Microphone Mixer Evaluation Module

DATA MANUAL: SLOU009

Date: July 1997

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Contents

1. Layout Definition	6
2. Operation	8
3. Input/Output Connections	9
4. Layout	11
5. Bill of Materials	13

Figures

Figure 1.	Mic Mixer EVM Component Placement	6
Figure 2.	Mic Mixer EVM Schematic	9

If You need Assistance...

If You Want to	Do This
Request more information about Call th	e PIC† hotline:
Texas instruments Mixed Signal Products	(9 72) 644-5580
	or send a fax to the PIC: (972) 480-7800
	or write to:
Incorporated	Texas instruments
Contor MC	Product Information
	3123 P.O. Box 660246 Dallas, Texas 75266
Order Texas Instruments documentation	Call the PIC† hotline: (972) 644-5580
Ask questions about product operation or report suspected problems	Call the PIC† hotline: (972) 644-5580
Report mistakes in this	Send a fax to MSP
document or any other TI	Documentation
Mixed Signal Products documentation	(214) 480-3160
	or send your comments to: Texas Instruments
Incorporated	MSP Marketing
Documentation	Mer Marketing
	Correction, MS 8710
	Dallas, Texas 75266-0199

† Texas Instruments Product Information Center

1. Layout Definition

The Mic/Mixer EVM is designed to provide basic volume control and a microphone interface to the P-n-P Audio Power Amplifier Evaluation Platform. With the Mic/Mixer plugged in to the P-n-P, the user can sing along with music from a favorite CD (karaoke) or simply use the volume control to adjust the listening level of the line inputs.

Figure 1. Mic Mixer EVM Component Placement

TLC2274	U1,2 - TLC2274CD Quad op Amp, RRO, 2MHz
	C1,5,9 - Capacitor, 1.0 μ F Ceramic C2,4,6,11 - Capacitor, 47 pF Ceramic C3 - Capacitor, 10 μ F Electrolytic C7,8 - Capacitor, 2.2 μ F Ceramic C10,12 - Capacitor, 0.1 μ F Ceramic
	R1,2,11 - Pot, 50 k, Slide, Audio Taper R3,5,8,12,14 - Resistor, 10 k Ω Carbon R16,17,18,19 - Resistor, 10 k Ω Carbon R20,21,25 - Resistor, 10 k Ω Carbon R4,6,13,15 - Resistor, 20 k Ω Carbon
	R22,23,24 - Resistor, 20 kΩ Carbon R9 - Resistor, 47 kΩ Carbon R7 - Resistor, 2.2 kΩ Carbon R10 - Pot, 200 k, $3/4$ turn
	JP1,2 -0.1" header, 2-pin, 3-pin J2 - 1/8" Stereo Jack

2. Operation

The basis of the Mic/mixer design is the TLC2274 quad CMOS Rail to Rail op amp from TI. The bandwidth, distortion and noise performance of the TLC2274 make it an ideal workhorse in PC audio applications.

Power: 5.0 to 16 Vdc, 10 mA

Audio Inputs: L/R IN, AC Coupled, 1 Vrms Nominal, G = 0 to 2, individual L/R slide control with audio taper,

Audio Outputs: L/R Out, DC Coupled (Vcc/2 offset), THD < 0.004% Nominal 1 kHz.

NOTE:MIC INTERFACE:MIC IN, 1/8" STANDARD INPUT JACK COMPATIBLE WITH MOST ELECTRET OR DYNAMIC MICROPHONES, G = 0 TO 7.5 WITH R19 SET TO MIN, G = 0 TO 83 WITH R19 SET TO MAX. INDIVIDUAL MIC LEVEL SLIDE CONTROL MIXES MIC INPUT TO BOTH LINE OUTPUTS. MIC BIAS OUTPUT SET TO VCC*0.66 SELECTABLE TO RING OR TIP.

3. Input/Output Connections

Figure 2. Mic Mixer Schematic

Each audio input channel is AC coupled through a 1 uF capacitor into a volume control potentiometer. The slide pot is logarithmic (audio Taper) which compensates for the nonlinear response of the ear resulting in a linear volume control. A single stage amp with a gain of -2 is used to buffer the volume control form the summing stage amplifier. A midrail (virtual ground) voltage is generated with a voltage divider from the supply voltage and buffered with a single amplifier. This voltage is used to bias the AC signal to the center of the operating voltage range to prevent positive or negative clipping of the audio signals. The voltage is set to Vcc/2.

The microphone interface is compatible with common SoundBlaster type electret mics and dynamic mics. Electret mics require a bias voltage to operate. The bias circuit can be configured to bias the ring or tip of the mic connector. Some experimentation may be required to determine the proper setting for each different mic. The bias voltage is generated with a resistor divider from the main supply voltage and is 0.66*Vcc. The input stage is a single amp with a gain of 4.7 driving a volume control pot. An isolation resistor is required due to the capacitive nature of the slide pots resulting in a 0.8*4.7 or 3.8 max gain. the main gain stage is after the level control pot and can be adjusted for gains of 2 to 22. This makes the maximum mic gain 4.7*0.8*22 = 83. 47 pF bandwidth limiting caps are placed across the feedback resistors on the gain stages of the mic interface. This is a technique designed to prevent oscillation in high gain and capacitive loading circuits of which this has both.

The output stage for each channel is a unity gain summing amp that adds the signal from the line inputs to the signal from the mic according to the ratio set by the level control pots. Bandwidth limiting caps are again used to help stabilize the outputs that could be driving unknown but possibly very capacitive loads.

4. Layout

NOTE: Layouts are not to scale.

5. Bill of Materials

File: mic	mixer.xls			
Date: 03	/05/97			
Ref Des	Part No.	Description	Source	Page
C1	C3216Y5V1C105Z	Capacitor, Ceramic, 1.0 uE, 16V, Y5V, 1206	TDK	. ugo
C2	PCC470CCT-ND	Capacitor, Ceramic, 47 pF 50V NPO 1206	Digikey	245
C3	C3225Y5V1C1067	Capacitor Ceramic 10 µF 16V Y5V 1206		2.10
C4	PCC470CCT-ND	Capacitor, Ceramic, 47 pF, 50V, NPO, 1206	Digikey	245
C5	C3216Y5V1C1057	Capacitor, Ceramic, 1.0 µF, 16V, Y5V, 1206		
C6	PCC470CCT-ND	Capacitor, Ceramic, 47 pF, 50V, NPO, 1206	Digikev	245
C7	C3216Y5V1C2257	Capacitor, Ceramic, 2.2 uF, 16V, Y5V, 1206		
C8	C3216Y5V1C225Z	Capacitor, Ceramic, 2.2 uF, 16V, Y5V, 1206	TDK	
C9	C3216Y5V1C105Z	Capacitor, Ceramic, 1.0 uF, 16V, Y5V, 1206	TDK	
C10	PCC104BCT-ND	Capacitor, Ceramic, 0.1 uF, 50V, X7R, 1206	Digikev	245
C11	PCC470CCT-ND	Capacitor, Ceramic, 47 pF, 50V, NPO, 1206	Digikev	245
C12	PCC104BCT-ND	Capacitor, Ceramic, 0.1 uF, 50V, X7R, 1206	Digikey	245
J1		Header, 2-pin, 0.025"-sq, 100-mil centers		
J2	161-3504	Phone Jack, Stereo, 1/8"	Mouser	92
J3		Header, 2-pin, 0.025"-sq, 100-mil centers		
J4		Header, 2-pin, 0.025"-sq, 100-mil centers		
J5		Header, 2-pin, 0.025"-sq, 100-mil centers		
J6		Header, 2-pin, 0.025"-sq, 100-mil centers		
JP1		Header, 3-pin, 0.025"-sq, 100-mil centers		
JP2		Header, 2-pin, 0.025"-sq, 100-mil centers		
R1	448XC3503BAN	Potientiometer, 50K Ohm, Slide, Audio taper, 1.4"	CTS	
R2	448XC3503BAN	Potientiometer, 50K Ohm, Slide, Audio taper, 1.4"	CTS	
R3		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R4		Resistor, CF, 20K Ohm, 1/8 W, 5 %, 1206		
R5		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R6		Resistor, CF, 20K Ohm, 1/8 W, 5 %, 1206		
R7		Resistor, CF, 2.2K Ohm, 1/8 W, 5 %, 1206		
R8		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R9		Resistor, CF, 47K Ohm, 1/8 W, 5 %, 1206		
R10	3362P-200K	Potientiometer, 200K Ohm, 1-turn, 1/4"-sq		
R11	448XC3503BAN	Potientiometer, 50K Ohm, Slide, Audio taper, 1.4"	CTS	
R12		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R13		Resistor, CF, 20K Ohm, 1/8 W, 5 %, 1206		
R14		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R15		Resistor, CF, 20K Ohm, 1/8 W, 5 %, 1206		
R16		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R17		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R18		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R19		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R20		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R21		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
R22		Resistor, CF, 20K Ohm, 1/8 W, 5 %, 1206		
R23		Resistor, CF, 20K Ohm, 1/8 W, 5 %, 1206		
R24		Resistor, CF, 20K Ohm, 1/8 W, 5 %, 1206		
R25		Resistor, CF, 10K Ohm, 1/8 W, 5 %, 1206		
U1	ILC2274CD	IC,Quad Op Amp, RRO, 2 MHz, SO-14		
02	ILC22/4CD	IIC,Quad Op Amp, RRO, 2 MHz, SO-14		
PCB	SLOP107	Printed Circuit Board, 2-layer	TI	