

MASTERING FPGA EMBEDDED
SYSTEMS

A Case Study Approach to Designing and
Implementing FPGA-Based Embedded Systems

with TFT LCDs

By

Aharen-san

TABLE OF CONTENTS
EDA TOOLS
WHAT'S EDA

EXAMPLES OF EDA TOOLS
TYPICAL FEATURES OF EDA TOOLS

SIMULATION
PCB DESIGN

SOFTWARE DEVELOPMENT
EDA TOOLS FOR FPGA DEVELOPMENT

THE USUAL USER STEPS
CREATE A PROJECT
WRITE YOUR CODE
PIN ASSIGNMENT

THE USUAL COMPILER STEPS
TIMING ANALYSIS

GENERATING A PROGRAMMING FILE
DOWNLOADING YOUR DESIGN INTO AN FPGA

QUARTUS PRIME, BY INTEL
ABOUT QUARTUS AND INTEL

SETUP_ DOWNLOADING QUARTUS
SETUP_ INSTALLING QUARTUS

WHERE EVERYTHING IS - PROJECT NAVIGATOR

WHERE EVERYTHING IS – TASKS
WHERE EVERYTHING IS - IP CATALOG

SETUP FOR IMPLEMENTATION
HELLO WORLD - CREATE A PROJECT

HELLO WORLD - TOP MODULE SOURCE FILE
HELLO WORLD – IMPLEMENTATION

HELLO WORLD - PROGRAMMING THE FPGA
EDA PLAYGROUND, BY DOULOS

ABOUT EDA PLAYGROUND AND DOULOS
EDA PLAYGROUND SETUP

WALKTHROUGH_ CODE ENTRY
WALKTHROUGH_ LEFT TOOLBAR

Walkthrough_ Other Tools
DEMO_ CODE EXAMPLE

DEMO_ SIMULATION DUMP SYSTEM TASKS
DEMO_ SIMULATION CONTROL SYSTEM TASKS

VIVADO DESIGN SUITE, BY XILINX
ABOUT VIVADO DESIGN SUITE AND XILINX

SETUP_ DOWNLOADING VIVADO
SETUP_ THE VIVADO INSTALLATION WIZARD

CREATING A PROJECT
WALKTHROUGH_ PROJECT MANAGER

WALKTHROUGH_ IP CATALOG

WALKTHROUGH_ SOURCE FILES
WALKTHROUGH_ CONSOLE OUTPUT AND

MESSAGES
WALKTHROUGH_ SIMULATION

WALKTHROUGH_ PIN ASSIGNMENT
WALKTHROUGH_ TOP MODULE CODE

WALKTHROUGH_ BITSTREAM FILE GENERATION
WALKTHROUGH_ THE HARDWARE MANAGER

LABSLAND
ABOUT LABSLAND
WALKTHROUGH

FPGA LAB
VERILOG IDE DEMO_ PIN ASSIGNMENT

VERILOG IDE DEMO_ ADDER CODE
VERILOG IDE DEMO_ ADDER LIVE DEMO

VERILOG IDE DEMO_ MULTIPLIER LIVE DEMO
RECOMPILING

UPLOADING DEMOS
MOTIVATION_ HARDWARE DESIGN
MOTIVATION_ SOFT PROCESSORS

INTRO TO FPGAS
FPGA OVERVIEW
FPGAS VS ASIC

WHAT'S INSIDE AN FPGA
WHAT'S INSIDE LOGIC BLOCKS_ ADDERS AND

FLIP FLOPS
WHAT'S INSIDE INTERCONNECTS

WHAT'S INSIDE I_O BLOCKS
WHICH IS THE PROGRAMMABLE

FPGAS VS CPLDS
HOW IS AN FPGA PROGRAMMED

WHO MAKES FPGAS
WHAT HARDWARE CAN BE IMPLEMENTED WITH

AN FPGA
WHERE TO GET A BOARD

BOARD UNBOXING
THE DE0-CV BOARD WEBSITE
DE0-CV BOARD CD CONTENT

SKIMMING THROUGH THE MANUAL
THE FPGA DEVELOPMENT PROCESS

THE STEPS YOU NEED TO TAKE
CREATE A PROJECT
WRITE YOUR CODE

ASSIGN PINS
PIN ASSIGNMENT DEMO

SPECIFY TIMING CONSTRAINTS

PROPAGATION DELAYS EXAMPLE
TIMING IN SEQUENTIAL SYSTEMS

WHY THIS MATTERS IN FPGAS
WHERE THE COMPILER TAKES ON

TIMING ANALYSIS
PROGRAMMING FILES

INSTALLING QUARTUS PRIME
SHOWING YOU AROUND QUARTUS PRIME

LOOKING AT THE TOP-LEVEL TEMPLATE CODE
ENTERING SOME PROOF-OF-CONCEPT CODE

COMPILING YOUR DESIGN
PROGRAMMING YOUR DEVICE - JTAG MODE

PROGRAMMING YOUR DEVICE - ACTIVE SERIAL
MODE

GETTING IT BACK TO ITS FACTORY STATE
SYSTEM BUILDER_ THE EASIEST WAY TO

JUMPSTART YOU APPLICATIONS
SYSTEM DESCRIPTION

LOOKING AT THE ADDER CODE
LOOKING AT THE BLINKY CODE

LOOKING AT THE INSTANTIATED MODULES
CODE

PROGRAMMING THE ADDER INTO THE BOARD

SCHEMATIC RTL DEMO

EDA TOOLS
First let me tell you about EDTA tools so in this project we'll get to
know what the tools are.

We'll see some examples of EDTA tools that are available out there
and we'll get to know the typical features of EDA tools. So let's get
started.

WHAT'S EDA
First what exactly is EDTA. Well the A stands for electronic design
automation and that's what it means. It means automating the design
process of any electronic devices by electronic we mean hardware
usually. But it also supports software so these are software suites for
creating hardware. That's a nice definition of PDA. They are similar
to IV's which are integrated development environment for creating
software. So you may think of Cold Warrior or Eclipse or Visual
Studio.

These are integrated development environments but either way tools
are something else but they are similar to ideas in that they have
several modules that you can work with and you can make different
projects with different objectives. So you are not completely
expected to know how to use the whole suite but rather just the parts

that apply to your design. Of course you learn as you get more and
more experience so here we have an illustration of the value Design
Suite which is one of the tools you'll see in this project. And this is an
FPGA designed too. There's a distinction between traditional IDEO
tools and just FPGA tools.

EXAMPLES OF EDA
TOOLS

So here we have some examples of EDTA tools we have out young
designer which specializes in hardware simulation and printed circuit
board design. We have Eagle which also has a simulator but these
two are mainly for designing BCBS.

We have the father Design Suite which is for FPGA. We have courts
we have multi Sim an ulti board which are National Instruments tools
for simulation and PCV design respectively there's a nice tool called
fitting which is a simulator for creating both picked a graphical
diagrams in a bread board and simulation Jacob is a very popular
open source tool for PCV design.

TYPICAL FEATURES OF
EDA TOOLS

So let's talk about the typical features of PDA tools. First we have
schematic capture. This is where you enter a schematic diagram
which is a graphical interface. We have HDL code entry with a text
editor to enter very low or V HDL code.

Most of these tools have a simulator either analog or digital or mixed
mode of course we also have FPGA design. This is the part we are
interested in. We have software development and PCV design.

SIMULATION
So let me quickly summarize what simulation is in an easy way to. It
means gathering data from the circuit models you are using in your
design so that you can predict how the physical circuit would
behave. Now there are several levels of simulation you can run so a
simulation has the following elements.

We have digital simulation which deals with zeros ones high
impedance and unknown states but that's it. It doesn't deal with
voltages and currents. If you need those we have analog simulation
which can simulate an amplifier for example or a low pass filter and
finally we have mixed mode simulation. Let's say you have some
logic gates in your design and you have some up amps and you
want to see how it would behave in the real world. You can run a

mixed mode simulation which is actually the same analog simulation
with analog models for the digital elements.

There is also microcontroller and FPGA simulation in case your idea
too supports microcontrollers. It could have a simulator that works
just as the microcontroller would work with your code so it requires a
compiler tool usually. And as for FPGA simulation what we get is a
simulator for the digital part. So I guess that would be the same
digital simulation we just saw so here we have a nice simulation in
multi Sim. This is National Instruments simulator and as you can see
here we have an inverting amplifier with a part on the feedback
resistor so we can change the game. We have an oscilloscope at the
output right here so we can see the signals and it's connected to
both the input and the output in its two channels. So here's the
result. And while the input comes from a function generator. So this
is a nice example of a very popular analog simulator.

PCB DESIGN
PCV design is another feature of EDA tools which is very popular.
Actually there are some tools that are only used for PCV design by
their users and sadly most of these tools are underutilized because
again people use them only to design pieces when they have a lot of
other features. But anyway for PCV design what we need is routing
of copper layers so remember a PCV has a lot of conductors which
are printed on the board and these are layers of copper and the
routing of copper layers is a very hard to solve computational
problem. If you know about computational complexity you'll know
about and beat problems. So this is an empty heart problem which is
as hard as the hardest computational problem out there. And I'm
mentioning this because this consumes a lot from your computer.

If your PCV tool contains an outdoor router and I'm talking about a
good auto router we also designed the silk screen layers which are
the layers that have text or logos on them. These are usually white
and this one for example says the number of the board right here. It
says pick some number Development Board and notice that the text
is flipped. That means that this text has to be printed on the other
side of this board. We also designed the Sadr mask which are the
parts that are shown here in green. So these are the pads where
Sadr would go and BCBS usually have a coating of some material
very similar to nail polish which prevents Sadr from sticking into the
tracks and only allows you to Sadr where you are supposed to Sadr.
So these green parts are where the Sadr mask would not go. So the
Sadr mask is the coating. And again this layer should be a negative
layer which makes rings around these green pads where the coating
is not supposed to go. We have drilling files that tells a drilling
machine where to punch holes. So all of these pads are supposed to
have drilling on them because this is a through hole PCV not a
surface mount PCV and finally PCV designed tools also offer design
rules check. So there are some guidelines provided by the
manufacturers of BCBS because you are going to send your design
to some factory to be built. Usually in high quantities and so these
machines have some guidelines some requirements for example the
clearance you need between elements and the clearance you need
between the tracks and the borders. All of these rules are checked
by the software in order to comply with the requirements of the
manufacturing machines. You are going to use. You may build your
own boards either manually or with some machine and even then
these rules are useful.

SOFTWARE
DEVELOPMENT

As for software development this is included in 88 tools mainly
because of the microcontrollers or the soft processors. Your design
may contain some elements of software development tools are
actually the same ones found in 80s. So we have a text editor with
usually syntax highlight to create your code and show it to you later.
We have a compiler assembler a linker the works a compiler tool
chain we usually have a D assembler so that you can see that this
assembly as seen in this picture right here where you can see how
your source code resulted in assembly code.

We also have a debugger and in this picture we have Kyle tools
showing exactly that the debugger. So here are the registers of an

arm cortex CPA. Here's the source code and here's the
disassembled code. Here we have some variables that can be
shown to you in runtime. And this debugger usually contains a
simulator so you can simulate whatever you're designing or you may
download your design to an actual microcontroller. And from the
microcontroller report back to the I.D. to show you the same
debugger but with real data in these registers or memory location
watches.

EDA TOOLS FOR FPGA
DEVELOPMENT

Now what we are most interested in are LDA tools for FPGA
development so in this project we'll talk about just that idea. Tools for
FPGA ace. We'll talk about the usual user steps the steps you need
to take in order to create your FPGA applications.

We'll talk about the usual compiler steps which are the steps taken
by the software and that's it. Now I want to make a little disclaimer
please bear with me in this project because it contains a lot of the
elements we already saw in the previous projects and I think that it's
not only important that you keep all of this in mind but I will also
mention some new important details so let's get started.

THE USUAL USER
STEPS

Here are the usual user steps the steps you need to take to create
your FPGA designs. So first you create a project. Then you write
your code and then you usually simulate and there's a loop here. An
explicit loop I have created here so that you can simulate and when
you find out that your circuit is not behaving as you want it then you
rewrite your code or modify your code rather simulate again modify
your code.

And when you're happy with your design you can go ahead to the
next step. So the next step would be the implementation if you want
to get your design into NAFTA. Then you have to assign the pins in
the FPGA package then specified timing constraints which are your

timing requirements. The most basic of these is the clock frequency.
You want to support. Then you compile which is what the computer
does on its own. And finally you can download your design into your
hardware that is your FPGA or most likely your development board.
Now let me quickly tell you some details about all of these steps.

CREATE A PROJECT
The first step is to create a project so ideal tools usually work with
projects. And so you have to provide some information for the tools
to know how to create your application. So first we have the purpose.
You may simply want to simulate your design or you may be
interested in getting it on an FPGA. So as we just saw simulation
requires about three steps. But FPGA design requires many more if
you want to design for a target FPGA.

You have to specify which chip you are using the target board if your
tool supports several implementations of the same FPGA on
different boards. Well you get to specify it. Now this is usually kind of
optional but you get sometimes to specify which is the language you
intend to use for code entry. Very logger v HDL but most tools are

bilingual and you usually get to select which IP project that's third
party source or libraries that you get to include in your project.

WRITE YOUR CODE
The next step is writing your code and once more. Most idea tools
support very low end VH deal some tools support schematics but
these schematics aren't really for writing your code. These are
usually for showing you the net list created by the Synthesis tool. By
that I mean what your tool interpreted what it understood from your
source code in very low or VH deal. So these schematics are for you
to validate that the tool got it. The tool understood what you intended
to create. There are two types of schematics shown for example in
the other.

We have RTL schematics and technology schematics. The RTL
schematic is a logical schematic which may show you gates and
multiplexes and flip flops or even decoders whereas the technology
schematic is limited to the technology available inside the Target

FPGA chip. So let's say your FPGA contains Gates. Then the RTL
schematic will show you those gates and the technology schematic
will also show you those gates. But on the other hand if you're FPGA
as most FPGA does not contain free gates for you to use but rather
lookup tables then the technology's schematic will show you. Lookup
tables and going back to writing your code you have to include all
modules you are going to use in your project. This is just the same
as with software development but you don't have to write the source
for all of the modules you're going to include. You can use IP project
that are available from the vendors and many of those IP project are
available for free.

PIN ASSIGNMENT
When it comes to assigning pens the EPA tools that support
implementation usually allow you to enter some important
information about these paints so you get to specify the location of
the pins that is which physical pin in the FPGA chip goes to which
input output bought off your top level module.

You can indicate the direction of the pin either it's an input pin an
output then or a bi directional pin your inputs may be Schmidt trigger
they may have pulled resistors either pull up or pull down resistors
you may specify even analog details about them for example slow
rate and there are many many more aspects you may specify of
Europeans all of this may vary from idea a tool to EDI to but this
information usually is stored in some text file that you may modify.

THE USUAL COMPILER
STEPS

No the compiler steps are synthesis. Translate map place route
testing and generating a programming file. These are the steps
shown in the site links tool chain. That is the one used by the vato
Design Suite and their names may vary from tool to tool. Actually
these may have different names in quotes for example so synthesis
means converting your RTL design into a net list representation.

Like I said this means what the compiler understood from your very
logger VH DL source code implementation means three steps
translate map place and root. So going back to the flow diagram we
can see these steps which are shown right here. Translate map
place and route. So once again these three steps are what's usually

known as implementation. This is what the compiler does to create
your design for an FPGA. The difference is that synthesis is
performed for both implementation and for simulation. So when you
simulate the compiler has to understand what you mean with your
code. So synthesis is always performed and then the implementation
has these three levels once again these three steps are named
differently between platforms. So roughly translate means getting the
net list into some code that the FPGA can create.

So the translation may produce an intermediate representation of
your hardware then map consists on assigning the intermediate
elements to the available elements in your FPGA and finally placing
root means selecting which elements which were mapped are going
to go where in your FPGA and routing between these elements to
create the already mapped design. You don't have to do anything
about these steps and they may output some errors or warnings
which you may have to correct in your code but this is all the
responsibility of the compiler. You simply have to sit back let it work
and see if the output prompts you to do some changes.

TIMING ANALYSIS
There's a timing analysis that the tools often enabled you to perform
and this is to test the implementation you just made.

So when your design was implemented these implementation steps
will have taken into account the timing constraints you must have
entered and these timing constraints are considered rules for the
implementation. So the generated circuitry is then analyzed by the
tool to verify that it compliance with all of these constraints.

GENERATING A
PROGRAMMING FILE

One of the final steps is generating a programming file. Intel calls
this assembly code but it's not the typical assembly code in
microprocessors sailing schools it bit stream which is I think a better
name. This is only a binary file. This file may go to the FPGA which
usually has a RAM memory to store this design.

You know what that means. That means that when you turn off the
power then the design is lost. So it may also go to a onboard flash
and FPGA are usually designed that way. The chip has a RAM
memory to store the design in the FBI and it's usually required to
have a supporting flash memory onboard to dump that design into

the FPGA on startup so let me tell you a bit more about this last
point.

DOWNLOADING YOUR
DESIGN INTO AN FPGA

Downloading your design into the FPGA means that it goes to a
RAM memory because most FPGA A's have a RAM memory where
they store your design. You know what that means don't you. That
means that this is volatile. So when you turn off the power the design
is lost. Does that make sense. Well it makes sense in that Ram
memories very fast to use and to program so downloading to the
FPGA directly is convenient for development because when you are
developing your application it will load faster and you're usually not
interested in keeping that design in your FPGA anyway.

Now when you download your design into a non-volatile memory
that's usually on the same board as the FBA. Well that gets

downloaded into the FPGA at power on notice that when you
program this memory it will take longer than when you programmed
the RAM memory so that's not so convenient for development and
this download process that goes on from the RAM memory into the
RAM memory that's into the FPGA. This is all part of the boot up
sequence of the FPGA. So any applications you know like your TV
or your smartphone or whatever electronics you have that contains
an FPGA if that FPGA implements his memory in RAM it must have
some non-volatile memory onboard that as part of the boot up
procedure dumps this design from non-volatile memory to Ram and
finally. Well this is convenient for deployment when you want to ship
your designs you programmed the flash memory so that every time
the user turns on the device your design will be loaded into the
FPGA at power on.

QUARTUS PRIME, BY
INTEL

Now it's time to talk about quietest prime so let's see what we'll talk
about in this project. First I'll tell you about Clark toast prime and
intel. I'll tell you about the setup that's required to install and get your
environment up and running.

I'll give you a quick walkthrough of this PDA too. I'll show you a code
example then a simulation. And finally an implementation. That's
because I will show you all of the steps that are supported by this
very powerful tool. So let's get started.

ABOUT QUARTUS AND
INTEL

So let me tell you about Curtis and Intel. CURTIS Prime is a full-
fledged FPGA development tool. By that I mean that it supports all of
the steps we have just mentioned for FPGA development. So this
includes simulation and implementation. You may remember that this
LDA tool is featured in our second project. The basic FPGA training
so you may have some practice on this tool. But anyway I hope you
learn some new tricks as you see the examples I'm about to show
you now.

Although Quark This is a commercial application Intel offers some
free versions and licenses that are free of cost and these usually
have some classes that require you not to charge for your designs

and these are also limited in this size of the target application. But
these licenses work pretty well for development boards for hobbyists
and definitely for discourse. Now the setup starts at download. You
get to download several modules into your installation of quarters
and Intel makes it easy for you to choose which elements you want
to include in order to make both your download later and your
installation process faster needless to say. This is an Intel product
but you may also know that until recently acquired Altera which was
the original company that developed both Quark Does Prime and the
manufacturer of all Altera FPGA. So if you were familiar with ultra
well now it's Intel. It's been some years now since the acquisition but
you may still see the Altair a name out there in some FPGA is.

SETUP_ DOWNLOADING
QUARTUS

So the first step in using cordless prime of course is downloading it
and so you can make a web search. Here I have a Google search for
cactus. It's not a very common name. So the first result is FPGA
design software. Intel called the spring. Just make sure you go to
Intel's Web site. So this is the core. This Web site if you scroll down
I'm sure you can find the download space which is here features and
download and we have several versions. So we have the prime pro
edition the prime standard edition and the prime Late Edition. This is
the one you want if you want it for free. So this is the download page
and I think it requires some explanation.

So first you get to decide which edition you want. We have the pro
the standard and the light editions. Once again we want the light
edition and you get to select the version the release. So as you can
see we get from nineteen point one which is the latest all the way
down to version 3. So as always I recommend the latest version. But
there's a little problem with this one and that's if you are using
windows you can't select windows for this one because as this note
says it's not ready yet since I'll be working with Windows.

I'll work with the earlier version if you're working with Linux and you
want to use release nineteen point one You are free to do so. But I
will select eighteen point one as you can see now I can select
windows and scrolling down you will see all of the elements you can
download. So right here you get to decide if you want to download all
of the files combined into one single download which is not usually
recommended because of the size of the download. This is five point
eight gigabytes. And the default is individual files in this tab right
here. And you'll notice that there are several separate elements. It's
not that complicated. You just have to download the executable files

you want. In my case I will download quite as subprime which is the
FDA too.

And I will download model Sim which includes the FPGA edition and
the Starter Edition. One of these two is the one you are interested in
and finally you get to decide which devices you want your installation
of characters to support. So Altera or now Intel has several families
of FPGA. One is called Aria. There's the cyclone family with several
versions. The max family. So since I will be using the DS
Development Board let me show you. This is the board I'll be using.
This is the D 0 CV board where CV stands for cyclone 5. Then I want
to support the cyclone 5 FPGA base and I'm sure you can
distinguish a cyclone right here which is the logo for the cyclone five
FPGA is so this board has a bunch of IO some switches some LCD
some segment displays buttons and a connector with access to
virtually every pin in the FPGA. So going back I will select cyclone
five device support if you have any other development board and
you know the FPGA it has on it then you should select to download
support for that FPGA as well.

SETUP_ INSTALLING
QUARTUS

So here we have what I've downloaded. Here's the installer for
Courtis. Here's the support package for the cyclone five FPGA and
this is the model Sim installer. Now the quietest does installer is
smart in that it will check in the same directory for the other
installers.

You may have downloaded and it will offer you to install them along
with quarters. So let's don't click on the quietest light setup so first.
Just make sure that you're installing the free edition. That's the LATE
EDITION. Next we have to agree to the terms you get to choose the
directory where you'll install and this is the part I told you about
where you get to choose which elements to install. Now the

elements that appear here are based on the other installers you've
downloaded for example here we have the quotes to subprime Late
Edition installer but then we have devices here and only one is
shown which is the cyclone 5 and that's the download. I have along
with Curtis right here.

Notice that I have models him also in this directory so model same is
shown here. Now the default is to install the Starter edition of model
Sim which is set to be free and we also get to install another edition
that doesn't see starter just until FPGA edition. So it seems this is all
we need and we are okay with these default settings so we are okay
to go to the next step which is a summary and we get to install now.
And as you know this may take a while once it's done you get the
usual stuff among which we have to launch the USP blaster to driver
installation. So this is a device driver for the hardware downloader
into many of Intel's boards. So you want to do this and here you just
have to follow along finally you get to choose the license if you want
to buy a license or just run Cordis. Remember that this is a late
edition so you get to run it for free.

WHERE EVERYTHING IS
- PROJECT NAVIGATOR

So once installed quarters is ready to run any simulation project you
want. So this is the welcome screen where you get to choose which
project to open or to create a project and all of the things we have in
these buttons right here. So right now there's no project open but let
me show you where everything is so he read the left we have the
project navigator. Where do you get to see all of the data regarding
your open project.

And here we have a dropdown where you get to choose the aspects
you want to see in the project navigator regarding your project. For
example here we have hierarchy. You can see the files the design
units the AP components and the revisions of your project. So it

comes down to what you want to work with which level of abstraction
you want to work if you want to simply see the files you can select
files if you want to work with your units will you select hierarchy.
That's why this is the default.

WHERE EVERYTHING IS
– TASKS

Next we have the task section here where you can find all of the
steps of the synthesis or implementation process you want to
perform. And like I mentioned before these steps depend on the
objective of your project. So you get to choose that objective in this
dropdown right here. So this is for compilation but we can also
choose a full design a Gates level simulation on RTL simulation or a
rapid recompile. And if you choose any of these elements you will
see that the steps shown in this list will change. For example this is
for a full design. And here we get compile design we get verified
design export database archive project and as a final step in
implementation we are usually interested in the programming file. So
that's what this step is for. It says program device open programmer
going back to the objectives of your project. We get a great level
simulation where you get to finally run a simulation. We get to
perform timing analysis and we get some steps all the way down to
Gates level simulation.

However with the RTL simulation we get only one step after analysis
and elaboration which is RTL simulation. Again the difference
between RTL and gate level is that Gates level takes the lowest
elements into account whereas RTL will base only the semantics of
your very log or VH HDL design. Moving on at the bottom we have
what we usually have in any idea which are the output sections. For
example here we have the error messages warning messages some
more warning messages. So these are critical warnings and these
are all warnings and you also get to choose which messages you are
seeing. So that's what these taps right here are for. Next we have at
the middle. These buttons right here which are simply shortcuts to
perform several operations since we don't have a project yet. This is
like the welcome screen. It's called home. So we get to create a new
project. We could open an existing project and we get a bunch of
tools right here to assist you in your development process.

WHERE EVERYTHING IS
- IP CATALOG

At the right we have the AP catalog and this is very very cool. So you
get to choose all of the AP that's available to you either with a
license that's commercial IP or open source IP or even educational
IP. So the structure goes like this. You have a top category right here
that's called installed IP. You could search for partner IP this takes
you to the intel Web site and you get to perform a search for IP. So
there's a wide variety of elements available let's go back and looking
at the installed IP you'll see that there's already a lot of IP available
in the installation.

So here we have a project directory since we don't have any project
open. Well nothing is shown here and then we have a library. So

here we have basic functions arithmetic bridges and adapters clocks
you name it. So let's see for example arithmetic we have let's say
Altera floating point functions multiply other intel FPGA IP etc. We
have memory interfaces and controllers for example here's
something for a flash memory.

This is a generic quad spy controller but what I want to show you are
these two elements processors and peripherals which are soft
processors. So here we have code processors so here we have
NEOs to custom instructions so here we have instructions you could
make on your own for the NEOs too. Next we have heart processor
components where you get to implement peripherals for heart
process source that are included in your boards. And here we have
peripherals. So we have a night to see slave an interrupt controller.
And if all of this seems very limited to you. Well we have the
university program section right here where we have a bunch of stuff
for you to use freely with educational purposes. So here we have
audio and video elements. We have clock elements communications
generic IO and as you can see we have a U.S. B controller here for
example. So you don't have to create your own and other memory

we have a nice room controller. So this is a very nice library to start
working with I.T..

SETUP FOR
IMPLEMENTATION

So if you want to create your implementation project to download
your device into an FPGA you will need to do some setup. And for
that you can ask to create a new project. Here we have some
instructions and here you have to enter some things first your
working directory. Second the name of your project. And finally the
top level design entity of your project. That's the module that will be
either downloaded to your FPGA or the top simulation module so let
me create a directory called EDTA tools quarters. Let's name this
project. My D 0 CV. Why. Because I'll be using a D 0 CV bought
automatically the name of the project is copied to the top level
module.

I'm okay with that. So this is where you get to download your
templates for the board you are using if you want support for a
development board so you can always create an empty project
where you'll or all of the data by yourself. This will be kind of an
advanced thing for you. So if you want to support your board for
example that the e 0 CV by thoracic then I recommend you choose
project template. Now let me read this part. It says create a project
from an existing design template. You can choose from design
templates installed with the quarter spraying software or download
design templates from the design store. So if we click Next we'll see
the design templates that are available in your installation. These are
most likely up to date until the latest update you have performed on
your software. So that's not always the best choice so I recommend
that you go to the design store and download the latest support for
your board. So let's see this link design store. This will take you to
the intel Web site again. And here you can look for your board. So
let's look for my these zero board which is a cyclone five. Let's see
the categories available. We have designed examples and tutorials.
Let's leave it at any.

Let's see the quarter subprime version. We are using eighteen point
one. And here we get to choose our board. So let's look for the
easier aero CV development board right here and we also get to
choose a knight core. We are not looking for anything in particular.
So that's all we need. And here it is. It's this logic solver. This is an
example. And it's for the DRC v Development Board. So all you have
to do is click here on the name of the element and you'll get a
download link. Right here. Notice that if we go back to quarters
without downloading this we'll always get this part of the Wizard
where you'll see the installed elements. Let's look at it at this point
let's click next. So here we can see the supported elements. Let's
see if we have the D 0 CV. Yes. Here it is.

So let me choose from this list. The zero CV Development Board.
And these are all of the available elements as you can see there are
several versions here. And the difference is not the template version.
They are all 1.0. The difference is the software version. And as you
can see the first two elements are virtually the same. There are no
differences in their specification.

So I can choose either of these two. This one says cyclone 5 the
zero Development Board baseline burnout. So this has all of the spin
assignments in the board for you to use on your top design. You
could always use any of the others. And we even have an example
design which is this logic solver. This is the one we saw online. So
as you can see it's already installed. Let's go back to the browser
and let's look at the version of this design so the design is also
version 1.0. The device is five CB A4. That's the FPGA which is the
same for all of these devices right here and the version of Cordis
prime is eighteen point one. So what they are seeing here is that this
version of the design is supported by our version of quietness. Once
again there's no need to download it since we already have it here.
Now that's not what it says right here. It says warning this elected
the same template is not supported in the current version of the as
spraying software download the latest version of the design template
from the design store. So here are again the instructions to add
design templates first download design templates from the design
store second install the design templates. This is another link. And
here you get to install them. You get a dot bar file. And here is where
you will install it. That's the destination. Notice that the suggested

directory is the one for my project not the installation directory for
quarters.

OK so let's go download that design and see how it looks in this list.
Let's go back and download. We have to agree to some terms and
we get to choose that file from courts. So here it is logic solver gooey
duck bar. Let me click OK we get a message that the installation was
successful and now the design should appear here. Let's select the
D zero C.V. once more and here it is. Now it's the first one and you'll
see that the software version is eighteen point one. Once again
since the template version is 1 all we can understand by this is that
this version was already supported but the download we just made
informed the idea about this support. So I question how necessary
that was. But for example if you have another board that is not listed
in here or some example that is not in this installation you can
always download it following these steps. That's why I've been
showing you all of this. So let's click next and we get a summary so
we get to click on finish after a while we get our design finally open in
quarters. So at the left we get the hierarchy with the logic solver

shown right here. Remember this is an already made design so it
has a bunch of code in very long and it's a nice application but it
requires some explanation and I encourage you to go through the
code and try to figure out what it does and maybe even download it
to your DRM CV board if you have one. But for now let's see how we
can make a design of our own.

HELLO WORLD - CREATE
A PROJECT

So now let's create a project of our own. And for that we need to
click on new project wizard next. And a very important thing is that
we are not supposed to work on the same directory for different
projects. So I'll rename this the latest project was on a tool Skordas.
So let me name this quietness.

Hello the project will be called Hello World. Next we'll create a
project template again but this time we'll create an empty project for
that the zero CV board. Well not exactly an empty project but the
baseline keynote project once again we get the message that this is
not supported by our version of quarters. But I say let's take our
chances finish.

HELLO WORLD - TOP
MODULE SOURCE FILE

And in here we get one single design that says the zero CV golden
top after opening it will see a big comment right here with the
copyright and information about this project and then we have a
bunch of defined statements which are very very useful they say
define enable clock to clock three clock for enable every device on
the board.

Hex 0 x 1 which are the hex displays enabled key for the key arrays
or the buttons. We have the switches right here. Enable as W. ala
the R which are D LCD onboard. And if you leave all of these defined
will all of these elements will be included in your design and the way

you a Yank did this is by entering. If def statements to include
conditionally all of these parts or rather bought off your top design.

So this is a very elegant way of creating something flexible for
everyone. So let's say we want to create a simple Hello World. By
that I mean something that copies the states of the switches onto the
LCD. So we only need the switches and the LCD if we want to do
that then all we need are the switches which are these enable as W
and the LCD D.R.. The rest should be commented out. So let me do
that as you can see all I'm using are LCD are and S.W.. I don't have
to delete anything here because this is all conditionally included with
if def statements.

HELLO WORLD –
IMPLEMENTATION

And as you can see the module is empty. So let me open up some
space here. And this will be very very simple. Let me just assign the
D.R. to S. W.. I presume that's confirmed the names as W check.
And early these are as you can see the LCD are 10 from 9 through 0
and the switches are also 10 from 9 through 0. That's it for our
design. Now let's see how we can make it run. Remember that this is
an already pre written project.

So Altera or intel must have gone through testing all of this code and
we haven't done much programming here. We've only added one
single statement which we are positive. It's correct. And so we'll get
to pass all of the steps. So let's look at the left. We have compilation.

This is the compilation purpose of the project and in the compilation
purpose is where we get to program the device in the end. So we are
good. This is what we want. Remember that we could select to
perform only a simulation in the gate level or the RTL level.

We can also go to full design which allows us to perform a lot of
verification after we have downloaded our prototypes. But let's stick
to compilation and you know what. In almost every EDTA too if you
choose to perform the last operation you want all of the required
operations and only the required operations will be performed. And
so we can rest assured that we can simply generate the
programming file by choosing this element right here. So we only
have to double click on assembler. Let's do that we have to save our
changes and of course this will take a while. You can always see the
messages in this section below now. This is embarrassing. We got
four errors let's take a look at the messages and we got a never in
line one fifty five. It says syntax error near text closing parentheses
so the syntax error is close to this 9 0 and I see the error remember
how I told you that Intel or Altera should have tested this code. Well
apparently they didn't. If you get to use the switches or any other

elements but not the V-J you would still get this comma here and the
ports list is supposed to end without a comma.

0

So that's a rookie mistake not made by me. But I know what I can do
to fix it. I can simply delete this comma and let's try it again generate
the programming files. Let's double click here. Let's save and
hopefully wait for a while to get a success message. All right. So
finally we have success right here. It's this quietest Brian flow was
successful. It has zero errors but it has a lot of warnings and with as
many as one hundred and ninety seven warnings I must at the very
least urge you to take a look at them. Remember that a warning is
an error waiting to happen anyway. That's keep on taking our
chances. Please bear with me. So now we get some reports we
have a table of contents here with all of those reports. So here's the
flow summary. Remember flow means the whole tool chain. And by
that right now we mean only analysis and synthesis the. Which is
what Intel calls police and route and the assembler or the
programming file generator. Basically we have synthesis
implementation and programming file generation. The steps we
recently became familiar with. And so here we have all of the results.

If you are interested in looking at them and you can look at a lot of
stuff here which will become more and more relevant to you as you
gain experience. So now all that's left is to download this design into
your the zero CV board which is what we'll do. Up next.

HELLO WORLD -
PROGRAMMING THE

FPGA
So now let's get this design into our easier CV board. So all we have
to do is go to the tasks section and scroll down to program device.
This will open the program application so let's do that now in order to
use this application we need to connect the board to the computer
with a USB cable. So let me do that and noticed that the demo
application is running with a count being sent to all of the displays
and the LCD also blinking and if this is the first time you connect
your board to your computer your operating system will ask you for
permission to use it.

You may be asked to install some drivers but you must have installed
the USP blaster already when you installed cordless so here we
have the target device. And on top we have the information for the
application we are going to download into it. For now the defaults will
do which is only program and configure and at the left we have the
tasks that we may perform. But notice that we cannot push this Start
button because the hardware isn't recognized yet. So we have to
click on hardware setup and we should be able to find our U.S. be
blaster somewhere in this list.

Here it is. So we must use this dropdown and select the U.S. B
blaster. That's it. Now we may close and we are good to go. Let me
click on Start and as you can see at the right we get 100 percent.
This was supposed to be the progress but it happened really fast.
And it's this successful. So now if we pay attention to the board you'll
see that the states in the switches are replicated by the LCD which is
what I wrote in the very loud code. Now remember this is in REM. So
if I cycle the power to the board you'll see that the demo application
is running again.

EDA PLAYGROUND, BY
DOULOS

Now it's time to talk about EDTA playground so let me tell you what
we'll see in this project. First I'll tell you about a playground and its
vendor Douglas. We'll talk about the required setup. I'll give you a
quick walkthrough of PDA playground.

I'll show you a code example and some simulation. Like I said before
even a playground does not support implementation so that's where
we'll stop at simulation so let's get started.

ABOUT EDA
PLAYGROUND AND

DOULOS
So let me tell you about E.D. a playground and do loss in a
playground is an online tool. That's why the logo has this big cloud
right here and being an online tool has a lot of implications. First you
don't have to install anything. Second you get to run on many many
many platforms because you have several operating systems and
several web browsers. So it's a very convenient tool. If you've been
taking the whole series you may remember that this tool is featured
in our first project the very low HDL project and we saw how to
simulate on a playground. Again in this project I'll show you some of
the tricks we saw in the first project but hopefully you'll get to learn
many more tricks and even reinforce what you learned in the first
project. A very cool feature is that it's free.

You don't need to pay anything. All you have to do is register. You
can do that with Google or Facebook or with your personal e-mail
account one of the coolest features of PDA playground is that it
supports a lot of languages and tools it supports very low the HDL
system very low. And I've seen some other languages there. As for
simulators it supports a lot of simulators. The one I like the most is
Icarus very long because of two reasons. First it's free and second.
Well I love very low and speaking about free tools. There are
commercial tools like simulators in a playground but you don't have
to pay for them. You simply have to verify your account. I'll tell you
how later. And finally the playground was made by Douglas. This is a
company that specializes in trainings. So you may want to check
their Web site which is to list dot com and you may learn a lot for free
from them. This is a very very cool company.

EDA PLAYGROUND
SETUP

So here we have either a playground as you can see the U.R.L. is
either a playground dot com. Now let me show you the requirements
for this software so I'll show you this setup. You need to perform in
order to use this application needless to say this is an online tool so
you only need to have a good browser and a good operating system.
The requirements are pretty much what you would use with any
other online tool. Nothing fancy.

So Google Chrome or Firefox will do in either Mac OS or windows or
pretty much any distribution of Linux so that's for the technical
requirements but to use this tool you'll need to create a user. So let's
go here at the top right. And here's the log in button. So let's press

this one and here you get a screen where you can choose which
type of user you want to create. So you get two options. You can log
in with your social accounts. That's Google or Facebook or you can
create your own user to I.D. a playground.

Now here's a nice note that says if you wish to use a playground as
a playground please log in using your Google or Facebook account
via the links above. So this is the recommended type of user. But
with this user with this regular user you'll get to use only non-
commercial simulators like Icarus very like for example. This is the
one that I'm using in this project. And that's the one I usually use. But
if you want to use a commercial Simulator you'll have to register fully
as a full access user. And this only requires a second step of
verifying your e-mail address. This registration is still free. So there's
no additional effort on doing this anyway. Let me log in with my
Google account and once you've created your account or once
you've logged in this is the screen you'll get which is the EPA tool
itself so to use this tool you can simply start editing the code and you
can save your designs right here at the bottom. And this is what
you'll learn how to do. Up next.

WALKTHROUGH_ CODE
ENTRY

So let me give you a walk through of the elements an idea a
playground. So the first thing I'll do is show you where everything is.
So like I said First we have the added windows right here. We have
to edit windows because the one at the left is the test bench module
you will use. And it has the name test bench. That is v for system
very long. And at the right we have your design your top design or
your many designs. Actually this one is called Design dot as V and
you cannot change these two names. You can however change the
names of the other modules you enter. So for example to enter a
new design you can enter it here with this plus sign and you can
upload your files or you can create a file. Let's create one named my
gate. So here it is.

Let me just write this new module. My gate which has an input a an
input B and an output C and let's say this will be a NAND gate
Nothing fancy here let's say that my top design uses that NAND gate
for example my device lets say that it has three inputs A B and C
and when output X and let's say this uses to cascaded NAND gates.
Notice that the result will not be the NAND operation between A B
and C but rather the composition of two NAND gates so I'll use one
my gate name energy one which takes in A and B and outputs a wire
named temp and my other gate will be called MDG 2 which takes in
temp and C and outputs X so that's it. That's a top design I'm just
doing this for you to get familiar with code entry. Now at the left I can
make my own test bench so I'll make a module my device D.B. you
know I like to keep some naming convention for test benches and I
usually named them as the module I'm testing underscore DP for
test bench and then right here let me just instantiate one my device
module so it will be called duty for device under test under score my
device let me declare some stimulus variables so these will be
registers X Y and Z and I'll use a wire for the output let's name it my
out so my device under test will receive X Y and Z and it will output
my out. Now let me set the simulation right here and I will stop the
simulation with the stop task and let me use just one task that says
display Hi there.

WALKTHROUGH_ LEFT
TOOLBAR

Let's run the simulation. And for this I will be prompted to select a
valid tool or simulator. So that's where we have the whole flow of
development at the left. So here we have languages and libraries.
We also have another section for tools and simulators. We have
examples we could use and we have community resources. So
looking at languages notice the system very low and very low is
already selected but we could use some other languages even
program in languages like perl or C.. But here we have system very
low and the HDL will stick to very low. These are verification
languages we are not using these. So we will not select any. We
could use libraries also but we are not using them. So I'll collapse
this and I will expand tools and simulators. The simulator I usually
recommend is Icarus very low. And the version I like is the latest
zero point ten. Here you get to enter some options for the command
line and notice that if I tried to run this I may get an error we may
save our design and if you want to save your designs you get to
enter a name and specification for it. So if we hit save this will be
saved without a name. And it's always a good practice to name your
projects. So this is where you get to do that. I'll name this one
walkthrough through of FDA playground for the description. I will just
enter a walk through a PDA playground for the FPGA and better
designed project series. And you get to set the visibility of your
project right here. You get to make it public so that anyone can view
it but you can make it published so that it appears in search results.
So the published visibility is more accessible than the public one and
you can make it private so that only you can see it. Anyway we'll
leave this as published so you can look for it if you want. Let me
press save and now we get to run our simulation because we have
selected a tool. So let me hit run and we get an error. It's this syntax

error in line eleven of the test bench. And as you can see line eleven
is the end keyword. But previously my stop desk didn't have a
semicolon. So that's a rookie mistake. Let's run once more and this
is the error. I told you about so we get that in lines four and five of
these signed up as V right here. Lines four and five have an
unknown module type. That's my gate but my gate is already defined
here. So you are supposed to tell the truth Jane about all of the
source files you are using. So you get to put this in the compile and
run options which are the command line options. So let me just enter
that in this line it says w all and G 2012. That's the version of the
compiler and first let me change the name of this file. My gate I
forgot to put an extension to it. I'll name it my gate that V. Not that it
matters. You may name your files as ever you want but to include
them in your project. You have to add their names after all of the
options you have entered here. So let me type in just space my gate
that V. If I had any more source files I would just add them here
separated by spaces for example more dot the and now let me just
click Run and there it is. It did compile it synthesized All right and it
sent the high their message to the output right here. So here's the
output I sent. And as you know I may run a simulation here changing
the stimulus variables x y and z to see how my device works. You
may want to do it as an experiment.

Now notice that the stop task didn't actually stop my simulation. I
have to click here on stop and now notice how the finish task works
let me hit run and notice that it says Hi there. And finally done so the
simulation did stop. So there's a difference between finish and stop.
I'll tell you about it a bit later so moving on under tools we get to use
E.P. wave which is the way form viewer from a playground and I
recommend that you use the way form viewer in order to see what's
going on. You can always report through display or monitor to the
console output right here. So you have many options. You can also
download your files after running by clicking here. Next let's look at
the examples. So here they are. We have examples for VHS Yale
very low end system very low and all of the languages that are
supported I invite you to browse and take a look at all of these
examples. You will learn a lot from these examples. And in the
community section you get to collaborate. You get to join forums and
you get to follow the playground on Twitter if you want. Speaking of
which in this shared tab you get to not only save your files but you
get to work with likes. The description has rich tech support with links
and other cool features and you can share your designs via Twitter
Facebook LinkedIn or with the link.

WALKTHROUGH_ OTHER
TOOLS

Moving on with the walkthrough let me just save and show you that
you can always get help from the documentation with this question
mark sign. Let's click on it. So here's the whole documentation of a
playground. So if you feel something's lacking from this project you
may always come here. Remember Douglas is a training company
so they have done an excellent job at providing free trainings for
their tools going back. We also get to see which apps are available
at the moment. And as you can see we have a playground and AP
wave. It is a playground it's just a link back to a PDA playground and
AP wave is well the way forum viewer.

Now this is an example wave that is being shown right here. I don't
even know which project it belongs to but anyway let's go back. And
here we have at the playground dropdown that you may browse for
your playgrounds or the published playgrounds. Let's take a look at
your playgrounds which are the ones made by my user. And you can
browse everything you've done here so I have all of the examples I
made for the very luck project available here. You may have already
seen these and at the very top you can see the walk through of a
playground. I just created no notice.

The visibility I've set for my project. Most of them are just public. You
can look for them under my user and there is just one that's
published. I wonder if I should make the other ones published and
notice that you get a very nice search engine here not specially to
look for your own projects but for the published projects right here.
Published playground so let me search for a project from this whole
bunch let's look for the one I just published walk through here it is.
Walk through of a playground user me and noticed that if we look for
a project of mine that is public for example Multiplex or buy a sign
let's look for it in the published projects it will not show so that

answers my question yes I'm supposed to make all of my projects
published so that you can look for them. As of this recording you will
find them all published and finally we have the profile dropdown here
where you get to set up your profile or log out. Let's see my profile.
Here you can see your playgrounds the published playgrounds
which are the two pages we just saw and your user profile. Now
here's a nice option I like to check. This is open E.P. wave way forms
on a separate page after run. That is because when you run your
applications with the way form viewer your browser will show you AP
wave instead of PDA playground so you won't get to see the code
and your way forms so that's it for the walkthrough. Now let's take a
look at an example design.

DEMO_ CODE EXAMPLE
So here's the code example I chose. This is an other name the ripple
other. So here at the right. Let me show you the source code so my
design is quite simple. It is a four bit other. It has an input a an input
B and an output s with a Gary output. Both the inputs and the output
are four bits. So I have three intermediate wires for the Kerry output
one two and three.

And so I'm using a half other for the these significant bits of A and B
leaving our least significant bit of the output s and I'm using the curry
output c 1. Notice that the half other only has four pins in it and then
we have full leathers which have five pins or ports in them. They
have the carry input so the carry output of each bit is the carry input
of the next one. That's exactly what a ripple either does anyway. This

adds to four big numbers and outputs a five big number or a four big
number with a carry output.

So I'm using a half hour and three full others. So here's my full other
dot v file which uses the very well known for other THAT USES TO
HAVE OTHERS AND THEN WE HAVE MY have other right here
which uses only an X or an AND gate now my test bench module
has one for a bit other instantiated with the stimulus variables here
and the output C which has 5 bits in it. So when I use stanza 8 I use
the Kerry output as C4 and the sum as C from 3 to 0. Anyway I'm
trying to add three plus four then zero plus five then nine plus two
then 10 plus 10 and finally 15 plus 15 I end this simulation with
finish.

DEMO_ SIMULATION
DUMP SYSTEM TASKS

Now notice the dump file and dump virus tasks right here. These
tasks are used because either a playground uses a synthesis tool
that provides an output this output for the simulator.

Since this is modular it may use one of many simulators the
synthesis and. Well actually this simulation has to finish in order to
provide the test that VCR the file. This file contains the gathered
information for the simulation and this file is used by ERP wave
which I will use to I must check here and EPA will take this file to
show us all of the way forms the dump virus task allows us to gather
information or to specify which variables we are going to dump into
this file the first number is the level of depth we want to use. We are

fine with level 1 but we could use any level between 0 and 2 if you
want to learn more about these tasks. You may make of course a
web search and you will see how to use it. For example here so here
is dump file where you specify the file and here Stump pass where
you specify the level of detail.

Now for this level of detail you have three options 0 1 and 2 so Level
0 includes all variables as you can see in this text with Level 0 you
will see the variables from the top level design and the instantiated
modules so you get to specify 0 and the top module. If you only want
to show what's on the top level you will do what we have on the code
which is Dunbar's 1 and the name of the module you are running
and level 2 shows all of the variables in the specify modules and one
level below it. So let's go back to our code. And as you can see we
have Level 1. So this will only show a b and c that sold you'll see
here if we wanted to look at the signals inside every full either and
the half others we could use level 0. Let's see the simulation first for
level 1.

So here's the simulation. Like I said it would show in a separate
window. Let me just resize and as you can see here we have three
plus four equals seven zero plus five equals five nine plus two
equals B A plus eight equals fourteen f plus F equals one. E if you
want to see this in decimal you can't but you can see it in binary. If
you want. Now notice the delays here. These are happening
because my source code specifies delays in the gates. That was part
of the main purpose of this simulation.

Now let me show you what happens when we change that level.
Let's put Level 0 here. This will show every level. Let's run again and
we are prompted to use the signals from a whole list that we have.
So we have to use the get signals button. Here's to get signals
button and here's the whole directory of signals that are available. If
a one has all of these signals inside. If a one we have half either 1
and 2 if a to have other 1 and 2 and so 1. So let's say we select all of
them all of the signals that are shown for FBA and then let's say we
want to use all of the signals that are in each module that is
instantiated you'll see that we can make a very complex plot if we
want.

DEMO_ SIMULATION
CONTROL SYSTEM

TASKS
And finally let me show you what happens if we use instead of finish
here. The other simulation control task which is stop that's it. Run
and notice that the simulation is running. It hasn't stopped. So we get
to stop it with a button and we won't get the signals from E.P. wave
until we stop this simulation. But if we hit stop right here we are
telling a playground to stop the simulation altogether so we won't get
any plots.

So the difference between stop and finish is that stop holds the
simulation without stopping the simulator and this tool chain requires

the simulator to output this file. So long story short in E.D. a
playground if you want to use E.P. wave you have to stop your
simulations not with the stop task but with the finished task. This is
different for V or models in which is part of COURTIS And it's very
important that you know the difference between Finnish and stop so
let's see it once again. It's run with the Finnish task and there you
have it.

VIVADO DESIGN SUITE,
BY XILINX

Now it's time to talk about five other design sweet. Let me tell you
what we'll see in this project. First I'll tell you about the value and
sailings.

Then I'll tell you about the setup you need to perform. I'll show you
again a quick walkthrough of this software. I'll show you a code
example a simulation example and an implementation example just
like quarters. Value is a full fledged to.

ABOUT VIVADO DESIGN
SUITE AND XILINX

So let me tell you about the vato and sailings. First the Vive other
Design Suite is a full fledged FPGA development tool. Once more
here you'll see schematic diagrams. You'll see the floor plan inside
the FPGA where the hardware goes you'll see pin assignments
timing constraints the works. So it offers a free license. That's called
the [REMOVED]. And so you get to download the vato HLS editions
which are the ones currently available.

And when you make your download you have to look for the web
back license. It's a whole distribution for makers and hobbyists. That
is free of charge just as with quarters setup starts at Download. So
the installation tool asks you which elements you want to install and

you get to choose from a list. Again this is done to speed up
download and installation this software was made by sailings and a
nice detail about Xilinx is that they were the inventors of FPGA. At
least that's what sailing exclaims. And I believe them.

SETUP_ DOWNLOADING
VIVADO

So the first step in working with sailings vibrato is of course
downloading it so you can perform a web search. I've just looked for
vato and the first result is Vive other Design Suite by side links. So
this is give others Web site and I'm sure you can find the downloads
just scrolling down.

Here are the different versions available and the one we are
interested in is the version that contains the web back license. And
this is called Duval HL Web edition. You can find it in several places
in this page. I'll just click here so here you can find several old
specifications of the whipped back license and the other licenses.

However the [REMOVED] is free so we can click on downloads and
this is where you can get your installer.

As of this recording that's November 2019 the latest edition is twenty
nineteen point two. And here we have the windows self extracting
web installer which is not that heavy. It's sixty five megabytes but it
will download all of the components you select. So this is the installer
I recommend that you download. You can always download the
whole thing which is 26 gigabytes. And it says here that is an all
always installer but once again I recommend that you download the
Unified Installer either for Windows or Linux and there's a step in this
installer where you'll get to select which components you want.

SETUP_ THE VIVADO
INSTALLATION WIZARD

So this is the step in the vessel Design Suite installation wizard. We
are interested in in here. You get to specify which elements you want
to install. No notice several things in this window first. This is the
installer for the vato HL web back. So Web Westpac is the free
license you can use for development boards. Now the defaults for
the elements in this list that you may install is not what's shown here.
What I'm showing here is what I installed in my computer. And as
you may know I did this to keep the download size and the required
disk space down so the elements I've chosen here are the very very
basic noticed that I'm only selecting for the designed to devalue
which is not optional and I'm not selecting anything else not even the
software development kit.

And that's because I am not intending to use any IP core for a soft
processor. If I were I should selected then for the devices I'm only
selecting the seven series which is the current the promoted series
of FPGA. And some are available for the [REMOVED] and some are
not for example the verdicts 7 is not available but the artists the
kinetics and the Spartan are all available. I selected all three if you're
working with a basis three board and you're only interested in it then
you should only select the artists seven. Now I do have a Spartan
seven board. That's why I selected this one and I intend to use a
kinetics FBA in the near future. So I selected it too. And finally in the
installation options notice that I selected to install the cable drivers
because well you're going to need it when you download something
into your FPGA. Finally I want to tell you that you're not supposed to
install an S O C not for this discourse or the ultra scale FPGA s and
these take up a lot of space. So that's why I didn't select them. So
this is basically what I recommend for your installation but you're
always free to use the default or to install more elements if you'd like.

CREATING A PROJECT
So no let me show you a quick example of how to create a project on
rebuttal. As you can see this is the welcome screen and you have
some quick start shortcuts right here. So we'll select to create a
project. This opens up a wizard and I will show you what to do on
each step.

So you first have to enter the project name and the location of that
project. And let me tell you that we've though has been historically
quite picky on the directory naming. So you're not supposed to use
special characters or spaces or long directory or file names. And so
you are better off using shorter names and a simple directory
structure. That's why I'm using C very low. And then another sub
directory for example my demo. This is the directory where your
project will be sent to. And I'll enter the name of the project. That's

name it basis. Three app and this is the directory that will be created.
Very log my demo bases three app.

This is a very nice structure for v value. You also get to choose if you
want to create a sub directory. So if I answer like this the project will
go to my demo if I selected the project will go to its own directory
named basis 3 app and inside it will have the whole project structure
that's click on Next. And now we have to select what type of project
we want. The objective of our project. So the default is an art deal
project where you can get it to simulate and to implement. This is all
we need for discourse. We have some other types of projects. And
for the RTL project we can select whether or not to specify the
sources. Right now at the wizard I will not create sources right now.
So I will keep this checked and this part is kind of tricky. So you have
to select the FPGA you are going to use but not just the family of
FPGA. But the exact model and the exact chip you are going to use.

So this is quite lengthy as you can see this list is very long. That's
why it has some filters right here to narrow down your search. Since
we'll be using a basis three board you should know that this one
includes an Arctic seven FPGA. So we could select from the
category the automotive or general purpose FPGA is from the
families we could select artists can context Spartan which are the
ones we decided to install here and we have a lot of other options.
So I have a nice shortcut for the basis three at least at this time. The
Arctic seven FPGA on that board is the only one in the CPG 236
package. So if you select here you'll get a shorter list and the speed
of that FPGA is minus one. So their son ranking of speeds in FPGA
Ace and that's a number with some identifiers anyway. The one we'll
use is minus one when we select that we get only three FPGA is the
one we need is the one in the middle. This is the code you will see
on the chip. It says X C 7 a 35 ti CPG 236 minus one. Yes I know
this is terribly technical but that's what it is. So we'll select this one.
Why. Because even though we may want to only simulate if we want
to get it on the board we will need to know which FPGA this is going
to. And this is needed for the implementation because the tool chain
has to know what's available. So let's click next and that's it. We get
a summary and we get to finish the creation of our new project once

again. Since we have a new project here is the source structure.
There are no designs. So if you want to add any files you can click
on this plus button right here and you get to create design
constraints which are timing constraints or pin assignments. You get
to create your source files in very low or VHF deal and you get to
create your test benches which are simulation sources. Let me
cancel this and at the left we have the flow Navigator which has all of
the steps for synthesis implementation generation of the bit stream
file or for simulation. Anyway at this point you are ready to start
working with your projects either for simulation or for implementation
and download into a basic storyboard.

WALKTHROUGH_
PROJECT MANAGER

So that's almost it for the flow navigator. I didn't show you the first
element and this first element is the project manager. So this is
what's open right here.

You will see this blue bar showing you which of all of these elements
is open at the moment because these elements are views or
perspectives in the idea. So let me open this part right here and we
get to edit the settings for the project. So this project is for
developing in very low for a specific FPGA and you get to choose all
of the settings you would get on a regular i.e. next. We could add
source files we could use templates.

Here we have templates for very low. We have common constructs
device macro instantiation for different FPGA. As you can see there
is a lot of help for you to create your code.

WALKTHROUGH_ IP
CATALOG

Here we have the IP catalog. We can see all of the IP without using
the IP integrator to maximize either of all of these windows. As you
can see everything looks crowded here.

And this is something I don't like about Vevo but you can make
peace with it by just double clicking on the tab and it will occupy this
whole section. If the flow navigator bothers you you can always
minimize it by pressing this button and it goes to a tab right here. So
it's not that bad. And here we have all of the IP. You can see the Vive
other repository. We have alliance partners like arm which provides
the arm cortex and one processor.

This is only available as IP for FPGA. We have the cortex takes
them three if you want you could use something from many other
companies for example S O C E has some designs available you
can use automotive and industrial applications a excite infrastructure
which is an arm bus architecture. You have digital signal processing
modules Embedded Processing you name it. So anyway this is
where you get to choose all of the IP if you are willing to use it.

WALKTHROUGH_
SOURCE FILES

And now let me show you what do you get to use in the project
manager. So here we have several views and several tabs. And let's
start with the sources part. Right here we have a structure with these
same sources. I have a source file named triple here which is an
RTL design in very low that returns the triple of the input it has tripled
right here input a the output is simply three times the input that's it.
It's a very simple module.

I
don't have constraint files. This is only intended for simulation and
here we have the simulation sources which has one file so here it is.
It's called triple DP So here's the source file. It's called triple TB and
it instantiate one triple module and then I am testing several values
here 0 1 3 5 10 and 15. Notice that I am ending the simulation with
the stop task. That is because site links uses a whole set of tools
and it automatically sense all of the signals to its way form viewer.
So you don't need to send it manually through a file. The other
option you would have is to use finish and to send a VCAT file with
all of that information to a third party way form viewer. But that's not
the case with vato.

WALKTHROUGH_
CONSOLE OUTPUT AND

MESSAGES
Next we have properties for each source file shown in this small
section right here. As you just saw at the right we have the working
part of the I.D. where you get to see the source code and for
example the project summary right here with all of its information.
And down below we get the usual thinks ideas provide. Here's the
ticket console.

This console shows us the output for any simulation that you may
send with for example the monitor or display tasks. We have a
message as swindle with anything that requires our attention from

the tool chain. Here are some warnings we have the low window
which shows us what's going on in synthesis implementation and
simulation we get reports right here of anything that's been done and
we have a report on the design runs that we have performed lately.

WALKTHROUGH_
SIMULATION

So we can run a simulation now. We just have to select simulation
and run simulation. It's that easy run behavioral simulation and now
the perspective will change.

We will not see the project manager but the simulation view let me
hide the flow navigator. And here is the simulation that has already
stopped. But the tool hasn't stopped. The simulator hasn't stopped.
Just the simulation this untitled tab is the way form viewer and here
we have all of the simulation. So the zoom level here is a bit tricky.
What I always prefer to do here is to press this button zoom to fit and
here it is. We have zero three times this zero one three times is three
three times three is nine.

Three times 15 is F.. And if you find it a bit annoying to see Hex here
you can always select your data right click and change radix to
unsigned decimal and here we have it three times five is fifteen three
times ten is thirty and three times fifteen is forty five. You can always
expand buses like this signal result which is six. It's long and here
are the individual bits with the whole bus interpreted in decimal we
can do the same for the four bit input which is this one right here and
you get to use these cursors This is the default cursor and the value
of each signal at the cursor is shown in this column right here named
value.

You may also create virtual buses right here by right clicking and
selecting a new virtual bus let's call it my bus and we can add
signals to it you can do that by selecting objects right here and let's
say I want these two bits added to my bus and I don't know this
that's also added to it you can move your signals up and down and
here's what you would get for that bus you can collapse at Oh I'm
sorry I didn't include these inside the bus you just drag them and
drop them now they are part of this bus and since these signals are
part of the bus the whole bus is being interpreted right here as you
may notice it's shown in hexadecimal again if you want decimal right
click radix answer in decimal and it's showing whatever signaled you
may want to produce here this one has no meaning to me but there
you have it.

WALKTHROUGH_ PIN
ASSIGNMENT

Now, to get this design into a basis three board, we need to run
some steps first. We need to add constraints file, which will make the
PIN associations between the input output ports in our top design
and the actual pins in the FPGA integrated circuit. So to add that file,
we can select this plus sign right here to add sources and we get to
select if we want to add or create constraints right here, we can also
add design sources or simulation sources.

Basically, these are the PIN associations. These are the modules we
are going to use and these are the test bench modules we will use in
simulations. So now let me just create a file. It will be called basis
three, that SDC, SDC is the extension for sailing's design

constraints. And let me click on finish. So if we look at that file, it will
be empty, but luckily vigilent has already provided a next D.C. file for
your designs so you can look it up online. You can make a Google
search like this basis three dot SDC currently that is on GitHub. So
you can select this result.

And this is the file basis three master SDC. So what I'll do is copy
the whole contents of this file and show you how to modify it to make
your application work with the bases three board. So I will copy right
here. And they will be based here. Now, this file is originally intended
for you to uncommented the lines that are related to your design. So,
for example, right here, the author has uncommented these three
lines which are enabling the clock signal. But I will come in time out.
You know, the original master file comes with all of the lines coming
out. So I apologize for this, but I will use the four rightmost switches
to enter the Knebel for our triple module.

And so I will use these two lines that are related to switch zero. As
you can see, the syntax in this Tzedek file called the Get Bortz
function, which fetches for this symbol in our source files. So
whatever is called S.W. zero in our design will be mapped to bin V
17 in our FPGA. We also get to specify the standard, the input output
standard for that pin. And so this is low voltage seamless at three
point three volts. I will enable then all the switches from S.W. three
down to S.W. zero. And next, I will enable all leads from LED Zero all
the way through Leidy's four, because, as you remember, our triple
module has actually it has six bits, so. I will enable them until our
LED five, the rest will be common throughout. And that's it for the
Tzedek file. Once again, I will only use switches zero through three
and early this zero through five, the rest of the file should have all
lines commented out, as I've just made sure here.

WALKTHROUGH_ TOP
MODULE CODE

So at this point we have our design sources which is this triple that
the file with only the triple module. We also have our simulation
sources which is triple TB a test bench for that triple module and we
have our constraints file which is the basis three dot X DC file
remember this one makes the pin assignments.

We decided to use. Now we need to write our top module which will
be the only module downloaded into the FPGA. This module has to
instantiate whatever we need in our application. So let's start by
adding sources. I want you to notice that this source will go into the
design sources section right here. So let me add a new source and
we have to create a design source I'll click on Create file and I will

name this triple demo. Now when you create a dot v file you will get
this dialog box which asks you to enter the IO port definitions. This is
to make a nice skeleton code for you but you can always type in your
code manually.

So we'll have four bits for the input and six bits for the output
remembered that are input will come from the switches and the SDC
file is using the name S W. So I will name this as W and it will be an
input bus. This is the most significant bit 3 and 0 the least significant
bit. And then the output will be sent to the LCD. I believe that was
called a lady. It's an output port and it's a bus from 5 through 0. So
when I click okay that file will be created and here we have it tripled
demo. You may want to notify v rather that this is your top design
and not this one. So that's what this little icon right here means that
this is the top module. However developer keeps an ongoing
screening of the files so that it recognizes which module instantiate
which module.

So it figures out which is the top module. Anyway we could right click
on this one and select set a stop. I won't do it because I want to
show you how the battle is smart enough to figure it out. Anyway I
will open it and here it is. This is the skeleton created by V vital for
you. So let me just maximise this and this will be very very easy.
Okay. So I will just instantiate a triple module. It will be called my
triple the input will be my switches and the output will be my lcd.
Let's just double check that the name of the early this array is
correct. This is in the SDC file and they are indeed called LCD. But
uppercase LCD. So let me correct that right here. This is called LCD
so you know that very low is case sensitive. And there you go. This
is my top module as you can see it's a wrapper for my triple module.
It ultimately depends on how you are designing your system. But
typically the top module just instantiate a couple of modules and
makes some connections and it doesn't have much circuitry or logic
in it.

WALKTHROUGH_
BITSTREAM FILE

GENERATION
So that's it. We are ready to synthesise and implement this design to
finally generate the programming file which is called a bit stream file
inside links jargon and just like with Cordis at the left we have all of
the tasks you can perform to get your project to produce its purpose.

So you may achieve a simulation or you may even implement and
generate the programming file. All of that is selected in this part at
the left. And again similar to quarters you can simply run the last task
you want to run your objective and it will run. All that's needed in
order to complete that task. So we need to generate a bit stream file.

That's the ultimate thing we want. And lastly we want to open the
hardware manager where we will download the application or rather
the design into our FPGA.

But in terms of the tool chain the last part is to generate the bit
stream. So I will click here. So I have to save my files. And here we
get a warning that says that no implementation is available because
this is the first time we are going to implement this design. And so
this dialogue says that what we intended to run which is generate bit
stream will automatically start when synthesis and implementation is
done. And that's what you would expect of an idea to so well click on
yes and all of this process is quite lengthy because it's on a path to a
compiler tool chain. And actually it's a bit more complex than a
compiler tool chain because this process does not translate to
assembly language instructions but to routing off hardware in a chip.
So this is quite consuming in computational power. That's why this
dialogue is asking us to select how many jobs we want to run and by
Jobs This means the processes that are going to be assigned to
CPE use since modern computers have multiple use then you are
given the choice to select how many of these you want to assign to

your use. It's often recommended that you leave the default right
here for me it's four and this number comes from the installation
when your operating system notified vital that it has four processors
available anyway let's click OK and wait for a while you can always
see what's going on in this section at the bottom. Here we have the
design runs which is showing us what's going on in a nice stable. We
have reports here where we will get what resulted from every step.
We have the log tab right here which is telling us all of the output
that's sent from the tool chain we get the messages arranged in a
nice tree right here so that we can read what needed our attention
warnings and errors. And we have the tickle console which serves as
an output window.

This is where your output from tasks like display and monitor goes to
and by the way the log tab has several taps at the bottom. It has one
for synthesis one for implementation and one for simulation. So it's
all arranged in a tidy way. Let's go back to the design runs. And as
you can see synthesis is already complete it has occupied three
lookup tables zero flip flops and the implementation is currently
running and you can also see what's running here at the top right.

It says running root design and you can always cancel whatever is
running and now we wait and apparently all went well. It's this bit
stream generation successfully completed so after each step of the
way you get one of these dialogues that asks you what you want to
do next. You always get to disable this question but I like to keep it
because I like to do different things for different projects. So we get
to open the implemented design to inspect what's going on. We can
also view the reports we can open the hardware manager which is
what we intend to do right now or we can generate a memory
configuration file.

WALKTHROUGH_ THE
HARDWARE MANAGER

Notice that the blue bar on top says HARDWARE MANAGER. So
every part right here at the left is a different perspective at which you
can look at your project.

So the hardware manager is concerned with the connection between
the bases three board and vato. So it says on connected and this
green bar says no hardware. Target is open. We have to connect the
board through a USB port. Let me do that and we have to connect
the board logically to vato. So we get a shortcut right here that says
Open Target and we get to choose what to do. The best option is
auto connect. It does everything for you and after some handshake
you'll see that the hardware manager has this section right here

named hardware showing which board is connected to your
computer. Let me maximize this so it says that we have a sailings
vigilant board. This is the name of the FPGA chip we are using and
we are ready to make a connection. Again we get a nice shortcut in
the green bar. It says there are no debug project because we are not
using a debug core. We are not debugging from the hardware but we
are ready to program the device. This is the shortcut we want. So let
me click on it and we get to select which bit file we want to send this
bit file is triple demo that bit. This is organized in my project directory
structure. And if we wanted to perform some debugging with a debug
core we would enter that file here. But anyway our output is in the bit
stream file field right here and we are good to go. So let me click on
program and now my FPGA is programmed. So let me show you
what's going on on the board. As you can see all of my switches are
down and if I enter for example one you can see that we have a
number three on the LCD. This is binary. And let me enter for
example two we'll get six if I enter seven we get twenty one that's
sixteen plus four plus one.

That's 21. Remember that we have four bits in our input so I can
enter any for bid number for example that me and 13 and that
number we see on the LCD is 15 shifted one position to the left. So
that's two times 15 or 30 which is the result we were expecting the
triple often is 30. Let's see the highest value we can enter. That's 15
times three is supposed to be forty five. So let's take a look at the
bits we have a 1 in the most significant bit which is 32 plus the lower
four bits are 12 plus 1. That's 13. So 32 plus 13 equals forty. Just as
we expected Now remember that our attention is not specifically on
the hardware. After all the displays are showing all bits kind of dim
and we could have avoided that. But we are more interested in the
tools that are available in the vato software. And I hope you got a
nice grasp of all of the process and of the many tools you can use.
These are only the basic tools to get a simple design into a board
and there's a lot more for you to play around with.

LABSLAND
Now it's time to talk about one of the coolest tools I've seen online.
I'm talking about lapse land. Let me tell you what we'll see in this
project. First I'll tell you all about this too and then I'll tell you about
the steps of the process that apply to lapsed land. So I'll tell you
about the setup you need to take in order to use this wonderful tool.

I'll give you a quick walk through I'll show you a code example and
an implementation example. Now since this is a remote lab tool it
only supports implementation. There is no simulation available
because you're not simulating you are running into the actual
hardware in real time. You are watching the hardware running in
front of you at a remote site. So let's get started.

ABOUT LABSLAND
So first let me tell you about lapsed land this is a remote lab online
tool. And this is part of a big thing that's been going on online lately I
may have mentioned that I am an educator and I teach at the
University undergrad and graduate levels and we have been
developing online programs. And one of the biggest challenges
we've faced is getting our remote students to have the laboratory
experience they would have if they would attend to our facilities. And
so we have used remote desktop tools with a camera on it so that
they can see the hardware and getting a two way communication is
a bit of a challenge. And also scaling those labs is kind of a problem.
So we found labs land which is a company that provides this online
tool for you to get access to hardware remotely. You can handle
schedules and of course multiple users. So this tool enables you to
use a wide variety of expensive hardware at a low cost. Yes this is a
commercial tool but you may want to take a look at their Web site
which is let's land dot com and you'll see that it's really really cheap
and you may even get a nice discount as I'll tell you a bit later so this
tool offers real laps from schools and universities all around the
world. And the way it works is that some university can subscribe
their laboratories and make them available for labs then to offer to
the world.

Here we have a nice map taken from left lance web site which shows
the locations of the labs that are currently attached to their system.
And so when you choose to use some board you will get assigned
one that is located in one of those laboratories. Again this is an
exciting development of the Internet. And one more thing is that this
is not limited to FPGA S. as you'll see a bit later lt supports a lot of
laboratories. It has basic electronics. It has a couple of our Dino labs.
It has a lot of physics labs from Kenny Maddox to biology optics
radioactivity. There are tons of labs available so although this is a
commercial application and you are not required to buy anything to
be successful in this project I do recommend it. It's a very nice
alternative to acquiring a very expensive FPGA board. And
remember you'll get to work with many boards. So it's actually an
alternative to buying all of the boards you intend to use. It's really
nice. You should give it a try.

WALKTHROUGH
Now let me give you a quick walk through a flaps land. So this is the
home screen you'll get once you've logged in. Now let me scroll
down to show you some of the elements you'll find here. First we
have three links one for the remote labs one for a demo if you want
to try it out and you can also attach your educational center your own
labs into lapsed land so that you can offer your laps remotely to the
world and we are interested in using the remote labs for discourse.
So let me scroll down a bit more to show you what you can do here.
Here's an explanation of how the remote labs philosophy works.

And here we have some demos as you can see we have an Arduino
robot here which is working at a site and you can download your
programs into it. Here we have an electronics lab. This is very nice
because it consists of something electrically similar to an FBA but it's

not. It has an array of elements a big array of elements with relays
so that you can design your own circuits and test them because it
has all of the instruments and the circuitry you'll need to create pretty
much any circuit you can come up with once more. This is for
electronics there's a radio activity lab available there's a pendulum
one this is for physics of project and there are lots lots more. And
just think about it for a minute the fact that you have labs for say
radio activity available to anyone makes this to a very powerful and a
very clever use of the Internet was more scrolling down you'll see
that you can even be a consumer of lapsed land as an institution. So
you can enroll your students and you can set up scales for them to
work on the labs. So again this is a very clever and very well
designed system and it also supports several learning management
systems like modal or sky canvas and many more so you can most
likely attach your own system into it very very easily here's a
promotional video and there you have it for the home screen. So
now let's take a look at some random lab. Let me show you the.
They are doing a robot lab for example I just clicked on try it and you
can click on View experiments. Here it is. We have the Arduino I.D.
right here and we have a robot example. Let's take a look at it so in
the interface you get some limited time to use the robot.

I am using a robot that is at some university at some real lab and I
have one minute one and a half minutes so let's copy one program.
Maybe this one avoid crashing. So I have downloaded the program
into the robot so there it is. There you have it. The robot is really
onsite avoiding a crash. Now let's run the line follower for that
Roebuck so I will go again to the lab and you should know that I am
getting access to that real robot so no one else is accessing it. If
someone else from some other part of the world is trying to access
the robot then AQ will form and I will have to wait in line. So let's load
the line follower. These are examples of course but you get to write
your own code. Right now it's sending the program to the robot and
there it is. There you have it. The robot is performing a line following
and he was calibrating first. Here you have the serial Monitor
reporting what's going on on the robot. And as you can see it's
following the line. Here are some buttons you can press here. It's
working at maximum speed medium speed and slow speed. Now
what we are most interested in are the FPGA labs. So let me show
you the labs I have access to. So here we have an Arduino board lab
the same robot we just saw. And we do have some electronics labs
also. But here are some FPGA project labs. Here we have the FPGA
laboratory which has several labs for FPGA development. We have

one on the Intel D2 115 board and another on the intel the E1 SLC
board. Let's go to the FPGA lab and we have a very low I.D.. We
could access sample and you get a tutorial which tells you which
elements you can use. I'll just click next on the whole tutorial and
here we have the LCD mirror that V file very low source code which
is reproducing what's on the switches to the LCD. So let's download
this code. We first have to synthesize and you'll see that it's using
quartz tools. So we get a hint here that the target board will be an
Intel board now that the synthesis process was successful. Let me
just upload it into the device. The platform is offering an ultra FPGA.
This is the D1 board. So we'll upload it there and once again it's
fascinating to me that we don't know where in the world this is
working right now.

This is working at UPMC. This is a university in Spain. We have one
minute and 46 seconds approximately. So your FPGA I.D. program I
can download it into the board and you can see here that the board
is being recorded and broadcast by a camera. And here it is. Here
you have it. So the switches are right here at the bottom and a very
complicated challenge is to get access remotely to these input

elements of the board as opposed to having access to the output
elements because you only have to record with a camera. But here
are the switches. So let's say I turn on the first switch and you can
see that the matching LCD is on. Let me turn on the fourth switch
which is this one and the LCD turns on. Let me turn off both and both
LCD will turn off. Let me press a button. See what happens. Oh the
button gets displayed on the segment display. So here's three Here's
0 and time is almost up. As you can see two minutes is more than
enough to test your applications. And this is one of the boards
available at the lab at UPMC. So there you have it. I hope you got a
nice taste of what lab sent. Looks like.

FPGA LAB
So let me tell you about the FPGA laboratory in this space. We have
two links one for the VHA deal I.T. and one for the very long ITV. We
will use very low because that's my language of choice but you could
do it in VHF deal if you want so here we have a video where you get
introduced to the platform and I recommend that you take a look at it.
If you want and here we have some pictures. First we have the
interface you'll get where you get to manipulate switches and buttons
in the board.

And this is actual footage of the board which is recorded and
broadcast by a camera so that you can see what's going on and act
on the board. Here is a nice picture of the boards onsite at some
university or some lab where the people right there have mounted
several boards not all boards have to be the same type and you're

not guaranteed to get the same exact board each time you reserved
the labs.

So here we have some cameras that are pointing to specific boards
which are assigned to you by the software every time you need to
use this lab here's a picture of the I.D.. This is the very low I.D. and I
recommend that you use your own files in your own computer and
just copy and paste them here because the interface is not so very
well organized in files but that's the way I've been using it. And this is
the V HDL I.D. nothing new.

So notice that in this V HDL I.D. You have the d e to 115 bought and
we have the same one here for the very long 80 but in the demo
maybe we'll get a different board and that's fine and we even may
get a board from a computer that's in one part of the world at some
university in I don't know the United States. And sometimes you may
get one from a company that's in Spain so we are ready to take a
look at the very low 80.

VERILOG IDE DEMO_ PIN
ASSIGNMENT

Now let's take a look at the very low 80s. And an example project I
have just entered here. Let me start by telling you that this time we
will be using the D E one S O C board because that's what was
assigned to me. But let me refresh and hopefully I'll get a different
board. Yes this is the the E2 115 board.

And as I refresh you'll see that it changes from time to time between
boards. I think there are just two available types of boards right now.
The E one isn't C and that the E to 115 but this gives us a nice
opportunity to implement some compatibility between these boards
and that's what you get if you scroll down a little in this
documentation part. This link that says signal assignments has a

nice tutorial of the inputs and outputs you get in either board. So
here we have an array that is called V S W virtual switches BBT
virtual buttons.

So these are 10 switches and these are four buttons and for the
inputs we have the clock in the board which is a 50 megahertz clock.
We have an array of LCD and we have a bunch of hex or rather
seven segment displays. These are all separate in Intel boards. So
you don't have to do any sweep or raster on them and you manage
them separately. Those are seven bit arrays so you only send the
active zero values for the segments and that's it so since all of these
elements are common in the available boards you get to use these
virtual elements and you just get to program them in your modules.

VERILOG IDE DEMO_
ADDER CODE

So in here I am using the same LCD mirror that V file that was
available originally and I even left the same name here. This is not a
very good practice but I'm just showing you how to do something on
the board or even how to modify the LCD demo and I changed this
to an other circuit. Let me change it to a multiplayer circuit to show
you how easily this can be done. So it says that it shows on the
display the addition. This will be the multiplication of the switches. So
here we have all of the ports virtual switch and you're only required
to enter the input output.

You're going to use. So notice that I'm using the switches right here.
We are not going to need the virtual buttons. So I will get rid of them

and notice that this is the very log 95 syntax so that in the ports list
you specify the names but later you have to specify whether they are
inputs or outputs and whether they are registers or not. So I got rid of
the buttons which I'm not going to use and I'm going to use the
segment displays hex 0 through hex 3. Those are for displays and
the LCD arrays now notice that for some reason this code has the
range specified from the least significant bit to the most significant
bit. This may be a problem but I have only reversed the order for the
switches because of the way I'm using the code later on. Now look at
line 14. Here we are specifying that the LCD array is a register
because we are going to load a value into it with an assignment and
I have an 8 bit Register called rests for result. So this result is going
to go to the two rightmost LCD displays and the two left most
segment this place will show what's on the switches. So here are my
Seven segment displays. You may want to hit boss and verified that
this is all correct but what I'm doing here is that I am instantiating hex
to seven segment decoders. So what are these. These are called
hex 0 through 3 and these modules are specified in this other
module. I wrote sometime back and this is a hex to 7 segment
decoder. It has too many ports but anyway they are four bits for the
inputs and 8 bits for the outputs in the inputs. D is the most
significant bit and a is the least significant of the single nibble that
goes in and the outputs are segments A through G. And additionally
I have the decimal point here which I am not using here at the end
you can see that I'm assigning one to it and these are all active 0.
Now for the rest of the lines of code you'll see that I am assigning the
Boolean algebra a representation of the function for each of these
segments.

And notice that I'm negating it with the not operator at the beginning
because what I'm doing here is the sum of midterms. That's a form
of expressing boolean functions and what it says here is that
segment 8 will light up whenever the input is 0 2 3 5 6 7 8 9 A C E or
F you may check the code for the rest of the segments and you will
see that this is just a hex to 7 segment decoder. Anyway going back
to the LCD mirror file which has anything but that it has my
multiplication demo you'll see that I'm instantiating all of these
decoders. So notice that the rightmost one which is hex 0 takes its
inputs from the lower nibble of the result and the higher nibble of the
result is sent to the next hex display. So this is how we print to the
right the result and what goes out the left are the two upper end. So
we have switches three through zero the right move switches to
them so to speak. Second hex display and the leftmost gets the
other upper end from switches 7 through for the leftmost switches.
Now the call is very very simple. It's an always block which always
executes this part right here which are only two lines. First I'm
assigning to the LCD exactly what's on the virtual switches so you'll
see the LCD light up with the switches. That's the original demo but
I'm also assigning two risks the addition right now between the

switches 7 through 4 which are the four switches at the left all of this
operated with switches three through zero which are the right most.

VERILOG IDE DEMO_
ADDER LIVE DEMO

So we are now ready to synthesise. So let me just press this button
right here and the synthesis process starts and you can see it right
here that the compilation has started and this will take a while here
at the bottom we can see the results from the compiler tool chain in a
console window.

So if we scroll down we'll see all of the warnings and information
messages and it's still working. By the way we also get some files
right here from the different steps of the implementation process for
example this one says LCD mirror map summary for the map step.
So this is the result from that step let's go back to the console and
we have more results so after a while we get that the program was

successfully verified and compiled. So take a look at the console and
at the very end we get a message that says info. Prime convert
programming file was successful zero errors zero warnings. So that's
what we were looking for.

And now we can upload into the device as you can see I am being
offered an FPGA D1 board which is neither of the two we saw
before. I'll upload now as you can see it says reserving I am next in
line. That's good. Great. So this is where we get to download our
code into the board. This is the D1 board and I will program it. Notice
that I only have two minutes right here. But that's more than enough.
Once I program it you can see my displays showing I think it was an
either the way I left it. So let me put one one that will be 10 plus zero
equals zero eight 10 plus three equals a plus three equals the more
for example a plus a must equal 20. Which is 14 in hexadecimal.

VERILOG IDE DEMO_
MULTIPLIER LIVE DEMO

Let's go back and change this to a multiplier because as you saw
this was supposed to be a multiplier and they just left this operator
right here as an addition. So let me change that to an asterisk and
notice that I'm being offered a d e one S O Seaboard now. So now
let's see it working as a multiplier. Let me synthesise and after a
while we get it to compile again. And let me upload into the device
once more I get a D E one board. Now let me download this program
into my board and notice how this is different. Now let me multiply 10
times zero equals zero and ten times let's say two equals 20 which is
fourteen in hexadecimal ten times three equals thirty which is one e
in hexadecimal because this is sixteen close fourteen that's thirty. So
there you have it and noticed that the timer is at one minute. So
again this is two minutes is more than enough for testing your simple
designs.

And if you need more time you can always reserve two more
minutes. So let me show you how we can reserve another board.
Notice that it says upload into your device. So I need to compile and
verify I'm not allowed to upload again but that doesn't mean that
you'll have to wait about five minutes for it to compile. You can
synthesize but this step checks for a cache where if there are no
changes in your code then the software knows that synthesis was
previously done and so you'll get this right away. Let's upload again.
We are next. Yay and once more we get to programmed FPGA
board and you'll see exactly what we expected. So here we have
four times two equals eight. And there are a couple of things I want
to see. First this lab is located at Spain and it's from the UDP in a
university. And we might have gotten another board from another
site. And the other thing is that this board is being controlled by
these virtual switches we have here. And as you know those
switches are actually shown here on the board as you can see this
LCD and this LCD are showing the state of my virtual switches but
these are not the physical switches on the board. So what's going on
here is that there is support with all of the input output being
overridden by our application.

RECOMPILING
So finally let me show you how the cash works. So if you synthesize
your design labs and keeps a cache of all of these produced files
and if nothing has changed in your source code then it will use those
files so you won't have to wait for it to recompile.

So let's synthesize this again and as you can see it was already
compiled so it used the Cash version. Now let me upload it into the
device.

Now I'm being offered an FPGA D one let's upload again reserving
I'm next in line. Yay and here we have the FPGA so it can run our
multiplayer once more. Three times three equals nine.

UPLOADING DEMOS
Finally I want to show you how you can install example applications
into the FPGA. Notice that this time I'm being offered an FPGA D2
115 board so here we have the button to download our current
design but we can download some other example programs.

We have the blinking LCD right here. We have mirroring switches
and we have a clock. So let's install the clock. So as you can see
here we have a counter going on. This is counting on the LCD. It
says well 13 14 and you can see the count in the displays. Hopefully
let's see what the buttons do. We don't have access to the source
code so as you can see the clock is running faster when a press B
three.

Let's see what happens when they press B to OK. So these seem to
be different speeds for the color yes we still have three and half
minutes with this board. Let's see what the switches do. If they do
anything yes switch 0 resets the count and inhibits the count. Let's
see switch one apparently all switches do that. It's straight for a
switch. Eight yes. So there you have it. You get to download
example applications into the FBI s.

MOTIVATION_
HARDWARE DESIGN

One motivation example they want to give you before we start talking
about FPGA. Is the purpose of using an FPGA. As you may already
know FBA have grown in popularity over the years and now they are
use in virtually every serious mother in design because of their
convenience. And one of these advantages is requiring less chips in
a board. By reducing the chip count you can reduce the price and
the energy consumption of your system. So let me give you a brief
example of that. In this illustration we have the motherboard for the
Sega Saturn video game console which goes back to the 1980s. And
as you can see you only have to take a look at the chips right there
and it's definitely a board filled with chips and looking at that board.
Today I think it would be reasonable to have at least some of those
chips integrated into one single chip that could implement their
electronics.

So the chip count could drop to say four or five chips instead of the
20 or so you can see in that illustration. And now let's take a look at
a more modern board which is a U.S. R.P.. This is a general purpose
radio controller to implement several wireless systems. Among those
we have cellular phones and Wi-Fi devices. And as you can see that
board has in the middle there a chip that's a cycling FPGA just
compared the chip count between these two boards. I know they are
not the same thing. But trust me the computational power of the
board at the right which definitely was designed later than 2010. Well
that board is computationally much much more powerful than the
Sega Saturn game console from the 90s. So with BGH have been
one of the technologies responsible for allowing electronics to
become smaller and smaller FPGA are one of the reasons why your
mobile device fits in your pocket. So once again a very nice
motivation is that if VGX today are implemented inside chips that
have other electronics inside. And the FBI part is included to
implement whatever you want in that circuitry so that your electronics
your external electronics can be well fewer and fewer.

MOTIVATION_ SOFT
PROCESSORS

Another motivation I'd like to remind you about is making us keep
you in the third project of this series. We will do this and a you can
be quite simple here we have at the left a chip from Zilog This is the
Ziad. This is CPQ. That was very popular in the 80s and as you can
see those blocks that appear there are simple digital circuits not so
different from the very long modules we have already designed. So
we will do something like that. And at the right we have the first
microprocessor by Intel not the first ever.

That was by Texas Instruments. But really the second
microprocessor ever and that's 40 all four. And again they just want
you to pay attention to how many blocks it has. This is a very simple

computer. So we'll do something similar to these in the next course.
But let me tell you that the use or soft processors aren't really
considered wonderful designs today. They are actually widely used
in FPGA. That's why vendors like Altera and Xilinx provide their own
designs for their soft processors and there are tons of soft process or
older. So this is a nice motivation especially if you are keen on
computer architecture.

INTRO TO FPGAS
Now let's get to know field programmable gate or race or FPGA. And
that's exactly what we will do in this project. We'll answer several
questions. So show us what exactly is and if BDA how they are
implemented. Who makes them. What can they do with them. How
can a program them and so on and so forth.

So let's get started. So for the first question what exactly is an
FPGA. Well and the FPGA is a gate or a type of integrated circuit.
That means that it's a very specialized type of chip that includes a
whole lot of gates inside organized as some sort of re But there are
many many many gates. I'm talking hundreds of thousands if not
millions of gates. And the fun part is that it's field programmable. And
what that means is that the user can program it you as an engineer

get to program what is going to be implemented with those many
available gates.

So I like to think of it Biggie's as shapeshifter integrated circuits and
that's because they can become whichever digital system you would
like them to become if you want a counter you can get a counter if
you want a digital clock or maybe you want a serial port controller or
a very specific state machine. Well you can have any digital device
you'd like. So this chip will become whatever you want it to become.

FPGA OVERVIEW
So let me give you an overview about field programmable gate
arrays so they contain logical cells which are special blocks of logic
devices that include lookup tables flip flops others and some other
digital devices inside. Remember you decide how you want them to
behave and so you enter such description using one of several
methods that are today available.

The most popular by far is a hardware description language such as
very long or VHDL and to program them you need a synthesis tool
that produces finally a binary file which is a bitstream file. And what
this binary file contains is all of the connections that are required
inside that FPGA to implement whatever hardware you have
described in your very long or VHDL source files.

FPGAS VS ASIC
Let me show you some highlights when we compare FPGA to
traditional integrated circuit so traditional bases are known as ASAC
that stands for application specific integrated circuit and as the name
already says they are designed with a very specific purpose.

I'm talking about a multiplexer maybe an integrated circuit that
contains some gates inside or maybe counter a shift register or even
a microprocessor. All of those are application specific and those
async well enough PDA can be programmed by you by the user and
by user I mean an engineer the person who's in charge of making all
of the hardware being implemented inside that FPGA. The whole
objective of using an FPGA remember is to implement all the logic
you want to go into your board.

WHAT'S INSIDE AN FPGA
So what's inside an FPGA and if it consists of a lot of special blocks
but in the simplest sense it consists of three main parts which are
interconnects or enter connectors which are the conductors that will
interconnect all of the hardware and you will design.

Next we have logic blocks which implement all of that logic. This is
the main bulk part of the FDA. And finally we have input output
blocks which go to the bins to the actual input output pins. Let me tell
you more about all of these parts.

WHAT'S INSIDE LOGIC
BLOCKS_ - LOOKUP

TABLES
So inside a logic block we have logic cells. And what's a logic cell. It
looks like this. So let me walk you through the elements of this
example logic sale and be aware that not all logic cells and most
likely no logic cell is exactly like this one. This is just an example. But
they contain several elements similar to this. First we have a section
with lookup tables. That's what L stands for.

And as you may know a lookup table is an implementation of a
function that consists of just a table you fill up the table as a memory
and you look up its values by entering addresses into it or input data

to it and it will spit out whatever that function is supposed to send in
itself. But because it's a function and so we have a three lot here
what it means is the implementation of whatever function that has
three inputs which are A B and C does this one function one three
input function that goes to this node. Next we have another three
locked connected to the three same inputs which go to this node
right here. And so you can do whatever you want with these two
functions. You have a function of A B and C here. And we have
another function of Fabian see here. If you want to make it a forward
lot you can do it because you have another input here D which may
act if you want as a multiplexer for either using this function the one
at the top or the function at the bottom in this output line right here.
So for example one thing this lookup table may implement is
something like this. We have a truth table right here. We have a
function that's call f one and another one that's called F 2. So let's
say we have all of the combinations right here. And so you may
implement whatever you want for EF 1. Let's say this function. I'm
just making it up and whatever you want Forth to say this. So the top
lookup table may output F 1 and the bottom lookup table may hold.
But as to no there must be a way to enter these truths fables into the
lookup tables for each logic cell and we'll talk about that in a bit. So
let's move on.

WHAT'S INSIDE LOGIC
BLOCKS_ ADDERS AND

FLIP FLOPS
So you have the option of performing any combinational function
either of three inputs or four inputs. If we combine the two lookup
tables with this multiplexer right here and so we would have that for
input function right here or just a three input function right here. Now
if you want to do arithmetic with your digital designs you have a very
small element of arithmetic right here which you may already know.
This is a full either. So if you remember a full leather has three inputs
one input for one of the operant. The next is the other upper end and
it has that carry in input. And so this full either will send it some right
here in this output and it's carry output will go outside of the cell right
here no notice how a multiplexer is able to select what to send to the
next stage.

So we could simply send the combinational part we got from the
lookup tables through this first multiplexer right through this second
multiplexer into the next stage without using the full either or we
might use the full leather by selecting with this multiplexer to send
this part this input to its output. So there is some line that controls
this multiplexer. We'll talk about this a bit later. Next with this signal
which may be an arithmetic calculation or an arbitrary combinational
function we can do either a sequential function that is by using the
smallest sequential element out there which is a flip flop. This is a flip
flop and we can use this logical signal as its input and later use its
output as the actual output of this logic cell. We can choose to use
this output by means of this multiplexer right here. And if we don't
want the sequential functionality of this The Flip-Flop we can just
choose to not use it by selecting with this multiplexer to use this input
to appear on its output. Notice that since this is a flip flop it requires
say clock signal which is a bus available through out the logical
cell's. Now let's recap. So logic cell allows you to do whatever
combinational behavior you want by means of a couple of lookup
tables. You may also perform very simple arithmetic with a full other
which is connected among logic cells and you can make it sequential
if you want with a flip flop. Remember one flip flop gives you one

variable in your sequential system the clock signal traverses all of
those logic cells. And so you get a very nice flexibility to perform
either of these three functionalities or any of their combinations. It all
comes down to what you do with this multiplexer this one and this
one again. There are a lot of variations of these logic cells but the
same principle of having a very flexible design is always there.

WHAT'S INSIDE
INTERCONNECTS

Know what's inside the interconnects or the interconnecting
hardware well in there we have programmable switches. And by that
I mean analog switches or transmission gates which are switches
implemented electronically by means of transistors namely mosfet
transistors and so you have a network of horizontal and vertical lines
where you have all of your circuitry and these lines interconnect the
many elements of the logic cells. So I'm talking about the inputs ABC
and the.

In the previous example the Kerry input or the outputs the carry
output the cell output or even a clock bus. And so you interconnect
all of those by means of these vertical and horizontal lines in each of

these junctions we have between a horizontal line and a vertical line
is composed of several single pole single throw switches which open
or close. So you may perform whichever combination of open and
close switches you want in here for example if you want to connect
the left way to the top right here you can do it by crossing this
diagonal top left switch. And if you want to connect these two lines
you can also do that by closing the switch. So let's say you want to
connect this line I'm showing you in green with this line right here. So
you would only have to close this switch. Let's say you want to
include let's say the line at the right with those two connections. You
can do it by either closing this switch right here the top right or by
closing the middle switch right here. And so you have a lot of options
for this. And if you want to connect all of these lines you can close
any of the remaining switches but you have a lot of flexibility I hope
you can see that.

WHAT'S INSIDE I_O
BLOCKS

So what's inside the IO blocks or input output blocks. Well we have
amplifier's and attenuators that is because the inside of an integrated
circuit especially a digital integrated grid is usually using lower power
inside that means low currents and low voltages. It doesn't matter if
your logic uses 3.3 volts on the outside or if it uses 5 volts on the
outside.

Chances are the implementation that insight implementation is going
to have less voltage for the logical one. For example 1.8 volts and so
it requires those levels changer's for the inputs it requires level
detectors to determine what's the logical one and what's a logical
zero or a high or low level. And they also have protection circuitry for

example for electrostatic discharges or to protect the outputs from
overload and so on and so forth.

WHICH IS THE
PROGRAMMABLE

So let's address something you may be wondering. Which is the
programmable part. Remember we know that if BGH contain
interconnections they contain logic blocks and input output blocks.
So which of those elements is programmable the interconnections
the logic blocks the input of the blocks Well the answer is none.
There is a memory device somewhere that implements Well a big
memory map and each of those bits implement whatever
interconnection you want to make whatever lookup table you want to
implement and whatever connections inside logic blocks you want.
And so this affects the interconnections and it also affects the logic
blocks and there are also some implications on the input output
blocks. So let me tell you what I mean. So some of the
programmable parts are the interconnections. And so you may have
some bits in the memory I will show you a byte for now. Remember
this byte belongs to the memory that implements the biggest
connections. And so one bit right here goes to control all the time.
Just one of the switches and other bit controls. Another switch. And
so one so as you can imagine there are a lot of bits required to
implement all of these interconnections. These are only the six bits
required for this interconnection but this one requires also six bits.
And this too. And what about the ones that aren't shown here for
example. This one and this one and this one will all of those require
six bit in this particular model. And I am showing you just one byte
right here. Imagine how much memory is needed to implement say a
hundred thousand interconnections. That's a lot of memory and the
interconnections are not the only programmable parts.

We also have the logic cells which have a lookup table that has to be
implemented somewhere. Remember these are functions functions
that have a truth table so that table goes in here and guess where
that table is stored. You guessed it in that memory. So more bits are
required to implement each of these tables. That top table requires 8
bits. The bottom table requires also 8 bits. And what about the
decision of what to do with this multiplexer. Well that requires one
selection input as well as this multiplexer. So when this logic so we
are talking about one more bit here and one more bit here. So
overall it comes to 18 bits per logic scale and six bits per
interconnection of four ways which like I said is adding up to a very
large memory.

So to answer the question Which of these parts is programmable.
Well this memory is programmable and this memory is controlling
the interconnections the logic blocks. And like I said some input up of
blocks can be affected by this memory. Let's say you want to
configure a high power output or. Well these bins are input or output
pins. So to configure them as inputs or outputs you need some
device that will remember that direction of data. You can also set a
open drains state for example to connect it to a bus and you want it
to have the high impedance state. You can do that on the actual
Beenz. And so this memory is what we are interested in and this
memory will control how all of this available logic will behave. We
need good software to perform this. We need software that will
convert our hardware description language source files into the
actual implementation of this memory that will make this hardware
behave as we want. That's very advanced software indeed.

FPGAS VS CPLDS
Now among the gate array devices you may have heard of Sebelius
which stands for complex programmable logic device Well these
devices are part of the evolution of the race and their complexity is
said to be between that of a people which is one of the most
primitive programmable gate arrays and the complexity of NFPA and
about details. Well speel these are said to be their evolution. So they
have the traditional and or blocks. So by that I mean that we have a
lot of and Gates inside connected to some level of switches. Where
we may have some other levels of gates but eventually we get or
Gates does this to implement what is known as a sum of products
anyway.

We have lots of gates and lots of or gates. That's the main
architecture of a. But we won't spend much time talking about

CBLDF because FPGA are much more widely used today. But here's
a fun fact. Did you notice that FPGA don't contain an actual gate
array but rather some more involved digital devices like lookup
tables and multiplexers and others and flip flops. And so they are not
exactly gate arrays as the name suggests. On the other hand we
have CPO these which are said to be complex logic programmable
devices. And that sounds more like the FBI. So let me make the
observation that the yeas are actually complex programmable logic
devices while Sebille these are field programmable gate arrays.
Think about it for a minute.

HOW IS AN FPGA
PROGRAMMED

So how do you program an FPGA Well you enter your hardware into
a software tool by using either schematics or you may also use
equations. But the most popular is the hardware description
language like very low or VHDL in the picture we have a screenshot
of the Vogl which is a tool by site links so you compile your code just
like programming code using a compiler well for FPGA so you use a
development and synthesis tool which does pretty much that compile
the code to produce the bitstream file that goes into the memory of
the FPGA those tools maybe VI Vado Design Suite by Xilinx or
quarta surprised by Intel or Altera.

Those are pretty much the two options you have if you are going to
use the most popular FPGA Souder. And so the last step is to
download that output file into an FPGA. You need a software tool for
that. And this software too is often included in the design suites I just
mentioned. So in the picture we have a software that is called adapt
by a company called Digital int and the one shown is for the bases to
board by vigilent. So each manufacturer offers different tools for their
boards and we'll get to use a couple of those a bit later in the project.
So how many times can a program an FPGA. Well that's an
interesting question because it all depends on the technology.

The memory is implemented in remember we use a memory inside
the FBD to store its behavior and that memory contains all of the
interconnections and the whole behavior of your design. And so that
memory can be implemented in several ways. The most popular is
an SRAM memory that is a static ram memory which is the fastest
and the most expensive memory cell there that one can be program
indefinitely because it's made out of gates. There are some other
technologies for example. And if use can be as the name suggests
only programmed once we have the classical eeprom memory which
can be erased but not electrically that goes to hundreds of cycles

then we have the eeprom that's electrically erasable that goes to
hundreds of thousands of cycles flash memory as you may already
know goes to millions of times. And finally we have another
technology that's called fuse which is also one time programmable in
the picture we have a Spartan FBA by Xilinx and Altera cyclon FDA.
They are both implemented with static ram. The first shown in the
list.

WHO MAKES FPGAS
So who makes a bigger case like I said we are pretty much stuck
with two very very good manufacturers. First we have silence at the
left and in the picture we have a Virtex 2 FBD which is a very
advanced one.

And as a fun fact sellings is said to be the inventor of the FPGA
technology. And at the right we have Intel or Outtara as their former
manufactured is called Altera was acquired by until recently but they
have been the top competitor to sailings for years in the past. Both
solutions are very good and very well accepted in the market.
Actually these two companies have control of I'm guessing over 80
percent of all FPGA in the market.

So there are other manufacturers but the most popular by far are
these two as far as development tools go at the left. We have
sellings ice or Vivanco which are the development tools. Ice is an
older one but still widely used and Vivanco has been around for
some years now and it's still development. By selling used to the
other right. We have Intel quarters which is the tool originally by
Ultegra and now Intel and both tools do the same thing but for
different targets deciding stalls workforce silence Figueres. And the
Altera tools worked for Altera FPGA and this project will concentrate
on Althora tools but their use and the whole toolchain is pretty much
the same.

WHAT HARDWARE CAN
BE IMPLEMENTED WITH

AN FPGA
And if you're still wondering what type of hardware and FBA can
implement. Well you can implement Simbel company Shanell logic
such as others multiplexers. Here's an illustration of the full adder
and forbit adder implemented in this very low project.

The first one in the series you can totally implement that one on an
FPGA and you can also implement sequential logic which is for
example the corner in that illustration we have a counter with a
display that takes in a 4 bit number and you know what if you have
combinational logic and sequential logic you have everything you

need to design any digital system. So what's the limit. Well the good
news is that there are C-T use out there and they are not the limit at
the left. We have a block diagram of a neo stewe system. That's the
most popular soft processor or bioterror. Now Intel and at the right
we have an illustration of micro blades which is another very popular
soft processor.

This one is by Xilinx and you may be guessing each of them is
suitable for each of their manufacturers FPGA. So I hope you get the
idea and are now excited at this point because you can do just about
anything you want with an FPGA as long as it's composed of digital
devices and additional condition you shouldn't worry about just yet is
the size of your designs. The memory inside and if BGA and the
number of gates or logical devices inside an FPGA are for the most
modest of them equivalent to hundreds of thousands of gates. So
you're OK with any device we are going to design in this project but
be aware that if you are going to instantiate a lot of microprocessors
you may find a limit into what fits inside your SBT. So doesn't all of
this sound fun to you.

WHERE TO GET A
BOARD

All right. First let me tell you about the board we we're going to use.
This is D.L. Tara the 0 dash CV board and after googling it you can
see that there are several results. And let me show you a few of
them. This is the Web site for Tereszcuk which is the developer the
manufacturer of this board and this you can see here it is. And the
price as of June 2013 is $150.

And if you are a student and you can prove that then you can get it
for $99. So what's in the board. Well it has a set of 10 total switches
also 10 Ltds right next to the switches and it has 6 7 segment
displays. Here is the FBD. And you can see here it has a hard plastic
cover so that you don't touch the sensitive electronics in the board.

And it also has four push buttons. It has a bunch of connectors.
Here's a piece to connector EVGA connector. This is a slot for the
card and it has some other sets of things right here so that you can
connect this to other models that are compatible with this board now
going to Alturas website as you can see.

This is Intel branded but it's still the Altera website. Here is the board
and you can find all of the information you may want to read about
this board. And here the price is a bit different. And finally let's go to
some vendor. This is Digi-Key. And here we'll have to check the
actual item which is this one so here the price is the retail $150. So if
you want to get one of these boards I would recommend any of
these links. And once more if you are a student then you can get a
special price for it.

BOARD UNBOXING
So this is the box the Altair or boardgaming. This is from the
university program and the art is pretty unique. So the board comes
with an AC DC adapter and a U.S. Be A to B cable. So here's the
board.

As you can see the hard clear plastic cover stands out and look at
this sticker right here. It says download these Ciro C-v CD from this
address.

So I guess we're going to have to visit that address to get the
software and digital material that is supposed to come with the board
because it didn't come with a CD here that this place switches. It's a
bit hard to notice the Ltds but here they are. Here are the switches
and the connectors. Speaking of which this is the S2 connector
veejay. No this was B connector is for programming the board. You
don't think it's available for your designs.

Here's the DC input. It has a power switch and a very important
switch right here. This says run on top and Brugge for a program at
the bottom will use this switching a bit o. And here's a micro SD card
socket and the general purpose connectors.

THE DE0-CV BOARD
WEBSITE

So no let's visit the Web site in the sticker that came with the board
that is C D dash the 0 dash CV. Doctoress ACT-UP come here this.
So once more this is in that resk Web site and the original contents
for the CD were these files. So here are three elements in this CD-
ROM table. First this one says the zero CV CD-ROM and this is a
set of demo applications you can download to your board. This is the
only one I recommend that you download.

The next one is the control panel. It's our fancy Windows application
that has controls for you to turn non-elites or to know the status of
the switches in the board online. But really it's just a toy program. It's
not a design that you will make. So you can feel free to skip this one.

Besides it requires quarta stew which is a previous version of
Quartus and it's not compatible with Gordis prime 17 which is the
one I am using and the one we will use in this project. So once more
maybe you don't want this one. And here's a download for Quartus. I
don't recommend doing this but rather going to the White House
Web site. So let's download this CD-ROM file as you can see this
sent us to some other page I rather dated Bache it seems and this is
the zip file we want. So let's download it.

DE0-CV BOARD CD
CONTENT

So after extracting all of its files here we have the directory structure.
And as you can see we have data sheets for the clock circuitry for
the FPGA.

So here's the data sheet for the cycle on five FPGA that it's onboard
the data sheet is the brief file with only 48 pages. It summarizes the
electrical mechanical timing and temperature respect's of this chip
No the handbook is the rather long file with one thousand ninety one
pages and it has all of the information you may want to know about
this FPGA but by all means feel free to just skim through this file or
even skip it because this is very very involved information that you
will not even have to know about in most cases. Actually for this

project we are OK with just the information of the board as you will
see this information it's good to have handy but that's it. We have
some data sheets for the circuitry related to power and we have the
SD RAM chip also here detailed in its own data sheet. Here are the
demonstrations which you can download into your board. We will
see how a bit later but for example here is the default application that
comes loaded into the board. If you want to load it back here it is and
there are some other cool demos here.

Here's a P.S. to them all. As the as the RAM D-Ga. answer one
here's one that uses the Neals microprocessor. By the way here's
the manual for the board. This is the file we will skim through. So this
is the board manual not the FBI's manual or any of the other
integrated circuits onboard. But this is the manual for you for the use
of the whole development board. This is much easier to read
document because it's for humans. It's only 60 pages long and we'll
see it in a bit. Here's the schematic for the board if you care to look
at it. So this is only if you want to know and expect a connection and
whether or not it's OK to connect something to your board and not
break anything. So that's the only reason they see I use or may want

to take a look at this file. And finally we have some tools here. Here
is that the control panel application which requires a to do so. We
are better off without it. Here's the message. It didn't find Quartus
although it is installed in this computer but the newer version is all
yes. All right. Let's not use this one. And finally here is another two
named system builder. So this is actually a nice application. We will
see a bit later. It's the easiest way to create your designs. At least for
this board. So that's it. Make sure you download this file so that you
can follow along with several examples. I will guide you through.

SKIMMING THROUGH
THE MANUAL

Now that's browse through the User Manual of this board. This is the
best way to get to know any hardware. In my opinion so the first
thing I want to do is to show you all of the hardware that is on this
board formerly. So here's a nice illustration as you can see this board
has a lot of connectors. These connectors are general purpose. This
is the FPGA and this very special chip right here is the U.S. bead
blaster.

So this chip works with this U.S. connector to program the FPGA in a
way that you'll learn shortly. Here's the power input for DC. This is 5
volts and a power switch. This switch right here the one that reads
run Brugge is for running the application that you download through

the U.S. Blaster into the FPGA or for programming some
applications that will permanently stay in the FPGA board. I'll tell you
how later. Here are the seven segment displays. Here are the
Pleiades the switches and the push buttons. This is Diest DRAM
chip. It has 64 megabytes and we have an FPGA reset button at the
bottom and the peripherals you are free to use are the VDARE
output the S2 connector and the micro SD card adapter at the
bottom of the board. Here we have the USD Blaster controller
chipset. This is a very specific circuitry required for the programming
of the board and this chip right here is a nonvolatile memory that can
hold the whole configuration the whole circuitry you want to send to
the FPGA but this is a nonvolatile memory. This FPGA does cycle on
five stores the files you download to it in static ram. That means that
when it loses power it loses the circuitry you sent to it. The reason
they are implemented with SRAM is because it is fast and the way
you download an application to stay permanently here is into this
chip right here. So for the most part you may want to download your
applications directly into the FPGA so that you can make changes
and work rapidly. And when you are sure you want your application
to stay on the board that's when you send it to this chip right here. All
right let's move on to the next thing I want you to pay attention to.
Here's a nice pictographic block diagram that shows us all the
elements in the board. Now if we scroll down to chapter three this is
where we can learn how to configure and how to download
applications into your board. So here it is you have two options. One
is the. Tag programming and the other is the active serial
programming. These are the two ways I told you about JTA is
programming the FPGA directly and active cereal is programming
the nonvolatile memory. So the first method and the one we will
primarily use in discourse is to program from Quartus into the U.S.
be Blaster directly to the Altair a cyclone the FPGA that happens
when you have the run programming switch in the run position. So it
is this switch that has to be in the top position.

The one that says Run and whenever you want to download your
application permanently into the board you have to put this switch in
the bottom position to program position and so the output will go into
the nonvolatile memory. It's not just a nonvolatile memory it's a serial
configuration device that's the name of the chip. And what it does is
that when the board powers up it downloads all of its content into the
FBA every time you power up the board. So it's part of the boot up
procedure of the development board. Oh and another technical
difference is that to program the FPGA you will need an S or with file
a file with the S or with extension where s to program the serial
configuration device. You will need a file with the B or with extension.
So that's it for now. We will come back to this user manual when we
need to learn about how some elements of the hardware are
connected and what a logical one and a logical zero does to your
application for specific elements like Ltd's or switches.

THE FPGA
DEVELOPMENT

PROCESS
Know that we have briefly covered what FPGA you are and a bit
vaguely how to program them it's time to learn the gory details of the
FPGA development process.

In this project we'll learn how to program FPGA and I'll show this to
you in three steps. First I'll tell you about the steps you need to take.
Then the steps the compiler takes and finally how to download your
code into your SBA. So let's get started.

THE STEPS YOU NEED
TO TAKE

So here we have a summary of the steps you need to take in order
to make an FPGA digital design. First you create your project.
Indeed you have decided to use then you write your code in very low
or VHDL. Next you assign the pins that is assigning where your input
and output ports for your Top Model are going to be connected to in
the FPGA. Next you specified timing constraints.

Now this is one of the most important steps in high speed systems
and even in systems with modest timing requirements. Next you hit
compile and I'll tell you all about what happens here. Next you don't
know your design into the FPGA and you usually do this by hand. So
let's take a deeper look into these steps.

CREATE A PROJECT
So the first step is usually to create a project in the idea you have
decided to use. Chances are you will work with projects and projects
are a structure or files and they usually work within one folder in your
computer where you have a project file and that project file is usually
a text file. Maybe SML or Jason that contains all of the information
necessary to use the rest of the files to produce your applications. It
has all the settings you set in some dialog box and all the decisions
you make. Well all of this information goes into the project file. And
here's a list with some of the information you have to provide to the
ID so that it knows what you want your project to do. One of these
details is the purpose of your project.

Typically you may want to simulate your project or download it into
an FPGA which is called implementing the design. If you are going to

implement it you have to specify which FPGA you want your design
to go into because I see no vendors provide several different FPGA
of their own. The target board is sometimes specified especially if
the vendor provided a project file or more information on it. So you
may work with VHDL or very long you are sometimes asked which
language you prefer so that the new files and the libraries you
include may come in that language is just for convenience most IDs
are multi-lingual in that they support VHDL or very low modules
alike. You can also specify which IP project you want to support.
Remember IP project are readily available modules pretty much like
software libraries all of them require a license. Some are paid and
some are for free.

WRITE YOUR CODE
The next step is to write your code. Like I said most ideas support
very long and VHDL but it's very common that you can enter your
schematic diagrams either and RTL schematic or a technology
schematic. So the RTL schematic is the logic diagram with Gates
and whatever you want your system to behave like. Whereas the
technology schematic it has the actual parts that are inside the
FPGA.

So if the FDA does not have let's say and gate Well they won't be
available in your technology schematic but they may be shown in
your RTL schematic. Basically what this means is that RTL is true to
your design. Whereas technology is the best fit that the software
came up with for your design. When you write your code it's
important to include all the modules you are going to use including

I.P project and there are tons of those available. And I recommend
that you look into your ID so that you can see which you are free to
use right away. A bit later when they show you around Quartus I'll
show you where you can get your IP project.

ASSIGN PINS
The next step is to assign parents so further than just a signing
where each signal from your reports is supposed to be connected to
or which bins are supposed to implement your sports. There are
several other details you need to specify when you assign the pins.
Here's a short list which is by no means complete well. This first item
is locating your pins. This is the obvious reason why you need to
assign the pins. But there is a long list of so-called attributes. These
attributes are several electrical details of the logic you want to
implement on your pins. For example the wind direction if you want it
to be an input or an output or a bidirectional been an input could be a
schmitt trigger input that's an input that has just the Rices meaning
several things but these inputs are used usually to implement
oscillators or to interface with analog devices. You can specify if you
want your inputs to have pulled resistors so that if you leave the
nodes floating you don't connect anything to an input. It will have a
default state as a logical one where you would use a pull up resistor
or if you want a logical zero as a default then you would use or pull
down resistor the slew rate is the rate of change on an output. And
this has several implications.

Normally the impedance of the surrounding hardware determines if
you need a slew rate control or not. And there are many many many
more input output attributes and I have somewhat good news and
that is if you are going to use our development board the vendor will
probably already have set up a project for you. And so the
assignment is usually already done and you have access to some
file that does this location and configuration of those pins. This is just
something that usually happens when working with development
boards. Of course if you are working with your own board that you
designed you would have to specify all of these things because you
have designed all that hardware. Then again you wouldn't be taking
this project if you were at that point and once more this information is
ultimately saved in some text file this text file may be the actual
project file but it's usually enough file that is openly known to contain
all of those spin assignments. So as you can see this can be
tiresome because you have to specify a lot of things for a lot of bins.
And so this is usually done in a separate application. Remember a
Navy is a whole suite of different programs that perform different
operations for a common purpose and that is making FPGA
embedded applications. And so there's usually a separate program
that belongs to the development suite that does all of this and this

program is included because well on the one hand it's easier for you
when you have a graphical user interface. And second your printed
circuit board may benefit from having certain locations for certain
signals. And so it's often very convenient to have a graphical view of
the chip package where you can see the pins and where they are
located so that you can make a good estimation of how your printed
circuit board will end up looking like.

PIN ASSIGNMENT DEMO
So this is quarte to prime. And here we have the set of tasks you can
perform well if we open this comp. task by the way this is a project I
already have open here so let's open the compiled design task and
in here we have the first one that says analysis and synthesis. Well
here we have a desk that is called IO assignment analysis. So if we
open this one we have an application that is called a bin planner.
This is what I meant. So let's open it and you can see this is a mess.
Luckily the project this belongs to had already configured all of the
pins that are used in the zero CV board. So here we have a legend
of what all of these mean. So let's say some of these symbols this
rising. Symbol right here says Glocke be as in positive edge and it's
solid red. So this is a user assigned IO.

And we can go through all of these bins and they invite you to do
that and try to read through the legend and try and understand what
all of these symbols and assignments mean. So this is the package
of the FPGA as you can see this FPGA comes in a very complex
package that has pins all over. This is a BGA package or ball grid
array. And these are all the signals that are available to use in your
code. As you can see their names are G.P.O. Hex as in the hex
displays LCDR and seeing the Ltd's and so on and so forth. Well this
is where you could modify your PIN assignments if you want for this
project we will use generated projects. And so this won't be
necessary but it's nice to come take a look at this so that you know
exactly where everything is located.

SPECIFY TIMING
CONSTRAINTS

The next step is to specify timing constraints. So this is one of the
most important parts of the process. I can't say this enough times
and for me to explain to you why this is important in FBA D.S.
especially we have to go back to the sad reality of digital systems
and that is propagation delays in this illustration. We have a diagram
showing some logic but the bath's that these input signals have to go
through to get two of these output lines are shown in different colors.
By the way this is a full aether as you can see but once again in four
different colors we can see four different stories. The signal he goes
through this X or iGate then it goes through this and gate and then
through this or iGate or a big deal but that time it takes for this signal
to go from its inputs and have an effect on this output is called the
propagation delay of this gate.

Next we have the propagation delay of this gate. When this result in
signal enters this gate and causes whatever it's supposed to cause
in this output and in the same way we have that this signal will have
some effect on this output and this will happen after a certain time
and we don't have any guarantees that all of these gates have the
same propagation delay but they may have similar propagation
delays. However some Gates may have different propagation delays
especially surrogate's because as you may remember the XOR
operation is a compound logic operation. So this gate and this gate
may have each a propagation delay that is higher than the
propagation really off and gate or and or gate. So what does this
mean. This means that the time it takes for me to have an effect on
the carry output or the carry impact of the next stage. Right here all
the time it would take to have that effect would be the preparation
delay of the X or plus the preparation delay of the end plus the
preparation of the other and but that's not all. What if we want to
know how long it would take for a survive to have an effect on this
output. Well that would be the preparation delay of the first X or gate
Plus the preparation delay of the second surrogate that's the green
path. This one shown right here. So I hope you can see that these
two times are different. The red path takes x4 glass and glass or

propagation delays whereas the green line takes X or propagation
delay plus X or propagation delay. This means that the yes output
and the C output won't change necessarily at the same time even
when you make only one change in a because the different gates
may be different times to respond and it gets a bit worse when you
consider C as you can see the paths are only cause for a and see
right here B has no color in it but it's just not shown. So if we take a
look at c c has to go through only the XOR gate to have an effect on
s that carry input only has to traverse this gate to have an effect on
this output. And it also has to traverse this and gate and then this or
a gate to have an effect on the next Gary line. So the carry signal the
carry input signal has visibly a shorter time or a shorter overall
propagation delay in this system to have an effect on the S output
and DC output where S A has to take longer because it has this X or
to go through first that means that when you change a b and c even
if you make the best effort to change them at the same time these
two signals don't have any guarantees that will have changes at the
same time or even that these changes will be stable. Let me show
you what I mean.

PROPAGATION DELAYS
EXAMPLE

So let's say a was zero. And at some time we changed it to one let's
say B was always 0 didn't change and let's say that C also was 0
and changed to 1. At some point and please bear with me let's say
that this racing incident was the same for both gates. So please
excuse my drolling and this time I'll call it the zero. OK. So let me
show you what happens after you zero in red. So in the diagram
paints and red. So take a look at this. If we had 0 0 0 entering this
system then the signals A B and C would look like this to zeros in
this X or produce a zero this zero in the C input goes as an input to
the gate producing another zero in some on the other hand. The two
inputs of the lower end gate are zeros and the upper and gate also
has zeros. So the output 0 and the OR gate outputs are zero. No
biggie here. Now let's consider what happens right after 0. So I will
show what change here in red so first we changed a 2:1 and see to
one that's the first thing we changed. And by the first thing I mean
that the change in C is also visible right here at the right. So this zero
that's entering the lower input of the X or date is now a 1. So this
XOR gate is as of this moment as of 0 now experiencing a 0 in one
of its inputs because this XOR hasn't responded to this one. This is
still outputting this 0 but the one we just changed here because
remember we said that these changes happened at the same time.
And so C has an advantage over a. In this second X or gate.
Meaning that when this x4 sees a 0 and a 1 it will have to put now a
1. But I don't want to change this right now because I am only
showing you what happens at the zero. So let me mark this in some
other color to show you that very briefly this signal will be the result
from this zero. And this one and which will be that result will zero in
and one in and or produce one. I will use green for this. So we have
a 1. So this signal used to be a 0 then became 1. Now let's see what

else happened when we changed. See to 1 we'll see comes as an
input to this and gate the upper end gate. And so we get a logical
one here. So still at this moment nothing changes for this gate
because it's an end. So it's still outputting it's 0 and then right after
the propagation delay of the first XOR gate we get something new
and you know what. I'll use green. And there's a reason for it. Will
this change from 0 to 1. Kurt when this gate noticed having a 0 in
one of it's input. Any one on the other. So the change from 0 to 1 in
its lower input is causing a change from 0 to 1 in its output. But when
this one finally is changed is when this gate has responded. So the
propagation delay of this extra gate has passed and will this other X
or gate is supposed to have the same propagation delay. And so I
will show this in green this change.

So this signal will change at the same time as this one. So this one
goes to one. And now this X or is looking at a logical one here and
the logical one here. So it's now again forced to change this into a
zero. I will show this in some other color. But let's see what happens
with this one. Also this one comes to this input of D and Kate and so
we will change this signal to one race one. And so after some time

this signal will change. This will be a bit earlier than when this signal
changes. And then this change will cause this we wondered will
appear here will cause a one to appear here because this is an --.
So let me use purple now. The output of the X or gate will now be the
0. It has to be the output of the upper and will be the one it has to be.
And after some time the output of the Gary line will be a logical one a
logical one. So the real problem right here is what happened to this
output as you can see this output. Didn't get just one change even
though we changed these three signals at the same time. Or rather
wait and see changed at the same time. We didn't get one solid
change but a set of changes and over time these changes won't look
synchronous with each other. So this may be very well what
happened with these two signals. I'm not saying it is exactly because
I'd need to know the propagation delays. So let me show you right
below this diagram what these output signals may have looked like.
So this signal was originally 0 and right after this change in 0 2 it
went from 0 to 1 and then back to zero. So let's say that happened
like this. So here's the one it's momentary and then it stayed at zero.
Let's say it took this long. No for the see I plus 1 signal. The story's
different. So let's say this signal changed a bit later than the sum
signal so once more. Please excuse my drawing but what I mean to
say is that this signal had some instabilities before it reached its
stable state and this signal changed at some different time. Then this
signal. And so we don't have any guarantees that a combinational
system will behave in a synchronous manner.

TIMING IN SEQUENTIAL
SYSTEMS

And what's so wrong about propagation delays. Well the thing is that
sequential systems do require those times to be considered. So let
me show you a small system so that you can see what's really going
on and how we need to take care of these delays and be aware of
them. Let's say we have a clock line here entering EDI Flip-Flop and
let's say that the signal this The Flip-Flop output goes to some logic
but more importantly let's say that this signal goes into another deep
flip flop as its data input. And we have the same clock signal going
into it. As you can see we have some inputs here. X Y. And why not
Z which go to this final and get this in signal also affects that and
gate. Do you see where I'm going with this. Well the problem here is
that no matter what the logic in x y and z is this input has a huge
advantage over all of these other signals because it goes from the
actual input into this and gate which actually has the same
advantage as Z but why has to traverse this X or gate. Then the
inverter and X has it even worse it has to traverse the and gate then
the X or then the inverter and so is the situation of this output. So if
we want this and output to be valid when we receive a clock edge in
this flipflopped we need to allow the propagation delays of these
gates so that these signals have an effect on the end output and we
need this signal to be stable.

That is not to change because of some delayed state has cost
changes and finally reaches the signal we are interested in. So the
project here is that for this Flip-Flop to work properly in this system
we may naively think response with no delays. Well we have to take
those delays into account and we are limited in the clock frequency.
This can only work at some maximum Gluck's frequency because if
we try to do it faster this final Flip-Flop will not wait for the signals
that are still going through the gates. And will this would malfunction.
So that's why we have to specify the timing constraints. We have to
let our software know we have to inform our software about these
delays and tell our software hey this clock line I expect this line to be
at I don't know 10 may hurt. So you better create logic right here.
That will comply with that deadline. So the deadline would be the
period of the frequency you want in your clock signal. And as you
may imagine one of the worst things here is what they've shown to
you right here. These unstable glitches could be a very bad thing if
we are using frequencies higher than the ones our system supports
because maybe our system because of working too fast may have
caught the logical one that was just a momentary effect of the
propagation delays right here. Something known as a race condition
as all of these signals are in a race between each other to reach the

output port. But you have to let the slowest signal to reach the
output. That's why we need the timing constraint. But wait there's
more.

WHY THIS MATTERS IN
FPGAS

You know why this matters in FPGA. Well let me make a diagram for
you so that you can see why an FPGA may be at a great
disadvantage in this regards. So let's say we have enough PDA with
a lot of blocks. So let's say that we have it blocks here. So mother is
here a mother here. So if BGH may have thousands and tens of
thousands of blocks which contain hundreds of cells each and that's
how we reach the equivalent of hundreds of thousands or even
millions of gates. Please bear with my drawing and so let's say that
we have some inputs here. I'll name it in zero some other inputs
here. I'll name it in one and some other inputs here in two. Now let's
say we have an output here out zero. Another outputs here out one
and right at the bottom we have output two. Now for this system let's
say that I am interested in some very simple logic but that logic
requires some gates and some flip flops.

So let me do a little diagram here at the left where we have the three
inputs. I don't know I have a gate CA have flip. This is one output.
We have another Gaetz here. But here's the real problem. The T that
this and gate couldn't be located in any other place and the place will
show you here. And there was only room for this inverter at some
other point and there was only room for this or and for this the Flip-
Flop at some other points here but very inconvenient ways. So let
me show you. But say that for the interconnections we have several
lines between all of these blocks and I will show the connections in
red. So let's say that this input had to go to some element in this
block and then it had to go through this line to this part right here to
this block in order to now go to this block and then go to this block
and then go to this block to finally reach out to then input to go to this
block which goes to this block which goes to I don't know this block
reaching out at zero. Now input one goes to this block then to this
one then up to this one then right here to put one. So once more
what I'm telling you is that maybe this was the poor choice of routing
that the compiler came up with and all of these Bath's that were
selected and all of these connections will take some time in
propagation delays and so we would end up introducing circuitry that
doesn't just logically resemble this but it also adds propagation

delays and propagation. The least that are not guaranteed to be
exactly similar to the gates preparation's delays we have here unless
we inform our software about our timing constraints.

WHERE THE COMPILER
TAKES ON

So the next step is to compile. And now I will tell you what the
compiler DOS. So as you can see the point at which we left our
design is where the compiler takes on and it goes through a series of
processes to finally generate what you want which is a programming
file these steps have several names for several vendors but the
names. Xilinx uses our synthesis translate map place and route
testing and finally generating a programming file. The first step is
synthesis and this can be simply put as converting your RTL design
into a netlist representation that is converting whatever you
described in your hardware description language sourcecode into
whatever elements are actually implemented in the field you want to
use. So for example if you are using logic cells that have lookup
tables and you don't have any gates actual gates available then the
synthesis tool will turn your design into netlist that you have only
lookup tables. They don't have those gates. So that would be
converting from Gates to using for example lookup tables. The flip
flops.

That's a full adder which are the elements available in the
hypothetical logic cells I showed you earlier and as you can see this
is one step closer to the implementation and by the way these steps
that are called translate map and finally place and route these three
steps are known as the implementation of the design. So these are
translate map Blaser route and different vendors called these steps
differently and even their meaning has changed over time. So what
translate usually does is taking several netlist that the synthesizer
has output and put them all together into just one big netlist next
map selects which blocks to use in order to make it convenient to not
end up with a maze of connections. And actually the routing of those
connections takes place in here in place and route. So the
combination of these steps is finally to implement the design to take
all of the net lists that the synthesizer has produced and to calculate
where to get all those elements in what locations of the actual FBD.
And finally calculates the route it has to make with the
interconnections once more. This is way more complicated than the
simpler task of a traditional compiler which only has to produce
assembly code equivalent to the higher level source code you are
using from our C or C++.

TIMING ANALYSIS
The final automated step is the timing analysis. This is a step I called
testing right here. And the thing is that the implementation was
performed by taking the timing constraints you defined as rules. And
it was trying its best to comply with them so the generated circuitry is
later analyzed by the compiler toolchain for compliance with these
constraints. This is done by a separate program which is the timing
analyzer in Quartus.

This one is called Time quest which finally produces a report which
tells you if those timing constraints were met. So it tells you if your
design is feasible if it's possible to build it. So this part is very
important and it's the support the ID provides to you so that you
know that your design will work or if it will fail at the frequencies you

want it to work you can always follow the recommendations of that
report and even relax your requirements.

PROGRAMMING FILES
The final step of the automated part is to generate a programming
file. Intel or Altera Coltart assembly. So the part that tests assemble
programming file is the same as generating it once more. This is the
binary file that you download into the FPGA. No this file can go into
the FBI or it can go into an on board flash memory to download on
each power up so downloading your design can be done into the
FPGA. This is usually in RAM memory. That's the one included in the
FPGA to implement the designs. And so as you know this is volatile.
So if we turn nasty FPGA it will lose this application. So this is
convenient for development because this is done very fast so you
can program your FPGA in seconds and you can try your designs
and then go back and make changes and then try again. That's why
this scheme is useful. But on the other hand you can download your
design into a nonvolatile memory that is usually available in any
FPGA system.

The content of this nonvolatile memory will be download at power on
into the FBI. Now this seems as a quick fix as a bad solution but
really this is part of the broader procedure. It's industry standard.
Everyone does it and that's because the RAM memory of the FPGA
is what MAKES IT field programmable. It's the most important
advantage of the FPGA. So this method is convenient for
deployment of your final application when you are ready to download
your application into your FPGA and not change it frequently. Or do
you want it to survive power on cycles. Well you can download it into
the nonvolatile memory.

INSTALLING QUARTUS
PRIME

So if you haven't already installed Quartus Let me show you what
you need. So let's look for it. Uncle the one we need is called quarter
sprang. So again this is Intel branded and it's the one that says
download Intel quarta prime design software.

This is version 18 and as you can see you can download it by going
to the light edition right here. This download is free of cost and the
others do come with a paid license and so you'll need this one. In
this page you can select several releases and versions of Quartus
the version I am using is seventeen point zero. You can download it
here or if you want. You can download the newest one. I will stick to
seventeen point zero. It reloads. And we won the light edition

because this is the one free of cost. You can download it for
Windows or Linux. Sorry no Mac.

And in this part you get to choose what you want to design for and
so you want this quarta sprained. LATE EDITION the free one. This
is something you're definitely one you want model sim incase you
want to simulate your designs. I recommend that you do. Now for
devices there are some devices you just don't want here. If you are
only going to follow along with the project you only want support for
the site clone the device that cycle on 5.

The rest you can uncheck so you can do this. So these are hundreds
of megabytes each and so by only selecting the site. Do I support
your saving some space and then you can download those selected
files. That's it. The site may require you to log in. So you may want to
create a user in the Intel slash Altera website but that's all the
support you'll need.

SHOWING YOU AROUND
QUARTUS PRIME

And let me show you around. So this is an I.D. and as such it has
several sections and several separate applications. I will show you a
few right now here I have a project open which I will show you later
but for now let me just show you around where everything is. So as
in most Adie's at the left we have our design.

This part is called the project Navigator. And here we have a
hierarchy view where I have my design and all of the modules it
instantiates. Now here we have the tasks section. So here's the
compiler tool chain. If we open this element we have all of the
elements of the compiler. Here we have synthesis the fitter which is
place and route. And this is the implementation actually. Then we

have the assembler which is the generator for the programming file.
Here's the timing analysis part. Here's another step that Altera or
intill takes. But beyond the compiler we have some other tasks. And
the last one is the one we are most interested in finally which is
program device. This part opens a separate application which is the
programmer and we will see how to use this later. So these are the
tasks to achieve completion. But there are several outputs or several
purposes for which we can be using this application. And so we have
some other biplanes we can use for example. We can implement a
full design which takes more considerations and this is for
implementing say a board of your own. So we are good with
compilation for our project when we are working with a development
board. But take a look at this. We have gate level simulation. So this
is the gate level simulation. And the other is RTL simulation.
Remember RTL is what goes in your source files very low or VHDL.
So this is what we learned how to use. In the previous project in the
series the one on very low when we used model same model same
is one of many applications included in Quartus brain and we have
another option here that says rapid precompile. This one only
compiles or only goes through the steps that were affected by the
changes you made to your design. So this one is to work faster
because as you will see the compiled process is lengthy. It does take
a while for my computer which is an ice 7 core seventh generation.

It's taking about 1 and a half minutes. So the bigger part of this idea
is you're working section. If we don't click on some source file this is
where we will see the code at the bottom we have a console and
errors and warnings section. You may be already used to this if you
have worked with any ID. And here we have a very special part at
the right which is the IP catalog. So this is a catalog of the AP
projects that are available in Quartus so you can open this bar great
here that says installed IP we have a project directory which has
nothing but we do have a library here which has a basic functions.
We have Arithmetike bridges and adapters you name it. Let's go to
arithmetic and we have a lot of IP project which are models available
for us to use and if we go to the very bottom we can see the
university program I.P project here. So these are for education. And
here we have for example generic input output and you can see that
we have a U.S. controller we have a p S2 controller remembered
that the Ds 0 board does have a s2 connector. Well maybe you can
use this one for the board.

We have communications for example we have and R S2 32 you are
which is a serial port. We have memory here. So here's the SD card
interface which may also work for our board and we have a nest ram
controller which again our board does have some SRAM. So all of
these IP project are ready to be used if you want to and maybe we'll
do a design on this in a later project on somewhat more advanced
designs. But I wanted to mention it because this is a big motivation
to start working with real professional applications with already
proven Coe's. There are many many more parts of the FPGA design
process that you will learn along the way. But for now this is Quartus.

LOOKING AT THE TOP-
LEVEL TEMPLATE CODE

Now if we take a look at it it's very love code. Let me show you here
we have a lot of definitions for symbols. Remember the pound define
equivalent in very low uses not the pound symbol but the rather
unique grave accent character.

So anyway here is a symbol defined that is called and Nabl clock to
then enable clock three four o'clock DRAM G.P.O. hex from 0 to 5 d l
d r and all of these symbols are used to create a new Verilog module
called these zero C-v gold and talk. This is your design and the input
and output ports are included as you can see here only when their
flags are included. So this is conditional inclusion of code as in C or
C++. And this is where the definition and it's. And you can see a nice

bug from Quartus right here. It left a piece of text where it shouldn't
be oh well anyway.

We can use any of these lines that correspond to the lines in the
hardware. So for example the lines that say G.P.A. or here are from
35 to 0 in G.P.O. 0 and from 35 to 0 in GPO 1 These are input output
pins. That's why they are called inout they are bidirectional. Here we
have for example the LCD array It's only called LCDR and it's from 9
to zero. So there are 10 Ltds the keys the four buttons are here from
3 to 0. This is an array of inputs. And so as you can see these are all
of the lines we care about.

ENTERING SOME
PROOF-OF-CONCEPT

CODE
So let's make a proof of concept application right now. Let's take
these two switches which are switch 0 and 1 and perform an ant
operation. So let's instantiate an AND gate and put it in this Elodie
number zero then or again right here for the same two inputs and
just for fun. Let's use these two switches right here.

These must be 8 and 9 and put there x or outputs in the last LCD
which should be 9 back to Quartus. You may already know this takes
only three lines of code. First the end gate that will send its output to
Aley the R orders zero and the inputs will be switch as w 0 and

switch 1. I know these names but here they are. Here's the switch
array and the array is somewhere here. OK.

Now let me copy and paste this line twice more and I said we were
going to make an OR gate and an X or a date. So the output for the
door will be an LCD one and the output for the X or will be an LCD 9
but its inputs will be switch 8 and switch 9. That's it. This is my
application.

COMPILING YOUR
DESIGN

So let's compile and inquire. You have all of your tasks in this
separate section right here and label task. And so we have the
compiled design toolchain right here and we have several steps.
One is called analysis and synthesis. This is the equivalent to the
compilation process. Next we have the fitter which is classically
known as place and route. And what this does is find the best layout
for the actual hardware inside the chip. This is very advanced stuff.
Next we have the assembler.

This part is similar to an assembler for code for microprocessor code
that takes all of the output files and puts them all together and

generates a programming file. The file that we will ultimately
download into the board. These are timing constraints this time
quisque timing analysis helps us comply with the requirements of
timing in our designs for our examples. We will not pay much
attention to it but this is very necessary. Once you get the hang of
this this is the next step. You need to inform your development
platform about the frequency you expect your design to run at. So
right at the bottom we have the programmed device task. This one
actually opens another application that is a programmer which will be
our next step after compiling. One more thing about these tasks is
that they all have subtasks and inside they have several other tasks
and useful tools. You may want to take a look at at some point.

All right so let's double click on compile design yes I do want to save
my changes. And this will take a while. At the bottom we get the
classical console window which will show us warnings and eventual
errors. Some of the warnings we will get are for unconvicted
hardware because our application is not using much of it anyway
and some others are for the timing constraints which may not have
been met because they haven't specified anything about time. This
is just a combinational application with three gates. It's still working.

As you can see some of the tasks are done yet and we are finally
done. So if you get this message Quartus brain full compilation was
successful 0 errors you are golden. You're not so golden if you get
so many warnings so you may want to take a look at the first
warnings and then make sure everything's OK. For our design Trust
me this is OK.

PROGRAMMING YOUR
DEVICE - JTAG MODE

All right. So now we don't click on program device once more this will
open another application. This is the programmer. And as you can
see in this part right here it says that there is no hardware connected
to it. And there's a good reason for it. There is no hardware
connected to it. So let me connect the board and if you look at it it's
running the Demel application that was loaded into it by the
manufacturer. And now let me press here. Hardware setup and
choose the hardware that's connected through the JTA connector.

And so if you choose right here you will see you as the blaster you
will be zero. And this is done immediately. So I just close here and I
am free to press this start button. You have to make sure that your

board has the run programming switch in the run position the top
position. So this may tell you that we are going to program the
FPGA. So we need that. So we're fine. Let me start as you can see
the board is seemingly doing something and now it's done so a kind
of annoying thing here. Are all of those Ltd's in the displays that are
on. So let me go back to the design and just turn them off. An easy
way to do that is going back to the code and disabling all of those
hex displays. And so we can go starting at line 40 just ignoring
commenting out these definitions.

If you come in all of those out these outputs will not be used. And so
the displays will not be driven so they will be off. Let me compile
again. And now that it's done let's open the programmer once more
as you can see it kept its configuration. So we no longer have to look
for the hardware let me start and this you can see now displace all
Ross. So let me manipulate the board and show you how the lower
order switches are indeed working as an OR gate in the second LCD
from the right I will turn just one of them on and the second Elizee
lights up I will turn them both off and both Ltds are off. I'll turn them
both on and Poles Ltds are on and they'll turn just one of them on as

you can see the first lady is an AND gate and the second is an OR
gate.

And what about the left most switches. Well these are configured in
an X or fashion with the left most Ltd. So these are both off. Let me
turn just one on and the radio goes on. Let me turn the other one on.
The LCD goes off and let me turn the other one off again. And the
turns on no one important thing about the way I downloaded this
application to the board is that I loaded it into the SBA into the static
ram of the FPGA. So when I turned the power off it will lose all of its
hardware configuration.

And by the way I am not using the DC adapter. I have simply
connected the U.S. B cable to the board that will provide power to
the board and well the manual says that you have to always use the
DC adapter but for this demo we're OK with just us me cable. OK let
me turn off the board and now turn it back on see theres the default
application again. And so next let me show you how to download the
same application but now to the nonvolatile memory to the serial
configuration device.

PROGRAMMING YOUR
DEVICE - ACTIVE SERIAL

MODE
So to send the application to the serial configuration device the
nonvolatile memory. First we have to move the switch. The run
program switch to the programming position. That's the first thing
you should do next. You can go right back to the programmer
application and just change the connection. You can change it right
here where it says mode this modus JTA. That's where the figure is
connected but you can change it to active serial programming. If we
go there we get a warning that the configuration isn't consistent with
the mode. So let's make it consistent. We are supposed to have a
file here the file we were supposed to send here wasn't the S.O.S.
But the POS file.

So these are in the output files folder for our design. And here it is
deal with. So when they choose it I have to check on the first option
right here that this program configure. I always have to do this even
for the FPGA. So let me hit start here. And this process takes way
longer than just programming the FPGA. For some reason
programming the flash memory in the nonvolatile chip takes much
much longer. No don't pay much attention to that progress bar. It's
not uniform. At some point it will just reach 100 in one step.

There it is. So now if we look at the board it's still running. The
default application. But that's because they haven't cycled the power.
So let me do that. Let me turn it off while the board is off. Let me
move the switch back to run now let me turn it on again. And as you
can see it is working. Passing and and or gate in the right most
switches. And as an extra gate at the left most switches.

So you should use this method when you when your application is to
survive a power cycle. For example if you want to show your
application to someone and you have to turn off the board then you
should do this. It takes longer to program but it's nonvolatile. And this
is the way most FPGA work. They download their configuration on
boot up. This is not some quick fix but really an actual method of
using FPGA is.

GETTING IT BACK TO ITS
FACTORY STATE

And if for some reason you want to restore the factory application
that was loaded in the board when you first unboxed that you can do
it so you can find that one if you select the file.

I will double click on the file and you can go to your directory where
you downloaded the CD-ROM content. Let me do that here. So here
you can go to demonstrations then the zero C-v default and here is
the deal with file. Let me double click on it. Check on programs
configure and before hitting starts. I have to move the switch to the
program concision and now I can hit start once again it's taking long
to do it. But you have to be patient.

It's been a while now. It should be almost done. There is a and so
let's turn the board off. Then change it to the RUN position and finally
turn the board on again. And there it is. There's a more obligation so
you can see there was no harm done. Your board is back to its brand
new state.

SYSTEM BUILDER_ THE
EASIEST WAY TO
JUMPSTART YOU

APPLICATIONS
And here's another two named system builder. So with this one you
can create your own projects by selecting which elements you want
to use. Then breasting generate to generate your projects. And so
let's give it a try.

Let's say we want to use only the Ltds and the buttons no switches
that say we only want to use DVDs and the switches so let's
generate the project. And here you can name your project. So let's

say testing let's generate it. It appears to have been successful. And
so that's exit and check the generated code. Here's the testing
folder. And here is that B.F. file for Quartus Let's see what happens if
you look at the testing module right here.

It only has the lead the array of 10 Ltds. This is very long by the way
it has the SD card elements. I'm not sure why and the switch inputs.
That's it. Here you can write your code and maybe try it. So let's see.
Let's just as an AND gate here. Which makes sense it's output to
one of the ladies that say Ltd are number four and takes in switch
numbers 0 and switch number 1.

That's it for this design. Let's hit compile this. Now that it's done let's
try and download this application into the board and see what
happens. Let's move switches 0 and 1. And there it is. It's working.
So yeah this is a very nice way to start up your applications. You can
jumpstart your applications by using this nice system builder once
more. This tool is under Tools Folder. It's called System Builder. You
just run this executable file and it will build an application for you.

SYSTEM DESCRIPTION
Now let's make an either the same forbit either we decided earlier in
the very long project. And let me show you how I plan to use the
board. Let me use the picture we have in the User Manual. So I will
use this to displace the two in the middle to show the two variables
we are going to have.

So these are four bit numbers so these fit in hexadecimal digit each.
And so the parameter a will go here b we'll go here and the addition
the sum of these two will go into these two displays. That's because
the highest number we will get in this other will be from F plus F
which is 1 e. And so I will print right here either a 0 or 1. And here a
number from 0 to f. Let me enter a and b with the switches. Let's do
this at the right most treacherous so switches from 0 to 3 will be the
upper end B and switches from 4 through 7 will be the upper end. A.

So the way I will control this is that I will enter a here and it will
appear in this display and I say change. Be here. It will be reflected
in this display. And finally the result from the other that will be inside
the FPGA will go to these lines. And just for kicks I will show you
how to use the oscillator in the board. So I will get the 50 megahertz
signal that is onboard. I will make a clock divider model in very long
and use it to show in the least significant LCD a blinking of either 240
hertz or one Hertz. I will switch between these frequencies using the
least significant of these buttons. That's the rightmost one. So when I
press this button the LCD will blink very fast at 240 Hertz but when
they release it it will blink at 1 hertz. So once more I will implement
the forbit aether and also a blinky application on this LCD which will
have its frequency coming from the internal oscillator of the board.
Now there are some things we need to know. First we need to know
how to control the displays. So we need to know if a zero or a one
turns the segments on and we need to know if they are connected in
a bus because if they are we will need a restor. So we need to turn
one on show its value then turn it off then turn the next one on
because when they are connected in a bus you cant turn them on at
once with different values. They would show the same thing. But
luckily this board has each of these displays connected exclusively
to the FPGA. We also need to know if the Mideast are on or off with
ones or zeros and what the buttons and switches send into the
FPGA at each state. So presumably having the switches down or the
buttons depressed is a zero. And having the buttons pressed or the
switches up you see one but we'll have to verify this in this user
manual. So lets just make sure about these details. So here at page
23 we have the circuitry for the tese.

And as you can see pressing them sent in a zero logical zero. So I
was wrong when I said that Bressant them might have been a one.
It's not it's a zero and it has pulled up resistors right here all right. So
next we need to know about these switches. And here it is putting
them up is a logical one and down to a logical zero. So my suspicion
was correct here.

Next we have the ladies and as you can see they are driven by their
anodes and the cathodes are connected to ground. So yes they are
turned on by logical ones and last but not least we have the display.
So yes each display has one line dedicated to each of its segments
in the traditional order 0 1 2 3 4 5 and 6 which are classically named
A B C D E F and G. Apparently you don't have control over the
decimal point.

And somewhere in the manual it says that they are come on a..
Which means that a logical zero turns on the segment and D.A. is
presumably connected to the logical one line or the supply line. You
can always make sure about this by looking at the schematic
diagram of the board. If it's very important to you. And why not. Let's
take a look. So browsing through the schematic let me just find the
seven segment displays. And here they are as you can see the
come on and nodes are all connected to a VCC line which means a
logical one. All right. That's it. So let's take a look at my solution.

LOOKING AT THE ADDER
CODE

Now let me show you my design application. This one it's called
either with this plea and here is the cue file which is the project file
for quirks that must be what this stands for Quartus project file. And
here is my design. Once more let's go to the project navigator at the
left. And here is my treat us elements that I am using. And so let me
show you the top module as you can see here.

I am not using two of the hex displays but I am using the rest I am
using four of them the four digits at the right and I am using the rest
of the hardware. I shouldn't use all of it but I am so scrolling down.
Now here is my design. You'll see some wires and assignments right
here that come from the fact that this code was forwarded from some

other board. I originally made this code for a basis to board and so I
decided to include the input output ports as wires here and assigned
them with the hard wiring method of a sign in very long so that I can
use the definitions for the symbols that are defined in the list.

In this design to comply with my name's right here. So here we have
it. I have a four wire array named a for variable A then another called
B. I have a clock input and this is just to show the frequency of the
leading. Then we have the push buttons are ready for push buttons.
The Ltds. This one is called Ltds and it's a register. And finally I have
something for the decimal point I used in my original design. I'm not
using it here. So here are my assignments. I have assigned
statements for a which corresponds to switches 7 through 4 in the
board. Then I have B which corresponds to switches 3 to zero in the
board my wired that was called Glocken is actually the clock with the
line in this design and the push buttons. I just defined push are
called G. In this design the LCD array I called it Ltds and it's actually
Leidy are. And so we have some wires here.

First we have some value which are forbit then the carry out line and
these lines Ruster clock and ABC just to show you the rate at which
the lower order really is going to be blinking at. So here's my design.
Actually the real design is only in these five lines and these lines are
the forbit aether that's called rather that uses a B The negated state
of pushbutton number one and the outputs are some and C out
which is a four bit array. Next I use the hex to 7 segment decoder. I
will show you in a bit but it's just like a BCT to 7 segment display
driver and it takes in a the hex display number three then the other
one takes B to the hex display number two. The next one uses this
yellow line. If it is 1 then it sends one in four bits. Or if it's 0 then it's
Since 0 and 4 bits to the hex display number one. And finally we
have that the sum goes to the hex display number zero. That's it.
That's my design.

LOOKING AT THE BLINKY
CODE

Know for the blinking of the Elodie I have a clock of either here that
I'm using to divide the five megahertz line by two hundred and eight
thousand three hundred thirty three. So here's a nice thing about
very low and it's that you can separate numbers with the underscore
character without any meaning.

But this underscore is doing what a comma would when we write
numbers by hand and the output goes to the line. It's called a. And
later I divide further this line a by 240 into B. What this accomplishes
is having two hundred and forty hurts in a and one Hertz in B. Next I
use the push button number zero in a multiplexer to either send a or
b to this line that is called restor clock and all this mention about

arrester is because in the basic stew board I was doing a arrester. I
was turning this place on and off to show just one digit at a time in
one display at a time and do a sweep of all of those values to make
the olution with persistence of vision that all of the displays were on
at the same time.

So I was doing that at 240 hertz or at one Hertz controlled by push
button number zero. The only thing I need to do for the blinking of
the D is to have this initial block actually setting some value on the
the number 0. And finally in an always block sensitive to the positive
h of the rest or Gluck's signal I can simply just toggle the state of this
Elodie. Notice that these lines right here this late state machine lines
in case what they are doing is exactly that restor I needed. I am
moving a 0 around four lines which were the anodes for the LCD
displays. It doesn't matter here. So let me go ahead and just remove
these lines.

LOOKING AT THE
INSTANTIATED

MODULES CODE
Know let me show you some of those instantiated devices right here.
First we have the forbit eather and it's very similar to the one we
designed in the project about very long.

But this one uses only four others. So this one has the Kerry input
and it instantiates fool others guess what those are well these are
the same for others we designed earlier they use half ladders and or
igate. Let's see what the half hour is. As you may remember this is
just next door and an AND gate No the clock divider remember this
model was used to divide the frequency.

Well it takes an input line a ratio and provides a single line output
which is the clock out line. So what is it doing. It has a counter a 32
bit counter initially it's at zero and the output line is at zero and
whenever it receives a positive edge of the clock input then it
increases the counter. And when the counter has reached one half
the ratio it will toggle the state of the output and reset the counter.
What it does is exactly dividing the frequency of the clock input by
the ratio we set here.

That's why in our code we divided the clock in by two hundred and
eight thousand three hundred and thirty three that yields 240 Hertz if
the input is at 50 megahertz. The same goes for the next line here
where we divided 240 Hertz by 240. That means one Hertz moving
on with the instantiated modules. Here we have the hex to 7
segment display decoder. And what it does is that it takes in a 4 bit
number and outputs a 7 bit number. I wrote this one by simply
assigning values based on these four wires DCB and a which are the
bits in the in array the input array.

No the output array. I have a signed statements here also for
separate variables g f e DCB A which correspond to the segments of
the display. And as you can see here I am performing assignments
assignments implemented as logical functions or boolean algebra
functions if you care to take a look at this code and verify that it's
OK. Please do. And finally we have a multiplexer. This is a two to
one multiplexer. Nothing fancy here. We have a selection impot just
one bit. We have two inputs and the output and this one is
implemented with exactly three gates and gates and or gate. So let's
go back to our top model and just compile by the way in the bottom
right corner you can see the progress. Right now it's at 51 percent.
And how long it's taking it's been one minute and 13 seconds. Now
and it's done. It took one minute and twenty seven seconds.

PROGRAMMING THE
ADDER INTO THE

BOARD
Let's go to the programmer and let's just program the FPGA this is
way faster. So let me do that and let's look at the board. There it is
first let's look at the LCD as you can see it is blinking at something
that looks like one hertz. And if I press the rightmost push button the
D will seem a bit dim That's because it's blinking at two hundred and
forty Hertz. If I released the button it will go back to one Hertz and
that's just a perk for this application. We are really interested in the
other that's implemented here.

So what that says is that 0 plus C equals zero C.. And that's
because I have these two switches on. So let's turn them off. So
here's the some as you can see we have zero plus zero equals zero.
Let me turn on the least significant bit of being that will be zero. Plus
one equals zero. One let's turn that value of A into a. That means I
have to turn on this line eight plus one equals zero nine no let's say
eight plus 10. Remember this is hexadecimal. So eight plus 10 looks
like this 8 plus a which is 12 in hexadecimal 8 plus 10 is 18 in
decimal and in hexadecimal that is 16 plus 2 that's 18. And if we turn
all of the switches on we will get F plus F equals 1 E which is you
know correct. So once more this is just a demo application so that
you can get a feeling of what you can accomplish with this board and
sky's the limit. You can do just anything you want as long as it's a
digital circuit. And as long as it fits inside this FBD. But trust me your
designs will fit into this cycle in five FPGA.

SCHEMATIC RTL DEMO
One part of quarta say haven't shown to you is the schematic
representation of your designs. So yes here we have our Either our
Top Model and this is all very long. But hey did you know that you
can take a look at this design in a schematic way.

Well let's do that. So if you go to analysis and synthesis and you
open this section you'll see that we have an Iowa assignment
analysis a design assistant. So if you look at the analysis and
synthesis part here we have the netlist viewers and let's take a look
at the RTL view we're well as you can see here.

This is a schematic diagram of our system. Here we have the clock
divider. If you double click you'll see what was implemented inside.
Here's the counter. It has an other to a constant of one and Kerry
input of zero. And it has a clock output that goes on or off whenever
this comparison has true or false output. I'm not sure this is a less
than comparator and it compares to the input we sent into it. So this
makes complete sense. Let's go back to that Top Model Let me
zoom in let's see some other block the main block the bit aether. So
let me don't click on the name and here it is. It has a full other.
Another for the other another and another. So these are the X or
gates that are implemented inside and I'm not sure they enter these
extra gates but they are here and look at the successive Kerry inputs
and outputs. So we have a carry input here that eventually goes into
this fall either this Korean put.

Now this Kery output goes into this one and this current output goes
into this one and this carry output goes into this one. So this is not
the nicest lay out or the layout we proposed but it's the exact circuitry
we entered. And if we look inside a full lather we have to have others
and one or gate that's inside the half either we have the x or and the
and gate Let's go back to the main design remember that we have
an LCD blinking application. Well here it is. Here's the multiplexer
that selects which of the clock dividers outputs will go to its output
and the selection line is input the number 0. One thing we didn't see
in the demo in the live demo was that the input key number one goes
to the forbit other adults carry input. We didn't see that working but it
does work if you press key. Number one it will add one to the whole
some. So let's go see inside these hex 2 7 segment decoders
because I didn't write the code for them I just wrote the boolean
expressions and see what's inside. And man look at that. It's just a
combinational circuit a very very dense combinational circuit. So
there's a lot of power inside an FPGA as you can see. All right. Well
that's it for this quick demo of the schematic view.

	EDA TOOLS
	WHAT'S EDA
	EXAMPLES OF EDA TOOLS
	TYPICAL FEATURES OF EDA TOOLS
	SIMULATION
	PCB DESIGN
	SOFTWARE DEVELOPMENT
	EDA TOOLS FOR FPGA DEVELOPMENT
	THE USUAL USER STEPS
	CREATE A PROJECT
	WRITE YOUR CODE
	PIN ASSIGNMENT
	THE USUAL COMPILER STEPS
	TIMING ANALYSIS
	GENERATING A PROGRAMMING FILE
	DOWNLOADING YOUR DESIGN INTO AN FPGA
	QUARTUS PRIME, BY INTEL
	ABOUT QUARTUS AND INTEL
	SETUP_ DOWNLOADING QUARTUS
	SETUP_ INSTALLING QUARTUS
	WHERE EVERYTHING IS - PROJECT NAVIGATOR
	WHERE EVERYTHING IS – TASKS
	WHERE EVERYTHING IS - IP CATALOG
	SETUP FOR IMPLEMENTATION
	HELLO WORLD - CREATE A PROJECT
	HELLO WORLD - TOP MODULE SOURCE FILE
	HELLO WORLD – IMPLEMENTATION
	HELLO WORLD - PROGRAMMING THE FPGA
	EDA PLAYGROUND, BY DOULOS
	ABOUT EDA PLAYGROUND AND DOULOS
	EDA PLAYGROUND SETUP
	WALKTHROUGH_ CODE ENTRY
	WALKTHROUGH_ LEFT TOOLBAR
	Walkthrough_ Other Tools
	DEMO_ CODE EXAMPLE
	DEMO_ SIMULATION DUMP SYSTEM TASKS
	DEMO_ SIMULATION CONTROL SYSTEM TASKS
	VIVADO DESIGN SUITE, BY XILINX
	ABOUT VIVADO DESIGN SUITE AND XILINX
	SETUP_ DOWNLOADING VIVADO
	SETUP_ THE VIVADO INSTALLATION WIZARD
	CREATING A PROJECT
	WALKTHROUGH_ PROJECT MANAGER
	WALKTHROUGH_ IP CATALOG
	WALKTHROUGH_ SOURCE FILES
	WALKTHROUGH_ CONSOLE OUTPUT AND MESSAGES
	WALKTHROUGH_ SIMULATION
	WALKTHROUGH_ PIN ASSIGNMENT
	WALKTHROUGH_ TOP MODULE CODE
	WALKTHROUGH_ BITSTREAM FILE GENERATION
	WALKTHROUGH_ THE HARDWARE MANAGER
	LABSLAND
	ABOUT LABSLAND
	WALKTHROUGH
	FPGA LAB
	VERILOG IDE DEMO_ PIN ASSIGNMENT
	VERILOG IDE DEMO_ ADDER CODE
	VERILOG IDE DEMO_ ADDER LIVE DEMO
	VERILOG IDE DEMO_ MULTIPLIER LIVE DEMO
	RECOMPILING
	UPLOADING DEMOS
	MOTIVATION_ HARDWARE DESIGN
	MOTIVATION_ SOFT PROCESSORS
	INTRO TO FPGAS
	FPGA OVERVIEW
	FPGAS VS ASIC
	WHAT'S INSIDE AN FPGA
	WHAT'S INSIDE LOGIC BLOCKS_ - LOOKUP TABLES
	WHAT'S INSIDE LOGIC BLOCKS_ ADDERS AND FLIP FLOPS
	WHAT'S INSIDE INTERCONNECTS
	WHAT'S INSIDE I_O BLOCKS
	WHICH IS THE PROGRAMMABLE
	FPGAS VS CPLDS
	HOW IS AN FPGA PROGRAMMED
	WHO MAKES FPGAS
	WHAT HARDWARE CAN BE IMPLEMENTED WITH AN FPGA
	WHERE TO GET A BOARD
	BOARD UNBOXING
	THE DE0-CV BOARD WEBSITE
	DE0-CV BOARD CD CONTENT
	SKIMMING THROUGH THE MANUAL
	THE FPGA DEVELOPMENT PROCESS
	THE STEPS YOU NEED TO TAKE
	CREATE A PROJECT
	WRITE YOUR CODE
	ASSIGN PINS
	PIN ASSIGNMENT DEMO
	SPECIFY TIMING CONSTRAINTS
	PROPAGATION DELAYS EXAMPLE
	TIMING IN SEQUENTIAL SYSTEMS
	WHY THIS MATTERS IN FPGAS
	WHERE THE COMPILER TAKES ON
	TIMING ANALYSIS
	PROGRAMMING FILES
	INSTALLING QUARTUS PRIME
	SHOWING YOU AROUND QUARTUS PRIME
	LOOKING AT THE TOP-LEVEL TEMPLATE CODE
	ENTERING SOME PROOF-OF-CONCEPT CODE
	COMPILING YOUR DESIGN
	PROGRAMMING YOUR DEVICE - JTAG MODE
	PROGRAMMING YOUR DEVICE - ACTIVE SERIAL MODE
	GETTING IT BACK TO ITS FACTORY STATE
	SYSTEM BUILDER_ THE EASIEST WAY TO JUMPSTART YOU APPLICATIONS
	SYSTEM DESCRIPTION
	LOOKING AT THE ADDER CODE
	LOOKING AT THE BLINKY CODE
	LOOKING AT THE INSTANTIATED MODULES CODE
	PROGRAMMING THE ADDER INTO THE BOARD
	SCHEMATIC RTL DEMO

