSignalPolling, 227

adl_portSubscribe, 224

adl_portUnsubscribe, 225

adl_queueOptions_e, 293

adl_queueSubscribe, 293

adl_queueUnsubscribe, 294

adl_regGetHWData, 87

adl_regGetHWDataChunk, 87

adl_regGetHWInteger, 86

adl_regGetWCPUTypeExt, 86

adl_rtcConvert_e, 231

adl_rtcConvertTime, 232

adl_rtcDiffTime, 233

adl_rtcGetSecondFracPartStep, 231

adl_rtcGetTime, 232

adl_rtcSetTime, 232

adl_rtcTime_t, 229

adl_rtcTimeStamp_t, 230

adl_safeRunCommand, 207

adl_safeSubscribe, 205

adl_safeUnsubscribe, 206

ADL_SDS_RET_ERR_ENTRY_NOT_EXIST,
334

ADL_SDS_RET_ERR_MEM_FULL, 334

adl_sdsDelete, 336

adl_sdsQuery, 335

adl_sdsRead, 335

adl_sdsStats, 336

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 449

ADL User Guide for Open AT® OS 6.35

adl_sdsStats_t, 333

adl_sdsUpdateKeys, 337

adl_sdsWrite, 334

adl_semConsume, 201

adl_semConsumeDelay, 201

adl_semGetResourcesCount, 200

adl_semIsConsumed, 203

adl_semProduce, 202

adl_semSubscribe, 200

adl_semUnsubscribe, 202

adl_simEnterPIN, 167

adl_simEnterPUK, 167

adl_simGetState, 167

adl_simRemAttempt, 168

adl_simSubscribe, 165

adl_simUnsubscribe, 166

adl_smsSend, 179

adl_smsSubscribe, 176

adl_smsSubscribeExt, 177

adl_smsUnsubscribe, 180

adl_strGetID, 209

adl_strGetIDExt, 209

adl_strGetResponse, 210

adl_strGetResponseExt, 210

adl_strID_e, 208

adl_strIsTerminalResponse, 209

adl_tcuEventCaptureSettings_t, 246

adl_tcuEventDetectionInfo_t, 247

adl_tcuEventDetectionSettings_t, 247

adl_tcuEventType_e, 250

adl_tcuService_e, 249

adl_tcuStart, 258

adl_tcuStop, 258

adl_tcuSubscribe, 256

adl_tcuTimerBoundaries_t, 248

adl_tcuTimerDuration_t, 248

adl_tcuTimerSettings_t, 249

adl_tcuUnsubscribe, 257

ADL_TMR_100MS_MAX_VALUE, 74

ADL_TMR_100MS_TO_TICK, 74

ADL_TMR_MN_TO_TICK, 74

ADL_TMR_MS_TO_TICK, 74

ADL_TMR_S_TO_TICK, 74

adl_tmr_t, 73

adl_tmrCyclicMode_e, 75

adl_tmrHandler_t, 76

adl_tmrSubscribe, 76

adl_tmrSubscribeExt, 77

adl_tmrType_e, 75

adl_tmrUnSubscribe, 78

adl_trcDump, 92

adl_trcPrint, 91

adl_vsMode_e, 281

adl_vsSetClockMode, 282

adl_vsSubscribe, 282

adl_vsUnsubscribe, 283

adl_wdActiveAppWd, 340

adl_wdAwake, 339

adl_wdDeActiveAppWd, 340

adl_wdPut2Sleep, 338

adl_wdRearmAppWd, 339

Close, 409

DUMP, 91

E_ALREADY_BOUND_t, 432

eOpUsbIoCmd_t, 431

eUartErr_t, 399

eUartEvId_t, 394

eUartFl_t, 397

eUartIoCmd_t, 396

eUartRate_t, 395

eUartSs_t, 398

FULL DUMP, 91

FULL TRACE, 91

io_control, 404

IOC_OUSB_CAP, 437

IOC_OUSB_EH, 437

IOC_OUSB_FLUSH, 438

IOC_OUSB_INT, 438

IOC_OUSB_OBJECT_ID, 439

IOC_UART_CAP, 406

WM_DEV_OAT_UGD_080 Rev 014 February 16, 2011 450

ADL User Guide for Open AT® OS 6.35

IOC_UART_EH, 405

IOC_UART_FC, 408

IOC_UART_FL, 407

IOC_UART_LC, 406

IOC_UART_SS, 407

l3info_ChannelList_t, 345

L3INFO_ERR_CHANNEL_ALREADY_CLOSE
D, 348

L3INFO_ERR_CHANNEL_ALREADY_OPEN
ED, 348

L3INFO_ERR_CHANNEL_UNKNOWN, 348

L3INFO_ERR_INVALID_HANDLE, 348

l3info_infoSubscribe, 349

l3info_infoUnSubscribe, 350

l3info_IsChannelActivated, 349

L3INFO_OK, 348

l3info_trace, 348

On Error notification handler, 413

On Rx Complete notification handler, 410

On Rx Data Available notification handler, 411

On Signal State Change notification handler,
412

On TX Complete notification handler, 409

On TX Empty notification handler, 410

open, 400

read, 401

sOpUsbCapabilities_t, 417

sOpUsbConfInfo_t, 420

sOpUsbDevInfo_t, 417

sOpUsbEpInfo_t, 423

sOpUsbEvent_t, 418

sOpUsbIaInfo_t, 425

sOpUsbIocFlush_t, 426

sOpUsbIocInterrupt_t, 425

sOpUsbItfInfo_t, 421

sOpUsbObjectId_t, 426

sOpUsbOnComplete_t, 429

sOpUsbOnStatus_t, 428

sOpUsbSettings_t, 415

sOpUsbTransAttr_t, 427

sUartCap_t, 385

sUartCbOssc_t, 394

sUartEvent_t, 389

sUartFd_t, 393

sUartFlowCtrl_t, 391

sUartLc_t, 387

sUartSettings_t, 383

sUartSsIoc_t, 392

TRACE, 91

uOpUsbOnRequest_t, 430

WM_L3_INFO_RSM_EVT, 347

WM_L3_INFO_SCAN_END, 347

WM_L3_INFO_SCAN_PWR, 346

WM_L3_INFO_SCAN_SYNC_CELL, 346

WM_L3_INFO_SYNC_CELL_INFO, 345

wm_l3info_Cell_SyncCellInfo_t, 351

wm_l3info_Cell_SyncCellParamater_t, 351

wm_l3info_CellInfo_t, 356

wm_l3info_RSM_freq_t, 352

wm_l3info_RSM_t, 353

wm_l3info_Scan_End_t, 355

wm_l3info_Scan_PowerInfo_t, 354

wm_l3info_Scan_PowerStat_t, 354

wm_l3info_Scan_SynchroCellInfo_t, 355

wm_lst_t, 41

wm_lstAddItem, 43

wm_lstClear, 42

wm_lstCreate, 41

wm_lstDeleteItem, 44

wm_lstDestroy, 42

wm_lstFindAllItem, 45

wm_lstFindItem, 44

wm_lstFindNextItem, 45

wm_lstGetCount, 42

wm_lstGetItem, 44

wm_lstInsertItem, 43

wm_lstResetItem, 46

wm_lstTable_t, 41

write, 403

	ADL User Guide for Open AT® OS 6.35
	Important Notice
	Safety and Hazards
	Limitations of Liability
	Patents
	Copyright
	Trademarks
	Contact Information
	Document History
	Overview
	Contents
	List of Figures
	Introduction
	Important Remark
	References
	Glossary
	Abbreviations

	Description
	Software Architecture
	ADL Limitations
	Open AT® Memory Resources
	Defined Compilation Flags
	Inner AT Commands Configuration
	Open AT® Specific AT Commands
	Notes on Sierra Wireless Firmware
	RTE limitations
	Recovery Mechanism

	API
	Application Entry Points Interface
	Basic Features
	AT Commands Service
	Timers
	Memory Service
	ADL Registry Service
	Debug Traces
	Flash
	FCM Service
	GPIO Service
	Bus Service
	Error Management
	SIM Service
	Open SIM Access Service
	SMS Service
	Message Service
	Call Service
	GPRS Service
	Semaphore ADL Service
	Application Safe Mode Service
	AT Strings Service
	Application & Data Storage Service
	AT/FCM IO Ports Service
	RTC Service
	IRQ Service
	TCU Service
	Extint ADL Service
	Execution Context Service
	ADL VariSpeed Service
	ADL DAC Service
	ADL ADC Service
	ADL Queue Service
	ADL Audio Service
	ADL Secure Data Storage Service
	ADL WatchDog Service
	ADL Layer 3 Service
	ADL Event Service
	ADL AirPrime Management Services
	ADL Open Device Service
	ADL OS Clock Interface Specification

	Device Services
	Open UART Interface
	Open USB Interface

	Error Codes
	General Error Codes
	Specific FCM Service Error Codes
	Specific Flash Service Error Codes
	Specific GPRS Service Error Codes
	Specific A&D Storage Service Error Codes

	Resources
	 Index

