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Preface

This book is the successor to the book Fundamental Electrical and Electronic Principles, 
third edition, by the author Christopher Robertson. I expressly thank previous author 
Christopher Robertson for allowing me to completely rework and update his version. This 
has resulted in the fourth edition of this book, which contains over 240 figures, over 120 
worked examples and over 190 additional assignment questions with 13 of them practical 
in approach.

The main objective of this book is to introduce the reader to the fascinating world of elec-
tricity on the one hand and electronics on the other, while providing a meaningful descrip-
tion and analysis of various electrical and electronic systems. Furthermore, it also provides 
insight and basic knowledge related to recent developments in the field of electricity and 
electronics. To gain the necessary understanding, this book first covers fundamentals such 
as resistors and D.C. circuits. Afterwards, capacitors and inductors are covered, and electri-
cal, magnetic and electromagnetic fields are discussed. The second part of this book focuses 
on semiconductor technology with the basic components of diodes and transistors. Also 
alternating quantities, D.C. machines and D.C. transients are discussed.

Prof. Jo Verhaevert
Ghent, Belgium
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Chapter 1

Fundamentals

1.1  UNITS

Wherever measurements are performed there is a need for a coherent and practical system of 
units. In science and engineering the International System of units (SI units) forms the basis 
of all units used. There are seven ‘base’ units, shown in Table 1.1.

All other units are derived from these ‘base’ units. A few examples of derived units are 
shown in Table 1.2, and it is worth noting that different symbols are used to represent the 
quantity and its associated unit in each case.

For a more comprehensive list of SI units see Appendix A at the back of the book.

1.2  STANDARD FORM NOTATION

Standard form is a method of writing large and small numbers in a form that is more con-
venient than writing a large number of trailing or leading zeros. For example the speed of 
light is approximately 300 000 000 m/s. When written in standard form this figure would 
appear as

3.0 × 108 m/s, where 108 represents 100 000 000

Similarly, if the wavelength of ‘red’ light is approximately 0.000 000 767 m, it is more 
convenient to write it in standard form as

7.67 × 10−7 m, where 10−7 = 1/10 000 000

It should be noted that whenever a ‘multiplying’ factor is required, the base 10 is raised 
to a positive power. When a ‘dividing’ factor is required, a negative power is used. This is 
illustrated below:

 

10 10 1 10 0 1 10

100 10 1 100 0 01 10

1000 10 1 1000 0

1 1

2 2

3

= = =
= = =
= =

-

-

/ .

/ .

/ .0001 10 3= -

etc etc. .

 

One restriction that is applied when using standard form is that only the first non-zero digit 
must appear before the decimal point. Thus, 46 500 is written as

 4 65 10 46 5 104 3. .´ ´and asnot  
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Similarly, 0.002 69 is written as

 2 69 10 26 9 10 269 103 4 5. .´ ´ ´- - -and as ornot  

1.3  ‘SCIENTIFIC’ NOTATION

This notation has the advantage of using the base 10 raised to a power but it is not restricted 
to the placement of the decimal point. It has the added advantage that the base 10 raised to 
certain powers has unique symbols assigned. For example if a resistor has a resistance value 
R = 500 000 Ω. In standard form this would be written as

 R = ´5 0 105. .W  

Using scientific notation it would appear as

 R = 500 k  (500 kiloOhm)W  

where the ‘k’ in front of the W represents 103.
Not only is the latter notation much neater but it gives a better ‘feel’ to the meaning and 

relevance of the quantity.
See Table 1.3 for the symbols (prefixes) used to represent the various powers of 10. It 

should be noted that these prefixes are arranged in multiples of 103. It is also a general rule 
that the positive powers of 10 are represented by capital letters, with the negative powers 
being represented by lower-case (small) letters. The exception to this rule is the ‘k’ used for 
kilo.

Table 1.1  The SI base units

Quantity Unit Unit symbol

Mass kilogram kg
Length metre m
Time second s
Electric current ampere A
Temperature kelvin K
Luminous intensity candela cd
Amount of substance mole mol

Table 1.2  Some SI derived units

Quantity Unit

Name Symbol Name Symbol

Force F Newton N
Power P Watt W
Energy W Joule J
Resistance R Ohm Ω
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WORKED EXAMPLE 1.1

Q Write the following quantities in a concise form using (a) standard form and (b) scientific 
notation: (i) 0.000 018 A, (ii) 15 000 V, (iii) 250 000 000 W.

(a) (i) 0 000 1 8 10 5. .018A A= ´ -

 (ii) 15000 1 5 104V V= ´.

(iii) 250000000 2 5 108W W= ´.
(b) (i) 0 000 18. 018 A A= m

(ii) 15000 15V kV=

(iii) 250000000 250W MW=

The above example illustrates the neatness and convenience of the scientific or engineering 
notation.

WORKED EXAMPLE 1.2

Q Write the following quantities in scientific (engineering) notation: (a) 25 × 10−5 A, (b) 3 × 104 
W, (c) 850 000 J, (d) 0.0016 V.
(a) 25 10 250 105 6´ = ´- -A A

and since 10−6 is represented by μ (micro)

 then A A

Alternatively, A A

so

25 10 250

25 10 0 25 10 10

5

5 3 2

´ =
´ = ´ ´

-

- - -

m
.

225 10 0 255´ =- A mA.

 

(b) 3 10 0 3 10 300 10

3 10 0 3 300

4 3 6

4

´ = ´ ´
´ =

- - -

-

W W or W

so W mW or W

.

. m

(c) 850000 850 10 10

850000 850 0 85

3 6J J or 0.85 J

so J kJ or MJ

= ´ ´
= .

(d) 0 0016 1 6 10

0 0016 1 6

3. .

. .

V V

so V mV

= ´
=

-

Table 1.3  Unit prefixes used in ‘scientific’ notation

Multiplying factor Prefix name Symbol

1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
10−3 milli m
10−6 micro μ
10−9 nano n
10−12 pico p
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1.4  ELECTRIC VERSUS ELECTRONIC

Although the electronics domain was not invented until 1883 through the Edison effect, 
electrical appliances had existed for 100 years before then. The first electric batteries were 
invented by Alessandro Volta around 1800. His contribution was so important that the 
unit volt was named after him. In addition, the electric telegraph was invented and com-
mercialised in the 1830s by Samuel Morse. This led to the first transatlantic telegraph 
cable in 1866 that used real-time communication between Europe and the United States. 
Other examples of electrical appliances still in use today are lamps, vacuum cleaners and 
toasters.

Thomas Edison (1847–1931) was an American inventor and founder of the General Electric 
Company, who made his fortune buying inventions from others and patenting them by himself. 
If these proved successful, he perfected them and put them into production. Edison was the 
long-time record holder for the largest number of patents granted to a person (approximately 
1400). The light bulb (1879) and the phonograph (1877) are two of his best-known products.

Samuel Morse (1791–1872) was an American inventor and painter. Morse became famous for 
his portraits and his paintings of historical events. At a later age he became interested in quick 
communication over long distances. He designed the Morse code for communication in 1835, 
for use in a telegraph device combining electricity and magnetism.

So what is the difference between electrical versus electronic appliances? The answer 
is given by how those devices manipulate the electricity to do their job. Electrical appli-
ances absorb energy from the electrical current and simply transform it into another form 
of energy, such as light, heat or movement. In a toaster, the heating elements convert the 
electrical energy in heat to toast your sandwich. In a vacuum cleaner, the electrical energy is 
converted into a motor movement to suck up your toast crumbs from the floor.

Electronic devices, on the other hand, do more. They are designed to protect the electrical 
current to do interesting and useful things. In the first electronic device by Thomas Edison 
in 1883, the electric current through a lamp was manipulated in such a way that the device 
could actually monitor the voltage being delivered. Monitoring also allowed it to automati-
cally increase the voltage if it was too low and reduce it if it was too high. More advanced 
examples of this manipulation are audio signals, in which sound information has been 
added to the electrical current. In the case of video signals, image information is also added.

As with any difference, there are always doubts. Simple electrical appliances are some-
times extended with electronic components. Let’s just think back to the toaster where an 
electronic thermostat controls the temperature to make perfect toast. On the other hand, 
even the most complex electronic appliances sometimes contain simple electrical parts. The 
remote control of your television set is quite a complex electronic device, but it also contains 
electrical parts such as batteries.

A list of the possibilities of electronic devices is given below.

• Sound: Whether it’s noise or music, electronic devices can handle audio signals very 
well. Human speech or musical instruments are recorded by a microphone that con-
verts the sound into an audio signal. The sound changes somehow give rise to changes 
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in the audio signal. The succeeding amplifier receives the small audio signal (with lim-
ited amplitude) to a large audio signal (with a large amplitude). Finally, the loudspeak-
ers convert the electrical current back into audible sound.

• Light: The simplest electronic devices are LEDs or light-emitting diodes which are 
the electronic equivalent of light bulbs. More complex devices build complete images, 
based on video signals. Note that visible light is not always used. The remote control 
of a television set, for example, transmits infrared light.

• Communication: Communication allows all forms of information to be forwarded. 
This can be done with and without cables. For audio information, for example, this is 
possible with a speaker cable or a radio set (where the antenna is sometimes hidden or 
integrated in the set itself).

• Computers: Last but not least: computers. They have evolved in the last 50 years from 
simple calculators to devices that sometimes transcend human capabilities. Computers 
are the most advanced form of electronics today. They are based on digital electron-
ics, which manipulate the information in the binary language of zeros and ones very 
efficiently. It is certain that in a few years new features will be added.

Etymologically, the word ‘electricity’ is derived from the Ancient Greek word for amber: elec-
tron! Amber is a special substance. It is actually not a stone, but resin from trees that has 
hardened. Traditionally, amber has been known for its ability to become electrically charged 
(static) when rubbed against an animal’s fur, for example. Scientists were so impressed by these 
properties that they called these static possibilities electron force. So the original meaning of 
electricity is amber power!

1.5  BASIC ELECTRICAL CONCEPTS

1.5.1  Bohr Model

All matter is made up of atoms, and there are a number of ‘models’ used to explain physi-
cal effects that have been both predicted and subsequently observed. One of the oldest and 
simplest of these is the Bohr model. This describes the atom as consisting of a central nucleus 
containing minute particles called protons and neutrons. Surrounding the nucleus, there are 
a number of electrons in various orbits. This model is illustrated in Figure 1.1. The possible 

�

�
�
�

�
�

�

�
�

�

�

Figure 1.1  The Bohr model
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presence of neutrons in the nucleus has been ignored, since these particles play no part in 
the electrical concepts to be described. It should be noted that this atomic model is greatly 
over-simplified. It is this very simplicity that makes it ideal for the beginner to achieve an 
understanding of what electricity is and how electrical devices operate.

Niels Bohr (1885–1962) was a Danish theoretical physicist and theoretical chemist. In 1922 he 
was awarded the Nobel Prize in Physics, as being one of the founders of atomic physics. He for-
mulated a theoretical basis for a new atomic model, based on quantum mechanics. He described 
how the orbits of electrons around the atomic nucleus could only have certain values   (quanti-
fied) and have energies with fixed distinct energy levels.

The model shown in Figure 1.1 is not drawn to scale since a proton is approximately 2000 
times more massive than an electron. Due to this relatively large mass the proton does not 
play an active part in electrical current flow. It is the behaviour of the electrons that is more 
important. However, protons and electrons do share one thing in common; they both pos-
sess a property known as electric charge. The unit of charge is called the coulomb (C). Since 
charge is considered as the quantity of electricity it is given the symbol Q. An electron and 
proton have exactly the same amount of charge. The electron has a negative charge, whereas 
the proton has a positive charge. Any atom in its ‘normal’ state is electrically neutral (has no 
net charge). So, in this state the atom must possess as many orbiting electrons as there are 
protons in its nucleus. If one or more of the orbiting electrons can somehow be persuaded 
to leave the parent atom then this charge balance is upset. In this case the atom acquires a 
net positive charge, and is then known as a positive ion. On the other hand, if ‘extra’ elec-
trons can be made to orbit the nucleus then the atom acquires a net negative charge. It then 
becomes a negative ion.

Charles-Augustin de Coulomb (1736–1806) was a French physicist who studied electricity and 
magnetism, and after whom the unit of electric charge coulomb and Coulomb’s law are named. He 
discovered that the force that two charged particles have on each other is inversely proportional 
to the square of the distance between those two particles. He demonstrated that with a torsion 
balance, allowing very small electrical charges to be measured.

An analogy is a technique where the behaviour of one system is compared to the behaviour of 
another system. The system chosen for this comparison will be one that is more familiar and 
so more easily understood. However, it must be borne in mind that an analogy should not be 
extended too far. Since the two systems are usually very different physically there will come a 
point where comparisons are no longer valid.

You may now be wondering why the electrons remain in orbit around the nucleus any-
way. This can best be explained by considering an analogy. Thus, an electron orbiting the 
nucleus may be compared to a satellite orbiting the Earth. The satellite remains in orbit due 
to a balance of forces. The gravitational force of attraction towards the Earth is balanced 
by the centrifugal force on the satellite due to its high velocity. This high velocity means 
that the satellite has high kinetic energy. If the satellite is required to move into a higher 
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orbit, then its motor must be fired to speed it up. This will increase its energy. Indeed, if its 
velocity is increased sufficiently, it can be made to leave Earth’s orbit and travel out into 
space.

In the case of the electron, there is also a balance of forces involved. Since both elec-
trons and protons have mass, there will be a gravitational force of attraction between them. 
However, the masses involved are so minute that the gravitational force is negligible. So, 
what force of attraction does apply here? Remember that electrons and protons are oppo-
sitely charged particles, and oppositely charged bodies experience a force of attraction. 
Compare this to two simple magnets, whereby opposite polarities attract and like (the same) 
polarities repel each other. The same rule applies to charged bodies. Thus it is the balance 
between this force of electrostatic attraction and the kinetic energy of the electron that 
maintains the orbit. It may now occur to you to wonder why the nucleus remains intact, 
since the protons within it are all positively charged particles! It is beyond the scope of this 
book to give a comprehensive answer. Suffice to say that there is a force within the nucleus 
far stronger than the electrostatic repulsion between the protons that binds the nucleus 
together.

All materials may be classified into one of three major groups: conductors, insulators 
and semiconductors. In simple terms, the group into which a material falls depends on how 
many ‘free’ electrons it has. The term ‘free’ refers to those electrons that have acquired suf-
ficient energy to leave their orbits around their parent atoms. In general we can say that 
conductors have many free electrons which will be drifting in a random manner within 
the material. Insulators have very few free electrons (ideally none), and semiconductors fall 
somewhere between these two extremes.

1.5.2  Electric Current

This is the rate at which free electrons can be made to drift through a material in a par-
ticular direction. In other words, it is the rate at which charge is moved around a circuit. 
Since charge is measured in coulombs and time in seconds then logically the unit for electric 
current would be the coulomb/second or abbreviated to C/s. In fact, the amount of current 
flowing through a circuit may be calculated by dividing the amount of charge passing a 
given point by the time taken. The unit, however, is given a special name, the ampere (often 
abbreviated to A). This is fairly common practice with SI units, whereby the names chosen 
are those of famous scientists whose pioneering work is thus commemorated. The relation-
ship between current, charge and time can be expressed as a mathematical equation as 
follows:

 I
Q
t

Q It= =, or  (1.1)

André-Marie Ampère (1775–1836) was a French physicist and mathematician widely regarded as 
one of the discoverers of electromagnetism, thanks to his mathematical description of the rela-
tionship between magnetism and electricity. Using experiments, he discovered that two parallel 
currents attract each other if the currents flow in the same direction, but repel each other if 
they flow in opposite directions. He discovered that the force between the wires was propor-
tional to the two currents and inversely proportional to the square of the distance between the 
wires. This formula was later called Ampère’s law.
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WORKED EXAMPLE 1.3

Q A charge of 35 mC is transferred between two points in a circuit in a time of 20 ms. Calculate 
the value of current flowing.

 Q C t= ´ = ´- -35 10 20 103 3 s;  

 I
Q
t

I

= = ´
´

=

-

-
35 10
20 10

1 75

3

3

. A

 

WORKED EXAMPLE 1.4

Q If a current of 120 μA flows for a time of 15 s, determine the amount of charge transferred.

 I t

Q It

Q

= ´ =
= = ´ ´
=

-

-

120 10 15

120 10 15

1 8

6

6

A; s

mC.

 

WORKED EXAMPLE 1.5

Q 80 Coulombs of charge was transferred by a current of 0.5 A. Calculate the time for which 
the current flowed.

 Q I

t
Q
I

t

= =

= =

=

80 0 5

80
0 5

160

C; A

s

.

.

 

1.5.3  Electromotive Force (emf)

The random movement of electrons within a material does not constitute an electrical cur-
rent. This is because it does not result in a drift in one particular direction. In order to cause 
the ‘free’ electrons to drift in a given direction an electromotive force or, in short, emf must 
be applied. Thus the emf is the ‘driving’ force in an electrical circuit. The symbol for emf is 
E and the unit of measurement is the volt (V). Typical sources of emf are cells, batteries and 
generators.

Alessandro Volta (1745–1827) was an Italian physicist known for his discovery of the electric 
battery or the voltaic cell (voltaic pile). It was composed of a number of bowls, filled with a 
salt solution, which were connected with copper and zinc wires. He showed that a current ran 
through a closed circuit; he had built a device that could deliver an uninterrupted electrical cur-
rent. Later he made a simpler design consisting of plates of copper and zinc separated by a slice 
of cardboard soaked in a salt solution.
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The amount of current that will flow through a circuit is directly proportional to the size 
of the emf applied to it. The circuit diagram symbols for a cell and a battery are shown in 
Figures 1.2(a) and (b) respectively. Note that the positively charged plate (the long line) usu-
ally does not have a plus sign written alongside it. Neither does the negative plate normally 
have a minus sign written by it. These signs have been included here merely to indicate (for 
the first time) the symbol used for each plate.

1.5.4  Resistance (R)

Although the amount of electrical current that will flow through a circuit is directly pro-
portional to the applied emf, the other property of the circuit (or material) that determines 
the resulting current is the opposition offered to the flow. This opposition is known as the 
electrical resistance, which is measured in ohms (Ω). Thus conductors, which have many 
‘free’ electrons available for current carrying, have a low value of resistance. Conductive 
materials such as copper or aluminium allow the current to flow freely. In fact, all materials 
have a certain resistance; even the best conductors have a small, but sometimes measurable 
resistance. Some values can be found in Table 1.4, where the resistivity is expressed in Ωm. 
On the other hand, since insulators have very few ‘free’ charge carriers, they have a very 
high resistance. Insulating materials such as plastic or glass completely prevent the current 
from flowing. When a conductive material and an insulating material are mixed together, 
it results in a composition that conducts current, but certainly not optimally. We say that 
this component has a resistance. Pure semiconductors tend to behave more like insulators in 
this respect. However, in practice, semiconductors tend to be used in an impure form, where 
the added impurities improve the conductivity of the material. An electrical device that is 
designed to have a specified value of resistance is called a resistor. Resistors are actually the 
brakes of the electric current. Just like the brakes on a bike or in a car, resistors work on 
the current through the electrical equivalent of friction. The corresponding frictional energy 
is largely dissipated in heat. This heat dissipation is sometimes a disadvantage (as a loss of 
energy), but sometimes it is an advantage such as with the rear window heating of a car. 
The voltage applied then, to different resistance wires, results in slowing down the current 
and largely converting it into heat. The circuit diagram symbol for a resistor is shown in 
Figure 1.3.

� �

(a)

� � �

(b)

Figure 1.2  The circuit diagram symbols for a cell and a battery

Table 1.4  Resistivity values for different materials

Material Resistivity in Ωm

Silver 1.59 × 10−8

Copper 1.68 × 10−8

Aluminium 2.65 × 10−8

Graphite From 3 × 10−5 to 60 × 10−5

Glass 1 × 109

Plastics From 1 × 1010 to 1 × 1019
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Georg Ohm (1789–1854) was a German mathematician and physicist. He became known for 
Ohm’s law, named after him, in which the relationship between electrical voltage, electrical 
current and resistance is expressed. The unit of electrical resistance – the ohm – is also named 
after him. He ran current through wires of different lengths and discovered that the current 
decreased as the length increased: the longer a wire is, the harder it is for the electricity to work 
its way through the wire, so more voltage is needed to travel that way.

Note: You can assume that the resistance value of an ordinary copper wire is zero. However, copper has a very 
limited resistance (as can be seen in Table 1.4). For most electrical and electronic circuits, the copper wires are much 
limited in length. Insulators and open circuits are supposed to have infinite resistance, which is also not quite con-
sistent with reality. There will always be an albeit very small current through the air, because the resistance value of 
air is certainly not infinite.

Graphite is a crystalline form of the element carbon and is one of the basic materials of a pen-
cil, where it is mixed with and encased in a wooden shaft. When drawing lines on a sheet of 
paper, the graphite forms a dark line and results in a resistor. The corresponding resistor value 
is higher than when copper is used and lower in the case of plastics. It is very unpractical due 
to the paper, but this resistor can be used as an electrical component. Nowadays, most resis-
tors are carbon film resistors. They are made from carbon, placed on a plastic foil or film and 
covered with plastic.

The resistance of a sample of material depends upon four factors:

• Its length
• Its cross-sectional area (csa)
• The actual material used
• Its temperature

Simple experiments can show that the resistance is directly proportional to the length and 
inversely proportional to the csa. Combining these two statements we can write:

 R
A

Aa  where length in metres and csa in square metres= ( ) = ( )  

The constant of proportionality in this case concerns the third factor listed above, and is 
known as the resistivity of the material. This is defined as the resistance that exists between 
the opposite faces of a 1 m cube of that material, measured at a defined temperature. The 
symbol for resistivity is ρ . The unit of measurement is the ohm-metre (Ωm). Thus the equa-
tion for resistance using the above factor is

 R
A

= r   (1.2)

Figure 1.3  The circuit diagram symbol for a resistor
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WORKED EXAMPLE 1.6

Q A coil of copper wire 200 m long and of csa 0.8 mm2 has a resistivity of 0.02 µΩm at normal 
working temperature. Calculate the resistance of the coil.
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WORKED EXAMPLE 1.7

Q A wire-wound resistor is made from a 250 m length of copper wire having a circular cross-
section of diameter 0.5 mm. Given that the wire has a resistivity of 0.018  μΩm, calculate its 
resistance value.
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The resistance of a material also depends on its temperature and has a property known as 
its temperature coefficient of resistance. The resistance of all pure metals increases with the 
increase of temperature. The resistance of carbon, insulators, semiconductors and electrolytes 
decreases with the increase of temperature. For these reasons, conductors (metals) are said to 
have a positive temperature coefficient of resistance. Insulators etc. are said to have a negative 
temperature coefficient of resistance. Apart from this there is another major difference. Over 
a moderate range of temperature, the change of resistance for conductors is relatively small 
and is a very close approximation to a straight line. Semiconductors on the other hand tend 
to have very much larger changes of resistance over the same range of temperatures, and fol-
low an exponential law. These differences are illustrated in Figure 1.4.

Temperature coefficient of resistance is defined as the ratio of the change of resistance per 
degree change of temperature, to the resistance at some specified temperature. The quantity 
symbol is α and the unit of measurement is per degree, e.g./°C. The reference temperature 
usually quoted is 0°C, and the resistance at this temperature is referred to as R0. Thus the 
resistance at some other temperature θ 1°C can be obtained from:

 R R1 0 11= +( )aq  (1.3)

In general, if a material having a resistance R0 at 0°C has a resistance R1 at θ °1C and R2 at 
θ °2C, and if α is the temperature coefficient at 0°C, then
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 R R R R1 0 1 2 0 21 1= +( ) = +( )aq aqand  

 so
R
R

1

2

1

2

1
1

= +
+
aq
aq

 (1.4)

WORKED EXAMPLE 1.8

Q The field coil of an electric motor has a resistance of 250 Ω at 15°C. Calculate the resistance 
if the motor attains a temperature of 45°C when running. Assume that α = 0.00428/°C referred 
to 0°C.

 R1 1 2
3250 15 45 4 28 10= = = = ´ °-W; . /q q a C; C; C   

Using Equation (1.4):

 

250 1 4 28 10 15

1 4 28 10 45

250
0 8923

280 2

2
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2

R

R
R

=
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WORKED EXAMPLE 1.9

Q A coil of wire has a resistance value of 350 Ω when its temperature is 0°C. Given that the 
temperature coefficient of resistance of the wire is 4.26 × 10−3/°C referred to 0°C, calculate its 
resistance at a temperature of 60°C.

0 θ (°C)

conductor

R (Ω)

semiconductor

Figure 1.4  The resistance of a material as function of its temperature
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WORKED EXAMPLE 1.10

Q A carbon resistor has a resistance value of 120 Ω at a room temperature of 16°C. When it is 
connected as part of a circuit, with current flowing through it, its temperature rises to 32°C. If 
the temperature coefficient of resistance of carbon is −0.00048/°C referred to 0°C, calculate 
its resistance under these operating conditions.

 

q q a
aq
aq

1 2 1

1

2

1

2

2

16 32 120 0 00048

1
1
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R
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Usually a resistor is packed as a small component and designed in such a way to obtain a 
certain amount of resistance in a circuit. The most common resistors are carbon film resis-
tors, because they are made of a layer of carbon together with an insulating material and 
packed in a small cylinder. The ratio of carbon and the insulating material determines the 
resistance value. On the outside, the sequence and colour of the painted bands always show 
the resistance value in combination with their tolerance. The tolerance indicates how close 
the value is to the indicated resistance value. Usually there are four coloured bands, the first 
three of which indicate the resistance value and the last its tolerance. Of these first three 
coloured bands, the first two indicate the value and the third the exponent. Sometimes there 
are five bands of which the last one also indicates the tolerance on the resistance value. Then 
the first three indicate the value and the fourth the exponent. Since you can also reverse the 
resistor itself (and thus change the order), the first coloured band is always placed closest to 
the edge and the last one not at all. The tolerance indicates a percentage by which the real 
resistance value can differ from the resistance value indicated on the component itself. A 470 
Ω resistor with a 10% tolerance has a true resistance value between 423 Ω and 517 Ω. The 
smaller the tolerance, the more expensive it is to purchase the component. Usually resistors 
with a tolerance of 5% or 10% will suffice. Each colour corresponds to a specific value, as 
can also be found in Table 1.5. You can easily check that the colour combination Red–Red–
Orange corresponds to the resistance value 22 kΩ (or digit 2–digit 2–exponent 1 k). Note 
that a 20% tolerance is sometimes also indicated without a dash (instead of the black dash).
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The first two (or three) coloured bands can theoretically represent 100 different combina-
tions with the digits. In practice there are only a limited number of colour combinations. 
The greater the tolerance, the wider the range of the value. So it only makes sense to fabri-
cate values whose tolerance ranges do not overlap. The E-series has been developed for this, 
based on an approximate geometric sequence. The ratio between two successive values is 
approximately constant. If the number of steps in the sequence is n, then the ratio is approxi-
mately 101/n. A decade is a range of which the largest is greater than the smallest by a factor 
of 10. That decade contains three values in the E3 series and therefore only has 10, 22 and 
47 (with mutual ratio 101 3/  = ± 2.15). The most famous series is the E12 series with 12 values 
in each decade: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82 with mutual ratio 101 12/  = ± 
1.21 (each subsequent step is thus about more than 20% greater, which means that a toler-
ance greater than 10% is meaningless).

A special resistor is the thermistor. The thermistor RPTC has a positive temperature coef-
ficient (or PTC), hence its name. It means that as the temperature increases, its electrical 
resistance also increases (albeit non-linear). If the temperature rises due to, for example, 
excessive power consumption, its resistance will increase abruptly and greatly limit the cur-
rent flowing through it. However, a maintenance current will continue to flow to keep the 
resistor warm. The thermistor can be used as temperature protection in electrical appli-
ances. It acts as a fuse that can be reset: by switching off the voltage, the maintenance 
current is lost and the thermistor can cool down again. The counterpart is the RNTC with a 
negative temperature coefficient (or NTC): as the temperature rises, the electrical resistance 
will decrease.

Another special resistor is the photoresistor or Light-Dependent Resistor (LDR). This 
component acts as an electronic switch that is operated by the incidence of light. The resistor 
value is influenced by the amount of light. The more light, the lower the resistance value. It 
ranges from several MΩ when it is dark to a few hundred ohms in the light.

1.5.5  Potential Difference (p.d.)

Whenever current flows through a resistor there will be a potential difference (shortened to 
p.d.) developed across it. The p.d. is measured in volts, and is quite literally the difference 

Table 1.5  Conversion from colour code to resistance value

Colour Digit Exponent Tolerance

Black 0 1 20%
Brown 1 10 1%
Red 2 100 2%
Orange 3 1k 3%
Yellow 4 10k 4%
Green 5 100k
Blue 6 1M
Violet 7 10M
Grey 8 100M
White 9 1000M
Gold 0.1 5%
Silver 0.01 10%
Nothing 20%
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in voltage levels between two points in a circuit. Although both p.d. and emf are measured 
in volts they are not the same quantity. Essentially, emf (being the driving force) causes cur-
rent to flow; whilst a p.d. is the result of current flowing through a resistor. Thus emf is a 
cause and p.d. is an effect. It is a general rule that the symbol for a quantity is different to 
the symbol used for the unit in which it is measured. One of the few exceptions to this rule 
is that the quantity symbol for p.d. happens to be the same as its unit symbol, namely V. 
In order to explain the difference between emf and p.d. we shall consider another analogy.

Figure 1.5 represents a simple hydraulic system consisting of a pump, the connecting 
pipework and two restrictors in the pipe. The latter will have the effect of limiting the rate 
at which the water flows around the circuit. Also included is a tap that can be used to inter-
rupt the flow completely. Figure 1.6 shows the equivalent electrical circuit, comprising a 
battery, the connecting conductors (cables or leads) and two resistors. The latter will limit 
the amount of current flow. Also included is a switch that can be used to ‘break’ the circuit 
and so prevent any current flow. As far as each of the two systems is concerned we are going 
to make some assumptions.

For the water system we will assume that the connecting pipework has no slowing down 
effect on the flow, and so will not cause any pressure drop. Provided that the pipework is 

water
flow

restrictors

tap

p1 p2

P

pump

Figure 1.5  A simple hydraulic system consisting of a pump, the connecting pipework and two restrictors in 
the pipe

R1

V1 V2

R2

E

I SW

Figure 1.6  An equivalent electrical circuit, comprising a battery, the connecting conductors (cables or leads) 
and two resistors
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relatively short then this is a reasonable assumption. A similar assumption in the electrical 
circuit is that the connecting wires have such a low resistance that they will cause no p.d. 
If anything, this is probably a more legitimate assumption to make. Considering the water 
system, the pump will provide the total system pressure (P) that circulates the water through 
it. Using some form of pressure measuring device it would be possible to measure this pres-
sure together with the pressure drops (p1 and p2) that would occur across the two restrictors. 
Having noted these pressure readings it would be found that the total system pressure is 
equal to the sum of the two pressure drops. Using a similar technique for the electrical cir-
cuit, it would be found that the sum of the two p.d.s (V1 and V2) is equal to the total applied 
emf E volts. These relationships may be expressed in mathematical form as:

 P p p pascal1 2= +  

and

 E V V= +1 2
 (1.5)

When the potential at some point in a circuit is quoted as having a particular value (say 10 
V) then this implies that it is 10 V above some reference level or datum. Compare this with 
altitudes. If a mountain is said to be 5000 m high it does not necessarily mean that it rises 
5000 m from its base to its peak. The figure of 5000 m refers to the height of its peak above 
mean sea level. Thus, the mean sea level is the reference point or datum from which altitudes 
are measured. In the case of electrical potentials the datum is taken to be the potential of the 
Earth which is 0 V. Similarly, –10 V means 10 V below or less than 0 V.

1.5.6  Conventional Current and Electron Flow

You will notice in Figure 1.6 that the arrows used to show the direction of current flow indi-
cate that this is from the positive plate of the battery, through the circuit, returning to the 
negative battery plate. This is called conventional current flow. However, since electrons are 
negatively charged particles, then these must be moving in the opposite direction. The latter 
is called electron flow. Now, this poses the problem of which one to use. It so happens that 
before science was sufficiently advanced to have knowledge of the electron, it was assumed 
that the positive plate represented the ‘high’ potential and the negative the ‘low’ potential. So 
the convention was adopted that the current flowed around the circuit from the high potential 
to the low potential. This compares with water which can naturally only flow from a high 
level to a lower level. Thus the concept of conventional current flow was adopted. All the sub-
sequent ‘rules’ and conventions were based on this direction of current flow. On the discovery 
of the nature of the electron, it was decided to retain the concept of conventional current flow. 
Had this not been the case then all the other rules and conventions would have needed to be 
changed! Hence, true electron flow is used only when it is necessary to explain certain effects 
(as in semiconductor devices such as diodes and transistors). Whenever we are considering 
basic electrical circuits and devices we shall use conventional current flow, i.e. current flowing 
around the circuit from the positive terminal of the source of emf to the negative terminal.

1.5.7  Ohm’s Law

This states that the p.d. developed between the two ends of a resistor is directly proportional 
to the value of current flowing through it, provided that all other factors (e.g. temperature) 
remain constant. Writing this in mathematical form we have:
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 V Ia  

However, this expression is of limited use since we need an equation. This can only be 
achieved by introducing a constant of proportionality; in this case the resistance value of 
the resistor.

 Thus V IR=  (1.6)

 or I
V
R

=  (1.7)

 and R
V
I

=  (1.8)

WORKED EXAMPLE 1.11

Q A current of 5.5 mA flows through a 33 kΩ resistor. Calculate the p.d. thus developed 
across it.

 I R

V IR

V

= ´ = ´
= = ´ ´ ´
=

-

-

5 5 10 33 10

5 5 10 33 10

181 5

3 3

3 3

.

.

.

A;

V

W  

WORKED EXAMPLE 1.12

Q If a p.d. of 24 V exists across a 15 Ω resistor then what must be the current flowing through it?

 V R

I
V
R

I

= =

= =

=

24 15

24
15

1 6

V;

A

W

.

 

1.5.8  Internal Resistance (r)

So far we have considered that the emf E volts of a source are available at its terminals 
when supplying current to a circuit. If this were so then we would have an ideal source of 
emf. Unfortunately, this is not the case in practice. This is due to the internal resistance of 
the source. As an example consider a typical 12 V car battery. This consists of a number 
of oppositely charged plates, appropriately interconnected to the terminals, immersed in 
an electrolyte. The plates themselves, the internal connections and the electrolyte all com-
bine to produce a small but finite resistance, and it is this that forms the battery’s internal 
resistance.

An electrolyte is the chemical ‘cocktail’ in which the plates are immersed. In the case of a car 
battery, this is an acid/water mixture. In this context, finite simply means measurable.
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Figure 1.7 shows such a battery with its terminals on open circuit (no external circuit 
connected). Since the circuit is incomplete no current can flow. Thus there will be no p.d. 
developed across the battery’s internal resistance r. Since the term p.d. quite literally means a 
difference in potential between the two ends of r, then the terminal A must be at a potential 
of 12 V, and terminal B must be at a potential of 0 V. Hence, under these conditions, the full 
emf 12 V is available at the battery terminals.

Figure 1.8 shows an external circuit, in the form of a 2 Ω resistor, connected across the 
terminals. Since we now have a complete circuit then current I will flow as shown. The value 
of this current will be 5.71 A (the method of calculating this current will be dealt with early 
in the next chapter). This current will cause a p.d. across r and also a p.d. across R. These 
calculations and the consequences for the complete circuit now follow:

 p.d. across (Ohm s law applied) V

p.d. acros

r Ir A= = ´ =’ . . .5 71 0 1 0 571W

ss VR IR= = ´ =5 71 2 11 42. .

 

Note that 0.571 V + 11.42 V = 11.991 V but this figure should be 12 V. The very small dif-
ference is simply due to ‘rounding’ the figures obtained from the calculator.

The p.d. across R is the battery terminal p.d. V. Thus it may be seen that when a source is 
supplying current, the terminal p.d. will always be less than its emf. To emphasise this point 
let us assume that the external resistor is changed to one of 1.5 Ω resistance. The current 
now drawn from the battery will be 7.5 A. Hence:

 
p.d. across V

and p.d. across V

r

R

= ´ =
= ´ =

7 5 0 1 0 75

7 5 1 5 11 25

. . .

. . .
 

B

A

r

E

0.1 Ω

2 Ω
12 V

V R

I

Figure 1.8  An external circuit connected across the battery terminals

B

A

r

E

r 0.1 Ω

12 V

Figure 1.7  A battery with its terminals on open circuit
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Note that 11.25 + 0.75 = 12 V (rounding error not involved). Hence, the battery terminal 
p.d. has fallen still further as the current drawn has increased. This example brings out the 
following points.
 1 Assuming that the battery’s charge is maintained, then its emf remains constant. But 

its terminal p.d. varies as the current drawn is varied, such that

 V E Ir= -  (1.9)

 2 Rather than having to write the words ‘p.d. across R’ it is more convenient to write this 
as VAB which, translated, means the potential difference between points A and B.

 3 In future, if no mention is made of the internal resistance of a source, then for calcula-
tion purposes you may assume that it is zero, i.e. an ideal source.

WORKED EXAMPLE 1.13

Q A battery of emf 6 V has an internal resistance of 0.15 Ω. Calculate its terminal p.d. when 
delivering a current of (a) 0.5 A, (b) 2 A and (c) 10 A.

(a) 
E r

V E Ir

= =
= - = - ´( ) = - =

6 0 15

6 0 5 0 15 6 0 175 5 925

V;

V V V V

.

. . . .

W

(b) V = - ´( ) = - =6 2 0 15 6 0 3 5 7V V V V. . .

(c) V = - ´( ) = - =6 10 0 15 6 1 5 4 5V V V V. . .

Note: This example verifies that the terminal p.d. of a source of emf decreases as the load on it 
(the current drawn from it) is increased.

WORKED EXAMPLE 1.14

Q A battery of emf 12 V supplies a circuit with a current of 5 A. If, under these conditions, the 
terminal p.d. is 11.5 V, determine (a) the battery internal resistance, (b) the resistance of the 
external circuit.

 E I V= = =12 5 11 5V; A; V.  

As with the vast majority of electrical problems, a simple sketch of the circuit diagram will 
help you to visualise the problem. For the above problem the circuit diagram would be as shown 
in Figure 1.9.

(a) E V Ir E V Ir r
E V

I
= + - = = - = - =so,

12 11 5
5

0 1
.

. W

(b) R
V
I

= = =11 5
5

2 3
.

. W
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1.5.9  Energy (W) and Power (P)

Energy (W) is the property of a system that enables it to do work. Whenever work is done 
energy is transferred from that system to another one. The most common form into which 
energy is transformed is heat. The heat produced (or energy dissipated) is expressed in Joule 
(shortened to J) and is given by the equation

 W I Rt= 2  (1.10)

and applying Ohm’s law as shown in Equations (1.6) to (1.8)

 W
V t
R

=
2

 (1.11)

or

 W VIt=  (1.12)

James Joule (1818–1889) was an English physicist. He carried out an investigation on one of the 
effects of an electric current: the production of heat (e.g. an electric kettle). He reached the 
conclusion that the amount of heat so produced was proportional to the value of the square of 
the current flowing and the time for which it flowed. Once more a constant of proportionality 
is required, and again it is the resistance of the circuit that is used.

WORKED EXAMPLE 1.15

Q A current of 200 mA flows through a resistance of 750 Ω for a time of 5 minutes. Calculate 
(a) the p.d. developed and (b) the energy dissipated.

 I t R= = = ´ = =200 0 2 5 60 300 750mA A; s. ; W  

(a) V IR= = ´ =0 2 750 150. V

(b) W I Rt W= = ´ ´ ´ =2 0 2 0 2 750 300 9000 9. . J or kJ

r

E 12 V

V  11.5 V

5 A

I

R (External)

Figure 1.9  The circuit diagram for Worked Example 1.14



Fundamentals  21

Note: It would have been possible to use either Equation (1.14) or (1.15) to calculate W. However, 
this would have involved using the calculated value for V. If this value had been miscalculated, 
then the answers to both parts of the question would have been incorrect. So, whenever pos-
sible, make use of data that are given in the question in preference to values that you have calcu-
lated. Please also note that the time has been converted to its basic unit, the second.

Power (P) is the rate at which work is done, or at which energy is dissipated. The unit in 
which power is measured is the watt (W).

Warning: Do not confuse this unit symbol with the quantity symbol for energy. In general 
terms we can say that power is energy divided by time.

 i.e. P
W
t

=  

Thus, by dividing each of Equations (1.10), (1.11), and (1.12), in turn, by t, the following 
equations for power result:

 P I R= 2  (1.13)

 P
V
R

=
2

 (1.14)

 or P VI=  (1.15)

The production of heat can be advantageous, can be disadvantageous, or can be both. In 
an electric kettle, the purpose is to heat the water, whereas in a battery the produced heat is 
a loss of energy. In an incandescent bulb, electrical energy is converted into both light and 
heat, where the heat is lost energy.

James Watt (1736–1819) was a Scottish engineer, who is regarded as the inventor of the modern 
steam engine. He is also the inventor of the first copier, for which he received a patent in 1781. 
He introduced horsepower as a unit of power for classifying the steam engines. His version of 
the unit is equivalent to 550 foot-pounds per second (735.5 Watts).

WORKED EXAMPLE 1.16

Q A resistor of 680 Ω, when connected in a circuit, dissipates a power of 85 mW. Calculate (a) 
the p.d. developed across it and (b) the current flowing through it.

 R P= = ´ -680 85 10 3W; W  

(a) P
V
R

V PR V PR= = = = ´ ´ = =-
2

2 680 57 8 7 6so, and 85 10  V3 . .

(b) P I R I
P
R

I
P
R

= = = = ´ = ´ =
-

-2 2
3

485 10
680

1 25 10 11 18so, and mA. .
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Note: Since P = VI, the calculations may be checked as follows

 P V A= ´ ´ -7 6 11 18 10 3. .  

so, P = 84.97 mW, which when rounded up to one decimal place gives 85.0 mW – the value 
given in the question.

WORKED EXAMPLE 1.17

Q A current of 1.4 A when flowing through a circuit for 15 minutes dissipates 200 kJ of energy. 
Calculate (a) the p.d., (b) power dissipated and (c) the resistance of the circuit.

 I t W= = ´ = = ´1 4 15 60 2 105. A; 900 s; J 

(a) W VIt V
W
It

= = = ´
´

=so V
2 10

1 4 900
158 7

5

.
.

(b) P VI= = ´ =158 7 1 4 222 2. . . W

(c) R
V
I

= = =158 7
1 4

113 4
.

.
. W

Although the joule is the SI unit of energy, it is too small a unit for some practical uses, e.g. 
where large amounts of power are used over long periods of time. The electricity meter in 
your home actually measures the energy consumption. So, if a 3 kW heater was in use for 
12 hours the amount of energy used would be 129.6 MJ. In order to record this, the meter 
would require at least ten dials to indicate this very large number. Hence the commercial 
unit of energy is the kilowatt-hour (kWh). Kilowatt-hours are the ‘units’ that appear on 
electricity bills. The number of units consumed can be calculated by multiplying the power 
(in kW) by the time interval (in hours). So, for the heater mentioned above, the number of 
‘units’ consumed would be written as 36 kWh.

WORKED EXAMPLE 1.18

Q Calculate the cost of operating a 12.5 kW machine continuously for a period of 8.5 h if the 
cost per unit is 7.902p.

 W = ´ =
= ´ =

12 5 8 5 106 25

106 25 7 902 8 40

. . .

. . £ .

kWh

and cost

 

Note: When calculating energy in kWh the power must be expressed in kW, and the time in 
hours respectively, rather than in their basic units of watts and seconds respectively.
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WORKED EXAMPLE 1.19

Q An electricity bill totalled £78.75, which included a standing charge of £15.00. The number of 
units charged for was 750. Calculate (a) the charge per unit and (b) the total bill if the charge/
unit had been 9p, and the standing charge remained unchanged.

 Total bill standing charge units used kW= = = =£ . ; £ . ;78 75 15 00 750 750 hh  

(a) Cost of the energy (units) used total standing charge= -
= -78 75 15 0. . 00 63 75

63 75
750

0 085 8 5

=

= = =

.

.
. .Cost/unit p

(b) If the cost/unit is raised to 9p, then cost of energy used = ´ =0 09 750. £667 50

67 50 15 00

.

. .total bill cost of units used standing charge= + = + == £ .82 50

1.5.10  Alternating and Direct Quantities

The sources of emf and resulting current flow so far considered are called d.c. quantities. 
This is because a battery or cell once connected to a circuit is capable of driving current 
around the circuit in one direction only. If it is required to reverse the current it is necessary 
to reverse the battery connections. The term d.c., strictly speaking, means ‘direct current’. 
However, it is also used to describe unidirectional voltages. Thus a d.c. voltage refers to a 
unidirectional voltage that may only be reversed as stated above.

However, the other commonly used form of electrical supply is that obtained from the 
electrical mains. This is the supply that is generated and distributed by the power compa-
nies. This is an alternating or a.c. supply in which the current flows alternately in opposite 
directions around a circuit. Again, the term strictly means ‘alternating current’, but the emfs 
and p.d.s associated with this system are referred to as a.c. voltages. Thus, an a.c. genera-
tor (or alternator) produces an alternating voltage. Most a.c. supplies provide a sinusoidal 
waveform (a sinewave shape). Both d.c. and a.c. waveforms are illustrated in Figure 1.10. 
The treatment of a.c. quantities and circuits is dealt with in Chapter 8, and need not concern 
you any further at this stage.

varying d.c.

steady d.c.
I(A)

a.c.

t(s)0

�

�

Figure 1.10  Illustration of d.c. and a.c. waveforms
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1.5.11  Use of Meters

The measurement of electrical quantities is an essential part of engineering, so you need to 
be proficient in the use of the various types of measuring instrument. In this chapter we will 
consider only the use of the basic current and voltage measuring instruments, namely the 
ammeter and voltmeter respectively.

An ammeter is a current measuring instrument. It has to be connected into the circuit 
in such a way that the current to be measured is forced to flow through it. If you need to 
measure the current flowing in a section of a circuit that is already connected together, you 
will need to ‘break’ the circuit at the appropriate point and connect the ammeter in the 
‘break’. If you are connecting a circuit (as you will frequently have to do when carrying out 
practical assignments), then insert the ammeter as the circuit connections are being made. 
Most ammeters will have their terminals colour coded: red for the positive and black for the 
negative. Please note that these polarities refer to conventional current flow, so the current 
should enter the meter at the red terminal and leave via the black terminal. The ammeter 
circuit symbol is shown in Figure 1.11.

As you would expect, a voltmeter is used for measuring voltages; in particular, p.d.s. Since 
a p.d. is a voltage between two points in a circuit, this meter is NOT connected into the 
circuit in the same way as an ammeter. In this sense it is a simpler instrument to use, since 
it need only be connected across (between the two ends of) the component whose p.d. is to 
be measured. The terminals will usually be colour coded in the same way as an ammeter, 
so the red terminal should be connected to the more positive end of the component, i.e. fol-
low the same principle as with the ammeter. The voltmeter symbol is shown in Figure 1.12.

It is most probable that you will have to make use of meters that are capable of combining 
the functions of an ammeter, a voltmeter and an ohmmeter. These instruments are known 
as multimeters, where the ‘readings’ are in the form of a numerical display, using either 
light-emitting diodes or a liquid crystal, as on calculator displays. They have switches, either 
rotary or pushbutton, that are used to select between a.c. or d.c. measurements. There is 
also a facility for selecting a number of current and voltage ranges.

All measuring instruments are quite fragile, not only mechanically but even more so elec-
trically. So whenever you use them please observe the following rules:

 1 Do not switch on (or connect) the power supply to a circuit until your connections 
have been double checked.

 2 Starting with all meters switched to the OFF position, select the highest possible range, 
and then carefully select lower ranges until a suitable figure is displayed.

 3 When taking a series of readings try to select a range that will accommodate the whole 
series. This is not always possible. However, if the range(s) are changed and the results 
are used to plot a graph, then a sudden unexpected gap or ‘jump’ in the plotted curve 
may well occur.

V

Figure 1.12  The voltmeter circuit symbol

A

Figure 1.11  The ammeter circuit symbol
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 4 When finished, turn off and disconnect all power supplies, and turn all meters to their 
OFF position.

‘Warning – High Voltage’ is a warning you have probably seen several times. All forms of 
energy – including electrical energy – can be dangerous. But it is not just the voltage that 
is harmful. When you touch your car during the winter months, for example, the voltage 
shock of static electricity can be hundreds to thousands of times greater than the voltage 
that can harm you. After all, it is the electrical current that flows through the body that can 
cause an injury. Then why the warning ‘Warning – High Voltage’? Most electrical sources 
produce a constant voltage. It is actually easier to measure a voltage than a current. The 
warning therefore warns for what is easiest to measure.

The danger of electric shock or electrocution is not in burns, but in temporary or per-
manent damage of the nerve system. Nerves use electrochemical signals and an electri-
cal current can interrupt these signals. If the current flows only through skeletal muscles, 
it can lead to temporary paralysis or involuntary contractions. Fortunately, these are not 
life-threatening. If the current runs along nerves and muscles that supply oxygen to the 
brain, the problem is much greater. Temporary paralysis can lead to oxygen deprivation and 
unnatural contractions can interrupt the signals that determine the heart’s rhythm, resulting 
in death after a few minutes. Table 1.6 shows the physiological reactions at different current 
levels. They are approximations because they are obtained from accident analyses and not 
from human experiments. Obviously, any good electrical and electronic design will limit 
current to a few mA or less in all circumstances.

Electricity/electronics and water are big enemies. Pure water is actually an insulator. But 
it is usually contaminated with very good conductors, so that water becomes dangerous. 
Because there are applications with high humidity, for example in wet areas (think of cel-
lars, garages and bathrooms) or outside in difficult-to-predict weather conditions, an IP 
code has been drawn up. IP stands for Ingress Protection Rating (or ingress protection rat-
ing) and is internationally established. It indicates the degree of protection against touching 
and ingress of objects on the one hand and moisture on the other. So this classification is 
better and more detailed than a vague marketing term like ‘waterproof’. After the letters IP 
there are usually two numbers, the higher the more protection.

1.6  SIMULATION PACKAGES

There are many simulation packages on the market that fully simulate analogue and/or 
digital electrical and electronic circuits. In this way you can visualise the electrical and elec-
tronic behaviour of the different currents and voltages and make adjustments where neces-
sary. In addition to the paid software, there also exist simulation packages available for free. 
One only does analogue, the other only digital, and yet another only allows you to integrate 
electrical and electronic components from the manufacturer itself.

Table 1.6  Relationship between current and physiological reaction

Current Physiological response

3–5 mA Barely perceptible
35–50 mA Severe pain
50–70 mA Muscle paralysis
500 mA Cardiac arrest
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A lot of that software falls back on SPICE (short for Simulation Program with Integrated 
Circuit Emphasis). This is a widely used analogue circuit simulator. It includes models for 
most common electronic components and can handle complex, non-linear circuits. This 
simulator was developed at the University of California at Berkeley and was first launched 
in 1972. Today we are already on the third version: SPICE3. The program was originally in 
the public domain, but there are many companies that have released their own commercial 
version (sometimes paid, sometimes not), improving ease of use and simulation convergence.

LTspice (website: http://www .linear .com /designtools /software/) is a freely available, high-
performance simulation software, together with an extensive manual. You can enter your 
scheme graphically and visualise the analysis of the different voltages and currents graphi-
cally. The big advantage is that it is not limited to the number of knots and that models of 
components from other manufacturers can also be integrated. In addition, so-called netlists 
can be generated that can serve as a basis for, for example, the design of printed circuit boards 
or pcbs.

Another example of publicly available software is Circuit Lab (website: http://www .cir-
cuitlab .com). This software is completely web-based and requires no installation on your 
PC. Because it is not based on SPICE, it is a lot slower in calculation time. The underlying 
models to simulate the various components are usually enormously simplified and com-
mercialised. However, it gives us the possibility to simulate an electrical or electronic circuit 
quickly and easily – and yet sufficiently accurately.

Some more electric/electronic simulation packages are PartQuest (website: http://www 
.partquest .com) and TinkerCad (website: http://www .tinkercad .com).

SUMMARY OF EQUATIONS

Charge: Q It=

Resistance: R
A

= r

Resistance at specified temp.: 
R R

R
R

1 0

1

2

1

2

1

1
1

= +( )
= +

+

aq
aq
aq

or

Ohm’s law: V IR=
Terminal p.d.: V E Ir= -

Energy: W VIt I Rt
V t
R

= = =2
2

Power: P
W
t

VI I R
V
R

= = = =2
2

ASSIGNMENT QUESTIONS

 1 Convert the following into standard form.
 (a) 456.3 (b) 902 344 (c) 0.000 285 (d) 8000 (e) 0.047 12 (f) 180 μA (g) 38 mV (h) 80 

GN (i) 2000 μF
 2 Write the following quantities in scientific notation.
 (a) 1500 Ω (b) 0.0033 Ω (c) 0.000 025 A (d) 750 V (e) 800 000 V (f) 0.000 000 047 F
 3 Calculate the charge transferred in 25 minutes by a current of 500 mA.

http://www.linear.com
http://www.circuitlab.com
http://www.circuitlab.com
http://www.partquest.com
http://www.partquest.com
http://www.tinkercad.com
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 4 A current of 3.6 A transfers a charge of 375 mC. How long would this take?
 5 Determine the value of charging current required to transfer a charge of 0.55 mC in a 

time of 600 μs.
 6 Calculate the p.d. developed across a 750 Ω resistor when the current flowing through 

it is (a) 3 A, (b) 25 mA.
 7 An emf of 50 V is applied in turn to the following resistors: (a) 22 Ω, (b) 820 Ω, (c) 2.7 

MΩ, (d) 330 kΩ. Calculate the current flow in each case.
 8 The current flowing through a 470 Ω resistance is 4 A. Determine the energy dissi-

pated in a time of 2 h. Express your answer in both joules and in commercial units.
 9 A small business operates three pieces of equipment for nine hours continuously per 

day for six days a week. If the three pieces of equipment consume 10 kW, 2.5 kW and 
600 W respectively, calculate the weekly cost if the charge per unit is 7.9 pence.

 10 A charge of 500 μC is passed through a 560 Ω resistor in a time of 1 ms. Under these 
conditions determine (a) the current flowing, (b) the p.d. developed, (c) the power dis-
sipated and (d) the energy consumed in 5 minutes.

 11 A battery of emf 50 V and internal resistance 0.2 Ω supplies a current of 1.8 A to an 
external load. Under these conditions determine (a) the terminal p.d. and (b) the resis-
tance of the external load.

 12 The terminal p.d. of a d.c. source is 22.5 V when supplying a load current of 10 A. If 
the emf is 24 V calculate (a) the internal resistance and (b) the resistance of the external 
load.

 13 For the circuit arrangement specified in Q12 above, determine the power and energy 
dissipated by the external load resistor in 5 minutes.

 14 A circuit of resistance 4 Ω dissipates a power of 16 W. Calculate (a) the current flowing 
through it, (b) the p.d. developed across it and (c) the charge displaced in a time of 20 
minutes.

 15 In a test the velocity of a body was measured over a period of time, yielding the results 
shown in the table below. Plot the corresponding graph and use it to determine the 
acceleration of the body at times t = 0, t = 5 s and t = 9 s. You may assume that the 
graph consists of a series of straight lines.

  v(m/s) 0.0 3.0 6.0 10.0 14.0 15.0 16.0
  t(s) 0.0 1.5 3.0 4.5 6.0 8.0 10.0

 16 The insulation resistance between a conductor and earth is 30 MΩ. Calculate the leak-
age current if the supply voltage is 240 V.

 17 A 3 kW immersion heater is designed to operate from a 240 V supply. Determine its 
resistance and the current drawn from the supply.

 18 A 110 V d.c. generator supplies a lighting load of forty 100 W bulbs, a heating load of 
10 kW and other loads which consume a current of 15 A. Calculate the power output 
of the generator under these conditions.

 19 The field winding of a d.c. motor is connected to a 110 V supply. At a temperature 
of 18°C, the current drawn is 0.575 A. After running the machine for some time the 
current has fallen to 0.475 A, the voltage remaining unchanged. Calculate the tem-
perature of the winding under the new conditions, assuming that the temperature 
coefficient of resistance of copper is 0.004 26/°C at 0°C.

 20 A coil consists of 1500 turns of aluminium wire having a cross-sectional area of 0.75 
mm2. The mean length per turn is 60 cm and the resistivity of aluminium at the work-
ing temperature is 0.028 μΩm. Calculate the resistance of the coil.
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Chapter 2

D.C. Circuits

LEARNING OUTCOMES

This chapter explains how to apply circuit theory to the solution of simple circuits and net-
works by the application of Ohm’s law and Kirchhoff’s laws, and the concepts of potential 
and current dividers.

This means that on completion of this chapter you should be able to:
 
 1 Calculate current flows, potential differences, power and energy dissipations for circuit com-

ponents and simple circuits, by applying Ohm’s law.
 2 Carry out the above calculations for more complex networks using Kirchhoff’s laws.
 3 Calculate circuit p.d.s using the potential divider technique, and branch currents using the 

current divider technique.
 4 Understand the principles and use of a slidewire potentiometer.

2.1  RESISTORS IN SERIES

When resistors are connected ‘end-to-end’ so that the same current flows through them all 
they are said to be cascaded or connected in series. Such a circuit is shown in Figure 2.1. 
Note that, for the sake of simplicity, an ideal source of emf has been used (no internal 
resistance).

or

From the previous chapter we know that the current flowing through the resistors will 
result in p.d.s being developed across them. We also know that the sum of these p.d.s must 
equal the value of the applied emf. Thus

 V IR1 1=  

D.C. Circuits D.C. Circuits

DOI: 10.1201/9781003308294-2

10.1201/9781003308294-2

http://dx.doi.org/10.1201/9781003308294-2
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D.C. Circuits

 V IR2 2=  

 V IR3 3=  

However, the circuit current I depends ultimately on the applied emf E and the total resis-
tance R offered by the circuit. Hence

 
E IR

E V V V

=
= + +1 2 3

 

and substituting for E, V1, V2 and V3 in this last equation, we have

 IR IR IR IR= + +1 2 3  

and dividing this last equation by the common factor I

 R R R R= + +1 2 3  (2.1)

where R is the total circuit resistance. From this result it may be seen that when resistors are 
connected in series or cascaded, the total resistance is found simply by adding together the 
resistor values.

WORKED EXAMPLE 2.1

Q For the circuit shown in Figure 2.2 calculate (a) the circuit resistance, (b) the circuit current, 
(c) the p.d. developed across each resistor and (d) the power dissipated by the complete circuit.

 E R R R= = = =24 330 1500 4701 2 3V; ; ;W W W  

(a) R R R R= + + = + + =1 2 3 330 150 470 2300 W Wor 2.3 k

(b) I
E
R

= = =24
2300

10 43. mA

(c) V IR1 1
310 43 10 330 3 44= = ´ ´ =-. . V

  V IR2 2
310 43 10 1500 15 65= = ´ ´ =-. . V  

  V IR3 3
310 43 10 470 4 90= = ´ ´ =-. . V  

E

V1

R1 R2 R3

V2 V3

I

Figure 2.1  Resistors cascaded or connected in series
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Note: The sum of the above p.d.s is 23.99 V instead of 24 V due to the rounding errors in the cal-
culation. It should also be noted that the value quoted for the current was 10.43 mA whereas the 
calculator answer is 10.4347 mA. This latter value was then stored in the calculator memory and 
used in the calculations for part (c), thus reducing the rounding errors to an acceptable minimum.

(d) P EI= = ´ ´ =-24 10 43 10 0 253. . W or 250 mW

It should be noted that the power is dissipated by the three resistors in the circuit. Hence, 
the circuit power could have been determined by calculating the power dissipated by each of 
these and adding these values to give the total. This is shown below, and serves as a check for 
the last answer.

 

P I R

P

1
2

1
3 2

2
3 2

10 43 10 330 35 93

10 43 10 1500 163

= = ´( ) ´ =

= ´( ) ´ =

-

-

. .

.

mW

..

. .

33

10 43 10 470 51 183
3 2

mW

mWP = ´( ) ´ =-

 

 total power: mWP P P P= + + =1 2 3 250 44.  

(Note the worsening effect of the continuous rounding error.)

WORKED EXAMPLE 2.2

Q Two resistors are connected in series across a battery of emf 12 V. If one of the resistors has 
a value of 16 Ω and it dissipates a power of 4 W, then calculate (a) the circuit current and (b) 
the value of the other resistor.

Since the only two pieces of data that are directly related to each other concern the 16 Ω 
resistor and the power that it dissipates, this information must form the starting point for the 
solution of the problem. Using these data we can determine either the current through or 
the p.d. across the 16 Ω resistor (and it is not important which of these is calculated first). To 
illustrate this point both methods will be demonstrated. The appropriate circuit diagram, which 
forms an integral part of the solution, is shown in Figure 2.3.

E

V1

R1 R2 R3

V2 V3

I

330 Ω 1.5 kΩ 470 Ω

24 V

Figure 2.2  The circuit diagram for Worked Example 2.1
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 E R PBC BC= = =12 16 4V; WW;  

(a)

 

I R P

I
P
R

I

BC BC

BC

BC

2

2 4
16

0 25 0 5

=

= = = =. .so A

(b) total resistance, R
E
I

R R RAB BC

= = =

= - = - =

12
0 5

24

24 16 8
.

W

W

Alternatively, the problem can be solved thus:

(a)

 

V
R

P

V P R V

I
V
R

BC

BC
BC

BC BC BC BC

BC

BC

2

2 4 16 64 8

8
16

0 5

=

= ´ = ´ = =

= = =

V so V

A.

(b) V V V

R
V
I

AB BC AB

AB
AB

= - = - =

= = =

E V12 8 4

4
0 5

8
.

W

As can be easily noticed, the p.d. developed across each resistor is in direct proportion to its 
resistance value. This is a useful fact to bear in mind, since it means it is possible to calculate 
the p.d.s without first having to determine the circuit current. Consider two resistors con-
nected across a 50 V supply as shown in Figure 2.4. In order to demonstrate the potential 
divider effect we will in this case firstly calculate circuit current and hence the two p.d.s by 
applying Ohm’s law:

 R R R

I
E
R

= + = + =

= = =

1 2 75 25 100

50
100

0 5

W W W

. A

 

E

VAB

A B C16 Ω

VBC

I

12 V

Figure 2.3  The circuit diagram for Worked Example 2.2
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 V IR

V IR
1 1

2 2

0 5 75 37 5

0 5 25 12 5

= = ´ =
= = ´ =

. .

. .

V

V

 

Applying the potential divider technique, the two p.d.s may be obtained by using the fact 
that the p.d. across a resistor is given by the ratio of its resistance value to the total resistance 
of the circuit, expressed as a proportion of the applied voltage. Although this sounds com-
plicated it is very simple to put into practice. Expressed in the form of an equation it means

 V
R

R R
E1

1

1 2

=
+

´  (2.2)

and

 V
R

R R
E2

2

1 2

=
+

´  (2.3)

and using the above equations the p.d.s can more simply be calculated as follows:

 
V

V

1

2

75
100

50 37 5

25
100

50 12 5

= ´ =

= ´ =

.

.

V

V
 

This technique is not restricted to only two resistors in series, but may be applied to any 
number. For example, if there were three resistors in series, then the p.d. across each may 
be found from

 

V
R

R R R
E

V
R

R R R
E

V
R

R R R
E

1
1

1 2 3

2
2

1 2 3

3
3

1 2 3

=
+ +

´

=
+ +

´

=
+ +

´

 

I1

I

I2

I3

R1

R2

R3

E

I

Figure 2.4  Two resistors in series across a 50 V supply
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Christmas lights are used to decorate trees or public buildings around December every year. 
Small electric light bulbs in the shape of a candle flame are used as a replacement for the fire 
danger of candles. Instead of incandescent light bulbs, light-emitting diodes (LEDs) are also used, 
being more energy efficient. Although many variations exist, those bulbs are cascaded or con-
nected in series, ranging from 12 to 24 bulbs up to 200 miniature lights. It reduces the length 
of the swinging electric cable in the tree, used for connecting all bulbs. Older or cheaper light 
sets go completely dark when a single bulb in the series connection fails. Troubleshooting can 
be done by a one-by-one replacement with a known working bulb, or by using a multimeter to 
find out where the voltage gets interrupted. Recently, shunts have been used to maintain the 
connection when a bulb fails.

2.2  RESISTORS IN PARALLEL

When resistors are joined ‘side-by-side’ so that their corresponding ends are connected 
together, they are said to be connected in parallel. Using this form of connection means that 
there will be a number of paths through which the current can flow. Such a circuit consisting 
of three resistors is shown in Figure 2.5, and the circuit may be analysed as follows:

or or or

Since all three resistors are connected directly across the battery terminals, they all have 
the same voltage developed across them. In other words the voltage is the common factor in 
this arrangement of resistors. Now, each resistor will allow a certain value of current to flow 
through it, depending upon its resistance value. Thus

 I
E
R

1
1

=  

 I
E
R

2
2

=  

I1

I2

I3

R1

R2

R3

E
I

1.5 kΩ

330 Ω

470 Ω

24 V

Figure 2.5  Resistors in parallel
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 I
E
R

3
3

=  

The total circuit current I is determined by the applied emf and the total circuit resistance R,

 I
E
R

=  

Also, since all three branch currents originate from the battery, the total circuit current must 
be the sum of the three branch currents

 I I I I= + +1 2 3  

and substituting the above expression for the currents:

 
E
R

E
R

E
R

E
R

= + +
1 2 3

 

and dividing the above equation by the common factor E:

 
1 1 1 1

1 2 3R R R R
= + +  (2.4)

Note: The above equation does not give the total resistance of the circuit, but does give the 
total circuit conductance (G), which is measured in Siemens (S). Thus, conductance is the 
reciprocal of resistance, so to obtain the circuit resistance you must then take the recipro-
cal of the answer obtained from an equation of the form of Equation (2.4). The inverse of a 
resistor R (expressed in W ) is the conductance G (expressed in S) and vice versa.

Conductance is a measure of the ‘willingness’ of a material or circuit to allow current to flow 
through it.

Ernst Werner von Siemens (1816–1892) was a German industrialist and inventor. He contrib-
uted to the invention and development of electrical machines. The unit of conductance Siemens 
is the reciprocal of the unit of resistance ohm; electrical engineers refer to the conductance as 
mho (ohm, reversed), which was proposed by William Thomson (1824–1907), a British physicist.
Note: Siemens is abbreviated to S (capitalised), not to be distinguished from second, abbreviated 
to s (lower case).

The inverse of a resistor R (expressed in W ) is the conductance G (expressed in S) and vice 
versa. That is

 
1 1
R

G
G

R= =and  (2.5)

However, when only two resistors are in parallel, the combined resistance may be obtained 
directly by using the following equation:

 R
R R
R R

= ´
+

1 2

1 2

 (2.6)
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If there are ‘x’ identical resistors in parallel the total resistance is simply R/x ohms.

In this context, the word ‘identical’ means having the same value of resistance.

WORKED EXAMPLE 2.3

Q Considering the circuit of Figure 2.6, calculate (a) the total resistance of the circuit, (b) the 
three branch current and (c) the current drawn from the battery.

 E R R R= = = =24 330 1500 4701 2 3V; W W W; ;  

(a) 1 1 1 1 1
330

1
1500

1
470

0 00303 0 000667 0 00213 0
1 2 3R R R R

= + + = + + = + + =. . . .0005825

0 005825

S

171.68 inverse of SR = ( )W .

(b) 

I
E
R

I
E
R

I
E
R

1
1

2
2

3
3

24
330

72 73

24
1500

16

24
470

51 06

= = =

= = =

= = =

.

.

mA

mA

mA

(c) I I I I= + + = + + =1 2 3 72 73 16 51 06 139 8. . . mA

Alternatively, the circuit current could have been determined by using the values for E and R 
as follows

 I
E
R

= = =24
171 68

139 8
.

. mA 

Compare this example with Worked Example 2.1 (the same values for the resistors and the 
emf have been used). From this it should be obvious that when resistors are connected in 
parallel the total resistance of the circuit is reduced. This results in a corresponding increase 
of current drawn from the source. This is simply because the parallel arrangement provides 
more paths for current flow.

I1

I

I2

12 V

R2R1E 3 Ω6 Ω

Figure 2.6  The circuit diagram for Worked Example 2.3
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WORKED EXAMPLE 2.4

Q Two resistors, one of 6 Ω and the other of 3 Ω resistance, are connected in parallel across 
a source of emf 12 V. Determine (a) the effective resistance of the combination, (b) the current 
drawn from the source and (c) the current through each resistor.

The corresponding circuit diagram, suitably labelled, is shown in Figure 2.7.

 E R R= = =12 6 31 2V; W W;  

(a) R
RR

R R
=

+
= ´

+
=1 2

1 2

6 3
6 3

2 W

(b) I
E
R

= = =12
2

6 A  

(c) 

I
E
R

I
E
R

1
1

2
2

12
6

2

12
3

4

= = =

= = =

A

A

WORKED EXAMPLE 2.5

Q A 10 Ω resistor, a 20 Ω resistor and a 30 Ω resistor are connected (a) in series, and then (b) 
in parallel with each other. Calculate the total resistance for each of the two connections.

(a) R R R

R R R R
1 2 3

1 2 3

10 20 30

10 20 30 60

= = =
= + + = + + =

W W W
W

; ;

(b)

 

1 1 1 1 1
10

1
20

1
30

0 1 0 05 0 033

1
0 183

5 46

1 2 3R R R R

R

= + + = + + = + +

= =

. . .

.
.

S
W

I

E 50 V

R2

75 Ω

25 Ω

R1 V1

V2

Figure 2.7  The circuit diagram for Worked Example 2.4
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Alternatively,

 

1 1
10

1
20

1
30

6 3 2
60

11
60

60
11

5 46

R

R

= + + = + + =

= = .

S

W

It has been shown that when resistors are connected in parallel the total circuit cur-
rent divides between the alternative paths available. So far we have determined the branch 
currents by calculating the common p.d. across a parallel branch and dividing this by the 
respective resistance values. However, these currents can be found directly, without the need 
to calculate the branch p.d., by using the current divider theory. Consider two resistors con-
nected in parallel across a source of emf 48 V as shown in Figure 2.8. Using the p.d. method 
we can calculate the two currents as follows:

 

I
E
R

I
E
R

1
1

2
2

48
12

48
24

4 2

= =

= =

= =

and

A A

 

It is now worth noting the values of the resistors and the corresponding currents. It is clear 
that R1 is half the value of R2. So, from the calculation we obtain the quite logical result that 
I1 is twice the value of I2. That is, a ratio of 2:1 applies in each case. Thus, the smaller resis-
tor carries the greater proportion of the total current. By stating the ratio as 2:1 we can say 
that the current is split into three equal ‘parts’. Two ‘parts’ are flowing through one resistor 
and the remaining ‘part’ through the other resistor.

 

Thus flows through

and
1
3

flows through

Since A then

2
3

6

1

2

´

´

=

I R

I R

I

 

 
I

I

1

2

2
3

6 4

1
3

6 2

= ´ =

= ´ =

A

A
 

I

I2

R2E 24 Ω

I1

R1 12 Ω48 V

Figure 2.8  Two resistors in parallel across an emf of 48 V
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In general, we can say that

 I
R

R R
I1

2

1 2

=
+

´  (2.7)

and

 I
R

R R
I2

1

1 2

=
+

´  (2.8)

Note: This is not the same ratio as for the potential divider. If you compare (2.2) with (2.7) 
you will find that the numerator in (2.2) is R1 whereas in (2.7) the numerator is R2. There is 
a similar ‘cross-over’ when (2.3) and (2.8) are compared.

Again, the current divider theory is not limited to only two resistors in parallel. Any 
number can be accommodated. However, with three or more parallel resistors the current 
division method can be cumbersome to use, and it is much easier for mistakes to be made. 
For this reason it is recommended that where more than two resistors exist in parallel the 
‘p.d. method’ is used. This will be illustrated in the next section, but for completeness the 
application to three resistors is shown below.

Consider the arrangement shown in Figure 2.9:

 
1 1 1 1 1

3
1

4
1

6
4 3 2

121 2 3R R R R
= + + = + + = + +

W W W
S  

and examining the numerator, we have 4 + 3 + 2 = 9 ‘parts’.
Thus, the current ratios will be 4/9, 3/9 and 2/9 respectively for the three resistors.

 I1
4
9

18 8= ´ = A  

 I2
3
9

18 6= ´ = A  

 I3
2
9

18 4= ´ = A  

I1

I2

I3

R1

R2

R3

I
18 A

3 Ω

6 Ω

4 Ω

Figure 2.9  Three resistors in parallel
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The rear window heating of a car is constructed as a parallel connection of several constantan 
wires. Constantan is a copper-nickel alloy with a resistivity of 4.9 × 10−7 Ω ·m. In total 13 wires 
of a length of 1.1 m each are used in parallel. The cross-section of each wire is 4.2 × 10-2 mm2, 
resulting in the resistance of one single wire of 4.9 × 10−7 Ω ·m × 1.1 m/4.2 × 10-8 m2 = 12.83 
Ω, resulting in a total resistance of 12.83 Ω/13 = 0.99 Ω, because there are 13 wires in parallel. 
If you know that the voltage between the poles of the battery is 12.8 V, the total current can 
by calculated by using Ohm’s law: 12.8 V/0.99 Ω = 12.97 A. The power dissipated by the rear 
window heating equals 12.8 V × 12.97 A = 165.97 W, assuming that the resistance of the cables 
connecting the rear window defogger to the battery is neglected. It is left to the reader to cal-
culate what happens if one wire is broken.

2.3  SERIES/PARALLEL COMBINATIONS

Most practical circuits consist of resistors which are interconnected in both series and par-
allel forms. The simplest method of solving such a circuit is to reduce the parallel branches 
to their equivalent resistance values and hence reduce the circuit to a simple series arrange-
ment. This is best illustrated by means of a worked example.

WORKED EXAMPLE 2.6

Q For the circuit shown in Figure 2.10, calculate (a) the current drawn from the supply, (b) the 
current through the 6 Ω resistor and (c) the power dissipated by the 5.6 Ω resistor.

The first step in the solution is to sketch and label the circuit diagram, clearly showing all 
currents flowing and identifying each part of the circuit as shown in Figure 2.11. Also note that 
since there is no mention of internal resistance it may be assumed that the source of emf is ideal.
(a) To determine the current I drawn from the battery we need to know the total resistance 

RAC of the circuit.

 
RBC =

´
+

æ
è
ç

ö6 4
6 4
W W
W W

using
product

sum
for two resistors in parallel

øø
÷ = 2 4. W

 

The original circuit may now be redrawn as in Figure 2.12.

 R R R

I
E

R

AC AB BC

AC

= + = + =

= = =

(resistors in series)

64
8

A

5 6 2 4 8

8

. . W  

6 Ω

4 Ω

5.6 Ω

64 V

E

Figure 2.10  The circuit diagram for Worked Example 2.6
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(b) To find the current I1 through the 6 Ω resistor we may use either of two methods. Both of 
these are now demonstrated.

p.d. method:

 V IR

I
V
R

BC BC

BC

= = ´ =

= = =

(Fig. 2.12) V

(Fig. 2.11)

8 2 4 19 2

19 2
6

3 21
1

. .

.
. AA

 

This answer may be checked as follows:

 I
V
R

I I I

BC
1

2

1 2

4 8

3 2 4 8 8

= =

= + = + =

=
19.2

4
A

and since A

.

. .

 

which agrees with the value found in (a).

current division method:
Considering Figure 2.11, the current I splits into the components I1 and I2 according to the 

ratio of the resistor values. However, you must bear in mind that the larger resistor carries the 
smaller proportion of the total current.

5.6 Ω

6 Ω

A

I
I2

I1

B

4 Ω

C

R1

R2

E 64 V

Figure 2.11  The circuit diagram for Worked Example 2.6, with labelling

5.6 Ω 2.4 Ω

VAB VBC

64 VE

A B C

I

Figure 2.12  The circuit diagram for Worked Example 2.6, redrawn
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 I
R

R R
I1

2

1 2

4
6 4

8 3 2=
+

´ =
+

´ = . A  

(c) P I RAB AB= = ´ ´ =2 8 8 5 6 358 4A A W. .W

 Alternatively, P V IAB AB=  

 where V

W

V E V

P
AB BC

AB

= - = - =
= ´ =

64 19 2 44 8

44 8 8 358 4

. .

. .

 

WORKED EXAMPLE 2.7

Q For the circuit of Figure 2.13 calculate (a) the current drawn from the source, (b) the p.d. 
across each resistor, (c) the current through each resistor and (d) the power dissipated by the 
5 Ω resistor.

The first step in the solution is to label the diagram clearly with letters at the junctions and 
identifying p.d.s and branch currents. This is shown in Figure 2.14.

(a) 

R
RR

R R
R

R R R R

AB

BC

CD

=
+

= ´
+

=

=

= + + = + + =

1 2

1 2

4 5 6

4 6
4 6

2 4

5

1 1 1 1 1
3

1
6

1
8

8

. W

W
++ + =

= =

= + + = + + =

= =

4 3
24

15
24

24
15

1 6

2 4 5 1 6 9

1

S

R

R R R R

I
E
R

CD

AB BC CD

.

. .

W

W
88
9

2= A

R1
R3

R4

R5

R6

R2

4 Ω

6 Ω

3 Ω

6 Ω

8 Ω

5 Ω

E

18 V

Figure 2.13  The circuit diagram for Worked Example 2.7
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(b) The circuit has been reduced to its series equivalent as shown in Figure 2.15. Using this equiv-
alent circuit it is now a simple matter to calculate the p.d. across each section of the circuit.

 V IRAB AB= = ´ =2 2.4 V4 8.  

(this p.d. is common to both R1 and R2)

 V IRBC BC= = ´ =2 5 V10  

 V IRCD CD= = ´ =2 1.6 V3 2.  

(this p.d. is common to R4, R5 and R6)
(c)

I
V
R
AB

1
1

4 8
4

1 2= = =.
. A I

R
R R

I

I
R

R R
I

1
2

1 2

2
1

1 2

6
10

2 1 2

4
10

2 0 8

=
+

´ = ´ =

=
+

´ = ´ =

.

.

A

A

I
V
R
AB

2
2

4 8
6

0 8= = =.
. A

I I3 2= = A 1 1 1 1 1
3

1
6

1
8

8 4 3
24

15
244 5 6R R R RCD

= + + = + + = + + = S

R1
R3

R4

R5

R6

R2

4 Ω

6 Ω

3 Ω

6 Ω

8 Ω

5 Ω

E

18 V

VAB VBC VCD

I5
I3

I4

I1

I2

I6

A B
C

D

I

Figure 2.14  The circuit diagram for Worked Example 2.7, with labelling

I

E

18 V

VAB VBC VCD

2.4 Ω 5 Ω 1.6 Ω
A DB C

Figure 2.15  The circuit diagram for Worked Example 2.7, redrawn
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I
V
R
CD

4
4

3 2
3

1 067= = =.
. A I

I

I

4

5

6

8
15

2 1 067

4
15

2 0 533

3
15

2 0 4

= ´ =

= ´ =

= ´ =

.

.

.

A

A

A

I
V
R
CD

5
5

3 2
6

0 533= = =.
. A

I
V
R
CD

6
6

3 2
8

0 4= = =.
. A

 Notice that the p.d. method is an easier and less cumbersome one than current division 
when more than two resistors are connected in parallel.

(d) P I R V I
V
R

BC
BC

3 3
2

3 3

2

3

= or or  and using the first of these alternative equations:

 P3 2 2 5 20= ´ ´ = W  

It is left to the reader to confirm that the other two power equations above yield the same 
answer.

There are several websites where you can easily calculate series/parallel combinations of several 
resistors:

• https://www .digikey .com /en /resources /conversion -calculators /conversion -calculator -parallel 
-and -series -resistor (series and parallel calculation)

• https://www .allaboutcircuits .com /tools /parallel -resistance -calculator/ (parallel calculation)
• https://www .amplifiedparts .com /tech -articles /resistor -parallel -series -calculator (series and 

parallel calculation and combinations thereof)

The electrical behaviour of the human body is quite complex. In order to predict and control 
electrical phenomena, simplified models are used in which mathematical equations can approxi-
mate the relationship between voltage and current. The human body is actually a conductor of 
the current, so it can be modelled with resistors. Figure 2.16 shows a simplified model of series/
parallel resistor combination. The arms, legs, trunk and head all have their own characteristic 
resistance. The resistor values not only depend on the length and diameter of that human body 
part, but also on the balance between muscles and blood. The resistance can be measured with 
a multimeter, by applying a small voltage and measuring the corresponding current. The ratio of 
both numbers then indicates the resistance.
Obviously, the current that runs through the torso also passes through the heart…

https://www.digikey.com
https://www.digikey.com
https://www.allaboutcircuits.com
https://www.amplifiedparts.com
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2.4  KIRCHHOFF’S CURRENT LAW

We have already put this law into practice, though without stating it explicitly. The law 
states that the algebraic sum of the currents at any junction of a circuit is zero. Another, 
and perhaps simpler, way of stating this is to say that the sum of the currents arriving at a 
junction is equal to the sum of the currents leaving that junction. Thus we have applied the 

I2

I3

I1

I4

I5

Figure 2.16  The human body modelled with resistors

Figure 2.17  Kirchhoff’s current law
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law with parallel circuits, where the assumption has been made that the sum of the branch 
currents equals the current drawn from the source. Expressing the law in the form of an 
equation we have:

 å =I 0  (2.9)

where the symbol ∑ means ‘the sum of’.
Figure 2.17 illustrates a junction within a circuit with a number of currents arriving and 

leaving the junction. Applying Kirchhoff’s current law yields:

 I I I I I1 2 3 4 5 0- + + - =  

where ‘+’ signs have been used to denote currents arriving and ‘–’ signs for currents leaving 
the junction. This equation can be transposed to comply with the alternative statement for 
the law, thus:

 I I I I I1 3 4 2 5+ + = +  

Gustav Robert Kirchhoff (1824–1887) was a German physicist. Besides his laws in the field of 
electrical engineering, he also performed research in the domain of spectroscopy and radiation 
of black bodies under heating. Together with the German chemist Robert Bunsen (1811–1899), 
he co-discovered the chemical elements cesium and rubidium.

WORKED EXAMPLE 2.8

Q For the network shown in Figure 2.18 calculate the values of the marked currents.

 

Junction A:

Junction C: A

A A

A

50 AI

I I

I

I

2

1 2

1

1

40 10

80

50 80

30

= + =
+ =

+ =
=

JJunction D:

Junction E:

A

Ju

110 AI

I I

I

3

4 3

4

80 30

25

110 25 85

= + =
+ =

= - =
nnction F: A

A A

A

I I

I

I

5 4

5

5

30

85 30

30 85 55

+ =
+ =

= - = -

 

40 A

10 A
80 A

30 A

25 A

A

B C D

I2

I1

I5

I4

I3

F

E

Figure 2.18  The circuit diagram for Worked Example 2.8
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Note: The minus sign in the last answer tells us that the current I5 is actually flowing away from 
the junction rather than towards it as shown.

2.5  KIRCHHOFF’S VOLTAGE LAW

This law also has already been used – in the explanation of p.d. and in the series and series/
parallel circuits. This law states that in any closed network the algebraic sum of the emfs is 
equal to the algebraic sum of the p.d.s taken in order about the network. Once again, the 
law sounds very complicated, but it is really only common sense, and is simple to apply. 
So far, it has been applied only to very simple circuits, such as resistors connected in series 
across a source of emf. In this case we have said that the sum of the p.d.s is equal to the 
applied emf (e.g. V1 + V2 = E). However, these simple circuits have had only one source of 
emf, and could be solved using simple Ohm’s law techniques. When more than one source 
of emf is involved, or the network is more complex, then a network analysis method must 
be used. Kirchhoff’s is one of these methods.

Expressing the law in mathematical form:

 S SE IR=  (2.10)

A generalised circuit requiring the application of Kirchhoff’s laws is shown in Figure 2.19. 
Note the following:

 
 1 The circuit has been labelled with letters so that it is easy to refer to a particular loop and 

the direction around the loop that is being considered. Thus, if the left-hand loop is consid-
ered, and you wish to trace a path around it in a clockwise direction, this would be referred 
to as ABEFA. If a counterclockwise path was required, it would be referred to as FEBAF or 
AFEBA.

F E D

CA B

R2

E1

I2I1

R1

R3

(I1 � I2)

E2

Figure 2.19  Kirchhoff’s voltage law
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 2 Current directions have been assumed and marked on the diagram. As was found in the 
previous worked example (2.8), it may well turn out that one or more of these currents 
actually flows in the opposite direction to that marked. This result would be indicated by 
a negative value obtained from the calculation. However, to ensure consistency, make the 
initial assumption that all sources of emf are discharging current into the circuit; i.e. current 
leaves the positive terminal of each battery and enters at its negative terminal. The current 
law is also applied at this stage, which is why the current flowing through R3 is marked as (I1 + 
I2) and not as I3. This is an important point since the solution involves the use of simultaneous 
equations, and the fewer the number of ‘unknowns’ the simpler the solution. Thus mark-
ing the third branch current in this way means that there are only two ‘unknowns’ to find, 
namely I1 and I2. The value for the third branch current, I3, is then simply found by using the 
values obtained for I1 and I2.

 3 If a negative value is obtained for a current then the minus sign must be retained in any sub-
sequent calculations. However, when you quote the answer for such a current, make a note 
to the effect that it is flowing in the opposite direction to that marked, e.g. from C to D.

 4 When tracing the path around a loop, concentrate solely on that loop and ignore the remain-
der of the circuit. Also note that if you are following the marked direction of current then 
the resulting p.d.(s) are assigned positive values. If the direction of ‘travel’ is opposite to the 
current arrow then the p.d. is assigned a negative value.

Let us now apply these techniques to the circuit of Figure 2.19.
Consider first the left-hand loop in a clockwise direction. Tracing around the loop it can 

be seen that there is only one source of emf within it (namely E1). Thus the sum of the emfs 
is simply E1 volt. Also, within the loop there are only two resistors (R1 and R2) which will 
result in two p.d.s, I1R1 and (I1 + I2)R3 volt. The resulting loop equation will therefore be:

 ABEFA :E I R I I R1 1 1 1 2 3= + +( )  [1]

Now taking the right-hand loop in a counterclockwise direction it can be seen that again 
there is only one source of emf and two resistors. This results in the following loop equation:

 CBEDC :E I R I I R2 2 2 1 2 3= + +( )  [2]

Finally, let us consider the loop around the edges of the diagram in a clockwise direction. 
This follows the ‘normal’ direction for E1 but is opposite to that for E2, so the sum of the 
emfs is E1 – E2 volt. The loop equation is therefore

 ABCDEFA :E E I R I R1 2 1 1 2 2- = -  [3]

Since there are only two unknowns, only two simultaneous equations are required, and 
three have been written. However, it is a useful practice to do this as the ‘extra’ equa-
tion may contain more convenient numerical values for the coefficients of the ‘unknown’ 
currents.

The complete technique for the applications of Kirchhoff’s laws becomes clearer by the 
consideration of a worked example containing numerical values.



48 D.C. Circuits 

WORKED EXAMPLE 2.9

Q For the circuit of Figure 2.20 determine the value and direction of the current in each branch, 
and the p.d. across the 10 Ω resistor.

The circuit is first labelled and current flows identified and marked by applying the current 
law. This is shown in Figure 2.21.

ABEFA:

 
10 4 3 2

6 3 2
1 2

1 2

- = ´ - ´
= -
W WI I

I IV
 [1]

ABCDEFA:

 10 3 10 3 10 10 13 102 1 2 2 1 2 1 2V = ´ + ´ +( ) = + + = +W WI I I I I I I I  [2]

R1

E2E1

R2

R3 10 Ω

2 Ω3 Ω

10 V 4 V

Figure 2.20  The circuit diagram for Worked Example 2.9

10 Ω

2 Ω3 Ω

10 V 4 V

I1

I2

(I1 � I2)A B C

F E D

Figure 2.21  The circuit diagram for Worked Example 2.9, with labelling
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BCDEB:

 4 2 10 2 10 10 10 122 1 2 2 1 2 1 2V = ´ + ´ +( ) = + + = +W WI I I I I I I I  [3]

Inspection of Equations [1] and [2] shows that if Equation [1] is multiplied by 5, then the 
coefficient of I2 will be the same in both equations. Thus, if the two are now added, the term 
containing I2 will be eliminated, and hence a value can be obtained for I1.

 

30 15 10 1 5

10 13 10 2

40 28

40
28

1 4

1 2

1 2

1

1

= - [ ]´
= + [ ]
=

= =

I I

I I

I

I





. 33 A

 

Substituting this value for I1 into Equation [3] yields:

 
4 14 29 12

12 4 14 29

10 29
12

0 86

2

2

2

= +
= -

= - = -

.

.

.
.

I

I

I A

 

 
I I

V I I RCD CD

1 2

2 2

1 43 0 86 0 57

0 57 10 5 70

+( ) = - =
= +( ) × = ´ =

. . .

. .

A

V

 

WORKED EXAMPLE 2.10

Q For the circuit shown in Figure 2.22, use Kirchhoff’s laws to calculate (a) the current flowing 
in each branch of the circuit and (b) the p.d. across the 5 Ω resistor.

Firstly the circuit is sketched and labelled, and currents identified using Kirchhoff’s current 
law. This is shown in Figure 2.23.
(a) We can now consider three loops in the circuit and write down the corresponding equations 

using Kirchhoff’s voltage law:

5 Ω

1.5 Ω 2 Ω

6 V 4.5 V

Figure 2.22  The circuit diagram for Worked Example 2.10
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ABEFA:

 E IR I I R

I I I I I I I
1 1 1 1 2 3

1 1 2 1 1 2 16 1 5 5 1 5 5 5 6 5 5

= + +( )
= ´ + ´ +( ) = + + = +V . . . II2

 [1]

CBEDC:

 E I R I I R

I I I I I I I I
2 2 2 1 2 3

2 1 2 2 1 2 1 24 5 2 5 2 5 5 5 7

= + +( )
= ´ + ´ +( ) = + + = +. V

 [2]

ABCDEFA:

 
E E IR I R

I I

I I

1 2 1 1 2 2

1 2

1 2

6 4 5 1 5 2

1 5 1 5 2

- = -
- = ´ - ´

= -
. .

. .V

 [3]

Now, any pair of these three equations may be used to solve the problem, using the technique 
of simultaneous equations. We shall use Equations [1] and [3] to eliminate the unknown current 
I2, and hence obtain a value for current I1. To do this we can multiply [1] by 2 and [3] by 5, and 
then add the two modified equations together, thus:

 

12 13 10 1 2

7 5 7 5 10
19 5 20 5

3 5

1 2

1 2

1

= + ¼¼¼¼[ ]´
= -
=

[ ]´
I I

I I
I

. .
. .



hencee, AI1
19 5
20 5

0 951= =.
.

.

 

Substituting this value for I1 into Equation [3] gives:

1 5 1 5 0 951 2

1 5 1 427 2

2 1 427 1 5 0 073

2

2

2

. . .

. .

. . .

= ´( ) -
= -

= - = -

I

I

Ihence,

aand AI2 0 037= - .

 

Note: The minus sign in the answer for I2 indicates that this current is actually flowing in the 
opposite direction to that marked in Figure 2.23. This means that battery E1 is both supplying 
current to the 5 Ω resistor and charging battery E2.

Current through 5 Ω resistor = I1 + I2 = 0.951 A + (–0.037 A) = 0.914 A

(b) To obtain the p.d. across the 5 Ω resistor we can either subtract the p.d. (voltage drop) 
across R1 from the emf E1 or add the p.d. across R2 to emf E2, because E2 is being charged. A 
third alternative is to multiply R3 by the current flowing through it. All three methods will be 
shown here, and, provided that the same answer is obtained each time, the correctness of 
the answers obtained in part (a) will be confirmed.

 V E IRBE = - = - ´( ) = - =1 1 1 6 0 951 1 5 6 1 427 4 573. . . . V  

or:

 V E I RBE = + = + ´( ) = + =2 2 2 4 5 0 037 2 4 5 0 074 4 574. . . . . V  
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or:

 V I I RBE = +( ) = ´ =1 2 3 0 914 5 4 57. . V  

The very small differences between these three answers are due simply to rounding errors, and 
so the answers to part (a) are verified as correct.

2.6  POTENTIOMETER

In addition to the ordinary resistors described above, there are also variable resistors. They 
are designed so that their resistance can be easily changed by the position of a mechanically 
movable component. This three-terminal resistor with a sliding or rotating contact forms 
an adjustable voltage divider and is called a potentiometer. There are slide potentiometers 
(adjusted by sliding the wiper lift or right), thumbwheel potentiometers (adjusted by means 
of a small thumbwheel), trimmer potentiometers (to be adjusted once or infrequently for 
fine-tuning) and even multiturn potentiometers (with a spiral element). Each time a contact 
point is moved across a fixed resistance, both that point of contact and both ends have an 
electrical contact, hence the name three-terminal. These three form a ratio of resistances, as 
in the voltage divider described above. Potentiometers often appear as a volume knob on a 
television or radio speaker. There the logarithmic type of potentiometer is used, because the 
amplitude sensitivity of the human ear is also logarithmic.

A slidewire potentiometer is used for the accurate measurement of small voltages. In its 
simplest form it comprises a metre length of wire held between two brass or copper blocks 
on a base board, with a graduated metre scale beneath the wire. Connected to one end of the 
wire is a contact, the other end of which can be placed at any point along the wire. A 2 V 
cell causes current to flow along the wire. This arrangement, including a voltmeter, is shown 
in Figure 2.24. The wire between the blocks A and B must be of uniform cross-section and 
resistivity throughout its length, so that each millimetre of its length has the same resistance 
as the next. Thus it may be considered as a number of equal resistors connected in series 
between points A and B. In other words it is a continuous potential divider.

Let us now conduct an imaginary experiment. If the movable contact is placed at point A 
then both terminals of the voltmeter will be at the same potential, and it will indicate zero 
volts. If the contact is now moved to point B then the voltmeter will indicate 2 V. Consider 

1.5 Ω

5 Ω
R3

2 Ω
R2R1

(I1 � I2)

6 V 4.5 VE1 E2

I1 I2A B C

F E D

Figure 2.23  The circuit diagram for Worked Example 2.10, with labelling
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now the contact placed at point C which is midway between A and B. In this case it is 
exactly halfway along our ‘potential divider’, so it will indicate 1 V. Finally, placing the 
contact at a point D (say 70 cm from A), the voltmeter will indicate 1.4 V. These results can 
be summarised by the statement that there is a uniform potential gradient along the wire. 
Therefore, the p.d. ‘tapped off’ by the moving contact is in direct proportion to the distance 
travelled along the wire from point A. Since the source has an emf of 2 V and the wire is of 
1 metre length, the potential gradient must be 2 V/m. In general we can say that

 V
AC
AB

EAC =  (2.11)

 

where AC distance travelled along wire

AB total length of the wire

=
=

E == the source voltage

 

Utilising these facts the simple circuit can be modified to become a measuring instrument, 
as shown in Figure 2.25. In this case the voltmeter has been replaced by a galvo, a device 
to measure electrical current. The movable contact can be connected either to the cell to be 
measured or the standard cell, via a switch. Using this system the procedure would be as 
follows:

 
 1 The switch is moved to position ‘1’ and the slider moved along the wire until the galvo indi-

cates zero current. The position of the slider on the scale beneath the wire is then noted. 
This distance from A represents the emf Es of the standard cell.

E 2 V

BA

V

C D

Figure 2.24  A slidewire potentiometer

A B

Es

Ex

2 V

G

�2�

�1�

Figure 2.25  A slidewire potentiometer measuring instrument
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 2 With the switch in position ‘2’, the above procedure is repeated, whereby distance along the 
scale represents the emf Ex of the cell to be measured.

 3 The value of Ex may now be calculated from

 E Ex s= ´AD
AC

 

where AC represents the scale reading obtained for the standard cell and AD the scale read-
ing for the unknown cell.

It should be noted that this instrument will measure the true emf of the cell since the read-
ings are taken when the galvo carries zero current (i.e. no current is being drawn from the 
cell under test), hence there will be no p.d. due to its internal resistance.

WORKED EXAMPLE 2.11

Q A slidewire potentiometer when used to measure the emfs of two cells provided balance con-
ditions at scale settings of (a) 600 mm and (b) 745 mm. If the standard cell has an emf of 1.0186 
V and a scale reading of 509.3 mm then determine the values for the two cell emfs.

Let Es, ℓ 1 and ℓ 2 represent the scale readings for the standard cell and cells 1 and 2 respec-
tively. Hence:

   





s s

s
s

E

E E

= = = =

= ´ =

509 3 600 745 1 0186

600
509

1 2

1
1

. .

.

mm; mm; mm; V

33
1 0186 1 2´ =. . V

 

 E E
s

s2
2 745

509 3
1 0186 1 49= ´ = ´ =

 .
. . V  

It is obviously inconvenient to have an instrument that needs to be one metre in length and 
requires the measurements of lengths along a scale. In the commercial version of the instru-
ment the long wire is replaced by a series of precision resistors plus a small section of wire 
with a movable contact. The standard cell and galvo would also be built-in features. Also, 
to avoid the necessity for separate calculations, there would be provision for standardising 
the potentiometer. This means that the emf values can be read directly from dials on the 
front of the instrument.

SUMMARY OF EQUATIONS

Resistors in series: R R R R= + + +1 2 3 

Resistors in parallel: 1 1 1 1

1 2 3R R R R
= + + +

and for only two resistors in parallel, R
RR

R R
=

+
æ
è
ç

ö
ø
÷

1 2

1 2

product
sum
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Potential divider: V
R

R R
E1

1

1 2

=
+

´

Current divider: I
R

R R
I1

2

1 2

=
+

´

Kirchhoff’s laws: ∑ I = 0 (sum of the currents at a junction = 0)

∑ E = ∑ IR (sum of the emfs = sum of the p.d.s, in order)

Slidewire potentiometer: V
AC
AB

EAC = ´

ASSIGNMENT QUESTIONS

 1 Two 560 Ω resistors are placed in series across a 400 V supply. Calculate the current 
drawn.

 2 When four identical hotplates on a cooker are all in use, the current drawn from a 240 
V supply is 33 A. Calculate (a) the resistance of each hotplate, (b) the current drawn 
when only three plates are switched on. The hotplates are connected in parallel.

 3 Calculate the total current when six 120 Ω torch bulbs are connected in parallel across 
a 9 V supply.

 4 Two 20 Ω resistors are connected in parallel and this group is connected in series with 
a 4 Ω resistor. What is the total resistance of the circuit?

 5 A 12 Ω resistor is connected in parallel with a 15 Ω resistor and the combination is 
connected in series with a 9 Ω resistor. If this circuit is supplied at 12 V, calculate (a) 
the total resistance, (b) the current through the 9 Ω resistor and (c) the current through 
the 12 Ω resistor.

 6 For the circuit shown in Figure 2.26 calculate the values for (a) the current through 
each resistor, (b) the p.d. across each resistor and (c) the power dissipated by the 20 Ω 
resistor.

 7 Determine the p.d. between terminals E and F of the circuit in Figure 2.27.
 8 For the circuit of Figure 2.28 calculate (a) the p.d. across the 8 Ω resistor, (b) the cur-

rent through the 10 Ω resistor and (c) the current through the 12 Ω resistor.
 9 Three resistors of 5 Ω, 6 Ω and 7 Ω respectively are connected in parallel. This combi-

nation is connected in series with another parallel combination of 3 Ω and 4 Ω. If the 
complete circuit is supplied from a 20 V source, calculate (a) the total resistance, (b) 
the total current, (c) the p.d. across the 3 Ω resistor and (d) the current through the 4 
Ω resistor.

 10 Two resistors of 18 Ω and 12 Ω are connected in parallel and this combination is con-
nected in series with an unknown resistor Rx. Determine the value of Rx if the com-
plete circuit draws a current of 0.6 A from a 12 V supply.

 11 Three loads of 24 A, 8 A, and 12 A are supplied from a 200 V source. If a motor of 
resistance 2.4 Ω is also connected across the supply, calculate (a) the total resistance 
and (b) the total current drawn from the supply.

 12 Two resistors of 15 Ω and 5 Ω are connected in series with a resistor Rx and the com-
bination is supplied from a 240 V source. If the p.d. across the 5 Ω resistor is 20 V 
calculate the value of Rx.

 13 A 200 V, 0.5 A lamp is to be connected in series with a resistor across a 240 V supply. 
Determine the resistor value required for the lamp to operate at its correct voltage.
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 14 A 12 Ω and a 6 Ω resistor are connected in parallel across the terminals of a battery of 
emf 6 V and internal resistance 0.6 Ω. Sketch the circuit diagram and calculate (a) the 
current drawn from the battery, (b) the terminal p.d. and (c) the current through the 6 
Ω resistor.

8 Ω

8 Ω

8 Ω

8 Ω

16 Ω16 Ω20 V

B

A C

D
F

E

Figure 2.27  The circuit diagram for Assignment Question 7

8 Ω

12 Ω

18 Ω

10 Ω

24 V

Figure 2.28  The circuit diagram for Assignment Question 8

15 Ω

20 Ω
16 Ω

10 Ω

8 Ω

50 V

Figure 2.26  The circuit diagram for Assignment Question 6
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 15 An electric cooker element consists of two parts, each having a resistance of 18 Ω, 
which can be connected (a) in series, (b) in parallel or (c) using one part only. Calculate 
the current drawn from a 240 V supply for each connection.

 16 A cell of emf 2 V has an internal resistance 0.1 Ω. Calculate the terminal p.d. when (a) 
there is no load connected and (b) a 2.9 Ω resistor is connected across the terminals. 
Explain why these two answers are different.

 17 A battery has a terminal voltage of 1.8 V when supplying a current of 9 A. This voltage 
rises to 2.02 V when the load is removed. Calculate the internal resistance.

 18 Four resistors of values 10 Ω, 20 Ω, 40 Ω and 40 Ω are connected in parallel across the 
terminals of a generator having an emf of 48 V and internal resistance 0.5 Ω. Sketch 
the circuit diagram and calculate (a) the current drawn from the generator, (b) the p.d. 
across each resistor and (c) the current flowing through each resistor.

 19 Calculate the p.d. across the 3 Ω resistor shown in Figure 2.29 given that VAB is 11 V.
 20 Calculate the p.d. VAB in Figure 2.30.
 21 For the network shown in Figure 2.31, calculate (a) the total circuit resistance, (b) the 

supply current, (c) the p.d. across the 12 Ω resistor, (d) the total power dissipated in the 
whole circuit and (e) the power dissipated by the 12 Ω resistor.

 22 A circuit consists of a 15 Ω and a 30 Ω resistor connected in parallel across a battery 
of internal resistance 2 Ω. If 60 W is dissipated by the 15 Ω resistor, calculate (a) the 
current in the 30 Ω resistor, (b) the terminal p.d. and emf of the battery, (c) the total 
energy dissipated in the external circuit in 1 minute and (d) the quantity of electricity 
through the battery in 1 minute.

 23 Use Kirchhoff’s laws to determine the three branch currents and the p.d. across the 5 
Ω resistor in the network of Figure 2.32.

 24 Determine the value and direction of current in each branch of the network of Figure 
2.33, and the power dissipated by the 4 Ω load resistor.

 25 Two batteries A and B are connected in parallel (positive to positive) with each other 
and this combination is connected in parallel with a battery C; this is in series with a 
25 Ω resistor, the negative terminal of C being connected to the positive terminals of A 
and B. Battery A has an emf of 108 V and internal resistance 3 Ω, and the correspond-
ing values for B are 120 V and 2 Ω. Battery C has an emf of 30 V and negligible inter-
nal resistance. Sketch the circuit and calculate (a) the value and direction of current in 
each battery and (b) the terminal p.d. of A.

 26 For the circuit of Figure 2.34 determine (a) the current supplied by each battery, (b) the 
current through the 15 Ω resistor and (c) the p.d. across the 10 Ω resistor.

 27 For the network of Figure 2.35, calculate the value and direction of all the branch cur-
rents and the p.d. across the 80 Ω load resistor.

 28 The slidewire potentiometer instrument shown in Figure 2.36 when used to measure 
the emf of cell Ex yielded the following results:

 a. galvo current was zero when connected to the standard cell and the movable contact 
was 552 mm from A;

 b. galvo current was zero when connected to Es and the movable contact was 647 mm 
from A.
Calculate the value of Ex, given Es = 1.0183 V.
It was found initially that Ex was connected the opposite way round and a balance 
could not be obtained. Explain this result.
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10 Ω 5 Ω

2 Ω

15 Ω

15 Ω

A

B

100 V

Figure 2.30  The circuit diagram for Assignment Question 20

4 Ω 1 Ω

3 Ω2 Ω4 Ω

A

B

Figure 2.29  The circuit diagram for Assignment Question 19

5 Ω

4 Ω9 Ω

6 Ω

2 Ω

12 Ω200 V

Figure 2.31  The circuit diagram for Assignment Question 21
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2 Ω

20 V 10 V

Figure 2.32  The circuit diagram for Assignment Question 23
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2 Ω4 Ω

20 V

10 Ω 15 Ω

10 V

Figure 2.34  The circuit diagram for Assignment Question 26

100 Ω

100 V

80 Ω

50 Ω

80 V

Figure 2.35  The circuit diagram for Assignment Question 27

A B

Es

Ex

2 V

G

Figure 2.36  The circuit diagram for Assignment Question 28

6.5 V8 V

2 Ω 1 Ω

4 Ω

Figure 2.33  The circuit diagram for Assignment Question 24
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SUGGESTED PRACTICAL ASSIGNMENTS

Note: Component values and specific items of equipment when quoted here are only sugges-
tions. Those used in practice will of course depend upon availability within your institution.

Assignment 1

To investigate Ohm’s law and Kirchhoff’s laws as applied to series and parallel circuits.

Apparatus

Three resistors of different values

1 × variable d.c. power supply unit (psu)
1 × ammeter
1 × voltmeter

Method

 
 1 Connect the three resistors in series across the terminals of the psu with the ammeter con-

nected in the same circuit. Adjust the current (as measured with the ammeter) to a suitable 
value. Measure the applied voltage and the p.d. across each resistor. Note these values and 
compare the p.d.s to the theoretical (calculated) values.

 2 Reconnect your circuit so that the resistors are now connected in parallel across the psu. 
Adjust the psu to a suitable voltage and measure, in turn, the current drawn from the psu and 
the three resistor currents. Note these values and compare to the theoretical values.

 3 Write an assignment report and in your conclusions justify whether the assignment confirms 
Ohm’s law and Kirchhoff’s laws, allowing for experimental error and resistor tolerances.

Assignment 2

To investigate the application of Kirchhoff’s laws to a network containing more than one 
source of emf.

Apparatus

2 × variable d.c. psu
3 × different value resistors
1 × ammeter
1 × voltmeter

Method

 
 1 Connect the circuit as shown in Figure 2.37. Set psu 1 to 2 V and psu 2 to 4 V. Measure, in 

turn, the current in each limb of the circuit, and the p.d. across each resistor. For each of the 
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three possible loops in the circuit compare the sum of the p.d.s measured with the sum of 
the emfs. Carry out a similar exercise regarding the three currents.

 2 Reverse the polarity of psu 2 and repeat the above.
 3 Write the assignment report and in your conclusions justify whether or not Kirchhoff’s laws 

have been verified for the network.

Assignment 3

To investigate potential and current dividers.

Apparatus

2 × decade resistance boxes
1 × ammeter
1 × voltmeter
1 × d.c. psu

Method

 
 1 Connect the resistance boxes in series across the psu. Adjust one of them (R1) to 3 kΩ 

and the other (R2) to 7 kΩ. Set the psu to 10 V and measure the p.d. across each resistor. 
Compare the measured values with those predicted by the voltage divider theory.

 2 Reset both R1 and R2 to two or more different values and repeat the above procedure.
 3 Reconnect the two resistance boxes in parallel across the psu and adjust the current drawn 

from the psu to 10 mA. Measure the current flowing through each resistance and compare 
to those values predicted by the current division theory.

 4 Repeat the procedure of 3 above for two more settings of R1 and R2, but let one of these 
settings be such that R1 = R2.

Assignment 4

Use a slidewire potentiometer to measure the emf of a number of primary cells (nominal emf 
no more than 1.5 V).

R1 R2

R3psu 1 psu 2

� �

� �

Figure 2.37  The circuit diagram for Practical Assignment 2
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Chapter 3

Electric Fields and Capacitors

LEARNING OUTCOMES

This chapter deals with the laws and properties of electric fields and their application to electric 
components known as capacitors.

On completion of this chapter you should be able to:

 1 Understand the properties of electric fields and insulating materials.
 2 Carry out simple calculations involving these properties.
 3 Carry out simple calculations concerning capacitors, and capacitors connected in series, 

parallel and series/parallel combinations.
 4 Describe the construction and electrical properties of the different types of capacitor.
 5 Understand the concept of energy storage in an electric field, and perform simple related 

calculations.

3.1  COULOMB’S LAW

A force exists between charged bodies. A force of attraction exists between opposite charges 
and a force of repulsion between like polarity charges. Coulomb’s law states that the force, 
expressed in newtons, is directly proportional to the product of the charges and is inversely 
proportional to the square of the distance between their centres. So for the two bodies 
shown in Figure 3.1, this would be expressed as

 F
Q Q

d
µ 1 2

2  

In order to obtain a value for the force, a constant of proportionality must be introduced. 
In this case it is the permittivity of free space, 𝛆0. This concept of permittivity is dealt with 
later in this chapter, and need not concern you for the time being. The expression for the 
force in newtons becomes

Electric Fields and Capacitors

d

Q1 Q2

Figure 3.1  Attraction force between two bodies
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Electric Fields and Capacitors

 F
Q Q

d
= 1 2

0
2e

 (3.1)

This type of relationship is said to follow an inverse square law because F ∝ 1/d2. The 
consequence of this is that if the distance of separation is doubled, then the force will be 
reduced by a factor of 4 times. If the distance is increased by a factor of 4 times, the force 
will be reduced by a factor of 16 times, etc. The practical consequence is that although the 
force can never be reduced to zero, it diminishes very rapidly as the distance of separation is 
increased. This will continue until a point is reached where the force is negligible relative to 
other forces acting within the system.

Isaac Newton (1643–1727) was an English physicist and mathematician, studying the differen-
tial and integral calculus and developing a theory of colours based on the prism, turning white 
light into a visible spectrum. He also described gravity and Newton’s three laws, describing the 
movement and equilibrium of forces. Therefore he is called the founding father of the classical 
mechanics.

3.2  ELECTRIC FIELDS

You are probably more familiar with the concepts and effects of magnetic and gravitational 
fields. For example, you have probably conducted simple experiments using bar magnets 
and iron filings to discover the shape of magnetic fields, and you are aware that forces exist 
between magnetised bodies. You also experience the effects of gravitational forces con-
stantly, even though you probably do not consciously think about them.

Both of these fields are simply a means of transmitting the forces involved, from one body 
to another. However, the fields themselves cannot be detected by the human senses, since 
you cannot see, touch, hear or smell them. This tends to make it more difficult to understand 
their nature. An electric field behaves in the same way as these other two examples, except 
that it is the method by which forces are transmitted between charged bodies. In all three 
cases we can represent the appropriate field by means of arrowed lines. These lines are usu-
ally referred to as the lines of force.

To illustrate these points, consider Figure 3.2 which shows two oppositely charged spheres 
with a small positively charged particle placed on the surface of Q1. Since like charges repel 
and unlike charges attract each other, the small charged particle will experience a force of 
repulsion from Q1 and one of attraction from Q2.

The force of repulsion from Q1 will be very much stronger than the force of attraction 
from Q2 because of the relative distance involved. The other feature of the forces is that they 
will act so as to be at right angles to the charged surfaces. Hence, there will be a resultant 

��

�q

Q1 Q2

F2

F2 F2

F2

F1
F1 F1

F1

F F F F

Figure 3.2  Two oppositely charged spheres
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force acting on the particle. Assuming that it is free to move, it will start to move in the 
direction of this resultant force. For the sake of clarity, the distance moved in this direc-
tion is greatly exaggerated in the diagram. However, when the particle moves to the new 
position, force F1 will have decreased and F2 will have increased. In addition, the direction 
of action of each force will have changed. Thus the direction of action of the resultant will 
have changed, but its magnitude will have remained constant. The particle will now respond 
to the new resultant force F. This is a continuous process and the particle will trace out a 
curved path until it reaches the surface of Q2. If this ‘experiment’ was carried out for a 
number of starting points at the surface of Q1, the paths taken by the particle would be as 
shown in Figure 3.3.

The following points should be noted:

 1 The lines shown represent the possible paths taken by the positively charged particle in 
response to the force acting on it. Thus they are called the lines of electric force. They 
may also be referred to as the lines of electric flux, ψ.

 2 The total electric flux makes up the whole electric field existing between and around 
the two charged bodies.

 3 The lines themselves are imaginary and the field is three-dimensional. The whole of 
the space surrounding the charged bodies is occupied by the electric flux, so there are 
no ‘gaps’ in which a charged particle would not be affected.

 4 The lines of force (flux) radiate outwards from the surface of a positive charge and 
terminate at the surface of a negative charge.

 5 The lines always leave (or terminate) at right angles to a charged surface.
 6 Although the lines drawn on a diagram do not actually exist as such, they are a very 

convenient way to represent the existence of the electric field. They therefore aid the 
understanding of its properties and effects.

 7 Since force is a vector quantity any line representing it must be arrowed. The conven-
tion used here is that the arrows point from the positive to the negative charge.

It is evident from Figure 3.3 that the spacing between the lines of flux varies depending 
upon which part of the field you consider. This means that the field shown is non-uniform. 
A uniform electric field may be obtained between two parallel charged plates as shown in 
Figure 3.4.

Note that the electric field will exist in all of the space surrounding the two plates, but 
the uniform section exists only in the space between them. Some non-uniformity is shown 
by the curved lines at the edges (fringing effect). At this stage we are concerned only with 
the uniform field between the plates. If a positively charged particle was placed between 

� �

Figure 3.3  Flux lines between two oppositely charged spheres
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the plates, it would experience a force that would cause it to move from the positive to the 
negative plate. The value of force acting on the particle depends upon what is known as the 
electric field strength, which will be explained in the next section.

3.3  ELECTRIC FIELD STRENGTH (E), ELECTRIC 
FLUX (Ψ ) AND FLUX DENSITY (D)

The electric field strength is defined as the force (expressed in newton) per unit charge 
(expressed in coulomb) exerted on a test charge placed inside the electric field. (An outdated 
name for this property is ‘electric force’.) Hence,

 field strength
force

charge
=  

 E = F
q

 (3.2)

 F q= E  (3.3)

where q is the charge on the particle, and not the plates.
In the SI system one ‘line’ of flux is assumed to radiate from the surface of a positive charge 

of one coulomb and terminate at the surface of a negative charge of one coulomb. Hence 
the electric flux has the same numerical value as the charge that produces it. Therefore the 
coulomb is used as the unit of electric flux. In addition, the Greek letter ψ (pronounced as 
psi) is usually replaced by the symbol for charge, namely Q.

The electric flux density D is defined as the amount of flux per square metre of the elec-
tric field. This area is measured at right angles to the lines of force. This gives the following 
equation for the electric flux density D, expressed as coulomb/metre²,

 D
A

= y  

 D
Q
A

=  (3.4)

�Q

�Q

Figure 3.4  A uniform electric field between two parallel charged plates
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WORKED EXAMPLE 3.1

Q Two parallel plates of dimensions 30 mm by 20 mm are oppositely charged to a value of 50 
mC. Calculate the density of the electric field existing between them.

 Q A= ´ = ´ ´ ´- - -50 10 30 10 20 103 3 3C; m2  

 D
Q
A

D= = ´
´

=
-

-
50 10
600 10

83 3
3

6 . C/m2  

WORKED EXAMPLE 3.2

Q Two parallel metal plates, each having a cross-sectional area of 400 mm2, are charged from a 
constant current source of 50 μA for a time of 3 seconds. Calculate (a) the charge on the plates 
and (b) the density of the electric field between them.

 A I t s= ´ = ´ =- -400 10 50 10 36 2 6m A;;  

(a)  Q It= = ´ ´ =-50 10 3 1506 mC  

(b)  D
Q
A

= = ´
´

=
-

-
150 10
400 10

0 375
6

6 . C/m2  

3.4  THE CHARGING PROCESS AND POTENTIAL GRADIENT

We have already met the concept of a potential gradient when considering a uniform con-
ductor (wire) carrying a current. This concept formed the basis of the slidewire potentiom-
eter discussed in Chapter 2. However, we are now dealing with static charges that have been 
induced on to plates (the branch of science known as electrostatics). Current flow is only 
applicable during the charging process. The material between the plates is some form of 
insulator (a dielectric) which could be vacuum, air, rubber, glass, mica, PVC, etc. So under 
ideal conditions there will be no current flow from one plate to the other via the dielectric. 
Nonetheless, there will be a potential gradient throughout the dielectric.

Consider a pair of parallel plates (initially uncharged) that can be connected to a battery 
via a switch, as shown in Figure 3.5. Note that the number of electrons and protons shown 
for each plate are in no way representative of the actual numbers involved. They are shown 
to aid the explanation of the charging process that will take place when the switch is closed. 
On closing the switch, some electrons from plate A will be attracted to the positive terminal 
of the battery. In this case, since plate A has lost electrons it will acquire a positive charge. 
This results in an electric field radiating out from plate A. The effect of this field is to induce 
a negative charge on the top surface of plate B, by attracting electrons in the plate towards 
this surface. Consequently, the lower surface of plate B must have a positive charge. This in 
turn will attract electrons from the negative terminal of the battery. Thus for every electron 
that is removed from plate A one is transferred to plate B. The two plates will therefore 
become equally but oppositely charged.
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This charging process will not carry on indefinitely (in fact it will last for only a very 
short space of time). This is because as the charge on the plates increases so too does the 
voltage developed between them. Thus the charging process continues only until the p.d. 
between the plates, V is equal to the emf, E of the battery. The charging current at this time 
will become zero, because plates A and B are positive and negative respectively. Thus, this 
circuit is equivalent to two batteries of equal emf connected in parallel as shown in Figure 
3.6. In this case each battery would be trying to drive an equal value of current around the 
circuit, but in opposite directions. Hence, the two batteries ‘balance out’ each other, and no 
current will flow.

With suitable instrumentation, it would be possible to measure the p.d. between plate B 
and any point in the dielectric. If this was done, then a graph of the voltage versus distance 
from B would look like that in Figure 3.7. The slope of this graph is uniform and has units 
of potential gradient, expressed in volts/metre. So potential gradient equals

 potential gradient = V
d

 (3.5)

Now the energy, expressed in joule,

 energy , and= =VIt I
Q
t

 

E

A

B

� � �
��

�
�

�

�� �
�
�

�
�

�
�

���

electron flow

Figure 3.5  A pair of parallel plates connected to a battery

E E

I I

Figure 3.6  Two batteries of equal emf connected in parallel



Electric Fields and Capacitors  67

 

energy , and transposing this

energy

i.e. volt
J
C

= =

=

=

VQt
t

VQ

V
Q

1 1 [1]

 

but the joule is the unit used for work done, and work is force × distance, i.e. newton metre,

 so J Nm ...[2]1 1= ¼¼¼¼  

Substituting [2] into [1]:

 1 1volt Nm/C or
Nm
C

[3]= ºV   

Dividing both sides of [3] by distance of separation d:

 
V
d
º =Nm

Cm
N
C

 

Referring back to Equation (3.2), we know that electric field strength E is measured in 
N/C. So potential gradient and electric field strength must be one and the same thing. Now, 
electric field strength is defined in terms of the ratio of the force exerted on a charge to the 
value of the charge. This is actually an extremely difficult thing to measure. However, it is 
a very simple matter to measure the p.d. and distance between the charged plates. Hence, 
for practical purposes, electric field strength is from now on quoted in the units volt/metre

 E = V
d

 (3.6)

Notice that the symbol E (in bold) has been used for electric field strength. This is in order 
to avoid confusion with the symbol E (in italic) used for emf.

p.d. (volt)

V

0 d distance
(m)

Figure 3.7  The voltage as function of the distance
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WORKED EXAMPLE 3.3

Q Two parallel plates separated by a dielectric of thickness 3 mm acquire a charge of 35 mC 
when connected to a 150 V source. If the effective cross-sectional area of the field between the 
plates is 144 mm2, calculate (a) the electric field strength and (b) the flux density.

 d Q V A= ´ = ´ = = ´- - -3 10 35 10 150 144 103 3 6m; C; V m2;   

(a)  E = =
´

=-
V
d

150
3 10

503 kV/m  

(b)  D
Q
A

= = ´
´

=
-

-
35 10

144 10
243 1

3

6 . C/m2  

3.5  CAPACITANCE (C)

We have seen that in order for one plate to be at a different potential to the other one, there 
is a need for a charge. This requirement is known as the capacity of the system. For a given 
system the ratio of the charge required to achieve a given p.d. is a constant for that system. 
This is called the capacitance (C) of the system

 C
Q
V

=  (3.7)

 Q VC=  (3.8)

From Equation (3.7) it may be seen that the unit for capacitance is the farad (F). This is 
defined as the capacitance of a system that requires a charge of one coulomb in order to 
raise its potential by one volt. The farad is a very large unit, so in practice it is more usual to 
express capacitance values in microfarads (uF), nanofarads (nF) or picofarads (pF).

Capacitors are usually very small, so there isn’t much room to print all the crucial information 
on the packaging. Therefore, no more than three digits are used, with the third digit indicat-
ing how many zeros should be added to the first two digits. The corresponding number then 
expresses the capacitance value in pF. If only two digits are used, this directly indicates the 
capacitance value in pF. For example, 101 represents 100 pF and 22 corresponds to 22 pF. If it 
is followed by a letter, this letter then indicates the tolerance (like with the resistors): J for 5%, 
K for 10% and M for 20%, for example.

The tolerance is the deviation from the nominal value. This is normally expressed as a percent-
age. Thus a capacitor of nominal value 2 μF and a tolerance of ±10%, should have an actual value 
of between 1.8 μF and 2.2 μF.
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Michael Faraday (1791–1867) was an English physicist and chemist, experimenting on whether 
electromagnetism can influence the polarisation of light by different types of glass. This magneto-
optical effect is called the Faraday effect, showing for the first time the connection between 
light, magnetism and electricity, now known as electromagnetic radiation. Another contribu-
tion is the Faraday Cage. It is a construction of electrically conductive material that keeps static 
electric fields outside the cage. Static magnetic fields can penetrate the cage.

WORKED EXAMPLE 3.4

Q Two parallel plates, separated by an air space of 4 mm, receive a charge of 0.2 mC when 
connected to a 125 V source. Calculate (a) the electric field strength between the plates, (b) 
the cross-sectional area of the field between the plates if the flux density is 15 C/m2 and (c) the 
capacitance of the plates.

 d Q V D= ´ = ´ = =- -4 10 2 10 125 153 4m; C; V; C/m2  

(a)  E = =
´

=-
V
d

125
4 10

31 253 . kV/m  

(b)  
D

Q
A

A
Q
D

=

= = ´ = ´
-

-2 10
15

13 3 10 13 3
4

6. .m or mm2 2

(c)  
Q CV

C
Q
V

=

= = ´ =
-2 10

125
1 6

4

. mF
 

A capacitor is an electrical component that is designed to have a specified value of capaci-
tance. In its simplest form it consists of two parallel plates separated by a dielectric; i.e. 
exactly the system we have been dealing with so far.

In order to be able to design a capacitor we need to know what dimensions are required 
for the plates, the thickness of the dielectric (the distance of separation d) and the other 
properties of the dielectric material chosen. Let us consider first the properties associated 
with the dielectric.

3.6  PERMITTIVITY

When an electric field exists in a vacuum then the ratio of the electric flux density to the elec-
tric field strength is a constant, known as the permittivity ε0 of free space, expressed in F/m.

 e0
128 854 10= ´ -.  

Since a vacuum is a well-defined condition, the permittivity of free space is chosen as the 
reference or datum value from which the permittivity of all other dielectrics is measured. 
This is a similar principle to using Earth potential as the datum for measuring voltages.
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The capacitance of two plates will be increased if, instead of a vacuum between the 
plates, some other dielectric is used. This difference in capacitance for different dielectrics 
is accounted for by the relative permittivity εr of each dielectric. Thus relative permittivity is 
defined as the ratio of the capacitance with that dielectric to the capacitance with a vacuum 
dielectric

 er =
C
C

2

1

 (3.9)

where C1 is with a vacuum and C2 is with the other dielectric.
Note: Dry air has the same effect as a vacuum so the relative permittivity εr for air dielec-

trics equals 1.
For a given system the ratio of the electric flux density to the electric field strength is a 

constant, known as the absolute permittivity ε of the dielectric being used, expressed in F/m.

 e = D
E

 (3.10)

but we have just seen that a dielectric (other than air) is more effective than a vacuum by a 
factor of εr times, so the absolute permittivity is given by:

 e e e= 0 r  (3.11)

3.7  CALCULATING CAPACITOR VALUES

From Equation (3.10):

 

e

e

=

= =

=

D

D Q A V d

Qd
VA

E
but and/ /E  

 
Q V C

C
d
A

/ =

=e
 

and transposing this for C we have

 C
A

d

A

d
= =e e e0 r  (3.12)

WORKED EXAMPLE 3.5

Q A capacitor is made from two parallel plates of dimensions 3 cm by 2 cm, separated by a sheet 
of mica 0.5 mm thick and of relative permittivity 5.8. Calculate (a) the capacitance and (b) the 
electric field strength if the capacitor is charged to a p.d. of 200 V.

 A d V= ´ ´ ´ = ´ = =- - -3 10 2 10 5 10 5 8 2002 2 4m m m; Vr; . ;e   
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(a)  C
A

d
= = ´ ´ ´ ´

´
=

- -

-
e e0 12 4

4

8 854 10 5 8 6 10
5 10

61 62r pF
. .

.

(b)  E = =
´

=-
V
d

200
5 10

4004 kV/m  

WORKED EXAMPLE 3.6

Q A capacitor of value 0.224 nF is to be made from two plates each 75 mm by 75 mm, using a 
waxed paper dielectric of relative permittivity 2.5. Determine the thickness of paper required.

 C A= ´ = ´ ´ ´ =- - -0 224 10 75 10 75 10 2 59 3 3. ; .F; m m re  

 
C

A
d

d
A

C

=

= = ´ ´ ´ ´
´

=
- -

-

e e

e e

0

0
12 3

9

8 854 10 2 5 5 625 10
0 224 10

5 55

r

r . . .
.

. 88 10 0 55584´ =- m mm.

  

WORKED EXAMPLE 3.7

Q A capacitor of value 47 nF is made from two plates having an effective cross-sectional area 
of 4 cm2 and separated by a ceramic dielectric 0.1 mm thick. Calculate the relative permittivity.

 C A d= ´ = ´ = ´- - -4 7 10 4 10 1 108 4 4. ;F; m m2  

 
C

A
d

Cd
A

=

= = ´ ´
´ ´ ´

=
- -

- -

e e

e
e

0

8 4

12 4

4 7 10 10
8 854 10 4 10

1327

r

r
0

.
.

 

WORKED EXAMPLE 3.8

Q A p.d. of 180 V creates an electric field in a dielectric of relative permittivity 3.5, thickness 
3 mm and of effective cross-sectional area of 4.2 cm2. Calculate the flux and flux density thus 
produced.

 V d A= = ´ = = ´- -180 3 10 3 5 4 2 103 4V; m; mr
2e . ; .  

There are two possible methods of solving this problem; either determine the capacitance 
and use Q = VC or determine the electric field strength and use D = εoεrE. Both solutions will 
be shown.
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Figure 3.8  Capacitors in parallel

 
C

A
d

Q VC

= = ´ ´ ´ ´
´
=

- -

-
e e0 12 4

3

8 854 10 3 5 4 2 10
3 10

r = 4.338 pF

since

. . .

tthen

nCQ

D
Q
A

= ´ ´ =

= = ´
´

=

-

-

-

180 4 338 10 0 7809

7 809 10
4 2 10

1

12

10

4

. .

.
.

.8859 mC/m2

 

Alternatively:

 E

E E

= =
´

= =
= ´ ´ ´ ´

-

-

V
d

D

D

180
3 10

60

8 854 10 3 5 60

3

0

12

kV/m and using re e
. . 110 1 859

1 859 10 4 2 10 0 7809

3

6 4

=
= = ´ ´ ´ =- -

.

. . .

mC/m

nC

2

Q DA

 

3.8  CAPACITORS IN PARALLEL

Consider two capacitors that are identical in every way (same plate dimensions, same dielec-
tric material and same distance of separation between plates) as shown in Figure 3.8. Let 
them now be moved vertically until the top and bottom edges respectively of their plates 
make contact. We will now effectively have a single capacitor of twice the cross-sectional 
area of one of the original capacitors, but all other properties will remain unchanged.

Since C = εA/d, the ‘new’ capacitor formed will have twice the capacitance of one of the 
original capacitors. The same effect could have been achieved if we had simply connected 
the appropriate plates together by means of a simple electrical connection. In other words 
connect them in parallel with each other. Both of the original capacitors have the same 
capacitance, and this figure is doubled when they are connected in parallel. Thus we can 
draw the conclusion that with this connection the total capacitance of the combination is 
given simply by adding the capacitance values. However, this might be considered as a spe-
cial case. Let us verify this conclusion by considering the general case of three different value 
capacitors connected in parallel to a d.c. supply of V volts as in Figure 3.9.

Each capacitor will take a charge from the supply according to its capacitance:

 Q VC Q VC Q VC1 1 2 2 3 3= = =; ;  

but the total charge drawn from the supply must be:
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Q Q Q Q

Q VC

= + +
=

1 2 3

total charge,
 

where C is the total circuit capacitance.
Thus, VC VC VC VC= + +1 2 3 , and dividing through by V

 C C C C= + +1 2 3  (3.13)

Note: This result is exactly the opposite in form to that for resistors in parallel.

WORKED EXAMPLE 3.9

Q Three capacitors of value 4.7 μF, 3.9 μF and 2.2 μF are connected in parallel. Calculate the 
resulting capacitance of this combination.

 
C C C C C

C

= + + = + +
=

1 2 3 4 7 3 9 2 2

10 8

. . .

. mF
 

Most practical capacitors consist of more than one pair of parallel plates, and in these 
cases they are referred to as multiplate capacitors. The sets of plates are often interleaved as 
shown in Figure 3.10. The example illustrated has a total of five plates. It may be seen that 
this effectively forms four identical capacitors, in which the three inner plates are common 
to the two ‘inner’ capacitors. Since all the positive plates are joined together, and so too are 
the negative plates, this arrangement is equivalent to four identical capacitors connected in 
parallel, as shown in Figure 3.11. The total capacitance of four identical capacitors con-
nected in parallel is simply four times the capacitance of one of them. Thus, this value will 
be the effective capacitance of the complete capacitor.

Q1

Q2

Q3

C1

C2

C3

V

Figure 3.9  Three capacitors connected in parallel
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The capacitance between one adjacent pair of plates will be

 C
A

d
1

0= e er  

so, the total for the complete arrangement = C1 × 4, but we can express 4 as (5 − 1) so the 
total capacitance is

 C
A

d
1

0 5 1
=

-( )e er  

In general therefore, if a capacitor has N plates, the capacitance is given by the expression:

 C
A N

d
1

0 1
=

-( )e er  (3.14)

Since the above equation applies generally, then it must also apply to capacitors having just 
one pair of plates as previously considered. This is correct, since if N = 2 then (N − 1) = 1, 
and the above equation becomes identical to Equation (3.12) previously used.

WORKED EXAMPLE 3.10

Q A capacitor is made from 20 interleaved plates each 80 mm by 80 mm separated by mica 
sheets 1.5 mm thick. If the relative permittivity for mica is 6.4, calculate the capacitance.

�

�

Figure 3.10  A multiplate capacitor

C1

C2

C3

C4

� �

Figure 3.11  Equivalence of multiplate capacitor
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 N A d= = ´ ´ ´ = ´ =- - -20 80 10 80 10 1 5 10 6 43 3 3; ; . ; .m m m re   

 C
A N

d
1

0
12 6

3

1 8 854 10 6 4 6400 10 19
1 5 10

4 6=
-( )

= ´ ´ ´ ´ ´
´

=
- -

-

e er nF
. .

.
.  

WORKED EXAMPLE 3.11

Q A 300 pF capacitor has nine parallel plates, each 40 mm by 30 mm, separated by mica of rela-
tive permittivity 5. Determine the thickness of the mica.

 N C A r= = ´ = ´ ´ ´ =- - -9 3 10 40 10 30 10 510 3 3; ; ;F m m e  

 
C

A N

d

d
A N

C

=
-( )

=
-( )

= ´ ´ ´ ´
´

=
- -

-

e e

e e

0

0
12 6

10

1

1 8 854 10 5 1200 10
3 10

r

r .
11 42. mm

 

WORKED EXAMPLE 3.12

Q A parallel plate capacitor consists of 11 circular plates, each of radius 25 mm, with an air gap 
of 0.5 mm between each pair of plates. Calculate the value of the capacitor.

 N r d= = ´ = ´ = ( )- -11 25 10 5 10 13 4; ; ;m m airre  

 A r

C
A N

d
r

= = ´ ´( ) = ´

=
-( )

= ´

- -

-

p p

e e

2 3 2 3 2

0
1

25 10 1 9635 10

1 8 854 10

m m2 .

. 22 3

4
101 9635 10 10

5 10
3 48 10 348

´ ´ ´
´

= ´
-

-
-.

. F or pF

 

3.9  CAPACITORS IN SERIES

Three parallel plate capacitors are shown connected in series in Figure 3.12. Each capacitor 
will receive a charge. However, you may wonder how capacitor C2 can receive any charging 
current since it is sandwiched between the other two, and of course the charging current 
cannot flow through the dielectrics of these. The answer lies in the explanation of the charg-
ing process described in Section 3.4 earlier. To assist the explanation, the plates of capaci-
tors C1 to C3 have been labelled with letters.

Plate A will lose electrons to the positive terminal of the supply, and so acquires a positive 
charge. This creates an electric field in the dielectric of C1 which will cause plate B to attract 
electrons from plate C of C2. The resulting electric field in C2 in turn causes plate D to 
attract electrons from plate E. Finally, plate F attracts electrons from the negative terminal 
of the supply. Thus all three capacitors become charged to the same value.
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Having established that all three capacitors will receive the same amount of charge, let us 
now determine the total capacitance of the arrangement. Since the capacitors are of different 
values, each will acquire a different p.d. between its plates. This is illustrated in Figure 3.13.

 V
Q
C

V
Q
C

V
Q
C

1
1

2
2

3
3

= = =; ;  

 

V V V V

V
Q
C

C

= + +

=

1 2 3 (Kirchhoff s voltage law)

with is the total circui

’

tt capacitance.

Q
C

Q
C

Q
C

Q
C

= + +
1 2 3

 

 
1 1 1 1

1 2 3C C C C
= + +  (3.15)

Note: The above equation does not give the total capacitance directly. To obtain the value for C 
the reciprocal of the answer obtained from Equation (3.15) must be found. However, if only two 
capacitors are connected in series the total capacitance may be obtained directly by using the 
‘product/sum’ form

 C
C C

C C
=

+
1 2

1 2
 (3.16)

C1

V1 V2

V

V3

C2 C3

Q QQ

Figure 3.13  Three capacitors connected in series

C1

A B C D E

E

F

C2 C3

Figure 3.12  Capacitors in series
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WORKED EXAMPLE 3.13

Q A 6 μF and a 4 μF capacitor are connected in series across a 150 V supply. Calculate (a) the 
total capacitance, (b) the charge on each capacitor and (c) the p.d. developed across each.

Figure 3.14 shows the appropriate circuit diagram.

 C C V1 26 4 150= = =m mF; F; V  

(a)  C
C C

C C
=

+
= ´

+
= =1 2

1 2

6 4
6 4

24
10

2 4m mF F.  

(b)  Q VC= = ´ ´ =-150 2 4 10 3606. mC  

(same charge on both)
Since capacitors in series all receive the same value of charge, then this must be the total 

charge drawn from the supply,

 Q VC=  

This is equivalent to a series resistor circuit where the current drawn from the supply is com-
mon to all the resistors.

(c)  V
Q
C

1
1

6

6

360 10
6 10

60= = ´
´

=
-

- V  

   
V

Q
C

V V V

2
2

6

6

1 2

360 10
4 10

90

150

= = ´
´

=

+ = =

-

- V

Note that V

 

WORKED EXAMPLE 3.14

Q Capacitors of 3 μF, 6 μF and 12 μF are connected in series across a 400 V supply. Determine 
the p.d. across each capacitor.

Figure 3.15 shows the relevant circuit diagram.

 C C C V1 2 33 6 12 400= = = =m m mF F F V; ; ;  

 1 1 1 1 1
3

1
6

1
12

4 2 1
12

7
121 2 3C C C C

= + + = + + = + + =  

 C = =12
7

1 714. mF  

 Q VC= = ´ ´ -400 1 714 10 6V F.  

 Q = 685 7. mC  

 V
Q
C

1 V= = ´
´

=
-

-
1

6

6

685 7 10
3 10

228 6
.

.  
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C1

V1

V

V2

C2

6 µF 4 µF

150 V

Figure 3.14  The circuit diagram for Worked Example 3.13

 V2

6

6

685 7 10
6 10

114 3= ´
´

=
-

-
.

. V  

 V3

6

6

685 7 10
12 10

57 1= ´
´

=
-

-
.

. V  

3.10  SERIES/PARALLEL COMBINATIONS

The techniques required for the solution of this type of circuit are again best demonstrated 
by means of a worked example.

WORKED EXAMPLE 3.15

Q For the circuit shown in Figure 3.16, determine (a) the charge drawn from the supply, (b) the 
charge on the 8 μF capacitor, (c) the p.d. across the 4 μF capacitor and (d) the p.d. across the 3 
μF capacitor.

The first task is to label the diagram as shown in Figure 3.17.

(a)  CBCD =
´
+

=3 6
3 6

2 mF   (see Figure 3.18)

 CBD = + =2 4 6 mF  (see Figure 3.19)

 C =
6 2
6 2

1.5 FAD
´
+

= m  (see Figure 3.20)

 C C C

Q VC
AD EF= + = +

= ´ ´ -

1.5 8 =9.5 F

=200 9.5 10 =1.9 mC6

m  

(b) Q VCEF EF= = ´ ´ =-200 8 10 1 66 . mC  

(c)
 
Total charge mC and mC

so mC

Q Q

Q
EF

AD

= =
= - =

1 9 1 6

1 9 1 6 0 3

. .

. . .
  (see Figure 3.20)
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and referring to Figure 3.19, this will be the charge on both the capacitors shown, i.e.

 Q QAB BD= = 0 3. mC.  

Thus,

 VBD = p.d. across  

4 mF  capacitor (see Figure 3.18)

 V
Q
C

BD
BD

BD

= = ´
´

=
-

-
0 3 10
6 10

50
3

6

.
V  

(d) Q V CBCD BD BCD=  (see Figures 3.18 and 3.17)

 = ´ ´ =-50 2 10 1006 mC  

and this will be the charge on both the 3 μF and 6 μF capacitors, i.e.

 

Q Q

V
Q
C

V

BC CD

BC
BC

BC

BC

= =

= = ´
´

=

-

-

100

1 10
3 10

33 33

4

6

mC

V.

 

C1 C2 C3

3 µF 6 µF 12 µF

V1 V2 V3

V

400 V

Figure 3.15  The circuit diagram for Worked Example 3.14

2 µF

3 µF 6 µF

4 µF

8 µF

200 V

Figure 3.16  The circuit diagram for Worked Example 3.15



80 Electric Fields and Capacitors 

3.11  ENERGY STORED

When a capacitor is connected to a voltage source of V volts we have seen that it will charge 
up until the p.d. between the plates is also V volts. If the capacitor is now disconnected from 
the supply, the charge and p.d. between its plates will be retained.

Consider such a charged capacitor, as shown in Figure 3.21, which now has a resistor 
connected across its terminals. In this case the capacitor will behave as if it were a source of 

2 µF 6 µF

8 µF

A D
B

E F

200 V

Figure 3.19  The circuit diagram for Worked Example 3.15, further reduced
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A D
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Figure 3.18  The circuit diagram for Worked Example 3.15, reduced
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Figure 3.17  The circuit diagram for Worked Example 3.15, labelled
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emf. It will therefore drive current through the resistor. In this way the stored charge will be 
dissipated as the excess electrons on its negative plate are returned to the positive plate. This 
discharge process will continue until the capacitor becomes completely discharged (both 
plates electrically neutral). Note that the discharge current marked on the diagram indicates 
conventional current flow.

However, if a discharge current flows then work must be done (energy is being dissipated). 
The only possible source of this energy in these circumstances must be the capacitor itself. 
Thus the charged capacitor must store energy.

If a graph is plotted of capacitor p.d. to the charge it receives, the area under the graph 
represents the energy stored. Assuming a constant charging current, the graph will be as 
shown in Figure 3.22.

 
Area under the graph

but coulomb

=

=

1
2

QV

Q CV
 

 Stored energy, jouleW CV= 1
2

2  (3.17)

A capacitor hence acts as a rechargeable battery, by storing electrical energy and giving it 
back afterwards. By using a voltage source and by connecting both poles to a capacitor, this 
capacitor is charged. We can notice that the process is slowing down by the lower difference 

1.5 µF

8 µF

A D

FE

200 V

Figure 3.20  The circuit diagram for Worked Example 3.15, final

� �
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Figure 3.21  A charged capacitor connected to a resistor
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between the voltage source and the capacitor voltage, when more and more energy is stored in 
the capacitor. It does take some time until the capacitor and the source have the same voltage 
and at that moment the charge redistribution process stops. If the voltage source is replaced 
by a LED (light-emitting diode, a lighting device explained further in Chapter 6) in series with 
a resistor (to prevent too high current), the LED lights up and shows that the capacitor earlier 
stored charges. We can conclude that the less charge on the capacitor, the less voltage avail-
able and hence the less light intensity. This process can be repeated and repeated, behaving as a 
rechargeable battery, although not optimised for charging and recharging.

This way of charging and discharging is sometimes used with flashing lights, like a camera flash 
for instance. It can be seen as a resistor in series with a capacitor, and the lamp in parallel with 
the capacitor. The lamp here is a gas discharge lamp like the natrium lamps in street lighting in 
use at night time. An important property of this lamp is that it only lights up when a certain 
voltage is present and the lamp remains lit until the voltage drops to a minimum voltage. When 
lit the lamp can be modelled as a resistor. When not lit, it behaves like an open chain. When the 
lamp behaves as an open circuit, the supply voltage will charge the capacitor through the resis-
tor up to the supply voltage. As soon as the voltage across the capacitor reaches the maximal 
voltage, the lamp lights up and the capacitor discharges to the minimum voltage. Then the lamp 
becomes an open circuit again and the cycle of charging and discharging restarts.

WORKED EXAMPLE 3.16

Q A 3 μF capacitor is charged from a 250 V d.c. supply. Calculate the charge and energy stored. 
The charged capacitor is now removed from the supply and connected across an uncharged 6 μF 
capacitor. Calculate the p.d. between the plates and the energy now stored by the combination.

 C V C1 1 23 250 6= = =m mF; V F;  
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= = ´ ´ =

= = ´ ´ ´ =

-
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1 1
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1 1
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2
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( .
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p.d. (volt)

V

0 Q charge
(coulomb)

Figure 3.22  Capacitor p.d. as function of the charge
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When the two capacitors are connected in parallel the 3μF will share its charge with the 6μF 
capacitor. Thus the total charge in the system will remain unchanged, but the total capacitance 
will now be different:

 

Total Capacitance,
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Note: The above example illustrates the law of conservation of charge, since the charge 
placed on the first capacitor is simply redistributed between the two capacitors when con-
nected in parallel. The total charge therefore remains the same. However, the p.d. now exist-
ing between the plates has fallen, and so too has the total energy stored. But there is also a 
law of conservation of energy, so what has happened to the ‘lost’ energy? Well, in order for 
the 3μF capacitor to share its charge with the 6μF capacitor a charging current had to flow 
from one to the other. Thus this ‘lost’ energy was used in the charging process.

WORKED EXAMPLE 3.17

Q Consider the circuit of Figure 3.23, where initially all three capacitors are fully discharged, 
with the switch in position ‘1’.

 (a) If the switch is now moved to position ‘2’, calculate the charge and energy stored by C1.
 (b) Once C1 is fully charged, the switch is returned to position ‘1’. Calculate the p.d. now existing 

across C1 and the amount of energy used in charging C2 and C3 from C1.

 (a) 
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1 1
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 (b) C2 and C3 in series are equivalent to

 C
C C

C C
4

2 3

2 3

6 8 4 7
6 8 4 7

2 78=
+

= ´
+

=. .
. .

. mF  

and total capacitance of the whole circuit,

 C C C= + = + =1 4 10 2 78 12 78. . mF  

Now, the charge received by the circuit remains constant, although the total capacitance has 
increased.
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C2 C3

C1
6.8 µF

10 µF

4.7 µF

V

200 V

‘1’

‘2’

Figure 3.23  The circuit diagram for Worked Example 3.17
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Total energy remaining in the circuit,

 W CV= = ´ ´ ´ ( ) =-1
2

0 5 12 78 10 156 5 0 1562 6 2
. . . . J  

The energy used up must be the difference between the energy first stored by C1 and the final 
energy stored in the system, hence

 Energy used J J J 44 mJ= - = =0 2 0 156 0 044. . .   

3.12  DIELECTRIC STRENGTH AND WORKING VOLTAGE

There is a maximum potential gradient that any insulating material can withstand before 
dielectric breakdown occurs. There are of course some applications where dielectric break-
down is deliberately produced, e.g. a sparking plug in a car engine, which produces an arc 
between its electrodes when subjected to a p.d. of several kilovolts. This then ignites the air/
fuel mixture. However, it is obviously not a condition that is desirable in a capacitor, since 
it results in its destruction.

Capacitors normally have marked on them a maximum working voltage. When in use 
you must ensure that the voltage applied between its terminals does not exceed this value, 
otherwise dielectric breakdown will occur.
Dielectric breakdown is the effect produced in an insulating material when the voltage 
applied across it is more than it can withstand. The result is that the material is forced to 
conduct. However, when this happens, the sudden surge of current through it will cause 
it to burn, melt, vaporise or be permanently damaged in some other way. If you search on 
www .youtube .com ‘exploding capacitors’ or ‘exploding capacitors slow motion’, you can 
see many different examples, where first the capacitor is bulging and this is followed by an 
explosion. Please don’t try this at home by yourself, as it can be very dangerous.

Another way of referring to this maximum working voltage is to quote the dielectric 
strength. This is the maximum voltage gradient that the dielectric can withstand, quoted in 
kV/m or in V/mm.

http://www.youtube.com
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WORKED EXAMPLE 3.18

Q A capacitor is designed to be operated from a 400 V supply, and uses a dielectric which 
(allowing for a factor of safety), has a dielectric strength of 0.5 MV/m. Calculate the minimum 
thickness of dielectric required.

 V = = ´400 0 5 106V V/m; .E  

 
E
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d

d
V 400

0 5 10
0 86.
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WORKED EXAMPLE 3.19

Q A 270 pF capacitor is to be made from two metallic foil sheets, each of length 20 cm and 
width 3 cm, separated by a sheet of Teflon having a relative permittivity of 2.1. Determine (a) 
the thickness of Teflon sheet required, and (b) the maximum possible working voltage for the 
capacitor if the Teflon has a dielectric strength of 350 kV/m.

 C A= ´ = ´ ´ ´ = = ´- - -270 10 20 10 3 10 2 1 350 1012 2 2 3F m m E V/mr; ; . ;e  
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 (b) Dielectric strength is the same thing as electric field strength, expressed in volt/metre, so

 
E

E
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= = ´ ´ ´ =-

V
d

V d 350 10 0 413 10 144 63 3. . V
 

Note: This figure is the voltage at which the dielectric will start to break down, so, for practical 
purposes, the maximum working voltage would be specified at a lower value. For example, if a 
factor of safety of 20% was required, then the maximum working voltage in this case would be 
specified as 115 V.

3.13  CAPACITOR TYPES

The main difference between capacitor types is in the dielectric used. There are a number 
of factors that will influence the choice of capacitor type for a given application. Amongst 
these are the capacitance value, the working voltage, the tolerance, the stability, the leakage 
resistance, the size and the price.

Since C = εA/d, any or all of these factors can be varied to suit particular requirements. 
Thus, if a large value of capacitance is required, a large cross-sectional area and/or a small 
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distance of separation will be necessary, together with a dielectric of high relative permit-
tivity εr. However, if the area is to be large, then this can result in a device that is unaccept-
ably large. Additionally, the dielectric cannot be made too thin lest its dielectric strength is 
exceeded. The various capacitor types overcome these problems in a number of ways.

3.13.1  Paper

This is the simplest form of capacitor. It utilises two strips of aluminium foil separated by 
sheets of waxed paper. The whole assembly is rolled up into the form of a cylinder (like 
a Swiss roll). Metal end caps make the electrical connections to the foils, and the whole 
assembly is then encapsulated in a case. By rolling up the foil and paper a comparatively 
large cross-sectional area can be produced with reasonably compact dimensions. This type 
is illustrated in Figure 3.24.

3.13.2  Air

Air dielectric capacitors are the most common form of variable capacitor, as a realisation of 
a multiplate capacitor. The construction is shown in Figure 3.25. One set of plates is fixed, 
and the other set can be rotated to provide either more or less overlap between the two. This 
causes variation of the effective cross-sectional area and hence variation of capacitance. 
This is the type of device connected to the station-tuning control of a radio.

Foil
Paper
Foil
Paper

Figure 3.24 Paper capacitor

Figure 3.25 Air capacitor
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3.13.3  ‘Plastic’

With these capacitors the dielectric can be of polyester, polystyrene, polycarbonate or poly-
propylene. Each material has slightly different electrical characteristics which can be used 
to advantage, depending upon the proposed application. The construction takes much the 
same form as that for paper capacitors. Examples of these types are shown in Figure 3.26, 
and their different characteristics are listed in Table 3.1.

3.13.4  Silvered Mica

These are the most accurate and reliable of the capacitor types, having a low tolerance fig-
ure. These features are usually reflected in their cost. They consist of a disc or hollow cylin-
der of ceramic material which is coated with a silver compound. Electrical connections are 
affixed to the silver coatings and the whole assembly is placed into a casing or (more usually) 
the assembly is encased in a waxy substance.

3.13.5  Mixed Dielectric

This dielectric consists of paper impregnated with polyester which separates two aluminium 
foil sheets as in the paper capacitor. This type makes a good general-purpose capacitor, and 
an example is shown in Figure 3.27.

Polystyrene Polycarbonate Tubular polyester Rectangular polyester

Figure 3.26 Plastic capacitor

Table 3.1 Capacitor characteristics

Type Capacitance Tolerance (%) Other characteristics

Paper 1 nF – 40 μF ±2 Cheap. Poor stability
Air 5 pF – 1 nF ±1 Variable. Good stability
Polycarbonate 100 pF – 10 μF ±10 Low loss. High temperature
Polyester 1 nF – 2 μF ±20 Cheap. Low frequency
Polypropylene 100 pF – 10 nF ±5 Low loss. High frequency
Polystyrene 10 pF – 10 nF ±2 Low loss. High frequency
Mixed 1 nF – 1 μF ±20 General purpose
Silvered mica 10 pF – 10 nF ±1 High stability. Low loss
Electrolytic (aluminium) 1 – 100 000 μF −20 to +80 High loss. High leakage. d.c. circuits only
Electrolytic (tantalum) 0.1 – 150 μF ±20 As for aluminium above
Ceramic 2pF – 100 nF ±10 Low temperature coefficient. High 

frequency
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Figure 3.27  Mixed dielectric capacitor

3.13.6  Electrolytic

This is the form of construction used for the largest value capacitors. However, they also 
have the disadvantages of reduced working voltage, high leakage current and the require-
ment to be polarised. Their terminals are marked + and −, and these polarities must be 
observed when the device is connected into a circuit. Capacitance values up to 100 000 μF 
are possible.

A polarised capacitor is one in which the dielectric is formed by passing a d.c. current 
through it. The polarity of the d.c. supply used for this purpose must be subsequently 
observed in any circuit in which the capacitor is then used. Thus, they should be used only 
in d.c. circuits.

The dielectric consists of either an aluminium oxide or tantalum oxide film that is just 
a few micrometres thick. It is this fact that allows such high capacitance values, but at the 
same time reduces the possible maximum working voltage. Tantalum capacitors are usually 
very much smaller than the aluminium types. They therefore cannot obtain the very high 
values of capacitance possible with the aluminium type. The latter consist of two sheets of 
aluminium separated by paper impregnated with an electrolyte. These are then rolled up like 
a simple paper capacitor. This assembly is then placed in a hermetically sealed aluminium 
canister. The oxide layer is formed by passing a charging current through the device, and it 
is the polarity of this charging process that determines the resulting terminal polarity that 
must be subsequently observed. If the opposite polarity is applied to the capacitor the oxide 
layer is destroyed. Examples of electrolytic capacitors are shown in Figure 3.28.

SUMMARY OF EQUATIONS
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Figure 3.28 Oxide capacitor
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Energy stored: W QV CV= =0 5 0 5 2. .  

ASSIGNMENT QUESTIONS

 1 Two parallel plates 25 cm by 35 cm receive a charge of 0.2 μC from a 250 V supply. 
Calculate (a) the electric flux and (b) the electric flux density.

 2 The flux density between two plates separated by a dielectric of relative permittivity 8 
is 1.2 μC/m2. Determine the potential gradient between them.

 3 Calculate the electrical field strength between a pair of plates spaced 10 mm apart 
when a p.d. of 0.5 kV exists between them.

 4 Two plates have a charge of 30 μC. If the effective area of the plates is 5 cm2, calculate 
the flux density.

 5 A capacitor has a dielectric 0.4 mm thick and operates at 50 V. Determine the electric 
field strength.

 6 A 100 μF capacitor has a p.d. of 400 V across it. Calculate the charge that it has 
received.

 7 A 47 μF capacitor stores a charge of 7.8 mC when connected to a d.c. supply. Calculate 
the supply voltage.

 8 Determine the p.d. between the plates of a 470 nF capacitor if it stores a charge of 
0.141 mC.

 9 Calculate the capacitance of a pair of plates having a p.d. of 600 V when charged to 
0.3 μC.

 10 The capacitance of a pair of plates is 40 pF when the dielectric between them is air. If a 
sheet of glass is placed between the plates (so that it completely fills the space between 
them), calculate the capacitance of the new arrangement if the relative permittivity of 
the glass is 6.

 11 A dielectric 2.5 mm thick has a p.d. of 440 V developed across it. If the resulting flux 
density is 4.7 μC/m2 determine the relative permittivity of the dielectric.

 12 State the factors that affect the capacitance of a parallel plate capacitor, and explain 
how the variation of each of these factors affects the capacitance. Calculate the value 
of a two-plate capacitor with a mica dielectric of relative permittivity 5 and thickness 
0.2 mm. The effective area of the plates is 250 cm2.
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 13 A capacitor consists of two plates, each of effective area 500 cm2, spaced 1 mm apart 
in air. If the capacitor is connected to a 400 V supply, determine (a) the capacitance, 
(b) the charge stored and (c) the potential gradient.

 14 A paper dielectric capacitor has two plates, each of effective cross-sectional area of 0.2 
m2. If the capacitance is 50 nF calculate the thickness of the paper, given that its rela-
tive permittivity is 2.5.

 15 A two-plate capacitor has a value of 47 nF. If the plate area was doubled and the thick-
ness of the dielectric was halved, what then would be the capacitance?

 16 A parallel plate capacitor has 20 plates, each 50 mm by 35 mm, separated by a dielec-
tric 0.4 mm thick. If the capacitance is 1000 pF determine the relative permittivity of 
the dielectric.

 17 Calculate the number of plates used in a 0.5 nF capacitor if each plate is 40 mm 
square, separated by dielectric of relative permittivity 6 and thickness 0.102 mm.

 18 A capacitor is to be designed to have a capacitance of 4.7 pF and to operate with a p.d. 
of 120 V across its terminals. The dielectric is to be Teflon (εr = 2.1) which, after allow-
ing for a safety factor, has a dielectric strength of 25 kV/m. Calculate (a) the thickness 
of Teflon required and (b) the area of a plate.

 19 Capacitors of 4 μF and 10 μF are connected (a) in parallel and (b) in series. Calculate 
the equivalent capacitance in each case.

 20 Determine the equivalent capacitance when the following capacitors are connected (a) 
in series and (b) in parallel

 i 3 μF, 4 μF and 10 μF
 ii 0.02 μF, 0.05 μF and 0.22 μF
 iii 20 pF and 470 pF
 iv 0.01 μF and 220 pF
 21 Determine the value of capacitor which when connected in series with a 2 nF capacitor 

produces a total capacitance of 1.6 nF.
 22 Three 15 μF capacitors are connected in series across a 600 V supply. Calculate (a) the 

total capacitance, (b) the p.d. across each and (c) the charge on each.
 23 Three capacitors, of 6 μF, 8 μF and 10 μF respectively are connected in parallel across 

a 60 V supply. Calculate (a) the total capacitance, (b) the charge stored in the 8 μF 
capacitor and (c) the total charge taken from the supply.

 24 For the circuit of Figure 3.29, calculate (a) the p.d. across each capacitor and (b) the 
charge stored in the 3 nF.

 25 Calculate the values of C2 and C3 shown in Figure 3.30.
 26 Calculate the p.d. across, and charge stored in, each of the capacitors shown in 

Figure 3.31.

4 nF
3 nF

6 nF

20 V

Figure 3.29  The circuit diagram for Assignment Question 24
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8 µF C2

40 V 70 V 90 V

200 V

C3

Figure 3.30  The circuit diagram for Assignment Question 25

6 µF

16 µF

10 µF

400 V

Figure 3.31  The circuit diagram for Assignment Question 26

600 V

C3

C1 C2

20 µF 30 µF

Figure 3.32  The circuit diagram for Assignment Question 27

A

B

26 µF 26 µF 14 µF

Figure 3.33  The circuit diagram for Assignment Question 28
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 27 A capacitor circuit is shown in Figure 3.32. With the switch in the open position, cal-
culate the p.d.s across capacitors C1 and C2. When the switch is closed, the p.d. across 
C2 becomes 400 V. Calculate the value of C3.

 28 In the circuit of Figure 3.33, the variable capacitor is set to 60 μF. Determine the p.d. 
across this capacitor if the supply voltage between terminals AB is 500 V.

 29 A 50 pF capacitor is made up of two plates separated by a dielectric 2 mm thick and of 
relative permittivity 1.4. Calculate the effective plate area.

 30 For the circuit shown in Figure 3.34 the total capacitance is 16 pF. Calculate (a) the 
value of the unmarked capacitor, (b) the charge on the 10 pF capacitor and (c) the p.d. 
across the 40 pF capacitor.

 31 A 20 μF capacitor is charged to a p.d. of 250 V. Calculate the energy stored.
 32 The energy stored by a 400 pF capacitor is 8 μJ. Calculate the p.d. between its plates.
 33 Determine the capacitance of a capacitor that stores 4 mJ of energy when charged to a 

p.d. of 40 V.
 34 When a capacitor is connected across a 200 V supply it takes a charge of 8 μC. 

Calculate (a) its capacitance, (b) the energy stored and (c) the electric field strength if 
the plates are 0.5 mm apart.

 35 A 4 μF capacitor is charged to a p.d. of 400 V and then connected across an uncharged 
2 μF capacitor. Calculate (a) the original charge and energy stored in the 4 μF and (b) 
the p.d. across, and energy stored in, the parallel combination.

 36 Two capacitors, of 4 μF and 6 μF, are connected in series across a 250 V supply. (a) 
Calculate the charge and p.d. across each. (b) The capacitors are now disconnected 
from the supply and reconnected in parallel with each other, with terminals of similar 
polarity being joined together. Calculate the p.d. and charge for each.

 37 A ceramic capacitor is to be made so that it has a capacitance of 100 pF and is to 
be operated from a 750 V supply. Allowing for a safety factor, the dielectric has a 
strength of 500 kV/m. Determine (a) the thickness of the ceramic, (b) the plate area if 
the relative permittivity of the ceramic is 3.2, (c) the charge and energy stored when the 
capacitor is connected to its rated supply voltage and (d) the flux density under these 
conditions.

 38 A large electrolytic capacitor of value 100 μF has an effective plate area of 0.942 m2. 
If the aluminium oxide film dielectric has a relative permittivity of 6, calculate its 
thickness.

40 pF

50 pF

10 pF

C

100 V

Figure 3.34  The circuit diagram for Assignment Question 30
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SUGGESTED PRACTICAL ASSIGNMENT

Assignment 1

To determine the total capacitance of capacitors, when connected in series, and in parallel.

Apparatus

Various capacitors, of known values
1 × capacitance meter, or capacitance bridge

Method

 1 Using either the meter or bridge, measure the actual value of each capacitor.
 2 Connect different combinations of capacitors in parallel, and measure the total capaci-

tance of each combination.
 3 Repeat the above procedure, for various series combinations.
 4 Calculate the total capacitance for each combination, and compare these values to 

those previously measured.
 5 Account for any difference between the actual and nominal values, for the individual 

capacitors.
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Chapter 4

Magnetic Fields and Circuits

LEARNING OUTCOMES

This chapter introduces the concepts and laws associated with magnetic fields and their applica-
tion to magnetic circuits and materials.

On completion of this chapter you should be able to:

 1 Describe the forces of attraction and repulsion between magnetised bodies.
 2 Understand the various magnetic properties and quantities, and use them to solve simple 

series magnetic circuit problems.
 3 Appreciate the effect of magnetic hysteresis, and the properties of different types of mag-

netic material.

4.1  MAGNETIC MATERIALS

All materials may be broadly classified as being in one of two groups. They may be magnetic 
or non-magnetic, depending upon the degree to which they exhibit magnetic effects. The 
vast majority of materials fall into the latter group, which may be further classified into dia-
magnetic and paramagnetic materials. The magnetic properties of these materials are very 
slight, and extremely difficult even to detect. Thus, for practical purposes, we can say that 
they are totally non-magnetic. The magnetic materials (based on iron, cobalt and ferrites) 
are the ferromagnetic materials, all of which exhibit very strong magnetic effects. It is with 
these materials that we will be principally concerned.

4.2  MAGNETIC FIELDS

Magnetic fields are produced by permanent magnets and by electric current flowing through 
a conductor. Like the electric field, a magnetic field may be considered as being the medium 
by which forces are transmitted and, in this case, the forces between magnetised materials. 
A magnetic field is also represented by lines of force or magnetic flux. These are attributed 
with certain characteristics, listed below:

 1 They always form complete closed loops. Unlike lines of electric flux, which radiate 
from and terminate at the charged surfaces, lines of magnetic flux also exist all the way 
through the magnet.

Magnetic Fields and Circuits Magnetic Fields and Circuits
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Magnetic Fields and Circuits

 2 They behave as if they are elastic. That is, when distorted they try to return to their 
natural shape and spacing.

 3 In the space surrounding a magnet, the lines of force radiate from the north (N) pole 
to the south (S) pole.

 4 They never intersect (cross).
 5 Like poles repel and unlike poles attract each other.

Characteristics (1) and (3) are illustrated in Figure 4.1 which shows the magnetic field pat-
tern produced by a bar magnet. Characteristics (2) and (4) are used to explain characteristic 
(5), as illustrated in Figures 4.2 and 4.3. In the case of the arrangement of Figure 4.2, since 
the lines behave as if they are elastic, then those lines linking the two magnets try to shorten 
themselves. This tends to bring the two magnets together.

The force of repulsion shown in Figure 4.3 is a result of the unnatural compression of 
the lines between the two magnets. Once more, acting as if they are elastic, these lines will 
expand to their normal shape. This will tend to push the magnets apart.

A permanent magnet consists of ferromagnetic material in which all magnetic dipoles 
permanently face the same direction. Permanent magnets have the advantage that no electri-
cal supply is required to produce the magnetic field. However, they also have several disad-
vantages. The strength of the field cannot be varied. Over a period of time they tend to lose 
some of their magnetism (especially if subjected to physical shock or vibration). For many 
practical applications these disadvantages are unacceptable. Therefore a more convenient 
method of producing a magnetic field is required.

Permanent magnets were originally made of steel, but today there are all kinds of alloys such 
as Alnico that are extremely suitable for this purpose, such as alloys of iron, nickel and cobalt 
to which some aluminium, manganese and copper is added, or also ceramic materials such as 
barium oxide and iron(III) oxide. Very strong permanent magnets are nowadays made from 
sintered combinations with rare earths, such as samarium-cobalt (SmCo5) or neodymium-iron-
boron (Nd2Fe14B).

In addition to the heating effect, an electric current also produces a magnetic field. The 
strength of this field is directly proportional to the value of the current. Thus a magnetic 
field produced in this way may be turned on and off, reversed and varied in strength very 
simply. A magnetic field is a vector quantity, as indicated by the arrows in the previous 
diagrams. The field pattern produced by a current flowing through a straight conductor is 
illustrated in Figure 4.4(a) and (b). Note that conventional current flow is considered. The 
convention adopted to represent conventional current flowing away from the observer is a 
cross, and current towards the observer is marked by a dot. The direction of the arrows 
on the flux lines can easily be determined by considering the X as the head of a cross-head 

SN

Figure 4.1  The magnetic field pattern produced by a bar magnet
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screw. In order to drive the screw away from you, the screw would be rotated clockwise. 
On the other hand, if you were to observe the point of the screw coming out towards you, 
it would be rotating anticlockwise. This convention is called the screw rule, and assumes a 
normal right-hand thread.

It should be noted that the magnetic flux actually extends the whole length of the con-
ductor, in the same way that the insulation on a cable covers the whole length. In addition, 
the flux pattern extends outwards in concentric circles to infinity. However, as with electric 
and gravitational fields, the force associated with the field follows an inverse square law. It 
therefore diminishes very rapidly with distance.

The flux pattern produced by a straight conductor can be adapted to provide a field pat-
tern like a bar magnet. This is achieved by winding the conductor in the form of a coil. This 
arrangement is known as a solenoid. The principle is illustrated in Figure 4.5(a) and (b), 
which show a cross-section of a solenoid. Figure 4.5(a) shows the flux patterns produced by 
two adjacent turns of the coil. However, since lines of flux will not intersect, the flux distorts 
to form complete loops around the whole coil as shown in Figure 4.5(b).

N S

Figure 4.2  Lines attracting between two magnets

NN

Figure 4.3  Lines repulsing between two magnets

X

(a)

I

(b)

I

Figure 4.4  The field pattern produced by a current flowing through a straight conductor
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This magnetic field is sometimes used to detect cars waiting in front of red traffic lights or at 
the barriers at a car park. This detection can be recognised by the traces of sawn open asphalt, 
where a copper wire with five or six windings is placed in it. Due to the amount of metal in a 
car, the magnetic field will be changed and the current will change accordingly. This change is 
detected and causes the green light or the opening of barrier for the waiting car. If your car does 
not contain enough metal or if you pass by on your bicycle, you will not be detected at all. To 
solve this, a backpack full of metal is not really useful. However, you can change the magnetic 
field with some super magnets (made of an alloy of neodymium). These are used in, among other 
things, the brakes of a computer hard disk. But beware, they can also unintentionally (de)magne-
tise other objects, such as bank cards, pacemakers, etc. Another way to influence the behaviour 
of that coil is to make your own coil with the same size and with approximately the same num-
ber of windings and short circuit it on top of the coil embedded in asphalt. The short circuit will 
cause the magnetic field to behave differently and that is exactly what is being detected.

4.3  THE MAGNETIC CIRCUIT

A magnetic circuit is all of the space occupied by the magnetic flux. Figure 4.6 shows an 
iron-cored solenoid, supplied with direct current, and the resulting flux pattern. This is what 
is known as a composite magnetic circuit, since the flux exists both in the iron core and in 
the surrounding air space. In addition, it can be seen that the spacing of the lines within the 
iron core is uniform, whereas it varies in the air space. Thus there is a uniform magnetic field 
in the core and a non-uniform field in the rest of the magnetic circuit.

In order to make the design and analysis of a magnetic circuit easier, it is more convenient 
if a uniform field can be produced. This may be achieved by the use of a completely enclosed 
magnetic circuit. One form of such a circuit is an iron toroid that has a current-carrying 
coil wound round it. A toroid is a ‘doughnut’ shape having either a circular or a rectangular 
cross-section. Such an arrangement is shown in Figure 4.7, and from this it can be seen that 
only the toroid itself forms the magnetic circuit. Provided that it has a uniform cross-section 
then the field contained within it will be uniform.

� � � � � �

(b)

N S

� �

(a)

Figure 4.5  Cross-section of a solenoid
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4.4  MAGNETIC FLUX AND FLUX DENSITY

The magnetic flux is what causes the observable magnetic effects such as attraction, repul-
sion, etc. The unit of magnetic flux is the weber (Wb). The number of webers of flux per 
square metre of cross-section of the field is defined as the magnetic flux density (B), which 
is measured in tesla (T). This sometimes causes some confusion at first, since the logical 
unit would appear to be weber/metre2. Indeed, this is the way in which it is calculated: the 
value of flux must be divided by the appropriate area. On reflection, it should not be par-
ticularly confusing, since the logical unit for electrical current would be coulomb/second; 
but it seems quite natural to use the term ampere. The quantity symbols for magnetic flux 
and flux density are Φ and B respectively. Hence, flux density is given by the equation and 
is expressed in tesla:

 B
A

= F  (4.1)

Note: References have been made to iron as a core material and as the material used for 
toroids, etc. This does not necessarily mean that pure iron is used. It could be mild steel, cast 
iron, silicon iron, ferrite, etc. The term ‘iron circuit’, when used in this context, is merely a 
simple way in which to refer to that part of the circuit that consists of a magnetic material. 
It is used when some parts of the circuit may be formed from non-magnetic materials.

S

I

N

Figure 4.6  An iron-cored solenoid

N

I

Figure 4.7 A toroid



Magnetic Fields and Circuits  99

Wilhelm Eduard Weber (1804–1891) was a German physicist and philosopher, best known for 
his work in the field of magnetism. He worked closely with Gauss and conducted important 
research in the fields of magnetism, induction, electrical units and other phenomena. He also 
built the first magnetometer to measure and map the Earth’s magnetic field.

Nikola Tesla (1856–1943) was an inventor, electrical engineer and physicist. He is known as the 
inventor of the alternating current generator, the alternating current electric motor and other 
important components of the current electrical grid. In rudimentary form, these devices were 
mostly developed by others before Tesla’s time. Tesla’s credit was that he developed the alter-
nating current principle much further and greatly improved or designed almost all the necessary 
devices for an alternating current-based reliable power grid.

WORKED EXAMPLE 4.1

Q The pole face of a magnet is 3 cm by 2 cm and it produces a flux of 30 μWb. Calculate the 
flux density at the pole face.

 A = ´ ´ = ´- -3 2 10 30 104 6m Wb2; F  

 B
A

= = ´
´

=
-

-
F 30 10

6 10
50

6

4 mT  

WORKED EXAMPLE 4.2

Q A magnetic field of density 0.6 T has an effective cross-sectional area of 45 × 10–6 m2. 
Determine the flux.

 

B A

B
A

BA

= = ´

= =

= ´ ´ =

-

-

0 6 45 10

0 6 45 10 27

6

6

.

.

T; m

, then

Wb

2

F F

F m

 

4.5  MAGNETOMOTIVE FORCE (MMF)

In an electric circuit, any current that flows is due to the existence of an emf. Similarly, in a 
magnetic circuit, the magnetic flux is due to the existence of a magnetomotive force (short-
ened to mmf). The concept of an mmf for permanent magnets is a difficult one. Fortunately 
it is simple when we consider the flux being produced by current flowing through a coil. This 
is the case for most practical magnetic circuits.
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In Section 4.2, we saw that each turn of the coil made a contribution to the total flux pro-
duced, so the flux must be directly proportional to the number of turns on the coil. The flux 
is also directly proportional to the value of current passed through the coil. Putting these 
two facts together we can say that the mmf is the product of the current and the number of 
turns. The quantity symbol for mmf is F (the same as for mechanical force). The number of 
turns is just a number and therefore dimensionless. The SI unit for mmf is therefore simply 
ampere. However, this tends to cause considerable confusion to students new to the subject. 
For this reason, throughout this book, the unit will be quoted as ampere turns (At).

 mmf, F NI=  (4.2)

WORKED EXAMPLE 4.3

Q A 1500-turn coil is uniformly wound around an iron toroid of uniform cross-sectional area of 
5 cm2. Calculate the mmf and flux density produced, if the resulting flux is 0.2 mWb when the 
coil current is 0.75 A.

 N A I= = ´ = ´ =- -1500 5 10 0 2 10 0 754 3; ; . .m Wb; A2 F  

 F NI= = ´ = At1500 0 75 1125.  

 B
A

= = ´
´

=
-

-
F 0 2 10

5 10
0 4

3

4

.
. T  

WORKED EXAMPLE 4.4

Q Calculate the excitation current required in a 600 turn coil in order to produce an mmf of 
1500 At.

 

N F At

F NI I
F
N

I

= =

= =

= =

600 1500

1500
600

2 5

;

.

, then

A

 

4.6  MAGNETIC FIELD STRENGTH

The magnetic field strength is the magnetic equivalent to electric field strength in electrostat-
ics. It was found that electric field strength is the same as potential gradient, and is measured 
in volt/metre. Now, the volt is the unit of emf, and we have just seen that mmf and emf are 
comparable quantities, i.e. mmf can be considered as the magnetic circuit equivalent of elec-
tric potential. Hence magnetic field strength is defined as the mmf per metre length of the 
magnetic circuit. The quantity symbol for magnetic field strength is H, the unit of measure-
ment being ampere turn/metre.
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Figure 4.8  A circular and a rectangular toroid

 H
F NI= =
 

 (4.3)

where ℓ is the mean or average length of the magnetic circuit. Thus, if the circuit consists 
of a circular toroid, the mean length is the mean circumference. This point is illustrated in 
Figure 4.8(a) and (b).

WORKED EXAMPLE 4.5

Q A current of 400 mA is passed through a 550 turn coil, wound on a toroid of mean diameter 
8 cm. Calculate the magnetic field strength.

 

I N d
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H
NI
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4.7  PERMEABILITY

We have seen in electrostatics that the permittivity of the dielectric is a measure of the 
‘willingness’ of the dielectric to allow an electric field to exist in it. In magnetic circuits the 
corresponding quantity is the permeability of the material.

If the magnetic field exists in a vacuum, then the ratio of the flux density to the magnetic 
field strength is a constant, called the permeability of free space and expressed in henry/
metre:

 m0 =
B
H

 (4.4)
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compare this to , expressed in farad/metre

The value for

e

m p

0

0 4
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= ´

D
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110 7- H/m
 

μ0 is used as the reference or datum level from which the permeabilities of all other materials 
are measured.

Joseph Henry (1797–1878) was an American physicist and inventor of the relay. He described 
the law of induction, demonstrated a prototype of the telegraph, introduced the first linear 
electric motor based on the concept devised by Michael Faraday and invented the relay, which 
switches on and off a circuit in a safe and reliable way by using an electromagnet.

Consider an air-cored solenoid with a fixed value of current flowing it. The mmf will 
produce a certain flux density in this air core. If an iron core was now inserted, it would be 
found that the flux density would be very much increased. To account for these different 
results for different core materials, a quantity known as the relative permeability μr is used. 
This is defined as the ratio of the flux density produced in the iron, to that produced in the 
air, for the same applied mmf.

 i.e. rm = B
B

2

1

 (4.5)

where B2 is the flux density produced in the iron and B1 is the flux density produced in the 
air.

Compare this to the equation er =
C
C

2

1

 used in electrostatics. As with εr, μr has no units, 
since it is simply a ratio.

Note: For air or any other non-magnetic material, μr = 1. In other words, all non-magnetic materi-
als have the same magnetic properties as a vacuum.

The absolute permeability of a material is the ratio of the flux density to magnetic field 
strength, for a given mmf expressed in henry/metre as follows.

 Thus, m = B
H

 (4.6)

but since μ0 is the reference value, then μ = μ0μr, which can be compared to the equation ε 
= ε0εr. Therefore,

 m m m m0 0r rso,= =B
H

B H  (4.7)

This equation compares directly with D = ε0εrE coulomb/m2.
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WORKED EXAMPLE 4.6

Q A solenoid with a core of cross-sectional area of 15 cm2 and relative permeability 65 pro-
duces a flux of 200 μWb. If the core material is changed to one of relative permeability 800, 
what will be the new flux and flux density?

 A = ´ = = ´ =- -15 10 65 2 10 8004
1

4m Wb;2
r1 r2; ;m mF  

 B
A

1
1

4

4

2 10
15 10

0 133= = ´
´

=
-

-
F

. T  

Now, the original core is 65 times more effective than air. The second core is 800 times more 
effective than air. Therefore, we can say that the second core will produce a greater flux density. 
The ratio of the two flux densities will be 800/65 = 12.31:1. Thus the second core will result in 
a flux density 12.31 times greater than produced by the first core.

 B B

B
2 1

2 2
4

12 31 12 31 0 133 1 641

1 641 15 10 2 462

= = ´ =
= = ´ ´ =-

. . . .

. .

T

A mWbF
 

WORKED EXAMPLE 4.7

Q A toroid of mean radius 40 mm, effective cross-sectional area of 3 cm2 and relative perme-
ability 150, is wound with a 900 turn coil that carries a current of 1.5 A. Calculate (a) the mmf, 
(b) the magnetic field strength and (c) the flux and flux density.

 r m m A2
r= = ´ = = =-0 04 3 10 150 900 1 54. ; ; ; ; .A N Im  

(a) F NI= = ´ =900 1 5 1350. At  

(b) H
F= =

´
=



1350
2 0 04

5371 5
p .

.
l

At/m  

(c) 

B H

BA

= = ´ ´ ´ =
= = ´ ´

=

-

-

m m p0
7

4

4 10 150 5371 5 1 0125

1 0125 3 10

303

r T. .

.

.

F
F 775 mWb

 

WORKED EXAMPLE 4.8

Q A steel toroid of the dimensions shown in Figure 4.9 is wound with a 500 turn coil of wire. 
What value of current needs to be passed through this coil in order to produce a flux of 250 
μWb in the toroid, if under these conditions the relative permeability of the toroid is 300?

 
r A N= ´ = ´ = = ´ =- - -3 10 4 5 10 500 250 10 3002 4 6m; m Wb;

Effective l

2
r. ; ; F m

eength of the toroid, r m ml = = ´ ´ =-2 2 3 10 0 1882p p .
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WORKED EXAMPLE 4.9

Q A coil is made by winding a single layer of 0.5 mm diameter wire onto a cylindrical wooden 
dowel, which is 5 cm long and has a cross-sectional area of 7 cm2. When a current of 0.2 A is 
passed through the coil, calculate (a) the mmf produced, (b) the flux density and (c) the flux 
produced.

(a) I A d= = ´ = ´ = ´ = ( )- - -0 2 5 10 7 10 0 5 10 12 4 3. ; ; . ;A m; m m wood2
r m  

Since F = NI, we first need to calculate the number of turns of wire on the coil. Consider 
Figure 4.10 which represents the coil wound onto the dowel. From Figure 4.10 it may be seen 
that the number of turns may be obtained by dividing the length of the dowel by the diameter 
(thickness) of the wire.
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F
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(b) B
A

B H= =F
or rm m0

but since we do not yet know the value for the flux, but can calculate the value for H, then 
the second equation needs to be used.

A � 4.5 cm2

r
30 cm

�

Figure 4.9  The circuit diagram for Worked Example 4.8
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(c) F = = ´ ´ ´ =- -BA 503 10 7 10 0 3526 4 . mWb  

4.8  MAGNETISATION (B/H) CURVE

A magnetisation curve is a graph of the flux density produced in a magnetic circuit as the 
magnetic field strength is varied. Since H = NI/ℓ , then for a given magnetic circuit, the field 
strength may be varied by varying the current through the coil. If the magnetic circuit con-
sists entirely of air, or any other non-magnetic material, the resulting graph will be a straight 
line passing through the origin. The reason for this is that since μr = 1 for all non-magnetic 
materials, the ratio B/H remains constant.

Unfortunately, the relative permeability of magnetic materials does not remain constant 
for all values of applied field strength, which results in a curved graph. This non-linearity 
is due to an effect known as magnetic saturation. The complete explanation of this effect is 
beyond the scope of this book, but a much simplified version of this is afforded by Ewing’s 
molecular theory. This states that each molecule in a magnetic material may be considered 
as a minute magnet in its own right. When the material is unmagnetised, these molecular 
magnets are orientated in a completely random fashion. Thus, the material has no overall 
magnetic polarisation. This is similar to a conductor in which the free electrons are drifting 
in a random manner. Thus, when no emf is applied, no current flows. This random orienta-
tion of the molecular magnets is illustrated in Figure 4.11 where the arrows represent the 
north poles. However, as the coil magnetisation current is slowly increased, so the molecular 
magnets start to rotate towards a particular orientation. This results in a certain degree of 
polarisation of the material, as shown in Figure 4.12. As the coil current continues to be 
increased, so the molecular magnets continue to become more aligned. Eventually, the coil 
current will be sufficient to produce complete alignment. This means that the flux will have 
reached its maximum possible value. Further increase of the current will produce no further 
increase of flux. The material is then said to have reached magnetic saturation, as illustrated 
in Figure 4.13.

Typical magnetisation curves for air and a magnetic material are shown in Figure 4.14. 
Note that the flux density produced for a given value of H is very much greater in the 

�

5 cm

d � 0.5 mm

Figure 4.10  The circuit diagram for Worked Example 4.9
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magnetic material. The slope of the graph is B/H = μ0μr, and this slope varies. Since μ0 is a 
constant, then the value of μr for the magnetic material must vary as the slope of the graph 
varies.

The variation of μr with variation of H may be obtained from the B/H curve, and the 
resulting μr/H graph is shown in Figure 4.15. The magnetisation curves for a range of mag-
netic materials are given in Figure 4.16.

For a practical magnetic circuit, a single value for μr cannot be specified unless it is quoted 
for a specified value of B or H. Thus B/H data must be available. These may be presented 

partially magnetised

Figure 4.12  Random orientation of the molecular magnets, partly magnetised

saturation

Figure 4.13  Random orientation of the molecular magnets, saturated

magnetic material

B(T)

air

H (At/m)
0

Figure 4.14  Magnetisation curves for air and magnetic material

un-magnetised

Figure 4.11  Random orientation of the molecular magnets
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Figure 4.16  Magnetisation curves for a range of magnetic materials
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either in the form of a graph as in Figure 4.14, or in the form of tabulated data, from which 
the relevant section of the B/H curve may be plotted.

WORKED EXAMPLE 4.10

Q An iron toroid having a mean radius of 0.1 m and cross-sectional area of π cm2 is wound with 
a 1000-turn coil. The coil current results in a flux of 0.1775 mWb in the toroid. Using the fol-
lowing data, determine (a) the coil current and (b) the relative permeability of the toroid under 
these conditions.

H (At/m) 80 85 90 95 100
B(T) 0.50 0.55 0.58 0.59 0.6

The first step in the solution of the problem is to plot the section of B/H graph from the given 
data.

Note: This must be plotted as accurately as possible on graph paper. The values used in this 
example have been obtained from such a graph.

 B
A

= = ´
´

=
-

-
F 0 1775 10

10
0 565

3

4

.
.

p
T  

and from the plotted graph, when B = 0.565 T, H = 88 At/m.
(a) Now, the length of the toroid, ℓ = 2πr = 0.27 πm
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WORKED EXAMPLE 4.11

Q A cast iron toroid of mean length 15 cm is wound with a 2500-turn coil, through which a 
magnetising current of 0.3 A is passed. Calculate the resulting flux density and relative perme-
ability of the toroid under these conditions.

Since B/H data are necessary for the solution, but none have been quoted, the B/H curve for 
cast iron shown in Figure 4.16 will be used.

  = = =0 15 2500 0 3. ; .m; AN I  

 H
NI= = ´ =


2500 0 3
0 15

5000
.

.
At/m  
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and from the graph for cast iron in Figure 4.16, the corresponding flux density is
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4.9  COMPOSITE SERIES MAGNETIC CIRCUITS

Most practical magnetic circuits consist of more than one material in series. This may be 
deliberate, as in the case of an electric motor or generator, where there have to be air gaps 
between the stationary and rotating parts. Sometimes an air gap may not be required, but 
the method of construction results in small but unavoidable gaps. In other circumstances it 
may be a requirement that two or more different magnetic materials form a single magnetic 
circuit. Let us consider the case where an air gap is deliberately introduced into a magnetic 
circuit, for example, making a sawcut through a toroid, at right angles to the flux path.

WORKED EXAMPLE 4.12

Q A mild steel toroid of mean length 18.75 cm and cross-sectional area of 0.8cm2 is wound 
with a 750 turn coil. (a) Calculate the coil current required to produce a flux of 112 μWb in the 
toroid. (b) If a 0.5 mm sawcut is now made across the toroid, calculate the coil current required 
to maintain the flux at its original value.

 I A N= = ´ =-0 1875 8 10 7505. ; ;m; m2  

 F = ´ = ´- -112 10 0 5 106 3Wb; mgap .  

(a) B
A

= = ´
´

=
-

-
F 112 10

8 10
1 4

6

5 . T  

From the graph for mild steel in Figure 4.16, the corresponding value for H is 2000 At/m

 F HlFe At= = ´ =2000 0 1875 375.  

Fe is the chemical symbol for iron. In Worked Example 4.12 the mmf required to produce the 
flux in the ‘iron’ part of the circuit has been referred to as FFe. This will distinguish it from the 
mmf required for the air gap which is shown as Fgap

 
I

F
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I

= =

=

Fe

A
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0 5.
 

(b) When the air gap is introduced into the steel the effective length of the steel circuit 
changes by only 0.27%. This is a negligible amount, so the values obtained in part (a) above for 
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H and FFe remain unchanged. However, the introduction of the air gap will produce a consider-
able reduction of the circuit flux. Thus we need to calculate the extra mmf, and hence current, 
required to restore the flux to its original value. Since the relative permeability for air is a con-
stant (=1), a B/H graph is not required. The cross-sectional area of the gap is the same as that for 
the steel, and the same flux exists in it. Thus, the flux density in the gap must also be the same 
as that calculated in part (a) above. Hence the value of H required to maintain this flux density 
in the gap can be calculated from:
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WORKED EXAMPLE 4.13

Q A magnetic circuit consists of two stalloy sections A and B as shown in Figure 4.17. The mean 
length and cross-sectional area for A are 25 cm and 11.5 cm2, whilst the corresponding values 
for B are 15 cm and 12 cm2 respectively. A 1000-turn coil wound on section A produces a circuit 
flux of 1.5 mWb. Calculate the coil current required.
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From the B/H curve for stalloy in Figure 4.16, the corresponding H values are:
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From the last two examples it should now be apparent that in a series magnetic circuit 
the only quantity that is common to both (all) sections is the magnetic flux Φ. This com-
mon flux is produced by the current flowing through the coil, i.e. the total circuit mmf 
F. Also, if the lengths, cross-sectional area and/or the materials are different for the sec-
tions, then their flux densities and H values must be different. For these reasons it is not 
legitimate to add together the individual H values. It is correct, however, to add together 
the individual mmfs to obtain the total circuit mmf F. This technique is equivalent to 
adding together the p.d.s across resistors connected in series in an electrical circuit. The 
sum of these p.d.s then gives the value of emf required to maintain a certain current 
through the circuit.

For example, if a current of 4 A is to be maintained through two resistors of 10 Ω and 20 
Ω connected in series, then the p.d.s would be 40 V and 80 V respectively. Thus, the emf 
required would be 120 V.

4.10  RELUCTANCE (S)

Comparisons have already been made between the electric circuit and the magnetic circuit. 
We have compared mmf to emf; current to flux; and potential gradient to magnetic field 
strength. A further comparison may be made, as follows.

The resistance of an electric circuit limits the current that can flow for a given applied 
emf. Similarly, in a magnetic circuit, the flux produced by a given mmf is limited by the 
reluctance of the circuit. Thus, the reluctance of a magnetic circuit is the opposition it offers 
to the existence of a magnetic flux within it.

Current is a movement of electrons around an electric circuit. A magnetic flux merely exists in a 
magnetic circuit; it does not involve a flow of particles. However, both current and flux are the 
direct result of some form of applied force.

 
In an electric circuit, current

emf
resistance

so in a magnetic circ

=

uuit, flux
mmf

reluctance
=

 

A B

Figure 4.17   The circuit diagram for Worked Example 4.13
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 Thus, F = =F
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Let us continue the comparison between series electrical circuits and series magnetic cir-
cuits. We know that the total resistance in the electrical circuit is obtained simply by adding 
together the resistor values. The same technique may be used in magnetic circuits, such that 
the total reluctance of a series magnetic circuit, S is given by

 S S S= + + +1 2 3S   (4.10)

Assume that the physical dimensions of the sections, and the relative permeabilities (for the 
given operating conditions) of each section are known. In this case, equations (4.9), (4.10) 
and (4.8) enable an alternative form of solution.

WORKED EXAMPLE 4.14

Q An iron ring of cross-sectional area of 8 cm2 and mean diameter 24 cm contains an air gap of 3 
mm wide. It is required to produce a flux of 1.2 mWb in the air gap. Calculate the mmf required, 
given that the relative permeability of the iron is 1200 under these operating conditions.

 A AFe gap
2

r gap Fem m;= = ´ = ´ = = ´ =- - -8 10 1 2 10 1200 3 10 0 244 3 3; . ; ; .F m   ´́ pm  

 For the iron circuit:
0.24 m

4
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r

S
A
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´ ´ ´ ´

=- -


m m
p

p0
7 410 1200 8 10

66 25 105. ´ At/Wb  

 For the air gap: gap
gap

r

S
A

= = ´
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m m p0

3

7 4

3 10
4 10 1 8 10

2 984 1. 006 At/Wb  

 Total circuit reluctance, +Fe gapS S S= = ´ + ´ = ´6 25 10 2 984 10 3 615 6. . . 1106 At/Wb  

 Since F = F
S
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 F S V IR= =F (compare to ) 

 F = 4331At  

The above example illustrates the quite dramatic increase of circuit reluctance produced by 
even a very small air gap. In this example, the air gap length is only 0.4% of the total circuit 
length. Yet its reluctance is almost five times greater than that of the iron section. For this 
reason, the design of a magnetic circuit should be such as to try to minimise any unavoid-
able air gaps.

WORKED EXAMPLE 4.15

Q A magnetic circuit consists of three sections, the data for which is given below. Calculate (a) 
the circuit reluctance and (b) the current required in a 500 turn coil, wound onto section 1, to 
produce a flux of 2mWb.

Section Length (cm) Cross-sectional area (cm2) μr

1 85 10 600
2 65 15 950
3 0.1 12.5 1
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Magnetic flux, like most other things in nature, tends to take the easiest path available. For 
flux this means the lowest reluctance path. This is illustrated in Figure 4.18. The reluctance 
of the soft iron bar is very much less than the surrounding air. For this reason, the flux will 
opt to distort from its normal pattern, and make use of this lower reluctance path.
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4.11  MAGNETIC HYSTERESIS

Hysteresis comes from a Greek word meaning ‘to lag behind’. It is found that when the 
magnetic field strength in a magnetic material is varied, the resulting flux density displays 
a lagging effect.

Consider such a specimen of magnetic material that initially is completely unmagnetised. 
If no current flows through the magnetising coil then both H and B will initially be zero. 
The value of H is now increased by increasing the coil current in discrete steps. The corre-
sponding flux density is then noted at each step. If these values are plotted on a graph until 
magnetic saturation is achieved, the dotted curve (the initial magnetisation curve) shown in 
Figure 4.19 results.

Let the current now be reduced (in steps) to zero, and the corresponding values for B again 
noted and plotted. This would result in the section of graph from A to C. This shows that 
when the current is zero once more (so H = 0), the flux density has not reduced to zero. The 
flux density remaining is called the remanent flux density (OC). This property of a magnetic 
material, to retain some flux after the magnetising current is removed, is known as the rema-
nence or retentivity of the material.

S N

soft
iron

plastic

copper

Figure 4.18  Magnetic flux taking the lowest reluctance path

�B(T)
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Figure 4.19 Magnetic hysteresis
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Let the current now be reversed, and increased in the opposite direction. This will have 
the effect of opposing the residual flux. Hence, the latter will be reduced until at some value 
of −H it reaches zero (point D on the graph). The amount of reverse magnetic field strength 
required to reduce the residual flux to zero is known as the coercive force. This property of 
a material is called its coercivity.

If we now continue to increase the current in this reverse direction, the material will once 
more reach saturation (at point E). In this case it will be of the opposite polarity to that 
achieved at point A on the graph.

Once again, the current may be reduced to zero, reversed and then increased in the origi-
nal direction. This will take the graph from point E back to A, passing through points F and 
G on the way. Note that residual flux density shown as OC has the same value, but opposite 
polarity, to that shown as OF. Similarly, coercive force OD = OG.

In taking the specimen through the loop ACDEFGA we have taken it through one com-
plete magnetisation cycle. The loop is referred to as the hysteresis loop. The degree to which 
a material is magnetised depends upon the extent to which the ‘molecular magnets’ have 
been aligned. Thus, in taking the specimen through a magnetisation cycle, energy must be 
expended. This energy is proportional to the area enclosed by the loop, and the rate (fre-
quency) at which the cycle is repeated.

Magnetic materials may be subdivided into what are known as ‘hard’ and ‘soft’ magnetic 
materials. A hard magnetic material is one which possesses a large remanence and coerciv-
ity. It is therefore one which retains most of its magnetism, when the magnetising current is 
removed. It is also difficult to demagnetise. These are the materials used to form permanent 
magnets, and they will have a very ‘fat’ loop as illustrated in Figure 4.20(a).

A soft magnetic material, such as soft iron and mild steel, retains very little of the induced 
magnetism. It will therefore have a relatively ‘thin’ hysteresis loop, as shown in Figure 
4.20(b). The soft magnetic materials are the ones used most often for engineering applica-
tions. Examples are the magnetic circuits for rotating electric machines (motors and genera-
tors), relays and the cores for inductors and transformers.

When a magnetic circuit is subjected to continuous cycling through the loop a consider-
able amount of energy is dissipated. This energy appears as heat in the material. Since this is 
normally an undesirable effect, the energy thus dissipated is called the hysteresis loss. Thus, 
the thinner the loop, the less wasted energy. This is why ‘soft’ magnetic materials are used 
for the applications listed above.

H (At/m)

(a)

B(T)

H (At/m)

B(T)

(b)

Figure 4.20  Magnetic hysteresis: permanent magnets versus soft magnets
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4.12  PARALLEL MAGNETIC CIRCUITS

We have seen that the magnetic circuit may be treated in much the same manner as its 
electrical circuit equivalent. The same is true for parallel circuits in the two systems. Two 
equivalent circuits are shown in Figure 4.21, and from this the following points emerge:

 1 In the electrical circuit, the current supplied by the source of emf splits between the 
two outer branches according to the resistances offered. In the magnetic circuit, the 
flux produced by the mmf splits between the outer limbs according to the reluctances 
offered.

 2 If the two resistors in the outer branches are identical, the current splits equally. 
Similarly, if the reluctances of the outer limbs are the same then the flux splits equally 
between them.

However, a note of caution. In the electric circuit it has been assumed that the source of emf 
is ideal (no internal resistance) and that the connecting wires have no resistance. The latter 
assumption cannot be applied to the magnetic circuit. All three limbs will have a value of 
reluctance that must be taken into account when calculating the total circuit reluctance.

SUMMARY OF EQUATIONS

Magnetic flux density:  B
A

H= =F m m0 r  

Magnetomotive force (mmf): F NI S= = F  

Magnetic field strength: H
F NI= =
 

 

Permeability:  m m m= 0 r
B
H

 

Reluctance: S
NI F= = =

m m0 rA F F
 

R1

I1 I2

R2E

(a)

I

(b) Φ

Φ1 Φ2

N

Figure 4.21  Parallel magnetic circuits
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Series magnetic circuit:  S S S S= + + +1 2 3  

Also listed below are some comparable equations.
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Note: Although the concept of current density has not been covered previously, it may be 
seen from Table 4.1 that it is simply the value of current flowing through a conductor divided 
by the cross-sectional area of the conductor.

ASSIGNMENT QUESTIONS

 1 The pole faces of a magnet are 4 cm × 3 cm and produce a flux of 0.5 mWb. Calculate 
the flux density.

 2 A flux density of 1.8 T exists in an air gap of effective cross-sectional area of 11 cm2. 
Calculate the value of the flux.

 3 If a flux of 5 mWb has a density of 1.25 T, determine the cross-sectional area of the 
field.

Table 4.1  Comparison of quantities

Electrical Magnetic Electrostatic

Quantity Symbol Unit Quantity Symbol Unit Quantity Symbol Unit

emf E V mmf F At emf E V
current I A flux Φ Wb flux Q C
resistance R Ω reluctance S At/Wb resistance R Ω
resistivity ρ Ωm permeability μ H/m permittivity ε F/m
potential 
gradient

– V/m field strength H At/m field strength E V/m

current 
density

J A/m2 flux density B T flux density D C/m2
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 4 A magnetising coil of 850 turns carries a current of 25 mA. Determine the resulting 
mmf.

 5 It is required to produce an mmf of 1200 At from a 1500-turn coil. What will be the 
required current?

 6 A current of 2.5 A when flowing through a coil produces an mmf of 675 At. Calculate 
the number of turns on the coil.

 7 A toroid has an mmf of 845 At applied to it. If the mean length of the toroid is 15 cm, 
determine the resulting magnetic field strength.

 8 A magnetic field strength of 2500 At/m exists in a magnetic circuit of mean length 45 
mm. Calculate the value of the applied mmf.

 9 Calculate the current required in a 500 turn coil to produce an electric field strength 
of 4000 At/m in an iron circuit of mean length 25 cm.

 10 A 400 turn coil is wound onto an iron toroid of mean length 18 cm and uniform 
cross-sectional area of 4.5 cm2. If a coil current of 2.25 A results in a flux of 0.5 mWb, 
determine (a) the mmf, (b) the flux density and (c) the magnetic field strength.

 11 An air-cored coil contains a flux density of 25 mT. When an iron core is inserted the 
flux density is increased to 1.6 T. Calculate the relative permeability of the iron under 
these conditions.

 12 A magnetic circuit of mean diameter 12 cm has an applied mmf of 275 At. If the result-
ing flux density is 0.8 T, calculate the relative permeability of the circuit under these 
conditions.

 13 A toroid of mean radius 35 mm, effective cross-sectional area of 4 cm2 and relative 
permeability 200 is wound with a 1000-turn coil that carries a current of 1.2 A. 
Calculate (a) the mmf, (b) the magnetic field strength, (c) the flux density and (d) the 
flux in the toroid.

 14 A magnetic circuit of square cross-section 1.5 cm × 1.5 cm and mean length 20 cm is 
wound with a 500 turn coil. Given the B/H data below, determine (a) the coil current 
required to produce a flux of 258.8 μWb and (b) the relative permeability of the circuit 
under these conditions.

B(T) 0.9 1.1 1.2 1.3
H(At/m) 250 450 600 825

 15 For the circuit of Question 14 above, a 1.5 mm sawcut is made through it. Calculate 
the current now required to maintain the flux at its original value.

 16 A cast steel toroid has the following B/H data. Complete the data table for the cor-
responding values of μr and hence plot the μr/H graph, and (a) from your graph deter-
mine the values of magnetic field strength at which the relative permeability of the steel 
is 520, and (b) the value of relative permeability when H = 1200 At/m.

B(T) 0.15 0.35 0.74 1.05 1.25 1.39
H(At/m) 250 500 1000 1500 2000 2500
μr

 17 A magnetic circuit made of radiometal is subjected to a magnetic field strength of 5000 
At/m. Using the data given in Figure 4.16, determine the relative permeability under 
this condition.

 18 A magnetic circuit consists of two sections as shown in Figure 4.22. Section 1 is made 
of mild steel and is wound with a 100 turn coil. Section 2 is made from cast iron. 
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Calculate the coil current required to produce a flux of 0.72 mWb in the circuit. Use 
the B/H data given in Figure 4.16.

 19 A circular toroid of mean diameter 25 cm and cross-sectional area of 4 cm2 has a 1.5 
mm air gap in it. The toroid is wound with a 1200-turn coil and carries a flux of 0.48 
mWb. If, under these conditions, the relative permeability of the toroid is 800, calcu-
late the coil current required.

 20 A closed magnetic circuit made from silicon steel consists of two sections, connected 
in series. One is of effective length 42 mm and cross-sectional area of 85 mm2, and the 
other of length 17 mm and cross-sectional area of 65 mm2. A 50 turn coil is wound on 
to the second section and carries a current of 0.4 A. Determine the flux density in the 
17 mm length section if the relative permeability of the silicon iron under this condi-
tion is 3000.

 21 A magnetic circuit of cross-sectional area of 0.45 cm2 consists of one part 4 cm long 
and μr of 1200; and a second part 3 cm long and μr of 750. A 100 turn coil is wound 
onto the first part and a current of 1.5 A is passed through it. Calculate the flux pro-
duced in the circuit.

SUGGESTED PRACTICAL ASSIGNMENTS

Note: These assignments are qualitative in nature.

Assignment 1

To compare the effectiveness of different magnetic core materials.

Apparatus

1 × coil of wire of known number of turns
1 × d.c. psu
1 × ammeter
1 × set of laboratory weights
1 × set of different ferromagnetic cores, suitable for the coil used

3 cm

4 cm 3 cm

8 cm

20 cm

4 cm

Section 2

Section 1

Figure 4.22  The circuit diagram for Assignment Question 18
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Method

 1 Connect the circuit as shown in Figure 4.23.
 2 Adjust the coil current carefully until the magnetic core just holds the smallest weight 

in place. Note the value of current and weight.
 3 Using larger weights, in turn, increase the coil current until each weight is just held by 

the core. Record all values of weight and corresponding current.
 4 Repeat the above procedure for the other core materials.
 5 Tabulate all results. Calculate and tabulate the force of attraction and mmf in each case.
 6 Write an assignment report, commenting on your findings, and comparing the relative 

effectiveness of the different core materials.

Assignment 2

To plot a magnetisation curve, and initial section of a hysteresis loop, for a magnetic circuit.

Apparatus

1 × magnetic circuit of known length, and containing a coil(s) of known number of turns
1 × variable d.c. psu
1 × Hall effect probe
1 × ammeter
1 × voltmeter

Method

 1 Ensure that the core is completely demagnetised before starting.
 2 Zero the Hall probe, monitoring its output with the voltmeter.
 3 Connect the circuit as in Figure 4.24.

core

A
I�

d.c.
p.s.u. N

weight

�

Figure 4.23  The circuit diagram for Practical Assignment 1
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 4 Increase the coil current in 0.1 A steps, up to 2 A. Record the voltmeter reading at each 
step.

  Note: If you ‘overshoot’ a desired current setting, do not then reduce the current 
back to that setting. Record the value actually set, together with the corresponding 
voltmeter reading.

 5 Reduce the current from 2 A to zero, in 0.1 A steps. Once more, if you overshoot a 
desired current setting, do not attempt to correct it.

 6 Reverse the connections to the psu, and increase the reversed current in small steps 
until the voltmeter indicates zero.

  Note: The Hall effect probe output (as measured by the voltmeter) represents the 
flux density in the core. The magnetic field strength, H, may be calculated from NI/ℓ.

 7 Plot a graph of voltmeter readings (B) versus H.
 8 Submit a full assignment report.

A V

magnetic
circuit

Hall
Probe
Circuit

d.c.
p.s.u.

�

�

probe

Figure 4.24  The circuit diagram for Practical Assignment 2
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Chapter 5

Electromagnetism

LEARNING OUTCOMES

This chapter concerns the principles and laws governing electromagnetic induction and the 
concepts of self and mutual inductance.

On completion of this chapter you should be able to use these principles to:

 1 Understand the basic operating principles of motors and generators.
 2 Carry out simple calculations involving the generation of voltage, and the production of force 

and torque.
 3 Appreciate the significance of eddy current loss.
 4 Determine the value of inductors, and apply the concepts of self and mutual inductance to 

the operating principles of transformers.
 5 Calculate the energy stored in a magnetic field.
 6 Explain the principle of the moving coil metre and carry out simple calculations for the 

instrument.

5.1  FARADAY’S LAW OF ELECTROMAGNETIC INDUCTION

It is mainly due to the pioneering work of Michael Faraday, in the nineteenth century, that 
the modern technological world exists as we know it. Without the development of the gen-
eration of electrical power, such advances would have been impossible. Thus, although the 
concepts involved with electromagnetic induction are very simple, they have far-reaching 
influence. Faraday’s law is best considered in two interrelated parts:

 1 The value of emf induced in a circuit or conductor is directly proportional to the rate 
of change of magnetic flux linking with it.

 2 The polarity of such an emf, induced by an increasing flux, is opposite to that induced 
by a decreasing flux.

The key to electromagnetic induction is contained in part 1 of the law quoted above. Here, 
the words ‘rate of change’ are used. If there is no change in flux, or the way in which this 
flux links with a conductor, then no emf will be induced. The proof of the law can be very 
simply demonstrated. Consider a coil of wire, a permanent bar magnet and a galvanometer 
as illustrated in Figures 5.1 and 5.2.
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Electromagnetism

Consider the magnet being moved so that it enters the centre of the coil. When this is done 
it will be seen that the pointer of the galvo deflects in one direction. This deflection of the 
pointer is only momentary, since it only occurs whilst the magnet is moving. The galvo is of 
course a current-measuring device. However, any current flowing through it must be due to 
a voltage between its terminals. Since there is no other source of emf in the circuit, then it 
must be concluded that an emf has been induced or created in the coil itself. The resulting 
current indicated by the galvo depends on the value of this emf. It will also be observed that 
when the magnet is stationary (either inside or outside the coil) the galvo does not deflect. 
Hence, emf is induced into the coil only when the magnet is in motion.

When the magnet is withdrawn from the coil, the galvo will again be seen to deflect 
momentarily. This time, the deflection will be in the opposite direction. Provided that the 
magnet is removed at the same rate as it was inserted, then the magnitudes of the deflections 
will be the same. The polarities of the induced emfs will be opposite to each other, since the 
current flow is reversed. Thus far, we have confirmation that an emf is induced in the coil 
when a magnetic flux is moving relative to it. We also have confirmation of part 2 of the law.

In order to deduce the relationship between the value of induced emf and the rate of 
change of flux, the magnet needs to be moved at different speeds into and out of the coil. 

Figure 5.1  A coil of wire, a permanent bar magnet and a galvanometer with movement in one direction.

Figure 5.2  A coil of wire, a permanent bar magnet and a galvanometer with movement in another direction.
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When this is done, and the resulting magnitudes of the galvo deflection noted, it will be 
found that the faster the movement, the greater the induced emf.

This simple experiment can be further extended in three ways. If the magnet is replaced 
by a more powerful one, it will be found that for the same speed of movement, the corre-
sponding emf will be greater. Similarly, if the coil is replaced with one having more turns, 
then for a given magnet and speed of movement, the value of the emf will again be found 
to be greater. Finally, if the magnet is held stationary within the coil, and the coil is then 
moved away, it will be found that an emf is once more induced in the coil. In this last case, 
it will also be found that the emf has the same polarity as obtained when the magnet was 
first inserted into the stationary coil. This last effect illustrates the point that it is the relative 
movement between the coil and the flux that induces the emf.

The experimental procedure described above is purely qualitative. However, if it was 
refined and performed under controlled conditions, it would yield the following results: the 
magnitude of the induced emf is directly proportional to the value of magnetic flux, the rate 
at which this flux links with the coil and the number of turns on the coil. Expressed as an 
equation we have:

 e
N

t
= - d

d
F

 (5.1)

Notes:

 1 The symbol for the induced emf is shown as a lower-case letter e and is expressed in 
volt. This is because it is only present for the short interval of time during which there 
is relative movement taking place, and so has only a momentary value.

 2 The term dΦ/dt is simply a mathematical means of stating ‘the rate of change of flux 
with time’. The combination NΦ/dt is often referred to as the ‘rate of change of flux 
linkages’.

 3 Equation (5.1) forms the basis for the definition of the unit of magnetic flux, the weber, 
thus: the weber is that magnetic flux which, linking a circuit of one turn, induces in it 
an emf of 1 volt when the flux is reduced to zero at a uniform rate in 1 second.

In other words, 1 volt = 1 weber/second or 1 weber = 1 volt second.

 4 The minus sign is a reminder that Lenz’s law applies. This law states that the polarity 
of an induced emf is always such that it opposes the change which produced it. This 
is similar to the statement in mechanics, and that for every force there is an opposite 
reaction.

Heinrich Lenz (1804–1865) was a Baltic-German physicist and studied electromagnetism, by 
repeating and carefully expanding experiments by Michael Faraday. In addition to the law named 
after him, Lenz also independently discovered Joule’s law.

5.2  FLEMING’S RIGHT-HAND RULE

This is a convenient means of determining the polarity of an induced emf in a conductor. 
Also, provided that the conductor forms part of a complete circuit, it will indicate the direc-
tion of the resulting current flow.
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The first finger, the second finger and the thumb of the right hand are held out mutually 
at right angles to each other (like the three edges of a cube as shown in Figure 5.3). The First 
finger indicates the direction of the Flux, the thuMb the direction of Motion of the conduc-
tor relative to the flux, and the sECond finger indicates the polarity of the induced Emf 
and the direction of Current flow. This process is illustrated in Figure 5.4, which shows the 
cross-section of a conductor being moved vertically upwards at a constant velocity through 
the magnetic field.

Note: The thumb indicates the direction of motion of the conductor relative to the flux. 
Thus, the same result would be obtained from the arrangement of Figure 5.4 if the conduc-
tor was kept stationary and the magnetic field was moved down.

WORKED EXAMPLE 5.1

Q The flux linking a 100-turn coil changes from 5 mWb to 15 mWb in a time of 2 ms. Calculate 
the average emf induced in the coil; see Figure 5.5.
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Note that if the flux was reduced from 15 mWb to 5 mWb, then the term shown in brackets 
above would be –10. The resulting emf would be +500 V. When quoting Equation (5.1), 

thuMb
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Figure 5.3  Fleming’s right-hand rule: the cube

v

x

Figure 5.4  Fleming’s right-hand rule: the cross-section of a conductor
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the minus sign should always be included. However, since it is often the magnitude of the 
induced emf that is more important, it is normal practice to ignore the minus sign in the 
subsequent calculation. One of the major exceptions to this practice arises when considering 
the principles of operation of the transformer.

WORKED EXAMPLE 5.2

Q A 250-turn coil is linked by a magnetic flux that varies as follows: an increase from zero to 
20 mWb in a time of 0.05 s; constant at this value for 0.02 s; followed by a decrease to 4 mWb 
in a time of 0.01 s. Assuming that these changes are uniform, draw a sketch graph (i.e. not to an 
accurate scale) of the variation of the flux and the corresponding emf induced in the coil, show-
ing all principal values.

Firstly, the values of induced emf must be calculated for those periods when the flux changes.
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The resulting sketch graph is shown in Figure 5.6.

WORKED EXAMPLE 5.3

Q A coil when linked by a flux which changes at the rate of 0.1 Wb/s has induced in it an emf of 
100 V. Determine the number of turns on the coil.
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Figure 5.5  The flux as function of the time for Worked Example 5.1
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Note that the minus sign has been ignored in the calculation. A negative value for the num-
ber of turns makes no sense.

5.3  EMF INDUCED IN A SINGLE STRAIGHT CONDUCTOR

Consider a conductor moving at a constant velocity v metre per second at right angles to a 
magnetic field having the dimensions shown in Figure 5.7. The direction of the induced emf 
may be obtained using Fleming’s right-hand rule, and is shown in the diagram. Equation 
(5.1) is applicable, and in this case, the value for N is 1.

20
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�100
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50 70 80

Figure 5.6  The flux and the emf as function of the time for Worked Example 5.2
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also, the cross-sectional area of the field,

 A d= ´ metre2 

so

 e
B d

t
d
t

v= =

and since velocity then,  

 e B v=   (5.2)

The above equation is only true for the case when the conductor is moving at right angles to 
the magnetic field. If the conductor moves through the field at some angle less than 90°, then 
the ‘cutting’ action between the conductor and the flux is reduced. This results in a conse-
quent reduction in the induced emf. Thus, if the conductor is moved horizontally through 
the field, the ‘cutting’ action is zero, and so no emf is induced. To be more precise, we can 
say that only the component of the velocity at 90° to the flux is responsible for the induced 
emf. In general, therefore, the induced emf is given by:

 e B v=  sinq  (5.3)

where v sinθ is the component of velocity at 90° to the field, as illustrated in Figure 5.8.

d

V

�

Figure 5.7  EMF Induced in a single straight conductor
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v sinθ

θ
v cosθ

v

Figure 5.8  Induced emf with only the component of the velocity at 90° to the flux

This equation is simply confirmed by considering the previous two extremes; i.e. when 
conductor moves parallel to the flux, θ = 0°; sinθ = 0; so e = 0. When it moves at right angles 
to the flux, θ = 90°; sinθ = 1; so we are back to Equation (5.2).

Note: ℓ is known as the effective length of the conductor, since it is that portion of the 
conductor that actually links with the flux. The total length of the conductor may be con-
siderably greater than this, but those portions that may extend beyond the field at either end 
will not have any emf induced.

WORKED EXAMPLE 5.4

Q A conductor is moved at a velocity of 5 m/s at an angle of 60° to a uniform magnetic field of 
1. 6 mWb. The field is produced by a pair of pole pieces, the faces of which measure 10 cm by 4 
cm. If the conductor length is parallel to the longer side of the field, calculate the emf induced; 
see Figure 5.9.

 v d= = = ´ = =-5 60 1 6 10 0 1 0 043m/s Wb; m; m; ; . . .q � �F  

d

5 m/s

4 cm

10 cm

60°

�

Figure 5.9  Movement of a conductor for Worked Example 5.4
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WORKED EXAMPLE 5.5

Q A conductor of effective length 15 cm, when moved at a velocity of 8 m/s at an angle of 55° to 
a uniform magnetic field, generates an emf of 2.5 V. Determine the density of the field.
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WORKED EXAMPLE 5.6

Q The axle of a lorry is 2.2 m long, and the vertical component of the Earth’s magnetic field 
density, through which the lorry is travelling, is 38 μT. If the speed of the lorry is 80 km/h, then 
calculate the emf induced in the axle.
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This section, covering the induction or generation of an emf in a conductor moving through 
a magnetic field, forms the basis of the generator principle. However, most electrical gen-
erators are rotating machines, and we have so far considered only linear motion of the 
conductor.

Consider the conductor now formed into the shape of a rectangular loop, mounted on to 
an axle. This arrangement is then rotated between the poles of a permanent magnet. We 
now have the basis of a simple generator as illustrated in Figure 5.10.

The two sides of the loop that are parallel to the pole faces will each have an effective 
length ℓ metre. At any instant of time, these sides are passing through the field in opposite 
directions. Applying the right-hand rule at the instant shown in Figure 5.10, the directions 
of the induced emfs will be as marked, i.e. of opposite polarities. However, if we trace the 
path around the loop, it will be seen that both emfs are causing current to flow in the same 
direction around the loop. This is equivalent to two cells connected in series as shown in 
Figure 5.11.

The situation shown in Figure 5.10 applies only to one instant in one revolution of the 
loop (it is equivalent to a ‘snapshot’ at that instant).
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(a) (b)

Figure 5.10  A simple generator

If we were to plot a graph of the total emf generated in the loop, for one complete revolu-
tion, it would be found to be one cycle of a sine wave, i.e. an alternating voltage. This result 
should not come as any surprise though, since the equation for the emf generated in each 
side of the loop is e = Blv sinθ volt. This very simple arrangement therefore is the basis of a 
simple form of a.c. generator or alternator. Exactly the same principles apply to a d.c. gen-
erator, but the way in which the inherent a.c. voltage is converted into d.c. automatically by 
the machine is dealt with in detail in Further Electrical and Electronic Principles.

Note: The ‘ends’ of the loop attached to the axle do not have emf induced in them, since 
they do not ‘cut’ the flux. Additionally, current can only flow around the loop provided that 
it forms part of a closed circuit.

A practical example of an a.c. generator is a bicycle dynamo. An elongated magnet is moved 
between a number of stationary coils of wire. The magnet rotates and is called the rotor. The 
coils of wire are fixed and are called the stator. So it is the magnet that rotates and the magnetic 
field moves over these coils of wire. The magnitude and direction of the induced voltage depend 
on the position and direction of the rotating magnet. As a result, an alternating current will 
flow through the externally connected circuit. However, it can also be the other way around. 
The permanent magnet is fixed (and is therefore called the stator now) and as a result of the 
mechanical movement the armature (the rotor) is rotated with the various conductors. The 
end of each conductor (which is actually only rotated once around the rotor) is connected to 
one copper slip ring and the other end to the other copper slip ring (both insulated from each 
other). Two brushes bring the generated alternating current to the externally connected circuit. 
Carbon is used for the brushes, because this is a soft material. Due to wear, this conforms to 
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�

Figure 5.11  Two cells connected in series
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the slip rings and thus always makes good contact. Generators are constructed in such a way 
that the carbon brushes can be replaced quickly and easily.

Such a bicycle dynamo is clamped against the wheel. When cycling the central axis of the 
dynamo rotates internally and thus lights up the bicycle lights. There are considerable mechani-
cal losses because the ribbed drive wheel (the running wheel) on the axle is pressed against the 
outer tyre by spring force. The transmission ratio in such a dynamo is very large: about 30 times. 
One pole of the electrical connection is connected to the metal housing and is connected to 
the bicycle light through the frame. The other pole is connected with a single wire to the front 
light and with another single wire to the rear light. A normal bicycle dynamo can deliver about 
0.5 A alternating current at a voltage of 6 V (or another 3 W of power). The front light usually 
consumes 400 mA and in parallel the rear light consumes 100 mA.
Although not optimised, a bicycle dynamo can also be used as an a.c. motor: voltage and current 
are transformed into motion.

5.4  FORCE ON A CURRENT-CARRYING CONDUCTOR

Figure 5.12(a) shows the field patterns produced by two pole pieces, and the current flowing 
through the conductor. Since the lines of flux obey the rule that they will not intersect, the 
flux pattern from the poles will be distorted as illustrated in Figure 5.12(b). Also, since the 
lines of flux tend to act as if elastic, they will try to straighten themselves. This results in a 
force being exerted on the conductor, in the direction shown.

The direction of this force may be more simply obtained by applying Fleming’s left-hand 
rule. This rule is similar to the right-hand rule. The major difference is of course that the 
fingers and thumb of the left hand are now used. In this case, the First finger indicates the 
direction of the main F lux (from the poles). The seCond finger indicates the direction of 
Current flow. The thuMb shows the direction of the resulting force and hence consequent 
Motion. This is shown in Figure 5.13.

Simple experiments can be used to confirm that the force exerted on the conductor is 
directly proportional to the flux density produced by the pole pieces, the value of current 
flowing through the conductor and the length of conductor lying inside the field. This yields 
the following equation for the force F, expressed in newton or N:

 F BI=   (5.4)

The determination of the effective length of the conductor is exactly the same as that for 
the generator principle previously considered. So any conductor extending beyond the main 

(a) (b)

F

Figure 5.12  Force on a current-carrying conductor
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field does not contribute to the force exerted. Equation (5.4) also only applies to the condition 
when the conductor is perpendicular to the main flux. If it lies at some angle less than 90°, 
then the force exerted on it will be reduced. Thus, in general, the force exerted is given by

 F BI=  sinq (5.5)

WORKED EXAMPLE 5.7

Q A conductor of effective length 22 cm lies at right angles to a magnetic field of density 0.35 T. 
Calculate the force exerted on the conductor when carrying a current of 3 A.

 �
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WORKED EXAMPLE 5.8

Q A pair of pole pieces 5 cm by 3 cm produce a flux of 2.5 mWb. A conductor is placed in this 
field with its length parallel to the longer dimension of the poles. When a current is passed 
through the conductor, a force of 1.25 N is exerted on it. Determine the value of the current. If 
the conductor was placed at 45° to the field, what then would be the force exerted?
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Figure 5.13  Fleming’s left-hand rule: the cube
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The principle of a force exerted on a current-carrying conductor as described above forms 
the basis of operation of a linear motor. However, since most electric motors are rotating 
machines, the above system must be modified.

5.5  THE MOTOR PRINCIPLE

Once more, consider the conductor formed into the shape of a rectangular loop, placed 
between two poles, and current passed through it. A cross-sectional view of this arrange-
ment, together with the flux patterns produced, is shown in Figure 5.14.

The flux patterns for the two sides of the loop will be in opposite directions because of the 
direction of current flow through it. The result is that the main flux from the poles is twisted 
as shown in Figure 5.15. This produces forces on the two sides of the loop in opposite direc-
tions. Thus, there will be a turning moment exerted on the loop, in a counterclockwise 
direction. The distance from the axle (the pivotal point) is r metre, so the torque exerted on 
each side of the loop is expressed in newton-metre or Nm and is given by

 
T Fr

F BI

=
= = sin sinq q, and 1

 

so torque on each side = BI r . Since the torque on each side is exerting a counterclockwise 
turning effect, the total torque exerted on the loop will be

r

Figure 5.14  The motor principle
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F

F

Figure 5.15  Twist of the main flux from the poles

 T BI r= 2   (5.6)

WORKED EXAMPLE 5.9

Q A rectangular single-turn loop coil 1.5 cm by 0.6 cm is mounted between two poles, which 
produce a flux density of 1.2 T, such that the longer sides of the coil are parallel to the pole 
faces. Determine the torque exerted on the coil when a current of 10 mA is passed through it.
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From the above example, it may be seen that a single-turn loop produces a very small 
amount of torque. It is acknowledged that the dimensions of the coil specified and the cur-
rent flowing through it are also small. However, even if the coil dimensions were increased 
by a factor oftentimes, and the current increased by a factor of a thousand times (to 10 A), 
the torque would still be only a very modest 0.108 Nm.

The practical solution to this problem is to use a multi-turn coil, as illustrated in Figure 5.16. 
If the coil now has N turns, then each side has an effective length of N ´. The resulting 
torque will be increased by the same factor. So, for a multi-turn coil, the torque is given by

 T NBI r= 2   

The term 2r  in the above expression is equal to the area ‘enclosed’ by the coil dimensions, 
so this is the effective cross-sectional area A of the field affecting the coil.
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Thus, 2 2
r A= m , and the above equation may be written

 T BANI=  (5.7)

The principle of using a multi-turn current-carrying coil in a magnetic field is therefore used 
for rotary electric motors. However, the same principles apply to the operation of analogue 
instruments known as moving coil metres.

WORKED EXAMPLE 5.10

Q The coil of a moving-coil metre consists of 80 turns of wire wound on a former of length 2 cm 
and radius 1.2 cm. When a current of 45 μA is passed through the coil, the movement comes to 
rest when the springs exert a restoring torque of 1.4 μNm. Calculate the flux density produced 
by the pole pieces.

 N r I T= = = = ´ = ´- -80 0 02 0 012 45 10 1 4 106 6; . . ; . m; m; A Nm 

The metre movement comes to rest when the deflecting torque exerted on the coil is bal-
anced by the restoring torque of the springs.
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5.6  FORCE BETWEEN PARALLEL CONDUCTORS

When two parallel conductors are both carrying current, their magnetic fields will interact 
to produce a force of attraction or repulsion between them. This is illustrated in Figure 5.17.

In order to determine the value of such a force, consider first a single conductor carrying 
a current of I ampere. The magnetic field produced at some distance d from its centre is 
shown in Figure 5.18.

�

r

Figure 5.16  The torque for a multi-turn coil
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In general, H
NI=


(expressed in ampere turn/metre), but in this case 

N d= ( ) =1 2one conductor and metre p  (the circumference of the dotted circle), so

 H
NI

d
=

2p
 

Now, the flux density B r= m m0 H , and as the field exists in air, then μr = 1. Thus, the flux 
density (expressed in tesla) at distance d from the centre is given by

 B
I

d
= m

p
o

2
 [1]

Consider now two conductors Y and Z carrying currents I1 and I2 respectively, at a distance 
of d metres between their centres as in Figure 5.19.

Using Equation [1] we can say that the flux density acting on Z due to current I1 flowing 
in Y is:

attraction

repulsion

Figure 5.17  Force between parallel conductors

d

Figure 5.18  The magnetic field produced at some distance d from its centre
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and the force exerted on Z, expressed in newton, equals B I B I1 2 1 2, or , expressed in newton 
per metre length of Z.

Hence, force/metre length acting on Z is expressed in newton and equals
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So force/metre length acting on Z is expressed in newton and equals

 = ´ ´-2 10 7
1 2I I

d
 (5.8)

Now, the current I2 flowing in Z also produces a magnetic field which will exert a force on Y. 
Using the same reasoning as above, it can be shown that force/metre length acting on Y equals
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 force exerted on conductor Neach = ´ -2 10 7  

This value of force forms the basis for the definition of the ampere, namely: that current, 
when maintained in each of two infinitely long parallel conductors situated in vacuo, and 
separated one metre between centres, produces a force of 2 × 10−7 newton per metre length 
on each conductor.

WORKED EXAMPLE 5.11

Q Two long parallel conductors are spaced 35 mm between centres. Calculate the force exerted 
between them when the currents carried are 50 A and 40 A respectively.
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Figure 5.19  Two conductors each carrying currents
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WORKED EXAMPLE 5.12

Q Calculate the flux density at a distance of 2 m from the centre of a conductor carrying a cur-
rent of 1000 A. If the centre of a second conductor, carrying 300 A, was placed at this same 
distance, what would be the force exerted?
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5.7  EDDY CURRENTS

Consider an iron-cored solenoid, as shown in cross-section in Figure 5.20. Let the coil be 
connected to a source of emf via a switch. When the switch is closed, the coil current will 
increase rapidly to some steady value. This steady value will depend upon the resistance of 
the coil. The coil current will, in turn, produce a magnetic field. Thus, this flux pattern will 
increase from zero to some steady value. This changing flux therefore expands outwards 
from the centre of the iron core. This movement of the flux pattern is shown by the arrowed 
lines pointing outwards from the core.

Since there is a changing flux linking with the core, an emf will be induced in the core. As 
the core is a conductor of electricity, the induced emf will cause a current to be circulated 
around it. This is known as an eddy current (also called Foucault’s current), since it traces 
out a circular path similar to the pattern created by an eddy of water. The direction of the 
induced emf and eddy current will be as shown in Figure 5.20. This has been determined by 
applying Fleming’s right-hand rule. Please note, that to apply this rule, we need to consider 
the movement of the conductor relative to the flux. Thus, the effective movements of the left 

Figure 5.20 Eddy currents
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and right halves of the core are opposite to the arrows showing the expansion of the flux 
pattern.

Jean Foucault (1819–1868) was a French physicist and is best known for the Foucault pendulum, 
an instrument demonstrating the rotation of the earth. He also made one of the first accurate 
measurements of the speed of light, he explained the principle of the gyroscope and discovered 
the power of eddy currents, also called Foucault currents.

As the eddy current circulates in the core, it will produce a heating effect. This is normally 
an undesirable effect. The energy thus dissipated is therefore referred to as the eddy current 
loss. If the solenoid forms part of a d.c. circuit, this loss is negligible. This is because the eddy 
current will flow only momentarily – when the circuit is first connected, and again when it 
is disconnected. However, if an a.c. supply is connected to the coil, the eddy current will be 
flowing continuously in alternate directions. Under these conditions, the core is also being 
taken through repeated magnetisation cycles. This will also result in a hysteresis loss.

In order to minimise the eddy current loss, the resistance of the core needs to be increased. 
On the other hand, the low reluctance needs to be retained. It would therefore be pointless 
to use an insulator for the core material, since we might just as well use an air core! The 
technique used for devices such as transformers, used at mains frequency, is to make the 
core from laminations of iron. This means that the core is made up of thin sheets (lamina-
tions) of steel, each lamination being insulated from the next. This is illustrated in Figure 
5.21. Each lamination, being thin, will have a relatively high resistance. Each lamination 
will have an eddy current, the circulation of which is confined to that lamination. If the 
values of these individual eddy currents are added together, it will be found to be less than 
that for the solid core.

The hysteresis loss is proportional to the frequency f of the a.c. supply. The eddy current 
loss is proportional to f 2. Thus, at higher frequencies (e.g. radio frequencies), the eddy cur-
rent loss is predominant. Under these conditions, the use of laminations is not adequate, 
and the eddy current loss can be unacceptably high. For this type of application, iron dust 
cores or ferrite cores are used. With this type of material, the eddy currents are confined to 
individual ‘grains’, so the eddy current loss is considerably reduced.

5.8  SELF- AND MUTUAL INDUCTANCE

The effects of self- and mutual inductance can be demonstrated by another simple experi-
ment. Consider two coils, as shown in Figure 5.22. Coil 1 is connected to a battery via a 

Figure 5.21  Lamination minimising Eddy currents
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switch. Coil 2 is placed close to coil 1, but is not electrically connected to it. Coil 2 has a 
galvo connected to its terminals.

When the switch is closed, the current in coil 1 will rapidly increase from zero to some 
steady value. Hence, the flux produced by coil 1 will also increase from zero to a steady 
value. This changing flux links with the turns of coil 2, and therefore induces an emf into it. 
This will be indicated by a momentary deflection of the galvo pointer.

Similarly, when the switch is subsequently opened, the flux produced by coil 1 will col-
lapse to zero. The galvo will again indicate that a momentary emf is induced in coil 2, but 
of the opposite polarity to the first case. Thus, an emf has been induced into coil 2, by a 
changing current (and flux) in coil 1. This is known as a mutually induced emf.

If the changing flux can link with coil 2, then it must also link with the turns of coil 1. 
Thus, there must also be a momentary emf induced in this coil. This is known as a self-
induced emf. Any induced emf obeys Lenz’s law. This self-induced emf must therefore be 
of the opposite polarity to the battery emf. For this reason, it is also referred to as a back 
emf. Unfortunately, it is extremely difficult to demonstrate the existence of this back emf. 
If a voltmeter was connected across coil 1, it would merely indicate the terminal voltage of 
the battery.

5.8.1  Self-Inductance

Self-inductance is that property of a circuit or component which causes a self-induced emf to 
be produced, when the current through it changes. The unit of self-inductance is the henry, 
which is defined as follows: A circuit has a self-inductance of one henry (1 H) if an emf of 
one volt (1 V) is induced in it, when the circuit current changes at the rate of one ampere per 
second (1 A/s). The quantity symbol for self-inductance is L. From the above definition, we 
can state the following equation:

 L
e

i t
= -

d d/
 

 or, self-induced emf,
d

d
e

L i
t

= -
 (5.9)

Notes:

 1 The minus sign again indicates that Lenz’s law applies.
 2 The emf symbol is e, because it is only a momentary emf.

E

coil 1 coil 2

Figure 5.22  Self- and mutual inductance
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 3 The current symbol is i, because it is the change of current that is important.
 4 The term di/dt is the rate of change of current.

WORKED EXAMPLE 5.13

Q A coil has a self-inductance of 0.25 H. Calculate the value of emf induced, if the current 
through it changes from 100 mA to 350 mA, in a time of 25 ms.
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WORKED EXAMPLE 5.14

Q Calculate the inductance of a circuit in which an emf of 30 V is induced, when the circuit cur-
rent changes at the rate of 200 A/s.
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WORKED EXAMPLE 5.15

Q A circuit of self-inductance 50 mH has an emf of 8 V induced into it. Calculate the rate of 
change of the circuit current that induced this emf.
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5.8.2  Flux Linkages

Consider a coil of N turns, carrying a current of I amp. Let us assume that this current 
produces a flux of Φ weber. If the current now changes at a uniform rate of di/dt ampere per 
second, it will cause a corresponding change of flux of dφ/dt weber per second. Let us also 
assume that the coil has a self-inductance of L henry.

The self-induced emf may be determined from Equation (5.9):

 e
L i

t
= - d

d
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However, the induced emf is basically due to the rate of change of flux linkages. Thus, the 
emf may also be calculated by using Equation (5.1), namely:

 e
N

t
= - d

d
F

 

Since both equations above represent the same induced emf, then they must be equal. Thus

 
L i
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N
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d
d

d
d

the minus signs cancel out= ( )F
 

 L
N

i
= d

d
F

 (5.10)

A coil which is designed to have a specific value of self-inductance is known as an inductor. 
An inductor is the third of the main passive electrical components. The other two are the 
resistor and the capacitor.

A passive component is one which (a) requires an external source of emf in order to serve a 
useful function, and (b) does not provide any amplification of current or voltage.

Now, a resistor will have a specific value of resistance, regardless of whether it is in a 
circuit or not. Similarly, an inductor will have some value of self-inductance, even when the 
current through it is constant. In other words, an inductor does not have to have an emf 
induced in it, in order to possess the property of self-inductance. For this reason, Equation 
(5.10) may be slightly modified as follows. If the current I through an N-turn coil produces 
a flux of Φ weber, then its self-inductance is given by the equation:

 L
N

I
= F

 (5.11)

In other words, although no change of current and flux is specified, the coil will still have 
some value of inductance. Strictly speaking, Equation (5.11) applies only to an inductor 
with a non-magnetic core. The reason is that, in this case, the flux produced is directly pro-
portional to the coil current. However, it is a very close approximation to the true value of 
inductance for an iron-cored inductor which contains an air gap in it.

WORKED EXAMPLE 5.16

Q A coil of 150 turns carries a current of 10 A. This current produces a magnetic flux of 0.01 
Wb. Calculate (a) the inductance of the coil, and (b) the emf induced when the current is uni-
formly reversed in a time of 0.1 s.

 N I t= = = =150 10 0 01 0 1; ; . .A Wb; d sF  

(a) L
N

I
= = ´ =F 150 0 10

10
1 5

.
. H  
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(b) Since current is reversed, it will change from 10 A to –10 A, i.e. a change of 10–(–10). So, 
dI = 20 A.

 e
L i
t

= - = ´ =d
d

H
V

1 5 20
0 1

300
.

.
 

WORKED EXAMPLE 5.17

Q A current of 8 A, when flowing through a 3000-turn coil, produces a flux of 4 mWb. If the 
current is reduced to 2 A in a time of 100 ms, calculate the emf thus induced in the coil. Assume 
that the flux is directly proportional to the current.

 I N I t1 1
3

28 3000 4 10 2 0 1= = = ´ = =-A Wb A d s; ; ; ; .F  

This problem may be solved in either of two ways. Both methods will be demonstrated.
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Alternatively, Φ ∝ I so Φ 1 ∝ I1 and Φ 2 ∝ I2
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5.8.3  Factors Affecting Inductance

Consider a coil of N turns wound on to a non-magnetic core, of uniform cross-sectional 
area A metre2 and mean length ℓ metre. The coil carries a current of I amp, which produces 
a flux of Φ weber. From Equation (5.11), we know that the inductance will be
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Also, magnetic field strength,
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 H
NI

I
H
N

= =




;  

and substituting this expression for I into the equation above

 L
NBA

H N
BAN

H
= =

 /

2

 

Now, this equation contains the term 
B
H

, which equals μoμr

 L
N A= m m0 2

r



 (5.12)

We also know that

 


m m0 r

reluctance,
A

S=  

 L
N
S

=
2

 (5.13)

NOTES:

 1 Equation (5.12) compares with C
A N

d
=

-( )e eo r 1
 for a capacitor.

 2 If the number of turns is doubled, then the inductance is quadrupled, i.e. L ∝ N2.
 3 The terms A and ℓ in Equation (5.12) refer to the dimensions of the core, and not the coil.

WORKED EXAMPLE 5.18

Q A 600-turn coil is wound on to a non-magnetic core of effective length 45 mm and cross-
sectional area of 4 cm2. (a) Calculate the inductance. (b) The number of turns is increased to 
900. Calculate the inductance value now produced. (c) The core of the 900-turn coil is now 
replaced by an iron core having a relative permeability of 75, and of the same dimensions as the 
original. Calculate the inductance in this case.
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(b) Since L N L N1 1
2

2 2
2µ µand , then
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(c) Since μr3 = 75 × μr2, and there are no other changes, then L3 = 75 × L2 = 0.678 H.
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5.8.4  Mutual Inductance

When a changing current in one circuit induces an emf in another separate circuit, then the 
two circuits are said to possess mutual inductance. The unit of mutual inductance is the 
henry and is defined as follows. Two circuits have a mutual inductance of one henry (1 H), 
if the emf induced in one circuit is one volt (1 V), when the current in the other is changing 
at the rate of one ampere per second (1 A/s). The quantity symbol for mutual inductance is 
M, and expressing the above definition in henry as an equation we have

 

M

e
i t

=

= -

induced emf in coil
rate of change of current in coil

d d

2
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and transposing this equation for emf e2

 e
M i

t
2

1= - d
d

 (5.14)

This emf may also be expressed in terms of the flux linking coil 2. If all of the flux from coil 
1 links with coil 2, then we have what is called 100% flux linkage. In practice, it is more 
usual for only a proportion of the flux from coil 1 to link with coil 2. Thus, the flux linkage 
is usually less than 100%. This is indicated by a factor, known as the coupling factor, k. 
Coupling at 100% is indicated by k = 1. If there is no flux linkage with coil 2, then k will 
have a value of zero. So if zero emf is induced in coil 2, the mutual inductance will also be 
zero. Thus, the possible values for the coupling factor k lie between zero and 1. Expressed 
mathematically, this is written as

 0 1£ £k  

Consider two coils possessing mutual inductance, and with a coupling factor < 1. Let a 
change of current di1/dt amp/s in coil 1 produce a change of flux dF /dt weber/s. The propor-
tion of this flux change linking coil 2 will be dF 2/dt weber/s. If the number of turns on coil 
2 is N2, then

 e
N

t
2

2 2= - d
d
F

 (5.15)

However, Equations (5.14) and (5.15) both refer to the same induced emf. Therefore, we can 
equate the two expressions
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and transposing for M, we have
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N

i
= 2 2
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d
d
F

 (5.16)
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As with self-inductance for a single coil, mutual inductance is a property of a pair of coils. 
They therefore retain this property, regardless of whether or not an emf is induced. Hence, 
Equation (5.16) may be modified to

 M
N

I
= 2 2

1

F
 (5.17)

WORKED EXAMPLE 5.19

Q Two coils, A and B, have 2000 turns and 1500 turns respectively. A current of 0.5 A, flowing 
in A, produces a flux of 60 μWb. The flux linking with B is 83% of this value. Determine (a) the 
self-inductance of coil A, and (b) the mutual inductance of the two coils.

 N N IA B A A= = = = ´ -2000 1500 0 5 60 10 6; ; . A; WbF  
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. H  

5.8.5  Relationship between Self- and Mutual Inductance

Consider two coils of N1 and N2 turns, respectively, wound on to a common non-magnetic 
core. If the reluctance of the core is S ampere turns/weber, and the coupling coefficient is 
unity, then
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and comparing both equations results in

 M L L2
1 2=  

 M L L= 1 2  (5.18)

The above equation is correct only provided that there is 100% coupling between the coils; 
i.e. k = 1. If k < 1, then the general form of the equation, shown below, applies.

 M k LL= 1 2  (5.19)

WORKED EXAMPLE 5.20

Q A 400-turn coil is wound on to a cast steel toroid having an effective length of 25 cm and 
cross-sectional area of 4.5 cm2. If the steel has a relative permeability of 180 under the operating 
conditions, calculate the self-inductance of the coil.
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WORKED EXAMPLE 5.21

Q Considering Worked Example 5.20, a second coil of 650 turns is wound over the first, and 
the current through coil 1 is changed from 2 A to 0.5 A in a time of 3 ms. If 95% of the flux thus 
produced links with coil 2, then calculate (a) the self-inductance of coil 2, (b) the value of mutual 
inductance, (c) the self-induced emf in coil 1, and (d) the mutually induced emf in coil 2.

 L I t k1
3

1
365 10 2 0 5 1 5 3 10 0 95= ´ = - = = ´ =- -H d A; d s;; . . .  

(a) From the equation for inductance we know that L ∝ N2, and since all other factors for the 
two coils are the same, then
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It is left to the student to confirm this answer by using the equation
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N A= m mo r
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(b) M k LL= = ´ =1 2 0 95 65 175 100. mH  
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5.9  ENERGY STORED

As with an electric field, a magnetic field also stores energy. When the current through an 
inductive circuit is interrupted, by opening a switch, this energy is released. This is the rea-
son why a spark or arc occurs between the contacts of the switch, when it is opened.

Consider an inductor connected in a circuit, in which the current increases uniformly, to 
some steady value I amp. This current change is illustrated in Figure 5.23. The magnitude of 
the emf induced by this change of current is expressed in volt and given by

 e
LI
t

=  

The average power input to the coil during this time is:

 average power average current= ´e  

From the graph, it may be seen that the average current over this time is I/2 amp. Therefore,
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but, energy stored, expressed in joule average power time= ´
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Figure 5.23  The current as function of the time
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 thus, energy stored, expressed in joule, W LI= 1
2

2 (5.20)

Equation (5.20) applies to a single inductor. When two coils possess mutual inductance, and 
are connected in series, both will store energy. In this situation, the total energy stored is 
given by the equation

 W LI L I MI I= + ±1
2

1
2

11
2

2 2
2

1 2 (5.21)

Consider a parallel connection of a light bulb and a coil, which can be turned on and off with 
a switch. Without the coil, the light bulb would just give light. But with the coil, the behaviour 
changes completely. The light bulb can be thought of as a resistor (here one that creates heat to 
make the wire glow). The wire of the coil is also a resistor, but with a much smaller resistance 
value. When the switch connects, we expect the light bulb to give light very softly. After all, 
most current follows the path of least resistance (i.e. through the coil). However, what happens 
when making the connection is that the lamp first shines very hard and then softer. When you 
open the switch again, the light bulb also lights up very brightly and then goes out completely.
We can explain this by looking at the coil. Once current starts flowing through the coil, a mag-
netic field is built up and energy is stored in the coil. As a result, the coil inhibits the current 
(and therefore more current flows through the light bulb). When the magnetic field has built 
up completely, the current flows normally (and therefore less through the light bulb). When 
switched off, the magnetic field ensures that the current continues to flow through the coil 
until the magnetic field completely disappears. Note that the magnetic field can be influenced by 
bringing a ferromagnetic material or a magnet close to the coil.

WORKED EXAMPLE 5.22

Q Calculate the energy stored in a 50 mH inductor when it is carrying a current of 0.75 A.
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WORKED EXAMPLE 5.23

Q Two inductors of inductance 25 mH and 40 mH, respectively, are wound on a common ferro-
magnetic core, and are connected in series with each other. The coupling coefficient, k, between 
them is 0.8. When the current flowing through the two coils is 0.25 A, calculate (a) the energy 
stored in each and (b) the total energy stored when the coils are connected (i) in series aiding 
and (ii) in series opposition.
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 L L I k1
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(b) The general equation for the energy stored by two inductors with flux linkage between 
them is:

 W LI L I MI I= + ±1
2

1
2

11
2

1 2
2

1 2 joule 

When the coils are connected in series such that the two fluxes produced act in the same 
direction, the total flux is increased and the coils are said to be connected in series aiding. In 
this case the total energy stored in the system will be increased, so the last term in the above 
equation is added, i.e. the + sign applies. If, however, the connections to one of the coils are 
reversed, then the two fluxes will oppose each other, the total flux will be reduced, and the coils 
are said to be in series opposition. In this case, the minus sign is used. These two connections 
are shown in Figure 5.24.

 M k LL= = ´ =1 2 0 8 25 40 25 3. . mH 

The values for 
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 (i) For series aiding:

 W = + + =0 78 1 25 1 58. . . 3.6 mJ 
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Figure 5.24  Coils connected in series
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 (ii) For series opposition:

 W = + - =0 78 1 25 1 58. . . 0.45 mJ 

5.10  THE TRANSFORMER PRINCIPLE

A transformer is an a.c. machine, which utilises the mutual inductance between two coils, 
or windings. The two windings are wound on to a common iron core, but are not electri-
cally connected to each other. The purpose of the iron core is to reduce the reluctance of 
the magnetic circuit. This ensures that the flux linkage between the coils is almost 100%.

a.c. means alternating current, i.e. one which flows alternately, first in one direction, then in the 
opposite direction. It is normally a sinewave

Since it is an a.c. machine, an alternating flux is produced in the core. The core is therefore 
laminated to minimise the eddy current loss. Indeed, the transformer is probably the most 
efficient of all machines. Efficiencies of 98% to 99% are typical. This high efficiency is due 
mainly to the fact that there are no moving parts.

The general arrangement is shown in Figure 5.25. One winding, called the primary, is 
connected to an a.c. supply. The other winding, the secondary, is connected to a load. The 
primary will draw an alternating current I1 from the supply. The flux, Φ, produced by this 
winding, will therefore also be alternating; i.e. it will be continuously changing. Assuming 
100% flux linkage, then this flux is the only common factor linking the two windings. Thus, 
a mutually induced emf, E2, will be developed across the secondary. Also, there will be a 
back emf, E1, induced across the primary. If the secondary is connected to a load, then it 
will cause the secondary current I2 to flow. This results in a secondary terminal voltage, V2. 
Figure 5.26 shows the circuit symbol for a transformer.

V1

I1 I2

E1

N1 N2

E2 RL V2

Φ

Figure 5.25  The transformer principle
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A load is any device or circuit connected to some source of emf. Thus, a load will draw current 
from the source. The term ‘load’ is also loosely used to refer to the actual current drawn from 
a source

Let us consider an ideal transformer. This means that the resistance of the windings is 
negligible, and there are no core losses due to hysteresis and eddy currents. Also, let the sec-
ondary be connected to a purely resistive load, as shown in Figure 5.27.

Under these conditions, the primary back emf, El, will be of the same magnitude as the 
primary applied voltage, V1. The secondary terminal voltage, V2, will be of the same mag-
nitude as the secondary induced emf, E2. Finally, the output power will be the same as the 
input power. The two emfs are given by
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Figure 5.26  The circuit symbol for a transformer
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Figure 5.27  An ideal transformer connected to purely resistive load



154 Electromagnetism 

Since both Equations [1] and [2] refer to the same rate of change of flux in the core, then [1] 
= [2]:
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and since E1 = V1, and E2 = V2, then
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=  (5.22)

From this equation, it may be seen that the voltage ratio is the same as the turns ratio. This 
is perfectly logical, since the same flux links both windings, and each induced emf is directly 
proportional to its respective number of turns. This is the main purpose of the transformer. 
It can therefore be used to ‘step-up’ or ‘step-down’ a.c. voltages, depending upon the turns 
ratio selected.

Wireless charging is a process in which electrical energy is transported between two objects 
via a magnetic field, so that no cabling is required for the energy transfer. A coil is built into 
each object, so that the transformer principle plays and the voltage and current in one coil is 
converted to a voltage and current in the other coil. This process is possible through induction 
(inductive coupling) and is mainly used to charge batteries. The standard for energy transfer 
of low power (up to 5 W) over a distance of up to 4 cm is Qi and is used for wireless charging 
of an electric toothbrush. General Motors and Toyota also use wireless charging for a number 
of electric cars. And a number of smartphone and smartwatch models are equipped with this 
technology.

Transformers are used in public electricity networks, because it is more efficient (and therefore 
with less power loss) to allow high voltages and low currents to travel a long distance than low 
voltages and high currents. The public electricity network contains so-called high-voltage lines 
with ‘step-up’ and ‘step-down’ transformers to bridge these great distances.

Two or more voltages can be tapped from the same transformer by also providing a connection 
halfway to the conductor of the secondary coil. For example, a midway connection divides the 
secondary coil into two smaller coils. We can then choose whether to use the voltage across 
one part (or the other part) of the coil or take the voltage across the entire secondary coil (the 
two small coils together).

When determining the transformer ratio, take possible losses into account: not only in the 
windings themselves but also in any subsequent circuit. It is therefore better to obtain a slightly 
higher secondary voltage, which can then possibly be weakened further on (reducing a voltage 
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is always easier than increasing it). Also even though no secondary current is consumed, the 
secondary voltage is and remains generated by the magnetic field in and around the soft iron 
core. In other words, the larger the core, the more power it consumes regardless of the load at 
the output. Leaving a transformer unused in the socket is really energy-consuming. You better 
get him out!

WORKED EXAMPLE 5.24

Q A transformer is to be used to provide a 60 V output from a 240 V a.c. supply. Calculate (a) 
the turns ratio required and (b) the number of primary turns, if the secondary is wound with 
500 turns.
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Since the load is purely resistive, the output power, P2, is given by V I2 2 and the input power, 
P V I1 1 1= . Also since the transformer has been considered to be 100% efficient (no losses), 
then
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i.e. the current ratio is the inverse of the turns ratio.
This result is also logical. For example, if the voltage was ‘stepped up’ by the ratio N2/N1, 

then the current must be ‘stepped down’ by the same ratio. If this was not the case, then we 
would get more power out than was put in! Although this result would be very welcome, 
it is a physical impossibility. It would require the machine to be more than 100% efficient.

WORKED EXAMPLE 5.25

Q A 15 Ω resistive load is connected to the secondary of a transformer. The terminal p.d. 
at the secondary is 240 V. If the primary is connected to a 600 V a.c. supply, calculate (a) the 
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transformer turns ratio, (b) the current and power drawn by the load and (c) the current drawn 
from the supply. Assume an ideal transformer.

 R V VL = = =15 240 6002 1W; ;V V  

The appropriate circuit diagram is shown in Figure 5.27.
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Alternatively, using the inverse of the turns ratio:
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SUMMARY OF EQUATIONS
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Energy stored:  W LI= 0 5 2.  

Mutual inductance: mutually induced emf,
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ASSIGNMENT QUESTIONS

 1 The flux linking a 600-turn coil changes uniformly from 100 mWb to 50 mWb in a 
time of 85 ms. Calculate the average emf induced in the coil.

 2 An average emf of 350 V is induced in a 1000-turn coil when the flux linking it 
changes by 200 μWb. Determine the time taken for the flux to change.

 3 A flux of 1.5 mWb, linking with a 250-turn coil, is uniformly reversed in a time of 
0.02 s. Calculate the value of the emf so induced.

 4 A coil of 2000 turns is linked by a magnetic flux of 400 μWb. Determine the emf 
induced in the coil when (a) this flux is reversed in 0.05 s and (b) the flux is reduced to 
zero in 0.15 s.

 5 When a magnetic flux linking a coil changes, an emf is induced in the coil. Explain the 
factors that determine (a) the magnitude of the emf and (b) the direction of the emf.

 6 State Lenz’s law, and hence explain the term ‘back emf’.
 7 A coil of 15 000 turns is required to produce an emf of 15 kV. Determine the rate of 

change of flux that must link with the coil in order to provide this emf.
 8 A straight conductor, 8 cm long, is moved with a constant velocity at right angles to a 

magnetic field. If the emf induced in the conductor is 40 mV and its velocity is 10 m/s, 
calculate the flux density of the field.

 9 A conductor of effective length 0.25 m is moved at a constant velocity of 5 m/s, through 
a magnetic field of density 0.4 T. Calculate the emf induced when the direction of 
movement relative to the magnetic field is (a) 90°, (b) 60° and (c) 45°.

 10 Figure 5.28 represents two of the armature conductors of a d.c. generator, rotating in 
a clockwise direction.

  An armature is the rotating part of a d.c. machine. If the machine is used as a gen-
erator, it contains the coils into which the emf is induced. In the case of a motor, it 
contains the coils through which current must be passed, to produce the torque.

  Copy this diagram and hence:
 a Indicate the direction of the field pattern of the magnetic poles.
 b Indicate the direction of induced emf in each side of the coil.
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 c If this arrangement was to be used as a motor, with the direction of rotation as 
shown, indicate the direction of current flow required through the coil.

 11 A conductor of effective length 0.5 m is placed at right angles to a magnetic field of 
density 0.45 T. Calculate the force exerted on the conductor if it carries a current of 5 
A.

 12 A conductor of effective length 1.2 m is placed inside a magnetic field of density 250 
mT. Determine the value of current flowing through the conductor if a force of 0.75 N 
is exerted on the conductor.

 13 A conductor, when placed at right angles to a magnetic field of density 700 mT, experi-
ences a force of 20 mN, when carrying a current of 200 mA. Calculate the effective 
length of the conductor.

 14 A conductor, 0.4 m long, lies between two pole pieces, with its length parallel to the 
pole faces. Determine the force exerted on the conductor if it carries a current of 30 A 
and the flux density is 0.25 T.

 15 Two long parallel conductors are spaced 12 cm between centres. If they carry 100 A 
and 75 A, respectively, calculate the force per metre length acting on them. If the cur-
rents are flowing in opposite directions, will this be a force of attraction or repulsion? 
Justify your answer by means of a sketch of the magnetic field pattern produced.

 16 The magnetic flux density at a distance of 1.4 m from the centre of a current-carrying 
conductor is 0.25 mT. Determine the value of the current.

 17 Calculate the self-inductance of a 700-turn coil, if a current of 5 A flowing through it 
produces a flux of 8 mWb.

 18 A coil of 500 turns has an inductance of 2.5 H. What value of current must flow 
through it in order to produce a flux of 20 mWb?

 19 When a current of 2.5 A flows through a 0.5 H inductor, the flux produced is 80 μWb. 
Determine the number of turns.

 20 A 1000-turn coil has a flux of 20 mWb linking it when carrying a current of 4 A. 
Calculate the coil inductance, and the emf induced when the current is reduced to zero 
in a time of 25 ms.

 21 A coil has 300 turns and an inductance of 5 mH. How many turns would be required 
to produce an inductance of 0.8 mH if the same core material were used?

 22 If an emf of 4.5 V is induced in a coil having an inductance of 200 mH, calculate the 
rate of change of current.

 23 An iron ring having a mean diameter of 300 mm and cross-sectional area of 500 mm2 
is wound with a 150-turn coil. Calculate the inductance if the relative permeability of 
the ring is 50.

 24 An iron ring of mean length 50 cm and cross-sectional area of 0.8 cm2 is wound with 
a coil of 350 turns. A current of 0.5 A through the coil produces a flux density of 0.6 

S N

 rotation

Figure 5.28  Two armature conductors for Assignment Question 10
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T in the ring. Calculate (a) the relative permeability of the ring, (b) the inductance of 
the coil and (c) the value of the induced emf if the current decays to 20% of its original 
value in 0.01 s, when the current is switched off.

 25 When the current in a coil changes from 2 A to 12 A in a time of 150 ms, the emf induced 
into an adjacent coil is 8 V. Calculate the mutual inductance between the two coils.

 26 The mutual inductance between two coils is 0.15 H. Determine the emf induced in one 
coil when the current in the other decreases uniformly from 5 A to 3 A, in a time of 10 
ms.

 27 A coil of 5000 turns is wound on to a non-magnetic toroid of cross-sectional area of 
100 cm2 and mean circumference of 0.5 m. A second coil of 1000 turns is wound over 
the first coil. If a current of 10 A flows through the first coil, determine (a) the self-
inductance of the first coil, (b) the mutual inductance, assuming a coupling factor of 
0.45 and (c) the average emf induced in the second coil if interruption of the current 
causes the flux to decay to zero in 0.05 s.

 28 Two air-cored coils, A and B, are wound with 100 and 500 turns, respectively. A cur-
rent of 5 A in A produces a flux of 15 μWb. Calculate (a) the self-inductance of coil A, 
(b) the mutual inductance if 75% of the flux links with B and (c) the emf induced in 
each of the coils when the current in A is reversed in a time of 10 ms.

 29 Two coils, of self-inductance 50 mH and 85 mH respectively, are placed parallel to 
each other. If the coupling coefficient is 0.9, calculate their mutual inductance.

 30 The mutual inductance between two coils is 250 mH. If the current in one coil changes 
from 14 A to 5 A in 15 ms, calculate (a) the emf induced in the other coil, and (b) the 
change of flux linked with this coil if it is wound with 400 turns.

 31 The mutual inductance between the two windings of a car ignition coil is 5 H. Calculate 
the average emf induced in the high-tension winding, when a current of 2.5 A, in the 
low-tension winding, is reduced to zero in 1 ms. You may assume 100% flux linkage 
between the two windings.

 32 Sketch the circuit symbol for a transformer, and explain its principle of operation. 
Why is the core made from laminations? Is the core material a ‘hard’ or a ‘soft’ mag-
netic material? Give the reason for this.

 33 A transformer with a turns ratio of 20:1 has 240 V applied to its primary. Calculate 
the secondary voltage.

 34 A 4:1 voltage ‘step-down’ transformer is connected to a 110 V a.c. supply. If the cur-
rent drawn from this supply is 100 mA, calculate the secondary voltage, current and 
power.

 35 A transformer has 450 primary turns and 80 secondary turns. It is connected to a 240 
V a.c. supply. Calculate (a) the secondary voltage and (b) the primary current when the 
transformer is supplying a 20 A load.

 36 A coil of self-inductance 0.04 H has a resistance of 15 Ω. Calculate the energy stored 
when it is connected to a 24 V d.c. supply.

 37 The energy stored in the magnetic field of an inductor is 68 mJ, when it carries a cur-
rent of 1.5 A. Calculate the value of self-inductance.

 38 What value of current must flow through a 20 H inductor if the energy stored in its 
magnetic field, under this condition, is 60 J?

SUGGESTED PRACTICAL ASSIGNMENTS

Note: The majority of these assignments are only qualitative in nature.
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Assignment 1

To investigate Faraday’s laws of electromagnetic induction.

Apparatus

Several coils, having different numbers of turns

2 × permanent bar magnets
1 × multimeter

Method

 1 Carry out the procedures outlined in Section 5.1 at the beginning of this chapter.
 2 Write an assignment report, explaining the procedures carried out, and stating the 

conclusions that you could draw from the observed results.

Assignment 2

Force on a current-carrying conductor.

Apparatus

1 × current balance
1 × variable d.c. psu
1 × multimeter

Method

 1 Assemble the current balance apparatus.
 2 Adjust the balance weight to obtain the balanced condition, prior to connecting the 

psu.
 3 With maximum length of conductor, and all the magnets in place vary the conductor 

current in steps. For each current setting, re-balance the apparatus and note the setting 
of the balance weight.

 4 Repeat the balancing procedure with a constant current, and maximum magnets, but 
varying the effective length of the conductor.

 5 Repeat once more, this time varying the number of magnets. The current must be 
maintained constant, as must the conductor length.

 6 Tabulate all results obtained, and plot the three resulting graphs.
 7 Write an assignment report. This should include a description of the procedures car-

ried out, and conclusions drawn, regarding the relationships between the force pro-
duced and I, ℓ and B.

Assignment 3

To determine the relationship between turns ratio and voltage ratio for a simple transformer.

Apparatus

Either 1 × single-phase transformer with tappings on both windings or Several different 
coils with a ferromagnetic core
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Either a low voltage a.c. supply or 1 × a.c. signal generator
1 × multimeter

Method

 1 Connect the primary to the a.c. source.
 2 Measure both primary and secondary voltages, and note the corresponding number of 

turns on each winding.
 3 Vary the number of turns on each winding, and note the corresponding values of the 

primary and secondary voltages.
 4 Tabulate all results. Write a brief report, explaining your findings.
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Chapter 6

Semiconductor Theory and Diodes

LEARNING OUTCOMES

This chapter explains the behaviour of semiconductors and the way in which they are employed 
in diodes.

On completion of this chapter you should be able to:

 1 Understand the way in which conduction takes place in semiconductor materials.
 2 Understand how these materials are employed to form devices such as diodes.
 3 Understand the action of a zener diode and perform basic calculations involving a simple 

regulator circuit.
 4 Understand the action of a LED and a solar cell and perform basic calculations on the use of it.

6.1  ATOMIC STRUCTURE

In Chapter 1 it was stated that an atom consists of a central nucleus containing positively 
charged protons, and neutrons, the latter being electrically neutral, surrounded by nega-
tively charged electrons orbiting in layers or shells. Electrons in the inner orbits or shells 
have the least energy and are tightly bound into their orbits due to the electrostatic force 
of attraction between them and the nucleus. Electrons in the outermost shell experience a 
much weaker binding force, and are known as valence electrons.

In conductors, like copper or silver, it is these valence electrons that can gain sufficient 
energy to break free from their parent atoms. They have a hard time keeping that electron 
and therefore copper and silver are good conductors: when these valence electrons transfer 
to another atom, they create a changing electric field. These ‘free’ electrons are available to 
drift through the material under the influence of an emf and hence are mobile charge carri-
ers which produce current flow.

The shells are identified by letters of the alphabet, beginning with the letter K for the 
innermost shell, L for the next and so on. Each shell represents a certain energy level, and 
each shell can contain only up to a certain maximum number of electrons. This maximum 
possible number of electrons contained in a given shell is governed by the relationship 2n2, 
where n is the number of the shell. Thus the maximum number of electrons in the first four 
shells will be as shown in Table 6.1.

All things in nature tend to stabilise at their lowest possible energy level, and atoms and 
electrons are no exception. This results in the lowest energy levels (shells) being filled first 
until all the electrons belonging to that atom are accommodated. Another feature of the 
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system is that if the outermost shell of an atom is completely full (contains its maximum per-
mitted number of electrons) then the binding force on these valence electrons is very strong 
and the atom is very stable. To illustrate this consider the inert gas neon. The term ‘inert’ 
is used because it is very difficult to make it react to external influences. A neon atom has 
a total of ten electrons, two of which are in the K shell and the remaining eight completely 
fill the L shell. Having a full valence shell is the reason why neon, krypton and xenon are 
inert gases. In contrast, a hydrogen atom has only one electron, so its valence shell is almost 
empty and it is a highly reactive element. One further point to bear in mind is that the 
electrons in the shells (from L onwards) may exist at slightly different energy levels known 
as subshells. These subshells may also contain only up to a certain maximum number of 
electrons. This is shown, for the L, M and N shells, in Table 6.2.

6.2  INTRINSIC (PURE) SEMICONDUCTORS

Semiconductors are group 4 elements, which means they have four valence electrons. For 
this reason they are also known as tetravalent elements. Among this group of elements are 
carbon (C), silicon (Si), germanium (Ge) and tin (Sn). Of these only silicon and germanium 
are used as intrinsic semiconductors, with silicon being the most commonly used. Carbon 
is not normally considered as a semiconductor because it can exist in many different forms, 
from diamond to graphite. Similarly, tin is not used because at normal ambient temperatures 
it acts as a good conductor. The following descriptions of the behaviour of semiconductor 
materials will be confined to silicon although the general properties and behaviour of ger-
manium are almost the same. The arrangement of electrons in the shells and subshells of 
silicon is shown in Table 6.3.

From Table 6.3 it may be seen that the four valence electrons are contained in the M shell, 
where the 3s subshell is full but the 3p subshell contains only two electrons. However, from 
Table 6.2 it can be seen that a 3p subshell is capable of containing up to a maximum of six 
electrons before it is full, so in the silicon atom there is space for a further four electrons to 
be accommodated in this outermost shell.

Silicon has an atomic bonding system known as covalent bonding whereby each of the 
valence electrons orbits not only its ‘parent’ atom, but also orbits its closest neighbouring 
atom. This effect is illustrated in Figure 6.1, where the five large, shaded circles represent 

Table 6.1  The maximum number of 
electrons in the first four shells

Shell n Max. no. of electrons

K 1 2 × 12 = 2
L 2 2 × 22 = 8
M 3 2 × 32 = 18
N 4 2 × 42 = 32

Table 6.2  Maximum number of electrons for the subshells

Shell L M N

Subshell 2s 2p 3s 3p 3d 4s 4p 4d 4f
Max. no. 2 6 2 6 10 2 6 10 14
Total 8 18 32
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the nucleus and shells K and L of five adjacent atoms (identified as A, B, C, D and E) and 
the small circles represent their valence electrons, where the letters a, b, c, etc. identify their 
‘parent’ atoms.

Concentrating on the immediate space surrounding atom A, it may be seen that there 
are actually eight valence electrons orbiting this atom: four of its own plus one from each 
of its four nearest neighbours. This figure is only two-dimensional and is centred on atom 
A. However, the same arrangement would be found if the picture was centred on any given 
atom in the crystal lattice. In addition, the actual lattice is of course three-dimensional. In 
this case imagine atom A being located at the centre of an imaginary cube with the other 
four neighbouring atoms being at four of the corners of the cube. Each of these ‘corner’ 
atoms is in turn at the centre of another imaginary cube, and so on throughout the whole 
crystal lattice. The result is what is known as the diamond crystal lattice.

From the above description it may be seen that each silicon atom has an apparent valency 
of 8, which is the same as for the inert gases such as neon. The covalent bonding system is 
a very strong one so the valence electrons are quite tightly bound into it. It is for this rea-
son that intrinsic silicon is a relatively poor conductor of electrical current, and is called a 
semiconductor.

Table 6.3  The arrangement of electrons 
in the shells and subshells of 
silicon

K L M

1s 2s 2p 3s 3p 3d
2 2 6 2 2 –

D A B

a

a

e

d

a

a

b

c

E

C

Figure 6.1  Atomic bonding system for silicon



Semiconductor Theory and Diodes  165

In contrast to conductors (having ‘free’ electrons conducting electric current), in insulator 
material electric current does not flow freely. The atoms have tightly bound electrons which 
cannot readily move, resulting in higher resistivity compared to semiconductors and conduc-
tors. The most common examples are non-metals, like glass, paper, rubber-like polymers and 
most plastics. Insulators are used in electrical equipment to support and separate electrical 
conductors without allowing current through themselves.

6.3  ELECTRON–HOLE PAIR GENERATION AND RECOMBINATION

Although the covalent bond is strong, it is not perfect. Thus, when a sample of silicon is at 
normal ambient temperature, a few valence electrons will gain sufficient energy to break free 
from the bond and so become free electrons available as mobile charge carriers. Whenever 
such an electron breaks free and drifts away from its parent atom it leaves behind a space in 
the covalent bond, and this space is referred to as a hole. Thus, whenever a bond is broken, 
an electron–hole pair is generated. This effect is illustrated in Figure 6.2, where the short 
straight lines represent electrons and the small circle represents a corresponding hole. The 
large circles again represent the silicon atoms complete with their inner shells of electrons.

The atom which now has a hole in its valence band is effectively a positive ion because it 
has lost an electron which would normally occupy that space. On the atomic scale, the ion is 
very massive, is locked into the crystal lattice and so cannot move. However, electron–hole 
pair generation will be taking place in a random manner throughout the crystal lattice, and 
a generated free electron will at some stage drift into the vicinity of one of these positive 
ions, and be captured, i.e. the hole will once more be filled by an electron. This process is 
known as recombination, and when it occurs the normal charge balance of that atom is 
restored.

The hole-pair generation and recombination processes occur continuously and, since heat 
is a form of energy, will increase as the temperature increases. This results in more mobile 
charge carriers being available, and accounts for the fact that semiconductors have a nega-
tive temperature coefficient of resistance, i.e. as they get hotter they conduct more easily. It 

Si SiSi

Si

Si Si

SiSi

free electron
hole

Figure 6.2  Electron-hole pair generation and recombination



166 Semiconductor Theory and Diodes 

must be borne in mind that although these thermally generated mobile charge carriers are 
being produced, the sample of material as a whole still remains electrically neutral. In other 
words, if a ‘head count’ of all the positive and negative charged particles could be made, 
there would still be a balance between positive and negative, i.e. for every free electron there 
will be a corresponding hole.

The concept of the drift of free electrons through the material may be readily understood, 
but the concept of hole mobility is more difficult to appreciate. In fact the holes themselves 
cannot move – they are merely generated and filled. However, when a bond breaks down, 
the electron that drifts away will at some point fill a hole elsewhere in the lattice. Thus the 
hole that has been filled is replaced elsewhere by the newly generated hole, and will appear 
to have drifted to a new location. In order to simplify the description of conduction in a 
semiconductor, the holes are considered to be mobile positive charge carriers whilst the free 
electrons are of course mobile negative charge carriers.

6.4  CONDUCTION IN INTRINSIC AND EXTRINSIC 
(IMPURE) SEMICONDUCTORS

Figure 6.3 illustrates the effect when a source of emf is connected across a sample of pure 
silicon. The electric field produced by the battery will attract free electrons towards the posi-
tive plate and the corresponding holes towards the negative plate. Since the external circuit 
is completed by conductors, and holes exist only in semiconductors, then how does current 
actually flow around the circuit without producing an excess of positive charge (the holes) at 
the left-hand end of the silicon? The answer is quite simple. For every electron that leaves the 
right-hand end and travels to the positive plate of the battery, another is released from the 
negative plate and enters the silicon at the left-hand end, where a recombination can occur. 
This recombination will be balanced by fresh electron–hole pair generation. Thus, within 
the silicon there will be a continuous drift of electrons in one direction with a drift of a cor-
responding number of holes in the opposite direction. In the external circuit the current flow 
is of course due only to the drift of electrons.

Although pure silicon and germanium will conduct, as explained earlier, their character-
istics are still closer to insulators than to conductors. In order to improve their conduction 
very small quantities (in the order of 1 part in 108) of certain other elements are added. This 
process is known as doping. The impurity elements that are added are either pentavalent 
(have five valence electrons) or are trivalent (have three valence electrons) atoms. Depending 
upon which type is used in the doping process determines which one of the two types of 

I

electrons

holes
I
(electrons)

Figure 6.3  Conduction in pure silicon
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extrinsic semiconductor is produced: an n-type or a p-type semiconductor, explained in the 
following sections.

6.5  N-TYPE SEMICONDUCTOR

To produce this type of semiconductor, pentavalent impurities are employed. The most com-
monly used are arsenic (As), phosphorus (P) and antimony (Sb). When atoms of such an 
element are added to the silicon a bonding process takes place such that each impurity atom 
joins the covalent bonding system of the silicon. However, since each impurity atom has five 
valence electrons, one of these cannot find a place in a covalent bond. These ‘extra’ electrons 
then tend to drift away from their parent atoms and become additional free electrons in 
the lattice. Since these impurities donate an extra free electron to the material they are also 
known as donor impurities.

As a consequence of each donor atom losing one of its valence electrons, they become 
positive ions locked into the crystal lattice. Note that free electrons introduced by this pro-
cess do not leave a corresponding hole, although thermally generated electron–hole pairs 
will still be created in the silicon. The effect of the doping process is illustrated in Figure 6.4.

Since the extra charge carriers introduced by the impurity atom are negatively charged 
electrons, and these will be in addition to the electron–hole pairs, there will be more mobile 
negative charge carriers than positive, which is why the material is known as an n-type semi-
conductor. In this case the electrons are the majority charge carriers and the holes are the 
minority charge carriers. It should again be noted that the material as a whole still remains 
electrically neutral since for every extra donated free electron there will be a fixed positive 
ion in the lattice. Thus a sample of n-type semiconductor may be represented as consisting 
of a number of fixed positive ions with a corresponding number of free electrons, in addition 
to the thermally generated electron–hole pairs. This is shown in Figure 6.5.

The circuit action when a battery is connected across the material is illustrated in Figure 
6.6. Once more, only electrons flow around the external circuit, whilst within the semicon-
ductor there will be movement of majority carriers in one direction and minority carriers in 
the opposite direction.

Si SiSi

Si

Si Si

SiP

5th ‘free’
electron

Figure 6.4  Doping in n-type semiconductor
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6.6  P-TYPE SEMICONDUCTOR

In this case a trivalent impurity such as aluminium (Al), gallium (Ga) or indium (In) is 
introduced. These impurity atoms also join the covalent bonding system, but since they have 
only three valence electrons there will be a gap or hole in the bond where an electron would 
normally be required. Due to electron–hole pair generation in the lattice, this hole will soon 
become filled, and hence the hole will have effectively drifted off elsewhere in the lattice. 
Since each impurity atom will have accepted an extra electron into its valence band they 
are known as acceptor impurities, and become fixed negative ions. The result of the doping 
process is illustrated in Figure 6.7.

We now have the situation whereby there will be more mobile holes than there are free 
electrons. Since holes are positive charge carriers, and they will be in the majority, the 
doped material is called a p-type semiconductor, and it may be considered as consisting of 
a number of fixed negative ions and a corresponding number of mobile holes as shown in 
Figure 6.8.

The circuit action when a battery is connected across the material is shown in Figure 6.9. 
As the holes approach the left-hand end they are filled by incoming electrons from the bat-
tery. At the same time, fresh electron–hole pairs are generated, the electrons being swept to 
and out of the right-hand end, and the holes drifting to the left-hand end to be filled. Once 
more, the current flow in the semiconductor is due to the movement of holes and electrons in 
opposite directions, and only electrons in the external circuit. As with the n-type material, 
p-type is also electrically neutral.

e–h pair

fixed
positive

ion

free
electron

Figure 6.5  The effect of the doping process

holes

electrons
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Figure 6.6  An n-type semiconductor with a number of free electrons
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6.7  THE P-N JUNCTION

When a sample of silicon is doped with both donor and acceptor impurities so as to form 
a region of p-type and a second region of n-type material in the same crystal lattice, 
the boundary where the two regions meet is called a p-n junction. This is illustrated in  
Figure 6.10.

Si SiSi

Si

Si Si

SiAl

e–h
pair

Figure 6.7  Doping in p-type semiconductor
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Figure 6.8  The effect of the doping process
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Figure 6.9  An p-type semiconductor with a number of free holes
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Due to their random movement some of the electrons will diffuse across the junction into 
the p-type, and similarly some of the holes will diffuse across into the n-type. This effect 
is illustrated in Figure 6.11, and from this figure it may be seen that region x acquires a net 
negative charge whilst region y acquires an equal but positive net charge.

The region between the dotted lines is only about 1 μm wide, and the negative charge on 
x prevents further diffusion on electrons from the n-type. Similarly the positive charge on 
y prevents further diffusion of holes from the p-type. This redistribution of charge results 
in a potential barrier across the junction. In the case of silicon this barrier potential will be 
in the order of 0.6 to 0.7 V, and for germanium about 0.2 to 0.3 V. Once again note that 
although there has been some redistribution of charge, the sample of material as a whole 
is still electrically neutral (count up the numbers of positive and negative charges shown in 
Figure 6.11).

A diode is a semiconductor device, based on a p-n junction, allowing current to flow 
through it in one direction only. It is the electronic equivalent of a mechanical valve, for 
example the valve in a car tyre. This device allows air to be pumped into the tyre, but pre-
vents the air from escaping. A diode is so called because it has two terminals: the anode, 

p n

Figure 6.10  The p-n junction in the same crystal lattice
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Figure 6.11  Diffusion of electrons and holes
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which is the positive terminal, and the cathode, which is the negative terminal. In the case 
of a p-n junction diode the anode is the p-type and the cathode is the n-type.

The circuit symbol for a diode is shown in Figure 6.12. The ‘arrow head’ part of the 
symbol is known as the anode. This indicates the direction in which conventional current 
can flow through it. The ‘plate’ part of the symbol is the cathode, and indicates that conven-
tional current is prevented from entering at this terminal. Thus, provided that the anode is 
more positive than the cathode, the diode will conduct. This is known as the forward bias 
condition. If the cathode is more positive than the anode, the diode is in its blocking mode, 
and does not conduct. This is known as reverse bias.

Note: The potentials at anode and cathode do not have to be positive and negative. 
Provided that the anode is more positive than the cathode, the diode will conduct. So if the 
anode potential is (say) + 10 V and the cathode potential is + 8 V, then the diode will con-
duct. Similarly, if these potentials are reversed, the diode will not conduct.

You can measure a diode (which is not included in a circuit) with a multimeter in the mode to 
test diodes or in the resistance measurement option otherwise. With a properly functioning 
diode, the multimeter then indicates the voltage across the diode. In the forward direction, for 
a silicon diode it will be in the order of 0.6 V to 0.7 V (which is in fact the barrier potential) and 
for a germanium diode about 0.2 V to 0.3 V. In the reverse direction there is a greater voltage 
across the diode: depending on the type of diode between 2.5 V and 3.5 V or ‘O.L.’ (short for 
Over Length) appears on the screen. When the diode is not functioning and thus broken, two 
options exist. When it is open, in both forward and reverse direction ‘O.L.’ appears. In the case 
of a shorted diode, the 0 V reading is shown in the forward and reverse direction.

6.8  FORWARD-BIASED AND REVERSE-BIASED DIODE

Figure 6.13 shows a battery connected across a diode such that the positive terminal is con-
nected to the anode and the negative terminal to the cathode.

The electric field produced by the battery will cause holes and electrons to be swept 
towards the junction, where recombinations will take place. For each of these an electron 
from the battery will enter the cathode. This would have the effect of disturbing the charge 
balance within the semiconductor, so to counterbalance this a fresh electron–hole pair will 
be created in the p-type. This newly freed electron will then be attracted to the positive 
plate of the battery, whilst the hole will be swept towards the junction. Thus the circuit is 
complete, with electrons moving through the external circuit, and a movement of holes and 
electrons in the semiconductor. Hence, when the anode of the diode is made positive with 
respect to the cathode it will conduct, and it is said to be forward biased.

Figure 6.12  The circuit symbol for a diode
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Consider what now happens when the battery connections are reversed (Figure 6.14). The 
electric field of the battery will now sweep all the mobile holes into the p-type and all the 
free electrons into the n-type. This leaves a region on either side of the junction which has 
been depleted of all of its mobile charge carriers. This layer thus acts as an insulator, and is 
called the depletion layer. There has been a redistribution of charge within the semiconduc-
tor, but since the circuit has an insulating layer in it, current cannot flow. The diode is said 
to be in its blocking mode.

However, there is no such thing as a perfect insulator, and the depletion layer is no excep-
tion. Although all the mobile charge carriers provided by the doping process have been 
swept to opposite ends of the semiconductor, there will still be some thermally generated 
electron–hole pairs. If such a pair is generated in the p-type region, the electron will be 
swept across the junction by the electric field of the battery. Similarly, if the pair is generated 
in the n-type, the hole will be swept across the junction. Thus a very small reverse current 
(in the order of microamps) will flow, and is known as the reverse leakage current. Since this 
leakage current is the result of thermally generated electron–hole pairs, as the temperature 
increases so too will the leakage current.

p n

Figure 6.13 Forward-biased diode

depletion

layer

p n

Figure 6.14 Reverse-biased diode
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6.9  DIODE CHARACTERISTICS

The characteristics of a device such as a diode can be best illustrated by means of a graph (or 
graphs) of the current flow through it versus applied voltage. Circuits for determining both 
the forward and reverse characteristics are shown in Figure 6.15.

Note the change of position of the voltmeter for the two different tests. In (a) the voltmeter 
measures only the small p.d. across the diode itself, and not any p.d. across the ammeter. In 
(b) the ammeter measures only the leakage current of the diode, and does not include any 
current drawn by the voltmeter. The procedure in each case is to vary the applied voltage, 
in steps, by means of the variable resistor RV1 and record the corresponding current values. 
When these results are plotted, for both silicon and germanium diodes, the graphs will typi-
cally be as shown in Figure 6.16. The very different scales for both current and voltage for 
the forward and reverse bias conditions should be noted. Also, the actual values shown for 
the forward current scale and the reverse voltage scale can vary considerably from those 
shown, depending upon the type of diode being tested, i.e. whether it be a small signal diode 
or a power rectifying diode. In the case of the latter, the forward current would usually be 
in amperes rather than milliamps.

The sudden increase in reverse current occurs at a reverse voltage known as the reverse 
breakdown voltage. The effect occurs because the intensity of the applied electric field 
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(a) Forward bias
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V

Figure 6.15  Circuits for determining forward and reverse characteristics
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Figure 6.16 Diode characteristics
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causes an increase in electron–hole pair generation. These electron–hole pairs are not due 
to temperature, but the result of electrons being torn from bonds by the electric field. This 
same field will rapidly accelerate the resulting charge carriers and as they cross the junction 
they will collide with atoms. These collisions will free more charge carriers, and the whole 
process builds up very rapidly. For this reason the effect is known as avalanche breakdown, 
and will usually result in the destruction of the diode.

When the impurity doping of the semiconductor is heavier than ‘normal’, the depletion 
layer produced is much thinner. In this case, when breakdown occurs, the charge carriers 
can pass through the depletion with very little chance of collisions taking place. This type of 
breakdown is known as zener breakdown and such diodes are called zener diodes.

The current flow through a resistor as function of the applied voltage is a straight line through 
the graph origin. The slope of the line equals the resistor value, according to Ohm’s law. By 
comparing this straight line with the diode characteristics, the differences can be explained by 
the semiconductor technology.

Diodes are most often used as rectifiers, because current is only allowed to flow in one direc-
tion and not in the other direction. Different types of rectifier diodes exist, with different 
breakdown voltages. Some of them are listed in Table 6.4 and they all can pass currents up 
to 1 A without any problems. The forward voltage drop is approximately 0.7 V for each. For 
each type you can find a datasheet on the web, describing the entire behaviour of the compo-
nent. 
Another type of diode is the signal diode. This one is actually designed for much smaller cur-
rents than the rectifier diode described above. Typically that is about 100 mA to 200 mA. The 
two most common diodes are the 1N4148 and 1N914, which both have similar properties: the 
forward voltage drop is 0.7 V and the breakdown voltage is 100 V. Furthermore, a maximum 
of 200 mA current can flow through. These diodes are more compact than rectifier diodes and 
are usually made of glass with a black band designation for the cathode. These signal diodes are 
widely used in audio and radio frequency circuits because they respond quickly to high frequen-
cies. That is why they are also called high-speed diodes or switching diodes.

Table 6.4  Different types of rectifier 
diodes with their 
breakdown voltage

Type Breakdown voltage

1N4001 50 V
1N4002 100 V
1N4003 200 V
1N4004 400 V
1N4005 600 V
1N4006 800 V
1N4007 1000 V
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6.10  THE ZENER DIODE

The main feature of the zener diode is its ability to operate in the reverse breakdown mode 
without sustaining permanent damage. In addition, during manufacture, the precise break-
down voltage (zener voltage) for a given zener diode can be predetermined. For this reason 
they are also known as voltage reference diodes. The major application for these devices is 
to limit or stabilise a voltage between two points in a circuit. Zener diodes are available with 
zener voltages from 2.6 V to about 200 V. The circuit symbol for a zener diode is shown in 
Figure 6.17.

The forward characteristic for a zener diode will be the same as for any other p-n junc-
tion diode, and also, since the device is always used in its reverse bias mode, only its reverse 
characteristic need be considered. Such a reverse characteristic is shown in Figure 6.18.

Clarence Zener (1905–1993) was an American theoretical physicist and studied superconductiv-
ity, metallurgy and geometric programming. He was the first to describe the property concern-
ing the breakdown of electrical insulators. This principle was exploited by the Bell Labs to invent 
a special-purpose diode, named after Zener.

In Figure 6.18, VZ represents the zener breakdown voltage, and if it were an ideal device, 
this p.d. across it would remain constant, regardless of the value of current, IZ, flowing 
through it. In practice the graph will have a fairly steep slope as shown. The inverse of the 
slope of the graph is defined as the zener diode slope resistance, rZ, expressed in ohm as 
follows

or

Figure 6.17  The circuit symbol for a zener diode

�VD (V)
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Figure 6.18  Zener diode characteristics
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Typical values for rz range from 0.5 Ω to about 150 Ω. For satisfactory operation the cur-
rent through the zener diode must be at least equal to Iz(min). Due to the zener diode slope 
resistance, the p.d. across the zener diode will vary by a small amount from the ideal of Vz 
volt as the diode current changes. For example, if rz = 1 Ω and Vz = −15 V, a change in diode 
current of 30 mA would cause only a 0.02% change in the zener diode p.d. This figure may 
be verified by applying Equation (6.1).

The value of current that may be allowed to flow through the device must be limited so as 
not to exceed the diode power rating. This power rating is always quoted by the manufac-
turer, and zener diodes are available with power ratings up to about 75 W.

Consider now the application of a zener diode to provide simple voltage stabilisation to a 
load. A circuit is shown in Figure 6.19.

In order for satisfactory operation the supply voltage, Vs, needs to be considerably greater 
than the voltage required at the load. The purpose of the series resistor RS is to limit the maxi-
mum diode current to a safe value, bearing in mind the diode’s power rating. Considering 
Figure 6.19, the diode current will be at its maximum when the load is disconnected, because 
under this condition all of the current from the supply will flow through the diode, i.e. I IZ S=
. When the load is connected it will draw a current IL, and since I I IZ S L= - , then under this 
condition the diode current will decrease, since it must divert current to the load. The output 
voltage, however, will remain virtually unchanged. Knowing the diode power rating, a suit-
able value for RS may be calculated as shown in the following worked example. This example 
also demonstrates the stabilising action of the circuit.

WORKED EXAMPLE 6.1

Q A 9.1 V, 500 mW zener diode is used in the circuit of Figure 6.19 to supply a 2.5 kΩ load. The 
diode has a slope resistance of 1.5 Ω and the input supply has a nominal value of 12 V.

 (a) Calculate a suitable value for the series resistor Rs.
 (b) Calculate the value of diode current when the load resistor is connected to the circuit.
 (c) If the input supply voltage decreases by 10%, calculate the percentage change in the p.d. 

across the load.

 V P r V RZ Z Z L= = = = =9 1 0 5 1 5 12 2500. . . ;V; W; V;W W

RS

RL

IL
IS

IZ
VZ  � VoV

Figure 6.19  Circuit with zener diode to provide simple voltage stabilisation
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A resistor of this precise value would not be readily available, so the nearest preferred value 
resistor would be chosen. However, to ensure that the zener diode power rating cannot be 
exceeded, the nearest preferred value greater than 52.78 Ω  would be chosen. Thus a 56 Ω  
resistor would be chosen. In order to protect the resistor, its own power rating must be taken 
into account. In this circuit, the maximum power dissipated by RS is:

 P I RS Smax W� � �� � � ��2 3 2
54 95 10 56 0 169. .  

so a 0.25 W resistor would be chosen, and the complete answer to part (a) is:
RS should be a 56 Ω, 0.25 W resistor

(b) 
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(c) When V falls by 10% from its nominal value, then
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The current for the load must still be diverted from the zener diode, so

 I I IZ S L� � � � �30 36 3 64 26 72. . . mA  

 
therefore, mA mA mA, and from equation 6.1�IZ � � � � �51 36 26 72 24 64. . . ::
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Thus the voltage applied to the load changes by 0.037 V, which expressed as a percentage 
change is:
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WORKED EXAMPLE 6.2

Q A d.c. voltage of 15 V ± 5% is required to be supplied from a 24 V unstabilised source. This is 
to be achieved by the simple regulator circuit of Figure 6.20.

The available diodes and resistors are listed below. For each zener diode listed determine the 
appropriate resistor required and hence determine the total unit cost for each circuit.

Diode no. VZ (V) Slope resistance (Ω) Max power (W) Unit cost (£)

1 15 30 0.5 0.07
2 15 15 1.3 0.20
3 15 2.5 5.0 0.67

Resistors are available in the following values and unit costs:
18 Ω, 27 Ω, 56 Ω, 100 Ω, 120 Ω, 150 Ω, 220 Ω, 270 Ω and 330 Ω.

0.25 W £0.026
0.5 W £0.038
1.0 W £0.055
2.5 W £0.260
7.5 W £0.280

For all three diodes:

 V V Vs Z= - = - =24 15 9 V  

Diode 1:

 

I
P
V

R
V
I

P
V
R

Z
Z

Z

S
S

Z

S
S

s

= = =

= =
´

=

= = =

-

0 5
15

33 3

9
33 3 10

270

81
270

3

2

.
.

.

mA

W

00 3

270 0 5

0 07 0 038 0 045

.

, .

. . .

W

and, W

total unit cost £

RS =
= + =

W

 

RS

VS

VZ

IZ

IS

Vo

�24 V

0 V

V

Figure 6.20  The circuit diagram for Worked Example 6.2
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Diode 2:
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Diode 3:
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6.11  THE LED

A LED is short for light emitting diode. It is a special diode that emits light. The circuit sym-
bol for a LED is shown in Figure 6.21. You will clearly recognise the symbol of the diode in 
it, as discussed earlier. The only difference is in the arrows pointing away from the diode, 
indicating that the diode is emitting light.

The characteristic of a LED is the same as an ordinary diode: the current flow through 
it versus the applied voltage. However, only the most important part of the characteristic 
is shown, being the positive part of the characteristic and in which the LED will emit light. 
The p.d. of a LED is denoted as VF and the current as IF. For infrared LEDs the VF is typi-
cally 1.5 V and goes up to 3 V for blue LEDs. Red, yellow and green LEDs are usually in the 
middle with values of about 2 V. For the same voltage, the current values differ according to 
the semiconductor material used and thus according to the colour of the light emitted by the 
LED. The nominal current of a LED is usually 20 mA. As the current increases, light output 
generally also increases. These are all parameters that should be checked in the datasheets 
of the component that will eventually be used.

Figure 6.21  The circuit symbol for a led
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A typical LED is the UR5366X, where the characteristic can be found online in the data-
sheet. That same datasheet also shows the relative intensity as a function of the current. 
When the LED starts to emit light, the current gradually increases. To prevent the current 
from exceeding the maximum allowable value (as mentioned in that datasheet), a resistor 
RV is placed in series with the LED. It can be calculated by using Equation 6.2, with V the 
external applied voltage.

 R
V V

I
V

F

F

= -
 (6.2)

It is best to round this value up for an available resistance value. This is to prevent the final 
current from becoming too large. Note that the unavoidable heat development in the resis-
tor can be calculated with the formula P = V.I. The resistance must be able to handle this; 
otherwise it will overheat.

The 7-segment display is a common way to visualise digits, as is used in displays like, for instance, 
clock radios. Each segment is a LED and in this way we can easily visualise all numbers and 
somewhat less easily all letters. In some the anode is common, in others it is the cathode. So 
watch out!

A photodiode is a component designed to detect light. The circuit symbol for a photodiode is 
shown in Figure 6.22, where the two arrows represent the incoming light.
If there is enough light, the photodiode can be used in two ways: normal polarised or reverse 
polarised. With normal polarisation, the light generates an electrical voltage through which 
a limited current in the forward direction flows. With reverse polarisation (and therefore a 
reverse voltage), this photodiode has a very high resistance and a reverse current flows, virtu-
ally independent of the reverse voltage, but dependent on the amount of light. A photodiode 
is usually used with reverse polarity. Although not optimised for it, LEDs also can convert light 
into electricity. The LED then works the other way around, but according to the same principle 
as with a photodiode. All photons of a specific LED actually all have almost the same energy 
content (which also determines the colour of the LED). From the forward voltage drop it can 
be deduced that the photons from red LEDs contain less energy than those from green LEDs. 
However, if a LED is used as a photodiode, then that LED only detects those photons that 
contain sufficient energy. This means that a red LED can be illuminated as a photodiode with a 
green LED (after all, the photons have enough energy). But a green LED as a photodiode cannot 
be illuminated with a red LED (after all, the photons do not have enough energy). This can also 
be measured by measuring the forward voltage drop across that LED as a photodiode (and thus 
detecting photons).

Figure 6.22  The circuit symbol for a photodiode
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WORKED EXAMPLE 6.3

Q For lighting a LED, the datasheet indicates a forward current of 10 mA with a forward voltage 
of 2.1 V. Calculate the required resistor for a power supply of 5 V. Determine the dissipated 
power in the resistor.
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6.12  THE SOLAR CELL

There is enough solar energy available on earth every hour to meet the global demand for 
electricity for an entire year. From an ecological point of view, people are increasingly talk-
ing and making use of the possibility to convert that solar energy into electrical energy. 
New developments in semiconductor material also make it possible to convert this energy 
very efficiently. The physical principle is called the photovoltaic effect. A photovoltaic cell 
(or Photovoltaic Cell or PV cell) or solar cell converts the solar energy into electrical energy. 
Sunlight contains energy packets or photons that can generate an electron–hole pair. The 
electrons end up in the n-type of the p-n junction, leaving a hole in the p-type. More and 
more electrons accumulate in the n-type and the holes in the p-type. In this way they realise 
a voltage across the photovoltaic cell. If a load is then externally connected, a current flows.

Although other types of photovoltaic cells or solar cells exist and there are many new 
developments, the crystalline silicon solar cell is the most common. The bottom (on the 
p-type side) gets a flat metal plate. On top of the solar cell, a conductive grid is placed, so 
that the electrons from the n-type can easily leave the silicon via the grid and form a current. 
To absorb as much light as possible and thus avoid reflection of sunlight, an anti-reflective 
layer is applied on top of that conductive grid. The last layer is a glass (or sometimes plexi-
glass) plate to protect the photovoltaic cell against the weather conditions. The result is 
available in different sizes, shapes and colours.

Solar cells are standard 100 cm² to 225 cm² in size, with the obtained voltage being 
approximately 0.5 to 0.6 V. The light intensity only influences this voltage to a limited 
extent, but it strongly influences the current: the more sunlight, the more current. For a solar 
cell of 100 cm² and with a light intensity of 1000 W/m², a maximum current of approxi-
mately 2 A can be achieved. In addition, the load resistance must be adjusted to maintain the 
same voltage at a different light intensity and therefore current, which is done, among other 
things, in the charge controller. By placing different solar cells in series, you can simply add 
up the voltage of each solar cell. Due to this series connection, however, the current remains 
identical compared to a single solar cell. Therefore, several series-connected solar cells are 
in turn connected in parallel. Several solar cells together and for a specific power are called 
solar panels. In practice, more solar cells are connected together to compensate for all kinds 
of losses.

Although electrical energy can also be generated on a cloudy day, the yield is still less. At 
night even nothing can be generated. It can hence be useful to include a battery in the system 
to compensate for the lower energy yield. The aforementioned charge controller ensures that 
the batteries are not overcharged. After all, overcharging batteries shortens their lifespan 
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and can also damage them. To prevent current flowing back to the solar cell when the bat-
tery voltage exceeds the voltage of a solar cell, the charge controller also contains a correctly 
polarised diode.

If the solar cells or solar panels are used for alternating current and voltage, we still have 
to take additional steps. After all, a solar panel supplies direct current. In the converter (or 
inverter), the direct current is switched on and off electronically and filtered with a low-pass 
filter to obtain an alternating current. This is usually followed by a transformer (see also 
Chapter 5) to realise the correct alternating voltage. If the solar panel is connected to the 
public electricity network, it can lose any surplus of power there. The interaction between 
own yield and the return of surpluses to the grid is much more cost-effective than storage on 
a battery. The battery is therefore often omitted in these systems.

ASSIGNMENT QUESTIONS

 1 A simple voltage stabiliser circuit is shown in Figure 6.23. The zener diode is a 7.5 V, 
500 mW device and the supply voltage is 12 V. Calculate (a) a suitable value for RS, and 
(b) the value of zener current when RL = 470 Ω.

 2 Using the circuit of Figure 6.23 with a 10 V, 1.3 W zener diode having a slope resis-
tance of 2.5 Ω, and a supply voltage of 24 V, calculate (a) a suitable value for RS, (b) 
the value of zener current when on no-load and (c) the variation of zener voltage when 
RL is changed from 500 Ω to 200 Ω.

 3 How many solar cells are needed in order to have 3 V and 4 A?

SUGGESTED PRACTICAL ASSIGNMENTS

Assignment 1

To obtain the forward and reverse characteristics for silicon and germanium p-n junction 
diodes. An investigation into the effects of increased temperature on the reverse leakage cur-
rent could also be undertaken.

Assignment 2

To investigate the operation of the zener diode.

Apparatus

1 × 5.6 V, 400 mW zener diode
1 × 9.1 V, 400 mW zener diode

RS

RLV

Figure 6.23  The circuit diagram for Assignment Question 1
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1 × 470 Ω resistor
1 × variable d.c. power supply unit (psu)
1 × voltmeter
1 × ammeter

Method

 1 Connect the circuit of Figure 6.24 using the 5.6 V diode.
 2 Vary the input voltage in 1 V steps from 0 V to + 15 V, and note the corresponding 

values of VZ and I.
 3 Tabulate your results and plot the reverse characteristic for the diode.
 4 Repeat steps 1 to 3 above for the 9.1 V diode.
 5 From the plotted characteristics, determine the diode slope resistance in each case.

470 Ω

Vi Vo � VZ
psu

�

�

l

Figure 6.24  The circuit diagram for Practical Assignment 2
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Chapter 7

Transistors

LEARNING OUTCOMES

This chapter explains the behaviour of transistors and the way in which they are used in circuits.
On completion of this chapter you should be able to:

 1 Understand the way in which n-p-n junctions and p-n-p junctions result in the transistor 
effect within a bipolar transistor.

 2 Understand how bipolar transistors are employed to amplify signals.
 3 Describe the operation of a MOSFET and a JFET.
 4 Explain the principle of inverting and non-inverting amplifiers with opamps.

7.1  BIPOLAR TRANSISTOR

In Chapter 6, a diode as a semiconductor with one single p-n junction was discussed. The 
diode conducts current when forward biased and blocks current (no current is conducting) 
when reverse biased. A bipolar transistor is basically a diode with an extra third layer of 
either p-type or n-type. Such a bipolar transistor is therefore a semiconductor with two 
different p-n junctions. It can be built like an n-p-n semiconductor (with one p-type sand-
wiched in between the two n-types at the outside) or like a p-n-p semiconductor (with one 
n-type in the middle and two p-types at the outside). The basic idea of the transistor is that 
it has the ability to vary the amount of current driven by a much smaller current. You can 
therefore consider it as an electronic leverage: with a very small effort at the input, you can 
exert a large effort at the output with this leverage. The word ‘transistor’ is actually a con-
traction of ‘transfer’ and ‘resistor’, because during the operation of the transistor, the input 
resistance is high and the output resistance is low. So the transistor is actually a component 
that not only amplifies the signals, but also changes the resistance from high to low. In 
the early days, it was mainly used to convert the change of a small signal (such as a sound 
wave) into a larger signal (with therefore much larger changes). Nowadays, it has been a 
basic part of every integrated circuit of every electronic device. At AT&T’s Bell Labs, three 
engineers Brattain, Bardeen and Shockley were able to demonstrate the first working tran-
sistor, consisting of a thin wafer of germanium with two adjacent gold contacts on one side 
and a larger contact on the other. The amplification factor at that time of this point-contact 
transistor was 18 times.
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Transistors

Walter Brattain (1902–1987) was an American physicist, best known as the co-inventor (with 
John Bardeen and William Shockley) of the transistor. In 1956, he was awarded the Nobel Prize 
in Physics for this. At AT&T’s Bell Labs, his research interest was the surface properties of sol-
ids, in particular of semiconductors. It was already known that semiconductors could rectify an 
alternating current and that this effect was a surface property of semiconductors.

John Bardeen (1908–1991) was an American physicist and two-time Nobel laureate: the first 
time in 1956 along with Walter Brattain and William Shockley for the invention of the transistor; 
the second time in 1972 with Leon Cooper and Robert Schrieffer for the theoretical explana-
tion of superconductivity. He wanted, together with Brattain, to find a solid-state alternative to 
the fragile vacuum tube amplifiers, based on Shockley’s ideas to use an external electric field to 
influence the conductivity of semiconductors.

William Shockley (1910–1989) was an American physicist and co-inventor of the transistor 
with John Bardeen and Walter Brattain. Shockley was supervising Bardeen and Brattain. While 
he was on a holiday in December 1947, Bardeen and Brattain worked on a new circuit and 
they succeeded in demonstrating the first working point-contact transistor. It was only after 
this that Shockley was informed, who was dismayed that he had been kept out of this major 
breakthrough.

Packaging of transistors exists in all kinds of sizes and colours. However, there is only 
one constant: it has three contact pins. Each of the three semiconductor parts has its own 
contact pin. The collector (shortened to C) connects to the largest part of semiconductor 
material on one outside. The emitter (E) connects to the second largest part of semiconduc-
tor material on the other outside. The base (B) connects to the central part of semiconductor 
material and serves to determine how much current is allowed to flow between the collector 
and emitter. Figure 7.1 gives the circuit symbols for both types of bipolar transistors: the 
n-p-n transistor is shown on the left and the p-n-p transistor on the right. The symbol differs 
only in the direction of the arrowhead that is always drawn on the emitter. This arrowhead 
also indicates the current direction in the emitter with a correctly set transistor.

There are two main current paths: on the one hand, the collector-emitter path, where the 
voltage is often referred to as VCE and the corresponding current with IC as the collector 

Figure 7.1  The circuit symbols for an n-p-n transistor (left) and a p-n-p transistor (right)
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current, and on the other hand, the base–emitter path, where the bias voltage is referred to 
as VBE and the corresponding current with IB as the base current. In an n-p-n transistor, the 
emitter is the negative side, while in a p-n-p transistor it is the positive side. In the circuit 
representation, the positive side is always on top and in circuits all n-p-n transistors can 
always be replaced by p-n-p transistors if the polarity of the power lines is also reversed.

You can find transistors in different packaging. Which connections are the emitter, the base or 
the collector depends on the type of housing. The manufacturers of transistors indicate in their 
documentation or datasheet for each type how the connectors are located on the housing. On 
the housing of the transistor, you will usually find the type number of the transistor according 
to one of the following coding systems:

 1. The European coding consists of two or three letters followed by a number: for instance 
AC117, BC557, BD137, BU108 or BDY20. The first letter indicates whether the transistor 
is made of germanium (A) or silicon (B). So AC117 is a germanium transistor and BC547 is 
a silicon transistor. The second letter indicates the application area of the transistor. For 
example, the U in BU108 indicates that this transistor can be used as a power switch. A 
possible third letter is the type number and indicates that the transistor is used in a specific 
application.

 2. With American coding, the type number starts with the code 2N followed by a number: 
2N2222.

 3. The Japanese coding starts with the code 2S (the S for semiconductor) followed by a second 
letter indicating the application of the transistor and a number: 2SD1406.

7.2  TRANSISTOR EFFECT

When analysing an n-p-n bipolar transistor, one notices that it consists of two different p-n 
junctions: the p-n junction between the base and the emitter and the p-n junction between 
the base and the collector. In Chapter 6, we said that a p-n junction actually forms a diode, 
where the connection to the p-type is called anode and the connection to the n-type is called 
cathode. So apparently one can think of an n-p-n bipolar transistor as two diodes with 
their anodes internally connected, as shown on the left in Figure 7.2. This can be seen as a 
replacement for an n-p-n bipolar transistor, but this does not at all mean that you can make 
a transistor by connecting two diodes. You only get a bipolar transistor if the p-n junctions 
are close to each other and together form a whole. The replacement scheme for a p-n-p bipo-
lar transistor is shown on the right in Figure 7.2.

Taking into account this replacement circuit, a bipolar transistor that is not part of a cir-
cuit can be tested with a multimeter in the resistance measurement mode (or in the diode test 
mode). In order to do this, measure the diodes between the base and emitter and between 
the base and collector in both forward and reverse direction. Just like with diodes, for a 
properly working transistor in forward bias you get a small resistance value when in resis-
tance measurement mode or the p.d. across the diode when in diode test mode. Measured in 
reverse bias for a properly working transistor, a large resistance value is obtained when in 
resistance measurement mode or O.L. (short for ‘Over Length’) when in diode test mode. As 
can be noticed in Figure 7.2, measuring between the collector and emitter, one of the two 
internal diodes is always off, resulting in a large resistance value when both forward and 
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reverse bias is measured. If these measurements are performed correctly, you can be sure 
that the transistor is not damaged or broken.

A bipolar transistor can only amplify if both the base and collector are connected to a 
supply voltage. These voltages must be connected in such a way that the base–emitter diode 
is forward biased and the base–collector diode is reversed biased. If the base–emitter voltage 
VBE is greater than the p.d. of the corresponding diode (usually 0.7 V), this diode will be 
forward biased. If the base–collector diode remains in the reverse state, a current will still 
flow through the blocking base–collector diode. This is called the transistor effect and will 
be explained further. Also note that the collector current IC is greater than the base current 
IB. The ratio between the collector current IC and the base current IB is the current gain fac-
tor hFE of the transistor. It is defined as follows:

 h
I
I

FE
C

B

= =b  (7.1)

Typical values for hFE range from 100 to 300. This current gain factor is one of the most 
important parameters of that bipolar transistor and clearly indicates that it is a current 
amplifier.

The transistor effect can be explained by recalling that a current consists of electrons. 
However, the direction of the electron current is opposite to the direction of the conven-
tional current. In an n-p-n transistor, the electrons hence flow from the emitter to the base 
(through the forward-biased base–emitter diode). When a large positive voltage is applied 
to the collector of the reverse polarised base–collector diode, it exerts a large attraction on 
those negative electrons travelling from the emitter to the base. As already stated, this base 
semiconductor material is very thin (less than 1 µm), so almost all electrons coming from 
the emitter (even up to 99%) are attracted by the large positive voltage of the collector and 
sucked right through the thin base to the electron-attracting collector. The remaining 1% 
of the electrons end up in the base itself, following their normal route. Translated into a 
conventional current direction, this means that the collector current IC is much larger than 
the base current IB. In conventional current direction, the emitter current IE is the sum of 

Figure 7.2  Equivalent model for an n-p-n transistor (left) and a p-n-p transistor (right)
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the base current IB and the collector current IC. Thus, despite the base–collector diode being 
reverse biased, significant current flow from the collector is possible when the base–emitter 
diode is made conductive. The principle is explained here by relying on the electron current 
direction, while we almost always work with the conventional current direction.

WORKED EXAMPLE 7.1

Q The current gain factor of a bipolar transistor can be found in the datasheet and equals 250. 
The base current equals 1 mA. Determine the collector current and the emitter current.

 
h I

I h I

I I I

FE B

C FE B

E B C

= =
= = =
= + = + =

250; 1mA
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1 250 251mA

. .250 1 250
 

WORKED EXAMPLE 7.2

Q Determine the current gain hFE and the emitter current IE for a bipolar transistor where IB = 
60 μA and IC = 3 mA.
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7.3  TRANSISTOR AS SWITCH

Bipolar transistors can be used as switches. They switch millions of times faster, compared 
to the slow operation of traditional, mechanical switches. You can therefore use a transistor 
as an electronic switch that switches a certain load on or off at a certain input voltage from, 
for example, a temperature or light sensor. The big advantage here is that the base current 
may be very limited, while a large collector current can still flow. This is conveniently used 
with a twilight switch. This electronic switch is operated by the action of light on a photo-
sensitive cell (or Light-Dependent Resistor (LDR)). This electronic component behaves as 
a resistor, the value RLDR of which is influenced by the amount of incident light. The more 
light, the lower the resistance value. This photosensitive cell also depends on temperature, 
influencing the resistor value and hence its behaviour. The circuit symbol can be found in 
Figure 7.3.

The schematic of the twilight switch can be found in Figure 7.4. Thus, when there is 
sufficient light, the resistance value of RLDR is small and the voltage drop across RLDR and 

Figure 7.3  The circuit symbol of an LDR
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hence across the base–emitter diode of the transistor is also small. The base–emitter volt-
age VBE is adjusted with the potentiometer R1 in such a way that the transistor is then cut 
off. The light will not blink. When it gets dark, the resistance value of RLDR and therefore 
also the voltage VBE increase. When the voltage between the base and emitter exceeds the 
p.d. of 0.7 V, the transistor is conducting and current is flowing in a conventional direction 
from the collector to emitter. This collector current of the conducting transistor makes the 
lamp blink.

When RLDR and R1 are swapped, the behaviour of the circuit also changes. When there is 
sufficient light, the resistance value of RLDR remains low. In relation to the resistance value 
R1, the voltage across the base and emitter is large. Above a p.d. of 0.7 V across the base and 
emitter the transistor conducts and a current flows. The light is on. On the other hand, the 
light is switched off with no or limited light. This is reversed behaviour as described above 
and makes no sense for a twilight lamp.

The bipolar transistor here operates under clipping conditions. Therefore, when the base is 
saturated, the base–emitter voltage VBE > 0.7 V. The collector current flows without any limita-
tion and so the switch is on. On the other hand, if there is no base–emitter voltage (VBE < 0.7 
V), the switch is off. This is called cutoff.

7.4  TRANSISTOR AS AMPLIFIER

A bipolar transistor can also be used as an amplifier for small voltages of a microphone 
signal, for example. This has been applied in the electronic diagram of Figure 7.5. The base–
emitter is connected in forward bias by the d.c. voltage source VBE with at least 0.7 V. The 

Figure 7.4  The schematic of the twilight switch with an LDR
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a.c. voltage source Vin is connected in series with this d.c. voltage VBE. This a.c. voltage is 
the input voltage of the amplifier and originates, for example, from a microphone. Because 
of this voltage, the total base–emitter voltage varies and the base current IB also changes. 
This base current also controls the collector current IC, as we know that IC = IB.hFE. In other 
words, the variations or time dependencies of IC are identical to those of IB, but in a wider 
range thanks to the current gain factor hFE. This changing collector current IC causes a 
changing voltage across the collector resistance RC (with the same variations as the collector 
current IC). The supply voltage divides between the collector resistance RC and the collector-
emitter voltage VCE of the transistor. The coupling capacitor Ck only passes a.c. and blocks 
d.c. This results in an output voltage Vout across the load resistor RL, which is actually a pure 
a.c. voltage. This Vout is the opposite of Vin, but in a wider range. So we have amplified the 
input signal, although phase inverted.

Instead of two separate voltage sources, usually the voltage VBE is realised by branching 
it from the supply voltage with the use of a voltage divider (by integrating an additional 
resistor). The output voltage Vout, measured across RL, can be regarded as the input voltage 
Vin of a subsequent amplifier stage. To amplify an audio signal recorded with a microphone, 
different amplifier stages are cascaded to obtain an amplification that can deliver the desired 
output power to the loudspeakers.

Figure 7.5  The schematic for amplification with a transistor
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The output voltage Vout of the amplifier is several times greater than the input voltage Vin. 
The ratio of the voltage variations from output voltage to the input voltage is called the volt-
age gain and in formula form this becomes:

 voltage gain = D
D
V
V

out

in

 (7.2)

This voltage gain has no unity. Sometimes the voltage gain is expressed in dB (decibels), 
which can be calculated with the following formula:

 voltage gain in dB log= 20 10.
D
D
V
V

out

in

 (7.3)

with log10 as an abbreviation of the base-10 logarithm.

Please note that this bipolar transistor is biased. This means that some collector current flows 
even if there is no input signal to be amplified, which is a major drawback in terms of power 
consumption. However, this biasing is necessary to have the output voltage value at approxi-
mately half of the supply voltage value, eventually realised with a voltage divider (where an extra 
resistor must be added to the emitter). This way the a.c. signal can be higher as well as lower 
within the predefined limits and omitting clipping the a.c. output signal.

The circuit with a bipolar transistor described here is most commonly used and is also called 
the common emitter amplifier, because the emitter of the transmitter is used for both the input 
(together with the base of the transmitter) and the output (together with the collector of the 
transmitter). We can say that the emitter is used to apply the input voltage and read the output 
voltage at the same time. A major drawback is the phase inversion: when the input is high, the 
output is much lower and vice versa. In addition, there are also two other types for circuits 
with bipolar transistors: the common collector amplifier and the common base amplifier. As the 
name suggests: in the common collector amplifier is the collector pin used commonly for both 
the input (together with the base) and the output (together with the emitter). This amplifier is 
also called an emitter-follower and no phase inversion is involved. The common base amplifier 
is sometimes called the ground base. The emitter and the base form the input and the collector 
with the base is used as the output. There is also no phase inversion to be taken into account.

7.5  FIELD EFFECT TRANSISTOR

The field effect transistor (FET) differs fundamentally from the bipolar transistors described 
above. Compared to bipolar transistors, FETs can be made even more compact and consume 
far less power. The only disadvantage is that they are incredibly sensitive to static electricity. 
If you touch one and you feel a (small) shock, you know that you have not taken the proper 
precautions against static discharge. It is better to throw that component away immediately. 
Although internally a FET is very different from a bipolar transistor, it behaves very much 
like a bipolar transistor. They have their own naming convention. Instead of base, emitter 
and collector, the contact pins are called gate (or G), drain (or D) and source (or S).

There are many different types of field effect transistors, the most common of which is 
the MOSFET (short for Metal Oxide Semiconductor Field Effect Transistor). This is shown 
schematically in Figure 7.6: on the left an n-type MOSFET is shown and on the right a 
p-type MOSFET. As the name itself suggests, it contains a characteristic insulating oxide 
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with a piece of metal on top that makes contact with the gate G. The control voltage is 
applied to that contact pin G, which acts as a capacitor across the oxide and is connected to 
the bulk of the material. The actual current-carrying contact pins are called the source S and 
the drain D, with the current flowing in an n-type MOSFET through an n-p-n semiconduc-
tor and in a p-type MOSFET through a p-n-p semiconductor. By applying a control voltage, 
a conduction channel is created through which the current flows. That current encounters 
a certain resistance that can be influenced by an electrical voltage. So we can think of a 
MOSFET as a voltage-controlled current source.

In addition to the MOSFET, there is another commonly used field effect transistor: the 
Junction Field Effect Transistor (JFET). This is schematically shown in Figure 7.7: on the left 
the n-type and on the right the p-type. Here, too, the width of the conductive channel and 
thus the resistance can be adjusted. The main difference with the MOSFET is that the gate 
is now not electrically separated from the channel by an insulating layer: there is no oxide. 
In an n-type JFET, both the bulk and the gate G are p-type which can control the current 
flowing from drain D to source S. In a p-type JFET, the opposite is true. Here, too, the cur-
rent encounters a certain resistance that can be influenced by an electrical voltage. Again, 
we can say that a JFET is a voltage-controlled current source.

Field effect transistors have many advantages compared to bipolar transistors. The power 
dissipation is noticeably lower, so that less heat has to be dissipated. Furthermore, the spa-
tial structure and manufacturing process are simpler. This results in a greater packing or 
integration density, because more transistors can be integrated on the same space. This is 
then called an integrated circuit, which we will cover in detail in the next section.

7.6  INTEGRATED CIRCUITS AND MOORE’S LAW

An integrated circuit (or IC), sometimes called a chip, is actually a complete electronic 
circuit. It consists of various individual components such as transistors, diodes, resistors, 

Figure 7.7  The circuit symbols for an n-type JFET (left) and a p-type JFET (right)

Figure 7.6  The circuit symbols for an n-type MOSFET (left) and a p-type MOSFET (right)
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capacitors and conductive connections between all these components, all made from a sin-
gle piece of silicon. The various components are directly embedded on the silicon itself. It 
is therefore not an extensive miniaturisation of a printed circuit board or pcb, on which 
components are soldered. Instead of one p-n junction in a diode or two p-n junctions in a 
transistor, an IC has thousands of p-n junctions. For an Intel Core i7 computer chip, there 
are even 731 million on a surface of barely 263 mm2.

Gordon Moore (1929–2023) was one of the founders of Intel. In 1965, he made an important 
prediction: every year the number of transistors in an IC will double. In the 1970s, this was 
adjusted to: every two years the number of transistors in an IC doubles. This ruling has since 
become known as Moore’s Law. We should note that the complexity of electronic technology is 
increasing exponentially and not incrementally like many other technologies (think of the diesel 
consumption per 100 km of new cars). On several occasions, the chip manufacturers had the 
feeling that they were encountering some kind of physical limitation, but each time there were 
new breakthroughs. Moore’s Law has been in effect for over 60 years now and is expected to 
remain so for some time to come. Because the design and development goals for all engineers 
are always held against the light of this law, Moore’s law has actually become a self-fulfilling 
prophecy.

To understand how these ICs work, it is important to briefly explain how they are made. 
The fabrication of such ICs is actually very complex and depends on the type of chip that 
actually needs to be made. A number of typical steps are successively explained here.

 1. A very large, cylindrical piece of silicon crystal is cut into thin slices (or wafers) with 
a thickness of 0.2 to 0.3 mm. Each of those wafers is used to make up to a thousand 
finished ICs.

 2. A fairly thick oxide is applied on top of each wafer. This will serve as an insulating 
layer for the following steps. A photosensitive layer is then applied. This is a special 
varnish that becomes soluble under the influence of light.

 3. On top of that there will be a mask that is an image of the circuit to be realised. In 
addition, some zones are transparent, so that the light can pass through. Other zones 
are then frosted to shield the oxide from light.

 4. The wafer is exposed to UV light so that the photosensitive resist is only dissolved on 
the transparent areas of the mask. Afterwards, the mask is removed and the oxide not 
protected by photosensitive lacquer is etched away. Then all photosensitive varnish is 
removed.

 5. The wafer is then exposed to dopant, which creates n-type or p-type zones at the 
oxide-removed sites.

 6. For each layer, the above steps are repeated to arrive at a multi-layer IC.
 7. The wafer is cut into several ICs and each IC is assembled in its final packaging (see 

below).

This entire process is carried out in a cleanroom. This is a very clean working environment, 
where contamination from unwanted particles in the ambient air is kept to a minimum. This 
pollution is specified by the number of polluting particles of a certain size per cubic metre.

Manufacturers use different techniques to make ICs. They can choose bipolar transistors, 
MOSFETS or something else. One can choose a compact chip where many components are 
close to each other or one can opt for low power consumption or fast switching. ICs are 
categorised by their design approach. In this context, we speak of logic families. There are 
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dozens of them, two of which are very common: the TTL and the CMOS. TTL stands for 
Transistor-Transistor Logic and uses bipolar transistors. They can be manufactured very 
cheaply, but consume a lot of power and require a specific voltage of 5 V. CMOS, on the 
other hand, stands for Complementary Metal Oxide Semiconductor and uses MOSFETS. 
They are slightly more expensive than their TTL equivalent, but they use much less power 
and operate at a variable supply voltage between 3 V and 15 V. A disadvantage is that they 
are sensitive to static electricity.

ICs come in different types of packaging. The most common for us is the Dual Inline 
Package (DIP). It is actually a small plastic or resin box in which the actual IC is packaged. 
It contains two rows of contact pins along the long side of the rectangle. They squeak out 
of the package and are then bent 90 degrees, like the legs of a beetle. The pins themselves 
are spaced 0.1 inch or 2.54 mm apart and the two rows of pins are spaced 0.3 inch or 7.62 
mm apart, making it a perfect fit on a breadboard. Each pin of a DIP is uniquely numbered. 
The reference is indicated by a notch, a groove or an elevation and is placed at the top. 
Conventionally, numbers are then counterclockwise: from the top left, to the bottom left, to 
the bottom right and finally to the top right. In an electrical diagram, an IC is usually rep-
resented by a rectangle, with connections to the environment being made all around. This 
can also be seen in Figure 7.8. The numbering at the rectangle on the diagram itself indicates 
which connection should arrive at which pin. In general, the physical position of the pin on 
the DIP is not taken into account. Unused pins are even omitted completely. When realising 
the circuit itself, the connecting wires must be adapted to the pin order on the DIP itself.

If this IC is included in an electronic circuit, you have to watch out for both static electric-
ity and heat. This makes soldering difficult. Therefore, special sockets as placeholders are 
available. These are first soldered and when that is all finished and tested, the actual IC can 
be clicked into the socket itself.

7.7  OPAMPS

An opamp or operational amplifier is a supersensitive amplifier circuit, specially designed 
to amplify the difference between two input voltages. It is represented by a triangle, with 
two inputs and only one output. The output voltage is sometimes 10 times or even 100 to 
1000 times greater than the difference in the input voltages. It was invented to be used as 
an amplifier in telephone networks. Afterwards, computer engineers discovered that these 

Figure 7.8  The numbering of a DIP
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opamps could easily be modified to also perform mathematical operations, hence the name. 
With opamps, addition, subtraction, multiplication or division can be performed quite eas-
ily, which are the basics of digital electronics. The operation of an opamp in a circuit can 
be explained by analysing the five connections of the triangle separately, as indicated also 
in Figure 7.9.

• The supply voltage for an opamp is connected via two pins: +V and –V. This is called 
split voltage sources. For example, the voltage sources +9 V and –9 V can be realised 
by connecting two 9 V batteries in series. The ground is then the connection between 
the two batteries. Some opamps do not require a split voltage source and then the –V 
pin is connected to ground.

• The output of the opamp can be found on Vout. This voltage can become positive or 
negative depending on the voltage difference between the two inputs. The maximum 
output voltage is usually a little bit lower than the supply voltage.

• The input voltages V– and V+ are sometimes also indicated with a minus and a plus 
sign within the triangle itself: the negative terminal V– and the positive terminal V+. 
An opamp behaves as a differential amplifier: if V+ is greater than V–, the output will 
be positive. If V+ is lower than V–, the output will be negative. If the V+ is connected 
to ground, the output voltage will always be opposite to the input voltage. That is why 
the V– is also called the inverting input. If, on the other hand, the V– is connected to 
ground, the output voltage will always have the same sign as the input voltage. That is 
why the V+ is also called the non-inverting input.

In Figure 7.4, a twilight switch is realised with a bipolar transistor. But it is also possible 
with an opamp as the basis, as is shown in Figure 7.10. When there is enough light, the resis-
tance value of RLDR is very small. Due to the voltage division, there is a very low voltage on 
the positive terminal of the opamp. The potentiometer is adjusted in such a way that there is 
virtually no difference with the voltage at the negative terminal, so that there is also virtu-
ally no voltage at the output. When it gets dark, the resistance value of RLDR becomes much 
larger, so that the voltage at the positive terminal rises. The difference between the positive 
and negative terminal becomes much larger, so that the output voltage also increases enor-
mously. The lamp lights up.

Even though commercial opamps are not ideal, their properties are very close to those of 
an ideal opamp. We would therefore like to sum up the properties of such an ideal opamp.

• An ideal opamp has infinite gain. This means that any voltage difference at the input 
results in an infinite voltage at the output. However, with realistic opamps, this voltage 
is limited to the supply voltage. Since the voltage cannot be infinite, the gain in realistic 
opamps is also not infinite.

Figure 7.9  The five connections of an opamp
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• In an ideal opamp, no current flows from the positive and negative terminals to the 
internal circuit. We say that the input impedance is infinite. The internal circuit there-
fore only ‘sees’ the value of the voltage, without any current flowing. This means that 
an ideal opamp has no influence at all on the voltage at the input.

• The output impedance is equal to zero. This means that the output voltage is indepen-
dent of the value of the load resistance at the output. In practice, this output imped-
ance is not zero, but very small.

• If the two input voltages are equal, the output voltage is 0 V. This is called the offset 
voltage and is therefore 0 V for an ideal opamp.

• In an ideal opamp, each input signal is amplified, independent of the frequency value 
of the applied a.c. voltage. In practice, there is a maximum frequency, below which 
this is the case. Above it, the output signal will no longer be recognisable.

7.8  INVERTING AND NON-INVERTING AMPLIFIERS WITH OPAMPS

In most cases, an opamp is used as an amplifier of signals. If an alternating voltage is applied 
to the input of an opamp, also at the output an alternating voltage is produced. That output 
signal is an amplified version of the input signal, because the opamp provides a voltage gain 
of up to a factor 1000. For the amplification of sound recorded with a microphone, the 
microphone should be connected to the two inputs of the opamp. One clamp of the micro-
phone and the negative clamp of the opamp are grounded. The other clamp of the micro-
phone is connected to the plus terminal of the opamp. It is possible that the signal from the 
microphone is too large, causing the amplified output signal to drive the opamp to clipping 
or saturation. We have lost our dependence on time. Therefore another circuit (as depicted 
in Figure 7.11) is used to amplify the microphone input signal.

The output voltage Vout is actually fed back to the input through the resistor R2. If the 
input voltage Vin increases, the output voltage Vout will become much larger, but negative 
because the microphone is connected to the negative terminal. Because Vout has dropped, 
the voltage on the negative terminal V– will also drop. As a result, the voltage difference 
between the positive and negative terminal of the opamp also becomes smaller. The final 
voltage gain of the signal is reduced in such a way that the output voltage no longer reaches 
the extreme limits of the supply voltage. The signal gain is determined by the resistors R1 

Figure 7.10  The schematic of the twilight switch with an opamp
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and R2 and no longer by the opamp itself. These two resistors must therefore be chosen well. 
In an ideal opamp, the current to the plus and minus terminal is equal to zero. The voltage 
division across those two resistors can then be determined as follows:

 V V
R

R R
V Vin out in- = +

+
-( )1

1 2

 (7.4)

The ideal opamp with its infinite gain tries to avoid saturation at all times. This is only pos-
sible if V– = V+. Since V+ = 0 V (the positive terminal is connected to ground), the voltage 
gain A can be calculated as a ratio of the output voltage to the input voltage. This results in:

 A
V
V

R
R

out

in

= = - 2

1

 (7.5)

This voltage gain formula clearly indicates that the gain only depends on the ratio of the two 
resistors used. These values must be chosen so that the opamp does not saturate or in other 
words that the amplified input difference remains lower than the applied supply voltage.

WORKED EXAMPLE 7.3

Q Calculate the voltage gain of an inverting opamp circuit when R1 = 0.5 kΩ and R2 = 47 kΩ.

 
R k R k

A
R
R

1 2

2

1

47

47
0 5

94

= =

= - =- = -

0.5 ;W W

.

 

Instead of connecting the input signal to the negative terminal of the opamp via the resis-
tor R1, for a non-inverting amplifier, the input signal is connected to the positive terminal, 

Figure 7.11  The schematic for amplification with an opamp
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where the negative terminal is grounded via the resistor R1. It works like a voltage follower 
circuit because this circuit uses a negative feedback connection, giving a part of the output 
signal as feedback to the inverting input terminal. The input signal is applied to the posi-
tive terminal. The output signal is in phase with the input, hence the name ‘non-inverting 
opamp’.

Combining the voltage divider rule and the ideal opamp assumption, the amplification 
can be derived. The feedback signal is applied to the inverting input of the opamp. The volt-
age at the inverting input is equal to the voltage at the non-inverting input because of the 
high input impedance of the opamp. Therefore, we can assume that the voltage at the invert-
ing input is equal to Vin. The output voltage of an ideal opamp is given by Vout = Aopenloop(V+ 
– V–) where Aopenloop is the open-loop gain of the opamp and V+ and V– are the voltages at 
the non-inverting and inverting inputs respectively. Since

 V Vin+ =  (7.6)

 V
V

A

R

R R
Vout
out- = =

+
1

1 2

, (7.7)

we can substitute these values into the equation for Vout and solving for the voltage gain A 
gives us:

 A
V

V

R

R
out

in

= = +1 2

1

 (7.8)

Also in this case the voltage gain A is only dependent of the used resistors R1 and R2 and of 
the open-loop gain of the opamp itself.

The LM741 is a very common eight-pin DIP, containing one opamp circuit. Of these eight pins, only 
five are in use. The inverting input V– goes to pin 2, the non-inverting input V+ goes to pin 3. The 
supply voltage +V is connected to pin 7, while the other supply voltage of the split power source 
goes to pin 4. The output and thus the amplified signal can be tapped from pin 6. If you need more 
than one opamp circuit, you should better use the LM324 which contains four opamp circuits in 
one single package. No split power source is needed here; only a positive voltage (on pin 4) and 
ground (on pin 11). The first opamp has the inverting input on pin 2, the non-inverting input on pin 
3 and the output on pin 1. For the second opamp, these are pins 6, 5 and 7 respectively. For the 
third opamp these will be pins 9, 10 and 8 respectively. For the fourth and last opamp these are 
pins 13, 12 and 14. Note that all 14 pins are used here.

WORKED EXAMPLE 7.4

Q Calculate the voltage gain of a non-inverting opamp circuit when R1 = 0.5 kΩ and R2 = 47 kΩ.

 R k R k

A
R
R

1 2

2

1

47

1 1
47
0 5

95

= =

= + = + =

0.5 ;

k
k

W W
W
W.
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ASSIGNMENT QUESTIONS

 1 Determine the current gain hFE and the emitter current IE for a bipolar transistor where 
IB = 40 μA and IC = 2 mA.

 2 Calculate the value R1 for an inverting opamp with an absolute value for the voltage 
gain of 100 and R2 = 63 kW.

 3 Calculate the value R1 for a non-inverting opamp with an absolute value for the volt-
age gain of 100 and R2 = 63 k .W
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Chapter 8

Alternating Quantities

LEARNING OUTCOMES

This chapter deals with the concepts, terms and definitions associated with alternating quanti-
ties. The term alternating quantities refers to any quantity (current, voltage, flux, etc.) whose 
polarity is reversed alternately with time. For convenience, they are commonly referred to as 
a.c. quantities. Although an a.c. can have any waveshape, the most common waveform is a sin-
ewave. For this reason, unless specified otherwise, you may assume that sinusoidal waveforms 
are implied.

On completion of this chapter you should be able to:

 1 Explain the method of producing an a.c. waveform.
 2 Define all of the terms relevant to a.c. waveforms.
 3 Obtain values for an a.c., both from graphical information and when expressed in mathemati-

cal form.
 4 Understand and use the concept of phase angle.
 5 Use both graphical and phasor techniques to determine the sum of alternating quantities.

8.1  PRODUCTION OF AN ALTERNATING WAVEFORM

From electromagnetic induction theory, we know that the average emf induced in a conduc-
tor, moving through a magnetic field, is expressed in volt and given by

 e Blv= sinq  [1]

where B is the flux density of the field (in tesla)

ℓ is the effective length of conductor (in metre)
v is the velocity of the conductor (in metre/s)
θ is the angle at which the conductor ‘cuts’ the lines of magnetic flux (in degrees or 

radians)

i.e. v sinθ is the component of velocity at right angles to the flux. Consider a single-turn coil, 
rotated between a pair of poles, as illustrated in Figure 8.1(a) and (b). Part (a) shows the 
general arrangement and part (b) shows a cross-section at one instant in time, such that the 
coil is moving at an angle θ to the flux.
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Alternating Quantities

Considering Figure 8.1(b), each side of the coil will have the same value of emf induced, 
as given by Equation [1] above. The polarities of these emfs will be as shown, according to 
Fleming’s right-hand rule. Although these emfs are of opposite polarities, they both tend to 
cause current to flow in the same direction around the coil. Thus, the total emf generated 
is given by:

 e Blv= ´2 sinq  [2]

Still considering Figure 8.1(b), at the instant the coil is in the plane W−Y, angle θ = 0°. Thus 
the emf induced is zero. At the instant that it is in the plane X−Z, θ = 90°. Thus, the emf is 
at its maximum possible value, given by:

 e Blv= ´2  [3]

Let us consider just one side of the coil, starting at position W. After 90° rotation (to posi-
tion X), the emf will have increased from zero to its maximum value. During the next 90° 
of rotation (to position Y), the emf falls back to zero. During the next 180° rotation (from 
Y to Z to W), the emf will again increase to its maximum, and reduce once more to zero. 
However, during this half revolution, the polarity of the emf is reversed.

If the instantaneous emf induced in the coil is plotted, for one complete revolution, the 
sinewave shown in Figure 8.2 will be produced. For convenience, it has been assumed 
that the maximum value of the coil emf is 1 V, and that the plot starts with the coil in 
position W.

When the coil passes through one complete revolution, the waveform returns to its origi-
nal starting point. The waveform is then said to have completed one cycle. Note that one 
cycle is the interval between any two corresponding points on the waveform. The number 
of cycles generated per second is called the frequency, f, of the waveform. The unit for fre-
quency is the hertz (Hz). Thus, one cycle per second is equal to 1 Hz.

N S

(a)

Z X

W

Y

�

(b)

Figure 8.1  A single-turn coil, rotated between a pair of poles
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Heinrich Hertz (1857–1894) was a German physicist interested in the electromagnetism theory 
elaborated earlier by James Maxwell. Hertz is best known for the discovery of radio waves, 
which was a direct confirmation of that electromagnetism theory. He also accidentally discov-
ered the phenomenon of photoelectric effect: by irradiating a metal with ultraviolet light an 
electric current could be generated.

For the simple two-pole arrangement considered, one cycle of emf is generated in one 
revolution. The frequency of the waveform is therefore the same as the speed of rotation, 
measured with the quantity symbol n and expressed in revolutions per second (rev/s). This 
yields the following equation

 f np=  (8.1)

where p = the number of pole pairs.
Therefore, if the coil is rotated at 50 rev/s, the frequency will be

 f = ´ =50 1 50rev s pair of poles Hz/  

The time taken for the waveform to complete one cycle is called the periodic time, T. Thus, if 
50 cycles are generated in one second, then one cycle must be generated in 1/50 of a second. 
The relationship between frequency and period is therefore

30 60 90 120 150 210 240 270 300 330

1 cycle

1.0

0.5

0

�0.5

�1.0

e(V)

rotation

(deg)

1 cycle

Ep�p

Em

Figure 8.2  The instantaneous emf induced in the coil as function of degrees
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 T
f

f
T

= =1 1
or  (8.2)

The maximum value of the emf in one cycle is shown by the peaks of the waveform. This 
value is called either the maximum or peak value, or the amplitude of the waveform. The 
quantity symbol used may be either Ê, or Em. The voltage measured between the positive 
and negative peaks is called the peak-to-peak value and has the quantity symbol Epk–pk, or 
Ep–p.

8.2  ANGULAR VELOCITY AND FREQUENCY

In SI units, angles are measured in radians, shortened as rad, rather than degrees. Similarly, 
angular velocity is measured in radians per second, rather than revolutions per second. The 
quantity symbol for angular velocity is ω (lower-case Greek omega).

A radian is the angle subtended at the centre of a circle, by an arc on the circumference, which 
has length equal to the radius of the circle. Since the circumference = 2π r, there must be 2π 
such arcs in the circumference. Hence there are 2π radians in one complete circle; i.e. 2π rad 
= 360°.

If the coil is rotating at n rev/s, then it is rotating at 360° × n degrees/second. Since there 
are 2π radians in 360°, the coil must be rotating at 2π n radians per second.

Thus, angular velocity w p= 2 n and is expressed in rad/s,
but for a 2-pole system, f = n

 therefore, w p= 2 f  (8.3)

 and, f = w
p2

 (8.4)

If the coil is rotating at ω rad/s, then in a time of t seconds, it will rotate through an angle of 
ω radian. Hence the waveform diagram may be plotted to a base of degrees, radians or time. 
In the latter case, the time interval for one cycle is, of course, the periodic time, T. These are 
shown in Figure 8.3.

T/4

�/2

�

�

3 �/2 2��

T/2 3 T/4 T t (s)

�t (rad)

emf (V)

0

Figure 8.3  The instantaneous emf induced in the coil as function of radians
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8.3  STANDARD EXPRESSION FOR AN ALTERNATING QUANTITY

All the information regarding an a.c. can be presented in the form of a graph. The informa-
tion referred to here is the amplitude, frequency, period and value at any instant. The last is 
normally called the instantaneous value. However, presenting this information in a graph 
is not always very convenient. To overcome these difficulties, the a.c. is expressed in a more 
convenient form. This results in an equation, sometimes referred to as the algebraic form of 
the a.c. More correctly, it should be called the trigonometric form. Since many students are 
put off by these terms, we shall refer to it simply as the standard expression for a waveform.

The emf for an N-turn coil is:

 
e NBlv

e NBlv t t

= ´
= ´ ( )

2

2

sin where is indegrees

or, sin where is

q q
w w
,

, iin radians
 

and the emf is at its maximum value when sin(ωt), or sinθ is equal to 1. With Em = 2 × NBℓv 
the expression becomes:

 e Em= sinq  (8.5)

 or, sine E tm= ( )w  (8.6)

 or, sine E ftm= ( )2p  (8.7)

All three of the above equations are the so-called standard expressions for this a.c. volt-
age. Equations (8.6), and (8.7) in particular, are those most commonly used. Using these, 
all the relevant information concerning the waveform is contained in a neat mathematical 
expression.

WORKED EXAMPLE 8.1

Q An alternating voltage is represented by the expression v = 35sin(314.2t) V. Determine, (a) 
the maximum value, (b) the frequency, (c) the period of the waveform and (d) the value 3.5 ms 
after it passes through zero, going positive.

(a) v = 35sin(314.2t) and comparing this to the standard, v = vm sin(2πft), we can see that:
vm = 35 V

(b) Again, comparing the two expressions: 
2 314 2

314 2
2

50

p

p

f

f

=

= =

.

,
.

so Hz

(c) T
f

T= = =1 1
50

20so ms,

(d) 

When ms then

sin sin

t

v

=

= ´ ´ ´( ) = ( ) = ´-

3 5

35 2 50 3 5 10 35 1 099 353

. ; :

. . *p 00 891

31 19

.

, .therefore Vv =
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*The term inside the brackets is an angle in radian. You must therefore remember to switch 
your calculator into the radian mode.
So far, we have dealt only with an alternating voltage. However, all of the terms and definitions 
covered are equally applicable to any alternating quantity. Thus, exactly the same techniques 
apply to a.c. currents, fluxes, etc. The same applies also to mechanical alternating quantities 
involving oscillations, vibrations, etc.

WORKED EXAMPLE 8.2

Q For a current, i = 75 sin(200πf) mA, determine (a) the frequency and (b) the time taken for it 
to reach 35 mA, for the first time, after passing through zero.

(a) 

i t I ft

f

f

m= ( ) = ( )
=

= =

75 200 2

2 200

200
2

100

sin sin

so

and Hz

p p
p p

p
p

,

(b) 

35 75 200

35
75

200 0 4667

200 1

= ( )
= ( ) =

= -

sin

sin

therefore sin

p

p

p

t

t

t

.

, 00 4667 0 4855

0 4855
200

0 773

. * .

,
.

.

=

= =

rad

so mst
p

*Remember, use radian mode on your calculator.

8.4  AVERAGE AND R.M.S. VALUE AND PEAK AND FORM FACTOR

Figure 8.4 shows one cycle of a sinusoidal current.
From this it is apparent that the area under the curve in the positive half is exactly the 

same as that for the negative half. Thus, the average value over one complete cycle must 
be zero. For this reason, the average value is taken to be the average over one half cycle. 
This average may be obtained in a number of ways. These include the mid-ordinate rule, 

�

�

t (s)0

Figure 8.4  One cycle of a sinusoidal current
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the trapezoidal rule, Simpson’s rule and integral calculus. The simplest of these is the mid-
ordinate rule, and this will be used here to illustrate the average value in Figure 8.5.

A number of equally spaced intervals are selected, along the time axis of the graph. At 
each of these intervals, the instantaneous value is determined. This results in values for a 
number of ordinates, i1, i2, …, in, where n is the number of ordinates chosen. The larger the 
number of ordinates chosen, the more accurate will be the final average value obtained. The 
average is simply found by adding together all the ordinate values, and then dividing this 
figure by the number of ordinates chosen, thus

 I
i i i i

n
av

n= + + + +1 2 3 

 

The average value will of course depend upon the shape of the waveform, and for a sinewave 
only it is

 I I Iav m m= =2
0 637

p
.  (8.8)

WORKED EXAMPLE 8.3

Q A sinusoidal alternating voltage has an average value of 3.5 V and a period of 6.67 ms. Write 
down the standard (trigonometrical) expression for this voltage.V Tav = = ´ -3 5 6 67 10 3. .V; s

The standard expression is of the form v = Vm sin(2πft)

 

V V
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WORKED EXAMPLE 8.4

Q For the waveform specified in Worked Example 8.3, after the waveform passes through zero, 
going positive, determine its instantaneous value (a) 0.5 ms later, (b) 4.5 ms later and (c) the time 
taken for the voltage to reach 3 V for the first time.

i1 i3

Iav

Im

in
t (s)

Figure 8.5  The average over one half cycle
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(a) t = 0.5 ×10 −3 s; (b) t = 4.5 × 10 −3 s; (c) v = 3 V

(a) v = ´ ´( ) = = ´ =-5 5 300 0 5 10 5 5 0 4712 5 5 0 454 2 53. . . . . . .sin sin Vp

(b) v = ´ ´( ) = = ´ -( ) = --5 5 300 4 5 10 5 5 4 241 5 5 0 891 4 93. . . . . . .sin sin Vp

Note: Remember that the expression inside the brackets is an angle in radian.

(c) 

3 5 5 300

300
3

5 5
0 5455

300 0 54551

= ( )

( ) = =

= =-

.

,
.

.

.

sin

so sin

sin

p

p

p

t

t

t 00 5769

0 5769
300

6 12 10 0 6124

.

.
. .

rad

mst = = ´ =-

p

A sketch graph illustrating these answers is shown in Figure 8.6.

The r.m.s. value of an alternating current is equivalent to that value of direct current, 
which when passed through an identical circuit will dissipate exactly the same amount of 
power. The r.m.s. value of an a.c. thus provides a means of making a comparison between 
a.c. and d.c. systems.

The term r.m.s. is an abbreviation of the square Root of the Means Squared. The tech-
nique for finding the r.m.s. value may be based on the same ways as were used to find the 
average value. However, the r.m.s. value applies to the complete cycle of the waveform. For 
simplicity, we will again consider the use of the mid-ordinate rule technique.

Considering Figure 8.5, the ordinates would be selected and measured in the same way as 
before. The value of each ordinate is then squared. The resulting values are then summed, 
and the average found. Finally, the square root of this average (or mean) value is determined. 
This is illustrated below:

4.5

Vav

Vm5.5

3.5

6.67

2.5

0.5

�4.9

0 t (ms)

v (V)

Figure 8.6  A sketch graph for Worked Example 8.4
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 I
i i i i

n
rms

n= + + + +1
2

2
2

3
2 2


 

 and for a sine wave only, , .I I Irms m m= =1
2

0 707  (8.9)

Other waveforms will have a different ratio between r.m.s. and peak values.
Note: The r.m.s. value of an a.c. is the value normally used and quoted. For example, if 

reference is made to a 230 V a.c. supply, then 230 V is the r.m.s. value. In general therefore, if 
an unqualified value for an a.c. is given, the assumption is made that this is the r.m.s. value. 
Since r.m.s. values are those commonly used, the subscript letters r.m.s. are not normally 
included. Irms has been used above, simply for emphasis. The following convention is used:

i, v, e, represent instantaneous values
Iav, Vav, Eav, represent average values
Im, Vm, Em, represent maximum or peak values, or amplitude
I, V, E, represent r.m.s. values

In many parts of the world, a voltage (nominally) of 230 V and frequency of 50 Hz is distributed 
via the power grid. In North America, however, the most common combination is 120 V, with 
a frequency of 60 Hz. Also other combinations exist, like 230 V at 60 Hz. Plugs and sockets 
are mostly non-interchangeable to provide protection from accidental use of appliances with 
incompatible voltage and/or frequency requirements.

The peak factor is defined as the ratio of the peak or maximum value, to the r.m.s. value, 
of a waveform. Thus, for a sinewave only

 
peak factor =

maximum value
r.m.s.value

or= =V
V

m

m0 707
2 1 414

.
.

 

WORKED EXAMPLE 8.5

Q Calculate the amplitude of the household 230 V supply.

Since this supply is sinusoidal, the peak factor will be 2  so  V Vm = ´ = ´ =2 2 230 325 3. V

WORKED EXAMPLE 8.6

Q A non-sinusoidal waveform has a peak factor of 2.5, and an r.m.s. value of 230 V. It is pro-
posed to use a capacitor in a circuit connected to this supply. Determine the minimum safe 
working voltage rating required for the capacitor.
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peak factor

575V

= =
= ´ = ´ =

2 5 230

2 5 2 5 230

. ;

. .

V

V Vm

Thus the absolute minimum working voltage must be 575 V.
In practice, a capacitor having a higher working voltage would be selected. This would then 
allow a factor of safety.

The form factor gives an indication of the form or shape of the waveform, as the name 
implies. It is defined as the ratio of the r.m.s. value to the average value.

Thus, for a sinewave,

 
form factor

r.m.s. value
average value

so, form factor

= = 0 707
0 637
.
.

== 1 11.

 

For a rectangular waveform (a squarewave), form factor = 1, since the r.m.s. value, the peak 
value and the average value are all the same.

WORKED EXAMPLE 8.7

Q A rectangular coil, measuring 25 cm by 20 cm, has 80 turns. The coil is rotated about an axis 
parallel with its longer sides, in a magnetic field of density 75 mT. If the speed of rotation is 3000 
rev/min, calculate, from first principles, (a) the amplitude, r.m.s. and average values of the emf, 
(b) the frequency and period of the generated waveform and (c) the instantaneous value, 2 ms 
after it is zero.

 l d N B t= = = = = = ´ -0 25 0 2 80 0 075
3000
60

2 10 3. . ; . / ;m; m; rev s sT; n  

(a) e = 2 × NBℓv sin(2πft)

Now, we know the rotational speed n, but the above equation requires the tangential velocity, 
v, in metres per second. This may be found as follows.

Consider Figure 8.7, which shows the path travelled by the coil sides. The circumference of 
rotation = πd metre = 0.2π metre. The coil sides travel this distance in one revolution. The 
rotational speed n = 3000/60 = 50 rev/s. Hence the coil sides have a velocity, v = 50 × 0.2π m/s.

Therefore, e = 2 × 80 × 0.075 × 0.25 × 50 × 0.2π sin(2π ft) and emf is a maximum value when 
sin(2π ft) = 1

 so, VEm = ´ ´ ´ ´ ´ =2 80 0 075 0 25 50 0 2 94 25. . . .p  

Assuming a sinusoidal waveform:

 
E E

E E

E

m

av m

av

= = ´ =
= = ´

=

0 707 0 707 94 25 66 64

0 637 0 637 94 25

. . . .

. . .

V

so, 660 04. V
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Assuming a 2-pole field system, then f = n therefore f = 50 Hz

(b) T
f

= = =1 1
50

20ms

(c) e E ftm= ( ) = ´ ´ ´( ) = ´ =-sin sin V2 94 25 2 50 2 10 94 25 0 5878 55 43p p. . . .

8.5  RECTIFIERS

A rectifier is a circuit which converts a.c. to d.c. The essential component of any rectifier 
circuit is a diode, allowing current to flow through it in one direction only. Two different 
rectifier circuits are discussed: the half-wave rectifier and the full-wave bridge rectifier.

The half-wave rectifier is the simplest form of rectifier circuit. It consists of a single diode, 
placed between an a.c. supply and the load, for which d.c. is required. The arrangement is 
shown in Figure 8.8, where the resistor R represents the load.

Let us assume that, in the first half cycle of the applied voltage, the instantaneous polari-
ties at the input terminals are as shown in Figure 8.9. Under this condition, the diode is 
forward biased. A half sinewave of current will therefore flow through the load resistor, in 
the direction shown.

In the next half cycle of the input waveform, the instantaneous polarities will be 
reversed. The diode is therefore reverse biased, and no current will flow. This is illus-
trated in Figure 8.10.

The graphs of the applied a.c. voltage, and the corresponding load current, are shown in 
Figure 8.11. The load p.d. will be of exactly the same waveshape as the load current. Both of 
these quantities are unidirectional, and so by definition, are d.c. quantities. The ‘quality’ of 
the d.c. so produced is very poor, since it exists only in pulses of current. The average value 
of this current is determined over the time period, 0 to t2. The average value from 0 to time 
t1 will be 0.637Im. From t1 to t2 it will be zero. The average value of the d.c. will therefore 
be Iav = 0.318Im.

Both the ‘quality’ and average value of the d.c. need to be improved. This may be achieved 
by utilising the other half cycle of the a.c. supply. The circuit of a full-wave bridge rectifier 
consists of four diodes, connected in a ‘bridge’ configuration, as shown in Figure 8.12.

rotation

d

v

Figure 8.7  A sketch graph for Worked Example 8.7
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We will again assume the instantaneous polarities for the first half cycle as shown. In 
this case, diodes D1 and D4 will be forward biased. Diodes D2 and D3 will be reverse biased. 
Thus, D1 and D4 allow current to flow, as shown. In the next half cycle, the polarities are 
reversed. Hence, D2 and D3 will conduct, whilst D1 and D4 are reverse biased. Current will 
therefore flow as shown in Figure 8.13. Notice that the current through the load resistor is 
in the same direction for the whole cycle of the a.c. supply.

The relevant waveforms are shown in Figure 8.14. It should be apparent that the average 
value of the a.c. will now be twice that in the previous circuit. That is, Iav = 0.637Im.

Further improving the ‘quality’ and average value of the d.c. can be done by adding in par-
allel a capacitor filter across the output of the bridge rectifier. The capacitor resists voltage 

R outputinput

l

�

�

Figure 8.9  The first half cycle of a half-wave rectifier

R outputinput

Figure 8.8  A half-wave rectifier

R outputinput

�

�

Figure 8.10  The second half cycle of a half-wave rectifier
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changes and hence it attenuates the ripple of the rectified d.c. current. When the voltage 
across the capacitor increases, the charge on the plates of that capacitor also rises. However 
when the bridge rectifier voltage decreases, the voltage across that capacitor also decreases, 
but noticeably slower than the bridge rectifier voltage goes down. The voltage is equalised 
and the existing difference between the minimum and the maximum output voltage is called 
the ripple. It is often expressed as a percentage of the average voltage. The larger the capaci-
tor value, the lower this ripple.

�

�

0

input

0

Im

Iav

t1 t2
t (s)

t (s)

Figure 8.11  The graphs of the applied a.c. voltage and the load current,

D2

D4
D3

D1

R

input

I
�

�

Figure 8.12  The first half of a full-wave bridge rectifier

D2

D4
D3

D1

R

input

I�

�

Figure 8.13  The second half of a full-wave bridge rectifier
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A full-wave rectifier in combination with a capacitor is used in switching power supplies (or 
Switched Mode Power Supply or SMPS). The mains voltage is rectified and filtered with a large 
capacitor. The resulting d.c. voltage is then again converted into an a.c. voltage with a much 
higher frequency (typically 10 kHz – 1 MHz). This is done by a chopper, an electronic switching 
circuit that very quickly (hence high frequency) switches the input voltage on and off. It is fol-
lowed by a small transformer to lower the mains voltage and by a rectification and filtering step. 
The advantage is that the transformer can be made much more compact and lighter in weight. 
Such switching power supplies are used in household electronics where the voltage of the public 
electricity network must be efficiently converted to d.c. voltages.

8.6  PHASE AND PHASE ANGLE

Consider two a.c. voltages, of the same frequency, as shown in Figure 8.15. Both voltages 
pass through the zero on the horizontal axis at the same time. They also reach their positive 
and negative peaks at the same time. Thus, the two voltages are exactly synchronised, and 
are said to be in phase with each other.

�

�

0

input

0

Im

Iav

t (s)

t (s)

Figure 8.14  The graphs of the applied a.c. voltage and the load current

V1

V2

0
3 �/2

�/2 �

2�
�t

(rad)

Figure 8.15  Two a.c. voltages with the same frequency



214 Alternating Quantities 

Figure 8.16 shows the same two voltages, but in this case let v2 reach its maximum 
value π/2 radian (90°) after v1. It is necessary to consider one of the waveforms as the 
reference waveform. It is normal practice to consider the waveform that passes through 
zero, going positive, at the beginning of the cycle, as the reference waveform. So, for the 
two waveforms shown, v1 is taken as the reference. In this case, v2 is said to lag v1 by π/2 
radian or by 90°. The standard expressions for the two voltages would therefore be writ-
ten as follows:

 
v V ft V

v V ft V

m m

m m

1 1 1

2 2 2

2

2
2

= ( )
= -æ

è
ç

ö
ø
÷ -

sin or sin

sin or sin

p q

p p q

,

, 990( ) 

The minus signs, in the brackets of the above expressions, indicate that v2 lags the reference 
by the angle quoted. This angle is known as the phase angle, or phase difference, between 
the two waveforms.

In general, the standard expression for an a.c. voltage is:

 
v V ft

v V t
m

m

= ±( )
= ±( )

sin

or sin

2p f
w f

,
 (8.10)

Although it would be usual to take v1 as the reference in the above example, it is not manda-
tory. Thus, if for some good reason v2 was chosen as the reference, v1 is said to lead v2 by π/2 
radian or by 90°. The expressions would be written as:

 
v V t V

v V t V

m m

m m

2 2 2

1 1 1
2

90

= ( )
= +æ

è
ç

ö
ø
÷ + °(

sin or sin

sin or sin

w q

w p q

,

, ))
 

Note: When the relevant phase angle, f, is quoted in the standard expression, do not mix 
degrees with radians. Thus, if the initial angular data is in radian (ωt or 2πft), then f must 
also be expressed in radian. Similarly, if the angular data is initially in degrees (θ ), the f 
must also be quoted in degrees.

V1

V2

0

�/2

�t
(rad)

Figure 8.16  Two a.c. voltages with the same frequency and one lagging behind,
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WORKED EXAMPLE 8.8

Q Three alternating currents are specified below. Determine the frequency, and for each cur-
rent, determine its phase angle and amplitude.

 

i t

i t

i t

1

2

3

5 80
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3 80

6 80 4

= +æ
è
ç
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ø
÷

=
= -( )
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All three waveforms have the same value of ω, namely 80π rad/s. Thus all three have the same 
frequency:

 
w p p

p
p

= =

= =
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f

f
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Since zero phase angle is quoted for i2, this is the reference waveform, of amplitude 3 A.
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 ))
 

The majority of people can appreciate the relative magnitudes of angles when they are 
expressed in degrees. Angles expressed in radians are more difficult to appreciate. Some of 
the principal angles encountered are listed below. This should help you to gain a better ‘feel’ 
for radian measure.

Degrees Radians Radians Degrees

360 2π ≈ 6.28 0.1 5.73
270 3π/2 ≈ 4.71 0.2 11.46
180 π ≈ 3.14 0.3 17.19
120 2π/3 ≈ 2.09 0.4 22.92
90 π/2 ≈ 1.57 0.5 28.65
60 π/3 ≈ 1.05 1.0 57.30
45 π/4 ≈ 0.79 1.5 85.94
30 π/6 ≈ 0.52 2.0 114.60

8.7  PHASOR REPRESENTATION

A phasor is a rotating vector. Apart from the fact that a phasor rotates at a constant veloc-
ity, it has exactly the same properties as any other vector. Thus its length corresponds to 
the magnitude of a quantity. It has one end arrowed, to show the direction of action of the 
quantity.

Consider two such rotating vectors, v1 and v2, rotating at the same angular velocity, ω 
rad/s. Let them rotate in a counterclockwise direction, with v2 lagging behind v1 by π/6 
radian (30°). This situation is illustrated in Figure 8.17.
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The instantaneous vertical height of each vector is then plotted for one complete revolu-
tion. The result will be the two sinewaves shown. Notice that the angular difference between 
v1 and v2 is also maintained throughout the waveform diagram. Also note that the peaks of 
the two waveforms correspond to the magnitudes, or amplitudes, of the two vectors. In this 
case, these two waveforms could equally well represent either two a.c. voltages, or currents. 
If this were the case, then the two a.c. quantities would be of the same frequency. This is 
because the value of ω is the same for both. The angular difference, of π/6 radian, would 
then be described as the phase difference between them.

We can therefore represent an alternating quantity by means of a phasor. The length of 
the phasor represents the amplitude. Its angle, with respect to some reference axis, will 
represent its phase angle. Considering the two waveforms in Figure 8.17, the plot has been 
started with v1 in the horizontal position (vertical component of v1 = 0). This horizontal axis 
is therefore taken as being the reference axis. Thus, if these waveforms represent two volt-
ages, v1 and v2, the standard expressions would be:

 
v V t

v V t
m

m

1 1

2 2 6

= ( )
= -( )

sin

sin

w
w p /

 

The inconvenience of representing a.c. quantities in graphical form was pointed out ear-
lier, in Section 8.3. This section introduced the concept of using a standard mathematical 
expression for an a.c. However, a visual representation is also desirable. We now have a 
much simpler means of providing a visual representation. It is called a phasor diagram. Thus 
the two voltages we have been considering above may be represented as in Figure 8.18.

Notice that v1 has been chosen as the reference phasor. This is because the standard 
expression for this voltage has a phase angle of zero (there is no ±ϕ term in the bracket). 
Also, since the phasors are rotating counterclockwise, and v2 is lagging v1 by π/6 radian, 
then v2 is shown at this angle below the reference axis.

V2

V1
V1

V2

0
�/6

�/6

�/2 3 �/2

��
(rad)2��

� (rad/s)

Figure 8.17  Phasor representation with one lagging behind

V1m

V2m

�/6

� (rad/s)

Figure 8.18  Referenced phasor representation with one lagging behind
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Notes

 1 Any a.c. quantity can be represented by a phasor, provided that it is a sinewave.
 2 Any number of a.c. voltages and/or currents may be shown on the same phasor dia-

gram, provided that they are all of the same frequency.
 3 Figure 8.18 shows a counterclockwise arrow, with ω rad/s. This has been shown here 

to emphasise the point that phasors must rotate in this direction only. It is normal 
practice to omit this from the diagram.

 4 When dealing with a.c. circuits, r.ms. values are used almost exclusively. In this case, 
it is normal to draw the phasors to lengths that correspond to r.m.s. values.

WORKED EXAMPLE 8.9

Q Four currents are as shown below. Draw to scale the corresponding phasor diagram.

 
i t i t

i t i t
1 2

3 4

2 5 4 4 3

6 3

= +( ) = -( )
= =

. / /sin sin

sin cos

w p w p
w w

 

Before the diagram is drawn, we need to select a reference waveform (if one exists). The cur-
rents i1 and i2 do not meet this criterion, since they both have an associated phase angle.

This leaves the other two currents. Neither of these has a phase angle shown. However, i3 
is a sinewave, whilst i4 is a cosine waveform. Now, a cosine wave leads a sinewave by 90°, or π/2 
radian.

Therefore, i4 may also be expressed as i4 = 3 sin (ωt + π/2). Thus i3 is chosen as the reference 
waveform, and will therefore be drawn along the horizontal axis.
The resulting phasor diagram is shown in Figure 8.19.

WORKED EXAMPLE 8.10

Q The phasor diagram representing four alternating currents is shown in Figure 8.20, where 
the length of each phasor represents the amplitude of that waveform. Write down the standard 
expression for each waveform.

�/4

�/3
6A

4A

2.5A

3A

scale 1 cm: 1A

Figure 8.19  The resulting phasor diagram for Worked Example 8.9
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8.8  ADDITION OF ALTERNATING QUANTITIES

Consider two alternating currents, i1 = Im1 sin ωt and i2 = Im2 sin (ωt – π/4), that are to be 
added together. There are three methods of doing this, as listed below.

(a) Plotting them on graph paper. Their ordinates are then added together, and the resul-
tant waveform plotted. This is illustrated in Figure 8.21. The amplitude Im and the 
phase angle ϕ of the resultant current are then measured from the two axes.

 Thus, sini I tm= -( )w f  

Note: Although i = i1 + i2, the amplitude of the resultant is not Im1 + Im2 amp. This would 
only be the case if i1 and i2 were in phase with each other.

(b) Drawing a scaled phasor diagram, as illustrated in Figure 8.22. The resultant is found 
by completing the parallelogram of vectors. The amplitude and phase angle are then 
measured on the diagram.

Î1 � 7 A

Î2 � 6

Î3 � 5 A
Î4 � 4 A

70�

50�

Figure 8.20  The phasor diagram for Worked Example 8.10
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(c) Resolving the two currents, into horizontal and vertical components, and applying 
Pythagoras’ theorem. This method involves using a sketch of the phasor diagram, fol-
lowed by a purely mathematical process. This phasor diagram, including the identifi-
cation of the horizontal and vertical components, is shown in Figure 8.23.

Horizontal Component (H.C.):
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Vertical Component (V.C.):
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Figure 8.21  Two alternating currents added together on graph paper

Im1

Im2
Im

�/4

�

Scale: 1 cm � x amp.

Figure 8.22  Two alternating currents added together with a phasor diagram

�/4
Im1

Im2

Im2 cos �/4

Im2 sin �/4

Figure 8.23  The horizontal and vertical component of the currents
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The triangle of H.C., V.C., and the resultant current, is shown in Figure 8.24. From this, we 
can apply Pythagoras’ theorem to determine the amplitude and phase angle, thus:

 
Im = +

= = -

H.C. V.C.

tan
V.C.
H.C.

so tan
V.C.
H.C.

2 2

f f, 1
 

The final answer, regardless of the method used, would then be expressed in the form i = Im 
sin (ωt ± ϕ).

Let us now compare the three methods, for calculation speed, convenience and accuracy.
The graphical technique is very time-consuming (even for the addition of only two quanti-

ties). The accuracy also leaves much to be desired; in particular, determining the exact point 
for the maximum value of the resultant. The determination of the precise phase angle is also 
very difficult. This method is therefore not recommended.

A phasor diagram, drawn to scale, can be the quickest method of solution. However, it 
does require considerable care, in order to ensure a reasonable degree of accuracy. Even so, 
the precision with which the length – and (even more so) the angle – can be measured, leaves 
a lot to be desired. This is particularly true when three or more phasors are involved. This 
method is therefore recommended only for a rapid estimate of the answer.

The use of the resolution of phasors is, with practice, a rapid technique, and yields a high 
degree of accuracy. Unless specified otherwise it is the technique you should use. Although, 
at first acquaintance, it may seem to be rather a complicated method, this is not the case. 
With a little practice, the technique will be found to be relatively simple and quick. Some 
worked examples now follow.

WORKED EXAMPLE 8.11

Q Determine the phasor sum of the two voltages specified below.

 v t v t1 225 314 3 15 314 6= +( ) = -( )sin V and sin Vp p/ /  

Figure 8.25 shows the sketch of the phasor diagram.
Note: Always sketch a phasor diagram.

 H C cos cos. . / / . . . .= + -( ) = ´( ) + ´( ) = + =25 3 15 6 25 0 5 15 0 866 12 5 12 99 2p p 55 49. V  

 V C sin sin. . / / . . . .= + -( )= ´( ) + ´ -( )( ) = -25 3 15 6 25 0 866 15 0 5 21 65 7 5p p ==14 15. V  

Figure 8.26 shows the phasor diagram for H.C., V.C. and Vm.

�

Im

H.C.

V.C.

Figure 8.24  The triangle of horizontal and vertical component, and the resultant current
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WORKED EXAMPLE 8.12

Q Calculate the phasor sum of the three currents listed below.
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The relevant phasor diagrams are shown in Figures 8.27 and 8.28.

H C cos cos cos. . / / . .= + -( ) + = ´( ) + ´( ) + ´( ) = +6 0 8 2 4 6 6 1 8 0 4 0 866 6 3 46p p == 9 46. A

V C sin sin sin. . / / .= + -( ) + = ´( ) + ´ -[ ]( ) + ´( ) = - + =6 0 8 2 4 6 6 0 8 1 4 0 5 8 2p p --6 A

�/3

�/6

25 V

15 V

Figure 8.25  The phasor diagram for Worked Example 8.11

H.C.

V.C. Vm

�

Figure 8.26  The phasor diagram of H.C, V.C. and Vm for Worked Example 8.11
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WORKED EXAMPLE 8.13

Q Three alternating voltages and one current are as specified in the expressions below.
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(a) For each voltage determine the frequency, phase angle and amplitude.
(b) Determine the phasor sum of the three voltages.
(a) All four waveforms have the same value of ω = 628 rad/s, so they are all of the same fre-

quency, hence
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H.C.

V.C. Im

�

Figure 8.28  The phasor diagram of H.C, V.C. and Vm for Worked Example 8.12
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Figure 8.27  The phasor diagram for Worked Example 8.12
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(b) Firstly the phasor diagram (Figure 8.29) is sketched, very roughly to scale. In order to do 
this a reference waveform needs to be selected, and since the current has a zero phase angle, 
this is chosen as the reference. However, if the current waveform had not been specified, the 
horizontal axis would still be taken as the reference from which all phase angles are measured. 
Since v2 and v3 have positive phase angles, and phasors rotate anticlockwise, these two phasors 
will appear above the reference axis. The voltage v1, having a negative phase angle will appear 
below the reference axis. Also shown on the phasor diagram are the horizontal and vertical 
components of each voltage.

H C cos cos cos. . / / / . . .= + + = ´( ) + ´( ) + ´12 4 8 3 10 6 12 0 707 8 0 5 10 0 866p p p (( )
= + + =8 48 4 8 66 21 44. . . V

 

 
V C sin sin sin. . / / / . . .= + + = ´( ) + ´( ) + ´12 4 8 3 10 6 12 0 707 8 0 866 10 0 5p p p (( )

= + - =8 48 6 928 5 10 412. . . V
 

The phasor diagram for H.C. and V.C., and the resultant phasor sum, is Figure 8.30.
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Figure 8.29  The phasor diagram for Worked Example 8.13
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8.9  OSCILLOSCOPE

An oscilloscope (more often abbreviated to scope) is a very versatile instrument that may be 
used to measure both a.c. and d.c. voltages and can display electrical voltages in a graphical 
way on a two-dimensional plot as a function of time. For d.c. measurements, a voltmeter is 
usually more convenient to use. The principal advantages of the oscilloscope when used to 
measure a.c. quantities are:

 1 A visual indication of the waveform is produced.
 2 The frequency, period and phase angle of the waveform(s) can be determined.
 3 It can be used to measure very high frequency waveforms.
 4 Any waveshape can be displayed, and measured with equal accuracy.
 5 The input resistance (impedance) is of the same order as a voltmeter. It therefore applies 

minimal loading effect to a circuit to which it is connected.
 6 Some oscilloscopes can display two or more waveforms simultaneously.

Very often two traces can be visualised, having the advantage that two waveforms can be 
displayed simultaneously. This enables waveforms to be compared, in terms of their ampli-
tudes, shape, phase angle or frequency.

Oscilloscopes are used in all kinds of disciplines in engineering, sciences and medicine. 
The visualisation of the heartbeat on an electrocardiogram, for instance, is done by such a 
oscilloscope. But also the troubleshooting of malfunctioning electronic equipment can be 
performed by using a scope, because it can reveal that the circuit is oscillating or that the 
shape or timing is not as expected.

WORKED EXAMPLE 8.14

Q Figure 8.31 shows two traces obtained on an oscilloscope. The graticule is marked in 1 cm 
squares. The channel 1 input is displayed by the upper trace. If settings of the controls for the 
two channels are as follows, determine the amplitude, r.m.s. value and frequency of each input.

Channel 1: timebase of 0.1 ms/cm; Y-amp setting of 5 V/cm
Channel 2: timebase of 10 μs/cm; Y-amp setting of 0.5 V/cm

Channel 1: peak to peak occupies 3 cm, so
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Figure 8.30  The phasor diagram of H.C, V.C. and Vm for Worked Example 8.13
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As the waveform is a sinewave, then r.m.s. value V Vm= / 2

 V = =7 5
2

5 3
.

. V  

One cycle occupies 4 cm, so T = 4 cm × 0.1 ms/cm = 0.4 ms

 f
T

= =
´

=-
1 1

0 4 10
2 53.
.

s
kHz  

Channel 2: peak to peak occupies 2 cm, so

 V Vp p m- = ´ = =2 0 5 1 0 5cm
V

cm
V,and V. .  

Since it is a squarewave, then r.m.s. value = amplitude,

 hence VV = 0 5.  

Two cycles occur in 3 cm, so one cycle occurs in 2/3 cm. Therefore, sT = ´ =0 6667 10 6 667. . m

 f
T

= =
´

=-
1 1

6 667 10
1506. s

kHz  

SUMMARY OF EQUATIONS

Frequency generated: f = np

Periodic time: T
f

= 1

Angular velocity: w p= 2 f

Standard expression for a sinewave: e E E t E ftm m m= ±( ) = ±( ) = ±( )sin sin sinq f w f p f2

Figure 8.31  Two traces obtained on a oscilloscope for Worked Example 8.14
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Average value for a sinewave: I
I

Iav
m

m= =2
0 637

p
.

R.m.s. value for a sinewave: I
I

Im
m= =

2
0 707.

Peak factor for a sinewave: 
max value
r.m.s value

.
.

.=1 414

Form factor for a sinewave:
r.m.s value
ave value

.
.=1 11

ASSIGNMENT QUESTIONS

 1 A coil is rotated between a pair of poles. Calculate the frequency of the generated emf 
if the rotational speed is (a) 150 rev/s, (b) 900 rev/minute and (c) 200 rad/s.

 2 An alternator has eight poles. If the motor winding is rotated at 1500 rev/min, deter-
mine (a) the frequency of the generated emf and (b) the speed of rotation required to 
produce frequency of 50 Hz.

 3 A frequency of 240 Hz is to be generated by a coil, rotating at 1200 rev/min. Calculate 
the number of poles required.

 4 A sinewave is shown in Figure 8.32. Determine its amplitude, periodic time and 
frequency.

 5 A sinusoidal current has a peak-to-peak value of 15 mA and a frequency of 100 Hz. (a) 
Plot this waveform, to a base of time and (b) write down the standard expression for 
the waveform.

 6. A sinusoidal voltage is generated by an 85-turn coil, of dimensions 20 cm by 16 cm. 
The coil is rotated at 3000 rev/min, with its longer sides parallel to the faces of a pair 
of poles. If the flux density produced by the poles is 0.5 T, calculate (a) the amplitude 
of the generated emf, (b) the frequency and (c) the r.m.s. and average values.

 7 Write down the standard expression for a voltage of r.m.s. value 45 V and frequency 
1.5 kHz. Hence, calculate the instantaneous value 38 μs after the waveform passes 
through its zero value.

 8 For each of the following alternating quantities, determine (a) the amplitude and r.m.s. 
value and (b) the frequency and period.

 i e = 250 sin 50π t V

25
0

I (mA)
�5

�5

50
t (�s)

Figure 8.32  The sinewave current for Assignment Question 4
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 ii i = 75 sin 628.3t mA
 iii φ = 20 sin 100π t mWb
 iv v = 6.8 sin (942.8t + φ ) V.
 9 For a current of r.m.s. value 5 A, and frequency 2kHz, write down the standard 

expression. Hence, calculate (a) the instantaneous value 150 μs after it passes through 
zero and (b) the time taken for it to reach 4 A, after passing through zero for the first 
time.

 10 Calculate the peak and average values for a 250 V sinusoidal supply.
 11 A sinusoidal current has an average value of 3.8 mA. Calculate its r.m.s. and peak 

values.
 12 An alternating voltage has an amplitude of 500 V and an r.m.s. value of 350 V. 

Calculate the peak factor.
 13 A waveform has a form factor of 1.6 and an average value of 10 V. Calculate its r.m.s. 

value.
 14 A moving coil voltmeter, calibrated for sinewaves, is used to measure a voltage wave-

form having a form factor of 1.25. Determine the true r.m.s. value of this voltage if the 
meter indicates 25 V. Explain why the meter does not indicate the true value.

 15 Explain why only sinusoidal waveforms can be represented by phasors.
 16 Sketch the phasor diagram for the two waveforms shown in Figure 8.33.
 17 Sketch the phasor diagram for the two voltages represented by the following 

expressions:

 
v sin t

v sin t
1

2

12 314

8 314 3

�
� �� �

V

V� /
 

 18 Determine the phasor sum of the two voltages specified in Question 17 above.
 19 Three currents in an a.c. circuit meet at a junction. Calculate the phasor sum, if the 

currents are:
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 20 Determine the phasor sum of the following voltages, all of which are sinewaves of the 
same frequency:

0

I (mA)

5

3

2� �t
(rad)

Figure 8.33  Two current waveforms for Assignment Question 16
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v1 has an amplitude of 25 V, and a phase angle of zero.
v2 has an amplitude of 13.5 V, and lags v1 by 25°.
v3 has an amplitude of 7.6 V, and leads v2 by 40°.

 21 By means of a phasor diagram, drawn to scale, check your answer to Question 19 
above.

 22 Plot, on the same axes, the graphs of the following two voltages. By adding ordinates, 
determine the sum of these voltages. Express the result in the form

 V V tm� �� �sin � �  

 v t v t1 212 8 6� � �� �sin and sin V� � / . 

 23 The waveform displayed on an oscilloscope is as shown in Figure 8.34. The timebase 
is set to 100 µs/cm, and the Y-amp is set to 2 V/cm. Determine the amplitude, r.m.s. 
value, periodic time and frequency of this waveform.

Figure 8.34  The trace obtained on a oscilloscope for Assignment Question 23
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Chapter 9

D.C. Machines

LEARNING OUTCOMES

This chapter covers the operating principles of d.c. generators and motors, their characteristics 
and applications. On completion you should be able to:

 1 Understand and explain generator/motor duality.
 2 Appreciate the need for a commutator.
 3 Identify the different types of d.c. generator, and describe their characteristics. Carry out 

practical tests to compare the practical and theoretical characteristics.

9.1  MOTOR/GENERATOR DUALITY

An electric motor is a rotating machine which converts an electrical input power into a 
mechanical power output. A generator converts a mechanical power input into an electrical 
power output. Since one process is the converse of the other, a motor may be made to oper-
ate as a generator, and vice versa. This duality of function is not confined to d.c. machines. 
An alternator can be made to operate as a synchronous a.c. motor, and vice versa.

To demonstrate the conversion process involved, let us reconsider two simple cases that 
were met when dealing with electromagnetic induction.

Consider a conductor being moved at constant velocity, through a magnetic field of density 
B tesla, by some externally applied force F newton. This situation is illustrated in Figure 9.1. 
Work W, expressed in Nm or newton-metre, done in moving the conductor,

 W F= d  

mechanical power input P1, expressed in watt,

 P
W
t

F
t

1 = = d
 

and since d/t is the velocity, v at which the conductor is moved, then

 P Fv1 =  [1]

However, when the conductor is moved, an emf will be induced into it. Provided that the 
conductor forms part of a closed circuit, then the resulting current flow will be as shown in 
Figure 9.2. This induced current, i, produces its own magnetic field, which reacts with the 
main field, producing a reaction force, Fr , in direct opposition to the applied force, F.
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D.C. Machines

 F Bir =  

Assuming no frictional or other losses, then the applied force F has only to overcome the 
reaction force Fr , such that:

 

F F Bi

P Bi v

e B v

P ei

P Bi v

r= =

=

=

=

=

[ ]

[ ]









1

2

2

2

3

 

Since [3] = [2], then the electrical power generated P2 is equal to the mechanical power input 
P1 (assuming no losses). Now consider the conductor returned to its original starting posi-
tion. Let an external source of emf, e volt pass a current of i ampere through the conductor. 
Provided that the direction of this current is opposite to that shown in Figure 9.2, then the 
conductor will experience a force that will propel it across the field. In this case, the same 
basic arrangement exhibits the motor effect, since the electrical input power is converted 
into mechanical power.

d

F

S

N

Figure 9.1  A conductor moved at constant velocity, through a magnetic field

Fr

N

S

Figure 9.2  The resulting current flow for moving conductor in a magnetic field
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Although the above examples involve linear movement of the conductor, exactly the same 
principles apply to a rotating machine.

9.2  THE GENERATION OF D.C. VOLTAGE

We have seen in Chapter 8 already that if a single-loop coil is rotated between a pair of 
magnetic poles, then an alternating emf is induced into it. This is the principle of a simple 
form of alternator. Of course, this a.c. output could be converted to d.c. by employing a rec-
tifier circuit. Indeed, that is exactly what is done with vehicle electrical systems. However, 
in order to have a truly d.c. machine, this rectification process needs to be automatically 
accomplished within the machine itself. This process is achieved by means of a commutator, 
the principle and action of which will now be described.

Consider a simple loop coil and the two ends of which are connected to a single ‘split’ 
slip-ring, as illustrated in Figure 9.3. Each half of this slip-ring is insulated from the other 
half, and also from the shaft on which it is mounted. This arrangement forms a simple com-
mutator, where the connections to the external circuit are via a pair of carbon brushes. The 
rectifying action is demonstrated in the series of diagrams of Figure 9.4. In these diagrams, 
one side of the coil and its associated commutator segment are identified by a thickened line 
edge. For the sake of clarity, the physical connection of each end of the coil to its associated 
commutator segment is not shown. Figure 9.4(a) shows the instant when maximum emf 
is induced in the coil. The current directions have been determined by applying Fleming’s 
right-hand rule. At this instant current will be fed out from the coil, through the external 
circuit from right to left, and back into the other side of the coil. As the coil continues to 
rotate from this position, the value of induced emf and current will decrease. Figure 9.4(b) 
shows the instant when the brushes short-circuit the two commutator segments. However, 
the induced emf is also zero at this instant, so no current flows through the external circuit. 
Further rotation of the coil results in an increasing emf, but of the opposite polarity to that 
induced before. Figure 9.4(c) shows the instant when the emf has reached its next maximum. 
Although the generated emf is now reversed, the current through the external circuit will be 
in the same direction as before. The load current will therefore be a series of half-sinewave 
pulses, of the same polarity. Thus the commutator is providing a d.c. output to the load, 
whereas the armature-generated emf is alternating.

A single-turn coil will generate only a very small emf. An increased amplitude of the emf 
may be achieved by using a multi-turn coil.

rotation

brush
commutator

R

Φ

Figure 9.3  A simple loop coil connected to a single ‘split’ slipring
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The resulting output voltage waveform is shown in Figure 9.5. Although this emf is uni-
directional, and may have a satisfactory amplitude, it is not a satisfactory d.c. waveform. 
The problem is that we have a concentrated winding. In a practical machine the armature 
has a number of multi-turn coils. These are distributed evenly in slots around the periphery 
of a laminated steel core. Each multi-turn coil has its own pair of slots, and the two ends 
are connected to its own pair of commutator segments. Figure 9.6 shows the armature con-
struction (before the coils have been inserted). The riser is the section of the commutator 
to which the ends of the coils are soldered. Due to the distribution of the coils around the 

(a)

I I

(b) (c)

I I

Figure 9.4  The corresponding rectifying action

E (V)

t (s)0

Figure 9.5  The resulting output voltage waveform

slot

segments

riser

Figure 9.6  The armature construction (before the coils have been inserted)
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armature, their maximum induced emfs will occur one after the other, i.e. they will be out 
of phase with each other. Figure 9.7 illustrates this, but for simplicity, only three coils have 
been considered.

Nevertheless, the effect on the resultant machine output voltage is apparent, and is shown 
by the thick line along the peaks of the waveform. With a large number of armature coils the 
ripple on the resultant waveform will be negligible, and a smooth d.c. output is produced.

The various parts of a small d.c. machine are shown separately in Figure 9.8, with the 
exception that neither the field nor armature windings have been included. The frame shell 
(bottom left) contains the pole pieces, around which the field winding would be wound. One 
end frame (top left) would simply contain a bearing for the armature shaft.

The other end frame (bottom right) contains the brushgear assembly in addition to the 
other armature shaft bearing. The armature (top right) construction has already been 
described. The slots are skewed to provide a smooth starting and slow-speed torque.

All d.c. generators are classified according to whether the field winding is electrically connected 
to the armature winding, and if it is, whether it is connected in parallel with or in series with 
the armature. The field current may also be referred to as the excitation current. If this current 

E (V)

t (s)0

Figure 9.7  The maximum induced emfs occurred one after the other

Figure 9.8  The various parts of a small d.c. machine
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is supplied internally, by the armature, the machine is said to be self-excited. When the field 
current is supplied from an external d.c. source, the machine is said to be separately excited. 
The circuit symbol used for the field winding of a d.c. machine is simply the same as that used to 
represent any other form of winding. The armature is represented by a circle and two ‘brushes’. 
The armature conductors, as such, are not shown.

9.3  SEPARATELY EXCITED GENERATOR

The circuit diagram of a separately excited generator is shown in Figure 9.9. The variable 
resistor, R1, is included so that the field excitation current, If, can be varied. This diagram 
also shows the armature being driven at constant speed by some prime mover. Since the 
armature of any generator must be driven, this drive is not normally shown. The load, RL, 
being supplied by the generator may be connected or disconnected by switch S2. The resis-
tance of the armature circuit is represented by Ra.

Consider the generator being driven, with switches S1 and S2 both open. Despite the fact 
that there will be zero field current, a small emf would be measured. This emf is due to the 
small amount of residual magnetism retained in the poles. With switch S1 now closed, the 
field current may be increased in discrete steps, and the corresponding values of generated 
emf noted. A graph of generated emf versus field current will be as shown in Figure 9.10, and 
is known as the open-circuit characteristic of the machine.

It will be seen that the shape of this graph is similar to the magnetisation curve for a 
magnetic material. This is to be expected, since the emf will be directly proportional to the 

R1

Rf

Ra

RL

S1

S2

VE

If

Ia IL

Figure 9.9  The circuit diagram of a separately excited generator

emf

E2

E1

If1 If2 If0

Figure 9.10  The generated emf as function of the field current
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pole flux. The ‘flattening’ of the emf graph indicates the onset of saturation of the machine’s 
magnetic circuit. When the machine is used in practice, the field current would normally be 
set to some value within the range indicated by If1 and If2 on the graph. This means that the 
facility exists to vary the emf between the limits E1 and E2, simply by adjusting the variable 
resistor R1.

Let the emf be set to some value E, within the range specified above. If the load is now 
varied, the corresponding values of terminal voltage V and load current IL may be measured. 
Note that with this machine the armature current is the same as the load current. The graph 
of V versus IL is known as the output characteristic of the generator, and is shown in Figure 
9.11. The terminal p.d. of the machine will be less than the generated emf, by the amount of 
internal voltage drop due to Ra, such that:

 V E I Ra a= -  (9.1)

Ideally, the graph of E versus IL would be a horizontal line. However, an effect known as 
armature reaction causes this graph to ‘droop’ at the higher values of current. The main 
advantage of this type of generator is that there is some scope for increasing the generated 
emf in order to offset the internal voltage drop IaRa as the load is increased.

The big disadvantage is the necessity for a separate d.c. supply for the field excitation. Therefore, 
in practice such a separately excited generator is rarely used.

9.4  SHUNT GENERATOR

This is a self-excited machine, where the field winding is connected in parallel (shunt) with 
the armature winding. The circuit diagram is shown in Figure 9.12, and from this it may be 
seen that the armature has to supply current to both the load and the field, such that:

 I I Ia L f= +  (9.2)

This self-excitation process can take place only if there is some residual flux in the poles, and 
if the resistance of the field circuit is less than some critical value. The open-circuit charac-
teristic is illustrated in Figure 9.13.

IaRa

V

0

voltage

E

IL � Ia

Figure 9.11  The output characteristic of the generator
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The resistance of the field winding, Rf, is constant and of a relatively high value com-
pared with Ra. Typically, If will be in the order of 1 A to 10 A, and will remain reasonably 
constant. The shunt machine is therefore considered to be a constant-flux machine. When 
switch S is closed, the armature current will increase in order to supply the demanded load 
current, IL. Thus Ia ∞ IL, and as the load current is increased, so the terminal voltage will 
fall, according to the equation, V = E − IaRa. The output characteristic will therefore follow 
much the same shape as that for the separately excited generator and is shown in Figure 
9.14. This condition applies until the machine is providing its rated full-load output. If the 
load should now demand even more current, i.e. the machine is overloaded, the result is that 
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If IL
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Rf

RL

E V

S

Figure 9.12  The circuit diagram of self-excited machine with shunt generator

0
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Figure 9.13  The open-circuit characteristic
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0 IL

IaRa

full-load

Figure 9.14  The output characteristic
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the generator simply stops generating. This effect is shown by the dotted lines in the output 
characteristics.

The shunt generator is the most commonly used d.c. generator, since it provides a reason-
ably constant output voltage over its normal operating range. Its other obvious advantage is 
the fact that it is self-exciting, and therefore requires only some mechanical means of driving 
the armature.

An example of a series generator is the dynamo on a bicycle, transforming the mechanical bike 
movement into energy to power running lights and other equipment. Bottle dynamos engage 
the bicycle’s tyre, and hub dynamos are permanently attached to the bicycle’s drive train.

9.5  SERIES GENERATOR

In this machine the field winding is connected in series with the armature winding and the 
load, as shown in Figure 9.15. In this case, IL = Ia = If, so this is a variable-flux machine. 
Since the field winding must be capable of carrying the full-load current (which could be in 
hundreds of amps for a large machine), it is usually made from a few turns of heavy gauge 
wire or even copper strip. This also has the advantage of offering a very low resistance. This 
generator is a self-excited machine, provided that it is connected to a load when started. 
Note that a shunt generator will self-excite only when disconnected from its load.

When the load on a series generator is increased, the flux produced will increase, in almost 
direct proportion. The generated emf will therefore increase with the demanded load. The 
increase of flux, and hence voltage, will continue until the onset of magnetic saturation, as 
shown in the output characteristic of Figure 9.16. The terminal voltage is related to the emf 
by the equation:

 V E I R Ra a f= - +( ) (9.3)

The variation of terminal voltage with load is not normally a requirement for a generator, so this 
form of machine is seldom used. However, the rising voltage characteristic of a series-connected 
field winding is put to good use in the compound machine, which is described in Further Electrical 
and Electronic Principles.

Ia

Ra
RL

IL

Rf

If

Ia � If � IL

V

E

Figure 9.15  The circuit diagram of the series generator
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WORKED EXAMPLE 9.1

Q The resistance of the field winding of a shunt generator is 200 Ω. When the machine is deliv-
ering 80 kW the generated emf and terminal voltage are 475 V and 450 V respectively. Calculate 
(a) the armature resistance and (b) the value of generated emf when the output is 50 kW, the 
terminal voltage then being 460 V.

 R P V Ef = = ´ = =200 80 10 450 4753W; o W; V; V 

The circuit diagram is shown in Figure 9.17. It is always good practice to sketch the appropri-
ate circuit diagram when solving machine problems.
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Note: Although the load had changed by about 60%, the field current has changed by only about 
2.2%. This justifies the statement that a shunt generator is considered to be a constant-flux 
machine.

emf

0 IL

Ia(Ra � Rf)

E

V

Figure 9.16  The output characteristic



D.C. Machines  239

9.6  SHUNT MOTOR

All of the d.c. generators so far described could be operated as motors, provided that they 
were connected to an appropriate d.c. supply. When the machine is used as a motor, the 
armature-generated emf is referred to as the back-emf, Eb, which is directly proportional 
to the speed of rotation. However, the speed is inversely proportional to the field flux Φ. 
In addition, the torque produced by the machine is proportional to both the flux and the 
armature current. Bearing these points in mind, we can say that:

 Speed w¥ Eb

F
 (9.4)

 and torqueT Ia¥F  (9.5)

When the machine reaches its normal operating temperature, Rf will remain constant. Since 
the field winding is connected directly to a fixed supply voltage V, then If will be fixed. Thus, 
the shunt motor (Figure 9.18) is a constant-flux machine.

As the back-emf will have the same shape graph as that for the generator emf, and using 
Equations (9.4) and (9.5) the graphs of speed and torque versus current will be as in Figure 
9.19. Note that when the machine is used as a motor, the supply current is identified as IL. In 
this case, the subscript ‘L’ represents the word ‘line’. Thus IL identifies the line current drawn 
from the supply, and Ia is directly proportional to IL.

Shunt motors are used for applications where a reasonably constant speed is required, between 
no-load and full-load conditions. A shunt motor can never run wild when the load drops (unless 

If

Rf

Ra

IaIL

Eb
V

Figure 9.18  The circuit diagram of the shunt motor
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Figure 9.17  The circuit diagram for Worked Example 9.1
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the flux drops). The speed of shunt motors can be controlled within wide limits and very pre-
cisely, without much loss. The shunt motor is very often combined with a conveyor belt and is 
mainly used for machines that operate at a constant speed with varying loads, such as cranes and 
lifts, as well as for drives where the speed must be controlled.

9.7  SERIES MOTOR

Like the series generator, this machine is a variable-flux machine. Despite this, the back-emf 
of this motor remains almost constant, from light-load to full-load conditions. This fact is 
best illustrated by considering the circuit diagram (Figure 9.20), with some typical values.

 E V I R Rb a a f= - +( ) (9.6)

Let us assume the following: V = 200 V; Ra = 0.15 Ω; Rf = 0.03 Ω; Ia = 5 A on light load; Ia 
= 50 A on full load

 
Lightload: V

Fullload:

E

E
b

b

= - +( ) =
= -

200 5 0 15 0 03 199 1

200 50 0 15

. . .

. ++( ) =0 03 191. V
 

From the above figures, it may be seen that although the armature current has increased 
tenfold, the back-emf has decreased by only 4%. Hence, Eb remains sensibly constant. Since 

w¥ E
Eb
bF

, and  is constant, then:

speed or
torque

0 IL

T

ω

Figure 9.19  The graphs of speed and torque as function of the current
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RfIL�Ia

Figure 9.20  The circuit diagram of the series motor
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 w¥ 1
F

 [1]

Similarly, T I Ia a¥ ¥F Fand since  until the onset of magnetic saturation,

 then T Ia¥ 2  [2]

 and after saturation, T Ia¥  [3]

Using [1] to [3] above, the speed and torque characteristics shown in Figure 9.21 may be 
deduced.

Note: From the speed characteristic it is clear that, on very light loads, the motor speed 
would be excessive. Theoretically, the no-load speed would be infinite! For this reason a 
series motor must never be started unless it is connected to a mechanical load sufficient 
to prevent a dangerously high speed. Similarly, a series motor must not be used to operate 
belt-driven machinery, lifting cranes, etc., due to the possibility of the load being suddenly 
disconnected. If a series motor is allowed to run on a very light load, its speed builds up 
very quickly. The probable outcome of this is the disintegration of the machine, with the 
consequent dangers to personnel and plant.

The series motor has a high starting torque due to the ‘square-law’ response of the torque 
characteristic, which means that it is powerful and accelerates quickly. For this reason, it 
tends to be used mainly for traction purposes.

Examples of the series motor can be found where a load is always present, for example through 
direct coupling to the machine to be driven. The series motor is used where high starting torques 
are required, such as a traction motor in electric trains and trams, in order to overcome the mas-
sive inertia of a stationary train. The starter motor in the car is also a series motor.

SUMMARY OF EQUATIONS

Generators:
Shunt generator: 

I I I

V E I R
a L f

a a

= +
= -

speed or
torque

T

ω
T � I2

a

T � Ia

0 IL

Figure 9.21  The graphs of speed and torque as function of the current
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Series generator: 
I I I

V E I R R
a L f

a a f

= =
= - +( )

Motors:
Shunt motor: E V I Rb a a= -

Series motor: E V I R Rb a a f= - +( )

Speed equation: n
E Eb b¥ ¥
F F

; or w

Torque equation: T Ia¥F

ASSIGNMENT QUESTIONS

 1 A shunt generator supplies a current of 85 A at a terminal p.d. of 380 V. Calculate the 
generated emf if the armature and field resistances are 0.4 Ω and 95 Ω respectively.

 2 A generator produces an armature current of 50 A when generating an emf of 400 V. 
If the terminal p.d. is 390 V, calculate (a) the value of the armature resistance and (b) 
the power loss in the armature circuit.

 3 A d.c. shunt generator supplies a 50 kW load at a terminal voltage of 250 V. The 
armature and field circuit resistances are 0.15 Ω and 50 Ω respectively. Calculate the 
generated emf.
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Chapter 10

D.C. Transients

LEARNING OUTCOMES

This chapter explains the response of capacitor-resistor (C-R), and inductor-resistor (L-R) cir-
cuits, when they are connected to and disconnected from a d.c. supply.

On completion of this chapter you should be able to:

 1 Show how the current and capacitor voltage in a series C-R circuit varies with time, when 
connected to/disconnected from a d.c. supply.

 2 Show how the current through, and p.d. across an inductor in a series L-R circuit varies with 
time, when connected to/disconnected from a d.c. supply.

 3 Define the term ‘time constant’ for both types of above circuits.

10.1  CAPACITOR-RESISTOR SERIES CIRCUIT: CHARGING

Before dealing with the charging process for a C-R circuit, let us firstly consider an analo-
gous situation. Imagine that you need to inflate a ‘flat’ tyre with a foot pump. Initially it is 
fairly easy to pump air into the tyre. However, as the air pressure inside the tyre builds up, 
it becomes progressively more difficult to force more air in. Also, as the internal pressure 
builds up, the rate at which air can be pumped in decreases. Comparing the two situations, 
the capacitor (which is to be charged) is analogous to the tyre; the d.c. supply behaves 
like the pump; the charging current compares to the air flow rate; and the p.d. developed 
between the plates of the capacitor has the same effect as the tyre pressure. From these com-
parisons we can conclude that as the capacitor voltage builds up, it reacts against the emf 
of the supply, so slowing down the charging rate. Thus, the capacitor will charge at a non-
uniform rate, and will continue to charge until the p.d. between its plates is equal to the sup-
ply emf. This last point would also apply to tyre inflation, when the tyre pressure reaches the 
maximum pressure available from the pump. At this point the air flow into the tyre would 
cease. Similarly, when the capacitor has been fully charged, the charging current will cease.

Let us now consider the C-R charging circuit in more detail. Such a circuit is shown 
in Figure 10.1. Let us assume that the capacitor is initially fully discharged, i.e. the p.d. 
between its plates (vC) is zero, as will be the charge, q. Note that the lowercase letters v and 
q are used because, during the charging sequence, they will have continuously changing val-
ues, as will the p.d. across the resistor (vR) and the charging current, i. Thus these quantities 
are said to have transient values.

At some time t = 0, let the switch in Figure 10.1 be moved from position ‘A’ to position 
‘B’. At this instant the charging current will start to flow. Since there will be no opposition 
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offered by capacitor p.d. (vC = 0), only the resistor R will offer any opposition. Consequently, 
the initial charging current (I0) will have the maximum possible value for the circuit. This 
initial charging current is therefore given by:

 I
E
R

0 =  (10.1)

Since we are dealing with a series d.c. circuit, the following equation must apply at all times:

 E v vR C= +  [1]

thus, at time t = 0

 E vR= +0 

i.e. the full emf of E volt is developed across the resistor at the instant the supply is connected 
to the circuit. Since vR = iR, and at time t = 0, i = I0, this confirms Equation (10.1) above.

Let us now consider the situation when the capacitor has reached its fully charged state. 
In this case, it will have a p.d. of E volt, a charge of Q coulomb and the charging current, i 
= 0. If there is no current flow then the p.d. across the resistor, vR = 0, and Equation [1] is:

 E vC= +0  

Having confirmed the initial and final values for the transients, we now need to consider 
how they vary, with time, between these limits. It has already been stated that the variations 
will be non-linear (i.e. not a straight line graph). In fact the variations follow an exponential 
law. Any quantity that varies in an exponential fashion will have a graph like that shown in 
Figure 10.2(a) if it increases with time, and as in Figure 10.2(b) for a decreasing function.

In Figure 10.2(a), X represents the final steady-state value of the variable x, and in Figure 
10.2(b), X0 represents the initial value of x. In each case the straight line (tangent to the 
curve at time t = 0) indicates the initial rate of change of x. The time interval shown as τ on 
both graphs is known as the time constant, which is defined as follows: The time constant is 
the time that it would take the variable to reach its final steady state if it continued to change 
at its initial rate. From the above figures it can be seen that for an increasing exponential 
function, the variable will reach 63.2% of its final value after one time constant, and for a 
decreasing function it will fall to 36.8% of its initial value after τ seconds.

Note: Considering any point on the graph, it would take one time constant for the vari-
able to reach its final steady value if it continued to change at the same rate as at that point. 
Thus an exponential graph may be considered as being formed from an infinite number of 
tangents, each of which represents the slope at a particular instant in time. This is illustrated 

R C

VR VC

‘B’ ‘A’

E

i

Figure 10.1  The charging of the capacitor-resistor series circuit
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in Figure 10.4. Also, theoretically, an exponential function can never actually reach its final 
steady state. However, for practical purposes it is assumed that the final steady state is 
achieved after five time constants. This is justifiable since the variable will be within 0.67% 
of the final value after 5τ seconds. So for Figure 10.2(a), after 5τ seconds, x = 0.9973 X.

Considering the circuit of Figure 10.1, assuming that the capacitor is fully discharged, let 
the switch be moved to position ‘B’. The capacitor will now charge via resistor R until the 
p.d. between its plates, vC = E volts. Once fully charged, the circuit current will be zero. The 
variations of capacitor voltage and charge, p.d. across the resistance and charging current 
are shown in Figures 10.3–10.6.

For such a C-R circuit the time constant, τ (Greek letter tau), is CR seconds. It may appear 
strange that the product of capacitance and resistance yields a result having units of time. 
This may be justified by considering a simple dimensional analysis, as follows:

 
C

Q
V

It
V

R
V
I

CR
It
V

V
I

t

= = =

= ´ =

and

so and is expressed in seconds,
 

τ
2τ 3τ 4τ 5τ t (s)0

0.632

X

X initial rate of change

(a)

τ
2τ 3τ 4τ 5τ t (s)0

0.368

X0

X

initial rate of change

(b)

Figure 10.2  The variations following an exponential law.

τ
2τ 3τ 4τ 5τ t (s)0

0.632 E

E
initial rate of changeVc(V)

Figure 10.3  The variations of capacitor voltage as function of the time
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τ
2τ 3τ 4τ 5τ t (s)0

0.632 Q

Q
initial rate of changeq (C)

Figure 10.4  The variations of charge as function of the time

τ
2τ 3τ 4τ 5τ t (s)0

0.368 I0

I0

i (A)

initial rate of change

Figure 10.6  The variations of charging current as function of time

τ
2τ 3τ 4τ 5τ t (s)0

E

VR(V)

0.386 E

initial rate of change

Figure 10.5  The variations of p.d. across the resistance as function of time
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WORKED EXAMPLE 10.1

Q An 8 μF capacitor is connected in series with a 0.5 MΩ resistor, across a 200 V d.c. supply, 
as is shown in Figure 10.7. Calculate (a) the circuit time constant, (b) the initial charging current 
and (c) the p.d.s across the capacitor and resistor 4 seconds after the supply is connected. You 
may assume that the capacitor is initially fully discharged

 C R E= ´ = ´ =-8 10 0 5 10 2006 6F V; . ;W  

(a) t = = ´ ´ ´ =-CR 8 10 0 5 10 46 6. s

(b) I
E
R

0 6

200
0 5 10

400= =
´

=
.

mA

(c) 
After seconds 126.4 Vt , . .

.

v E

v E v
C

R C

= = ´ =
= - = - =

0 632 0 632 200

200 126 4 773 6. V

10.2  CAPACITOR-RESISTOR SERIES CIRCUIT: DISCHARGING

Consider the circuit of Figure 10.1, where the switch has been in position ‘B’ for sufficient 
time to allow the charging process to be completed. Thus the charging current will be zero, 
the p.d. across the resistor will be zero, the p.d. across the capacitor will be E volt and it will 
have stored a charge of Q coulomb.

At some time t = 0, let the switch be moved back to position ‘A’. The capacitor will now be 
able to discharge through resistor R. The general equation for the voltages in the circuit will 
still apply. In other words, E = vR + vC. But, at the instant the switch is moved to position ‘A’, 
the source of emf is removed. Applying this condition to the general equation above yields:

 
0

0
0

0

= + = =
= +

v v v E v I R

I R E
R C C R; where and

 

 hence I
E
R

0 = -  (10.2)

This means that the initial discharge current has the same value as the initial charging cur-
rent, but (as you would expect) it flows in the opposite direction.

Since the capacitor is discharging, then its voltage will decay from E volt to zero, its 
charge will decay from Q coulomb to zero and the discharge current will also decay from I0 

200 V

0.5 MΩ 8 µF

Figure 10.7  The circuit diagram for Worked Example 10.1



248 D.C. Transients 

to zero. The circuit time constant will be the same as before, i.e. τ = CR seconds. The graphs 
for vC and i are shown in Figure 10.8.

Note: The time constant for the C-R circuit was defined previously in terms of the capaci-
tor charging. However, a time constant also applies to the discharge conditions. It is there-
fore better to define the time constant in a more general manner, as follows: The time 
constant of a circuit is the time that it would have taken for any transient variable to change, 
from one steady state to a new steady state, if it had maintained its rate of change existing 
at the time of the first steady state.

When such an C-R circuit is switched on and off very quickly, the capacitor is charged and dis-
charged at high speed and a filter characteristic is obtained. Measured across the capacitor of 
this C-R circuit, this is hence called a low-pass filter. At low frequencies, charging and discharging 
is slow. There is sufficient time to fully charge and also discharge the capacitor. At high frequen-
cies, the changes are too fast and the capacitor voltage hardly changes. This is equivalent to 
saying that low-frequency signals are passed through and high-frequency signals are blocked. 
This can be used for filtering audio signals, for instance. When measured across the resistor, 
the opposite behaviour is obtained: a high-pass filter passes the high frequencies and blocks the 
low frequencies. This a.c. transient behaviour is discussed more in Further Electrical and Electronic 
Principles.

WORKED EXAMPLE 10.2

Q A C-R charge/discharge circuit is shown in Figure 10.9. The switch has been in position ‘A’ for 
a sufficient time to allow the capacitor to become fully discharged.

 (a) If the switch is now moved to position ‘B’, calculate the time constant and initial charging 
current.

5τ t(s)
0

E

Vc(V)

Vc

�I0

�i

i

τ

Figure 10.8  The discharging of the capacitor-resistor series circuit
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 C R R E= = = =0 5 220 110 1501 2. ;m W WF k ; k ; V  

 (b) After the capacitor has completely charged, the switch is moved back to position ‘A’. 
Calculate the time constant and the p.d across R2 at this time.

 (a) When charging, only resistor R1 is connected in series with the capacitor, so R2 may be 
ignored.

 
t

m

= = ´ ´ ´ =

= =
´

=

-CR

I
E
R

1
6 3

0 3

0 5 10 220 10 0 11

150
220 10

682

. . s

A
 

 (b) When discharging, both R1 and R2 are connected in series with the capacitor, so their com-
bined resistance R = R1 + R2, will determine the discharge time constant.

 t = = ´ ´ ´ =-CR 0 5 10 330 10 0 166 3. . s  

After one time constant the discharge current will have fallen to 0.368 I0

 

I
E
R

i

v iRR

0 3

6

2 2

150
330 10

454 5

0 368 454 10 167 26

1

= =
´

=

= ´ ´ =
= =

-

.

. .

m

m

A

A

667 26 10 110 10 18 46 3. .´ ´ ´ =- V

  

10.3  INDUCTOR-RESISTOR SERIES CIRCUIT: CHARGING

Consider the circuit of Figure 10.10, where an inductor is connected in series with a resistor. 
At some time t = 0, the switch is moved from position ‘A’ to position ‘B’. The connection to 
the supply is now complete, and current will start to flow, increasing towards its final steady 
value.

However, whilst the current is changing it will induce a back-emf across the inductor, of 
e volt. From electromagnetic induction theory we know that this induced emf will have a 
value given by:

 e L
i
t

= - d
d

 

150 V

E

R1

R2

C

110 kΩ

220 kΩ

‘2’ ‘1’

0.5 µF

Figure 10.9  A C-R charge/discharge circuit for Worked Example 10.2
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Being a simple series circuit, Kirchhoff’s voltage law will apply, such that the sum of the 
p.d.s equals the applied emf. Also, since we are considering a perfect inductor (the resistor 
shown may be considered as the coil’s resistance), the p.d. across the inductor will be exactly 
equal but opposite in polarity to the induced emf.

 

Therefore
d
d

hence

or
d
d

,

,

,

v e L
i
t

E v v

E iR L
i
t

L

R L

= - =

= +

= +

 [1]

Comparing this equation with that for the C-R circuit, it may be seen that they are both 
of the same form. Using the analogy technique, we can conclude that both systems will 
respond in a similar manner. In the case of the L-R circuit, the current will increase from 
zero to its final steady value, following an exponential law.

At the instant that the switch is moved from ‘A’ to ‘B’ (t = 0), the current will have an 
instantaneous value of zero, but it will have a certain rate of change, di/dt amp/s. From 
Equation [1] above, this initial rate of change can be obtained, thus:

 E L
i
t

= +0
d
d

 

 so, initial
d
d

i
t

E
L

=  (10.3)

When the current reaches its final steady value, there will be no back-emf across the induc-
tor, and hence no p.d. across it. Thus the only limiting factor on the current will then be the 
resistance of the circuit. The final steady current is therefore given by:

 I
E
R

=  (10.4)

The time constant of the circuit, expressed in seconds, is obtained by dividing the induc-
tance by the resistance.

 t = L
R

 (10.5)

R

‘B’ ‘A’

E

R L

i
VR VL

Figure 10.10  The charging of the inductor-resistor series circuit
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The above equation may be confirmed by using a simple form of dimensional analysis, as 
follows.

 
In general, so and

therefore, and is ex

V
LI
t

L
Vt
I

R
V
I

L
R

Vt
I

I
V

t

= = =

= ´ =

;

ppressed in seconds
 

The time constant of the circuit may be defined in the general terms given in the ‘Note’, in 
the previous section, dealing with the C-R circuit.

The rate of change of current will be at its maximum value at time t = 0, so the p.d. across 
the inductor will be at its maximum value at this time. This p.d. therefore decays expo-
nentially from E volt to zero. The graphs for i, vR and vL are shown in Figures 10.11–10.13 
respectively.

0.632 I

I

i (A)
initial di

dt

τ
0 2τ 3τ 4τ 5τ t (s)

Figure 10.11  The variations of discharging current as function of time

τ
0

0.632 E

E
VR (V)

2τ 3τ 4τ 5τ t (s)

Figure 10.12  The variations of p.d. across the resistance as function of time
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WORKED EXAMPLE 10.3

Q The field winding of a 110 V d.c. motor has an inductance of 1.5 H, and a resistance of 220 Ω. 
From the instant that the machine is connected to a 110 V supply, calculate (a) the initial rate of 
change of current, (b) the final steady current and (c) the time taken for the current to reach 
its final steady value.

 E L R= = =110 1 5 220V H;; . W 

The circuit diagram is shown in Figure 10.14.

(a) initial
d
d

A s
i
t

E
L

= = =110
1 5

73 33
.

. /

(b) final current AI
E
R

= = =110
220

0 5.

(c) t = = =L
R

1 5
220

6 82
.

. ms

Since the system takes approximately 5τ seconds to reach its new steady state, the current 
will reach its final steady value in a time:

 t = ´ =5 6 82 34 1. . ms  

τ 2τ 3τ 4τ 5τ t (s)0

0.368 E

E

VL (V)

initial rate of change

Figure 10.13  The variations of inductor voltage as function of the time

E

110 V

220 Ω 1.5 H

i

Figure 10.14  The circuit diagram for Worked Example 10.3
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10.4  INDUCTOR-RESISTOR SERIES CIRCUIT: DISCHARGING

Figure 10.15 shows such a circuit, connected to a d.c. supply. Assume that the current has 
reached its final steady value of I amps. Let the switch now be returned to position ‘A’ (at 
time t = 0). The current will now decay to zero in an exponential manner. However, the 
decaying current will induce a back-emf across the coil. This emf must oppose the change 
of current. Therefore, the decaying current will flow in the same direction as the original 
steady current. In other words, the back-emf will try to maintain the original current flow. 
The graph of the decaying current, with respect to time, will therefore be as shown in Figure 
10.16. The time constant of the circuit will, of course, still be L/R second, and the current 
will decay from a value of I = E/R amp. The initial rate of decay will also be E/L amp/s.

Just like fast charging and discharging an C-R circuit, this can also be performed with an R-L 
circuit. When the output is measured across the inductor, a high-pass filter is obtained. It 
results in a low-pass filter when the output is measured across the resistor. Although this R-L 
circuit behaves as a low-pass or high-pass filter, it is less common in practice. An inductor is 
usually bigger than a capacitor and also has more resistive losses. When both a C-R circuit and 
a L-R circuit are combined to a R-L-C circuit, a band-pass filter (passing through some central 
frequencies) and a band-stop filter (blocking those frequencies) are possible. This is described 
more in Further Electrical and Electronic Principles.

‘B’ ‘A’

R

E

L

i

Figure 10.15  The discharging of the inductor-resistor series circuit

τ 2τ 3τ 4τ 5τ t (s)0

0.368 I

i (A)

I

Figure 10.16  The variations of discharging current as function of time
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SUMMARY OF EQUATIONS

C-R circuit:
Time constant: t = CR

Initial current: I
E
R

0 =

Steady-state conditions after approx. 5τ seconds
after, τ second: vC = 0.632 E; and i = 0.368 I0

L-R circuit:
Time constant: τ = L

R
Initial rate of change of current: 

d
d

i
t

E
L

=

Final current flowing: I
E
R

=

Steady-state conditions after approx. 5τ seconds
after τ second: V E i IL = =0 368 0 632. .; and

ASSIGNMENT QUESTIONS

 1 A 47 μF capacitor is connected in series with a 39 kW  resistor, across a 24 V d.c. sup-
ply. Calculate (a) the circuit time constant, (b) the values for initial and final charging 
current and (c) the time taken for the capacitor to become fully charged.

 2 A 150 mH inductor of resistance 50 Ω is connected to a 50 V d.c. supply. Determine (a) 
the initial rate of change of current, (b) the final steady current and (c) the time taken 
for the current to change from zero to its final steady value.

 3 An inductor of negligible resistance and of inductance 0.25 H, is connected in series 
with a 1.5 kΩ resistor, across a 24 V d.c. supply. Calculate the current flowing after 
one time constant.

 4 A 5 H inductor has a resistance R ohm. This inductor is connected in series with a 
10 Ω resistor, across a 140 V d.c. supply. If the resulting circuit time constant is 0.4 s, 
determine (a) the value of the coil resistance and (b) the final steady current.

 5 Define the time constant of a capacitor-resistor series circuit. Such a circuit comprises 
a 50 μF capacitor and a resistor, connected to a 100 V d.c. supply via a switch. If the 
circuit time constant is to be 5 s, determine (a) the resistor value and (b) the initial 
charging current.

 6 The dielectric of a 20 μF capacitor has a resistance of 65 MΩ. This capacitor is fully 
charged from a 120 V d.c. supply. Calculate the time taken, after disconnection from 
the supply, for the capacitor to become fully discharged.

SUGGESTED PRACTICAL ASSIGNMENTS

Assignment 1

To investigate the variation of capacitor voltage and current during charge and discharge 
cycles.
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Apparatus

1 × 10 μF capacitor
1 × 10 MΩ resistor
1 × 2-pole switch
1 × d.c. power supply
2 × multimeter: one for the current and one for the voltage
1 × stopwatch

Method

 1 Connect the circuit of Figure 10.17, and adjust the power supply output to 250 V.
 2 Simultaneously move the switch to position ‘B’ and start the stopwatch.
 3 Record the circuit current and capacitor p.d. at 10 s intervals, for the first 60 s.
 4 Continue recording the current and voltage readings, at 20 s intervals, for a further 4 

minutes. Reset the stopwatch to zero. Reverse the connections to the ammeter.
 5 Move the switch back to position ‘A’, and repeat the procedures of paragraphs (3) and 

(4) above.
 6 Plot graphs of current and capacitor p.d., versus time, for both the charging and dis-

charging cycles.
 7 Submit a complete assignment report, which should include the following:
 i The comparison of the actual time constant (determined from the plotted graphs) 

to the theoretical value. Explain any discrepancy found.
 ii Explain why both the charging and discharging currents tend to ‘level off’ at some 

small value, rather than continuing to decrease to zero.

V

A

10 µF

10 MΩ

250 V

‘1’ ‘2’

Figure 10.17  The circuit diagram for Practical Assignment 1
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Appendix A

Physical Quantities with SI and other preferred units

General quantities Symbol Units

Acceleration, linear a m/s2 (metre/second/second)
Area A m2 (square metre)
Energy or work W J (joule)
Force F N (newton)
Length l m (metre)
Mass m kg (kilogram)
Power P W (watt)
Pressure p Pa (pascal)
Temperature value θ K or °C (Kelvin or degree Celsius)
Time t s (second)
Torque T Nm (newton metre)
Velocity, angular ω rad/s (radian/second)
Velocity, linear v or u m/s (metre/second)
Volume V m3 (cubic metre)
Wavelength λ m metre

Electrical quantities Symbol Units

Admittance Y Ω (ohm)
Charge (quantity) Q C (coulomb)
Conductance G S (Siemens)
Current I A (ampere)
Current density J A/m2 (ampere/square metre)
Electromotive force (emf) E V (volts)
Frequency f Hz (hertz)
Impedance Z Ω (ohm)
Period T s (second)
Potential difference (p.d.) V V (volt)
Power, active P W (watt)
Power, apparent S VA (volt ampere)
Power, reactive Q VAr (volt ampere reactive)
Reactance X Ω (ohm)
Resistance R Ω (ohm)
Resistivity ρ Ωm (ohm metre)
Time constant τ s (second)

Appendix A Appendix A
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Electrostatic quantities Symbol Unit

Capacitance C F (farad)
Field strength E V/m (volt/metre)
Flux ψ C (coulomb)
Flux density D C/m2 (coulomb/square metre)
Permittivity, absolute ∈ F/m (farad/metre)

 

General quantities Symbol Unit

Permittivity, relative εr no units
Permittivity, of free space ε0 F/m (farad/metre)

 

Electromagnetic quantities Symbol Unit

Field strength H A/m (ampere/metre)a

Flux Φ Wb (weber)
Flux density B T (tesla)
Inductance, mutual M H (henry)
Inductance, self L H (henry)
Magnetomotive force (mmf) F A (ampere)b

Permeability, absolute μ H/m (henry/metre)
Permeability, relative μr no units
Permeability, of free space μ0 H/m (henry/metre)
Reluctance S A/Wb (ampere/weber)c

a At/m (ampere turn/metre) in this book
b (ampere turn) in this book
c At/Wb (ampere turn/weber) in this book
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Index

absolute permeability 102
absolute permittivity 70
acceptor impurity 168
alternating quantities 200

addition of 218
angular velocity of 203
average value of 205
form factor of 205
frequency of 203
maximum value of 203
peak factor of 205
periodic time of 202
phase angle of 213
phasor representation of 215
production of 200
rms value of 205

alternator 131
ammeter 24
ampere 7
atom 5

acceptor 168
Bohr model 5
donor 167
shell structure 162

back-emf 239
battery 8
B/H curve 105
bipolar transistor 184
bridge rectifier 210

capacitance 68
capacitors 61

dielectric strength 84
energy stored in 80
multiplate 73
in parallel 72
in series 75
in series/parallel 78
types of 85

cell 8
Charge (Q) 6

coercive force 115
coercivity 115
commercial unit of energy (kWh) 22
commutator 231
coulomb 6
Coulomb’s law 61
coupling factor 146
covalent bond 163
current 7

divider 37
ratio 155

D.C. 23
D.C. circuits 28

parallel 33
series 38
series/parallel 38

D.C. generators 231
armature 231
commutator 231
construction 232
self-excitation 235
separately excited 234
series 237
shunt 235

D.C. transients 243
C-R series circuits 243
L-R series circuits 249

diode 171
characteristics 173
p-n junction 169
zener 175

Eddy currents 139
electric

charge 6
current 7
field 61
field strength 64
flux 64
flux density 64

electromagnetic induction 122
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electromotive force (emf) 8
electron-hole pair 165
energy 20

dissipated by resistance 20
stored in a capacitor 80
stored in an inductor 149

extrinsic semiconductor 166

Farad 68
Faraday’s laws 122
ferrite 94
ferromagnetic material 94
field (strength)

electric 61
magnetic 94

Field Effect Transistor (FET) 191
Fleming’s left-hand rule 132
Fleming’s right-hand rule 139
flux (density)

electric 64
magnetic 98

force between charged bodies 61
force between conductors 136
form factor 205
frequency 203
fringing 63
full-wave rectifier 210

galvanometer 122

half-wave rectifier 210
Henry 101
hysteresis 114

induced emf 127
inductance 140

mutual 146
self 141

inductor 143
instantaneous value 204
internal resistance 17
intrinsic semiconductor 163
ion

negative 6, 168
positive 6, 165, 167

iron circuit 98
iron dust core 140

kilowatt-hour (kWh) 22
Kirchhoff’s laws 44, 46

laminations 140
LED 179

composite 97
Lenz’s law 124
Magnetic circuits 94
parallel 116
series 109

magnetic
field 94
field strength (H) 100
flux 98
flux density 98
hysteresis 114
reluctance 111
saturation 105

magnetisation curve (B/H) 105
magnetomotive force (mmf) 99
motor/generator duality 229
motor principle 134
motors 239

series 240
shunt 239

n-type semiconductor 167

Ohm 9
ohmmeter 24
Ohm’s law 16
opamp 194

inverting amplifier 196
non-inverting amplifier 196

peak factor 205
peak value 205
periodic time 202
permeability 101

absolute 102
of free space 101
relative 102

permittivity 69
absolute 70
of free space 69
relative 70

phase and phase angle 213
phasor 215
phasor diagram 216
p-n junction 169
p-n junction diode 171

forward characteristics 171
reverse characteristics 171

potential difference (pd) 14
potential divider 31
potential gradient 65
potentiometer 51
power 20
proton 5
p-type semiconductor 168

recombination 165
rectifier 210

bridge 212
full-wave 212
half-wave 210

relative permeability 102
relative permittivity 70

reluctance 111
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remanence 114
remanent flux density 114
resistance 9

internal 17
resistivity 9
resistors 9

in parallel 33
in series 28
in series/parallel 39

root of the means
squared (rms) value 205

saturation 105
scientific notation 2
self-excitation 235
self-inductance 141
semiconductors 162
separately excited generator 234
series generator 237
series motor 240
shunt generator 235
shunt motor 239
sinusoidal waveform 23
slidewire potentiometer 51
solar cell 181
solenoid 96
standard form notation 1

temperature coefficient of resistance 11
time constant 244, 248, 250, 253
transformer 152

current ratio 155
principle 152
turns ratio 154
voltage ratio 154

transistor 184
As amplifier 189
Bipolar Junction Transistor (BJT) 184
Field Effect Transistor (FET) 191
As switch 188
Transistor effect 186

units 1, 257

valence shell 163
volt 8
voltage drop (pd) 14
voltmeter 24

loading effect 224

watt 20
Weber 98

zener diode 175


	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Chapter 1 Fundamentals
	1.1 Units
	1.2 Standard Form Notation
	1.3 ‘Scientific’ Notation
	1.4 Electric versus Electronic
	1.5 Basic Electrical Concepts
	1.5.1 Bohr Model
	1.5.2 Electric Current
	1.5.3 Electromotive Force (emf)
	1.5.4 Resistance (R)
	1.5.5 Potential Difference (p.d.)
	1.5.6 Conventional Current and Electron Flow
	1.5.7 Ohm’s Law
	1.5.8 Internal Resistance (r)
	1.5.9 Energy (W) and Power (P)
	1.5.10 Alternating and Direct Quantities
	1.5.11 Use of Meters

	1.6 Simulation Packages
	Assignment Questions

	Chapter 2 D.C. Circuits
	2.1 Resistors in Series
	2.2 Resistors in Parallel
	2.3 Series/Parallel Combinations
	2.4 Kirchhoff’s Current Law
	2.5 Kirchhoff’s Voltage Law
	2.6 Potentiometer
	Assignment Questions
	Suggested Practical Assignments
	Assignment 1
	Assignment 2
	Assignment 3
	Assignment 4


	Chapter 3 Electric Fields and Capacitors
	3.1 Coulomb’s Law
	3.2 Electric Fields
	3.3 Electric Field Strength (E), Electric Flux (.) and Flux Density (D)
	3.4 The Charging Process and Potential Gradient
	3.5 Capacitance (C)
	3.6 Permittivity
	3.7 Calculating Capacitor Values
	3.8 Capacitors in Parallel
	3.9 Capacitors in Series
	3.10 Series/Parallel Combinations
	3.11 Energy Stored
	3.12 Dielectric Strength and Working Voltage
	3.13 Capacitor Types
	3.13.1 Paper
	3.13.2 Air
	3.13.3 ‘Plastic’
	3.13.4 Silvered Mica
	3.13.5 Mixed Dielectric
	3.13.6 Electrolytic

	Assignment Questions
	Suggested Practical Assignment

	Chapter 4 Magnetic Fields and Circuits
	4.1 Magnetic Materials
	4.2 Magnetic Fields
	4.3 The Magnetic Circuit
	4.4 Magnetic Flux and Flux Density
	4.5 Magnetomotive Force (mmf)
	4.6 Magnetic Field Strength
	4.7 Permeability
	4.8 Magnetisation (B/H) Curve
	4.9 Composite Series Magnetic Circuits
	4.10 Reluctance (S)
	4.11 Magnetic Hysteresis
	4.12 Parallel Magnetic Circuits
	Assignment Questions
	Suggested Practical Assignments
	Assignment 1
	Assignment 2


	Chapter 5 Electromagnetism
	5.1 Faraday’s Law of Electromagnetic Induction
	5.2 Fleming’s Right-Hand Rule
	5.3 Emf Induced in a Single Straight Conductor
	5.4 Force on a Current-Carrying Conductor
	5.5 The Motor Principle
	5.6 Force between Parallel Conductors
	5.7 Eddy Currents
	5.8 Self- and Mutual Inductance
	5.8.1 Self-Inductance
	5.8.2 Flux Linkages
	5.8.3 Factors Affecting Inductance
	5.8.4 Mutual Inductance
	5.8.5 Relationship between Self- and Mutual Inductance

	5.9 Energy Stored
	5.10 The Transformer Principle
	Assignment Questions
	Suggested Practical Assignments
	Assignment 1
	Assignment 2
	Assignment 3


	Chapter 6 Semiconductor Theory and Diodes
	6.1 Atomic Structure
	6.2 Intrinsic (Pure) Semiconductors
	6.3 Electron–Hole Pair Generation and Recombination
	6.4 Conduction in Intrinsic and Extrinsic (Impure) Semiconductors
	6.5 n-type Semiconductor
	6.6 p-type Semiconductor
	6.7 The p-n Junction
	6.8 Forward-Biased and Reverse-Biased Diode
	6.9 Diode Characteristics
	6.10 The Zener Diode
	6.11 The LED
	6.12 The Solar Cell
	Assignment Questions
	Suggested Practical Assignments
	Assignment 1
	Assignment 2


	Chapter 7 Transistors
	7.1 Bipolar Transistor
	7.2 Transistor Effect
	7.3 Transistor as Switch
	7.4 Transistor as Amplifier
	7.5 Field Effect Transistor
	7.6 Integrated Circuits and Moore’s Law
	7.7 Opamps
	7.8 Inverting and Non-Inverting Amplifiers with Opamps
	Assignment Questions

	Chapter 8 Alternating Quantities
	8.1 Production of an Alternating Waveform
	8.2 Angular Velocity and Frequency
	8.3 Standard Expression for an Alternating Quantity
	8.4 Average and r.m.s. Value and Peak and Form Factor
	8.5 Rectifiers
	8.6 Phase and Phase Angle
	8.7 Phasor Representation
	8.8 Addition of Alternating Quantities
	8.9 Oscilloscope
	Assignment Questions

	Chapter 9 D.C. Machines
	9.1 Motor/Generator Duality
	9.2 The Generation of d.c. Voltage
	9.3 Separately Excited Generator
	9.4 Shunt Generator
	9.5 Series Generator
	9.6 Shunt Motor
	9.7 Series Motor
	Assignment Questions

	Chapter 10 D.C. Transients
	10.1 Capacitor-Resistor Series Circuit: Charging
	10.2 Capacitor-Resistor Series Circuit: Discharging
	10.3 Inductor-Resistor Series Circuit: Charging
	10.4 Inductor-Resistor Series Circuit: Discharging
	Assignment Questions
	Suggested Practical Assignments
	Assignment 1

	Appendix
	Index



